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Abstract

The operation of heavy-duty vehicles at small inter-vehicular distances, known as
platoons, lowers the aerodynamic drag and, therefore, reduces fuel consumption and
greenhouse gas emissions. Tests conducted on flat roads have shown the potential of
platooning to reduce the fuel consumption of about 10%. However, platoons are
expected to operate on public highways with varying topography alongside other
vehicles. Due to the large mass and limited engine power of heavy-duty vehicles,
road slopes have a significant impact on feasible and optimal speed profiles. For
single vehicles, experiments have shown that optimizing the speed according to the
road profile resulted in fuel saving of up to 3.5%. The use of such a look-ahead
control framework is expected to lead to large benefits also for platooning.

This thesis presents the design of safe and fuel-efficient control of heavy-duty
vehicle platoons driving on realistic road profiles. The scenario where the platooning
vehicles cooperate to optimize their overall fuel-efficiency is studied together with
the scenario where the vehicles do not explicitly cooperate.

First, we propose a control architecture that splits the cooperative platooning
control problem into two layers. The top layer computes a reference speed profile that
ensures fuel-efficient operation of the entire platoon based on dynamic programming.
The bottom layer relies on model predictive control to safely track the reference
speed. Simulations show the ability of the proposed controller to save up to 12%
of fuel for following vehicles compared to existing platoon controllers and to safely
react to emergency braking of the leading vehicle.

Second, we propose a gear management layer that fits in the cooperative pla-
tooning control architecture and explicitly takes the gear selection into account. The
underlying optimal control problem aims at minimizing the vehicle fuel consumption
and the reference tracking deviations. Simulations indicate how this formulation
outperforms existing alternatives, both in terms of fuel-efficiency and tracking error.

Third, we address non-cooperative platooning by proposing a vehicle-following
controller suitable for fuel-efficient control of heavy-duty vehicles. The proposed
controller explores both the benefits given by the short inter-vehicular distance
and those given by pulse-and-glide, i.e., alternating traction and coasting phases. A
simulation study suggests fuel saving of up to 18% compared to the single vehicle
case, and up to 7% compared to when a constant-distance vehicle-following controller
is used.

Last, we propose a vehicle-following controller aimed at exploiting long preview
of the preceding vehicle trajectory by directly manipulating the inputs of low-level
vehicle controllers. This is achieved through a model predictive controller that uses a
short prediction horizon and includes a terminal state set that incorporates preview
information about the preceding vehicle. Experiments indicate the ability of the
controller to avoid unnecessary braking, while simulations show behavior similar to
the optimal control behavior.





Sammanfattning

Fordonståg där tunga lastbilar kör med korta avstånd mellan fordonen, även känt
som kolonnkörning, sänker luftmotståndet och därigenom minskar även bränsleför-
brukningen och utsläppen av växthusgaser. Utförda tester visar på en potentiell
minskning av bränsleförbrukningen om 10 % på plana vägar. Dock förväntas fordon-
ståg kunna köras på allmänna motorvägar med varierande topografi tillsammans
med övrig trafik. På grund av den begränsade motoreffekten i förhållande till den
stora massan har backar en stor inverkan på möjliga och optimala hastighetspro-
filer för tunga fordon. För enskilda fordon har experiment visat att optimering av
hastigheten med hänsyn till väglutning kan resultera i upp till 3.5% bränslebesparing.
En reglerstrategi som tar hänsyn till väglutning kan förväntas ge samma fördelar
även för fordonståg.

I den här avhandlingen presenteras säkra och bränsleeffektiva reglerstrategier för
fordonståg med tunga fordon som körs på vägar med verkliga väglutningar. Både
fallet där fordonen samarbetar för att minimera bränsleförbrukningen och fallet där
fordonen inte uttryckligen samarbetar undersöks.

Först föreslår vi en reglerarkitektur där reglerproblemet för det samarbetande
fordonståget delas upp i två laget. Ett centraliserat övre lager beräknar genom
dynamisk programmering börvärden för fordonståget som ger bränsleeffektiv körning.
Ett distribuerat undra lager använder modellprediktiv reglering för att på ett säkert
sätt följa de beräknade börvärdena. Den föreslagna reglerstrategin visas i simulering
kunna spara upp till 12% bränsle för de efterföljande fordonen jämfört med tidigare
reglerstrategier för fordonståg samtidigt som regulator på ett säkert sätt agerar på
en nödbroms från ledarfordonet.

Vidare föreslår vi ett växelstyrningslager som kan användas i ovan nämnda
reglerstrategi som explicit tar hänsyn till växelval. The underliggande optimala
reglerproblemet är formulerat för att minimera fordonets bränsleförbrukning och
avvikelser från börvärdet. Simuleringar indikerar att denna formulering överträf-
far tidigare alternativa reglerstrategier både vad gäller bränsleförbrukning och
börvärdesföljning.

Vi studerar även det icke samarbetande fordonståget och föreslår en fordonsföl-
jande regulator för bränsleeffektiv körning av tunga fordon. Den föreslagna regulatorn
utnyttjar både fördelarna med korta avstånd mellan fordon och med att växla mellan
aktiv framdrivning och frirullning. En simuleringsstudie visar på en möjlig bränslebe-
sparing om 18% jämfört med fallet med ett fordon och upp till 7% jämfört med en
regulator som håller konstant avstånd.

Slutligen föreslår vi en fordonsföljande regulator som utnyttjar förhandsinfor-
mation om det framförvarande fordonets körbeteende genom att direkt reglera
lågnivåsignaler i det egna fordonet. Detta uppnås med en modellprediktiv regulator
där en kort prediktionshorisont används tillsammans med bivillkor för tillstånden
som tar hänsyn till förhandsinformation från framförvarande fordon. Experiment
visar att regulatorn undviker onödiga inbromsningar. Vidare visar simuleringar
regulatorbeteende som liknar det optimala.
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Chapter 1

Introduction

Heavy-duty vehicles are responsible for a significant share of the global green-
house gas emissions and energy consumption. Due to the strong link between
freight transportation and the global economic growth, their environmental

impact is expected to grow in the coming years, if no measures are taken.
Vehicle platooning is under investigation by governmental institutions, research

communities, and private companies as a mean to reduce fuel consumption and
emissions of heavy-duty vehicles. By letting vehicles drive at a short inter-vehicular
distance, the overall aerodynamic drag can be lowered significantly and, as a result,
the fuel consumption can be reduced. Tests conducted in controlled environments
have shown that platooning has the potential of saving 10% of fuel with vehicles
driving at an inter-vehicular distance of 20 meters. However, the general problem of
control of heavy-duty vehicle platoons aimed at reaching a high level of fuel-efficiency
while guaranteeing safety on public roads is still open. Platoons are expected to
drive on existing highways, where altitude variations and traffic can have large
impact. In this thesis we address this platoon control problem with a particular
attention to the influence of slopes and external traffic.

The outline of this chapter is as follows. Section 1.1 introduces the challenges
that the road transportation sector is facing, while Section 1.2 highlights some of
the technologies under research to address them. Section 1.3 presents the concept
of platooning as one of these technologies, and Section 1.4 underlines the main
challenges faced in designing a fuel-efficient and safe platooning control system.
Section 1.5 introduces the formulation of the problems addressed in the thesis. Lastly,
Section 1.6 provides the thesis outline and contributions.

1.1 Motivation

Human activities over the last century are believed to be largely affecting our planet.
The increasing trend in greenhouse gas emissions is exhibiting a strong correlation

1
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Figure 1.1: Overview of the CO2 emissions in European Union in 2015 (European
Commission, 2017b).

with the rise of the global surface temperature. Temperatures, on average, have
increased 0.6 Celsius degrees from the pre-industrial era and are expected to increase
by another 3.7 degrees by 2100 if no action is taken (IPCC, 2014). This rise in
temperature is causing the melting of glaciers, the rise of sea levels and the increase
of the number of extreme atmospheric events (NASEM, 2016). If a radical change
of course does not take place, climate change will have a strong impact on the life
of our future generations and other species (WHO, 2009). This acquired awareness
is leading humanity to reconsider the way we live, and the way we transport.

A study commissioned by the European Commission has estimated that, in 2015,
road transportation accounted for the 21% of the total human-related CO2 emissions,
see Figure 1.1 (European Commission, 2017b; Hill et al., 2011). In particular, 26% of
these emissions are directly attributable to freight transportation. This is in line with
statistics on the US transport sector, where heavy-duty vehicles account for 5.4%
of the total CO2 emissions (Frey and Kuo, 2007). While the emissions from other
sectors have dropped in the last 30 years, those imputable to the road transport,
and, in particular, to freight are still on the rise (European Commission, 2017b), due
to the strong link between freight transportation and economic growth. Following
the predicted growth of the world’s GDP at an average annual rate of 3.3%, the
freight transport sector is expected to continue to expand. Projections from the
International Transport Forum predict a doubling of the global CO2 emissions
linked to the surface (road and rail) freight transport sector relative to the level of
2015 if no measures are taken (ITF, 2017). To contrast this evolution, governments
all over the world agreed in introducing new policies aimed at strongly reducing
human-related greenhouse gas emissions (European Commission, 2011; EPA, 2011;
UNFCCC, 2015).

At the same time, the transport sector is responsible for a large share of the
global energy consumption. At present, energy is a scarce resource and is therefore
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associated to a high cost. The fuel cost for a transportation company accounts for
almost one third of the total cost of owning and operating a vehicle (ICCT, 2018).
Given an average of 130,000 km driven every year by a heavy-duty vehicle (Hill
et al., 2011), the projected fuel cost of 1.4 e/l and an efficiency of 3 km/l, the fuel
cost for a single vehicle amounts to approximately 60, 000 e/year. Considering that
transportation companies typically own several vehicles, fuel has a large impact on
their economy. Being able to reduce the fuel consumption by a few percents can
therefore translate into significant savings.

The road transport sector is also responsible for the loss of a significant number
of human lives. Although fatalities due to road accidents decreased in the last years,
they are still one of the leading causes of death. In particular, road traffic crashes
are the main cause of death among those aged between 15 and 29 years (WHO,
2015). Road accidents involving heavy-duty vehicles tend to be more severe than
other accidents because of their large mass. In the European Union in 2015, 17% of
the total road traffic fatalities happened in accidents involving heavy-duty vehicles
(ERSO, 2016) and heavy-duty vehicles are more likely to be involved in a fatal
accident than passenger cars (SAFE, 2017). For this reason, further improving the
safety of the road transport sector and, in particular, of heavy-duty vehicles is still
a priority.

1.2 Technology opportunities

In order to address the demand for a a more sustainable, energy-efficient, and safer
transportation system, research communities and private companies are investigating
the technologies that will shape the future of mobility.

One part of the research is focusing on developing hardware technologies. These
include, among others, hybrid and electric propulsion systems, tires with reduced
rolling resistance and improved vehicle aerodynamics. Another part is focusing
on developing software technologies. Developments in the latter can be classified
in one or more of the three general categories displayed in Figure 1.2: vehicle
automation, vehicle connectivity, and intelligent transportation. Vehicle automation
aims at improving vehicle performance and driver convenience by controlling the
longitudinal and lateral vehicle dynamics. Vehicle connectivity allows vehicles to
share information between each other and the world. Intelligent transportation
provides the framework for higher level functionalities aimed at supervising and
intelligently routing vehicles. As shown in Figure 1.2, these frameworks enable a
large variety of software technologies. For an in-depth discussion of these technologies
we refer the reader to Spulber (2016) and Guanetti et al. (2018).

In this thesis we focus in the control of platoons of heavy-duty vehicles. A
platoon consists of a group of vehicles driving at a short inter-vehicular distance.
In particular, we discuss control strategies for what we denote as non-cooperative
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Figure 1.2: Overview on the software technologies for a more sustainable, energy-
efficient, and safer transportation system. Adaptation from Spulber (2016).

and cooperative platooning. The first one implies that no cooperation between
vehicles exists and can therefore be classified as a vehicle automation functionality.
The latter relies on communication between vehicles and aims at cooperatively
controlling the vehicles to reach a high level of fuel-efficiency. It is therefore both
vehicle automation and connectivity, see Figure 1.2. Platooning research also studies
higher-level functionalities that partially belong to the intelligent transportation
framework, e.g., cooperative freight transportation systems aimed at coordinating
heavy-duty vehicles for promoting platoon creation. Although these functionalities
are not the focus of the thesis, they illustrate the future potentials of platooning
and are briefly discussed in Section 2.4.

1.3 Platooning for an improved fuel-efficiency and safety

An example of a platoon is displayed in Figure 1.3. Vehicle platooning is an effective
method to reduce fuel consumption and, consequently, greenhouse gas emissions.
By operating groups of vehicles at a small inter-vehicular distance, the aerodynamic
drag experienced by vehicles is reduced. This phenomenon is known as the slipstream
effect and consists in the creation of a tunnel of air that moves at a lower relative
speed with respect to the platooning vehicles. This translates in reduced air pressure
acting on the front of the vehicles and in reduced air vortices on the back of the
vehicles. It ultimately results in aerodynamic drag reductions for all following vehicles
and, of smaller entity, for the leading vehicle.
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Figure 1.3: Four-vehicle platoon driving over an uphill stretch. Photo provided by
courtesy of Scania AB.

Figure 1.4 shows a diagram of the air pressure experienced by two vehicles driving
at various inter-vehicular distances obtained by means of CFD simulations. Figure 1.5
displays an estimation of the reduction of the aerodynamic drag as function of the
inter-vehicular distance on a three-vehicle platoon based on the experimental data
reported in Hucho (1987). A distance of 10 m in a platoon of two vehicles driving at
80 km/h, for example, produces a reduction of the aerodynamic drag of 40% for the
second vehicle and of 4% for the first one. As about a quarter of the heavy-duty
vehicle fuel consumption is related to the aerodynamic drag (Hellström et al., 2010),
platooning can have a large effect on the fuel consumption. Indeed, independent
studies have shown that truck platooning has the potential to save approximately
10% of fuel for following vehicles while driving at an inter-vehicular distance of 20 m
(Bonnet and Fritz, 2000; Alam et al., 2010; Roeth, 2013; Lammert et al., 2014).

As human drivers cannot safely maintain the short inter-vehicular distances
needed for the slipstream creation, automation of the platoon longitudinal dynamics
is required. Such automation is expected to significantly increase highway safety
(Roland B., 2016). In Europe, rear-end collisions represent 15% of the serious or
fatal road accidents where a heavy-duty vehicle is involved (Almqvist and Heinig,
2013). The automatic control of the longitudinal dynamics can largely reduce this
percentage. Furthermore, vehicle platooning is typically seen as the first step toward
fully-automated vehicles, which are expected to further decrease the overall number
of fatalities on our roads.
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Figure 1.4: Illustration of the air pressure experienced by two vehicles driving at
various inter-vehicular distances obtained by means of CFD simulations. Small distances
affect the pressure experienced by the following vehicle and the air flow behind the
leading vehicle. Image courtesy of Norrby (2014).

1.4 Platooning challenges

Although heavy-duty vehicle platoons are expected to commercially reach our
roads in the next few years (e.g., Peloton (2018), Scania (2018), Ahola (2018)),
there are still open challenges that need to be addressed to achieve a high level of
fuel-efficiency, while guaranteeing safety. The majority of the experimental tests
have been performed in controlled environments where altitude variations and the
interference of external vehicles have not been included, e.g. Bonnet and Fritz (2000),
Browand et al. (2004), Alam et al. (2010) and Lammert et al. (2014). Researcher who
tested platooning on public roads reported how altitude variations can neutralize
the benefits from the slipstream effect and external traffic can endanger safety, e.g.
Alam et al. (2015) and Lank et al. (2010).

Figure 1.6 depicts a three-vehicle platoon facing a downhill segment. Because of
the large mass and the limited engine power of heavy-duty vehicles, relatively small
slopes can produce large longitudinal forces that cause vehicles to decelerate along
uphill segments (because of the limited engine power) and accelerate along downhill
segments. As these accelerations and decelerations highly depend on the vehicle
characteristics (e.g., vehicle mass and tire rolling coefficient), altitude variation can
lead the platoon to separate or require braking action of some of the vehicles in
order to avoid collision. This behavior can easily result in the neutralization of
the slipstream benefits. Look-ahead control for single trucks driving along hilly
roads have shown the potential to reduce vehicle fuel consumption up to 3.5%, see
Hellström et al. (2009). Look-ahead control for platooning is consequently expected
to lead to much larger fuel savings.

The surrounding traffic can interfere with the nominal behavior of the platoon,
see Figure 1.6. It is therefore important to ensure the safety of platoon operations,
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Figure 1.5: Estimation of the reduction of the drag coefficient for three heavy-duty
vehicles driving in platoon formation at a speed of 80 km/h for varying inter-vehicular
distance. Since the aerodynamic drag is linearly proportional to the drag coefficient
a reduction in the drag coefficient reflects a reduction of the aerodynamic drag. The
data are adapted from Hucho (1987). Similar results have been reported in Bonnet
and Fritz (2000).

while aiming at the fuel-efficient control of the platoon. Due to the potential
heterogeneity of the platooning vehicles, which can significantly differ in mass
and braking capability, this is not an easy task. Additionally, the slipstream effect
produced by platooning generates a reduced aerodynamic force on the following
vehicles, which affects the maximum braking deceleration of the vehicles.

These challenges motivate the development of the platoon controllers discussed
in the thesis that explicitly takes topography information into account.

1.5 Problem formulation

The overall problem studied in this thesis is the control of the longitudinal dynamics
of a vehicle platoon driving along a road with varying topography with the aim
of maximizing the fuel-efficiency while guaranteeing safety. A short inter-vehicular
distance leads to a reduced overall aerodynamic drag and therefore a reduced platoon
fuel consumption. However, to maintain such short distances while avoiding braking
and guaranteeing safety requires advanced automatic controllers. In this thesis, we
address two related platooning scenarios:

• Cooperative platooning: Platooning vehicles cooperate in order to reach an
overall reduced fuel-consumption.
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Figure 1.6: Illustration of a heavy-duty vehicle platoon driving on a public highway.
Because of vehicle heterogeneity, altitude variations can significantly affect the platoon
fuel consumption. Furthermore, external traffic can interfere with platoon operations.

• Non-cooperative platooning: Each vehicle greedily minimizes its own fuel
consumption. We focus on two-vehicle platoons where the first vehicle acts
as it was alone, while the second vehicle exploits prediction of the preceding
vehicle to minimize its own fuel consumption.

In the remainder of this section, we first present the components common to the
two problems and, second, we give details on their differences.

Figure 1.7 shows a heterogeneous platoon of Nv > 1 vehicles driving along a road
with varying topography. The state of each vehicle i is represented by its longitudinal
position si, speed vi, and engaged gear gi. Contiguous vehicles are separated by a
distance di defined as

di = si−1 − si − li−1, (1.1)

where li denotes the length of vehicle i. The road is characterized by its road gradient
α(⋅) defined as a function of the longitudinal position. The longitudinal dynamics
of each vehicle can be modeled as

v̇i = ϕi(vi, gi, α(si), d2, ..., dN , ψi, Fb,i),
ṡi = vi,
g+i = ξi(gi, gr,i),

(1.2)

where ψi, Fb,i, and gr,i represent the inputs of vehicle i and denote the fuel flow,
the braking force, and the requested gear, respectively. Each vehicle is characterized
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di mi−1
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si, vi, gi
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, vNv
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s1 , v1 , g1
......
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Figure 1.7: Sketch of a platoon of heterogeneous vehicles driving over a road with
varying topography.

by parameters such as mass, roll friction, engine efficiency, etc., included in function
ϕi. The coupling between the vehicles is defined by the aerodynamic drag, which, in
general, is a function of the distance between all the vehicles. The function ξi(⋅, ⋅, ⋅)
represents the discrete gear shift dynamics and g+i the engaged gear at the following
time step. Furthermore, each vehicle is constrained by input and state bounds, i.e.,

(vi, si, gi) ∈ Xi,
(ψi, Fb,i, gr,i) ∈ Ui(vi, gi),

(1.3)

representing speed limits and bounds on engine torque and speed, braking capability,
and admissible gears. The fuel consumption of vehicle i can be defined as

Ψvehicle,i = ∫
t+H

t
ψi(τ)dτ, (1.4)

where t and H denote the current time and the prediction horizon, respectively,
while the fuel consumption of the platoon is given as

Ψplatoon =
Nv

∑
i=1

Ψvehicle,i. (1.5)

Finally, the safety requirement can be formulated by demanding the platoon state
to lie in a properly defined set, i.e.,

(s1, v1, ..., sNv , vNv) ∈ Xsafe. (1.6)

In this work, with ensuring safety we mean that the platoon can manage the
emergency braking of any of the platooning vehicles without collision.

Cooperative platooning

Given the vehicle dynamics (1.2), and the state and input bounds (1.3), the control
problem we consider to solve is to minimize the overall fuel consumption (1.5), while
guaranteeing platoon safety (1.6). This can be summarized by the following optimal
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control problem:

minimize platoon fuel consumption (1.5),
subj. to vehicle dynamics (1.2),

state and input bounds (1.3),
safety constraint (1.6).

where i = 1, ...,Nv. The cooperative platooning problem is addressed in Part I of the
thesis.

Non-cooperative platooning
For non-cooperative platooning, the following vehicle exploits the predicted trajectory
of the lead vehicle. If inter-vehicular communication is available, this trajectory can
be computed by the lead vehicle and communicated to the following vehicle. If it
is not available, it has to be computed by the following vehicle. We refer to the
preceding vehicle predicted trajectory as

(v̂1(⋅), ŝ1(⋅)). (1.7)

Given vehicle dynamics (1.2), the state and input bounds (1.3), and the preceding
vehicle predicted trajectory (1.7), the control problem we address how to minimize
the vehicle fuel consumption, (1.4), while guaranteeing the platoon safety (1.6). This
can be summarized by the following optimal control problem:

minimize vehicle fuel consumption (1.4),
subj. to preceding vehicle predicted trajectory (1.7),

vehicle dynamics (1.2),
state and input bounds (1.3),
safety constraint (1.6).

where Nv = 2, i = 2 in (1.2), (1.3), and (1.4) and (v1(⋅), s1(⋅)) = (v̂1(⋅), ŝ1(⋅)) in (1.6).
The non-cooperative platooning problem is addressed in Part II of the thesis.

1.6 Thesis outline and contribution

In this section, we outline the thesis and its contributions.

Chapter 2: Background
This chapter provides the background on fuel-efficient freight transportation and the
role of platooning in such a system. We first introduce the technologies that enable
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vehicle platooning. Second, we give an overview of the literature related to vehicle
platooning. The majority of these works address the problems of platooning and
look-ahead control separately. Third, we present the general problem of creating a
fuel-efficient freight transportation system, which ranges from how the goods should
be dispatched to optimized truck usage. We present a system architecture aimed to
divide this complex problem into solvable subproblems. Lastly, we briefly introduce
the mathematical tools that we use to solve this control problem, namely dynamic
programming and model predictive control. This chapter is partially based on the
following publication:

• B. Besselink, V. Turri, S. H. van de Hoef, K.-Y. Liang, A. Alam, J. Mårtens-
son, and K. H. Johansson. Cyber-physical control of road freight transport.
Proceedings of the IEEE, 104(5): 1128–1141 (2016).

Chapter 3: Modeling

In this chapter we present a vehicle model suitable for the design of controllers for fuel-
efficient and safe platooning. Particular attention is given in modeling components
that play an essential role for the fuel consumption, namely the gravitational, rolling,
aerodynamic, braking, and traction forces. The vehicle model also includes a high-
level powertrain model that describes the engine, the clutch, the gearbox and the
transmission. This model details how the fuel is converted into traction force and
provides a way to describe the dynamics of gear shifts and freewheeling, i.e., driving
in neutral gear. The chapter ends with an overview of a system architecture.

Chapter 4: Control architectures for platooning

In this chapter we develop two control architectures for heavy-duty vehicle platoons.
Key aspects include the use of topography information and the ability to take
external traffic into account. In order to acquire a good understanding of the
effect of road altitude variation on the platoon dynamics, the chapter starts with
an analysis of a platooning experiment conducted on public roads. The insights
collected from the analysis are used to motivate the following two architectures for
vehicle platooning: (i) A control architecture for cooperative control of platoons.
In this setting, platooning vehicles cooperate in order to minimize the overall fuel
consumption of the platoon, while guaranteeing safety. (ii) A control architecture
for the non-cooperative control of platoons. Here, each vehicle greedily minimizes
its own fuel consumption given the prediction of the preceding vehicle trajectory.
The experiment analyzed in this chapter is based on the following publication:

• A. Alam, B. Besselink, V. Turri, J. Mårtensson, and K. H. Johansson. Heavy-
duty vehicle platooning for sustainable freight transportation: A cooperative
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method to enhance safety and efficiency. IEEE Control Systems Magazine,
35(6): 34–56 (2015).

Part I – Cooperative platooning

Chapter 5: Cooperative fuel-efficient and safe platooning
This chapter proposes a two-layer cooperative controller for vehicle platooning. Each
layer is based on an optimal control problem formulation aimed at optimizing the
platoon behavior. The top layer, denoted platoon coordinator, is based on dynamic
programming, and computes a reference speed profile defined over space for all
vehicles of the platoon. It ensures the feasibility of the speed trajectory, which is
fuel-optimal by explicitly taking topography information into account. The lower
layer, denoted vehicle control layer, is based on a distributed model predictive control
framework that safely tracks the reference speed trajectory. Safety is guaranteed by
specifically designed constraints that ensure the recursive feasibility of the model
predictive controller. The proposed controller is tested in an in-depth simulation
study that can be divided into three parts: (i) We evaluate the fuel consumption
of a two-vehicle platoon for multiple vehicle control strategies. The results show
the potential of the platoon coordinator to reduce the fuel consumption for a fairly
hilly road by up to 12% for following vehicles with respect to standard platooning
controller from the literature. (ii) We test the reaction of a three-vehicle platoon
to multiple maneuvers of the leading vehicle. The results show how the platooning
vehicles successfully handle harsh braking of the leading vehicle without collision and
how disturbances attenuate along the platoon. (iii) The overall two-layer controller
is tested by simulating a three-vehicle platoon driving along the same road as in
the experiment presented in the previous chapter, outperforming the experimentally
tested controller. The platoon exhibits a smooth behavior and the controller is able
to compensate for disturbances acting on the control input. This chapter is based
on the following publications:

• V. Turri, B. Besselink, and K. H. Johansson. Cooperative look-ahead control
for fuel-efficient and safe heavy-duty vehicle platooning. IEEE Transactions
on Control Systems Technology, 25(1): 12–28 (2017a).

• V. Turri, B. Besselink, J. Mårtensson, and K. H. Johansson. Fuel-efficient
heavy-duty vehicle platooning by look-ahead control. In Proceedings of IEEE
53rd Conference on Decision and Control, 654–660. Los Angeles, CA, USA
(2014).

Chapter 6: Gear management in cooperative platooning
In this chapter we discuss the problem of how to efficiently manage gear shifts
in heavy-duty vehicle platoons. Gears have a strong impact on the vehicle fuel
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consumption, and on the reference speed and inter-vehicular distance tracking.
Selecting the wrong gear can cause the engine to run in a fuel-inefficient operating
point. A gear shift taking place at the wrong moment, e.g., during an uphill stretch,
can lead to a large deviation from the speed reference, which can be hard to recover
from. Here, we discuss a modification of the control architecture presented in the
previous chapter: a gear management layer that optimizes the gear selection and
the gear shift timing is introduced. The underlying optimal control problem aims at
minimizing the vehicle fuel consumption and the speed and inter-vehicular reference
tracking deviations. The gear management is tested in a simulation study that
compares it to alternative solutions. The study shows how the proposed solution
properly manages the gear shifting task guaranteeing fuel-efficiency and the smooth
behavior of the platoon. This chapter is based on the following publication:

• V. Turri, B. Besselink, and K. H. Johansson. Gear management for fuel-efficient
heavy-duty vehicle platooning. In Proceedings of IEEE 55th Conference on
Decision and Control, 1687–1694. Las Vegas, NV, USA (2016).

Part II – Non-cooperative platooning

Chapter 7: Fuel-optimal vehicle-following control

In this chapter, we study the vehicle-following control problem for heavy-duty
vehicles. The problem is formulated as an optimal control problem that exploits
road topography information and the predicted trajectory of the preceding vehicle
to compute the optimal state and input trajectories for the vehicle under control.
The vehicle model includes the longitudinal vehicle dynamics and a powertrain
model that captures both the gear shifts and freewheeling (cruising in neutral
gear) dynamics. This allows for exploring the benefits of combining the fuel savings
given by a short inter-vehicular distance with those given by a pulse and glide
control strategy. The control is computed via dynamic programming and is tested
in a simulation study where the performance for multiple scenarios and controller
setups are compared. In particular, we compare the behavior and fuel savings of
a heavy-duty vehicle using the proposed control strategy with that of a reference
vehicle-following controller that tracks a constant distance. The results show that
the proposed control strategy is able to reduce the fuel consumption by up to 18%
by keeping a minimum distance of 20 m with respect to the driving alone scenario,
and up to 7% with respect to the use of the constant-distance vehicle-following
controller. This chapter is based on the following publication:

• V. Turri, O. Flärdh, J. Mårtensson, and K. H. Johansson. Fuel-optimal look-
ahead adaptive cruise control for heavy-duty vehicles. In Proceedings of IEEE
American Control Conference. Milwaukee, WI, USA (2018). To appear.
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Chapter 8: Low complexity vehicle-following control

In this chapter, we discuss a vehicle-following controller for passenger cars. The
controller receives a prediction of the preceding vehicle trajectory and directly
manipulates the inputs of the low-level vehicle controllers. This requires the vehicle-
following controller (i) to exploit long previews of the preceding vehicle trajectory
and (ii) to run fast enough for real-time. These conditions are conflicting as the
exploitation of a long preview suggests a long prediction horizon, while the fast
computation calls for a short one. To address this conflict, we propose an optimal
control formulation that uses a relatively short horizon and compensates for that
by redefining the cost function and introducing a specific terminal state constraint.
In particular, the cost function is redefined to include terms that promote the long
term fuel-efficient behavior of the vehicle. The terminal state set includes all states
that, given a conservative prediction of the preceding vehicle future trajectory, will
not require braking action after the end of the prediction horizon. The proposed
vehicle-following controller is tested in both real vehicle experiments and simulations.
The experiments show that the proposed controller avoids unnecessary braking
and can significantly improve fuel economy and ride comfort. Remarkably, the
proposed terminal set can conveniently exploit long previews, while keeping the
length of the prediction horizon limited to a few seconds, thus making the real-time
implementation realistic. The simulation study shows how the vehicle behavior is
comparable when using the proposed controller and when using a similar controller
that uses a significant longer horizon, representing an approximation of the acausal
optimum. This chapter is based on the following publication:

• V. Turri, Y. Kim, J. Guanetti, K. H. Johansson, and F. Borrelli. A model
predictive controller for non-cooperative eco-platooning. In Proceedings of
IEEE American Control Conference, 2309–2314. Seattle, WA, USA (2017b).

Chapter 9: Conclusion and future work

This chapter contains a summary of the work presented in the thesis and highlights
potential future research directions.

Other publications

The following publications are not part of the thesis, but inspired some of the
presented work:

• V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli. Linear
model predictive control for lane keeping and obstacle avoidance on low
curvature roads. In Proceedings of IEEE 16th International Annual Conference
on Intelligent Transport, 378–383. The Hague, The Netherlands (2013).
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• K.-Y. Liang, S. van de Hoef, H. Terelius, V. Turri, B. Besselink, J. Mårtensson,
and K. H. Johansson. Networked control challenges in collaborative road
freight transport. European Journal of Control, 30: 2–14 (2016).

• D. Nigicser, V. Turri, J. Mårtensson, A. A. Mustafa, and E. S. da Silva.
Predictive vehicle motion control for post-crash scenarios. In Proceedings of
14th International Symposium on Advanced Vehicle Control. Beijing, China
(2018). To appear.

Contribution by the author
In the above works, the order of the authors reflects their contribution, where the
first had the most important contribution. In all the publications the thesis author
participated actively in the discussions and derivations of the theory and results, as
well as in the paper writings.





Chapter 2

Background

This chapter establishes the required background to the rest of the thesis. We
first introduce the technologies that enable look-ahead vehicle platooning
and the existing longitudinal control functionalities that relate to it. Then,

we give an overview of the literature related to look-ahead vehicle platooning. There
exist only few works that address the fuel-efficient vehicle platooning control by
explicitly taking road topography information into account. Such overview, therefore,
mainly focuses on the works that deal with the problems of platooning control and
look-ahead vehicle control, separately. Afterwards, we give a broader perspective on
the potential for increasing fuel-efficiency in the freight transport sector. We propose
a system architecture for fuel-efficient freight transportation aimed at maximizing the
benefits from platooning. Such architecture deals with problems ranging from how to
fuel-optimally route vehicles over the road network exploiting platoon possibilities,
to how to efficiently control the vehicle actuators. Lastly, we introduce the concepts
of dynamic programming and model predictive control that will be exploited in the
platoon controllers proposed in the thesis.

The chapter is organized as follows: in Section 2.1 we present the technologies that
enable the safe and fuel-efficient implementation of vehicle platooning. Sections 2.2
and 2.3 provide a literature overview on vehicle platooning control and look-ahead
vehicle control, respectively. The fuel-efficiency problem from the whole freight
transport sector perspective is discussed in Section 2.4 and a system architecture
centered on platooning is introduced. Section 2.5 presents a short overview on the
concepts of dynamic programming and model predictive control. Lastly, Section 2.6
summarizes the chapter.

2.1 Technologies enabling platooning

In order to safely operate heavy-duty vehicles at a short inter-vehicular distance, as
necessary for a reduced aerodynamic drag, the longitudinal dynamics automation

17
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Figure 2.1: Advances in technology provide the tools for realizing safe and fuel-
efficient vehicle platooning. On-board sensors, e.g. radars, lidars and cameras, allow
to measure the distance and the relative speed with respect to the preceding vehicle.
GPS data fused with speed and acceleration measurements can generate estimation of
the current vehicle state with a precision of centimeters. Wireless sensor units allow
the platooning vehicles to share state information between them and to communicate
with a back-end office or cloud services.

based on information received through communication or collected by on-board
sensors is needed. In this section we present the existing technologies that enable
platooning. In particular, we discuss the longitudinal control functionalities and the
technologies at the base of the environment perception and vehicle connectivity.

2.1.1 Longitudinal control functionalities

The first step towards the automation of the longitudinal relative vehicle dynamics
happened with the introduction of the adaptive cruise control (ACC), see e.g. Vahidi
and Eskandarian (2003). ACC relies on information collected by on-board sensors
such as inter-vehicular distance and relative speed. In the early days of ACC, this
information was collected by a radar placed in the front of the vehicle. Nowadays,
other sensors, e.g. lidars and multiple cameras, work alongside the radar in order
to provide more accurate information. This information, combined with estimated
states of the own vehicle, is used to control the powertrain and braking system
in order to track a certain spacing policy while ensuring safety. While this setup
has been proved successful for the vehicle-following control problem, it showed its
limit when multiple contiguous vehicles in a platoon formation use it to regulate the
inter-vehicular spacing. In particular, as ACC only relies on local information, the
acceleration of the head of the vehicle string can only be detected with a certain
delay by the tail of the platoon. This can produce unwanted behaviors such as the
amplification of distance errors and control effort along the platoon, giving rise to
the so-called string instability.

The introduction of wireless units in vehicles enables the communication between
different vehicles, known as vehicle-to-vehicle communication, and between vehicles
and infrastructure, known as vehicle-to-infrastructure communication, see Figure 2.1.
The inter-vehicular communication allows each vehicle to have a more complete



2.1. Technologies enabling platooning 19

and accurate knowledge of the platoon state. By fusing GPS data with speed and
acceleration measurements, each vehicle can estimate its state with a precision of
centimeters (Ryu and Gerdes, 2004) and, thanks to inter-vehicular communication,
this information can be shared with the rest of the platoon. Inter-vehicular com-
munication allows vehicles to also share or agree on parameters that are critical
for platooning, such as vehicle mass, braking capability and actuator limitations.
The inter-vehicular communication framework has allowed the development of more
advanced longitudinal control functionalities, known as cooperative adaptive cruise
control (CACC).

Vehicle-to-infrastructure communication, on the other hand, allows vehicles to
receive information on the road ahead, e.g., topography information or traffic status.
Topography information can be exploited to improve the fuel-efficiency of vehicles.
By including such information in a look-ahead control (LAC) framework the speed
of single vehicles can in fact be adjusted to minimize their fuel consumption, for
example, by avoiding unnecessary braking during downhills. The same idea can
be extended to platooning vehicles for which the speed can be coordinated to
reach a high level of fuel-efficiency. We will refer to this control as cooperative look
ahead control (CLAC). Vehicle-to-infrastructure communication, finally, can also be
exploited to communicate with off-board systems, such as a back-end office or cloud
services, see e.g. Whaiduzzaman et al. (2014) and van Dooren et al. (2017). This
provides the means for implementing more complex tasks related to platooning, e.g.,
the coordination of vehicles on a road network in order to create platoons as it will
be discussed in Section 2.4.

2.1.2 Environment perception

The longitudinal control functionalities rely on information about the surrounding
environment collected by multiple on-board sensors, e.g., radars, lidars and cameras.

Nowadays, vehicles are equipped with multiple radars that carry out different
functions. Those used for the control of the longitudinal dynamics are placed in
the front of the vehicle and are typically categorized as short, middle and long
range radar sensors, depending on the specifications. The radar uses the reflection of
electromagnetic waves with wavelength in the order of a few millimeters to measure
the distance and the relative speed of an object. The distance is computed by
processing the emitted signal together with the received one, while the relative speed
measurement relies on the Doppler effect (Wenger, 2005). The distance range varies
between 0.15 and 200 m, while the accuracy can be down to 0.02 m and 0.1 m/s for
distance and relative speed measuraments, respectively (Hasch et al., 2012). Radar
has a fundamental role in automotive applications because of its robustness against
environmental influences such as extreme temperatures, bad light and weather
conditions.

One of the first uses of lidar technology for automotive control dates back to the
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2005 Grand DARPA Challenge, where the winning team from Stanford University
equipped their vehicle with five lidars (Thrun et al., 2006). A lidar emits ultraviolet
light and estimates the distance to an object by measuring the time it takes for the
light beam to reach the object and be reflected back to the sensor. By simultaneously
emitting multiple laser beams or scanning the field of view using a spinning mirror,
the lidar is able to return a 3D map of the environment (Zhao et al., 2015). Thanks
to an accuracy in the order of centimeters and a refresh time down to tenths of
a second, the lidar can provide detailed 3D maps of the surrounding environment
ideal for navigation purposes and safety functionalities (Gutelius, 2014).

Cameras are typically used to identify and classify objects critical for the vehicle
automation, including both moving objects, e.g., other vehicles, pedestrians and
cyclists, and road features, e.g., lane markings and traffic lights. Used in pairs,
cameras also allow to measure distances to objects and can be successfully used for
ACC applications (Zhao et al., 2015). Collision warning functionalities have been
also been developed using single cameras that rely on the scale-change of objects to
trigger the warning (Dagan et al., 2004).

Typically the information collected by radars, lidars and cameras is fused in
order to obtain an accurate and real-time environment model with a high-level of
redundancy thanks to sensor diversity. This model is essential for the successful
control of autonomous vehicles. How to model the environment in a suitable way
for autonomous vehicle control is still an open problem and the subject of ongoing
research, see e.g. Berkeley DeepDrive (2018) and MIT SelfDrivingCars (2018).

2.1.3 Vehicle connectivity

Extensive research has been conducted on wireless vehicle communications, see
Sichitiu and Kihl (2008) and Willke et al. (2009). Some of the main challenges
faced in these works are related to communication reliability (Ramachandran et al.,
2007), the requirement for limited delay (Bilstrup et al., 2008) and communication
security (Raya and Hubaux, 2005). These are considered significant problems in inter-
vehicular communication especially because of the intrinsic decentralized nature and
highly dynamic characteristics of vehicle networks. Multiple standards are currently
under study by telecommunication companies and institutions in order to implement
reliable wireless vehicle communication.

The IEEE 802.11p is an amendment to the IEEE 802.11 standard approved in
2010 aimed at adding wireless access in vehicular environments IEEE-SA (2010). It
defines the wireless medium access control (MAC) and physical layer specifications
in order to enable data exchange between (high-speed) vehicles and infrastructure.
For the implementation of the IEEE 802.11p standard the United States Federal
Communications Commission and the European Telecommunications Standards
Institute have allocated part of the 5.9GHz band, although the frequency range is
not exactly the same. The ITS-G5 technology that is expected to roll out in the
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next few years is based on the IEEE 802.11p protocol and will provide cellular and
inter-vehicular connectivity to vehicles (ETSI, 2012).

2.2 Platooning control

Although the commercial deployment of platoons is at a research stage and expected
to happen in the next few years (Peloton, 2018; Scania, 2018; Ahola, 2018), the
concept of platooning has a long history. The first public presentation of an auto-
mated convoy of vehicles driving at a short inter-vehicular distance dates back to
1939 during the Word Fair in New York. At this exposition, General Motors showed
a film entitled To New Horizons (General Motors, 1939) which presents a future
where cars are able to maintain a safe distance by using automated radio control
and where curved road sides help the driver to keep the vehicle within its lane.
Early works on the dynamical behavior of a string of (manually driven) vehicles
start to appear in the fifties. In Pipes (1953), a simple model of the driver is used
to explain the delayed start of a string of vehicles when the light turns green at
an intersection. Only in the sixties, the platoon concept, intended as a string of
automatically controlled vehicles, started to gain a certain attention from the control
community. An early work (Levine and Athans, 1966) proposed an optimal control
approach for the automation of the longitudinal dynamics of a string of vehicles. The
solution of the optimal control problem resulted in a feedback law that required the
exchange of information between all platooning vehicles. Approaches that required
the communication between a smaller number of vehicles have been later proposed,
see, e.g., Chu (1974) and Sheikholeslamn and Desoer (1990).

In the remainder of the section, we review a selection of works on platooning
control most relevant to this thesis, grouping them according to their main focus,
i.e., string stability, fuel-efficiency, and safety.

2.2.1 String stability
An aspect that has been deeply studied since the early days of platooning research is
string stability. The notion of string stability was first introduced by Peppard (1974)
and refers to the ability of the controlled vehicle string to attenuate disturbances as
they propagate through the string. A formal definition of string stability is given in
Swaroop and Hedrick (1996) and an overview of its various interpretations existing
in literature is presented in Ploeg et al. (2014). In order to achieve string stability,
Peppard (1974) proposes a PID controller that exploits real-time information from
both the preceding and following vehicles in order to track a constant space gap.

Sheikholeslamn and Desoer (1990) were able to show that string stability cannot
be achieved by only using real-time information from the preceding vehicles (known
as the predecessor-following strategy) while tracking a constant space gap. In their
work, therefore, they propose a different control framework that is able to obtain
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string stability by exploiting the real-time information from both the preceding and
leading vehicle. In Seiler et al. (2004), an explanation for these results is given, based
on properties of the transfer function between the position errors of contiguous
vehicles. In order to overcome the intrinsic string instability of predecessor-following
strategies based on the space gap policy, Ioannou and Chien (1993) proposed the
use of a speed-dependent spacing policy. They show that string stability can be
achieved in a predecessor-following strategy setup by using a constant headway gap
policy, i.e., tracking a gap proportional to the vehicle speed (where the proportional
constant is referred to as headway time) in addition to the fixed space gap. Although
this approach allows to reach string-stability also in an ACC framework (where
inter-vehicular communication is not available), Swaroop et al. (1994) pointed out
that the constant headway gap policy requires traction forces that are inversely
proportional to the headway time. A small headway gap can therefore lead to
the saturation of the inputs and to the consequent deterioration of the platoon
performance. Swaroop et al. (1994) observed that the proportionality constant can
be reduced by introducing local communication between contiguous vehicles (and
therefore switching to a CACC framework) and feeding back the acceleration of
the preceding vehicle. These results have been verified by Naus et al. (2010) and
Ploeg et al. (2011) by conducting platooning experiments involving two and six
vehicles, respectively. In particular, they show how it is possible to significantly
reduce the constant headway gap by switching from an ACC configuration to a
CACC one. Yanakiev and Kanellakopoulos (1995) show that string stability can
be guaranteed also for the more complex dynamics of heavy-duty vehicles, when a
constant headway gap policy is used or the reference speed of the leading vehicle is
shared between vehicles.

More recently, a decentralized framework based on model predictive control has
been proposed in Dunbar and Murray (2006) and Dunbar and Caveney (2012) for
heterogeneous vehicle platooning. Because of the non-linearities intrinsic to the
model predictive controller, the platoon string stability could not be studied by a
frequency domain analysis. Instead, the authors use a Lyapunov-based argument to
prove string stability of the platoon when each vehicle exploits the communicated
predicted trajectory of the preceding vehicle and the reference trajectory of the
leading one in a model predictive controller. Besselink and Johansson (2017) study
the string stability problem for platoons tracking a speed trajectory defined in
the spatial domain. The authors show that by using a constant time gap policy
corresponding to the tracking of a unique spatially-defined speed trajectory, string
stability can be guaranteed. Here, we point out that string stability is however not
a guarantee for safety. Even if disturbances attenuate along the string of vehicles,
the harsh braking of any of the platooning vehicles can lead to a position deviation
equal to the reference distance and result therefore into collision.

Until the nineties the research on platooning has been mainly theoretical. The
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Partners for Advanced Transportation Technology (PATH) project (Shladover, 2007),
founded in 1986 in California, USA, brought a new boost to the field. The original
aim of the project was the study of the potential of platooning for an increased
highway throughput. Within this project, Varaiya (1993) proposed a solution based
on platoons of 15 vehicles driving at an inter-vehicular distance of 2 m and platoons
separated by 60 m. Due to the short inter-vehicular distance, it is argued that, even
if collisions occur, they would have a small impact because of the small relative
speed between vehicles. This solution allows to increase the highway throughput
up to three times. In Horowitz and Varaiya (2000), a system architecture that
splits the described control task in manageable subproblems is proposed. During
the project numerous experimental tests involving vehicle platoons of up to eight
vehicles using inter-vehicuclar communication have been conducted (Hedrick et al.,
1994; Rajamani et al., 2000). In these tests, the string stability has been guaranteed
by the exploitation of the leading and preceding vehicles speed and acceleration
shared by inter-vehicular communication, while tracking a constant space gap.

2.2.2 Fuel-efficiency

Although the environmental aspect was not the original focus of the PATH project,
the fuel consumption reduction potential of vehicle platooning has been studied.
Tests conducted in a wind tunnel with passenger car models suggest a reduction
of approximately 20% of the aerodynamic drag experienced by following vehicles
for a platoon of four vehicles spaced by half vehicle lenght (Zabat et al., 1995).
Experiments conducted on real heavy-duty vehicles show average fuel consumption
reductions that vary from about 11% at 3-4 meters spacing to about 8% at 8-10
meters spacing (Browand et al., 2004). With the beginning of the PATH project
and the related successful experimental results, there was an increased interest of
the research community towards more practical aspects of platooning, e.g., traffic
impact, safety, user acceptance and fuel-efficiency (Bergenhem and Huang, 2010;
Bergenhem et al., 2012; Tsugawa, 2013; Shladover, 2012). In particular, because of
the noteworthy results on the reduction of fuel consumption for heavy-duty vehicle
platooning, the potential for increased fuel-efficiency has been further studied for
heavy-duty vehicles. In more recent tests that involved two-vehicle platoons, fuel
consumption reduction of approximately 10% while driving at the inter-vehicular
distance of 10 meters have been confirmed (Bonnet and Fritz, 2000; Alam et al.,
2010; Roeth, 2013; Lammert et al., 2014).

Remark 2.2.1. The variability of the reported results in the fuel consumption
reduction is attributed to multiple factors. The reviewed works suggest that the shape
of the heavy-duty vehicles is a main factor, as experiments conducted with flat-nosed
tractors (Bonnet and Fritz, 2000; Alam et al., 2010) returned higher fuel-saving
than those conducted with long-nosed tractors (Roeth, 2013; Lammert et al., 2014).
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Other factors are vehicle parameters (e.g., mass and tire roll coefficient), external
factors (e.g., wind, weather condition, and road surface state), and measurement
noise.

The so-far-discussed experiments have been conducted in controlled environ-
ments, where the influence of neither external traffic nor altitude variations have
been considered. Lank et al. (2010) report tests conducted within the KONVOI
project (Wille et al., 2007) where a platoon of four heavy-duty vehicles is driven
on a public highway. The authors state that, while fuel savings where registered
during preliminary experiments conducted along a test track, no fuel consumption
reduction occurred during the public road experiments due to traffic interference.
Alam et al. (2015) report another test conducted along public highway involving
a three-vehicle platoon. The experiment results show the platooning potential of
reducing fuel consumption of about 5% along nearly flat road stretches. However,
when the road exhibited a larger altitude variation, the performance of the platoon
degraded and the fuel consumption of following vehicles increased to about 4% with
respect to driving alone, due to repeated braking actions. An in-depth analysis of this
increase in fuel consumption is presented in Section 4.1. This analysis provides the
fundamental insights for the development of the control formulations presented in
the next chapters. Other research works that study the impact of altitude variations
on platoon performance and propose control frameworks to address it are discussed
in Section 2.3.

2.2.3 Safety
As vehicle platoons are expected to drive on public roads, they need to cope with
the presence of external vehicles. Unexpected events such as accidents or vehicle
cuts-in, can require emergency braking of any vehicle in the platoon. According to
the definition of safety given in Section 1.5, platooning vehicles should be therefore
able to react to the maximum deceleration of any of the other vehicles, without
collision occurring.

In Chien and Ioannou (1992), the authors derive a formulation of the safety
distance, i.e., the minimal allowed inter-vehicular distance, that agrees with our
definition of safety. The obtained expression takes the maximum vehicle deceleration
and detection delays into account and can be formulated as

dsafe = λ1(v2
i − v2

i−1) + λ2vi + λ3, (2.1)

where vi−1 and vi represent the speed of the preceding and current vehicles, respec-
tively, and λ1, λ2 and λ3 are suitable parameters. Similar expressions of the safety
distance have been derived in Doi et al. (1994) and Yasuhiko et al. (1995), and are
used to formulate a binary logic to control the braking action in a adaptive cruise
controller. Seiler et al. (1998b) propose a sliding mode controller to track a braking
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speed profile corresponding to the safety distance. Collision avoidance and collision
warning functionalities based on a similar distance model have been also developed
by Honda and Mazda (Seiler et al., 1998a).

Works within the PATH project have addressed the safety problem for platoon
operations. In Li et al. (1997) and Alvarez and Horowitz (1997), the authors propose
control laws for the safe merging and splitting maneuvers in platoons. More recently,
Alam et al. (2014) propose a game-based approach to compute the safe state set
for CACC frameworks where communication is allowed. The authors show how
in such setting it is safe to drive at full speed with a inter-vehicular distance
of 1.2 m. In van Nunen et al. (2016), the safety problem in the scenario of inter-
vehicular connectivity failure in CACC is addressed. The authors propose a maneuver
mechanism that allows to maintain safety when connectivity is lost. In van Nunen
et al. (2017), multiple safety indicators are tested in experiments involving a platoon
of two vehicles driving with a headway gap of 0.5 s. The authors state that, in
such scenario, indicators that rely on inter-vehicular communication are able to
distinguish between threatening and safe situations, while those that use only radar
information fail in that. A systemic literature review on safety in vehicle platooning
is presented in Axelsson (2017).

2.3 Look-ahead control

The works on platooning control reviewed in the previous section are based on
feedback control. In this section, we discuss existing works on longitudinal vehicle
control that use a look-ahead control framework to improve the performance of the
controller. Look-ahead control allows to exploit information about known future
disturbances acting on the vehicles. These disturbances can be, for example, the
altitude variation of the road ahead or the predicted behavior of preceding vehicles.
By taking this preview information into account in the synthesis of the control
inputs it is potentially possible to improve the fuel economy and safety of vehicles.

In the remainder of the section we first present look-ahead control approaches
used to reduce the fuel consumption of single vehicles. Then, we focus on look-ahead
control strategies for non-cooperative and cooperative platooning. Here, we remind
that in this thesis we refer to cooperative platooning when vehicles act together to
reach a common goal, whereas we refer to non-cooperative platooning when each
vehicle greedily optimizes its own fuel consummation by exploiting prediction of the
preceding vehicle trajectory. In the latter, the prediction can be computed by the
preceding vehicle and communicated to the following vehicle, or it can computed by
the following vehicle itself.
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2.3.1 Single vehicle

The first works that studied how to include preview information to improve the
energy economy of a single vehicle, focused on rail vehicle control. Kokotovic and
Singh (1972) propose a control law based on the Pontryagin maximum principle
to optimally accelerate and decelerate an electric train equipped with regenerative
braking. An extensive review of energy-efficient look-ahead control for trains is
presented in Liu and Golovitcher (2003).

An early work that explores how to exploit terrain topography information to
improve the fuel economy of a passenger vehicle has been authored by Schwarzkopf
and Leipnik (1977). This work formulates an optimization problem based on non-
linear vehicle dynamics aimed at minimizing the vehicle fuel consumption and
proposes an analytical solution for constant road grade based on the maximum
principle. In Hooker (1988), an approach based on dynamic programming that
is able to handle generic road profiles has been proposed. However, due to the
complexity of the algorithm, only short road segments could be considered. In
order to overcome this limitation, a variation of this technique was proposed in
Monastyrsky and Golownykh (1993). In this work, thanks to the reformulation of the
problem in the spatial domain and the relaxation of the time constraint, a significant
reduction of the computational complexity was reached. In detail, the reduction of
the dimension of the state space allowed to consider much more complex scenarios.
A similar approach has been taken in Hellström et al. (2006), where a predictive
cruise control for heavy-duty vehicles based on topography information and speed
limits of the road ahead computes the fuel-optimal speed profile. Experimental tests
in Hellström et al. (2009) have shown the ability of such a controller to reduce the
fuel consumption of a heavy-duty vehicle driving over a hilly road by up to 3.5%.
Solutions of the optimal control problem for the fuel-efficient control of heavy-duty
vehicles via the Pontryagin maximum principle have also been proposed, see e.g. He
et al. (2016) and Henriksson et al. (2017).

In Johannesson et al. (2015), a three-layer control architecture is proposed to
handle the fuel-optimal control of a hybrid truck. The layers are responsible for
the generation of the fuel-optimal speed profile, the scheduling of the gear and
the powertrain mode, and the tracking of the optimal speed profile, respectively.
Because of the good scalability of such architecture, we propose in Chapter 6 a
similar breakdown of the control tasks for the supervision of a heavy-duty vehicle
platoon.

2.3.2 Cooperative platooning

As discussed in the previous subsection, the exploitation of topography information
to control single heavy-duty vehicles has been extensively studied and it results
in valuable fuel savings. However, only in the last years the research community
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has started to address the problem for heavy-duty vehicle platoons. Because of the
extra constraints on the vehicle dynamics due to the short inter-vehicular distance,
look-ahead control is expected to lead to larger benefits to platoons compared to
single vehicles.

A first study of the impact of altitude variation on heavy-duty vehicle platoons
and the potential benefits of the inclusion of topography information in platoon
control is presented in Alam et al. (2013). The authors propose a control strategy
that collects the fuel-optimal speed trajectory computed by each vehicle individually
and selects the one that is feasible for all the vehicles as a reference for the whole
platoon. In Németh and Gáspár (2013), a similar approach is used. In this work,
a common reference speed trajectory is also computed by combining the optimal
speed trajectories of each vehicle. The combination is done by minimizing the
deviations of the optimal trajectories of each vehicle from the common speed
trajectory of the whole platoon. Kaku et al. (2013) propose a nonlinear model
predictive control framework based on a detailed model of the platoon that uses
a relatively short horizon. Simulation results show the capability of the proposed
controller to fuel-efficiently adjust the platoon vehicle speed while driving over
a synthetic hill. However, the relatively short horizon necessary for limiting the
problem complexity is in general too restrictive to be used for realistic road profiles.
Murgovski et al. (2016) divide the fuel-efficient control problem into two subproblems
within a hierarchical control architecture. The higher layer uses simplified vehicle
models and solves a quadratic programming problem to compute reference speed
trajectories. The lower layer solves a dynamic programming problem and computes
the optimal gear shift sequence for each platooning vehicle. The simulation study
shows the capability of the proposed architecture to fuel-efficiently control the
platooning vehicles.

In Chapters 5 and 6 we present a novel control architecture that addresses the
cooperative look-ahead control problem for fuel efficient and safe heavy-duty vehicle
platooning. The proposed architecture, similarly to Murgovski et al. (2016), divides
the overall fuel-efficient control problem into manageable subproblems.

2.3.3 Non-cooperative platooning

In recent years, look-ahead control has been also explored in order to improve the
fuel economy in vehicle-following control problems for passenger cars. Bu et al.
(2010) propose a model predictive control formulation for adaptive cruise control
where the preceding vehicle communicates its state and control input. Experiments
reported in the paper show how the shared information lead to a smoother and
more reactive platoon behavior. Li et al. (2011) propose a model predictive control
formulation that aims at promoting a smooth, fuel-efficient and safe behavior of a
vehicle following another one whose future behavior is estimated. The authors report
the ability of the proposed controller to save approximately 6% and 2% of fuel
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in simulated city and highway scenarios, respectively, compared to feedback-based
controllers. In Li et al. (2013), the authors test the controller through real vehicle
experiments and report similar fuel savings by using a prediction horizon of 5 s. In
Li et al. (2012), the authors identify the most fuel-optimal driving strategies for
passenger cars and translate them into a rule-based controller. They show how it
is possible to combine vehicle-following and pulse and glide control strategies in a
rule-based controller to reduce the vehicle fuel consumption.

Stanger and del Re (2013) address the vehicle-following problem from a fuel-
efficiency perspective. They propose a nonlinear model predictive controller that aims
at directly minimizing the fuel consumption. A simulation study tests the controller
with different prediction horizons under the assumption of perfect knowledge of the
preceding vehicle trajectory. Simulation results show how, with a horizon of 15 − 20
s, the following vehicle saves approximately 20%. In Lang et al. (2014), the authors
propose a nonlinear autoregressive model to predict the trajectory of the preceding
vehicle in a moderate non-congested traffic scenario and they show how the accuracy
of the prediction highly influences the vehicle fuel consumption. Moser et al. (2018)
use a conditional linear Gaussian model to estimate the probability distribution of
the preceding vehicle trajectory and they exploit it in a stochastic model predictive
control framework. Simulation results show a significant reduction in the vehicle
fuel consumption compared to the use of a deterministic model predictive control
strategy.

None of the reviewed works, however, addresses the vehicle-following control
problem for heavy-duty vehicles where the fuel economy can largely benefit from short
inter-vehicular distances, but it can be also influenced by road altitude variations.
In Chapter 7 we address this problem and we show how the inclusion of topography
information in the optimal control problem formulation is beneficial for further
reducing fuel consumption.

2.4 Fuel-efficient road freight transportation

In this section we discuss an architecture for the promotion and the control of
heavy-duty vehicle platoons aimed at a more sustainable road freight transportation.

As argued in Section 2.2, platooning has a great potential for increasing the
fuel-efficiency of heavy-duty vehicles. However, in order to fully exploit the benefits
of platooning, the formation of platoons needs to be promoted and coordinated,
see Figure 2.2. Heavy-duty vehicles represent a small portion of the road traffic
and their locations can be sparsely distributed over the road network. In order to
achieve this, the route, departure time and speed profile of each vehicle need to be
adjusted. This is not a easy task. Each vehicle has its own mission defined by a
specific starting point, final destination, and a certain time constraint. Therefore, the
coordination of heavy-duty vehicles cannot be performed in a naive way. Increasing
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Figure 2.2: Illustration of a heavy-duty vehicles coordination problem. Vehicles with
different destinations and time constraints need to be coordinated in order to form
platoons. The coordination should be based on fuel-efficiency criteria and platoons
should be formed only when favorable.

the average speed to join a platoon that is going to split after only a few kilometers
can be less efficient that simply maintaining the original average speed and continue
driving alone. Therefore it is evident that the starting time, the route and the
speed trajectory of each heavy-duty vehicle need to be planned and coordinated
intelligently in order to fully exploit the benefits of platooning.

In order to address the resulting optimization problem aimed at fully exploiting
the benefit of platooning, we propose a system architecture that splits this large
problem into manageable subproblems. The system architecture is depicted in
Figure 2.3 and is composed of three layers, namely, the fleet layer, the platoon
layer, and the low-level vehicle control layer. Each layer is detailed in the following
paragraphs.

The fleet layer is responsible for the coordination of a large fleet of vehicles
potentially belonging to multiple fleet owners. Explicitly taking information on
destinations and time requirements of all vehicles in the fleet into account, it defines
the routes and meeting times and points for the creation of new platoons or the
merging of existing ones. Since traffic and slopes have a significant impact on the
fuel-consumption of heavy-duty vehicles, topography information and historical and
real-time traffic information can be also included. This problem can be cast in a large
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Figure 2.3: Three-layer system architecture for a fuel-efficient freight transport system.
The aim of this architecture is to split in solvable subproblems the complex problem
of coordinating and controlling heavy-duty vehicles to fully exploit the benefits of
platooning.

optimization problem and suggestions on how to solve it have been proposed in the
recent years, see e.g. (van de Hoef et al., 2015), (Larson et al., 2015), (Liang et al.,
2016a), (Čičić et al., 2017) and (van De Hoef et al., 2018). van de Hoef et al. (2015)
propose a centralized approach based on the sequential computation of optimal
paths for each vehicle and the optimization of each vehicle’s average speed in order
to enable the formation of platoons. Larson et al. (2015), instead, solve the problem
by employing controllers distributed over the road network. A control unit located
in each node of the network decides if it is fuel-efficient for the approaching vehicles
to adapt their speed in order to form platoons. The functionality of the fleet layer
can also be extended upwards to include the logistics problem, i.e., how the flow of
goods needs to be distributed between the available vehicles while taking limitations
on size into account, weight and the type of cargo in each vehicle. Alternative
approaches aimed at stimulating the formation of platoon have been also studied.
For example, Farokhi and Johansson (2013) propose a game-theoretic approach that
exploits dynamic congestion fees depending on the vehicle category, i.e., passenger
car or heavy-duty vehicle, in order to encourage vehicles belonging to the same
category to drive at the same time.
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The platoon layer is responsible for the fuel-efficient and safe control of the
platoon. It receives requirements on average speed from the cooperation layer and
computes the fuel-optimal acceleration of each vehicle. Such computation relies on
an optimal control framework that explicitly takes topography information into
account and guarantees the safety of platoon operations. The existing results on
this topic have been reviewed in Section 2.3. A novel approach that addresses the
problem is proposed in Chapter 5 and extended in Chapter 6.

The low-level vehicle control layer controls the vehicle actuators. Its implemen-
tation relies on control units typically available in commercial heavy-duty vehicles.
These units are the engine management system, the gear management system and
the braking management system. A detailed treatment of these control units is given
in Section 3.3.

2.5 Optimal control

In this section, we briefly introduce the two optimal control approaches that will be
used in the platoon control formulations presented in this thesis, namely dynamic
programming and model predictive control. In this thesis, dynamic programming
is preferred to solve optimal control problems that are highly non-linear or that
contain discrete states. Model predictive control is preferred to address control
problems that use a (quasi-)linear vehicle model, have a short horizon and need to
be solved in a relatively short time.

2.5.1 Dynamic programming

Dynamic programming is a method to solve an optimal control problem by breaking
it down into a collection of simpler optimal control subproblems. By exploiting
the overlap of these subproblems, it significantly reduces the number of required
arithmetic calculations. The theory of dynamic programming has been formulated
in the fifties by Bellman (1957), although it has its origin in the work of Hamilton
and Jacobi on calculus of variations. For more recent references see Bertsekas (1995)
and Liberzon (2012). In this section we present the dynamic programming concept
applied to a discrete system.
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Figure 2.4: Discrete optimal control problem.

Consider the optimal control problem of the form

J∗(xs) = minimize
T−1
∑
j=0

f0(j, x(j), u(j)) + ϕ(x(T )), (2.2a)

subj. to x(j + 1) = f(j, x(j), u(j)), (2.2b)
x(j) ∈ X = {x1, ..., xN}, (2.2c)
u(j) ∈ U = {u1, ..., uM}, (2.2d)
x(0) = xs, (2.2e)

where x is the model state that belongs to a finite set X of N elements, see con-
straint (2.2c), and u is the control input that belongs to a finite set U ofM elements,
see constraint (2.2d). The independent variable j represents the enumeration of the
stages of the optimal control problem and, in general, may not have anything to do
with time (e.g., in the platoon controller of Chapter 4 it represents a spatial dis-
cretization). The variable xs represents the initial state. Finally, the relation (2.2b)
represents the system model, while the cost function (2.2a) weighs functions of the
state and the control input. The problem is visualized in Figure 2.4.

The most naive approach to address this problem consists in enumerating all
the possible trajectories starting from xs at stage 0 going forward up to stage T ,
associating to each trajectory the cost and comparing the costs in order to select the
optimal one. The complexity of this approach can be easily computed and results
in O(MTT ) arithmetic operations. In the case of a large number of stages T , this
method can result in an extremely long computation time.

The dynamic programming approach relies on the so-called “principle of opti-
mality”, which can be stated as follows:
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Principle of optimality: Let {x∗j}Tj=0 and {u∗j}T−1
j=0 be the optimal state and

control trajectories for the problem (2.2), respectively. Then, each control subtrajec-
tory {u∗j}T−1

j=k is optimal for the subproblems obtained by the optimization on the
form (2.2) but with initial condition (k, x∗(k)) (i.e., starting at time k and state
x∗(k)).

Let J̄∗(k, x(k)) be the cost associated to the optimal control trajectory {u∗j}T−1
j=k

with initial condition (k, x(k)) and refer to it as the optimal cost-to-go. Note that
the optimal cost-to-go J̄∗(0, xs) corresponds to the optimal cost J∗(xs) for the
complete problem (2.2).

According to the principle of optimality, given a stage k, one of the N optimal
control subtrajectories {u∗j}T−1

j=k with initial condition (k, x(k)) will belong to the
optimal control trajectory {u∗j}T−1

j=0 . Following this observation, the principle of
optimality can be exploited by starting from the final stage T and proceeding
backwards. At the stage T , the optimal cost-to-go for all the possible initial conditions
(T,x(T )) is simply defined as the final cost function, i.e., J̄∗(T,x(T )) = ϕ(x(T )).
At the generic stage k, the optimal cost-to-go with initial condition (k, x(k)) can
be defined as the minimum of the costs given by the summation of the cost to reach
a certain state at stage k + 1 from x(k) and the optimal cost-to-go with the new
state as initial condition, i.e.,

J̄∗(k, x(k)) = min
u(k)∈U

{f0(k, x(k), u(k)) + J̄∗(k + 1, f(k, x(k), u(k)))} . (2.3)

This equation provides a recursive relation between the optimal cost-to-go of con-
tiguous stages and is known as the Bellman equation. If we apply it to all possible
initial conditions (k, x(k)) proceeding backwards until stage 0 and we save the
corresponding optimal control subtrajectory {u∗j}T−1

j=k , we will be eventually able to
compute the optimal cost J∗(xs) = J̄∗(0, xs) and the corresponding optimal control
trajectory {u∗j}T−1

j=0 .
As for each stage and each possible state we have to compare M summations,

the complexity of the dynamic programming approach can be easily computed and
results in O(NMT ) arithmetic operations. Comparing this with the complexity of
the naive approach, we can conclude that dynamic programming is significantly more
efficient in the case of large T . Furthermore, dynamic programming intrinsically
provides a feedback law, as it computes the optimal control trajectory for every
stage k and state x(k). Note, however, that, although the complexity is linear
in the number of possible states N , N can be an extremely large number, as it
grows exponentially with the dimension of the state. This is known as the curse of
dimensionality.
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2.5.2 Model predictive control

Model predictive control (MPC) is a control framework that relies on the iterative
solution of optimal control problems based on the predicted state to compute the
instantaneous control input. The prediction of the state is based on the system
model and this explains the name model predictive control. MPC has its origins in
the seventies in the process industry, where it was used to control chemical plants
and oil refineries (Richalet et al., 1978). The slow dynamics of such systems were
favorable to the MPC requirement of solving optimization problems in real-time and
the limited computational power of the contemporary hardware. With the increase
of the computational power of the last decades, MPC has become attractive for
other industries as well, for instance, the automotive industry (Hrovat et al., 2012;
Del Re et al., 2010). In this section we introduce the MPC concept. For a detailed
treatment of the topic, see Borrelli et al. (2017).

At each time instant k, the following optimal control problem is solved:

minimize
k+NMPC−1
∑
j=k

f0(j, x(j∣k), u(j∣k)) + ϕ(x(k +NMPC∣k)), (2.4a)

subj. to x(j + 1∣k) = f(j, x(j∣k), u(j∣k)), (2.4b)
x(j∣k) ∈ X , (2.4c)
u(j∣k) ∈ U , (2.4d)
x(k∣k) = x(k), (2.4e)

where x(j∣k) and u(j∣k) denote the predicted state and control input at time j
computed at time k, respectively, while x(k) denotes current state. The variable
NMPC denotes the prediction horizon. The relation (2.4b) represents the prediction
model, while the constraints (2.4c) and (2.4d) provide bounds on the predicted
state and control input, respectively. The cost function (2.4a) weighs a function
of the predicted state and control input from the current time k to the end time
k +NMPC. The solution of the optimal control problem (2.4) returns the optimal
state and control input trajectory {x∗(⋅∣k)}NMPC

j=k and {u∗(⋅∣k)}NMPC−1
j=k , respectively,

as displayed in Figure 2.5. The MPC algorithm only applies the first element of the
optimal control input trajectory u∗(k∣k) to the system. At the next time instant
k + 1, a new optimal control problem of the form (2.4) is cast and solved, and this
is repeated for each time instant.

The re-solution at each step of the optimal control problem (2.4), provides
feedback in the MPC framework, making it robust to disturbances and model
uncertainties. Another significant advantage of the MPC framework is the possibility
to introduce constraints on the future state and control input.

Due to the non-linearities in the formulation (2.4), the presented framework
is typically referred as nonlinear MPC. In the case of a linear prediction model,
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Figure 2.5: Illustration of the MPC concept. At each time instant k, an optimal
control problem based on the predicted state is solved. The solving returns the optimal
predicted state and the optimal control input trajectories. Of the optimal control input
trajectory only the first element is applied to the system. At the time instant k + 1, a
new optimal control problem is formulated and solved.

polytopic constraints on state and control input, and quadratic cost function, we will
talk instead of linear MPC. In this case the optimal control problem (2.4) can be
recast as a quadratic program for which efficient numerical algorithms are available.
A distributed version of MPC has been successfully used to control vehicle platoons,
see Dunbar and Murray (2006) and Dunbar and Caveney (2012). In these works, the
platooning vehicles share their optimal state trajectory with the following vehicle.
Each following vehicle exploits the received information by including it in its MPC
formulation. The authors also provide conditions on the controller parameters that
guarantee string stability of the platoon.

2.6 Summary

Although only the recent advances in technology provided the basis for the commer-
cial implementation of platooning control, the topic has been researched extensively.
The first works on vehicle platooning date back to the sixties and mainly focus on
studying the string stability of the platoon. Only in the nineties, with the begin-
ning of the PATH project, researchers started to address more practical aspects of
platooning. Among these aspects, the fuel-efficient control of heavy-duty vehicle
platoons gained a certain attention. Thanks to the shape of these vehicles, the short
inter-vehicular distance results in a significant reduction of the overall aerodynamic
drag and the fuel consumption. Although the large impact of slopes on the fuel
consumption of heavy-duty vehicles is well known (as proved by the large number of
works on look-ahead control for single vehicles), few works address the inclusion of
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topography information in the design of fuel-efficient heavy-duty vehicle platooning.
In this chapter we first presented the technologies that enable vehicle platooning.

Second, we provided an overview of the works that address vehicle platooning
and look-ahead vehicle control. Third, the problem for the overall fuel-efficient
transportation system was discussed. Lastly, we introduced the concepts of dynamic
programming and MPC that will be at the base of the controllers proposed in the
next chapters.
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Modeling

Heavy-duty vehicles are complex systems with a large number of interacting
dynamics. For example, due to the large weight, their braking and powertrain
systems have to generate and transfer extremely high torques. This requires

the coordination of multiple braking actuators and the damping of oscillations
arising in the powertrain. The control system architecture of heavy-duty vehicles is
therefore highly distributed and hierarchical.

In this chapter we present a vehicle model suitable for the design of controllers
for fuel-efficient and safe platooning. Particular attention is given in modeling those
components that play an essential role in the vehicle fuel consumption, as the
gravitational, rolling, aerodynamic, braking and traction forces. The vehicle model
also includes a high-level powertrain model that describes the engine, the clutch,
the gearbox and the transmission. This model details how the fuel is converted into
traction force and provides a way to describe gear shifts and freewheeling. Finally,
we provide an overview of a heavy duty vehicle system architecture. This explanation
will be useful to understand the overall functioning of the truck and to identify the
units and other control systems which the proposed platoon controllers will interact
with.

The chapter is organized as follows. In Section 3.1 we introduce the model of the
longitudinal dynamics of a single vehicle and the platoon. Section 3.2 introduces the
powertrain model, including the engine, gearbox and transmission. In Section 3.3, we
describe the vehicle system architecture in which the platoon controller is expected
to operate. Lastly, Section 3.4 provides a summary of the chapter.

3.1 Longitudinal vehicle dynamics

In this section we present the models of the longitudinal dynamics of a vehicle and the
platoon that will be used in the formulation of the platooning controllers presented
in the next chapter. An overview of the longitudinal forces acting on a heavy-duty
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Fg,i
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Ft,i

Fb,i
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α

Figure 3.1: Illustration of the forces acting on the heavy-duty vehicle along the
longitudinal direction. The sign convention for all forces is according to the direction
of travel.

vehicle is shown in Figure 3.1. Using Newton’s second law, see e.g. (Guzzella and
Sciarretta, 2007), the dynamics of vehicle i can be expressed as

miv̇i =Ft,i + Fb,i + Fg,i(α(si)) + Fr,i + Fd,i(vi, di),
ṡi = vi,

(3.1)

where vi ≥ 0 and si form the state of the vehicle and denote its speed and longitudinal
position of the vehicle front, respectively. We collect them in the state vector
xi = [vi si]T. Ft,i and Fb,i denote the forces generated by the actuators, i.e., the
traction and braking forces, whereas Fd,i and Fr,i denote the resistive forces acting
on the vehicle, i.e., the drag and rolling resistances; Fg,i represents the gravitational
force defined as the component of the gravity vector in the vehicle longitudinal
direction. The parameter mi represents the mass of vehicle i, while the variable
α(si) is the road grade and is defined as a function of the vehicle’s longitudinal
position. Finally di denotes the distance of vehicle i to the preceding one.

The model of a platoon of Nv vehicles can be obtained by combining the vehicle
model (3.1) for i = 1, ...,Nv and the distance definition

di = {
∞, if i = 1,
si−1 − si − li−1, if i ≥ 2,

(3.2)

where li denotes the length of vehicle i.
In the remainder of this section, we describe each one of the forces acting on the

vehicle.
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Traction force

The traction force Ft,i is the longitudinal force generated by the powertrain. The
powertrain is constituted by different components, i.e., the engine, the clutch, the
gearbox and the final drive, that transform the fuel into traction energy. A high-level
model of the powertrain that relates the traction force to the engine fuel flow is
presented in Section 3.2.

Braking force

The braking system of a heavy-duty vehicle is composed of several actuators.
Following the same reasoning as for the powertrain, here we assume that the braking
force is a control input and the corresponding acceleration is tracked by a low-level
controller. The braking actuators acting on each axle can generate a maximum
torque Ta,max (Alam, 2014). This torque is transferred to the road surface through
the wheels and the tires. The minimum (according to the sign convention) potential
braking force is therefore equal to −Ta,maxnar, where na and r denote the number
of axles and the radius of the wheels, respectively. Due to the limited friction
between the tires and the road surface, there is however a threshold on the minimum
braking force that can be transferred to the ground. Assuming an equal distribution
of the vehicle mass on the axles, this threshold can be approximated as −µmiga,
where µ and ga denote the (positive) road friction coefficient and the gravitational
acceleration, respectively (Pacejka, 2012). Therefore, depending on the mass of the
vehicle, the minimum braking force can be limited by either the maximum torque
that the braking actuators can generate or the minimum force that the wheels are
able to transfer on the ground. This constraint can be modeled as follows:

Fb,min,i ≤ Fb,i ≤ 0, (3.3)

where Fb,min,i is defined as

Fb,min,i = max{−Ta,maxnar,−µmiga}.

Depending on the vehicle parameters, the braking capability of the vehicles in the
platoon can vary significantly. Therefore, in order to guarantee safety, a framework
that is able to handle heterogeneous platoons is needed.

Gravitational force

Here, we denote the gravitational force with the component of the gravity vector in
the vehicle longitudinal direction. Depending on the road grade, such force can be
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Figure 3.2: Experimental data from Hucho (1987) and regression curve of the normal-
ized drag coefficient experienced by a heavy-duty vehicle as function of the distance to
the preceding vehicle.

either a resistive or assistive force and its expression can be formulated as

Fg,i(α(si)) = −miga sinα(si). (3.4)

Due the large mass of heavy-duty vehicles, even small road grade generates a
significant gravitational force. Therefore, it is common that these vehicles are not
able to keep constant speed during an uphill or downhill road stretch without
exceeding the engine power limits and without braking.

Rolling resistance

The rolling resistance is generated by the interaction between tires and the road
surface. It is a resistive force and is mainly due to the asymmetric deformation of
the tires during compression and expansion (Pacejka, 2012). It is approximately
proportional to the vertical load on the tires and is typically modeled as

Fr,i = −cr,imiga, (3.5)

where cr,i denotes the rolling resistance coefficient of vehicle i. This parameter can
be influenced by different factors, as the pressure, temperature and width of the
tires.
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Aerodynamic drag

The aerodynamic drag is a resistive force due to the interaction between the vehicle
and the surrounding air. It grows quadratically in magnitude with the vehicle speed
and gets reduced when driving at a short distance to a preceding vehicle. This
phenomenon is due to a slipstream effect between the vehicles that results in a
reduced pressure on the second vehicle and reduced air vortices behind the first
one. Thanks to the slipstream effect the aerodynamic drag experienced by both
vehicles decreases as the inter-vehicular distance shrinks, although such reduction is
more significant for follower vehicles. The reduction in the aerodynamic drag is the
reason why race bikers or migratory birds try to keep a compact formation while
moving and provides a strong motivation for heavy-duty vehicle platooning. The
aerodynamic drag can be modeled as

Fd,i(vi, di) = − 1
2ρAvCd(di)v2

i , (3.6)

where ρ is the air density, Av is the cross-sectional area of the vehicle and Cd is the
aerodynamic drag coefficient (here assumed as vehicle-independent). In order to
capture the reduction of the aerodynamic drag with the inter-vehicular distance, the
drag coefficient Cd is defined as a function of the distance to the preceding vehicle
di. The effect of the short inter-vehicular distance on the preceding vehicles has
been neglected since it is significantly smaller than that one on the follower vehicles
(see the experimental data in Figure 1.5). The literature reports measurements on
air drag coefficient and fuel consumption based on both real experiments (Hucho,
1987; Bonnet and Fritz, 2000; Lammert et al., 2014) and fluid dynamics simulation
(Norrby, 2014). All these works show a reduction of the air drag coefficient for short
inter-vehicular distances. However, how the reduction relates to the inter-vehicular
distance varies. The variability has been attributed to weather conditions (e.g,
temperature, humidity or wind) and the shape of the vehicles. In this work we refer
to the experimental data presented in Hucho (1987). The dependence of the drag
coefficient Cd on the distance di is therefore modeled as

Cd(di) = Cd,0 (1 − Cd,1

Cd,2 + di
) , (3.7)

where the parameters Cd,1 and Cd,2 are obtained by regressing the experimental
data presented in Hucho (1987). The experimental data and the regression curve
are displayed in Figure 3.2.

3.2 Powertrain model

The powertrain is responsible for generating the traction force Ft,i. A schematic of
the powertrain is displayed in Figure 3.3. The main components of the powertrain are
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Figure 3.3: Illustration of the powertrain components.

the engine, the clutch, the gearbox and the final drive. The fuel is first transformed
in rotational torque by the engine. Then, the clutch and gearbox work together to
amplify the torque and diminish the rotational speed of a factor dependent on the
gear. Finally, the final drive and the wheels convert the torque into traction force.

In order to obtain a manageable model, the following assumptions have been
introduced:

(i) The engine inertia is negligible with respect to the mass of the vehicle.

(ii) the engine fuel consumption can be defined as a static map of the engine speed
and torque.

(iii) Transmission shafts are rigid.

(iv) No power loss takes place in the gearbox and the transmission.

These assumptions allow to limit the number of states of the powertrain model
making possible to use it for our control purpose. In the remainder of this section,
the models of the fuel, the gearbox-clutch and the transmissions are presented.

Fuel model

The fuel-efficiency of an engine is typically represented by the brake specific fuel
consumption (BSFC) that denotes the ratio between the fuel flow and the produced
power. The BSFC map of an engine is obtained by gridding the torque/speed space
and measuring the engine fuel consumption and the generated power for each grid
point. An example of a BSFC map is displayed in Figure 3.4. This map represents a
400 hp engine of a heavy duty vehicle Sandberg (2001). For the correct operational
of the engine, its speed is bounded between a minimum and a maximum value, i.e.,

ωmin,i ≤ ωi ≤ ωmax,i, (3.8)
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Figure 3.4: BSFC map for a 400 hp engine regenerated from Sandberg (2001) and
expressed in g/kWh. The black lines denote the maximum and minimum engine torque,
while the contour color lines denote operation points with same BSFC.

represented by the black dashed lines in Figure 3.4. The torque is also bounded by
speed-dependent minimum and maximum functions, i.e.,

Tmin,i(ωi) ≤ Ti(ωi) ≤ Tmax,i(ωi), (3.9)

indicated by solid black lines. The minimum engine torque Tmin,i is the torque
generated by the engine Te,i when no fuel is injected. This is typically strictly
negative and can be roughly approximated by a affine function of the engine speed
ωi as the consequence of rotational friction. The maximum engine torque Tmax,i,
instead, is the result of the physical limits of the engine and typically shows three
distinct trends. At low engine speeds, it exhibits a approximately linear dependency
on the engine speed due to the limit on the injected fuel per stroke. At middle range
engine speed, it is constant due to the maximum torque that the engine components
can handle At high speed, it exhibits a hyperbolic trend due to the maximum
heat that the engine can dissipate. Finally, the contour colored lines in Figure 3.4
represent operation points with same BSFC, while the dotted lines represent the
collection of operation points with equal generated power.
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gi = −1,
τg,i ≤ τshift

gi = j
gi = 0,
τg,i ≤ τfw

gr,i = 0
gi ∶= 0
τg,i ∶= 0

τg,i ≥ τfw

gr,i > 0

gi ∶= gr,i

gi ≠ gr,i > 0
gi ∶= −1
τg,i ∶= 0

τg,i = τshift gi ∶= gr,i

gear shift gear engaged freewheeling
Figure 3.5: Timed automaton describing the gearbox-clutch dynamics.

In this work, we model the fuel consumption by expressing the fuel flow ψi
defined as amount of fuel per seconds as function of the engine speed ωi and the
engine torque Ti, i.e.,

ψi = ϕi (ωi, Ti) . (3.10)

Such function can be easily derived from the engine BFSC map of vehicle i.

Gearbox-clutch model

We now present the gearbox and clutch dynamics summarized by the timed automa-
ton displayed in Figure 3.5. This model aims to correctly capture the timing of gear
shifts and freewheeling, i.e., coasting in neutral gear.

The state of the automaton is gi ∈ {−1, 0} ∪ Ga,i, where Ga,i = {j ∈ N∣j ∈
[gmin,i, gmax,i]} represents the set of the admissible gears. If gi ∈ Ga,i, the clutch
disks are closed and gear gi is engaged. If gi = 0, the clutch disks are open and
the vehicle is freewheeling. Finally, if gi = −1, the clutch disks are open and a gear
shift is taking place. The control input is gr,i ∈ {0} ∪ Ga,i. If gr,i ∈ Ga,i, gear gr,i is
requested, while, if gr,i = 0, freewheeling is requested. The time requirements on the
gear shifts and the freewheeling are ensured by edge guards and location invariants
defined as function of the automaton clock τg,i.

The gearbox starts in the engaged gear condition modeled by the central macro-
state in the automaton of Figure 3.5 that collects all the state gi ∈ Ga,i. From this
macro-state, two transitions are possible:

• if the requested gear gr,i switches to 0, the gearbox jumps to the freewheeling
state, i.e., gi = 0. In order to avoid a premature deterioration of powertrain
components and driver discomfort, the fast switching between engaged gear
and freewheeling is limited by requiring that the freewheeling is maintained
for a time longer than τfw. This is achieved by resetting the automaton clock
τg,i, when the gearbox jumps to gi = 0, and by defining the location invariant
τg,i ≤ τfw for the freewheeling state and the guard τg,i ≥ τfw on the edge leaving
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the freewheeling state. If we are not interested in exploiting freewheeling, the
requested gear set can be redefined as gr,i ∈ Ga,i.

• if the requested gear gr,i switches to a value in the set Ga,i different from
gi, the gearbox jumps to the gear-shift state, gi = −1. The gearbox stays in
the gear-shift state for a time of τshift, before jumping to the engaged gear
macro-state with gi = gr,i.

It is important to understand the distinction between the input gr,i and the gearbox-
clutch state gi. While the required gear gr,i can vary between the allowed values at
any time, the state gi is constrained by the automaton dynamics to switch value in
well-defined patterns.

Transmission model
To complete the powertrain model, we now present the static relation between the
engine variables and the chassis variables as function of the gearbox-clutch state gi.

The torque Ti generated by the engine acts on the engine side of the clutch.
If the clutch disks are open (i.e, gi ∈ {−1,0}), no torque is transmitted by the
gearbox-clutch group. If a gear is engaged (i.e, gi ∈ Ga,i), the torque is amplified by
a factor γg,i depending on the specific engaged gear gi. The torque on the gearbox
shaft is transmitted to the wheel shaft by the final drive that amplifies it by a
constant factor γf,i. Finally, the torque on the wheel shaft is transferred to the road
by the wheels. The longitudinal force Ft,i generated by the road/wheel contact can
be therefore summarized by

Ft,i(gi, Ti) =
⎧⎪⎪⎨⎪⎪⎩

0, if gi ∈ {−1, 0},
γg,i(gi)γf,i

r
Ti, if gi ∈ Ga,i,

(3.11)

where r is the wheel radius.
In a similar way, under the assumption of no slip between wheels and road

surface, the engine speed can be defined as function of gi and the vehicle speed as

ωi(gi, vi) =
⎧⎪⎪⎨⎪⎪⎩

ωmin,i, if gi ∈ {−1, 0},
γg,i(gi)γf,i

r
vi, if gi ∈ Ga,i.

(3.12)

Note that, when the clutch is open, the engine is assumed to rotate at the minimum
allowed engine speed ωmin,i.

3.3 Vehicle system architecture

The correct functioning of a heavy-duty vehicle is guaranteed by a large number of
system units that communicate with each other through the controller area network
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Figure 3.6: Vehicle system architecture for vehicle platooning.

(CAN) bus or Ethernet. In this section, we present an abstraction of the vehicle
system architecture that includes the units that play a role in the control of the
platoon longitudinal dynamics.

The vehicle system architecture that enables vehicle platooning is displayed in
Figure 3.6. The units at the top of figure represent the interfaces of the vehicle
to the outside world. In detail, the global positioning system (GPS) returns the
absolute position of the vehicle, while the inertial navigation system (INS) provides
information about the linear and angular vehicle accelerations. By fusing the data
from the two systems, the controller has access to an estimate of the own vehicle
state with a precision of centimeters (Ryu and Gerdes, 2004). The radars, lidars and
cameras provide data about the surrounding environment. This information can
be processed to create a real-time dynamic map of the environment that includes
accurate measures of the distance to the preceding vehicle and its relative speed. The
wireless sensor unit (WSU) shares real-time information with the other platooning
vehicles and allows the communication with external vehicles and off-board systems,
such as a back-end office or cloud services. While the GPS and radar are consolidated
technologies in vehicles, the lidar, cameras and WSU are still uncommon and the
focus of ongoing research.



3.3. Vehicle system architecture 47

The blocks at the bottom of Figure 3.6 represent the units controlling the vehicle
longitudinal actuators. They take as input the reference acceleration a∗i and a
boolean variable bi that indicates whether a∗i is a traction or braking acceleration.
The brake management system (BMS) tracks the reference braking acceleration by
coordinating multiple actuators ranging from the strong brake disk to the weaker
exhaust and retarder brakes. Furthermore, in case of harsh braking, the BMS is
responsible for correctly distributing the braking force between the brake discs
and guaranteeing that the wheels do not lock. The engine management system
(EMS) generates the required traction acceleration by controlling the engine fuel
flow. Because of the large torques created in the powertrain, it also ensures that no
excessive oscillations are generated. Finally, the gear management system (GMS)
controls the gearbox and the clutch by engaging the requested gear. If no gear
request interface exists, it can also operate autonomously by monitoring the engine
speed and the requested torque and selecting the gears according to predefined
thresholds.

The information from the sensor blocks is elaborated in the data processing
block and transferred to the longitudinal control functionality block. Here, multiple
control functionalities can be implemented depending on the availability of preview
information, the presence of other vehicles, and the existence of a cooperation
framework, see Table 3.1:

• Cruise control (CC): this is the most common longitudinal control functionality
available in commercial vehicles. It relies on feedback control that regulates
the engine fuel flow in order to track a reference speed. If the road is nearly
flat the vehicle speed remains constant.

• Look-ahead control (LAC): when the road exhibits relevant altitude variations
and topography information are available to the vehicle, this information can
be exploited by look-ahead control to adapt the vehicle speed according to
present and future road grades in order to improve fuel-efficiency.

• Adaptive cruise control (ACC): if the vehicle under control comes in proximity
of another vehicle, information collected by the on-board sensors (i.e., distance
and relative speed) are used to track a desired gap policy.

• Look-ahead adaptive control (LAAC): if topography information and/or an
estimation of the preceding vehicle future trajectory are available, they can
be used to adapt the inter-vehicular gap. The future trajectory of the pre-
ceding vehicle can be estimated according to the road topography or can be
communicated by the preceding vehicle itself.

• Cooperative adaptive cruise control (CACC): if a cooperative framework is
available, multiple vehicles, driving at a short inter-vehicular distance, can
cooperates to ensure a smooth, fuel-efficient and safe behavior of the platoon.
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Table 3.1: Longitudinal control functionalities.

driving
alone

non-cooperative
platooning

cooperative
platooning

w/o preview information CC ACC CACC
w/ preview information LAC LAAC CLAC

• Cooperative look-ahead control (CLAC): The availability of preview informa-
tion about the road ahead such as topography information can be incorporated
in the platoon controller in order to reach a higher degree of fuel-efficiency.

In this thesis, we study the platooning control problem when preview information
about the road topography is available. In details, in Chapters 5 and 6, we address
the CLAC problem, while, in Chapters 7 and 8, we address the LAAC problem.

3.4 Summary

In this chapter we presented the model of the longitudinal vehicle dynamics that
will be used, with possible simplification, in the controller formulations presented in
the next chapters. As one of the main focus of this thesis is vehicle fuel consumption,
a particular attention has been given in correctly modeling the powertrain. This
model describes the relation between the consumed fuel and the traction force as a
function of the gearbox-clutch dynamics. Lastly, we have presented an abstraction
of the vehicle system architecture that describes the units and the low level vehicle
controllers that play a significant role in the overall platoon control.



Chapter 4

Control architectures for platooning

In this chapter we develop two control architectures suitable for the fuel-efficient
and safe control of heavy-duty vehicle platoons. Key aspects include the use of
topography information and the ability to take external traffic into account. In

order to acquire a good understanding of the effect of road altitude variation on the
platoon dynamics, the chapter starts with an analysis of a platooning experiment
conducted on open road. The insights collected from the analysis are used to motivate
the following two control architectures for vehicle platooning:

• A control architecture for the cooperative control of platoons. In this setting,
platooning vehicles cooperate in order to minimize the overall fuel consumption
of the platoon and guarantee safety.

• A control architecture for the non-cooperative control of platoons. Here, each
vehicle greedily minimizes its own fuel consumption given the estimation of
the preceding vehicle trajectory.

The chapter is structured as follows. In Section 4.1, we present the insights
gained by the analysis of the platooning experiment. In Sections 4.2 and 4.3, we
propose the control architectures for cooperative and non-cooperative platooning,
respectively. Finally, Section 4.4 summarizes the chapter.

4.1 Motivational experiment

In this section we present and analyze the data collected from a platooning experi-
ment conducted on open roads. For the full description of the experiment results,
refer to Alam et al. (2015). The experiment provides fundamental insights that will
be incorporated in the design of the control architectures detailed in the remainder
of the chapter.

49
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Figure 4.1: The three trucks used in the experiment. Photo provided by courtesy of
Scania AB.

Table 4.1: Vehicle parameters.

m1 first vehicle mass t 37.5
m2 second vehicle mass t 38.4
m3 third vehicle mass t 39.5
li vehicle length m 18
cr,i rolling coefficient - 0.006
Av cross-sectional vehicle area m2 10
Cd,0 nominal drag coefficient - 0.6
Cd,1 first drag reduction coefficient m−1 12.8
Cd,2 second drag reduction coefficient m 19.7

4.1.1 Experiment setup

In this experiment, a platoon of three heavy-duty vehicles is driven over a 45km
highway stretch between the Swedish cities of Mariefred and Eskilstuna. The vehicles,
depicted in Figure 4.1, have the same 480 hp engine type and a mass of approximately
38 tonnes. The measured and estimated vehicles parameters are reported in Table 4.1.
The highway stretch map and topography information are shown in Figure 4.2. The
red color in Figure 4.2b is used to highlight (i) the uphill sections where the slope
is too steep for a nominal vehicle of 40 tonnes with a 480 hp engine to maintain
a constant speed of 21.5 m/s and (ii) the downhill sections where the slope is too
steep for the same vehicle to maintain constant speed without braking. The steep
downhill sections represent 22% of the total length, while, because of the large
power to weight ratio of the vehicle, no steep uphill stretches are present.

The platoon control architecture is decentralized and does not make use of
topography information. Each vehicle controller has two modes, i.e., a traction mode
where the computed reference acceleration is tracked by the engine management
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Figure 4.2: The 45km highway stretch between the Swedish cities of Mariefred and
Eskilstuna. The red color in (b) highlights the uphill and downhill sections for which
the slope is too steep for a vehicle of 40 tonnes with a 480 hp engine to maintain a
constant speed of 21.5 m/s without exceeding the maximum engine power and without
braking.

system (EMS), and a braking mode where the reference acceleration is tracked by
the braking management system (BMS). The leading vehicle controller tracks a
reference speed of 21.5 m/s using the commercial cruise control and it switches
to braking mode only when the speed limit of 23.6 m/s is reached. The following
vehicle controllers track a reference headway gap of 1 s (i.e., the reference distance
from the preceding vehicle is computed as the product of the vehicle speed and the
1 s headway gap) and it switches to braking mode only when the headway gap is
smaller than a certain threshold.

4.1.2 Experiment results

The platoon exhibited different behavior depending on the steepness of the road.
Along road stretches with small altitude variation, the platoon control behaved
smoothly and reduction of the fuel consumption was recorded. The second and third
vehicles were able to save on average 4.1% and 6.5% of fuel, respectively. However,
in the sections where the road exhibited a larger altitude variation, the performance
of the platoon degraded and the controllers of the following vehicles repeatedly
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switched to the braking mode.
In order to understand how the road grade variation affects the platoon per-

formance, in the remainder of the section we focus on the behavior of the platoon
driving along the two steep hills highlighted in Figure 4.2b as Sector A. For the
sake of simplicity, only the behavior of the first and second vehicles is reported in
Figure 4.3, since the third vehicle shows patterns similar to the second one. In this
sector, the fuel consumption of the second vehicle actually increases of about 4%
compared to the driving alone scenario.

In order to identify the causes of the control performance deterioration, the
measured speed and input trajectories are replicated in simulation according to
the vehicle model (3.1) with the parameters reported in Table 4.1. The simulated
braking, gravitational, rolling and aerodynamic forces have been integrated over
time according to

E◻ ,i = ∫
tsec

0
F◻ ,i(t)vi(t)dt (4.1)

to obtain the energy consumption associated with each force. Here, tsec represents
the time that platoon takes to drive along the sector, while the placeholder ◻
represents the subindexes b, g, r and d. The total energy consumption is defined as
the summation of the single components, i.e.,

Ei = ∑
◻∈{b,g, r,d}

E◻ ,i. (4.2)

In Figure 4.4, we show the energy consumed by the two vehicles divided into the
different components and normalized with respect to the first vehicle energy E1.
Due to the difference of approximately 1 tonne between the vehicle masses, the
gravitational and rolling forces are slightly higher for the second vehicle. On the other
hand, thanks to the slipstream creation, the energy dissipated by the aerodynamic
force of the second vehicle is 31% smaller compared to the one of the first vehicle.
The largest difference, however, is due to the braking action. The second vehicle
dissipates by braking approximately 130% more energy with respect to the first
vehicle. This leads to an overall energy consumption increase of about 6% of the
second vehicle with respect to the first one. This result is in line with the measured
4% increase in the second vehicle fuel consumption with respect to the scenario
where the same vehicle was driving alone (taking into account the mass difference
of the vehicles).

In order to understand the cause of the increased braking action, in the remainder
of the section, we focus the attention back to the experimental results displayed in
Figure 4.3. To facilitate the analysis we identify three segments denoted as Segments
1, 2 and 3 in Figure 4.3, where the braking action takes place:

• Segment 1. As soon as the first downhill begins, the controller of the first vehicle
requires zero traction torque to the engine. Due to the large gravitational
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Figure 4.3: Experimental results for the first two vehicles of the three-vehicle platoon
driving over the Sector A highlighted in Figure 4.2b. The first plot shows the road
topography, whereas the second plot shows the speed of the two vehicles; the third plot
shows the real and reference distances (according to a headway gap policy) between
the vehicles; finally the forth and fifth plots show the normalized engine torque for
both vehicles and the braking acceleration for the second vehicle (the braking action
of the lead vehicle is not available), respectively.
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Figure 4.4: Normalized energy consumption of the two vehicles divided into the dif-
ferent components, i.e., energies associated with the gravitational, rolling, aerodynamic
and braking forces.

force, the first vehicle still accelerates. Since the downhill is not long enough,
the maximum speed limit is not reached and no switching to the braking
mode takes place. This behavior is known as coasting (driving without any
fuel injection nor braking action). The second vehicle, which is tracking a
reference headway gap, starts coasting soon after the first vehicle. However,
due to the reduced aerodynamic resistance acting on it, the gap between the
vehicles shrinks until the minimum headway gap is reached. At this point, the
second vehicle brakes.

• Segment 2. While trying to compensate for the headway gap error built up
during the downhill, the speed of the second vehicle deviates from the one of
the first truck. Soon after the uphill starts, both vehicles full-throttle. However,
the speed difference at the beginning of the uphill results in a large deviation in
the headway gap. Furthermore, to generate larger torque, the gear management
of the second vehicle requires a downshift, leading to an increased time for
closing the gap. Once the gap is closed, the controller of the second vehicle
requires a significant braking torque to promptly reduce the large relative
speed between the vehicles.

• Segment 3. In the second downhill, the second vehicle states oscillate as a result
of the input saturation and the two controller modes. The controller of the
second vehicle repeatedly switches between the two modes and this results in
an inefficient behavior, where throttling and braking phases alternate. Finally,
at the end of the downhill, both vehicles reach the speed limit and brake.
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According to the above discussion, we witness the limitations of the implemented
distributed feedback control. Because of the large weight to power ratio typical for
trucks, small road grades lead the vehicle to operate in saturation for a significant
amount of time. As a result, the controller fails in smoothly controlling the vehicle
in scenarios where large vehicle state deviations are not possible, as in platooning.

In order to improve the system performance, we propose the use of look-ahead
platoon control. The developed optimization allows to explicitly include the tight
input bounds and the preview information about the road ahead, i.e., road grade
and speed limits. The look-ahead framework can foresee inefficient behaviors and
avoid them. For example, by reducing the throttling before the full gap closure, the
second vehicle braking could have been avoided in Segment 2 and the first part of
Segment 3 of Figure 4.3. The harsh braking in the final part of Segment 3 could have
been prevented by starting the coasting phase when still climbing the preceding
uphill.

4.2 Cooperative platooning

In this section, we discuss a cooperative framework suitable for the control of
heavy-duty vehicle platoons driving along roads with varying topography. With the
cooperative term, we indicate that the platooning vehicles operate together in order
to reach the common goal of smooth, fuel-efficient and safe platoon behavior.

As we concluded in the previous section, varying topography has a large impact
on platoons. A way to address the problem is to exploit look-ahead control that
makes use of preview information about the road topography to adapt the vehicle
speeds and inter-vehicular distances. The look-ahead control problem that we wish
to solve can be summarized by the following receding horizon formulation:

minimize platoon fuel consumption
subj. to vehicle dynamics,

state and input bounds,
safety constraint.

(4.3)

We choose the actuator inputs for each vehicle such that the fuel consumption
of the whole platoon is minimized under guaranteed safety. Directly solving the
optimization problem in a model predictive control framework, however, presents
two relevant issues:

• Communication complexity. Regardless of whether the problem is solved by a
cloud service or by the computer of one of the vehicles, the optimal control
inputs need to be communicated to all vehicles. Since this communication is
wireless, however, there is no strict guarantee that all vehicles will receive it.
Packet losses and communication outages should be taken into consideration.
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Although the intermittent interruption of communication between vehicles is
not a crucial concern for fuel-efficiency, it is for safety. The trajectory time
variations for improving the fuel consumption highlighted in the previous
section are relatively slow and, therefore, do no require high-rate communica-
tion. However, safety guarantee requires the prompt reaction of vehicles to
unexpected platoon state changes. The platoon safety, therefore, needs to be
ensured by local controllers using locally collected information, as distance to
the preceding vehicle and relative speed.

• Computational complexity. The optimization problem (4.3) has to predict a
number of states that grows linearly with the number of platooning vehicles.
This prediction should be done over a relative long horizon of the order
of a couple of kilometers. For example, the harsh braking in the final part
of Segment 3 in Figure 4.3 should have been predicted when the platoon
was still climbing the preceding uphill in order to be avoided. Furthermore,
the prediction model has to be non-linear due to the powertrain, and the
gravitational and aerodynamic forces. Because of these considerations, the
optimization problem (4.3) is rather large and complex, and, in addition, needs
to be solved in a short time.

The controller that ensures safety needs to run locally in each vehicle. However,
the controller that coordinates the vehicles for overall platoon fuel-efficiency needs
to interact with all vehicles. We propose therefore to divide the optimal control
problem (4.3) into two hierarchical subploblems that use different update period
and horizon length. A centralized controller first optimizes the behavior of the whole
platoon according to the common goal of fuel-efficiency. Then, local controllers track
the identified optimal trajectory, while ensuring the safety of the platoon. We refer
to the first controller as platoon coordinator and the latter ones as vehicle controllers.
The control architecture is depicted in Figure 4.5. In the remainder of the section,
we present an overview of the tasks that each controller should solve.

Platoon coordinator
The platoon coordinator aims at defining a common behavior of the platooning
vehicles that is fuel-efficient by taking topography information directly into account.
It is a centralized controller that can run in one of the vehicles or off-board on a
cloud service. It operates in a receding horizon fashion by repeatedly computing the
optimal behavior. As the vehicle controllers are supposed to track the fuel-optimal
trajectories, the refresh time of the platoon coordinator can be relatively large, of
the order of a few seconds. In order to capture the slow dynamics induced by the
road topography, it should have a prediction horizon of about one/two kilometers.

An overview of the optimal control problem solved by the platoon coordinator is
displayed in the upper block of Figure 4.6. In order to predict the vehicle trajectory
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Figure 4.5: Control architecture for cooperative platooning.

and estimate the platoon fuel consumption, the optimal control problem relies on
advanced vehicle models. They should include the non-linear longitudinal dynamics
and input and state bounds of all vehicles. The platoon coordinator computes the
reference speed trajectories for all vehicles that minimize the overall platoon fuel
consumption and fulfill the average speed requirements. In the next chapter, we
propose a specific platoon coordinator that addresses these points and scales well
with the number of vehicles.

Vehicle controller

The vehicle control layer aims at tracking the reference speed profile computed by
the platoon coordinator while ensuring safety.

An overview of the optimal control problem solved by each vehicle controller
is displayed in the lower block of Figure 4.6. The vehicle controller receives the
predicted state trajectory of the preceding vehicle through wireless communication,
and current state information about the preceding vehicle by fusing measurements
of the inter-vehicular distance and relative speed collected by on-board sensors (e.g.,
radar, lidar and cameras) with the vehicle own state. Using a simplified vehicle
model and the predicted trajectory of the preceding vehicle, the vehicle controller
computes the references for the low-level controllers (i.e., the braking, engine and
gear management systems presented in Section 3.3) by minimizing a tracking error
from the reference behavior. Furthermore, it guarantees safety by exploiting the
locally collected information and, if available, the communicated one. Safety is
guaranteed by ensuring that, in case the emergency braking of any of the platooning
vehicles, all the following vehicles can reduce their speed without collision.

The gear selection can be directly taken into account in the platoon control
architecture or outsourced to the low-level gear management system. Chapter 5
discusses a vehicle controller based on distributed model predictive control. Chap-
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Platoon coordinator
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Vehicle controller
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reference platoon
trajectory

Figure 4.6: Overview of the optimal control problems solved in the platoon coordinator
and the vehicle controllers.

ter 6 presents a controller that takes gear selection directly into account in the
optimization.

Remark 4.2.1. The platoon coordinator is important only if the road presents
significant altitude variations (i.e., the vehicles cannot maintain constant speed
during uphill due to limited engine power or during downhill due to the large mass).
In this case the proposed control architecture is an example of the cooperative
look-ahead control (CLAC) presented in Section 3.3. If the road does not present
significant altitude variations, the platoon coordinator can be omitted and the
reference behavior can be set to constant speed. In this case the control architecture
is an example of the cooperative adaptive cruise control (CACC) presented in
Section 3.3.

4.3 Non-cooperative platooning

In this section we discuss the vehicle platooning problem when no cooperation
between vehicles is possible or desired. This is a common problem when a heavy-
duty vehicle encounters, along the road, another heavy-duty vehicle with which no
framework for cooperation exists. Because of the lack of cooperation, this problem
typically involves two heavy-duty vehicles. Here, the first vehicle drives ignoring the
presence of a follower. Its longitudinal dynamics can be controlled manually by the
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Figure 4.7: Control architecture for non-cooperative platooning.

driver or automatically by employing the cruise control or the look-ahead control
introduced in Section 3.3. The second vehicle aims at fuel-optimally following the
first vehicle. This is achieved by seeking the right trade-off between keeping a short
inter-vehicular distance for the creation of the slipstream effect, efficiently using
the powertrain and avoiding braking. The non-cooperative platooning problem is
also referred to as ad-hoc platooning or vehicle-following to stress that the main
challenges lie in the second vehicle. The tasks that have to be accomplished are
mainly twofold:

(i) Prediction of the trajectory of the preceding vehicle. Depending on the avail-
ability of inter-vehicular communication, we distinguish between the two
following cases:

- If inter-vehicular communication is available, the prediction task can be
executed by the preceding vehicle and the predicted trajectory can be
communicated to the following one.

- If inter-vehicular communication is not available, the prediction of the
preceding vehicle is carried by the following vehicle. This prediction
should be based on historical and current information collected by on-
board sensors, such as vehicle distance and relative speed. Few works
addressed this prediction problem, see e.g. Lang et al. (2014) and Moser
et al. (2018), but, to the best knowledge of the author, no work exploited
topography information about the road ahead to obtain a more accurate
estimation. This is an open problem that is discussed in Chapter 9.
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Figure 4.8: Overview of the optimal control problems solved in the vehicle-following
planner and the vehicle controller.

(ii) Exploitation of the preceding vehicle predicted trajectory. This task can be
formulated as the following optimal control problem that needs to be solved
by the following vehicle:

minimize vehicle fuel consumption
subj. to preceeding vehicle predicted trajectory,

vehicle dynamics,
state and input bounds,
safety constraint.

(4.4)

In this thesis we address the control problem summarized in the second bullet
point. Figure 4.7 displays the control architecture for the non-cooperative platooning
control problem. Here, the optimal control problem (4.4) is addressed by the two
control layers, named vehicle-following planner and vehicle controller. An overview
of the optimal control problems solved by these two controllers is displayed in
Figure 4.8 and explained in the remainder of the section.
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Vehicle-following planner
The vehicle-following planner computes the reference behavior of the vehicle under
control. As displayed in the upper block of Figure 4.8, this computation is the
result of the minimization of the vehicle fuel consumption under predicted preceding
vehicle behavior. The prediction is done by exploiting the estimated trajectory of
the preceding vehicle and topography information, and using a model of the vehicle
under control. As the vehicle-following planner is not handling safety critical aspects
and the trajectory of the preceding vehicle is expected to be slowly varying, the
optimization refresh time can be relativity large, of the order of a few seconds.

Vehicle controller
The vehicle controller for non-cooperative platooning solves a similar problem to that
one addressed by the vehicle controller for cooperative platooning presented in the
previous section, i.e., tracking a reference behavior while ensuring safety. The main
difference lies in the fact that the vehicle controller for non-cooperative platooning
uses a locally computed estimation of the future behavior of the preceding vehicle,
instead of the communicated one by the preceding vehicle itself.

In Chapter 7, we propose an implementation of the vehicle-following planner based
on dynamic programming. It uses a detailed model of the longitudinal dynamics
and transmission to compute the optimal gear sequence and traction force request.
In Chapter 8 we present a lower-complexity controller based on model predicative
control that aims at solving both the vehicle-following planner and the vehicle
controller problems in a single formulation.

4.4 Summary

In this chapter we first presented the analysis of a platooning experiment conducted
on a Swedish highway. The insight gained by this analysis gave us the suggestion to
design two control architectures: one for cooperative platooning and one for non-
cooperative platooning. Both architectures were based on look-ahead control that
allows to exploit preview information on the road topography and preceding vehicle
behavior in the control computation. In cooperative platooning, the fuel-efficiency is
managed by the platoon coordinator that aims at minimizing the fuel consumption
of the whole platoon. In the non-cooperative architecture, instead, the fuel-efficiency
is managed by the vehicle-following planner that aims at minimizing the following
vehicle own fuel consumption. In both architectures, the tracking of the fuel-efficient
behavior is handled by local vehicle controllers, which also ensure safety.
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Chapter 5

Cooperative fuel-efficient and safe platooning

In this chapter, we discuss a formulation and implementation of the cooperative
control architecture for fuel-efficient and safe platooning introduced in Chapter 4.
Each layer is based on an optimal control problem formulation aimed at optimiz-

ing the platoon behavior. The higher layer, denoted as platoon coordinator, is based
on a dynamic programming framework, which computes a reference speed profile
defined over space for all vehicles of the platoon. It ensures the feasibility of the speed
trajectory and its fuel-optimality by explicitly taking topography information into
account. The lower layer, denoted as vehicle control layer, is based on a distributed
model predictive control framework that safely tracks the reference speed trajectory.
Safety is guaranteed by specifically designed constraints that ensure the recursive
feasibility of the model predictive controller.

The proposed control architecture is tested in an in-depth simulation study that
can be divided into three parts: (i) We evaluate the platoon coordinator performance
by means of simulations where the fuel consumption of a two-vehicle platoon under
multiple vehicle control strategies is compared. The results show the potential of
the platoon coordinator to reduce the fuel consumption for a fairly hilly road of up
to 12% for following vehicles with respect to standard platooning controllers. (ii)
We test the reaction of a three-vehicle platoon to multiple maneuvers of the leading
vehicle. The results show how the platooning vehicles successfully handle harsh
braking of the leading vehicle without collision and how disturbances attenuate along
the platoon. The vehicles successfully manage to brake without collision occurring.
(iii) The functioning of the overall control architecture is tested by simulating a
three-vehicle platoon driving in the same scenario as the experiment presented in
Section 4.1, outperforming the controller tested previously. The platoon exhibits a
smooth behavior and the controller is able to compensate for small disturbances
acting on the control input.

The chapter is organized as follows. In Section 5.1, we present the cooperative
platooning control architecture tailored to our implementation and we state the

65
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Figure 5.1: Control architecture for cooperative platooning.

control problems solved by the two layers. Sections 5.2 and 5.3 detail the platoon
coordinator and the vehicle control layers, respectively. Sections 5.4 and 5.5 provide
an independent evaluation of the performance of the two layers. Finally, Section 5.6
evaluates the performance of the overall closed-loop system and Section 5.7 concludes
the chapter.

5.1 Control architecture and problem statement

In this section, we discuss the control architecture for cooperative platooning shown
in Figure 5.1 and we state the problem formulations for the two platoon coordinator
and the vehicle control layer.

The fleet layer displayed in Figure 5.1 is responsible for routing the single vehicles
and platoons, and for defining their average speed over each road section, in order to
promote the fuel-efficient platoon formation. The platoon coordinator receives the
average speed requirement and defines the reference speed trajectory for all vehicles
in the same platoon exploiting available information on the road ahead, i.e., road
altitude profile and speed limits. Finally, the vehicle controllers safely tracks the
reference speed profile.

5.1.1 Platoon coordinator problem statement

The platoon coordinator is responsible for the overall fuel-efficient operation of the
platoon. It defines reference speed trajectories for the platooning vehicles that (i)
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minimize the fuel consumption of the whole platoon, (ii) are feasible for all vehicles
and (iii) satisfy the average speed condition required by the fleet layer.

In Section 5.2, we propose a platoon coordinator formulation that scales well with
the length of the platoon. This is achieved by requiring platooning vehicles to follow
the same speed profile defined over space. As road attributes, e.g., the beginning of
an uphill or a downhill, or speed limit, affect the platooning vehicles at specific space,
it is natural to impose speed variations in the space domain instead of the time
domain. To this end, the platoon coordinator computes a unique space-defined speed
profile for the whole platoon. If we define the optimal control problem over space,
it means that we can reduce the number of predicted states from a number that
grows linearly with the number of vehicles to a fixed number of states independent
from the number of vehicles.

A consequence of the space-defined speed profile for the whole platoon is that
vehicles are spaced by a constant time gap. That means that the time interval that
passes between two consecutive vehicles going through the same point is constant,
i.e.,

si(t) = si−1(t − τi). (5.1)

where si and τi denote the position of vehicle i and the time gap, respectively.
This can be easily proved by computing the time derivative of the left-hand side of
equation (5.1), leading to

dsi(t)
dt

= vi(t) = vs
i(si(t)), (5.2)

where vs
i(s) denotes the speed of vehicle i at space s, and the right-hand side of

equation (5.1), leading to

dsi−1(t − τi)
dt

= vi−1(t − τi)

= vs
i−1(si−1(t − τi)) = vs

i−1(si(t)).
(5.3)

For the proposed platoon coordinator, we relax the strict average speed require-
ment by weighting the platoon travel time in the cost function. As the traveled time
can be defined as the integral of a function of the vehicle speed, i.e.,

∫
Sfinal

0

1
vs
i(s)

ds, (5.4)

the space-dependent state time is no more used in the optimal control formulation
and its dynamics can be therefore omitted. This allows to further reduce the
computational complexity of the optimal controller. The optimization problem of
the platoon coordinator is synthesized in the upper block of Figure 5.2. Due to
the non-linearities of the vehicle model, the optimal control problem is solved by
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Figure 5.2: Overview of the optimal control problems solved in the proposed formu-
lations of the platoon coordinator and the vehicle controllers.

dynamic programming. Details are given in Section 5.2.

5.1.2 Vehicle control layer problem statement

The vehicle control layer is responsible for the safe tracking of the reference platoon
speed profile generated by the platoon coordinator. In Section 5.3, we propose
a vehicle control layer based on model predictive control. Each vehicle controller
receives (i) the reference speed trajectory from the platoon coordinator v̄s(⋅), (ii) the
predicted future trajectory from the preceding vehicle x̂∗i−1(⋅∣t) and (iii) measurements
of the preceding vehicle current states (i.e., its position si−1 and speed vi−1), obtained
by fusing information from on-board sensors (i.e., inter-vehicular distance di, relative
speed ∆vi, vehicle position si, and vehicle speed vi).

The model predictive controller of each vehicle uses a simplified linear model of
the vehicle, namely a double integrator. In order to fuel-efficiently and safely track
the reference speed trajectory, the optimal control formulation aims at minimizing
the deviation from the reference trajectory and from the constant time gap, while
avoiding unnecessary braking. The latter condition is obtained by introducing a soft
constraint on avoiding the braking action and heavily penalizing the slack variable
associated with the soft constraint in the cost function. The safety of the platoon is
defined as the requirement of all vehicles being able to decelerate without reaching
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collision when one or multiple vehicles in the platoon unexpectedly full-brake. The
safety is ensured by defining specifically designed safety constraint enforced in each
vehicle controller.

The optimization problem of the vehicle controller is synthesized in the lower
block of Figure 5.2. Details are given in Section 5.3.

5.2 Platoon coordinator

The parameters that characterize the dynamic programming formulation are the
horizon length HDP, the discretization space ∆sDP and the recomputation frequency
fDP. We also define the number of steps in the horizon as NDP = ⌊HDP/∆sDP⌋. In
the remainder of the section we present the platoon model, the powertrain model,
model constraints and the cost function that are used in the dynamic programming
formulation.

5.2.1 Platoon model

The platoon coordinator relies on a discretized version of the vehicle model (3.1),
where the discretization is carried out in the spatial domain using the implicit Euler
approximation. The discretized vehicle model is:

vs
i(zk)

vs
i(zk) − vs

i(zk−1)
∆sDP

=F s
t,i(zk) + F s

b,i(zk) (5.5a)

−miga( sin(α(zk)) + cr,i)
− 1

2ρAvCd(ds
i(zk))(vs

i(zk))2,

vs
i(zk)

tsi(zk) − tsi(zk−1)
∆sDP

=1, (5.5b)

where zk is the discretized space variable, and vs
i(zk), tsi(zk), F s

t,i(zk), F s
b,i(zk) and

ds
i(zk) are the speed, time, traction and braking forces, and distance to the preceding

vehicle, all expressed as function of space, respectively. The definition of the vehicle
parameters is introduced in Chapter 3 and synthesized in Table 5.1. In the dynamic
programming formulation we refer to equation (5.5a) as

vs
i(zk−1) = f s

i (vs
i(zk), us

i(zk)), (5.6)

where us
i(zk) is the input vector defined as us

i(zk) = [F s
t,i(zk), F s

b,i(zk)]T. As argued
in Section 5.1, the space-defined time dynamics (5.5b) are ignored since they are
not used in the constraints or cost function.

The inter-vehicular distance (3.2) cannot be explicitly expressed in the space
domain. We therefore approximate it with a function of the current vehicle speed
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vs
i(zk) according to

ds
i(zk) = vs

i(zk)τi − li−1. (5.7)

This approximation is valid if the (fuel-optimal) speed profile exhibits slow dynamics,
as would be expected.

5.2.2 Powertrain model

Here, we derive a simplified model of the powertrain that captures the relation
between the instantaneous fuel consumption and the generated traction power Pi
defined as the product of the traction force and the vehicle speed:

Pi = Ft,ivi. (5.8)

In order to obtain a model that can be effectively used in the cost function definition
of the platoon coordinator, the gearbox-clutch dynamics have been simplified by
assuming that:

(i) the gear ratio γg,i defined in Section 3.2 can be chosen on a continuous and
unlimited span,

(ii) no delays occur in gear ratio changes.

These simplifications, combined with the requirement that all vehicles follow the
same speed profile defined over space, allow to obtain a dynamic programming
formulation that scales linearly with the number of vehicles.

According to the transmission models (3.11)–(3.12) presented in Chapter 3 and
the power definition (5.8), the engine torque Ti can be rewritten as

Ti =
Pi
ωi

(5.9)

and the fuel model (3.10) can be redefined as function of the engine speed ωi and
the generated power Pi, as

ψi = ϕi (ωi,
Pi
ωi

) . (5.10)

Thanks to the introduced assumptions, the gear ratio γg,i and, consequently, the
engine speed ωi can be chosen optimally such that the fuel flow is minimized for a
given generated traction power Pi, i.e.,

ψi = min
ωi

ϕi (ωi,
Pi
ωi

) = qi(Pi). (5.11)

This pre-optimization give as the simplified powertrain model qi(⋅) that will be used
in the cost function definition.
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Figure 5.3: BSFC map of the 400 hp engine introduced in Section 3.2. The thick
blue line represents the collection of the optimal operation points associated to the
simplified powertrain model q(⋅).

To understand the meaning of the simplified model in Figure 5.3 we reproduce
the BSFC map of the 400 hp engine first presented in Section 3.2. The thick blue
line in Figure 5.3 highlights the operation points (pairs of engine speed and torque)
associated with the simplified powertrain model (5.11). The simplified engine model
qi(⋅) and the optimal engine speed corresponding to such engine are displayed in
Figure 5.4. We can notice how qi(⋅) exhibits a nearly affine trend. We therefore
extract a linearized powertrain model (displayed in Figure 5.4 as a red line) that
will be used to define the terminal cost in the platoon coordinator cost function.
We will refer to such model as

ψi = q1,iPi + q0,i. (5.12)

From Figure 5.3, we can finally extract the minimum and maximum engine power
bounds, Pmin,i and Pmax,i, respectively, that will be enforced as model constraints.

5.2.3 Model constraints

The vehicle dynamics are constrained by the following bounds on input and state.
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Figure 5.4: The plots show the optimal fuel flow and engine speed as function of the
generated power. In the first plot we also display the fuel model expressed in (5.12)
obtained by the regression of the raw data.

Input constraints

According to the engine power bounds derived in the previous subsection and
according to equation (3.3), the traction and braking forces are bounded by:

Pmin,i ≤ F s
t,i(zk)vs

i(zk) ≤ Pmax,i, (5.13a)
Fb,min,i ≤ F s

b,i(zk) ≤ 0, (5.13b)

Speed constraints

In order to take into account speed limits, the speed is constrained by the following
space-dependent bounds:

vmin(zk) ≤ vs
i(zk) ≤ vmax(zk). (5.14)

Moreover, as argued in Section 5.1, all vehicles are required to follow the same speed
profile by enforcing the following constraint:

vs
i(zk) = vs(zk), i = 1, ...,Nv. (5.15)

We will refer to vs(⋅) as the platoon speed.
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5.2.4 Cost function

The cost function is defined as a weighted summation of a term representing the
platoon fuel consumption and a term representing the traveled time, i.e.,

JDP(vs(⋅)), us(⋅)) = Jfuel(vs(⋅), us(⋅)) + βJtime(vs(⋅)), (5.16)

where us(⋅) concatenates the inputs of all vehicles, i.e., us(⋅) = [us
1(⋅), ..., us

Nv
(⋅)]T.

Here, β represents the trade-off between fuel consumption and traveled time, but
can be also interpreted as the Lagrangian multiplier of the relaxed average speed
constraint. It can be analytically computed according to a simplified platoon model
where speed constraints are ignored similarly to what is proposed in Hellström et al.
(2006), or controlled. In this work, we opt for the latter option where, in detail, β is
controlled by a slow PI controller that tracks the average speed v̄ required by the
fleet layer depicted in Figure 5.1.

The fuel consumption term Jfuel(vs(⋅), us(⋅)) is computed according to the
powertrain model (5.11) and includes a terminal term representing the kinematic
energy of the platoon at the end of the horizon. The final kinematic energy has been
scaled according to the linearized powertrain model (5.12). The fuel consumption
term can be computed as

Jfuel(vs(⋅), us(⋅)) =
Nv

∑
i=1

k+NDP−1
∑
j=k

q (F s
t,i(zj)vs(zj))∆sDP

vs(zj)

−
Nv

∑
i=1
p1,i

mi(vs(zj+NDP−1))2

2
.

(5.17)

The traveled time term Jtime(vs(zj)) is computed by integrating the time dy-
namics (5.5b), resulting in

Jtime(vs(⋅)) =
k+NDP−1
∑
j=k

∆sDP

vs(zj)
. (5.18)
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5.2.5 Dynamic programming formulation

We now have all the elements to state the dynamic programming formulation:

minimize
us(⋅)

JDP(vs(⋅)), us(⋅)) (5.19a)

subj. to vs
i(zj−1) = f s

i (vs
i(zj), us

i(zj)), (5.19b)
Pmin,i ≤ F s

t,i(zk)vs
i(zk) ≤ Pmax,i, (5.19c)

Fb,min,i ≤ F s
b,i(zk) ≤ 0, (5.19d)

vmin(zk) ≤ vs
i(zk) ≤ vmax(zk), (5.19e)

vs
i(zj) = vs(zj) ∈ Vs(zj), (5.19f)
zk = s1(t), (5.19g)
vs(zk) = v1(t), (5.19h)

for j = k, ..., k +NDP − 1, where equations (5.19g) and (5.19h) represent the initial
conditions of the dynamic programming formulation.

5.3 Vehicle control layer

The parameters that characterize the model predictive control MPC formula-
tion are the horizon length HMPC, the discretization time ∆tMPC and the re-
computation frequency fMPC. We define the number of steps in the horizon as
NMPC = ⌊HMPC/∆tMPC⌋. We also assume a maximum delay in vehicle communica-
tion and in the measurement collection by the on-board sensors of ∆tMPC. In the
remainder of the section, we present the vehicle model, the model constraints, the
safety constraint and the cost function that are used in the MPC formulation.

5.3.1 Vehicle model

In the MPC formulation the vehicle is described by the double integrator dynamics

xi(tj+1∣tk) = Axi(tj ∣tk) +Bai(tj ∣tk), (5.20)

where

A ≜
⎡⎢⎢⎢⎢⎣

1 0
∆tMPC 1

⎤⎥⎥⎥⎥⎦
, B ≜

⎡⎢⎢⎢⎢⎣

∆tMPC

0

⎤⎥⎥⎥⎥⎦
.

The state xi represents the vector concatenating the vehicle speed and position,
i.e, xi = [vi, si]T, while the control input ai represents the vehicle acceleration.
The variables xi(tj ∣tk) and ai(tj ∣tk) denote the predicted state and control input
trajectories of vehicle i associated with the update time tk. We also introduce three
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additional trajectories associated with each update time tk that will be used in the
MPC formulation:

• the optimal state trajectory x∗i (tj ∣tk),

• the reference state trajectory x̄i(tj ∣tk),

• the assumed state trajectory x̂i(tj ∣tk),

for j = k, ..., k +NMPC − 1 and the corresponding input control trajectories defined
likewise. While the predicted and optimal trajectories are functions of the opti-
mization variable, the reference and assumed trajectories are precomputed. More
precisely the reference trajectories x̄i(tj ∣tk) = [v̄i(tj ∣tk), s̄i(tj ∣tk)]T and āi(tj ∣tk) are
computed from the reference platoon trajectory v̄s(⋅) and the current position s(tk)
of the vehicle. In particular, s̄i(tj ∣tk) is defined recursively as

s̄i(tj ∣tk) = {
si(tj), j = k,
s̄i(tj−1∣tk) +∆tMPCv̄

s(s̄i(tj−1∣tk)), j > k,
(5.21)

while v̄i(tj ∣tk) is defined as

v̄i(tj ∣tk) = v̄s(s̄i(tj ∣tk)). (5.22)

The control input reference trajectory āi(tj ∣tk) is defined as finite differences of
v̄i(tj ∣tk), i.e.,

āi(tj ∣tk) =
v̄i(tj+1∣tk) − v̄i(tj ∣tk)

∆tMPC
. (5.23)

The assumed state and control input trajectories are computed from the optimal
and real trajectories of the vehicle as

x̂i(tj ∣tk) = {
xi(tj), j < k,
x∗i (tj ∣tk−1), k ≤ j < k +HMPC,

(5.24)

and âi(tj ∣tk) likewise. The assumed trajectories represent the most accurate knowl-
edge of the past and future state and control input trajectories of each vehicle.
Using a similar framework to the one presented in Dunbar and Murray (2006),
such trajectories are communicated by each vehicle to the following one. In this
way, the assumed trajectories of the preceding vehicle can be exploited in each
vehicle controller formulation in order to track the required gap policy. Note that
the dependence of the assumed trajectories to the optimal trajectories computed
the previous step, see definition (5.24), reflects the assumption of a maximum delay
in vehicle communication of ∆tMPC.
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5.3.2 Model constraints

In order to take the bounds on the braking force (3.3) and the engine power (5.13b)
into account, as done in the platoon coordinator layer, the control input ai is
bounded by the following non-linear constraint:

amin,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) ≤ ai(tj ∣tk) ≤ amax,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) , (5.25)

for j = k, ..., k +NMPC − 1, where

amin,i(xi, x̂i−1) =
1
mi

(Fb,min,i + Fext,i(xi, x̂i−1)) , (5.26a)

amax,i(xi, x̂i−1) =
1
mi

(Pmax,i

vi
+ Fext,i(xi, x̂i−1)) . (5.26b)

Here Fext,i denotes the summation of the external forces acting on the vehicle defined
as

Fext,i(xi, x̂i−1) = −miga sinα(si) −migacr,i

− 1
2ρAvCd(ŝi−1 − si − li−1)v2

i .
(5.27)

The control input ai is additionally bounded by the soft constraint introduced
in Section 5.1 that ensures that braking action happens only if necessary, i.e., when
the safety constraint activates, or if it is required by the platoon coordinator. This
is formulated as follows:

ai(tj ∣tk) + εi(tk) ≥ min(acoast,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) , āi(tj ∣tk)), (5.28a)
εi(tk) ≥ 0, (5.28b)

for j = k, ..., k +NMPC − 1, where acoast,i is the coasting acceleration, i.e., the vehicle
acceleration when fuel is not injected, defined as

acoast,i(xi, x̂i−1) =
1
mi

(Pmin,i

vi
+ Fext,i(xi, x̂i−1)) . (5.29)

and εi is the slack variable associated with the soft constraint. Here, we remark that
the dependence of the input constraints on the assumed trajectory of the preceding
vehicle is due to the aerodynamic drag reduction with the inter-vehicular distance
reduction.

Finally, the speed is bounded according to constraint (5.14) as

vmin(si(tj ∣tk)) ≤ vi(tj ∣tk) ≤ vmax(si(tj ∣tk)). (5.30)
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5.3.3 Safety constraint

The platoon is intended to operate on public highways where other vehicles are
present. The designed controller, therefore, should be able to cope with cases where
the platoon behavior deviates from the predicted one because of internal disturbances
(e.g., gear shifts) or external events (e.g., high traffic or a vehicle full-braking). In
this section we focus on the safety problem, leaving to further work the study of
how such events should be handled (i.e., autonomously or by switching to manual
driving).

The platoon is considered safe if, regardless of the action of any vehicle in the
platoon, there exists an input for all the following vehicles such that a collision
can be avoided. The safety of the platoon is guaranteed by ensuring that the state
of each vehicle lies within a safety set and it is firstly studied by considering two
adjacent vehicles and later extended to the entire platoon. In here we consider the
following continuous-time vehicle dynamics:

˙̃xi =
⎡⎢⎢⎢⎢⎣

˙̃vi
˙̃si

⎤⎥⎥⎥⎥⎦
= f(x̃i, ãi) =

⎡⎢⎢⎢⎢⎣

ãi

ṽi

⎤⎥⎥⎥⎥⎦
, (5.31)

where ṽi, s̃i and ãi are the speed, position and acceleration of vehicle i, respectively.
Let now focus on the dynamics of two adjacent vehicles described by

⎡⎢⎢⎢⎢⎣

˙̃xi−1
˙̃xi

⎤⎥⎥⎥⎥⎦
= F (x̃i−1, x̃i, ãi−1, ãi) =

⎡⎢⎢⎢⎢⎣

f(x̃i−1, ãi−1)
f(x̃i, ãi)

⎤⎥⎥⎥⎥⎦
, (5.32)

where the acceleration of the current vehicle ãi is the control input, while the
acceleration of the preceding vehicle ãi−1 is the exogenous input that can be regarded
as a disturbance. We also introduce the admissible set

X̃ = {[x̃T
i−1, x̃

T
i ]T ∶ ṽi−1 ≥ 0, ṽi ≥ 0, s̃i−1 − s̃i ≥ li−1} (5.33)

as the set of all admissible states, where li denotes the length of vehicle i. In order
to obtain a closed form of the safety set, the following conservative approximations
of the exogenous and control inputs are introduced:

ãi−1 ∈ Ap(x̃i−1) =
⎧⎪⎪⎨⎪⎪⎩

[amin,i−1, amax,i−1], if ṽi−1 > 0,
[0, amax,i−1], if ṽi−1 = 0,

(5.34a)

ãi ∈ Af(x̃i) =
⎧⎪⎪⎨⎪⎪⎩

[amin,i, amax,i], if ṽi > 0,
[0, , amax,i], if ṽi = 0,

(5.34b)

where amin,i, amin,i, amax,i and amax,i are lower and upper bounds on the minimum
and maximum possible accelerations of vehicle i, respectively. Such bounds are
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computed under reasonable assumptions on the vehicles and road properties, i.e.,
the vehicles’ speed is limited (0 ≤ ṽi ≤ vmax) and the road slope α is bounded
(∣α∣ ≤ αmax). For example, the bounds amin,i and amin,i represent the minimum
braking acceleration in the best and worst case environmental conditions. They can
be computed as

amin,i = min
0≤v≤vmax,∣α∣≤αmax,d≥0

amin,i(v,α, d), (5.35a)

amin,i = max
0≤v≤vmax,∣α∣≤αmax,d≥0

amin,i(v,α, d), (5.35b)

where amin,i(v,α, d) denotes the minimum braking acceleration defined as

amin,i(v,α, d) =
Fb,min,i

mi
− ga sin(α) − cr,iga −

ρAvCd(d)v2

2mi
. (5.36)

Note that, due to the definition of the bounds and because of the dominance of the
Fb,min,i/mi term in the definition of amin,i, the following inequalities hold:

amin,i ≤ amin,i ≤ 0, (5.37a)
amax,i ≤ amax,i. (5.37b)

A similar approach can be taken for computing the bounds on the maximum traction
acceleration amax,i and amax,i.

In order to guarantee the safety of the subsystem (5.32), we should guarantee
that the state [x̃T

i−1, x̃
T
i ]T always lies in a safety set Si included in X̃ , for any

admissible trajectory of the preceding vehicle. We now define the safety set Si ⊆ X̃ ,
displayed in Figure 5.5, as

Si = {[x̃T
i−1, x̃

T
i ]T ∶ gj(x̃i−1, x̃i) ≥ 0, j = 1, ...,4}, (5.38)

where, in this section, gj(⋅, ⋅), j = 1, ...,4, represent the boundary functions of Si
and are defined as

g1(x̃i−1, x̃i) = s̃i−1 − s̃i − li−1 −
ṽ2
i−1

2amin,i−1
+ ṽ2

i

2amin,i
,

g2(x̃i−1, x̃i) = s̃i−1 − s̃i − li−1,

g3(x̃i−1, x̃i) = ṽi−1,

g4(x̃i−1, x̃i) = ṽi.

(5.39)

We now state and prove the following result:

Lemma 1. Given the dynamical system (5.32) and the constraints (5.34a)
and (5.34b) on the exogenous and control inputs respectively, there exists a con-
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ṽ
i
[m

/
s]
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Figure 5.5: Projection of the boundary ∂Si of the safety set Si ⊆ X̃ on the (d̃i, ṽi)
plane for ṽi−1 = 0, 10, 20, 30 m/s. The variable d̃i denotes the distance between the
two adjacent vehicles. The bounds on the minimum braking acceleration has been
chosen such that amin,i−1 < amin,i.

trol law ãi = ϕ([x̃T
i−1, x̃

T
i ]T) ∈ Af(x̃i) such that for all [x̃T

i−1(t0), x̃T
i (t0)]T ∈ Si and

ãi−1 ∈ Ap(x̃i−1), the condition [x̃T
i−1(t), x̃T

i (t)]T ∈ Si holds for all t ≥ t0.

In other words, Si is a robust controlled invariant set (Blanchini, 1999).

Proof. By using Nagumo’s theorem for robust controlled invariant sets (Blanchini,
1999), the lemma can be proven by showing that for all [x̃T

i−1, x̃
T
i ]T ∈ ∂Si (defined as

the boundary of Si), there exists an ãi ∈ Af such that, for all ãi−1 ∈ Ap, the relation

∇gj(x̃i−1, x̃i)TF (x̃i, x̃i−1, ãi−1, ãi) ≥ 0 (5.40)

holds for all j such that gj(x̃i−1, x̃i) = 0. Because of the structure of the problem,
the control input ãi is chosen as maximum braking, i.e.,

ãi =
⎧⎪⎪⎨⎪⎪⎩

amin,i, if ṽi > 0,
0, if ṽi = 0,

(5.41)

for any [x̃T
i−1, x̃

T
i ]T ∈ ∂Si and ãi−1 ∈ Ap(x̃i−1). We organize the proof by considering

the [x̃T
i−1, x̃

T
i ]T ∈ ∂S̃i defined by the activation of each gj(x̃i−1, x̃i) ≥ 0:

• for [x̃T
i−1, x̃

T
i ]T such that g1(x̃i−1, x̃i) = 0, and gj(x̃i−1, x̃i) ≥ 0, for j ∈ {2, 3, 4},
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∇g1(x̃i−1, x̃i)TF (x̃i−1, x̃i, ãi−1, ãi) =(1 − ãi−1

amin,i−1
) ṽi−1 − (1 − ãi

amin,i
) ṽi,

=(1 − ãi−1

amin,i−1
) ṽi−1 ≥ 0,

where the equality and inequality hold because of the definition of ãi in (5.41)
and g3(x̃i−1, x̃i) ≥ 0.

• for [x̃T
i−1, x̃

T
i ]T such that g2(x̃i−1, x̃i) = 0, and gj(x̃i−1, x̃i) ≥ 0, for j ∈ {1, 3, 4},

∇g2(x̃i−1, x̃i)TF (x̃i−1, x̃i, ãi−1, ãi) = ṽi−1 − ṽi ≥ 0,

where the inequality holds by noticing that the combination of g1(x̃i−1, x̃i) ≥ 0,
g2(x̃i−1, x̃i) = 0 and the relation (5.37a) gives ṽi−1 ≥ (amin,i/amin,i)ṽi.

• for [x̃T
i−1, x̃

T
i ]T such that g3(x̃i−1, x̃i) = 0, and gj(x̃i−1, x̃i) ≥ 0, for j ∈ {1, 2, 4},

∇g3(x̃i−1, x̃i)TF (x̃i−1, x̃i, ãi−1, ãi) = ãi−1 ≥ 0,

where the inequality holds because of (5.34a). The same can be verified in a
similar way for [x̃T

i−1, x̃
T
i ]T such that g4(x̃i−1, x̃i) = 0 and gj(x̃i−1, x̃i) ≥ 0 for

j ∈ {1,2,4}.

The choice of the safety set guarantees that the following vehicle can react to
the emergency braking maneuver of its predecessor, such that both vehicles come to
a standstill without colliding. We now extend the result in Lemma 1 to the safety
of the whole platoon. More precisely, we proof that whatever a vehicle does, there
exists an input for all the following vehicles, such that collision can be avoided. This
is formalized by the following theorem:

Theorem 1. Consider a vehicle with index i0 < Nv and all its following vehicles
i ∈ I = {i0 + 1, ...,Nv} satisfying the dynamics in (5.31). Then, there exists a control
law ãi = ϕ(x̃i, x̃i−1) ∈ Af(x̃i), i ∈ I such that for all [x̃T

i−1(t0), x̃T
i (t0)]T ∈ Si and

ãi0 ∈ Ap(x̃i0), the condition [x̃T
i−1(t), x̃T

i (t)]T ∈ Si holds for all t ≥ t0 and all i ∈ I.

Proof. The application of Lemma 1 for i = i0 + 1 proves the existence of an input
ãi ∈ Af(x̃i) that ensures that [x̃T

i−1(t), x̃T
i (t)]T ∈ Si for all t ≥ t0. Then, by noting

that Af(x̃i) ⊆ Ap(x̃i) according to (5.37), it follows that ãi ∈ Ap(x̃i). The theorem
is then proven by induction over the vehicle index, hereby repetitively applying
Lemma 1.
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This result is adapted to the MPC formulation in order to take communication
delays and the discretized nature of MPC into account. In detail, at each time tj
along the prediction, we have access to the preceding vehicle real state at time tj−1
(according to the assumption of maximum delay in vehicle to vehicle communica-
tion and radar measurements of ∆tMPC). Furthermore, at each time tj along the
prediction, we want to ensure that the predicted state at time tj+1 (that will be the
current one in the next MPC iteration) is safe. According to these considerations, we
can translate the safety set Si into the following safety constraints on each following
vehicle state:

si(tj+1∣tk) −
v2
i (tj+1∣tk)
2amin,i

≤ ŝi−1(tj−1∣tk) −
v̂2
i−1(tj−1∣tk)
2amin,i−1

− li−1, (5.45a)

si(tj+1∣tk) ≤ ŝi−1(tj−1∣tk) − li−1, (5.45b)

for i = 2, ...,Nv. The constraints (5.45a) and (5.45b) correspond to the boundaries
of Si characterized by g1 and g2, respectively, as defined in equation (5.39). The
constraints corresponding to g3 and g4 have been here omitted since they require
the vehicles to drive in the forward direction, which is true by assumption. Note
that the constraint (5.45b) is not necessary if the bounds on the minimum braking
acceleration of contiguous vehicles satisfies the constraint amin,i−1 ≤ amin,i (this
is the case, for example, when the platooning vehicles have the same maximum
braking capability, i.e., Fb,min,i = Fb,min for all i). In this case, in fact, the vehicle
dynamics (5.31) and the definition of the safety set (5.38)–(5.39) prohibit reaching
the boundary characterized by g2 (see Figure 5.5). Finally we remark that, for safety
purpose, only the safety constraints for j = k is necessary. In fact it guarantees that,
if at the update time tk the current state of each following vehicle is safe, then it is
going to be safe also at the update time tk+1. However, the safety constraints for
j > k give optimal trajectories that are safe over the whole horizon and therefore
produce a more fuel-efficient behavior of the platoon. In the MPC formulation, we
refer to the safety constraints (5.45a)–(5.45b) as fsafe(xi(tj+1∣tk), x̂i−1(tj−1∣tk)) ≥ 0.

Remark 5.3.1. Here, the safety constraint has been considered only for following
vehicles. However, note that in case of a moderately-congested traffic scenario, if a
prediction of the future trajectory of the vehicles preceding the platoon (e.g., by
using a traffic model) is available, the safety constraint can be also introduced in the
lead vehicle controller. This would allow to fuel-efficiently follow the external traffic.

5.3.4 Cost function

The objective of the vehicle control layer is to follow the reference speed trajectory
and the gap policy defined by the platoon coordinator, while avoiding unnecessary
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braking. This is formulated by the following cost function:

JMPC(ai(⋅, tk), εi(tk)) =
k+NMPC−1
∑
j=k

∣∣xi(tj ∣tk) − x̂i−1(tj−Ti ∣tk)∣∣
2
(1−ζi)Q

+ ∣∣ai(tj ∣tk) − âi−1(tj−Ti ∣tk)∣∣
2
(1−ζi)R

+ ∣∣xi(tj ∣tk) − x̄i(tj ∣tk)∣∣2ζiQ

+ ∣∣ai(tj ∣tk) − āi(tj ∣tk)∣∣2ζiR

+ ∣∣εi(tk)∣∣2P ,

(5.46)

where

ζi =
⎧⎪⎪⎨⎪⎪⎩

1, if i = 1,
ζ̄ ∈ [0, 1], if i = 2, ...,Nv,

(5.47)

Ti represents the discretized version of the time gap τi (i.e., Ti = ⌊τi/∆tMPC⌋) and
the notation ∣∣ ⋅ ∣∣S is defined as ∣∣x∣∣2S = xTSx. In detail, the first and second terms
in (5.46) penalize the deviation of the predicted state and input trajectories from the
delayed assumed trajectories of the preceding vehicle. The third and fourth terms
penalize the deviation of the predicted state and input trajectories from the reference
ones. Here, the parameter ζ̄ defines the trade-off between the tracking of the reference
trajectories and the gap policy. The fifth term penalizes the slack variable associated
to the soft constraint on braking action (5.28a). The weights Q, R and P are
chosen in order to reach a good balance between the tracking of the state and input
trajectories and actuator excitation. In particular, P is chosen relatively large such
that only the activation of the safety constraint fsafe(xi(tj+1∣tk), x̂i−1(tj−1∣tk)) ≥ 0
can require a significant braking force. This ensures the fuel-efficient and safe tracking
of the reference trajectories.

By penalizing both the deviations from the reference trajectories and from the
constant time gap policy, we aim at reaching a good attenuation of disturbances
along the platoon. Rigorously guaranteeing string stability in distributed model
predictive control settings is challenging as such controllers result in control laws
that are nonlinear. However, if the perturbations are small enough such that the
model predictive control constraints do not activate, the controller behaves as a
linear–quadratic (LQ) regulator. This allows to exploit the extensive research on
string stability based on transfer function analysis and apply it to our formulation.
If ζ̄ = 0, all vehicles but the leader only track the time gap to the preceding vehicle.
In the case of perfect tracking, as discussed in Besselink and Johansson (2017), this
leads to a marginally string stable scenario where perturbations do not amplify or
attenuate along the platoon. On the other hand, if ζ̄ = 1, each vehicle tracks the
same reference trajectory and completely ignores what the preceding vehicle is doing.
That means that perturbations will completely die after one vehicle. Here, we argue
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that by correctly choosing ζ̄, it is possible to successfully achieve the attenuation of
disturbances along the platoon.

5.3.5 Model predictive control formulation
Combining the vehicle model, the input/state constraints, the safety constraint and
the cost function, the MPC problem can be formulated as:

minimize
ai(⋅∣tk)

JMPC(ai(⋅∣tk), εi(tk)) (5.48a)

subj. to xi(tj+1∣tk) = Axi(tj ∣tk) +Bai(tj ∣tk), (5.48b)
ai(tj ∣tk) ≥ amin,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) , (5.48c)
ai(tj ∣tk) ≤ amax,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) , (5.48d)
ai(tj ∣tk) + εi(tk) ≥ min(acoast,i (xi(tj ∣tk), x̂i−1(tj ∣tk)) , āi(tj ∣tk)), (5.48e)
vmin(si(tj ∣tk)) ≤ vi(tj ∣tk) ≤ vmax(si(tj ∣tk)), (5.48f)
fsafe(xi(tj+1∣tk), x̂i−1(tj−1∣tk)) ≥ 0, if i ≥ 2, (5.48g)
εi(tk) ≥ 0, (5.48h)
xi(tk ∣tk) = xi(t), (5.48i)

for j = k, ..., k +NMPC − 1, where equation (5.48i) represents the initial condition of
the MPC problem. In our implementation, we have replaced the time-dependent pre-
dicted state xi(tj ∣tk) in constraints (5.48c)–(5.48f) with the assumed state x̂i(tj ∣tk),
transforming those non-linear constraints in linear constraints. The modification al-
lows to recast the MPC problem into a quadratic constraint quadratic programming
(QCQP) problem for which efficient solvers exist.

The output of the vehicle controller are the desired acceleration a∗i (tk) defined
as a∗i (tk) = a∗i (tk ∣tk), where a∗i (⋅∣tk) is the optimal input trajectory, and a boolean
variable bi defined as

bi(tk) =
⎧⎪⎪⎨⎪⎪⎩

1, if a∗i (tk) < acoast,i (xi(tk ∣tk), x̂i−1(tk ∣tk)) ,
0, if a∗i (tk) ≥ acoast,i (xi(tk ∣tk), x̂i−1(tk ∣tk)) ,

(5.49)

that indicates if the desired acceleration defines a traction or braking force. According
to such variable, the acceleration will be either tracked by the braking management
system or the engine and gear management systems presented in Section 3.3 and
displayed in Figure 3.6.

5.4 Evaluation of the platoon coordinator

In this section, we evaluate the performance of the platoon coordinator presented
in Section 5.2. In this analysis, we compare the fuel and energy consumption of a
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Figure 5.6: Road topography of the 45km highway stretch between the Swedish
cities of Mariefred and Eskilstuna. The red color highlights the uphill and downhill
sections for which the slope is too steep for a vehicle of 40 tonnes with a 400 hp engine
to maintain a constant speed of 21.5 m/s without exceeding the maximum engine
power and without braking.

platoon under multiple control strategies. To make the analysis independent from the
low-level tracking strategy, in this section we assume that the vehicles follow exactly
the speed trajectories and spacing policies defined by the high-level controllers.

5.4.1 Experiment setup

The comparison is done by using as a benchmark the same road scenario introduced
in Section 4.1. We therefore consider a platoon of two heavy-duty vehicles driving
over the 45km road stretch between the Swedish cities of Mariefred and Eskilstuna.
In Figure 5.6 we reproduce the road topography for this road stretch, where the
red color highlights the uphill and downhill sections for which the slope is too
large for a heavy-duty vehicle of 40 tonnes and engine power of 400 hp, as used
in the simulation, to maintain a constant speed of 22 m/s without exceeding the
engine power limit and without braking. Due to the reduced engine power of the
vehicles used in the simulation compared to the experimental ones, some uphill
sections that do not allow the vehicles to maintain the constant reference speed have
been identified. For the considered road, the steep sections represent 23% of the
total length. The controller performance is investigated for both homogeneous and
heterogeneous platoons. The performance metrics chosen to compare the different
control configurations are the energy and the fuel consumed by the vehicles. In some
comparisons, the consumed energy is preferred over the consumed fuel because it can
be directly related to the energies dissipated by the various forces, i.e., gravitational,
rolling, drag and braking forces. Similarly to what has been done in the motivational
experiment analysis of Section 4.1, the simulated braking, gravitational, rolling and
aerodynamic forces have been integrated over space according to

E◻ ,i = ∫
Ssim

0
F s
◻ ,i(s)ds (5.50)
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to obtain the energy consumption associated with each force. Here, Ssim = 45
km denotes the simulation space horizon, while the placeholder ◻ represents the
subindexes b, g, r and d. The total energy consumption Ei is defined according to
equation (4.2). The total Ψi fuel consumption of vehicle i, instead, is computed
according to

Ψi = ∫
Ssim

0
qi (F s

t,i(s)vi(d)) /vs
i(s)ds, (5.51)

where qi(⋅) represents the simplified fuel model defined in equation (5.11).
The control configurations considered in the comparisons include three control

strategies and three gap policies. In detail, the following control strategies for the
first vehicle are considered:

• Cruise control (CC). The first vehicle keeps the constant reference speed vCC
on low-grade slopes. If the uphill slope is too large to maintain constant speed,
the engine generates the maximum power Pmax,1 until the speed reaches vCC
again. If the downhill slope is too large to maintain constant speed without
braking, the engine coasts (i.e., does not inject any fuel, generating therefore
the minimum power Pmin,1) until the speed reaches vCC again. However, if
the vehicle reaches the speed limit vmax, the brakes are activated in order not
to overcome it.

• Look-ahead control (LAC). The first vehicle exploits the slope information
of the road ahead in order to minimize its own fuel consumption. This is
implemented using a similar framework of the platoon coordinator where the
presence of following vehicle is ignored, i.e., Nv = 1.

• Cooperative look-ahead control (CLAC). The first vehicle follows the speed
profile generated by the proposed platoon coordinator.

The following gap policies are considered:

• Space-gap policy. The second vehicle keeps a constant distance dSG from the
first vehicle.

• Headway-gap policy. The second vehicle keeps a constant headway time
τHG from the first vehicle, i.e., it keeps a distance proportional to its speed
(dHG(t) = τHGvi(t)).

• Time-gap policy. The second vehicle keeps a constant time gap τTG from the
first vehicle according to (5.1).

The combination of CLAC and the time-gap policy represents the proposed platoon
coordinator. In order to be able to maintain exactly the desired gap policies as
previously assumed, the second vehicle is allowed to overcome the theoretical
maximum engine power Pmax,2 and to brake if necessary. In addition, in order
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Table 5.1: Vehicle parameters.

mi vehicle masses t 40
li vehicle length m 18
cr,i rolling coefficient - 0.003
Av cross-sectional vehicle area m2 10
Cd,0 nominal drag coefficient - 0.6
Cd,1 first drag reduction coefficient m−1 12.8
Cd,2 second drag reduction coefficient m 19.7
Pmin,i minimum engine power kW −9
Pmax,i maximum engine power kW 298

to obtain a fair comparison it is ensured, by tuning the trade-off parameter β of
the LAC and CLAC formulations (see definition (5.16)), that the different control
strategies have the same average speed v̄ and the parameters dSG, τHG and τTG are
chosen such that the vehicles in the different gap policies have the same distance
when driving at constant speed v̄ (i.e., dSG = v̄τHG = v̄τTG − l1). Furthermore, in
order to remove the influence of the residual kinematic energy, the initial and final
speeds are constrained to be the same in all the controller configurations.

5.4.2 Control strategies comparison

In this section, we present the results of the platoon behavior for the three different
control strategies, while keeping a time-gap policy (with τTG = 1.4 s). In the first
part, as in the motivational experiment of Section 4.1, we focus on the homogeneous
platoon scenario, while in the second part we consider two heterogeneous platoons
(i.e., platoons where the second vehicle is respectively heavier and lighter than the
leading one).

We now consider a platoon of two identical vehicles, whose parameters values are
displayed in Table 5.1. We start the comparison by analyzing the comprehensive bar
diagram displayed in Figure 5.7 representing the energy consumed by each vehicle
of the platoon for the three control strategies (the corresponding fuel consumption
is displayed in the middle column of Table 5.2). These energies are normalized with
respect to the energy consumed by a single vehicle driving alone using CC. The
consumed energy is additionally split into the components representing the energies
dissipated by the braking, gravitational, rolling and aerodynamic forces. We can first
notice how the second vehicle, for all the control strategies, consumes less energy
compared to the first one, due to the significant reduction of the energy associated
with the drag force. Second, comparing the three control strategies, we can observe
how the use of the LAC allows both vehicles to save energy, respectively 3.5% and
6.4% compared to the use of the CC. Instead, by switching from the LAC to the
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Figure 5.7: Normalized energy consumption of the platooning vehicles divided into
the different components, i.e., energies associated with the gravitational, rolling,
aerodynamic and braking forces. Both vehicles have a mass of 40 tonnes. In the three
simulated scenarios the first vehicle relies on CC, LAC and CLAC, respectively. The
second vehicle tracks a constant time-gap.

CLAC, the first vehicle consumes 0.1% more energy, while the second one saves
3.7% of energy; therefore the platoon, given by the combination of the two vehicles,
overall saves 3.6% of energy with respect to the use of LAC. This result is in line
with our expectation, since the LAC optimizes the fuel consumption of the first
vehicle, while the CLAC targets the reduction of the fuel consumption of the entire
platoon. Consequently, the savings of the CLAC strategy with respect to the LAC
strategy are expected to increase for platoons of more than two vehicles. Going into
the details of the various consumed energy components, first, we notice that the
gravitational and rolling energy components are the same for both vehicles for all
the considered control strategies. This is due to the fact that the energy associated
with the gravitational force depends only on the difference of altitude between the
initial and final points, while the rolling energy only depends on the driven distance,
that is the same by experiment design specification. The drag energy, instead, is
significantly different for the two vehicles because of its dependence on the distance
to the preceding vehicle, while it is approximately the same for the different control
strategies. What significantly changes between the different control strategies is the
energy dissipated by braking, denoted by Eb,i in Figure 5.7.

In order to understand the role of the control strategies in the braking usage
in Figure 5.8 we show part of the simulation results corresponding to the road
highlighted as Sector B in Figure 5.6. In this study, we have chosen to focus on
a downhill section because this is where the braking action for the CLAC case is
taking place. The comparison of the platoon behaviors follows:
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• CC: during the downhill, starting from speed vCC, the first vehicle accelerates
while coasting due to the large road grade. In the meantime the second vehicle
has to brake slightly in order to maintain the time gap and compensate the
reduced drag force compared to the first vehicle. At 38.1 km, in order not to
overcome the speed limit, both vehicles need to brake significantly.

• LAC: by exploiting the topography information of the road ahead, the first
vehicle reduces its speed before the downhill by anticipating the coasting
phase such that the speed limit is reached only when the slope grade is small
enough to stop accelerating while coasting and therefore it avoids braking.
The second vehicle, as in the CC case, has to brake slightly while the first
vehicle is coasting but it also avoids the significant braking phase at the end
of the downhill.

• CLAC: since in this case the optimization is done considering the fuel con-
sumption of both vehicles, with respect to the LAC case the first vehicle starts
to lose speed earlier before the downhill. This allows it to sightly throttle
during the downhill, allowing the second vehicle to coast meanwhile and, as
in the LAC case, to reach the speed limit only when the slope grade is small
enough to stop accelerating while coasting. In this case both vehicles, do not
need to brake.

Note that, in the case of longer downhill segments, the lower speed bound does not
allow the vehicle to decrease the speed enough before the downhill in order not to
hit the upper speed limit during the downhill. This is why in some sections of the
45km benchmark road, in the LAC case, the first vehicle and, in the CLAC case,
both vehicles still need to brake.

So far we have considered the case of a homogeneous platoon. What we will
investigate in the remainder of the subsection is the role of the different control
strategies in the case of heterogeneous platoons. In Table 5.2 we have reported the
normalized fuel consumption for the cases of two heterogeneous platoons and the
same homogeneous platoon previously considered. More in detail, the vehicles have
the same powertrain, but their masses vary between 35, 40 and 45 tonnes. Analyzing
the table we can notice how in the case of a heavier second vehicle the CLAC allows
to save 10.8% of fuel compared to the CC, while, in the case of a lighter second
vehicle, it allows to save 5.4%. However if we only analyze the last row we can
note how, with the use of the CLAC, the order of the vehicles does not significantly
change the normalized fuel consumption. Note that this is not the case in the LAC
strategy.

Concluding, the proposed controller (CLAC combined with the time-gap policy)
has a significant impact on the reduction of the energy and fuel consumption. In
detail, the majority of the fuel saving is related to the reduction of energy dissipated
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Figure 5.8: Comparison of the behavior of a homogeneous platoon (i.e., m1 =m2 = 40
t) for three different control strategies, namely CC, LAC and CLAC, while keeping a
time-gap policy and driving over the Sector B displayed in Figure 5.6. The first plot
shows the road altitude; the second plot shows the speed profiles for the three control
strategies followed by both vehicles (because of the time-gap policy, the platooning
vehicles follow the same speed profile in the spatial domain); finally the third and
fourth plots show the summation between the generated power by the engine and the
braking systems for the two vehicles and three control strategies; the black lines in such
plots define the theoretical minimum and maximum engine power, respectively Pmin,i

and Pmax,i (hence if the power crosses the lower power limit Pmin,i, the corresponding
vehicle is braking).
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Table 5.2: Normalized fuel consumption (in %) of the vehicles in the platoon for
different control strategies and scenarios (vehicle weights). The fuel is normalized with
respect to the fuel consumed by the corresponding vehicle driving alone using CC.

1st 2nd 1st 2nd 1st 2nd

mass 35 t 45 t 40 t 40 t 45 t 35 t
CC 100.0 90.2 100.0 86.3 100.0 82.1
LAC 97.6 84.9 96.9 80.6 96.3 77.2
CLAC 97.8 78.0 97.0 77.4 96.4 76.7
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Figure 5.9: Normalized energy consumption of the platooning vehicles divided into
the different components, i.e., energies associated with the gravitational, rolling,
aerodynamic and braking forces. Both vehicles have a mass of 40 tonnes. In the three
simulated scenarios the first vehicle relies on CLAC. The second vehicle tracks a
space-gap, a headway-gap and a time-gap, respectively.

by braking during the downhill sections. The impact of such a controller grows in
the case of a heavier following vehicle.

5.4.3 Gap policies comparison

In this subsection, we compare the platoon performance for different gap policies,
namely a constant space-gap, headway-gap, and time-gap. while the first vehicle
keeps the same control strategy (in the analysis we have chosen CC). Note that in
order to be able to follow the required gap policy the second vehicle is allowed to
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exceed the maximum engine power. In this section, we only focus on the homogeneous
platoon, since the results for a heterogeneous platoon are qualitatively the same.
In Figure 5.9 we show the comprehensive bar diagram representing the normalized
energy consumed by each vehicle in the platoon for the three gap policies, while using
CC as a control strategy. Since the first vehicle uses the same control strategy, the
energy consumption differs only for the second vehicle. It is interesting to notice that,
similar to the comparisons done in the previous section, the main difference between
the energy consumption of the second vehicle is related to the energy dissipated by
braking. More in detail the headway-gap policy allows the second vehicle to save
1% over the space-gap policy, while the time-gap policy allows to save an additional
1.6% of energy. In order to understand the role of the gap policy on the braking
energy, we show the platoon behavior driving over a synthetic hill composed by an
uphill section with constant slope grade, a flat section and a downhill section with
constant slope grade. The platoon behavior for such a hill is shown in Figure 5.10.
Analyzing the second vehicle behavior for each gap policy, the following can be
observed:

• time-gap policy: as argued in Section 4.2, the time gap allows the vehicles
to follow the same speed profile over space. That means that the generated
forces and therefore the generated powers (because of the equal speed result)
are equivalent except for a reduction of the air drag component in the second
vehicle. Therefore the power generated by the second vehicle, as can be observed
in Figure 5.10, is approximately a biased equivalent of the one generated by
the first vehicle. As a result, the second vehicle complies with the limitation
on maximum engine power.

• space-gap policy: the space gap requires the vehicles to follow the same speed
profile over time. An interesting consequence can be observed, for example,
at the beginning of the uphill section shown in Figure 5.10; as soon as the
first vehicle enters the uphill section and decelerates because of limited engine
power, the second vehicle, which is still in the flat section, has to brake in order
to respect the space gap requirement. In general, excluding the offset given by
the drag power, every time the slope increases (in Figure 5.10, entering the
uphill and leaving the downhill sections), the second vehicle has to generate
less power than the first vehicle, while every time the slope decreases (in
Figure 5.10, leaving the uphill and entering the downhill sections) the second
vehicle has to generate more power than the first vehicle. As a consequence,
the second vehicle has respectively to brake and to exceed the power limit in
order to follow the required space-gap policy.

• headway-gap policy: the headway gap can be considered as a trade-off between
a time gap and a space gap. In fact, for example, as soon as the first vehicle
enters the uphill section and starts to decelerate, the distance between the two
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Figure 5.10: Comparison of the behavior of a homogeneous platoon (i.e.,
m1 =m2 = 40 t) for three different gap policies, namely space, headway and time-
gap policies, while using CC as a control strategy and driving over a synthetic hill.
For the plots explanation refer to the caption of Figure 5.8; note that the second plot
shows only the speed trajectories of the second vehicle (the speed trajectory of the first
vehicle coincides with the one of the second vehicle in the case of time-gap policy).

vehicles is allowed to decrease, but this decrease is not as fast as in the case of
the time gap. This has been experienced in the motivational experiment while
the platoon was driving along Segment 1 of Figure 4.3.

In conclusion, the time gap allows to save more energy compared to the space and
headway gaps. In addition, the time gap allows all the vehicles to follow the same
space-defined speed trajectory and, therefore, it scales well with the number of
vehicles in the platoon. This is not the case when using a space or headway-gap
policy. The complete results for the normalized fuel consumption are reported in
Table 5.3.

5.5 Evaluation of the vehicle control layer

In this section, we evaluate the performance of the vehicle control layer presented in
Section 5.2. The evaluation is divided into two parts. First, we test the functioning of
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Table 5.3: Normalized fuel consumption (in %) of the vehicles in the platoon for
different control strategies and gap policies. The fuel is normalized respect to the fuel
consumed by the corresponding vehicle driving alone using CC.

space-gap headway-gap time-gap
1st 2nd 1st 2nd 1st 2nd

CC 100.0 88.6 100.0 87.7 100.0 86.3
LAC 96.9 82.7 96.9 81.9 96.9 80.6
CLAC 97.0 80.4 97.0 79.3 97.0 77.4

the distributed safety constraints by simulating multiple braking actions of the lead
vehicle and observing how the platoon reacts. Second, we analyze how disturbances
propagate along the platoon for various values of the trade-off parameter ζ̄. The
simulated vehicles are identical with parameters’ values defined in Table 5.1. The
parameter of the MPC formulation are displayed in the second half of Table 5.4.

5.5.1 Safety analysis

The testing of the vehicle controller safety functionality is carried by studying the
reaction of a three-vehicle platoon driving on a flat road to multiple braking profiles
of the leading vehicle as displayed in Figure 5.11 and Figure 5.12. The braking
actions are unplanned and, therefore, are not communicated to the following vehicles
in advance.

In Figure 5.11, the leading vehicle brakes with a deceleration of 1, 2 and 3 m/s2
for 0.9 s at the time instances 5, 25 and 55 s, respectively. In the second plot of this
figure, the effective distances and the ones that would activate the safety constraint
(we will refer to it as the safety distance) are shown. First, we can notice how, in line
with our expectation, the second and third vehicles are braking (see the third plot)
only when the effective distance touches the safety distance. In fact, here we recall
that, according to how the vehicle controller is designed (see Section 5.3.5), only the
activation of the safety constraint or a braking request from the platoon coordinator
can lead to a significant braking action. Consequently, during the first braking
instance of 1 m/s2, both following vehicles do not brake, despite the deviation of
their states from the reference trajectories. During the second braking of 2 m/s2,
instead, the safety constraint of the second vehicle is activated and therefore it
requires a braking action. Finally, during the third braking of 3 m/s2, the safety
constraints of both following vehicles activate and therefore they both brake. Note
that the safety constraint is designed such that fuel-efficiency has priority on driver
comfort. In fact, in this case, in order to be fuel-efficient, the braking action is
required only when the platoon is in a safety critical situation.
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Figure 5.11: Behavior of a three identical vehicles platoon driving on a flat road.
The leading vehicle brakes three times at 5, 25 and 55 s, with a braking deceleration of
respectively 1, 2 and 3 m/s2 for 0.9 s. The first plot shows the speed of the three vehicles.
The second plot shows the distance between the vehicles and the corresponding safety
distance computed using an adaptation of inequality (5.45). The third plot shows the
summation between the generated power by the engine and the braking systems of
the vehicles.

In Figure 5.12, we consider a more challenging scenario in which the first vehicle
brakes with higher intensity, simulating an emergency situation. More precisely,
it brakes at 5 s with a deceleration of 7 m/s2 for 1 s and at 30 s with the same
deceleration until it arrives at full-stop. We can notice how, also in this scenario,
the safety constraint in each vehicle controller activates the braking action and
guarantees that no collision occurs between the vehicles.

5.5.2 Disturbance propagation analysis

Here, we analyze the capability of the vehicle control layer to attenuate disturbances
along the platoon. We test the reaction of a four-vehicle platoon driving on a flat
road to a small disturbance acting on the lead vehicle. As the model predictive
control constraints do not activate, the controller behaves similar to an LQ controller.
The platoon behavior is tested for multiple values of ζ̄ that represents the trade-off
between the preceding vehicle following and the reference trajectory tracking in the
cost function (5.46).
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Figure 5.12: Behavior of a three identical vehicles platoon driving on a flat road.
The leading vehicle brakes a first time at 5 s for 1 s with a deceleration of 7 m/s2 and
a second time at 25 s with a deceleration of 7 m/s2 until arriving to full-stop. For the
plot explanation refer to the caption of Figure 5.11.

Figure 5.13 shows the reaction of the platoon to a small disturbance acting on the
first vehicle. The disturbance is defined as an acceleration for 0.5 s of a tenth of the
maximum engine power. Each row in Figure 5.13 represents a different simulation
and the value of ζ̄ varies between 0 and 1 between the simulations. The left plot
of each simulation represents the vehicle speeds, while the right one represents the
control input. The first simulation represents the case where each vehicle is only
tracking the time gap, as ζ̄ = 0. In this case, we can notice how the disturbance
replicates in each vehicle almost unchanged with a time delay equivalent to the time
gap. The last simulation represents, instead, the case where each vehicle only tracks
the reference trajectories derived by the common reference speed profile, as ζ̄ = 1.
As the trajectory of preceding vehicles is ignored and the safety constraint do not
activate, this is equivalent to the scenario where each vehicle is driving as it was
alone. We can notice, in fact, how following vehicles do no react to the fluctuations
in the trajectory of the preceding vehicle, resulting in the perturbation immediately
dying after the second vehicle. In the intermediate simulations, we can notice how
both the speed and engine power fluctuations attenuate along the platoon. This
suggests the choice of ζ̄ strictly between 0 and 1.



96 Cooperative fuel-efficient and safe platooning

22.06

22.07

(ζ̄
=

0
.5

)

22.06

22.07

(ζ̄
=

0
.2

5
)

40

60

80

30 32 34 36 38 40

22.06

22.07

time [s]

(ζ̄
=

1
)

veh 1 veh 2 veh 3 veh 4

30 32 34 36 38 40

40

60

80

time [s]

40

60

80

22.06

22.07

(ζ̄
=

0
.7

5
)

40

60

80

40

60

80

vehicles’ power [kW]

22.06

22.07

(ζ̄
=

0
)

vehicles’ speed [m/s]

Figure 5.13: Each row of plots represents a different simulation characterized by a
certain value of the trade-off term ζ̄. The simulation results show the reaction of a
four-vehicle platoon to a disturbance acting on the lead vehicle. The left and the right
plots display the speed and the engine power, respectively.
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Table 5.4: Controller parameters.

platoon coordinator

HDP DP horizon length km 2
∆sDP DP discretization space m 6
fDP DP refresh frequency Hz 0.25

vehicle controller

HMPC MPC horizon length s 8
∆tMPC MPC discretization time s 0.05
fMPC MPC refresh frequency Hz 20

5.6 Evaluation of the integrated system

In this section, we test the performance of the integrated cooperative control
architecture. To this end, we consider a platoon of three homogeneous vehicles
driving over the Sector A highlighted in Figure 5.6. This is the same sector for
which the experimental results have been analyzed in Section 4.1 and displayed in
Figure 4.3. The vehicle and controller parameters are depicted in Tables 5.1 and
5.4, respectively. The vehicle simulation model uses the simplified powertrain model
presented in Subsection 5.2.2. We consider first the nominal scenario, where no
disturbance acts on the vehicle acceleration. Second, we considered the perturbed
scenario, where a drop of the second vehicle traction power takes place during the
uphill to emulate the gear shift happening in the motivational experiment presented
in Section 4.1.

The simulation results for the nominal scenario are displayed in Figure 5.14. At
first glance, as expected from the platoon coordinator formulation, we can notice
how all the vehicles approximately follow the same space-defined speed and distance
profiles. Additionally, in order to follow such profiles, we can observe in the last plot
how the second and third vehicle, thanks to the air drag reduction, need to generate
less power than the leading vehicle. We now continue the analysis by focusing on
the three critical segments highlighted in Figure 5.14 and corresponding to those
analyzed in Section 4.1 for the motivational experiment:

• Segment 1. Due to the steep downhill, all vehicles are not able to maintain
the constant speed without braking and, therefore, they accelerate. However,
the platoon coordinator requires the leading vehicle to throttle slightly such
that the following vehicles can coast. In this case, the coordination role of
the platoon coordinator allows to avoid braking action to all vehicles, hereby
ensuring a lower overall fuel consumption.
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Figure 5.14: Simulation results obtained using the proposed controller for a three-
vehicle platoon while driving over the Sector A highlighted in Figure 5.6. The three
vehicles are identical with parameters shown in Table 5.1. The first plot shows the road
topography. For the explanation of the other plots refer to the caption of Figure 5.11.

• Segment 2. Since no gear shift takes place, the vehicles are able to smoothly
follow the reference speed and time gap policy.

• Segment 3. Due to the longer length of the downhill section compared to the
the one of Segment 1, the platoon exhibits a different behavior. First, the
platoon coordinator requires all vehicles to decrease the speed to the minimum
allowed (in this simulation it is set to 19 m/s) in order to hit the maximum
speed limit as late as possible. Second, since the speed limit is reached despite
the decrease of speed at the beginning of the downhill, the platoon coordinator
requires the first vehicle to coast and the following vehicles to brake slightly
to maximize the efficiency. In fact, in this case, to require the first vehicle to
slightly throttle in the first part of the downhill section and brake at its end
would be contradictory and inefficient.

We now discuss the simulation results for the perturbed scenario. Here, we
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Figure 5.15: Simulation of a similar scenario considered in Figure 5.14, where, instead,
a disturbance acts on the input of the second vehicle. In detail, the disturbance is
defined as a drop of the engine power to zero for 1 s at space 27.22km. The figure
shows a portion of the simulation corresponding to Segment 2. For the explanation of
the plots refer to the caption of Figure 5.14.

emulate a gear shift of the second vehicle during the uphill of Segment 2 as happened
in the motivational experiment. The gear shift is simulated as a drop of the traction
power to zero at position 27.22km for a time of one second. In Figure 5.14 we
display the simulation results for the platoon driving along Segment 2. The second
vehicle, in order to react to the deviation of the state from the reference and the
opening of the time gap due to the disturbance, generates the maximum power for
120m. Thanks to the prediction of the state, the controller stops the full-throttle
before reaching the time gap requirement. This gives the time to the second vehicle
to reduce its speed while closing the gap. The speed reduction of the second vehicle
during the engine power drop is not safety critical as it can be noticed in the distance
plot of Figure 5.15 (i.e., the distance between the second and third vehicles does not
reach the safety distance correspondent safety distance). The third vehicle, therefore,
by fulfilling the time gap requirement, tracks the delayed trajectory of the second
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vehicle and starts to reduce its throttling at the same position where the disturbance
hits the second vehicle. If the disturbance would have been more intense, the safety
constraint could have required the third vehicle to reduce the throttle earlier.

In conclusion, the vehicle controller smoothly handled the emulated second
vehicle gear shift. However, if the gear shift would have been longer or would have
happened at a close time with respect to other vehicle gear shifts, its repercussions
on the platoon behavior could have been more harmful. To address this issue, in
the next chapter, we discuss how gear shifts can be directly taken into account in
the platooning control architecture.

5.7 Summary

In this chapter, we presented a possible formulation and implementation of a the
cooperative control architecture for fuel-efficient and safe platooning.

The control architecture is made up of two layers. The higher layer is referred
to as platoon coordinator and is responsible for the overall fuel-efficient operation
of the platoon. This is achieved by defining a unique reference speed trajectory for
the platoon defined in the spatial domain. The platoon coordinator is implemented
by dynamic programming and guarantees that the computed reference trajectory
is feasible for all vehicles, minimizes the fuel consumption of the whole platoon
and satisfies given average speed requirements. The platoon coordinator is tested
in a simulation study where a two-vehicle platoon drives along a hilly road. The
trajectories generated by the proposed controller are compared to those generated
by alternative platooning control strategies. The comparison show the potential of
the proposed platoon coordinator to reduce the fuel consumption of up to 12% for
following vehicles with respect to the alternative control strategies.

The lower layer is referred to as vehicle control layer and is responsible for the fuel-
efficient and safe tracking of the reference platoon speed trajectory generated by the
platoon coordinator. It is implemented by distributed model predictive control where
each vehicle controller receives the preceding vehicle predicted trajectory and exploits
it to track the reference speed profile and gap policy, while avoiding unnecessary
braking. The safety of the platoon is guaranteed by a set of specifically designed
constraints distributed in the model predictive controllers. The performance of the
vehicle control layer has been evaluated by means of simulations. The simulation
study shows the capability of the distributed layer to safely react to unexpected
braking of the first vehicle and to attenuate disturbances along the platoon.

The chapter ended with the evaluation of the whole control architecture. The
simulations confirm the good behavior of the platoon while driving along a realistic
road profile. However, gear shifts can produce large deviations in the platoon
trajectory if they take place in unfavorable moments. This issue is addressed in the
next chapter.



Chapter 6

Gear management in cooperative platooning

In this chapter we study the problem of how to efficiently manage gear shifts in
heavy-duty vehicle platoons. The importance of the work is motivated by the
analysis of the experiment of Section 4.1 and of the perturbed scenario presented

in Section 5.6 and displayed in Figure 5.15.
Gears have a strong impact on the vehicle fuel consumption and on the reference

speed and inter-vehicular distance tracking. The wrong gear can lead the engine to
operate in an inefficient region, while a gear shift taking place at the wrong moment,
e.g., during an uphill stretch, can lead to a large deviation from the references
that can be hard to compensate for. This was described in the experiment of
Section 4.1, where the following vehicle was changing gear in the middle of the uphill
while the controller was requiring maximum torque. As a consequence of the large
deviation from the tracked reference, the following vehicle reaches the leading one
at a relatively large speed and therefore harshly brakes. The look-ahead capability
of the vehicle control layer of the cooperative control architecture presented in the
previous chapter allows to alleviate this problem as shown in the simulation results
of Section 5.6. However, gear shifts might still generate large perturbations in the
platoon reference tracking.

Here, we discuss a variation of the control architecture presented in the previous
chapter that takes gear shifts into account. A gear management layer that optimizes
the gear selection and the gear shift timing is introduced. The underlying optimal
control problem aims at minimizing the vehicle fuel consumption and the speed
and inter-vehicular reference tracking deviations. The gear management layer per-
formance is tested in a simulation study that compares it to alternative solutions.
The study shows how the proposed solution properly manages the gear shifting task
guaranteeing fuel-efficiency and the smooth behavior of the platoon.

The chapter is organized as follows. In Section 6.1, we analyze the gear manage-
ment problem for vehicle platooning and we propose a modified control architecture.
Sections 6.2 and 6.3 present the details of the gear management layer and the vehicle

101



102 Gear management in cooperative platooning
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vehicle controller

gear manager

a∗1, b1, gr,1 x1

v̄s(·), Ḡ1 x1

v̄s(·) x1

vehicle controller

gear manager

a∗2, b2, gr,2 x2, s1, v1

v̄s(·), Ḡ2 x2

v̄s(·) x2

x̂1(·|t)

d2, ∆v2

Figure 6.1: Control architecture for cooperative platooning where gear management
is taken directly into account.

control layer, respectively. In Section 6.4, we present a simulation study that shows
the performance of the proposed method. Finally, Section 6.5 concludes the chapter.

6.1 Control architecture and problem statement

A gear management strategy for platooning should take both vehicle fuel consumption
and reference speed and inter-vehicular distance tracking into account. We suggest
a three-layer control architecture as depicted in Figure 6.1, which extends the one
presented in the previous chapter. This architecture is similar to the one proposed
by Johannesson et al. (2015) for the control of a single vehicle driving along a hilly
road.

Here, the platoon coordinator, as presented in detail in Section 5.2, computes
a reference platoon speed profile defined over space and denoted as v̄s(⋅), which is
feasible for all vehicles and minimizes the overall platoon fuel consumption.

The gear management layer is responsible for choosing the sequence of gear shifts
Ḡi for each vehicle in order to optimally track the reference speed trajectory v̄s(⋅).
The gear shift sequence is, first of all, optimized according to fuel-efficiency criteria.
Furthermore, due to the interruption of the transferred force during gear shifts, the
gear managers also penalize the impact of gear shifts on the tracking of the speed
and inter-vehicular distance. This is achieved by ensuring that the deviation from
the references during gear shifts is small and that it can be compensated for in a
limited time. As it will be shown in the simulation study of Section 6.4, these aspects
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are crucial for thee coordinated behavior of the platoon. The gear management layer
is discussed in Section 6.2.

The vehicle control layer, similarly to Section 5.3, tracks the speed reference
v̄s(⋅) and the chosen spacing policy, while guaranteeing safety. However, the vehicle
control layer of this chapter also takes the requested future sequence of gear shifts
into account. This allows to compensate for a planned gear shift before it takes
place. The vehicle control layer is discussed in Section 6.3.

6.2 Gear management layer

In this section, we present the problem solved by the gear management layer. The
gear manager is a controller local to each vehicle that receives the space-defined
reference speed profile v̄s(⋅) from the platoon coordinator and computes the optimal
sequence of gear shifts for the vehicle i:

Gi = {(gl,i, sl,i)}Li

l=1, (6.1)

where gl,i and sl,i denote the l-th required gear and the longitudinal position where
it should occur, respectively. The gearbox-clutch dynamics are modeled according
to the automaton displayed in Figure 3.5 and presented in Section 3.2. In the work
presented in this chapter, freewheeling is not considered as admissible gearbox-clutch
state, due to the lack of vehicle controllability when engaged. The required gear gl,i
is therefore constrained by

gl,i ∈ Ga,i, (6.2)

for l = 0, ..., L, where Ga,i = {j ∈ N∣j ∈ [gmin,i, gmax,i]} represents the set of the
admissible gears. For simplicity, in the remainder of this section index i corresponding
to the current vehicle is dropped.

The gear manager is formulated as an optimization problem whose objective is
to minimize the vehicle fuel consumption and the impact of the gear shift on the
deviation from the reference speed profile and inter-vehicle gap. In detail, the cost
that we aim to minimize is

Jfuel(G) + αJshift(G), (6.3)

where Jfuel(G) denotes the consumed fuel over the gear manager horizon HGM and
Jshift(G) quantifies the energy lost during gear shifts (i.e., the energy that the engine
would have transferred to the wheels if no gear shift takes place).

The consumed fuel Jfuel(G) is expressed as a function of the sequence of gear
shifts G, the reference speed v̄s and the reference traction force F̄ s

t (s) needed to
track v̄s. The reference traction force can be approximately computed as

F̄ s
t (s) = max{0, F̄ s(s)}, (6.4)
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where F̄ s(s) is the actuator reference force defined according to the space vehicle
model used by the platoon coordinator (5.5b) as

F̄ s(s) =mv̄s(s)dv̄
s(s)
ds

+mga sinα(s) +mgacr + 1
2ρAvCd(d)(v̄s(s))2. (6.5)

The definition of the vehicle parameters is introduced in Chapter 3 and synthesized
in Table 6.1. Given F̄ s

t (⋅), the consumed fuel Jfuel can be formulated as

Jfuel(G) = ∫
s0+HGM

s0
ϕ(ω̄(v̄s(s), gs

r(s)), T̄ (F̄ s
t (s), gs

r(s)))ds, (6.6)

where the required gear gs
r(s) is defined as a function of the gear shift sequence G as

gs
r(s) =

⎧⎪⎪⎨⎪⎪⎩

gl, if sl ≤ s < sl+1,

gL, if sL ≤ s < s0 +HGM,
(6.7)

where (g0, s0) is a parameter of the optimization and represents the initial engaged
gear and position pair. The variables ω̄(v, g) and T̄ (v, g) represent the engine speed
and torque needed to track the reference speed profile, respectively, and are defined
as

ω̄(v, g) = vγg(g)γf

r
and T̄ (Ft, g) =

Ftr

γg(g)γf
. (6.8)

Here we recall that ϕ(⋅, ⋅) represents the fuel model defined in (3.10), while the
parameters γg(⋅), γf and r denote the gear ratio, the final drive ratio and the wheel
radius, respectively. s0 is the initial vehicle position.

The energy lost during gear shifts Jshift(G) is expressed as a function of the
required traction force F̄ s

t (s) as

Jshift(G) =
L

∑
l=1
∫

sl+2δs

sl

F̄ s
t (s)ds, (6.9)

where 2δs represents an upper bound on the space that a gear shift takes. A small
energy lost during the gear shift results in a small deviation from the speed and
distance references and therefore in the smooth behavior of the platoon.

The minimization of the presented cost function should take place while certain
constraints are fulfilled. First, we require that the gear shift sequence G ensures
that the engine operates in the admissible speed range by enforcing the following
constraint:

vmin(gl) ≤ v̄s(s) ≤ vmax(gl), (6.10)
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for all s ∈ [sl, sl+1). Here,

vmin(g) =
rωmin

γg(g)γf
and vmax(g) =

rωmax

γg(g)γf

denote the minimum and maximum speeds, respectively, that the vehicle can drive,
while gear g is engaged. Second, we ask that the required force F̄ s

t , while driving at
the reference speed v̄s, fulfills the upper bound on engine torque. This is ensured by:

F̄ s
t (s) ≤ Ft,max(gl, v̄s) (6.11)

for all s ∈ [sl, sl+1). Here,

Ft,max(g, v) =
Tmax(vγg(g)γf/r)γg(g)γf

r

denotes the maximum engine force (at the wheel) that can be generated by the engine
while gear g is engaged. Third, we require that the gear shifts are not happening
too often. By assuming that the vehicle is not allowed to drive faster than a certain
speed, the latter requirement is relaxed by requiring that consecutive gear shifts are
spaced by a minimum interval ∆sshift, i.e.,

sl+1 ≥ sl +∆sshift. (6.12)

Finally we wish to guarantee that deviations from the reference speed profile and
desired inter-vehicle gap, caused by the interruption of traction force during the
gear shifts, can be compensated in a bounded space span. By choosing this span
such that it is always shorter than the time prediction horizon of the vehicle control
layer, we provide the basis for a good reference tracking of the vehicle control layer.
This requirement is enforced by demanding that the energy lost during the gear
shift (that is assumed to take place on a space interval shorter than 2δs) can be
compensated in the space intervals ∆s before and after the gear shift. Let first
introduce the energy quantities Eδ1(l), Eδ2(l), E∆1(l) and E∆2(l) displayed in
Figure 6.2 and representing the energies lost during the first and second half of the
l-th gear shift and the extra energies available in the space intervals ∆s before and
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Figure 6.2: Illustration representing the small deviation constraint in the formulation
of the gear manager as expressed in (6.14).

after the gear shift, i.e.,

Eδ1(l) = ∫
sl+δs

sl

F̄ s
t (s)ds,

Eδ2(l) = ∫
sl+2δs

sl+δs
F̄ s

t (s)ds,

E∆1(l) = ∫
sl

sl−∆s
Ft,max(gl−1, v̄

s(s)) − F̄ s
t (s)ds,

E∆2(l) = ∫
sl+2δs+∆s

sl+2δs

Ft,max(gl, v̄s(s)) − F̄ s
t (s)ds.

(6.13)

The discussed requirement can be now formalized by the inequalities

Eδ1(l) ≤ E∆1(l),
Eδ2(l) ≤ E∆2(l).

(6.14)

To summarize, the task of each gear manager is to solve the following optimal
control problem:

minimize
G

Jfuel(G) + αJshift(G) (6.15a)

subj. to F̄ s
t (s) ≤ Ft,max(gl, v̄s(s)), ∀s ∈ [sl, sl+1), (6.15b)
vmin(gl) ≤ v̄s(s) ≤ vmax(gl), ∀s ∈ [sl, sl+1), (6.15c)
sl+1 ≥ sl +∆sshift, (6.15d)
Eδ1(l) ≤ E∆1(l), (6.15e)
Eδ2(l) ≤ E∆2(l), (6.15f)
gl ∈ Ga,i, (6.15g)
s0 = si(t), (6.15h)
g0 = gi(t), (6.15i)
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for l = 0, ..., L, where equations (6.15h)–(6.15i) represent the initial conditions.
Thanks to the discrete nature of gears, the optimization problem can be efficiently
solved by using dynamic programming presented in Section 2.5 in a receding horizon
fashion. This is achieved by discretizing the spatial domain s with discretization
length ∆sGM and repeatedly solving the optimization problem with frequency fGM.
The optimized gear shift sequence Ḡi is then communicated to the corresponding
vehicle controller.

6.3 Vehicle control layer

In this section, we discuss the problem formulation for the vehicle control layer.
Each vehicle controller receives the reference speed v̄s(⋅) and the requested sequence
of gear shifts Ḡi from the higher layers, and the optimal state trajectory x̂i−1(⋅∣t)
from the preceding vehicle. By solving a model predictive control (MPC) problem
aimed at safely tracking the reference speed and the time gap, it computes the
required acceleration a∗i and triggers the gear shifts. For ease of presentation, the
optimal control problem solved by MPC is presented in the continuous time.

The state prediction of the MPC problem is based on the vehicle model

v̇i(τ ∣t) = ai(τ ∣t),
ṡi(τ ∣t) = vi(τ ∣t),

(6.16)

where vi(τ ∣t) and si(τ ∣t) denote the predicted speed and position of vehicle i at time
τ ≥ t computed at time t, respectively (collected in the state vector xi = [vi, si]T).
The control input ai(τ ∣t) denotes the predicted vehicle acceleration. The tracking of
the speed reference and the time gap τi is guaranteed by the cost function

JMPC(ai(⋅∣t), εi(t)) = ∫
t+HMPC

t
∣∣xi(τ ∣t) − x̂i−1(τ − τi∣t)∣∣2(ζi−1)Q

+∣∣ai(τ ∣t) − âi−1(τ − τi∣t)∣∣2(ζi−1)R

+∣∣xi(τ ∣t) − x̄i(t)∣∣2ζiQ

+∣∣ai(τ ∣t) − āi(t)∣∣2ζiR

+∣∣εi(t)∣∣2P dτ.

Here, the first and second terms penalize the deviations from the time gap, the
third and forth terms penalize the deviations from the speed reference, and the last
terms penalizes the slack variable related to the no-braking constraints that will be
later discussed. In order to account for the vehicle model presented in Section 3.1
and the bounds on braking force and engine torque, we introduce the minimum and
maximum allowed accelerations, amin,i and amax,i, respectively, and the coasting
acceleration acoast,i, i.e., the vehicle acceleration when no fuel is injected in the
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engine, defined as follows:

amin,i(τ ∣t) =
1
mi

(Fb,min,i + Fext,i(τ ∣t)), (6.17a)

amax,i(τ ∣t) =
⎧⎪⎪⎨⎪⎪⎩

1
mi

(Tmax,iγg,i(gi(τ ∣t))γf,i

r
+ Fext,i(τ ∣t)) , if gi(τ ∣t) ∈ Ga,i

Fext,i(τ ∣t)
mi

, if gi(τ ∣t) = 0,
(6.17b)

acoast,i(τ ∣t) =
⎧⎪⎪⎨⎪⎪⎩

1
mi

(Tmin,iγg,i(gi(τ ∣t))γf,i

r
+ Fext,i(τ ∣t)) , if gi(τ ∣t) ∈ Ga,i

Fext,i(τ ∣t)
mi

, if gi(τ ∣t) = 0,
(6.17c)

where Fb,min,i represents the minimum braking force, Tmin,i and Tmax,i an approxi-
mation of minimum and maximum engine torques, respectively, and Fext,i(xi) the
summation of the external forces acting on the vehicle defined as

Fext,i(τ ∣t) = −miga sinα(si(τ ∣t)) − cr,imiga

− 1
2ρAvCd(ŝi−1(τ ∣t) − si(τ ∣t) − li−1)v2

i (τ ∣t).
(6.18)

Note that the predicted engaged gear gi(τ ∣t) is a known parameter in the optimization
problem that is computed according to the automaton describing the gearbox-
clutch dynamics displayed in Figure 3.5, where the input variable gr,i is driven
according to gear shift sequence Ḡi. Furthermore, during gear shifts, i.e., gi = 0, the
maximum acceleration amax,i and the coasting acceleration acoast,i coincide. The
vehicle acceleration ai can be now bounded by the hard constraint

amin,i(τ ∣t) ≤ ai(τ ∣t) ≤ amax,i(τ ∣t) (6.19)

and the soft constraint

ai(τ ∣t) + εi(t) ≥ min(acoast,i(τ ∣t), āi(τ ∣t)), εi(t) ≥ 0. (6.20)

By strongly penalizing the slack variable εi in the cost function, we are guaranteeing
that the braking is taking place only if one of the hard constraints is activated.
Furthermore, the prediction horizon HMPC is chosen such that, by assuming a
minimum speed allowed, always covers a space longer than 2(δs + ∆s), i.e., the
space that a gear shift and its compensation take in the gear management layer.
This condition, combined with the inclusion of the engaged gear in the acceleration
bounds in (6.19), guarantees the good tracking of the reference speed and time gap.

Finally, in order to guarantee the safety operation of the platoon, as argued in
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Section 5.3, we introduce the following safety constraints:

si(τ +∆tMPC∣t) − v
2
i (τ +∆tMPC∣t)

2amin,i
≤ ŝi−1(τ −∆tMPC) − v̂

2
i−1(τ +∆tMPC)

2amin,i−1
− li−1,

si(τ +∆tMPC∣t) ≤ ŝi−1(τ −∆tMPC) − li−1.
(6.21)

Here, ∆tMPC denotes the discretization time of the MPC implementation, and amin,i
and amin,i denote the conservative lower and upper bounds on amin,i, respectively.
The safety constraint is valid under the assumption of maximum delay in sensor
measurement of ∆tMPC.

To summarize, the optimal control problem solved in each vehicle controller can
be formulated as follows:

minimize
ai(⋅∣t), εi(t)

JMPC(ai(⋅∣t), εi(t)) (6.22a)

subj. to v̇i(τ ∣t) = ai(τ ∣t), (6.22b)
ṡi(τ ∣t) = vi(τ ∣t), (6.22c)
amin,i(τ ∣t) ≤ ai(τ ∣t) ≤ amax,i(τ ∣t), (6.22d)
ai(τ ∣t) + εi(t) ≥ min(acoast,i(τ ∣t), āi(τ ∣t)), (6.22e)
fsafe(xi(τ +∆tMPC∣t), x̂i−1(τ −∆tMPC∣t)) ≤ 0, if i ≥ 2, (6.22f)
εi(t) ≥ 0, (6.22g)
vi(t∣t) = vi(t), (6.22h)
si(t∣t) = si(t), (6.22i)

for τ ∈ [t, t +HMPC], where fsafe(xi(τ +∆tMPC∣t), x̂i−1(τ −∆tMPC∣t)) ≤ 0 denotes
the safety constraints (6.21). The optimal control problem has been discretized with
discretization time ∆tMPC and convexified similarly to steps taken in Section 5.3.
This allowed to recast the problem in a quadratic constrained quadratic programming
(QCQP) and solve it efficiently.

6.4 Performance evaluation

In this section we study the performance of the proposed approach by means of
simulations. The simulation setup and results follow.

6.4.1 Simulation setup

We consider a heterogeneous platoon of four vehicles with masses of 25, 40, 25
and 40 tonnes, respectively, and with the same powertrain characteristics. In detail,
each vehicle is equipped with the 400hp engine whose BSFC map is shown in
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Table 6.1: Vehicle parameters.

m1, m3 first and third vehicles’ mass t 25
m2, m4 second and forth vehicles’ mass t 40
li vehicle length m 18
cr,i rolling coefficient - 0.003
Av cross-sectional vehicle area m2 10
Cd,0 nominal drag coefficient - 0.6
Cd,1 first drag reduction coefficient m−1 12.8
Cd,2 second drag reduction coefficient m 19.7
τshift gearshift time s 2
Pmin,i minimum engine power kW −9
Pmax,i maximum engine power kW 298
ωmin,i minimum engine speed rpm 800
ωmax,i maximum engine speed rpm 2200
Tmin,i approximated minimum torque Nm −150
Tmax,i approximated maximum torque Nm 1800

Figure 3.4 and a 14-gear gearbox. The vehicle model used in the simulation includes
the longitudinal vehicle dynamics and the complete powertrain model presented
in Section 3.2. The vehicle and controller parameters are displayed in Tables 6.1
and 6.2, respectively. The altitude profile has been artificially constructed and is
composed by an uphill stretch followed by a downhill stretch, as depicted in gray
color in the first plot of Figure 6.3. The proposed controller is compared to two
alternative solutions:

• Reference gear management: this is the standard gear management common
in commercial heavy-duty vehicles. The gear shift takes place when the engine
speed reaches certain thresholds. These thresholds are increased when the
required normalized torque is higher than 80 % for more than 1 s. This allows
the engine to operate in a higher power range when this is needed;

• Fuel-based gear management: this is an alternative formulation of the proposed
gear manager where only the consumed fuel and the number of gear shifts are
minimized, while the constraints on the lost energy during the gear shift (i.e,
inequalities in (6.14)) are not included. The number of gear shifts has been
included in the cost function in order to avoid that it becomes unnecessarily
too large.
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Figure 6.3: Simulation of a four-vehicle platoon driving over a hill, when the reference
gear management is deployed. The first plot displays the road altitude in gray color and
the speed of the vehicles. The second plot shows the inter-vehicular distance with solid
lines and the safe distance computed according to an adaptation of constraint (5.45)
with dashed line. The third plot shows the control force, defined as the summation
of the traction and braking forces. Finally, the forth plot displays the gear selected
by the gear management. Note that all the variables are plotted as a function of the
longitudinal position along the road.
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Table 6.2: Controller parameters.

platoon coordinator

HDP DP horizon length km 2
∆sDP DP discretization space m 6
fDP DP refresh frequency Hz 0.25

gear manager

HGM GM horizon length km 2
∆sGM GM discretization space m 6
fGM GM refresh frequency Hz 0.25

vehicle controller

HMPC MPC horizon length s 8
∆tMPC MPC discretization time s 0.05
fMPC MPC refresh frequency Hz 20

Table 6.3: Normalized fuel consumption and reference tracking deviation of the
platoon for three gear management strategies, namely the reference, the fuel-based
and the proposed gear managements.

Control strategy Consumed fuel [%] Tracking deviation [%]

Reference 100 100
Fuel-based 90 12
Proposed 89 5

The three controllers have been compared on the basis of the platoon fuel consump-
tion computed as

Nv

∑
i=1
∫

Tsim

0
ϕi(ωi(t), Ti(t))dt (6.23)

and the reference tracking deviation computed as

Nv

∑
i=1
∫

Tsim

0
∣∣xi(t) − x̂i−1(t − τi)∣∣2ζiQ + ∣∣xi(t) − x̄i(t)∣∣2(ζi−1)Q dt, (6.24)

where Tsim denotes the simulation time. The normalized platoon fuel consumption
and the reference tracking deviation for the three gear management strategies are
summarized in Table 6.3. Let now proceed to the analysis of the three simulations.
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6.4.2 Simulation results

Figure 6.3 displays the platoon behavior when the reference gear management is
used. The deployed gear management does not exploit any information on the road
ahead and requires gear shifts only on the basis of the engine variables. We can
notice that all four trucks asynchronously downshift two times at the beginning of
the uphill. The delays introduced by the gear shifts and the fact that the vehicle
control layer cannot take them into account (because with such gear management
formulation future gear shifts are unknown) result in a large deviation from the
reference speed and time gap for all following vehicles. To compensate for such
deviation the vehicle controllers require the engines to generate the maximum torque
after the gear shifts take place. Due to the limited prediction horizon, the vehicle
control layer does not see far enough to understand that it is counter-productive
to require such a large amount of energy from the engine. This behavior leads to
fact to the vehicles coasting and finally braking in order to avoid collision with the
preceding vehicles. Since the reference speed trajectory computed by the platoon
coordinator requires the heaviest trucks to coast after the uphill, only an extremely
long prediction horizon would have avoided the braking of the vehicles. A similar
behavior has been also experienced in the motivational experiment presented in
Section 4.1.

Figure 6.4 shows the platoon behavior when the fuel-based gear management is
used. Here, topography information of the road ahead is exploited in the computation
of the gear shift sequence. The optimization is based only on the fuel consumption
and the number of gear shifts, while the impact of the gear shift on reference tracking
is ignored. As a result, even if the number of gear shifts during the uphill stretch is
reduced to one, the vehicle control layer has trouble to compensate for the generated
deviation from the reference. This is due to the fact that the gear shifts take place
in sections where the required force F̄t,i necessary to track the reference speed is
close to the maximum. Consequently, the third and forth vehicles full-throttle for a
certain amount of time and, in order not to collide with the preceding vehicle, they
finally brake.

Figure 6.5 displays the platoon behavior when the proposed gear management
is used. With respect to the previous case, the gear shift optimization also targets
the impact of the gear shifts on the deviation from the reference. In particular,
by choosing the parameter ∆s equal to 30m and assuming that the vehicle speed
is bounded in a certain interval, we can guarantee that the deviation from the
references due to the gear shift can be compensated for over the prediction horizon
HMPC = 8 s of the vehicle control layer. By analyzing the simulation results, we
can notice that the gear management requires the gear shifts to take place before
the start and the end of the uphill section. In such regions, in fact, the energy
lost during the gear shifts is small enough to be compensated for in a sufficiently
short horizon. As a result, the deviations generated by the gear shifts are promptly
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Figure 6.4: Simulation of a four-vehicle platoon driving over a hill, when the fuel-
based gear management is deployed. Refer to the caption of Figure 6.3 for the plots
explanation.
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Figure 6.5: Simulation of a four-vehicle platoon driving over a hill, when the pro-
posed gear management is deployed. Refer to the caption of Figure 6.3 for the plots
explanation.
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compensated and the vehicles smoothly track the reference speed and time gap
without engaging the brakes. Besides the good tracking of the reference speed and
time gap, the absence of braking leads to an additional fuel saving of the platoon
compared to the fuel-based gear management as displayed in Table 6.3.

6.5 Summary

In this chapter we addressed the gear management problem for fuel-efficient heavy-
duty vehicle platooning, by proposing a control architecture that extends the one
presented in the previous chapter. In particular, we introduced a novel layer referred
to as gear management layer that receives the reference platoon speed trajectory
from the platoon coordinator and defines the optimal gear shift sequence for each
vehicle. The gear sequence is chosen in order to minimize the fuel consumption and
the impact of gear shifts over the tracking of the common reference speed trajectory.
In order to exploit the information about the future gear shift sequence generated
by the gear management layer, we redesign the vehicle control layer accordingly.

The extended control architecture is tested in a simulation study where its
performance is compared to alternative solutions. The study shows the capability
of the proposed controller to ensure a low fuel consumption and a smooth platoon
behavior.



Part II

Non-cooperative platooning
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Chapter 7

Fuel-optimal vehicle-following control

In this chapter, we study the vehicle-following control problem for heavy-duty
vehicles. The problem is formulated as an optimal control problem that exploits
road topography information and the predicted trajectory of the preceding vehicle

to compute the optimal state and input trajectories for the vehicle under control.
The vehicle model includes the longitudinal vehicle dynamics and a powertrain
model that captures both the gear shifts and freewheeling (cruising in neutral gear)
dynamics. This allows to explore the benefits of combining the fuel savings given
by a short inter-vehicular distance with those given by a pulse and glide (PnG)
control strategy. Here, we refer to PnG control strategy as the alternation between
throttling phases where the engine is working close to the optimal operation point
and freewheeling phases where the clutch is disengaged. The control is computed via
dynamic programming and is tested in a simulation study where the performance
for multiple scenarios and controller setups are compared. In particular, we compare
the behavior and fuel savings of a heavy-duty vehicle using the proposed control
strategy and using a reference vehicle-following controller that tracks a constant
distance. The results show that the proposed control strategy is able to reduce
the fuel consumption of up to 18% by keeping a minimum distance of 20 m with
respect to the driving alone scenario, and up to 7% with respect to the use of the
constant-distance vehicle-following controller.

The chapter is organized as follows. Section 7.1 introduces the non-cooperative
control architecture. Section 7.2 details the vehicle and fuel models, while Section 7.3
discusses the optimal control problem formulation and its dynamic programming
solution. Section 7.4 presents the simulation study where the performance of the
proposed controller is tested and Section 7.5 concludes the chapter.

119
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Figure 7.1: Control architecture for non-cooperative platooning.

7.1 Control architecture and problem statement

The control architecture for non-cooperative platooning is shown in Figure 7.1. As in
this chapter we focus on the control of the second vehicle, for simplicity of notation
index 2, corresponding to the vehicle under control, is dropped. The vehicle-following
planner receives the preceding vehicle predicted profile x̂1(⋅) = [v̂1(⋅), ŝ1(⋅)]T and
computes the fuel-optimal speed trajectory v̄ and the gear sequence Ḡ. The optimal
speed trajectory and gear sequence are then tracked by the vehicle controller
presented in the previous chapter in Section 6.3.

The problem of the vehicle-following planner can be synthesized by the optimal
control problem formulation displayed in Figure 7.2. The goal is to minimize the
fuel consumption of the vehicle exploiting the prediction of the preceding vehicle
trajectory, topography information and a vehicle model. As the vehicle-following
planner is not handling safety critical aspects and the preceding vehicle predicted
trajectory is expected to be slowly varying, the optimization refresh time can be
relativity large, of the order of a few seconds.

7.2 Modeling

In this section, we present the vehicle model, the fuel model and the model constraints
that will be used in the optimal control formulation.
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minimize vehicle fuel consumption
subj. to longitudinal dynamics

gearbox/clutch dynamics
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state and input bounds
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trajectory

optimal
vehicle under control

trajectory

Figure 7.2: Formulation of the vehicle-following optimal control problem.

7.2.1 Vehicle model

The vehicle under control is modeled as a hybrid system. The continuous control
inputs are the engine torque T and braking force Fb (collected in the vector u =
[T, Fb]T), while the discrete control input is the gear request gr.

The continuous states characterize the longitudinal dynamics. The state variables
are the vehicle under control speed v and the distance to the preceding vehicle d
(collected in the state vector x = [v, d]T). The longitudinal vehicle dynamics are
described by the differential equations

ẋ =
⎡⎢⎢⎢⎢⎣

v̇

ḋ

⎤⎥⎥⎥⎥⎦
= f1(x,Ft, Fb) =

⎡⎢⎢⎢⎢⎢⎣

1
m

(Ft + Fb + Fext(x))
v̂1 − v

⎤⎥⎥⎥⎥⎥⎦
. (7.1)

The first equation represents the force balance with respect to the longitudinal
direction, where the term

Fext(x) = −mga sinα(ŝ1 − d − l1) −mgacr −
1
2
ρAvCd(d)v2

collects all the external forces acting on the vehicle, while the second equation
defines the distance dynamics. The definition of the vehicle parameters is introduced
in Chapter 3 and synthesized in Table ch7:vehicleparameters.

The gearbox-clutch dynamics are characterized by the discrete state g and are
described by the automaton presented in Section 3.2 and displayed in Figure 3.5.
Here, we recall that such automaton describes both the timing of gear shifts and
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freewheeling. In the remainder of the chapter, we refer to this model as

g+ = f2(g, gr, τg) (7.2)

where τg represents the automaton clock.
Finally, the transmission model maps the engine variables (engine speed and

torque) to the vehicle variables (vehicle speed and traction force). In order to limit
the model complexity, the engine inertia is neglected. This allows to define the engine
speed as a state-dependent variable rather than a state, resulting in a significantly
reduced complexity of the dynamic programming implementation. The transmission
is therefore modeled according to the model presented in Section 3.2 and synthesized
by equations (3.11) and (3.12). We will refer to these equations as

Ft = Ft(g, T ) and ω = ω(v, g). (7.3)

7.2.2 Fuel model
The vehicle fuel consumption is computed by integrating over the prediction horizon
HDP the fuel flow according to

∫
t+HDP

t
ϕ(ω,T )dτ, (7.4)

where t denotes the current time. The fuel map ϕ(⋅, ⋅) refers to a heavy-duty vehicle
engine, whose brake specific fuel consumption (BSFC) map is shown in Figure 7.3.
The map represents a 450 hp diesel engine that has been obtained by modifying the
original BSFC map of a Scania engine.

7.2.3 Model constraints
Here, we present the constraints acting on the vehicle inputs and states:

• The engine speed and torque are bounded by

ωmin ≤ ω ≤ ωmax, (7.5a)
Tmin(ω) ≤ T ≤ Tmax(ω). (7.5b)

The limitations on the engine speed and the upper bound on the torque are
necessary to guarantee the correct functioning of the engine. The lower bound
on the torque, instead, represents the braking engine torque when no fuel is
injected. These limits are depicted in Figure 7.3 as black lines.

• The vehicle speed is bounded by

vmin ≤ v ≤ vmax (7.6)
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Figure 7.3: Realistic BSFC map of a 450 hp engine used in the simulation. The map
has been obtained by modifying the original map of a Scania engine. The contour lines
represent operation points with same efficiency.

in order to take speed limits into account. For the sake of simplicity, the speed
limits are assumed to be constant, although space-varying speed limits can be
handled with no increase of the problem complexity.

• The distance is bounded by

dmin ≤ d ≤ dmax. (7.7)

The lower and upper bounds represent the safe and maximum distance allowed
for platooning, respectively.

• The braking force is bounded by

Fb,min ≤ Fb ≤ 0. (7.8)

• The requested gear gr is constrained by

gr ∈ {0} ∪ Ga or gr ∈ Ga, (7.9)
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depending on whether freewheeling is allowed. Here, we recall that Ga = {i ∈
N∣i ∈ [gmin, gmax]} represents the set of admissible gears and gr = 0 indicates
that freewheeling is required.

These constraints are summarized by

c(x,u, g, gr) ∈ C(ω). (7.10)

7.3 Vehicle-following planner

In this section, we first present the optimal control problem formulation for the
vehicle-following planner, obtained by combining the vehicle model, the fuel model
and the model constraints. Then, we discuss how the optimal control problem is
implemented using dynamic programming and we analyze the complexity of such
implementation.

7.3.1 Optimal control problem

The problem solved by the vehicle-following planner can be now formulated by the
following optimal control problem:

minimize
u(⋅∣t), gr(⋅∣t)

∫
t+HDP

t
ϕ(ω(v(τ ∣t), g(τ ∣t)), T (τ ∣t))dτ (7.11a)

subj. to ẋ(τ ∣t) = f1(x(τ ∣t), Ft(g(τ ∣t), T (τ ∣t)), Fb(τ ∣t)), (7.11b)
g+(τ ∣t) = f2(g(τ ∣t), gr(τ ∣t), τg(τ ∣t)), (7.11c)
c(x(τ ∣t), u(τ ∣t), g(τ ∣t), gr(τ ∣t)) ∈ C(ω(v(τ ∣t), g(τ ∣t))), (7.11d)
v(t∣t) = v(t), (7.11e)
s(t∣t) = s(t), (7.11f)
g(t∣t) = g(t), (7.11g)

for τ ∈ [t, t + HDP]. Here, x(τ ∣t), g(τ ∣t), u(τ ∣t) and gr(τ ∣t) denote the contin-
uous and discrete states and inputs at time τ predicted at time t, while con-
straints (7.11e)–(7.11g) represent the optimal control problem initial conditions.

7.3.2 Dynamic programming implementation

The optimal control problem (7.11) is solved by dynamic programming. To this
end, discretization over time, and over the continuous input and states is carried
out. We denote with nv, nd, nT and nFb the number of discretization points for the
speed, the distance, the torque and the braking force, respectively. ∆tDP denotes
the discretization time, while NDP = ⌈HDP/∆tDP⌉ the number of time steps over the
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prediction horizon. Here, the operator ⌈⋅⌉ denotes the upper integer approximation
of the argument. The new discretized inputs and states are represented by adding
the time step subscript k to the original variables, e.g., xk = x(k∆tDP). Such
discretization allows to apply an adaptation (as explained in the next paragraph)
of the Bellman equation (2.3) presented in Section 2.5 to the formulated optimal
control problem obtaining the following expression:

Jk(xk, gk) = min
uk,gr,k

{qj(xk, gk, uk, gr,k)

+ J̃k+j(ξj(xk, gk, uk, gr,k), gr,k)},
(7.12)

where

• Jk(xk, gr,k) represents the cost-to-go at time k∆tDP (i.e., the optimal fuel
consumption from k∆tDP until the end of the horizon HDP) as function of the
current state [xk, gk]T.

• J̃k(⋅, ⋅) extends the map Jk(⋅, ⋅) to the points between the discretized states by
linear interpolation.

• qj(xk, gk, uk, gr,k) represents the local fuel cost from time k∆tDP to time
(k + j)∆tDP by starting from state [xk, gk]T and applying input [uk, gr,k]T.
The fuel cost has been obtained by simulating the vehicle model (7.1–7.3) and
integrating (7.4).

• ξj(xk, gk, uk, gr,k) represents the state xk+j obtained by simulating the vehi-
cle model (7.1–7.3) for time j∆t with initial condition [xk, gk]T and input
[uk, gr,k]T.

The aforementioned simulations and integrations between the dynamic programming
time steps are carried out using the explicit Euler method with discretization time
∆tDP/nsim. By defining the final cost JNDP(⋅, ⋅) = 0 and proceeding backward,
equation (7.12) can be exploited to compute a closed-loop control law for each time
step k ∈ {0, ..,NDP − 1}.

Unlike the conventional Bellman equation, the number of local time steps j
is not limited to 1, but is a function of the current state and input, i.e., j =
j(xk, gk, uk, gr,k). This is exploited, for example, when we compute the argument
of min{⋅} in equation (7.12) for gk ∈ Ga and gr,k = 0 (i.e, the cost of requesting
freewheeling when a gear is engaged), and τfw > ∆tDP. Since, after requesting
freewheeling, no control input can affect the state for a time span of τfw, the vehicle
model can be simulated for a time of j∆tDP, where j = ⌈τfw/∆tDP⌉. In this way, the
clock τg of the automaton describing the gearbox-clutch dynamics does not need to
be treated as a state in the dynamic programming implementation resulting in a
reduced complexity of the algorithm.
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Table 7.1: Vehicle parameters.

m vehicle mass t 30, 40, 50
l1 first vehicle length m 18
cr rolling coefficient - 0.005
Av cross-sectional vehicle area m2 10
Cd,0 nominal drag coefficient - 0.6
Cd,1 first drag reduction coefficient m−1 12.8
Cd,2 second drag reduction coefficient m 19.7
τfw freewheel minimum time s 8
τshift gear-shift time s 2
ωmin minimum engine speed rpm 500
ωmax maximum engine speed rpm 2000

7.3.3 Complexity analysis

At each time step k ∈ {0, ..,NDP − 1} and for each pair (xk, gr,k), we solve equa-
tion (7.12). Solving each instance of equation (7.12) requires to compare as many
cost values as the number of possible input combinations. We note however that
the inputs T and Fb are intuitively mutually exclusive, i.e., it is inefficient to
throttle and brake at the same time. The complexity of the dynamic programming
implementation is therefore

O(NDPnvnd(nT + nFb)nsimng), (7.13)

where ng denotes the number of gears including freewheeling, if exploited. If necessary
for real-time implementation, the complexity can be further reduced, for example,
by limiting the state space to the robust control invariant set.

7.4 Simulation study

In order to understand the benefits of non-cooperative platooning, in this section
we compare the performance of the proposed controller with scenarios where the
vehicle under control is driving alone or is following another vehicle using a reference
control strategy. The study is conducted considering different masses of the vehicle
under control. This allows to analyze how the performance of the various control
strategies is affected by the mass distribution in the platoon.
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(b) Road topography.

Figure 7.4: Benchmark highway stretch between the cities of Södertalje and Jönåker,
Sweden.

7.4.1 Simulation setup

The vehicle under control is characterized by the parameters’ values displayed
in Table 7.1. The benchmark road is the highway stretch of 91 km displayed in
Figure 7.4 between the cities of Södertalje and Jönåker, Sweden. The topography
profile of such road is considered moderately hilly, with a slope grade varying
between ±3 %. The values of the controller parameters are displayed in Table 7.2.

In the simulation study, we assume that the prediction of the preceding vehicle
trajectory is exact. Furthermore, the horizon HDP is set long enough such that the
whole 91 km road stretch is covered. The vehicle is then controlled using the optimal
control feedback law returned by the dynamic programming solution.

We compare the performance of multiple longitudinal control strategies that
include scenarios where the vehicle under control is following another one and
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Table 7.2: Controller parameters.

all control strategies

HDP prediction horizon s 3800
∆tDP DP discretization time s 4
nsim simulation points per DP step - 4
nv speed discretization points - 21
nT torque discretization points - 37
nFb braking force discretization points - 51
vmin minimum speed m/s 19
vmax maximum speed m/s 25.5
Fb,min minimum braking force kN −20
gmin minimum allowed gear - 13
gmax maximum allowed gear - 14

driving-alone control strategies

dmin minimum distance m −100
dmax maximum distance m 100
nd distance discretization points - 157

vehicle-following control strategies

dmin minimum distance m 20
dmax maximum distance m 100
nd distance discretization points - 63

scenarios where it is driving alone. All these scenarios are simulated by adapting
the optimal control problem formulation (7.11), as detailed below. The mass of the
vehicle under control varies in the different simulation sets between 30, 40 and 50
tonnes. The preceding vehicle, when present, has a mass of 40 tonnes for all the
simulations. The control strategies that we compare are divided in the two following
categories:

• Driving-alone control strategies:

- Look-ahead control (LAC) without freewheeling: the vehicle under control
optimizes its speed trajectory exploiting road topography information
without using freewheeling. This is achieved by redefining Cd(d) = Cd,0 in
the longitudinal dynamics (7.11b) and gr ∈ Ga in constraint (7.11d), and
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defining dmin and dmax according to the values displayed in the central
part of Table 7.2.

- LAC with freewheeling: similarly to the previous controller, but allowing
freewheeling, i.e., gr ∈ {0} ∪ Ga in constraint (7.11d).

• Vehicle-following control strategies (the preceding vehicle uses the LAC without
freewheeling control strategy):

- Adaptive cruise control (ACC): the vehicle under control keeps a fixed
distance from the preceding vehicle, equal to the minimum allowed
distance dmin. The engaged gear is the maximum gear that allows to
generate the required traction force. For comparison purpose, the gearshift
is assumed to be instantaneous.

- Look-ahead adaptive control (LAAC) without freewheel: the vehicle under
control uses the proposed controller with gr ∈ Ga in constraint (7.11d).

- LAAC with freewheeling: similarly to the previous controller, but allowing
freewheeling, i.e., gr ∈ {0} ∪ Ga in constraint (7.11d).

The simulations run in ®MATLAB on a PC with a two-core CPU running at 2.4
GHz and 8 GB of memory RAM. The computation of the optimal closed-loop control
law over the whole horizon HDP takes 580 and 165 s for the driving-alone and the
vehicle-following cases, respectively (the difference is mainly due to different distance
range allowed in the two cases). As the complexity of the dynamic programming
algorithm grows linearly with the horizon length HDP, we expect that reducing
the horizon length to few minutes can drastically reduce the computation time.
Furthermore, implementing the algorithm in a lower-level language as C/C++ and
running it on a hardware with parallel architecture as a GPU can additionally
reduce this time. These modifications could allow to solve the dynamic programming
problem in real-time in the look-ahead planner block displayed in Figure 7.1.

7.4.2 Control strategies comparison

The fuel consumption reduction for all combinations of control strategies and vehicle
masses is summarized in Table 7.3. The saved fuel is normalized with respect to
the fuel consumption of the LAC without freewheeling controller case. The traveled
time and distance are the same in all scenarios.

The left side of Table 7.3 shows the fuel consumption reduction for the driving-
alone control strategies. The corresponding behavior of the vehicle driving along a
portion of the 91 km stretch highlighted as Sector A in Figure 7.4 is displayed in
Figure 7.5. The possibility to freewheel allows the vehicle to save between 2.7 and
4.1 % of fuel. Observing Figure 7.5, we can notice how, in the freewheel case, the
vehicle alternates phases of coasting with phases of traction during which the engine
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Table 7.3: Fuel consumption reduction [%]

driving-alone vehicle-following

vehicle
mass

LAC
w/o

freewheel

LAC
w/

freewheel
ACC

LAAC
w/o

freewheel

LAAC
w/

freewheel
30 t 0 4.1 12.4 14.5 18.6
40 t 0 3.1 8.9 12.5 15.5
50 t 0 2.7 5.1 10.3 12.7

is operating close to the optimal point (this is approximately around 2 kNm as
shown in Figure 7.3) and the alternation is adjusted to the road slope. This control
strategy is known as PnG.

Remark 7.4.1. The PnG strategy does not exhibit in the case where freewheeling
is not allowed as it could be expected by surveying the literature on passenger
vehicle optimal control, see, e.g., Lee (2009); Li and Peng (2011). This is probably
due to the fact that energy losses at nominal engine speed are relatively higher for
trucks respect to cars. However, we expect that the results can variate depending
on the used fuel map.

The right side of Table 7.3 shows the fuel consumption reduction for the vehicle-
following control strategies. We focus first the attention on the homogeneous platoon
case (i.e, preceding and vehicle under control have the same mass) displayed in the
middle row of the table for which simulation results are reported in Figure 7.6. In
all three cases fuel consumption reduction is registered thanks to the creation of the
slipstream effect. The lowest fuel saving is measured in the ACC case. Although
maintaining the minimum distance dmin allows to maximize the slipstream effect, it
also leads to some phases of braking as evident in the simulation results displayed in
Figure 7.6. The braking in the ACC case is attributable to two cases: (i) The reduced
aerodynamic drag translates into braking when the preceding vehicle is coasting. (ii)
Since the preceding vehicle experiences the changes of slope grade before the vehicle
under control, in order to keep a fixed distance, the vehicle under control needs to
apply a larger longitudinal force when the slope grade is decreasing, and a smaller
longitudinal force when the slope grade increases. The smaller longitudinal force
phases can result in the braking of the vehicle under control when the preceding is
exhibiting a close-to-coasting behavior. This phenomenon has been also experienced
in the experiment presented in Section 4.1, where a constant headway gap has been
used. The optimal control problem solved in the two LAAC controllers allows to
fuel-optimally regulate the distance and therefore to avoid the described braking.
In particular, in the homogeneous case, LAAC allows to save 3.6 and 6.6% of fuel
when freewheeling is not and it is used, respectively. Note that the additional fuel
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Figure 7.5: Simulation results for a heavy-duty vehicle of 40 tonnes driving alone and
using look-ahead control with and without freewheeling. The torque displayed in the
third plot includes the engine torque and a scaled version of the braking force.

saving brought by the use of freewheeling is comparable to the one achieved in
the driving-alone control case. This result confirms the possibility to combine the
benefits of a platooning with those of PnG control.

Finally, we analyze the vehicle-following control strategies for the heterogeneous
platoon case, summarized in the first and third row of Table 7.3. The ACC perfor-
mance deteriorates relatively to the LAACs when the vehicle mass increases. This is
due to the increased coasting acceleration during downhills when the vehicle mass is
larger that leads to stronger braking action while ACC is used. This is noticeable in
the simulation results for the 50 tonnes vehicle case displayed in Figure 7.7, where
the vehicle under control needs to apply larger braking torque compared to the
40 tonnes vehicle case displayed in Figure 7.6. This issue is addressed by LAAC
controllers by increasing the inter-vehicular distance before downhills, as evident in
Figure 7.7. However, due to the large downhill acceleration and the narrow bounds
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Figure 7.6: Simulation results for a 40 tonnes vehicle using multiple vehicle-following
control strategies. The torque plot is explained in the caption of Figure 7.5.
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Figure 7.7: Simulation results for a 50 tonnes vehicle using multiple vehicle-following
control strategies. The torque plot is explained in the caption of Figure 7.5.

on the vehicle speed, braking cannot be fully avoided.

7.5 Summary

In this chapter, we discussed the fuel-optimal vehicle-following problem for heavy-
duty vehicles, where no cooperation between vehicles is possible or desired. We
proposed a dynamic programming formulation that exploits topography information
and the prediction of the preceding vehicle future trajectory to optimally control the
vehicle under control. Since the vehicle model used in the dynamic programming
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formulation includes both the longitudinal dynamics and a detailed model of the
powertrain, the controller is able to explore the benefits of PnG. We recall that a
PnG technique consists in alternating phases of throttling at engine operation points
closed to the optimal one with phases of freewheeling, i.e, driving in neutral gear.

The proposed controller has been tested in a simulation study that shows its
capability to fuel-efficiently control the vehicle in both homogeneous and heteroge-
neous platoon scenarios. In particular, the controller is able to adapt the vehicle
behavior in order to find the optimal balance between short inter-vehicular distance,
no braking action and the exploitation of the PnG technique when freewheeling is
allowed. When the constraints corresponding to the speed limits and the distance
upper bound are not activated, the controller tries to maintain a small inter-vehicular
distance if it does not lead to future braking action. With the availability of free-
wheeling, the controller also modulates the control inputs according to the PnG
technique. These insights will be the base for the design of the lower complexity
controller presented in the next chapter.



Chapter 8

Low complexity vehicle-following control

In this chapter, we discuss a vehicle-following controller suitable for the fuel-
efficient control of passenger cars. The controller receives a prediction of the
preceding vehicle trajectory and directly manipulates the inputs of the low-level

vehicle controllers. This requires the vehicle-following controller (i) to exploit long
previews of the preceding vehicle trajectory for effective fuel-efficiency and (ii) to
run fast enough for real-time implementability. These conditions are conflicting
as the exploitation of a long preview suggests for a long prediction horizon, while
the fast computation calls for a short one. To address this conflict, we propose a
model predictive control (MPC) formulation that uses a relatively short horizon and
compensates for that by redefining the cost function and introducing a specifically
designed terminal state constraint. In particular, the cost function is redefined to
include terms that promote the long term fuel-efficient behavior of the vehicle. The
terminal state set is designed to include all states that, given the prediction of the
preceding vehicle future trajectory, will not require vehicle braking action after the
end of the prediction horizon. This choice is driven by the consideration that the
main source of fuel-inefficiency, when preview information is not exploited, is in fact
braking, as discussed in Section 4.1.

The proposed vehicle-following controller is tested in both real vehicle experiments
and simulations. The experiments show that the proposed MPC formulation avoids
unnecessary braking and can significantly improve fuel economy and ride comfort.
Remarkably, the proposed terminal set can conveniently exploit long previews, while
keeping the length of the MPC horizon limited to a few seconds, thus making the
real-time implementation realistic. The simulation study shows how the vehicle
behavior is comparable when using the proposed controller and when using a similar
controller that relies on a significantly longer horizon, representing an approximation
of the (acausal) optimum.

The chapter is organized as follows. Section 8.1 presents the control architecture
and states the optimal control problem formulation. Section 8.2 illustrates the

135
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Figure 8.1: Adaptation of the control architecture for non-cooperative platooning.

optimal vehicle-following control formulation, putting a particular emphasis on the
terminal state constraint definition. Section 8.3 summarizes the experimental results
from the implementation of the proposed controller on a real vehicle. Section 8.4
shows with simulations how the terminal state constraint gives long-sight to the
controller. Finally, Section 8.5 concludes the chapter.

8.1 Control architecture and problem statement

In this section, we introduce the control architecture employed in this work and we
state the problem formulation for the vehicle-following controller.

The control architecture displayed in Figure 8.1 represents a simplification of the
one presented in Section 4.3, as the vehicle-following planner and vehicle controller
blocks have been merged in the vehicle-following controller. Here, the preceding
vehicle predictor computes a prediction of the preceding vehicle future trajectory
over a time HP, referred to as v̂1(⋅). The vehicle-following controller receives such
prediction and exploits it to fuel-efficiently control the vehicle by computing the
low-level vehicle controller inputs, namely the reference traction and braking forces,
F ∗

t and F ∗
b , respectively.

As the vehicle-following controller is directly interacting with the low-level
controllers, it is required to run at a relatively high refresh rate. This is achieved by
maintaining a short prediction horizon HMPC <HP and defining a terminal state set
that incorporates the preview information about the preceding vehicle. In particular,
the terminal state set is defined as the set of all states that do not require braking
action in the time interval [t+HMPC, t+HP], as braking has been identified as one
of the main causes of inefficiency when a short horizon is used. The cost function is
defined in order to promote the long term fuel-efficient behavior of the vehicle and
ride comfort. In detail, it penalizes deviations from a reference short inter-vehicular
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minimize cost function
subj. to vehicle model

state and input bounds
safety constraint
terminal state constraint

preceding vehicle
trajectory

optimal control input

Figure 8.2: Formulation of the vehicle-following optimal control problem.

distance d̄, braking actions and fluctuations of the control input. The cost function
minimization is subjected to vehicle dynamics and model constraints, as synthesized
in the formulation displayed in Figure 8.2.

8.2 Vehicle-following control

In this section, we present the vehicle model, the model constraints, the cost function
and the terminal state constraint that will be employed in the MPC formulation.

8.2.1 Vehicle model

The passenger vehicle model used in the MPC formulation includes the model of
the longitudinal dynamics, the distance and the actuator and can be summarized
by the following differential equations:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

v̇

ḋ

Ḟ

⎤⎥⎥⎥⎥⎥⎥⎦

= f(x,u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m

(F + Fext(x))
v̂1 − v

1
τa

(−F + Ft + Fb)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.1)

Here, v, d and F denote the speed, the inter-vehicular distance and the longitudinal
force, respectively, and they are collected in the state vector x = [v, d, F ]T. Ft and
Fb denote the traction and braking forces, respectively, and they are collected in
the control input vector u = [Ft, Fb]T. Finally, v̂1 represents the predicted speed of
the preceding vehicle and

Fext(x) = −mgacr −
1
2
ρAvCd(d)v2
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collects all the external forces acting on the vehicle. Here, we point out that the
gravitational force has been ignored. The parameter definition is provided in Table 8.1
and discussed in detail in Chapter 3.

8.2.2 Model constraints

The model is bounded by the following constraints on inputs and states:

• The vehicle speed is bounded by

vmin ≤ v ≤ vmax (8.2)

in order to take speed limits into account.

• The braking and traction forces are bounded by

0 ≤ Ft ≤ Ft,max, (8.3a)
Fb,min ≤ Fb ≤ 0, (8.3b)

where Ft,max represents a conservative approximation of the maximum traction
force.

• Finally, we introduce a simplified version of the safety constraint:

d ≥ dmin, (8.4)

where dmin denotes the minimum allowed distance. This constraints, differently
to that one presented in Section 5.3, does not take unexpected emergency brak-
ing of the preceding vehicle into account. In the optimal control formulation,
we will refer to these constraints as c(x,u) ∈ C.

8.2.3 Cost function

The objective of the vehicle-following controller is to reach a high level of fuel-
efficiency. However, defining the cost function as only the consumed fuel can lead
to undesired behaviors due to the limited length of the prediction horizon required
for real-time implementation. For example, the controller could not appreciate
the benefits of catching-up a preceding vehicle or the drawbacks of braking as
those benefits and drawbacks would likely express themselves after the end of the
prediction horizon. The cost function of the vehicle-following controller is therefore
formulated to promote the long-term fuel-efficiency of the vehicle and to ensure rider
comfort. In detail, it encourages short inter-vehicular distances, while it penalizes
braking actions and fluctuations of the actuator force, according to the following
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formulation:

JMPC(u(⋅)) = ∫
t+HMPC

t
∥d(τ) − d̄∥

Q
+ ∥Fb(τ ∣t)∥P + ∥Ḟ (τ)∥

D
dτ. (8.5)

where the notation ∣∣ ⋅ ∣∣S is defined as ∣∣x∣∣2S = xTSx and the Q, P and D are properly
selected weights. This formulation combined with the terminal state constraint that
ensures no braking action after the prediction horizon, aims at the fuel-efficient
behavior of the vehicle under control.

8.2.4 Terminal state constraint

The terminal state constraint aims at preventing that the excessive throttling of
the vehicle under control leads to braking action and, therefore, power dissipation,
after the end of the prediction horizon. This is achieved by exploiting a preview of
the preceding vehicle trajectory that at time t is supposed to be known until time
t +HP, where HP >HMPC. To such end, we define the terminal state set T as the
largest invariant set of the approximated coasting dynamics that satisfies the safety
constraint (8.4). The approximated coasting dynamics have been derived from the
vehicle model (8.1) by setting the longitudinal force F = 0 and by substitution Cd(⋅)
with the conservative approximation Cd,0. They can be summarized by the following
differential equations:

v̇ = gacr −
1

2m
ρACd,0v

2, (8.6a)

ḋ = v̂1 − v. (8.6b)

The set T is therefore defined as the set of all the pairs distance-speed at time
t +HMPC from which the coasting dynamics (8.6) does not lead to the violation of
the safety constraint (8.4) for τ ∈ {t +HMPC, t +HP}, i.e.,

T = {[d(t +HMPC∣t), v(t +HMPC∣t)]T ∣ dynamics in (8.6),

d(τ ∣t) ≥ dmin, ∀τ ∈ [t +HMPC, t +HP]} ,
(8.7)

where v(τ ∣t) and d(τ ∣t) denote the vehicle speed and inter-vehicular distance at
time τ predicted at time t, respectively.

In order to construct the terminal set T , we first notice that the coasting speed
dynamic (8.6a) depends only on speed and can be therefore integrated to compute
the speed trajectory v(⋅∣t) between time t +HMPC and t +HP with initial condition
v(t +HMPC∣t). At this point, the distance trajectory d(⋅∣t) between time t +HMPC
and t +HP can be computed integrating (8.6b) as function of the predicted speed
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Figure 8.3: Terminal set T with v̂1(τ) = 25 m/s, ∀τ ∈ [t +HMPC, t +HP].

trajectory v(⋅∣t), i.e.,

d(τ ∣t) = d(t +HMPC∣t) + ∫
τ

t+HMPC
v̂1(s) − v(s∣t)ds, (8.8)

for τ ∈ {t +HMPC, t +HP}. If we impose the safety constraint (8.4), we obtain

d(t +HMPC∣t) ≥ dmin − ∫
τ

t+HMPC
v̂1(s) − v(s∣t)ds, (8.9)

that should hold for τ ∈ [t+HMPC, t+HP]. The terminal set T can be now computed
by discretizing the independent-variable time and transforming the integral in
inequality (8.9) into summation. By gridding the space of the terminal speed
v(t+HMPC∣t) and exploiting (8.9), the pair speed-position of the border of T can be
computed. Figure 8.3 shows the terminal set computed when the preceding vehicle
runs at a constant speed of 25 m/s.

8.2.5 Model predictive control formulation
We now have all the elements to state the optimal control problem:

minimize
u(⋅∣t)

JMPC(u(⋅∣t)) (8.10a)

subj. to ẋ = f(x(τ ∣t), u(τ ∣t)), (8.10b)
c(x(τ ∣t), u(τ ∣t)) ∈ C, (8.10c)
x(t +HMPC∣t) ∈ T ×R, (8.10d)
x(t∣t) = x(t), (8.10e)

for τ ∈ [t, t + HMPC]. Here, x(τ ∣t) and u(τ ∣t) denote state and input at time τ
predicted at time t, while constraint (8.10e) represents the initial condition.
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Table 8.1: Vehicle parameters.

m vehicle mass t 2.2
Av cross-sectional vehicle area m2 3.15
Cd nominal drag coefficient - 0.28
cr rolling coefficient - 0.009
τa actuation time constant s 0.5
Fb,min conservative minimum braking force kN -43
Ft,max conservative maximum traction force kN 3

Table 8.2: Controller parameters.

HMPC prediction horizon s 6
HP terminal set horizon s 66
∆tMPC MPC discretization time s 0.2
d̄ reference distance m 20
dmin minimum distance m 5
vmin minimum speed m/s 0
vmax maximum speed m/s 45

By discritizing the independent variable τ with discretization time ∆tMPC and
solving the resulting optimization problem every ∆tMPC the problem is cast into an
MPC framework.

8.3 Experimental study

In this section we present the experimental study that we conducted on a full
scale vehicle. The goals of this experimental study are to test the proposed control
strategy in a representative set of driving scenarios, to demonstrate its practical
implementation, and to compare its performance with other baseline approaches.

8.3.1 Experimental setup
The experiments were conducted at the Hyundai-KIA Motors California Proving
Grounds, California City, CA, USA. They were run on a full scale following vehicle,
while the lead vehicle was simulated. In detail, the radar readings of the vehicle
under control were overwritten to take the simulated preceding vehicle into account.

The vehicle used for the experimental tests is equipped with a 3.8 liter V6 engine
and an 8-speed automatic transmission. The precise localization of the vehicle in the
inertial frame is guaranteed by an OTS RT2002 system, which includes a differential
GPS, an inertial measurement unit (IMU) and a digital signal processor (DSP).
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Other signals of interest and the control signals are directly obtained from and
sent to the vehicle electronic control units (ECUs) via the CAN bus. These signals
include wheel speed, fuel flow rate, traction and braking forces. The measured and
estimated parameters of the vehicle are displayed in Table 8.1, while the controller
parameters in Table 8.2.

The optimization problem (8.10) is solved by a tailored solver automatically
generated using Embotech FORCES Pro (Embotech, 2018). The resulting MPC
controller and the necessary data processing were implemented and executed in real-
time on a dSpace MicroAutobox (dSpace, 2018), which consists of an IBM PowerPC
processor capable of running at 900 MHz. In the experiments presented below, the
use of a prediction horizon of HMPC = 6 s resulted in the maximum computation
time to solve problem (8.10) of 76.4 ms, reasonable for real-time implementation.

8.3.2 Constant speed catch-up

The first experiment reproduces the catch-up of a preceding vehicle driving at a
constant speed of 25 m/s. The vehicle under control starts 40 m behind the preceding
vehicle at a speed of 7 m/s.

Figure 8.4 shows the experiment results, in terms of speed, distance from the
preceding vehicle, and longitudinal control force, i.e. the summation between braking
and traction forces. Initially, the controller applies the maximum traction force,
so that the large speed gap between the vehicle under control and the preceding
vehicle is compensated. The coasting phase starts when the controller predicts that
aerodynamic drag, rolling friction, and inertia will decelerate the vehicle, keeping
it behind the safety distance dmin without additional braking. Coasting brings
the following vehicle to a distance from the preceding vehicle smaller than d̄, and,
therefore, a second, short acceleration phase is applied to adjust the relative distance
to the desired value. Afterwards, the traction force is kept to the constant value
that maintains the vehicle under control at the same speed of the preceding vehicle.

The longitudinal force commanded by the controller assumes almost only non-
negative values throughout the experiment. Only small deviations from zero are
observed in the coasting phase. These deviations are explained by the unavoidable
mismatch between the prediction model and the vehicle response in closed loop.
Power dissipation through braking is successfully avoided, exploiting the knowledge
of the future speed profile of the preceding vehicle.

8.3.3 Sinusoidal speed catch-up

This experiment also considers a catch-up scenario where, however, the preceding
vehicle follows a sinusoidal speed profile. The main objective is to show that the
proposed controller can successfully catch-up and track the preceding vehicle also
when the latter is not following a constant speed profile. The sinusoid has an average
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Figure 8.4: Catch-up of a vehicle traveling at constant speed. The plots display the
vehicle speeds, inter-vehicular distance, and the longitudinal control force, respectively.
In the latter, negatives values denote braking action, while positive values denote
traction.

of 22 m/s, an amplitude of 4 m/s and a period of 62.8 s. The vehicle under control is
initially 40 m behind the preceding vehicle.

Figure 8.5 shows the closed-loop trajectories of the vehicle under control. During
the first 25 s, the controller applies the maximum input to catch-up with the preceding
vehicle. Afterwards, the vehicle decelerates by coasting, and starts tracking the
sinusoidal speed profile. The behavior during the tracking phase can be observed in
the zoomed axes in Figure 8.5 for one period of the sinusoid. A few remarks follow:

• The vehicle under control tracks the sinusoidal speed trajectory of the preceding
vehicle without applying any hard braking, nor violating the minimum safety
distance. Due to model mismatch, some braking is applied during the coasting
phases.
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Figure 8.5: Catch-up of a vehicle traveling with sinusoidal speed profile. Zoomed
portions show the behavior during one period of the sinusoidal profile.

• During the coasting phases, the relative distance consistently oscillates around
the desired value d̄. While the preceding vehicle follows a sinusoidal speed,
the vehicle under control aims at coasting. Hence the relative distance first
increases over and then decreases below d̄.

• During the accelerating phase, the maximum input force is first applied to
match the desired d̄ and then the sinusoidal profile is tracked at constant
distance until the coasting phase starts.

8.3.4 Performance comparison
Here, we compare the performance of the proposed controller, hereafter referred to as
proposed look-ahead adaptive controller (LAAC), with the two following controllers:

• LAAC w/o terminal set. It uses the same formulation of the proposed LAAC
expect for the terminal state constraint that is removed.
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• LAAC w/o preview. It uses the same formulation of the proposed LAAC, but
it does not have access to the preview of the preceding vehicle trajectory. The
variable v̂1(⋅) is therefore set to the current preceding vehicle speed.

The preceding vehicle follows a sinusoidal speed profile with an average of 14 m/s,
an amplitude of 4 m/s and a period of 10.47 s. The vehicle under control starts 40 m
behind the preceding vehicle at an initial speed ranging from 6.5 m/s to 9 m/s.

Figure 8.6 compares the trajectories of speed, distance, longitudinal control,
and fuel flow rate for the three controllers. The minimum safety distance dmin is
maintained throughout the experiments. Every tested controller produces some oscil-
lation in the distance from the preceding vehicle when following the sinusoidal speed
reference. The proposed controller and the LAAC w/o terminal set produce smaller
distance oscillations, while the LAAC w/o preview shows the biggest oscillation. In
particular, the proposed LAAC produces the least fluctuation in speed, resulting
in minimum traction force, almost no braking and minimum fuel rate. During the
tracking phase (approximately after second 20), the LAAC w/o terminal set behaves
similarly to the proposed controller. This is expected because, in this experiment,
the prediction horizon is long enough to preview about half period of the sinusoid.
Nonetheless, during the catch-up phase (up to second 20), the improvement due to
the terminal set is evident, as the LAAC w/o terminal set applies significant braking.
Instead, the LAAC w/o preview poorly tracks the profile with large fluctuations in
speed, requiring higher traction and braking forces, and fuel rate.

Tables 8.3 and 8.4 summarize the performance of the three controllers, in terms
of the fuel consumption and root mean square (RMS) of the vehicle jerk (i.e., the
derivative of the vehicle acceleration), during the catch-up and tracking phases,
respectively. We define as catch-up phase the segment from 0 to 20 s, and the tracking
phase as the segment from 20 to 55 s. Both metrics are normalized with respect to the
LAAC w/o preview corresponding metric. During the tracking phase, the LAAC w/o
terminal set produces intermediate results, while the proposed controller outperforms
both baseline controllers according to both metrics. During the catch-up phase,
the controllers have closer performance. The proposed controller is still improving,
with about 36 % less fuel and 36 % lower jerk compared to the LAAC w/o preview.
Remarkably, the performance of the LAAC w/o terminal set strongly depends
on the information contained in the preview v̂1(⋅) from time t to time t +HMPC,
i.e. during the MPC horizon. Generalizing the performance improvement to some
average driving conditions is out of the scope of the present work. Nonetheless, in
the representative scenario we selected, performance improvement is consistently
attained both during catch-up and during tracking phases.
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Figure 8.6: Comparison between the proposed controller and two baseline controllers
in the catch-up scenario of a vehicle traveling with sinusoidal speed profile.
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Table 8.3: Comparison of the controllers in the catch-up phase.

Control strategy Fuel [%] Jerk RMS [%]

LAAC w/o preview 100.0 100.0
LAAC w/o terminal set 72.0 83.5
Proposed LAAC 63.8 63.7

Table 8.4: Comparison of the controllers in the tracking phase.

Control strategy Fuel [%] Jerk RMS [%]

LAAC w/o preview 100.0 100.0
LAAC w/o terminal set 61.0 37.9
Proposed LAAC 50.0 26.8

8.4 Simulation study

In this section, we present a simulation study conducted in absence of model
mismatch. The purpose is to demonstrate how the proposed controller combines a
limited prediction horizon with the presented terminal state constraint to approach
the performance of a long-sighted controller. We compare the proposed controller
with the LAAC w/o terminal set and the LAAC w/ long horizon. The latter uses
the same formulation of the proposed controller, but the prediction horizon is set to
HMPC = 50 s, and is regarded as an approximation of the acausal optimum. The
three controllers follow the realistic speed profile of a preceding vehicle that was
recorded in real urban driving. The vehicle under control starts 40 m behind the
preceding at a speed of 5 m/s. The optimization problem (8.10) is solved on a laptop
with a tailored solver generated by FORCES Pro. The proposed controller and the
LAAC w/o terminal set require similar average computational times (8.62 ms and
5.45 ms respectively), while the LAAC w/ long horizon requires significantly higher
time (47.12 ms) because of the longer prediction horizon.

Figure 8.7 displays the simulation results. The proposed controller and the LAAC
w/ long horizon exhibit very similar behaviors, as both coast whenever possible and
avoid excessive throttling and braking. Conversely, the LAAC w/o terminal set is
myopic and braking action becomes often inevitable.

8.5 Summary

In this chapter, we discussed a vehicle-following controller suitable for the control of
passenger vehicles. The proposed controller aims at reaching high fuel-efficiency, while
maintaining a reduced complexity for real-time implementability. This is achieved
by defining a model predictive controller that uses a relatively short horizon and
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Figure 8.7: Comparison between the proposed controller and two baseline controllers
by means of simulation. In the simulated scenario the preceding vehicle is following a
realistic speed profile.

compensates for that by redefining the cost function and introducing a specifically
designed terminal state constraint. In particular, the cost function is defined to
include terms that promote the long term fuel-efficient behavior of the vehicle. The
terminal state set is designed to include all states that, given the prediction of the
preceding vehicle future trajectory, will not require vehicle braking action after the
end of the prediction horizon. The proposed vehicle-following controller was tested
in both real vehicle experiments and simulations. The experiments showed that
the proposed MPC formulation avoids unnecessary braking and can significantly
improve fuel economy and ride comfort. Remarkably, the proposed terminal set can
conveniently exploit long previews, while keeping the length of the MPC horizon
limited to a few seconds, thus making the real-time implementation possible. The
simulation study shows how the vehicle behavior was comparable when using the
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proposed controller and when using a similar controller that, however, relies on a
significantly longer horizon, representing an approximation of the acausal optimum.





Chapter 9

Conclusion and future work

Thanks to their potential in reducing greenhouse gas emissions, improving
fuel-efficiency, and increasing safety, vehicle platoons are expected to be soon
a reality on our highways. However, altitude variations have a large impact

on fuel-efficiency. In this thesis, we addressed the problem of how to fuel-efficiently
and safely control heavy-duty vehicle platoons driving along a road with varying
topography. This chapter concludes the thesis and outlines possible directions for
future research.

9.1 Conclusion

In this section, we first summarize the main contributions, dividing them in those
related to cooperative platooning and those to non-cooperative platooning. Second,
we provide some conclusive remarks.

Cooperative platooning

In the first part of the thesis we addressed the cooperative platooning control
problem where vehicles act together to save fuel.

In Chapter 5, we discussed a two-layer control architecture. The top layer, denoted
platoon coordinator, is based on dynamic programming and computes a reference
speed profile by minimizing the fuel consumption of the entire platoon. The bottom
layer, denoted as vehicle control layer, uses a distributed model predictive control
framework that safely tracks the reference speed trajectory. Safety is guaranteed by
specifically designed constraints that ensure the recursive feasibility of the model
predictive controller. The proposed control architecture was tested in an in-depth
simulation study that showed (i) the potential of the platoon coordinator to reduce
the fuel consumption of up to 12% for following vehicles with respect to standard
platooning controllers, (ii) the capability of the controller to react to harsh braking
of the leading vehicle and to attenuate disturbances along the platoon.
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In Chapter 6, we studied the problem of how to explicitly manage gear shifts
in platoons. We proposed an extension of the cooperative control architecture by
introducing a gear management layer. This layer computes a gear shift sequence by
minimizing the vehicle fuel consumption at the same time as keeping small speed and
inter-vehicular reference tracking deviation. The gear management layer performance
was tested in a simulation study and was shown to outperform alternative solutions.
The study showed how the proposed solution properly manages the gear shifting
task guaranteeing fuel-efficiency and smooth behavior of the platoon.

Non-cooperative platooning

In the second part of the thesis, we addressed non-cooperative platooning control
problem. In this framework, the lead vehicle optimizes its fuel consumption ignoring
the presence of the following vehicle, while the following vehicle predicts the lead
vehicle trajectory to optimize its own fuel consumption.

In Chapter 7, we proposed a vehicle-following controller. The problem was
formulated as an optimal control problem that exploits road topography information
and the predicted trajectory of the preceding vehicle to compute optimal state
and input trajectories. The considered vehicle model included longitudinal vehicle
dynamics and a powertrain model that captures both the gear shifts and freewheeling
dynamics. The benefits of combining the fuel savings given by a short inter-vehicular
distance with those given by a pulse-and-glide strategy we studied. The control was
computed via dynamic programming and was tested in a simulation study where
the performance for multiple scenarios and controller setups were compared. In
particular, we compared the behavior and fuel savings of a heavy-duty vehicle using
the proposed control strategy with one using a reference vehicle-following controller
that tracks a constant distance. The results showed that the new control strategy is
able to reduce the fuel consumption of up to 18% by keeping a minimum distance
of 20 m with respect to the driving alone scenario, and up to 7% with respect to
the use of the constant-distance vehicle-following controller.

In Chapter 8, we discussed a vehicle-following controller suitable for the fuel-
efficient control of passenger cars. The controller relies on a model predictive
controller that uses a short horizon to enable real-time implementation. To exploit
long previews of the preceding vehicle, it enforces a terminal state constraint that
ensures that no braking action should be needed after the end of the prediction
horizon. The controller was tested in both real vehicle experiments and simulations.
The experiments showed that the proposed controller avoids unnecessary braking
and can significantly improve fuel economy and ride comfort. The simulations showed
that the vehicle behavior is comparable when using the proposed controller to when
using a similar controller that relies on a significant longer horizon, representing an
approximation of an (acausal) optimum.
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Conclusive remarks

To conclude, the exploitation of topography information in look-ahead control shows
a great potential in reducing fuel consumption of heavy-duty vehicle platoon. In
both the cooperative and non-cooperative control strategy cases, the proposed
look-ahead controllers outperformed reference controllers that do not make use of
topography information. Tests showed that the benefits from look-ahead control
were larger in the case of heterogeneous vehicles, e.g., when vehicle had different
masses. The cooperative control framework was able to reach a high level of fuel-
efficiency by coordinating the accelerations of platooning vehicles over uphills
and downhills. Herein, the platoon coordinator ensured that such accelerations
where feasible for each vehicle and fuel-efficient for the entire platoon. The non-
cooperative control framework ensured a high degree of fuel-efficiency of following
vehicles by adapting their distance to preceding vehicles mainly based on topography
information. Freewheeling in non-cooperative platooning was shown being possible
to combine with the benefits given by driving at short inter-vehicular distance.

9.2 Future work

There are several directions to extend the work presented in this thesis. In this
section, we discuss some of them.

Robustness to uncertainties in cooperative platooning

In the cooperative platooning discussed in Chapters 5 and 6, we assumed that the
control system has access to accurate estimates of vehicle parameters and that
vehicles behave according to the model. However, vehicles in a platoon can be
manufactured by different companies. The accuracy of the vehicle models, e.g.,
mass, roll coefficient, and engine parameters, can highly vary between vehicles,
while the parameter values themselves can be affected by external factors, such as
engine temperature, tire pressure, road friction, fuel tank level, etc. Although these
uncertainties are attenuated by the close-loop control formulation, they can still lead
to undesired behavior. For example, the incorrect estimate of the maximum engine
power can lead to the splitting of the platoon during steep uphills. Meanwhile, the
bad estimates of the parameters that define the downhill coasting acceleration can
lead to inefficient brakings during downhills. A promising approach to handle these
uncertainties is to redefine the vehicle control layer such that each vehicle receives
the predicted trajectories of the preceding and following vehicles and exploits them
in the gap policy tracking. In such way, the optimal trajectory and input computed
by each vehicle controller is the result of “pushing” and “pulling” efforts from the
two contiguous vehicles. As a result, during uphills, each vehicle makes sure not to
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lose the following vehicle, and, during downhills, it makes sure that the following
vehicle will not need to brake.

Preceding vehicle trajectory prediction in non-cooperative platooning

In the non-cooperative platooning controllers discussed in Chapter 7, we assumed
that accurately predicted trajectories of the preceding vehicle were available. We
argued that they can be computed by the preceding vehicle and communicated
to the following one or they can be computed by the following vehicle itself by
exploiting past and present measures of the distance and relative speed collected
by on-board sensors. The latter problem is not trivial and has not been sufficiently
studied. Lang et al. (2014) propose a nonlinear autoregressive model to predict the
trajectory of the preceding vehicle in a moderate non-congested traffic scenario. Moser
et al. (2018) use a conditional linear Gaussian model to estimate the probability
distribution of the preceding vehicle trajectory and exploit it in a stochastic vehicle-
following model predictive control framework. However, these methods have been
designed by assuming traffic as the main factor for vehicle speed fluctuation, and,
therefore, the accuracy of the prediction quickly deteriorates with the length of the
prediction horizon. In our work the vehicle speed fluctuation is mainly imputable
to varying altitude, so topography information can be exploited to obtain a more
accurate prediction of the preceding vehicle future trajectory. Furthermore, since
the slipstream effect extends to tens of meters behind vehicles and braking action is
highly inefficient, it is interesting to explore the benefits of predicting conservative
trajectories of the preceding vehicle, i.e., high-confidence lower bounds on the
preceding vehicle trajectory. These conservative trajectories can be computed with
limited information about the preceding vehicle, such as the type of used controller
(cruise controller or look-ahead controller) and the tracked reference speed.

Interaction between platoons and external traffic

In this thesis, the interference of external vehicles has been mainly accounted for in
the safe operation of the platoon. However, as experienced in the tests reported in
Lank et al. (2010), when a platoon drives in a moderately-congested traffic scenario,
external vehicles can largely affect its fuel-efficiency. An exciting research direction
is to study how to explicitly take the presence of other vehicles into account in the
fuel-efficient control of platoons. This problem can be separated in (i) how to predict
vehicles behavior and (ii) how to exploit such predictions for platoon control.

On the other hand, heavy-duty vehicle platoons can significantly affect the
behavior of other vehicles. Due to the length of each vehicle, platoons cover long
sections of the road and, due to law restrictions, they drive at a lower speed with
respect to surrounding traffic. As discussed in Jin et al. (2018), this can have a
large impact on the behavior and fuel-economy of the overall traffic. The automatic
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control of the longitudinal dynamics though the platoons provides an opportunity
to achieve an improved overall traffic efficiency.

Integrated fuel-efficient road freight transportation

In this thesis, we discussed the platoon control problem and we showed how pla-
tooning can significantly affect vehicle fuel consumption. As in Europe there are
more than two millions long-haulage trucks transporting goods between countries
(European Commission, 2017a), the potential for platooning is large. However,
trucks represent only a portion of road traffic and their locations can be sparsely
distributed over the road network. In order to fully exploit the benefits of platooning,
vehicles need to be coordinated to promote the creation of platoons. This requires
the optimization of vehicle route, departure time, and traveling speed for each
vehicle by exploiting information about scheduled departure and arrival locations as
well as time requirement for each transport mission. The resulting schedules should
account for limitations on the maximum number of consecutive hours each driver
can operate, disturbances due to traffic, weather conditions and road accidents,
inability to platoon in certain road sections, and so on. The overall problem of
synthesizing and developing a fuel-efficient road freight transportation system is
therefore challenging. Some initial ideas on how to address this problem have ap-
peared in the recent years, e.g. Besselink et al. (2016), as we discussed in Chapter 2.
However, this still represents a largely unexplored topic with exciting challenges for
future research.





Acronyms

ACC Adaptive cruise control
BMS Braking management system
CAN Controller area network
CC Cruise control
CACC Cooperative adaptive cruise control
CLAC Cooperative look-ahead control
CoG Center of gravity
DP Dynamic programming
ECU Electronic control unit
EMS Engine management system
GMS Gear management system
GPS Global positioning system
INS Inertial navigation system
ITS Intelligent transportation systems
LAC Look-ahead control
LAAC Look-ahead adaptive control
LQ Linear–quadratic
LTV Linear time-variant
MPC Model predictive control
PATH Partners for advanced transportation technology
PI Proportional integrative
PnG Pulse and glide
RMS Root mean square
QP Quadratic program
WSU Wireless sensor unit
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