
Fuel-Efficient Centralized Coordination of
Truck Platooning

SEBASTIAN VAN DE HOEF

Licentiate Thesis
Stockholm, Sweden 2016



TRITA-EE 2016:074
ISSN 1653-5146
ISBN 978-91-7729-015-5

KTH Royal Institute of Technology
School of Electrical Engineering

Department of Automatic Control
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillst̊and av Kungliga Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av licentiatexamen i elektro- och
systemteknik m̊andagen den 13 juni 2016 klockan 10.00 i E3, Kungliga Tekniska
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Abstract

The problem of how to coordinate a large fleet of trucks with given
itinerary to enable fuel-efficient platooning is considered. Platooning is a
promising technology that enables trucks to save significant amounts of fuel
by driving close together and thus reducing air drag. A setting is considered
in which a fleet of trucks is provided with transport assignments consisting
of a start location, a destination, a departure time and an arrival deadline
from a higher planning level. Fuel-efficient plans are computed by a cen-
tralized platoon coordinator. The plans consist of routes and speed profiles
that allow trucks to reach their respective destinations by their arrival dead-
lines. Hereby, the trucks can meet on common parts of their routes and form
platoons, resulting in a decreased fuel consumption.

First, routes are computed. Then, all pairs of trucks that can potentially
platoon are identified. Potential platoon pairs are identified efficiently by
extracting features from the routes and processing these features. In the next
step, two types of plans are computed for each vehicle: default and adapted
plans. An adapted plan is such that the vehicle can meet another vehicle
en route and platoon. We formulate a combinatorial optimization problem
that combines these plans in order to achieve low fuel consumption. An
algorithm to compute optimal solutions to this problem is developed. The
optimization problem is shown to be NP-hard, which motivates us to propose
a heuristic algorithm that can handle realistically sized problem instances.
The resulting plans are further optimized using convex optimization. The
method is evaluated with Monte Carlo simulations in a realistic setting. We
demonstrate that the proposed algorithm can compute plans for thousands
of trucks and that significant fuel savings can be achieved.
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Notation

Symbol Meaning
Gr road network graph
Nr nodes of the road network graph
Er edges of the road network graph
L length associated with an edge in the road network graph
e route of a vehicle
Ne number of edges of a route
tS start time of an assignment
tD arrival time of an assignment
tA arrival time according to a vehicle plan
tM merge time
tSp split time
D length of a route
v speed
v speed sequence of a vehicle plan
Nv number of elements in a speed sequence

t̂ sequence of times instances the speed changes
vmin minimum speed
vmax maximum speed
vcd constant speed used in a default plan
Fc fuel consumption of all plans combined
F fuel consumption of a trajectory
f fuel consumption per distance traveled
f0 regular fuel consumption per distance traveled
fp fuel consumption per distance traveled as a platoon follower
Gc coordination graph
Nc set of assignments and nodes of the coordination graph
Ec edges of the coordination graph
∆F edge weights of the coordination graph
Nl set of coordination leaders
fce fuel savings as a function of the coordination leader set
N i
n set of in-neighbors of a node n
N o
n set of out-neighbors of a node n

∆u change in fce from adding/removing a coordination leader
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Chapter 1

Introduction

This chapter introduces the thesis. In Section 1.1, we motivate why goods trans-
portation is a topic worthwhile studying. Therein, we argue that road freight

transport is in many aspects superior to other transport systems. However, road
freight transport has a number of problems that need to be overcome in order
to become sustainable. Truck platooning is a promising new technology that can
help overcome some of these problems. In Section 1.2, we formulate the problem
of forming truck platoons that this thesis attempts to solve. Section 1.3 gives an
overview of this thesis. It summarizes, chapter by chapter, the contributions made.
Furthermore, we indicate where presented material has been published.

1.1 Motivation

Goods transport is critical for economy, and transport volumes are tightly cou-
pled with economic prosperity [68]. In the European Union, the entire transport
sector accounts for 5 % of the gross domestic product (GDP) [33]. Developments
in transportation systems are key enablers for industrial development. Without
improved ships and the invention of railways, the industrial revolution could not
have taken place. More recently, increasing amounts of goods are moved by road
freight transport [36]. This is due to a number of advantages road freight transport
has compared to alternative means of transportation such as rail, water, or air.
Trucks are very flexible. They can reach virtually every location that goods need
to transported to or from. The organizational overhead of trucks is low and many
operators are small companies [35]. This enables quick adaptation to changing de-
mands, and competition keeps prices low. Since a truckload is relatively small, it
is often possible to transport goods directly from source to destination with little
overhead for combining different transports in order to fill the vehicle [21]. Road
freight transport has, on the other hand, a number of problems. Due to the de-
centralized nature of road infrastructure, traffic and thus transport times can vary
and they are difficult to predict. Furthermore, every truck needs a driver, which
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leads to high labor costs [81]. Driving a truck over long distances on highways can
be at times a monotonous task. Nevertheless, the driver’s full attention is required
at all times, since even short moments during which a driver is not attentive can
lead to fatal accidents [7]. Another problem is that the great majority of trucks is
powered by fossil fuels, and despite various research efforts such as electric high-
ways and alternative fuels, this is not likely to change soon, in particular in the
domain of long haulage transport [34, 74]. Fuel accounts for roughly a third of a
heavy truck’s operation costs in long haulage transport [81]. The use of fossil fuels
leads to problematic emissions, most prominently carbon-dioxide [74]. In 2014, the
transport sector accounted for 20 % of greenhouse gas emissions in the European
Union, of which 72 % were due to road transport.

Truck platooning is a technology that can help solve some of these problems.
It refers to a group of vehicles forming a road train without any physical coupling
between the vehicles. A short inter-vehicle distance is maintained by automatic
control and vehicle-to-vehicle communication. Figure 1.1 shows two demonstra-
tions of vehicle platooning. The small inter-vehicle spacing leads to an improved
road throughput and the automatic control of the trailing vehicles improves safety.
Similar to what racing cyclists exploit, the follower vehicles and, to a lesser degree,
the lead vehicles experience a reduction in air drag, which translates into reduced
fuel consumption [5, 6, 20, 57, 87, 99, 100]. Reduced fuel consumption, in turn,
implies decreased operation costs and emissions. Advances in wireless communi-
cation, satellite based positioning, available computing power, and driver support
systems in general have made the deployment of platooning systems feasible and
platooning has attracted the attention of major truck manufacturers. It is likely
that such systems will be commercially available in near future [52, 2].

1.2 Problem Formulation

Integrating platooning into the road freight transport system leads to a challenging
coordination problem. While there have been promising demonstrations of intra-
platoon control systems [43, 48, 56, 87, 89, 2], the question remains open where and
when platoons should be formed. In some special cases, trucks have the entire or
first part of their journey in common, for instance, when leaving from a distribution
center. However, such special cases account only for a small fraction of road freight
transport.

Consider Figure 1.2. Two trucks that travel between the same two regions but
from different locations within the regions and at approximately at the same time.
These trucks can adjust their speeds slightly at the beginning of their journeys,
form a platoon at the start of the common part of their routes and thus save fuel
during most of their journeys.

This example motivates the need for a coordination scheme that helps trucks
form platoons (Figure 1.3). Such a system should retain the advantages trucks
have over other transportation systems, such as flexibility and independence, while
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Figure 1.1: Platooning demonstrations in the scope of the European truck platoon-
ing challenge 2016. (Image source: European Truck Platooning Challenge)

maximizing the gains from platooning, specifically reduced fuel consumption. In
particular the reduction in fuel consumption can be jeopardized if vehicles drive
at increased velocities in order to catch up to their assigned platoon partners [62].
This thesis investigates how vehicles with different start-destination-pairs can be
coordinated to form platoons in a fuel efficient way.
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Figure 1.2: Two trucks with similar start-destination-pairs can meet en route and
form a platoon.

1.3 Thesis Outline and Contributions

This section provides an overview of the thesis. It describes each chapter’s content
and contribution. We also indicate publications in which material used in this thesis
has been or is going to be published.

Chapter 2: Background Chapter 2 provides background of the thesis. Truck
platooning is ultimately a measure to make road freight transport more efficient. A
system for coordinating truck platooning will not be of practical use if the context
in which it is used is not considered. Section 2.1 gives a brief overview over research
on freight transport systems. The section illustrates the scale and development of
today’s transport systems. We motivate why continuous improvement of transport
systems is crucial for the economy.

Truck platooning is a relatively new technology that has been made possible by
modern information and communications technology. Information and communi-
cations technology has had an impact on transportation systems in various ways.
These developments are often described with the term “intelligent transportation
systems”, of which an overview is given in Section 2.2.

The topic of this thesis is the coordination of truck platooning and it takes the
ability of trucks to form platoons for granted. Section 2.3 summarizes work on the
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Figure 1.3: Illustration of an integrated platoon coordination system. Trucks com-
municate via vehicle to infrastructure communication with the centralized platoon
coordinator that coordinates the dynamic formation of platoons and integrates with
logistic operators.

control of truck platooning and its effect on fuel consumption.

Section 2.4 reviews related work on the coordination of truck platooning as well
as work from other areas that play a role in some of the results presented in this
thesis.

Chapter 3: Modeling In Chapter 3, we model the problem whose solution is
investigated in the remainder of the thesis.

In Section 3.1, we introduce the notion of assignments and vehicle plans that
fulfill these assignments. The vehicle plan, consisting of a route and speed profile, is
the central data structure in this thesis. All remaining chapters deal with computing
vehicle plans.

Section 3.2 introduces the centralized platoon coordinator. The centralized pla-
toon coordinator communicates with the vehicles through vehicle-to-infrastructure
communication. It receives assignment data from the vehicles and computes fuel-
efficient vehicle plans, which are sent to the vehicles and executed.

The chapter is based on the publication:

• S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-efficient en
route formation of truck platoons. IEEE Transactions on Intelligent Trans-
portation Systems, 2016. Submitted for publication
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Chapter 4: Extracting Candidate Platoon Pairs Chapter 4 considers the
computationally efficient identification of all vehicle pairs that can potentially pla-
toon. To identify the platoon opportunities for the set of transport assignments is
the first step in the computation of vehicle plans. In Chapters 5 and 6, we discuss
how to compute and select pairwise vehicle plans.

In order to tell if two vehicles can platoon, the routes have to be compared.
If the routes overlap, we compute whether the vehicles can meet on the common
segment of their routes according to their time and speed constraints. Making these
computations for each pair of vehicles is computationally expensive.

We propose a more efficient approach based on extracting low dimensional fea-
tures from the vehicle assignments. These features can be used to efficiently dismiss
a majority of the pairs that cannot platoon. The remaining pairs can then be pro-
cessed using a computationally more expensive algorithm that compares the routes
explicitly.

The chapter is based on the publication:

• S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Computing feasible
vehicle platooning opportunities for transport assignments. In 14-th IFAC
Symposium on Control in Transportation Systems, 2016. To be published

Chapter 5: Pairwise Adapted Vehicle Plans Chapter 5 considers the com-
putation of a speed profile for one vehicle. Hereby, the speed at the beginning of
each journey is adjusted in a way so that the vehicle meets another vehicle en route.
The two vehicles platoon for some distance until they split up. The speed at the
end of the journey is adjusted that the vehicle meets its arrival deadline. Fuel is
saved during the platooning phase. We derive how to compute such a plan in a
fuel-optimal way taking into account that fuel consumption depends on speed and
whether the vehicle platoons or not.

The chapter is based on the publication:

• S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Coordinating
truck platooning by clustering pairwise fuel-optimal plans. In 18th IEEE
International Conference on Intelligent Transportation Systems, pages 408–
415, 2015

Chapter 6: Computing Fuel-Efficient Vehicle Plans In chapter 6 we con-
sider how to compute vehicle plans that are fuel-efficient for a fleet of vehicles as
a whole. This is done by first computing a default plan and a number of adapted
plans similar to the ones derived in Chapter 5 for each vehicle. Then, a subset of
these plans is selected and combined in a fuel-efficient way.

In Section 6.1, we formulate the problem of selecting and combining vehicle
plans in a fuel-efficient way as a combinatorial optimization problem. In Section 6.2,
a branch-and-bound algorithm is developed that computes exact solutions to the
combinatorial optimization problem. We also prove that the problem is NP-hard,
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which means that it might take a lot of computational effort to compute an optimal
solution.

The result that the optimization problem is NP-hard motivates the development
of a heuristic algorithm in Section 6.3. The algorithm is similar to heuristic algo-
rithms used in clustering and community detection. It improves the fuel-efficiency
of the combined plans in every step until it reaches a local maximum.

Section 6.4 elaborates on how the selected default and adapted plans can be
jointly improved using convex optimization. Hereby, the pairs of vehicles that
platoon remain fixed but the speed profile that leads to this platooning is optimized
considering all vehicles at once.

Section 6.5 provides a realistic simulation scenario. Using Monte Carlo simu-
lations, we motivate that the developed methods can save significant amounts of
fuel. It also shows that our method can handle realistic fleet sizes without running
into computational problems.

The chapter is based on the following two publications:

• S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-efficient en
route formation of truck platoons. IEEE Transactions on Intelligent Trans-
portation Systems, 2016. Submitted for publication

• S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-optimal co-
ordination of truck platooning based on shortest paths. In American Control
Conference, pages 3740–3745, Chicago, IL, 2015

Chapter 7: Conclusions and Future Work In Chapter 7 we conclude the
thesis and discuss future work. Section 7.1 summarizes and discusses the obtained
results. Section 7.2 outlines possible ways to continue this work.

Additional Publications The following three related publications are not ex-
plicitly covered in this thesis:

• B. Besselink, V. Turri, S. van de Hoef, K.-Y. Liang, A. Alam, J. Mårtensson,
and K. H. Johansson. Cyber-physical control of road freight transport. Pro-
ceedings of the IEEE, 104(5):1128–1141, 2016

• K.-Y. Liang, S. van de Hoef, H. Terelius, V. Turri, B. Besselink, J. Mårtensson,
and K. H. Johansson. Networked control challenges in collaborative road
freight transport. European Journal of Control, 2016. To be published

• S. van de Hoef, D. V. Dimarogonas, and P. Tsiotras. Spectral analysis of
extended consensus algorithms for multiagent systems. In 53rd IEEE Con-
ference on Decision and Control, pages 2204–2209, Dec. 2014





Chapter 2

Background

This chapter provides background on the thesis. Since trucks are an integral
part of the freight transport system, we begin by discussing work on planning

and on related challenges in freight transportation in Section 2.1. Transportation
systems have been heavily influenced by information and communications technol-
ogy resulting in the emergence of the field of intelligent transportation systems.
Platooning and its coordination is a technology enabled by modern information
and communications technology. Section 2.2 gives a brief overview of developments
in the field of intelligent transportation systems. Before there is a need to coordi-
nate platooning, the technology to make platooning a reality has to be developed.
A significant amount of work has been dedicated to that topic. Section 2.3 gives
an overview of work on platooning. Finally, Section 2.4 lists some of the existing
work on platoon coordination. Furthermore, it provides references to some of the
methods not directly related to platooning that are used in this thesis.

2.1 Freight Transport

Driven by its vital role in the economy there is a large body of research on trans-
portation systems. The work on logistics can be divided into three levels of plan-
ning: strategic level, tactical level, and operational level [29, 66]. On the strategic
level, long term decisions are made. The construction of infrastructure such as
depots and harbors fall in this category. In addition, the types of service offered by
a transport operator are decided on this level. For example, the transportation of
iron ore from a mine to a furnace poses different challenges than the just-in-time
delivery of car components. On the tactical level decisions are made about how
the transport should take place. Here, the transport mode is decided. On the op-
erational level, the actual schedule of transports is decided. Assignment of drivers
falls in this category, too, which is a challenging task due to the uncertainties in
transport times and strict hours of service regulations [67, 37].

Different transport systems—mainly road, air, ship, and railway—have their
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own domain specific challenges. For air traffic, airborne waiting times are very
expensive and should be minimized while high safety standards have to be guaran-
teed [15]. In marine traffic, many of the challenges are related to the operations in
ports [83, 17]. In railway systems, infrastructure disruptions are difficult to handle
due to the infrastructure’s high complexity [53]. Most of these domains have been
significantly affected by information and communications technology. There is an
increasing interest to integrate different transport systems and handle their mutual
effects [21, 61, 66].

The total transport volumes are steadily increasing, the reasons being expand-
ing trade, global economic development, globalization, and the ability to handle
complicated supply chains. The costs for transportation are significant, and so is
the environmental impact. If this growth should continue or even accelerate in a
sustainable way, massive improvements in the efficiency of transport systems have
to be implemented. This concerns handling of the sheer complexity of the future
transport system, more efficient use of resources, transition to alternative energy
sources, and increased automation [36, 74, 34].

2.2 Intelligent Transportation Systems

The development of information and communication technology has major impacts
on transportation systems [11, 61, 15, 79]. A large body of work focuses on improv-
ing efficiency of road infrastructure by means of variable speed limits and traffic
signals [76, 12]. On arterial networks it is possible to hold back traffic at certain
points to keep the traffic flow at the point of maximum efficiency. In urban scenar-
ios the timing of traffic lights can be adapted in an intelligent way to reduce journey
times. In addition, quick response to incidents and adaptive routing of traffic are
possible ways to improve the road transport system. While these schemes rely
mostly on dedicated road-side infrastructure, the vehicles themselves can also play
an increasingly active role. The widespread availability of global positioning system
(GPS) receivers and mobile internet allow to collect data on the traffic situation
directly from the vehicles without any dedicated sensors [47]. Live traffic feeds to
navigation devices are a first step towards directly influencing vehicles without the
need for variable signs, traffic lights, etc. Using vehicle-to-infrastructure (V2X) and
vehicle-to-vehicle (V2V) communication, efficiency and safety of road transport is
expected to improve further [46, 98].

On the level of individual vehicles, information and communications technology
has been as influential as well. The computation of routes is widely spread tech-
nology and in combination with satellite based positioning helps avoid time and
fuel consuming detours. The basis for the computation of short routes is Dijkstra’s
algorithm for computing shortest paths in graphs. The A-star algorithm includes
additional heuristics in order to speed up the search. Since road networks are very
large, one can further pre-process the close to static road-network data and reduce
computation times for long routes by some orders of magnitude [3, 80, 13, 72].
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Routes can be optimized for different criteria such as distance, journey time, or
fuel consumption [22]. Furthermore, there are problem settings in which vehicles
have to visit multiple locations in an efficient way [4]. A classical problem of this
type is the traveling salesman problem where an optimal route connecting a given
number of location is to be computed. This can be extended to the vehicle routing
problem where several vehicles are considered [86]. Dynamic formulations consider
that the locations being visited are not known a priory but that they are revealed
as the system runs [24]. In addition, it is possible to consider additional stochastic
elements in the problem [41, 40].

On vehicle level, huge progress has already been achieved in the development of
advanced driver assistance systems and (semi-)autonomous vehicles [18, 75]. Tech-
nologies such as adaptive cruise control (ACC), cooperative adaptive cruise control
(CACC) [71], and lane keeping assistance are direct enablers for platooning [42].
Despite impressive demonstrations of autonomous driving, it is likely that in near
future commercially available systems will only allow the driver to hand over con-
trol in particular driving scenarios. Driving in a platoon on a highway is one such
scenario [96].

2.3 Platooning

The term “platooning” is used to describe vehicles driving behind each other with
the gap between adjacent vehicles being controlled. In its simplest form, this occurs
naturally on busy roads. Modern sensor and wireless communication technology
makes it possible to automatically control the inter-vehicle gaps. Such automatic
control has a number of advantages over manual control by human drivers. Adap-
tive cruise control (ACC), which is currently being introduced to the automotive
market [38], is both a convenience and a safety feature. It relieves the driver from
the potentially boring task of controlling the distance to the vehicle in front. Fur-
thermore, rear collision accidents due to insufficient gaps and inattentive drivers
account for a significant number of accidents [7]. Adaptive cruise control can help
to avoid such accidents. Automatic control of the inter-vehicle gaps, in particular
cooperative adaptive cruise control (CACC) where vehicles communicate actively,
makes it possible to reduce the inter-vehicle gaps compared to human controlled
gaps without compromising safety [49, 88, 71]. This results in two other desirable
effects of platooning. By reducing the inter-vehicle gaps, more vehicles can fit on
the road, leading to more efficient use of the infrastructure. The small inter-vehicle
gaps lead to a slipstream effect (Figure 2.1), which reduces the air drag experienced
by the trailing vehicles [5, 6, 20, 57, 87, 99, 100]. Reduced air drag, in turn, leads
to reduced fuel consumption. This effect is frequently exploited in bicycle races.
Experiments motivate that the air drag of a heavy truck in a platoon can be low-
ered by 40 %, translating into an overall reduction in fuel consumption of over 10 %.
The potential of platooning to reduce fuel consumption has recently been one of
the main motivations to develop platooning systems for heavy trucks.
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Figure 2.1: Platooning leads to a slipstream effect that can reduce the fuel con-
sumption of the follower truck.

The automatic control of inter-vehicle gaps is a non-trivial problem that has
attracted significant research interest [25, 8, 70, 43, 44, 49, 56, 60, 73, 77, 84, 85,
88, 89, 97]. Apart from the stringent requirements of safety, i.e., that vehicles do
not collide under any circumstances, it is required that disturbances in one part
of the platoon do not get amplified as they travel from vehicle to vehicle through
the platoon. The phenomenon of spontaneously occurring traffic jams in heavy
traffic is an example of a small disturbance being amplified as it travels upstream
through the string of vehicles. To formalize this phenomenon, the notion of string
stability has been introduced. Roughly speaking, a system is string stable when
a disturbance on one subsystem is attenuated as it affects the next subsystem.
When wireless communication is used to transmit control information between the
vehicles, interference can cause information to be lost. The controller needs to
handle such loss of information, for instance, by relying data from other sensors
or increasing the gap between the vehicles. Surrounding traffic needs to be taken
into account. For instance, other vehicles still have to be able to enter and exit
the highway. Long platoons need to detect such vehicles and open gaps for the
other vehicles when needed. When platooning is used as a measure to reduce fuel
consumption, it is important that the control of the inter-vehicle gaps is performed
in a way that the reduced air drag actually translates into reduced fuel consumption.
If the vehicles brake and accelerate a lot in order to keep the gap at the desired
value, they might consume more fuel compared to not platooning. In particular in
hilly terrain a sophisticated fuel-efficient control strategy is crucial [90].

2.4 Related Work

Since platooning systems for reduced fuel consumption are not yet commercially
available, the research on the formation of platoons is still in its infancy. Variations
of platoon coordination have been considered in literature. In [59], the authors
formulate a mixed integer linear programming problem without considering the
speed dependency of fuel consumption, and prove that the problem is NP-hard. In
[62] the authors consider a simple catch-up coordination scheme and evaluate it on
real fleet data. In [58], local controllers for coordinating the formation of platoons
are proposed. In [69], the authors use data-mining to identify economic platoons
based on different criteria. Unlike this thesis, the method presented in [69] allows
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that trucks wait for other trucks to form the platoon.

Various results from areas not directly related to platooning have been used in
this thesis. The method to extract candidate platoon pairs discussed in Chapter 4
is inspired by a related problem in computer graphics, in particular finding the
intersection of geometric objects. When the number of objects is large, instead of
checking all possible pairs for intersection, it is more efficient to identify a smaller
set of candidate pairs. The pairs in this set are then processed individually [14, 31,
54, 27, 64].

The proposed method to decide which trucks should platoon presented in Chap-
ter 6.3 is inspired by clustering algorithms. Clustering is a widely used tool for
analysis of large data sets. Data is structured into a finite number of sets. Ele-
ments within the set are in some way related. K-means clustering is a widely used
technique in machine learning. An algorithm related to K-means clustering is called
K-medoids clustering [50, 51, 55], to which the proposed algorithm in Chapter 6.3
is similar. Clustering of graphs has been investigated in the area of community
detection. Community detection considers the problem of clustering a graph into
densely connected groups of nodes [45, 39, 19].

This thesis explicitly considers that fuel consumption depends on vehicle speed
and that platooning affects the fuel consumption. The development of an accurate
fuel consumption model is non-trivial, as fuel consumption depends on a large
number of factors such as road, weather, vehicle, driver, speed, load, traffic, etc. and
various attempts have been made [30, 22]. In this work, we are mostly concerned
with how speed and the role in a platoon affect fuel consumption. The effect of
platooning on fuel consumption has been investigated both in simulations and in
experiments with real vehicles. The reduction in fuel consumption is non-trivial
to identify from measurements since it depends on the gap between the vehicles,
the performance of the controller, the shape of the vehicles, the environmental
conditions, etc. Nevertheless, research on the topic consistently shows a significant
reduction of fuel consumption [5, 6, 20, 57, 87, 99, 100].

2.5 Summary

This chapter provides the background of the thesis. Freight transport is the back-
bone of industry and thus tightly coupled to economic prosperity. Therefore, trans-
port has attracted the attention of many researchers and huge progress has been
made on how to organize transport efficiently. Challenges arise in different modes
of transport as well as on different levels. Increasing transport volumes and the
environmental impact of transport poses new challenges.

The development of information and communications technology has had con-
siderable impact on transport systems resulting in the research field of intelligent
transportation systems. Available data enables smart decisions on how to route
individual vehicles as well as entire transport streams, which leads to increased effi-
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ciency of the transport system. Progress in sensors and automatic control improve
safety and comfort on vehicle level.

One emerging technology on vehicle level is platooning, where vehicles form a
road train by using automatic control of the inter-vehicle distances. Platooning
has the potential to reduce fuel consumption, improve efficiency of road usage,
improve safety, and help automate driving. While control of platoons is currently
being developed as a commercial product for trucks, only few contributions on
when, where, and how platoons should be formed are available in the literature.
This thesis builds on these contributions and combines methods from computer
graphics, clustering, and community detection to efficiently coordinate the en route
formation of truck platoons.



Chapter 3

Modeling

In this section, we model the problem of coordinating truck platooning in a fuel
efficient way and we introduce notation that is used throughout this thesis. Sec-

tion 3.1 introduces vehicle plans consisting of a route and a speed profile. Vehicle
plans encode the result of the platoon coordination algorithms. We also relate fuel
consumption and vehicle plans. The remainder of this thesis discusses how to com-
pute fuel-efficient vehicle plans making use of platooning. Section 3.2 introduces
a technical system that we call platoon coordinator. The platoon coordinator is
a centralized entity that coordinates the dynamic en route formation of truck pla-
toons. It receives assignment information and position data from the vehicles and
computes vehicle plans that are sent back to them.

3.1 Vehicle Plans for Coordination

We have an index set Nc of finitely many transport assignments, each tied to a
specific truck. A transport assignment A = (PS,PD, tS, tD) consists of a start
position PS, a destination PD, a start time tS, and an arrival deadline tD. We
model the road network as a directed graph Gr = (Nr, Er) with nodes Nr and
edges Er. Nodes correspond to intersections or endpoints in the road network and
edges correspond to road segments connecting these intersections. The function
L : Er → R+ maps each edge in Er to the length of the corresponding road segment.
A vehicle position is a pair (e, x) ∈ Er× [0, L(e)] where e indicates the current road
segment and x how far the vehicle has traveled along that segment.

The goal is to compute fuel-efficient plans for the trucks that ensure arrival
before each trucks’ individual deadline. Each plan includes a route in the road
network from start to destination and encodes a piecewise constant speed trajectory.
The speed is constrained to a range of feasible speeds [vmin, vmax], which is supposed
to be the same for all vehicles and road segments.1 For the sake of this high-level
planning, it is reasonable to assume that trucks change their speed instantaneously.

1The approach developed in this thesis can be generalized in order to relax this assumption.
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Definition 1 (Vehicle Plan). A vehicle plan P = (e,v, t̂) consists of a route e, a
speed sequence v, and a time sequence t̂. The route is a sequence of Ne edges in the
road network e = (e[1], . . . , e[Ne]), e[i] ∈ Er. The speed sequence is a sequence of
Nv speeds v = (v[1], . . . ,v[Nv]), where speeds are within the feasible speed range
0 < vmin ≤ v[i] ≤ vmax. The time sequence t̂ = (t̂[1], . . . , t̂[Nv + 1]) defines when
the speed changes. Speed v[i] is selected from t̂[i] until t̂[i+ 1].

Note that Ne and Nv may be different for different vehicle plans.
We want to compute a vehicle plan for each truck. A valid vehicle plan brings

the truck from its start position PS, where it is at time tS, to its destination PD

before its deadline tD.
Vehicle plans are constrained by two conditions. The first condition requires

the trip to start at the start time t̂[1] = tS and ends before the deadline t̂[Nv +1] =
tA ≤ tD. The second condition ensures that the truck arrives at its destination
when the trip ends, i.e., the distance traveled is

D :=

Ne−1∑
i=1

L(e[i]) + xD − xS =

Nv∑
i=1

v[i](t̂[i+ 1]− t̂[i]).

A vehicle trajectory consists of an edge trajectory ε and a linear position trajectory
ξ. The edge trajectory for t ∈ [tS, tA) is given by ε(t) = e[j] where j depends on t
and is the largest integer that satisfies

j−1∑
i=1

L(e[i])− xS <

t∫
tS

φ(τ)dτ,

and where the speed trajectory φ(t) = v[i] for t ∈ [t̂[i], t̂[i + 1]), i ∈ {1, . . . , Nv}.
The linear position, i.e., the second element of the position, at time t is given by

ξ(t) =

t∫
tS

φ(τ)dτ −
j−1∑
i=1

L(e[i]) + xS.

When trucks platoon, their positions coincide in our model. Each platoon con-
sists of a platoon leader and a number of platoon followers. We introduce the
platoon trajectory πn : [tSn, t

A
n ) → {0, 1} for truck n ∈ Nc. A platoon trajectory

equals 1 when truck n is a platoon follower and 0 when it is a platoon leader or trav-
eling alone. Thus, πn(t) = 1 implies that there is another truck m ∈ Nc with m 6= n
and (εn(t), ξn(t)) = (εm(t), ξm(t)) and hence we neglect the physical dimension of
the trucks.

Figure 3.1 illustrates the relation between vehicle plans and assignments. The
route connects the assignment’s start position PS and destination PD. The combi-
nation of the speed sequence v and the time sequence t̂ induces a position trajectory.
When parts of these trajectories overlap, the vehicles can platoon.
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We model the fuel consumption per distance traveled as a function of the speed
and of whether the truck is a platoon follower or not. A platoon leader has the
same fuel consumption as a truck that travels alone while a platoon follower has a
reduced fuel consumption. We denote the fuel consumption per distance traveled
as f : [vmin, vmax]× {0, 1} → R+ where

f(v, p) =

{
f0(v) if p = 0
fp(v) if p = 1.

(3.1)

The function f0 models the fuel consumption when the truck is a platoon leader
or when it travels solo, and fp the fuel consumption when the truck is a platoon
follower. These functions can either be derived from an analytical model or fitted
to data [30]. We purposely omit that fuel consumption depends on road and vehicle
parameters in order to keep the presentation concise. All the presented results can
be augmented to handle those additional parameters.

The problem that we want to solve is to find a vehicle plan for each vehicle, and
we want to minimize the combined fuel consumption of these plans. The total fuel
consumption F (φn, πn) associated to vehicle n’s plan is given by

F (φn, πn) =

tAn∫
tSn

f(φn(t), πn(t))φn(t)dt, (3.2)

where φn is the speed trajectory, πn the platoon trajectory, tSn the start time, and
tAn the arrival time of truck n. The combined fuel consumption Fc is given by:

Fc =
∑
n∈Nc

F (φn, πn). (3.3)

Our primary goal is to compute vehicle plans that minimize Fc.
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Figure 3.1: Each assignment consists of a start position and a destination in the
network. Vehicle plans consist of a route, a speed sequence, and a time sequence.
When the position trajectories of two vehicles partially coincide, these vehicles can
form a platoon and save fuel.
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Platoon Coordinator

Assignments
An = (PS

n,PD
n , t

S
n, t

D
n )

Vehicle Plans
Pn = (en,vn, t̂n)

n=1
n=2 . . .

Figure 3.2: Schematic of the platoon coordinator. Trucks provide their assignment
data and the platoon coordinator computes fuel efficient vehicle plans.

3.2 Platoon Coordinator

Consider the centralized platoon coordinator in Figure 3.2. Trucks connect to the
coordinator via vehicle-to-infrastructure communication and share their assignment
data. The coordinator then computes fuel-efficient vehicle plans for the trucks.
These plans are sent to the trucks and executed. This process is repeated whenever
there is updated information, such as deviations from the plans and new assign-
ments. The current vehicle position is then the new start position of an assignment
that is already being executed.

The computation of the vehicle plans happens in four stages:

1. Computation of the routes en, n ∈ Nc: routes are calculated using an algo-
rithm for route calculation in road networks.

2. Extraction of candidate platoon pairs: all pairs of vehicles that can platoon
are identified.

3. Computation of pairwise vehicle plans: many plans involving two vehicles are
computed. The fuel savings of these plans are recorded as the coordination
graph Gc introduced in Section 6.1.

4. Selection of pairwise plans: a consistent subset of the plans computed in the
previous stage is combined by selecting a subset Nl ⊂ Nc, so-called called
coordination leaders.

5. Joint vehicle plan optimization: the selected pairwise plans are jointly opti-
mized for low fuel consumption.
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Stage 1. computes the routes en, n ∈ Nc and stages 2.–4. compute the speed
sequences vn and time sequences t̂n for n ∈ Nc making use of the ability of the
trucks to from platoons in order to achieve lower fuel consumption. Algorithms
for route calculation in road networks are well developed [80, 22] and not further
discussed in this thesis. We discuss stages 2.–4. in the following chapters.

3.3 Summary

The problem considered in this thesis is to find and analyze a way of computing
fuel-efficient vehicle plans for the assignments. An assignment consists of a start
location, a goal location, a start time, and an arrival deadline. A valid vehicle plan
connects start and goal location by a route in the road network and computes a
speed profile that lets the vehicle reach its destination before the deadline. Using
a fuel consumption model, the total fuel consumption of a vehicle plan can be
computed. When two vehicle plans enable the trucks to platoon, it is possible to
reduce the resulting fuel consumption.

The platoon coordinator is a system that receives the assignments of connected
vehicles. In several stages it computes valid vehicle plans to fulfill the assignments.
To do so, it computes vehicle plans in a way that lets vehicles form platoons during
parts of their journey and save fuel. Deviations from the plans and new vehicles
are accounted for by frequent replanning.



Chapter 4

Extracting Candidate Platoon
Pairs

In this chapter, we introduce a scalable way of computing all pairs of assignments
that have an overlapping route. As introduced in Section 3.1, two trucks can

only form a platoon if they have at least one edge of their routes in common. The
topic of this thesis is to decide which platoons should be formed where and when.
Thus, an obvious first step is to compute which pairs of transport assignments
have at least one edge of their routes in common. The straightforward way of
doing this is to compute for each pair of transport assignments individually the
common edges in their routes. If there are common edges in the routes, we can
determine if the trucks can form a platoon on any of those taking into account
the start times, arrival deadlines, and speed constraints. This procedure involves
computing a number of set intersections, and this number scales quadratically with
the transport assignment count. Such computation becomes problematic for large
vehicle fleets. Therefore, we introduce a computationally less expensive and scalable
step to narrow down the set of candidate pairs.

Section 4.1 associates each vehicle plan with a sequence of time intervals and
a sequence of two-dimensional positions. This information provides limits on the
possible points in time a vehicle can be at a certain position as long as the vehicle
travels according to a valid vehicle plan. If two vehicles can be at the same position
at the same time, they are candidates for platooning. Section 4.2 introduces the
concept of feature extraction and culling. Features are computed based sequences
of positions and time intervals, and they are significantly less complex then these
sequences. For some assignment pairs, it is possible to efficiently rule out the pos-
sibility of platooning based on these features. An algorithm for such computation
is called a classifier. Section 4.3 develops appropriate features and classifiers. In
Section 4.4, these classifiers are demonstrated in a simulation example.
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L(e[3])
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Figure 4.1: This plot illustrates the computation of the lower and upper bounds on
the node arrival times. The truck start at the start time at the start position. The
lower bound can be achieved with maximum speed vmax from start to destination.
The upper bound can be achieved by selecting the minimum speed vmin up to the
point where the truck arrives on deadline when it selects the maximum speed vmax

until the destination.

4.1 Candidate Platoon Pairs

We start by defining a function that indicates whether platooning between two
transport assignments is possible or not. This is the case if there is at least one
common edge in the routes of the transport assignments where the vehicles can
intersect. To this end, we convert the routes to a sequence of nodes in Gr and
compute lower bounds t and upper bounds t̄ on the points in time when these
nodes can be reached. Overlapping time bounds on two consecutive nodes indicate
that the two transport assignments can platoon1. We have for the sequence of nodes
n = n[1], . . . ,n[Ne − 1] of a transport assignment with route e = e[1], . . . , e[Ne]
that n[i] = n : (·, n) = e[i] for i = 1, . . . , Ne− 1. The possible arrival times at these

1This excludes the possibility of only platooning on the first or last link of a truck’s route.
However, these links are fairly small in realistic road networks (at most a few hundred meters) so
that this simplification is of small practical relevance. A node for the start position and a node
for the destination can be added to overcome this issue. We omit this for the sake of concise
presentation.
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nodes are computed according to

t[i] =

i∑
j=1

L(e[j])− xS

vmax
+ tS (4.1)

t̄[i] = min


i∑

j=1

L(e[j])− xS

vmin
+ tS, tD −

Ne−1∑
j=i+1

L(e[j]) + xD

vmax

 (4.2)

Figure 4.1 illustrates the above definition of t and t̄. Recall that L associates edges
in the road network with the length of the corresponding road segment.

Furthermore, each node can be associated with a two-dimensional position
P : Ec → R2. This can be, for instance, longitude and latitude of the node in the
road network.

We introduce a function that indicates whether or not two transport assignments
have the possibility to platoon.

Definition 2 (Coordination Function). The coordination function C : Nc ×Nc →
{0, 1} has the following properties. Let ti, tj be the lower bounds and t̄i, t̄j the
upper bounds on the node arrival times of transport assignments i and j according
to (4.1), (4.2). Then it holds that C(i, j) = 1, if there are indices a, b such that

P(ni[a]) = P(nj [b])

P(ni[a+ 1]) = P(nj [b+ 1]),

and

[ti[a], t̄i[a]] ∩ [tj [b], t̄j [b]] 6= ∅
[[ti[a+ 1], t̄i[a+ 1]] ∩ [tj [b+ 1], t̄j [b+ 1]]] 6= ∅

Otherwise C(i, j) = 0.

Comparing the routes and the time bounds in order to evaluate C, is straight-
forward but computationally expensive. We refer to this as the exact algorithm.
In the remainder of this chapter, we derive a scalable method for computing the
set of all possible platoon pairs C = {(i, j) ∈ Nc × Nc : C(i, j) = 1}. Instead of
iterating over all elements in Nc × Nc and using the exact algorithm, we propose
to first efficiently compute an over-approximation Ĉ ⊃ C (see Figure 4.2) and then
applying the exact algorithm.

4.2 Culling Candidate Platoon Pairs

The key idea of our approach is to extract features from the routes and time bounds
(n, t, t̄) of the transport assignments, as illustrated in Figure 4.3, in order to com-
pute Ĉ. These features can be more efficiently processed than (n, t, t̄). The features
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C Nc ×NcĈ

Figure 4.2: Instead of computing C by directly iterating over all element in Nc×Nc,
we first compute an over-approximation of C denoted Ĉ in an efficient way.

Figure 4.3: Each assignment’s route and time bounds are used to compute features,
such as an interval.

are designed in a way that no platooning opportunity in C is be excluded from Ĉ, so
that C can be computed from Ĉ using the exact algorithm. However, there might be
some additional elements in Ĉ that do not actually correspond to platooning oppor-
tunities. We call these additional elements false-positives. The less false-positives
there are in Ĉ, the faster the computation of C from Ĉ is. This approach is inspired
by algorithms for detecting collisions between a large number of geometric objects
[14, 31]. Figure 4.2 illustrates the relation between Nc ×Nc, Ĉ, and C.

We consider two types of features. These are interval features and binary fea-
tures. Interval features map each object to an interval. The corresponding classifier
indicates an intersection between two objects if the intervals generated by the ob-
jects overlap. There are algorithms, such as [14, 31], that can compute this classifier
for all object pairs more efficiently than checking each pair individually if the num-
ber of intersecting pairs is small. Binary features map each object to a boolean
value. The corresponding classifier indicates an intersection between two objects
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if the feature holds true for both objects. In Section 4.3, we derive appropriate
features for the problem stated in Section 3.1.

The classifiers are aggregated using boolean connectives. We formalize this in
the remainder of the section. Let N be a set of objects. We define a classifier as a
function c : N ×N → {0, 1}. If c(i, j) = 0, we call the combination of c and (i, j)
a negative, and if c(i, j) = 1, we call it a positive. Let g : N ×N → {0, 1} be the
ground truth, which can be computed by the exact algorithm. If, for a pair (i, j),
we have g(i, j) = 0 and c(i, j) = 1, we call it a false-positive, and if g(i, j) = 1 and
c(i, j) = 0, we call it a false-negative. Our aim is to design classifiers that yield no
false negatives for all elements of N × N and few false-positives that have to be
processed by the exact algorithm in addition to the true-positives.

We can identify two types of basic classifiers that are combined in a specific way
in order to achieve the above objective. A classifier c is required if

¬c(i, j)⇒ ¬g(i, j)

for all i, j ∈ N ×N . In some cases, we have to take into account a set of classifiers
to conclude that g does not hold. A set of classifiers Sc is required if

¬
∨
c∈Sc

c(i, j)⇒ ¬g(i, j)

for all i, j ∈ N ×N . It is straightforward to construct a required classifier from a
required set of classifiers.

Proposition 1. If a set Sc of classifiers is required, then
∨
c∈Sc c is a required

classifier.

We can combine two required classifiers into one required classifier that performs
no worse than any of the required classifiers it is combined of.

Proposition 2. If c1 and c2 are required classifiers, then c12 := c1∧c2 is a required
classifier. Let Ē12 = {(i, j) ∈ N × N : c12(i, j) = 0} be the set of negatives of c12

and let Ē1, Ē2 be the set of negatives for c1 and c2 respectively. Then Ē1 ⊆ Ē12 and
Ē2 ⊆ Ē12.

Proof. For c12 to be required, we need to show that ¬c12(i, j) ⇒ ¬g(i, j) for all
i, j ∈ N ×N . We have

(¬c1 ⇒ ¬g) ∧ (¬c2 ⇒ ¬g) = (c1 ∨ ¬c1 ∧ ¬g) ∧ (c2 ∨ ¬c2 ∧ ¬g)

= c1 ∧ c2 ∨ ¬g ∧ (¬c1 ∧ ¬c2 ∨ ¬c1 ∧ c2 ∨ c1 ∧ ¬c2)

= c1 ∧ c2 ∨ ¬g ∧ (¬c1 ∨ ¬c2)

= c1 ∧ c2 ∨ ¬g ∧ ¬(c1 ∧ c2)

= ¬(c1 ∧ c2)⇒ ¬g
= ¬c12 ⇒ ¬g.
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Let (i, j) ∈ Ē1. Then from the definition of Ē1 we have that c1(i, j) = 0. We have
that

c12(i, j) = c1(i, j) ∧ c2(i, j) = 0 ∧ c2(i, j) = 0.

It follows from the definition of Ē12 that (i, j) ∈ Ē12. Similarly, we see that any
element of Ē1 is an element of Ē12.

In this manner, we can combine as many required classifiers as we want and
have at our disposal. With each classifier we add, we potentially decrease the set
of remaining candidates that need to be checked by the exact algorithm. There is
a trade-off between doing more work to evaluate more classifiers and having less
instances that have to be processed by the exact algorithm [64].

4.3 Features and Classifiers for Culling Platoon Pairs

In order to apply the results from Section 4.2, we need to specify appropriate
features and classifiers based on these features for the problem stated in Section 3.1.
Once we know how to compute appropriate features that yield required classifiers
or required sets of classifiers, we can use the results from Section 4.2 to execute the
culling phase. The remaining candidate pairs are passed on to the exact algorithm
to compute C. Hence, we derive a selection of features and corresponding classifiers
in this section. In Section 4.4, we demonstrate these classifiers and combinations
of them in a simulation example.

The first feature projects the possible trajectories on a line, which yields an
interval. Formally, we define this feature as follows.

Definition 3. Let p ∈ R3 be a three dimensional vector that defines the orientation
of the line on which the trajectories are projected to. Then the associated interval
feature is defined as

I = [min
v∈R

(pTv),max
v∈R

(pTv)] (4.3)

with

R =

{[
P(n[1])

t[1]

]
, . . . ,

[
P(n[Ne − 1])

t[Ne − 1]

]
,[

P(n[1])
t̄[1]

]
, . . . ,

[
P(n[Ne − 1])

t̄[Ne − 1]

]}
.

(4.4)

This feature is illustrated in Figure 4.4. The projection vector p is a design
choice. Proposition 2 allows us to combine arbitrarily many classifiers based on
this kind of feature with different p.

Next, we establish that if for a pair of transport assignments the intervals do
not overlap, the coordination function is equal to zero. This allows us to define a
required feature based on the overlap between these intervals.
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p

Figure 4.4: Illustration of the projection feature. It shows how the two routes
(solid lines) are projected onto a line in the direction of the vector p. The borders
of the intervals are indicated with dashed lines. For illustration purposes the third
dimension is omitted here. In this case the projection of the two routes does not
overlap and we can conclude that these route have no edges in common.

Proposition 3. Let (i, j) refer to a pair of transport assignments. Let Ii, Ij be
the interval features according to (4.3) for the two transport assignments. Then
Ii ∩ Ij = ∅ ⇒ C(i, j) = 0.

Proof. According to Definition 2, C(i, j) = 1 implies that there must be indices
a, b such that P(ni[a]) = P(nj [b]) and [ti[a], t̄i[a]]∩ [tj [b], t̄j [b]] 6= ∅, where ni, ti, t̄i
and nj , tj , t̄j are the node sequences and time bounds of transport assignment i, j
respectively. We have

[ti[a], t̄i[a]] ∩ [tj [b], t̄j [b]] 6= ∅ ⇔ ti[a] ≤ t̄j [b] ∧ tj [b] ≤ t̄i[a].

Let

p = [p[1],p[2],p[3]]T,

P = P(ni[a]) = P(nj [b]),

P 0 = [p[1],p[2]]P.

We have

ti[a] ≤ t̄j [b] ∧ tj [b] ≤ t̄i[a]

⇒min(p[3]ti[a],p[3]t̄i[a]) ≤ max(p[3]tj [b],p[3]t̄j [b])

⇒min(p[3]ti[a] + P 0,p[3]t̄i[a] + P 0) ≤ max(p[3]tj [b] + P 0,p[3]t̄j [b] + P 0)

⇒min

(
pT

[
P

ti[a]

]
,pT

[
P

t̄i[a]

])
≤ max

(
pT

[
P

tj [b]

]
,pT

[
P

t̄j [b]

])
⇒ min

v∈Ri

(pTv) ≤ max
v∈Rj

(pTv),
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with Ri,Rj as in (4.4) for transport assignment i, j, respectively. Similarly, by
swapping i and j, we can show that the conditions of the proposition imply that

min
v∈Rj

(pTv) ≤ max
v∈Ri

(pTv).

The above two conditions combined imply that Ii ∩ Ij 6= ∅. Thus

C = 1⇒ Ii ∩ Ij 6= ∅,

or equivalently

Ii ∩ Ij = ∅ ⇒ C = 0.

Next, we introduce a binary feature that leads to a required classifier. This
feature is based on the orientations of the individual links in a route. It is only
useful if all segments in a route point approximately from start to goal location.
Later on, we address the problem of outliers. Here, we derive a set of required
classifiers each based on a binary feature from the orientation. The orientation
Θ(n1, n2) ∈ [0, 2π] of an edge (n1, n2) ∈ Er is the angle in polar coordinates of the
vector P(n2) −P(n1). We choose a partition of the interval [0, 2π]. Each element
of the partition is related to one binary feature, which holds true if the orientation
of at least one edge in the route falls in the range of that element. When two routes
overlap there must be at least one edge that has the same orientation. Figure 4.5
illustrates the classifier.

Proposition 4. Let (i, j) refer to the pair of transport assignments. Let P̄ be a
partition of [0, 2π]. If there is no element I ∈ P̄ and edges in the routes of the trans-
port assignments (ni[a],ni[a+1]), (nj [b],nj [b+1]) such that Θ(ni[a],ni[a+ 1]) ∈ I
and Θ(nj [b],nj [b+ 1]) ∈ I, then C(i, j) = 0.

Proof. According to Definition 2, C(i, j) = 1 implies that there must be indices
a, b such that P(ni[a]) = P(nj [b]) and P(ni[a + 1]) = P(nj [b + 1]), where ni, nj
are the node sequences of transport assignment i, j respectively. For these it holds
that Θ(ni[a],ni[a + 1]) = Θ(nj [b],nj [b + 1]). Since P̄ is a partition of [0, 2π] and
Θ(ni[a],ni[a+ 1]) ∈ [0, 2π], there must be I ∈ P̄ with Θ(ni[a],ni[a+ 1]) ∈ I. Since
Θ(nj [b],nj [b+ 1]) = Θ(ni[a],ni[a+ 1]), it follows that also Θ(nj [b],nj [b+ 1]) ∈ I.
The proof follows from contradiction.

Next, we discuss how we can make the orientation based classifier more efficient
if we can disregard routes that overlap only over a short distance. Apart from the
direct reduction in true positives, this approach will also reduce the false-positive
rate of the classifiers, since some outlier route edges can be disregarded.

In order to cover the notion that there must be a minimum overlap in routes to
be considered, we extend the definition of the coordination function (Definition 2).
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Figure 4.5: Illustration of the classifier based on the orientation. In this example the
interval [0, 2π] is partitioned into 20 ◦ intervals. The arrows on the left symbolize
edges of a route. The elements of the partition for which at least one edge in the
route has the same orientation are filled with gray.

Definition 4 (Minimum Distance Coordination Function).
A coordination function C : Nc × Nc → {0, 1} according to Definition 2 re-
quires minimum distance lmin if the following properties hold: if for a pair (i, j)
we have C(i, j) = 1, there must be a set of pairs of indices A such that for all
(a, b) ∈ A it holds that P(ni[a]) = P(nj [b]) and P(ni[a+ 1]) = P(nj [b+ 1]), and
[ti[a], t̄i[a]] ∩ [tj [b], t̄j [b]] 6= ∅ and [ti[a+ 1], t̄i[a+ 1]] ∩ [tj [b+ 1], t̄j [b]] 6= ∅.
Furthermore, we require∑

(a,b)∈A

‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

We adapt the orientation-based classifier (Proposition 4) to exclude links of a
total length less than lmin. The approach is to calculate the fraction of route length
that lies in each element of the partition. We can ignore the intersection with
some elements of the partition as long as the lengths of the links whose orientation
is contained in these elements sums up to a value less than lmin/2. Figure 4.6
illustrates this approach.

Proposition 5. Let (i, j) refer to a pair of transport assignments. Let P̄ be a
partition of [0, 2π]. Let Ii ⊆ P̄ and let Ēi ⊆ Ei, where

Ei = {(ni[a],ni[a+ 1]) : a ∈ {1, . . . , Ne,i − 2}},
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such that for all e ∈ Ēi, it holds that there exists I ∈ Ii with Θ(e) ∈ I and we have∑
(n1,n2)∈Ei\Ēi

‖P(n1)−P(n2)‖2 < lmin/2.

Similarly, by replacing i by j, we define Ij for transport assignment j. If Ii∩Ij = ∅,
then C(i, j) = 0 with C according to Definition 4.

Proof. If C(i, j) = 1, then we have a set of pairs of indices A such that for all
(a, b) ∈ A it holds that P(ni[a]) = P(nj [b]) and P(ni[a+ 1]) = P(nj [b+ 1]). Thus,
it also holds that Θ(ni[a],ni[a+ 1]) = Θ(nj [b],nj [b+ 1]). Since P̄ is a partition of
the image of Θ(·), there is exactly one element I ∈ P̄ with Θ(ni[a],ni[a+ 1]) ∈ I,
and since Θ(ni[a],ni[a+ 1]) = Θ(nj [b],nj [b+ 1]), we have

Θ(ni[a],ni[a+ 1]) ∈ I ⇔ Θ(nj [b],nj [b+ 1]) ∈ I.

Furthermore, we have from Definition 4 that∑
(a,b)∈A

‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

Let Āi be a set of the indices of the head nodes of edges in (Ei∩Ej)\Ēi paired with
the corresponding indices in route j, with Ei, Ej , Ēi as defined in the proposition.
These are the pairs of indices of the edges in the common part of the route that
are ignored in transport assignment i. Similarly, let Āj be the index pairs that
are excluded due to transport assignment j. We need to show now that A is not
empty without the pairs in Āi and Āj , or in other words, that even if the features
for either route ignore up to lmin/2 of the common part of the route, there are still
edges left that let the set of classifiers indicate that the routes intersect. We have
from the assumptions made in the proposition∑

(a,b)∈Āi

‖P(ni[a])−P(ni[a+ 1])‖2 < lmin/2,

∑
(a,b)∈Āj

‖P(ni[a])−P(ni[a+ 1])‖2 < lmin/2,

and from Definition 4 that∑
(a,b)∈A

‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

Thus, ∑
(a,b)∈A\(Āi∪Āj)

‖P(ni[a])−P(ni[a+ 1])‖2 > 0,
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Figure 4.6: This figure illustrates how the performance of the orientation classifier
can be improved when overlaps of length less than lmin can be excluded. The
figure shows the histogram of two routes. The routes are sketched on the top of
the figure. There are two elements in the partition that contain orientations from
both routes corresponding only to a small fraction of the total route length. The
classifier according to Proposition 4 will indicate an intersection between these two
route whereas the classifier according to Proposition 5 can exclude the few edges
with similar orientation.

and since this is a sum over positive elements, we deduce that A \ (Āi ∪ Āj) 6= ∅.
But then there is I ∈ P̄ and (a, b) ∈ A \ (Āi ∪ Āj) such that

Θ(ni[a],ni[a+ 1]) = Θ(nj [b],nj [b+ 1]) ∈ I,

and thus Ii∩Ij 6= ∅. By contraposition it follows that Ii ∩ Ij = ∅ =⇒ C(i, j) = 0.

It is possible to combine various classifiers as defined in Propositions 3 and 5 in
various ways according to Propositions 1 and 2 in Section 4.2.

4.4 Simulations

In this section, the method derived in this chapter is demonstrated in a realistic
scenario. We show that the application of 6 classifiers can rule out 99 % of the
transport assignment pairs, leaving only 1 % for the computationally expensive
exact algorithm. The simulation setup is as follows. The start and goal locations are
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Figure 4.7: Population density map from which the start and goal locations are
sampled. The brighter the pixel, the larger the population density in that area.
Some areas outside Europe and areas without population are shown in blue.

sampled randomly with probability proportional to an estimate of the population
density in the year 2000 [82]. We limit the area to a large part of Europe, which is
shown in Figure 4.7.

We calculate shortest routes with the Open Source Routing Machine [65]. If the
route is longer than 400 kilometers, a 400 kilometers long subsection of the route
is randomly selected. The maximum speed is vmax = 80 km/h. We set the start
times tS of half the assignments to 0 and sample the start times of the remaining
assignments uniformly in an interval of 0 to 24 h. The first half is to account for
assignments that are currently on the road while the other half is to account for
assignments that are scheduled to depart later. The deadlines tD are set in such a
way that the interval t̄[a] − t[a] = 0.5h where a is any valid index. We consider
the minimum length that two assignments have to overlap to be considered for
platooning, lmin, to be 20 km.

We implemented all features and corresponding classifiers that are described
in Section 4.3, i.e., interval projection (Proposition 3) and minimum distance ori-
entation partition (Proposition 5). Note that Proposition 4 is a special case of
Proposition 3 with lmin = 0. For interval projection we tested vectors of the form1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

1
0

 ,
−1

1
0

 ,
 − cos(α)

−1
cos(50◦) sin(α)

vmax180◦

6371π

 ,
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with α = 0, π/4, . . . , 7π/4. The position P is expressed here as latitude and longi-
tude and measured in degrees. The vectors parametrized by α are approximately
orthogonal to a trajectory at maximum speed at the latitude of 50 degrees with
heading angle α and should work well for trajectory pairs that have similar ori-
entation, that cover the same area, and that are only separated by a small time
margin. We refer to the corresponding classifiers in the following discussion as
c100, c010, c001, c110, c−110, cα0, . . . , cα7 respectively. For the orientation-based clas-
sifier, we use 100 equally sized cells to partition [0, 2π]. For each cell, the fraction of
the route distance that falls in this cell is computed. Matches up to lmin/2 starting
in ascending order of route distance contained in the cells are excluded. We refer
to this classifier as co.

This simulation focuses on demonstrating that the culling phase is able to filter
out a significant amount of assignments before they are passed on to the exact algo-
rithm. Therefore, we do not focus on optimizing the implementation for speed and
refrain from reporting running times of the simulations as they might be misleading
and we know from related work [64] that these computations can be performed fast
enough for the problem at hand if the false-positive rate of the classifiers is small.

We test 1000 transport assignments. All classifiers are evaluated in parallel.
Next, the sequence of classifiers that filters the most assignments at every stage
is computed. The number of positives for each classifier is listed in Table 4.1.
Figure 4.9 shows the number of remaining pairs at each stage, the ground truth,
and the sequence of classifiers for this sample. The optimization of the classifier
order would typically be done when the system is designed and is to some extent
specific for the exact transport setting. In a running platoon coordination system
the order in which classifiers are applied would remain fixed.

We can see in Figure 4.9 that two classifiers, c110 and cα7, combined are able
to reduce the number of pairs by one order of magnitude. The first classifier, c110,
only takes into account longitude and latitude of the routes. The second one, cα7

is orthogonal to the first one, c110, in the plane but also takes into account timing.
The third classifier, cα3, is also of the projection type, which is able to identify that
a pair of assignments cannot platoon if they are geographically close but differ in
timing, and it covers the opposite orientation compared to the previous classifier.
The fourth classifier, c100, covers a third direction in the plane. It is interesting to
see that the fifth classifier, c0, is the orientation-based classifier. Alone, it performs
much worse than the other classifiers as can be seen in Table 4.1. Two transport
assignments that take the same route in opposite directions and that “meet” on the
way are impossible to identify as a negative with the projection based classifiers.
The orientation-based classifier might be able to achieve that. The classifier that
only takes into account start and arrival time, c001, is selected last, since most of the
cases it rules out are already covered by the classifiers cα0, . . . , cα7, and also because
half the assignments start at the same time. We see that the benefit from adding
more classifiers diminishes quickly as classifiers are added. All classifiers combined
can reduce the number of pairs by two orders of magnitude and get within one
order of magnitude from the ground truth. The false-positives are mostly very
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Figure 4.8: Example of a false-positive. The two routes do not overlap. How-
ever, the routes cannot be separated by a hyperplane, and since both routes are
quite curvy the orientation based classifier cannot conclude that these route do not
overlap.

None 499,500 c−110 108,403 cα4 134,019
c100 104,380 cα0 129,282 cα5 107,287
c010 101,542 cα1 103,240 cα6 105,883
c001 208,896 cα2 103,453 cα7 109,934
c110 98,343 cα3 109,626 co 453,246

Table 4.1: Number of positives for different classifiers.

curvy routes that intersect geographically and are separated little in time in the
area of the intersection. To be able to correctly identify such pairs as negatives
is often not possible with the features presented in this chapter. Figure 4.8 shows
an example of a false-positive. We get consistent results for different runs of the
simulation.
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Figure 4.9: The number of remaining pairs when the classifiers are consecutively
applied from left to right. The order the classifiers are chosen in a way that each
stage removes as many pairs as possible. The classifier applied at each stage is
indicated on the horizontal axis. The dashed line shows the ground truth from the
exact algorithm.

4.5 Summary

Comparing the routes and the time bounds of a large number of assignments in
order to find candidates for platooning is computationally expensive. A more ef-
ficient approach is to narrow down the set of candidates based on features. A
feature is low dimensional data like a boolean truth value or an interval that can
be efficiently processed in the form of classifiers. The smaller set of candidates can
then be used as an input to computing fuel-efficient vehicle plans for all vehicles
that are coordinated. Several classifiers can be combined to get even smaller sets
of candidates, and, in some cases, classifiers have to be combined to be able to
conclusively rule out that a pair of transport assignments is able to platoon. Two
features and corresponding classifiers are derived. One is based on the projection
of the route and time bounds onto a line. The other classifier is based on the inter-
section of route segment orientations with a partition of all possible orientations.
The performance of this classifier can be improved by assuming that the common
part of the routes of two assignments must have a minimum length to be relevant
for platooning. Simulations indicate that the method developed in this chapter can
significantly narrow down the set of candidate platoon pairs.





Chapter 5

Pairwise Adapted Vehicle Plans

In this chapter, we consider a pair of assignments that offers the possibility for
platoon formation on the overlapping part of the corresponding routes. We

derive how one truck, the coordination follower, adapts its vehicle plan to another
truck, the coordination leader, in a fuel-efficient way making use of the ability of
the trucks to platoon.

Later on, in Chapter 6, we work with a wider definition of default plans and
adapted plans. The derivations in this chapter can serve as a concrete example of
how such plans can be computed. Realistic planning would have to take into account
additional factors such as different speed limits along the route, traffic, rests of the
driver, etc. The computation of vehicle plans under such additional constraints
follows the lines of reasoning as presented in this chapter. However, these additional
constraints add a lot of complexity in the notation, and are henceforth omitted.

In Section 5.1, we consider two vehicles with the same route. One vehicle selects
a speed that allows the two vehicles to meet and form a platoon. We derive how
to select this speed in a fuel-optimal way. In Section 5.2, we extend this result
to the case in which the two vehicles have different but overlapping routes. One
vehicle adapts its speed profile in a way that allows it to meet the other vehicle on
the common section of the routes and the two vehicles form a platoon. Section 5.3
summarizes this chapter.

5.1 The Optimal Rendezvous Speed

Consider two vehicles on the same route as depicted in Figure 5.1. The vehicles are
initially separated by a distance ∆d. Vehicle 0 drives at a default speed, which is
denoted v0. Vehicle 1, which is behind vehicle 0, drives at a higher speed, denoted
v∗S. Since v∗S > v0, the distance between the vehicles decreases with time until the
two vehicles meet and form a platoon. At this point, both vehicles continue driving
in a platoon at default speed v0.
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Vehicle 0Vehicle 1

∆d

v∗S v0

Figure 5.1: Two vehicles on the same route with distance ∆d. Vehicle 0 has speed
v0 and vehicle 1 has speed v∗S > v0. Since the speed of vehicle 1 is higher than the
speed of vehicle 0, vehicle 1 will catch up with vehicle 0, and the two vehicles will
form a platoon.

We want to select the rendezvous speed v∗S in a fuel-optimal way, while v0 is not
altered. To this end, we introduce a linear affine fuel-model1. The fuel consumption
per distance traveled as platoon leader or alone is f0(v) = F 0 + F 1v, and the fuel
consumption per distance traveled as platoon follower is fp(v) = F 0

p + F 1
p v. We

assume that the fuel consumption of a platoon follower is lower at default speed
than if the vehicle was to travel alone, i.e., F 0

p +F 1
p v0 < F 0 +F 1v0. It is reasonable

to assume this since without this assumption there is no reason to form platoons.
We assume that v0 lies within the feasible speed-range as introduced in Section 3.1,
Definition 1, i.e., 0 < vmin ≤ v0 ≤ vmax. The optimal rendezvous speed v∗S is also
constrained to lie within the feasible speed range.

This problem setting is related to the optimal catch-up schemes derived in [62].
In fact, the catch-up schemes from [62] have been combined with the methods of
Chapter 6 in a simulation study presented in [16].

A similar scenario to the one described above is setting where vehicle 1 is in
front of vehicle 0. In that case, vehicle 1 selects a speed smaller than v0. This
means that vehicle 0 will catch up to vehicle 1 instead, and the two vehicles can
form a platoon. In the remainder of this section, we consider both the case in which
vehicle 1 is behind vehicle 0 and the case that vehicle 1 is in front of vehicle 0.

We model this scenario on a road network with one edge, denoted e. The length
of the road segment corresponding to e, i.e., L(e), is assumed to be long enough to
not impose any restrictions on where the two vehicles meet. The time, when the
two vehicles start is denoted tS, the time when they meet and start platooning is
denoted tM, and the time when they stop platooning is denoted tSp.

The following proposition gives the optimal rendezvous speed v∗S for vehicle 1.

Proposition 6. Assume the following. The speed of vehicle 0 is constant v0 with
v0 ∈ R, v0 > 0. The position of vehicle 0 at time tS is (e, x0(tS)). The position of
truck 1 at time tS is (e, x1(tS)). Truck 1 platoons with truck 0 between time tM and
tSp with tSp > tM. Truck 1 has constant speed vS for time tS to tM and v0 from
time tM to tSp. The rendezvous speed vS is constrained to the interval [vmin, vmax].

1Extending the presented results to other fuel models is possible.
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Then the rendezvous speed v∗S that minimizes fuel consumption from time tS to
tSp is given by

v∗S =


max

(
v0

(
1−

√
1− F 1

p

F 1 + ∆F 0

F 1v0

)
, vmin

)
if ∆d < 0

min

(
v0

(
1 +

√
1− F 1

p

F 1 + ∆F 0

F 1v0

)
, vmax

)
if ∆d > 0

v0 if ∆d = 0,

(5.1)

where ∆d = x0(tS)− x1(tS) and ∆F 0 = F 0 − F 0
p .

Proof. Let ∆dS = x1(tM)−x1(tS). Let D0 = x1(tSp)−x1(tS). We have the relation

∆dS =
vS

vS − v0
∆d. (5.2)

At time tM we have x0(tM) = x1(tM). After the meeting point, both trucks platoon
at speed v0. Assume that 0 is the platoon leader. Hence, the total fuel consumption
of 1 up to some distance from the current position D0, which fulfills D0 > ∆dS,
becomes

f0(vS)∆dS + fp(v0)(D0 −∆dS) = (f0(vS)− fp(v0))∆dS + fp(v0)D0.

The fuel consumption of 0 is not affected by vS. We see that the term fp(v0)D0 is
not a function of vS, so the optimal rendezvous speed does not depend on the total
distance traveled. In order to find the optimal vS, we can therefore consider the
remaining terms denoted as fr(vS) and get with (5.2) and the definitions of f0, fp

fr(vS) = (f0(vS)− fp(v0))∆dS = (F 1vS − F 1
p v0 + ∆F 0)

vS

vS − v0
∆d,

with ∆F 0 = F 0 − F 0
p . We take the derivative of the above expression in order to

find its extrema

∂

∂vS
fr(vS) =

∆d

(vS − v0)2
(F 1v2

S − 2F 1v0vS + F 1
p v

2
0 −∆F 0v0).

In order to find the extrema ṽS, we check where this expression is zero. We can
assume that ∆d 6= 0, otherwise ∆dS = 0, which means that the trucks can directly
start platooning. Therefore,

0 = (F 1(ṽS)2 − 2F 1v0ṽS + F 1
p v

2
0 −∆F 0v0) (5.3)

ṽS = v0

1±

√
1−

F 1
p

F 1
+

∆F 0

F 1v0

 . (5.4)

We have to differentiate between two cases. Either ∆d > 0, which implies vS > v0,
i.e., the coordination follower speeds up, or ∆d < 0, which implies vS < v0, i.e.,
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the coordination follower slows down. Otherwise ∆dS becomes negative. There are
two solutions for ṽS, one where ṽS > v0, and the other ṽS < v0. The appropriate
one, depending on ∆d, is ṽS, the optimal unconstrained rendezvous speed.

We can verify that this is indeed a minimum by considering the asymptotic
behavior of fr(vS) when fr(vS) approaches ±∞ and when it approaches v0. Assume
∆d > 0 so that ṽS > v0. We have

lim
vS→∞

fr(vS) =∞,

lim
vS→v+0

fr(vS) =∞

where we used that f0(v0) > fp(v0) so that the term f0(v0) − fp(v0) becomes
positive, which is the prerequisite to save fuel by platooning. When we have ∆d < 0,
so that ṽS < v0, then

lim
vS→−∞

fr(vS) =∞,

lim
vS→v−0

fr(vS) =∞.

This shows that if ṽS > vmax, then v∗S = vmax, if ṽS < vmin, then v∗S = vmin, and
v∗S = ṽS otherwise.

In order to have real solutions for (5.3), we need

1−
F 1

p

F 1
+

∆F 0

F 1v0
> 0⇔ F 1

p v0 + F 0
p < F 1v0 + F 0

⇔ fp(v0) < f0(v0),

which is the condition that the coordination follower saves fuel when platooning.
The larger the difference f0(v0)− fp(v0), the larger the absolute difference between
v0 and v∗S, i.e., the longer the trucks platoon.

5.2 Computing Adapted Vehicle Plans

In this section, we discuss how Proposition 6 can be used to compute an optimal
speed profile when the two vehicles travel on different but intersecting routes. Sim-
ilar to the previous section, we consider that one vehicle travels at the constant
default speed. We call this vehicle the coordination leader. The other vehicle,
referred to as the coordination follower, adapts its speed in order to meet the co-
ordination leader on the common part of the route, and platoon for some distance.
We derive how to make this adaptation happen in a fuel-optimal way.

The meaning of the terms “coordination leader” and “coordination follower” will
become more apparent in Chapter 6 where adapted vehicle plans are systematically
combined with the goal of minimizing the combined fuel consumption by forming
platoons. Note that the notion of a platoon leader/follower is different from the
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Figure 5.2: Speed profiles of the coordination leader and the coordination follower.
The distance along the respective route with respect to a common reference point
on the common part of the route is plotted over time. The coordination leader has
a constant speed. In this example, the coordination follower drives slower at the
beginning of its journey. Once it meets the coordination leader, the two vehicles
platoon. At the end the coordination drives at an increased speed in order to make
its deadline.

notion of a coordination leader/follower. A platoon leader is the lead truck in
the platoon and a platoon follower is one of the trailing trucks. A coordination
leader/follower, on the other hand, is a logical role in the composition of pairwise
plans.

We consider plans of the following form. The coordination leader keeps a con-
stant speed while the coordination follower selects a speed at the beginning of its
journey that allows it to merge into a platoon with the coordination leader. Then
the two platoon until they split up, followed by the coordination follower selecting a
speed so that it arrives at its pre-specified deadline at its destination. For the sake
of simplicity, we assume in this section the trucks to arrive at their destinations
exactly on their respective deadlines. In Chapter 6, we also allow for arrival before
the deadline. Figure 5.2 illustrates the three phases of the adapted speed profile.

In order to simplify notation, we define the distance de between two positions
(e[i1], x1), (e[i2], x2) with respect to a route e.



42 CHAPTER 5. PAIRWISE ADAPTED VEHICLE PLANS

Definition 5 (Distance). Let i1, i2 be such that Ne ≥ i2 ≥ i1. Then,

de
(
(e[i1], x1), (e[i2], x2)

)
=

∣∣∣∣∣x2 − x1 +

i2−1∑
i=i1

L(e[i])

∣∣∣∣∣ (5.5)

Consider a coordination leader with index 0 and a coordination follower with
index 1. Two trucks can platoon only on the road segments corresponding to
common edges of their routes. If their routes are shortest routes, it can be shown
that the shared edges between two routes form a path as well (Lemma 1 in [93]), i.e.,
two routes meet and split up at most once. Trucks 0, 1 start at (eS

0 , x
S
0), (eS

1 , x
S
1) at

time tS0 , tS1 and arrive at (eD
0 , x

D
0 ), (eD

1 , x
D
1 ) at time tD0 , tD1 , respectively. We denote

the position at which the coordination leader and the coordination follower start
platooning at time tM as (eM, xM) and where they split at time tSp as (eSp, xSp).
These meeting points have to lie on the trajectory of the coordination leader with
constant speed v0:

de0

(
(eS

0 , x
S
0), (eM, xM)

)
= v0(tM − tS0)

de0

(
(eS

0 , x
S
0), (eSp, xSp)

)
= v0(tSp − tS0).

When platooning with the coordination leader the planned trajectory of the
coordination follower consists of three phases: from start to the meeting point with
speed vS, from meeting point to the split point platooning as platoon follower of
0 with speed v0, and from the split point to the destination with speed vSp. We
define dS = de1

(
(eS

1 , x
S
1), (eM, xM)

)
and dSp = de1

(
(eSp, xSp), (eD

1 , x
D
1 )
)
. We have

the relations

dS = vS(tM − tS1),

dSp = vSp(tD1 − tSp).

We define the virtual position difference at the start/end of the coordination fol-
lower’s trajectory as

∆dS = dS − (tM − tS1)v0

∆dSp = dSp − (tD1 − tSp)v0,
(5.6)

which are equivalent to ∆d in Proposition 6. If ∆dS > 0 then vS > v0, if ∆dS < 0
then vS < v0, if ∆dSp > 0 then vSp > v0, and if ∆dSp < 0 then vSp < v0. Then,
we can compute according to (5.4) the appropriate, fuel-optimal speed v∗S for the
first and the last phase. Proposition 6 considers that the two vehicles are initially
separated. The same lines of reasoning apply in order to determine the optimal
speed of the coordination follower during the last phase.

This derivation has not taken into account so far that the first possible point
to merge is when the coordination leader’s and the coordination follower’s routes
meet. If v∗S leads to a distance from (eS

1 , x
S
1) to the merge point that is too small,
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then the coordination leader selects a speed that lets the coordination leader and
coordination follower merge at the position where the two routes meet, denoted
here (eF, 0). This speed is

vS =
de1

(
(eS

1 , x
S
1), (eF, 0)

)
tM − tS1

.

The corresponding case might occur at split up, so that

vSp =
de1

(
(eL, L(eL)), (eD

1 , x
D
1 )
)

tD1 − tSp
,

where (eL, L(eL)) is the position where the coordination leader’s and the coordina-
tion follower’s routes split up.

The first test if platooning is possible and beneficial is, whether the calculated
merge point lies before the split point or not, i.e., whether

dS + dSp < de1

(
(eS

1 , x
S
1), (eD

1 , x
D
1 )
)
.

If this condition is fulfilled, we can calculate the fuel cost for the coordination
follower with the speed profile that is adapted for platooning with the coordination
leader as follows

F = dSf0(vS) + dSpf0(vSp) +
(
de1

(
(eS

1 , x
S
1), (eD

1 , x
D
1 )
)
− dS − dSp

)
fp(v0). (5.7)

If F is smaller than the fuel consumption that results from traveling alone at a
constant speed, it is beneficial that the vehicles platoon. The fuel savings that
result from the adapted plan is the information that determines which vehicles
should platoon. The algorithms developed in Chapter 6 use F for selecting from
different possible adapted plans.

The results of this section can be summarized as follows. The optimal speed
profile of a coordination follower with index 1 to a coordination leader with index
0 consists of three phases with constant speed: vS from tS1 to tM, then v0 from tM

to tSp, and finally vSp from tSp to tD1 , where the coordination follower is a platoon
follower of the coordination leader from time tM to tSp.

We see that the computation of such adapted plans involves sorting out some
details, but this is not inherently difficult. Additional factors such as speed limits,
traffic, rests, flexible start and arrival times, etc. can be added. An interesting
question is how to go from two vehicles to a whole fleet. In the next chapter, we
show how to combine the pairwise plans in a systematic way by using the property
of the adapted plans that neither the speed profile nor the fuel consumption of the
coordination leader changes.
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5.3 Summary

This chapter considers that a truck, a coordination follower, follows an adapted
vehicle plan so that it meets another truck, a coordination leader, during its journey
and they platoon together. The speed profile of the coordination leader is given
and not altered. The adapted plans consist of three phases. In the first phase the
speed is set to a value so the trucks meet to form a platoon, which is the start of
the second phase. During the second phase the trucks platoon. At the end of the
second phase the trucks split up and the coordination follower selects a speed that
lets the coordination follower arrive on its deadline at its destination. Based on an
affine fuel model, an analytical expression of the fuel-optimal speed of the first and
the last phase is derived. Taking into account that platooning can only happen on
the common part of the routes, we arrive at the fuel-optimal adapted plan.

The computation of such plans can be tedious in more complicated settings such
as varying speed limits but it does not pose fundamental challenges. The adapted
plans derived here serve as an example and more involved settings will most likely
follow the same lines of reasoning. When there are more than two trucks, adapted
plans of multiple coordination follower can be combined following the methodology
outlined in the following chapter.



Chapter 6

Computing Fuel-Efficient
Vehicle Plans

This chapter presents a systematic way of combining the pairwise plans derived
in the previous chapter assigning a plan to each vehicle. In Section 6.1, we

introduce a more general notion of default plans and adapted plans compared to the
one in Chapter 5. The problem of how to combine such plans into a fuel-efficient
combined plan for all vehicles is expressed as a combinatorial optimization problem.
Section 6.2 deals with the computation of exact solutions to this problem. The
proposed method for exact computation is a branch and bound method. Branch
and bound is a way to systematically explore all possible solutions of a problem.
By comparing an upper bound of all solutions in a branch with the best solution
found so far, it is possible to dismiss entire branches. Such an upper bound for our
problem is derived. Two additional results on the structure of the optimal solution
are established in order to reduce the search space. Finally, the problem is proven
to be NP-hard, which is commonly believed to imply that the exact computation
can take very long for some problem instances. This motivates the algorithm to
compute a heuristic solution that is presented in Section 6.3. This algorithm can
find a good solution efficiently but it is not guaranteed to converge to the best
combination of pairwise plans. Similar approaches are often used when dealing
with NP-hard problems. Once the pairwise plans are combined into a plan for all
vehicles, it is possible to keep fixed which platoons should be formed and adjust
the timing when these platoons should be formed and broken apart. Section 6.4
discusses how to do these adjustments in a way that minimizes fuel consumption.
Section 6.5 evaluates the results from this chapter using Monte Carlo simulations
in a realistic scenario.
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(εn(tM), ξn(tM)) (εn(tSp), ξn(tSp))

(εn(tS), ξn(tS)) (εn(tA), ξn(tA))

Figure 6.1: Overview of the relevant time instances of the adapted plan. The solid
line illustrates the route of the adapted plan n, and the dashed line the one of the
plan that it is adapted to and has index m. The parallel sections of the line indicate
that the trucks share the route, and the section where the lines are on top of each
other indicates that the trucks platoon there.

6.1 Combining Pairwise Plans to Save Fuel

To begin with, we need to be able to compute what we call a default plan. This is
a valid vehicle plan according to Definition 1 with either the lowest possible or fuel
optimal constant speed.

Definition 6 (Default Plan). The default plan is a vehicle plan P = (e,v, t̂) with
speed sequence v = (vcd) and time sequence t̂ = (tS, D/vcd). The most fuel optimal
speed without platooning vcd is computed as

vcd = argmin
v∈(vcm,vmax]

f0(v),

where vcm is the lowest constant speed to arrive before the deadline:

vcm = max

(
vmin,

D

tD − tS

)
.

An adapted plan, as introduced next, is such that the speed sequence vn and
time sequence t̂n of a follower truck n is adapted in a way that allows the follower to
platoon during part of its journey with a leader m. The leader sticks to its default
plan, which is important in order to be able to compose these plans. The plan is
computed in a way that minimizes the fuel consumption of n.

Definition 7 (Adapted Plan). An adapted plan is a vehicle plan Pn = (en,vn, t̂n)
adapted to vehicle plan Pm = (em,vm, t̂m), such that (εn(t), ξn(t)) = (εm(t), ξm(t))
for t ∈ [t̂n[2], t̂n[Nv]).
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We denote the merge time as tM = t̂n[2] and the split time as tSp = t̂n[Nv].
Truck n becomes the platoon follower of truck m at time tM, stays platoon follower
until tSp, when the two trucks separate. This sequence of events occurs only once.
Figure 6.1 illustrates the adapted plan. We denote the speed trajectory φ corre-
sponding to the speed sequence v and the time sequence t̂ of the adapted vehicle
plan of truck n adapted to truck m as φn,m.

The fuel consumption of truck n with its plan adapted to truck m is modeled as
in (3.2). We denote the platoon trajectory of the adapted plan πn,m(t). We have
that πn,m(t) = 1 for t ∈ [tM, tSp) and πn,m(t) = 0 for t ∈ [tS, tM)∪[tSp, tA). The fuel
consumption of m is not altered by the fact that n and m platoon, since m’s speed
trajectory does not change and m takes the role of a platoon leader. The reduction
in fuel consumption that results from n implementing the adapted plan and not
its default plan is ∆F (n,m) = F (φn, πn) − F (φn,m, πn,m) where πn ≡ 0, which is
positive if n adapting to m saves fuel. If no plan that is adapted to m exists for n,
we define ∆F (n,m) = 0. There might exist no adapted plan because the routes do
not overlap or because the constraint on the maximum speed in conjunction with
the arrival deadline makes it impossible for the trucks to form a platoon.

We now compute ∆F for all 2-permutations in Nc. We are only interested in
adapted plans that save fuel, i.e., for which ∆F is positive. We can conveniently
collect this information in a weighted graph that we call the coordination graph.

Definition 8 (Coordination Graph). The coordination graph is a weighted directed
graph Gc = (Nc, Ec,∆F ). Recall that Nc represents the trucks. Ec ⊆ Nc × Nc is
a set of edges, and ∆F : Ec → R+ are edge weights, such that there is an edge
(n,m) ∈ Ec, if the adapted plan of n to m saves fuel compared to i’s default plan,
i.e., Ec = {(i, j) ∈ Nc ×Nc : ∆F (i, j) > 0, i 6= j}.

Furthermore, we introduce the set of in-neighbors of a node n ∈ Nc as

N i
n = {i ∈ Nc : (i, n) ∈ Ec},

and the set of out-neighbors n as

N o
n = {i ∈ Nc : (n, i) ∈ Ec}.

We define the maximum over an empty set to be zero, i.e., max
i∈∅

(·) = 0.

With these definitions, we are ready to formulate the problem of finding a fuel
optimal set of coordination leaders Nl.

Problem 1. Given as input a coordination graph Gc = (Nc, Ec,∆F ) find a subset
Nl ⊂ Nc of nodes that maximizes

fce(Nl) =
∑

i∈Nc\Nl

max
j∈N o

i ∩Nl

∆F (i, j). (6.1)
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The coordination leaders select their default plans. The remaining assignments,
called coordination followers, select their plans adapted to the coordination leader
that yields the largest fuel savings ∆F (n,m). Since the selection of adapted plans
does not alter the speed trajectories of the coordination leaders, several coordination
followers can select the same coordination leader without affecting the fuel savings
that result from this adaptation, potentially resulting in platoons of more than two
vehicles. The objective function fce(Nl) equals the sum of all these fuel savings.
If (n,m) ∈ Ec with n ∈ Nc \ Nl and m = arg max

m∈N o
n∩Nl

∆F (n,m), we say that n is

the coordination follower of m and m is the coordination leader of n. If m has no
out-neighbor in Nl, then maxm∈(N o

n∩Nl) ∆F (n,m) = maxm∈∅∆F (n,m) = 0.
At this point, we have a combinatorial problem, whose solution allows us to

group transport assignments in a fuel-efficient way. All continuous optimization is
contained in the adapted plans. Since an adapted plan only involves computing the
speed profile for one vehicle, deriving such adapted plans is a task that is possible
to handle, as demonstrated in Chapter 5. This simplification comes with a price on
the fuel-savings that can be achieved. In Section 6.4, we address this problem to
some extent by jointly optimizing the speed profile of each cluster. Furthermore,
the envisioned system repeats the optimization frequently. A coordination follower
that joins a platoon during the first part of its journey can, in a later optimization,
become coordination follower of another truck and platoon for the remaining part
of its journey.

One disadvantage of the approach presented in this section is that each truck
can only join one platoon. This is however somewhat mitigated by the frequent
re-planning envisioned for this system. At a later point in time, it might turn out
more beneficial for a truck to leave its current platoon and join another one.

In the remainder of this chapter, we study Problem 1. We derive a branch and
bound algorithm to compute optimal solutions and establish that it is NP-hard.

6.2 Exact Computation

Problem 1 is a combinatorial optimization problem. A common technique to solve
such problems is the branch and bound technique [26]. Branch and bound is a
systematic way to search for the optimal solution of a discrete optimization problem.
It constructs a binary search tree whose leaves cover all possible values of the
optimization variables. However, it can be possible to leave entire branches of the
tree unexplored. A branch can be dismissed if it cannot contain any solution that
is better than the best known solution so far.

Consider Algorithm 1, in which we tackle Problem 1 using the aforementioned
branch and bound technique. Each node in the search tree encodes a subset of
solutions, with the root encoding all solutions and a leaf exactly one. The solutions
encoded by a node are characterized by two sets N̄l and N̄f . The set N̄l contains
all nodes that are assigned to be coordination leaders, i.e., elements of Nl. The set
N̄l contains all nodes that are assigned not to be coordination leaders, i.e., that are
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not elements of Nl. For the remaining nodes in Nc no decision has been made. At
the root node, these sets are empty, and at every branching a node that is not of
N̄l or N̄f is added to either N̄l or N̄f . A leaf is reached if all nodes are assigned
to either N̄l or N̄f . Figure 6.2 shows an example of the search tree that can be
traversed by Algorithm 1.

Algorithm 1 The branch and bound algorithm to compute an optimal set of
coordination leaders. The displayed version makes use of the result that at most
half the assignments are coordination leaders. The remaining heuristics described
in the chapter can be applied before adding a new node to Q.

Input: Gc

Output: Nl

Nl ← ∅
Q ← {(∅, ∅)}
while Q 6= ∅ do

Retrieve (N̄l, N̄f) from Q
if fce(N̄l) > fce(Nl) then
Nl ← N̄l

end if
if Nc \ (N̄l ∪ N̄f) 6= ∅ then

Select n ∈ Nc \ (N̄l ∪ N̄f)
if f̄(N̄l ∪ {n}, N̄f) > fce(Nl) ∧ |N̄l|+ 1 ≤ b|Nc|/2c then

Add (N̄l ∪ {n}, N̄f) to Q
end if
if f̄(N̄l, N̄f ∪ {n}) > fce(Nl) then

Add (N̄l, N̄f ∪ {n}) to Q
end if

end if
end while

In order to dismiss a branch, we keep track of the best solution Nl found so
far. We compare the best solution to an upper bound on the objective that can be
achieved by the branch to be dismissed. If the branch contains no solution that is
better than the best solution found so far, the branch can be dismissed.

The upper bound f̄(N̄l, N̄f) is based on the intuition to assign every truck for
which no decision has been made its best coordination leader from the certain
coordination leaders N̄l or the potential coordination leaders Nc \ (N̄l ∪ N̄f). Fur-
thermore, the bound neglects, as far as the nodes Nc \ (N̄l ∪ N̄f) are concerned,
that coordination leaders do not contribute to the sum that defines fce.

Proposition 7. Let Nl, N̄l, N̄f ⊆ Nc be sets that fulfill N̄l ⊆ Nl, N̄f ∩ Nl = ∅,
N̄u = Nc \ (N̄l ∪ N̄f) and define

f̄(N̄l, N̄f) =
∑

i∈N̄f∪N̄u

max
j∈N o

i ∩(N̄l∪N̄u)
∆F (i, j).
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UUUUU

FUUUU LUUUU

FFUUU FLUUU LFUUU LLUUU

FFFUU FFLUU FLFUU FLLUU LFFUU LFLUU LLFUU

FFFFU FFFLU FFLFU FFLLU FLFFU FLFLU FLLFU LFFFU LFFLU LFLFU LLFFU

FFFFF FFFFL

FFFLF FFFLL

FFLFF FFLFL

FFLLF

FLFFF FLFFL

FLFLF FLLFF

LFFFF LFFFL

LFFLF LFLFF LLFFF

Figure 6.2: A search tree for five assignments. The membership of the assignments
is indicated with letters. The letter U indicates that the assignment belongs to
Nc \ (N̄l ∪ N̄f), the letter F indicates that the assignment belongs to N̄f , and the
letter L indicates that the assignment belongs to N̄l. In this example, no branches
are dismissed due to the upper bound f̄ . Solutions with more than two coordination
leaders are not explored since, according to Proposition 8, there must be an optimal
solution with at most two coordination leaders.

The value of fce(Nl) as defined in (6.1) is upper bounded by

fce(Nl) ≤ f̄(N̄l, N̄f).

Proof. We have that

N̄f ∪ N̄u = N̄f ∪ (Nc \ (N̄l ∪ N̄f))

= N̄f ∪ (Nc \ N̄l)

⊇ Nc \ N̄l

⊇ Nc \ Nl

and

N̄l ∪ N̄u = N̄l ∪ (Nc \ (N̄l ∪ N̄f))

= N̄l ∪ (Nc \ N̄f)

⊇ Nc \ N̄f

⊇ Nl
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and hence

fce(Nl) =
∑

i∈Nc\Nl

max
j∈N o

i ∩Nl

∆F (i, j)

≤
∑

i∈N̄f∪N̄u

max
j∈N o

i ∩Nl

∆F (i, j)

≤
∑

i∈N̄f∪N̄u

max
j∈N o

i ∩(N̄l∪N̄u)
∆F (i, j),

where we used that ∆F (i, j) > 0 for all (i, j) ∈ Ec.

We can improve the performance of the algorithm by establishing results on the
structure of the optimal solution. Every time a branch does not contain at least
one solution that matches this structure, the branch can be dismissed. The first
result on the structure of the optimal solution is an upper bound on the maximum
number of coordination leaders, i.e., on the cardinality of the optimal Nl. It states
that there is an optimal solution with at most b|Nc|/2c coordination leaders.

Proposition 8. There exists an optimal solution Nl to Problem 1 with |Nl| ≤
b|Nc|/2c.

Proof. First of all, we note that Problem 1 is an unconstrained optimization prob-
lem and the optimization argument belongs to a finite set. Therefore, a solution
always exists.

The existence of an optimal solution Nl with |Nl| ≤ b|Nc|/2c is proven by
contradiction. Assume that every optimal solution Nl to Problem 1 fulfills |Nl| >
b|Nc|/2c. Then |Nc \Nl| < |Nl|. Hence, there is least at one n ∈ Nl for which there
is no i ∈ Nc \ Nl for which n = arg maxj∈N o

i ∩Nl
∆F (i, j). Thus, n can be removed

from Nl without decreasing fce(Nl). This reasoning can be repeatedly applied until
|Nl| ≤ b|Nc|/2c with fce(Nl) no smaller than the optimal Nl. Thus, the smaller
Nl is as well an optimal solution to Problem 1. This, however, contradicts the
assumption.

This proposition helps when computing an optimal solution since coordination
leaders sets with cardinality larger than b|Nc|/2c do not have to be considered.

The next result that helps prune the search tree is that a node is either a
coordination leader itself or at least one node in its two-hop out-neighbor set is a
coordination leader. To this end, we define the set of two-hop out-neighbors of a
node n ∈ Nc as

N 2o
n = N o

n ∪
⋃
i∈N o

n

N o
i .

Figure 6.3 shows an example of the set N 2o
n ∪ {n}.

Proposition 9. Let Nl be an optimal solution to Problem 1. For each n ∈ Nc with
N 2o
n 6= ∅, we have that Nl ∩ (N 2o

n ∪ {n}) 6= ∅.
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Figure 6.3: Example of a node’s two-hop out-neighbor set. The gray circles that
have a solid line represent the two-hop out-neighbor set of the node drawn as a
circle with a dashed line. An optimal solution Nl to Problem 1 contains at least
one of the gray-filled nodes.

Proof. Assume N 2o
n 6= ∅. If n ∈ Nl, then clearly Nl ∩ (N 2o

n ∪ {n}) 6= ∅. If n /∈ Nl

and Nl ∩ N 2o
n = ∅, then we can add any node in N o

n to Nl and increase fce, which
contradicts the assumption that Nl is a solution to Problem 1. This is because
for any i ∈ N o

n it holds that maxj∈N o
i ∩Nl

∆F (i, j) = maxj∈∅∆F (i, j) = 0, but
maxj∈N o

n
∆F (n, j) > 0.

At every node in the search, we can compute if any solution in the corresponding
branch can be an optimal solution using Proposition 9. This is the case when a
node and its two-hop neighbor set is fully contained in N̄f . If that is the case, there
is no need to further explore the branch in question.

Proposition 9 can be used to compute a lower bound on the number of coor-
dination leaders in an optimal solution. It can be easier to test whether a branch
contains solutions with enough coordination leaders, i.e., whether |N̄l| + |N̄u| is
greater than or equal to the lower bound, compared to using Proposition 9 directly
as outlined above.

Proposition 9 tells us that each union of a node and its two-hop out-neighbors
contains at least one coordination leader, unless that node’s two-hop out-neighbor
set is empty. However, in most cases these sets overlap and one coordination leader
is contained in the two-hop out-neighbor sets of several nodes. We can, nevertheless,
select some of these sets so that the selected sets mutually do not intersect. A
coordination leader cannot be contained in two of these sets.

Proposition 10. Let Nl be an optimal solution to Problem 1 and let the set of
sets D ⊂ {{n} ∪ N 2o

n : n ∈ Nc,N 2o
n 6= ∅} be defined such that any two elements of
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D1,D2 ∈ D have zero intersection D1 ∩D2 = ∅. Then it holds that |Nl| ≥ |D|, and
for every d ∈ D, it holds that d ∩Nl 6= ∅.

Proof. From Proposition 9 it follows that D1 ∩ Nl 6= ∅ and D2 ∩ Nl 6= ∅. Since
D1 ∩ D2 = ∅ it holds also that (D1 ∩ Nl) ∩ (D2 ∩ Nl) = ∅. This holds for any two
elements D1,D2 in D. Thus, every element of D contains at least one element of
Nl.

Since this holds for any two elements in D, there is at least one unique element
in Nl for every element in D, i.e., there are at least as many elements in Nl as in
D.

The set D is an independent subset of the set {{n} ∪ N 2o
n : n ∈ Nc,N 2o

n 6= ∅}.
Maximal independent sets, i.e., sets D where no element from {{n} ∪ N 2o

n : n ∈
Nc,N 2o

n 6= ∅} can be added without violating that any two subsets have non-zero
intersection, can be computed with a greedy algorithm. The problem of finding the
maximum independent set—this is, the independent set with largest cardinality—is
however NP-hard [78], so finding the largest value for the bound might not always
be feasible.

The quality of this bound depends on the graph. Consider Figure 6.4. The
optimal solution with the graph shown on the left side will have 4 or 5 coordination
leaders, namely the middle layer of nodes. Adding the top node to the set of
coordination leaders does not change the objective. All sets (N 2o

n ∪ {n}) include
the node on the top of the graph, and therefore |D| = 1 for any choice of D. When
the weights of the edges from the middle layer to the top node are changed in a way
so that they are larger than the edges from the bottom layer to the middle layer,
then the top node becomes the only coordination leader and the bound is tight. On
the other hand, the graph shown on the right-hand side of the figure will admit a
tight bound regardless of the weights. For every pair of nodes that is connected by
an edge, the top node becomes coordination leader. These pairs of nodes are the
sets (N 2o

n ∪ {n}), which are all independent.
An obvious property to investigate when having developed an algorithm to solve

a combinatorial optimization problem is the algorithm’s worst case complexity.
Like many combinatorial optimization problems, Problem 1 can be shown to be
NP-hard. This means it is unlikely, even though not yet proven, that there can
be an algorithm that solves any instance of the problem efficiently, meaning that
the number of computation steps needed to compute the result cannot be upper
bounded by a polynomial evaluated on the size of the input. The size of the input
is measured in terms of number of edges and nodes in the coordination graph.

Proposition 11. Problem 1 is NP-hard.

Proof. We show the result by reduction of the optimization version of the set cov-
ering problem to Problem 1. The optimization version of the set problem covering
is well known to be NP-hard. Reduction to a known hard problem is a common
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1

0.1

1

Figure 6.4: Two different coordination graphs that illustrate how the usefulness of
Proposition 10 depends on the coordination graph. An optimal solution of Prob-
lem 1 on both graphs has at least 4 coordination leaders. Proposition 10 shows that
an optimal solution on the left graph has at least one coordination leader whereas
an optimal solution on the right graph has at least 4 coordination leaders, which
are drawn as gray-filled circles.

proof technique for this kind of result [28]. We do this by constructing a coordina-
tion graph Gc for which there is a one-to-one correspondence between coordination
leaders and selected sets for the cover. Then we show that the minimum number
of leaders that corresponds to a set cover gives the maximum value for fce.

Consider the following set covering problem. We have a finite set U . Further-
more, let Su be a family of subsets of U with

⋃
S∈Su S = U . The problem is to find

the smallest number of subsets in Su whose union is U .

We construct the coordination graph as the one shown in Figure 6.5. We in-
troduce a node for each element in U . We denote the set of these nodes with N3

and let µ3 : U → N3 be a bijective mapping from the elements in U to the nodes
in N3. We introduce a node for each element in Su. We denote the set of these
nodes with N2 and let µ2 : Su → N2 be a bijective mapping from elements in Su

to nodes in N2. Consider a node n2 ∈ N2 that corresponds to the element S ∈ Su.
The in-neighbors of n2 are N i

n2
= {µ3(S) : S ∈ µ−1

2 (n2)}. The weight of the corre-
sponding edges is 1. We introduce an additional node N1. There is an edge from
each node in N2 to N1 with weight 0.5. Clearly, this reduction is linear in the size
of the input U ,Su.

Since N1 has no out-neighbors, its membership in Nl can only increase fce(Nl).
Since all nodes in N3 have no in-neighbors, adding a node in N3 to Nl can only
decrease fce(Nl). Thus, the problem of finding the optimal Nl reduces to finding
which nodes in N2 belong to Nl. In the optimal solution, each node in N3 has at
least one out-neighbor in Nl. Otherwise we could add any out-neighbor of that
node to Nl and increase fce(Nl) by at least 0.5. Therefore, {µ−1

2 (n) : n ∈ Nl ∩N2}
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Figure 6.5: Illustration of the graph used to prove that Probem 1 is NP-hard.

is a set cover of U . Otherwise there would be u ∈ U such that there is no S ∈
{µ−1

2 (n) : n ∈ Nl∩N2} with u ∈ S. If such a u existed, µ3(u) would be a node with
no out-neighbor in Nl ∩ N2. Furthermore, let S̄u ⊆ Su be a set cover of U . Then
{µ2(S) : S ∈ S̄u} has the property that

⋃
n∈{µ2(S):S∈S̄u}N

i
n = N3, so any set cover

has the property that all nodes in N3 have at least one out-neighbor in Nl. Each
node in N2 contributes with 0.5 to the objective if it is not in Nl. Therefore, the
optimal Nl contains a minimum number of nodes from N2 such that every node in
N3 has at least one out-neighbor in Nl ∩ N2. Since any Nl ∩ N2 that fulfills this
property maps to a set cover S̄u and vice versa, and since |Nl ∩N2| = |S̄u|, we have
that S̄u is the solution to the set covering problem. Thus, the NP-hard set-covering
problem can be reduced to Problem 1, which shows that Problem 1 is NP-hard.

Exact solutions to NP-hard problems can be hard to compute, which is why
heuristic and approximate solutions are often used. These algorithms compute
good solutions that are not necessarily optimal in a computationally efficient way.
A heuristic algorithm for Problem 1 is developed in the next section.
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6.3 Heuristic Computation

In this section we present an algorithm that computes heuristic solutions to Prob-
lem 1. Motivated by the result that Problem 1 is NP-hard, we apply an iterative
strategy that converges to a local maximum.

Consider Algorithm 2. The input is a coordination graph Gc and the output is
a set of coordination leaders Nl. Initially Nl is an empty set. In each iteration,
a node n ∈ Nc is selected for which the objective function fce is increased if it is
added to Nl or removed from Nl, and Nl is updated accordingly. The difference in
fce when adding or removing a node in Nc to or from the set of coordination leaders
Nl is given by a function ∆u. The algorithm iterates until no further increase of
fce is possible.

The function ∆u that measures how much is gained from switching whether n
belongs to Nl is defined as follows:

∆u(n,Nl) =

{
fce(Nl \ {n})− fce(Nl) if n ∈ Nl

fce(Nl ∪ {n})− fce(Nl) otherwise .
(6.2)

If n /∈ Nl, we get

fce(Nl ∪ {n})− fce(Nl) =∑
i∈N i

n\Nl

(
max

j∈N o
i ∩(Nl∪{n})

∆F (i, j)− max
j∈N o

i ∩Nl

∆F (i, j)

)
− max
i∈N o

n∩Nl

∆F (n, i).

The sum over i covers nodes that can select n as their new coordination leader.
The last summand accounts for n possibly not being a coordination follower any
longer.

If n ∈ Nl, we get

fce(Nl \ {n})− fce(Nl) =∑
i∈N i

n\Nl

(
max

j∈N o
i ∩(Nl\{n})

∆F (i, j)− max
j∈N o

i ∩Nl

∆F (i, j)

)
+ max
i∈N o

n∩(Nl\{n})
∆F (n, i).

The sum over i covers nodes that can have n as their coordination leader before
the change. The last summand accounts for n possibly becoming a coordination
follower.

In this paper, we consider two methods to select n from the set {n̄ ∈ Nc :
∆u(n̄,Nl) > 0}. The first method is to select n in a greedy manner according to
n = arg max

n̄∈Nc

∆u(n̄,Nl). The second method is to choose n randomly with equal

probability from the set {n̄ ∈ Nc : ∆u(n̄,Nl) > 0}.
Algorithm 2 is guaranteed to converge in finite time. This is due to the number

of possible subsets of Nc being finite and thus the number possible assignments
of Nl is finite. In every iteration fce(Nl) strictly increases, which means that Nl
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Algorithm 2 Iterative Algorithm to compute the set of coordination leaders Nl.

Input: Gc

Output: Nl

Nl ← ∅
while {n̄ ∈ Nc : ∆u(n̄,Nl) > 0} 6= ∅ do

Select n ∈ {n̄ ∈ Nc : ∆u(n̄,Nl) > 0}
if n ∈ Nl then
Nl ← Nl \ {n}

else
Nl ← Nl ∪ {n}

end if
end while

changes in every iteration and the same assignment for Nl never reoccurs. So in
the worst case Algorithm 2 iterates over all subsets of Nc before termination. It
is also possible to interrupt the algorithm before termination and use the value of
Nl at this point in the execution. It is easy to see that a coordination leader set
Nl computed by Algorithm 2 fulfills the condition on the optimal solution stated
in Proposition 9, i.e., that every union of a node and its two-hop out-neighbors
contains at least one coordination leader.

Algorithm 2 can be efficient. Note for instance that the function ∆u can be
computed based on the sub-graph induced by the one- and two-hop neighbors of
n only. This means that the average complexity of computing ∆u is a function of
the average node degree but not of the number of nodes in the coordination graph.
Furthermore, if a node is added to or removed from Nl, then only the ∆u for the
two-hop neighbors needs to be recomputed.

Simulations suggest that selecting n in a greedy or a random manner makes little
difference for the quality of the computed solution. However, greedy node selection
tends to lead to less iterations of the algorithm and is thus better suited for a
serial implementation. Random node selection might be preferable for a parallel
implementation due to the reduced need for synchronization.

Having computed the set of coordination leaders, there is immediately a vehicle
plan for each truck. These plans are jointly optimized as discussed in the following
section.

6.4 Joint Vehicle Plan Optimization

In this section we derive how to jointly optimize the vehicle plans that are selected
by Algorithm 2. We do this by formulating a convex optimization problem with
linear constraints for a group consisting of a coordination leader and its coordination
followers. Hereby, the timing when platoons are assembled and broken apart is
adjusted while the locations where this happens is not changed. Trucks that are
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not matched to any coordination leader or are not coordination leaders themselves
just follow their default plans and are not considered in this section.

Consider a coordination leader nl ∈ Nl and its followers

Nfl,nl
= {n ∈ Nc \ Nl : nl = arg max

i∈Nl∩N o
n

∆F (n, i)}.

We construct an ordered set of time instances t = (t[1], t[2], . . . ). This set contains
the start time and the arrival deadline of the coordination leader, and the merge
times and the split times of its followers. We divide the distance traveled by the
leader from start to destination at these time instances and get the distances

Wnl
[i] =

t[i+ 1]− t[i]

vcd
,

between these points, where vcd is the speed of the leader according to its default
plan. These are the distances between the points where coordination followers join
or leave the platoon. Similarly, for a coordination follower n ∈ Nfl,nl

, we have

Wn = (vn[1](tMn − tSn),Wnl
[iMn ], . . . ,Wnl

[iSp
n ],vn[Nv](tAn − tSp

n )).

The variables tSn, t
M
n , t

Sp
n , t

A
n denote the start time, merge time, split time, and ar-

rival time of follower n according to its adapted plan. The first element of Wn

is the distance along the route from start to the merge point. For the part of
the route the follower platoons with the coordination leader, the entries are the
same as for the coordination leader. The indices iMn , i

Sp
n are defined accordingly.

The last element of Wn is the distance from the split point to the destination of
the follower. Figure 6.6 illustrates the definition of Wn. We introduce sequences
pn = (pn[1], . . . ,pn[|Wn|]) that indicate on which segments of the journey the
coordination follower is a platoon follower. If truck n is a platoon follower on the
segment that corresponds to Wn[i] for some i, then pn[i] = 1. Otherwise we have
pn[i] = 0. For the coordination leader nl, we have pnl

= (0, . . . , 0) and for a
coordination follower n ∈ Nfl,nl

, we have that pn = (0, 1, 1, . . . , 1, 0).
We express the speed and time sequence of truck n ∈ {nl} ∪ Nfl,nl

as traversal
times Tn = (Tn[1], . . . ,Tn[|Wn]|) of the segments Wn. The speed on each such
segment remains constant and can be computed as

vn[i] =
Wn[i]

Tn[i]
.

The traversal times of the segments in all trucks’ routes are the optimization vari-
ables. Working with traversal times rather than the sequence of speeds v allows
us to state the optimization problem with linear constraints. The times when the

speed changes t̂n, are computed as t̂n[i] = tSn +
i−1∑
j=1

Tn[j] for i = 1, . . . , Nv,n + 1.
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Wnl
[1] Wnl

[2] Wnl
[3]

Wnl
[4]

Wnl
[5]

Wnl
[6] Wnl

[7]

Wnl
[8]

vn[1](tM − tSn)

Figure 6.6: Illustration of how the sequences Wn are defined. The red, dotted
line represents the route of the coordination leader and the black, solid lines with
arrows represent the routes of the coordination followers. The thin lines indicate
the distances that the elements of Wnl

correspond to.

With these definitions, we are ready to state the following problem:

Problem 2.

min
{Tn:n∈{nl}∪Nfl,nl

}

Nv,n∑
i=1

f

(
Wn[i]

Tn[i]
,pn[i]

)
Wn[i] (6.3a)

s.t.

for n ∈ {nl} ∪ Nfl,nl
:

Wn[i]

vmax
≤ Tn[i], i ∈ {1, . . . , Nv,n} (6.3b)

Wn[i]

vmin
≥ Tn[i], i ∈ {1, . . . , Nv,n} (6.3c)

tSn +

Nv,n∑
i=1

Tn[i] ≤ tDn (6.3d)

and for n ∈ Nfl,nl
:

tSn + Tn[1] = tSnl
+

iMn −1∑
i=1

Tnl
[i] (6.3e)

Tn[1 + i] = Tnl
[iMn + i− 1], i ∈ {1, . . . , iSp

n − iMn + 1}. (6.3f)

Notice that the objective function (6.3a) equals the combined fuel consumption∑
n∈{nl}∪Nfl,nl

F (φn, πn) for the assignments {nl}∪Nfl,nl
, which is part of the sum
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that defines the combined fuel consumption of all assignment Fc defined in (3.3). It
is composed of the fuel consumption of the coordination leader and the coordination
followers. The coordination leader is considered to travel alone or take the role as
the platoon leader throughout its journey. The coordination followers travel alone
on the first and the last segment of their journey. They become platoon followers
in-between these segments.

There are two sets of constraints. The first set applies to all trucks and ensures
that the sequences Tn correspond to valid vehicle plans. In particular, the con-
straints (6.3b) and (6.3c) express that the trajectories stay within the allowed range
of speed. The constraints (6.3d) express that all trucks arrive before their deadline.
The second set of constraints ensures that platooning happens as specified in the
original pairwise plans. The constraints (6.3e) ensure that the coordination leader
and each of its followers arrive at the same time at their respective merge point.
The constraints (6.3f) ensure that the speed of the leader and the speed of the
follower are the same when they are supposed to platoon.

When f0, fp are such that f0(T−1) and fp(T−1) are convex in T for T > 0,
then the objective (6.3a) is a sum of convex functions and hence convex. For
instance, polynomials with arbitrary constant part and non-negative coefficients
fulfill this requirement. Furthermore, all constraints are linear. Thus, Problem 2
is a convex optimization problem for which well developed numerical solvers are
readily available [23, 9]. The optimization is initialized with the pairwise plans.

6.5 Simulations

In this section, we evaluate the coordination method outlined in the previous sec-
tions with Monte Carlo simulations. We show that the coordination of truck pla-
tooning can lead to significant reductions in fuel consumption compared to the
current situation where trucks do not platoon, as well as compared to spontaneous
platooning where trucks only form platoons if they happen to be in the vicinity of
another.

We generate transport assignments randomly. The start and goal locations are
sampled within mainland Sweden. The probability of an assignment starting or
ending at a particular location is proportional to the population density [82], see
Figure 6.7. The resolution is 0.1 degrees in longitude and latitude and the road
network node that is closest to the sampled coordinate is chosen. We calculate
the routes with the Open Source Routing Machine [65]. Assignments for which no
route can be found are disregarded. If the route is longer than 400 kilometers, a
400 kilometers long subsection of the route is randomly selected. This is to take
into account that merge points too far from the current position should not be
considered for coordination since the uncertainty becomes too large due to traffic,
new assignments, and rest periods of the driver. Start locations along the route
are considered since we believe that platoon coordination systems will frequently
re-plan for assignments that are already en route and suspended for the driver to
take a rest.
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Figure 6.7: Population density map from which the start and goal locations are
sampled. The brighter the pixel, the larger the population density in that area.
Areas not belonging to mainland Sweden are shown in blue.

The fuel model is an affine approximation around 80 km/h of the analytical fuel
model in [16]. We have for the fuel per distance traveled in kilograms diesel per
meter

f0(v) = 8.4159 · 10−6v + 4.8021 · 10−5

fp(v) = 5.0495 · 10−6v + 8.5426 · 10−5.

According to this model, the relative reduction in fuel consumption of a platoon
follower is 15.9 percent at a speed of 80 km/h.

We consider a default speed of 80 km/h and we assume that the speed can be
freely chosen between vmin = 70 km/h and vmax = 90 km/h throughout the entire
journey. We sample the start time of the assignments uniformly in an interval of 2
hours and compute the arrival deadlines according to the default speed.

The pairwise plans are such that trucks platoon as long as possible. Once a
coordination follower splits up from the coordination leader, it drives fast enough
to arrive in time at its destination and at least at default speed. The split points
are such that arriving in time is feasible. Thus, trucks are guaranteed to meet their
deadlines and the initial value for the joint vehicle plan optimization fulfills the
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Figure 6.8: The routes of a platoon coordinator with four coordination followers.
The route of the coordination leader in shown in black, the routes of the coordi-
nation followers are dashed. The beginning of a route is marked with a star. The
merge point of a follower is indicated with an upwards-facing triangle and the split
point with a downwards-facing triangle.

constraints. Figure 6.8 shows an example of the routes of a coordination leader and
its coordination followers and where the coordination followers join and leave the
platoon.

We compare our proposed platoon coordinator to fuel savings that arise from
spontaneous platooning, i.e., that trucks happen to get into each others vicinity and
then spontaneously form platoons. To this end, we collect all the link arrival times
according to the default plans for each link in the scenario. We sort these times and
collect them in ascending order in groups of at most one minute difference in their
edge arrival time. We assume that each of these groups forms a platoon driving
at default speed and that the default trajectory is not altered by the platooning.
This is a generous estimate since it neglects any kind of coordination effort, which
would be present for time gaps up to one minute.
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In order to assess the quality of the solution computed by Algorithm 2, we
establish an upper bound on the solution of Problem 1. This upper bound is based
on the intuition to assign every truck its best coordination leader and ignore that
coordination leaders do not contribute to the objective. We have that

fce(Nl) =
∑

i∈Nc\Nl

max
j∈N o

i ∩Nl

∆F (i, j)

≤
∑

i∈Nc\Nl

max
j∈N o

i

∆F (i, j)

≤
∑
i∈Nc

max
j∈N o

i

∆F (i, j),

(6.4)

where the second inequality holds since ∆F (i, j) > 0 for all (i, j) ∈ E . This bound
can also be derived from the upper bound used in the branch and bound algorithm
(Proposition 7) by setting N̄l = N̄f = ∅.

This bound can only be tight when there is an optimal solution where no co-
ordination leader has an out-neighbor. Otherwise the coordination leaders cannot
contribute to the sum. Nevertheless, the bound helps us assess how far a heuristic
solution can be away from the optimum.

We implemented platoon coordination in Python and used CVXOPT [9] for
convex optimization. The execution of Algorithm 2 takes less than a second for
2000 transport assignments. Even faster computation times could be achieved by
optimizing the implementation.

Each simulation consists of the following steps:

1. Random generation of transport assignments

2. Computation of routes and default plans

3. Computation of the coordination graph

4. Computation of coordination leaders according to Section 6.3

5. Joint vehicle plan optimization according to Section 6.4

We evaluate how different numbers of assignments affect the amount of platoon-
ing and the fuel savings relative to the default plans. For comparison we compute
the fuel savings of spontaneous platooning. We run Algorithm 2 with greedy and
random node selection and compute the upper bound of the objective function fce.
The results are averaged over 150 simulation runs.

Figure 6.9 visualizes an example coordination graph. In addition it shows which
assignments are selected in step 4). We can see that only a small fraction of as-
signment pairs can safe fuel by forming a platoon. As the number of assignments
grows, more opportunities are available for each assignment which can translate
into larger fuel savings [58].
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Figure 6.9: This plots visualizes the adjacency matrix of a coordination graphs
with 100 assignments. Nonzero entries are indicated with a black or a red dot, each
corresponding to an edge in the coordination graph. Edges whose corresponding
plans are selected by the Algorithm 2 correspond to the red dots.

Figure 6.10 shows the effect on the fuel savings when the numbers of transport
assignments that are coordinated is varied. It is possible to make a number of
observations based on these data. First of all, the fuel savings increase rapidly with
the number of transport assignments when the absolute number of assignments is
small. As more and more assignments are added, this trend stagnates and the rel-
ative fuel savings increase only slowly. Ideally this should approach asymptotically
the maximum fuel savings of 15.9 % as the number of transport assignments goes
to infinity, since then virtually every truck is a platoon follower for its entire jour-
ney. There is only a small difference between greedy and random node selection,
however, with the greedy node selection outperforming the random node selection
consistently. For a parallel or even a distributed implementation of Algorithm 2,
random node selection would be preferable due to the reduced need for synchroniza-
tion whereas greedy node selection is faster in a centralized setting. Furthermore,
the results after selecting the coordination leaders and before the joint convex op-
timization are less than the upper bound but only about 30 % worse. Since the
upper bound is not tight, this indicates that Algorithm 2 performs well. We can
see a clear improvement in the fuel savings by the joint optimization of the vehicle
plans. Spontaneous platooning gives fuel savings that are less than half of what can
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be achieved by coordination. Also bear in mind that this is a generous estimate of
fuel savings by spontaneous platooning so that the real difference would probably
be even larger.

We conclude that coordinated platooning can yield significant fuel savings and
that coordination is crucial in leveraging these savings. For 2000 transport as-
signments starting over the course of two hours, we get 7.6 % reduction in fuel
consumption. A number of 2000 trucks starting in that time interval on an area
like Sweden is a realistic number. The total distance traveled in the simulated sce-
nario is in the same order of magnitude as the total distance traveled by domestic
road freight transport in Sweden within two hours, assuming that traffic volume is
equally spread over the year [1]. The density of the road freight traffic that was
simulated is only a fraction of the total road freight traffic in countries with high
population density, .

Figure 6.11 shows how the distribution of platoon sizes changes with the number
of transport assignments. We can see that the larger the number of transport
assignments, the more distance is traveled in large platoons. For 2000 assignments,
over half the distance traveled is in a platoon. Most of the distance is traveled
in platoons with ten or less vehicles. This is promising since large platoons might
be difficult to control and thus the platoon coordinator would have to prevent
planning for larger platoons. Since these large platoons only account for a small
fraction of the distance traveled, this would not have too large an impact on the
total fuel savings. The largest platoon formed has 28 vehicles. A noticeable effect
occurs at a number of 200 transport assignments when more distance is traveled
in relatively large platoons compared to the distribution with a number of 300
transport assignments. It seems that some kind of phase transition occurs at these
points, where enough assignments are in the system to go from one coordination
leader with many followers to having several coordination leaders that are better
suited for their followers. To understand this phenomenon is subject of future work.

The simulations show that computing plans for a large number of vehicles to
form platoons is feasible with the methods outlined in this paper. It motivates that
real-time platoon coordination enables significant reductions in fuel consumption
and might be the key to leveraging the full potential of truck platooning.

6.6 Summary

This chapter describes how to compute vehicle plans for platooning. The key el-
ement making the presented approach to coordinating truck platooning feasible
for large numbers of vehicles is the systematic combination of default plans and
adapted plans. Some vehicles, the coordination leaders, get their default plans as-
signed. The remaining vehicles use the most fuel efficient plan that is adapted to
one of the coordination leaders. The fuel efficiency of the adapted plans is based
on becoming a platoon follower of a coordination leader during a part of the route.
By selecting coordination leaders in a smart way, the fuel savings that result from
the adapted plans is maximized.
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Figure 6.10: The relative fuel savings due to platooning compared to the default
plans with varying numbers of assignments. “Greedy” indicates that greedy node
selection was used in the clustering algorithm, whereas “Random” indicates random
node selection. The keywords “Before”/“After” refer to the relative fuel savings be-
fore/after the joint optimization of the vehicle plans. “Spontaneous” are the relative
fuel savings based on the estimate of fuel savings due to spontaneous platooning.
“Upper Bound” refers to the upper bound the fce as stated in (6.4).

The proper selection of coordination leaders can be done by a branch and bound
algorithm. This algorithm can explore all possible allocations of coordination lead-
ers. However, it can skip over entire sets of possible allocations when no optimal
allocation can be element of these sets. This is done by comparing the best solution
found so far in the execution of the algorithm to an upper bound of the solutions
contained in the set. The result that not more than half the vehicles should be
coordination leaders and a method to compute that subsets of vehicles have to con-
tain at least one coordination leader, can help to further dismiss sets of suboptimal
solutions. Unfortunately, the problem of selecting coordination leaders is proven to
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be NP-hard, which means that any algorithm that computes exact solutions might
have very long running times.

This motivates the design of algorithms that compute a good selection of coor-
dination leaders efficiently but not necessarily the best one. One possible choice is
an algorithm that starts from an empty set of coordination leaders and iteratively
adds and removes leaders from that set, increasing the fuel savings in each itera-
tion. Such an algorithm can compute a good result efficiently for large numbers of
vehicles.

The combination of default and adapted plans can be further improved in order
to reduce fuel consumption. By committing to which vehicles platoon on which
parts of the routes, it is possible to adjust the timing that leads to such platoons.
Since this affects the speed profiles, it changes the fuel consumption. Using convex
optimization, the timing can be adjusted in a fuel-optimal way.

Simulations show that this method has the potential to coordinate a realistic
fleet of vehicles and achieve significant fuel savings compared to the current sit-
uation in which no platooning is used. The method also improves over so-called
spontaneous platooning where vehicles happen to get into each others vicinity and
form platoons.
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Figure 6.11: This figure shows the distribution of platoon sizes per distance traveled
over the number of assignments in percent. The upper plot shows the results of
greedy node selection whereas the lower plot shows those of random node selection
in the clustering algorithm. To the right, the size of platoon is indicated for a
platoon size up to eight. So, when the distance between the first and the second
boundary from below is for instance at 20 %, it means that 20 % of the distance
was traveled as member of a platoon of size 2.



Chapter 7

Conclusions and Future Work

This chapter concludes the thesis. Section 7.1 recaps and discusses the presented
results. Section 7.2 provides some possible directions for future work on the

topic.

7.1 Conclusions

This thesis considers the problem of coordinating the formation of truck platoons
in a fuel-efficient way. A centralized coordination system for truck platooning was
proposed. A possibly large number of vehicles would connect to this system over
vehicle-to-infrastructure communication. Each vehicle provides start and goal po-
sition as well as time of its next transport assignments. The system returns vehicle
plans consisting of routes and speed profiles that lead to globally reduced fuel con-
sumption based on platooning. As time evolves, this process is repeated to account
for deviations and new assignments.

The computation of the vehicle plans is a complex problem. One element that
makes the problem difficult is the potentially large number of vehicles. This was
successfully approached by dividing the computation into tractable stages. First,
the routes are determined. Algorithms for route computation in road networks
are readily available and this computation was not further investigated. Then,
a default speed plans and a selection of adapted plans is computed. Since the
computation of such plans is limited to the calculation of the speed profile for
one vehicle, it is possible to derive fuel-optimal speed profiles. Each adapted plan
involves platooning for a certain distance as platoon follower of the vehicle the
plan is adapted to. This can lead to a lower fuel consumption. Such plans were
derived for an affine fuel model. Similar plans can be derived for other fuel models,
changing speed ranges along the route and other additional factors. At the next
stage these plans are combined systematically in order to maximize the global fuel
savings. The problem of combining the plans was formulated as a problem of
selecting of a subset of vehicles that get their default plans assigned and to which
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the remaining vehicles can adapt in order to form platoons. A branch and bound
method for solving the combinatorial optimization problem of selecting coordination
leaders was proposed. The method uses several heuristics to prune the search space.
However, it was shown that the problem is NP-hard, which is a strong indicator
that exact solution might be very expensive to compute. Therefore, an iterative
algorithm was proposed that can quickly compute good but not necessarily optimal
solutions.

The effectiveness of the method was demonstrated in a realistic simulation study.
Significant amounts of fuel can be saved by platooning. The coordination of pla-
tooning was shown to be crucial in fully exploiting the potential of platooning to
reduce fuel consumption. This thesis demonstrates that the dynamic coordination
of forming platoons is feasible. The proposed methods are implemented and tested
in the scope of the COMPANION project [32] in a demonstrator that includes real
and simulated vehicles. Even though the development is still ongoing at the time
this thesis is written, preliminary results are promising and indicate that a platoon
coordinator, as proposed here, can function in practice.

7.2 Future Work

Despite the promising results, there are various open questions. One such question
is to understand how the transport assignments and the road network relate to fuel
savings achieved by this method. Clearly, the spatial and temporal distribution of
the assignments has an influence on how much fuel can be saved from platooning.
One extreme case would be that all assignments have the same data and the trucks
can form a platoon from start to destination. Another extreme would be that no
two assignments are executed during the same time. In these two cases it is easy
to predict how much fuel can be saved through platooning. It should be possible
to explicitly estimate the fuel savings based on the assignment data in the general
case or to find bounds.

A related question is to analyze how well the heuristic algorithm for the selection
of default and adapted plans performs. This can be done analytically as well as in
simulations. For the latter, we need to implement the branch and bound algorithm
efficiently using all the heuristics, so that we can compare the results of the heuristic
algorithm to exact solutions.

We also want to study what happens if the platoon coordinator runs as a model
predictive controller under the presence of disturbances as opposed to computing
a plan for a set of assignments only once. Realistically, trucks will not be able to
execute the plans exactly, but there will be disturbances due to traffic, weather,
the driver taking a break, etc. Furthermore, new assignments could be added on
the fly with a receding time horizon. In control theory, feedback is used in order
to attenuate disturbances. For the truck platoon coordination problem this means
repeating the calculation of the plans based on updated information, similar to a
model predictive controller. Additionally, there significant communication delays
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that need to be accounted for. We intend to study how plans and the achieved
fuel consumption change when such repeated replanning is employed and derive
analytical results related to the stability and convergence of the overall system.

Apart from addressing uncertainty by using feedback, it might be beneficial to
take possible disturbances into account explicitly. Using historic or live traffic data,
we can get an idea of how well a plan can be followed by the vehicle. For instance, to
plan for merge points after a region with heavy traffic might be too uncertain, and a
plan that merges the platoon before the region of heavy traffic should be preferred.
To this end the framework needs to be extended so that stochastic effects can be
modeled and accounted for. Scenario based model predictive control, as well as
stochastic and robust optimization can be appropriate sources of inspiration.

One of the assumptions made is that routes are not altered to facilitate platoon-
ing. This was motivated by the high complexity routing adds to the problem and
the intuition that the road system is built in a way that for long distances there are
typically not many alternatives of comparable length. Future work is to analyze
how much could be gained from adapting the routes as well, and investigate if there
are efficient ways of adapting the route for platooning for instance by considering
few route alternatives such as the ones derived in [10].

Finally, it will be interesting to investigate how a platoon coordination system
can work in practice. The way such a system is perceived by fleet owners, pro-
fessional drivers, and the general public will play an important role in the success
of the system. While some experiments with real vehicles have been made, more
tests have to be performed in order to make large-scale deployment of platoon
coordination systems a reality.
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