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Abstract

Critical infrastructures, such as the power grid and water distribution
networks, are the backbone of our modern society. With the integration of
computational devices and communication networks in critical infrastructures,
they have become more efficient, but also more vulnerable to cyberattacks.
Due to the underlying physical process, these cyberattacks can not only have
a financial and ecological impact, but also cost human lives. Several reported
cyberattacks on critical infrastructures show that it is vital to protect them
from these attacks. Critical infrastructures typically rely on accurate sensor
measurements for optimal performance. In this thesis, we, therefore, look into
attacks that corrupt the measurements.

The first part of the thesis is concerned with the feasibility of a worst-case
sensor attack. The attacker’s goal is to maximize its impact, while remaining
undetected by an anomaly detector. The investigated worst-case attack strategy
needs the exact controller state for its execution. Therefore, we start by looking
into the feasibility of estimating the controller state by an attacker that has
full model knowledge and access to all sensors. We show that an unstable
controller prevents the attacker from estimating the controller state exactly
and, therefore, makes the attack non-executable. Since unstable controllers
come with their own issues, we propose a defense mechanism based on injecting
uncertainty into the controller. Next, we examine the confidentiality of the
anomaly detector. With access to the anomaly detector state, the attacker
can design a more powerful attack. We show that, in the case of a detector
with linear dynamics, the attacker is able to obtain an accurate estimate of
the detector’s state.

The second part of the thesis is concerned with the performance of anomaly
detectors under the investigated attack in the first part. We use a previously pro-
posed metric to compare the performance of a χ2, cumulative sum (CUSUM),
and multivariate exponentially weighted moving average (MEWMA) detectors.
This metric depends on the attack impact and average time between false
alarms. For two different processes, we observe that the CUSUM and MEWMA
detectors, which both have internal dynamics, can mitigate the attack impact
more than the static χ2 detector. Since this metric depends on the attack
impact, which is usually hard to determine, we then propose a new metric.
The new metric depends on the number of sensors, and the size of an invariant
set guaranteeing that the attack remains undetected. The new metric leads
to similar results as the previously proposed metric, but is less dependent on
the attack modeling. Finally, we formulate a Stackelberg game to tune the
anomaly detector thresholds in a cost-optimal manner, where the cost depends
on the number of false alarms and the impact an attack would cause.
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Sammanfattning

Kritiska infrastrukturer, s̊a som elnätet eller vattenförsörjningssystemet,
är ryggraden i v̊art moderna samhälle. Effektiviteten av kritiska infrastruk-
turer har ökats genom integration med beräkningsenheter och kommunika-
tionsnätverk, men detta har medfört att de ocks̊a har blivit mer s̊arbara
för cyberattacker. P̊a grund av den underliggande fysikaliska processen kan
dessa cyberattacker inte bara ha ekonomiska och ekologiska effekter, utan de
kan ocks̊a kosta människoliv. Flera rapporterade cyberattacker mot kritiska
infrastrukturer visar att det är viktigt att skydda dem fr̊an dessa attacker.
Kritiska infrastrukturer förlitar sig vanligtvis p̊a noggranna sensormätningar
för optimal prestanda. I denna avhandling undersöker vi därför attacker som
korrumperar mätningar.

Den första delen av avhandlingen handlar om genomförandet av en sen-
sorattack i ett värstafallsscenario. Angriparens mål är att maximera verkan
av attacken, medan den förblir oupptäckt av en feldetektor. Den undersökta
värstafallstrategin behöver exakt information av regulatorns tillst̊and för att
kunna användas. Därför börjar vi med att titta p̊a möjligheten att en angripa-
re ska kunna uppskatta regulatorns tillst̊and samtidigt som den känner till
modellen och har tillg̊ang till alla sensorer. Vi visar att en instabil regula-
tor förhindrar angriparen fr̊an att exakt uppskatta regulatorns tillst̊and och
därmed förhindrar attacken. Eftersom instabila regulatorer introducerar andra
problem, föresl̊ar vi en försvarsmekanism baserad p̊a injektion av osäkerhet i re-
gulatorn. Därefter undersöker vi feldetektorns konfidentialitet. Med kännedom
om feldetektorns tillst̊and kan angriparen skapa en kraftfullare attack. Vi visar
att angriparen kan f̊a en noggrann uppskattning av detektorns tillst̊and när
detektorn har linjär dynamik.

Den andra delen av avhandlingen behandlar feldetektorers prestanda
medan de utsätts för de attacker som introducerades i första delen. Vi använder
en tidigare föreslagen metrik för att jämföra prestandan av detektorer baserade
p̊a χ2-fördelningen, kumulativ summa (CUSUM), och multivariat exponentiellt
viktat glidande medelvärde (MEWMA). Denna metrik beror p̊a verkan av
attacken och genomsnittlig tid mellan falska larm. Vi observerar att CUSUM-
och MEWMA-detektorerna, där b̊ada har intern dynamik, kan begränsa
verkan av attacker bättre än vad den statiska χ2-detektorn kan för tv̊a olika
processer. Eftersom denna metrik beror p̊a attackens verkan, vilket vanligtvis
är sv̊art att fastställa, föresl̊ar vi en ny metrik. Den nya metriken beror p̊a
antalet sensorer och storleken p̊a en invariant mängd som garanterar att
attacken förblir oupptäckt. Den nya metriken leder till liknande resultat som
den tidigare föreslagna metriken, men är mindre beroende av en modell av
angriparen. Slutligen formulerar vi ett Stackelberg-spel för att ställa in trösklar
för feldetektorn p̊a ett kostnadsoptimalt sätt, där kostnaden beror p̊a antalet
falska larm och potentiell verkan av attacker.



Sometimes science is more art than science, Morty.
- Rick Sanchez
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making me conversational in Serbian, Mladen Čičić for sharing his enthusiasm about
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Notation

R Set of real numbers
R≥a Set of real numbers greater than or equal to a ∈ R
Rn Set of real n–dimensional vectors
Rn×m Set of real (n×m)–dimensional matrices
In (n× n)–dimensional identity matrix
0 The number zero, a zero vector, or a zero matrix
A ≥ 0 Positive semi-definite matrix A
A > 0 Positive definite matrix A
ρ(A) Spectral radius of matrix A
σmax(A) Maximum singular value of matrix A
A† Moore-Penrose pseudo inverse of matrix A
||x||2 Euclidean norm of a vector x
||x||∞ Infinity norm of a vector x
dxe Rounds a real number x up to the next integer
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
E{x} Expected value of a random variable x
Var{x} Variance of a random variable x
supp(f) Support of a real-valued function f
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Chapter 1

Introduction

1.1 Motivation

Humans have never been healthier, been more educated, and lived longer (see
Figure 1.1). One reason for this improvement of the human living condition is that,
to cover their basic needs, humans have developed critical infrastructures including
power grids, road networks, and water distribution networks [2]. The introduction
of computational devices and communication networks further improved the way
the critical infrastructures work and made the coverage of basic needs more efficient,
cheaper, and cleaner. The smart grid, intelligent transportation systems, and smart
water distribution networks are just some of the examples of advanced critical
infrastructures in the near future. Since critical infrastructures consist of physical
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Figure 1.1: Positive trend of life expectancy [1].
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2 Introduction

processes, computational devices and communication networks, we call them cyber-
physical systems (CPSs). However, due to the connection of the processes via
communication networks, CPSs become vulnerable to cyberattacks. Attackers can
exploit vulnerabilities in the cyber space and reach havoc on a physical level, if the
CPSs are not properly protected.

At a first glance, cyberattacks on our critical infrastructures may seem like a
scenario that would happen in a dystopian future. Unfortunately, these attacks
are already happening. Hemsley et al. [3] provide a list of conducted cyberattacks,
where the earliest attack dates back to 1903. Two attacks that were aimed directly
at critical infrastructures are the attack on the Maroochy water services [4, 5] and
the attack on the Ukrainian power grid [6, 7]. The attack on the Maroochy water
services caused the spillage of nearly a million liters of untreated water into a storm
drainage and damaged the marine life, while the attack on the Ukrainian power
grid left more than 200000 customers without electricity. Since the integration of
computational devices in our industrial processes is progressing as well, not only
critical infrastructures but also industrial processes are endangered. The Stuxnet
worm is a prominent example of attacks on industrial processes and was designed
to target an Iranian uranium enrichment facility [8]. Other notable incidents that
made it into the popular media are hackers that remotely activated the brakes of
a jeep [9], a demonstration of researchers from Tulsa University on how easily it
was to hack wind farms [10], and the derailing of local trams due to a hack by a
teenager [11].

Two, if not the most dangerous, aspects of cyberattacks are that coordinated
attacks are much cheaper to conduct than physical attacks and the attacker does
not have to be physically present to conduct the attack. The perpetrator basically
just needs a computer to attack a system that might be located at the other side of
the world. Therefore, the adversary model presented in [12] does not only include
terrorist groups and nation states, but also disgruntled employees as in the case of
the Maroochy attack [5]. Even teenagers could launch a cyberattack without being
aware of the damage they might cause, as in the case of the tram hack [11].

Therefore, it is of utmost importance to secure the critical infrastructure and
industrial processes. Several governments have published strategies to protect
critical infrastructures, such as Sweden [13], the United States of America [14], and
Germany [2]. Security measures based on information technology (IT), such as
authentication and encryption, are one way to secure industrial processes. However,
and due to real time requirements and legacy equipment, utilizing these IT measures
is not always feasible for CPS [15]. Further, these IT measures alone will not block
all possible attack vectors

In this thesis, we, therefore, utilize a physical model of a CPS to provide an
additional layer of protection. One key feature of CPS is their closed-loop operation
(see Figure 1.2). Sensors measure important plant quantities and send them over a
network to a controller or control center, where, based upon these measurements,
actuator signals are determined to control the plant in an optimal or efficient
manner. Since faults, like actuator or sensor faults, can happen randomly, a CPS is
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Figure 1.2: Closed-loop behaviour of a CPS

usually equipped with an anomaly detector [16]. The anomaly detector analyses
the measurements and the actuator signals based on a model of the plant to see if
a fault has occurred. While faults are random in nature, attacks are maliciously
designed and want to avoid detection. In the last decade, the field of cyber-physical
security has investigated these attacks and defenses against them. For CPSs the
content of the data sent over a network has to obey the physical laws governing
the plant. For example, a temperature measurement may not change 100 ◦C in a
second. Hence, these cyber-physical security investigations often use the physics of
the plant to determine if someone has changed the measurement or actuator signals,
or estimate the possible impact of an attacker who wants to remain undetected and
we call attackers that try to remain undetected stealthy. These new types of security
measures should be seen as a complement to the IT security measures rather than a
replacement.

1.2 Research Challenges

In this thesis, we focus on sensor attacks on control systems equipped with an
anomaly detector (see Figure 1.3). In the following, we will present several research
challenges (C) when it comes to sensor attacks and describe what exactly we mean
by sensor attacks.

The attacker that has access to the measurements can add an additive signal
ya(k) to the measurement signal y(k) such that ỹ(k) = y(k) + ya(k). For example,
by reducing the value of a pressure measurement, the attacker deceives the controller
into increasing the pressure of a tank. This might result in an explosion in the plant.
Figure 1.3 shows us that the operator uses an anomaly detector, though. Hence,
ya(k) can not be arbitrarily designed, if the attacker wants to avoid detection as
well. If the operator does not detect the attacker, it cannot employ countermeasures
and mitigate the attack impact. Hence, the desire to remain undetected is often
assumed for an attacker.
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Figure 1.3: Block diagram of the closed-loop system equipped with an anomaly
detector under a sensor attack.

Sensor attacks have attracted considerable attention [17–24]. For example, Mo
et al. [22] define a notion of a perfectly attackable system and present conditions
for when a plant is perfectly attackable. Sensor attacks that maximize the error
covariance matrix of a state estimator are investigated in [23], while Cárdenas et al.
[24] investigate three different sensor attacks under two different anomaly detector
policies.

It is often assumed that the attacker has some knowledge about the dynamical
model of the closed-loop system. Furthermore, the attacker is often assumed to have
additional knowledge such as the whole system state [22], the internal state of the
controller xc(k), [19, 23], the detector’s state xD(k), [19], or some internal estimate
of the output [24], when the attack starts. This knowledge helps the attacker to
remain undetected.

While knowledge about the plant, controller, and detector model could be
obtained by acquired documentation of the closed-loop system, the internal states
cannot be available when the attack starts. The state of the controller and detector
at the start of the attack depend on the whole system’s past inputs, which are
unknown to the attacker. Therefore, the knowledge of xc(k) and xD(k) is impossible
for the attacker to have when it has just gained access to the measurements. This
leads us to the first research challenge.

C1: Is it possible for the attacker to obtain knowledge the internal state, e.g. xc(k)
and xD(k), after attacker has gained access to the measurements when the
closed-loop system and detector dynamics are known?

Next, assuming the attacker is able to execute its stealthy attack, it is crucial to
know how large the impact of a sensor attack is and how to mitigate it. Hence, the
second challenge we address is related to impact estimation.

C2: What is the worst-case attack impact of a stealthy sensor attack?

In [17, 18] the impact of the attack has can be interpreted as the volume of the set
of reachable states by the attacker. The reachable set is then overapproximated
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for the case of a χ2 detector. However, the worst-case impact will be influenced by
the detector, because the attacker designs ya(k) to remain undetected. Hence, the
choice of the detector is an important design criteria for the operator. Therefore,
the third challenge concerns the comparison of anomaly detectors.

C3: What is a good metric to compare the performance of anomaly detectors
under attack? Which detector mitigates the attack impact the most?

The metric for detector comparison proposed in [25] is one way to compare the
performance of detectors, but to the best of our knowledge it has not yet been used
to compare other detectors than the χ2 and cumulative sum (CUSUM) detector.
Hence, the comparison of other detectors using this metric is still open. However,
this metric depends on the attack impact, which might differ depending on the
assumptions made for the attacker. Therefore, it would be good to have a metric
for detector comparison that does not depend on the attack impact.

Furthermore, attacks are not occurring permanently and the operator has to
consider the normal working conditions of the plant as well. Therefore, it is not
only important to choose the detector that mitigates the attack impact the most,
but also to tune it to reduce costs during nominal operation, for example, the cost
induced by false alarms. Although Ghafouri et al. [26] present a Stackelberg game
for the choice of a cost optimal detector tuning, this game does not fit our sensor
attack framework with stealthy attacks. This leads us to the final challenge we
address.

C4: What is the optimal detector tuning for the operator to avoid high operational
costs in the case of stealthy sensor attacks?

Throughout the course of this thesis we will tackle these research challenges.

1.3 Thesis Outline and Contributions

In this section, we present the structure of the thesis and provide summaries of each
chapter.

Chapter 2: Literature Overview

In this chapter, we give an overview of not only the literature on sensor attacks
but over the whole field of CPS security. We begin by looking into different attack
angles and then look at proposed the defense mechanisms. The defense mechanisms
reviewed include adjusting controllers, resource allocation, combining IT security
measures with control system, and game-theoretic approaches. Last, the problem of
privacy in control systems is reviewed.
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Chapter 3: A Modeling Framework for Sensor Attacks
In this chapter, we introduce the framework for the sensor attack scenario, which
is used throughout the thesis. We start by defining a discrete-time linear plant
and controller. Although the detector model we propose is general, we also provide
the definition of three specific detectors, namely the χ2, multivariate exponentially
moving average (MEWMA), and CUSUM detectors. Then, assumptions on the
attacker’s knowledge, the attack strategy, as well as the definition of the worst-case
attack impact are stated. The chapter ends with presenting the dynamics of a
closed-loop system with an observer-based controller under the sensor attack, since
this controller is used in all the illustrative examples.

Chapter 4: On the Confidentiality of the Controller State
Chapter 4 tackles C1 by investigating when the attacker is able to perfectly estimate
the controller’s internal state xc(k). We show that a necessary and sufficient
condition for the attacker to perfectly estimate xc(k) is that the controller has no
eigenvalues outside of the unit circle. Furthermore, we specify all observer gains for
a non-optimal observer that perfectly estimates xc(k) when all controller eigenvalues
are inside the unit circle. We discuss how adding noise to the controller input
prevents the attacker from obtaining a perfect estimate. Further, we argue that
using an unstable controller as a defense against this confidentiality attack is only
a good idea for specific plants. An illustrative example with a three tank process
verifies the results of this chapter.

The chapter is based on the publication:

• D. Umsonst, H. Sandberg, “On the confidentiality of controller states under
sensor attacks,” Under journal review, 2019

Chapter 5: On the Confidentiality of the Detector State
Challenge C1 is also tackled in Chapter 5, although the focus lies here on the
confidentiality of the detector state xD(k). The analysis is limited to detectors
with linear dynamics. We show that an attacker is able to estimate xD(k) and
we provide a quality bound for the estimate. Furthermore, while estimating the
detector state the attacker is able to inject an attack signal that mimics the statistics
of the detector output and simultaneously has an impact on the plant. Mimicking
the statistics will not raise the suspicion of an operator that is watching the detector
output in the control center. A benchmark model for the excitation of tall buildings
by wind with a MEWMA detector is used to verify the results of this chapter.

The chapter is based on the publication:

• D. Umsonst, E. Nekouei, A. Teixeira, H. Sandberg, “On the confidentiality
of linear anomaly detector states,” in Proceedings of the American Control
Conference (ACC), 2019.
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Chapter 6: Comparison of Detectors

In this chapter, we tackle C2 and C3 and the chapter is split into two parts. In
the first part, we compare the χ2, CUSUM, and MEWMA detectors using the
metric proposed in [25]. We first show how the impact of a stealthy attack can be
determined for these three detectors and then plot the metric for the three tank
process used in Chapter 4 and for a quadruple tank process. We observe that the
CUSUM and MEWMA detectors perform better than the χ2 detector, i.e. mitigate
the attack impact more. However, the tuning of the CUSUM detector is crucial
to its performance. In the second part of the chapter, we propose a new metric
for the comparison of detectors under sensor attacks that does not depend on the
plant dynamics or the attacker’s objective. This new metric is used to compare the
three detectors again and the metric yields similar results to the previous detector
comparison in this chapter.

The chapter is based on the publications:

• D. Umsonst, H. Sandberg, A. A. Cárdenas, “Security analysis of control system
anomaly detectors,” in Proceedings of the American Control Conference (ACC),
2017.

• D. Umsonst, H. Sandberg, “Anomaly detector metrics for sensor data attacks
in control systems,” in Proceedings of the American Control Conference (ACC),
2018.

• D. Umsonst, H. Sandberg, “A game-theoretic approach for choosing a detec-
tor tuning under stealthy sensor data attacks,” in Proceedings of the 57th
Conference on Decision and Control (CDC), 2018.

Chapter 7: A Game-Theoretic Approach to Detector Tuning

The last technical chapter tackles C4. While the previous chapter compared the
performance of detectors, this chapter considers the optimal tuning of the detector.
A Stackelberg game is used to determine the optimal detector threshold. In this
game, the defender plays first by choosing a threshold for the detector, while the
attacker follows the move by attacking the system. The threshold is chosen to
minimize a cost which depends on the number of false alarms and the attack impact.
The existence of a solution to the Stackelberg games is shown and conditions for the
uniqueness of the solution are presented. We verify the framework for a χ2 detector
and use the quadruple tank process as an application example.

The chapter is based on the publication:

• D. Umsonst, H. Sandberg, “A game-theoretic approach for choosing a detec-
tor tuning under stealthy sensor data attacks,” in Proceedings of the 57th
Conference on Decision and Control (CDC), 2018.
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Chapter 8: Conclusions and Future Work
In this chapter, we conclude the thesis by summarizing the results and state possible
directions for future work.

Author Contributions and Other Publications
In the aforementioned peer-reviewed articles, the author of the thesis has formulated
and solved most of the problems, and written the papers. The results of the
coauthors are clearly indicated throughout the thesis.

The following publications in which the author of the thesis participated are not
covered in the thesis:

• F. Kintzler, T. Gawron-Deutsch, S. Cejka, J. Schulte, M. Uslar, E. MSP Veith,
E. Piatkowska, P. Smith, F. Kupzog, H. Sandberg, M. S. Chong, D. Umsonst,
M. Mittelsdorf, “Large Scale Rollout of Smart Grid Services,” 2018 Global
Internet of Things Summit (GIoTS), 2018.

• J. Milošević, D. Umsonst, H. Sandberg, K. H. Johansson “Quantifying the
Impact of Cyber-Attack Strategies for Control Systems Equipped With an
Anomaly Detector,” in Proceedings of the European Control Conference (ECC),
2018.

• M. S. Chong, D. Umsonst, H. Sandberg, “Voltage regulation of a power
distribution network in a radial configuration with a class of sector-bounded
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Remark 1.1. The work with Milošević et al. extends the impact estimation results
of Chapter 6 to a broader class of attacks and detectors.



Chapter 2

Literature Overview

In this chapter, we give an overview of the existing literature of security of cyber-
physical systems. Lun et al. [27] show in their survey paper how the number of
publications in the field of security for cyber-physical systems is rapidly increasing.
Therefore, this is by no means a comprehensive overview.

Figure 2.1: Block diagram of the closed-loop system equipped with an anomaly
detector under an attack.

Further, in this chapter, we will not only consider sensor attacks, but also look
into other attack strategies. Figure 2.1 shows a closed-loop system, where the
attacker has more resources than for a sensor attack. The attacker is able to listen
to the actuator signals, change them with ua(k), and to launch physical attacks
pa(k).

9
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2.1 Attack Vectors and Attack Strategies

Before we are able to design defenses against attacks on control systems, we need to
know what threats we are facing. Further, understanding possible attacks is one
of the challenges of CPS security according to [12]. Therefore, a lot of research is
conducted on possible attack vectors and attack strategies.

Teixeira et al. [28] propose an attack space that is spanned by the attacker’s
disclosure and disruptive resources, and its model knowledge. Disruptive resource,
ya(k) and ua(k), are used to change measurements and actuator signals, respectively.
Further, the attacker can cause some physical damage (pa(k)) to the plant, while
disclosure resources (dashed lines in Figure 2.1) are used to listen in to the measure-
ments and actuator signals and infer some additional knowledge about the process.
The model knowledge about the closed-loop system helps the attacker to launch more
sophisticated attacks. While [28] proposes a framework to model attacks which uses
linear discrete-time system, Pasqualetti et al. [29] use continuous-time descriptor
systems in their modeling of attacks. Further, conditions for the detectability and
identifiability of attacks are given in [29]. Duz et al. [30] extend the conditions
for detectability to linear-impulsive systems, i.e. linear systems that include jumps
in their dynamics. The frameworks in both [28] and [29] are able to cover several
attack strategies. Therefore, we will look at some attack strategies that have been
investigated in the following.

Our overview of attack strategies begins with the covert attack presented by
Smith [31]. This attack is very powerful, because the attacker has access to all
measurements and actuators and full model knowledge. In [31], a feedback structure
for the covert attack is presented, where the attacker is able to remove the changes
induced at the plant from the measurements. In that way, the attack is not visible
at the control center, which makes the attack very dangerous. Another attack
strategy that is not visible at the output of the plant is the zero-dynamic attack
[28, 29]. In a nutshell, zero dynamics are plant internal dynamics, which can be
excited with a nonzero input and result in a zero output. In case the zero dynamics
have unstable modes, an attacker is able to excite these unstable modes without
a changing the plant’s output. At a first glance, an attacker needs to know the
exact model of the plant to excite the zero dynamics with its attack. But [28]
presents the possibility of local zero dynamic attacks, which only need partial model
knowledge, and Park et al. [32] show how an attacker can employ robust control
techniques to launch a zero-dynamic attack with uncertain model knowledge. In
optimal control, the controller input is typically designed to minimize a certain
optimization criterion, for example the fuel consumption of a plane or the time it
takes to fulfill a task. Lipp et al. [33] design attacks by maximizing the criteria
that are typically minimized in control applications and they call these attacks
antagonistic control. One particular example of an attack is called ambush control.
Here, the attacker remains undetected for a certain amount of time to set the stage
for the actual attack. Then the attacker tries to maximize the criterion without the
concern of remaining undetected. False-data injection attacks are attacks where the
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attacker inject artificial data into the system by changing the actuator and/or sensor
measurements. Many of the attacks mentioned before can be seen as false-data
injection attacks, for example the ambush control of [33] and the zero-dynamics
attacks in [28]. Other false-data injection attacks are investigated in [19, 22, 23].

An attack without the need of model knowledge are replay attacks considered, for
example, in [28, 34]. Here, the attacker records sensor measurement during a normal
run of the control system. Then these measurements are replayed while the attacker
changes the actuator signals. Therefore, the measurements, which the controller
receives, appear normal, while the plant might behave in a undesired way. Replay
attacks have already been conducted in the real world, since the Stuxnet worm used
an attack strategy similar to the replay attack in its execution [8]. Another attack,
which does not require model knowledge, is a Denial-of-Service (DoS) attack as, for
example, investigated in [35–37]. As the name suggests the attacker blocks the com-
munication between the controller and the plant in this attack strategy. This attack
is especially severe if the open-loop system is unstable, because then the blocking of
for example measurements leads to an open-loop configuration. In the case of event
triggered control, DoS attacks are also fatal because there communication is only
established when required. The lack of required communication due to the DoS
attack in these cases might also lead to instability. The DoS attack can be modeled
as completely random [35], as an attacker determining the package drop probability
of the network [36], or as a sequence of intervals in which communication is not
possible [37].

The attack strategies presented up to now targeted either the integrity or
the availability of the control system data. Another attack angle is to target
the confidentiality of the control system data. Xue et al. [38] investigate the
confidentiality of the internal state of a double integrator network, which can be
interpreted as a network of autonomous vehicles. Yuan et al. [39] look into an
attacker that tries to identify the controller structure, while in [40] the adversary
tries to identify the controller’s gain in the setting of a wide area power system.

2.2 Attack Mitigation

After giving an overview over several attack strategies, let us now look at possible
defense mechanisms. A natural way to start is to investigate how the already existing
infrastructure, such as controllers and detectors, can be used to detect an attack
or mitigate its impact. Kafash et al. [17] use an artificial actuator saturation to
limit the set of reachable states of the attacker, while [18] adjusts the controller
to limit the reachable set of a stealthy attacker. In [39], an appropriate controller
design is proposed to prevent an attacker from obtaining the controller structure.
The anomaly detector of the control system is of interest in the attack mitigation
and detection as well. Other than randomly occurring faults, such as sensor and
actuator failures, attacks are intelligently designed and might avoid detection and
simultaneously cause the worst possible impact. Therefore, it is of interest to
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investigate which detector should be used to mitigate the attack impact the most.
Urbina et al. [25] propose a metric to compare different detectors by plotting the
impact of a stealthy attack over the mean time between false alarms. Murguia et
al. [19] compare the attack impact under a χ2 detector and a CUSUM detector
and it turns out that the CUSUM detector in the right configuration mitigates the
attack impact more than the χ2 detector.

It is important for the operator to have a good knowledge of what is going
on in the plant, therefore state estimators can be used to monitor the internal
variables of the plant. However, if an attacker changes the measurements this state
estimate might diverge from the actual state. Therefore, secure state estimators
have been investigated in [41, 42]. Both [41] and [42] show that for discrete-time
and continuous-time systems, respectively, a fundamental limit to recover the state
from an attack is that the attacker cannot attack more than half of the sensors in
the system.

Hence, [41] and [42] show us that an operator needs to protect at least half of its
sensors to guarantee a secure state estimation. To do so an operator has to allocate
security measures to protect the sensors. Security indices shows us how vulnerable a
sensor [43], actuator [44], or even the whole system [45, 46] is and, therefore, give an
indication on where to allocate security measures. However, an operator might have
limited resources and needs to choose which of the sensors to protect. Milošević
et al. [47] provide a framework for security measure allocation that minimizes the
allocation cost of the operator.

2.3 Defense Mechanisms with Roots in IT Security

In this section, we will discuss defense mechanisms that can also be found in IT
security application. Some of these techniques are called active defense mechanisms.
Active means that the system or signals are actively modified to, for example, detect
the attacker or mitigate the attack impact. Authentication can be seen as an active
defense mechanism, because an authentication message or signal is artificially added
to the signals to ensure their integrity. In IT security, it is common to add a
message authentication code to each message to ensure its integrity. However, due
to computational limitations and real time requirements, we might not be able to
use data authentication for each data sample. A remedy for that is to use irregular
authentication of the data signals as proposed in [48, 49]. This way the real time
requirements can still be fulfilled, while providing guarantees for the operator’s
estimation error.

An alternative to adding a message authentication code to each message is to
modify the signal itself to provide data integrity. One way to do this is watermarking,
which is also often used in IT security. It is for example included in a roadmap
for software engineering security in the beginning of this century [50]. To the best
of our knowledge, two approaches for watermarking have been proposed in the
field of CPS security. Additive watermarking [20, 21, 34] can be seen as a physical
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authentication code. The idea is to add noisy signal with time-varying statistics to
the actuator signal such that the statistics of the sensor measurements change. By
a malicious change of the measurements this watermarking signal gets removed or
changed, which leads to a detection of the attack. The additive watermarking is
used in [34] to detect replay attacks, but [20] and [21] show that a more general class
of attacks can be detected via watermarking. However, by adding an artificial noise
to the actuator signal, the performance of the closed-loop system might degrade.
Multiplicative watermarking [51–53] is an alternative to the additive approach that
does not degrade the system performance. Here, a time-varying watermarking
generator is used to give the measurements a watermark on the plant side of the
loop and the watermark is removed by a time-varying equalizer on the controller
side of the loop. The watermark generator and equalizer are time-varying filters
such that an attacker does not know which generator is currently used.

Watermarking can be seen as an artificial uncertainty of the system, which
makes it harder for the attacker to stay undetected. Moving target defense works
along similar lines and tries to increase the attacker’s uncertainty about the system
model. In power systems, the operator could actively change the topology of the
grid to increase the security of the state estimation [54]. This leads to a change
in the measurement matrix. Giraldo et al. [55] also propose to randomly change
the measurements used for the control of a feedback loop. They prove the stability
of the closed-loop system and show that this moving target defense leads to the
detection of an otherwise stealthy sensor attack.

Another way to use IT security in a control context is to use homomorphic
encryption as it is, for example, done in [56, 57]. Homomorphic encryption enables an
operator to execute the whole feedback loop on encyrpted signals. More specifically,
the controller operates on encrypted signals and is encrypted itself. Therefore, only
the plant and the operator need to have access to the key for decryption. Farokhi et
al. [57] show that the closed-loop with homomorphic encryption is stable and that
homomorphic encryption can be used to increase the security in a network of agents
as well.

2.4 Game Theory and Security

Game theory deals with optimal actions of rational decision makers with not
necessarily aligned objectives. Therefore, the scenario of an attacker and defender
fits well in the framework of game theory. Game theory has already been applied
to the security of networks [58] and also to increase the security of real world
environments like airports [59]. Therefore, it is no surprise that game theory has
found several applications in the security of cyber-physical systems as, for example,
Etesami et al. [60] show for dynamic games.

Zhu et al. [61] present a cross-layered game-theoretic framework for both the
cyber and physical layer of a CPS. This framework is used to design robust control
and cybersecurity strategies with resilience in mind. Since additive watermarking
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can degrade the performance of the control system, Miao et al. [62] provide a game-
theoretic approach for the detection of replay attacks with additive watermarking
that considers the trade-off between performance and detection. The problem of
security allocation can also be posed as a game. Shukla et al. [63] present a resource
planning game where an attacker tries to destroy communication equipment to
create sparsity in the controller and create a loss of performance. A mixed strategy
Nash equilibrium to choose the protected equipment is presented to minimize the
loss of control performance.

Stackelberg games are a popular game form when it comes to security. A famous
application of a Stackelberg game in the security context is the previously mentioned
airport security application of game theory [59]. These games are played in two
rounds. For a two player Stackelberg game, the leader plays in the first round, while
the follower plays in the second round. Since the follower observes the leader’s
action, the leader has to choose its action such that it minimizes the leader’s cost
for all possible actions of the follower. Sayin et al. [64] use a Stackelberg game
for secure sensor design, where it is uncertain if the controller is corrupted or not.
Chen et al. [65] look into the problem of parameter estimation in the presence
of an adversarial sensor and formulate a Stackelberg game to obtain an unbiased
estimator with minimum variance. Another Stackelberg game approach can be
found in [66], where it is used to maximize the probability to fulfill certain temporal
logic constraints under an attack. Ghafouri et al. [26] propose a Stackelberg game
to decide on a cost-effective detector threshold, which minimizes the cost induced
by false alarms and the cost of the attack impact.

2.5 Privacy in Control Systems

In this last part of the literature review, we will not focus on security of CPS but
rather their privacy. Privacy can mean not only that an operator wants to keep its
information private from an attacker, but also from a curious party. The latter point
could be interpreted that a customer wants to provide measurements to its electricity
provider without the provider being able to obtain private information about the
customer. This problem can be cast as a state estimation problem, such that a
privacy preserving mechanism is designed to keep a curious party from estimating
private information from the measurements. One way to preserve the privacy is
to use coding schemes to encode the measurements sent and decode them at the
controller side. Tsiamis et al. provide coding schemes based on linear time-varying
transformations for stable [67] and unstable systems [68]. They show that in both
cases the eavesdropper needs to only miss one of the transmitted to have either the
same estimation error as with an open-loop estimation (for a stable system) or an
unbounded estimation error (for an unstable system).

Another way to try to preserve privacy is by adding noise to the measurements
sent. In that way a single agent can maintain its privacy. However, when adding
this additional noise one has to consider the trade-off between the privacy and the
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system performance [69]. Furthermore, there is a trade-off between privacy and
security as Giraldo et al. [70] point out. In [70], it is shown that an attacker can hide
its action in the additional noise term. Therefore, the privacy mechanism makes the
system less secure.

Information-theoretic concepts like entropy have also become a topic of interest
in privacy of control systems as this recent survey shows [71]. Nekouei et al. [72],
for example, the problem of estimating a common variable from several sensor
measurements, where each sensor has a private variable. Two estimation schemes,
a local and a global scheme, are discussed and analyzed with respect to a privacy
measure based on the conditional entropy.





Chapter 3

A Modeling Framework for Sensor Attacks

In this chapter, we set up a framework that is used to analyze the sensor attacks
throughout the thesis. We begin by introducing the plant and controller model,
which we use in our investigation of sensor attacks and detector tuning. Then, we
propose a general detector model and fit three commonly used anomaly detectors
into that model. Finally, the attack model is introduced and we present both the
worst-case attack strategy and the worst-case attack impact. Figure 3.1 shows the
model setup.

3.1 Plant and Controller Model

Due to the discrete nature of computational devices and networks, we model the
plant as a linear discrete-time system

x(k + 1) = Ax(k) +Bũ(k) + w(k),
y(k) = Cx(k) + v(k),

(3.1)

Figure 3.1: Block diagram of the closed-loop system equipped with an anomaly
detector under a sensor attack.

17



18 A Modeling Framework for Sensor Attacks

where x(k) is the state of the plant in Rnx , ũ(k) is the actuator signal in Rnu received
at the plant, and y(k) is the measured output in Rny . Furthermore, A ∈ Rnx×nx
is the system matrix, B ∈ Rnx×nu is the input matrix, and C ∈ Rny×nx is the
output matrix. Here, w(k) ∼ N (0,Σw) is the process noise and v(k) ∼ N (0,Σv) is
the measurement noise, where Σw ≥ 0 and Σv > 0 are the covariance matrices of
the respective noise term with appropriate dimensions. The noise processes w(k)
and v(k) are each independent and mutually uncorrelated. The operator uses an
output-feedback controller of the form

xc(k + 1) = Acxc(k) +Bcỹ(k),
u(k) = Ccxc(k) +Dcỹ(k),

(3.2)

where xc(k) is the controller’s state in Rnc , ỹ(k) are the measurements received from
the plant, and u(k) is the actuator signal. Here, Ac ∈ Rnc×nc is the system matrix of
the controller, Bc ∈ Rnc×ny is the input matrix of the controller, Cc ∈ Rnu×nc is the
output matrix of the controller, and Dc ∈ Rnu×ny is the feedthrough matrix from
the received measurements to the actuator signal. The structure (3.2) represents
many commonly used controllers.

Note that the measurement and actuator signals sent from the plant and con-
troller, respectively, are not necessarily the signals received by the controller and
plant, i.e. ỹ(k) = y(k) and ũ(k) = u(k) are not necessarily true. This is due to the
fact that, for example, packet drops might happen in case the signals are transmitted
over a network, an actuator fails or an attacker injects a signal through the network.

Because the operator uses an anomaly detector, as indicated in Figure 3.1, we
need a way to determine the detector input r(k). Typically, an estimate of the
plant’s state is used to determine r(k). Therefore, we assume the following.

Assumption 3.1. The controller state xc(k) contains an estimate x̂(k) of the
plant’s state x(k), i.e. x̂(k) = Tcxc(k), where Tc ∈ Rnx×nc extracts the estimate
from xc(k).

Note that, for example, in [28] the anomaly detector has its own residual
generator, while we incorporated the residual generator in the controller. This
means even if the operator is using a PID controller, it needs to have a state
estimator in the controller for the anomaly detector.

One controller that fits both (3.2) and Assumption 3.1 is the observer-based
controller, with Ac = A − BK − LC, Bc = L, Cc = −K, and Dc = 0. In this
control strategy xc(k) = x̂(k), and K and L represent the controller and observer
gain, respectively. The observer-based controller is, for example, used in [19] and
we will look at it in more detail in Section 3.4.

Assumption 3.2. The plant (3.1) and controller (3.2) are such that

1. (A,B) is stabilizable,

2. (C,A) is detectable,
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3. (A,Σ
1
2
w) has no uncontrollable modes on the unit circle, and

4. the controller (Ac, Bc, Cc, Dc) is minimal.

The stability of the closed-loop system depends on the controller matrices
Ac, Bc, Cc, and Dc. Therefore, we need the first two points of Assumption 3.2,
such that the operator is able to observe and control all unstable modes in the
system. The third point is needed in Chapter 4, for example, for the proof of
Proposition 4.2. To avoid unnecessary dynamics, the minimal realization should be
used for implementation.

Assumption 3.3. The operator has designed Ac, Bc, Cc, and Dc, such that the
closed-loop system is asymptotically stable.

Assuming a stable closed-loop system is in line with normal operator requirements
and is thus not restrictive.

Assumption 3.4. The closed-loop system dynamics have reached steady state at
k = 0.

This assumption is not very restrictive, since industrial plants usually run for
long periods of time. Due to Assumption 3.3 and the stationarity of w(k) and v(k),
the closed-loop system will therefore converge to a stationary process.

3.2 Anomaly Detector Model

Under nominal conditions we have ỹ(k) = y(k) and ũ(k) = u(k), which indicates
that the plant is working as it is supposed to be. However, anomalies can occur
at some a priori unknown point in time, like a sensor fault or a purposely injected
signal by an attacker. Therefore, control systems need to detect these anomalies and
make the operator aware of the fault by triggering an alarm. Since sensor attacks
are of interest in this thesis, we make the following assumption.

Assumption 3.5. The only anomalies are the attack signals ya(k) in Rny . This
implies ũ(k) = u(k) and ỹ(k) = y(k)+ya(k), where ya(k) is designed by the attacker.

The anomaly detector computes a signal yD(k + 1) ≥ 0 at time-step k, which
is used to determine if an attacker is present or not. A small yD(k + 1) indicates
that no anomalies are present. If yD(k + 1) grows large and crosses a threshold
JD ≥ 0, an alarm is triggered. In case an alarm is triggered and no fault or intruder
is present, we call it a false alarm and otherwise a true alarm. Typically, JD is
tuned such that rarely any false alarm happens. This means that a plant’s operator
will not be suspicious if there are no alarms happening for a longer period of time.
The detector dynamics are described by a possibly nonlinear discrete-time system,

xD(k + 1) = θ
(
xD(k), r(k)

)
,

yD(k + 1) = d
(
xD(k), r(k)

)
,

(3.3)
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where xD(k) is the internal state of the detector in RnD , which is initialized as a
zero vector, yD(k + 1) is the output of the detector in R≥0, and r(k) is the input to
the detector in Rnr . Here, θ

(
xD(k), r(k)

)
describes the dynamics of the detector

state and d
(
xD(k), r(k)

)
is the output behavior of the detector. If the detector has

no internal state, xD(k), we call it stateless, and stateful otherwise. The input of
the detector is a random variable, whose distribution contains information about
the status of the closed-loop system.

Assumption 3.6. The detector input r(k) is a normalized residual signal that
represents the difference between the received and the expected measurements, i.e.
r(k) = Σ−

1
2

r

(
ỹ(k)−Cx̂(k)

)
, where Cx̂(k) is a prediction of the plant’s output. Here,

Σr is the covariance matrix of ỹ(k)− Cx̂(k) and the normalization with Σ−
1
2

r leads
to r(k) ∼ N (0, Iny ) under nominal conditions.

Due to the normal distribution of the residual signal, yD(k + 1) is also a random
variable with probability density function qk+1(yD) and support supp

(
qk+1(yD)

)
⊆

[0,∞), where supp
(
q(yD)

)
:= {yD ∈ R : q(yD) > 0}. It has been argued, for

example in [19], that xD(k) is confidential and only the operator has access to it,
since xD(k) is an internal value of the detector, which is not transmitted over a
network. In Chapter 5, we show how an attacker can break the confidentiality of
detector states under the assumption that follow linear dynamics. Additionally, the
trajectory of yD(k) is displayed in the control center, such that an operator could
recognize suspicious behavior by examining the displayed trajectory. This can also
lead to the detection of the attacker and is represented as the human observer in
Figure 3.1.

We constraint θ(xD(k), r(k)) and d
(
xD(k), r(k)

)
as follows to obtain a reasonable

model of a detector in (3.3).

Assumption 3.7. The following conditions hold for the detector (3.3)

1) θ
(
xD(k), r(k)

)
and d

(
xD(k), r(k)

)
are continuous in xD(k) and r(k),

2) yD(k + 1) = d
(
xD(k), 0

){< JD if xD(k) 6= 0 and yD(k) ≤ JD
= 0 if xD(k) = 0

,

3) θ(0, 0) = 0 and xD(k)→ 0 for k →∞, if r(k) = 0 ∀k,
4) d
(
xD(k), r(k)

)
is coercive in xD(k) and r(k),

5) Set xD(k) = 0, if yD(k) > JD.

The first condition is needed for mathematical tractability. The second and
third condition are needed to guarantee that if we have perfect predictions of the
received measurements, i.e. r(k) = 0, the detector state and output will approach
zero without causing a false alarm and xD(k) = 0 is a global asymptotic equilibrium.
For the fourth condition recall that a function α : RnD × Rny → R≥0 is called
coercive if α(x)→∞ as ||x|| → ∞. Hence, the fourth condition guarantees that if
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either the detector state or the detector input grow unbounded the output will also
grow unbounded. The fifth condition means that the detector is reset to its initial
state, when an alarm has been triggered. The reset is needed to avoid triggering
false alarms consecutively.

3.2.1 Commonly-used Anomaly Detectors
Three commonly-used detectors that follow (3.3) and fulfill Assumption 3.7 are
presented below. These detectors are the χ2 detector, the CUSUM detector, and
the MEWMA detector.

The χ2 Detector

Since r(k) is a residual signal that is determined by the difference between the
received and expected measurement signal, it is reasonable to use the size of the
residual signal as an indication of good plant behavior. The χ2 detector is a stateless
detector and looks at the size of the detector input by taking the squared Euclidean
norm of r(k),

yD(k + 1) = r(k)T r(k). (3.4)

If yD(k + 1) > Jχ
2

D an alarm is triggered, where Jχ
2

D ∈ R≥0 is the chosen threshold
of the χ2 detector.

The MEWMA Detector

Instead of only looking at the size of r(k), as in the χ2 detector, the MEWMA
detector [73] first filters r(k) and then determines the size of the filtered signal.
Due to the filter, the MEWMA detector is a stateful detector with the following
dynamics,

xD(k + 1) = βr(k) + (1− β)xD(k), (3.5)

yD(k + 1) = 2− β
β

xD(k + 1)TxD(k + 1), (3.6)

where xD(k) is initialized as zero and β ∈ (0, 1] is the forgetting factor of the
detector. The threshold of the MEWMA detector is JMD ∈ R≥0 and an alarm is
triggered if yD(k + 1) > JMD . Here, 2−β

β is a normalization factor for the MEWMA
detector such that yD(k+1) under nominal conditions converges to a χ2 distribution
with ny degrees of freedom. Note that for β = 1 the MEWMA detector represents
the χ2 detector.

The CUSUM Detector

The CUSUM detector does not filter the residual signals, but sums their squared
Euclidean norm up with a forgetting factor to determine yD(k). The non-parametric
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version of the CUSUM detector proposed in [74] is defined as follows

xD(k + 1) = max
(
xD(k) + r(k)T r(k)− δ, 0

)
,

yD(k + 1) = xD(k + 1),

where xD(k) is initialized as zero and δ ∈ R≥0 is the forgetting factor of the CUSUM
detector. An alarm is triggered in case yD(k + 1) > JCD , where JCD ∈ R≥0 is the
threshold of the CUSUM detector. Note that the internal state xD(k) is equal to the
output of the detector in this case and, therefore, we write the detector dynamics as

yD(k + 1) = max
(
yD(k) + r(k)T r(k)− δ, 0

)
.

Since yD(k) is used to calculate yD(k + 1), this is also a stateful detector. The
non-parametric CUSUM detector is also used in a similar fashion in, for example,
[19] and [25].

3.2.2 Detector Comparison and Tuning

Before we move on to describe the attack model, we will discuss how we compare
the anomaly detector in the presence of attacks and how to tune them, i.e. choose
JD.

Metrics to Compare Detectors

Above we presented a general detector model and three different anomaly detectors
that fit into this detector model. A question that comes naturally to our mind is if
it is possible to compare the performance of different detectors.

A common way to compare the performance of detectors is the receiver operating
characteristic (ROC) curve [75]. The ROC curve plots the true alarm rate over
the false alarm rate. The true alarm rate states how often the detector detects an
attack, while the false alarm rate states how often the detector triggers an alarm
without an attack being present. One way obtain the ROC curve is to tune JD to
achieve a certain false alarm rate and then the true alarm rate of the detector is
determined for this threshold.

A sophisticated attacker typically designs the attack signal in such away that
the detector will not trigger an alarm. In that case, the ROC curve cannot be used
for performance comparison of detectors in the presence of attacks, because the
detector will not trigger an alarm and the true alarm rate is always zero no matter
which threshold is chosen. Instead of considering the true alarm rate, Urbina et
al. [25] propose to examine the impact an attacker has on the closed-loop system
while remaining undetected. The attack impact depends on the attacker’s objective.
The objective could, for example, be to drive the x(k) as far away from the nominal
state as possible. A more thorough definition of the attack impact can be found in
Definition 3.2.
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Figure 3.2: Comparing two detectors with the metric proposed in [25]

Furthermore, according to [25], it is also more intuitive for an operator to talk
about the average time between false alarms instead of the false alarm rate. For
example, telling someone that a false alarm on average happens every five weeks is
easier to grasp then telling that 0.01% of alarms are false alarms. Interestingly, the
mean time between false alarms is the inverse of the false alarm rate [76]. Figure 3.2
shows how this metric could look like when we compare two detectors. According
to this metric, Detector 1 has a better performance than Detector 2 because using
Detector 2 results in a higher attack impact than using Detector 1 for all investigated
average times between false alarms.

In the case of randomly occurring faults, there is a trade-off between the true and
false alarm rate we need to consider when choosing a detector. However, with attacks
in mind, we should also consider the impact of stealthy attacks when choosing a
detector.

Detector Tuning

Now that we know how to compare different detectors, we need to be able to obtain
the metric. For that we need to tune the detector threshold JD to achieve a certain
mean time between false alarms.

Assumption 3.8. For a given detector (3.3), which fulfills the conditions in As-
sumption 3.7, there exists a compact set L ⊆ R≥1 and a non-decreasing function
g : L → R≥0 such that JD = g(τ), where τ ∈ L is the mean time between false
alarms.

Assumption 3.8 is plausible, because an alarm is triggered when yD(k) crosses
JD. Therefore, a larger JD means that a random input yD(k) needs more time
until it crosses JD. We need to introduce L because depending on the form of both
θ
(
xD(k), r(k)

)
and d

(
xD(k), r(k)

)
we might not be able to achieve any τ ∈ R≥1 by



24 A Modeling Framework for Sensor Attacks

simply adjusting JD. With Assumption 3.8 the detector tuning JD can be specified
by τ alone. How to choose JD is a tedious task and depends on the what detector
is used. Therefore, we will present how to tune JD for the commonly used anomaly
detectors.

Let us start with the χ2 detector. The squared Euclidean norm of r(k) has a χ2

distribution with ny degrees of freedom, since r(k) ∼ N (0, Iny ). Hence, there exists
a closed-form solution to obtain the threshold for a given τ ,

Jχ
2

D = 2P−1 (ny
2 , 1−

1
τ

)
, (3.7)

where P−1(·, ·) represents the inverse regularized lower incomplete gamma function
(see Theorem 3 in [19]).

Now we look at the CUSUM and MEWMA detectors. Since both the MEWMA
and the CUSUM detector have an internal state, the detector might be unstable. If
the detectors are not stable, yD(k) might grow unbounded, even if the input r(k) is
bounded, and, thus, always hit the threshold JD even if there is no fault. In [77]
a notion of stochastic stability is introduced. However, we will only look at the
boundedness, which is defined as follows.

Definition 3.1. A stochastic process yD(k) is bounded in mean square if

E{||yD(k)||22} <∞

for all k ≥ 0.

Therefore, we start by investigating conditions for the MEWMA and CUSUM
detector to be bounded in mean square.

Proposition 3.1. The CUSUM detector is bounded in mean square if δ > ny and
the MEWMA detector is bounded in mean square if and only if β ∈ [0, 2).

Proof. Theorem 1 in [19] shows the boundedness condition for the CUSUM detector.
Since the MEWMA detector state is initialized with zero, i.e., xD(0) = 0, the

state at time step k is

xD(k) = β

k−1∑
i=0

(1− β)k−1−ir(i),

where we assumed that no reset has happened. We know that each r(i) has a
standard Gaussian distribution and is independent from all previous r(j) with j < i.
Therefore, we can determine the variance of xD(k) as

Var
(
xD(k)

)
= β2

k−1∑
i=0

(1− β)2iIny = β2 1− (1− β)2k

1− (1− β)2 Iny

= β

2− β
(
1− (1− β)2)Iny ,
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such that xD(k) ∼ N
(
0, β 1−(1−β)2k

2−β Iny
)
. From that we obtain

yD(k) =
(
1− (1− β)2k)υ,

where υ has a χ2 distribution with ny degrees of freedom. Finally, using E{yD(k)2} =
E{yD(k)}2 + Var

(
yD(k)

)
leads to

E{yD(k)2|yD(0) = 0} = (2ny + n2
y)
(
1− (1− β)2k)2 <∞ (3.8)

for all k ≥ 0 if and only if β ∈ [0, 2). This is fulfilled for the MEWMA detector and
leads to boundedness in mean square according to Definition 3.1.

In contrast to the CUSUM detector, one does not have to worry about how to
choose the forgetting factor for the MEWMA detector when it comes to stochastic
boundedness. Although there is no upper bound for δ, we show in Chapter 6 that
the attack impact grows with δ. Hence, the operator should not choose δ too large.

Now that we know what values for the forgetting factors need to be respected,
let us look at determining the threshold for the stateful detectors. Determining JCD
exactly is not an easy task, because there exists no closed-form solution as for Jχ

2

D ,
but one can approximate JCD by approximating the continuous CUSUM scheme
with an absorbing Markov chain with R + 1 states [19]. With this method, one
can approximate τ for a given threshold JCD , but also find a threshold when τ is
given using a bisection method. Note that, the computed threshold JCD will only
approximately achieve the desired τ , but as R→∞ the approximation approaches
the real solution (see Theorem 2 and Remark 2 of [19] for more details).

Similarly to [19], the MEWMA detector is approximated with an absorbing
Markov chain with R + 1 states in [78] to approximate τ for a given β and JMD .
Therefore, we are also able to approximate JMD for a given τ and β using the Markov
chain and a bisection method.

3.3 Attack Model

After introducing both the plant and controller model as well as a general detector
model with tuning methods and comparison metrics, we present now the model of
the attacker.

Assumption 3.9. The attacker has gained access to the plant model (A,B,C),
the controller model (Ac, Bc, Cc, Dc), the detector used, its threshold JD, the noise
statistics (Σw,Σv), the measurements y(k) for k ≥ 0 but not the control signals
u(k), the initial state of the plant x(0), controller xc(0), and detector xD(0).

Since the manipulation of control signals can lead to an immediate physical
impact, we assume u(k) is better protected and, therefore, the attacker does not
have access to it. Moreover, we set the start of the attack arbitrarily to k = 0.
This is interpreted as the point in time, from which the attacker has access to the
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measurements. From Assumption 3.4 we know that the plant and controller have
been running for a long time. Therefore, the attacker cannot know x(0), xc(0), and
xD(0), when it gains access to the sensor measurements. The reason for that is that
the states at k = 0 depend on the system’s past inputs, initial states, and noise
signals, which the attacker does not know.

Recall that ỹ(k) = y(k) + ya(k) such that the closed-loop dynamics are[
x(k + 1)
xc(k + 1)

]
=
[
A+BDcC BCc

BcC Ac

][
x(k)
xc(k)

]
+
[
BDc

Bc

]
ya(k)+

[
w(k) +BDcv(k)

Bcv(k)

]
.

By introducing

z(k) =
[
x(k)
xc(k)

]
and η′(k) =

[
w(k) +BDcv(k)

Bcv(k)

]
we rewrite the closed-loop system as

z(k + 1) = A′zz(k) +Bzya(k) + η′(k),

y(k) = Czz(k) + ya(k) + v(k) =
[
C 0

]
z(k) + ya(k) + v(k),

(3.9)

where η′(k) ∼ N (0, Q′) is the zero mean process noise of the closed-loop system
with covariance matrix Q′ ∈ R(nx+nc)×(nx+nc) and v(k) is the measurement noise.
Note that although we only investigate sensor attacks, the attack can have a direct
influence on the actuator if the controller contains a non-zero feedthrough term.
Due to Assumption 3.3 and 3.4 and the Gaussian noise processes, we know that
ρ(A′z) < 1 and that z(0) ∼ N (0,Σ0), where Σ0 is the unique solution to

Σ0 = A′zΣ0(A′z)T +Q′.

Since the closed-loop system is linear, we can split it into two parts, such that
z(k) = zn(k) + za(k), where

zn(k + 1) = A′zzn(k) + η′(k) and za(k + 1) = A′zza(k) +Bzya(k) (3.10)

with zn(0) = z(0) and za(0) = 0. Here, zn(k) represents the part of z(k) that is
excited by the noise, while za(k) is the part that is excited by the attack signal.
Further, since E{z(0)} = 0 and E{η′(k)} = 0 for all k, we can interpret za(k) as the
mean of the closed-loop system.

3.3.1 Worst-case Attack Strategy and Its Impact
Now that we determined the closed-loop system, we present a worst-case attack
strategy and the definition of the worst-case attack impact. However, we show
that to execute the worst-case attack strategy, the attacker needs to gather more
knowledge than what is assumed in Assumption 3.9.

First, we make the following assumption on the design of ya(k).
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Assumption 3.10. The attacker designs ya(k) such that the attack remains unde-
tected, i.e.

yD(k) = d
(
xD(k), r(k)

)
≤ JD ∀k ≥ 0.

To fulfill Assumption 3.10 let us look at the input of the detector and the
worst-case attack strategy. The input to the detector is

r(k) = Σ−
1
2

r

(
y(k)− Cx̂(k) + ya(k)

)
,

so Murguia et al. [19] propose the following attack strategy

ya(k) = −y(k) + Cx̂(k) + Σ
1
2
r a(k), (3.11)

where a(k) ∈ Rny is a vector chosen by the attacker. This attack strategy is a worst-
case attack strategy, because the detector input becomes r(k) = a(k). Therefore,
the attacker has full control over the input of the detector, which makes it easier for
the attacker to remain undetected, i.e. design a(k) such that

yD(k + 1) = d
(
xD(k), a(k)

)
≤ JD ∀ k ≥ 0.

The closed-loop system dynamics under this attack become[
x(k + 1)
xc(k + 1)

]
=
[
A B

(
Cc +DcCTc

)
0 Ac +BcCTc

][
x(k)
xc(k)

]
+
[
BDc

Bc

]
Σ

1
2
r a(k) +

[
w(k)

0

]
,

(3.12)

where we used that x̂(k) = Tcxc(k) (Assumption 3.1).
However, an attacker with the model knowledge according to Assumption 3.9

will not be able to execute the attack strategy in (3.11). The reason for this is
that the attacker has no access to xc(k) when the attack starts. Therefore, it
cannot determine x̂(k) to execute the attack strategy in (3.11). Further, even if the
attacker has access to x̂(k) without access to xD(k), the attacker needs to apply
a conservative attack strategy to remain undetected (see Chapter 6). Therefore,
utilizing stateful detectors increase the security of the system, if the attacker is not
able to obtain xD(k) during the execution of its attack.

Therefore, it is of interest to investigate if an attacker with the knowledge
according to Assumption 3.9 is able to launch the stealthy worst-case attack (3.11).
To launch this attack the attacker has to first find a way to obtain xc(k) and second
to acquire xD(k) if the attacker wants to maximize its impact and a stateful detector
is used. Chapter 4 investigates when an attacker is able to get a perfect estimate of
xc(k), while Chapter 5 examines how an attacker can estimate xD(k).

Once the attacker can launch the attack proposed in (3.11), we can determine
the worst-case impact of this attack when a certain detector is used. Further, for
mathematical tractability, we also assume the following.
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Assumption 3.11. The attack (3.11) is time-limited to the interval Γ ∈ [
¯
k, k̄], i.e.

the attack starts at time step
¯
k and ends at k̄.

This means that from k = 0 to k =
¯
k − 1 the attacker obtains both xc(k) and

xD(k) and then launches the attack (3.11) at k =
¯
k. The conditions for the attack

to remain undetected are then given by

d
(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ. (3.13)

Assumption 3.11 leads to the definition of a worst-case impact of a time-limited
attack.

Definition 3.2. The worst-case impact I : L→ R≥0 ∪ {∞} of the stealthy sensor
attack (3.11) on the closed-loop system (3.12) with zero initial conditions, no noise
(w(k) = 0), and equipped with an anomaly detector (3.3) is defined as

I(τ) := max
a,xD(

¯
k)
f(a) s.t. d

(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ,

where a = {a(k)}k̄k=
¯
k is the attack trajectory and f(a) is a continuous function that

characterizes the attacker’s objective.

Recall that JD = g(τ) (Assumption 3.8) and, therefore, the impact depends on τ .
here, the attacker’s objective f(a) could, for example, be monetary loss or physical
damage to the system. From the perspective of a defender, the defender does not
know when the attack will happen and, therefore, does not know xD(

¯
k), which is

the state of the detector at the beginning of the attack given by (3.11). Hence, we
optimize over all possible xD(

¯
k) to find the worst-case impact. Further, I(τ) =∞

means that the impact of the stealthy attack is unbounded. Note that plotting
I(τ) over τ for different detectors, gives us the metric for detector comparison we
mentioned earlier.

Throughout the course of this thesis, we will often set the attacker’s objective
to f(a) = ||Taa||∞. Let us discuss the two reasons why this attack objective is
used. Due to the linearity of xa(k), we can express many different quantities in the
system by Taa such as critical states at a specific time step or whole trajectories.
One example is xa(k̄) = Taa, where Ta ∈ Rnx×(k̄−

¯
k+1)ny . In that way, maximizing

||Taa||∞ maximizes the largest element in xa(k̄). This can for example be interpreted
as pressure in a tank that the attacker wants to maximize, in order to make the
tank explode. The second reason for choosing this attack objective is that

max
a
||Taa||∞ = max

a
max

i∈{1,··· ,na}
|tTa,ia|,

where ta,i ∈ R(k̄−
¯
k+1)ny is the ith row of Ta ∈ Rna×(k̄−

¯
k+1)ny . By splitting the

maximization of ||Taa||∞ into na subproblems we are able to find analytical solutions
and global optima for nonconvex problems (see Chapter 5 and 6).
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3.4 Observer-based Controllers under Attack

Since all of the illustrative examples in this thesis use an observer-based controller
[79], we present the closed-loop dynamics of an observer-based controller under the
sensor attack (3.11) in this section.

An observer-based controller uses an estimate x̂(k) of the plant’s state x(k)
to determine the control input. In this case, we have xc(k) = x̂(k) such that
Assumption 3.1 is fulfilled. The dynamics of this controller are

x̂(k + 1) = (A−BK − LC)x̂(k) + LCy(k),
u(k) = −Kx̂(k),

where K is the controller gain and L is the observer gain. The closed-loop system is
then given by[

x(k + 1)
x̂(k + 1)

]
=
[
A −BK
LC A−BK − LC

][
x(k)
x̂(k)

]
+
[

0
L

]
ya(k) +

[
w(k)
Lv(k)

]
.

With the introduction of the estimation error e(k) = x(k)− x̂(k), we can write the
closed-loop system as[

x(k + 1)
e(k + 1)

]
=
[
A−BK BK

0 A− LC

][
x(k)
e(k)

]
+
[

0
−L

]
ya(k) +

[
w(k)

w(k)− Lv(k)

]
.

(3.14)

From (3.14), we see that K and L need to be designed such that ρ(A− BK) < 1
and ρ(A− LC) < 1 to fulfil Assumption 3.3.

The normalized residual signal with e(k) is given by

r(k) = Σ−
1
2

r

(
ỹ(k)− Cx̂(k)

)
= Σ−

1
2

r

(
y(k) + ya(k)− Cx̂(k)

)
= Σ−

1
2

r

(
Ce(k) + v(k) + ya(k)

)
,

such that the worst-case attack (3.11) becomes

ya(k) = −y(k) + Cx̂(k) + Σ
1
2
r a(k) = −Ce(k)− v(k) + Σ

1
2
r a(k).

The closed-loop dynamics with the worst-case attack are[
x(k + 1)
e(k + 1)

]
=
[
A−BK BK

0 A

][
x(k)
e(k)

]
+
[

0
−LΣ

1
2
r

]
a(k) +

[
w(k)
w(k)

]
. (3.15)

Here, we see that if ρ(A) > 1 the error dynamics diverge even if a(k) = 0 for all k.
This means if the plant itself has unstable dynamics the worst-case attack will make
the closed-loop system unstable.
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3.5 Summary

In this chapter, we presented our model for the sensor attack. We started by
introducing the models of the linear plant and controller and then presented a
general detector model. Three detectors, namely the χ2, CUSUM, and MEWMA
detectors, that fit into the detector model were presented. Then we introduced
an attacker model, which has full model knowledge and access to all sensors, and
a worst-case attack strategy. For its execution, this attack strategy needs access
to the controller state. We argued that it is not possible for the attacker to have
access to the controller state, when the attack starts. Therefore, the next step is
to investigate if an attacker according to our model is able to access the controller
state by eavesdropping on the measurements.



Chapter 4

On the Confidentiality of the Controller
State

4.1 Problem Formulation

In Chapter 3, we introduced the worst-case attack strategy (3.11) and discussed
that the attacker is not able to launch this attack strategy until it has obtained
a perfect estimate of x̂(k). Since x̂(k) is included in the controller’s state xc(k)
(Assumption 3.1), this chapter investigates if an attacker according to Assumption 3.9
is able to estimate xc(k) by eavesdropping on the measurements y(k). It might
seem obvious that an attacker that knows the model and the measurements can
estimate xc(k). This is, however, not always true and we present necessary and
sufficient conditions for when the attacker is able to perfectly estimate the controller’s
state. Furthermore, we present a defense mechanism and verify the results with a
simulation of a three tank system.

We consider the confidentiality attack in this chapter as a first step for the
attacker to be able to execute (3.11). However, we can also interpret the attack
as an attack on the privacy of the controller state. In that case, the attacker is
not malicious but curious. In this chapter, the attacker does not use its disruptive
resources, i.e. ya(k) = 0. If an alarm is triggered, it is thus triggered by the noise
and not by an attack signal. However, since the attacker is in the network, this
alarm is not a false alarm. Therefore, the alarms could lead to a detection of the
attacker. For now, though, we do not consider the detection of the attacker by these
alarms and only look at the feasibility of estimating xc(k) perfectly.

Let us first restate the closed-loop dynamics to set the stage to formulate the
problem investigated in this chapter.

Recall that the closed-loop system with ya(k) = 0 is given by

z(k + 1) = A′zz(k) + η′(k)
y(k) = Czz(k) + v(k),

(4.1)

where z(k) = [x(k)T xc(k)T ], η′(k) ∼ N (0, Q′) is the zero mean process noise of the

31
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closed-loop system with covariance matrix Q′ ∈ R(nx+nc)×(nx+nc), and v(k) is the
measurement noise.

Note that the closed-loop process noise variable η′(k) is correlated with the
measurement noise v(k),

E
{[

η′(k)
v(k)

] [
η′(k)T v(k)T

]}
=

 Σw +BDcΣvDT
c B

T BDcΣvBTc BDcΣv
BcΣvDT

c B
T BcΣvBTc BcΣv

ΣvBTDT
c ΣTv BTc Σv


=
[
Q′ S

ST R

]
,

where S ∈ R(nx+nc)×ny , and R ∈ Rny×ny .
Since the η′(k) and v(k) are correlated, we will apply a transformation proposed

in [80] to obtain a system representation with uncorrelated noises,

z(k + 1) = A′zz(k) + η′(k)− SR−1(y(k)− y(k))
= Azz(k) + η(k) + SR−1y(k),

where Az = A′z − SR−1Cz,

η(k) = η′(k)− SR−1v(k) =
[
w(k)

0

]
,

E
{[

η(k)
v(k)

] [
η(k)T v(k)T

]}
=
[
Q 0
0 R

]
,

and

Q = Q′ − SR−1ST =
[

Σw 0
0 0

]
.

The zero elements in Q show us that there is no process noise acting on the controller
state in the transformed system.

Therefore, the closed-loop dynamics we consider in this chapter are

z(k + 1) = Azz(k) + η(k) + SR−1y(k),
y(k) = Czz(k) + v(k).

(4.2)

Note that even though ρ(A′z) < 1, it is not always the case that ρ(Az) < 1.
Before we present the problem formulation of this chapter, we make the following

assumption on the attacker.
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Assumption 4.1. The attacker uses measurements up to time step k to estimate
the controller’s internal state at time step k + 1.

It is possible to use measurements up to time step k∗ ≥ k + 1 to estimate the
controller’s state at time step k + 1. However, if the attacker wants to launch the
worst-case attack (3.11) at time step k + 1, this estimate needs to be available
already.

In this chapter, the goal of the attacker is to obtain an estimate x̂c(k), such that
this estimate perfectly tracks the controller state xc(k) as k grows large. The goal
can be formulated as the following problem.

Problem 4.1. Estimate xc(k) such that the estimation error is unbiased, i.e.
E{xc(k)− x̂c(k)} = 0, and its covariance matrix Σc(k) approaches zero, i.e.

lim
k→∞

Σc(k) = 0

for a given Σc(0) ≥ 0.

An estimation error covariance matrix Σc(k) that approaches zero as k grows
large means the estimate converges to the true value in mean square (and thus also
in probability).

In Section 4.2 we characterize for which systems the controller’s confidentially
can be broken (Problem 4.1), and in Section 4.3 we propose a defense mechanism
and discus unstable controllers as a defense mechanism.

4.2 Estimating the Controller’s State xc(k)

In this section, we investigate when a solution to Problem 4.1 exists. It may seem
obvious that an attacker according to Assumption 3.9 is without any doubt able to
estimate the controller’s state xc(k) perfectly. However, we show in the following
that this is not always the case. First, we present the optimal attack strategy
to estimate xc(k) and then state conditions for the convergence of Σc(k) to zero.
Following this, we look into non-optimal strategies to solve Problem 4.1.

4.2.1 Optimal Attack Strategy
To obtain the optimal attack strategy, we start by investigating the conditional
probability of the closed-loop system state z(k + 1) given all measurements up to
time step k. Due to the presence of the process noise, η(k), and measurement noise,
v(k), we know that z(k+ 1) is a random variable. Since (4.2) is a linear system with
Gaussian noise, we know that z(k + 1) given the measurements up to time step k is
also a Gaussian random variable [81]. Let {y(i)}li=0 be the sequence {y(0), · · · , y(l)},
then the conditional probability distribution of z(k + 1) given {y(i)}ki=0 is

z(k + 1|{y(i)}ki=0) ∼ N
(
ẑ(k + 1),Σz(k + 1)

)
,
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where

ẑ(k + 1) = Az ẑ(k) + SR−1y(k) + Lz(k)
(
y(k)− Cz ẑ(k)

)
(4.3)

is the conditional mean of z(k+ 1) with Lz(k) =
(
AzΣz(k)CTz

)(
CzΣz(k)CTz +R

)−1,
ẑ(0) = E{z(0)} = 0, and

Σz(k + 1) = AzΣz(k)ATz +Q

−
(
AzΣz(k)CTz

)(
CzΣz(k)CTz +R

)−1(
AzΣz(k)CTz

)T (4.4)

is the conditional covariance matrix. Its initial condition is Σz(0) = Σ0, which is
given in Assumption 3.4.

The optimal estimator for z(k) given {y(i)}ki=0 is the Kalman filter [81]. It is
optimal in the sense that it minimizes the mean square error. Therefore, the optimal
attack strategy to estimate xc(k) is a time-varying Kalman filter, which uses ẑ(k)
in (4.3) as the estimate of z(k). The goal of the attacker is to have an estimate ẑ(k)
of the closed-loop system’s state such that

[
0 Inx

]
ẑ(k)→ xc(k) as k →∞.

Instead of directly analyzing ẑ(k), we introduce the estimation error ez(k) =
z(k)− ẑ(k) that has the dynamics

ez(k + 1) =
(
Az − Lz(k)Cz

)
ez(k) + η(k) + Lz(k)v(k).

and covariance matrix

E{ez(k + 1)ez(k + 1)T |{y(i)}ki=0
}

= Σz(k + 1).

A Kalman filter is an unbiased estimator, which means that E{z(k)} = ẑ(k), or,
differently formulated, E{ez(k)} = 0. Hence, Problem 4.1 is solved if, for Σz(0) = Σ0,
the attacker’s Kalman filter fulfills

lim
k→∞

Σz(k) =
[
P 0
0 0

]
, (4.5)

where P ≥ 0. Note that Σ0 can be calculated by the attacker because of its model
knowledge by Assumption 3.9.

4.2.2 Asymptotic Convergence to Σc(k) = 0
Let us now investigate when the optimal attack strategy solves Problem 4.1. Here,
we present necessary and sufficient conditions for the covariance matrix Σc(k) to
converge to zero. Recall this is equivalent to saying that (4.5) is fulfilled.

Before we present our convergence results, note that a steady state solution to
(4.4) satisfies the algebraic Riccati equation (ARE)

Σ∞ = AzΣ∞ATz +Q−
(
AzΣ∞CTz

)(
CzΣ∞CTz +R

)−1(
AzΣ∞CTz

)T
, (4.6)

where L∞ =
(
AzΣ∞CTz

)(
CzΣ∞CTz +R

)−1 is the steady state Kalman gain.
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Definition 4.1 (Definition 3.1 [80]). A real symmetric nonnegative definite solution
Σ∞ to (4.6) is called a strong solution if ρ(Az − L∞Cz) ≤ 1. The strong solution is
called a stabilizing solution if ρ(Az − L∞Cz) < 1.

The following lemma from [82] will be useful in the following discussion.

Lemma 4.1 (Theorem 3.2 [82]). Let GTG = Q,

1. the strong solution of the ARE exists and is unique if and only if (Cz, Az) is
detectable;

2. the strong solution is the only nonnegative definite solution of the ARE if and
only (Cz, Az) is detectable and (Az, G) has no uncontrollable modes outside
the unit circle;

3. the strong solution coincides with the stabilizing solution if and only if (Cz, Az)
is detectable and (Az, G) has no uncontrollable modes on the unit circle;

4. the stabilizing solution is positive definite if and only if (Cz, Az) is detectable
and (Az, G) has no uncontrollable modes inside, or on the unit circle.

Let us begin by showing that a solution to (4.6) of the form in (4.5) exists.

Proposition 4.1. A solution of the algebraic Riccati equation (4.6) is given by

Σ∞ =
[
P 0
0 0

]
,

where P ≥ 0 is the unique strong solution of the ARE

P = APAT + Σw −APCT (CPCT + Σv)−1CPAT .

Proof. Let us first determine

Az = A′z − SR−1Cz =
[
A Cc

0 Ac

]
.

After algebraic computations we obtain

AzΣ∞ATz +Q =
[
APAT + Σw 0

0 0

]
, AzΣ∞CTz =

[
APCT

0

]
,

and CzΣ∞CTz +R = CPCT + Σv such that

(
AzΣ∞CTz

)(
CzΣ∞CTz +R

)−1(
AzΣ∞CTz

)T =
[
APCT (CPCT + Σv)−1CPAT 0

0 0

]
.
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This leads to

Σ∞ =
[
APAT + Σw −APCT (CPCT + Σv)−1CPAT 0

0 0

]
.

For Σ∞ to be a solution of (4.6) we require

P = APAT + Σw −APCT (CPCT + Σv)−1CPAT . (4.7)

Note that (4.7) by itself is an algebraic Riccati equation. It is actually the algebraic
Riccati equation an operator would obtain when it is designing a time-invariant
Kalman filter for the plant’s state. Due to the detectability of (C,A) (Assump-
tion 3.2), there exists a unique strong solution P ≥ 0 for (4.7) (Lemma 4.1). Hence,
Σ∞ is a solution of (4.6).

Now that we proved that Σ∞ is indeed a solution to the algebraic Riccati
equation, we need to show under which conditions Σz(k) converges to Σ∞ for the
initial condition Σ0.

Lemma 4.2. The unique strong solution of the ARE (4.6) is Σ∞ if and only if
ρ(Ac) ≤ 1.

Proof. Due to the first statement in Lemma 4.1, the strong solution is unique and
exists if and only if (Cz, Az) is detectable. From the stability of A′z = Az +SR−1Cz
(see Assumption 3.3), it follows that (Cz, Az) is detectable. Hence, the strong
solution will be unique. Further, if ρ(Az − L∞Cz) ≤ 1 for

L∞ =
(
AzΣ∞CTz

)(
CzΣ∞CTz +R

)−1 =
[
APCT (CPCT + Σv)−1

0

]
=
[
L̄

0

]
,

then Σ∞ is a strong solution. Let us now look at the eigenvalues of Az − L∞Cz,
which are determined by the eigenvalues of A− L̄C and Ac, because

Az − L∞Cz =
[
A− L̄C Cc

0 Ac

]
.

Due to the detectability of (C,A) (Assumption 3.2), the first statement of Lemma 4.1
shows us that P is a strong solution of (4.7), such that ρ(A− L̄C) ≤ 1. Therefore,
ρ(Az−L∞Cz) ≤ 1, i.e. Σ∞ is the unique strong solution, if and only if ρ(Ac) ≤ 1.

Theorem 4.1. The covariance matrix Σz(k) converges to the attacker’s desired
covariance matrix Σ∞ for the initial condition Σ0, if and only if ρ(Ac) ≤ 1.

Proof. By Lemma 4.2, Σ∞ is the unique strong solution of (4.6) if and only if
ρ(Ac) ≤ 1. Theorem 4.2 in [82] states that subject to Σ0 − Σ∞ ≥ 0 the covariance
matrix Σz(k) will converge to the strong solution Σ∞ if and only if (Cz, Az) is
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detectable. That (Cz, Az) is detectable is shown in the proof of Lemma 4.2. Let us
now show that Σ0 − Σ∞ ≥ 0. If we use the system representation with correlated
noise processes (4.1), the ARE for Σ∞, according to [81], is

Σ∞ = A′zΣ∞(A′z)T +Q′− (A′zΣ∞CTz +S)(CzΣ∞CTz +R)−1(A′zΣ∞CTz +S)T .
(4.8)

Subtracting (4.8) from the Lyapunov equation for Σ0 in Assumption 3.4 leads to

Σ0−Σ∞ = A′z
(
Σ0−Σ∞

)
(A′z)T+(A′zΣ∞CTz +S)(CzΣ∞CTz +R)−1(A′zΣ∞CTz +S)T .

This is also a Lyapunov equation with a unique solution since ρ(A′z) < 1 (Assump-
tion 3.3). Further, we observe that

(A′zΣ∞CTz + S)(CzΣ∞CTz +R)−1(A′zΣ∞CTz + S)T ≥ 0,

because Σ∞ ≥ 0. Therefore, we know that Σ0 − Σ∞ ≥ 0. Hence, with initial
condition Σ0

lim
k→∞

Σz(k) = Σ∞

if and only if ρ(Ac) ≤ 1.

Corollary 4.1. Problem 4.1 is solvable if and only if ρ(Ac) ≤ 1.

Note that since the attacker uses a Kalman filter, it does not only obtain a
perfect estimate of xc(k) but also an optimal estimate of x(k).

Theorem 4.1 shows that the covariance matrix converges to the attacker’s desired
strong solution, but not how fast the convergence is. Therefore, we will now
investigate the conditions for an exponential convergence rate.

Proposition 4.2. Subject to Σ0 > 0, the covariance matrix Σz(k) converges
exponentially fast to Σ∞ if and only if ρ(Ac) < 1.

Proof. Theorem 4.1 in [82] shows us that subject to Σ0 > 0 the covariance matrix
Σz(k) converges exponentially fast to the stabilizing solution if and only if (Cz, Az)
is detectable and (Az, G) has no uncontrollable modes on the unit circle. We already
showed that (Cz, Az) is detectable, therefore we look at the controllable modes of
(Az, G) now. Recall that GGT = Q such that

G =
[

Σ
1
2
w 0

0 0

]
.

For (Az, G) to have no uncontrollable modes on the unit circle we need Ac to have
no eigenvalues on the unit circle, because we cannot control the eigenvalues of Ac
with G, and due to Assumption 3.2 (A,Σ

1
2
w) has no uncontrollable modes on the unit

circle. We showed in Lemma 4.2 that Σ∞ is a strong solution to the ARE if and
only if ρ(Ac) ≤ 1. Hence, subject to Σ0 > 0 the covariance matrix Σz(k) converges
exponentially fast to Σ∞ if and only if ρ(Ac) < 1.
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This shows us that if Σ0 > 0 and the operator uses a stable controller, i.e.
ρ(Ac) < 1, the covariance matrix of the attacker’s time-varying Kalman filter will
converge exponentially fast to Σ∞. Hence, the attacker is able to obtain a perfect
estimate of xc(k) exponentially fast.

4.2.3 Breaking Confidentiality of xc(k) Using Non-optimal
Observers

Previously, we have shown under which conditions the attacker is able to get a
perfect estimate of the controller state xc(k) when a time-varying Kalman filter is
used. The time-varying Kalman filter is the optimal filter for linear systems with
Gaussian noise. One may wonder whether or not the attacker is able to perfectly
estimate xc(k), when the attacker uses a non-optimal observer. Here, we investigate
a time-invariant observer of the form

ẑ(k + 1) = Az ẑ(k) + SR−1y(k) + Lz
(
y(k)− Cz ẑ(k)

)
, (4.9)

with ẑ(0) = 0, where Lz is the attacker’s constant observer gain. As before, instead
of looking at ẑ(k), we analyze the error dynamics given by

ez(k + 1) =
(
Az − LzCz

)
ez(k) + η(k) + Lzv(k).

with E{ez(k)} = 0 for all k ≥ 0, covariance matrix E{ez(k)ez(k)T |{y(i)}k−1
i=0
}

=
Σz(k) and Σz(0) ≥ 0.

The following theorem classifies all gains Lz of a non-optimal observer such that
Problem 4.1 is solved.

Theorem 4.2. For any Σz(0) ≥ 0,

lim
k→∞

Σz(k) = Σ̃∞ =
[
P̃ 0
0 0

]
,

if and only if ρ(Ac) < 1, Lz = [LT1 0T ]T and L1 ∈ Rnx×ny is chosen such that
ρ(A− L1C) < 1. Here, P̃ is the unique solution to

P̃ = (A− L1C)P̃ (A− L1C)T + Σw + L1ΣvLT1 ,

and P̃ − P ≥ 0, where P is the unique solution to (4.7).

Proof. With Lz = [LT1 LT2 ]T the error dynamics are

ez(k + 1) =
[
A− L1C Cc

−L2C Ac

]
ez(k) +

[
w(k)− L1v(k)

L2v(k)

]
.
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The error covariance matrix evolves as

Σz(k + 1) = (Az − LzCz)Σz(k)(Az − LzCz)T +
[

Σw + L1ΣvLT1 L1ΣvLT2
L2ΣvLT1 L2ΣvLT2

]
.

(4.10)

Now we show that Σ̃∞ is the steady state solution of (4.10) if and only if L2 = 0.
First, we observe that if L2 = 0 then Σ̃∞ is a steady state solution of (4.10), where
P̃ is the solution to the Lyapunov equation

P̃ = (A− L1C)P̃ (A− L1C)T + Σw + L1ΣvLT1 .

Note that P̃ ≥ 0 exists and is unique if ρ(A− L1C) < 1. Second, if Σ̃∞ is a steady
state solution of (4.10) the equations

P̃ = (A− L1C)P̃ (A− L1C)T + Σw + L1ΣvLT1 ,
0 = L2(ΣvLT1 − CP̃ (A− L1C)T ), and
0 = L2(CP̃CT + Σv)LT2

are fulfilled. The last equation is only fulfilled if L2 = 0, since Σv is positive definite.
This simultaneously fulfills the second equation. The first equation recovers the
Lyapunov equation for P̃ . Therefore, if Σ̃∞ is a steady state solution of (4.10) then
L2 = 0. Hence, (4.10) has Σ̃∞ as a steady state solution if and only if L2 = 0.

Let us now look at the convergence of (4.10) to Σ̃∞. For any Σz(0) ≥ 0, the error
covariance matrix converges to Σ̃∞ if and only if ρ(Az − LzCz) < 1. With L2 = 0,
the stability of Az −LzCz is guaranteed when both ρ(Ac) < 1 and ρ(A−L1C) < 1.
Due to the detectability of (C,A) in Assumption 3.2 such a stabilizing L1 exists.
Therefore, (4.10) converges to Σ̃∞ for any Σz(0) ≥ 0, if and only if L2 = 0,
ρ(A − L1C) < 1, and ρ(Ac) < 1. Further, ρ(Az − LzCz) < 1 also makes Σ̃∞ the
unique steady state solution of (4.10). Since the Kalman filter is the best linear
estimator, we know that P̃ −P ≥ 0 and P̃ = P if L1 = APCT (CPCT + Σv)−1 [81].
This choice of L1 turns the Lyapunov equation of P̃ into (4.7).

Theorem 4.2 shows us that the attacker is able to use the non-optimal observer
(4.9) solve to Problem 4.1, if and only if the controller is stable.

Corollary 4.2. Problem 4.1 is solvable with a non-optimal observer of the form
(4.9) if and only if ρ(Ac) < 1.

According to Theorem 4.2, the attacker does not need to know the noise statistics
Σw and Σv for the design of L1 to estimate xc(k) perfectly, as long as L1 is stabilizing.
Hence, the attacker’s required knowledge to solve Problem 4.1 is reduced when the
operator uses a stable controller. Further, the attacker has a smaller computational
burden when a time-invariant observer is used.
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4.3 Defense Mechanisms

We presented under which conditions Problem 4.1 is solvable both with optimal and
non-optimal strategies. Therefore, we investigate now how to prevent the attacker
from estimating xc(k), i.e. make Problem 1 unsolvable. We present a defense
mechanism and discuss why an unstable controller is only in certain cases a good
defense mechanism.

4.3.1 Injecting Noise on the Controller Side
As previously shown, an attacker under Assumption 3.9 will be able to predict the
controller state perfectly for ρ(Ac) ≤ 1. We observe that the controller dynamics
in (3.2) contain no uncertainty for the attacker when y(k) is known. Therefore, an
approach for defense is to introduce uncertainty in the form of an additional noise
term on the controller side.

The additional noise term ν(k) has a zero mean Gaussian distribution with a
positive semi-definite covariance matrix Σν ∈ Rnc×nc . Further, ν(k) is independent
and identically distributed over time and also independent of w(k), v(k), and z(0).
The controller state with the additional noise term follows the dynamics

xc(k + 1) = Acxc(k) +Bcy(k) + ν(k).

Here, ν(k) can be interpreted as process noise of the controller.
This changes the process noise of the closed-loop system (4.2) from η(k) to

η̃(k) = [w(k)T ν(k)T ]T such that

E
{[

η̃(k)
v(k)

] [
η̃(k)T v(k)T

]}
=

 Σw 0 0
0 Σν 0
0 0 Σv

 =
[
Q̃ 0
0 R

]
.

The following proposition shows that with ν(k), the attacker’s desired covariance
matrix Σ∞ is not a steady state solution of (4.6) any more.

Proposition 4.3. The algebraic Riccati equation (4.6) with Q = Q̃ does not have
Σ∞ as a steady state solution.

Proof. With Σz(k) = Σ∞ and Q = Q̃ we obtain

AzΣ∞ATz + Q̃ =
[
APAT + Σw 0

0 Σν

]
,

and using this in the Riccati equation (4.6) leads to

Σ∞ =
[
APAT + Σw −APCT (CPCT + Σv)−1CPAT 0

0 Σν

]
.
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For Σ∞ to be a solution of (4.6) we need both

P = APAT + Σw −APCT (CPCT + Σv)−1CPAT ,

which, as shown previously, exists, and Σν = 0.
Since we assume Σν 6= 0, Σ∞ is not a solution of (4.6) any more.

Here, we see that the attacker will not be able to perfectly estimate the controller’s
state if we use this additional noise on the controller side even if the attacker knows
the noise properties.

Remark 4.1. The approach of adding some additional noise to the system is quite
similar to the watermarking approach used, for example, in [34]. The difference is
that here the noise is added to the controller input, while in watermarking the noise
is typically added to the output of the controller. Therefore, these results show that
if we position the watermarking noise at a different position we get the additional
benefit of the attacker not being able to estimate the state of the controller perfectly.

4.3.2 An Unstable Controller as Defense

As shown before, Problem 4.1 is not solvable if and only if ρ(Ac) > 1. Hence,
designing the controller (Ac, Bc, Cc, Dc) such that ρ(A′z) < 1 and ρ(Ac) > 1 leads
to a successful defense against the discussed disclosure attack.

This implies that there are plants which have an inherent protection against the
sensor attack. For example, all plants that are not strongly stabilizable, i.e. plants
that cannot be stabilized with a stable controller [83], have an inherent protection
against the estimation of the controller’s state by the attacker. Further, there are
also control strategies that give an inherent protection to the closed-loop system.
Disturbance accommodation control [84], where the controller tries to estimate a
persistent disturbance, is one example of these control strategies.

If a plant can be stabilized by using a stable controller, i.e. a strongly stabilizing
plant, using an unstable controller instead comes with several issues. A fundamental
limitation is that the integral of the sensitivity function is either zero for a stable
open-loop system or equal to a constant value that depends on the unstable poles of
the open-loop system and their directions for a multivariable discrete-time system
[85]. As [86] shows with real world examples it can have dire consequences if this
fundamental limitation is not taking into account properly. Hence, due to these
fundamental limitation the introduction of unstable poles in the controller is not
desirable. Another issue of unstable controllers is that an unstable controller leads
to an unstable open-loop system, if the feedback loop is interrupted.

Therefore, using an unstable controller for a strongly stabilizing plant is not
recommended, but is an appropriate defense mechanism if an unstable controller is
needed to stabilize the plant.
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Pump 1 Pump 2

Tank 3Tank 2Tank 1

Figure 4.1: The three tank system

4.4 Simulations

In this section, we verify our results with simulations for a three tank system. After
stating the model of the three tank system, we first show the effect of stable and
unstable controllers on the attacker’s estimate of the controller’s state. Later, we
verify that the additional noise prevents the attacker from estimating the controller’s
state perfectly.

4.4.1 The Three Tank System

For the simulation of the closed-loop system estimation by the attacker we look at
the following continuous-time three tank system (see Figure 4.1)

ẋ(t) =

−2 2 0
2 −4 2
0 2 −3

x(t) +

0.5 0
0 0
0 0.5

u(t) + w(t),

y(t) =
[

0 1 0
0 0 1

]
x(t) + v(t).

By discretizing the continuous-time system with a sampling period of Ts = 0.5 s we
obtain A, B, and C. We assume that w(k) ∼ N (0, I3) and v(k) ∼ N (0, 0.1I2).

4.4.2 Stable and Unstable Controllers

Now that the system matrices are defined we are going to verify that the controller’s
stability influences the estimates of the controller’s state by the attacker. We
consider an observer-based feedback controller

xc(k + 1) = (A−BKi − LC)xc(k) + Ly(k)
u(k) = −Kixc(k)
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where L is the observer gain and Ki is the controller gain. The closed-loop system
matrix is then

A′z,i =
[
A −BKi

LC A−BKi − LC

]
.

According to Assumption 3.3, ρ(A′z,i) < 1, which means that Ki and L are designed
such that ρ(A−BKi) < 1 and ρ(A− LC) < 1. The matrix L is designed via pole
placement to place the eigenvalues of A− LC at 0.1, 0.2, and 0.3. Therefore, the
error dynamics of the observer used in the controller are stable. In the following,
we design three different Ki such that ρ(A−BKi) < 1.

The first controller KS places the poles of A−BKS at 0.4, 0.5, and 0.6. This
first controller results in stable controller dynamics A − BKS − LC with ρ(A −
BKS − LC) = 0.4167.

The second controller, KU , is unstable, i.e. ρ(A − BKU − LC) > 1, but has
no modes on the unit circle. We determine KU , such that ρ(A − BKU ) < 1 and
A−BKU − LC has an eigenvalue at 1.5. The controller we obtain is

KU =
[

0.5530 1.9589 1.2225
1.8414 27.0785 −12.9349

]
and it places the eigenvalues of A−BKU − LC at 1.5, −0.5175, and −0.1066 and
the eigenvalues of A−BKU at 0.6275, 0.4272 + j0.6456, and 0.4272− j0.6456.

For the design of the third controller, KI , we place two controller eigenvalues
inside the unit circle and one at 1, such that ρ(A−BKI−LC) = 1, while guaranteeing
that ρ(A−BKI) < 1. We obtain

KI =
[

3.0988 −6.0472 2.3966
4.0471 10.8175 −4.4516

]
,

which places the eigenvalues of A−BKI − LC at 1, −0.2227, and −0.3693 and the
eigenvalues of A−BKI at −0.2669, 0.6405 + j0.5942, and 0.6405− j0.5942.

For the first two controllers, the attacker designs a time-invariant Kalman filter
with gain Liz and steady state error covariance matrix Σi∞ = limk→∞ Σi(k), where
i ∈ {S,U}. The attacker’s time-invariant Kalman filter design leads to an observer
gain LSz for the closed-loop system, which matches our results in Theorem 4.2. Since
KU leads to an unstable controller, we know according to Corollary 4.2 that no
time-invariant observer exists that solves Problem 4.1. Further, Corollary 4.1 shows
that even if the attacker would use a time-varying Kalman filter, Problem 4.1 is not
solvable.

For the closed-loop system with KI , the attacker needs to use a time-varying
Kalman filter to obtain a perfect estimate of xc(k). The error covariance matrix in
this case will converge to the same as in the case with KS .

Now that we designed the Kalman filters for each of the three closed-loop systems,
let us look at the estimation error ez(k) = z(k) − ẑ(k) ∈ R6. Here, we are only
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Figure 4.2: Comparison of the estimation error trajectories for the stable and unstable
controller, KS and KU respectively
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Figure 4.3: Estimation error of the controller’s state when the controller has a pole
on the unit circle and the attacker uses a time-varying Kalman filter

interest in the last three elements of ez(k), because they represent the estimation
error of the controller state. The jth element of ez(k) is denoted by ez,j(k), where
j ∈ {1, · · · , 6}. Figure 4.2 shows that in case of a stable controller KS the estimation
error converges quickly to zero and the attacker obtains a perfect estimate of the
controller’s state. However, if we use an unstable controller KU the estimation
error remains noisy and the attacker is not able to obtain a perfect estimate of the
controller’s state. Furthermore, when KI is used, we observe that the estimation
error converges to zero, but is still not zero after a million time steps (see Figure 4.3).
Theorem 4.1 only tells us that the error will converge, but we know it does not
converge exponentially by Proposition 4.2. Although the attacker can obtain an
almost perfect estimate with the time-varying Kalman filter after a million time
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Figure 4.4: The effect of the additional noise on the estimation error of the controller’s
state when a stable controller is used

steps, it is still not a perfect estimate. This shows us that a controller with modes
on the unit circle can prevent the attacker from quickly obtaining a perfect estimate.

4.4.3 Injecting Process Noise for the Controller
Now that we showed how the controller design affects the attacker’s estimate of
the controller’s state, we verify that injecting noise to the input of the controller
prevents the attacker from estimating xc(k) perfectly. The additional noise ν(k)
has a covariance of Σν = 0.01I3. Since the attacker has full model knowledge, we
assume that the attacker knows Σν and designs its observer appropriately.

Figure 4.4 shows the trajectory of the estimation error of the controller’s state
in this case, when the operator uses the stable controller KS and the attacker uses
again a time-invariant Kalman filter. Compared to Figure 4.2, the estimation error
exhibits noisy behavior and the attacker is not able to obtain a perfect estimate
even though we use the stable controller KS . Hence, the additional noise prevents
the attacker from estimating the controller’s state perfectly.

4.5 Summary

In this chapter, we investigated under which conditions an attacker according to
Assumption 3.9 is able to estimate the controller’s state perfectly. Although it may
seem obvious that an attacker according to our attack model can always estimate
the controller’s state, we gave necessary and sufficient conditions when an attacker
is not able to obtain a perfect estimate. These conditions state that unstable
controller dynamics prevent the attacker from obtaining a perfect estimate. Further,
the attacker can use a non-optimal time-invariant observer to perfectly estimate
the controller state if and only if the controller has stable dynamics. Hence, if a
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controller has eigenvalues inside or on the unit circle, the attacker is able to launch
the attack in (3.11) after estimating the controller’s state.

A defense mechanisms has been proposed to make the controller states confiden-
tial. This mechanism prevents the attacker from obtaining a perfect estimate by
adding uncertainty to the controller dynamics. Furthermore, we discussed the use
of an unstable controller, which gives an inherent protection to plants that are not
strongly stabilizable. However, designing such a controller introduces fundamental
limitations on the sensitivity function of the closed-loop system and should only be
used when an unstable controller is needed to stabilize the plant. In the following
chapter, we assume that the attack is executable and investigate the confidentiality
of the anomaly detector state. With knowledge of the anomaly detector’s state the
attacker is able to design more powerful attacks.



Chapter 5

On the Confidentiality of the Detector State

5.1 Problem Formulation

In Chapter 4, we showed under which conditions the attacker is able to perfectly
estimate xc(k) and also discussed possible defense mechanisms. In this chapter,
we assume that the attacker has successfully obtained a perfect estimate of xc(k).
Recall that with access to xc(k) the attacker has access to x̂(k). Hence, the attacker
can execute the worst-case attack (3.11) and the detector dynamics become

xD(k + 1) = θ
(
xD(k), a(k)

)
,

yD(k + 1) = d
(
xD(k), a(k)

)
.

But without knowledge of xD(k), the attacker needs to design a(k) conservatively
to remain undetected, i.e. guarantee that yD(k + 1) ≤ JD for all k (see Chapter 6).
If the attacker wants to maximizes its attack potential, it needs to know xD(k).

Therefore, with full control over the detector’s input, the attacker can try to
generate an attack, which simultaneously remains undetected and helps with the
estimation of xD(k). For simplicity we assume that the estimation of xD(k) starts
at k = 0, such that r(k) = a(k) for all k ≥ 0 and xD(0) is unknown to the
attacker. Moreover, in this chapter, we only investigate anomaly detectors with
linear dynamics, i.e.

xD(k + 1) = ADxD(k) +BDr(k),
yD(k + 1) = fD

(
ADxD(k) +BDr(k)

)
= d
(
xD(k), r(k)

)
.

(5.1)

Here, AD ∈ RnD×nD , BD ∈ RnD×ny has full rank, and nD ≤ ny.
Further,

(i) fD(·) is a vector norm on RnD ;

(ii) AD needs to be Schur stable, i.e. ρ(AD) < 1;

(iii) gD(AD) < 1, where gD(·) the matrix norm on RnD×nD induced by fD(·).

47
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Hence, the first four detector conditions in Assumption 3.7 are fulfilled. Since the
dynamics are linear we can, without loss of generality, rewrite the detector state as
the superposition of two subsystems, i.e. xD(k) = xD,r(k) + xD,a(k), where

xD,a(k + 1) = ADxD,a(k) +BDa(k),
xD,r(k + 1) = ADxD,r(k),

with xD,r(0) = xD(0) and xD,a(0) = 0. Here, xD,a(k) is governed by the attack
signal, while xD,r(k) is an autonomous system, which is governed by the initial
state of the detector. Since AD is Schur stable, xD,r(k) converges to zero as k →∞.
This means that xD,a(k) can be seen as the estimate of xD(k) at time step k and
xD,a(k) converges to xD(k) as k →∞.

To have a good estimate, i.e. reduce the uncertainty, at time step N , the attacker
wants

||xD(N)− xD,a(N)||2 = ||xD,r(N)||2 =
∣∣∣∣ANDxD(0)

∣∣∣∣
2 ≤ γ,

where γ > 0 is close to zero. Since xD(0) is unknown, we obtain an upper bound on
xD(0)

yup = max
x
||x||2 subject to x ∈ {y ∈ Rny : fD(y) ≤ JD}.

Based on yup, we choose N such that∣∣∣∣AND ∣∣∣∣2 = σmax
(
AND
)
≤ γ

yup
, (5.2)

holds.

Remark 5.1. The slower σmax(AkD) approaches zero as k grows large, the more
time it takes for the attacker to obtain an accurate estimate of the xD(k). Hence, a
defender can consider this fact, when designing the detector.

The attacker not only wants to reduce its uncertainty about xD(k), but also
wants to remain undetected by the detector. If the detector triggers an alarm the
operator will investigate it and might discover the attacker. This could lead to
countermeasures against the attack. Therefore, we look now at the condition for
the attacker to remain undetected. Since fD(·) is a vector norm, we can determine
the following condition to avoid detection.

yD(k) = fD
(
xD,r(k) + xD,a(k)

)
≤ fD

(
xD,r(k)

)
+ fD

(
xD,a(k)

)
≤ gD

(
AkD
)
fD
(
xD,r(0)

)
+ fD

(
xD,a(k)

)
≤ gD

(
AkD
)
JD + fD

(
xD,a(k)

)
≤ JD,

⇒ yD,a(k) = fD
(
xD,a(k)

)
≤ J(k),
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where J(k) = JD − gD
(
AkD
)
JD > 0 for all k > 0. We see that if yD,a(k) ≤ J(k),

then the attack remains undetected. Note that J(k) approaches JD as k →∞. We
can interpret xD,a(k) and yD,a(k) as a virtual detector with threshold J(k) that the
attacker initializes at xD,a(0) = 0 and uses it to design its stealthy attack.

Let us summarize these results in a proposition and then discuss how the attacker
can design {a(k)}N−1

k=0 .

Proposition 5.1. An attacker can reconstruct the detector state with accuracy γ,
in N time steps, where N is such that σmax

(
AND
)
≤ γ

yup
is fulfilled. Furthermore, the

attacker can simultaneously inject a(k) satisfying yD,a(k + 1) = d
(
xD,a(k), a(k)

)
≤

J(k + 1) for all k ≥ 0 to remain undetected.

A simple way for the attacker to choose the detector input is a(k) = 0 for
k ∈ {0, · · · , N − 1}. Then xD,a(k) = 0 for all k ≥ 0, which implies that yD,a(k) =
0 ≤ J(k) for all k ≥ 0. However, this leads to suspicious behavior in yD(k + 1),
for example an exponential decay of yD(k + 1), which might raise an operator’s
suspicion when seeing this on the display in the control center. Another way is to
not change the measurements and just observe r(k) and feed it into xD,a(k). The
advantage is that yD(k + 1) behaves exactly as in the nominal case, but without
knowledge of xD(k) any r(k) might lead to an alarm, which is considered as a false
alarm under nominal conditions. A third option is to make the alarm look like a
false alarm, by inducing a spike in one element of r(k), such that xD(k) is reset
to zero. However, since the attacker is present in the system, this ”false alarm” in
the last two strategies might lead to the detection of the attacker if the operator
decides to investigate the alarms. Figure 5.1 shows the detector output for the first
two cases, when a MEWMA detector is used. Since the detector output for the
third case would have a similar trajectory as the one for the second case, it is not
displayed in Figure 5.1.

Therefore, to make sure to remain undetected and not raise the operator’s
suspicion an attacker needs to design a(k) appropriately. Since a(k) has a direct
influence on yD(k + 1), the attacker tries to design a(k) in such a way that under
attack yD(k + 1) approximately has probability density qk+1(yD), but no alarms
are caused. Since xD,a(k) converges to xD(k) as k →∞, we also get that yD,a(k)
converges to yD(k) as k → ∞. Therefore, we look at the virtual detector yD,a(k)
instead of yD(k), since the attacker has no direct access to yD(k). This means when
yD(k) has a probability density function qk(yD), which changes for a given xD(k−1)
then we assume that yD,a(k) has the same probability density function qk(yD) but
given xD,a(k− 1). The first problem is to find a probability density function pk(yD)
that approximates qk(yD).

Problem 5.1. Find pk+1(yD), such that supp
(
pk+1(yD)

)
= [0, J(k+1)] (no alarms)

and pk+1(yD) resembles qk+1(yD) as closely as possible to not raise the suspicion of
the operator.
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Figure 5.1: At time step 50 the attacker gains access to the detector input, i.e.
r(k) = a(k). The upper plot shows that choosing a(k) = 0 leads to a suspicious
exponential decay of the detector output. The lower plot shows that not changing the
detector input, i.e. a(k) = r(k) for k ≥ 50, might trigger an alarm. Both plots could
lead to the detection of the attack, either by raising the suspicion of the operator or
by triggering an alarm that is then investigated.

After pk+1(yD) is found, the attacker can try to design a(k), such that yD,a(k+1)
follows samples from pk+1(yD). Further, we want to investigate if the attacker can
not only design a(k) such that the distribution of yD(k + 1) is pk+1(yD) but also
such that it can have an impact on the plant. More specifically, the attacker wants to
maximize the maximum average estimation error of the critical states ||ecrit(k)||∞.
Here, ecrit(k) = E{Tcrite(k)} , where Tcrit ∈ Rncrit×nx is a matrix that extracts the
critical estimation errors of e(k) and ncrit ≤ nx. This could, for example, be the
estimation error of the pressure in a closed container, which might explode if the
pressure is too large.

Problem 5.2. Design a(k) such that yD,a(k + 1) = sk+1 and ||ecrit(k + 1)||∞ is
maximized, where sk+1 is a sample from the probability distribution with probability
density function pk+1(yD).

To estimate xD(k) and remain undetected the attacker needs to solve Problem 5.1
and Problem 5.2. In the following, we show how an attacker can solve these problems.
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5.2 Problem 5.1: How to Characterize pk(yD)

Kullback et al. [87] defined the average information gain of each observation to
distinguish between a hypothesis with density function p(yD) and a hypothesis with
density function q(yD) as DKL(p||q) =

∫
p(yD) ln

(
p(yD)
q(yD)

)
dyD, which is known as

the Kullback-Leibler divergence. Furthermore, DKL(p||q) is convex in the pair of its
arguments. Therefore, it comes quite natural to minimize the average information
gain DKL(pk||qk) to find pk(yD), such that pk(yD) becomes hard to distinguish
from qk(yD). The optimization problem is

min
pk(yD)

∫ J(k)

0
pk(yD) ln

(
pk(yD)
qk(yD)

)
dyD

s.t.


pk(yD) ≥ 0 ∀yD ∈ [0, J(k)]
pk(yD) = 0 ∀yD 6∈ [0, J(k)]∫ J(k)

0 pk(yD)dyD = 1
more convex constraints on pk(yD)

.

(5.3)

The first three constraints are necessary such that pk(yD) is a probability density
function. One can also impose more convex constraints on pk(yD), which preserve
the convexity of the problem. For example, we can impose a constraint on the mean∫ J(k)

0 yDpk(yD)dyD or the second raw moment
∫ J(k)

0 y2
Dpk(yD)dyD as well.

Here, we only look at the case where no additional constraints are imposed.
Then, we need to solve

min
pk(yD)

∫ J(k)

0
pk(yD) ln

(
pk(yD)
qk(yD)

)
dyD

s.t.


pk(yD) ≥ 0 ∀yD ∈ [0, J(k)]
pk(yD) = 0 ∀yD 6∈ [0, J(k)]∫ J(k)

0 pk(yD)dyD = 1
.

(5.4)

It turns out that the solution to (5.4) is the truncated version of qk(yD).

Proposition 5.2. The optimizer to (5.4) is

p∗k(yD) =


qk(yD)∫ J(k)

0
qk(yD)dyD

yD ∈ [0, J(k)]

0 otherwise
, (5.5)

i.e. the truncated version of qk(yD) is the optimal solution.
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Proof. Let λ ∈ R be a Lagrange multiplier and the Lagrangian be

L(p, λ) =
∫ J(k)

0
pk(yD) ln

(
pk(yD)
qk(yD)

)
dyD + λ

(∫ J(k)

0
pk(yD)dyD − 1

)
=
∫ J(k)

0
pk(yD) ln

(
pk(yD)
qk(yD)

)
+ λ

(
pk(yD)− 1

J(k)

)
dyD

=
∫ J(k)

0
l
(
pk(yD), λ

)
dyD.

A necessary condition for optimality (see [88]) is

d

dpk(yD) l
(
pk(yD), λ

)∣∣∣∣
pk(yD)=p∗

k
(yD)

= 0.

Solving for p∗k(yD) leads to

p∗k(yD) =
{
e−1−λqk(yD) ∀yD ∈ [0, J(k)]
0 ∀yD 6∈ [0, J(k)]

,

where we already incorporated the first two constraints of (5.4). Now we use the
last constraint to find

λ = −1 + ln
(∫ J(k)

0
qk(yD)dyD

)
,

which results in p∗k(yD).

5.3 Problem 5.2: How to Characterize a(k)

Once we determined pk+1(yD), we take a sample from this distribution. Let the
obtained sample be sk+1. Now we want to design a(k) such that

yD,a(k + 1) = fD
(
ADxD,a(k) +BDa(k)

)
= sk+1.

As mentioned before the attacker also wants to maximize the operator’s average
estimation error of the critical system states. From Chapter 3, we know that the
average value of the error dynamics under attack evolve as

ea(k + 1) = Aea(k)− LΣ
1
2
r a(k), (5.6)

with ea(0) = 0. Therefore the average estimation error of critical states is ecrit(k) =
Tcritea(k). The optimization problem to find a(k) becomes then

Ie := max
a(k)
||Tcritea(k + 1)||∞ = max

a(k)

∣∣∣∣TcritAea(k)− TcritLΣ
1
2
r a(k)

∣∣∣∣
∞

s.t. yD,a(k + 1) = fD
(
ADxD,a(k) +BDa(k)

)
= sk+1,

(5.7)
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where both ea(k), xD,a(k), and sk+1 are known to the attacker.
Before we introduce the solution to (5.7), we define the dual norm of a vector

norm [89].

Definition 5.1. The dual norm of a vector norm fD(x) in Rn is defined as

fD(z) := max
x

∣∣zTx∣∣ s.t. fD(x) = 1,

where z is a vector in Rn.

Now we introduce an intermediate result for solving (5.7).

Lemma 5.1. The optimal value I of

max
ā
|c̄T ā+ d̄| s.t. fD(ā) = s, (5.8)

where s ≥ 0, d̄ ∈ R, ā, c̄ ∈ RnD , is given by

I = max
(
|fD(c̄)s+ d̄|, | − fD(c̄)s+ d̄|

)
(5.9)

with the maximizer

ā∗ = arg max
ā

(−1)jcT ā s.t. fD(ā) ≤ s. (5.10)

Here, j = 2 if
∣∣fD(c̄)s+ d̄

∣∣ ≥ ∣∣− fD(c̄)s+ d̄
∣∣ and j = 1 otherwise.

Proof. We first split (5.8) into two optimization problems, one that maximizes
and one that minimizes c̄T ā + d̄ under the given constraint, respectively. The
larger absolute value of the optimal values of these two problems gives us the
solution to (5.8). Note that d̄ is a scalar and, therefore, the optimizer of these two
problems will maximize or minimize c̄T ā, respectively. Definition 5.1 gives us that
maxfD(ā)=s

∣∣c̄T ā∣∣ = fD(c̄)s, from which (5.9) readily follows. Since the optimizer
lies on the boundary of the constraint set, we replace the equality constraint of (5.8)
with an inequality constraint to obtain the convex optimization (5.10).

Before we present the main result of this section, let us introduce tTi as the ith
row of Tcrit, c̄Ti =−tTi LΣ

1
2
r B
†
D, and d̄i= tTi

(
Aea(k) + LΣ

1
2
r B
†
DADxD,a(k)

)
.

Theorem 5.1. The solution Ie of (5.7) is given by

Ie = max
i∈{1,··· ,ncrit}

max
(∣∣fD(c̄i)sk+1 + d̄i

∣∣, ∣∣− fD(c̄i)sk+1 + d̄i
∣∣),

and the corresponding attack vector can be found as

a(k) = B†D
(
ā∗ −ADxD,a(k)

)
(5.11)
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with ā∗ being the optimizer of the convex problem

ā∗ = arg max
ā

(−1)ji∗ c̄Ti∗ ā s.t. fD(ā) ≤ sk+1

where ā ∈ RnD , i∗ ∈ {1, · · · , ncrit} denotes an element of Tcritea(k+1) for which Ie
is achieved, and ji∗ = 2 if

∣∣fD(c̄i∗)sk+1 + d̄i∗
∣∣ ≥ ∣∣− fD(c̄i∗)sk+1 + d̄i∗

∣∣ and ji∗ = 1
otherwise.

Proof. Recall from Chapter 3, that we can write

||Tcritea(k + 1)||∞ = max
i∈{1,··· ,ncrit}

∣∣tTi ea(k + 1)
∣∣,

where tTi ea(k+ 1) represents the estimation error of the ith critical state. Therefore,
we can solve ncrit problems of the form

max
a(k)

∣∣∣tTi Aea(k)− tTi LΣ
1
2
r a(k)

∣∣∣
s.t. f

(
ADxD,a(k) +BDa(k)

)
= sk+1,

(5.12)

where i ∈ {1, · · · , ncrit} and pick a(k) which results in the maximal objective value
of all of these problems. Introducing ā = ADxD,a(k) + BDa(k), we reformulate
(5.12) as

max
ā

∣∣c̄Ti ā+ d̄i
∣∣ s.t. fD(ā) = sk+1, (5.13)

which represents ncrit problems of the form presented in Lemma 5.1. Therefore, we
can use Lemma 5.1 to determine both Ie, and ā and with that a(k).

Theorem 5.1 shows us that, while estimating xD(k), the attacker can simultane-
ously design a(k) such that the attack maximizes the estimation error at each time
step.

Remark 5.2. If fD(x) =
(∑

i |xi|p
) 1
p , where 1 ≤ p ≤ ∞, and xi is the ith element

of x, then fD(x) =
(∑

i |xi|q
) 1
q such that 1

p + 1
q = 1. This is a result of the Hölder

inequality (see [89]).

Remark 5.3. One can also think of solutions that take other objectives into account
when designing a(k) at each time step. However, we choose this objective, because
it maximizes the estimation error of the critical state in the sense of the maximum
norm and we are able to find an analytical solution.

5.4 Application to the MEWMA Detector

Now we apply the previously presented procedure to the MEWMA detector and
give an illustrative example of the control of a wind-excited tall building.
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Recall the MEWMA detector is defined as
xD(k + 1) = βr(k) + (1− β)xD(k),

ỹD(k + 1) = 2− β
β
||xD(k + 1)||22,

(5.14)

where β ∈ (0, 1]. If ỹD(k + 1) ≤ J̃D no alarm is triggered, where J̃D ∈ R≥0 is a
predefined threshold. Otherwise, an alarm is triggered and the detector state is
reset to zero. The MEWMA detector as in (5.14), does not fit the detector model
in (5.1), but we can rewrite it as

xD(k + 1) = βr(k) + (1− β)xD(k),
yD(k + 1) = ||xD(k + 1)||2,

(5.15)

and use JD =
√

β
2−β J̃D as the new detector threshold. This now fits (5.1) with

AD = (1− β), BD = β, fD(·) being the Euclidean norm, and gD(·) = σmax(·).
Recall, xD(0) is unknown to the attacker. Since the dynamics are linear, we

write the MEWMA detector as the superposition of two subsystems, xD,a(k) and
xD,r(k), so that xD(k) = xD,a(k) + xD,r(k), where

xD,a(k + 1) = βa(k) + (1− β)xD,a(k),
xD,r(k + 1) = (1− β)xD,r(k),

k ≥ 0, xD,r(0) = xD(0), and xD,a(0) = 0.
Now we determine the attack duration N according to (5.2).

Proposition 5.3. The uncertainty of the MEWMA detector’s state at time step
N is smaller than γ > 0, i.e. ||xD(N)− xD,a(N)||2 ≤ γ if

N ≥
⌈ ln( γ

JD
)

ln(1− β)

⌉
. (5.16)

Proof. Since AD = 1−β, we see that σmax(AND) = (1− β)N . Further, we determine
that yup = JD. With that we solve (5.2) for N and obtain inequality (5.16).

The attacker can launch an attack for N time steps such that the initial detector
state xD(0) decreased sufficiently. This means that the attacker’s uncertainty
about xD(k) at time step N is small, i.e. xD(N) ≈ xD,a(N). Note that for
N ≥ 0 we need γ ≤ JD. Further, for the attack to remain undetected we obtain
J(k) = JD(1− (1− β)k), because gD(AkD) = (1− β)k.

Now that we have determined N and J(k) let us derive the probability density
function pk(yD) by finding qk(yD) under nominal conditions. Here, we change the
procedure of this chapter slightly and look at

1
β2 yD(k + 1)2 = ||r(k) + 1− β

β
xD(k)||22, (5.17)
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instead of yD(k + 1). In the nominal case, (5.17) follows a noncentral χ2 dis-
tribution with ny degrees of freedom and noncentrality parameter λ(k + 1) =( 1−β

β

)2
xD(k)TxD(k) at each time step.

Therefore, according to Proposition 5.2, we design pk+1(yD) as a truncated
noncentral χ2 distribution with ny degrees of freedom, noncentrality parameter λa(k+
1) =

( 1−β
β

)2
xD,a(k)TxD,a(k) and support supp(pk+1(yD)) =

[
0, 1

β2 J(k + 1)2].
After we draw a sample sk+1 from the truncated noncentral χ2 distribution

pk+1(yD), we use (5.7) to determine a(k), which for the MEWMA case looks as
follows

Ie = max
a(k)
||Tcritea(k + 1)||∞ s.t. ||βa(k) + (1− β)xD,a(k)||2 = β

√
sk+1. (5.18)

We can then directly use Theorem 5.1 to derive the impact for the MEWMA detector.
Let us we first introduce c̄Ti = − 1

β t
T
i LΣ

1
2
r and d̄i = tTi

(
Aea(k) + 1−β

β LΣ
1
2
r xD,a(k)

)
.

Corollary 5.1. The impact for the MEWMA detector is

IMe = max
i∈{1,··· ,nc}

max
(∣∣||c̄i||2β√sk+1 + d̄i

∣∣, ∣∣− ||c̄i||2β√sk+1 + d̄i
∣∣)

for the attack vector

a(k) = (−1)ji∗ c̄i∗

||c̄i∗ ||2
√
sk+1 −

1− β
β

xD,a(k),

where i∗ is an index that results in IMe , and

ji∗ =
{

2 if
∣∣||c̄i||2β√sk+1 + d̄i

∣∣ ≥ ∣∣− ||c̄i||2β√sk+1 + d̄i
∣∣,

1 otherwise.

5.4.1 Illustrative Example
To verify the procedure for the MEWMA detector, we investigate the example of
the excitation of tall buildings by wind. Figure 5.2 illustrates the effect wind can
have on a tall building. Yang et al. [90] give a benchmark problem for the active
control of a wind-excited building. For the simulation we use the linearized twelve
dimensional reduced order model of a 76 story building given in [90]. We use the
model with ny = 20 measurements and further discretize it with a sampling period
of Ts = 0.01 s to design the linear-quadratic-Gaussian controller. For the MEWMA
detector, we use β = 0.2 and J̃D = 40. To reduce the uncertainty about xD(k), we
choose γ = 10−6 such that we get an attack length of N = 66 time steps according
to (5.16). We let the system run for 100 time steps initially and then start the
attack at k = 100, to obtain a comparison of ỹD(k) before and after the attack.
Further, for this simulation we use Tcrit = Inx .
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Figure 5.2: Illustration of a building moving under the influence of wind
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Figure 5.3: The upper plot shows how ỹD(k) behaves before and after the attack
starting at k = 100. The lower plot shows the average trajectory of ||ea(k)||∞ over
10000 simulations

The upper plot in Figure 5.3 shows one simulation run of the trajectory of ỹD(k)
for the MEWMA detector as described in (5.14) before and after the attack. The
trajectory of output of the virtual MEWMA detector ỹD,a(k) is also displayed in
that plot. We see that the trajectory ỹD(k) after the attack is still random and
does not show any obvious irregularities to the bare human eye. Furthermore,
the attack is not detected since the alarm threshold J̃D = 40 is never crossed
and we observe that ỹD,a(k) converges to ỹD(k) as time progresses. This shows
us that the attacker’s estimate of xD(k) becomes more accurate over time. Fi-
nally, we look at the accuracy of the estimate at the end of the attack. We have
||xD(166)− xD,a(166)||2 = 6.0573 · 10−7. As desired, the uncertainty is smaller than
γ = 10−6.

The lower plot of Figure 5.3 shows the average trajectory of ||ea(k)||∞ over
10000 simulations. Here, we see that the maximum estimation error is on average
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increasing during the attack.
Therefore, we verified that an attacker with access to and control over the

measurements is able to break the confidentiality of the internal state of the MEWMA
detector and to simultaneously increase the maximum estimation error of the critical
states.

5.5 Summary

In this chapter, we presented how an attacker can obtain an estimate of the internal
state of an anomaly detector with linear dynamics. The attacker utilizes the detector
dynamics to create a virtual detector that is used to design a stealthy attack. We
use the Kullback-Leibler divergence to find a probability distribution that mimics
the distribution of the nominal detector output. With this distribution the attacked
detector output looks nominal and will not raise the operator’s suspicion. Samples
from this distributions are drawn to characterize the attack signal that simultaneously
maximizes the average estimation error of critical plant states at each time step by
exploiting the dual norm of a vector norm. We verify that this attack is working by
applying it to a MEWMA detector. Together with Chapter 4, this chapter showed
how an attacker can obtain the additional knowledge of the internal controller and
detector states needed for the worst-case attack presented in Chapter 3. Therefore,
the next chapters will compare the performance of different detectors in mitigating
the attack impact and present methods to pick an optimal detector threshold.



Chapter 6

Comparison of Detectors

Chapters 4 and 5 showed that under certain conditions the attacker is able to gather
the additional knowledge needed for the worst-case attack (3.11). In the first part of
this chapter, we consider that the attacker is able to execute the worst-case attack
(3.11). Since the attack impact will change with the detector used, we compare the
performance of the χ2, CUSUM, and MEWMA detectors using the metric proposed
in [25] for two different processes.

In the second part of this chapter, we present a new metric to compare detectors,
which depends neither on the attacker’s objective nor on the system dynamics. This
metric depends only on the number of sensors and the detector used. Recall that
the detector dynamics under the worst-case attack (3.11) are

xD(k + 1) = θ
(
xD(k), a(k)

)
,

yD(k + 1) = d
(
xD(k), a(k)

)
,

where xD(k) is the detector state and a(k) is the input of the detector designed
by the attacker. To determine the new metric, we make use of a time-invariant
set B for each detector, such that if a(k) ∈ B the attack is guaranteed to remain
undetected independent of xD(k). Finally, we discuss the new metric and compare
it with the results of the first part of this chapter.

6.1 Comparison of the χ2, CUSUM, and MEWMA
detectors

In this section, we use the metric of [25] to compare the performance of the χ2,
CUSUM, and MEWMA detectors. Recall that this metric plots the attack impact
over the mean time between false alarms. Let us first introduce the way we determine
the impact of the sensor attack.

59
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6.1.1 Impact Estimation
Here, we consider that the operator uses the observer-based controller introduced in
Section 3.4. Assuming the attacker executes the worst-case attack from time step

¯
k

to k̄, recall that the attack impact of Definition 3.2 is given by

I(τ) := max
a,xD(

¯
k)
f(a) s.t. d

(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ,

where τ is the mean time between false alarms, f(a) is the attacker’s objective,
Γ ∈ [

¯
k, k̄], and a = {a(k)}k̄k=

¯
k is the attack trajectory. Since JD = g(τ) the impact

depends on τ . Recall that, due to the linearity, we can write the closed-system as
the superposition of two subsystems, where one system is excited by the noise and
the initial condition, while the other system has zero initial condition and is excited
by the attack. We only look at the subsystem that is excited by the worst-case
attack, [

xa(k + 1)
ea(k + 1)

]
=
[
A−BK BK

0 A

]
︸ ︷︷ ︸

=Ax

[
xa(k)
ea(k)

]
+
[

0
−LΣ

1
2
r

]
︸ ︷︷ ︸

=Bx

a(k) (6.1)

with xa(
¯
k) = ea(

¯
k) = 0. Since the attacked subsystem is linear,

xa(k̄) =
[
Inx 0

]( k̄∑
i=

¯
k

Ak̄−¯
k−i

x Bxa(i)
)

:= Txaa,

(6.2)

where Txa ∈ Rnx×ny(k̄−
¯
k+1). We observe that if a(k) = 0 for all k ∈ Γ the state

of the attacked subsystem is zero as well. Therefore, we consider an attacker
who wants to maximize xa(k̄). More specifically, the attacker wants to maximize
||xa(k̄)||∞ = ||Txaa||∞. Further, for the sake of simplicity, we assume the following
for the rest of this chapter.

Assumption 6.1. The detector state at the beginning of the attack is zero, i.e.
xD(

¯
k) = 0.

This leads to the following problem to determine the impact of the stealthy
attack.

Problem 6.1. Find the global solution of

max
a
||Txaa||∞ s.t. d

(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ. (6.3)

to determine the worst-case impact of the sensor attack (3.11) on the closed-loop
system (6.1) under the χ2, CUSUM or MEWMA detectors, where Txa is defined as
in (6.2).
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To find solution of Problem 6.1, we first show that the constraint set for a in
(6.3) is a convex set.

Proposition 6.1. The constraint set for a,

d
(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ,

under Assumption 6.1 is non-empty and convex for the χ2 detector, the CUSUM
detector, and the MEWMA detector.

Proof. We begin by noting that a = 0 always fulfills the constraints. Hence, the
constraint set is non-empty. To show the convexity of the set for the three detectors,
we start by showing the convexity for the χ2 detector. The constraints given by the
χ2 detector are

a(k)Ta(k) ≤ Jχ
2

D ∀k ∈ Γ.

Since a(k)Ta(k) represents a convex function for each k ∈ Γ, we know that the
union of the constraints imposed by the χ2 detector represent a convex set [91].

Next, we look at the MEWMA detector. We write the state of the MEWMA
detector with zero as the initial condition as

xD(k) =
k−1∑
i=

¯
k

β(1− β)k−1−ia(i) = Tβ(k)Ta

such that the constraints to remain undetected become

yD(k) = 2− β
β
||Tβ(k)Ta||22 ≤ JMD ∀k ∈ Γ.

Here, we see again that 2−β
β ||Tβ(k)Ta||22 for each k is a convex function. Therefore,

the union of all constraints represents a convex set.
Finally, let us investigate the constraint of the CUSUM detector. First, we

prove that yD(0) is convex. Here, yD(0) = 0 is given and constant. It is, therefore,
simultaneously convex and concave in a. Now assume yD(k) is convex and let
us prove that yD(k + 1) is convex as well. We know that ||a(k)||22 is convex and,
furthermore, −δ is convex because it is constant. Using [91], we obtain that the
nonnegative weighted sum of convex functions is convex and taking the maximum of
two convex functions results in a convex function as well. Hence, yD(k)+ ||a(k)||22−δ
is convex and because of that yD(k+1) = max

(
0, yD(k)+||a(k)||22−δ

)
is also convex,

which concludes the proof by induction that yD(k) represents convex constraints for
all k ∈ Γ.

Hence, the constraints for the χ2, CUSUM, and MEWMA detectors are convex
sets.
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Now that we have shown that the constraint sets are convex, no matter which of
the three detectors of interest we use, we can obtain the global solution to (6.3) by
splitting Problem 6.1 into nx subproblems.

Theorem 6.1. The global solution of Problem 6.1 can be found by solving nx convex
optimization problems,

max
i∈{1,··· ,nx}

max
a

tTxa,ia s.t. d
(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ,

where tTxa,i is the ith row of Txa.

Proof. Recall that the infinity norm can be written as

max
a
||Txaa||∞ = max

a
max

i∈{1,··· ,nx}
|tTxa,ia|.

Hence, we can solve (6.3) by solving nx separate problems and the maximum
solution of the nx problems is the solution of (6.3). Since both the χ2 and CUSUM
detectors use ||a(k)||22 to determine yD(k), −a is a feasible solution if a is feasible.
Similarly, since the MEWMA detector with zero as an initial condition has the
output yD(k) = 2−β

β ||Tβ(k)Ta||22 (see Proposition 6.1), −a is also a feasible solution
if a is feasible. Now we can show that the absolute value in the objective of each
of the nx problems can be removed. Assume we found two feasible solutions for
one of the subproblems, a∗max and a∗min, which lead to the maximum and minimum
value of tTxa,ia under the constraints, x∗max and x∗min, respectively. We assume
that x∗min < 0 < x∗max and x∗max < |x∗min|. Since −amin is also a feasible solution,
we are able to define a∗ = −a∗min as a feasible solution, which leads to a higher
value than x∗max. Hence, we do not need to consider the absolute value in each of
the nx problems. Further, tTxa,ia is simultaneously concave and convex [91] and
the constraints imposed by the χ2, CUSUM, and MEWMA detectors are convex
(Proposition 6.1). Hence, each of the nx subproblems is convex, such that we obtain
the global solution to Problem 6.1 by taking the maximum optimal value of the
subproblems.

Theorem 6.1 implies that we can find the global solution of the nonconvex
optimization problem by solving nx convex optimization problems. Therefore, we
can find the worst-case impact of the attack (3.11) under the χ2, CUSUM, and
MEWMA detectors, which is necessary for the detector comparison.

Furthermore, if the χ2 detector is used, the Problem 6.1 has an analytical
solution.

Proposition 6.2. When a χ2 detector is used, the optimization problem (6.3)
becomes

max
a
||xa(k̄)||∞ = max

a
max

i∈{1,··· ,n}
|tTxa,ia| (6.4)

s.t. a(k)Ta(k) ≤ JD ∀k ∈ Γ,
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where tTxa,i = [tTxa,i
¯
k, · · · , tTxa,ik̄] is the ith row of Txa with k̄ −

¯
k + 1 partitions

txa,ik ∈ Rny . The solution to (6.4) is

a∗(k) = (−1)j
√
JD√

tTxa,i∗ktxa,i∗k
txa,i∗k (6.5)

and the attack impact is I(τ) =
√
JD
∑k̄
k=

¯
k

√
tTxa,i∗ktxa,i∗k, where

i∗ ∈ arg max
i∈{1,··· ,nx}

k̄∑
k=

¯
k

√
tTxa,iktxa,ik

and j is either 1 or 2 for all k.

Proof. The proof of Theorem 6.1 shows us that we can neglect the absolute value
in the inner maximization problem when finding the optimal solution. Hence,
we just look at tTxa,ia and find the optimal solution a∗ for the inner problem
under the constraints. Note that tTxa,ia =

∑k̄
k=

¯
k t
T
xa,ika(k) and that the constraints

a(k)Ta(k) ≤ JD at each time step are independent of the previous attack signals.
Hence, to obtain the worst-case attack we can solve k̄−

¯
k+1 quadratically constraint

linear programs of the form

max
a(k)

tTxa,ika(k) s.t. a(k)Ta(k) ≤ JD, (6.6)

which have the solution â(k) =
√
JD√

tT
xa,ik

txa,ik
txa,ik. Inserting these â(k) in the

inner maximization problem and solving for the optimal i we obtain a∗(k) and
the optimal objective value stated above. Due to the absolute value of the inner
optimization problem −a = −[a∗(

¯
k)T , · · · , a∗(k̄)T ]T is also an optimal solution to

the problem.

Remark 6.1. Proposition 6.2 shows us that the attack impact for the objective
||xa(k̄)||∞ is

√
JD scaled by a plant specific constant. Therefore, the impact under

a χ2 detector will have a similar behavior for different plants in the metric of [25].

Before we move on to the comparison of the detectors, we present a reformulation
of the CUSUM detector.

Reformulation of the CUSUM detector

We now introduce an equivalent reformulation of the CUSUM detector that does not
use the non-smooth max operator, which leads to a better numerical implementation.
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Proposition 6.3. For a given attacker’s objective f(a), the two optimization
problems

max
a

f(a) s.t.
{
yD(k + 1) = max

(
0, yD(k) + ||a(k)||22 − δ

)
≤ JCD

yD(
¯
k) = 0

, (6.7)

and

max
a,{ỹD(k)}k̄

k=
¯
k

f(a) s.t.


ỹD(k + 1) ≥ 0
ỹD(k + 1) ≥ ỹD(k) + ||a(k)||22 − δ
ỹD(k + 1) ≤ JCD
ỹD(

¯
k) = 0

(6.8)

for k ∈ [
¯
k, k̄] are equivalent in the sense that their optimal solutions a∗, if they

exist, coincide.

Proof. First of all we can see that yD(k) ≤ ỹD(k), ∀k, if a is fixed and feasible for
both (6.7) and (6.8). First assume we obtained an optimal solution a∗CUSUM for
(6.7). This solution also fulfills the constraints of (6.8), since ỹD(k) = yD(k) ≤ JCD ,
which makes a∗CUSUM a feasible solution for (6.8). But by solving (6.8) directly we
might find a solution a∗r such that,

f(a∗r) ≥ f(a∗CUSUM). (6.9)

Assume now we found an optimal solution (a∗r , {ỹ∗D(k)}k̄k=
¯
k) for (6.8) and we use

yD(k) = ỹ∗D(k) in (6.7), where we pick a feasible sequence {ỹ∗D(k)}k̄k=
¯
k for (6.7) by

using the lower bounds ỹ∗D(k + 1) = max
(
0, ỹ∗D(k) + ||a(k)||22 − δ

)
, which does not

change the value of the objective function of (6.8). Then
(
a∗r , {ỹ∗D(k)}k̄k=

¯
k

)
fulfills

the constraints of (6.7) and is, therefore, a feasible solution for (6.7). But again we
might find a solution by solving (6.7) directly such that,

f(a∗CUSUM) ≥ f(a∗r). (6.10)

Hence, the inequalities (6.9) and (6.10) imply f(a∗CUSUM) = f(a∗r), which makes the
problems equivalent and the reformulation valid.

6.1.2 Detector comparison for two different processes
In the previous section, we showed that it is possible to find a solution to Problem 6.1.
In this section, we solve Problem 6.1 for different mean times between false alarms
τ to determine the metric proposed in [25] to compare the χ2 detector, the CUSUM
detector, and the MEWMA detector. Without loss of generality, we assume that

¯
k = 0 and k̄ = N . Here, the attack will last for N = 100 time steps. Since the
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Pump 1 Pump 2 

Tank 4 Tank 3 

Tank 2 Tank 1 

Figure 6.1: The quadruple tank process as proposed in [92]

impact depends on the process, we will determine the metric for the quadruple tank
process and the three tank process, which was already used in Chapter 4.

The quadruple tank process is shown in Figure 6.1. After linearizing around the
steady state reached for constant pump input voltages of 6 V, we obtain

ẋ(t) =


−0.0723 0 0.1902 0

0 −0.0633 0 0.1847
0 0 −0.1902 0
0 0 0 −0.1847

x(t) +


0.1740 0

0 0.1506
0 0.0904

0.1044 0

u(t) + w(t),

y(t) =
[

0.2000 0 0 0
0 0.2000 0 0

]
+ v(t).

We discretize the system with a sampling period Ts = 0.5 s and use a linear-quadratic-
Gaussian design to obtain K, L, and Σr. Further, we assume that w(k) ∼ N (0, 0.1I4)
and v(k) ∼ N (0, 0.01I2). The system has ny = 2 sensors, which measure the water
level in the lower tanks.

Here, we want to compare the χ2 detector with the CUSUM and MEWMA
detectors. Due to the forgetting factors, δ and β, different configurations for the
CUSUM and MEWMA detector are possible. Therefore, we investigate the MEWMA
detector for three forgetting factors, β ∈ {0.2, 0.4, 0.8}, and the CUSUM detector
for δ = 2ny = 4. Solving Problem 6.1 for different τ and different detectors leads to
the metric presented in Figure 6.2. We see that the attack impact is highest for the
χ2 detector. Hence, the internal states of the CUSUM and MEWMA detectors help
mitigate the attack impact, even if the attacker knows the internal state. Comparing
the CUSUM and MEWMA detectors, we see that the CUSUM detector with δ = 4
has a lower attack impact than the MEWMA detector with β = 0.8 for most τ .
However, if β = 0.2 or β = 0.4 the attack impact with the MEWMA detector is
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Figure 6.2: Impact of the attack (3.11) for a quadruple tank process over the mean
time between false alarms τ .

lower for all investigated τ . Hence, the performance of the MEWMA detector can
be better than the performance of the CUSUM detector. Note though that the
impact for the CUSUM detector increases only slightly over the investigated τ , while
the impact for the MEWMA detector increases more. Therefore, it looks like the
impact under the MEWMA detector will be higher than for the CUSUM detector if
we look at larger τ . Especially for β = 0.4, we observe that the impact is very close
to the impact of the CUSUM detector for τ close to 1500 time steps in Figure 6.2
and will probably pass it for larger τ . Furthermore, we used δ = 4 and the only
condition for δ is that δ needs to be greater than ny. Hence, we could use a smaller
δ to mitigate the impact more, but there is a limit to how much we could mitigate
the impact.

If we use the three tank process, we obtain the metric in Figure 6.3. We observe
that Figure 6.3 is very similar to Figure 6.2. The impact is lower but the conclusion
we can draw from Figure 6.3 is the same conclusion we can draw from Figure 6.2.

6.2 A New Metric for Detector Comparison

The metric proposed in [25] needs to be calculated for each plant separately and
the operator needs to know the attacker’s objective f(a). In Chapter 5, we only
showed how an attacker could get access to the detector state when the detector has
linear dynamics. Therefore, we will show now that there exists time-invariant set B
for each detector such that if a(k) ∈ B the attack remains undetected regardless of
the detector state xD(k). This means that an attacker could still launch the attack
(3.11), but without the knowledge of xD(k), the attack will not be as effective. We
use the time-invariant set B to define a new metric for detector comparison, which
is independent of the attacker’s objective. Further, this new metric only depends on
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Figure 6.3: Impact of the attack (3.11) for a three tank process over the mean time
between false alarms τ .

the number of sensors ny and the detector used.

6.2.1 Time-invariant Sets for Stealthy Attacks
Let us first show that such a set B exists for all detectors that fulfills the conditions
in Assumption 3.7.

Theorem 6.2. There always exists a non-empty set

B =
{
a(k) ∈ Rny | a(k)Ta(k) ≤ J

}
with J > 0 such that if a(k) ∈ B then yD(k + 1) = d

(
xD(k), a(k)

)
≤ JD for all

xD(k) ∈ X if the detector fulfills the conditions in Assumption 3.7, where

X =
{
x ∈ RnD : x = θ(x̃, r̃),where x̃ and r̃ are such that d(x̃, r̃) ≤ JD

}
. (6.11)

Note that, X is the set of all possible detector states at time k when no alarm
was triggered at k, i.e. yD(k) ≤ JD. In case an alarm is triggered at k, the detector
state is set to zero, i.e. xD(k) = 0, and 0 ∈ X. Therefore, we only need to consider
the possible detector states xD(k), when no alarm was triggered.

Proof. For the sake of readability, we will omit the time argument in this proof. We
begin by showing that X represents a compact set. To prove the compactness of X,
let us first show {

(xD, a) ∈ RnD × Rny : d(xD, a) ≤ JD
}

(6.12)

is a compact set. Since d
(
xD, a

)
is assumed to be continuous and coercive in xD

and a (see Assumption 3.7), (6.12) is a compact set for all JD ≥ 0 (see Proof of
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Corollary 2.5 in [93]). The set X is represented by a continuous map of all elements
in the set (6.12) and is, therefore, compact, because a continuous map of a compact
set is a compact set.

Now we choose

ε = min
xD∈X

JD − d(xD, 0),

which, according to the extreme value theorem, exists, since X is compact and
d(xD, 0) is continuous in xD. Further, we know that ε > 0, because d(xD, 0) < JD
for all x ∈ X (see second condition in Assumption 3.7).

Using the continuity of d(xD, a), we know that for the given ε > 0 there exists a√
J > 0 such that if ||a||2 <

√
J then∣∣d(xD, a)− d(xD, 0)

∣∣ < ε.

This implies that d(xD, a) < d(xD, 0) + ε ≤ JD for all xD ∈ X if ||a||2 <
√
J due to

the ε chosen.
This shows us that there exists an open non-empty ball B̃ with radius

√
J > 0

in the set of all undetectable attack vectors a,

Z =
{
a ∈ Rny : d(xD, a) ∈ [0, JD] ∀x ∈ X

}
.

Since d(xD, a) is continuous, Z is a closed set. Therefore, the closure of B̃, which
we denote as

B =
{
a ∈ Rny | aTa ≤ J

}
,

is contained in Z as well. This concludes the proof.

Note that, J depends only on the number of sensors ny, the mean time between
false alarms τ , since JD is a function of τ , and the detector dynamics. Thus, J does
not depend on the actual plant dynamics.

Since the χ2, CUSUM, and MEWMA detectors fulfill the conditions in Assump-
tion 3.7, we will show now how the set B looks like for these three detectors.

Attack Set for the χ2 Detector

Since the χ2 detector is a stateless detector, the attacker does not need to take the
detector state xD(k) into account. We see that under attack yD(k + 1) = a(k)Ta(k)
is solely determined by a(k) such that a(k)Ta(k) > Jχ

2

D would immediately cause
an alarm. Hence, it follows that

Bχ
2

=
{
a(k) ∈ Rny | a(k)Ta(k) ≤ Jχ

2

D

}
, (6.13)

which is already presented in [19] for a constant a(k).
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Attack Set for the MEWMA Detector

Recall that the MEWMA detector filters r(k) and then looks at the size of the filtered
r(k) similar to the χ2 detector. Under attack, the MEWMA detector dynamics are

xD(k + 1) = (1− β)xD(k) + βa(k)
yD(k + 1) = ||xD(k + 1)||2.

Note that we rewrote the MEWMA detector a bit compared to Section 3.2.1, such
that no alarm is triggered if yD(k + 1) ≤

√
β

2−βJ
M
D .

Proposition 6.4. The largest time-invariant attack set under a MEWMA detector
for an attacker that wants to remain undetected for all k ≥

¯
k and has no access to

xD(k) is given by

BM =
{
a(k) ∈ Rny

∣∣ a(k)Ta(k) ≤ β
2−βJ

M
D

}
. (6.14)

Proof. For k ≥
¯
k we can write xD(k) as

xD(k) = (1− β)k−¯
kxD(

¯
k) + β

k−
¯
k−1∑
i=0

(1− β)k−¯
k−1−ia(i+

¯
k).

Let ||a(k)||2 ≤
√
JM for all k ≥

¯
k. By using the triangle inequality on yD(k), we

obtain

yD(k) = ||xD(k)||2 ≤
(
1− (1− β)k−¯

k
)√
JM + (1− β)k−¯

kyD(
¯
k) ≤

√
β

2−βJ
M
D ,

where we used that yD(
¯
k) = ||xD(

¯
k)||2 and

β

k−
¯
k−1∑
i=

¯
k

(1− β)k−¯
k−1−i = 1− (1− β)k−¯

k.

To remain undetected independent of yD(
¯
k) one has to guarantee that

√
JM ≤ min

yD(
¯
k)∈[0,

√
β

2−β J
M
D

]

√
β

2−βJ
M
D − (1− β)k−¯

kyD(
¯
k)

1− (1− β)k−¯
k

=
√

β
2−βJ

M
D

for all k ≥
¯
k. Hence, BM is the largest possible time-invariant set for a stealthy

attack on all sensors without knowledge about the detector’s state.
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Attack Set for the CUSUM Detector

As shown in Section 3.2.1, the CUSUM detector sums up the squared Euclidean
norm of residuals with a forgetting factor. Further, the output equals the internal
state of the CUSUM detectors such that the dynamics under attack are

yD(k + 1) = max
(
yD(k) + a(k)Ta(k)− δ, 0

)
.

Proposition 6.5. The largest time-invariant stealthy attack set under a CUSUM
detector for an attacker, which has no access to yD(k) is given by

BC =
{
a(k) ∈ Rny | a(k)Ta(k) ≤ δ

}
. (6.15)

Proof. Assume the attack vector is limited by a(k)Ta(k) ≤ δ + ε, where ε > 0 is
arbitrarily small. If a(k)Ta(k) = δ + ε and yD(

¯
k) ≥ 0, we get

yD(
¯
k + 1) = max

(
yD(

¯
k) + ε, 0

)
= yD(

¯
k) + ε ≤ JCD

for the attack to remain undetected in its first step. Assume yD(
¯
k) = JCD then this

attack will trigger an alarm. If yD(
¯
k) < JCD and a(k)Ta(k) = δ + ε for all k ≥

¯
k,

an alarm is raised after l =
⌈JCD−yD(

¯
k)

ε

⌉
time steps. Hence, BC defines the largest

possible attack set for a(k) that guarantees that the attack remains undetected for
all k ≥

¯
k no matter the value of yD(

¯
k).

6.2.2 A Detector Metric for Sensor Attacks
In the previous section, we showed that even if the detector has an internal state,
the attacker is able to launch a stealthy attack. Hence, just having a detector with
an internal state does not mean that a stealthy attack is impossible, but it might
still make the system more secure, which is what we want to investigate here.

In case the attacker does not know the internal state xD(k) of the detector, we
can redefine the attack impact as

Definition 6.1. The worst-case impact of the stealthy attack (3.11) without knowl-
edge of the detector state on the closed-loop system (3.12) with zero initial conditions,
no noise (w(k) = 0), and equipped with an anomaly detector (3.3) defined as

Ī := sup
a
f(a) s.t. ||a(k)||22 ≤ J ∀k ≥ ¯

k, (6.16)

where a = {a(k)}k≥
¯
k represents the attack trajectory and f(a) characterizes the

attacker’s impact according to a certain objective.

From the perspective of the defender, we are not able to know the attacker’s
objective f(a), when we design our system and choose the anomaly detector. In
the following, we show that for attackers without knowledge of xD(k) we are able
to compare the ability of each detector to mitigate the worst-case attack impact
independent of the details of the attack objective f(a).
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Theorem 6.3. The worst-case impact of the stealthy attack Ī is non-decreasing in
J , i.e. Ī(J1) ≥ Ī(J2) if J1 ≥ J2.

Proof. We see that the domain of a(k) grows with J . Therefore, ||a(k)||22 ≤ J1
includes ||a(k)||22 ≤ J2 if J1 > J2 and the attack impact for J1 is no smaller than
the one obtained with J2.

Now we use Theorem 6.3 to compare the detectors’ performance under attack,
i.e. which detector mitigates the attack impact the most for a certain mean time
between false alarms.

Remember for detector comparison in [25], we need to plot the worst-case impact
over the mean time between false alarms τ . For the metric in [25] we need to
solve the optimization problem in Definition 6.1 for each J to obtain the attack
impact. The impact depends on the plant investigated as Figures 6.2 and 6.3 showed.
Therefore, the metric in [25] is plant specific and needs to be recalculated for each
plant.

Using Theorem 6.3, we see that the attack impact Ī(J) is non-decreasing in J .
Thus, instead of Ī(J) we compare J over τ for each detector. Recall that J for each
detector is a function of ny, τ , and and the detector dynamics. This means that the
metric for detector comparison under full sensor attacks that we propose depends
only on the number of sensors in the plant and not on the actual plant dynamics.
Therefore, the metric for a certain ny applies to all plants with ny sensors.

In the following, we compare only the χ2, CUSUM, and MEWMA detectors.
However, our proposed metric applies to all detectors that fulfill Assumption 3.7.
For these three detectors we know that

J =


Jχ

2

D for the χ2 detector,
δ for the CUSUM detector,
β

2−βJ
M
D for the MEWMA detector.

Figure 6.4 shows how the metric looks like for a system with ny = 2 sensors, for
δ = 2ny = 4, β ∈ {0.2, 0.4, 0.8}, and τ ∈ [10, 1500]. We can directly see that J
for the CUSUM and MEWMA detectors is smaller than J for the χ2 detector.
Therefore, we conclude that the investigated stateful detectors mitigate the impact
of the worst-case attacks without knowledge of xD(k) more than the χ2 detector for
any attack objective f(a).

Recall that the only constraint for δ is δ > ny to obtain a stochastically stable
CUSUM detector. If we, for example, had chosen δ = 15, the CUSUM detector
might lead to a larger attack impact than the χ2 detector. Therefore, we can use
this metric to determine an upper bound for δ such that the CUSUM detector is
stochastically stable and leads to a lower worst-case attack impact than the χ2

detector. Furthermore, note that δ is constant over all τ such that the worst-case
impact under a CUSUM detector does not depend on τ in contrast to the other
detectors investigated. This makes the CUSUM detector attractive for an operator,
since an operator desires a large time between false alarms and a low attack impact.
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Figure 6.4: Our proposed metric for detector comparison, which plots J over τ to
assess the attack impact at a certain τ

Furthermore, we observe that the MEWMA detector has an even lower J than
the CUSUM and χ2 detectors for β ∈ {0.2, 0.4} and τ ≤ 1500 time steps, while
J for β = 0.8 is bigger than δ under the CUSUM detector for τ > 20 time steps.
This means that the MEWMA detector might lead to a smaller attack impact than
the CUSUM detector for β ∈ {0.2, 0.4}. Thus, with the right configuration the
MEWMA detector is a suitable alternative to the CUSUM detector for these attacks.

Remark 6.2. The approximated thresholds for the MEWMA detector suggest
that β

2−βJ
M
D ≤ J

χ2

D ∀β ∈ (0, 1]. Since the worst-case impact is non-decreasing in J
according to Theorem 6.3 this would mean that the impact of the attacks without
knowledge of xD(k) under the MEWMA detector is never larger than the impact
under the χ2 detector for the investigated attack strategy. However, we were not
able to prove that the above inequality holds for all β ∈ (0, 1].

If we compare Figure 6.2 and Figure 6.3 with Figure 6.4, we observe that
our proposed metric gives us a similar result to the metric proposed in [25]. In
Figures 6.2 and 6.3 the attack impact for the CUSUM detector increases while it
is constant according to our proposed metric. This is due to the fact that for our
proposed metric the attacker does not use any knowledge about the internal state
of the detector and δ does not depend on τ . However, the impact for the CUSUM
detector increases only slowly with τ . Hence, the constant J in our metric is a good
approximation for how the impact under the CUSUM detector changes. Our metric
also agrees with the metric of [25] that a stateless detector performs worse than a
detector with an internal state for the investigated forgetting factors.
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Remark 6.3. It is important to note that we have only calculated the metric
proposed in [25] for the case where the attacker’s objective is to maximize the
infinity norm of xa(k̄). In this case, our proposed metric and the metric proposed
in [25] give similar results on the performance of the detectors. It is, therefore,
important to also investigate how the performance for the metric in [25] changes
when another attack objective is used.

6.3 Summary

In this chapter, we compared the performance of the χ2, CUSUM, and MEWMA
detectors using the metric proposed in [25]. The comparison showed us that detectors
with internal dynamics mitigate the attack impact more than static detectors.
Further, the performance of the CUSUM and MEWMA detectors depends on the
forgetting factor chosen and for certain forgetting factors the MEWMA detector
performs better than the CUSUM detector over the range of investigated τ . Moreover,
we showed that there exists a time-invariant set, such that if the attack vector is
in this set, the attack remains undetected regardless of the internal state of the
detector. This time-invariant set was then used to propose a new metric for detector
comparison that does not depend on the attacker’s objective, but only on the
number of sensor in the plant. This new metric yields very similar result in the
detector comparison as the metric proposed in [25]. However, once we compared the
performance of different detectors and picked the detector that performs best, we
still need to decide which threshold we want to use. This corresponds to choosing a
mean time between false alarms that is optimal with respect to a certain objective.
A way to optimally choose the mean time between false alarms is proposed in the
next chapter.





Chapter 7

A Game-Theoretic Approach to Detector
Tuning

In the previous chapter, we used the metric proposed in [25] to compare the
performance of the χ2, CUSUM, and MEWMA detectors. We also proposed a new
metric, which does not depend on the attacker’s objective and the plant dynamics,
to compare the performance of detectors. However, the metric of Urbina et al.
[25] and our proposed metric presented in Chapter 6 only help us to decide which
detector performs best. These metrics do not help us to choose JD in an optimal
way when an attacker is present. Therefore, this chapter introduces a game-theoretic
framework to pick the optimal JD for a detector. This game-theoretic framework is
an adaption of the framework of Ghafouri et al. [26] to our scenario of a stealthy
sensor attack. The basic idea is to minimize the sum of the cost induced by the false
alarms and by the attack. In [26], the attacks are detectable with a delay depending
on the detector tuning and it is not specified how the impact of the attack can
be obtained in an analytical manner. Therefore, we analyze the Stackelberg game
formulation of [26] in a more control-theoretic context. Here, we use it to find a
fixed detector threshold in the presence of the stealthy sensor attack presented in
Chapter 3. We show that the Stackelberg game used in our work always has a
solution and present sufficient conditions for the uniqueness of the solution. Further,
we show that the optimal action of the attacker in this game represents the detector
metric presented in [25] and how the Stackelberg game complements the metric in
[25]. This Stackelberg framework can be seen as a tool to treat worst-case attackers
with knowledge about the plant.

Note that, for the results in this chapter to hold, we only need the detector
functions to be continuous in their arguments, d

(
xD(k), a(k)

)
to be coercive in its

arguments, θ(0, 0) = 0, and d(0, 0) = 0. Hence, these results also hold for a less
strict detector model than we assumed in Chapter 3.

Let us restate the definition for the worst-case attack impact of a time-limited
attack.

Definition 7.1. The worst-case impact I : L→ R≥0 ∪ {∞} of the stealthy sensor

75
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attack (3.11) on the closed-loop system (3.12) equipped with an anomaly detector
(3.3) is defined as

I(τ) := max
a,xD(

¯
k)
f(a) s.t. d

(
xD(k), a(k)

)
≤ JD ∀ k ∈ Γ,

where a = {a(k)}k̄k=
¯
k is the attack trajectory and f(a) is a continuous function that

characterizes the attacker’s objective.
Before we can move on to the solution of the problem, we need to familiarize

ourselves with the concept of a Stackelberg game.

7.1 Stackelberg Games

A two-player Stackelberg game consists of a leader, who plays first, and a follower,
who plays second and is aware of the action taken by the leader. Both players are
assumed to be rational, which means that they always try to minimize/maximize
their respective cost/payoff. Let us denote the action of the leader by mL ∈ ML,
where ML contains all possible actions of the leader. The action of the follower is
denoted by mF ∈MF , where MF contains all possible actions of the follower.

The goal of the leader is to minimize its cost cL(mL,mF ), while the follower
wants to maximize its payoff pF (mL,mF ). We assume that the leader knows MF

and pF (mL,mF ), while the follower knows the leader’s action mL. What is good
for the follower is not necessarily good for the leader, e.g. increasing the follower’s
payoff pF (mL,mF ) might also increase the leader’s cost cL(mL,mF ). Hence, the
leader has to pick its action so that it has the minimum cost for all actions possible
of the follower. One common solution concept used for Stackelberg games is the
subgame perfect Nash equilibrium (SPNE), see for example [94]. The SPNE is
typically obtained via backwards induction. First, the optimal actions m∗F of the
follower to maximize its payoff depending on mL are obtained. Then, given the
dependency of m∗F on mL we can obtain the optimal action of the leader m∗L. In
case m∗F is not unique for a given mL and results in different costs for the leader, the
leader wants to minimize the least upper bound of its cost [95]. Hence, the SPNE
of the two-player Stackelberg game can be formulated as the following two-level
optimization problem

min
mL∈ML

sup
m∗
F

cL(mL,m
∗
F ) s.t. m∗F ∈ arg max

m′
F
∈MF

pF (mL,m
′
F ). (7.1)

A solution (m∗L,m∗F ) to (7.1) is called a generalized Stackelberg strategy pair [95].
As stated in [95], (7.1) can also be interpreted as a follower who wants to maximize
its payoff but also maximize the leader’s cost if possible.

7.2 Finding the Optimal Tuning

In this section, we first investigate the existence of the worst-case impact I(τ),
then formulate the Stackelberg game to find the optimal detector threshold JD and
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present the attacker’s and defender’s optimal actions. Finally, we investigate when
the solution to the Stackelberg game is unique.

7.2.1 Existence of Solutions to the Worst-case Impact
We begin by utilizing the extreme value theorem to show that the attack impact
I(τ) exists. Recall from Assumption 3.8 that L is the compact set of mean time
between false alarms.

Theorem 7.1. The worst-case attack impact I(τ) is well-defined on L and is
non-decreasing in τ .

Proof. Let us first show that I(τ) is well-defined on L. The constraint set in
Definition 7.1 is non-empty, because a = 0 and xD(

¯
k) = 0 fulfill the constraints

independent of how JD is chosen, since then xD(k) = 0 for all k ∈ Γ and d(0, 0) = 0
(see Assumption 3.7).

According to the extreme value theorem, an optimization problem over a contin-
uous function has at least one solution if the constraints represent a compact set.
To prove the compactness of the constraint set, recall that the first constraint in
Definition 7.1,

{(xD(k), a(k)) ∈ RnD × Rny : d(xD(k), a(k)) ≤ JD}, (7.2)

is a compact set (see proof of Theorem 6.2).
The remaining constraints can be written as

d
(
θ(xD(

¯
k), a(

¯
k)), a(

¯
k + 1)

)
≤ JD

d
(
θ
(
θ(xD(

¯
k), a(

¯
k)), a(

¯
k + 1)

)
, a(

¯
k + 2)

)
≤ JD

...

(7.3)

Since θ(xD(k), a(k)) is continuous in its arguments and the composition of continuous
functions is continuous, we note that the functions on the left hand side of the
inequalities in (7.3) are continuous in their arguments. Therefore, each of the
constraints in (7.3) represents a closed set [96]. Finally, since the intersection of
compact and closed sets is compact, the constraint set in Definition 7.1 represent
a compact set. Hence, maxa,xD(

¯
k) f(a) subject to the constraints exists for all

JD = g(τ) ≥ 0 and it is, therefore, well-defined on L.
Now let us show that I(τ) is non-decreasing in τ . Since JD = g(τ) is non-

decreasing (by Assumption 3.8) and the domain is growing with JD, the attack
impact I(τ) is non-decreasing in τ .

Theorem 7.1 shows that the worst-case impact might increase for our general
class of detectors if we want to reduce the number of false alarms of our detector by
increasing JD. For the remainder of this chapter, we make the following assumption.
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Assumption 7.1. The worst-case impact of the stealthy attack I(τ) is continuous
on L.

7.2.2 Stackelberg Formulation
We present a Stackelberg game to find the optimal detector tuning, where the
defender’s action is to choose τ , while the attacker’s action is to choose {a, xD(

¯
k)}.

Since the attacker knows xD(k) , maximizing over xD(
¯
k) can be interpreted as the

attacker waiting for the most opportune moment to launch its attack.
From a defender’s perspective, every alarm raised by the detector has to be

investigated to check if an attack is happening. Let cFA ≥ 0 be the cost for
investigating a false alarm and cA > 0 be the cost factor of an attack. Similar to
[26], the cost cL, a defender wants to minimize, is

cL(τ, {a, xD(
¯
k)}) = cFA

T

Tsτ
+ cAf(a), (7.4)

where Ts ∈ R>0 is the sampling period, and T ∈ R>0 is the length of a time interval
of interest for the defender. The first term represents the cost induced by all false
alarms during the time interval T , since T

Ts
are the number of samples taken over

T and τ is the average time between false alarm in samples. The second term
represents the cost induced by the stealthy attack. From the attacker’s perspective
the goal is to have the highest impact possible, while remaining undetected. Hence,
in the notation of Section 7.1 we have

pF (τ, {a, xD(
¯
k)}) = f(a) s.t. d

(
xD(k), a(k)

)
≤ JD ∀k ∈ Γ. (7.5)

Now, we can formulate the problem of finding the optimal detector tuning, which
minimizes the cost cL as a Stackelberg game, where the defender is the leader and
the attacker is the follower. This order is intuitive since the defender has to first set
up the defenses before an attacker can penetrate them.

Problem 7.1. The optimal detector tuning under stealthy sensor data attacks
according to the specified costs and payoffs above is characterized by the Stackelberg
game

min
τ∈L

cFA
T

Tsτ
+ cAf(a) s.t. {a, xD(

¯
k)} ∈ arg max

{a′,x′
D

(
¯
k)}∈A

f(a′),

where

A =
{(
a, xD(

¯
k)
)
∈ R(k̄−

¯
k+1)ny × RnD : d

(
xD(k), a(k)

)
≤ JD ∀k ∈ Γ

}
.

Note that we do not need the supremum operator of (7.1) in Problem 7.1,
because even if {a, xD(

¯
k)} is not unique for a given τ , each {a, xD(

¯
k)} will have the

same influence on cL because f(a) is unique.
Now we will look at each player and present existence and uniqueness results

for Problem 7.1. As it is common for finding the SPNE, we will first look at the
follower’s (attacker’s) action and then at the leader’s (defender’s) action.
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7.2.3 The Attacker’s Action
Since the attacker wants to maximize the attack impact, its set of possible worst-case
attacks is defined as

A∗ := arg max
{a′,x′

D
(
¯
k)}∈A

f(a′). (7.6)

Corollary 7.1. The set of stealthy worst-case attacks A∗ is non-empty for all
JD ≥ 0.

Proof. The proof of Theorem 7.1 showed us that there always exists at least one
solution to the optimization problem stated in Definition 7.1. Therefore it follows
that A∗ is non-empty.

By Definition 7.1 the value I(τ) = f(a) ∀{a, xD(
¯
k)} ∈ A∗ is unique even if we

have more than one attack in A∗.
Note that if we plot I(τ) over τ , we get the metric presented in [25]. Hence,

there is a close relation between the attacker’s action in our Stackelberg game and
the metric proposed in [25].

7.2.4 The Defender’s Action
Given that the attacker will play {a, xD(

¯
k)} ∈ A∗ the minimization problem becomes

min
τ∈L

cFA
T

Tsτ
+ cAI(τ) (7.7)

and we are able to show the following about the solutions of (7.7).

Theorem 7.2. There exists at least one solution to (7.7).

Proof. Since cFA T
Tsτ

+ cAI(τ) is continuous on L and L is a compact set, we always
have at least one minimum in L due to the extreme value theorem.

The result above shows us that there exists at least one solution to (7.7). We
now give two sufficient conditions for uniqueness of the solution.

Proposition 7.1. Let I(τ) be twice continuously differentiable in τ , and let I ′(τ)
and I ′′(τ) denote the first and second derivative of I(τ) with respect to τ , respec-
tively, then the solution to (7.7) is unique if

I ′′(τ) > −2
τ
I ′(τ) ∀τ ∈ L. (7.8)

Proof. Let z = 1
τ and h(z) = I( 1

z ), where z ∈ K := {α ∈ [0, 1] : α = 1
τ ∀τ ∈ L}.

With that we can reformulate (7.7) to

min
z∈K

cFA
T

Ts
z + cAh(z). (7.9)
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This has a unique solution if cFA T
Ts
z+cAh(z) is strictly convex in z. Here, cFA T

Ts
z+

cAh(z) is strictly convex if cAh(z) is strictly convex. Since cA > 0, the strict convexity
of cAh(z) is guaranteed if h′′(z) > 0 ∀z ∈ K. Now with h(z) = I( 1

z ) we get

h′′(z) = I ′′
(1
z

) 1
z4 + 2I ′

(1
z

) 1
z3 > 0 ∀z ∈ K

⇔ I ′′(τ) > −2
τ
I ′(τ) ∀τ ∈ L,

which concludes the proof.

Note that the condition in Proposition 7.1 is independent of cFA, T , Ts, and
cA. Therefore, it does not depend on the exact parametrization of the cost function
(7.7). Let us now present another sufficient condition for the uniqueness of the
solution of (7.7), which does not depend on I ′(τ) but on cFA, T , Ts, and cA.

Proposition 7.2. Let I(τ) be twice continuously differentiable in τ , and let I ′′(τ)
denote the second derivative of I(τ) with respect to τ , then the solution to (7.7) is
unique if

I ′′(τ) > −2cFAT
cATS

1
τ3 ∀τ ∈ L. (7.10)

Proof. The solution of (7.7) is unique if cFA T
Tsτ

+ cAI(τ) is strictly convex, which
is the case if its second derivative is greater than zero for all τ ∈ L. This leads to

2cFA
T

Tsτ3 + cAI ′′(τ) > 0, (7.11)

which gives us the condition stated above.

Note that both uniqueness conditions of Propositions 7.1 and 7.2 include all
strictly convex I(τ), but they also hold for some non-convex I(τ), because I ′′(τ) < 0
is also possible.

Since we have stated two sufficient conditions for the uniqueness of the solution
of (7.7), let us now investigate when the condition in Proposition 7.1 is more strict
than the condition in Proposition 7.2.

Corollary 7.2. The condition stated in Proposition 7.1 is less strict than the
condition in Proposition 7.2 if

I ′(τ) > cFAT

cATs

1
τ2 ∀τ ∈ L

and otherwise if

I ′(τ) < cFAT

cATs

1
τ2 ∀τ ∈ L.
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Proof. Comparing the bounds on I ′′(τ) in Proposition 7.1 and Proposition 7.2
readily leads to these conditions.

This shows that Proposition 7.1 is less strict for impacts I(τ) with a large slope,
while Proposition 7.2 is less strict for impacts that increase slower in τ .

Note that if the conditions stated in Corollary 7.2 are not fulfilled for all τ ∈ L,
we cannot make a general statement if the condition in Proposition 7.1 is stricter
than that in Proposition 7.2 or not.

Recall that the metric in [25] compares the worst-case stealthy attack impacts
under different detectors over the mean time between false alarms. If one detector
results in a lower attack impact than another detector for some investigated same
mean times between false alarms, we consider this detector better for these mean
times between false alarms. If we were to compare several detectors and picked
the best detector according to this metric, then we already have the worst-case
stealthy attack impacts for different τ , i.e. we have I(τ). This can immediately be
used to solve (7.7) and obtain an optimal tuning for the chosen detector. Hence,
Problem 7.1 complements the metric presented in [25].

7.3 Illustrative Example

Let us now present an illustrative example on how one can use the presented
Stackelberg formulation to find an optimal tuning JD(τ). For this example, we use
the χ2 detector, which, for the reader’s convenience, is restated below,

yD(k + 1) = ||r(k)||22 ≤ JD. (7.12)

Here, yD(k) does not depend on xD(k), therefore in our Stackelberg game framework
the attacker’s action is represented only by a. We also see that (7.12) is coercive
and continuous in r(k) and, thus, fulfills Assumptions 3.7. Recall from Chapter 3
that

JD = g(τ) = 2P−1
(ny

2 , 1− 1
τ

)
, (7.13)

where P−1(·, ·) represents the inverse regularized lower incomplete gamma function,
which is non-decreasing in τ and therefore fulfils Assumption 3.8.

Now that we have specified the detector, let us look at our attacked system
in the second stage of the attack. Here, we consider an observer-based controller.
Recall from Chapter 3 that we can express the closed-loop system as a superposition
of two linear subsystems. One system is affected by the noise, while the other is
affected by the attack. To investigate the attack impact we consider the attacked
subsystem for all k ≥

¯
k, which is describe by

xa(k + 1) = (A−BK)xa(k) +BKea(k)

ea(k + 1) = Aea(k)− LΣ
1
2
r a(k)

(7.14)
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with xa(
¯
k) = ea(

¯
k) = 0.

The attack lasts N time steps. Without loss of generality let
¯
k = 0 such that

Γ = [0, N − 1] in this case. Let a = [a(0)T , · · · , a(N − 1)T ]T and the attacker’s
target is xa(N). Since we consider a linear discrete-time system and xa(0) = 0, we
can obtain a matrix Txa ∈ Rnx×Nny from (7.14), such that xa(N) = Txaa. In the
previous chapter, we used the infinity norm as the attacker’s objective, but here we
look at the squared infinity norm, i.e. f(a) = ||Txaa||2∞. Note that the worst-case
attack strategy will be the same since the objective functions are equivalent under a
monotone transformation. However, with the squared infinity norm the impact will
depend directly on JD, which leads to a more convenient notation. Recall that in
the attack strategy r(k) = a(k) ∀k ∈ Γ. Hence, the constraints of the attacker to
remain undetected by the χ2 detector become

a(k)Ta(k) ≤ JD ∀k ∈ Γ. (7.15)

Note that, in this example, f(a) is continuous and the constraints to remain
undetected (7.15) represent a compact set. Hence, according to Theorem 7.1 the
impact I(τ) is well defined. By using Proposition 6.2 we obtain the worst-case
attack impact as

I(τ) = JD

N−1∑
k=0

(√
tTxa,i∗ktxa,i∗k

)2
.

Here, the worst-case attack impact is a linear function of JD. Hence, the solution
of Problem 7.1 can be found as

τ∗ = arg min
τ∈L

cFA
T

Tsτ
+ cJJD

= arg min
τ∈L

cFA
T

Tsτ
+ cJ2P−1

(ny
2 , 1− 1

τ

)
, (7.16)

where cJ = cA
(∑N−1

k=0

√
tTxa,i∗ktxa,i∗k

)2.
To give an illustration of the Stackelberg framework we look at the quadruple

tank process equipped with a χ2 detector. Recall that the quadruple tank process
was introduced in Chapter 6. To obtain K, L, and Σr we use a linear-quadratic-
Gaussian design, for which we linearize the system again around the steady state
reached for constant input voltages of 6 V and we discretize the system with a
sampling period Ts = 0.5 s. We consider a time horizon of a day, i.e. T = 86400 s.
The cost for investigating a false alarm is cFA = 25 and the cost of an attack is
cA = 100. Assuming that the attack lasts for N = 1000 time steps we obtain
cJ = 553.9848.

Let L = [1, 106], then the Stackelberg framework gives us τ∗ = 3899 time steps.
The upper plot in Figure 7.1 shows how the cost function behaves for different
τ and we see that there exists a unique minimum. Let us compare τ∗ with two
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Figure 7.1: The upper plot shows the existence of a unique minimum of the cost
function, while the lower plot depicts how the attack impact increases with τ .

extreme cases, τ1 = 5 and τ2 = 50000. The lower plot of Figure 7.1 illustrates the
trajectory of the state, which the attacker can deteriorate the most. We see that
the impact increases with τ . Here, τ1 = 5 has the lowest impact but then we have
many false alarms, which is represented in the cost function. Therefore, we compare
the analytical cost function and the average cost function over 10000 simulations.
The analytical costs for τ1, τ∗, and τ2 are 865783, 10269, and 12074, respectively.
Averaging the cost over 10000 simulations gives us 865793, 10269, and 12075 for τ1,
τ∗, and τ2, respectively. We see that the average simulated cost for each investigated
τ is similar to its analytically determined cost. Hence, this verifies that the proposed
Stackelberg framework gives us the cost optimal average time between false alarms.

7.4 Summary

In this chapter, we proposed a Stackelberg game framework to tune an anomaly
detector in the presence of sensor attacks. In this framework, the defender acts as a
leader and chooses the detector threshold, while the attacker acts like a follower and
execute its stealthy attack based on the detector threshold. The attacker tries to
maximize its impact, while the defender chooses the threshold to minimize its cost.
The cost is the sum of the cost for investigating false alarms and the cost the attack
impact induces. We presented optimal strategies for both the attacker and defender
and showed that a solution to the Stackelberg game exists. Further, two conditions
for the uniqueness of the solution were given and we indicated a close connection
between the Stackelberg game and a metric for detector comparison. An illustrative
example showed how this Stackelberg framework is used to tune a χ2 detector.





Chapter 8

Conclusions and Future Work

In this chapter, we will conclude the thesis and present several possible directions
for future work.

8.1 Conclusions

In this thesis, we were concerned with the performance of anomaly detectors under
stealthy sensor attacks. The mitigation of the attack impact was one of the main
criteria for evaluating the performance of the detector.

Chapter 3 introduced our model of the sensor attack scenario. We used a linear
plant and a linear controller to model the closed-loop system, which is equipped
with an anomaly detector. The anomaly detector model we proposed is very general
and could fit also possible nonlinear detector models. We fit three detectors, namely
the χ2, CUSUM, and MEWMA detectors, into this model and present tuning
methods for them to achieve a certain mean time between false alarms. We then
give an example how the metric proposed in [25] can be used to compare detectors.
After presenting the system model, we discussed the attacker model including
the assumption made on the attacker’s resources and its goal. The goal is to
remain undetected while maximizing a function, which corresponds to the attacker’s
objective. We introduced one possible worst-case attack strategy, which we used
throughout the thesis. We pointed out that is not immediately possible to execute
the worst-case attack when the attacker penetrates the network. The problem for
the attacker is that it does not have knowledge of the controller’s and detector’s
state at the beginning of the attack. This sets the stage for a feasibility analysis of
this attack.

Chapter 4 started the feasibility analysis of the considered worst-case attack.
Here, we did not consider the anomaly detector and only looked at the attacker’s
capabilities to estimate the controller’s state. We showed that if and only if the
controller has poles inside and on the unit circle, the attacker is able to obtain a
perfect estimate of the controller’s state. Furthermore, we determined when an
attack is able to use a non-optimal observer, for example a Luenberger observer, to
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estimate the controller state. We then classified all observer gains for the attacker,
for which it can obtain a perfect estimate. Further, we proposed a defense mechanism
to make it impossible for the attacker to obtain a perfect estimate. This defense
mechanism is based on the introduction of uncertainty into the controller and shows
similarities to watermarking approaches in the literature. Finally, we verified our
results with simulations. These simulations showed that having controller poles on
the unit circle might significantly slow down the attacker’s estimation.

In Chapter 5, we built upon the previous chapter. Now that we know when
the worst-case attack is possible, this chapter investigated how the attacker could
increase its model knowledge further. More specifically, we examined how an attacker
could obtain an accurate estimate of the detector’s internal state. Having an estimate
of the detector’s state helps the attacker to design a more powerful attack. In this
chapter, we focused on detectors with linear dynamics. We showed how an attacker
could use a virtual detector to design an attack sequence that will remain undetected
while the detector state is estimated. The attack sequence simultaneously mimics the
statistics of the detector output and increases the estimation error of the operator at
each time step. We utilized the Kullback-Leibler divergence as well as the concept
of dual norms to find this possible attack strategy. The attack strategy was verified
by applying it to the use-case of a tall wind-excited building, which is equipped
with a MEWMA detector.

Based upon the previous two chapters, we know that the worst-case attack is
actually feasible for certain plants. Therefore, we compared the performance of
detectors in Chapter 6. The first part compared the χ2, CUSUM, and MEWMA
detectors with the metric proposed in [25]. The metric requires the worst-case impact
under each detector and we proved for an attack objective based on the infinity
norm that we can compute it by solving multiple convex optimization problems. The
comparison of the three investigated detectors shows us that detectors with internal
dynamics have the ability to limit the attack impact more than static detectors.
However, the attack impact depends on the choice of the detector’s parametrization,
for example its forgetting factor. A problem with this detector comparison is that
it depends on the attacker’s objective, which is typically unknown to the operator.
Therefore, we proposed a new metric in the second part of this chapter, which does
not depend on the attacker’s objective. We used the general detector model to
show that there exists a time-invariant set, such that the attack does not trigger
an alarm if it remains in this set. The size of the set is then used to compare the
detectors. Comparing the detectors with this metric gives us results similar to the
ones that we obtained in the first part of the chapter, but has the benefit that
neither knowledge about the attacker’s objective nor the plant dynamics is needed.
However, the disadvantage is that the attack model we use for this metric is less
powerful than the one of the worst-case attack.

Chapter 7 discussed the optimal tuning choice of an anomaly detector. The
contents of this chapter can be seen as the step after the operator has chosen the
preferred detector according to some metric. We proposed a Stackelberg game
framework, where the defender makes the first move by picking a detector threshold.
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The attacker will then design its attack in the second round of the game to maximize
its impact. How the defender chooses the threshold depends on a cost function,
which includes the cost for false alarms and the cost induced by the attack. We
showed that there always exists a solution to this game and presented two sufficient
conditions for the uniqueness of the solution. Finally, we verified the framework by
applying it to a quadruple tank system equipped with a χ2 detector.

8.2 Future Work

Let us now discuss several directions for future work.

8.2.1 Sensor Attacks
In this thesis, we considered a stealthy attack using all sensors of the closed-loop
system. Since the attacker had full model knowledge as well, this is a very powerful
attack model. Therefore, future work includes to look into less powerful sensor
attackers. An attacker with partial sensor information is of special interest, because
this kind of attacker might not be able to guarantee to not trigger an alarm due to
the measurement noise. Therefore, new ways to define the attacker’s stealthiness
should be investigated. One example could be to consider bounded noise processes,
since the noise in real word applications is probably neither Gaussian nor unbounded.

Further, we only showed that the attacker is able to break the confidentiality of
a detector with linear dynamics. Hence, it would be interesting to see if the attacker
could break the confidentiality of other detectors as well.

8.2.2 Actuator Attacks
This thesis only concerned sensor attacks, so a logical direction is to investigate
actuator attacks as well. Since actuator attacks can have an immediate physical
impact, these attacks are more dangerous to the plant’s safety than sensor attacks.
One direction is to see if an attacker could estimate the controller and/or detector
state when it has access to all actuator signals. Further, the combination of sensor
and actuator attacks is of interest. The number of necessary actuator signals and
sensor measurements to break the confidentiality of the controller and/or detector
should be examined. The problem of stealthy partial sensor and actuator attacks
should be considered as well. Here, we also need to find a definition of what
stealthiness means for this kind of attack.

8.2.3 Detector Metrics and Comparison
In the area of detector metrics and comparison we can also find many open problems.
We compared the χ2, CUSUM, and MEWMA detectors only under the assumption
that the attacker uses the infinity norm to define its objective. Since the metric is
impact dependent, we should also compare these detectors under different attack
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objectives. The challenge in that is that it is difficult to find the worst-case impact
when the problem is non-convex.

Our proposed metric in Chapter 6 is only applicable in the case of a sensor attack.
Therefore, it would be interesting to see if such metrics also exists for actuator-only
attacks, and attacks on both the actuators and sensors. In the case of full actuator
attacks and a system with unstable zero dynamics, it is clear that the attack impact
is unbounded no matter which detector is used.

In this thesis, we only looked into three different detectors, while many other
detectors fit our general detector model. Hence, future work includes the comparison
of other detectors. Further, it might be good to come up with novel detectors, which
mitigate the attack impact significantly even for high mean times between false
alarms.

Since operators have access to lots of data from their processes during nominal
behavior, we could also think of using machine learning based detectors for better
attack detection.

8.2.4 Experimental Validation
We showed that the worst-case attack is feasible in theory and verified our results
with simulations. However, we it would be interesting to also validate the results in
a real world scenario to show that these results are not only of a theoretical nature.

The need for experimental validation starts already in Chapter 3, where the
detector tuning is based on the assumption of Gaussian noise. The measurement
and process noise of a real process will not be Gaussian. It is therefore important
to validate the mean time between false alarms, because the metric for detector
comparison depends on these. Similarly, we should determine the impact the attack
has on a real system as well, because it might be quite different from the impact
we estimated from the linear model. This would also change our detector metric
results.

The results of Chapter 4 are based on the fact that the attacker knows the exact
system model. However, in real life not even an operator knows the exact model.
Therefore, it would be interesting to see if the estimation of the controller’s state is
actually possible without the exact knowledge of the closed-loop system.

Further, mimicking the detector output statistics, as presented in Chapter 5, can
fail for a real process because the statistics of the detector output are not known to
the attacker.
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[60] S. R. Etesami and T. Başar, “Dynamic games in cyber-physical security: An
overview,” Dynamic Games and Applications, Jan 2019.
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