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Abstract

Dynamical network systems are complex interconnected systems useful to de-
scribe many real world problems. The advances in information technology
has led the current trend towards connecting more and more systems, cre-
ating “intelligent” systems, where the intelligence originates in the scale and
complexity of the network. With the growing scale of networked systems
comes also higher demands on performance and continuous availability and
this creates the need for optimization and control of network systems. This
thesis makes four important contributions in this area.

In the first contribution, we consider a collaborative road freight trans-
portation system. An efficiency measure for the road utilization in collabora-
tive transportation scenarios is introduced, which evaluates the performance
of collaboration strategies in comparison to an optimal central planner. The
efficiency measure is used to study a freight transport simulation in Germany
and taxi trips using real data from New York City. This is followed by a
study of the optimal idling locations for trucks, and the optimal locations for
distribution centers. These locations are then exploited in a simulation of a
realistic collaborative freight transport system.

The second contribution studies the important problem of gathering data
that are distributed among the nodes in an anonymous network, i.e., a net-
work where the nodes are not endowed with unique identifies. Two specific
tasks are considered: to estimate the size of the network, and to aggregate
the distribution of local measurements generated by the nodes. We consider
a framework where the nodes require anonymity and have restricted com-
putational resources. We propose probabilistic algorithms with low resource
requirements, that quickly generate arbitrarily accurate estimates. For dy-
namical networks, we improve the accuracy through a regularization term
which captures the trade-off between the reliability of the gathered data and
a-priori assumptions for the dynamics.

In the third contribution, a peer-to-peer network is utilized to improve
a live-streaming media application. In particular, we study how an overlay
network, constructed from simple preference functions, can be used to build
efficient topologies that reduce both network latency and interruptions. We
present necessary and sufficient convergence conditions, as well as convergence
rate estimates, and demonstrate the improvements for a real peer-to-peer
video streaming application.

The final contribution is a distributed optimization algorithm. We con-
sider a distributed multi-agent optimization problem of minimizing the sum of
convex objective functions. A decentralized optimization algorithm is intro-
duced, based on dual decomposition, together with the subgradient method
for finding the optimal solution. The convergence rate is analyzed for different
step size rules, constant and time-varying communication delays, and noisy
communication channels.
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Sammanfattning

Dynamiska nätverkssystem är komplexa sammankopplade system med många
praktiska tillämpningar. Den snabba utvecklingen inom informationsteknolo-
gin har drivit trenden att sammankoppla större och större system till nätverk
av “intelligenta” system, där intelligensen kommer från komplexiteten av nät-
verken. Med den ökande storleken på nätverkssystemen kommer också ökade
krav på dess prestanda och tillgänglighet, vilket är drivkraften bakom utveck-
lingen av optimering och styrning av nätverkssystem. Den här avhandlingen
presenterar fyra viktiga bidrag inom detta område.

Det första bidraget handlar om kooperativ lastbilstransport. Först intro-
duceras ett mått som mäter effektiviteten i systemet jämfört med en central
planerare. Detta mått används sedan för att utvärdera vinsterna med koope-
rativa transporter, men används också för att utvärdera taxiförarnas vägval
med verkliga data från New York City. Detta följs av en studie av de optimala
vänteplatserna för lastbilar och de optimal placeringarna av distributionscen-
traler. Dessa positioner används sedan för att förbättra transportprestandan
i ett kooperativt transportsystem.

I det andra bidraget studeras informationsaggregering i anonyma nät-
verkssystem, det vill säga nätverk där noderna saknar unika identiteter. Två
specifika problem hanteras: att estimera storleken på nätverket, och att sam-
manställa fördelningen av lokala mätvärden i nätverket. Noderna i detta nät-
verk kräver anonymitet, men antas också ha strikt begränsad beräkningska-
pacitet. Vi presenterar stokastiska algoritmer med låga beräkningskrav, som
dessutom har snabb konvergens och som kan justeras till att ge godtycklig
precision. För dynamiska nätverk förbättras prestandan genom att en regu-
lariseringsterm används för att väga observerad data mot förväntat beteende
hos systemet.

I tredje bidraget analyseras ett peer-to-peer nätverk för direktsänd vide-
odistribution. Speciellt studeras konvergensen av nätverkstopologin som ge-
nereras från lokala preferensfunktioner, och hur resultaten kan används för
att minska fördröjningarna och avbrotten under videouppspelning. Vi ger
nödvändiga och tillräckliga villkor för konvergens, samt karakteriserar gräns-
värden för hur snabbt användare kan ansluta eller lämna nätverket utan att
påverka prestandan.

Det sista bidraget är en distribuerad optimeringsalgoritm. Problemet be-
står i att minimera summan av konvexa funktioner för varje nod i ett nät-
verk. En decentraliserad optimeringsalgoritm presenteras som baseras på det
duala optimeringsproblemet tillsammans med subgradient-metoden. Konver-
genshastigheten analyseras för olika val av steglängder, konstanta samt tids-
beroende kommunikationsfördröjningar och brusiga kommunikationskanaler.
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Chapter 1

Introduction

“Clear? Huh! Why a four-year-old
child could understand this report!
Run out and find me a four-year-old
child, I can’t make head or tail of it.”

— Groucho Marx

Networks of interconnected systems appear everywhere in modern societies, driven
by technological developments in computation and communication. Prominent ap-
plications are found in communication networks, such as the cellular network and
the Internet, large-scale infrastructures, such as transportation systems and power
grids, and even biological and social networks. A common feature of all these ap-
plication examples is that they are composed of several smaller subsystems, and
that their complexity arises from the interconnections into large networks. The size
and scale of these networked systems are continuing to accelerate, and this growing
imposes a fundamental challenge to our understanding of the world around us.

Feedback control has been an essential part of the industrial revolution, and
continues to play a crucial role for automation, contributing to improved efficiency
and productivity. The field has advanced from the centrifugal governor for con-
trolling the rotational speed in the early steam engines, through PID controllers
for cruise control in our cars, to today, where developments within artificial intel-
ligence is used towards creating completely self-driving cars. Following this trend,
it is only natural to incorporate feedback control into network systems, both for
controlling the performance of the networked system, but also for utilizing sensing,
computation and actuation distributed over the network.

In this thesis, we aim to improve the current understanding of network systems,
and we focus on four specific areas. In Chapter 3 we study efficient collabora-
tive transportation, in Chapter 4 we study distributed computation and estimation
schemes in anonymous networks, while in Chapter 5 we study efficient network
topologies for video distribution, and in Chapter 6 we develop a distributed opti-
mization method. The reminder of this chapter is organized as follows. In Sec-
tion 1.1 we introduce several motivating examples for this work. In Section 1.2, we
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2 Introduction

Figure 1.1: The Trans-European Transport Network (Courtesy of European Com-
mission).

define the research problems for this thesis, and in Section 1.3 we list the contribu-
tions and the thesis outline.

1.1 Motivational Examples

In the following, three examples of important network systems are given.

Transportation Networks
The transportation network (Figure 1.1) is a prominent example of a network sys-
tem that has an immense effect on the global economy and environment. This
can be illustrated by the fact that the financial crisis in 2008 caused a significant
decrease in transportation activity during 2009 (−11 % compared to 2007). In the
European Union, road transportation accounts for roughly a quarter of the total
energy consumption and a sixth of all greenhouse gas emission [European Union,
2014]. Moreover, transportation safety is a critical problem, as there were 54 439
road fatalities reported in the European Union during 2012 [European Union, 2015].
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Figure 1.2: A traffic jam in Delhi (Courtesy of Wikimedia).

Road transportation is a particular problem in urban areas, where the trans-
portation demand exceeds the capacity of the road, and traffic congestion sets in
(Figure 1.2). Researchers cannot fully predict when traffic jams will occur, because
minor incidents can have ripple effects in the entire traffic system. Traffic conges-
tion is a major source of air pollution around our cities [Barth and Boriboonsomsin,
2008], and is also negatively affecting the productivity and global economy due to
wasted time. Furthermore, the increased commuting times, and in particular the
uncertainties in traveling time is dampening the job market growth [Hymel, 2009].

Simply building new roads might not be the best solution for congestion prob-
lems due to the enormous required investments and the complex network effects.
Braess’s paradox [Braess et al., 2005], originally published in 1968, describes a sce-
nario where adding extra capacity to a network can reduce the overall performance,
caused by the Nash equilibrium not equating the global optimal flow. Instead, there
is a huge potential in improving the situation through better traffic management
and personalized recommendations to the drivers.

Optimizing and controlling the road transportation system is an inherently dif-
ficult task due to the distributed nature of the system, where every driver has their
own objective. It is also difficult due to the hybrid nature of the traffic system,
considering both continuous traffic flows and discrete vehicles. A centralized sig-



4 Introduction

naling mechanism was implemented in Stockholm in 2006 as congestion taxes, and
resulted in a significant reduction in congestion [Börjesson et al., 2012]. After an
initial seven months trial and preceding criticism, the system became permanent in
2007 due to its success, with a 20 % reduction of traffic volumes and a 30 % decrease
in traveling times.

The optimization challenges do not evade the public transportation system,
which is often evolving sequentially, and poorly adapting to the new demands of the
travelers. The results are unnecessarily long traveling times and multiple transfers,
decreasing the reliability of the system [Mandl, 1980]. Taxi drivers face similar
optimization challenges, when deciding where to drive to pick up the next passenger.
As there is limited information regarding the current and rapidly changing customer
demand, data mining previous trips can be useful to build probabilistic models for
future demand [Moreira-Matias et al., 2012].

Road freight transportation in the European Union amounts to 3.5 trillion met-
ric ton-km per year, and employs over 3 million people [European Union, 2014]. At
the same time, 20 % of the trucks are estimated to travel empty [Bureau of Trans-
portation Statistics, 2015], which means that there is a great potential for utilizing
this back-hauling capacity for improved efficiency. Reducing the empty mileage
through collaboration is studied in Chapter 3. Another approach for reducing the
fuel consumption in road transportation through collaboration is by dynamically
building platoons of trucks driving autonomously with a small gap between the ve-
hicles. This enables fuel savings of up to 10 % [Alam et al., 2010, 2015], and at the
same time is expected to reduce the traffic fatalities [Davila and Nombela, 2012].

The transition towards intelligent transportation systems is to a large extent
driven by the development of connected sensors enabling vehicle-to-vehicle and
vehicle-to-infrastructure communication, but this also raises concerns about the
privacy for the users, as well as protecting trade secrets for the transportation
providers. Finding the right balance between anonymity and transportation effi-
ciency is a challenging problem [Glancy, 1995]. Methods for monitoring a network
of anonymous agents is considered in Chapter 4.

Internet and Peer-to-Peer Networks
The Internet has penetrated our daily lives as the single most important information
exchange system, and is used for sending messages, reading news and watching
television. The annual global IP traffic will reach 1 zettabytes (1021 bytes) during
2016, and is expected to double until 2019. A majority of the Internet traffic
consists of video delivery, constituting 64 % of all consumer Internet traffic in 2014
and expecting to grow to 80 % by 2019 [Cisco, 2015]. Put in perspective, by 2019
a million minutes of video content will cross the Internet every second. This huge
demand for network bandwidth is creating a lot of pressure towards efficient content
distribution strategies.

A peer-to-peer (P2P) distribution model (Figure 1.3) is based on the idea that
the users of the system contribute a share of their bandwidth to redistribute the
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Figure 1.3: An illustration of a peer-to-peer file sharing network, where users are
relaying information from a central server to each other.

content, thereby reducing the pressure on the central content provider. An advan-
tage with this model is that the available capacity of the network scales with the
number of users, and is especially useful when the user demand is unpredictable.
Thus, the P2P networks are by design resilient to network failure and user churn,
and the distributed nature makes them suitable in many situations where the users
are concerned about their privacy.

Several commercial applications use P2P systems for video distribution [Thampi,
2013], but they are also commonplace in other applications. For example the
Swedish music streaming service, Spotify, used P2P streaming [Kreitz and Niemelä,
2010], as does the video chat application Skype [Baset and Schulzrinne, 2006]. Even
traditional client–server applications can use P2P technology internally when using
distributed content delivery networks to increase the capacity by utilizing a large
number of servers. Another application where the resilience and anonymity of P2P
networks has played a central role is for the distributed crypto-currency BitCoin
[Nakamoto, 2008].

However, the task of designing self-organizing P2P networks is still a challenging
problem, demanding both resilience to high churn and an efficient content distri-
bution. The construction of an efficient gradient P2P topology is considered in
Chapter 5, and privacy preserving estimations of network properties is considered
in Chapter 4.
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Figure 1.4: A Tmote Sky low power wireless sensor module, used for wireless sensor
network applications (Courtesy of Moteiv).

Wireless Sensor Networks
In the last several decades we have seen great advances in computation and commu-
nication hardware, leading to the availability of tiny wireless devices (Figure 1.4)
capable of performing sensing, computation and control. These systems have found
applications in a wide variety of domains, including industrial control systems and
in building automation [Araújo, 2014].

In industrial process automation, such as the Iggesund’s paper mill (Figure 1.5),
the control systems typically consist of hundreds of control loops, and these utilize
thousands of sensors and actuators for continuous monitoring and controlling of
the plant. Traditionally, these sensors and actuators have been connected through
wired communication channels, resulting in high setup and maintenance cost for
physical wires, with costs ranging between 300–6000 USD per meter [Samad et al.,
2007]. Low-powered wireless technology could provide a cost-effective alternative
to installing wires for these control applications, as the cabling cost begins to stand-
out compared to the sensor and actuator cost, and the wireless technology allows
for many more sensors and thereby collecting much more information from the
processes.

Two challenges in particular are critical to overcome for the adoption of wireless
sensor networks in the process industry: the power management and the communi-
cation reliability. Thousands of wireless devices, with a battery lifetime in the order
of a year, would require full-time staff for battery replacement. This imposes strict
limitations on the computational and communicational capabilities of the wireless
devices, and motivates the research on simple but reliable distributed algorithms.
Algorithms for aggregation of measurements are considered in Chapter 4 and dis-
tributed optimization algorithms are considered in Chapter 6, for networks with
severely limited resource constraints.
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Figure 1.5: Iggesund’s paper mill, where wireless control systems have been imple-
mented as part of the WiComPI project [Araújo, 2014].

1.2 Problem Formulations

The prevalent appearance of challenges in networked systems has lead us to limit
the scope of this thesis to the following research questions.

In Chapter 3, we investigate the transportation network, and the implications
of a specific intelligent transportation solution for collaborative transport. We
specifically ask the research questions:

Q1: How can the transportation system efficiency be measured for a collaborative
transportation scenario?

Q2: Where should trucks and distribution centers be positioned to optimize the
transportation efficiency?

Question Q1 is essential for evaluating collaboration strategies in transportation
systems, and question Q2 gives some insight into optimal collaboration policies.

In Chapter 4, we consider an anonymous computation framework, where the
nodes do not have unique identifiers, motivated by both the privacy concerns in
transportation and P2P networks as well as the limited computational capacities
in wireless sensor networks. We ask the research questions:

Q3: In an anonymous network, how can the number of nodes be estimated?

Q4: In an anonymous network, how can measurement distributions be aggregated?

QuestionsQ3 andQ4 are essential for network maintenance, where sudden changes
could require restorative control action.
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In Chapter 5 we turn to a scalable live video distribution system using P2P
networks, and we ask the questions:

Q5: How should P2P video distribution network topologies be organized for effi-
cient delivery?

Q6: How is the topology structure affected by network churn, i.e., nodes joining
and leaving the network?

The questions Q5 and Q6 facilitate the use of P2P networks for building scalable
distribution networks at low cost.

Finally, in Chapter 6 we consider the distributed optimization problem of min-
imizing a sum of local objective functions.

Q7: Can existing distributed optimization methods be extended to the dual prob-
lem formulation?

Q8: Is the distributed dual optimization method robust to time-varying delays and
communication noise?

Answering questions Q7 and Q8 can establish key technologies for many control
problems in distributed network systems.

1.3 Thesis Outline and Contributions

This thesis is a compilation of results presented in peer-reviewed scientific venues.
The remainder of this thesis is organized as follows.

Chapter 2: Background
In this chapter, we provide mathematical preliminaries and a review of the existing
research literature for the topics covered by this thesis.

Chapter 3: Efficiency in Transportation Networks
In this chapter, we investigate collaboration strategies for transportation networks,
motivated by the development within intelligent transportation. First, we study
an efficiency measure for the collaborative transportation scenarios, where we are
able to determine how efficient the road utilization is in comparison to a centralized
planner. The efficiency measure is also evaluated on real data from the NYC Taxi
trips during 2013. In the second part, we study the optimal idling locations for
trucks, and the optimal locations for distribution centers along a single highway
going through multiple cities. These locations are then exploited in a simulation of
a collaborative freight transport system.

This chapter is based on the publications:
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• Håkan Terelius and Karl Henrik Johansson. An efficiency measure for road
transportation networks with application to two case studies. In 54th IEEE
Conference on Decision and Control, pages 5149–5155, December 2015

• Kuo-Yun Liang, Sebastian van de Hoef, Håkan Terelius, Valerio Turri, Bart
Besselink, Jonas Mårtensson, and Karl Henrik Johansson. Networked con-
trol challenges in collaborative road freight transport. European Journal of
Control, 30:2–14, May 2016

• Håkan Terelius and Karl Henrik Johansson. On the optimal location of dis-
tribution centers for a one-dimensional transportation system. In 55th IEEE
Conference on Decision and Control, Las Vegas, USA, December 2016c. (to
appear)

• Håkan Terelius and Karl Henrik Johansson. Efficiency modeling and optimiza-
tion for road transportation. Transportation Research Part B: Methodological,
2016b. (submitted)

Chapter 4: Estimation in Anonymous Networks
In this chapter, we consider the problem of estimating the state of a sensor network,
motivated by network maintenance. In particular, we study two problems, first
estimating the size of the network, and secondly estimating the entire empirical
distribution of sensor measurements over the network. The proposed algorithms
are based on max consensus information exchange protocols, since they lead to
fast convergence speeds as well as small communication burdens. What makes our
scheme special is that we assume the agents to be anonymous, thus severely limiting
the communication information.

This chapter is based on the publications:

• Håkan Terelius, Damiano Varagnolo, and Karl Henrik Johansson. Distributed
size estimation of dynamic anonymous networks. In 51st IEEE Conference
on Decision and Control, pages 5221–5227, Maui, HI, USA, December 2012

• Håkan Terelius, Damiano Varagnolo, Carlos Baquero, and Karl Henrik Jo-
hansson. Fast distributed estimation of empirical mass functions over anony-
mous networks. In 52nd IEEE Conference on Decision and Control, pages
6771–6777, Florence, Italy, December 2013b

Chapter 5: Topology Convergence in Peer-to-Peer Networks
In this chapter, we investigate the topology convergence in a P2P network system.
The goal of the system is to maximize live-streaming performance through estab-
lishing a gradient overlay topology. The gradient overlay network is characterized
by a directed graph, where each node has one set of neighbors with the same utility
value and one set of neighbors containing higher utility values, such that paths of
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increasing utilities emerge in the network topology. The gradient overlay network is
built using gossiping and a preference function that samples nodes from a uniform
random peer sampling service. Evaluation of the gradient overlay topology in the
live-streaming application GLive was performed by SICS.

This chapter is based on the publications:

• Håkan Terelius, Guodong Shi, Jim Dowling, Amir H. Payberah, Ather Gat-
tami, and Karl Henrik Johansson. Converging an overlay network to a gradi-
ent topology. In 50th IEEE Conference on Decision and Control and European
Control Conference, pages 7230–7235, Orlando, FL, USA, December 2011a

• Håkan Terelius and Karl Henrik Johansson. Peer-to-peer gradient topologies
in networks with churn. IEEE Transactions on Control of Network Systems,
2016a. (submitted)

Chapter 6: Distributed Optimization via Dual Decomposition

In this chapter, we study a distributed multi-agent optimization problem of mini-
mizing the sum of convex objective functions. A decentralized optimization algo-
rithm is introduced, based on dual decomposition together with the subgradient
method, for finding the optimal solution. The convergence rate is analyzed both
for different step size rules, constant and time-varying communication delays, and
noisy communication channels.

This chapter is based on the publication:

• Håkan Terelius, Ufuk Topcu, and Richard M. Murray. Decentralized multi-
agent optimization via dual decomposition. In 18th IFAC World Congress,
pages 11245–11251, Milan, Italy, August 2011b

Chapter 7: Conclusions and Future Work

In the final chapter, a summary of this thesis is provided and some possible future
research directions are discussed.

Other Contributions

The following publication is not covered in this thesis, but is relevant for networked
systems.

• Håkan Terelius, Guodong Shi, and Karl Henrik Johansson. Consensus con-
trol for multi-agent systems with a faulty node. In 4th IFAC Workshop on
Distributed Estimation and Control in Networked Systems, pages 425–432,
Koblenz, Germany, September 2013a
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Author’s Contributions
The order of the paper authors reflects their contributions. The thesis author has
formulated and solved the problems, as well as written the papers. The co-authors
have participated in discussions and conventional supervision.

For the paper Liang et al. [2016], the thesis author developed one section and
contributed to the rest of the paper. For the paper Terelius et al. [2011a], the evalu-
ation of the P2P live-streaming application using a gradient topology (Section 5.6)
was provided by Dowling and Payberah at SICS.





Chapter 2

Background

“The future is like a corridor into
which we can see only by the light
coming from behind.”

— Edward Weyer Jr.

In this chapter, we provide mathematical preliminaries and a review of the ex-
isting research literature related to optimization and control in dynamical network
systems.

2.1 Control Theory

A feedback system is typically characterized by the feedback loop (Figure 2.1),
where the output y(t) of a system G is routed back to a regulator F , which feeds
the control signal u(t) into the system G.

Feedback control is omnipresent in natural and biological systems, but the ear-
liest mathematical analysis was laid out by Maxwell [1868], who studied the cen-
trifugal governor for controlling the rotational speed in the early steam engines,
patented by James Watt in 1788 (Figure 2.2). In 1868, there were more than
75 000 governors installed in England and, at this time, proportional, integral and
derivative (PID) actions were understood and implemented by mechanical or hy-
draulic devices. Other early work within the control field includes the stability
analysis of Nyquist [1932] and Bode [1940].

F G
yref(t) + e(t) u(t) y(t)

−

Figure 2.1: The feedback loop.
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Figure 2.2: A centrifugal governor on a steam engine.
(Courtesy of M. Junge, Wikipedia).

Digital computers was quickly adopted in the control community, and intensified
the development of optimal control (Bellman [1952] and Pontryagin et al. [1962]).
Computer control also led to the development of model predictive control (MPC),
where the current control action is obtained by solving a finite horizon optimal
control problem [Mayne et al., 2000].

Feedback control played an essential role in the industrial revolution, and contin-
ues to play a crucial role today for automation, contributing to improved efficiency
and productivity. A beautiful summary of the control theory development, includ-
ing an extensive reference list, is provided by Åström and Kumar [2014], but the
theory of feedback control is far from complete, as noted by Blondel and Megretski
[2004].
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2.2 Probability Theory

Probability theory is the branch of mathematics concerned about random events,
and constitutes the foundation of statistics [Grinstead and Snell, 1997]. We will
now review some of the basic concepts used throughout this thesis.

Definitions
A random variable X can be interpreted as the outcome of an uncertain event, for
example a toss of a coin. The sample space Ω is the set of all possible outcomes.
When Ω is countable, then X is said to be discrete, and the probability mass
function (PMF) m : Ω→ [0, 1] for X is a function satisfying∑

x∈Ω
m (x) = 1.

The probability of an event E ⊆ Ω is defined as

P [E] .=
∑
x∈E

m (x) .

The frequentist interpretation of the probability for an event E is that if ne is the
number of occurrences of an event E in n trials, then

lim
n→∞

ne
n

= P [E] .

Similarly, if the sample space Ω ofX is continuous real-valued, then the cumulative
distribution function (CDF) FX : Ω→ [0, 1] forX is a monotonically non-decreasing
continuous function satisfying

lim
x→−∞

FX (x) = 0

lim
x→∞

FX (x) = 1.

The corresponding probability density function (PDF) p : Ω→ [0, 1] is defined as

p (x) .= dFX (x)
dx .

The probability of an event E ⊆ Ω is defined as

P [E] .=
∫
x∈E

p (x) dx.

An event E is said to happen almost surely if P [E] = 1.
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An important concept in probability theory is the expected value, that is the
probability-weighted average of all possible values. For a discrete random variable
X, the expected value E [X] is defined as

E [X] .=
∑
x∈Ω

xm (x) ,

and for a continuous random variable, it is defined as

E [X] .=
∫
x∈Ω

x p (x) dx.

The expected value is a characterization of the location of a probability distri-
bution, and the variance characterizes the dispersion of the probability distribution
around the expected value. Let µ .= E [X] denote the expected value, then the
variance of X is defined as

var (X) .= E
[
(X − µ)2] .

Given two random variables X and Y , the covariance measures the linear de-
pendency between X and Y , defined as

cov (X,Y ) .= E [(X − E [X])(Y − E [Y ])] .

Markov Chains
A stochastic process is a time sequence for the evolution of a system which depends
on random events. In the case of discrete time, the stochastic process can be thought
of as a sequence of random variables. A Markov chain is a memoryless stochastic
process [Levin et al., 2009]. Thus, a sequence of random variables X1, X2, . . ., is
a Markov chain if

P [Xt = xt | Xt−1 = xt−1, . . . , X1 = x1 ] = P [Xt = xt | Xt−1 = xt−1 ]

holds for all t > 1, and this is referred to as the Markov property. Thus, the
probability of the current state only depends on the previous state, and not on
the entire history. Especially for finite discrete Markov chains, the conditional
probabilities are referred to as transition probabilities, and defines a transition
matrix P by its elements pij as

pij
.= P [Xt = j | Xt−1 = i ] .

Let π(t) denote the row vector of state probabilities at time t, thus defined by
its elements

π
(t)
i

.= P [Xt = i] ,
then the state evolution can be written compactly as

π(t+1) = π(t)P = π(1)P t,

thus the analysis of the Markov chain considers the matrices P t and their properties.
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Monte Carlo Methods
Monte Carlo methods belong to a class of computational methods that rely on
repeated sampling from a stochastic process to solve a mathematical problem
[Metropolis and Ulam, 1949]. A typical Monte Carlo method breaks down a com-
plex mathematical problem into simple deterministic computations by considering
a hypothetical initial condition. Then, a large set of initial conditions is gener-
ated from a stochastic process, and the results from the simpler calculations are
aggregated to an approximate solution for the original problem.

For example, the optimization problem of minimizing f(x) where x ∈ [0, 1] can
be solved by generating a sequence of random values x1, x2, . . . ∈ [0, 1], and then
evaluating f(x1), f(x2), . . .. The optimal value computed by the Monte Carlo
method is then the minimal value of f(x1), f(x2), . . ..

Monte Carlo methods have been used in many applications, from mathematical
optimization and integration to particle physics and statistical mechanics, as well
as for biological cell populations and operations research [Halton, 1970].

2.3 Graph Theory

This thesis focuses on the topic of networks, which are mathematically modeled
as graphs, a concept of pairwise relations between objects. The foundation was
laid by Euler [1741] with the famous work on the seven bridges of Königsberg.
The scientific field studying complex network systems, appearing in for example
social, biological, and telecommunication systems, is often called network science
[Barabási, 2016].

In this section, we introduce some notations and basic concepts from graph the-
ory that will be useful for describing network systems. A more complete description
of this topic can be found in the book by Diestel [2005].

A graph G(V, E) consists of a set of objects, called nodes, vertices, or agents,
denoted by V, and a set of pairwise relations, called edges or links, denoted by
E ⊆ V × V. We usually denote the number of nodes in a graph G by N = |V|.

Undirected graphs are the graphs where the edges are unordered pairs of ver-
tices, hence (i, j) and (j, i) are considered to be the same edge, and (i, j) ∈ E if
and only if (j, i) ∈ E . All other graphs are directed graphs, where the edge (i, j) is
directed from node i to node j.

The usual way of picturing an undirected graph is by drawing a circle for each
node, and joining two of the circles by a line if the corresponding nodes form an
edge (Figure 2.3a). For a directed graph, circles are joined by an arrow pointing
from i to j if (i, j) forms an edge of the graph (Figure 2.3b).

The neighbors of a node i are those nodes that have a common edge with i,
and are denoted by Ni = {j | (i, j) ∈ E}. For a directed graph, the neighbors
can be divided into the in-neighbors and out-neighbors of a node, depending on
the direction of the edge. The degree of a node is the size of its neighborhood
di = deg (i) = |Ni|.
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(a) An undirected graph with 7 nodes and 7 edges.
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(b) A directed graph with 7 nodes and 8 edges.

Figure 2.3: Graphs are illustrated with circles representing nodes, and lines repre-
senting edges.

A path in G is a list of distinct vertices v0, v1, . . . , vn such that (vi, vi+1) ∈ E ,
i = 0, 1, . . . , n − 1. The number of edges in the path is the length of the path.
A directed graph is strongly connected if there exists a path from every vertex to
every other vertex in the graph, while for an undirected graph, it is simply called
connected. The distance dist (v0, vn) between two nodes v0 and vn, is the length
of the shortest path between them, or ∞ if there is no such path. Further, the
diameter of a graph is the greatest distance between any two nodes in the graph.

Spectral Graph Theory

Spectral graph theory studies graphs by representing them with matrices and ana-
lyzing the corresponding matrix properties, such as eigenvalues [Godsil and Royle,
2001]. The adjacency matrix A of a graph G(V, E) is an N × N matrix, whose
entries aij are given by the edges as:

aij =
{

1 if i 6= j and (i, j) ∈ E ,
0 otherwise.

The next important matrix is the Laplacian matrix L of a graph, defined as
L = D−A, where D is the diagonal degree matrix, and A is the adjacency matrix.
The Laplacian matrix has the elements:
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lij =


deg (i) if i = j,
−1 if i 6= j and (i, j) ∈ E ,
0 otherwise.

The eigenvalues of the Laplacian matrix are important for many network ap-
plications, including robustness and convergence time for dynamic networks, as
described by Fax and Murray [2002] and Rahmani et al. [2009]. Note for example
that the multiplicity of the zero eigenvalue of the Laplacian is equal to the number
of connected components in the graph.

For example, the adjacency matrix and Laplacian matrix of the undirected graph
in Figure 2.3a are

A =



0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0


, L =



2 −1 0 −1 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
−1 0 −1 3 −1 0 0
0 0 0 −1 3 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


.

These definitions can be directly extended to weighted graphs, where each edge
(i, j) ∈ E has an associated weight wij ∈ R, and the corresponding matrix is the
weighted adjacency matrix.

Random Graph Theory

Random graph theory was coined by Gilbert [1959] and Erdős and Rényi [1959], and
describe graphs generated by random processes. Different random graph models
exist, characterized by their probability distribution. The Gilbert model G(n, p)
generates graphs with n nodes, where every possible edge occurs with probability
p. The Erdős–Rényi model G(n,M), on the other hand, considers graphs with n
nodes, where every graph containing M edges occur with equal probability.

A third model is the Barabási–Albert model [Albert and Barabási, 2002], which
builds graphs by sequentially adding nodes, connecting them using preferential
attachment. The process starts with a graph consisting of m0 nodes, and then
each new node is connected to m ≤ m0 of the existing nodes with a probability
proportional to the degrees of the existing nodes. This class of random graphs has a
degree distribution that follows a power law P [deg (i) = k] ∼ k−3, and is commonly
observed in natural networks.

Random graphs are used to generate typical network behaviors, and is a funda-
mental tool in the network sciences.
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2.4 Optimization Theory

In mathematics, an optimization problem is the problem of finding an optimal solu-
tion among all feasible solutions. The standard form for an optimization problem
can be written as [Boyd and Vandenberghe, 2009]:

minimize
x∈Rn

f(x),
subject to ci(x) ≤ bi, i = 1, . . . ,m.

(2.1)

Thus, the standard problem is to choose the optimization variable x = (x1, . . . , xn) ∈
Rn such that the scalar-valued objective function f : Rn → R attains its minimal
value over the feasible domain. The feasible domain is determined by the constraint
functions ci(x) : Rn → R, and can be defined as

D = {x | ci(x) ≤ bi i = 1, . . . ,m} .
The points x ∈ D are said to be feasible points, and the optimal value f∗ to the
problem (2.1) is the maximum lower bound to f in the feasible domain,

f∗ = inf {f(x) | x ∈ D} .
A vector x′ ∈ D is a local optimal solution if it minimizes f for a neighborhood
around x′, i.e., that there exits an r > 0 such that x′ solves the optimization
problem:

minimize
x∈Rn

f(x),
subject to ci(x) ≤ bi, i = 1, . . . ,m,

||x− x′||2 ≤ r.

Convex Optimization
A very important class of optimization problems are those where both the objective
and the constraint functions are convex.

Definition 2.1. A function f : Rn → R is said to be convex if it satisfies the
inequality

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (2.2)
for all x, y ∈ Rn and all α ∈ R, 0 ≤ α ≤ 1.

It is worth to notice that in particular all linear functions are convex, since they
satisfy the condition with equality. A quadratic function f(x) = xTQx + cTx + b
is convex if and only if Q � 0 is positive semidefinite.

Definition 2.2. A set C ⊆ Rn is said to be convex if the line segment between any
two points in C also lies in C. Thus, for any points x1, x2 ∈ C, and for 0 ≤ α ≤ 1,

αx1 + (1− α)x2 ∈ C.
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Notice that if the constraint function ci(x) is a convex function, then the set
of points satisfying the condition {x | ci(x) ≤ bi} is a convex set. Further, the
intersection of convex sets is also convex, hence, if all constraint functions ci are
convex, then so is the feasible domain D.

A fundamental property of convex optimization problems is that any local op-
timal solution is also a global optimal solution. The implication of this is that, for
convex optimization problems, it is enough to find a local optimal solution, which,
in general, is a much easier problem than finding a global optimal solution. Many
efficient algorithms exist with the purpose of finding a local optimal solution [Boyd
and Vandenberghe, 2009].

Prominent work in convex optimization include the development of the simplex
method [Dantzig et al., 1955], the interior point methods [Nesterov and Nemirovskii,
1994], and the semidefinite programming [Vandenberghe and Boyd, 1996].

Subgradient Methods
The concept of subgradients is a generalization of the gradient to non-differentiable
convex continuous functions [Boyd and Vandenberghe, 2009, Hiriart-Urruty and
Lemaréchal, 2001], developed for optimization by Shor [1983]. The generalization
to subgradient methods especially allows for piecewise differential functions to be
considered.

Definition 2.3. A vector g ∈ Rn is a subgradient to f : X ⊆ Rn → R at the point
x ∈ X if, for all other points z ∈ X, the following holds

f(z) ≥ f(x) + gT (z − x).

Further, the subdifferential of the function f , at x ∈ X, is the set of subgradients
to f at x, and it is denoted by ∂f(x). Thus,

∂f(x) =
{
g : f(z) ≥ f(x) + gT (z − x) ∀z ∈ X

}
.

Remark. If f is a convex function, and differentiable at x, then there is exactly one
subgradient of f at x, and it coincides with the gradient.

The subgradient method is a simple first-order algorithm for minimizing a non-
differentiable convex function. It is based on the well-known gradient descent
method, originally proposed by Cauchy in 1847 [Boyd and Vandenberghe, 2009,
Snyman, 2005], but extended to non-differentiable functions by replacing the gra-
dient with a subgradient to the function.

Consider the unconstrained optimization problem

minimize f(x),
where f : Rn → R is a convex function. The subgradient method solves this
optimization problem by the iterative algorithm

x(t+ 1) = x(t)− αtg(t).
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Here, x(t) denotes the estimate of the solution at step t, g(t) ∈ ∂f(x(t)) is a
subgradient to f at x(t), and αt is the step size.

Let the norm of the subgradients be uniformly bounded by G > 0, ||g(t)||2 ≤ G
∀t, and the distance from the initial point to the optimal set be bounded by R > 0.
Let fmin be the minimal solution found until step t, then the convergence results
for the subgradient method can be stated as

fmin(t) ≤ f∗ +
R2 +G2∑t

i=0 α
2
i

2
∑t
i=0 αi

. (2.3)

For a constant step size αt = α, the convergence results becomes

fmin(t− 1) ≤ f∗ + R2 +G2α2t

2αt . (2.4)

The subgradient method is a first-order method, and can have a slow conver-
gence rate compared to more advanced methods, such as the interior-point meth-
ods. However, it is still attractive in many situations, due to its ability to handle
non-smooth optimization problems using a very low complexity in each iteration,
and without prior knowledge of the problem structure, compared to the work by
Nesterov [2005].

Distributed Optimization
The ability to compute an optimal distributed decision has gained a lot of attention
during the last decades, e.g., Tsitsiklis [1984], Lynch [1996], Johansson [2008], and
is also the topic of this thesis. Distributed optimization problems appear in a broad
range of practical applications, such as when a set of network users are competing
for a shared resource.

Decomposition methods for large-scale optimization have been the focus of a
lot of research for some time, see for instance the work by Cohen [1980]. This area
has seen renewed interest through the development of new networked applications,
such as multi-agent systems, sensor networks and distributed computing.

Nedić and Bertsekas [2001] introduced the idea of applying incremental subgra-
dient updates, and Rabbat and Nowak [2004] used this idea to propose a distributed
subgradient optimization method, where the nodes sequentially update the opti-
mization variable, while Nedić and Ozdaglar [2007] extended this idea using the
average consensus algorithm to perform parallel updates. These methods continue
to get a lot of research attention: Nedić et al. [2010], Srivastava and Nedić [2011]
considered constrained optimization variations, while Ram et al. [2010] considered
stochastic subgradient errors. Tsianos and Rabbat [2012] extended the method to
an online algorithm, and Hale and Egerstedt [2015] constructed a resembling algo-
rithm which preserves the agents’ privacy. Relaxed communication assumptions,
which do not require bidirectional communication, were considered by Nedić and
Olshevsky [2015] and Mai and Abed [2016]. This line of research also includes our
work on the distributed dual optimization problem, discussed in Chapter 6.
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Different approaches to distributed optimization include the dual averaging tech-
nique by Duchi et al. [2012] based on the primal-dual subgradient by Nesterov [2009]
(not to be confused with the dual decomposition techniques). Zargham et al. [2011]
considers accelerated distributed dual subgradient methods specifically for network
flow problems.

Another approach to distributed optimization is based on the alternating direc-
tion method of multipliers (ADMM), using sequential partial updates to the dual
variables of an augmented Lagrangian. It has found use in large-scale statistical
learning [Boyd et al., 2011, Gabay and Mercier, 1976]. An asynchronous extension,
albeit centralized, was proposed by Zhang and Kwok [2014], while Wei and Ozdaglar
[2013] proposed a decentralized and asynchronous version, but restricted to only
activating subsets of the agents based on the optimization constraints. Teixeira
et al. [2016] proposed optimal parameters for quadratic problems in a decentralized
but synchronous context.

2.5 Consensus Algorithms

The consensus problem, or agreement problem, is a distributed computing problem
with the goal of reaching agreement on a final value, typically in a setting with
failing nodes and limited computational and communication resources.

An application for consensus algorithms is distributed cooperative control of
multi-agent systems, for example in formation control of unmanned vehicles, where
a group of unmanned aircrafts or underwater vehicles can drastically increase the
efficiency in surveillance and search-and-rescue operations. The models can be di-
vided into continuous-time models, capturing vehicle dynamics, and discrete-time
models, capturing packet-based communication protocols. Consensus algorithms
for multi-agent systems have been studied by Fax and Murray [2004], who focused
on the information flow, while Olfati-Saber and Murray [2004] studied time-varying
topologies, which they later developed further [Olfati-Saber et al., 2007]. Ji and
Egerstedt [2007] considered the problem of keeping the multi-agent system con-
nected, when the topology is state-dependent, while Blondel et al. [2009] considered
a similar model for opinion dynamics, where the agents are separated into clusters.
Seyboth et al. [2013] studied event-based strategies, both for single and double in-
tegrator vehicle dynamics models, while Guo and Dimarogonas [2013] considered
quantization effects.

Cao et al. [2005] and Blondel et al. [2005] focus instead on the discrete model
for coordination of multi-agent systems, while Xiao et al. [2005] and Speranzon
et al. [2006] considers a similar model for sensor fusion in wireless sensor networks.
Time-varying topologies and delays has been further studied by Sun et al. [2008].
Fagnani and Zampieri [2008] considered probabilistic average consensus problems,
while Silvestre et al. [2013] considered consensus algorithms where an attacker is
injecting perturbations, and Como and Fagnani [2016] studied average consensus
on weakly connected networks.
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Next, we consider two specific consensus algorithms: to reach the average and
the maximal initial value, respectively. Both of these algorithms assumes a strongly
connected network G, where each node i ∈ V is given an initial real value xi(0) ∈ R.
Each node then updates its own value based only on the values of its neighbors Ni,
without any influence from the rest of the network.

Average Consensus
The average consensus algorithm is based on linear iterations over the neighbors
[Xiao and Boyd, 2003, Xiao et al., 2006]. The goal is to let every node’s value
converge to the average of the initial values,

xi(t)
t→∞−−−→ 1

N

∑
j∈V

xj(0), ∀i ∈ V.

Each node follows the update rule

xi(t+ 1) = wiixi(t) +
∑
j∈Ni

wijxj(t),

for some weights wii and wij . IfW is the weight matrix with entries wij (or 0 if wij
is not present in the updates above), then, with x =

[
x1, x2, · · · , xN

]T, the entire
network update can be condensed into

x(t+ 1) = Wx(t).

This system will converge to the average values, for an arbitrary initial condition,
if and only if the weight matrix satisfies

lim
t→∞

W t = 1
N
11T

An equivalent condition is that W is a double stochastic matrix, and that

ρ(W − (1/N)11T) < 1.

Notice that the convergence is asymptotic in the number of iterations.

Max Consensus
The max consensus algorithm has the goal to let every node’s value converge to the
maximum of the initial values,

xi(t)
t→∞−−−→ max

j∈V
xj(0), ∀i ∈ V. (2.5)

The local update consists of taking the maximum of the neighbors’ values,

xi(t+ 1) = max
j∈Ni

xj(t). (2.6)
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This protocol can be implemented with either gossip or broadcast communications.
In the latter case, agents sequentially broadcast their local values, and whoever
receives this information updates its local value with the maximum. Under weak
assumptions on the communication process, the max consensus protocols are proven
to converge to the true maximum in a finite time, bounded by the diameter of the
network [Iutzeler et al., 2012].

2.6 Transportation Networks

The transportation network is an important example of a network system, where
intersections can be modeled as nodes, and roads as the edges. Transportation of
both goods and people is essential for the function of our society. The transportation
system is facing great challenges, as the demand is steadily increasing, while the
cost and environmental impacts need to minimized.

Transportation research is a vast and active field, but in this thesis we are
mainly concerned with the subfield of intelligent transportation systems (ITS), see
Figure 2.4. An intelligent transportation system is defined by the use of information
and communication for transportation, including infrastructure, vehicles and users.
A long-term goal is to provide a completely autonomous transportation system,
thereby increasing the safety and efficiency. Even the subfield of ITS is vast, with
surveys carried out by An et al. [2011], Figueiredo et al. [2001], Gusikhin et al.
[2008], Li et al. [2014], Toral et al. [2010], Zhang et al. [2011], Zheng et al. [2014].
Next follows a description of some of the relevant work.

The transportation flow and congestion problem in the transportation system
has been studied for over 80 years [Greenshields, 1935]. The distribution problem
between a set of origins and a set of destinations was formulated by Hitchcock [1941],
and spawned a wide research in optimal flow allocation [Edmonds and Karp, 1972,
Ford and Fulkerson, 1957, Koopmans, 1949]. Research continues today with combi-
natorial pick-up and delivery optimization [Treleaven et al., 2013], but many of the
combinatorial optimization problems are NP-complete, and therefore intractable to
solve, including the original traveling salesman problem [Garey and Johnson, 1979].

A challenge for freight carriers is the need to move empty vehicles to avoid
an accumulation of empty vehicles in a region, known as dead mileage. The U.S.
Bureau of Transportation Statistics [2015] reports that 20 % of the truck mileage
in 2002 consisted of empty vehicles, and other studies have estimated that up to
40 % of both the mileage and cost in different transportation scenarios are due to
empty vehicles [Dejax and Crainic, 1987, Muyldermans et al., 2002]. Thus, there
is an enormous potential for optimizing the freight transportation systems [Crainic
and Laporte, 1997]. The transition towards just-in-time supply chains, employed to
minimize the waste in the merchandise industry, is affecting the entire logistics chain
[Lai and Cheng, 2009] and transforming the requirements for the transportation
industry further. A consequence is the need for real-time transportation planning
and adaption of transportation assignments [Mes et al., 2007, Yang et al., 2004].
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Figure 2.4: An intelligent transportation system, using cooperative control. Ve-
hicles are communicating vehicle-to-vehicle to form platoons, and vehicle-to-
infrastructure to optimize a just-in-time logistics operation.

Large-scale transportation service providers are also interested in optimizing the
entire fleet management system [Crainic and Laporte, 1998], which involves the
design of distribution center locations [Chen, 2001, Perl and Daskin, 1985].

The intelligent infrastructure development includes building automated highway
systems [Horowitz and Varaiya, 2000, Varaiya, 1993], ride-sharing lanes [Kwon and
Varaiya, 2008] and reversible lanes [Bede et al., 2010], but also traffic light control
[Zhao and Chen, 2003]. On the vehicle side, current research is making cooperative
vehicle platooning a reality [Alam et al., 2015, Mårtensson et al., 2012], which has
been shown to reduce aerodynamic drag and thereby create fuel savings of up to
10 %. Besselink et al. [2016] considers the fleet management process for platooning.

Real-time data gathering has been proven to increase the efficiency and flexi-
bility in the planning of transport assignments [Zheng et al., 2014], and over the
last decades, technology development has enabled a widespread adoption of GPS
receivers for determining the position of vehicles, while smart-phones has made
it easy to collect and share this position data. This means that today we have
access to huge datasets of trajectories from past transportation assignments, and
this has opened up new opportunities for understanding transportation patterns
[Gidófalvi and Pedersen, 2007, Jenelius and Koutsopoulos, 2013, Matsubara et al.,
2013]. City authorities have been collecting data from the transportation system
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for a long time, but recently we have seen an increase in the availability of exten-
sive datasets. For example, Lee et al. [2008], Moreira-Matias et al. [2012], Wang
et al. [2012] and Yuan et al. [2013] studied strategies for cruising taxis and dispatch
systems, while [Zhan et al., 2014] estimated the efficiency of a taxi system using
a model of perfect prior knowledge of the demand. A related work includes the
strategies for repositioning bikes in bike-sharing systems [Raviv et al., 2013]

2.7 Anonymous Networks

Glancy [1995] highlighted the importance of privacy in the development of intelli-
gent transportation systems. Here we focus on a general computational model for
networks requiring anonymity. Angluin [1980] introduced an anonymous computa-
tion framework by asking which functions could be computed by a local algorithm.
The anonymity is assumed to be the lack of unique identifiers, instead each node
only has a port numbering of its neighbors, also called a local edge labeling. This
is the only information regarding the network that is known to each node.

The work by Angluin [1980] spawned an active field of characterizing compu-
tational functions in anonymous networks, notably the works by Boldi and Vigna
[2001], Yamashita and Kameda [1988, 1996a,b]. Many results are of the negative
form in the deterministic case, i.e., functions cannot be computed in this frame-
work. The fundamental computational barrier is due to possible symmetries in the
network, making it impossible to distinguish two messages from identical nodes
at symmetric positions. Especially, there does not exist a deterministic algorithm
guaranteed to compute the exact network size in an anonymous network [Cidon
and Shavitt, 1995, Itai and Rodeh, 1990].

Extending the anonymous model to randomized algorithms, where each node is
able to generate random bits, enables a larger class of functions to be computed
[Codenotti et al., 1997, Itai and Rodeh, 1990]. For example, each node could then
generate, with high probability, a unique identifier. After this step, the nodes could
repeatedly interchange their local views, thereby recognizing the entire network
topology. However, the methods based on exchanging local views uses growing
message sizes and memory consumption.

2.8 Network Estimation

The importance of distributed estimation is reflected by the variety of applications
where agents interact and cooperate to reach a common goal. Examples of these
systems include environmental monitoring [Lynch et al., 2008], management of the
electrical grid [Bolognani and Zampieri, 2013] and the public transportation system
[Herring et al., 2009].

A common approach to network size estimation is to use random walks [Gkant-
sidis et al., 2006, Massoulie et al., 2006, Ribeiro and Towsley, 2010], relying on a
token being passed around the network to collect information each time it visits an
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agent. Another strategy is to use randomly generated numbers [Kostoulas et al.,
2007], and then exploit classical results on order statistics to infer the number of
participants [Baquero et al., 2012, Cardoso et al., 2009, Chassaing and Gerin, 2006,
Giroire, 2009, Lumbroso, 2010, Varagnolo et al., 2013]. These probabilistic tech-
niques have been statistically analyzed [Cichon et al., 2012b, Clifford and Cosma,
2012], and are extensions of methodologies for estimating sums over networks [Co-
hen, 1997, Mosk-Aoyama and Shah, 2008]. Other network size estimation schemes
use the capture-recapture concept [Peng et al., 2009, Petrovic and Brown, 2009],
where seed numbers are randomly disseminated through the network, and then, by
counting how many seeds are in a given subset, inferring the size of the network.
Some studies [Cichon et al., 2011, 2012a] exploit probabilistic counting algorithms
[Flajolet et al., 2007] usually implemented in non-distributed contexts. Other tech-
niques take advantage of their specific framework and are not implementable in
general settings [Ali et al., 2009, Dolev et al., 2006, Howlader et al., 2008, Leshem
and Tong, 2005, Naini et al., 2015].

The previous studies mainly dealt with static networks, but there are also some
extensions to dynamic settings. Fusy and Giroire [2007] used order statistics,
Psaltoulis et al. [2004] considered random walks, Chabchoub and Hébrail [2010]
exploited probabilistic counting algorithms and Alouf et al. [2002, 2004] considered
multicast applications, while Shafaat et al. [2008] estimated the size in ring-based
overlay networks.

When it comes to estimating probability mass functions over networks, the lit-
erature can be divided into parametric and non-parametric approaches. Parametric
approaches assume the estimand to have a certain structure before obtaining obser-
vations, e.g., to be a sum of Gaussian distributions. Distributed implementations of
the expectation-maximization (EM) algorithm [Forero et al., 2008, Jiang and Jin,
2006, Nowak, 2003, Vlassis et al., 2005] are examples of a parametric approach.
Non-parametric approaches, on the other hand, do not assume a fixed structure
a-priori, but rather select it from the observations. Kernel density estimation [Hu
et al., 2007], classification [Klusch et al., 2003] and clustering approaches [Nguyen
et al., 2005] are all examples of non-parametric approaches.

The literature can also be characterized by how information is propagated and
aggregated over the network. There are strategies based on pre-established hier-
archic tree routing structures, where the nodes compute the distributions in their
sub-trees and propagate the information towards the root [Greenwald and Khanna,
2004, Madden et al., 2002, Motegi et al., 2006, Shrivastava et al., 2004]. Borges
et al. [2012], Haridasan and van Renesse [2008], Sacha et al. [2010] all used gossip
communications, and exploit averaging techniques to explicitly compute the cu-
mulative distribution functions, while Cheng et al. [2010], Massoulie et al. [2006]
estimated how many agents are in a specific state.

Recent work by Lucchese et al. [2015] have considered a maximum likelihood
estimation using random number generation and a bit-wise max consensus protocol.
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2.9 Peer-to-Peer Networks

Peer-to-peer (P2P) networking is a computer network architecture, where the nodes
or peers both supply and consume resources equally. Thus, compared to a classi-
cal client–server architecture, in a peer-to-peer network, peers are both clients and
servers at the same time. Androutsellis-Theotokis and Spinellis [2004] provided a
survey of P2P content distribution technologies, Risson and Moors [2006] surveyed
P2P search methods, while Meshkova et al. [2008] discussed P2P resource discov-
ery solutions, and Liu et al. [2008], Thampi [2013] surveyed P2P video streaming
systems.

An important utility for designing P2P architectures is the peer sampling ser-
vices, which provides uniformly random samples of peers from the network. Gossip-
based peer sampling systems have been developed by Jelasity et al. [2004, 2007],
extended to handle NAT traversal by Payberah et al. [2011], and was corrected for
bias in networks with churn by Baldoni et al. [2010].

Randomized gossiping algorithms have also been used as tools for building dis-
tributed systems, in particular in the areas of overlay networks, sensor networks
and cloud computing storage services [Boyd et al., 2006, Kermarrec and van Steen,
2007]. Convergence properties of gossip-based aggregation algorithms have been
studied for fixed topologies [Olshevsky and Tsitsiklis, 2006] and accelerated meth-
ods for regular graphs, where each node has the same number of neighbors [Liu
et al., 2009].

Research in gossiping has also focused on using the preferential connectivity
model [Mihail et al., 2003] to construct overlay network topologies, where nodes ini-
tially connected in a random graph use a preferential connection function to break
the symmetry of the random graph, and build a topology that contains useful global
information. Barabási [2002] first described how a preferential attachment function
in a growing network can build a scale-free network topology from a random graph.
Barabási’s preferential attachment functions are based on the global state, but in
overlay networks, nodes only have a relatively small partial view of the system.
Thus, the preference functions can only be based on the local state and the state of
the node’s neighbors. Examples of overlay networks that construct their topologies
using gossiping and preference functions include Spotify, that preferentially con-
nects nodes with similar music play-lists [Kreitz and Niemelä, 2010], Sepidar, that
preferentially connects P2P live-streaming nodes with similar upload bandwidth
capacity [Payberah et al., 2010b], and T-Man, a framework that provides a generic
preference function for building such overlays [Jelasity et al., 2009].

A fundamental property of P2P networks is user churn, i.e., that peers can
join and leave the network at any time. Stutzbach and Rejaie [2006] worked on
characterizing churn models, while Raftopoulou and Petrakis [2010], Baldoni et al.
[2006] and Kuhn et al. [2005] consider resilience against churn, and Wang et al.
[2008] chose to identify stable peers.





Chapter 3

Efficiency in Transportation Networks

“People are so bad at driving cars
that computers don’t have to be that
good to be much better. Any time you
stand in line at the DMV and look
around, you’re like, “Oh, my God, I
wish all these people were replaced by
computer drivers”.”

— Marc Andreessen

Enabling efficient transportation is a major challenge for large cities, as the trans-
portation need is increasing, while the environmental impact has to be minimized.
In this chapter we consider collaborative transportation as a means to improve
the transportation efficiency. For example, a transportation provider might have
unused capacity on certain routes, which could be utilized by other actors.

In the first part of this chapter, we define an efficiency measure that shows
how much of the current transportation mileage that is really necessary to meet
all the transportation assignments. It is used for analyzing large datasets of trip
trajectories, and determines where the mileage could be reduced in an ideal setting
when the actors collaborate. We show that the efficiency measure can be computed
efficiently as a minimum-cost flow, and we apply it on two case studies. The first
case demonstrates the efficiency measure on a freight transportation system in
Germany, and the second case computes the measure for a large real-world data
set from the New York City taxis. Both of these examples show a large potential
reduction in transportation mileage by collaboration.

In the second part of this chapter, we study a transportation system, modeled
as a single transportation route with multiple cities. In this model, we consider
the optimal idling locations and the optimal locations for distribution centers for
a freight transport scenario. These locations are then exploited to improve the
performance in a transportation simulation.

The remainder of this chapter is organized as follows: In Section 3.1, a new
efficiency measurement for transportation systems is introduced, and some of its
properties are presented. In Section 3.2 the efficiency measure is demonstrated on a
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freight transportation system, and in Section 3.3 the efficiency measure is computed
on a huge dataset from the New York City taxi system. Then, in Section 3.4, a one-
dimensional road transportation model is introduced. In Section 3.5, the optimal
waiting locations for idling vehicles are considered, and an explicit solution for
uniformly distributed random assignments is derived. Section 3.6 continues with
the optimal locations for distribution centers in order to minimize the traveling
time, and an explicit solution for uniformly distributed random assignments is
derived, as well as an efficient algorithm for computing the locations for discrete
random distributions. Section 3.7 introduces time-space diagrams, which provides
a natural way of extending the optimal idling locations to dynamical scenarios.
In Section 3.8, the strategies are evaluated with numerical simulations, before the
conclusions of this chapter in Section 3.9.

3.1 Transportation Efficiency

In this section, we define a transportation efficiency measure, and show some of
its properties. The aim is to measure the efficiency of a transportation system a-
posteriori, from vehicle trajectories. The actors are assumed to be homogeneous,
thus allowing transportation assignments to be exchanged, and we also ignore chal-
lenges with driver scheduling [Goel and Kok, 2012]. The efficiency measure eval-
uates the a-posteriori trajectories compared to an idealized case, where all actors
would collaborate to satisfy the demands. To this end, it is assumed that for every
trajectory, the vehicle is labeled as either being occupied or vacant.

Network Model

Here, a network flow model is introduced for the transportation problem, consider-
ing the network in a static or time-slotted scenario. A directed graph G = (V, E) is
given, where V is the set of nodes, and E ⊆ V × V is the set of directed edges. For
each edge (u, v) ∈ E , there are two associated transportation flows, f1 : E → R+
and f0 : E → R+. The first flow, f1, represents the desired transportation assign-
ments, while the second flow, f0, represents the vacant trips taken in order to move
the vehicles to their next transportation assignments, which we refer to as vacant
flow. Thus, all occupied trips passing an edge in the network are aggregated into
the flow over the edge, and correspondingly, the vacant trips are aggregated into
the vacant flow. Each edge (u, v) ∈ E also has an associated weight w : E → R+,
which is the cost of transporting one unit of flow across the edge.

Transportation Efficiency Measure

Next, let us consider a measure for the efficiency of the transportation system. First,
define the network flow cost C as the total cost for all trips (both the transportation
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assignments and the vacant flow), thus

C
.=
∑

(u,v)∈E

w(u, v) (f0(u, v) + f1(u, v)) .

Consider an optimal efficiency scenario, where the transportation assignments,
given by f1, have to be completed, but where the vacant vehicle flow, given by f0,
should be minimized while still preserving the availability of vehicles at each node.
We formulate the following optimization problem:

f?0
.= arg min

f

∑
(u,v)∈E

w(u, v) (f(u, v) + f1(u, v))

subject to
0 ≤ f(u, v) ≤ f0(u, v), ∀ (u, v) ∈ E ,

and ∑
v∈V

(u,v)∈E

f(u, v)−
∑
v∈V

(v,u)∈E

f(v, u)

=
∑
v∈V

(u,v)∈E

f0(u, v)−
∑
v∈V

(v,u)∈E

f0(v, u), ∀ u ∈ V.

(3.1)

The first constraint implies that the optimal vacant flow f?0 is a subset to the vacant
flow f0, i.e., it does not increase the flow over any edge. The second constraint
implies that the excess flow at every node is preserved, i.e., that the optimal flow
preserves the same number of vacant vehicles at every node, ready for their next
transportation assignments.

We can now define the optimal network flow cost as

Copt
.=
∑

(u,v)∈E

w(u, v) (f?0 (u, v) + f1(u, v)) ,

and we are now ready for the transportation efficiency definition.

Definition 3.1. The transportation efficiency measure η is defined as

η
.= Copt

C
.

Remark. We have η ∈ [0, 1], and η = 1 if the transportation system is optimal. A
value η < 1 shows how inefficient the system is, as it measures the percentage of
the trips that are necessary to fulfill all the transportation assignments.
Remark. Since the optimal flow f?0 only reduces the initial vacant flow f0, we
neglect any changes in congestion that would appear from an increased traffic flow.
Thus, computing this efficiency measure η can be done directly from historical GPS
trajectories, as seen in Section 3.3.
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Remark. We do not assume that the actual transportation assignments are known,
but only the historical traces of the vehicle trajectories. Hence, it is natural to
assume that all transportation assignments f1 have to be fulfilled, and that they
also represent the complete transportation demand.

Remark. Time constraints on the transportation assignments are not directly cap-
tured by this flow model. However, a possible solution is to only consider the trips
that occur during a limited time period, and then recompute the efficiency measure
for each time period.

Remark. Even though the entire transportation system is not homogeneous, we
can consider a subsystem with homogeneous actors, e.g., a set of long haul trucking
companies, or a set of taxi drivers, which could benefit from collaboration.

Example

As a simple example, consider a scenario with three companies (Blue, Red and
Green) moving cargo between three cities (A, B and C), as in Figure 3.1. Company
Blue moves cargo from city B to city A, and returns empty to pick-up the next
cargo. Company Red similarly moves cargo from C to B, and returns empty, while
company Green moves cargo from A to C, and returns empty, as illustrated in
Figure 3.1a.

With a unit cost w(u, v) = 1 for all edges (u, v) ∈ E , the total cost is C = 6.
Notice that in this example, there is a cycle of empty trucks going around from
A to B to C, and back to A, and that the transportation assignments could be
served by a single truck going around from A to C to B and back to A, as shown
in Figure 3.1b.

The cost for this optimized network is Copt = 3, thus the efficiency of the
transportation system is only η = Copt/C = 3/6 = 50 %.

Computational Complexity

In this section, we show that the efficiency measure can be computed efficiently.
In many practical scenarios, the road network consists of thousands of nodes, and
there can be billions of collected transportation trajectories, as will be shown in
Section 3.3. Therefore it is essential that the measure η can be computed efficiently.

The main computational step is to solve the optimal network flow problem in
equation (3.1), which is equivalent to the minimum-cost flow problem. Recall the
minimum-cost flow problem formulation [Ahuja et al., 1993], which can be stated
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A B

C

(a) The transportation network for three individual companies in an uncooperative sce-
nario.

A B

C

(b) The optimized transportation network for three companies in a cooperative scenario.
All assignments can be handled by a single truck.

Figure 3.1: Illustration of three individual transportation companies, with and
without cooperation. Without cooperation, six trips are necessary to complete the
assignments, while with cooperation only three trips are necessary.
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as
min
f

∑
(u,v)∈E

w(u, v)f(u, v)

subject to
0 ≤ f(u, v) ≤ c(u, v), ∀ (u, v) ∈ E ,

and ∑
v∈V

(u,v)∈E

f(u, v)−
∑
v∈V

(v,u)∈E

f(v, u) = bu, ∀ u ∈ V,

(3.2)

where c(u, v) is the edge capacity, and bu is the node supply/demand. It is fur-
thermore assumed by the feasibility assumption that

∑
u∈V bu = 0, and that there

exists a feasible solution to equation (3.2).
Clearly, with the edge capacity given by the original vacant flow, c(u, v) =

f0(u, v) for all edges (u, v) ∈ E , and the node supply/demand given by the excess
vacant flow, i.e.,

bu =
∑
v∈V

(u,v)∈E

f0(u, v)−
∑
v∈V

(v,u)∈E

f0(v, u)

for all nodes u ∈ V, our optimization problem in equation (3.1) is of the same form
as equation (3.2). Further, by rearranging the sums, we see that∑

u∈V
bu =

∑
u∈V

∑
v∈V

(u,v)∈E

f0(u, v)−
∑
u∈V

∑
v∈V

(v,u)∈E

f0(v, u)

=
∑
u∈V

∑
v∈V

(u,v)∈E

f0(u, v)−
∑
u∈V

∑
v∈V

(u,v)∈E

f0(u, v) = 0.

Finally, it is straightforward to verify that f = f0 is a feasible solution, thus we can
conclude that we have a feasible minimum-cost flow problem.

A complexity survey of minimum-cost flow algorithms was presented by Kovács
[2015]. He showed that the generalized cost-scaling algorithm with dynamic trees is
one of the asymptotically fastest algorithms for minimum-cost flow problems, with
time complexity O

(
nm log(n2/m) min{log(nW ),m logn}

)
, where n = |V| is the

number of nodes, m = |E| is the number of edges, and W = max(u,v)∈E w(u, v) is
the largest edge weight.

We summarize this result in the following proposition.

Proposition 3.1. The transportation efficiency measure η can be computed, us-
ing a minimum-cost flow algorithm, in polynomial time, asymptotically bounded by
O
(
nm log(n2/m) min{log(nW ),m logn}

)
.

Remark. There are many algorithms for solving the minimum-cost flow problem.
We used the successive shortest path algorithm [Edmonds and Karp, 1972] suc-



3.2. Freight Transportation Case Study 37

cessfully for the following case studies, with a theoretical worst case performance
O (D(m+ n logn)), where D is the maximum flow value, using integer capacities.
Remark. As shown by Goldberg and Tarjan [1988], solving the minimum-cost flow
problem is equivalent to removing all negative weight cycles from a feasible solution.
This can be interpreted in our application as removing all cycles traveled by the
empty vehicles, as illustrated in Figure 3.1.

3.2 Freight Transportation Case Study

In this section, we make a minor modification to the transportation efficiency mea-
sure η to evaluate cooperation policies between freight transportation companies
on a simulated road system. The simulation consists of competitive transportation
companies that receive transportation assignments, and independently optimize
their own vehicle fleet once per hour. The network flow cost C is computed from
the minimum-cost flow using the assignment as node constraints, and it is compared
against the optimal flow cost Copt given by full cooperation between the companies.

Let us consider three collaboration scenarios for a long haul freight transporta-
tion system, where a set of vehicles fulfills transportation assignments over the
German road network, seen in Figure 3.2. The transportation network is given by
the 14 largest cities in Germany, where the edge weights w are given by the travel
distance between the cities in kilometers. Transportation assignments consist of a
pick-up time and location, and a drop-off location. The pick-up and drop-off lo-
cations are randomly and independently selected with probability proportional to
the population size of the cities. The pick-up times are randomly generated from
the distribution of actively moving trucks, collected during 24 hours from a fleet
management system, see Figure 3.3 and the work by Liang and Johansson [2014]
for details. The average length of the generated assignments is shown in Figure 3.4.

The following is an example of three generated transportation assignments:

2015-01-01,03:45,Leipzig,51.3938,12.2523,Berlin,52.5018,13.2123
2015-01-01,04:11,Dortmund,51.4374,7.6016,Dresden,51.0503,13.6646
2015-01-01,04:17,Bremen,53.1032,8.8689,Munich,48.0983,11.6457

Each line specifies one assignment with the pick-up date and time, the pick-up
location by city name and latitude–longitude coordinate, and the drop-off location
by city name and coordinate.

As a base scenario, we consider perfect collaboration among all vehicle oper-
ators, where a central planner is minimizing the total empty transportation flow
for completing all assignments, producing the optimal flow cost Copt. The second
scenario considers four competing, non-collaborating, vehicle operators. Each op-
erator receives a fourth of all assignments, and is only concerned about minimizing
their own fleet’s empty transportation flow. The final scenario considers four non-
collaborating regional operators, each operator located in one of the four regions
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Figure 3.2: The road network between Germany’s 14 largest cities represented as
a graph. The cities are also grouped into four geographical regions. (Map courtesy
of OpenStreetMap.)

shown in Figure 3.2. The company operating in a region receives all transportation
assignments with the pick-up location in that region, but may need to deliver the
cargo outside its region.

Given a set of 5 000 assignments per day, we optimize the transportation flows
once per hour, considering all assignments created during that hour. The vehicles
that have completed their assignments are available at their destination for a new
assignment, while the vehicles still moving are unavailable. If there are not enough
vehicles to serve all assignments, then the companies can add new vehicles, but at
a randomly selected node with probability proportional to the population of the
city. For the scenario with regionally restricted companies, the vehicles appear only
within the company’s region. Similarly, if there are more vehicles available than
assignments, then the company needs to return the vehicles to some nodes, selected
by the same random distribution. The transportation policy generated during each
hour thus consists of the vacant flow created by driving the trucks to their next
assignment, followed by the transportation flow determined by the assignment. We
repeat these Monte Carlo simulations for 1 000 days in order to produce a daily
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Figure 3.3: The proportion of actively moving vehicles during 24 hours. Data from
Scania’s fleet management system [Liang and Johansson, 2014].

average traveled distance.
The total traveled distance, e.g., the network flow cost C, per hour for the three

scenarios is shown in Figure 3.5. With full collaboration, the total traveled distance
of the empty vehicles is only 10 % of the total traveled distance (comprising both the
assignments and the empty vehicles), while with four identical non-collaborating
companies, the empty traveled distance increases to 17 % of the total. Notice that
the empty traveled distance thus increased by 70 %. However, with geographically
divided regional companies that do not take advantage of collaboration, and thus
have no backhauling when returning to their region, the empty traveled distance
increases to 47 % of the total traveled distance. This is also expressed by the
transportation efficiency µ, shown in Figure 3.6, where the geographically restricted
companies only achieve µ ≈ 59 %, while the non-collaborating companies achieve
µ ≈ 92 % efficiency compared to full collaboration. This clearly illustrates the
importance of collaboration in the freight transportation system.



40 Efficiency in Transportation Networks

0 100 200 300 400 500 600 700 8000

2

4

6

8

10

12

Transport assignment lengths [km]

Fr
eq
ue
nc

y
[%

]

Figure 3.4: The length distribution of the transportation assignments in the col-
laborative freight simulation.
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Figure 3.5: Evaluation of the transportation efficiency simulation for the three col-
laborative scenarios. The blue line shows the traveled distance for the assignments,
while the other lines show the traveled distance for the empty vehicles in three sce-
narios. The first case is with four geographically restricted companies, the second
case with four competing companies, and the final case is with full collaboration.
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Figure 3.6: Efficiency µ in the freight transport simulation. The efficiency compares
the four non-collaborating companies (µ ≈ 92 %) and four geographically restricted
companies (µ ≈ 59 %) against the full collaboration scenario.
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3.3 New York City Taxi Case Study

We now turn to a second illustration of the efficiency measure η, computed on a
real dataset from the New York City taxis. We will show how the efficiency of the
taxi system varies depending on the time of the day.

In New York City, the taxi system consists of more than 13 000 yellow medallion
taxis, which completed more than 174 million trips during 2013. Records from
all these trips have been made publicly available by the NYC Taxi & Limousine
Commission. Each trip in the dataset is specified with the following data fields:

• Car ID

• Driver ID

• Pick-up time

• Drop-off time

• Passenger count

• Trip distance

• Pick-up location (GPS position)

• Drop-off location (GPS position)

The dataset is illustrated in Figure 3.7, showing a heat map for the active taxis,
where a majority of the trips are centered on Manhattan Island.

To compute and analyze the efficiency measure η we first need to construct
the flow network from the taxi data. This procedure is described in the next four
subsections.

Reconstructing the Vacant Flow

The dataset contains the transportation assignments, i.e., when the taxis are driving
with passengers, but does not include the cruising trips when the driver is looking
for new passengers. However, since the transportation assignments are specified
with both a car identity, a driver identity, as well as the time of the trip, we can
determine the next trip for each car and driver. If a car–driver pair drove another
trip within one hour, then we add the empty trip from the previous trip’s drop-off
location to the next trip’s pick-up location.

For 91.3% of all transportation assignments, this condition could find a following
vacant flow trip. The average transportation assignments and the vacant flow
variation over a day is shown in Figure 3.8.

Remark. There is actually a dip in the number of available taxis in the middle
of the afternoon rush, because the drivers traditionally change shifts at this time
[Grynbaum, 2011].
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Figure 3.7: Heat map of the New York City taxis’ pick-up locations. (Map courtesy
of OpenStreetMap.)
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Figure 3.8: The average number of taxi trips in NYC, as a function of the time
of day. Transport assignments correspond to trips in the dataset, and vacant flow
corresponds to the identified relocations.

Remark. The vacant flow is created by assuming that the drivers drive the shortest
path to their next assignment, thus underestimating the actual vacant mileage.
The lack of passenger information often leads to taxis cruising along the streets,
randomly looking for new passengers [Yuan et al., 2013].

OpenStreetMap Network

The trip data only contain the pick-up and drop-off locations, therefore we construct
a network based on the road data from OpenStreetMap [2015]. The extracted map
region around New York City contains 1 460 536 nodes and 2 967 562 edges, and the
pick-up and drop-off locations for each trip are mapped to the closest nodes in the
OpenStreetMap data.

The next step is to find the path through the road network for every trip. To
this end, we compute the shortest path for each trip, taking into account the road
type, speed limits and one-way directions. The result is a prediction of how the
taxis were moving, similar to the suggestions given by GPS navigators.
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Grid Regions

The OpenStreetMap data contain a very detailed road network, including many
local phenomena, e.g., complex intersections, parallel lanes, antiparallel one-way
streets, etc. But we are only interested in the general trajectories of the taxis,
which would be hidden by excessive details of the map.

To address this problem, we divide the map into a square grid, where cell sizes
from 100m × 100m up to 5 000m × 5 000m are tested. Each grid cell becomes
a node in our final flow network, and a taxi trip is represented as a sequence of
adjacent grid cells. Because the grid cells have the same size, we use a unit weight
w(u, v) = 1 for all (u, v) ∈ E , and the flow is equal to the number of taxis passing
between two grid cells.
Remark. This has the additional benefit of reducing the number of nodes in the
flow network, which makes the computations faster.

Computing the Efficiency Measure

We have now constructed the flow network from the pick-up and drop-off locations
of the taxis, and from this description we are able to compute the efficiency η.

Given a year’s worth of data, we introduce time slots, where the length is varied
from 1 minute up to 60 minutes. For each time slot, we compute the efficiency
measure η, and in Figure 3.9 the taxi transportation efficiency is shown as a function
of the time of the day. In Table 3.1, the efficiency is shown for different grid sizes
and time slots.

Results

The average efficiency measure over January 2013 is shown in Table 3.1. The
efficiency of the NYC taxi system varies from 90.7% using 1 minute time slots and
a grid of 100m × 100m, down to 83.8% for 60 minutes time slots and 5 000m ×
5 000m grid size.

Notice that the efficiency drops when the time slots and grid size increases.
This supports our intuition, because by increasing the time slots, we consider more
vehicles at each step, and are therefore more likely to find vehicles that can be
removed. Similarly for the grid size, a larger grid means that more roads will be
part of the same flow edge, e.g., when two cars are traveling on parallel one-way
streets, in opposite directions.
Remark. The time slot and grid size can be interpreted as how close two taxis need
to be, in time and space, in order to be redundant.

In Figure 3.9, the efficiency is shown as a function of the time of day. Again,
we see that a larger time slot yields a consistently lower efficiency. Notice that
the efficiency has a peak during the afternoon rush at 5 p.m. Comparing with
Figure 3.10, we see that this peak corresponds to a very low vacant flow, i.e., the
high demand for taxis makes it easy to pick up new passengers. In contrast, the
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Table 3.1: New York City Taxi efficiency results, for grid sizes from (100m)2 to
(5000m)2, and time slots ranging from 1 min to 60 min, compared to an entire
month’s data.

Time slot
1 min 5 min 60 min 1 month

G
rid

siz
e

(100m)2
Average flow 25409 127047 1524573 1132757899
Vacant flow 28.1% 28.1% 28.1% 27.3%
Efficiency η 90.7% 86.6% 84.7% 80.3%

(500m)2
Average flow 4724 23620 283442 210597439
Vacant flow 27.6% 27.5% 27.5% 26.8%
Efficiency η 88.2% 85.5% 84.4% 80.6%

(1000m)2
Average flow 2222 11111 133340 99072081
Vacant flow 27.6% 27.6% 27.6% 26.9%
Efficiency η 87.4% 85.1% 84.2% 80.6%

(5000m)2
Average flow 346 1730 20763 15427468
Vacant flow 28.4% 28.4% 28.4% 27.8%
Efficiency η 86.1% 84.5% 83.8% 81.2%

morning peak at 4 a.m. corresponds to a high percentage of vacant flow. Comparing
also with Figure 3.8 explains that this is due to much fewer taxis being available
in the morning, since there is a lower demand for taxis.
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Figure 3.9: The average efficiency measure by the time of day, using a grid size of
1 000m × 1 000m.
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Figure 3.10: The fraction f0/(f0 + f1) of vacant flow compared to the total flow.
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3.4 A One-dimensional Freight Transportation Model

In this section, we shift our focus from the efficiency measure to a real-time trans-
portation service provider, operating along a single highway. Transportation service
providers are under severe pressure to enable real-time logistics planning from a
constantly changing demand. We consider a scenario where transportation assign-
ments arrive following a Poisson process, and the transportation service provider
is operating on this road system with a fleet of vehicles, trying to minimize the
expected delivery time. In the next sections, the optimal locations for idle vehicles,
and the optimal locations for distribution centers are considered. The strategies
are evaluated with numerical simulations along a Swedish highway in Section 3.8.

Consider a road freight transportation system between two cities, for example
the main highway connecting the two largest cities in Sweden, as depicted Fig-
ure 3.11. As shown, there are several major cities located along this road, being
potential destinations for the transports. A position along this route can be repre-
sented with its relative position in the interval [0, 1]. Thus, using this model, any
position of a vehicle, or destination, is given by a real number in the interval [0, 1].
Furthermore, positions in the interval [0, 1] can be scaled such that the difference
|x1−x2| between two positions x1 and x2 is proportional to the transportation cost
between these locations on the map, in terms of either travel distance, travel time
or fuel consumption.

A real-time transportation provider is operating on this road system with a fleet
of vehicles. Transportation assignments arrive randomly following a Poisson process
with rate λ, and the pick-up location l1 and drop-off location l2 are sampled from a
joint probability density function ρ(l1, l2) : [0, 1]×[0, 1]→ R+, where we assume the
transportation providers have prior knowledge about ρ. Each of the transportation
provider’s vehicles cycle through the states in Figure 3.12, where it starts in an idle
state waiting for an assignment. After being selected for an assignment, it drives
to the pick-up location to collect the goods. The assignment is then brought to a
distribution center, before being delivered to the drop-off location, after which the
vehicle is returned to an idle state.

The transportation provider evaluates its performance as the time it takes from
receiving a transportation assignment until the delivery at the drop-off location.
This time can be divided into three parts, the time it takes for a vehicle to arrive
at the pick-up location, the time it takes to drive to the drop-off location, and the
extra time spent visiting the distribution center. Here, the time taken to drive from
the pick-up location to the drop-off location is given by the assignment and road
conditions, and is outside the control of the transportation provider, but the time to
pick up an assignment depends on the location strategy for the idle vehicles, and the
extra time spent going to a distribution center depends on where the distribution
centers are located. We consider both of these optimization problems in the next
sections.



3.4. A One-dimensional Freight Transportation Model 49

Figure 3.11: Map of southern Sweden, highlighting the main road connecting the
largest cities Stockholm and Göteborg, together with the major cities along the
road. (Map courtesy of OpenStreetMap.)
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Figure 3.12: Flow chart of the states for each vehicle of a transportation provider.
In this section, we focus on optimizing the idle vehicle locations and the distribution
center locations.

3.5 Optimal Idling Location

In this section, the static optimization problem of deciding where idle vehicles
should wait for their next assignment is considered. A transportation provider
serving the system with N vehicles would like to distribute the vehicles to minimize
the expected time to pick up the next assignment, where the pick-up location l1
is randomly chosen from the probability density function ρ(l1) : [0, 1] → R+. Let
x1, . . . , xN denote the locations of the transportation provider’s N vehicles, and
E [·] the expected value. The problem can then be formulated as

min
x1,...,xN

El1
[

min
i=1,...,N

|xi − l1|
]

= min
x1,...,xN

∫ 1

0

[
ρ(l1) min

i=1,...,N
|xi − l1|

]
dl1. (3.3)

Remark. In this formulation, the vehicles may stop at any location along the road,
i.e., xi ∈ [0, 1].

Uniform Distributions
We will now derive an explicit solution for the locations of the vehicles, when the
transport assignments have a uniform probability distribution.

Proposition 3.2. Assume that new transportation assignments arrive at locations
following a uniform distribution U [0, 1] over the road system, i.e., ρ(l1) = 1 for all
l1 ∈ [0, 1]. The optimal locations of the N vehicles is then equidistantly distributed
over the line, with xi = 2i−1

2N , i = 1, . . . , N .
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Proof. Without loss of generality, assume that x1 ≤ x2 ≤ · · · ≤ xN . The integral
in equation (3.3) can then be split into parts as

∫ 1

0

[
min

i=1,...,N
|xi − l1|

]
dl1

=
∫ x1

0
(x1 − l1) dl1

+
N−1∑
i=1

(∫ (xi+xi+1)/2

xi

(l1 − xi) dl1 +
∫ xi+1

(xi+xi+1)/2
(xi − l1) dl1

)

+
∫ 1

xN

(l1 − xN ) dl1

= 1
2x

2
1 +

N−1∑
i=1

1
4(xi+1 − xi)2 + 1

2(1− xN )2

︸ ︷︷ ︸
G

.

Thus, the optimal vehicle locations x1, . . . , xN should be chosen such that G is
minimized, which happens when the gradient is zero:

∂ G

∂ x1
= 3

2x1 −
1
2x2 = 0 ⇒ 3x1 = x2

∂ G

∂ xi
= 1

2(2xi − xi−1 − xi+1) = 0 ⇒ xi = xi−1 + xi+1

2 ∀i ∈ 2, . . . , N − 1

∂ G

∂ xN
= 3

2xN −
1
2xN−1 − 1 = 0 ⇒ 3xN = xN−1 + 2

Solving this equation system yields the solution where xi = 2i−1
2N for all i = 1, . . . , N .

3.6 Optimal Distribution Center Location

In this section, the static optimization problem of deciding where to build distri-
bution centers is considered. Distribution centers are used to store and sort goods,
and to coordinate transportation assignments efficiently. We assume that every
piece of goods needs to visit a distribution center before being delivered to its final
destination.

A transportation assignment consists of a pick-up location l1 ∈ [0, 1] and a
drop-off location l2 ∈ [0, 1], and the goods is transported from the pick-up location
to any distribution center before being delivered to the drop-off location. The goal
is to decide where to build M distribution centers such that the expected total
transportation cost is minimized. Let ρ(l1, l2) : [0, 1] × [0, 1] → R+ be the joint
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probability density function for an assignment to have the pick-up location l1 and
drop-off location l2, and let d1, . . . , dM be the locations for the distribution centers.
The optimization problem can be formulated as

min
d1,...,dM

El1,l2
[

min
i=1,...,M

(|di − l1|+ |di − l2|)
]

= min
d1,...,dM

∫ 1

0

∫ 1

0

[
ρ(l1, l2) min

i=1,...,M
(|di − l1|+ |di − l2|)

]
dl2 dl1. (3.4)

Uniform Distributions

Assume that the pick-up and drop-off locations are i.i.d. random variables with
uniform probability distribution l1, l2 ∼ U [0, 1], i.e., ρ(l1, l2) = 1. Let us first
consider the case with only one distribution center.

Proposition 3.3. The optimal location, d, for a single distribution center, when
the assignment locations have uniform probability density ρ(l1, l2) = 1, is at d = 1/2.

This is intuitively clear from a symmetry argument, but we will none the less
prove it here.

Proof. The distribution center location d is determined by the following optimiza-
tion problem.

min
d

El1,l2 [|d− l1|+ |d− l2|]

= min
d

∫ 1

0

∫ 1

0
(|d− l1|+ |d− l2|) dl2 dl1

= 2 min
d

∫ 1

0
|d− l|dl

= 2 min
d

(∫ d

0
(d− l) dl +

∫ 1

d

(l − d) dl
)

= 2 min
d

(
d2

2 + (d− 1)2

2

)
= min

d

(
2d2 − 2d+ 1

)
,

which has the solution d = 1/2.

We now proceed to the general case, with M > 1 distribution centers.
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Figure 3.13: A schematic representation for the trip from l1 to l2, using three
different possible distribution centers di−1, di or di+1. If there exists a distribution
center di between the locations l1 and l2, then the direct path between them is
optimal, otherwise a detour is needed to visit a distribution center di−1 or di+1.

Theorem 3.4. The optimal locations d1, . . . , dM for M > 1 distribution centers,
when the assignment locations have uniform probability density ρ(l1, l2) = 1, are
equidistantly spaced at d1, d1 + ( 1−2d1

M−1 ), d1 + 2( 1−2d1
M−1 ), . . . , d1 + (M − 1)( 1−2d1

M−1 ) =
1− d1, with the boundary distance d1 = 2−

√
2

6−4
√

2+2M(
√

2−1) .

Proof. The locations are determined by the following optimization problem:

min
d1,...,dM

El1,l2
[

min
i=1,...,M

(|di − l1|+ |di − l2|)
]

= min
d1,...,dM

∫ 1

0

∫ 1

0
min

i=1,...,M
(|di − l1|+ |di − l2|) dl2 dl1.

Without loss of generality, we can assume that d1 ≤ d2 ≤ · · · ≤ dM . When
considering using a distribution center di for the assignment between l1 and l2,
there are three possibilities, as illustrated in Figure 3.13. If di is between l1 and l2,
then it is an optimal distribution center, since it is on the direct path between the
two locations. Otherwise, if both locations l1, l2 belong to an interval [di, di+1] for
some i, then we need to consider both di and di+1 as possible candidates, and the
additional travel distance is 2 ·min(min(l1, l2)− di, di+1 −max(l1, l2)) for visiting
a distribution center. Using this property, we rewrite the double integral as
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∫ 1

0

∫ 1

0
min

i=1,...,M
(|di − l1|+ |di − l2|) dl2 dl1

=
∫ 1

0

∫ 1

0
|l1 − l2|dl2 dl1

+ 2
∫ d1

0

∫ d1

0
(d1 −max(l1, l2)) dl2 dl1

+ 2
M−1∑
i=1

∫ di+1

di

∫ di+1

di

min(min(l1, l2)− di, di+1 −max(l1, l2)) dl2 dl1

+ 2
∫ 1

dM

∫ 1

dM

(min(l1, l2)− dM ) dl2 dl1.

Notice that the first double integral is the transportation cost for driving between l1
and l2, which is independent of the distribution center locations d1, . . . , dM , thus its
value will not affect the minimization problem. Let us now compute the remaining
three double integrals, which represent the extra traveling cost pertaining to the
distribution centers. First,

∫ d1

0

∫ d1

0
(d1 −max(l1, l2)) dl2 dl1

=
∫ d1

0

(∫ l1

0
(d1 − l1) dl2 +

∫ d1

l1

(d1 − l2) dl2

)
dl1

= 1
3d

3
1.

Similarly,

∫ 1

dM

∫ 1

dM

(min(l1, l2)− dM ) dl2 dl1

=
∫ 1

dM

(∫ l1

dM

(l2 − dM ) dl2 +
∫ 1

l1

(l1 − dM ) dl2

)
dl1

= 1
3(1− dM )3.

Finally,
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∫ di+1

di

∫ di+1

di

min(min(l1, l2)− di, di+1 −max(l1, l2)) dl2 dl1

=
∫ di+di+1

2

di

(∫ l1

di

(l2 − di) dl2 +
∫ di+1+di−l1

l1

(l1 − di) dl2

+
∫ di+1

di+1+di−l1
(di+1 − l2) dl2

)
dl1

+
∫ di+1

di+di+1
2

(∫ di+1+di−l1

di

(l2 − di) dl2 +
∫ l1

di+1+di−l1
(di+1 − l1) dl2

+
∫ di+1

l1

(di+1 − l2) dl2

)
dl1

=1
6(di+1 − di)3.

Hence, the optimization problem for the optimal locations d1, . . . , dM can be
written as

min
d1,...,dM

(
2
3d

3
1 +

M−1∑
i=1

1
3(di+1 − di)3 + 2

3(1− dM )3

)
︸ ︷︷ ︸

G

.

Thus, the optimal locations d1, . . . , dM for the distribution centers should be chosen
such that G is minimized, which happens when the gradient is zero:

∂ G

∂ d1
= d2

1 + 2d1d2 − d2
2 = 0 ⇒ d1 = (

√
2− 1)d2

∂ G

∂ di
= (di+1 − di−1)(2di − di+1 − di−1) = 0 ⇒ di = di+1 + di−1

2
∀i ∈ 2, . . . , N − 1

∂ G

∂ dM
= d2

M−1 + 2dM (2− dM−1)− d2
M − 2 = 0

⇒ dM = (
√

2− 1)(
√

2 + dM−1)

Notice that the middle equation implies that all distribution centers are located
equidistant. Furthermore, solving this equation system for d1 yields

d1 = 2−
√

2
6− 4

√
2 + 2M(

√
2− 1)

.
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Remark. The locations of the distribution centers for M = 1, . . . , 5 are

M Distribution center locations d1, . . . , dM
1 0.5
2 0.2929 0.7071
3 0.2071 0.5 0.7929
4 0.1602 0.3867 0.6133 0.8398
5 0.1306 0.3153 0.5 0.6847 0.8694

Remark. With uniform probability distribution, both the idling vehicle locations
and the distribution center locations will be equidistantly spaced, but note that
they have different boundary conditions.

Discrete Distributions
In the road network depicted in Figure 3.11 there are a discrete number C of cities
C = {c1, . . . , cC} located along the road. We now assume that both the pick-up
and drop-off locations are limited to this set of cities, thus the probability density
function can be written as

ρ(l1, l2) =
∑
u∈C

∑
v∈C

pu,v δ(u− l1)δ(v − l2),

where δ(·) is Dirac’s delta function, u and v are city positions, and pu,v is the
probability mass function for an assignment to be from city u to city v. The
optimal positioning of the distribution centers can be written as

min
d1,...,dM

El1,l2
[

min
i=1,...,M

(|di − l1|+ |di − l2|)
]

= min
d1,...,dM

∑
u∈C

∑
v∈C

[
pu,v min

i=1,...,M
(|di − u|+ |di − v|)

]
.

Proposition 3.5. The distribution centers can optimally be built at a subset of the
cities, i.e., only locations d1, . . . , dM ∈ C need to be considered.

Proof. Assume without loss of generality that c1 ≤ c2 ≤ · · · ≤ cC , and further
assume that d̃1, . . . , d̃M is an optimal solution with d̃i ∈ (ck, ck+1) located between
two cities, for some i and k. Let D ⊆ C ×C denote the set of assignments using the
distribution center d̃i, i.e., (u, v) ∈ D if i = arg minj=1,...,M (|d̃j − u|+ |d̃j − v|).

Consider now if the set of assignments D instead was handled by a distribution
center located at ck. Since d̃i is optimal, we know that∑

(u,v)∈D

pu,v(|d̃i − u|+ |d̃i − v|) ≤
∑

(u,v)∈D

pu,v(|ck − u|+ |ck − v|).



3.6. Optimal Distribution Center Location 57

Notice that if u ≤ d̃i then also u ≤ ck, and if u ≥ d̃i then u ≥ ck, since u ∈ C, and
similarly for v. Thus∑

(u,v)∈D
u≤d̃i≤vor
v≤d̃i≤u

pu,v(|d̃i − u|+ |d̃i − v|) =
∑

(u,v)∈D
u≤d̃i≤vor
v≤d̃i≤u

pu,v(|ck − u|+ |ck − v|),

so the inequality only needs to consider when u, v ≤ d̃i or u, v ≥ d̃i. Expanding the
left hand side yields

∑
(u,v)∈D
u,v≤d̃i

pu,v(|d̃i − u|+ |d̃i − v|) +
∑

(u,v)∈D
u,v≥d̃i

pu,v(|d̃i − u|+ |d̃i − v|)

=
∑

(u,v)∈D
u,v≤d̃i

pu,v(|ck − u|+ |ck − d̃i|+ |ck − v|+ |ck − d̃i|)

+
∑

(u,v)∈D
u,v≥d̃i

pu,v(|ck − u| − |ck − d̃i|+ |ck − v| − |ck − d̃i|)

≤
∑

(u,v)∈D
u,v≤d̃i

pu,v(|ck − u|+ |ck − v|) +
∑

(u,v)∈D
u,v≥d̃i

pu,v(|ck − u|+ |ck − v|).

Simplifying this inequality, we have∑
(u,v)∈D
u,v≤d̃i

pu,v ≤
∑

(u,v)∈D
u,v≥d̃i

pu,v.

Repeating this argument with ck+1 instead of ck yields∑
(u,v)∈D
u,v≤d̃i

pu,v ≥
∑

(u,v)∈D
u,v≥d̃i

pu,v.

Together, this means that the original inequality is satisfied with equality, and
hence that the location d̃i can be moved to either ck or ck+1 without changing the
value of the optimization problem.

The locations of the distribution centers are thus given by the optimization
problem

min
d1,...,dM∈C

∑
u∈C

∑
v∈C

[
pu,v min

i=1,...,M
(|di − u|+ |di − v|)

]
.
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Remark. It is clear that having M > C distribution centers will not reduce the
transportation cost, since when M = C, a distribution center could be built at
every city.

Solving this optimization problem by brute force would consider all
(
C
M

)
subsets

of the cities, which grows exponentially. Instead, we propose a dynamic program-
ming algorithm for solving this optimization problem in O

(
C4) complexity. For

notational simplicity, c ∈ C can denote either the position of city c or its index,
as should be clear from the context. The key idea is to let cost[m][k] denote the
expected cost of transporting all assignments with l1 ≤ k or l2 ≤ k, using at most
m distribution centers, where the last distribution center is located at city k, i.e.,

cost[m][k] = min
d1,...,dm∈C
d1≤···≤dm=k

∑
u,v∈C
u≤k

or
v≤k

[
pu,v min

i=1,...,m
(|di − u|+ |di − v|)

]
.

Algorithm 3.1 Optimal Cities for Distribution Centers
1: for i ∈ C do . Pre-computations
2: for j ∈ C, j ≥ i do
3: a[i][j]←

∑
u,v∈C
i<u,v

u or v≤j

pu,v min(|i− u|+ |i− v|, |j − u|+ |j − v|)

4: end for
5: b[i]←

∑
u,v∈C
i<u,v

pu,v(|u− i|+ |v − i|)

6: end for
7: for all k > 0 do . Initialize
8: cost[0][k]←∞
9: end for
10: for all m ≥ 0 do . Initialize
11: cost[m][0]← 0
12: end for
13: for m = 1 to M do
14: for k = m to C do
15: cost[m][k]← min

i=0,...,k
(cost[m− 1][i] + a[i][k])

16: end for
17: end for
18: cost? ← min

k=M,...,C
(cost[M ][k] + b[k])

Algorithm 3.1 produces the optimal cost? of the solution. The optimal locations
can be extracted by also memorizing which location minimizes the expression in
the inner loop.
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3.7 Time-Space Diagrams

In this section, we introduce the time-space diagrams, a useful tool for understand-
ing dynamical transportation models. The time-space diagram shows the (space)-
location of vehicles and assignments as they evolve over time, see Figure 3.14.

Let us now consider a dynamic transportation model, where transportation as-
signments arrive following a stochastic process. The vehicles move with a constant
speed along the road, and the objective is to minimize the average time until pick-up
of the next transport assignment. However, the vehicles do not have a-priori knowl-
edge about the next assignment, thus they would have to choose idling strategies
to minimize the expected pick-up time.

Note that it is easy to illustrate the reachable region for a vehicle in the time-
space diagrams, as shown in Figure 3.15. This yields a simple interpretation of the
optimal idling locations from equation (3.3), where the optimal idling locations are
minimizing the maximal distance to any unreachable point, see Figure 3.16.

Based on this, we propose a dynamic strategy for the idling vehicles. Notice that
once an assignment has been picked up, that vehicle cannot be used for any other
assignment, hence its reachable region is moved to the assignment’s destination, as
shown in Figure 3.17. Thus, the remaining vehicles determine their idling locations
as to minimize the maximal distance to any unreachable point, using the prior
knowledge about the occupied vehicles’ reachable regions. Once a new assignment
arrives, we assume that the non-occupied vehicle with the shortest pick-up time will
be selected for the next assignment, and becomes unavailable until that assignment
is completed.
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Figure 3.14: A time-space diagram, showing a single vehicle handling three trans-
portation assignments. The red cross denotes the arrival of an assignment, and the
red circle the delivery.
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Figure 3.15: A time-space diagram, showing a single vehicle and two assignments.
At the current time t = 6, the shaded area corresponds to the vehicle’s reachable
time-space. Thus, it is impossible for the vehicle to pick up the first assignment on
time, but the second assignment is still reachable.
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Figure 3.16: A time-space diagram, showing the reachable time-space for four ve-
hicles at time t = 2. Note that every position in time-space is currently reachable
after t > 3.25.
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Figure 3.17: A time-space diagram, showing two vehicles and one assignment. Note
that once a vehicle is selected for an assignment, its reachable time-space is moved
to the assignment’s destination.
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3.8 Simulation Study

In this section, we exploit the previous optimal solutions in a dynamical transporta-
tion model with numerical simulations. Recall that the vehicles operate according
to the flow chart in Figure 3.12, and that the total time to handle an assignment
consists of the time it takes to pick up the goods and the time it takes to deliver the
goods to the destination, including visiting a distribution center. We thus simulate
these steps independently in the following subsections.

Idling Vehicles with Uniform Distribution

First, we consider transportation assignments arriving following a Poisson process
with rate λ, i.e., the mean time between assignments is 1/λ, and where the pick-up
and drop-off locations are chosen uniformly over the interval [0, 1]. The transporta-
tion assignments are served by N = 5 vehicles moving with a unit speed along the
road, and the objective is to minimize the average time it takes to pick up each
new transport assignment. Notice that we focus on the waiting time, and ignore
the fuel cost of transporting the empty vehicles in this section.

Each time a new assignment arrives, all non-occupied vehicles will be considered
and the vehicle with the shortest pick-up time will be selected for the assignment.
The vehicle then becomes unavailable until it has completed the transport assign-
ment. In Section 3.5 we computed the optimal locations for the idling vehicles to
be equidistantly spread out over the road system, and in Section 3.7 we extended
this to incorporate information about the vehicles that are about to deliver their
assignment. We now exploit this solution as a control law for the unassigned ve-
hicles, where they immediately start to redistribute themselves according to the
optimal locations. For example, when one out of five vehicles is selected for a long
transport assignment, the remaining four available vehicles will drive towards the
locations 0.125, 0.375, 0.625 and 0.875.

We compare this strategy to the base scenario, where the vehicles simply stay
where they are after completing an assignment, waiting for a new assignment. The
two methods are evaluated using Monte Carlo simulations for different arrival rates
λ, and for each arrival rate, the average waiting time is computed for 200 000
random assignments. The results are shown in Figures 3.18 and 3.19. Notice
that by exploiting the optimal vehicle location strategy, we are able to reduce the
average waiting time by almost 50 % at up to moderate arrival rates λ. As seen
in Figure 3.18, when the arrival rate λ approaches 7 assignments per time unit,
5 vehicles will not be sufficient to handle all assignments, which means that the
waiting time starts to diverge.

Distribution Center Location with Discrete Distribution

Consider now the transportation stage between the pick-up location and the drop-
off location, which is affected by the locations of distribution centers. We use the
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Figure 3.18: The average waiting time to pick up transportation assignments arriv-
ing following a Poisson process with rate λ using 5 vehicles. Two different strategies
are compared, either the vehicles stay at their drop-off location until the next as-
signment, or they redistribute according to the optimal locations.
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Figure 3.19: The improvement in the average waiting time by redistributing the ve-
hicles towards their optimal locations, compared to staying at the drop-off location,
as shown in Figure 3.18.
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City name Population Distance Relative position
Stockholm 923 516 0 km 0.00
Södertälje 93 202 34 km 0.07
Nyköping 54 262 101 km 0.21
Norrköping 137 035 160 km 0.34
Linköping 152 966 198 km 0.42
Jönköping 133 310 322 km 0.68
Borås 108 488 406 km 0.86
Göteborg 548 190 470 km 1.00

Table 3.2: Major cities along the Swedish highway in Figure 3.11. Population
data provided by SCB [2015]. Distance given as the road distance measured from
Stockholm.

cities for the Swedish main highway, shown in Figure 3.11, as a discrete distribution
for the assignment locations. Along this road there are 8 major cities, see Table 3.2,
and the transport assignment location probabilities pu,v are selected proportional to
the population of the cities. The population mass function is shown in Figure 3.20.

The optimal distribution center locations are computed for each M = 1, . . . , 8
number of distribution centers, and the resulting cities are indicated in Figure 3.21.
The range of mean traveling times is shown in Figure 3.22, where the lower bound
corresponds to the optimal and selected distribution centers in Figure 3.21. As
shown, the locations of the distribution centers can significantly affect the assign-
ment transportation time.
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Figure 3.20: The city population with their relative position on the Swedish highway
in Figure 3.11.
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Figure 3.21: The optimal cities for distribution center locations, depending on the
number of distribution centers. The markers denote where the distribution centers
should be located.
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Figure 3.22: The range of mean traveling times for all possible choices of distribution
centers. The lower bound corresponds to the optimal choice of distribution centers,
shown in Figure 3.21.
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3.9 Conclusions

In this chapter, we developed a new efficiency measure η for transportation systems,
where the trips are divided into actual transportation assignments and vacant trips.
The efficiency measure is especially useful when evaluating a transportation system
based on collected GPS trajectories, and we showed that the efficiency measure can
easily be computed, even for huge datasets.

We used the efficiency measure to evaluate a road freight transportation sce-
nario, with multiple competitive transportation companies. We showed that even
if the companies had optimized their own transportation routes, they only achieved
59 % efficiency when assignments where allocated geographically, and 92 % when
randomizing assignments, compared to the fully cooperative scenario. We also
demonstrated the efficiency measure on a real data set from New York City’s taxis,
where we showed that the total mileage could be reduced by between 9 % and 20 %,
depending on the time of day and flexibility in the system.

We then considered a transportation system along a major transportation route.
The goal of a real-time transport service provider is to minimize the time from the
reception of a transport assignment until the delivery. This resulted in two separate
problems: a strategy for distributing idling vehicles, and a strategy for locating
distribution centers.

We formulated these problems as stochastic optimization problems, and pro-
vided explicit solutions for uniform distributions, as well as an efficient algorithm
for discrete probability distributions. The methods were evaluated with numerical
simulations from a Swedish highway.

This work shows that there is a tremendous potential for improving the efficiency
of our current transportation system by improved planning and coordination among
different actors.





Chapter 4

Estimation in Anonymous Networks

“Arguing that you don’t care about
the right to privacy because you have
nothing to hide is no different than
saying you don’t care about free
speech because you have nothing to
say.”

— Edward Snowden

In this chapter we consider distributed estimation of data obtained by the nodes
in a network G = (V, E). Two specific problems are analyzed: first to estimate
the size of the network N = |V|, and later to estimate the empirical distribution
of local measurements zi generated by each node i ∈ V. We explicitly target
dynamical networks G(t) by utilizing a regularization term which captures a-priori
assumptions on the dynamic network evolution.

Our aim is to obtain distributed algorithms, where all nodes execute the same
algorithm in parallel, and where neither leaders nor an overlay structure is present.
We assume that the nodes have no knowledge of the network topology, and that they
have narrowly bounded computational, memory and bandwidth resources, where
especially the size of the exchanged information packets stays constant over time.
Finally, the goal is that all agents should quickly reach consensus, in the sense that
they should share the same estimates of the global properties for the network as
fast as possible.

We restrict our methods to anonymous networks, where the uniqueness of the
node identifiers is not guaranteed [Yamashita and Kameda, 1988], thus avoiding the
possibility of tracing or characterizing a single agent. The anonymity is motivated
for maintaining users’ privacy (e.g., in P2P networks where users may not want
to disclose information about their identity), but is also beneficial in applications
when the estimation strategies must be simple with limited resource requirements.

The outline of this chapter is as follows: In Section 4.1 we introduce the net-
work size estimation problem for dynamical networks, which we analyze in Sec-
tion 4.2. We continue by specifically considering quadratic regularization terms in
Section 4.3, and evaluate the estimator in Section 4.4 with numerical experiments.

69
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Next, we turn to the PMF estimation problem for static networks in Section 4.5,
and introduce two different estimators for this problem in Section 4.6. These es-
timators are analyzed in Section 4.7, and evaluated with numerical simulations in
Section 4.8.

Finally, we combine the dynamical network size estimator from Section 4.1
with the PMF estimator for static networks from Section 4.6 to estimate PMFs in
dynamical networks in Section 4.9. In Section 4.10 we conclude this chapter.

4.1 Size Estimation Problem

The first problem we consider is to estimate the network size N(t) = |V(t)| of a
time-dependent network G(t) = (V(t), E(t)). In many distributed network applica-
tions, the network manager will need to redirect resources or take other restorative
actions if the network topology changes. Thus, being able to estimate the size and,
in particular, changes in the network size is indispensable for automatic network
reconfiguration and fault detection.

The considered network model G(t) of interconnected agents V(t) = {1, . . . , N(t)}
is based on agents which can join or leave at any time. The goal is to distributively
track the network size, i.e., each agent should create an estimate of the number of
agents as the network size is evolving.

We restrict this problem to the class of anonymous networks, i.e., where the
agents do not have unique identifiers, following the work by Angluin [1980]. In
this framework, it has been proven that there cannot exist deterministic algorithms
which are guaranteed to compute the correct network size, see Cidon and Shavitt
[1995], but by exploiting probabilistic methods, the entire network topology can be
reconstructed, see Codenotti et al. [1997]. However, these methods are based on
exchanging the local views (each agent has local enumeration of its neighbors), and
fail when there are communication and memory limitations.

In for example wireless sensor networks, the communication, computation and
memory capacity are strictly limited resources, thus we further restrict the algo-
rithms to broadcast communication with a fixed message size, and all agents running
identical algorithms. We formalize this by assuming that each agent i ∈ V has a
local variable xi(t) that can be modified at time t+ 1 by accessing the states xj(t)
of the neighboring nodes j ∈ Ni(t), and performing the aggregation operation

xi(t+ 1) = f (xi(t), xj1(t), xj2(t), . . . ) , j1, j2, . . . ∈ Ni(t)

that preserves the dimension of xi(t), for some function f . Each agent then com-
putes a local estimate of the network size from the local variable xi(t),

N̂(t) = J (xi(t))

for an appropriate estimation function J . Thus, we do not even assume that a local
view of the network exist, and in particular allow for time-varying topologies.
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Remark. In the following section, we assume xi(t) ∈ RM for the analysis of the es-
timators statistical properties, but in Section 4.4 we perform numerical evaluations
of the estimator using b bits when representing each real value, thus limiting the
communication message size.

Let us introduce the following notation, where N(t) represents the true number
of agents in the network at time t ∈ N, while N̂(t) denotes the estimated value of
N(t). In the maximum likelihood (ML) estimator, we denote a generic hypothesis
by N(t) for the estimated value of N(t). The estimator will simultaneously estimate
the network size for a time window of length τ + 1, and we also utilize previous
estimates up until time t−η, where η ≥ τ , in the regularization term. We therefore
introduce the following vectorized versions of the previous quantities, where the
bold italics indicate vectors:

N(t) .= [N(t), . . . , N(t− τ)]T (4.1)

N(t) .=
[
N(t), . . . , N(t− τ)

]T (4.2)

N̂(t) .= [N̂(t), . . . , N̂(t− τ)]T (4.3)

N̂η
τ (t) .= [N̂(t− τ − 1), . . . , N̂(t− η)]T . (4.4)

Thus, N(t) refers to the true values over a time window of length τ+1, N(t) refers
to a generic hypothesis on the true value of N(t), and N̂(t) refers to the estimate
of the true values. N̂η

τ (t) contains an additional memory of previous estimates that
is used to improve the regularization process of the estimate. Notice that τ, η ∈ N
are fixed design parameters of the algorithm.

4.2 Network Size Estimation Algorithm

We will here propose a distributed size estimation algorithm for anonymous net-
works, using probabilistic initialization of the state vector. The basic idea behind
the network size estimation scheme, introduced by Varagnolo et al. [2010], is that
each agent i ∈ V(t) generates a uniform, random sample xi ∼ U [0, 1], and then the
max consensus protocol, described in Section 2.5, is used to compute the maximum
f = maxi∈V(xi) of these samples. This yields a sample of a random variable, whose
distribution is the maximum of N(t) independent and identically distributed (i.i.d.)
random variables, which depends upon N(t). Hence, this computed sample can be
used for an ML estimate of N(t).

Compared to the previous literature, we derive a distributed estimator that
extends techniques based on order statistics with a regularization approach [Vapnik,
1998, Wahba, 1990]. We introduce a regularization term that allows the designer to
combine the empirical evidence from the data with a-priori beliefs on the expected
behavior of the network size to be estimated, and then provide an analysis of
quadratic regularization functions.
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The specific extension of this idea to dynamic network size estimation includes a
repetitive generation of new random samples and computation of the maximal value.
The samples from the max distribution is kept for a time window of length τ+1, to
simultaneously estimate N(t) with the a-priori assumptions on the evolution. Our
algorithm also includes an additional memory of the previous estimates N̂η

τ (t) for
an extended time window of length η− τ , which are considered as fixed parameters
in the estimation scheme. All these data are then used to compute a penalized ML
estimate N̂(t), as described in Algorithm 4.1 and equation (4.6).

Algorithm 4.1 Dynamic Network Size Estimation Algorithm
1: for every t = 1, 2, . . . do
2: (Generation step) Each agent i = 1, . . . , N(t) generates M i.i.d. random

values
xi,m(t) ∼ U [0, 1] , m = 1, . . . , M.

3: (Communication step) Agents compute, through max consensus strategies,
the M -dimensional max vector

f(t) .= [f1(t), . . . , fM (t)]T ,

where
fm(t) = max

i=1,...,N(t)
xi,m(t).

4: (Computation step) Each agent estimates the total number of agents in the
network through the penalized ML scheme as

N̂(t) = arg min
N∈Rτ+1

J
(
N ; f(t), . . . , f(t− τ), N̂η

τ (t)
)
. (4.5)

5: end for

Remark. The time index t does not need to denote physical quantities (such as sec-
onds), but rather epochs, under which each iteration of Algorithm 4.1 is completed,
and the network size is estimated. Hence, we have assumed a network synchro-
nization to the epochs, even if the max-consensus communication protocol can be
asynchronous during each epoch. We implicitly also assume that the agents al-
ways reach the max consensus on the locally generated samples within each epoch.
For the max consensus to succeed, the network needs to be strongly connected
during each epoch, otherwise the size estimation algorithm extends to each agent
estimating the number of agents who are able to influence it during the epoch.
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Figure 4.1: Example of the time behavior of the estimation scheme of equation (4.6).
The white rectangle indicates the extra parameters N̂η

τ (t), while the gray rectangle
indicates the time-window where the optimization problem of equation (4.5) acts
to obtain new estimates.

The penalized log-likelihood function J in equation (4.5) is defined as:

J
(
N ; f(t), . . . , f(t− τ), N̂η

τ (t)
)
.=

− log
(
p
(
f(t), . . . , f(t− τ) ; N

))
+ γR

(
N , N̂η

τ (t)
)
. (4.6)

This allows us to estimate the network size N(t) while penalizing hypotheses N
that deviate from expected behaviors by means of the regularization term R :
Rτ+1 × Rη−τ → R+. Thus, given a hypothesis N , equation (4.6) evaluates both
its plausibility in the regularization term and its empirical evidence in the log-
likelihood function [Schölkopf and Smola, 2002, Chap. 4]. The parameter γ in
equation (4.6) is called the regularization parameter, and can be tuned to capture
the trade-off between the empirical evidence of N and its plausibility.

Notice that the hypothesis N corresponds to a time-window of length τ + 1,
while the regularization term R explicitly depends on the memory of the past
estimates N̂η

τ (t) up to time t − η (η ≥ τ), defined in equation (4.4). The past
estimates N̂η

τ (t) are not changed by the estimator, and are used as fixed extra
parameters. An illustrative description of how these time windows shift in time is
given in Figure 4.1.

Remark. If the regularization term is removed,R = 0, then Algorithm 4.1 is reduced
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to sequentially computing the estimates as

N̂(t) = arg min
N∈R

(
− log

(
p
(
f(t) ; N

)) )
= −

(
1
M

M∑
i=1

log (fi)
)−1

.

(4.7)

In this case, the various N̂(t)’s are estimated independently at each time t, and this
corresponds to the ML approach used for static anonymous networks [Varagnolo
et al., 2010]. The accuracy is clearly improved by increasing the number of random
samples M , as can be seen from the statistical properties of N̂ , since in this case
N̂ is inverse-gamma distributed, i.e., N̂ ∼ I-Γ (M,NM) (assuming M > 2):

E

[
N̂(t)
N(t) ; M

]
= M

M − 1 ,

E

(N(t)− N̂(t)
N(t)

)2

; M

 = M + 2
(M − 1)(M − 2) .

Parameter Design Constraints
For the dynamical network size estimation, the estimation accuracy is intuitively
non-decreasing in M , τ and η. However, the number of samples M is bounded
by transmission costs (in the max consensus step), τ is bounded by computational
constraints (in the size of the optimization problem, equation (4.5)), while η is
bounded by memory limitations and modeling accuracy of the regularization term.

To minimize the memory impact, the following proposition shows that the vec-
tors f(t), f(t− 1), . . . can be compressed into scalars without loss of information.

Proposition 4.1. Let s(τ) .= −
∑M
m=1 log (fm(τ)). Then s(τ) is a complete and

minimal sufficient statistic for N(τ).

Proof. Since the samples xi,m(τ) are i.i.d., it follows that p
(
f(t), . . . ,f(1) ; N

)
=∏t

τ=1 p
(
f(τ) ; N(τ)

)
. To prove the proposition it is then sufficient to show that

s(τ) is a complete and minimal sufficient statistic for N(τ).
Let us start by showing that s(τ) is a sufficient statistic. Consider the probability

density of f(τ) given N(τ),

p
(
f(τ) ; N(τ)

)
=

M∏
m=1

N(τ) · fm(τ)N(τ)−1 = N(τ)Me−(N(τ)−1)s(τ),

for all τ , thus, s(τ) is a sufficient statistic for N(τ) because of the Fisher-Neyman
Factorization Theorem [Zacks, 1971]. It is also clearly minimal since it is a scalar.
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To show the completeness of s(τ), we must show that if g(s(τ)) is a generic
measurable function such that E [g(s(τ)) | N ] = 0 independently of N , then it
must hold that g(·) = 0 almost everywhere (a.e.). Consider now that −log (fi(τ))
is an exponential random variable with rate N . Thus, s(τ) is the sum of i.i.d.
exponential random variables, i.e., s(τ) ∼ Γ

(
M, 1

N

)
. E [g(s(τ)) | N ] = 0 can then

be rewritten as

Γ (M)−1
NM

∫ +∞

0
g(s)sM−1exp (−sN) ds ≡ 0 .

This is equivalent to the fact that the Laplace transform of g(s)sM−1 has to be zero
a.e., and this happens if and only if g(s) is zero a.e.

This compression of variables actually results in a memory saving of τM scalars,
and only a single vector of M scalars is needed during the max consensus step for
computing the current f(t).

By introducing s(t) .= [s(t), . . . , s(t− τ)]T , the penalized likelihood in equa-
tion (4.6) can be rewritten as

J
(
N ; s(t), N̂η

τ (t)
)

= −log
(
p
(
s(t) ; N

))
+ γR

(
N , N̂η

τ (t)
)
.

Quadratic Regularization

Adding a regularization term R in empirical risk minimization problems, as we did
in equation (4.6), generally improves their conditioning properties [Schölkopf and
Smola, 2002, Chap. 4]. The usage of these terms can also be motivated by Bayesian
perspectives, where the penalty R reflects a-priori beliefs on a typical behavior.

Here we explicitly consider quadratic regularization terms, i.e.,

R
(
N , N̂η

τ

)
=
[
N − µ1

N̂η
τ − µ2

]T [
Q11 Q12
QT12 Q22

]
︸ ︷︷ ︸

Q−1

[
N − µ1

N̂η
τ − µ2

]
, (4.8)

where µ = E [N ] is a nominal behavior of N , and Q−1 is a symmetric positive
definite matrix.

Proposition 4.2. Given a quadratic regularization term as in equation (4.8), the
optimal estimator N̂(t) for equation (4.5) satisfies the quadratic equation system

diag
(
N̂(t)

)
·
(
s(t) + 2γQ11

(
N̂(t)− µ1

)
+ 2γQ12

(
N̂η
τ (t)− µ2

))
−M · 1 = 0. (4.9)
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Proof. Since s(t), . . . , s(t − τ) are independent, and their probability distribution
is

p
(
s(τ) ; N(τ)

)
= N(τ)Me−(N(τ)−1)s(τ),

it follows that

−log
(
p
(
s(t), . . . , s(t− τ) ; N

))
=

t∑
i=t−τ

(
(N(i)− 1)s(i)−M log

(
N(i)

) )
.

We can thus rewrite the estimator in equation (4.5) as

arg min
N

t∑
i=t−τ

(
(N(i)− 1)s(i)−M log

(
N(i)

) )
+γ
(
N − µ1

)T Q11
(
N − µ1

)
+2γ

(
N − µ1

)T Q12

(
N̂η
τ − µ2

)
+γ
(
N̂η
τ − µ2

)T
Q22

(
N̂η
τ − µ2

)
.

Setting the gradient with respect toN equal to zero yields, for each i = t−τ, . . . , t,

s(i)− M

N(i)
+ 2γ

(
Q(i)

11
(
N − µ1

)
+Q(i)

12

(
N̂η
τ − µ2

))
= 0,

where Q(i)
11 is the i-th row of Q11 (similarly for Q(i)

12 ). Multiplying by N(i) and
vectorizing the previous equation into a matrix equality leads to equation (4.9).

Quadratic regularization terms, as in equation (4.8), especially capture the de-
sign strategies where R penalizes just the changes between consecutive estimates
N(t), . . . , N(t − η). In fact, by defining Ωij

.= (ei − ej)(ei − ej)T , where {ei} is
the standard basis of Rn, x = [x1, . . . , xn]T , and letting Q−1 =

∑
i,j qijΩij with

qij > 0 then ‖x− µ1‖2Q =
∑
i,j qij(xi− xj)2. In this case, choices for η larger than

η = τ + 1 are meaningless, since a larger value would just add a constant to the
regularization term.

4.3 Properties under a Markovian P2P Model

We now derive the quadratic regularization term as an approximation of the prob-
abilistic model for a simple but practical network example. This example also
illustrates an important extension of the algorithm; that it can be used to count
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the number of nodes that satisfies any property, as long as the nodes can determine
this property themselves.

Consider an anonymous P2P file sharing network, where a certain file is only
available at a subset of the peers, and the goal is to estimate how many peers have
this file. At any time, a user who does not have the file can choose to download it,
and a user who does have the file can choose to delete it. All peers in the network
will participate in the estimation algorithm, but only the peers who have the file
perform the first step of generating new random values. Those peers who do not
have the file would instead initialize their state with zeros in order to not affect the
max consensus protocol. We further assume that:

• there exists a boundary on the total number of peers 1, say Nmax;

• downloading and deleting files happen independently among the peers;

• the stochastic process that peer i downloads or deletes the file is a Markov
process with (known) probabilities:

p
.= P [xi(t) = 1 | xi(t− 1) = 0]

q
.= P [xi(t) = 0 | xi(t− 1) = 1]

(4.10)

where xi(t) = 1 corresponds to peer i having the file at time t, while xi(t) = 0
corresponds to that peer i does not have the file at time t.

Given these assumptions, we derive an estimator for the current time step (τ = 0),
but with two steps of regularization memory (η = 1).

Derivation of the Regularization Term

Let us consider the Bayesian interpretation of the quadratic regularization term
as a log-Gaussian prior on [N(t), N(t − 1)]. Given the independence assumptions
stated above, we need to compute the nominal behavior µ .= E [N(t)] and variance

Q
.= E

[[
N(t)− µ

N(t− 1)− µ

] [
N(t)− µ

N(t− 1)− µ

]T]
.

Lemma 4.3. Let α .= p/q be the radio between the two transition probabilities in
the Markov chain. Then,

1As stated later in this section, this assumption is not strictly required and could be removed.
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µ
.= E [N(t)] = α

1 + α
Nmax, (4.11)

var (N(t)) = α

(1 + α)2Nmax, and (4.12)

cov (N(t), N(t− 1)) = (1− p− q) α

(1 + α)2Nmax. (4.13)

Proof. Notice that N(t) =
∑Nmax
a=1 xa(t), where the processes xa are i.i.d. Thus, let

us first compute the expected value, variance and covariance for a single agent.
The Markov process in equation (4.10) is described by the transition matrix P

given by

P =
[
1− p p
q 1− q

]
.

The equilibrium distribution, π = πP , for the Markov process is π = 1
1+α

[
1 α

]
,

thus the expected value is
E [xa(t)] = α

1 + α
.

Further, the variance is

var (xa(t)) = E
[
xa(t)2]− E [xa(t)]2

= α

1 + α
−
(

α

1 + α

)2

= α

(1 + α)2 .

Finally, for a single agent we have the covariance

cov (xa(t), xa(t− 1)) = E [xa(t)xa(t− 1)]− E [xa(t)]E [xa(t− 1)]

= α

1 + α
(1− q)−

(
α

1 + α

)2

= (1− p− q) α

(1 + α)2 .

For the entire system N(t) =
∑Nmax
a=1 xa(t) we can simply multiply the results

for a single agent by Nmax, because the different agents are i.i.d., and because of
the linearity of the expected value, variance and covariance.

Thus we have the quadratic regularization term given by

Q = Nmax
α

(1 + α)2

[
1 1− p− q

1− p− q 1

]
. (4.14)
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Derivation of the Estimator

As we supposed that τ = 0 and η = 1, our variables correspond to N̂(t) = N̂(t),
N̂η
τ (t) = N̂(t− 1),

µ1 = µ2 = µ = α

1 + α
Nmax,

Q11 = Q22 = 1
µq
(
2− q(1 + α)

) ,
Q12 = Q21 = q(1 + α)− 1

µq
(
2− q(1 + α)

) .
In this case, the condition on the optimal estimator in equation (4.9) simplifies into
the quadratic equation

aN̂2(t) +
(
bN̂(t− 1) + c

)
N̂(t)−M = 0, (4.15)

where
a

.= 2γQ11,
b

.= 2γQ12,
c

.= s(t)− 2γ (Q11 +Q12)µ.

The unique admissible solution for N̂(t) is given by

N̂(t) =

√√√√(bN̂(t− 1) + c

2a

)2

+ M

a
−

(
bN̂(t− 1) + c

2a

)
. (4.16)

Remarkably, our penalized ML approach leads to a recursive estimator that is
nonlinear but still easy to implement in devices with small computational capabili-
ties. The reason that the obtained smoother is nonlinear is because even though we
derived the regularization term using Gaussian assumptions on [N(t), N(t−1)], the
likelihood term in equation (4.6) is non-Gaussian. If the likelihood had been Gaus-
sian, then the estimator would have been a linear smoother, leading to a Kalman
filter.

Remark. Note that the derivation of Q using Gaussian assumptions implies that
N(t), N(t− 1) could take negative values. Despite the error of this approximation,
the effects vanish as Nmax increases since N(t) =

∑Nmax
a=1 xa(t) is approximatively

Gaussian due to the central limit theorem. A formally correct probabilistic inter-
pretation would require the regularization term R to be derived from the actual
prior distribution, but this would lead to a non-quadratic R, and not-closed-form
solutions of equation (4.5).
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The Role of the Regularization Parameter γ

In equation (4.6), the log-likelihood function −log
(
p
(
s(t) ; N

))
takes into account

the experimental evidence, while the regularization term R reflects the a-priori
information about the regularity of the solution. The regularization parameter
γ then captures the trade-off between these two components, and represents how
much one trusts the regularity assumptions. Notice that the γ maximizing the
predictive capabilities of the filter strongly depends on the number of samples M ,
i.e., on the accuracy of the experimental evidence.

IfNmax is not known a-priori, or if its value is uncertain, then γ can also be tuned
on-line, e.g., with cross-validation methods [Hastie et al., 2009, Section 7.10]. In
this case, tuning γ, assuming that the probabilities q and p are known, corresponds
to estimating Nmax given q, p and M .

4.4 Evaluation of the Size Estimation Algorithm

Let us evaluate the regularization-based dynamic network size estimator on the
Markovian network model introduced in Section 4.3. We generate networks with
Nmax = 1000 peers, and let the transition probabilities be p = q = 0.01. Each
active peer is generating M = 200 uniformly random samples at each time step,
and the regularization parameter is chosen as γ = 0.001.

We start by noticing the beneficial effects of our regularization approach from
equation (4.16) in Figure 4.2, where we compare the outcomes of our estimator
with a point-wise estimation (corresponding to γ = 0).

We examine the effect of the regularization parameter γ when the network size
changes rapidly in Figure 4.3, e.g., by a flash crowd joining the network, followed by
a catastrophic network failure. The estimator derived for the previous Figure 4.2
is used, but γ varies between 0.001, 0.010 and 0.100. Here, the true network size
is piecewise constant, at 200 peers until t = 20, then increasing instantaneously to
800 peers, before finally dropping down to 500 peers at t = 60. It is evident that
a larger regularization parameter γ yields a smoother tracking of the network size,
but will also be slower at detecting rapidly changing topologies.

Next we examine the effects of the parameters p, q, γ, Nmax and M on the
estimation performance by considering 4 different scenarios: p = q = 0.1 or 0.01;
Nmax = 1000 or 2000. For each of these scenarios we evaluate the root-mean-
square error (RMSE) by generating 1000 independent network models Nj(t), t =
1, . . . , 100, j = 1, . . . , 1000 from the Markovian model in Section 4.3. For each
trajectory Nj(t) we compute the estimator of equation (4.16) using different sample
sizes M in [10, 200] and different regularization parameters γ in [10−6, 10−2]. In
Figure 4.4 each of the 4 subplots then illustrates the dependency on M and γ of
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Figure 4.2: Comparison of the results for a regularization based estimator and a
point-wise estimator, for the same set of s(τ). The network consists of Nmax = 1000
nodes, with transition probabilities p = q = 0.01.

the RMSE, defined as:

RMSE(M,γ) .=

√√√√ 1
105

1000∑
j=1

100∑
t=1

(
Nj(t)− N̂j(t ; M,γ)

)2
, (4.17)

Assuming that p, q, M and Nmax are fixed, then there exists an optimal regu-
larization parameter γ∗ minimizing the RMSE. The behaviors of the four surfaces
supports the following intuitive rules-of-thumb for selecting the estimator’s param-
eters:

• if p, q and Nmax are fixed, then increasing the sample sizeM leads to a smaller
optimal regularization parameter γ;

• if M and Nmax are fixed, then increasing the rates p and q leads to a smaller
optimal regularization parameter γ;

• if p, q and M are fixed, then increasing the maximal network size Nmax leads
to a smaller optimal regularization parameter γ.
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Figure 4.3: Comparison of different regularization parameters γ for a network with
sudden step changes. The network starts with 200 peers, which increases to 800
peers at time t = 20, and then drops down to 500 peers at time t = 60. A larger
regularization parameter γ leads to a smoother tracking, but a slower response to
sudden changes in size.

We finally evaluate how finite representations using only b bits of the random
samples xi,m(t) in Algorithm 4.1 can affect the estimation performances, i.e.,

xi,m(t) ∈ {0, α, 2α, . . . , 1} with α = 1
2b − 1 . (4.18)

Considering again 1000 trajectories Nj(t), t = 1, . . . , 100, j = 1, . . . , 1000 from the
network model in Section 4.3, with Nmax = 1000, p = q = 0.01, M = 200 and
γ = 0.001, as in Figure 4.2. During the communication step the peers only use b-
bits precision, but later in the local computation of the estimate in equation (4.16),
they use full 64-bits precision. The average RMSE performance index shows, in
Figure 4.5, that for small networks it is sufficient to represent the random samples
xi,m(t) with 12 bits.
Remark. The experiments in Figures 4.2 to 4.4 have been computed with the dis-
cretization scheme in Figure 4.5 using 12 bits. With M = 200 random samples,
and ignoring the communication protocol overheads, this leads to data packets
consisting of 300 bytes.
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Figure 4.4: Dependency of the average root-mean-square error on the parameters
M and γ for various values of p, q and Nmax.
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Figure 4.5: Dependency of the RMSE (4.17) on the number of bits used to represent
the samples xi,m(t), assuming equations (4.16) and (4.17) to be computed using
64-bits precisions. The expected RMSE and the 90 % confidence interval are shown.
Nmax = 1000, p = q = 0.01, M = 200 and γ = 0.001.

4.5 Estimation of Probability Mass Functions

As we have seen so far, aggregating and estimating data over networks is essential
for many distributed systems. However, simple aggregations, such as computing
averages, maxima, or sums of a distributed data set, lose a lot of the informa-
tion contained in the original data. We will now continue and propose algorithms
that estimate the entire empirical PMF over anonymous networks. Specifically, we
consider protocols that aim to estimate the empirical distributions in the shortest
possible time.

Our proposed strategy is based on the max consensus estimator in Section 4.2.
From an algorithmic point of view our strategy departs from Borges et al. [2012],
Sacha et al. [2010] by substituting the average consensus schemes with max con-
sensus. This apparently minor modification actually makes the two estimators
completely different, and opens up for a variety of novel problems. In fact, while
the average consensus scheme requires exchanging very few scalars per iteration,
and where the agents compute the exact PMF asymptotically in time, the max
consensus scheme converges much faster than the average consensus scheme, but
not to the exact value. Again, the statistical performance depends on how many
scalars are exchanged per iteration. We specifically compare the temporal behavior
of these two strategies.
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The PMF Estimation Problem

Consider a strongly connected network G = (V, E) of N = |V| agents communi-
cating through the links E . In this section we assume the network to be static,
and return to the problem of estimating PMFs in time dependent networks in Sec-
tion 4.9. Let Ni denote the set of neighbors of agent i, and N (t)

i the set of its
t-steps neighbors, i.e., all agents that can be reached by paths of length at most t
steps from agent i. Recall that N (t)

i can be defined for t = 0 as N (0)
i = {i} and,

for t ≥ 1, through the recursion

N (t)
i

.=
⋃

j : (i,j)∈E

N (t−1)
j . (4.19)

Let every agent i ∈ V belong to a discrete state zi ∈ NB
.= {0, . . . , B − 1},

e.g., given by sensor measurements, where NB is the set of plausible states. We
are then interested in distributively estimating the relative frequencies of the local
states z1, . . . , zN , i.e., if nb

.=
∣∣{i : zi = b}

∣∣ is the number of agents in state b,
then we aim to estimate the PMF

pb
.= nb
N
, b ∈ NB , (4.20)

given that the network size N is unknown, while the plausible states NB are known.
We focus on distributed algorithms where each agent i ∈ V has a local variable

xi(t) that can be modified at time t + 1 by accessing the states xj(t)’s of the
neighboring nodes, and performing the aggregation operation

xi(t+ 1) = f (xi(t), xj1(t), xj2(t), . . . ) , j1, j2, . . . ∈ Ni

that preserves the dimension of xi(t). At every time t, each agent also computes a
local estimate of the PMF from the local variable xi(t),

p̂
(i)
b (t) = g (xi(t))

for an appropriate estimation function g(·).
The estimation strategy is thus defined by the initial variables xi(0), the update

function f and the estimation function g. In order to compare different estimation
strategies we consider the mean squared error (MSE) as a performance index, i.e.,

MSE
(
p̂1, . . . , p̂B

) .= E

 1
N ·B

∑
b∈NB ,i∈V

(
pb − p̂(i)

b

)2
 , (4.21)

where the expectation is taken over all initial conditions.
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4.6 PMF Estimators Based on Consensus Protocols

We consider two particular estimators, one based on the average consensus strategy,
and one based on the max consensus size estimation strategy from Section 4.2.

In the following, we abstract away the message transmission and consider a
distributed system where agents communicate by synchronous rounds. At each
round, and over each edge, only a constant size message is transmitted.
Remark. For notational simplicity we consider synchronous communication steps.
Nonetheless this could be relaxed for both estimators, since they can be adapted
to operate with asynchronous gossip communication.

Estimator Based on Average Consensus
In the average consensus based estimator, each node starts with a PMF estimate
given by only its own state, and then, by averaging all these estimates, the network’s
PMF is computed. Thus, the local variable is a B-dimensional real vector xi(t) ∈
RB containing the current estimate of the PMF. At initialization, each node sets
its local variable based on its own state as

x
(b)
i (0) =

{
1 if zi = b,

0 otherwise.

Let x(b) denote the vector of all agents’ states x(b)
i . It is known that if at each

time the local variables are updated with an average consensus update

x(b)(t+ 1) = Wx(b)(t), b ∈ NB , (4.22)

whereW is a doubly-stochastic weight matrix (for example chosen as the Metropolis
weights), then, assuming perfect computations 2, every x

(b)
i (t) converges to the

average of the initial values [Fagnani and Zampieri, 2008]. Thus

x
(b)
i (t) t→∞−−−→ 1

N

∑
j∈V

x
(b)
i (0) = nb

N
= pb.

The PMF estimate is simply the local state,

p̂
(i)
b (t) = x

(b)
i (t). (4.23)

To describe the convergence properties of equation (4.22), recall that the esti-
mation error can be bounded by an exponential function [Xiao and Boyd, 2003],
i.e., by ∣∣∣∣pb − p̂b(t)∣∣∣∣2 ≤ ce−αt
where c and α depend on the initial condition, the network topology and the choice
of the weights.

2For simplicity we do not consider the quantization effects [Carli et al., 2010].
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Remark. We do not consider more advanced protocols, such as accelerated average
consensus [Aysal et al., 2009], or finite-time average consensus [Yuan et al., 2011].
The reason is that we want to characterize the simplest averaging algorithm, with
the smallest demands from both communication and computational points of view.

Estimator Based on Max Consensus
The max consensus based estimator uses the the previous size estimation technique
to count the number of nodes in each state, from which the PMF is computed.
Thus, the local variable is instead a B×M -dimensional real matrix xi(t) ∈ RB×M ,
for which the elements are initially generated from a uniform random distribution
based on the local state as

x
(b,m)
i (0) ∼

{
U [0, 1] if zi = b,

0 otherwise,
(4.24)

where U [0, 1] is the uniform distribution between 0 and 1. Then at each time t, the
local variables are updated with the max consensus update

x
(b,m)
i (t) = max

j∈Ni

{
x

(b,m)
j (t− 1)

}
, b ∈ NB , m = 1, . . . , M. (4.25)

Notice that the definition of a t-steps neighborhood N (t)
i precisely captures the

agents that contributed to the generation of x(b,m)
i (t), i.e.,

x
(b,m)
i (t) = max

j∈N (t)
i

{
x

(b,m)
j (0)

}
.

Let N (t)
i

.=
∣∣∣N (t)

i

∣∣∣ be the number of t-step neighbors, then

p
(i)
b (t) .=

∣∣{i ∈ N (t)
i : zi = b}

∣∣
N

(t)
i

,

and n
(i)
b (t) .= p

(i)
b (t)N (t)

i . As was shown in equation (4.7), the ML estimator for
n

(i)
b (t) given the x(b,m)

i (t)’s is

n̂
(i)
b = −

(
1
M

M∑
m=1

log
(
x

(b,m)
i

))−1

. (4.26)

Note that the PMF is given by

p
(i)
b (t) =

p
(i)
b (t)∑

β∈NB p
(i)
β (t)

=
n

(i)
b (t)∑

β∈NB n
(i)
β (t)

.
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Now, because of the functional invariance property of ML estimators [Casella and
Berger, 2002, Thm. 7.2.10, p. 320], the ML estimate of p(i)

b (t) given the x(b,m)
i (t)’s

is

p̂
(i)
b (t) =

n̂
(i)
b (t)∑

β∈NB n̂
(i)
β (t)

. (4.27)

For t ≥ d (d being the network diameter) the max consensus strategy converges
globally, and n(i)

b (t) = nb, thus the PMF estimated p(i)
1 (t), . . . , p(i)

B (t) converges to
an estimate of the global PMF p1, . . . , pB .

Additionally, this estimator provides estimates of the distributions of the states
in every t-steps neighborhood. Considering a certain agent i, the set of p(i)

b (0), p(i)
b (1), . . .

corresponds to local views of the neighborhood’s empirical distribution that can be
used by i to rapidly infer if close neighbors tend to have similar states.

Notice that the statistical properties of the estimator in equation (4.27) are
essentially different from the previous network size estimation scheme, since the
vectors

[
p̂

(i)
1 (t), . . . , p̂(i)

B (t)
]
have correlated components. We also notice that ap-

propriate termination rules can be based on estimates of the diameter d of the
network, again obtained by exploiting max consensus approaches as done by Car-
doso et al. [2009] and Garin et al. [2012].

Finally, notice that under continuity assumptions, the choice of the stochastic
generation mechanism proposed in equation (4.24) is general, since as soon as we
neglect quantization effects, substituting U [0, 1] with another continuous probabil-
ity distribution leads to estimators with identical statistical performance [Varagnolo
et al., 2010].

Summary of the Differences Between the Two Estimators
The max consensus scheme in equation (4.27) converges in a finite d steps to an
estimate of the true PMF. Given a fixed sample size M , its MSE (4.21) will vary
up to time t = d and then remain constant. By increasing the sample size M , the
MSE curves are also expected to get closer to zero, due to the consistency property
of ML estimators. The average consensus scheme in equation (4.23) requires nodes
to exchange less information, and generally converges asymptotically for t→ +∞.
These comments are illustrated in Figure 4.6.

The aim is to find conditions for the sample size M and the network for which
it is possible to state which algorithm is preferred when t ≤ d, i.e., when time is a
concern. To this end, we first need to describe the statistical properties of the max
consensus estimator.
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Figure 4.6: MSE for average and max consensus PMF estimators. By increasing the
sample sizeM it is possible to make the max consensus estimator in equation (4.27)
perform better than the average consensus scheme in equation (4.23) for t ≤ d,
where d is the network diameter.

4.7 Statistical Characterization of the Max Consensus
PMF Estimator

Interrupting the max consensus protocol before it has reached consensus is equiv-
alent to estimating the PMF for a t-step neighborhood. Thus, for notational sim-
plicity we consider the stationary state where the max consensus has already been
reached, i.e., where x(b,m)

i (t) = x(b,m) .= maxi∈V
{
x

(b,m)
i (0)

}
. With this assump-

tion the joint PMF p (n̂b ; n1, . . . , nB , M) is equal to each node i’s local PMF
p
(
n̂

(i)
b (t) ; n(i)

1 (t), . . . , n(i)
B (t), M

)
. To derive this distribution, consider that x(b,m)

is statistically independent of the parameter nβ if b 6= β. Thus, from simple order-
statistic arguments [David and Nagaraja, 2004],

p
(
x(b,m) ; n1, . . . , nB

)
= p

(
x(b,m) ; nb

)
= nb

(
x(b,m)

)nb−1

for all m (omitting the dependency on the parameter M for notational simplicity).
Since the states x(b,m)’s are i.i.d., we have

p
(
x(b,1), . . . , x(b,M) ; nb

)
=

M∏
m=1

p
(
x(b,m) ; nb

)
= nMb

M∏
m=1

(
x(b,m))nb−1

. (4.28)

To derive the probability density p (n̂b ; nb), consider that y .= −log
((
x(b,m))) is

an exponential random variable with rate nb, i.e.,

p (y ; nb) =
{
nbe
−nby if y ≥ 0,

0 otherwise. (4.29)
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From equation (4.26), Mn̂−1
b is the sum of M i.i.d. exponential random variables

with rate nb, i.e.,Mn̂−1
b is a Γ variate with shapeM and scale n−1

b . ThusM−1n̂b ∼
I-Γ (M,nb), where I-Γ (·, ·) is the inverse Gamma distribution with shape M and
scale nb, i.e.,

p (n̂b ; nb,M) = I-Γ (M,Mnb)

= Γ (M)−1 1
n̂b

(
Mnb
n̂b

)M
exp

(
−Mnb

n̂b

)
.

For the estimate in equation (4.27), p̂b is the ratio of correlated sums of inverse-
Gamma variates, each with its own scale.

To the best of our knowledge, there exists no literature describing a distribution
of this kind. The closest results characterize ratios of the form x

x+y , where x and
y are independent inverse Gamma variates [Ali et al., 2007]. Moreover both the
Gamma and inverse Gamma distributions are not closed, i.e., linear combinations
of independent copies of these kinds of variates do not have the same original dis-
tribution up to location and scale parameters [Witkovský, 2001]. This means that
there is, in general, no possibility to reduce equation (4.27) to the case described by
Ali et al. [2007]. Our characterization of the statistical properties of p̂b rely instead
on Monte Carlo (MC) integration methods.

Case NB = {0, 1}

Consider the restricted case when the distribution only consists of two states, NB =
{0, 1}. Then p̂

(i)
b (t) becomes a special ratio that is described by Ali et al. [2007],

with probability density

p
p̂0

(x ; n0, n1, M) =

(
x(1− x)

)M−1

(
n0

n1

)M
B (M,M)

(
1 + n1 − n0

n0
x

)−2M
, (4.30)

where B (·, ·) is the Beta function, and x ∈ [0, 1]. Its cumulative distribution is
given by

F
p̂0

(x ; n0, n1, M) =

(
1 + n1

n0
1−x
x

)−M
M ·B (M,M)

× 2F1

(
M, 1−M ;M + 1;

(
1 + n1

n0

1− x
x

)−1
)
,
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Figure 4.7: The relative bias, E
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]
, dependency on M for different values

of n0 and n1. The estimator is unbiased if n0 = n1.

where

2F1 (a, b; c; x) .=
+∞∑
i=0

(a)i (b)i
(c)i · i!

xi (4.31)

is the Gauss hypergeometric function and

(x)i
.= x(x+ 1) · · · (x+ i− 1) (4.32)

is the Pochhammer symbol (with the convention that (x)0 = 1). From this, it is
possible to compute the moments of p̂0 using the relation

E
[
(p̂0)k

]
=


B (M + k,M)
B (M,M) F(k, M, n0, n1) if n0 > n1,(
n0

n1

)k
B (M + k,M)
B (M,M) F(k, M, n1, n0) otherwise.

(4.33)

where
F(k, M, a, b) .= 2F1

(
k, M ; 2M + k; a− b

a

)
Remark. Note that n0 and n1 appear in inverted positions in the two cases in
equation (4.33).

When n0 = n1, the estimators are unbiased for everyM , otherwise, as expected,
they are only asymptotically unbiased (for M → +∞).

In Figure 4.7 we evaluate the relative bias, and in Figure 4.8 the relative MSE
of the estimator, based on the design parameter M and on the distribution of the
states. Note that the MSE performance follows the typical 1/M behavior for this
kind of estimators.
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Remark. The performance indicators summarized in Figures 4.7 and 4.8 are valid
for general p̂(i)

b (t)’s when associated with the local n(i)
b (t)’s. The derivations of this

section also characterize the behavior of the estimators during the transient phase.

4.8 Transient Evaluation of PMF Estimators

Here we evaluate the performance of the average consensus based estimator of
equation (4.23) and the max consensus based estimator of equation (4.27) during
their transient phases. The primary goal is to determine when to use each algorithm,
and how to tune the sample size M for the max consensus estimator.

We consider four different network topologies, the line topology (Figure 4.9a),
the cyclic topology (Figure 4.9b), the cyclic grid topology (Figure 4.9c) and a geo-
metric random topology (Figure 4.9d), where each network consists of 100 agents.

We evaluate the algorithms through MC simulations, using the MSE from equa-
tion (4.21) as the performance index, where the mean is taken over all agents and
all MC simulations. On each network the communication protocol proceeds in
synchronous steps, where nodes cyclically repeat the algorithms described in equa-
tion (4.22) and equation (4.25).

In the first experiment, Figure 4.10, the initial state is selected randomly for
each MC simulation, where each agent is placed in either state zi = 0 or zi = 1
with equal probability. The figure shows the 95 % confidence intervals for both the
average consensus based estimator as well as for the max consensus based estimator
with M = 10, M = 100 and M = 1000.
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(a) Line network

(b) Cyclic network (c) Cyclic grid network
with (2 × 50) nodes

(d) Geometric random
network

Figure 4.9: Network topologies, with 100 nodes.

As expected, the average consensus based estimator converges asymptotically to
the true value, while the max consensus based estimator converges in finite time
(after d steps, where d is the diameter of the network). However, the max consensus
based estimate does not converge to the true value, but instead its MSE decreases
with the sample size M . In this scenario the choices of M = 100 and M = 1000
yield similar precisions that outperform the average consensus in most reasonable
time scales.

We observe that for the max consensus-based scheme a remarkable phenomenon
may appear, especially when the sample size M is small (e.g., M = 10 in Fig-
ure 4.10), the MSE actually sometimes increases with the number of iterations.
This phenomenon appears because the MSE index sums the agents’ local MSEs,
and small M ’s induce estimates with high statistical variance, i.e., increase the
chances that at least one agent will have some p̂(i)

b (t) noticeably overestimated. At
time t = 1 this overestimation has not yet influenced a majority of the agents and
the overall MSE, since it only affected the erroneous agent, but as time passes, the
max consensus protocol spreads this overestimation through the network of agents,
which is seen in the MSE.

In the second experiment, Figure 4.11, we switch the initial condition to a sin-
gle worst-case distribution of the states zi, where the leftmost half of the agents
in Figure 4.9 are in state 0 and the rightmost half are in state 1. Notice that this
corresponds exactly to a spatial correlation between the agents’ positions and their
measurements, which is actually a reasonable assumption for estimation applica-
tions in wireless sensor networks.

Since there is only one fixed initial state, the average consensus based estimator
is now deterministic and unique. The figure thus compares the confidence intervals
of the max consensus estimators (depending upon the realization of the initial ran-
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(c) Cyclic grid network (2 × 50 nodes)
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Figure 4.10: Comparison of max consensus based estimator against the average
consensus based estimator. Each network consists of 100 nodes, and the network
diameter d is marked in the figures. The shaded regions mark the 95 % confidence
interval for the max consensus estimator, while the two solid lines mark the upper
and lower bound of the 95 % confidence interval for the average consensus estimator.
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dom sample x(b,m)
i ) against the performance of the deterministic average consensus

estimate.
The first thing we notice is that the convergence speed is slower than for the

randomized initial distribution, because in that case each t-step neighborhood was
a reasonable sample of the complete distribution, while in this case a t-step neigh-
borhood (t � d) is not a good representation of the complete distribution. Still,
this example shows even more clearly that a max consensus based estimator can
be much faster and accurate than an average consensus based counterpart, even
for very small M ’s (even though a larger M improves the accuracy). The motiva-
tion is that the max consensus protocol has a much faster mixing time, and if the
distribution of states in the network topology is not homogeneous then the max
consensus is much more efficient at propagating information about certain states
through the network.
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Figure 4.11: Comparison of max consensus based estimator against the average
consensus based estimator for a single worst-case initial condition. Each network
consists of 100 nodes, and the initial state is determined by the agents spatial
configuration. The shaded regions mark the 95 % confidence interval for the max
consensus estimator, while the solid line marks the deterministic estimation for the
average consensus estimator.
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4.9 Estimating Time Dependent PMFs

The PMF estimator we proposed in Section 4.6 is using the max consensus based
network size estimation scheme that we developed in Section 4.2 to handle time
dependent networks. It is therefore straightforward to handle time dependent PMF
estimation by substituting the regularization based estimator in equation (4.6) into
the PMF estimator in equation (4.26).

This can be demonstrated by considering a Markov chain driven state, similar
to Section 4.3. We create a network with N = 1000 nodes, each node initially
belonging to one out of four states zi ∈ N4 = {0, 1, 2, 3}. The nodes change their
state according to a Markov process, i.e., there exists a transition matrix P ∈ R4×4

with entries pij giving the probabilities

pij
.= P [zi(t+ 1) = j | zi(t) = i ] .

Thus, after updating their state, they generate B ×M random values (all except
M equal to zero), according to equation (4.24). After the max consensus step,
each node can estimate n̂b, b ∈ N4, where we replace equation (4.26) with the
regularization based estimator of equation (4.6), and finally compute the dynamic
PMF estimate through equation (4.27).

In Figure 4.12 we evaluate the regularization based dynamic PMF estimator
(γ = 0.005) against the point-wise PMF estimator (γ = 0), both using the same
realization of random samples, and a small M = 10. In the regularization based
estimator we only use one step memory, τ = 0, η = 1.

Since the number of samples are relatively small (only M = 10, compared to
Figures 4.10 and 4.11), the variance in the estimates are quite significant, but the
regularization based estimator does successfully reduce the variance and yields an
improved estimate of the true distribution.
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Figure 4.12: Comparing the regularization based (γ = 0.005) and the point-wise
(γ = 0) PMF estimator against the true dynamic distribution for four states, repre-
sented with different colors. In the first step (top figure), both estimators yield the
same result since the regularization based estimator has not yet initialized its mem-
ory, but in the following steps it reduces the variance compared to the point-wise
estimator.
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4.10 Conclusions

In this chapter, the max consensus protocol was used to derive two specific esti-
mators, one which estimates the network size in time dependent networks, and one
which estimates PMFs. Finally, we showed how these estimators could be combined
to estimate time dependent PMFs.

One of the main advantages with the max consensus protocol compared to
other strategies is that it has the fastest possible convergence time, and it is also
very easy to implement, even in networks with unreliable communication. It does
neither require any global information nor global identities among the nodes, so it
is a suitable choice for anonymous networks. The main disadvantage of the max
consensus strategy is that it does not converge to the exact value, but is instead
based on probabilistic estimation schemes. However, its accuracy can be improved
through increasing the packet sizes.

The network size estimation of anonymous dynamical networks extended the
static network estimation strategy through a regularization term, which penalizes
hypotheses conflicting with a-priori assumptions on the network’s behavior. We
explicitly considered and characterized the class of quadratic regularization terms,
which resulted in a closed-form estimator that corresponds to a nonlinear smoother.

Two distributed estimators of empirical PMFs were considered: one based on
max consensus and one based on average consensus. The main difference is that the
average consensus based estimator converges asymptotically in time, while the max
consensus based estimator converges in finite time, but not to the exact value. The
accuracy of the max consensus based estimator can be improved through increas-
ing the packet size, which means that it will typically use larger packets than the
average consensus based estimator. However, our experiments showed that if esti-
mation speed is important, and in particular if there is a spatial correlation among
the nodes’ initial values, then the max consensus based estimator outperforms the
average consensus based estimator.

The algorithms were derived using some simplifying assumptions, in particu-
lar, reliable communications and infinite numerical precision. We showed however,
with numerical experiments, that quantization effects seem to play a minor role,
especially, representing the numbers with just a few bits is enough even for net-
works of hundreds of agents. Furthermore, we remark that if the max consensus
protocol does not reach consensus, it would imply that the network is, at least
temporarily, not strongly connected. The estimation process would still succeed in
the estimation of the reachable subset of nodes, which is an interesting extension.





Chapter 5

Topology Convergence in Peer-to-Peer
Networks

“We’ve heard that a million monkeys
at a million keyboards could produce
the complete works of Shakespeare;
now, thanks to the Internet, we know
that is not true.”

— Robert Wilensky

In this chapter, we investigate a peer-to-peer (P2P) network for efficient live-
streaming television, inspired by gradienTv and Sepidar [Payberah et al., 2010a,b].
The goal of this application is to distribute a data stream from a small set of seed
nodes to every other node in the network, and the problem is to design distributed
algorithms for creating an efficient overlay network topology. In particular, this
chapter deals with the convergence problem, in which the network graph converges
to a complete gradient overlay network. The gradient topologies are fundamental
in self-organizing systems, and generalize the rooted trees topologies. The contri-
bution of this chapter is the convergence analysis of the given algorithm, including
convergence rate estimates, and the derivation of a threshold on the churn rate for
a gradient topology to emerge.

The outline of this chapter is as follows: In Section 5.1 we introduce the network
model and topology convergence problem, and in Section 5.2 we give necessary and
sufficient conditions for convergence. In Section 5.3, we study the convergence
rate for the system, and in Section 5.4 we study convergence properties when the
network is subject to churn. In Section 5.5 we simulate the construction of a
gradient topology using the model in Section 5.1, and in Section 5.6 we evaluate
the live-streaming performance in a real P2P application using the gradient overlay
topology. Finally, Section 5.7 concludes this chapter.
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(a) The initial random overlay network
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(b) The network after converging to a complete gradient topology

Figure 5.1: The gradient network is described as a directed graph. The nodes are
labeled with their respective utility value, and the edges from the similar neighbor
sets are shown. In the gradient topology, paths of increasing utilities emerge.

5.1 The Gradient Topology Problem

An overlay network is a virtual network built on top of another network. Here, it
denotes the P2P network topology built for television streaming over the Internet.
The gradient topology belongs to the class of gossip-generated overlay networks
that are built from a random overlay network through symmetry breaking using a
preference function. Thus, we are given a node set V = {1, . . . , N}, and need to
select directed edges E to construct our network G(V, E).

In the live streaming application, the idea is to utilize the nodes in the P2P
network to aid in the content distribution, but since the peers are heterogeneous,
not all peers will be equally useful. Thus, we classify each node i ∈ V with its utility
value ui ∈ R, which captures, for example, the node’s upload capacity, latency and
reliability for the P2P network.

A gradient topology is an overlay network satisfying that, for any two nodes v1
and v2 with utility values uv1 and uv2 , if uv1 ≥ uv2 then dist (v1, v?) ≤ dist (v2, v?),
where v? is a node with highest utility in the system and dist (·, ·) is the length of
the shortest path between the nodes in the network [Sacha, 2009]. In other words,
nodes with a higher utility value should be closer to the seed nodes compared to
nodes with a lower utility value, so that gradient paths of increasing utilities emerge
in the system, see Figure 5.1.
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In constructing the gradient overlay, the nodes i ∈ V build two sets of neighbors:
a similar view N s

i and a random view N r
i . For the similar view, nodes prefer

neighbors with close but slightly higher utility values, while the random view is
used to sample new nodes with uniform probability for possible inclusion in the
similar view. Thus, node i’s neighbors are Ni = N s

i ∪N r
i .

Each node i defines a preference function >i over its neighbors, where node i is
said to prefer node a over node b (denoted by a >i b) if

ua ≥ ui > ub or if
|ua − ui| < |ub − ui| when ua, ub > ui or ua, ub < ui.

Further, let minN s
i denote node i’s least preferred neighbor in its similar neighbor

set.
For any given initial overlay network, the topology is evolving through each

node i at each time t updating its own neighbor set Ni(t) independently of the
other nodes according to Algorithm 5.1. The algorithm can be summarized as
sampling random nodes from the network, and if the random node is preferred over
the least preferred node in the similar set, then those two neighbors are exchanged.

Algorithm 5.1 Topology Dynamics
1: for each node i ∈ V do
2: for every t = 1, 2, 3, . . . do
3: Let N r

i (t) = {j}, where j ∈ V is a randomly selected node with uniform
probability pt, 0 < Npt < 1. Otherwise N r

i (t) = ∅.
4: if N r

i (t) 6= ∅ then
5: if j /∈ N s

i (t− 1) and j >i minN s
i (t− 1) then

6: N s
i (t) = N s

i (t− 1) ∪ {j} \ {minN s
i (t− 1) }

7: else
8: N s

i (t) = N s
i (t− 1)

9: end if
10: end if
11: end for
12: end for

It is assumed that the node out-degree di(t)
.= |N s

i (t)| = di stays constant
throughout the algorithm. Note that the sampling probabilities pt are time depen-
dent and govern whether the random neighbor set N r

i (t) is empty (with probability
1 − Npt). The reason for this is that a node can adapt its sampling frequency to
minimize the network overhead for building a gradient topology, and typically sam-
ples more frequently just after joining the network to improve its neighbor sets,
and then lowering its sampling rate when the neighbors have stabilized. Notice
also that Algorithm 5.1 can be run asynchronously on the nodes.
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Remark. Note that no constraint is enforced on the in-degree of the nodes. However,
in Section 5.6, the gradient topology is used for sampling nodes for a second auction
algorithm, which limits the in-degree for the information dissemination network.

The preference function >i induced a partial order on the nodes V. In order to
study the system topology convergence to a gradient structure with the proposed
algorithm, we let Λi denote the set of optimal similar neighbor sets for node i, i.e.,
∀N̂ ∈ Λi there are no nodes j ∈ N̂ and k ∈ V\N̂ such that k >i j. Notice that
there could be multiple optimal neighbor sets.

For every node i ∈ V, we defineXi(t) as a counter for the number of non-optimal
neighbors in i’s similar neighbor set,

Xi(t)
.= di − max

N̂∈Λi

∣∣∣N s
i (t) ∩ N̂

∣∣∣ .
Notice that Xi(t) is monotonically decreasing under Algorithm 5.1 since an

optimal neighbor will never be removed from the similar neighbor set N s
i (t).

Let G(t) be the graphs generated by Algorithm 5.1. Then we give the definition
of gradient topology convergence as follows (see Figure 5.1).

Definition 5.1. G(t) is said to converge to a gradient topology if

lim
t→∞

Xi(t) = 0

for all nodes i ∈ V.

5.2 Convergence Analysis

Since each node updates its neighbor set independently, the analysis can be carried
out separately for each Xi(t). We therefore simplify the notations in the following
discussion, and let X(t) represents Xi(t) for an arbitrary node i ∈ V.

Denote the maximum degree D = maxi{di}, then X(0) = D would be the worst
possible initial condition. Furthermore, X(t) decreases precisely when the randomly
sampled node is a new optimal neighbor, and the probability of this event occurring
is minimal when the optimal solution is unique, and then the probability is equal
to

P [X(t+ 1) = k − 1 | X(t) = k ] = kpt, k = 1, . . . , D, (5.1)
where k is the number of non-optimal neighbors.

In the following theorem we propose a necessary and sufficient condition for the
probabilities pt for almost sure convergence of Algorithm 5.1.

Theorem 5.1. The graph generated by Algorithm 5.1 converges to a gradient topol-
ogy (X(t) = 0) with probability 1 if and only if

lim
T→∞

T∏
t=0

(1− pt) = 0.
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X(t) = D X(t)=D−1 · · · X(t) = 1 X(t) = 0

Dpt (D − 1)pt 2pt pt

1−Dpt 1− (D − 1)pt 1− pt 1

Figure 5.2: Markov chain for the state evolution of a single node.

Before proving Theorem 5.1, let us take a closer look at Algorithm 5.1, and
notice especially that the stochastic process in equation (5.1) for X(t) has the
Markov property, hence we can describe it as a simple Markov chain, see Figure 5.2.

Let π(t) denote the row vector of probabilities for the states X(t), i.e.,

πi(t) = P [X(t) = D − i] .

Remark. In this chapter, we are using a zero-based indexing for π, i.e., π =
[π0, . . . , πD] for notational simplicity.

The evolution of π(t) can be written in matrix form as

π(t+ 1) = π(t)Pt, (5.2)

where Pt is the transition matrix at time t,

Pt =



1−Dpt Dpt 0 · · · 0 0
0 1− (D − 1)pt (D − 1)pt · · · 0 0
0 0 1− (D − 2)pt · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1− pt pt
0 0 0 · · · 0 1


.

Since Pt is a triangular matrix, the eigenvalues are given by the diagonal ele-
ments, i.e., the eigenvalues of Pt are λi(t) = 1− (D− i)pt, i = 0, . . . , D. Notice that
there is a single unit eigenvalue λD(t) = 1, and all other eigenvalues are strictly less
than one. Furthermore, all eigenvalues are distinct, hence the eigenvectors form a
basis for RD+1. In the following lemma, we characterize the eigenvectors.

Lemma 5.2. The eigenvector ξi(t) corresponding to eigenvalue λi(t) is independent
of pt 6= 0, for i = 0, . . . , D.

Proof. The (left-)eigenvectors of Pt satisfy λi(t)ξi(t) = ξi(t)Pt. Let ξij(t) denote the
j:th component of ξi(t), then, by inspection of the matrix Pt, we have the system
of equations
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(1− (D − i)pt) ξi0(t) = (1−Dpt) ξi0(t)
(1− (D − i)pt) ξij(t) = (1− (D − j)pt) ξij(t)

+ (D − j + 1)ptξij−1(t) j = 1, . . . , D,

which is equivalent to

iξi0(t) = 0
(i− j)ξij(t) = (D − j + 1)ξij−1(t) j = 1, . . . , D,

or further

ξij(t) = 0 if j < i

ξij(t)
i− j

D − j + 1 = ξij−1(t) if j > i (5.3)

where ξii(t) can be chosen as an arbitrary non-zero value, as a scaling factor for the
eigenvector. From equation (5.3) it is evident that the eigenvectors are independent
of pt.

An important consequence of Lemma 5.2 is that all Pt, independent of t, have
the same eigenvectors, and are thus simultaneously diagonalizable. Hence we can
simplify the notation by dropping the parameter t from the eigenvectors ξi.

Let us now return to the initial probability distribution π(0), and decompose it
into the eigenvector basis as

π(0) =
D∑
i=0

αiξ
i, (5.4)

for some real numbers αi.

Lemma 5.3. In the decomposition of the initial probability distribution π(0) into
the eigenvector basis, we have αDξD = eD, where ei is the standard basis ei =
[0, . . . , 0, 1︸︷︷︸

i:th

, 0, . . . , 0]T .

Proof. Let us consider ξi1 for i = 0, . . . , D − 1. By equation (5.3),

ξi1 =
D∑
j=0

ξij =
D∑
j=i

ξij =
D−i∑
j=0

ξii+j .
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We will show by induction that
k∑
j=0

ξii+j = D − i− k
D − i

ξii+k. (5.5)

The case when k = 0 is clearly true. Thus, assume that equation (5.5) holds for k
and consider the case k + 1,

k+1∑
j=0

ξii+j =
k∑
j=0

ξii+j + ξii+k+1

= D − i− k
D − i

ξii+k + ξii+k+1

= D − i− k
D − i

−(k + 1)
D − i− k

ξii+k+1 + ξii+k+1

= D − i− (k + 1)
D − i

ξii+k+1.

Using equation (5.5) implies that ξi1 = 0, i = 0, . . . , D − 1, and thus, π(0)1 =
αDξ

D1. Now, since π(0) is a probability distribution, we know that π(0)1 = 1,
but equation (5.3) tells us that only the last component of ξD is non-zero, hence
the lemma follows.

We are now ready to prove the main theorem.

Proof of Theorem 5.1. The almost sure convergence to a gradient topology, by Def-
inition 5.1, can be expressed as

lim
T→∞

P [X(T ) = 0] = 1,

or, equivalently for the probability vector,
lim
T→∞

π(T ) = eD.

Equations (5.2) and (5.4) give us

π(T ) = π(0)
T−1∏
t=0

Pt

=
D∑
i=0

αiξ
i
T−1∏
t=0

Pt

=
D∑
i=0

αiξ
i
T−1∏
t=0

λi(t)

=
D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t) + eD. (5.6)



110 Topology Convergence in Peer-to-Peer Networks

Consider the limit

lim
T→∞

|π(T )− eD| = lim
T→∞

∣∣∣∣∣
D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t)

∣∣∣∣∣
≤
D−1∑
i=0

∣∣αiξi∣∣ · lim
T→∞

T−1∏
t=0

(1− pt).

Clearly, the right-hand side vanishes if limT→∞
∏T
t=0(1− pt) = 0. This proves the

sufficiency part of the theorem.
Furthermore, for the necessity part, note that the set of initial probability dis-

tributions spawns RD+1. Thus, an initial probability distribution π(0) exists such
that αD−1 6= 0. Assume that the limit limT→∞

∏T
t=0(1 − pt) = c > 0 is strictly

positive (the limit exists since it is a monotone bounded sequence), then

lim
T→∞

|π(T )− eD| =

∣∣∣∣∣
D−2∑
i=0

αiξ
i

(
lim
T→∞

T−1∏
t=0

λi(t)
)

+ cαD−1ξ
D−1

∣∣∣∣∣ > 0, (5.7)

since the eigenvectors are linearly independent. Thus, we have proven the theorem.

Corollary 5.1. The graph generated by Algorithm 5.1 converges to a gradient topol-
ogy with probability 1 if and only if

lim
T→∞

T∑
t=0

pt =∞.

Proof. This follows directly from Theorem 5.1, and the relation

lim
T→∞

T∏
t=0

(1− pt) = 0 ⇔ lim
T→∞

T∑
t=0

pt =∞

for 0 < pt < 1.

Remark. Corollary 5.1 can be interpreted such that the network converges to a gra-
dient topology if and only if each node continues searching for its optimal neighbors
for an expected infinite number of times.

5.3 Convergence Rate Estimation

We will now investigate the convergence rate of X(t), with a constant sampling
probability pt = p. Define the stochastic variable Ti as the time when X(t) reaches
0, when starting at X(0) = i,

Ti = inf
t

[X(t) = 0 | X(0) = i].
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Further, let Mi = E [Ti] denote the expected convergence time when starting at
X(0) = i. Clearly M0 = 0, and for i = 1, . . . , D we have the recursion

Mi = 1 + P [X(t+ 1) = i− 1 | X(t) = i ] ·Mi−1

+ P [X(t+ 1) = i | X(t) = i ] ·Mi

= 1 + ipMi−1 + (1− ip)Mi,

which can be further simplified to

Mi = 1 + ipMi−1

ip
= 1
ip

+Mi−1.

By continuing with induction, we can sum up the expected convergence time as

Mi = 1
p

i∑
d=1

1
d
.

The worst initial case is when X(0) = D, where the expected convergence time is

MD = 1
p

D∑
d=1

1
d
≤ 1 + ln(D)

p
. (5.8)

Remark. MD is the expected time for an individual node’s neighbor set to converge,
not the expected time for all nodes to converge to a gradient topology. As such,
it provides a lower bound on the convergence time. In the next section, we will
consider the global network convergence problem.

Global Convergence Rate
In this section, we will analyze the asymptotic convergence rate for the entire net-
work to a gradient topology, in contrast to the analysis of a single node in the
previous section. We continue assuming a constant sampling probability (pt =
p, Pt = P ), thus the probability distribution for a single node in equation (5.6) is
simplified to

π(t) = π(0)P t =
D−1∑
i=0

αiξ
iλti + eD,

where λi = 1 − (D − i)p, i = 0, . . . , D. The probability distribution for a single
node approaches the gradient topology state eD asymptotically as 1 − O

(
λtD−1

)
,

where λD−1 = 1− p is the second largest eigenvalue of P .
Here, we will study how the entire network convergence is affected by the net-

work size N , and to this end we consider a continuous-time approximation with
a system for which the probability of being in the target state is 1 − λt at time t
(where λ = 1− p).
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Theorem 5.4. The expected global convergence time to a gradient topology for N
nodes is

− 1
log (λ)

N∑
n=1

1
n
,

where the nodes are modeled by i.i.d. processes, whose individual probability distri-
bution is given by 1− λt.

Proof. The probability for the entire system of N i.i.d. processes to be in the target
state at time t is φ .= (1−λt)N . Notice that the probability for the system to reach
the target state at time t is given by the derivative dφ

dt = −N(1− λt)N−1λtlog (λ).
The expected convergence time, i.e., the time to reach the gradient topology, is
computed by ∫ ∞

0
t · dφdt dt = −N log (λ)

∫ ∞
0

t(1− λt)N−1λt dt.

Using a variable substitution x = λt, this integral can be rewritten as∫ ∞
0

t(1− λt)N−1λt dt = − 1
log (λ)2

∫ 1

0
log (x) (1− x)N−1 dx.

Recall that this integral is equal to [Devoto and Duke, 1984]∫ 1

0
log (x) (1− x)N−1 dx = − 1

N

N∑
n=1

1
n
,

hence, the expected convergence time is∫ ∞
0

t · dφdt dt = − 1
log (λ)

N∑
n=1

1
n
. (5.9)

Remark. Notice that − 1
log(λ) = − 1

log(1−p) ≈
1
p for small p, thus this is in agreement

with the upper bound in equation (5.8).
Remark. The convergence time scales asymptotically as O (log (N)) for large net-
work sizes N , since

∑N
n=1

1
n < 1 + log (N).

5.4 Convergence Rate with Network Churn

In this section we consider the topology convergence to a gradient topology when
the system is subject to churn, i.e., the nodes are changing over time. We model
the churn as a probability ε > 0 that a node will be replaced with a new node, that
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X(t) = D X(t)=D−1 · · · X(t) = 1 X(t) = 0

Dpt (D − 1)pt 2pt pt

1−Dpt 1− (D − 1)pt − ε 1− pt − ε 1− ε

ε

ε

ε

Figure 5.3: Markov chain for the state evolution of a single node with churn.

is starting from state X = D. The corresponding Markov chain for a single node
is illustrated in Figure 5.3.
The corresponding transition matrix P for the Markov chain π(t+ 1) = π(t)P is

P =



1−Dp Dp 0 · · · 0 0
ε 1− (D − 1)p− ε (D − 1)p · · · 0 0
ε 0 1− (D − 2)p− ε · · · 0 0
...

...
...

. . .
...

...
ε 0 0 · · · 1− p− ε p
ε 0 0 · · · 0 1− ε


.

Assuming that 0 < ε, and also 0 < Dp < 1 and (D − 1)p + ε < 1, we have the
following theorem characterizing the stationary distribution.

Theorem 5.5. The Markov chain in Figure 5.3, describing the stochastic node
process with churn, has a unique stationary distribution π, which satisfies

π0 = ε

Dp+ ε

and
πi = (D − i+ 1)p

(D − i)p+ ε
πi−1 i = 1, . . . , D.

Proof. Notice that the Markov chain is finite (D+1 states), irreducible (every state
can be reached from any other state) and aperiodic (because of the self-loops), thus
it has a unique stationary distribution corresponding to the eigenvalue 1.

Consider now the stationary distribution π satisfying π = πP , and especially
for column i = 1, . . . , D we have
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πi = (1− (D − i)p− ε)πi + (D − i+ 1)pπi−1,

that is,

πi = (D − i+ 1)p
(D − i)p+ ε

πi−1.

Next, let us show the following property for the partial sum πd+ · · ·πD through
induction:

D∑
i=d

πi = (D − d+ 1)p
ε
πd−1 d = 1, . . . D.

The case d = D follows directly from the previous recursion. Let us continue with
the induction step:

D∑
i=d

πi = πd +
D∑

i=d+1
πi = πd + (D − d)p

ε
πd = (D − d)p+ ε

ε
πd

= (D − d)p+ ε

ε

(D − d+ 1)p
(D − d)p+ ε

πd−1 = (D − d+ 1)p
ε
πd−1.

First, we use this to validate that the eigenvector satisfies π = πP for the first
column,

π0 = (1−Dp)π0 + ε

D∑
d=1

= (1−Dp)π0 + εD
p

ε
π0 = π0.

Second, the stationary probability distribution should be normalized such that

D∑
i=0

πi = 1,

thus

D∑
i=0

πi = π0

D∑
i=1

πi = π0 +D
p

ε
π0 = Dp+ ε

ε
π0

or

π0 = ε

Dp+ ε
,

which proves the theorem.
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Remark. Theorem 5.5 shows that if p = ε, then the stationary distribution is
uniform with πi = 1

D+1 , i = 0, . . . , D, thus a node is equally likely to be in any
state. When p > ε, the nodes are more likely to be in the later states, i.e., closer to
a gradient topology, and when p < ε the nodes are more likely to be in the earlier
states, i.e., having a random neighbor set. Thus, we conclude that for a gradient
topology to appear, it is necessary for the sampling probability p to be greater than
the churn rate ε.

Next, the convergence speed will be considered through analyzing the second
largest eigenvalue of the transition matrix P .

Lemma 5.6. The asymptotic convergence time for the entire network with churn
is

log (N) 1
p+ ε

.

Proof. It is straightforward to verify that the remaining eigenvalues of P (less than
one) are

λi = 1− (D − i)p− ε,

for i = 0, . . . , D − 1, with the corresponding eigenvectors

ξi =

0, . . . , 0︸ ︷︷ ︸
i

, (−1)0
(
D − i

0

)
, (−1)1

(
D − i

1

)
, . . . , (−1)D−i

(
D − i
D − i

) .
Hence, the second largest eigenvalue of P is λD−1 = 1− p− ε.

Using Theorem 5.4, with λ = 1 − p − ε, and the approximations
∑N
n=1

1
n ≈

log (N) and − 1
log(λ) = − 1

log(1−p−ε) ≈
1
p+ε proves this lemma.

Remark. A larger ε will yield a faster convergence rate, but to a steady state solution
further from the complete gradient topology.

5.5 Convergence Simulation

Here we examine the convergence rate of Algorithm 5.1 using numerical simulations,
and compare the outcome with our theoretical results. We start with a network
consisting of N = 100 nodes, where the degree of each node is D = di = 10. The
similar view N s

i (0) is initialized with D nodes uniformly chosen among all nodes
in the network, and the sampling probability pt is held at a constant value of 1

2N .
Hence, for each node and at each iteration of the algorithm, the random view is
empty with 50 % probability. The state trajectories for all nodes are shown in
Figure 5.4, and the convergence times ranges from 193 to 1116 iterations, with an
average convergence time of 554 iterations. The convergence time can be compared
to the expected convergence time given by equation (5.8) for a single node, i.e.,
585 iterations, and the global convergence rate given by equation (5.9), i.e., 1035
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iterations. A corresponding heat map of the states are shown in Figure 5.5. The
system converges to a gradient topology, as guaranteed by Theorem 5.1.

In the second simulation we change the sampling probability into a decaying
probability pt = 1

N
1

(1+t/100)2 . Notice that
∑∞
t=0Npt < 101, hence, by Corollary 5.1,

there is a positive probability that the algorithm does not converge to a gradient
topology. This is also confirmed by the simulation trajectories in Figure 5.6 and
the corresponding state heat map in Figure 5.7.

In the third simulation, we return to the constant sampling probability 1
2N ,

but consider a network with N = 500 nodes and a node degree of D = 50. The
expected state heat map is shown in Figure 5.8, and the convergence time can be
compared to the expected convergence time of 4499 iterations for a single node and
6789 iterations for the entire network.

Finally, we simulate the influence of churn on the network. Consider a network
consisting of N = 100 nodes, with node degree D = 10 and a constant sampling
probability pt = 1

2N . In Figure 5.9, the churn rate is ε = 1
2pt, and we see that nodes

tend to favor states closer to a gradient topology as predicted by Theorem 5.5. In
fact, 27% of the nodes are in their optimal state X(t) = 0, with another 14% are in
state X(t) = 1. In Figure 5.10, the churn rate is increased to ε = pt, and all states
are equally likely in the steady state solution, while in Figure 5.11 the churn rate is
further increased to ε = 2pt and nodes tend to have a more random neighborhood,
with 17% of the nodes having a completely random neighborhood X(t) = D.

0 200 400 600 800 1000 1200
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10

Time t

X
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Figure 5.4: State trajectories for a network with 100 nodes and degree D = 10.
Each line represents a single node, and a constant sampling probability Npt = 1/2
is used. The network converges to a gradient topology.
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Figure 5.5: State heat map for a network with 100 nodes, degree D = 10, and
constant sampling probabilityNpt = 1/2. Brighter colors indicate more likely states.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

Time t

X
(t

)

Figure 5.6: State trajectories for a network with 100 nodes and degreeD = 10. Each
line represents a single node, and a decaying sampling probability Npt = 1

(1+t/100)2

is used. The network does not converge to a gradient topology.
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Figure 5.7: State heat map for a network with 100 nodes, degree D = 10, and
a decaying sampling probability Npt = 1

(1+t/100)2 . Brighter colors indicate more
likely states. The network does not converge to a gradient topology.
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Figure 5.8: State heat map for a network with 500 nodes, degree D = 50, and
constant sampling probabilityNpt = 1/2. Brighter colors indicate more likely states.
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Figure 5.9: State heat map for a network with churn, consisting of 100 nodes, degree
D = 10, and a constant sampling probability Npt = 1/2. Brighter colors indicate
more likely states. The churn probability is ε = 1

2pt, thus the network converges to
a steady state close to a gradient topology.

100 200 300 400 500 600 700 800 900 1000 1100

1
2
3
4
5
6
7
8
9

10

Time t

X
(t

)

Figure 5.10: State heat map for a network with churn, consisting of 100 nodes,
degree D = 10, and a constant sampling probability Npt = 1/2. Brighter colors
indicate more likely states. The churn probability is ε = pt, thus the network
converges to a steady state where every state is equally likely.
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Figure 5.11: State heat map for a network with churn, consisting of 100 nodes,
degree D = 10, and a constant sampling probability Npt = 1/2. Brighter colors
indicate more likely states. The churn probability is ε = 2pt, thus the network
converges to a steady state where the initial random neighborhood is more likely,
and the gradient topology is missing.
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5.6 Evaluating Live-Streaming using the Gradient
Topology

Now we turn to an evaluation of the effect of sampling nodes from the gradient
overlay network compared to a random overlay network when building a P2P live-
streaming application, called GLive. GLive is based on nodes cooperating to share a
media stream supplied by a source node, and uses an approximate auction algorithm
to match nodes that are willing and able to share the stream with one another.
GLive extends the tree-based live-streaming, gradienTv [Payberah et al., 2010a]
and Sepidar [Payberah et al., 2010b], to mesh-based live-streaming.

Nodes want to establish connections to other nodes that are as close as possible
to the source. They bid for connections to the best neighbors using their own upload
bandwidth, and nodes share their bounded number of connections with nodes who
bid the highest (contribute the most upload bandwidth). Auctions are continuous
and restarted on failures or free-riding. The desired effect of the auction algorithm
is that the source will upload to nodes who contribute the most upload bandwidth,
who will, in turn, upload to nodes who contribute the next highest amount of
bandwidth, and so on until the topology is fully constructed.

One of the main problems with the lack of global information about nodes’
upload bandwidths is that it affects the rate of convergence of the auction algorithm.
Nodes would ideally like to bid for connections to other nodes who they can afford
to connect to, rather than win a connection to a better node and later be removed
because a better bid was received. The traditional way to discover nodes to bid on
is using a uniform random peer-sampling service [Jelasity et al., 2007]. Instead, we
use the gradient overlay to sample nodes, where a node’s utility value is the upload
bandwidth it contributes to the system. As such, the gradient should provide
other nodes with references to nodes who have well-matched upload bandwidths.
Payberah et al. [2010b] showed that using the gradient overlay network reduced the
rate of parent switching for tree-based live-streaming by 20 % compared to random
peer sampling. Here, we show for GLive the effect of sampling neighbors using
random peer sampling (GLive/Random) versus sampling from the gradient overlay
(GLive/Gradient).

GLive is implemented using Kompics’ discrete-event simulator [Arad et al., 2009]
that provides several bandwidth, latency and churn models. In our experimental
setup, we set the streaming rate to 512 kbit/s, which is divided into blocks of 16
kB. Nodes start playing the media after buffering it for 5 seconds. The size of
the similar view in GLive is 15 nodes, and in the auction algorithm, nodes have 8
download connections. To model upload bandwidth, we assume that each upload
connection has an available bandwidth of 64 kbit/s and that the number of upload
connections for the nodes is set to 2i, where i is picked randomly from the range
1 to 10. This means that nodes have an upload bandwidth capacity between 128
kbit/s and 1.25 Mbit/s. As the average upload bandwidth of 704 kbit/s is not
much higher than the streaming rate of 512 kbit/s, nodes need to find good parents
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to achieve the streaming performance. The media source is a single node with
40 upload connections, providing five times the upload bandwidth of the stream
rate. We assume 11 utility levels, such that nodes contributing the same amount of
upload bandwidth are located at the same utility level. Latencies between nodes are
modeled using a latency map based on the King data-set [Gummadi et al., 2002].
We assume that the size of the sliding window for downloading is 32 blocks, such
that the first 16 blocks are considered as the in-order set and the next 16 blocks are
the blocks in the rare set. A block is chosen for download from the in-order set with
90 % probability, and from the rare set with 10 % probability. In the experiments,
we measure the following metrics:

1. Playback continuity: the percentage of blocks that a node received before their
playback time. We consider the case where nodes have a playback continuity
greater than 99 %;

2. Playback latency: the difference in seconds between the playback point of a
node and the playback point at the media source.

We compare the playback continuity and playback latency of GLive/Gradient
and GLive/Random in the following three scenarios:

1. Churn: 500 nodes join the system following a Poisson distribution, with an
average inter-arrival time of 100 milliseconds. Then, until the end of the
simulation, nodes join and fail continuously following the same distribution
with an average inter-arrival time of 1000 milliseconds;

2. Flash crowd: 100 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds. After 150 seconds, 1000
nodes join following the same distribution with a shortened average inter-
arrival time of 10 milliseconds;

3. Catastrophic failure: 1000 nodes join the system following a Poisson distribu-
tion with an average inter-arrival time of 100 milliseconds. After 150 seconds,
500 existing nodes fail following a Poisson distribution with an average inter-
failure time of 10 milliseconds.

Figure 5.12 shows the percentage of the nodes that have a playback continuity
of at least 99 %. We see that all the nodes in GLive/Gradient receive at least
99 % of all the blocks very quickly in all scenarios, while it takes slightly more
time for GLive/Random. This is because nodes in GLive/Gradient find a good set
of matches faster than nodes in GLive/Random by running the auction algorithm
against nodes with similar upload bandwidth. One point to note is that the 5
seconds of buffering cause the spike in playback continuity at the start, which
then drops off as nodes are joining the system. To summarize, using the gradient
overlay instead of random sampling produces better performance when the system
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Figure 5.12: Playback continuity of the GLive/Gradient and GLive/Random sys-
tems in the churn, flash crowd and catastrophic failure scenarios.

is undergoing large changes - such as large numbers of nodes joining or failing over
a short period of time.

Figure 5.13 shows the playback latency of the systems in the different scenar-
ios. As we can see, although there is only a small difference between the sys-
tems, GLive/Gradient consistently maintains relatively shorter playback latency
than GLive/Random for all experiments. The playback latency includes both the
5 seconds buffering time and the time required to pull the blocks over the live-
streaming overlay constructed using the auction algorithm.
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Figure 5.13: Playback latency of the GLive/Gradient and GLive/Random systems
in the churn, flash crowd and catastrophic failure scenarios.

5.7 Conclusions

In this chapter, we studied the network topology convergence problem for the
gossip-generated gradient overlay network. A necessary and sufficient condition for
convergence to a complete gradient topology was shown in terms of the neighbor
sampling probabilities. Further, the expected convergence time was characterized
for a single node, and extended to an asymptotic convergence rate estimate for the
entire network. Finally, networks with churn were considered, and a threshold on
the churn rate was derived for a gradient topology to emerge.

Live-streaming experiments showed the potential advantages of network topolo-
gies built using preference functions. We showed how nodes can use implicit in-
formation, captured in the gradient topology, to efficiently find suitable neigh-
bors compared to using random sampling. As such, our work on proving conver-
gence properties of the gradient topology could have significance for other future
information-carrying topologies.



Chapter 6

Distributed Optimization via Dual
Decomposition

“You don’t get any points in life for
doing things the hard way.”

— Tim Fargo

In this chapter, we study a distributed optimization problem, essential for a broad
range of network applications. Distributed optimization problems appear when a
set of network users are competing for a shared resource, with different individ-
ual objectives. These problems are commonly described as a utility maximization
problem, where each user has its own utility function. The goal of the network is
to assign the resources such that the total utility for all users is maximized.

Decomposition methods are essential for large-scale optimization [Cohen, 1980],
and they can be categorized by two approaches: those based on primal and dual
decomposition, respectively. In this work, we propose and analyze a decentralized
optimization algorithm based on dual decomposition, inspired by the distributed op-
timization method with primal decomposition used by Nedić and Ozdaglar [2007].
Both of these optimization algorithms use the subgradient method, a first-order
optimization method that leads to simple decentralized algorithms. Another ad-
vantage of the subgradient method is that it can solve non-smooth optimization
problems without prior knowledge of the problem structure, in comparison to the
work by Nesterov [2005].

In Section 6.1, we introduce the distributed optimization problem and define
the corresponding dual optimization problem. In Section 6.2, we develop a decen-
tralized algorithm based on the dual optimization problem, and in Section 6.3, we
analyze the convergence rate of the algorithm. In Section 6.4, we study the com-
munication requirements for the algorithm, and finally, in Section 6.5, we evaluate
the algorithm with numerical simulations.

127
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6.1 Distributed Optimization Problem

We consider an optimization problem, where a network G = (V, E) of N = |V|
interconnected agents are minimizing the sum of their individual convex (potentially
non-smooth) objective functions f i : Rn → R, where i ∈ V. The global objective
function is thus

f(x) .=
N∑
i=1

f i(x), (6.1)

and the optimization problem is to compute

f∗
.= min
x∈X

f(x) = min
x∈X

N∑
i=1

f i(x), (6.2)

where X ⊆ Rn is the feasible domain, assumed to be non-empty and convex.
Each individual objective function f i is assumed to be known only by agent

i. Thus, the agents V = {1, . . . , N} need to coordinate their decisions through a
limited set of communication links E ⊂ V×V. The goal is to solve the minimization
problem in a decentralized fashion, where the agents cooperatively find the optimal
solution without a central coordinator. In Section 6.2 we propose an optimization
procedure based on dual decomposition, and as a prelude to the proposed procedure,
let us discuss the dual decomposition technique.

The dual decomposition is based on moving the coupling between different
agents from the objective function to a set of constraints. To this end, let us intro-
duce a local estimate xi ∈ X of the common decision variable x ∈ X for each agent
i ∈ V in the network. The optimization problem corresponding to equation (6.2)
can then be written as

minimize
x1,...,xN∈X

N∑
i=1

f i(xi),

subject to x1 = x2 = · · · = xN .

Note that the coupling between the objective functions is moved from the decision
variable to the consistency constraints x1 = x2 = · · · = xN . These constraints
contain redundancies, since x1 = x2 and x2 = x3 implies that x1 = x3, thus only a
subset of these are actually necessary. A subset of these constraints is selected by
first partitioning the decision variable x ∈ X into N parts, such that each part is
associated with a unique agent. Let

x =
[
xT1 , xT2 , . . . , x

T
N

]T
be a partitioning such that xi ∈ Rni for i ∈ V with ni ≥ 0 and

∑N
i=1 ni = n.

This partitioning can be arbitrary, however, in many applications there is a natural
partitioning, where xi represents the internal state of agent i. For example, in
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formation control xi ∈ Rni would represent the position of agent i, and xji ∈ Rni
denotes agent j’s estimate of agent i’s position.

We will now proceed to define the dual problem [Boyd and Vandenberghe, 2009]
to (6.2), and to this end we introduce the dual variables λij ∈ Rni for i, j ∈ V, where
λij is associated with the constraint xii = xji . For notational simplicity, let us also
introduce λ as

λ
.=
[
λT11, . . . , λ

T
1N , λT21, . . . , λ

T
2N , . . . , λ

T
N1, . . . , λ

T
NN

]T
.

We continue by forming the Lagrangian L as

L(x1, x2, . . . , xN , λ) .=
N∑
i=1

f i(xi1, xi2, . . . , xiN ) +
N∑
i=1

N∑
j=1

λTij

(
xii − x

j
i

)
,

and the corresponding Lagrange dual function q is the infimum with respect to the
primal variables x1, . . . , xN ,

q(λ) .= inf
x1,x2,...,xN∈X

L(x1, x2, . . . , xN , λ).

Remark. The Lagrangian L is independent of the dual variables λii, since λii ac-
counts for the difference xii − xii = 0. For notational simplicity we keep λii, but
define λii

.= 0.
The Lagrange dual function can be rewritten by introducing the subproblems

φi(λ) as

φi(λ) .= inf
xi∈X

f i(xi1, xi2, . . . , xiN ) +
N∑
j=1

λTijx
i
i −

N∑
j=1

λTjix
i
j . (6.3)

Note that the subproblem φi only depends on the dual variable λ, and is the
infimum over the local variable xi. Thus, agent i is able to compute the subproblem
φi(λ) locally, independent of all other agents. The Lagrange dual function is the
sum of all the subproblems,

q(λ) =
N∑
i=1

φi(λ).

Finally, the Lagrange dual optimization problem consists of the maximization
of the Lagrange dual function, thus we define the optimal dual value q∗ as

q∗
.= max

λ
q(λ) = max

λ

N∑
i=1

φi(λ). (6.4)

Slater’s condition [Boyd and Vandenberghe, 2009] guarantees strong duality,
i.e., q∗ = f∗, assuming the original problem is convex and the feasible region X
has an interior point. Thus, the value of the original problem is computed by the
dual problem, and each agent computes a solution for the primal variables xi as an
intermediate step when solving (6.3). Moreover, if the problem is strictly convex
then all agents’ primal solutions will coincide.
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6.2 Dual Optimization Algorithm

In this section, we propose a decentralized subgradient method for solving the
Lagrange dual problem (6.4). The subgradient method is a generalization of the
gradient descent method to non-differentiable functions, using the iterations

λ(t+ 1) = λ(t) + αtg(t), (6.5)

where αt is the step size used at time t, and g(t) is a subgradient to the Lagrange
dual function q(λ) at λ(t), i.e., g(t) satisfies

q(λ̄) ≤ q(λ(t)) + g(t)T (λ̄− λ(t)), (6.6)

for all λ̄. For differentiable functions, the subgradient is unique and equal to the
gradient. The subgradient to q(λ) with respect to a single component λij of the
dual variables is xii − x

j
i , hence the subgradient update in equation (6.5) can be

written as
λij(t+ 1) = λij(t) + αt

(
xii(t)− x

j
i (t)
)
, (6.7)

where xi(t) is given by the solution to subproblem φi, evaluated at λ(t).
The subproblems in equation (6.3) are computationally similar to the primal

subproblems of minimizing f i, but can be solved independently by each agent. The
remaining part of the algorithm handles the update of the dual variables, λ, in
a decentralized manner. Assume that all agents perform their computations and
communications synchronously, at the discrete times t = 0, 1, . . .. Further, assume
that only neighbors in the network topology G can communicate with each other
during one time step.

For the subgradient update in equation (6.7) both agent i’s estimate xii and
agent j’s estimate xji are necessary to update the dual variable λij . Thus, we let
agent i send its state estimate xii to agent j, who then is able to update the dual
variable using its own estimate xji . Because the two agents might not be neighbors,
we introduce the time-delay δij that measures the multi-hop delay from agent i to
agent j. Further, let dij

.= δij + δji denote the round-trip time between agent i and
agent j.

The update rule in equation (6.7) is now modified to account for the communi-
cation delays. Let λij(t) denote the commonly known dual variable that is known
to both agent i and agent j at time t, which they use to solve their respective
subproblem φi and φj at time t. The solutions to the subproblems, given λ(t), is
denoted by xi(t) and xj(t). Agent i transmits the primal variable xii(t) to agent j,
who receives it at time t+ δij . Agent j then updates the dual variable λij , which it
transmits back to agent i. The total time it takes to update the commonly known
dual variable is equal to the round trip time dij between agent i and agent j. The
update can be formally expressed as

λij(t+ dij + 1) = λij(t+ dij) + αt

(
xii(t)− x

j
i (t)
)
. (6.8)
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Algorithm 6.1 Dual Optimization Algorithm
1: for every t = 0, 1, 2, . . . do
2: for each node i ∈ V do . Every agent i runs this algorithm.
3: Compute φi(λ(t))→ xi(t) . Compute primal variables.
4: Send xii(t) to neighbors
5: for each received xjj(t− δji) do . Update dual variables
6: Let λji(t+ δij) = λji(t+ δij − 1) + αt−δji

(
xjj(t− δji)− xij(t− δji)

)
7: Send λji(t+ δij) to agent j
8: Relay received xjj to neighbors
9: end for
10: Receive and relay dual variables, updating λ(t+ 1)
11: end for
12: end for

The procedure executed on each agent is summarized in Algorithm 6.1

Remark. The commonly known dual variable does not necessarily satisfy the sub-
gradient condition in equation (6.6), and this is the main contribution that is ana-
lyzed in the next section.

Remark. Different parts of the dual variable λ can be updated with different round-
trip delays.

6.3 Convergence Analysis

Before we move into the analysis of the algorithm, we state four assumptions about
the problem instance. Assumptions 6.1 to 6.3 are commonly used for the subgra-
dient methods and Assumption 6.4 is for the time-delays we introduced.

Assumption 6.1 (Existence of Maximizer). There exists at least one finite maxi-
mizer of q, denoted by λ∗. Let Λopt denote the set of maximizers to q.

Assumption 6.2 (Bounded Subgradients). Every subgradient g(t) to the Lagrange
dual function q(λ(t)) is uniformly bounded by G,

||g(t)||2 ≤ G ∀t.

Remark. Assumption 6.2 especially holds if the feasibility set X is compact.

Assumption 6.3 (Bounded Initial Distance). The distance from the initial dual
variable, λ(0), to the optimal set is bounded by R,

dist (λ(0), Λopt) ≤ R.
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In order for the communication protocol to work, it is necessary to assume that
the network is strongly connected. We impose this by assuming that the time-
delays between every pair of agents are bounded, which also implicitly implies that
no transmissions are lost in the network.

Assumption 6.4 (Bounded Time-Delays). There exists an upper bound D on the
round-trip time,

dij = δij + δji ≤ D ∀i, j ∈ V.

Convergence with Constant Delays
The main result of this convergence analysis is to create a bound between the
computed values of the Lagrange dual function q(λ(t)) and the optimal value q∗,
which is given in Theorem 6.5. This result is built through a sequence of lemmas,
but as a prelude to this, we will introduce some additional notation. Recall that
g(t) is a subgradient to the Lagrange dual function, q, evaluated at λ(t). Let us
define the time-shifted vector of dual variables λ̄(t) by

λ̄ij(t)
.= λij(t+ dij),

thus, the entire vector λ̄(t) is

λ̄(t) .=



λ11(t+ d11)
...

λij(t+ dij)
...

λNN (t+ dNN )

 .

Using this notation the update rule in equation (6.8) can be written compactly as

λ̄(t+ 1) = λ̄(t) + αtg(t). (6.9)

Remark. Although being a similar expression to the ordinary subgradient iteration
in equation (6.5), remember that g(t) is a subgradient at λ(t) and not at λ̄(t).

The entire dual vector λ(t) can be expressed in terms of λ̄(t) using the following
vector projection Pd. Let Pd(x) be defined by

[Pd(x)]ij
.=
{
xij if dij = d;
0 otherwise.

In other words, Pd(x) selects those components of x for which the round-trip time
is equal to d. Under Assumption 6.4, Pd has two important properties; first, for
any vector x, we have

D∑
d=0

Pd(x) = x.
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Second, we can express the dual variables λ(t) from the time-shifted variables λ̄(t)
as

D∑
d=0

Pd(λ̄(t− d)) = λ(t).

Lemma 6.1. Under Assumption 6.3, the initial time-shifted dual variables are
bounded to the optimal set as

dist
(
λ̄(0), Λopt

)
≤ R.

Proof. By the definition of λ̄, we have

λ̄ij(0) = λij(dij).
Note that it takes dij time steps until agent i receives its first update on the dual
variable λij , hence λij(0) = · · · = λij(dij) and λ̄(0) = λ(0). The lemma now follows
from Assumption 6.3.

Lemma 6.2. Under Assumption 6.2, the step change in λ̄ is bounded by∣∣∣∣λ̄(t+ 1)− λ̄(t)
∣∣∣∣

2 ≤ αtG ∀t.

Proof. From the update rule in equation (6.9), we have

λ̄(t+ 1)− λ̄(t) = αtg(t).
Thus, by Assumption 6.2,∣∣∣∣λ̄(t+ 1)− λ̄(t)

∣∣∣∣
2 = αt||g(t)||2 ≤ αtG.

In the next lemma we give an upper bound on the difference between λ̄(t) and
λ(t).

Lemma 6.3. Under Assumptions 6.2 and 6.4, we have

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤ G
t−1∑

d=t−D
αd ∀t.

Proof. Recall that λ̄(t)− λ(t) can be written as

λ̄(t)− λ(t) = λ̄(t)−
D∑
d=0

Pd
(
λ̄(t− d)

)
=

D∑
d=1

Pd
(
λ̄(t)− λ̄(t− d)

)
.
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By replacing the term λ̄(t)− λ̄(t− d) with a telescoping sum, we have

λ̄(t)− λ(t) =
D∑
d=1

Pd

(
d−1∑
i=0

(
λ̄(t− i)− λ̄(t− i− 1)

))

=
D∑
d=1

d−1∑
i=0

Pd
(
λ̄(t− i)− λ̄(t− i− 1)

)
,

since Pd is a linear function. Now, by changing the order of summation in this
double sum,

λ̄(t)− λ(t) =
D−1∑
i=0

D∑
d=i+1

Pd
(
λ̄(t− i)− λ̄(t− i− 1)

)
.

By the triangle inequality,

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤
D−1∑
i=0

∣∣∣∣∣
∣∣∣∣∣

D∑
d=i+1

Pd
(
λ̄(t− i)− λ̄(t− i− 1)

)∣∣∣∣∣
∣∣∣∣∣
2

.

Further, since the projections Pd are disjoint for different d,

∣∣∣∣∣
∣∣∣∣∣

D∑
d=i+1

Pd
(
λ̄(t− i)− λ̄(t− i− 1)

)∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pd
(
λ̄(t− i)− λ̄(t− i− 1)

)∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣λ̄(t− i)− λ̄(t− i− 1)

∣∣∣∣
2.

Using Lemma 6.2 yields∣∣∣∣λ̄(t− i)− λ̄(t− i− 1)
∣∣∣∣

2 ≤ Gαt−i−1.

Assembling everything together gives us

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤
D−1∑
i=0

Gαt−i−1 = G
t−1∑

d=t−D
αd.

Remark. For the time steps t < D before the first complete round-trip communi-
cation, we have λ(t) =

∑t
d=0 Pd(λ̄(t− d)) and the bound in Lemma 6.3 becomes
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∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤ G
t−1∑
d=0

αd.

For notational simplicity, we define αt = 0 for t < 0.

Lemma 6.4. Under Assumptions 6.2 and 6.4, we have

g(t)T
(
λ̄(t)− λ∗

)
≤ G2

t−1∑
d=t−D

αd + q(λ(t))− q∗ ∀t. (6.10)

Proof. Adding g(t)T (λ(t)− λ(t)) = 0 to the left-hand side of equation (6.10) yields

g(t)T
(
λ̄(t)− λ∗

)
= g(t)T

(
λ̄(t)− λ(t)

)
+ g(t)T (λ(t)− λ∗) .

By Cauchy-Schwarz inequality,

g(t)T
(
λ̄(t)− λ(t)

)
≤ ||g(t)||2 ·

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2.

Since g(t) is a subgradient at λ(t), the subgradient definition (6.6) implies that

g(t)T (λ(t)− λ∗) ≤ q(λ(t))− q∗.

Thus,

g(t)T
(
λ̄(t)− λ∗

)
≤ ||g(t)||2 ·

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 + q(λ(t))− q∗.

Finally, using Lemma 6.3 and Assumption 6.2, we get

g(t)T
(
λ̄(t)− λ∗

)
≤ G2

t−1∑
d=t−D

αd + q(λ(t))− q∗.

The function value q(λ(t)) is not guaranteed to be monotonically increasing.
Therefore, the algorithm is evaluated as the maximum value achieved over T it-
erations. Let us now state and prove the main convergence theorem for the dual
optimization algorithm.

Theorem 6.5. Let Assumptions 6.1 to 6.4 hold. Then, the maximum value of
q(λ(t)) satisfies the following bound

max
t=0,...,T

q(λ(t)) ≥ q∗ −
R2 +G2∑T

t=0

(
α2
t + 2αt

∑t−1
d=t−D αd

)
2
∑T
t=0 αt

. (6.11)
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Proof. Let λ∗ be any optimal point to q, and let λ̄(t) be given by the iterations in
the update rule (6.9). Consider the following relation

0 ≤
∣∣∣∣λ̄(T + 1)− λ∗

∣∣∣∣2
2 =

∣∣∣∣λ̄(T ) + αT g(T )− λ∗
∣∣∣∣2

2

=
∣∣∣∣λ̄(T )− λ∗

∣∣∣∣2
2 + 2αT g(T )T

(
λ̄(T )− λ∗

)
+ α2

T ||g(T )||22.

This is a recursive equation in
∣∣∣∣λ̄(t)− λ∗

∣∣∣∣2
2, and can be expanded until t = 0,

yielding

0 ≤
∣∣∣∣λ̄(0)− λ∗

∣∣∣∣2
2 +

T∑
t=0

2αtg(t)T
(
λ̄(t)− λ∗

)
+

T∑
t=0

α2
t ||g(t)||22.

Using equation (6.10) from Lemma 6.4 gives us

0 ≤
∣∣∣∣λ̄(0)− λ∗

∣∣∣∣2
2 +

T∑
t=0

2αt

(
G2

t−1∑
d=t−D

αd + q(λ(t))− q∗
)

+
T∑
t=0

α2
t ||g(t)||22

≤
∣∣∣∣λ̄(0)− λ∗

∣∣∣∣2
2 +

T∑
t=0

2αtG2
t−1∑

d=t−D
αd

+
(

max
t=0,...,T

q(λ(t))− q∗
) T∑
t=0

2αt +
T∑
t=0

α2
t ||g(t)||22.

Thus,

max
t=0,...,T

q(λ(t)) ≥ q∗ −
∣∣∣∣λ̄(0)− λ∗

∣∣∣∣2
2∑T

t=0 2αt

−
∑T
t=0 2αtG2∑t−1

d=t−D αd +
∑T
t=0 α

2
t ||g(t)||22∑T

t=0 2αt
.

Note that λ∗ is an arbitrary optimal point, thus
∣∣∣∣λ̄(0)− λ∗

∣∣∣∣
2 can be replaced with

dist
(
λ̄(0), Λopt

)
. Finally, using Lemma 6.1 and Assumption 6.2, we get

max
t=0,...,T

q(λ(t)) ≥ q∗ −
R2 +

∑T
t=0 2αtG2∑t−1

d=t−D αd +
∑T
t=0 α

2
tG

2∑T
t=0 2αt

= q∗ −
R2 +G2∑T

t=0

(
α2
t + 2αt

∑t−1
d=t−D αd

)
2
∑T
t=0 αt

.
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Corollary 6.1. Let Assumptions 6.1 to 6.4 hold, then, for a constant step size
αt = α, we have

max
t=0,...,T−1

q(λ(t)) ≥ q∗ − R2 +G2α2T (1 + 2D)
2αT . (6.12)

Remark. If D = 0 in Corollary 6.1, then the convergence result simplifies to the
ordinary convergence result for the subgradient method in equation (2.4), without
any delays.

Remark. Furthermore, the convergence result consists of two parts, a decaying part
R2

2αT equal to the ordinary subgradient method, and a constant term G2α(1+2D)
2 , a

factor (1 + 2D) larger than that for the ordinary subgradient method. The conclu-
sion is that the introduction of communication delays does not affect the conver-
gence speed, but instead causes the algorithm to converge to a larger neighborhood
around the optimal solution. Intuitively, we find that while the ordinary subgra-
dient method can overshoot the optimal point with half the step length, using
delayed information can cause the algorithm to continue past the optimal point for
an additional D steps.

Corollary 6.2. Consider a square summable, but not summable step size αt ≥
αt+1 ≥ 0, for t = 0, 1, . . ., such that

∑∞
t=0 α

2
t < ∞ and

∑∞
t=0 αt = ∞. Let

Assumptions 6.1 to 6.4 hold, then

max
t=0,...,T

q(λ(t)) ≥ q∗ −
R2 +G2(1 + 2D)

∑T
i=0 α

2
i−D

2
∑T
i=0 αi

→ q∗

as T →∞. Thus, this choice of step size guarantees asymptotic convergence to the
optimal solution.

Convergence with Time-Varying Delays

In this section, the results from Theorem 6.5 are extended to the case when the
time delays can vary in time, i.e., the transmission from agent i to agent j at
time t will arrive at time t + δij(t). In particular, this enables the possibility for
the transmissions to arrive out-of-order. To accommodate this, the dual variable
update in equation (6.8) is modified as

λij(t+ 1) = λij(t) +
∑

t̂ : t̂+dij(t̂)=t

α
(
xii(t̂)− x

j
i (t̂)
)
, (6.13)

where we for simplicity have assumed a constant step size α.
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The proof proceeds similarly to the constant delay case. Define the time-
dependent vector-projection Pt,d(x), for a vector x, as

[Pt,d(x)]ij
.=
{
xij if dij(t) = d;
0 otherwise.

Note that for a fixed t, Pt,d has the same properties as Pd in the preceding section.
Thus, under Assumption 6.4 (extended to time-varying delays), for any vector x,
and any fixed time t, we have

D∑
d=0

Pt,d(x) = x.

With the vector projection Pt,d, it is possible to express the update rule (6.13),
for the entire state vector λ, as

λ(t+ 1) = λ(t) + α

D∑
d=0

Pt−d,d (g(t− d)) . (6.14)

Lemma 6.6. The following is true under Assumptions 6.2 and 6.4,

||λ(t+ 1)− λ(t)||2 ≤ α(D + 1)G.

Proof. From the update rule (6.14), we have

λ(t+ 1)− λ(t) = α
D∑
d=0

Pt−d,d (g(t− d)) .

Thus,

||λ(t+ 1)− λ(t)||2 = α

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt−d,d (g(t− d))

∣∣∣∣∣
∣∣∣∣∣
2

.

By the triangle inequality, we further have

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt−d,d (g(t− d))

∣∣∣∣∣
∣∣∣∣∣
2

≤
D∑
d=0
||Pt−d,d (g(t− d))||2 ≤

D∑
d=0
||g(t− d)||2.

Finally, by using Assumption 6.2, we have

||λ(t+ 1)− λ(t)||2 ≤ α
D∑
d=0
||g(t− d)||2 ≤ α(D + 1)G.
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Lemma 6.7. The following is true under Assumptions 6.2 and 6.4,

g(t)T
D∑
d=0

Pt,d (λ(t+ d)− λ(t)) ≤ αG2D(D + 1)

for all t ≥ 0.

Proof. Using Cauchy-Schwarz inequality, we have

g(t)T
D∑
d=0

Pt,d (λ(t+ d)− λ(t)) ≤ ||g(t)||2 ·

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt,d (λ(t+ d)− λ(t))

∣∣∣∣∣
∣∣∣∣∣
2

.

Replacing λ(t+d)−λ(t) with the telescoping sum
∑d
i=1 λ(t+ i)−λ(t+ i−1) yields

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt,d (λ(t+ d)− λ(t))

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
D∑
d=1

Pt,d

(
d∑
i=1

λ(t+ i)− λ(t+ i− 1)
)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
D∑
d=1

d∑
i=1

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

.

Changing the order of summation, and using the triangle inequality gives us

∣∣∣∣∣
∣∣∣∣∣
D∑
d=1

d∑
i=1

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
D∑
i=1

D∑
d=i

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

≤
D∑
i=1

∣∣∣∣∣
∣∣∣∣∣
D∑
d=i

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

.

Further,

D∑
i=1

∣∣∣∣∣
∣∣∣∣∣
D∑
d=i

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

≤
D∑
i=1

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

=
D∑
i=1
||λ(t+ i)− λ(t+ i− 1)||2.

By using Lemma 6.6, we have

D∑
i=1

∣∣∣∣∣
∣∣∣∣∣
D∑
d=i

Pt,d (λ(t+ i)− λ(t+ i− 1))

∣∣∣∣∣
∣∣∣∣∣
2

≤ Dα(D + 1)G,
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and with Assumption 6.2,

g(t)T
D∑
d=0

Pt,d (λ(t+ d)− λ(t)) ≤ αG2D(D + 1).

Since the subgradient updates can arrive out-of-order, we evaluate the algorithm
in the stop model, where the subgradients g(t) are not updated after T iterations,
i.e.,

g(t) =
{

a subgradient to q at λ(t) if t < T ;
0 otherwise.

Thus, after T +D iterations, all subgradient updates have completed their round-
trip, and the performance of the algorithm is evaluated based on the stop time T .
Note that both Lemmas 6.6 and 6.7 hold for the stop model as well. Let us now
state and prove the main convergence theorem with time-varying delays:

Theorem 6.8. Let Assumptions 6.1 to 6.4 hold. Then, the maximum value in the
stop model satisfies the following bound

max
t=0,...,T−1

q(λ(t)) ≥ q∗ − R2 + α2D(D + 1)2G2 + 3α2T (D + 1)2G2

2αT . (6.15)

Proof. Let λ∗ be an arbitrary optimal point to q, and let λ(t) be given by the
iterations in equation (6.14). Consider the following relation

0 ≤ ||λ(T +D + 1)− λ∗||22

=

∣∣∣∣∣
∣∣∣∣∣λ(T +D) + α

D∑
d=0

PT+D−d,d (g(T +D − d))− λ∗
∣∣∣∣∣
∣∣∣∣∣
2

2

= ||λ(T +D)− λ∗||22 + 2α
D∑
d=0

PT+D−d,d (g(T +D − d))T (λ(T +D)− λ∗)

+ α2

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

PT+D−d,d (g(T +D − d))

∣∣∣∣∣
∣∣∣∣∣
2

2

.
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This is a recursive equation in ||λ(t)− λ∗||22, and can be expanded until t = 0, thus
yielding

0 ≤ ||λ(0)− λ∗||22 + 2α
T+D−1∑
t=0

D∑
d=0

Pt−d,d (g(t− d))T (λ(t)− λ∗)

+ α2
T+D−1∑
t=0

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt−d,d (g(t− d))

∣∣∣∣∣
∣∣∣∣∣
2

2

.

(6.16)

In the stop model, using the fact that g(t) = 0 for t ≥ T , the middle sum can
be reindexed as

T+D−1∑
t=0

D∑
d=0

Pt−d,d (g(t− d))T (λ(t)− λ∗) =
T−1∑
t=0

D∑
d=0

Pt,d (g(t))T (λ(t+ d)− λ∗).

Consider now the effect the projection Pt,d has on the scalar product, especially
that it is symmetric in the operands and can thus be moved to the second operand,
i.e.,

Pt,d (g(t))T (λ(t+ d)− λ∗) = g(t)TPt,d (λ(t+ d)− λ∗) .

The subgradient g(t) can be moved outside the summation, and by both adding
and subtracting λ(t) from the projection, we have

T+D−1∑
t=0

D∑
d=0

Pt−d,d (g(t− d))T (λ(t)− λ∗)

=
T−1∑
t=0

g(t)T
D∑
d=0

(
Pt,d

(
λ(t+ d)− λ(t)

)
+ Pt,d

(
λ(t)− λ∗

))
.

Lemma 6.7 can be applied to the first part of this sum, and for the second part we
have,

g(t)T
D∑
d=0

Pt,d (λ(t)− λ∗) = g(t)T (λ(t)− λ∗) ≤ q(λ(t))− q∗,

since g(t) is a subgradient at λ(t) for t < T . Thus,

T+D−1∑
t=0

D∑
d=0

Pt−d,d (g(t− d))T (λ(t)− λ∗) ≤
T−1∑
t=0

(
αG2D(D + 1) + q(λ(t))− q∗

)
.
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Return to equation (6.16), and consider the last term. Using Lemma 6.6, re-
calling that α

∑D
d=0 Pt−d,d (g(t− d)) = λ(t+ 1)− λ(t), we get

α2
T+D−1∑
t=0

∣∣∣∣∣
∣∣∣∣∣
D∑
d=0

Pt−d,d (g(t− d))

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ α2(T +D)(D + 1)2G2.

Assembling the results attained so far yields

0 ≤ ||λ(0)− λ∗||22 + 2α
T−1∑
t=0

(
αG2D(D+ 1) + q(λ(t))− q∗

)
+α2(T +D)(D+ 1)2G2.

Note that λ∗ is an arbitrary optimal point, thus using Assumption 6.3, we
have that ||λ(0)− λ∗||2 is bounded by R. Finally, evaluating the maximal value
maxt=0,...,T−1 q(λ(t)) yields

max
t=0,...,T−1

q(λ(t)) ≥ q∗ − R2 + 2α2TG2D(D + 1) + α2(T +D)(D + 1)2G2

2αT

≥ q∗ − R2 + α2D(D + 1)2G2 + 3α2T (D + 1)2G2

2αT .

Remark. The bound in Theorem 6.8 is conservative. For example, simplifying the
theorem when there is no delay, D = 0, yields a convergence rate three times slower
than in Corollary 6.1.

Noisy Communication Channels
In the final analysis, a noisy communication and computation model is considered.
The model assumes that the subgradients g(t) are affected by an additive noise
vector ε(t). Thus, the update rule in equation (6.9) is modified such that

λ̄(t+ 1) = λ̄(t) + αt (g(t) + ε(t)) . (6.17)

Assumption 6.5 (Bounded Noise). There exists an upper bound E on the norm
of the noise vectors,

||ε(t)||2 ≤ E ∀t. (6.18)

The analysis for the noisy communication channels follows the ideas from the
previous section.

Lemma 6.9. Under Assumptions 6.2 and 6.5, we have∣∣∣∣λ̄(t+ 1)− λ̄(t)
∣∣∣∣

2 ≤ αt (G+ E) .
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Proof. By the definition of the update rule in equation (6.17), we have∣∣∣∣λ̄(t+ 1)− λ̄(t)
∣∣∣∣

2 = αt||g(t) + ε(t)||2 ≤ αt (||g(t)||2 + ||ε(t)||2) .

Thus, by Assumptions 6.2 and 6.5,∣∣∣∣λ̄(t+ 1)− λ̄(t)
∣∣∣∣

2 ≤ αt (G+ E) .

Lemma 6.10. Under Assumptions 6.2, 6.4 and 6.5, we have

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤ (G+ E)
t−1∑

d=t−D
αd.

Proof. The proof follows Lemma 6.3. We have

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤
D−1∑
i=0

∣∣∣∣λ̄(t− i)− λ̄(t− i− 1)
∣∣∣∣

2.

Using Lemma 6.9 yields

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2 ≤ (G+ E)
t−1∑

d=t−D
αd.

Lemma 6.11. The following is true under Assumptions 6.2, 6.4 and 6.5,

(g(t) + ε(t))T
(
λ̄(t)− λ∗

)
≤ G(G+ E)

t−1∑
d=t−D

αd + q(λ(t))− q∗ + E
∣∣∣∣λ̄(t)− λ∗

∣∣∣∣
2.

Proof. By the Cauchy–Schwarz inequality,

(g(t) + ε(t))T
(
λ̄(t)− λ∗

)
≤ ||g(t)||2 ·

∣∣∣∣λ̄(t)− λ(t)
∣∣∣∣

2

+ g(t)T (λ(t)− λ∗) + ||ε(t)||2 ·
∣∣∣∣λ̄(t)− λ∗

∣∣∣∣
2.

Recall that g(t) is a subgradient to q at λ(t), thus

g(t)T (λ(t)− λ∗) ≤ q(λ(t))− q∗.

Using Assumptions 6.2 and 6.5 and Lemma 6.10 yields
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(g(t) + ε(t))T
(
λ̄(t)− λ∗

)
≤ G(G+ E)

t−1∑
d=t−D

αd + q(λ(t))− q∗ + E
∣∣∣∣λ̄(t)− λ∗

∣∣∣∣
2.

We provide two different extensions of Theorem 6.5 for the noisy subgradients
model in equation (6.17). In the first extension, we assume that the dual variables
are bounded.

Theorem 6.12. Let Assumptions 6.1 to 6.5 hold. Furthermore, assume that the
dual variables are bounded by L such that

dist
(
λ̄(t), Λopt

)
≤ L ∀t.

Then, the maximum value satisfies the following bound,

max
t=0,...,T

q(λ(t)) ≥ q∗−
R2 +

∑T
t=0

(
α2
t (G+ E)2 + 2αtG(G+ E)

∑t−1
d=t−D αd + 2αtEL

)
2
∑T
t=0 αt

.

(6.19)

Proof. Let λ∗ be any optimal point to q, and let λ̄(t) be given by the noisy iterations
in equation (6.17). Consider the following relation

0 ≤
∣∣∣∣λ̄(T + 1)− λ∗

∣∣∣∣2
2 =

∣∣∣∣λ̄(T ) + αT (g(T ) + ε(T ))− λ∗
∣∣∣∣2

2

=
∣∣∣∣λ̄(T )− λ∗

∣∣∣∣2
2 + 2αT (g(T ) + ε(T ))T

(
λ̄(T )− λ∗

)
+ α2

T ||g(T ) + ε(T )||22.

By Lemma 6.11, we have

∣∣∣∣λ̄(T + 1)− λ∗
∣∣∣∣2

2 ≤
∣∣∣∣λ̄(T )− λ∗

∣∣∣∣2
2 + α2

T ||g(T ) + ε(T )||22

+ 2αT

(
G(G+ E)

T−1∑
d=T−D

αd + q(λ(T ))− q∗ + E
∣∣∣∣λ̄(T )− λ∗

∣∣∣∣
2

)
.

Since λ∗ is an arbitrary optimal point, this especially holds for

λ∗ = arg min
λ∈Λopt

∣∣∣∣λ̄(T )− λ
∣∣∣∣

2,

hence we have the inequality



6.3. Convergence Analysis 145

dist
(
λ̄(T + 1), Λopt

)2 ≤ ∣∣∣∣λ̄(T + 1)− λ∗
∣∣∣∣2

2

≤ dist
(
λ̄(T ), Λopt

)2 + α2
T ||g(T ) + ε(T )||22

+ 2αT

(
G(G+ E)

T−1∑
d=T−D

αd + q(λ(T ))− q∗ + E dist
(
λ̄(T ), Λopt

))
. (6.20)

This is a recursive relation in terms of the distance to the optimal set Λopt. Ex-
panding this until T = 0 gives us

0 ≤ dist
(
λ̄(0), Λopt

)2 +
T∑
t=0

α2
t ||g(t) + ε(t)||22

+ 2
T∑
t=0

αt

(
G(G+ E)

t−1∑
d=t−D

αd + q(λ(t))− q∗ + E dist
(
λ̄(t), Λopt

))
.

Using Lemma 6.1 and Assumptions 6.2 and 6.5, and the assumption on the
bound L for the dual variables gives us

0 ≤ R2 +
T∑
t=0

α2
t (G+ E)2 + 2

T∑
t=0

αt

(
G(G+ E)

t−1∑
d=t−D

αd + q(λ(t))− q∗ + EL

)
.

Thus,

max
t=0,...,T

q(λ(t)) ≥ q∗−
R2 +

∑T
t=0

(
α2
t (G+ E)2 + 2αtG(G+ E)

∑t−1
d=t−D αd + 2αtEL

)
2
∑T
t=0 αt

.

Corollary 6.3. For a constant step size αt = α, the result in Theorem 6.12 becomes

max
t=0,...,T−1

q(λ(t)) ≥ q∗ − R2 + α2T (G+ E) (G+ E + 2GD)
2αT + EL.

As a final extension of Theorem 6.5 on the noisy subgradient model, we consider
Lagrange dual functions q with a sharp maxima, as an alternative to bounding the
dual variables in Theorem 6.12.
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Theorem 6.13. Let Assumptions 6.1 to 6.5 hold. Furthermore, assume that q(λ)
decreases at least linearly as λ moves away from the optimal set Λopt, i.e., for some
constant µ > 0

q(λ) ≤ q∗ − µ dist (λ, Λopt) .
If µ > E, then, the maximum value satisfies the following bound,

max
t=0,...,T

q(λ(t)) ≥ q∗ −
R2 + (G+ E)2∑T

t=0

(
α2
t + 2αt

∑t−1
d=t−D αd

)
(

1− E
µ

)∑T
t=0 2αt

. (6.21)

Proof. Let λ∗ be any optimal point to q, and let λ̄(t) be given by the noisy iterations
in equation (6.17). The proof proceeds from equation (6.20) in the previous proof,
using the triangle inequality

dist
(
λ̄(T ), Λopt

)
≤
∣∣∣∣λ(T )− λ̄(T )

∣∣∣∣
2 + dist (λ(T ), Λopt) .

Further, by the sharp maxima assumption, we have for some constant µ > 0

dist
(
λ̄(T ), Λopt

)
≤
∣∣∣∣λ(T )− λ̄(T )

∣∣∣∣
2 −

1
µ

(q(λ(T ))− q∗) .

Thus, by also using Lemma 6.10, we have

dist
(
λ̄(T + 1), Λopt

)2 ≤ dist
(
λ̄(T ), Λopt

)2 + α2
T ||g(T ) + ε(T )||22

+ 2αT
(

1− E

µ

)
(q(λ(T ))− q∗) + 2αT (G+ E)2

T−1∑
d=T−D

αd.

With µ > E then
(

1− E
µ

)
> 0. Expanding the recursive relation until T = 0 yields

0 ≤ dist
(
λ̄(0), Λopt

)2 +
T∑
t=0

α2
t ||g(t) + ε(t)||22 +

T∑
t=0

2αt
(

1− E

µ

)
(q(λ(t))− q∗)

+
T∑
t=0

2αt(G+ E)2
t−1∑

d=t−D
αd.

Using Lemma 6.1 and Assumptions 6.2 and 6.5, the lower bound on the maximal
value can then be written as

max
t=0,...,T

q(λ(t)) ≥ q∗ −
R2 + (G+ E)2∑T

t=0

(
α2
t + 2αt

∑t−1
d=t−D αd

)
(

1− E
µ

)∑T
t=0 2αt

.
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Corollary 6.4. For a constant step size αt = α, the result in Theorem 6.13 becomes

max
t=0,...,T−1

q(λ(t)) ≥ q∗ − R2 + α2T (G+ E)2 (1 + 2D)
2αT

(
1− E

µ

) .

6.4 Communication Cost

In distributed systems, such as wireless sensor networks, the limiting resource is
often the communication capacity [Akyildiz et al., 2002]. Therefore it is important
to analyze the convergence rate not only based on time, but also in relation to the
communication cost. Assuming a fixed numeric precision, we define the commu-
nication cost as the number of real valued scalars transmitted over each edge in
the network. There are two contributions to the communication cost: the distri-
bution of primal variables xii(t), and the accumulation of dual variables λji. These
contributions can be analyzed separately, and per iteration of the algorithm.

First, consider the distribution of primal variables. Recall that agent i only
needs to distribute the part xii(t) ∈ Rni of its state estimate xi(t) to the other
agents in the network in order for the dual variable update to take place. We
assume that a network routing procedure is in place, such that an agent receives
the estimate xii(t) once and only once. Since there are N agents in the network,
each part xii(t) ∈ Rni is thus transferred over exactly N − 1 edges. The total
communication cost for all primal variables becomes

N∑
i=1

(N − 1)ni = (N − 1)n.

Let us now consider the communication cost for aggregating the dual variables
λij ∈ Rni . By similarly assuming that each dual variable is only received at most
once for each agent, this would yield the following communication cost

N∑
i=1

N∑
j=1

(N − 1)ni = (N − 1)Nn.

This is significantly larger than the communication cost for the primal variables,
since there are many more dual variables. However, recall that agent i’s subproblem
φi(λ) only depends on the dual variables λji, j ∈ V, and the sum of dual variables∑N
j=1 λij . Since the dual variables λji are computed locally at agent i, each agent

only needs to receive the sum of the dual variables
∑N
j=1 λij , and we can aggregate

this in the network.
Thus, when an agent k receives a set of dual variables λij , j ∈ V directed

towards agent i, it can compute the sum of all these values and its own λik, and
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only transmit this sum instead of the individual values. Thus, all dual variables
λi∗ directed towards agent i are then only transferred over N − 1 edges, and by
aggregating the dual variables, the total communication cost for all dual variables
is

N∑
i=1

(N − 1)ni = (N − 1)n.

Proposition 6.14. The total communication cost, in terms of transmitted real
scalar values per iteration, for the dual optimization algorithm is

2(N − 1)n. (6.22)

Remark. By aggregating the dual variable updates, and neglecting the commu-
nication cost for the routing protocol overhead, the communication cost becomes
independent of the network topology.
Remark. Inspection of the problem structure may reduce the communication cost
further. Recall that each local objective function f i is assumed to depend on all
of the decision variables x1, x2, . . . , xN . If the optimization problem instead has
a sparse dependency structure, e.g., agents only depending on their neighbors’
states, then only local communication would be needed. For example, if f i does
not depend on xj then agent i will not need a local estimate xij , and the dual
variable λji accounting for the difference between xjj and xij could also be removed.

6.5 Numerical Results

In this section we will study the convergence rate of the distributed optimization
algorithm on different network topologies. The dual distributed optimization algo-
rithm presented above was inspired by a distributed optimization scheme by Nedić
and Ozdaglar [2007], which we refer to as the primal algorithm. Therefore, the
convergence rate and communication cost for the dual distributed optimization
algorithm is compared to the primal algorithm, which is introduced next.

A Primal Distributed Optimization Algorithm
The primal algorithm is also an iterative optimization algorithm, where each agent
has a local estimate xi(t) of the decision variable. However, the iterations for the
primal variables consist of two steps, an average consensus update and a subgradient
step for the local objective function, i.e., agent i updates its estimate xi(t) by

xi(t+ 1) =
N∑
j=1

Wj,i(t)xj(t)︸ ︷︷ ︸
Average consensus

− αitgi(t)︸ ︷︷ ︸
Subgradient

, (6.23)
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where W is an average consensus matrix, and gi(t) is a subgradient to f i at xi(t).
The average consensus matrix Wj,i(t) is zero if there is no directed edge from agent
j to agent i at time t.

This algorithm has attracted a lot of research interest, in part due to its re-
markable simplicity, while still having robust convergence properties. Especially,
it does not require a routing network protocol for communication, but can be im-
plemented with asynchronous gossip or broadcast communication [Srivastava and
Nedić, 2011].

The communication for the primal optimization algorithm consists of transmis-
sions of the entire state xi from each agent i to all of its neighbors, hence the
communication cost for the primal algorithm is n|E|.
Remark. In certain communication protocols, using broadcast transmissions could
improve the communication cost for the primal algorithm, since the agents are
transmitting the same information to all of their neighbors.

Evaluating the Convergence Rate
In both the primal and dual optimization algorithms, each agent i ∈ V maintains
its own estimate of the entire primal decision variable xi(t), which prevents the
evaluation of f(t) as defined in equation (6.1). In order to compare the convergence
rate, we proceed to define the current function value evaluated over the average
agent state. To this end, define the average state as

xavg(t) .= 1
N

N∑
i=1

xi(t).

The function value is then evaluated as

f(t) .=
N∑
i=1

f i(xavg(t)).

Finally, since the function does not need to be monotonically decreasing, we evaluate
each algorithm as the minimum value attained until time T ,

fmin(T ) .= min
t=0,...,T

f(t).

For the dual optimization algorithm, we can evaluate the function value based
on each agent’s own estimate of the primal state, as well as evaluate the Lagrange
dual function over the commonly known dual variable λ(t). Thus, we define the
current Lagrange dual function value as

q(t) .=
N∑
i=1

φi(λ(t)).
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Since the dual function does not need to be monotonically increasing, we evaluate
the dual value as the maximum attained until time T , e.g.,

qmax(T ) .= max
t=0,...,T

q(t).

Simulation Model
In the following examples, we will study different network topologies, each con-
sisting of N = 15 agents. The network topologies are time-invariant, and the
Metropolis weights [Xiao et al., 2005] are used for the average consensus step for
the primal algorithm. For the dual optimization algorithm, the communication de-
lay δij between agent i and agent j is equal to dist (i, j)− 1 in the communication
graph. This means that neighbors can communicate directly with each other, and
it takes one extra step for each intermediate agent on the shortest path between
two agents. In particular, the upper bound on the round-trip times, D, is less than
or equal to 2(N − 2).

Each agent is associated with a single scalar xi ∈ R, thus the optimization
variable x ∈ R15. The initial values are set to zero, x(0) = 0 and λ(0) = 0. The
local objective functions used for the simulations are selected as quadratic functions.
The reason for using this class of objective functions is primarily because they are
easy to work with, and efficient to compute, while still being non-trivial. Thus, the
local objective function f i(x) can be written as

f i(x) = xTAix+ bTi x+ ci.

This function is convex if and only if the matrix Ai is positive semidefinite,
i.e., all eigenvalues are non-negative. The parameters Ai, bi and ci are chosen
randomly, bi and ci are drawn from a normal distribution, and Ai is generated as a
random symmetric matrix, with eigenvalues drawn from a uniform distribution in
the interval [0, 10].

In order to have a uniform upper bound on the subgradients, the optimization
variables are restricted to a compact convex set X, where X is determined by

x ∈ X ⇔ −100 ≤ xi ≤ 100 ∀i.

Furthermore, both algorithms use a step size parameter, but they are on different
scales. Therefore, we limit both algorithms to use a constant step size αt = α, and
then for each algorithm select the optimal constant step size. Thus, we select a
step size α for each algorithm such that fmin(T ) is minimal at time step T = 1000,
while we extend the simulation horizon for 2000 steps.

Connected Random Graph
As a first example, we consider a random, strongly connected network, as shown
in Figure 6.1. The maximal delay between any two agents is 3, and hence, the
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Figure 6.1: A network G = (V, E) consisting of 15 agents, drawn as circles, con-
nected by 31 undirected communication lines. The diameter of the network is 4.

upper bound on the round-trip time is D = 6. The step sizes are α = 0.00054
for the primal algorithm, and α = 0.080 for the dual algorithm, as determined in
Figure 6.2.

Optimal value f∗ -7649.960
Primal alg. fmin(1000) -7649.409
Primal alg. fmin(2000) -7649.425
Dual alg. fmin(1000) -7649.956
Dual alg. fmin(2000) -7649.960

Table 6.1: The minimal function values for the primal and dual optimization algo-
rithms, evaluated after 1000 and 2000 iterations, using the optimal step sizes from
Figure 6.2.

The convergence rate is evaluated on the time interval t = 0, . . . , 2000, shown
in Figure 6.3. Note that the primal algorithm reaches a neighborhood around the
optimal value at time step 1000, and does not significantly improve during the next
1000 steps. This is a trade-off in the step size choice; a smaller step size would
yield a slower convergence, but to a value closer to the optimal, thus giving a
worse solution at time step 1000 but a better solution at time step 2000. The dual
algorithm, on the other hand, is closer to the optimal value before 1000 steps, and
continues to improve during the next 1000 steps.

Finally, let us compare the communication cost for each algorithm. The network
in Figure 6.1 has 62 edges, counted with direction, and hence, the communication
cost is 62n for the primal algorithm, and 28n for the dual algorithm.

Thus, for this problem instance, the dual algorithm converges faster, to a smaller
neighborhood around the optimal value, and with less communication than the
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Figure 6.2: The step sizes are tuned for the primal and dual optimization algorithm
separately. The minimal functional value fmin is evaluated after 1000 iterations for
different step sizes. Note the different scales for the primal and dual step sizes.

primal algorithm.

Line Graph

Next, consider a network with a line topology, as shown in Figure 6.4. A line
graph with N agents is a connected graph with diameter N − 1, and thus, has the
highest round-trip time among all connected graphs of N agents. The round-trip
time is bounded by D = 26. The convergence rate is evaluated on the time interval
t = 0, . . . , 2000 in Figure 6.5. Note that the optimal step sizes also changed to
α = 0.00044 for the primal algorithm, and α = 0.014 for the dual algorithm, thus
both algorithms use a smaller step size when the communication delay is large.
This coupling between delay and step size makes it hard to directly compare the
convergence rates with the theoretical results in equation (6.12).

The results here are in favor of the primal algorithm, which has reached a lower
value than the dual algorithm after 1000 iterations. The dual algorithm continues
to improve slowly, and after 1500 iterations it closes in on the primal algorithm.
Note the characteristic staircase appearance in the figure, caused by oscillations in
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Figure 6.3: Convergence simulation for agents communicating through a connected
network (Figure 6.1). The primal algorithm reaches a neighborhood around the
optimal value, while the dual algorithm converges to the optimal value.

Figure 6.4: The line graph G = (V, E) consisting of 15 agents. The line topology
has the largest round-trip time among all network topologies, with a diameter of
14.

the underlying function values f(t), which are due to the communication delays
in the network. The number of directed edges in the network is 28, thus the
communication cost for both the primal and dual algorithm are equal to 28n.

For this network topology, the primal algorithm converges faster, and with the
same communication cost as the dual algorithm.

Circular Graph

Consider a network with circular topology, as shown in Figure 6.6. Notice that this
topology can be obtained from the line graph by adding a single edge, however, this
causes the diameter of the graph to shrink from 14 to 7, and the upper bound on
the round-trip time is D = 12 instead of 26. The convergence rate is evaluated on
the time interval t = 0, . . . , 2000 in Figure 6.7. The optimal step sizes also changed
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Figure 6.5: Convergence simulation for agents communicating through a line topol-
ogy (Figure 6.4). The primal algorithm attains a lower value than the dual algo-
rithm after 1000 iterations, but the dual algorithm continues to improve. The dual
function value qmax(t) is outside the scope of this figure.

to α = 0.00050 for the primal algorithm, and α = 0.041 for the dual algorithm,
following the change in the round-trip time.

The results are similar to those of the first example, where the primal algorithm
reaches a neighborhood around the optimal value before step 1000, while the dual
algorithm converges to the optimal value. Also, the communication cost for the
primal algorithm is 30n compared to the 28n for the dual algorithm.

Noisy Communication Channels
As a final example, we return to the network shown in Figure 6.1, but this time we
study the convergence when the communication channels are subject to the noisy
update in equation (6.17). The stochastic noise signal ε(t) is generated such that
|ε(t)| < 0.05, and the convergence rate is evaluated in Figure 6.8.

It seems as if the algorithm is converging at the same rate with and without
noise, but without noise it reaches a neighborhood close to the optimal value.
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Figure 6.6: The circular topology G = (V, E) consisting of 15 agents. The circular
topology has one additional edge compared to the line topology, but reduces the
round-trip time to half.
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Figure 6.7: Convergence simulation for agents communicating through a circular
topology (Figure 6.6). The primal algorithm has reached a neighborhood around
the optimal value, while the dual algorithm converges to the optimal value.
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Figure 6.8: Convergence simulation for agents communicating over noisy channels
in the network from Figure 6.1. The convergence rate is similar with and without
noise. Notice that in this figure, the value f(t) at each iteration is shown compared
to the minimal value fmin(t) in the previous figures.
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6.6 Conclusions

Distributed optimization problems appear in a broad range of practical applications.
In this chapter, we have developed a novel decentralized optimization algorithm,
based on the dual decomposition technique and the subgradient method. The opti-
mization algorithm is capable of handling communication delays, and it was proven
that the algorithm converges to the optimal solution when the communication delay
is bounded. The convergence results were also extended to time-varying communi-
cation delays, and noisy communication channels. A communication cost analysis
shows that this algorithm is always at least as communication efficient as the primal
counterpart.

The numerical simulations show that the proposed dual optimization algorithm
is capable of achieving both a faster convergence speed and a decrease in the com-
munication cost compared to the primal optimization algorithm. The dual opti-
mization algorithm was particular efficient when the network had a small diameter,
and hence small communication delays. A particular class of applications that could
be suitable for this optimization method is within formation control, where each
agent is optimizing its trajectory based on the trajectories of its closest neighbors,
which are also within communication range. Hence, only communication with the
direct neighbors would be necessary, thereby minimizing the communication delay.





Chapter 7

Conclusions and Future Work

“Even though the future seems far
away, it is actually beginning right
now.”

— Mattie Stepanek

This final chapter concludes the thesis with a brief summary of the main contribu-
tions, and some interesting directions for future research.

7.1 Conclusions

In this thesis we have explored some important and interesting dynamical network
systems. We considered applications within the transportation field and peer-to-
peer (P2P) content distribution, but also developed methods for optimization and
estimation over networks. The main contributions from each chapter are summa-
rized below.

Efficiency in Transportation Networks

We investigated collaboration strategies for transportation networks, motivated by
the development within intelligent transportation, mainly for road freight transport.
An efficiency measure for the collaborative transportation scenarios was introduced,
that determines how efficient the road utilization is in comparison to a centralized
planner. The efficiency measure was evaluated on real data from the New York
City taxis.

We also studied the optimal idling locations for trucks, and the optimal locations
for distribution centers along a single highway going through multiple cities. These
locations were then exploited in a simulation of a collaborative freight transport
system in Sweden.

These studies showed that there is great potential for collaborative transport
solutions to improve the efficiency in the transportation system.

159
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Estimation in Anonymous Networks
We derived distributed estimators to estimate both the network size and probability
mass functions when agents are anonymous. These estimators were based on prob-
abilistic methods and the max consensus protocol. One of the main advantages
with the max consensus protocol compared to other strategies is that it has the
fastest possible convergence time, and is very easy to implement, even in networks
with unreliable communication, through pairwise gossiping communication. Even
though the accuracy of these methods is not perfect, it can be made sufficiently
good by increasing the packet sizes.

We designed these methods to specifically handle time dependent networks
through a regularization term, which penalizes hypotheses conflicting with a-priori
assumptions on the network’s behavior. We explicitly considered and characterized
the class of quadratic regularization terms, which resulted in closed-form estimators.

Topology Convergence in Peer-to-Peer Networks
We studied a P2P network for live-streaming video applications, and considered the
advantages of using a gradient topology for finding suitable neighbors. The advan-
tage of this method is that the peers can find a good set of neighbors more quickly,
and thus avoid rapid switching, thereby decreasing the latency and probability of
interruptions. We derived both necessary and sufficient conditions for convergence
to a complete gradient topology, and we also characterized the expected conver-
gence time. We extended this analysis to networks with churn, and examined how
high churn rates could be tolerated while still maintaining a reasonable gradient
overlay structure, as a condition for the sampling rate.

Distributed Optimization via Dual Decomposition
A decentralized optimization algorithm was introduced, based on dual decomposi-
tion together with the subgradient method, for finding the optimal solution. The
main contribution of this chapter was to prove the convergence of the decentralized
optimization algorithm over time-varying networks, with time-varying communica-
tion delays, and noisy communication channels. Further, the convergence rate was
explicitly expressed in terms of the network parameters.

The convergence rate of the proposed algorithm was compared to previously
known algorithms with extensive numerical simulations. Besides the convergence
rate, the communication cost was a main concern, and it was shown that the
communication cost could be kept to a minimum.

7.2 Future Work

There are many natural extensions of the work presented in this thesis. The future
work can be divided into general formulations in the field of dynamical network
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systems, and specific problem formulations related to the problems studied in this
thesis. We summarize below some ideas for future research.

General Research Directions
The research field of dynamical network systems is extremely rich, with many in-
teresting open problems. The general research directions can be divided into two
tracks: the experimental and the theoretical.

From a theoretical perspective, one fundamental task is to develop general tools
for analyzing dynamical networks, that could be used across disciplines. In the
field of automatic control, feedback loops have long been of great interest. What
role does feedback loops play in the formation of network structures? How can
feedback loops that govern the evolution of networks be found? Can concepts such
as controllability and observability aid in the design of high performance dynamical
network systems?

With an abundance of practical applications, it would be interesting to work
with and analyze real-world data further, to validate the mathematical models.
For example studying community formation in social networks, and exploring the
interaction between the network structure and the information propagation through
the network.

Efficiency in Transportation Networks
A fundamental assumption in our work was that the actors want to collaborate,
which is not always the case in the highly competitive transportation market. We
showed that through collaboration, the global transportation system could improve
its efficiency, but it remains to design pricing mechanism such that collaboration
actually becomes profitable for every actor.

In the collaboration scenarios we considered, all vehicles were homogeneous,
and any vehicle could handle any transportation assignment. It could also happen
that the optimal solution involved a single vehicle operating continuously, where
we did not consider the strict laws for driver rest, maintenance stops for vehicles,
nor creating a fair distribution of assignments.

The efficiency measure was developed to be evaluated a-posteriori on historical
GPS traces, when the transportation routes were known. In practice, the trans-
portation demands are rapidly changing, thus it would be interesting to extend
and adapt this efficiency measure to handle incomplete information and stochastic
demand models.

The road transportation model considered can capture some realistic scenar-
ios, when there is only a single major transportation route. This model could be
extended to general topologies, starting with tree-shaped topologies, to capture a
wider range of transportation scenarios. Another extension is to allow vehicles to
handle multiple concurrent assignments, and coordinating multiple vehicles at the
distribution centers.
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Estimation in Anonymous Networks

We estimated two specific properties in the anonymous network framework. A
natural continuation is to ask what else can be computed or estimated in this
framework. We saw in the literature review that this problem has attracted some
attention, both with deterministic computing and using random number generation,
but our assumption on limited communication and computation further restricts
the problem. Specifically, what can be learned about the network topology besides
the size?

One of the reasons for estimating the network size was to detect network faults
that needs restorative actions. Further research is needed to study how to build
intelligent networks that automatically reconfigure themselves to be robust against
failures, while preserving the anonymity of the nodes.

It was shown that the accuracy could be improved by increasing the packet
size. An important question is to consider the quantization effects due to limited
number precision, and carry out a formal analysis of this effect. The next problem
would be to design an optimal alphabet which results in the highest precision per
bit transmitted. Some work in this direction has been carried out by Lucchese et al.
[2015].

A natural continuation would also consist of developing on-line algorithms for
tuning the estimation parameters, especially the packet size based on the current
performance requirements in the application.

We assumed that the communication was synchronized to epochs, but it should
be possible to relax this assumption. Either by introducing distributed clock syn-
chronization schemes, or by changing our algorithms to an event-triggered version.
This could be accomplished by assuming that any agent could initiate a new epoch
using a randomized time-out event. Could additional properties be estimated by
using the transient information while the consensus algorithm is converging to the
maximum?

Another research direction could be to study the robustness of this scheme
against different types of attacks. Either modeled as randomized noise or node
failures, or with malicious agents who are actively trying to influence the estimate
in a particular direction. In the current scheme, a single node which initializes its
vector with ones would destroy the estimation.

Topology Convergence in Peer-to-Peer Networks

We considered general time-dependent sampling rates, but an important question
is how to tune these probabilities. Could they be tuned on-line as topology changes
are detected?

Furthermore, we used uniform sampling among all peers, but some of the ran-
dom peer sampling services give biased samples, most notably those based on ran-
dom walks. What would the effect be of these biased samples, in particular if the
samples were generated by random walks within the same gradient overlay topol-
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ogy? What if the sampling strategy is further extended, so that nodes can share
their neighbor sets with their neighbors, how could that improve the convergence
performance?

Another property that we ignored, was the underlying physical network, where
the latency can be specified as a pairwise map. Thus, the utility value of a node
might not be a truly universal property, and the utility value could instead be
defined as a pairwise function describing the utility a node provides to a specific
other node.

Distributed Optimization via Dual Decomposition
We focused on optimization problems where the coupling between the subprob-
lems were in the objective functions. Another possibility is that the coupling is
in constraint functions, for example, when a set of independent multi-agents are
using a common, limited resource. The dual decomposition method already han-
dles constraint coupling by introducing Lagrange dual variables, so it should be a
straightforward procedure to add another set of dual variables for these constraints.
A future research topic is to study the convergence rate for this class of optimization
problems.

It was assumed that every package sent on the network will eventually arrive
to its destination. A common practice in network control is to drop packages to
avoid network congestion. Thus, a possible extension is to analyze the behavior of
the algorithms when packages can be lost in the network.

The optimization models assumed that all agents are computing and communi-
cating at synchronous time steps. An interesting extension is to develop, and an-
alyze, an asynchronous version of these distributed optimization algorithms. Also,
it was assumed that the dual variable λij was applied at the same time by agent i
and agent j, but this assumption should be possible to relax.

One of the most interesting applications for this optimization scheme is when the
coupling between the state variables coincides with the communication topology.
For example in multi-agent formation control, where each agent’s position depends
on the closest neighbors’ positions, which are within wireless communication dis-
tance. Thus, in this case no multi-hop communication would be necessary, and the
communication delays would be minimal. The problem includes determining an
optimal state partitioning when associating states with agents.

As outlined here, many open research problems remain, and optimization and
control in dynamical network systems continues to be an important research field.
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