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Abstract

Resilience is the ability to maintain acceptable levels of operation in the presence
of abnormal conditions. It is an essential property in industrial control systems,
which are the backbone of several critical infrastructures. The trend towards using
pervasive information technology systems, such as the Internet, results in control
systems becoming increasingly vulnerable to cyber threats. Traditional cyber se-
curity does not consider the interdependencies between the physical components
and the cyber systems. On the other hand, control-theoretic approaches typically
deal with independent disturbances and faults, thus they are not tailored to handle
cyber threats. Theory and tools to analyze and build control system resilience are,
therefore, lacking and in need to be developed. This thesis contributes towards a
framework for analyzing and building resilient control systems.

First, a conceptual model for networked control systems with malicious adver-
saries is introduced. In this model, the adversary aims at disrupting the system
behavior while remaining undetected by an anomaly detector The adversary is
constrained in terms of the available model knowledge, disclosure resources, and
disruption capabilities. These resources may correspond to the anomaly detector’s
algorithm, sniffers of private data, and spoofers of control commands, respectively.

Second, we address security and resilience under the perspective of risk man-
agement, where the notion of risk is defined in terms of a threat’s scenario, impact,
and likelihood. Quantitative tools to analyze risk are proposed. They take into ac-
count both the likelihood and impact of threats. Attack scenarios with high impact
are identified using the proposed tools, e.g., zero-dynamics attacks are analyzed
in detail. The problem of revealing attacks is also addressed. Their stealthiness is
characterized, and how to detect them by modifying the system’s structure is also
described.

As our third contribution, we propose distributed fault detection and isolation
schemes to detect physical and cyber threats on interconnected second-order linear
systems. A distributed scheme based on unknown input observers is designed to
jointly detect and isolate threats that may occur on the network edges or nodes.
Additionally, we propose a distributed scheme based on local models and measure-
ments that is resilient to changes outside the local subsystem. The complexity of the
proposed methods is decreased by reducing the number of monitoring nodes and
by characterizing the minimum amount of model information and measurements
needed to achieve fault detection and isolation.

Finally, we tackle the problem of distributed reconfiguration under sensor and
actuator faults. In particular, we consider a control system with redundant sensors
and actuators cooperating to recover from the removal of individual nodes. The
proposed scheme minimizes a quadratic cost while satisfying a model-matching
condition, which maintains the nominal closed-loop behavior after faults. Stability
of the closed-loop system under the proposed scheme is analyzed.
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Populär sammanfattning

Ett resilient system har förmågan att återhämta sig efter en kraftig och ovän-
tad störning. Resiliens är en viktig egenskap hos industriella styrsystem som ut-
gör en viktig komponent i många kritiska infrastrukturer, såsom processindustri
och elkraftnät. Trenden att använda storskaliga IT-system, såsom Internet, inom
styrsystem resulterar i en ökad sårbarhet för cyberhot. Traditionell IT-säkerhet
tar inte hänsyn till den speciella koppling mellan fysikaliska komponenter och IT-
system som finns inom styrsystem. Å andra sidan så brukar traditionell reglerteknik
fokusera på att hantera naturliga fel och inte cybersårbarheter. Teori och verktyg
för resilienta och cybersäkra styrsystem saknas därför och behöver utvecklas. Denna
avhandling bidrar till att ta fram ett ramverk för att analysera och konstruera just
sådana styrsystem.

Först så tar vi fram en representativ abstrakt modell för nätverkade styrsys-
tem som består av fyra komponenter: den fysikaliska processen med sensorer och
ställdon, kommunikationsnätet, det digitala styrsystemet och en feldetektor. Sedan
införs en konceptuell modell för attacker gentemot det nätverkade styrsystemet. I
modellen så beskrivs attacker som försöker undgå att skapa alarm i feldetektorn
men ändå stör den fysikaliska processen. Dessutom så utgår modellen ifrån att
den som utför attacken har begränsade resurser i fråga om modellkännedom och
kommunikationskanaler.

Det beskrivna ramverket används sedan för att studera resilens gentemot attack-
erna genom en riskanalys, där risk definieras utifrån ett hots scenario, konsekvenser
och sannolikhet. Kvantitativa metoder för att uppskatta attackernas konsekvenser
och sannolikheter tas fram, och speciellt visas hur hot med hög risk kan identifieras
och motverkas. Resultaten i avhandlingen illustreras med ett flertal numeriska och
praktiska exempel.
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Notation

R Set of real numbers
C Set of complex numbers
Z Set of integer numbers
Rm×n Set of matrices with m rows, n columns, and entries in R

∅ Empty set
|V| Cardinality of the set V
x ∈ Rnx Real-valued column vector of dimension nx

xi The i-th entry of the vector x
t Continuous-time instant, real-valued
k Discrete-time instant, integer-valued
x(t) Continuous-time vector variable
xk Discrete-time vector variable
x(i),k The i-th entry of the discrete-time vector xk
‖x‖p The p-norm of vector x, for p ≥ 1

x[0, N ] Discrete-time signal of xk from k = 0 to k = N

x(i), [0, N ] Discrete-time signal of x(i),k from k = 0 to k = N

Im (A) Range-space of matrix A
Ker (A) Null-space of matrix A
dim(Z) Dimension of the subspace Z
A⊗B Kronecker product of matrices A and B
A ≻ 0 Positive definite matrix A
A � 0 Positive semi-definite matrix A
vec (A) Vectorization of matrix A
tr(A) Trace of matrix A
A⊤ Transpose of matrix A
AH Hermitian conjugate of A ∈ Cn×m

‖A‖F Frobenius norm of matrix A, ‖A‖F =
√

tr
(
AHA

)

A† Moore-Penrose pseudo-inverse of A
ℜ (x) Real part of the complex number x ∈ C

xi





Chapter 1

Introduction

Feedback control is essential in modern societies, being a core component of elec-
tronic devices, vehicles, industrial plants, and large-scale critical infrastructures
such as the electric power network. The ubiquitous use of automatic control is
very much due to the technological developments in computation, actuation, and
sensing, together with a strong theoretical development of the field over the recent
decades (Åström and Kumar, 2014). The simplest instance of a feedback control
system consists of two blocks, as illustrated in Figure 1.1a: a physical plant, with
sensors measuring its relevant variables and actuators driving its behavior, and a
controller that computes the control signal to be applied to the plant. Such a repre-
sentation accurately captures the essence of control systems until the 1960s, when
feedback controllers were comprised of mechanical or analog electronic devices with
reliable sensor-to-controller and controller-to-actuator links.

The technological development during the digital era since the 1960s has led to
the increased use of digital controllers and communication networks in many control
applications, effectively transforming them into networked control systems (NCS),
as depicted in Figure 1.1b (Samad et al., 2007). The digital revolution led to several
opportunities to increase the overall efficiency of control systems, as well as their
successful use in many domains (Samad and Annaswamy, 2011). Using information
technology (IT) infrastructures, digital controllers, sensors, and actuators from the
low-level control layer could now be integrated with high-level supervisory layers,
giving birth to supervisory control and data acquisition (SCADA) systems. As il-
lustrated in Figure 1.2, the lower layers of SCADA systems consist of sensors and
actuators interfaced with programmable logic computers (PLC) at local stations,
or with remote terminal units (RTU) imbued with extended communication capa-
bilities at remote locations. Measurement data are collected by RTUs and PLCs
and transmitted to the higher layers of the SCADA system through heterogeneous
communication networks. Low-level control may be implemented in the PLCs or
RTUs, which receive supervisory commands and set-points from the higher levels.

In addition to facilitating communication between different hierarchical layers,
SCADA systems provide also other functionalities, such as human-machine inter-
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Plant

Controller

S2

S1

SensorsActuators

A1

A2

(a) Control system with ideal communication
links.

Plant

Controller

S2

S1

SensorsActuators

A1

A2

Communication
Network

(b) Control system with a communication net-
work.

Figure 1.1: Schematic of control systems with ideal and imperfect communication
links.

faces (HMI), workstations, historian databases, and integration with corporate IT
systems. These components have become an integral part of modern industrial
control systems (ICS), enabling an efficient and flexible operation of the physical
system. A typical ICS architecture is depicted in Figure 1.2.

Novel challenges surface with the tighter integration of IT in control systems and
the use of pervasive technologies, such as the Internet and wireless communication.
As the use of these technologies increase, their effects become more noticeable in the
closed-loop system behavior. To tackle problems such as packet losses and delays,
among many others, new theoretical foundations have been established over the
past years (Baillieul and Antsaklis, 2007; Hespanha et al., 2007). More recently, a
new concern has come into focus: that of security and resilience of control systems
against malicious adversaries (Samad et al., 2007; Rieger et al., 2009; Åström and
Kumar, 2014).

1.1 Threats Against Industrial Control Systems

There exist several threats to ICS, both physical and cyber, be they unintentional
or malicious. A key feature of a resilient control system is its ability to maintain
state awareness and acceptable performance under unexpected events (Rieger et al.,
2009). Failing to achieve such properties can have dire consequences, as illustrated
by the U.S.-Canada Northeastern blackout in 2003, which resulted in severe eco-
nomical losses (U.S.-Canada PSOTF, 2004). Although the blackout was triggered
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IT System
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A1 S1A2

Remote Station
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A3

S3
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Figure 1.2: Schematic of a typical ICS architecture with the SCADA and corpo-
rate IT systems. The corporate IT system is connected to the supervisory layer of
the SCADA system through firewalls. At the SCADA system’s supervisory level,
historian databases and software application servers enable the efficient operation
of the ICS. The workstation and HMI are used to configure and monitor the low-
level components, respectively. In the lower layer, local stations have programable
logic controllers (PLC), typically with wired communication capabilities. The PLC
receives measurements from sensors (Si) and controls the physical system through
actuators (Ai). A similar description applies to the remote station, where PLCs
are replaced with remote terminal units (RTU) with extended communication ca-
pabilities, e.g., wireless communication or wired Internet access. The layers within
the SCADA system are connected through heterogeneous communication networks,
using wired and wireless communications. The ICS may be connected through fire-
walls to external networks and systems, such as other ICS and remote stations.
(The figure is adapted from U.S. GAO (2004).)



4 Introduction

by natural events and malfunctioning monitoring algorithms, one may envision
comparable consequences resulting from deliberate threats against the system. To
demonstrate the possible impact of cyber threats on control systems, the Idaho Na-
tional Lab conducted the Aurora project, where a staged cyber attack on a diesel
generator was performed (Meserve, 2007). As a consequence of the cyber attack,
the mechanical vibrations of the generator substantially increased and resulted in
physical damage to the machine.

Security against cyber threats is a classical concern for IT systems (Bishop,
2002). Therefore, the security concern is expected to carry over to ICS, as they
increasingly rely on IT infrastructures. However, cyber security of ICS has not
been a major concern during the past couples of decades (Samad et al., 2007), for
which Krutz (2006) points a few reasons: Legacy SCADA systems were somewhat
isolated from external communication networks and were based on custom propri-
etary hardware and software, which conferred them a reasonable level of “security
by obscurity”. Additionally, security has been perceived as a low-priority domain
from an economical perspective, given the reduced number of ICS-related security
incidents reported over the last decades (U.S. GAO, 2004).

Recently, the awareness and concern over security of ICS has been increased.
Modern SCADA systems have moved towards the use of standard communication
technologies, to enable access to remote devices and to facilitate a smooth interface
between devices from different vendors. Consequently, the number of possible attack
points for malicious cyber agents to exploit have greatly increased. Another common
practice is the use of standard hardware and software platforms to decrease costs
and improve flexibility. New vulnerabilities of these standard platforms may be
discovered over their life-cycle, which greatly increases the risk of cyber threats to
a large number of SCADA systems. In fact, the number of reported ICS-related
security incidents has significantly increased over the recent years, as depicted in
Figure 1.3.

The best practices and techniques from IT security are a sound first approach
to increase the security and resilience of ICS. However, traditional IT security does
not consider the interdependencies between the physical components and the cyber
domain. A holistic approach is required to effectively handle the complex coupling
between the physical process and the IT infrastructure.

1.2 Motivational Examples

In the following, several examples are used to illustrate the importance of resilience
in control systems.

Malware tailored against ICS

Staged cyber attacks have succeeded in physically damaging generators in test
facilities (Meserve, 2007). Despite being a mock threat staged in a contained en-
vironment, it was one of the first “proofs of concept” for cyber attacks on ICS.
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Figure 1.3: Number of cyber security incidents in industrial control systems volun-
tarily reported to ICS-CERT over the fiscal years 2010 through 2013 (ICS, 2013).

Another evidence came from the search engine Shodan, created in 2009, which
finds electronic devices connected to the Internet (Matherly, 2009), such as routers,
printers, computers, and PLCs. Several ICS devices were found and located using
Shodan (Shefte et al., 2012), which raised concerns regarding the exposure of ICS to
the Internet and external threats (ICS-CERT, 2010). Since then, several advanced
threats targeting ICS were reported. Discovered in 2010, the Stuxnet malware was
designed to infiltrate SCADA systems with specific hardware and software compo-
nents (Falliere et al., 2011). The alleged aim of Stuxnet was to physically damage
heavy machinery like steam turbines and gas centrifuges present in process plants
by interfering with low-level actuators (Rid, 2011). The malware Duqu and Flame
were found in 2011 and 2012, respectively (Symantec, 2011, 2012). Some compo-
nents of these malware appears to be based on Stuxnet’s source code and were
aimed at espionage attacks, in an attempt to obtain sensitive information for facili-
tating future attacks. In 2013, Symantec discovered and monitored the actions of a
cyber espionage group named Dragonfly (Symantec, 2014), which targeted mainly
organizations within the energy sector and ICS software producers.

Out of all the malware threatening control systems, the one that sparked most
amazement and concern was Stuxnet, not only because it was the first publicly
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known malware targeting ICS, but also due to its great complexity and functional-
ities. In the example below, we revisit some of the details regarding Stuxnet.

Example 1.1

Stuxnet was discovered in 2010 and has been closely examined since then (Falliere
et al., 2011). It is the first known malware tailored to compromise PLC software
and it has raised several concerns due to its astonishing capabilities:

• four zero-day exploits (flaws previously unknown to the software developers);

• Windows rootkits (software to grant the malware with privileged rights and
hide its existence from detection software);

• first infection through USB drive;

• infected devices can spread the malware through local networks;

• peer-to-peer communication between infected devices;

• self-update capabilities using the Internet and peer-to-peer communications;

• remains dormant and continues spreading until a specific PLC software is
found;

• first known PLC rootkit;

• ability to modify PLC software and hide the modified code.

Further analysis of Stuxnet shed light on its main goal and operation, from which
plausible attack scenarios can be constructed. In particular, the attack scenario
described in Figure 1.4 has allegedly occurred in reality (Kushner, 2013). This
scenario illustrates the complex behavior of Stuxnet and the potential damage it
could have.

As concluded by Falliere et al. (2011) after a detailed analysis of the malware’s
capabilities and behavior, Stuxnet contains several interesting features: a resourceful
and knowledgeable adversary, who aims at covertly disrupting the physical system.
These features will be considered in several attack scenarios throughout this thesis.

False-data injection attack against power systems

Power transmission networks are complex and spatially distributed systems, as il-
lustrated in Figure 1.5. They are operated through SCADA systems and are comple-
mented by a set of application specific software, usually called energy management
systems (EMS), enabling state and measurement estimation and optimal operation
under safety and reliability constraints.

As discussed in Giani et al. (2009), there are several vulnerabilities in the
SCADA system architecture, see Figure 1.6. They include RTUs (A1 and A5),
communication networks between the RTUs and the control center (A2 and A6),
and the IT software and databases in the control center (A3). In fact, there are
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SCADA System

PLC
S1

A1

Corporate
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Communication
Network

External

(b) Covert sabotage.

Figure 1.4: Three stages of the Stuxnet attack scenario: infection (dark-red line),
data recording (orange line), and sabotage (red line). (a) Exploiting zero-day flaws,
Stuxnet is able to compromise computers through an infected USB drive. Once
a device is infected, Stuxnet attempts to update its code from the Internet. Un-
less the compromised device has the specific platform targeted by Stuxnet, the
malware remains dormant and continues spreading infection. Using compromised
digital certificates, Stuxnet is able to bypass firewalls and it continues spreading
itself through the local communication networks of the SCADA system. Stuxnet’s
peer-to-peer communication capabilities allows the malware to update itself, even
when the compromised device does not have direct access to the Internet. Once
the targeted PLC is infected, Stuxnet changes its operation mode. Using the PLC
rootkit, the malware modifies the PLC code to perform a disclosure attack and
record the received data. (b) After recording data for some time, Stuxnet begins
sabotaging the physical system through a disruption attack. While changing the
control signal sent to the actuators, Stuxnet hides the damage to the plant by
feeding the previously recorded data to the SCADA’s monitoring systems.
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Figure 1.5: The electricity transmission grid in the Baltic Sea Region. Figure pro-
vided courtesy of Nordregio (Source: www.nordregio.se), Designer: P. G. Lind-
blom.

www.nordregio.se
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Figure 1.6: Schematic diagram of the electric power transmission network and its
SCADA system with possible IT vulnerabilities. Measurements taken from the
RTUs are sent through the SCADA system to the control center. The received mea-
surements are used by several EMS applications, which provide state-awareness and
control recommendations to human operators. The human operators decide the ap-
propriate control actions and apply them through the SCADA system. (The figure
is adapted from U.S.-Canada PSOTF (2004).)

several reports regarding cyber attacks on SCADA systems operating power net-
works (Gorman, 2009; CBSNews, 2009).

The supervisory operation of some power networks is market-driven, meaning
that the prices paid to power producers vary according to the current estimated
state of the system and the available resources. The California electricity crisis in
2000–2001 (FERC, 2003), a consequence of both a flawed market design and covert
market manipulations, shows that there may exist economic incentive to tamper
with the power system operation.

Protecting critical infrastructures such as power transmission networks raises
several challenges. Given the large scale of these systems, there exist numerous
potential attack points that may be compromised by adversaries. The components
of such systems have long life-cycles and, consequently, there exists plenty of legacy
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Figure 1.7: Power network considered in Example 1.2. The adversary targets the
measured power flow along the red dashed transmission line. To covertly corrupt the
target measurement, the adversary performs a coordinated attack on the highlighted
substations.

equipment with no cyber protection capabilities. Therefore, efficient approaches to
security and resilience are required for these systems. Their importance is illustrated
with the following example.

Example 1.2

In this example, a false-data injection attack is carried out on a SCADA EMS
software, where the adversary corrupts the sensor measurements gathered by the
SCADA system. The EMS software has been configured for the power transmission
network presented in Figure 1.7. This network consists of 14 substations and the
bus-branch model has 27 buses and 40 branches. Several measurements are available
at each substation and are kept in the software database. Specific EMS components
are present, such as the state estimator (SE), bad-data detection (BDD), and con-
tingency analysis (CA), as described by Shahidehpour et al. (2005).

The adversary desires to covertly corrupt the active power flow measurement
from the tie-line between the substations TROY and BLOO. To remain undetected,
the adversary must inject false measurements into the SCADA system in a coor-
dinated way, so that the corrupted measurements conform with the model and
topology of the power network. In essence, the false-data injected attack remains
undetected if the corrupted measurements mimic a feasible state of the power net-
work. Using a simplified network model, the adversary designs a coordinated attack
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Table 1.1: Results from the stealthy attack for large bias from Example 1.2

Target bias, False value Estimate #BDD #CA
(MW) (MW) (MW) Alarms Alarms

0 −14.8 −14.8 0 2
50 35.2 36.2 0 2
100 85.2 86.7 0 10
150 135.2 137.5 0 27
200 185.2 — — —

that corrupts the target measurement and a few additional ones. This attack only
requires the corruption of 7 measurements in total, which are taken from 5 neigh-
boring substations, namely TROY, BLOO, JUNE, MONR, and CROS. Since these
corrupted measurements mimic a feasible set of power flows between the substa-
tions, the attack bypasses detection.

Table 1.1 shows the results obtained for large a bias injected in the target mea-
surement, when the attack is performed sequentially with steps of 50MW. Observe
that the covert attack is successful, with no BDD alarm triggered up to a bias of
150MW, beyond which the SE no longer converges. To better understand the size of
this bias, note that the nominal value of the targeted tie-line is 260MW. Thus the
attack is able to induce a bias of more than 50% of the nominal value, which reveals
that the SCADA EMS software is indeed sensitive to covert false-data injection at-
tacks. Furthermore, the number of warnings given by the CA component increases
with the size of the attack. The increased number of CA warnings could lead the
operator to take corrective actions, as the CA warnings indicate that the system
does not meet the reliability criteria. On the other hand, the optimal power flow
(OPF) algorithm would give the operator misleading recommendations, computed
based on the compromised state estimate.

The attack scenario from the example shows that a large-scale system may be
compromised with only a handful of compromised measurements. Deploying pro-
tective resources in these systems requires the identification of the most vulnerable
devices in an efficient manner.

1.3 Problem Formulation

This thesis addresses the problem of cyber security and resilience in networked con-
trol systems. Traditional cyber security does not consider the interdependencies be-
tween the physical components and the cyber systems. On the other hand, control-
theoretic approaches typically deal with independent disturbances and faults, thus



12 Introduction

Plant
Physical

Feedback
Controller

Anomaly
Detector

Communication
Network

Communication
Network

uk + ∆uk yk

yk + ∆yk
uk

Alarm

∆yk
∆uk

Figure 1.8: Schematic of a networked control system with a communication network
that is vulnerable to adversaries.

they are not tailored to handle cyber threats. Theory and tools to analyze and build
control system resilience are, therefore, lacking and in need to be developed.

Throughout the thesis we consider a reference architecture of networked con-
trol systems with the following four components: the physical plant with sensors
and actuators, the communication networks, the digital feedback controller, and
the anomaly detector. Such a networked control system under false-data injection
attacks is depicted in Figure 1.8. The feedback controller is responsible for control-
ling the plant, so that it complies with performance and safety requirements. To
that end, it receives the measurement signal sent by the sensors and it computes
a suitable control signal that is transmitted to the actuators. The anomaly detec-
tor monitors the system to detect possible deviations from the nominal behavior
and, if needed, triggers an appropriate corrective action. To monitor the system,
the anomaly detector relies on an accurate model of the plant, the control action
computed by the controller, and the measurements received from the sensors. All
the data exchange between the plant, the controller, and anomaly detector is per-
formed through the communication network. An adversary potentially injects false
data ∆uk and ∆yk in the control command received by the actuators, ũk, and in
the measurements received by the controller, ỹk, respectively.

The thesis focuses on the following groups of questions related to the networked
control system in Figure 1.8:

Q1 Reference Architecture: What core components should be considered in
a reference architecture for cyber-secure and resilient networked control sys-
tems?

Q2 Modeling Framework: How can a malicious adversary be modeled from a
control-theoretic perspective? What is the right level of modeling detail?
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Figure 1.9: Summary of the thesis’ contributions aligned with the three main actions
to increase resilience: risk analysis, threat mitigation, and threat detection.

Q3 Cyber Security Metrics: What metrics could be used to assess and com-
pare threats? How can they be used to prioritize attack scenarios and assess
the effectiveness of defensive actions?

Q4 Defensive Actions: What tools and actions can be devised to increase the
cyber security and resilience of control systems? Can such methods be imple-
mented and used in real-time?

These questions are tackled throughout this thesis, contributing towards a frame-
work to analyze, identify, and evaluate the consequences of vulnerabilities in control
systems, as well as to propose and devise effective protection schemes.

1.4 Thesis Outline and Contributions

This thesis is the compilation of results presented or submitted to peer-reviewed
scientific venues. The contributions are illustrated in Figure 1.9 and summarized as
follows.

In Chapter 2, the existing frameworks for fault-tolerant control and IT security
are revisited, which tackles Q1 by considering the literature. Based on these frame-
works, a common defense methodology to ensure security and resilience is identified.
It builds upon three main functionalities: risk analysis, threat mitigation, and threat
detection. The contributions of each chapter are aligned with them, as depicted in
Figure 1.9.

Chapter 3 addresses Q2 by establishing a modeling framework to capture the
essence of attack scenarios with resourceful and knowledgeable adversaries that
have the specific goal of covertly disrupting the physical system. The models are
used to describe and analyze several attack scenarios.

Chapter 4 and Chapter 5 build upon the architecture proposed in Chapter 3.
Risk analysis is the main focus of Chapter 4, where cyber security metrics are pro-
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posed, answering Q3. The metrics can be used to decide which assets to protect in
order to mitigate threats and, thus, increase security. Chapter 5 considers a par-
ticular type of covert attack that has been identified as a high-impact attack in
Chapter 4. Several schemes to reveal and detect such threats are proposed address-
ing Q4. The results and tools developed in these two chapters are envisioned to be
used offline in a centralized manner.

In Chapter 6 and Chapter 7, we tackle Q4 by devising distributed tools that may
be used in real-time to improve resilience. Chapter 6 deals with distributed methods
to detect threats, while Chapter 7 proposes a distributed scheme to remove defective
devices and add new components while minimizing the loss of performance.

In the following, we provide more details regarding the contents of each chapter,
and list the collection of papers they are based on. The order of the authors’ names
reflects the work load of writing the publications, where the first and second authors
are the main scientific contributors for the results.

Chapter 2: Background

The chapter begins with a brief background on networked control systems, followed
by a brief survey of fault-tolerant control and IT security frameworks. A short dis-
cussion of the differences and similarities between fault-tolerant control and resilient
control is also presented, followed by a summary of recent work on cyber-secure and
resilient control systems. The chapter concludes with a description of the experi-
mental setups used in the thesis.

Chapter 3: A Modeling Framework for Constrained Malicious

Adversaries

In this chapter, we consider a typical networked control architecture under both
cyber and physical attacks. First, a generic model for malicious adversaries is dis-
cussed, where the adversary’s intent is to disrupt the system behavior while re-
maining undetected. The adversary is constrained in terms of the available model
knowledge, disclosure, and disruption capabilities. An attack-scenario space is in-
troduced, with dimensions corresponding to these resources, in which several attack
scenarios are placed and compared.

Secondly, it is shown that attack scenarios corresponding to denial-of-service,
replay, zero-dynamics, and bias injection attacks on linear time-invariant control
systems can be analyzed using this framework. Experimental setups are used to
illustrate the attack scenarios, their consequences, and potential counter-measures.

This work is based on the following publications.

A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. 2014. A secure
control framework for resource-limited adversaries. Automatica. To appear.
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A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson. 2012. Attack
models and scenarios for networked control systems. In Proceedings of the 1st
International Conference on High Confidence Networked Systems, CPSWeek.

A. Teixeira, G. Dán, H. Sandberg, and K. H. Johansson. 2011. Cyber security
study of a scada energy management system: stealthy deception attacks on
the state estimator. In Proceedings of the 18th IFAC World Congress.

Chapter 4: Cyber Security Metrics for Networked Control

Systems

Using the modelling framework outlined in Chapter 3, in Chapter 4 we address cy-
ber security of networked control systems under the perspective of risk management.
The notion of risk is defined in terms of a threat’s scenario, impact, and likelihood.
Emphasis is given to the assessment and treatment of risk. In particular, quantita-
tive tools to analyse the risk of threats of static and dynamic systems are presented.
First, we propose a security metric to quantify the likelihood of false-data injection
threats on static electric power system. Secondly, we consider dynamic systems and
propose security metrics to analyse both the likelihood and impact of threats.

The proposed security metrics aim at quantifying the risk of attack scenarios
for the present configuration and model of the system. As such, these methods are
not executed based on real-time data. The outcome from the security metrics may
be used for risk mitigation, which is also discussed and illustrated on static and
dynamics systems.

This work is based on the following publications.

A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson. 2014. Secure
control systems: a quantitative risk management approach. IEEE Control
System Magazine. To appear.

A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson. 2013. Quantifying
cyber-security for networked control systems. In Danielle C. Tarraf, editor,
Control of Cyber-Physical Systems, number 449 in Lecture Notes in Control
and Information Sciences, pages 123–142. Springer International Publishing.

A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. S. Sastry. 2010.
Cyber security analysis of state estimators in electric power systems. In Pro-
ceedings of the 49th IEEE Conference on Decision and Control.

H. Sandberg, A. Teixeira, and K. H. Johansson. 2010. On security indices for
state estimators in power networks. In Proceedings of the First Workshop on
Secure Control Systems, CPSWeek.



16 Introduction

Chapter 5: Revealing Stealthy Attacks in Networked Control

Systems

In Chapter 5, the problem of revealing stealthy data-injection attacks on networked
control systems is addressed. In particular, we consider the scenario where the
adversary performs zero-dynamics attacks on the system. First, we characterize
and analyze the stealthiness properties of these attacks for linear time-invariant
systems. Then, we tackle the problem of detecting such attacks by modifying the
system’s structure. Our results provide necessary and sufficient conditions that the
modifications should satisfy in order to detect the attack. The results and proposed
detection methods are illustrated through numerical examples.

This work is based on the following paper.

A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. 2012. Reveal-
ing stealthy attacks in control systems. In Proceedings of the 50th Annual
Allerton Conference on Communication, Control, and Computing.

Chapter 6: Distributed Fault Detection and Isolation in

Networked Systems

The ability to maintain state awareness in the face of unexpected and unmodeled
errors and threats is a defining feature of a resilient control system. Therefore, Chap-
ter 6 considers physical and cyber threats on networked systems and distributed
fault detection and isolation (FDI) schemes. The networked system is composed
of interconnected second-order linear time-invariant systems. The subsystems are
represented by nodes in a graph, while the edges correspond to the interconnections
between subsystems.

Considering threats that may occur on the nodes or edges, we propose a dis-
tributed scheme based on unknown input observers (UIO) to jointly detect and
isolate these threats. It is proved that, for these networked systems, one can con-
struct a bank of UIO and use them to detect and isolate threats on nodes and
edges through a distributed implementation. Moreover, the importance of certain
network measurements is shown by providing infeasibility results with respect to
available measurements and threats under consideration.

As our second contribution, we analyze the behavior of the proposed scheme
under model uncertainties caused by the addition or removal of edges. We propose
a novel distributed FDI scheme based on local models and measurements that is
resilient to changes outside of the local subsystem and achieves fault detection, as
well as fault isolation.

Our third contribution addresses the complexity reduction of the distributed
FDI method by characterizing the minimum amount of model information and
measurements needed to achieve FDI and by reducing the number of monitoring
nodes. The proposed methods can be fused to design a scalable and resilient dis-
tributed FDI architecture that achieves local FDI despite unknown changes outside
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the local subsystem. The proposed approach is illustrated by numerical experiments
on the IEEE 118-bus power network benchmark.

This work is based on the following publications.

A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. 2014. Distributed
fault detection and isolation resilient to network model uncertainties. IEEE
Transactions on Cybernetics. To appear.

I. Shames, A. Teixeira, H. Sandberg, and K. H. Johansson. 2012. Distributed
fault detection and isolation with imprecise network models. In Proceedings
of the American Control Conference.

I. Shames, A. M. H. Teixeira, H. Sandberg, and K. H. Johansson. 2011. Dis-
tributed fault detection for interconnected second-order systems. Automatica,
47(12):2757–2764.

I. Shames, A. M. H. Teixeira, H. Sandberg, and K. H. Johansson. 2010. Dis-
tributed Fault Detection for Interconnected Second-Order Systems with Ap-
plications to Power Networks. In Proceedings of the First Workshop on Secure
Control Systems, CPSWeek.

A. Teixeira, H. Sandberg, and K. H. Johansson. 2010. Networked control sys-
tems under cyber attacks with applications to power networks. In Proceedings
of the American Control Conference.

Chapter 7: Distributed Reconfiguration in Networked Control

Systems

In this chapter, we address the problem of distributed reconfiguration of networked
control systems under the faulty sensors and actuators. In particular, we consider
systems with redundant sensors and actuators cooperating to recover from the
faults. Reconfiguration is performed while minimizing quadratic estimation and con-
trol costs. A model-matching condition is imposed on the reconfiguration scheme,
in order to maintain the nominal closed-loop behavior. It is shown that the re-
configuration and its underlying computation can be distributed. Stability of the
closed-loop system under the distributed reconfiguration scheme is analyzed. The
approach is illustrated in a numerical example.

This work is based on the following publication.

A. Teixeira, J. Araújo, H. Sandberg, and K. H. Johansson. 2013. Distributed
actuator reconfiguration in networked control systems. In Proceedings of
the 4th IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NecSys).
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Chapter 8: Conclusions and Future Work

A summary of the thesis contributions is given and future research directions are
discussed.

Other contributions

The following publications by the author had a significant influence on some of the
contributions, but are not covered in the thesis.

E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. 2014. Optimal param-
eter selection for the alternating direction method of multipliers (ADMM):
quadratic problems. IEEE Transactions on Automatic Control. To appear.

E. Ghadimi, A. Teixeira, M. Rabbat, and M. Johansson. 2014. The ADMM
algorithm for distributed averaging: convergence rates and optimal param-
eter selection. In Proceedings of the 48th Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA. To appear.

M. Juelsgaard, A. Teixeira, M. Johansson, R. Wisniewski, and J. D. Bendt-
sen. 2014. Distributed coordination of household electricity consumption. In
Proceedings of the IEEE Multi-conference on Systems and Control, Antibes,
France.

J. Araújo, A. Teixeira, E. Henriksson, and K. H. Johansson. 2014. A down-
sampled controller to reduce network usage with guaranteed closed-loop per-
formance. In Proceedings of the 53rd IEEE Conference on Decision and
Control. To appear.

A. Teixeira, G. Dán, H. Sandberg, R. Berthier, R.B. Bobba, and A. Valdes.
2014. Security of smart distribution grids: Data integrity attacks on integrated
volt/VAR control and countermeasures. In Proceedings of the American Con-
trol Conference.

F. Farokhi, A.M.H. Teixeira, and C. Langbort. 2014. Gaussian cheap talk
game with quadratic cost functions: When herding between strategic senders
is a virtue. In Proceedings of the American Control Conference.

A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson. 2013.
Optimal scaling of the ADMM algorithm for distributed quadratic program-
ming. In Proceedings of the 52nd IEEE Conference on Decision and Control.

I. Shames, A.M.H. Teixeira, H. Sandberg, and K.H. Johansson. 2012. Fault
detection and mitigation in Kirchhoff networks. IEEE Signal Processing Let-
ters, 19(11):749–752.
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Chapter 2

Background

Resilience is the ability to maintain acceptable levels of operation in the presence of
abnormal conditions. Robust and fault-tolerant frameworks have been designed to
ensure resilience with respect to disturbances and faults. However, fault-tolerance
is not enough to design resilient systems: the ability to secure the system against
malicious adversaries is also required. Although there is a vast literature regarding
security of IT systems, the same cannot be said for control systems.

In this chapter, we revisit some of the main concepts and tools pertaining re-
silient networked control systems that are used throughout the thesis. First, we
present a brief summary of recent developments in the area of networked control
systems, which are described and modeled in more detail in Chapter 3. By high-
lighting potential benefits and tackling many problems of using communication
networks for control, the field of networked control systems has contributed to the
pervasive use of IT infrastructures in safety-critical control systems. This trend
leads to challenges regarding cyber security and resilience.

Second, we proceed with an overview of the classical frameworks for fault-
tolerant control and IT security, followed by a comparison of fault-tolerant control
and resilient control approaches. A succinct review of recent related work on cyber-
secure control is also provided, to serve as non-exhaustive list of problems that
have been tackled in the emerging and dynamic field of cyber-secure and resilient
networked control systems. The chapter concludes with a brief description of the
main applications and experimental setups considered in the thesis.

2.1 Networked Control Systems

The technological developments in computer and communication technologies trig-
gered several paradigm shifts in control systems over the last decades. Until the
1960s, feedback controllers were mostly comprised of mechanical or analog elec-
tronic devices that exchanged analog measurements and control signals with the
plant through dedicated wired media (Åström and Kumar, 2014). At the time, many
control challenges dealt with stability and regulation problems. The digital revolu-
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tion was already ongoing, and it soon reached a level of maturity that led to the
use of digital computers and communication networks in many control applications.
The use of digital technologies enabled the integration of multiple sensors and ac-
tuators, which communicated with the controller through shared wired media. This
new paradigm raised several novel challenges, such as digital controller design, data
sampling, and state estimation, which were addressed by the modern control the-
ory. During the 1970s, digital controllers and communication infrastructures were
developed for spatially-distributed systems (Samad et al., 2007), which are now an
integral part of SCADA systems. Initially, these systems used proprietary hardware,
software, and wired communication technologies, making them closed to external
networks and hard to interface with solutions from other vendors. Therefore, given
the natural “security through obscurity” of these systems, cyber security was not a
main concern (Samad et al., 2007).

The further technological advances since the 1970s prompted a pervasive use of
IT infrastructures in many engineered systems. Communication technologies were
be standardized (Galloway and Hancke, 2013), leading to the proliferation of proto-
cols such as FieldBus and CAN, commonly used in SCADA and automotive systems,
respectively. “Security through obscurity” became outdated, as details of communi-
cation protocols became openly available. In parallel, wireless technologies, such as
cellular communications, were under active development in the 1970s (Åström and
Kumar, 2014). Devices with wireless communication capabilities are suitable for op-
erating in remote locations, given their reduced installation cost compared to wired
solutions. Therefore, wireless devices became an integral component of SCADA
solutions for large-scale spatially-distributed systems, such as electric power net-
works. On the other hand, wireless communications are naturally more vulnerable
to external adversaries than wired technologies, since the communication medium
is easily accessible.

These recent technological developments led to two main research directions
within the controls community (Baillieul and Antsaklis, 2007), which are revisited
below. The first deals with the effects of unreliable communication technologies
in systems controlled over communication networks, while the second leverages on
communication networks to distributedly control and monitor large-scale systems.
Later, we give an overview also on a third research direction that is currently
emerging, namely, to address the increased exposure to cyber threats that stems
from the use of pervasive and open IT infrastructures.

2.1.1 Control over Communication Networks

Digital controllers and digital communication networks, through which measure-
ments and control signals are transmitted, have been present in industrial systems
for several decades (Åström and Wittenmark, 1997). Initially, the digital devices
were connected through reliable wired communication networks, with few or no
data losses (Samad et al., 2007). Due to the high wiring costs, the communication
medium was shared between all the devices in the network, which caused delays in
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the data exchange. As such, the main concern until the early 1990s was the effect
of varying delays on the control system performance (Richard, 2003).

As the computational and communication hardware cost is reduced, wireless
devices with low-cost computational capabilities become an appealing choice for
spatially-distributed control systems. However, wireless communication networks
have characteristics and inherent limitations that may hinder the control perfor-
mance. The design of control systems have recently addressed several of these issues,
for instance, packet losses (Gupta et al., 2007), limited data-rate (Ishii and Francis,
2002), and out-of-order packets (Bar-Shalom, 2002). However, approaches focusing
solely on controller design may prove insufficient, when the time-scales of control
systems and communication networks become closer. In such cases, the inter-play
between the control system’s sampling time and the communication networks pa-
rameters becomes more significant and cannot be neglected. Different approaches
have been put forward to tackle this challenge, such as the use of event-triggered
sampling (Wang and Lemmon, 2011), co-design of controller and communication
network (Demirel et al., 2014), and wireless medium access mechanisms (Ramesh
et al., 2013), to name a few examples.

2.1.2 Control of Networked Systems

The challenge of controlling large-scale interconnected systems has been addressed
since the 1970s, such as the hierarchical and decentralized control frameworks (Sil-
jak, 1991; Lunze, 1992). These frameworks considered spatially distributed physical
systems with a sparse structure, e.g., electric power networks. A typical approach
is to decompose the global system into a set of smaller interconnected systems, for
which local controllers are designed (Siljak, 1991). Apart from decomposing the
system, one of the main challenges of decentralized control is to design the local
controllers so that the stability and performance of the overall system are guaran-
teed.

The use of wireless communication networks in control systems led to new pos-
sibilities and problems. By using communication networks, the local controllers
became able to communicate and exchange information with each other, trig-
gering a shift towards the distributed control framework depicted in Figure 2.1.
Some of the challenges have been addressed, such as the design of distributed
controllers (Bamieh et al., 2002; Langbort et al., 2004), distributed state estima-
tion (Khan and Moura, 2008), and distributed fault detection (Ferrari et al., 2009),
among others.

In addition to the challenges from the decentralized control, new opportunities
came to light with the distributed control approach. Once physically-decoupled
systems become coupled through controllers and communication networks, the
structure of the network plays an important role in the behavior of the global
system. Such observation contributed to a large body of research with direct ap-
plication to the behavior of complex networks (Barrat et al., 2008), motion of animal
groups (Nabet et al., 2009), and multi-agent systems and cooperative robotics (Olfati-
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Figure 2.1: Schematic of a distributed control architecture.

Saber et al., 2007; Qin et al., 2012), among others. Chapter 6 relates to the latter,
by developing schemes to monitor large-scale multi-agent systems in the presence
of faults. Likewise, the topic of multi-agent systems is also considered in Chapter 7,
where networks of intelligent sensors and actuators cooperate to recover from faults.

2.1.3 Cyber Security in Networked Control Systems

The recent developments in control over communication networks and control of
networked systems may be considered as initial steps towards future systems, where
cyber and physical components are tightly coupled and intertwined. A particular
example is the Internet-of-Things vision (Atzori et al., 2010), where multiple het-
erogeneous devices are able to communicate and interact with each other to achieve
common goals. This vision builds on the maturity of wireless technologies and em-
bedded computational hardware platforms. By embedding low-cost hardware in
sensors, actuators, and other devices in the physical environment, they can be used
to take automatic decisions based on information exchanged locally through com-
munication networks.

However, as illustrated in Figure 2.2, each communication link and device with
communication capabilities may be vulnerable to cyber attacks from malicious and
knowledgeable adversaries. Therefore, the use of IT platforms increases the exposure
of networked control systems to vulnerabilities and cyber threats, which leads to
several challenges regarding cyber security and resilience. In the following, we review
some of the existing work in this area. In particular, Section 2.2 describes fault-
tolerant control. Similarly, Section 2.3 discusses the IT security framework to handle
cyber threats in traditional IT systems. Their shortcomings are briefly discussed
in Section 2.4, where these methodologies are integrated together as a possible
framework to design cyber-secure and resilient networked control systems.
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Figure 2.2: Schematic of a distributed control architecture under cyber and physical
threats.

2.2 Fault-Tolerant Control Systems

Performance, reliability, and safety are essential properties of control systems, spe-
cially in safety-critical applications such as aircrafts, automotive industry, and in-
dustrial robotics. These systems have high hardware redundancy to ensure a reli-
able operation, possessing sets of redundant actuators and sensors. Managing the
redundancy of the system is crucial to achieve safety and reliability. In the 1970s,
the proliferation of digital computers reached the aircraft industry, leading the
way for fly-by-wire systems (Fly, 1973). The use of digital computers in aircrafts
also enabled the design of automatic systems to detect hardware failures (Willsky,
1976) and to efficiently manage redundancy and reconfigure the system (Megna
and Szalai, 1977). The detection and reconfiguration mechanisms are core compo-
nents of the fault-tolerant control architecture depicted in Figure 2.3 (Zhang and
Jiang, 2008). This fault-tolerant control architecture will be used as a reference
architecture throughout the thesis. Fault detection and isolation methods for large-
scale dynamic models are studied in Chapter 6, while a distributed reconfiguration
mechanism is outlined in Chapter 7.

The problem of fault-tolerant control has been extensively addressed since the
1970s, see Patton (1997); Zhang and Jiang (2008) and references therein. The fol-
lowing subsections provide a general overview of model-based fault diagnosis meth-
ods (Chen and Patton, 1999; Ding, 2008; Hwang et al., 2010) and fault-tolerant
control approaches (Zhou et al., 1996; Zhang and Jiang, 2008).
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Figure 2.3: Fault-tolerant control architecture. The fault diagnosis component mon-
itors the system for faults. The detection of faults triggers actions from the recon-
figuration mechanism. Using the fault diagnosis information (dotted line), the re-
configuration mechanism modifies the controller and the plant’s structure (dashed
lines) to maintain adequate levels of performance.

2.2.1 Model-Based Fault Detection and Isolation

The objective of fault detection is to assess whether the system is in nominal be-
havior (no faults), or in an abnormal behavior (with faults). In model-based fault
detection, the nominal behavior of the system can be predicted based on plant mod-
els and inputs. The basic principle in model-based fault detection is to compare the
predicted and real system trajectories, obtaining the so-called residue, as illustrated
in Figure 2.4. The system is declared faulty if there is a significant mismatch indi-
cated by the residue signal. Therefore, one important issue in fault detection is the
residue evaluation (Hwang et al., 2010). The objective of this evaluation is to decide
whether or not a fault is present, for a given residue signal. In deterministic systems,
residue evaluation may be performed by comparing the norm of the residue signal
against a threshold chosen to ensure robustness to uncertainties (Ding, 2008). In
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Figure 2.4: Model-based fault detection scheme. The plant model and inputs are
used to estimate the output signal. The mismatch between the actual output and
its estimate is evaluated to detect faults.

stochastic systems, the statistical model of the residue signal can be used to design
optimal evaluation schemes in the form of hypothesis tests, for instance the general-
ized likelihood ratio test, sequential probability ratio test, and CUSUM (Basseville
and Nikiforov, 1993; Hwang et al., 2010).

Residue generation

Hwang et al. (2010) give an overview of the several approaches to model-based
fault detection, isolation, and recovery. Regarding fault detection, one of the main
problem is the computation of the residue signal, i.e., a signal quantifying the
mismatch between the real and predicted outputs. This is particularly important in
the presence of measurement and process noise, unknown disturbances, and model
uncertainties. A widely used class of model-based residue generation schemes is the
observer-based approach (Patton and Chen, 1997). In this approach an observer
is designed to estimate the state and output of the plant, which is then compared
to the real plant output to generate the residue. Some examples are used next to
illustrate the main concepts behind model-based fault detection and isolation.

Example 2.1

Consider the static model

y = Cx+Bu + Ff =







1 0

0 1

1 1






x+Bu+ Ff,

where the matrices C, B, and F are known, y is the set of measurements, x is the
unknown state, u is the known control input, and f is a possible fault. Moreover,
note that the matrix C has full column rank. Consider the nominal fault-free case
where one has f = 0. An observer-based approach to generate a residue is to
estimate the state x through linear least-squares, yielding x̂ = (C⊤C)−1C⊤(y−Bu).
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This estimate can then be used to generate the following residue

r = y −Bu − Cx̂ = (I − C(C⊤C)−1C⊤)(y −Bu).

Note that, in the faulty case f 6= 0, we have r = (I−C(C⊤C)−1C⊤)f . This residue
can detect faults f only if they do not satisfy the model, i.e. f 6∈ Im (C).

The former example illustrated an observer-based method for a linear static
system. Similar approaches exist for dynamical systems as well, using for instance
full-order observers (Patton and Chen, 1997) or Kalman filters (Chow and Willsky,
1984). In the presence of additional uncertainties as unknown disturbances, other
techniques must be employed. Examples of such techniques include robust observers
compensating the disturbance effect (Douglas and Speyer, 1995), optimization-
based observers mitigating the disturbance effects while maximizing the sensitivity
to faults (Chung and Speyer, 1998), and unknown input observers (UIO) that are
able to completely decouple the state estimate from disturbances (Chen et al., 1996).
The UIO approach is depicted in the next example and will be used in Chapter 6.

Example 2.2

Consider the previous example, but with an unknown disturbance and no fault

y = Cx+Bu+Dd =







1 0

0 1

1 1






x+Bu +







0

0

1






d,

where d is a scalar disturbance. To obtain a residue decoupled from d, one can
pre-multiply the measurements by P = I −D(D⊤D)−1D⊤, resulting in w = P (y−
Bu) = PCx + PDd = PCx. If C̃ = PC is full-column rank, the disturbance
decoupled residue can be computed as

r̃ = w − ŵ = (I − C̃(C̃⊤C̃)−1C̃⊤)P (y −Bu) = (I − C̃(C̃⊤C̃)−1C̃⊤)PCx.

The UIO is a dynamic equivalent to this example.

In addition to fault detection, it is useful to locate the faulty component in the
system, so called fault isolation (Ding, 2008; Hwang et al., 2010). Fault isolation
is usually a harder problem than fault detection and may require additional model
knowledge. Since for fault isolation one needs to distinguish between different faults,
several models are required, as indicated for two faults in Figure 2.5.

A common approach is to constrain the design of the residue generator, such
that the residues have a certain structure facilitating isolation. Possible methods
include the Beard-Jones filter, designed so that each fault excites the residue in a
given direction, or the structured residues approach, where a bank of observers is
jointly designed to ensure isolation. Two particular cases of the structured residues
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Figure 2.5: Model-based fault isolation scheme.

approach are the dedicated observer scheme where each observer is sensitive to only
one fault, and the generalized observer scheme where each observer is sensitive to
all but one fault. The following example illustrates the latter method.

Example 2.3

Consider the static model in Example 2.1 with three faults

y = Cx+Bu+ Ff+ =







1 0

0 1

1 1






x+Bu+







1 0 0

0 1 0

0 0 1













f1

f2

f3






,

where f1, f2, and f3 are scalar faults. Assume only a single fault occurs at a time.
The generalized observer scheme is used to isolate the faults where three residues are
designed, each sensitive to all but one fault. Denoting r1 as the residue insensitive
to f1, f1 could be treated as a disturbance and r1 generated using the approach in
Example 2.2. Repeating the procedure for r2 and r3, a bank of residues is obtained
with the following sensitivity table

f1 f2 f3

r1 0 1 1

r2 1 0 1

r3 1 1 0

where 1 (0) denotes that the residue is sensitive to (decoupled from) a given fault.
The faults can thus be isolated once they are detected. The generalized observer
scheme will be used in Chapter 6 for fault isolation in large-scale dynamical systems.

2.2.2 Fault-Tolerant Control

The different methodologies to achieve fault-tolerant control can be broadly classi-
fied as being either passive or active (Zhang and Jiang, 2008). The set of passive
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methods do not use real-time information regarding the fault. Instead, these meth-
ods restrict their attention to a set of faults that can be characterized and modeled
offline. Using these models, the controller is designed so that it mitigates any fault
in the considered set. On the other hand, active approaches use real-time fault
information to react to faults, such as in the methods described previously. The
real-time information regarding the fault can be used to reconfigure the control
system in a suitable way.

In the following, we describe some of the concepts behind passive and active
fault tolerant control schemes. First, the robust control problem is described and
mapped onto the class of passive approaches. Later, reconfigurable control schemes
are discussed as part of the active approaches.

Robust control approach

In the classical control design problem, the main objective is to stabilize the system
while attenuating disturbances and noise, under the assumption that the plant and
disturbance models are known (Zhou et al., 1996). In practice, there are always dis-
crepancies between the models and the actual system. For this reason, the design of
control systems able to handle model uncertainty and unmodeled disturbances has
long been a concern. It has been formulated as the robust control design problem.
By modelling faults as unmodeled disturbances or model uncertainty, the design
of robust controllers to mitigate faults is part of the passive fault-tolerant control
approaches (Zhang and Jiang, 2008).

Robust control theory has contributed with several frameworks to handle model
uncertainties and disturbances, see Zhou et al. (1996). In all these frameworks, the
robust controller is designed to withstand disturbances and uncertainty belonging
to a given set of interest. For instance, in the H∞ robust control design, introduced
by Zames (1981), the controller aims at minimizing the system’s output energy with
respect to the worst-case disturbance with bounded energy.

Example 2.4

Consider the static model in the previous examples with one fault f and control
input u

y = Cx+Bu+ Ff

where x is unknown. To measure the system’s performance, we consider the quadratic
cost function

J(x, u, f) = y⊤y.

The objective of the robust control design is to compute u so that the cost
remains small under the influence of the worst-case bounded fault. In particular, the
worst-case bounded fault aims at maximizing the cost J(x, u, f) while satisfying the
constraint f⊤f ≤ 1. Formally, this can be formulated as a game-theoretic problem,
where the control u and the fault f compete to, respectively, minimize and maximize
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the cost:
minimize

u
maximize

f
J(x, u, f)

subject to f⊤f ≤ 1.

The dynamic version of this robust control design problem is known as the H∞

control problem (Basar and Bernhard, 1995).

There exist drawbacks in using robust control techniques to mitigate faults. One
of particular interest is that the performance of the robustly controlled system may
be poor under nominal conditions, i.e., without faults. This drawback motivates
the use of active fault-tolerant control schemes.

Reconfigurable control approach

Since the 1970s, much research has been conducted in active fault-tolerant control
schemes (Maciejowski, 1997; Lunze and Richter, 2008; Zhang and Jiang, 2008). The
rational behind the active approaches is to modify the nominal control system only
when faults are present, as to ensure good performance under nominal conditions.
Several active fault-tolerant schemes are available in the literature, e.g., adaptive
controllers (Tao et al., 2002), switching controllers (Yang et al., 2009), and online
controller reconfiguration (Lunze and Steffen, 2006).

Reconfigurable control proposes methods to reconfigure the control system after
a fault has been detected and diagnosed, while avoiding a complete redesign. The
overall objective of control reconfiguration is to minimize the loss in performance
inflicted by the fault. This goal may be achieved, for instance, by ensuring the
system’s stability, maintaining a similar closed-loop behavior as before the fault
(also known as model-matching), or achieving the same equilibrium point. Model-
matching reconfiguration, in particular, has been the focus of much research in this
area (Lunze and Richter, 2008). Chapter 7 follows this direction in a distributed
setting.

Example 2.5

Consider a scalar dynamical system with 3 actuators

ẋ(t) = x(t) +

3∑

i=1

ui(t)

where x(t) ∈ R is the scalar state and ui(t) ∈ R is the i-th input. Suppose the
following state-feedback control policy is used to stabilize the system

u(t) =







u1(t)

u2(t)

u3(t)






=







K1

K2

K3






x(t) =







−0.1
−0.4
−1






x(t),
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yielding the closed-loop system

ẋ(t) =



1 +

3∑

i=1

Ki



x(t) = −0.5x(t).

After the complete failure of the third actuator, i.e., u3(t) = 0 after the fault,
the closed-loop dynamics become

ẋ(t) =



1 +

2∑

i=1

Ki



 x(t) = 0.5x(t),

resulting in an unstable system. We use the ideas of reconfigurable control through
model-matching to recover the closed-loop dynamics before the fault. Given the fail-
ure of the third actuator, the closed-loop dynamics before the fault can be recovered
with any controller satisfying the model-matching constraint

K1 +K2 = −1.5.

Note that this under-determined equation admits an infinite number of solutions,
which indicates that the set of actuators is redundant. A possible way to obtain a
unique solution is to assign a convex cost Ji(Ki) to each actuator and satisfy the
model-matching constraint while minimizing the sum of costs:

minimize
K1,K2

J1(K1) + J2(K2)

subject to K1 +K2 = −1.5.

The former optimization problem is known as the control allocation problem (Jo-
hansen and Fossen, 2013). A generalized formulation of this problem for higher-
order systems is tackled in Chapter 7.

2.3 Secure IT Systems

Information is a key asset in knowledge-driven societies, which require a reliable and
continuous availability of data and services. Redundant and fault-tolerant architec-
tures are thus required to build IT systems resilient to faults and disturbances (Ko-
ren and Krishna, 2010). Additionally, IT systems must also be defended against
malicious adversaries that aim at disrupting or gaining access to the information
flow. Next, we revisit the main concepts in IT security.
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Figure 2.6: Cyber attacks on the communication links of a networked control system.

2.3.1 Fundamental Security Properties

Three fundamental properties of information and services in IT systems are men-
tioned in the computer security literature (Bishop, 2002) using the acronym CIA:
confidentiality, integrity, and availability. Confidentiality concerns the concealment
of data, ensuring it remains known to the authorized parties alone. Integrity relates
to the trustworthiness of data, meaning there is no unauthorized change to the
information between the source and destination. Availability considers the timely
access to information or system functionalities.

Figure 2.6 illustrates cyber attacks that violate these security properties. In all
three cases, the plant is sending the measurement vector yk = [2 13]

⊤ to the con-
troller through a communication network. This is a private message, hence only the
plant and the controller should know its contents. In Figure 2.6a, the adversary is
able to eavesdrop on the communication, thus getting access to the message con-
tents. Therefore confidentiality is violated. Another scenario occurs in Figure 2.6b,
where the adversary succeeds in sending the false measurement vector ỹk = yk+∆yk
to the controller, as if it was the plant sending it. Here data integrity is violated.
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In our final example, illustrated in Figure 2.6c, the message sent by the plant is
actually blocked and does not reach the controller. Hence data availability is com-
promised.

The violations presented in these examples were caused by disclosure, deception,
and denial-of-service attacks, respectively. Whereas in IT systems the impact of such
cyber attacks remains in the cyber realm, in networked control systems they may
carry dire consequences to the physical side. Instances of these attacks and their
consequences on control systems are illustrated in Chapter 3. Deception attacks as
in Figure 2.6b are further analyzed in Chapter 4 and Chapter 5.

The objective of IT security is to ensure that data and IT services have the
three properties described in this subsection. In the next subsection, we describe a
conceptual framework to achieve the latter goal.

2.3.2 IT Security Reference Architecture

One of the existing standards for security of networked IT systems is the security
architecture for Open Systems Interconnection (OSI) (ITU, 1991). The standard
provides a systematic framework to describe IT security requirements and charac-
terize approaches to satisfy such requirements. In particular, the security architec-
ture for OSI (ITU, 1991) considers three main concepts: security policy, security
services, and security mechanisms. The security policy is a set of requirements and
rules stating what behaviors are allowed or not in secure systems. Security services
are different functionalities that may be combined to ensure a given security pol-
icy. Security mechanisms are tools and procedures designed to prevent, detect, or
recover from attacks. Several security mechanisms may be used to achieve a given
security service.

As an example, consider a security policy stating that confidentiality violations,
as illustrated in Figure 2.6a, are not acceptable. This policy may be achieved, for
instance, using the following security services: access control and authentication.
Access control prevents unauthorized devices from accessing the transmitted data,
using mechanisms such as access control lists. Note that the access control service
relies on the authentication service, which verifies the identity of devices requesting
access to the transmitted data. The authentication service may be implemented
using security mechanisms such as digital signatures and encryption.

In addition to the conceptual security framework, the security standard also
maps several basic security services to the different layers of the OSI reference
model for communication protocols (Krutz, 2006). In fact, several approaches in the
literature are aligned with the layered approach of the reference security architec-
ture. For instance, the survey by Chen et al. (2009) discusses several methodologies
for security of sensor networks, where security mechanisms and services for differ-
ent layers were proposed. Next, we summarize the OSI model for communication
networks.

The OSI reference architecture proposes a layered high-level model for com-
munication protocols, as depicted in Figure 2.7. Each layer is defined as a set of
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Figure 2.7: The OSI reference model for communication networks, composed of
seven hierarchical layers.

well-defined functions that service the layer above and are serviced by the one be-
low. Moreover, each layer within a particular device only interacts with the same
layer of other devices. The OSI model is comprised of seven layers, out of which, ac-
cording to Tanenbaum and Wetherall (2010), the most prevalent layers in practice
are the physical, data link, network, transport, and application layers.

The physical layer concerns the conversion of raw digital data, such as bits, into
physical signals that are propagated through a physical transmission medium. The
data link layer is responsible for mediating the access of several devices to a shared
physical medium, as well as ensuring an error-free flow of data-frames between de-
vices. The network layer tackles routing and device addressing functionalities, while
the transport layer manages the end-to-end connection, by ensuring that all data
are carried from source to destination without errors. The application layer, the
highest layer in the model, provides the users’ application software with support
functions and enables the use of the lower-level communication protocols. There-
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Figure 2.8: Schematic of a networked control system with a communication network
that is vulnerable to adversaries. The communication network to the left is repre-
sented by the OSI reference model, where the cyber attack may occur at different
layers.

fore, digital controllers, actuators, sensors, and other devices with communication
capabilities lie on top of the application layer, as illustrated in Figure 2.8.

This thesis focuses on the user application on top of the OSI reference model,
namely the physical plant and the control and monitoring algorithms. Addressing
security and resilience at this conceptual level provides yet another layer of defense
against malicious threats.

2.3.3 Risk Management

The risk management framework (Bishop, 2002; U.S. DHS, 2011; NIST, 2012) is
another common methodology to enhance a system’s cyber security. The main
objective of risk management is to assess and minimize the risk of threats, where
the notion of risk is defined as follows (Kaplan and Garrick, 1981).

Definition 2.3.1. Consider a given threat scenario, the corresponding impact to
the system, and the likelihood of such scenario. The risk of the system is denoted
as the set of triplets Risk ,

{
(Scenario, Impact, Likelihood)

}
.
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Figure 2.9: Diagram of the risk management cycle. Risk of threats is continuously
minimized by iteratively performing risk analysis, risk treatment, and risk moni-
toring.

Since risk may vary over time, with the appearance of new threat scenarios and
ageing of the system, risk must be continuously managed to ensure security. Such
requirement leads to the risk management cycle depicted in Figure 2.9, which is
composed of risk analysis, risk treatment, and risk monitoring.

Risk analysis identifies threats and assesses the respective likelihood and im-
pact on the system. Threat scenarios may be identified based on historical and
empirical data of cyber attacks, expert knowledge, and known vulnerabilities in the
system (NIST, 2012). The report (NES, 2014) provides a good example of power
system related threat scenarios identified from expert knowledge. The likelihood
of a given threat depends on the components compromised by the adversary in a
given attack scenario and their respective vulnerability. Quantitative methods can
be used to identify the minimal set of components that need to be compromised
for each attack scenario (Sommestad et al., 2013; Sandberg et al., 2010), while the
vulnerability of each compromised components is obtained by qualitative means
such as expert knowledge and historical and empirical data (Sommestad et al.,
2013). The potential impact of a threat may be assessed by qualitative and quan-
titative methods, for instance, by modeling the system and simulating the attack
scenarios (Sridhar et al., 2012).

The risk of different threat scenarios may be summarized in a two-dimensional
risk matrix (NIST, 2012), where each dimension corresponds to the likelihood and
impact of threats, respectively. Additionally, the risk of different threats may be
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Figure 2.10: A risk matrix plot. Two threats with similar impact but different
likelihoods are depicted. Threats with high impact and high likelihood yield a high
risk.

compared through increasing functions of the threat’s impact and likelihood. As an
example, Figure 2.10 illustrates medium and high risk threats with similar impact
but different likelihood.

Actions minimizing the risk of threats are determined within the risk treatment
step. The different actions can be classified as prevention, detection, and mitigation.
Prevention aims at decreasing the likelihood of attacks by reducing the vulnerability
of the system components, for instance, by encrypting the communication channels,
using firewalls, and intelligent routing algorithms (Vukovic et al., 2012). Regarding
the disclosure attacks considered in Figure 2.6a, encryption of the communication
link corresponds to a preventive action.

Detection is an approach in which the system is continuously monitored for
anomalies caused by adversary actions. Examples of detection schemes include anti-
virus softwares, network traffic analysis (Garitano et al., 2011), and fault detection
algorithms (Ding, 2008). Such schemes are similar to the model-based fault detec-
tion approach, described in Section 2.2.1. These principles are indeed used in prac-
tice, for instance to detect abnormal data traffic using statistical models (Zhang et
al., 2009).

Once an anomaly or attack is detected, mitigation actions may be taken to
disrupt and neutralize the attack. The attack may be neutralized by replacing the
compromised components or using redundant components. In the case of the denial-
of-service attack in Figure 2.6c, one could have a mitigation scheme where the data
are re-sent using a different path from source to destination, thus avoiding the
compromised links.

The effectiveness of the defensive actions and the evolution of risk over time
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is evaluated throughout the risk monitoring stage. Risk monitoring continuously
assesses the known and newly discovered vulnerabilities of the system, as well as the
deployment of the threat mitigation actions. For instance, in the case of deception
attacks the attacker may find attack strategies that bypass the current detection
mechanisms. This particular scenario is explored in Chapter 3 to Chapter 5.

2.4 Cyber-Secure and Resilient Control Systems

The design of resilient control systems can leverage the approaches from fault-
tolerant systems and risk management. In fact, from a risk perspective, faults and
malicious attacks can both be seen as threats with different scenarios, impact, and
likelihood. Therefore, the risk management framework outlined in Section 2.3.3
may handle faults and attacks in a holistic way. Conversely, fault-tolerant control
tools can be used to detect and attenuate the consequences of cyber attacks on
networked control systems, since these attacks affect the physical behavior of the
system similar to faults. However, there are substantial conceptual and technical
differences between the fault-tolerant and resilient control frameworks that motivate
the need for specific theories and methodologies to address security issues in control
systems.

Cyber attacks and faults have inherently distinct characteristics, which pose
different challenges. Faults are considered as physical events that affect the sys-
tem behavior, where simultaneous events are assumed to be non-colluding, i.e., the
events do not act in a coordinated way. On the other hand, cyber attacks may be
performed over a significant number of attack points in a coordinated fashion (Teix-
eira et al., 2011; Smith, 2011). Moreover, faults do not have an intent or objective
to fulfill, as opposed to cyber attacks that do have a malicious intent. In Chapter 3,
several attack scenarios exploiting these issues are discussed in detail.

To better illustrate the subtle differences between faults and attacks, we revisit
a particular fault-tolerant approach. The H∞ fault-tolerant control problem con-
siders a bounded fault that aims at maximizing the cost function. In this setting,
the unique aim of the fault is to disrupt the system performance, while no other
goals are considered, e.g. stealthiness. A substantially different approach is taken
in Example 2.6, where the adversary aims at maximizing the cost function while
remaining undetected.

Example 2.6

Consider the static model in the previous examples with one fault f and control
input u

y = Cx+Bu+ Ff,

where x is unknown. To measure the system’s performance, we consider the cost
function

J(x, u, f) = y⊤y.
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In the robust control design problem described in Example 2.4, the fault is seen
as a malicious adversary that aims at maximizing the cost J(x, u, f). The fault
is also constrained in magnitude by f⊤f ≤ 1, which is required for the problem
to be well-posed and admit finite solution. However, other constraints typical in
adversarial setting, such as remaining undetected, are not considered. Next we
describe a scenario where the adversary is also constrained to remain covert.

Recall the anomaly detector described in Example 2.1

r = y − Cx̂ = (I − C(C⊤C)−1C⊤)
︸ ︷︷ ︸

=Ce

(y −Bu),

where an anomaly is detected if the residue’s norm exceeds a certain threshold:
‖r‖ > δ.

Consider the attack scenario where the adversary intends to maximize the cost
J(x, u, f), while remaining undetected by having ‖r‖ ≤ δ. Formally, the robust
control design problem under such scenario can be formulated as a game-theoretic
problem:

minimize
u

maximize
f

J(x, u, f)

subject to f⊤F⊤C⊤
e CeFf ≤ δ.

While the similarity to the classical robust H∞ control problem is clear, there
are substantial differences regarding, for instance, conditions for the game to admit
a finite-valued solution. The dynamic version of this attack scenario is tackled in
Chapter 4.

The distinct characteristics of faults and attacks lead to quite different ap-
proaches. Increased resilience may be achieved through mainly three actions: pre-
vention, detection, and mitigation (Bishop, 2002; Isermann, 2006). These actions
need to be tailored to the specific properties of faults and attacks to efficiently and
effectively ensure resiliency. For instance, prevention, detection, and mitigation of
faults may be achieved by maintenance, on-line monitoring, and timely repair of
the physical components of the system, respectively. On the other hand, preventing,
detecting, and mitigating cyber attacks on control systems must use mechanisms
that consider both the cyber and physical realms, such as encryption and improved
control algorithms (Pang and Liu, 2012). Furthermore, ensuring security may in-
volve addressing large number of threats, thus requiring attack impact analysis and
the use of risk assessment methods (Sridhar et al., 2012). Several of these issues
are presented in the thesis and have also been addressed in recent work on secure
control systems.

2.4.1 Related Work

Next, we provide a brief review of recent work on cyber-secure and resilient control
systems. While relevant related work is also discussed in each chapter of the thesis,
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this section covers other interesting work that may not be directly related to the
different chapters.

An overview of existing cyber threats and vulnerabilities in networked control
systems is presented in Cárdenas et al. (2008b,a) and Cárdenas et al. (2009). Par-
ticularly, realistic and rational adversary models are mentioned as one of the key
items in security for control systems. To grasp the relevance of such features, recall
that cyber and physical attacks may affect the plant directly. These attacks can
be modeled as faults. In the framework of security, however, such attacks are en-
dowed with intelligence and intent, as opposed to faults. Therefore, these attacks
may exploit vulnerabilities existing in the traditional fault detection mechanisms
and remain undetected, as illustrated in Example 2.1. In fact, Amin et al. (2010)
reported experimental stealthy data deception attacks on water irrigation canals
controlled by SCADA systems. Smith (2011) characterized stealthy attack policies
for scenarios where the attacker is able to perform disclosure and deception attacks
on all the sensors, illustrating it on the same water irrigation system. A similar ap-
proach is followed in Pasqualetti et al. (2013), where the stealthy attack policies are
characterized from networked systems modeled by differential-algebraic equations.
Additionally, centralized and distributed detection schemes targeting detectable at-
tacks are proposed.

Instances of stealthy false-data injection attacks have recently been studied for
systems with static models. For example, in the case of electric power networks, an
adversary with perfect model knowledge has been considered in Liu et al. (2009).
The work by Kosut et al. (2010, 2011) considered stealthy attacks with limited
resources and proposed improved detection methods, while Sandberg et al. (2010)
analyzed the minimum number of sensors required for stealthy attacks. A corre-
sponding measurement security metric for studying sets of vulnerable sensors was
proposed in Sandberg et al. (2010). The consequences of these attacks have also
been analyzed in Xie et al. (2010) and Teixeira et al. (2012a). In particular, Teixeira
et al. (2011) analyzed attack policies with limited model knowledge and performed
experiments on a power system control software, showing that such attacks are
stealthy and can induce the erroneous belief that the system is at an unsafe state.
This experiment inspired the second motivational example in Chapter 1, being de-
scribed in more detail in Chapter 3.

Efficient methods to compute all stealthy attacks on power network measure-
ments were proposed by Giani et al. (2013), with and without assuming that all
power flows are measured. Similarly, Sou et al. (2013b) proposed methods based on
minimum-cut algorithms to exactly compute stealthy attacks on power networks,
while assuming that all power flows are measured.

The protection of power systems has also been addressed in the literature. For
instance, Dán and Sandberg (2010) proposed the use of greedy algorithms to deploy
secure measurements, while Kim and Poor (2011) followed a similar direction by
considering the deployment of encryption and PMUs. Furthermore, Vukovic et al.
(2012) considered the communication network topology and proposed schemes to re-
route measurements such that stealthy attacks become more difficult to accomplish.
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The risk management approach for power systems has also been considered. In
particular, the survey Sridhar et al. (2012) discusses the risk management frame-
work for several layers of power systems, namely generation, transmission, and
distribution. Risk assessment for power networks is further examined in Bompard
et al. (2009) under a game-theoretic approach.

Cyber attacks have also been addressed in the context of dynamic control sys-
tems. The work by Fawzi et al. (2012) considers a finite time-interval and character-
izes the number of corrupted channels that cannot be detected during that interval.
Mo and Sinopoli (2009) considered replay attacks on wireless networks performing
state estimation, which are a particular class of deceptions attacks. They proposed
a novel detection scheme tailored to this class of attacks, which was later optimally
designed by (Chabukswar et al., 2011). Other work analyzes denial-of-service at-
tacks, where the optimal attack policy under finite resources is characterized (Amin
et al., 2009; Gupta et al., 2010).

Impact of false-data injection attacks has also been considered in the literature.
For linear networked control systems under false-data injection attacks, Mo and
Sinopoli (2012) propose methods to approximate the reachable set of states for
stealthy adversaries. The safety of Automatic Generation Control for power system
under deception attacks was considered in Esfahani et al. (2010) and the authors
showed that the cyber attacks could violate the system safety constraints.

In the context of multi-agent systems, rational attackers performing stealthy
deception attacks were also considered for networks computing linear functions,
where each node is modeled as a first-order system (Sundaram and Hadjicostis,
2011; Pasqualetti et al., 2012). The class of stealthy deception attacks was charac-
terized in terms of the number of compromised nodes and the network connectiv-
ity. The work by Sundaram et al. (2012) considered the detection and mitigation
of false-data injection attacks on linear information dissemination algorithms over
communication networks. A different approach is proposed inLeBlanc et al. (2013),
where the resilience of a local consensus scheme to attacks is characterized in terms
of the communication graph.

Other challenges were also considered for multi-agent systems. For instance, op-
timal adversary policies for data injection attacks using full model knowledge and
state information were derived in Khanafer et al. (2012), while Zhu and Martinez
(2012) tackled replay attacks on multi-agent systems, by proposing distributed con-
trol algorithms to mitigate the attacks.

Game-theoretic approaches to secure control are available in the literature. Amin
et al. (2013) analyzed security incentives for interdependent networked control sys-
tems. A dynamic game-theoretic approach was proposed by Zhu and Başar (2012)
to tackle cascading failures, by jointly considering IT security and robust control
policies. Using a stochastic game-theoretic setting, Miao et al. (2013) proposed a
controller switching policy to detect replay attacks.

Benchmark examples for security in networked control systems were described
in Rieger (2010) and numerical experiments on a benchmark process plant were
reported by Cárdenas et al. (2011). In the latter, although the adversary’s objectives
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and a mathematical formulation for the effects of cyber attacks were given, the
attack policies did not make full use of the adversary’s resources. Consequently,
since the worst-case attack policy was not considered, other attack scenarios with
similar resources might yield more dire consequences.

2.5 Applications and Experimental Setups

The results described in the thesis are illustrated through experiments and nu-
merical simulations on testbeds related to power systems and process control. The
architecture and models of these testbeds are described in the following.

2.5.1 Power Transmission Networks

SCADA systems in power transmission networks have evolved substantially since
they were introduced in the 1960s (Wu et al., 2005). The early systems were mainly
used for logging data. Today modern SCADA systems are enhanced by Energy
Management Systems (EMS) providing system-wide monitoring and control to
meet performance and reliability constraints (Balu et al., 1992; Shahidehpour et
al., 2005).

Due to constraints of traditional technologies, only quasi-steady state dynamics
are captured by current SCADA EMS. However, with the advent of new sensors such
as Phasor Measurement Units (PMUs), transient behaviors of power transmission
networks can be captured. This leads to the so-called Wide-Area Monitoring and
Control Systems (WAMS/WAMC), providing yet another layer of control.

In the following, cyber threats to power networks are discussed and the EMS
components and the WAMS system are briefly described.

Cyber threats

There are several threats in a SCADA system. In Figure 2.11 we illustrate some of
these threats and the respective entry points to the SCADA EMS. The measure-
ments sent by the RTU (A2) and the system information in the SCADA databases
(A3) could be targets of disclosure attacks to gain access to confidential data, such
as the power network model. A denial-of-service attack could be performed on the
communication links between the RTUs and the control center (A2 and A6), result-
ing in loss of availability. Another attack scenario corresponds to deception attacks
on the RTU data sent to the control center (A1–A3), resulting in a violation of
data integrity. This scenario is further discussed in Chapter 3 to Chapter 5, where
we characterize the class of stealthy deception attacks bypassing existing detection
schemes, similar to the scenario illustrated in Figure 2.6b.
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Figure 2.11: A schematic diagram of a power network with a SCADA system, a
WAMS monitoring faults, and possible IT vulnerabilities.

Energy management system

Figure 2.11 illustrates some of the components in traditional SCADA EMS systems.
Power networks are hybrid systems, having analog variables, such as voltages and
currents, and digital variables like breaker status. System-wide measurements of
these variables are taken locally at the substation level, gathered by RTUs, and
transmitted to the control center through the communication network. Since not
all variables are measured, the current state of the power network needs to be
estimated based on the received measurements and a detailed system model. The
optimal state and measurement estimates are computed by the state estimator (SE).
Possible measurement errors can be handled a posteriori by bad data detectors
(BDD).

The SE provides system observability to operators and other EMS tools, thus
being an integral tool in power network operation. As shown in Figure 2.11, con-
tingency analysis (CA) tools use the estimates to evaluate if the system meets the
required reliability criteria in the presence of equipment failures. Optimal power
flow (OPF) analysis based on the estimates evaluates possible improvements in
performance. Based on the recommendations from the CA and OPF, the human
operator chooses suitable control actions to be applied to the power network, as
illustrated in Figure 2.11.
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To acquaint the reader with the EMS components used in the thesis, next, we
revisit standard power network models and SE and BDD algorithms available in
the literature (Abur and Exposito, 2004).

Measurement model

For an electric power network with N buses, the n = 2N − 1 dimensional state vec-
tor x is (θ⊤, V ⊤)⊤, where V = (V1, . . . , VN ) is the vector of bus voltage magnitudes
and θ = (θ2, . . . , θN ) vector of phase angles. This state vector is the minimal infor-
mation needed to characterize the operating point of the power network. Without
loss of generality, we let bus 1 be the reference bus, hence all phase-angles are taken
relatively to this bus and θ1 = 0. The m-dimensional measurement vector y can
be grouped into two categories: (1) yP , the active power flow measurements Pij

from bus i to j and active power injection measurement Pi at bus i, and (2) yQ, the
reactive power flow measurementsQij from bus i to j, reactive power injection mea-
surement Qi and Vi voltage magnitude measurement at bus i. The neighborhood
set of bus i, which consists of all buses directly connected to this bus, is denoted
by Ni. The power injections at bus i are described by

Pi = Vi
∑

j∈Ni
Vj

(
Gij cos θij +Bij sin θij

)

Qi = Vi
∑

j∈Ni
Vj

(
Gij sin θij −Bij cos θij

) ,

and the power flows from bus i to bus j are described by

Pij = V 2
i (gsi + gij)− ViVj

(
gij cos θij + bij sin θij

)

Qij = −V 2
i (bsi + bij)− ViVj

(
gij sin θij − bij cos θij

) ,

where θij = θi−θj is the phase angle difference between bus i and j, gsi and bsi are
the shunt conductance and susceptance of bus i, gij and bij are the conductance
and susceptance of the branch from bus i to j, and Yij = Gij + jBij is entry (i, j)
of the nodal admittance matrix. More detailed formulas may be found in Abur and
Exposito (2004).

The nonlinear measurement model is defined by

y = h(x) + v, (2.1)

where h(·) is the m-dimensional nonlinear measurement function assumed to be
twice continuously differentiable, and v = (v1, . . . , vm)⊤ the measurement error
vector. Usually m≫n, meaning that there is high measurement redundancy. We
assume vi are zero-mean independent Gaussian random variables with variances σ2

i .
Thus we have v ∼ N (0, R) where R = diag(σ2

1 , . . . , σ
2
m) is the covariance matrix.

DC measurement model: The DC network model is a linear measurement
model obtained by neglecting the coupling between active and reactive power com-
ponents and assuming that the voltage magnitudes are constant at 1pu (per unit),
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there are no branch resistances and shunt admittances, and the phase-angles θi are
close to zero. With a slight abuse in notation, in the DC model the state corresponds
to the phase-angles and is denoted as x = θ, while the active power measurements
are denoted by y. The DC model assumption leads to the measurement equations

Pi =
∑

j∈Ni

bij(θi − θj)

Pij = −bij(θi − θj).

The resulting linear measurement model is then given by

y = CDCx+ v. (2.2)

State estimator

The SE problem is to find the best n-dimensional state x for the measurement
model (2.1) in a weighted least-squares (WLS) sense. Defining the residue vector
r(x) = y − h(x), we can write the unconstrained WLS problem as

minimize
x∈Rn

r(x)⊤R−1r(x). (2.3)

The state estimate x̂ is a minimizer to this problem. The solution can be found
using the Gauss-Newton method, which solves a sequence of the normal equations

(

C⊤(xk)R−1C(xk)
)

∆xk = C⊤(xk)R−1r(xk), (2.4)

for k = 0, 1, . . ., where

C(xk) ,
∂h(x)

∂x

∣
∣
∣
∣
x=xk

is called the Jacobian matrix of the measurement model h(x) and ∆xk = xk+1−xk.
The normal equations yield a unique solution if the measurement Jacobian matrix
C(xk) is full column rank. In this case, the power network is said to be observable.
Consequently, the matrix

(
C⊤(xk)R−1C(xk)

)
in (2.4) is then positive definite and

the Gauss-Newton step generates a descent direction. The estimation algorithm is
finalized when the stopping criteria ‖∆xk‖ ≤ ǫ for some ǫ > 0 is met.

For notational convenience, throughout the next sections we will use C as C(xk),
∆x as ∆xk, and r as r(xk) = y − h(xk).

DC state estimator: Considering the linear DC model (2.2), the SE problem
(2.3) reduces to a constrained linear least-squares problem. In the unconstrained-
case the optimal estimate is obtained using the normal equation

x̂ = (C⊤
DCR

−1CDC)
−1C⊤

DCR
−1y.
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Bad data detection

The BDD detects measurements corrupted by errors (Abur and Exposito, 2004).
This can be achieved by hypothesis tests using the statistical properties of the
measurement residue (2.5).

Consider the measurement y = h(x)+v and suppose the optimal estimate in the
least squares sense, x̂, is obtained with the Gauss-Newton method. The first-order
approximation of the measurement residue r(x̂) = y − h(x̂) is given by

r = Sv, (2.5)

where S = I − C(C⊤C)−1C⊤. An expression similar to (2.5) can be obtained
for the measurement residue in the DC SE by replacing C with CDC . Given the
residue (2.5), evaluated at the optimal estimate x̂, an alarm indicating the presence
of bad data is triggered if the residue’s norm exceeds a threshold δ > 0:

r⊤r = v⊤Sv ≥ δ.

Wide-area monitoring and control systems

Monitoring schemes are today implemented in a centralized control center through a
single state estimator. The core methodology for state estimation of power systems
dates from 1970 (Schweppe and Wildes, 1970; Abur and Exposito, 2004). Due to
the low sampling frequency of the sensors, a steady-state approach is taken and reli-
ability is ensured by over-constraining the network operation. Dynamic faults, such
as generator electro-mechanical oscillations, may pass undetected by such schemes
based on steady-state models and measurements.

Recently, measurement units with higher sampling rate have been developed,
such as PMUs, opening the way to dynamic state estimators and model-based fault
detection schemes taking into account the dynamics of the system. An example
of the new opportunities is the WAMS, which uses data from several PMUs to
perform real-time monitoring (Machowski et al., 2008). Several implementations of
WAMS have recently been performed (Phadke and de Moraes, 2008). In a survey,
Chompoobutrgool et al. (2011) present an overview of possible uses for WAMS, such
as dynamic state estimation and fault monitoring through Kalman filters. These
technological developments allow for new opportunities to be envisioned, such as
a PMU-enabled WAMS monitoring for the system for physical faults illustrated in
Figure 2.11. This can serve as motivation for the contributions in Chapter 6, where
a distributed model-based fault monitoring scheme is proposed.

2.5.2 Process Control Testbed

Our process control testbed is the quadruple-tank process (QTP) (Johansson, 2000)
controlled through a wireless communication network, as shown in Figure 2.12. The
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plant model can be found in Johansson (2000)

dh1(t)

dt
= − a1

A1

√

2gh1(t) +
a3
A1

√

2gh3(t) +
γ1k1
A1

U1(t),

dh2(t)

dt
= − a2

A2

√

2gh2(t) +
a4
A2

√

2gh4(t) +
γ2k2
A2

U2(t),

dh3(t)

dt
= − a3

A3

√

2gh3(t) +
(1 − γ2)k2

A3
U2(t),

dh4(t)

dt
= − a4

A4

√

2gh4(t) +
(1 − γ1)k1

A4
U1(t),

L1(t) = h1(t),

L2(t) = h2(t),

where hi ∈ [0, 30] are the water-levels in each tank, Ai the cross-section area of
the tanks, ai the cross-section area of the outlet hole, ki the pump constants, γi
the flow ratios and g the gravity acceleration. The system has two outputs L1(t)

ũk

yk

ỹk
uk

Controller

Figure 2.12: Schematic diagram of the testbed with the quadruple-tank process and
a multi-hop communication network.
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and L2(t) measuring h1(t) and h2(t), respectively, and two inputs, U1(t) and U2(t),
corresponding to the voltages applied to electrical pumps that drive the flow of
water into the tanks.

The system is linearized at a given equilibrium point, denoted as h0i , u
0
i , and y0i .

Defining the state, input, and output of the linearized system as xi(t) = hi(t)−h0i ,
ui(t) = Ui(t)−U0

i , and yi(t) = Li(t)−L0
i , respectively, the linearized dynamics are

given by
dx(t)

dt
= Ax(t) +Bu(t),

y(t) = Cx(t),
(2.6)

with

A =
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√
g

2h01
0

a3
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g

2h03
0
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γ1k1
A1

0

0
γ2k2
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0
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(1− γ1)k1

A4
0














, C =

[

1 0 0 0

0 1 0 0

]

The system has adjustable zero-dynamics with respect to u1(t) and u2(t). In par-
ticular, the zero-dynamics are unstable if 0 < γ1 + γ2 < 1 (Johansson, 2000). The
process is controlled using a centralized LQG controller with integral action run-
ning in a remote computer and a wireless network is used for the communications.
A Kalman filter-based anomaly detector is running in the remote computer. The
communication network has four nodes, including a relay node, as illustrated in
Figure 2.12. Cyber attacks are performed through the relay node. The adversary
may access and corrupt all sensor and actuator measurements.





Chapter 3

A Modeling Framework for

Constrained Malicious Adversaries

In this chapter, we describe a modeling framework to capture different attack sce-
narios on control systems. Unlike other information technology (IT) systems where
cyber security mainly involves the protection of data-related properties and ser-
vices, cyber attacks on networked control systems may influence physical processes
through feedback actuation. Therefore, networked control system security needs to
consider threats at both the cyber and physical layers. Furthermore, in the study
of cyber attacks on control systems, it is of the utmost importance to capture the
adversary’s resources and knowledge. To this end, we propose the attack-scenario
space illustrated in Figure 3.1 to capture and qualitatively categorize different cyber
threats, which depicts several attack scenarios as points. Note that each example
corresponds to a given instance of an attack scenario.

We propose three dimensions for the attack-scenario space: the adversary’s a
priori system model knowledge, disclosure, and disruption resources. Although ad-
versaries possess several other features, the proposed three dimensions are quite rel-
evant from a control system’s perspective and allow a straightforward categorization
of many attack scenarios studied in the literature. The a priori model knowledge
can be used by the adversary to construct more complex attacks, possibly harder
to detect and with more severe consequences. Similarly, disclosure resources, such
as data sniffers, enable the adversary to obtain sensitive information about the
system during the attack by violating data confidentiality. Note that disclosure re-
sources alone cannot disrupt the system operation. An example of an attack using
only disclosure resources is the eavesdropping attack, illustrated in Figure 3.1. On
the other hand, disruption resources, such as data spoofers and jammers, can be
used to affect the system operation. For instance, the system operation may be
disrupted when data integrity or availability properties are violated. In particular,
this characterization fits the Stuxnet malware, which had resources to record and
manipulate data in the SCADA network, as described in Chapter 1. Moreover, the
complexity and operation of Stuxnet also indicate that its developers had access to
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Figure 3.1: The cyber physical attack-scenario space. Each point depicts the quali-
tative classification of a given attack scenario.

a reasonable amount of knowledge of both physical and cyber components of the
target control system.

3.1 Related Work

Cyber-attacks on control systems compromising measurement and actuator data
integrity and availability have been considered in Cárdenas et al. (2008b), where
the authors modeled the attack effects on the physical dynamics. Several attack
scenarios have been simulated and evaluated on the Tennessee-Eastman process
control system (Cárdenas et al., 2011) to study the attack impact and detectability.
The attack scenarios in Cárdenas et al. (2011) are related to the ones considered in
this chapter, but we quantify the attack resources and policies in a more systematic
way.

Availability attacks have been analyzed in Amin et al. (2009); Gupta et al.
(2010) for resource-constrained adversaries with full-state information. Particularly,
the authors considered denial-of-service (DoS) attacks in which the adversary could
tamper with the communication channels and prevent measurement and actuator
data from reaching their destination, rendering the data unavailable. A particular
instance of the DoS attack, where the adversary does not have any a priori model
knowledge, i.e. the attack in Amin et al. (2009), is represented in the attack-scenario
space in Figure 3.1. However, some instances of DoS attacks may use additional
resources and model knowledge, see Gupta et al. (2010).

Deception attacks compromising data integrity have recently been tackled. Pang
and Liu (2012) proposed an encryption and predictive control scheme to prevent
and mitigate deception attacks on control systems. Replay attacks on the sensor
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measurements, which is a particular kind of deception attack, have been analyzed
by Mo and Sinopoli (2009). The authors considered the case where all the existing
sensors were attacked and proposed suitable counter-measures to detect the attack.
In this attack scenario, the adversary does not have any model knowledge, but
is able to access and corrupt the sensor data through disclosure and disruptive
resources, as depicted in Figure 3.1.

Another class of deception attacks, false-data injection attacks, has been studied
in recent work. For instance, in the case of power networks, an adversary with
perfect model knowledge has been considered by Liu et al. (2009), who showed that
the adversary could corrupt measurements in a coordinated way while remaining
undetected. The consequences of these attacks have also been analyzed (Xie et al.,
2010; Teixeira et al., 2012a). The models used in the previous work are static, hence
these attack scenarios are closest to the bias injection attack shown in Figure 3.1.

Data injection attacks on dynamic control systems were also considered. Smith
(2011) characterizes the set of attack policies for covert (undetectable) false-data
injection attacks with detailed model knowledge and full access to all sensor and ac-
tuator channels. Similarly, Pasqualetti et al. (2011) described the set of undetectable
false-data injection attacks for omniscient adversaries with full-state information,
but possibly compromising only a subset of the existing sensors and actuators. Data
confidentiality was violated in these attack scenarios, as the adversary had access
to either measurement and actuator data or full-state information. These attacks
are, therefore, placed close to the covert attack in Figure 3.1.

Most of the recent work on cyber security of control systems has considered
scenarios where the adversary has access to a large set of resources and knowledge,
thus being placed far from the origin of the attack-scenario space in Figure 3.1. A
large part of the attack-scenario space has not been explored yet. In particular, the
class of detectable attacks that do not trigger conventional alarms has yet to be
covered in depth.

3.2 Contributions and Outline

In this chapter, we consider a typical networked control architecture under both
cyber and physical attacks. A generic adversary model applicable to several attack
scenarios is discussed and the attack resources are mapped to the corresponding
dimensions of the attack-scenario space depicted in Figure 3.1. Although the frame-
work is presented for linear time-invariant (LTI) systems, the conceptual compo-
nents and methodology may be applied to other classes of systems.

To illustrate the proposed framework, we consider a LTI system under several
attack scenarios, where the adversary’s goal is to drive the system to an unsafe state
while remaining stealthy. Exploiting the properties of LTI systems, for each scenario
we formulate the corresponding stealthy attack policy and comment on the attack’s
performance. Furthermore, we describe the adversary’s capabilities along each di-
mension of the attack-scenario space in Figure 3.1, namely the disclosure resources,
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disruption resources, and model knowledge. Some of the attack scenarios analyzed
in the thesis have been staged on a SCADA EMS software for power transmission
networks and on a wireless quadruple-tank testbed, described in Chapter 2. The
results from the staged attacks are presented and discussed later in this chapter.

One of the analyzed attack scenarios corresponds to a novel type of detectable
attack, the bias injection attack. Although this attack may be detected, it can drive
the system to an unsafe region and it only requires limited model knowledge and
no information about the system state. Stealthiness conditions for this attack are
provided, as well as a methodology to assess the attack impact on the physical state
of the system.

The outline of the chapter is as follows. The system architecture and model
are described in Section 3.3, while Section 3.4 contains the adversary model and a
detailed description of the attack resources on each dimension of the attack-scenario
space. The framework introduced in the previous sections is then illustrated for five
particular attack scenarios in Section 3.5, where the adversary aims at driving
the system to an unsafe state while remaining stealthy. The attack policy, attack
performance, and required model knowledge, disclosure, and disruption resources
are described for each attack scenario. The results of the experiments for some of
the attack scenarios in two experimental testbeds are presented and discussed in
Section 3.6, followed by a summary in Section 3.7.

3.3 Networked Control System

In this section, we describe the networked control system structure, where we con-
sider four main components: the physical plant, the communication network, the
feedback controller, and the anomaly detector. Although the networked control sys-
tem architecture is presented for LTI systems, the same components can be used
when considering other classes of systems.

3.3.1 Physical Plant and Communication Network

The physical plant is modeled in a discrete-time state-space form

P :

{

xk+1 = Axk +Bũk +Gwk + Ffk

yk = Cxk + vk,
(3.1)

where xk ∈ Rnx is the state variable, ũk ∈ Rnu the control actions applied to the
process, yk ∈ Rny the measurements from the sensors at the sampling instant k ∈ Z,
and fk ∈ Rnf is the unknown signal representing the effects of anomalies, usually
denoted as fault signal in the fault diagnosis literature (Ding, 2008). The process and
measurement noise, wk ∈ Rnx and vk ∈ Rny , represent the discrepancies between
the model and the real process, due to unmodeled dynamics or disturbances, for
instance, and we assume their means are respectively bounded by δw and δv, i.e.
w̄ = ‖E{wk}‖ ≤ δw and v̄ = ‖E{vk}‖ ≤ δv.
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The physical plant operation is supported by a communication network through
which the sensor measurements and actuator data are transmitted, which at the
plant side correspond to yk and ũk, respectively. At the controller side we denote
the sensor and actuator data by ỹk ∈ Rny and uk ∈ Rnu , respectively. Since the
communication network may be unreliable, the data exchanged between the plant
and the controller may be altered, resulting in discrepancies in the data at the plant
and controller ends. In this work we do not consider the usual communication net-
work effects such as packet losses and delays. Instead, we focus on data corruption
due to malicious cyber attacks, as described in Section 3.4. Therefore, it is assumed
that, first, any possible mismatches between the transmitted and received data are
due to malicious adversaries alone. Second, the communication network is assumed
to be reliable and not affecting the data flowing through it.

Given the physical plant model (3.1) and assuming an ideal communication
network, the networked control system is said to have a nominal behavior if fk = 0,
ũk = uk, and ỹk = yk. The absence of either one of these condition results in an
abnormal behavior of the system.

3.3.2 Feedback Controller

In order to comply with performance requirements in the presence of the unknown
process and measurement noises, we consider that the physical plant is controlled
by an appropriate linear time-invariant feedback controller (Zhou et al., 1996). The
output-feedback controller can be written in a state-space form as

F :

{

zk+1 = Aczk +Bcỹk

uk = Cczk +Dcỹk,
(3.2)

where the states of the controller, zk ∈ Rnz , may include the process state and
tracking-error estimates. Given the plant and communication network models, the
controller is supposed to be designed so that acceptable performance is achieved
under nominal behavior.

3.3.3 Anomaly Detector

In this subsection we consider the anomaly detector that monitors the system to
detect possible anomalies, i.e. deviations from the nominal behavior. The anomaly
detector is supposed to be collocated with the controller, therefore it only has access
to ỹk and uk to evaluate the behavior of the plant.

Several approaches to detecting malfunctions in control systems are available in
the fault diagnosis literature (Ding, 2008; Hwang et al., 2010). Here we consider a
general form of an observer-based fault detection filter

D :

{

sk+1 = Aesk +Beuk +Keỹk

rk = Cesk +Deuk + Eeỹk,
(3.3)
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where sk ∈ Rns is the state of the anomaly detector and rk ∈ Rnr is the residue
evaluated to detect and locate existing anomalies.

Define ‖rk‖p ,

(
∑nr

i=1 |r(i),k|p
)1/p

as the p-norm of rk for 1 ≤ p < ∞, with

r(i),k as the i-th entry of the vector rk and ‖rk‖∞ , maxi |r(i),k|. The anomaly
detector is designed by choosing Ae, Be, Ke, Ce, De, and Ee such that

1. under nominal behavior of the system (i.e., fk = 0, uk = ũk, yk = ỹk), the
expected value of rk converges asymptotically to a neighborhood of zero, i.e.,
limk→∞ E{rk} ∈ Bδr , with δr ≥ 0 and Bδr , {r ∈ Rnr : ‖r‖p ≤ δr};

2. the residue is sensitive to the anomalies (i.e., different fault signals with fk 6≡ 0
and fk ≡ 0 for all k result in different residues).

The characterization of Bδr depends on the noise terms and can be found in Ding
(2008) for particular values of p. Given the residue signal over the time-interval
[k0, kf ], r[k0, kf ] = [r⊤k0

. . . r⊤kf
]⊤, an alarm is triggered if

r[k0, kf ] 6∈ U[k0, kf ], (3.4)

where the set U[k0, kf ] is chosen so that the number of anomaly misdetections and
false-alarms are minimized. This necessarily requires no alarm to be triggered in
the noiseless nominal behavior i.e., r[k0, kf ] ∈ U[k0, kf ] if for all k ∈ [k0, kf ] it holds
that rk ∈ Bδr . Such set-based detection fits several residual evaluation techniques
presented in Frank and Ding (1997). For instance, one can take U[k0, kf ] to be a
bound on the energy of the residue signal over the time-interval [k0, kf ], resulting
in

U[k0, kf ] = {r[k0, kf ] : ‖r[k0, kf ]‖2 ≤ δ},
for some δ ∈ (0, ∞).

3.4 Adversary Models

The adversary model considered in this thesis is illustrated in Figure 3.2 and is
composed of an attack policy and the adversary resources i.e., the system model
knowledge, the disclosure resources, and the disruption resources. Each of the ad-
versary resources can be mapped to a specific axis of the attack-scenario space
in Figure 3.1: K = {P̂, F̂ , D̂} is the a priori model knowledge possessed by the
adversary; Ik corresponds to the set of sensor and actuator data available to the
adversary at time k, thus being mapped to the disclosure resources; ak is the attack
vector at time k that may affect the system behavior using the disruption resources
captured by B, as defined later in the present section. The attack policy mapping
K and Ik to ak at time k is denoted as

ak = g(K, Ik).
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K = {P̂, F̂ , D̂}

ak = g(K, Ik)
Υu

Υy
B

uk

yk

Model Knowledge

Disclosure
Resources

Disruption
Resources

Attack Policy

Figure 3.2: Adversary model for a point in the attack-scenario space in Figure 3.1.

Examples of attacks policies for different attack scenarios are given in Section 3.5.
In this section, we describe the networked control system under attack with

respect to the attack vector ak. Then, we detail the adversary’s model knowledge,
the disclosure resources, and the disruption resources. Models of the attack vector
ak for particular disruption resources are also given.

3.4.1 Networked Control System under Attack

The system components under attack are now characterized for the attack vector
ak, which also includes the fault vector fk. Stacking the states of the plant and
controller as ηk = [x⊤k z⊤k ]

⊤, the dynamics of the closed-loop system composed by
P and F under the effect of ak can be written as

ηk+1 = Aηk +Bak +G

[

wk

vk

]

ỹk = Cηk +Dak +H

[

wk

vk

]

uk = Cuηk +DcDak +DcH

[

wk

vk

]

,

(3.5)

where the system matrices are

A =

[

A+BDcC BCc

BcC Ac

]

, G =

[

G BDc

0 Bc

]

,

C =
[

C 0
]

, H =
[

0 I
]

, Cu =
[

DcC Cc

]

.

The matrices B and D capture the way in which the attack vector ak affects the
plant and controller. These matrices are characterized for some attack scenarios in
Section 3.4.4.
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Similarly, using P , F , and D as in (3.1), (3.2), and (3.3), respectively, and
stacking the states of the plant, controller, and anomaly detector as ξk = [η⊤k s⊤k ]

⊤

the residue dynamics under attack are described by

ξk+1 = Aeξk +Beak +Ge

[

wk

vk

]

rk = Ceξk +Deak +He

[

wk

vk

]

,

(3.6)

where

Ae =

[

A 0

BeCu +KeC Ae

]

, Be =

[

B

(BeDc +Ke)D

]

,

Ce =
[

DeCu + EeC Ce

]

, Ge =

[

G

(BeDc +Ke)H

]

,

De = (DeDc + Ee)D, He = (DeDc + Ee)H.

3.4.2 Model Knowledge

The amount of a priori knowledge regarding the control system is a core compo-
nent of the adversary model, as it may be used, for instance, to render the attack
undetectable. In general, we may consider that the adversary has an estimate of
the model of the plant (P̂) and the algorithms used in the feedback controller
(F̂) and the anomaly detector (D̂), thus denoting the adversary knowledge by
K = {P̂, F̂ , D̂}. Figure 3.1 illustrates several types of attack scenarios with dif-
ferent levels of model knowledge. In particular, note that the replay attacks do not
need any knowledge of the system components, thus having K = ∅, while the covert
attack requires full knowledge about the system, hence K = {P ,F ,D}.

3.4.3 Disclosure Resources

The disclosure resources enable the adversary to gather sequences of data from the
calculated control actions uk and the sensor measurements yk through disclosure
attacks. Denote Ru ⊆ {1, . . . , nu} andRy ⊆ {1, . . . , ny} as the disclosure resources,
i.e. the set of actuator and sensor channels that can be accessed during disclosure
attacks, and let Ik be the control and measurement data sequence gathered by the
adversary from time k0 to k. The disclosure attacks can then be modeled as

Ik , Ik−1 ∪







[

Υu 0

0 Υy

] [

uk

yk

]





,

where Ik0 = ∅ and Υu ∈ B
|Ru|×nu and Υy ∈ B

|Ry|×ny are the time-invariant binary
incidence matrices mapping the data channels to the corresponding data gathered
by the adversary.
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As seen in the above description of disclosure attacks, the physical dynamics
of the system are not affected by these type of attacks. Instead, these attacks
gather intelligence that may enable more complex attacks, such as the replay attacks
depicted in Figure 3.1.

3.4.4 Disruption Resources

Disruption resources are related to the attack vector ak and may be used to af-
fect the several components of the system, as seen in the system dynamics under
attack (3.5) and (3.6). The way a particular attack disturbs the system operation
depends not only on the respective resources, but also on the nature of the attack.
For instance, a physical attack directly perturbs the system dynamics, whereas a
cyber attack disturbs the system through the cyber physical couplings. To better
illustrate this discussion we now consider physical and data deception attacks.

Physical Attacks

Physical attacks may occur in control systems, often in conjunction with cyber
attacks. For instance, in the experiments reported in Amin et al. (2010), water
was pumped out of an irrigation system, while the water level measurements were
corrupted so that the attack remained stealthy. Since physical attacks are similar to
the fault signals in (3.1), in the following sections we consider fk to be the physical
attack modifying the plant dynamics as

xk+1 = Axk +Bũk +Gwk + Ffk

yk = Cxk.

Considering ak = fk, the resulting system dynamics are described by (3.5)
and (3.6) with

B =

[

F

0

]

, D = 0.

Note that the disruption resources in this attack are captured by the matrix F ∈
Rnx×nf .

Data Deception Attacks

The deception attacks modify the control actions uk and sensor measurements yk
from their calculated or real values to the corrupted signals ũk and ỹk, respectively.
Denoting Ru

I ⊆ {1, . . . , nu} and Ry
I ⊆ {1, . . . , ny} as the deception resources, i.e.

set of actuator and sensor channels that can be affected, the deception attacks are
modeled as

ũk , uk + Γubuk , ỹk , yk + Γybyk, (3.7)

where the signals buk ∈ R|Ru
I | and byk ∈ R|Ry

I
| represent the data corruption and

Γu ∈ Bnu×|Ru
I | and Γy ∈ Bny×|Ry

I | (B , {0, 1}) are the binary incidence matrices
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mapping the data corruption to the respective data channels. The matrices Γu and
Γy indicate which data channels can be accessed by the adversary and are directly
related to the adversary resources in deception attacks.

Defining ak = [bu⊤k by⊤k ]⊤, the system dynamics are given by (3.5) and (3.6)
with

B =

[

BΓu BDcΓ
y

0 BcΓ
y

]

, D =
[

0 Γy
]

.

Note that deception attacks do not possess any disclosure capabilities, as de-
picted in Figure 3.1 for examples of deception attacks such as the bias injection
attack.

3.4.5 Attack Goals and Constraints

In addition to the attack resources, the attack scenarios need to also include the
intent of the adversary, namely the attack goals and constraints shaping the attack
policy g(·, ·). The attack goals can be stated in terms of the attack impact on the
system operation, while the constraints may be related to the attack detectability.

Several physical systems have tight operating constraints that, if not satisfied,
might result in physical damage to the system. In this work, we use the concept of
safe regions to characterize safety constraints:

Definition 3.4.1. At a given time instant k, the system is said to be safe if xk ∈ Sx,
where Sx is a closed and compact set with non-empty interior.

Assumption 3.4.1. The system is in a safe state at the beginning of the attack,
i.e. xk0 ∈ Sx.

The physical impact of an attack can be evaluated by assessing whether or not
the state of the system remained in the safe set during and after the attack. The
attack is considered successful if the state is driven out of the safe set.

Regarding the attack constraints, we consider that adversaries are constrained to
remain stealthy. Furthermore, we consider the disruptive attack component consists
of only physical and data deception attacks, and thus we have the attack vector
ak = [f⊤

k bu⊤k by⊤k ]⊤. Given the anomaly detector described in Section 3.3 and
denoting a[k0, kf ] = [a⊤k0

. . . a⊤kf
]⊤ as the attack signal, the set of stealthy attacks

are defined as follows:

Definition 3.4.2. The attack signal a[k0, kf ] is stealthy over the time-interval [k0, kf ]
if r[k0, kf ] ∈ U[k0, kf ].

Note that the above definition is dependent on the initial state of the system at
k0, as well as the noise terms wk and vk.

Since the closed-loop system (3.5) and the anomaly detector (3.6) under linear
attack policies are LTI systems, each of these systems can be separated into two
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additive components: the nominal component with ak = 0 and the following systems

ηak+1 = Aηak +Bak

ỹak = Cηak +Dak
(3.8)

and
ξak+1 = Aeξ

a
k +Beak

rak = Ceξ
a
k +Deak,

(3.9)

with ηa0 = ξa0 = 0.
Assume that the system is behaving nominally before the attack and that, given

the linearity of (3.6), there exists a set Ua
[k0, kf ]

, {r[k0, kf ] : ‖r[k0, kf ]‖q ≤ δ} such
that having ra[k0, kf ]

∈ Ua
[k0, kf ]

implies that r[k0, kf ] ∈ U[k0, kf ] also holds. We make
the following definition:

Definition 3.4.3. The attack signal a[k0, kf ] is δ-stealthy over the time-interval
[k0, kf ] if ra[k0, kf ]

∈ Ua
[k0, kf ]

.

Albeit more conservative than Definition 3.4.2, Definition 3.4.3 only depends on
the attack signals a[k0, kf ]. Thus the stealthiness of linear attacks on LTI systems
may be analyzed independently of the noise inputs. Similarly, the impact of attacks
on the closed-loop system can be analyzed through the linear system (3.8), as
illustrated in Section 3.5.5 for the bias injection attack. For other classes of systems,
e.g., nonlinear or switched systems, the analysis and characterization of attacks may
have to consider the noise terms directly.

3.5 Attack Scenarios

In this section, using the framework introduced earlier, we consider several attack
scenarios where the adversary’s goal is to drive the system to an unsafe state while
remaining stealthy. For each scenario, we formulate the corresponding stealthy at-
tack policy and comment on the attack’s performance. Furthermore, we also de-
scribe the adversary’s capabilities along each dimension of the attack-scenario space
in Figure 3.1, namely the disclosure resources, disruption resources, and model
knowledge. A subset of these scenarios is illustrated by experiments on a process
control testbed in Section 3.6.

3.5.1 Denial-of-Service Attack

The DoS attacks prevent the actuator and sensor data from reaching their respective
destinations and results in the absence of data. To model absent data, we consider
one of the typical mechanisms used by digital controllers to deal with unavailable
data (Schenato, 2009), in which the absent data are replaced with the last received
data, uτu and yτy respectively.
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Attack policy: Denote Ru
A ⊆ {1, . . . , nu} and Ry

A ⊆ {1, . . . , ny} as the set
of actuator and sensor channels that can be made unavailable and define Su

k ∈
B|Ru

A|×|Ru
A| and Sy

k ∈ B|Ry

A
|×|Ry

A
| as boolean diagonal matrices where the i-th di-

agonal entry indicates whether a DoS attack is performed ([S(·)
k ]ii = 1) or not

([S(·)
k ]ii = 0) on the corresponding channel. Using the latter variables, DoS attacks

can be modeled as deception attacks in (3.7) with

buk , −Su
kΓ

u⊤(uk − uτu)
byk , −Sy

kΓ
y⊤(yk − yτy)

(3.10)

and

ak =

[

−Su
kΓ

u⊤(uk − uτu)
−Sy

kΓ
y⊤(yk − yτy)

]

Therefore DoS attacks on the data are a type of disruptive attacks, as depicted in
Figure 3.1.

The attack scenario analyzed in this section considers a Bernoulli adversary on
the sensor channels following the random policy

P([Sy
k ]ii = 1) = 0, ∀i = 1, . . . , |Ru

A|, k < k0

P([Sy
k ]ii = 1) = p, ∀i = 1, . . . , |Ru

A|, k ≥ k0

where p ∈ [0, 1] is the probability of blocking the data packet at any given time (Amin
et al., 2009).

Attack performance: Although the absence of data packets is not stealthy
since it is trivially detectable, DoS attacks may be misdiagnosed as a poor network
condition. As for the impact on the closed-loop system, the results available for
Bernoulli packet losses readily apply to the current attack scenario (Zhang et al.,
2001; Schenato et al., 2007; Schenato, 2009). In particular, we recall the following
result applied to the DoS attack (3.10):

Proposition 3.5.1 (Theorem 8 in Zhang et al. (2001)). Assume that the closed-
loop system with no DoS attack is stable and consider the open-loop system

ηk+1 =

[

A BCc

0 Ac

]

︸ ︷︷ ︸

Ao

ηk.

Then, the closed-loop system with Bernoulli DoS attacks is exponentially stable:

1. for p ∈ [0, 1), if the open-loop system is marginally stable.

2. for p ∈ [0, p̄), if the open-loop system is unstable, where p̄ =
1

1− γ2/γ1
with

γ1 = log
(
maxi |λi(Ac)|2

)
and γ2 = log

(
maxi |λi(Ao)|2

)
.
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As stated by the previous results, if the open-loop system is unstable, the
Bernoulli DoS attack may lead to an unstable closed-loop system, if p is suffi-
ciently close to 1. On the other hand, for open-loop stable systems, the closed-loop
system under Bernoulli DoS attacks remains stable.

Disclosure resources: Although the proposed model of DoS attacks in (3.10)
contains the control and output signals, note that no disclosure resources are needed
in the actual implementation of the attack. Thus we have Ru = Ry = ∅.

Disruption resources: The disruption capabilities correspond to the data
channels that the adversary is able to make unavailable, Ru

A and Ry
A.

Model knowledge: For the Bernoulli attack policy, no a priori knowledge of
the system model is needed.

3.5.2 Replay Attack

In replay attacks the adversary first performs a disclosure attack from k = k0 until
kr, gathering sequences of data Ikr

, and then begins replaying the recorded data
at time k = kr + 1 until the end of the attack at k = kf > kr, as illustrated in
Figure 3.3. In the scenario considered here the adversary is also able to perform
a physical attack while replaying the recorded data, which covers the experiment
on a water management SCADA system reported in Amin et al. (2010) and one of
Stuxnet’s operation mode (Falliere et al., 2011).

Attack policy: Similar to the work by Mo and Sinopoli (2009), assuming
R(·) = R(·)

I i.e., the adversary can corrupt the digital channels from which the data
sequences are gathered, the replay attack policy can be described in two phases:

Phase I:







ak = 0,

Ik = Ik−1 ∪







[

Υu 0

0 Υy

][

uk

yk

]





,

(3.11)

with k0 ≤ k ≤ kr and Ik0 = ∅ and

Phase II:







ak =







gf (K, Ikr
)

Υu(uk−T − uk)
Υy(yk−T − yk)






,

Ik = Ik−1,

(3.12)

where T = kr − 1 + k0 and kr + 1 ≤ k ≤ kf . An interesting instance of this attack
scenario consists of applying a pre-defined physical attack to the plant, while using
replay attacks to render the attack stealthy. In this case the physical attack signal
fk corresponds to an open-loop signal, fk = gf (k). Note that, while (3.12) resembles
a time-delay of length T , replay attacks differ from delayed data in a subtle but
important manner: all measurement data during the attack interval [kr + 1, kf ]
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(a) Phase I of the replay attack (3.11).

NetworkNetwork

ũk
yk

g(∅, Ikr
)

fk
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D

uk ỹk

bykbuk

(b) Phase II of the replay attack (3.12).

Figure 3.3: Schematic of the replay attack.
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are never available to the anomaly detector. As in Amin et al. (2010), this allows
the adversary to design the attack so that no alarm is triggered by the anomaly
detector.

Attack performance: Mo and Sinopoli (2009) provided conditions under
which replay attacks with access to all measurement data channels are stealthy.
However, these attacks are not guaranteed to be stealthy when only a subset of
the data channels is attacked. In this case, the stealthiness constraint may require
additional knowledge of the system model. For instance, the experiment presented
in Section 3.6 requires knowledge of the physical system structure, so that fk only
excites the attacked measurements. Hence fk can be seen as a zero-dynamics attack
with respect to the uncompromised measurements, which is characterized in the
section below. Since the impact of the replay attack is dependent only on fk, we
refer the reader to Section 3.5.3 for a characterization of the replay attack’s impact.

Disclosure resources: The disclosure capabilities required to stage this attack
correspond to the data channels that can be eavesdropped by the adversary, namely
Ru and Ry.

Disruption resources: In this case the deception capabilities correspond to
the data channels that the adversary can tamper with, Ru

I and Ry
I . In particular,

for replay attacks the adversary can only tamper with the data channels from which
data has been previously recorded, i.e. Ru

I ⊆ Ru and Ry
I ⊆ Ry.

Direct disruption of the physical system through the signal fk depends on having
direct access to the physical system, modeled by the matrix F in (3.1).

Model knowledge: Note that no a priori knowledge K on the system model
is needed for the cyber component of the attack, namely the data disclosure and
deception attack, as seen in the attack policy (3.11) and (3.12). As for the physical
attack, fk, the required knowledge is scenario dependent. In the scenario considered
in the experiments described in Section 3.6, this component was modeled as an
open-loop signal, fk = gf (k).

3.5.3 Zero-Dynamics Attack

Recalling that for linear attack policies the plant and the anomaly detector are
LTI systems ((3.8) and (3.9) respectively), Definition 3.4.3 states that attacks are
0−stealthy (i.e., δ-stealthy with δ = 0) if rak = 0 for all k ≥ k0. The idea of
0−stealthy attacks consists of designing an attack policy and attack signal a[k0, kf ]

so that the residue rk does not change due to the attack. In other words, these at-
tacks are decoupled from the output of the closed-loop linear system (3.6), namely
rk, and their design in general depends on the plant, controller, and anomaly de-
tector dynamics. A particular subset of 0−stealthy attacks that only depend on the
plant dynamics are characterized in the following lemma:

Lemma 3.5.2. The attack signal a[k0, kf ] is 0−stealthy with respect to an arbitrary
anomaly detector D if ỹak = 0, ∀k ≥ k0.
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Figure 3.4: Schematic of the zero-dynamics attack.

Proof. Consider an arbitrary controller, anomaly detector, and their corresponding
attacked components in (3.8) and (3.9) with sa0 = 0. From the controller dynamics,
it directly follows that ỹak = 0, ∀k ≥ k0 results in uak = 0, ∀k ≥ k0, as the input to
the controller, i.e. ỹak , is zero. Since sa0 = 0 and ỹak = uak = 0, ∀k ≥ k0, meaning that
the detector’s inputs are zero, we then conclude rak = 0, ∀k ≥ k0.

Lemma 3.5.2 indicates that 0-stealthy attacks are decoupled from the plant
output yk, thus being stealthy with respect to arbitrary anomaly detectors. Hence
finding 0−stealthy attack signals relates to the output-zeroing problem or zero-
dynamics studied in the control theory literature (Zhou et al., 1996). The zero-
dynamics attack will be analyzed in further detail in Chapter 4 and Chapter 5.

Note that such an attack requires the perfect knowledge of the plant dynamics P
and the attack signal is based on the open-loop prediction of the output changes due
to the attack. This is illustrated in Figure 3.4 where Kz denote the zero-dynamics
and there is no disclosure of sensor or actuator data.

Attack policy: The attack policy corresponds to the input sequence ak that
makes the outputs of the process ỹak identically zero for all k and is illustrated in
Figure 3.4. It can be shown (Zhou et al., 1996) that the solution to this problem is
given by the sequence

ak = νkg, (3.13)

parameterized by the system zero ν and the corresponding input-zero direction g.
For sake of simplicity we consider a particular instance of this attack, where only

the actuator data are corrupted. In this case the zero attack policy corresponds to
the transmission zero-dynamics of the plant. The plant dynamics due to an attack
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on the actuator data are described by

xak+1 = Axak +Bak

ỹak = Cxak
(3.14)

with ak = buk . Given the discrete-time system (3.14) with B having full column
rank, the transmission zeros can be calculated as the values ν ∈ C that cause the
often called Rosenbrock matrix P (ν) to lose rank, where

P (ν) =

[

νI −A −B
C 0

]

.

Those values are called minimum phase or non-minimum phase zeros depending on
whether they are stable or unstable zeros, respectively. In discrete-time systems a
zero is stable if |ν| < 1 and unstable otherwise.

The input-zero direction can be obtained by solving the following equation
[

νI −A −B
C 0

] [

x0

g

]

=

[

0

0

]

, (3.15)

where x0 is the initial state of the system for which the input sequence (3.13) results
in an identically zero output, ỹak = 0 ∀k.
Lemma 3.5.3. Let x0 be the initial state of the system, where x0 satisfies (3.15).
The state trajectories generated by the attack are contained in span(x0), i.e., xak ∈
span(x0) ∀k ≥ 0.

Proof. The proof follows an induction argument. Consider the zero-dynamics attack
parameterized by x0 and g and the state evolution under attack, xak+1 = Axak+ν

kBg
with xa0 = x0. For k = 0 it follows from (3.15) that xa1 = Ax0+Bg = νx0. Supposing
that xak = νkx0 holds for some k > 0 yields xak+1 = Axak + νkBg = νk(Axa0 +Bg) =

νk+1x0 for all k ≥ 0, thus concluding the proof.

Attack performance: Note that the zero-dynamics attack is 0−stealthy only
if xa0 = x0. However the initial state of the system under attack xa0 is defined to
be zero at the beginning of the attack. Therefore stealthiness of the attack may be
violated for large differences between xa0 = 0 and x0. We refer the reader to (Teixeira
et al., 2012b) for a detailed analysis of the effects of zero initial conditions on zero-
dynamics attacks.

If the zero is stable, that is |ν| < 1, the attack will asymptotically decay to zero,
thus having little effect on the plant. However, in the case of unstable zeros the
attack grows geometrically, which could cause a great damage to the process. This
statement is captured in the following result.

Theorem 3.5.4. A zero-dynamics attack with |ν| > 1 leads the system to an unsafe
state if and only if span(x0) is not contained in Sx.
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Proof. Follows directly from Lemma 3.5.3 and from the fact that the zero-attack
with |ν| > 1 generates an unstable state trajectory moving away from the origin
along span(x0).

Disclosure resources: This attack scenario considers an open-loop attack
policy and so no disclosure capabilities are required, resulting in Ru = Ry = ∅ and
Iuk = Iyk = ∅ ∀k.

Disruption resources: The disruption capabilities in this attack scenario
correspond to the ability of performing deception attacks on the actuator data
channels. Therefore the required resources are Ru

I = {1, . . . , nu}, Ry
I = ∅, and

F = 0
Model knowledge: The ability to compute the open-loop attack policy re-

quires perfect knowledge of the zero-dynamics, which we denote as Kz. Moreover,
the zero-dynamics can be computed from the plant dynamics, namely A, B, and
C. No knowledge of the feedback controller or anomaly detector is assumed in this
scenario.

Although the former analysis considers LTI systems, the concept of zero-dynamics
has been extended to other classes of system, e.g., nonlinear systems (Isidori, 1995).
Hence zero-dynamics attacks could be directly extended to other classes of system
in the noiseless case. In the presence of noise however, the interplay between the
zero-dynamics and the noise inputs is not trivial and requires further analysis.

3.5.4 Local Zero-Dynamics Attack

In the previous scenario the zero-dynamics attack was characterized in terms of the
entire system. Here we further restrict the adversary resources by considering that
the adversary has disruption resources and knows the model of only a subset of the
system. In particular, we rewrite the plant dynamics (3.14) as

[

x1k+1

x2k+1

]

=

[

A11 A12

A21 A22

][

x1k
x2k

]

+

[

B1

0

]

ak

ỹak =
[

C1 C2

]
[

x1k
x2k

]

with ak ∈ Rn1
u and assume the adversary has access to only A11, A21, B1, and C1.

From the adversary’s view, this local system is characterized by

x1k+1 = A11x
1
k +B1ak +A12x

2
k

ylk =

[

C1

A21

]

x1k,

where ylk encodes the measurements depending on the local state, C1x
1
k, and the

interaction between the local subsystem and the remaining subsystems, A21x
1
k.
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Attack policy: Similar to the zero-dynamics attack, the attack policy is given
by the sequence ak = νkg, where g is the input zero direction for the chosen zero
ν. The input zero direction can be obtained by solving







νI −A11 −B1

C1 0

A21 0







[

x10
g1

]

=







0

0

0






.

Note that the zero-dynamics parameterized by g1 and ν correspond to local
zero-dynamics of the global system.

Attack performance: A similar discussion as for the global zero-dynamics
attack applies to this scenario. In particular, the stealthiness of the local zero-
dynamics attack may be violated for large differences between x10 and 0. Addition-
ally, as stated in Theorem 3.5.4, attacks associated with unstable zeros yielding
|ν| > 1 are more dangerous and may lead the system to an unsafe state.

Disclosure resources: This attack scenario considers an open-loop attack
policy and so no disclosure capabilities are required, resulting in Ru = Ry = ∅ and
Iuk = Iyk = ∅ ∀k.

Disruption resources: The disruption capabilities in this attack scenario cor-
respond to the ability of performing deception attacks on the actuator data chan-
nels of the local subsystem. Therefore the required resources are Ru

I = {1, . . . , n1
u},

Ry
I = ∅, and F = 0.
Model knowledge: The open-loop attack policy requires the perfect knowl-

edge of the local zero-dynamics, denoted as K̃z and obtained from A11, B1, C1, and
A21.

3.5.5 Bias Injection Attack

Here a particular scenario of false-data injection is considered, where the adversary’s
goal is to inject a constant bias in the system without being detected. Furthermore,
the bias is computed so that the impact at steady-state is maximized.

Attack policy: The bias injection attack is illustrated in Figure 3.5. The attack
policy is composed of a steady-state component, the desired bias denoted as a∞,
and a transient component. For the transient, we consider that the adversary uses a
low-pass filter so that the data corruptions are slowly converging to the steady-state
values. As an example, for a set of identical first-order filters the open-loop attack
sequence is described by

ak+1 = βak + (1 − β)a∗∞, (3.16)

where a0 = 0 and 0 < β < 1 is chosen to ensure that the attack is δ-stealthy
during the transient regime. The steady-state attack policy yielding the maximum
impact on the physical system is described below, where the computation of a∞ is
summarized in Theorem 3.5.7 and Theorem 3.5.8.
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Figure 3.5: Schematic of the bias injection attack.

Attack performance: First the steady-state policy is considered. Denote
a∞ as the bias to be injected and recall the anomaly detector dynamics under
attack (3.6). The steady-state detectability of the attack is then dependent on the
steady-state value of the residual

ra∞ =
(

Ce(I −Ae)
−1Be +De

)

a∞ =: Graa∞.

Consider the set Ua
[0,∞] =

{

ra[0,∞]
: ‖rak‖2 ≤ δ, ∀k ≥ 0

}

and recall Definition 3.4.3
for δ-stealthy attacks. A necessary condition for the bias injection attack to be
δ-stealthy is

‖Graa∞‖2 ≤ δ. (3.17)

Although attacks satisfying (3.17) could be detected during the transient, incip-
ient attack signals slowly converging to a∞ may go undetected. In fact, sufficient
conditions for the bias attack to be α-stealthy are given in Theorem 3.5.9 and the
results are illustrated through experiments in Section 3.6.

The impact of such attacks can be evaluated using the closed-loop dynamics
under attack given by (3.5). Recalling that ηak = [xa

⊤

k za
⊤

k ]⊤, the steady-state
impact on the state is given by

xa∞ = [I 0] (I −A)−1
Ba∞ =: Gxaa∞.

Consider the following safe set defined in terms of xak.
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Definition 3.5.1. The 2−norm safe set S2xa is defined as

S2xa =
{

x ∈ R
nx : ‖x‖22 ≤ 1

}

,

and the system is said to be in a safe state if xak ∈ S2xa .

For the 2−norm safe set S2xa , the most dangerous bias injection attack corre-
sponds to the δ-stealthy attack yielding the largest bias in the 2−norm sense, which
can be computed by solving

maximize
a∞

‖Gxaa∞‖22
subject to ‖Graa∞‖22 ≤ δ2.

(3.18)

Lemma 3.5.5. The optimization problem (3.18) is bounded if and only if

Ker (Gra) ⊆ Ker (Gxa) .

Proof. Suppose that Ker (Gra) 6= ∅ and consider the subset of solutions where a∞ ∈
Ker (Gra). For this subset of solutions, the optimization problem then becomes

maximize
a∞∈Ker(Gra)

‖Gxaa∞‖22 .

Since the objective function does not have an upper-bound and the feasible set
is unbounded, the optimal value is unbounded unless Gxaa∞ = 0 for all a∞ ∈
Ker (Gra) i.e., Ker (Gra) ⊆ Ker (Gxa). The proof is completed by noting that the
feasible set and the objective function are bounded for all solutions a∞ 6∈ Ker (Gra).

Based on Lemma 3.5.5, below we consider the non-trivial case for which it holds
that Ker (Gra) ⊆ Ker (Gxa). The above optimization problem can be transformed
into a generalized eigenvalue problem and the corresponding optimal solution is
characterized in terms of generalized eigenvalues and eigenvectors. Before formal-
izing this statement, we introduce the following result:

Lemma 3.5.6. Let Q ∈ Rn×n and P ∈ Rn×n be positive semi-definite matrices
satisfying Ker (Q) ⊆ Ker (P ) and define the matrix pencil (P,Q) , (P − νQ), with
ν ∈ C. Denote λ∗ as the largest generalized eigenvalue of the matrix pencil (P,Q)
and v∗ as the corresponding eigenvector. Then the matrix P −λQ is negative semi-
definite for a generalized eigenvalue λ if and only if λ = λ∗. Moreover, we have
λ∗ ≥ 0 and x⊤(P − λ∗Q)x = 0 with Qx 6= 0 if and only if x ∈ span(v∗).

Proof. Define normalrank(P,Q) as the rank of P − νQ for almost all values of
ν ∈ C and recall that λ is a generalized eigenvalue of (P,Q) if rank(P − λQ) <
normalrank(P,Q). Furthermore, denote v as the generalized eigenvector associated
with λ for which (P − λQ)v = 0 with v 6∈ Ker (Q).
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Define T = [VN̄ VN ] ∈ Rn×n where the columns of VN are a basis for Ker (Q)
and VN̄ is chosen such that T is nonsingular. Given that Ker (Q) ⊆ Ker (P ), the
coordinate transformation induced by T leads to

T (P − λQ)T−1 =

[

P̃ − λQ̃ 0

0 0

]

,

where Q̃ ≻ 0 and P̃ � 0 and we conclude that P−λQ � 0 if and only if P̃−λQ̃ � 0.
Additionally, we see that all the non-zero generalized eigenvalues of (P,Q) need to
reduce the rank of P̃ −λQ̃ and thus need to be positive. Hence we have proved that
all generalized eigenvalues are non-negative and that λ∗ ≥ 0.

Now we show that P̃−λQ̃ is indefinite for all generalized eigenvalues 0 < λ < λ∗.
Let λ̄ > 0 be a generalized eigenvalue of (P̃ , Q̃) with the associated eigenvector v̄.
Then v̄⊤(P̃ − λQ̃)v̄ = (λ̄− λ)v̄⊤Q̃v̄, which can be made positive or negative for all
generalized eigenvalues λ ∈ (0, λ∗) and thus our assertion is proved.

As the next step, we show that P̃−λ∗Q̃ � 0. Since Q̃ is invertible, the generalized
eigenvalues of (P̃ , Q̃) correspond to the eigenvalues of the positive semi-definite
matrix MP̃M with M = Q̃−1/2. Furthermore note that P̃ − λ∗Q̃ � 0 is equivalent
to having MP̃M − λ∗I � 0, which holds since MP̃M is positive semi-definite with
λ∗ as the largest eigenvalue.

Finally, we show that x⊤(P−λ∗Q)x = 0 with Qx 6= 0 if and only if x ∈ span(v∗).
Given the condition Qx 6= 0, it is enough to verify that x⊤(P̃ − λ∗Q̃)x = 0 for
x 6= 0 if and only if x ∈ span(ṽ∗), where ṽ∗ is the generalized eigenvector of
(P̃ , Q̃) associated with λ∗. The proof concludes by recalling that P̃ − λ∗Q̃ � 0,
hence x⊤(P̃ − λ∗Q̃)x = 0 if and only if x belongs to the subspace spanned by the
eigenvectors associated with λ∗.

The optimal bias injection attack in the sense of (3.18) is characterized by the
following result:

Theorem 3.5.7. Consider the 2−norm safe set S2xa and the corresponding optimal
δ-stealthy bias injection attack parameterized by (3.18), which is assumed to be
bounded. Denote λ∗ and v∗ as the largest generalized eigenvalue and corresponding
unit-norm eigenvector of the matrix pencil (G⊤

xaGxa, G
⊤
raGra). The optimal bias

injection attack is given by

a∗∞ = ± δ

‖Grav∗‖2
v∗,

and the corresponding optimal value is ‖Gxaa∞‖22 = λ∗δ2. Moreover, at steady-state
the system is in a safe state if and only if λ∗δ2 ≤ 1.

Proof. Let P, Q ∈ R
n×n be positive semi-definite matrices such that Ker (Q) ⊆

Ker (P ). Recall that λ is a generalized eigenvalue of (P,Q) if rank(P − λQ) <
normalrank(P,Q), where normalrank(P,Q) is defined as the rank of P − νQ for
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almost all values of ν ∈ C. Furthermore, denote v as the generalized eigenvector
associated with λ for which (P − λQ)v = 0 with v 6∈ Ker (Q). The necessary
and sufficient conditions for the optimization problem (3.18) are given by (Hiriart-
Urruty, 2001)

(i) 0 = (G⊤
xaGxa − λ∗G⊤

raGra)a
∗
∞,

(ii) 0 = a∗⊤∞ G⊤
raGraa

∗
∞ − δ2,

(iii) 0 ≥ y⊤(G⊤
xaGxa − λ∗G⊤

raGra)y, ∀ y 6= 0.

Suppose λ∗ is the largest generalized eigenvalue of (G⊤
xaGxa, G

⊤
raGra) and let v∗

be the corresponding eigenvector. Scaling v∗ by κ so that a∗∞ = κv∗ satisfies
‖Graa

∗
∞‖22 = δ2 leads to κ = ± δ

‖Grav∗‖2
, and conditions (i) and (ii) are satis-

fied. As for condition (iii), note that G⊤
xaGxa − λ∗G⊤

raGra is negative semi-definite
by Lemma 3.5.6, given that λ∗ is the largest generalized eigenvalue, G⊤

xaGxa and
G⊤

raGra are positive semi-definite, and the assumption that Ker (Gra) ⊆ Ker (Gxa).
To conclude the proof, observe that the optimal value is given by a∗⊤∞ G⊤

xaGxaa
∗
∞ =

λ∗a∗⊤∞ G⊤
raGraa

∗
∞ = λ∗δ2 = ‖xa∞‖22 and thus, by definition, xa∞ ∈ S2xa if and only if

λ∗δ2 ≤ 1.

More generally, the optimal bias injection attacks for ellipsoidal safe sets

Sxa =
{

xa ∈ R
nx : xa

⊤

Pxa ≤ 1
}

,

with P positive definite, can be found by replacing the objective function in (3.18)
by ‖P 1/2Gxaa∞‖22.

In the following, the steady-state attack policy is derived for the following safe
set:

Definition 3.5.2. The infinity-norm safe set S∞xa is defined as

S∞xa =
{
x ∈ R

nx : ‖x‖∞ ≤ 1
}
,

and the system is said to be in a safe state if xak ∈ S∞xa .

Given the infinity-norm safe set S∞xa , the bias injection attack with the largest
impact corresponds to the δ-stealthy attack yielding the largest bias in the infinity-
norm sense. This attack can be obtained by solving the following optimization
problem

maximize
a∞

‖Gxaa∞‖∞
subject to ‖Graa∞‖2 ≤ δ.

(3.19)

A possible method to solve this problem is to observe that

‖Gxaa∞‖∞ = maximize
i

‖e⊤i Gxaa∞‖2,
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where the vector ei is i−th column of the identity matrix. Thus one can transform
the optimization problem (3.19) into a set of problems with the same structure
as (3.18), obtaining

maximize
i

maximize
a∞

∥
∥e⊤i Gxaa∞

∥
∥
2

subject to ‖Graa∞‖2 ≤ δ.
(3.20)

Theorem 3.5.8. Consider the infinity-norm safe set S∞xa and the corresponding
optimal δ-stealthy bias injection attack parameterized by the optimization prob-
lem (3.19), which is assumed to be bounded. Let ei be the i−th column of the identity
matrix and denote λ∗i and v∗i as the largest generalized eigenvalue and correspond-
ing unit-norm eigenvector of the matrix pencil G⊤

xaeie
⊤
i Gxa − λG⊤

raGra. Letting
λ∗ = maxi λ

∗
i , with v∗ as the corresponding generalized eigenvector, the optimal

bias attack is given by

a∗∞ = ± δ

‖Grav∗‖2
v∗,

and the corresponding optimal value is ‖Gxaa∞‖∞ =
√
λ∗δ. Moreover, at steady-

state the system is in a safe state if and only if λ∗δ2 ≤ 1.

Proof. The proof follows directly from considering the set of optimization problems
in (3.20) and applying Theorem 3.5.7.

Recall that the steady-state value of the data corruption a∗∞ is not sufficient
for the attack to be δ-stealthy, since the transients are disregarded. In practice,
however, it has been observed in the fault diagnosis literature that faults with slow
dynamics, also known as incipient faults, are difficult to distinguish from model
uncertainty and noise (Chen and Patton, 1999; Zhang et al., 2002). Therefore the
low-pass filter dynamics in the attack policy (3.16) could be designed sufficiently
slow as to make detection more difficult. Below we provide sufficient conditions
under which a given filter parameter β renders the bias attack δ-stealthy with
respect to Ua

[0, ∞] =
{

ra[0, ∞]
: ‖rak‖2 ≤ δ, ∀k ≥ 0

}

.

Theorem 3.5.9. Consider the attack policy ak+1 = βak+(1−β)a∗∞ with β ∈ (0, 1).
The residual rak is characterized as the output of the autonomous system

ψa
k+1 = Āψa

k

rak = C̄ψa
k

with

Ā =







Ae Be 0

0 βI (1− β)I
0 0 I






, ψa

0 =







0

0

a∗∞






,

C̄ =
[

Ce De 0
]

.
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Moreover, the attack policy is δ-stealthy for a given β if the following optimiza-
tion problem admits a solution

minimize
γ,P

γ

subject to γ ≤ δ2,
P ≻ 0,

ψa⊤

0 Pψa
0 ≤ 1,

[

P C̄⊤

C̄ γI

]

� 0,

Ā⊤PĀ− P ≺ 0.

Proof. The autonomous system is directly obtained by considering the augmented
state ψa = [ξa

⊤

k|k a
⊤
k υ⊤k ]

⊤, where the attack vector ak corresponds to the state of the
low-pass filter bank (3.16) and υk the integral state initialized at υ0 = a∞. Given
this autonomous system, one observes that the attack is δ-stealthy if and only if the
corresponding output-peak ‖rak‖22 is bounded by δ2 for all k ≥ 0, given the initial
condition parameterized by α∗

∞. The remainder of the proof follows directly from
the results in Boyd et al. (1994) regarding output-peak bounds for autonomous
systems.

Disclosure resources: Similarly to the zero attack, no disclosure capabilities
are required for this attack, since the attack policy is open-loop. Therefore we have
Ru = Ry = ∅ and Iuk = Iuk = ∅ for all k.

Disruption resources: The biases may be added to both the actuator and
sensor data, hence the required resources are Ru

I ⊆ {1, . . . , nu}, Ry
I ⊆ {1, . . . , ny}.

Since no physical attack is performed, we have F = 0.
Model knowledge: As seen in (3.18), the open-loop attack policy (3.16)

requires the knowledge of the closed-loop system and anomaly detector steady-
state gains Gra and Gxa, which we denoted as K0 as shown in Figure 3.5.

3.6 Experiments

In this section, we report experiments on the two testbeds for electric power net-
works and process control, respectively, which are described in Chapter 2. Several
cyber attacks were staged on the testbeds, according to the different scenarios char-
acterized in the previous section.

3.6.1 Electric Power Systems

Next, we present the results obtained by carrying out a stealthy deception attack
on a SCADA EMS software. Before analyzing the results, we briefly describe the
experimental setup.
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Figure 3.6: Power network considered in the experiment of Section 3.6.1.

Experimental Setup

The EMS software was supplied with the test network presented in Figure 3.6.
This network consists of 14 substations and the bus-branch model has 27 buses and
40 branches. Several measurements are available at each substation, which can be
corrupted by the adversary.

Specific EMS components, such as the SE and BDD, are configured with unitary
weights for all the measurements. As presented in Section 2.5.1, the SE solves the
nonlinear weighted least-squares problem, while the BDD algorithm triggers an
alarm if the residue norm exceeds a certain threshold.

As described in previous sections, some information about the system is needed
to compute stealthy deception attacks. Here we consider a particular class of such in-
formation, namely the bus-branch model of the network described in Section 2.5.1.
In this experiment, we exported this information to MATLAB using the MAT-
POWER toolbox, (Zimmerman et al., 2009). A simplified attack was considered,
in which only the DC model y = CDCx, described in Section 2.5.1, was used to
compute the attack.

Attack Scenario

To conduct our experiment we considered measurement number 33, corresponding
to the active power flow on the tie-line between TROY and BLOO substations,
to be the target measurement that the attacker desires to corrupt. In order to do
so without being detected, the attacker needs to perform a coordinated attack by
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Table 3.1: Example: adding 100MW to target measurement 33

Measurement Normalized Correct value False value
index, k attack, āk (MW), yak (MW), ỹak

4 −1 1005.7041 905.7042
21 −0.7774 157.8541 80.1103
24 0.9665 507.7171 604.3638
27 2.7439 40.0006 314.3911
33 1 –14.7971 85.2029

62 0.7774 −123.3764 −45.6327
104 −0.9665 −334.8826 −431.5293

corrupting the value of other power measurements.
Following the bias injection attack presented in Section 3.5.5, the attack vector a

corresponds to sensor data corruption and is computed by solving the optimization
problem (3.20). Since there are no dynamics and measurement 33 is the only target,
we let Gxa = e⊤33, so that Gxaa = a33. Recall from Section 2.5.1 that, given the DC
model CDC , the residue under sensor data corruption is given by ra = Graa, where
Gra = I − CDC(C

⊤
DCCDC)

−1C⊤
DC . Moreover, we consider the threshold δ = 0,

which constrains the attack vector a to be computed so that ra = 0.
Note that the null-space of Gra corresponds to the range-space of CDC , yielding

GraCDC = 0. Moreover, we have that GxaCDC = e⊤33CDC is not identically zero,
since it corresponds to the 33-rd row of the measurement matrix CDC . Therefore,
we conclude that the null-space of Gra is not contained in the null-space of Gxa, in
which case the attack is unbounded, as stated in Lemma 3.5.5.

Instead of the unbounded optimization problem (3.20), we look at the feasi-
bility problem of computing a normalized attack vector ā satisfying the equality
constraints Graā = 0 and Gxaā = 1. Note that all solutions to first constraint can
be parameterized as ā = CDC x̃, for some vector x̃. Hence, the feasibility problem
is equivalent to the undetermined set of equations GxaCDC x̃ = 1, which admits
numerous attack vectors as feasible solutions. To narrow the attack vector candi-
dates, we search for the sparsest candidate by considering the cost function ‖ā‖0
and solving the combinatorial optimization problem

minimize
ā

‖ā‖0
subject to Graā = 0,

Gxaā = 1,

where ‖ā‖0 denotes the number of non-zero elements in the vector ā. Later, in
Chapter 4, we connect the previous optimization problem to the resources and
likelihood of the attack and mention efficient algorithms to solve it.
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Solving the latter optimization problem retrieves the normalized attack vector ā
with highest sparsity that stealthily changes the target measurement by 1 MW, as
imposed by the constraint Gxaā = 1. Additionally, the normalized attack vector ā,
presented in Table 3.1, can be scaled to inject other biases. For instance, in Table 3.1
we can see the correct value of the compromised measurements, denoted by ya, and
the false values sent to the control center, ỹa, when the objective was to induce
a bias of 100MW in the target measurement by having ỹa = ya + 100ā. Such an
attack only corrupts 7 measurements in total, which are taken from 5 substations,
namely TROY, BLOO, JUNE, MONR, and CROS, all situated in the right side
of Figure 3.6. Hence we see that to stealthily attack a single measurement, a local
coordinated attack suffices, even for such a large system. Additionally, as discussed
in Dán and Sandberg (2010), note that usually all measurements within a given
substation are gathered at a single RTU. This means that by breaking into the
substation’s RTU the attacker gains access to all those measurements, so we can
argue that although 7 measurements need to be corrupted, only 5 RTUs need to
be compromised.

Experimental Results

The normalized attack vector ā, whose non-zero entries are shown in Table 3.1,
was used to corrupt the measurement data according to the attacker’s objective. In
Figure 3.7, we show the results obtained by performing stealthy deception attacks
as described before and naive deception attacks where only the target measurement
is compromised. In both cases, the bias in the target measurement was sequentially
increased by 10MW at each step. From these results we see that the naive attack
was undetected up to a bias of 20MW, while for bias above 30MW this attack was
detected and the compromised measurement removed. The coordinated stealthy
attack, however, remained undetected for all the bias values showed in the figure.
Furthermore we see that the naive attack did not influence the estimate as much
as the stealthy one. For stealthy attacks, the relationship between the false and the
estimated values is an almost unitary slope, meaning that the operator would see
the false values as being truthful.

Table 3.2 shows the results obtained for large bias, where the attacks were
performed sequentially with steps of 50MW. We observe that the stealthy attacks
were successful, with no BDD alarm triggered up to a bias of 150MW, beyond which
the nonlinear SE (2.3) could not be solved.

Although the SE did not converge for attacks above 200MW, it is still surprising
to see that attacks based on the linearized model as large as 150MW are successful.
To better understand what such a quantity indicates, note that the nominal value
of the targeted tie-line is 260MW. Thus the attack was able to induce a bias of more
than 50% of the nominal value, which reveals that the SCADA EMS software is
indeed sensitive to stealthy deception attacks. Furthermore, notice that the number
of warnings given by the contingency analysis (CA) increase with the size of the
attack. The increased number of CA warnings could lead the operator to take
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Figure 3.7: Stealthy deception attack.

Table 3.2: Results from the stealthy attack for large bias

Target bias, False value Estimate #BDD #CA
a33 (MW), ỹa33 (MW), ŷa33 Alarms Alarms
0 −14.8 −14.8 0 2
50 35.2 36.2 0 2
100 85.2 86.7 0 10
150 135.2 137.5 0 27
200 185.2 — — —
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Figure 3.8: Schematic diagram of the testbed with the quadruple-tank process and
a multi-hop communication network.

corrective actions. Therefore, we conclude that operators and utilities should care
about these scenarios.

We also want to highlight that these results were achieved with a simplified linear
model where several parameters, including the correct operating conditions and
cross-coupling effects between active and reactive measurements, were disregarded.
However, in these scenarios we assumed the attacker had a large amount of resources
such as a rather detailed knowledge regarding the network model, the available
measurements, and the pseudo-measurements, and access to several RTUs. Most
likely, an attacker with such resources could find easier alternative attacks on the
power network than the one considered in this section.

3.6.2 Networked Control System Testbed

In this subsection, we consider the process control testbed characterized in Sec-
tion 2.5.2. The testbed consists of a quadruple-tank process (QTP) (Johansson,
2000) controlled through a wireless communication network, as described in Sec-
tion 2.5.2 and depicted in Figure 3.8. The nonlinear plant model is linearized for a
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given operating point. Moreover, given the range of the water levels, the following
safe set is considered

Sx = {x ∈ R
nx : ‖x− σ1‖∞ ≤ 15, σ = 15},

where 1 ∈ Rnx is a vector with all entries set to 1.
The process is controlled using a centralized LQG controller with integral ac-

tion running in a remote computer and a wireless network is used for the commu-
nications. A Kalman-filter-based anomaly detector is also running in the remote
computer and alarms are triggered according to (3.4), for which we have considered

U[k0, ∞] =
{

r[k0, ∞] : ‖rk‖2 ≤ δ + δr, ∀k ≥ k0
}

,

Ua
[k0, ∞] =

{

ra[k0, ∞] : ‖rak‖2 ≤ δ, ∀k ≥ k0
}

,

with δr = 0.15 and δ = 0.25 for illustration purposes.

Denial-of-Service Attack

Here we consider the case where the QTP suffers a DoS attack on both sensors,
while operating at a constant set-point. The state and residual trajectories from
this experiment are presented in Figure 3.9. The DoS attack follows a Bernoulli
model (Amin et al., 2009) with p = 0.9 as the probability of packet loss and the
last received data are used in the absence of data. From Proposition 3.5.1, we have
that the closed-loop system under such a DoS attack is exponentially stable.

The DoS attack initiates at t ≈ 100 s, leading to an increase in the residual
due to packet losses. However the residual remained below the threshold during the
attack and there were no significant changes in the system’s state.

Replay Attack

In this scenario, the QTP is operating at a constant set-point while a hacker desires
to steal water from tank 4, the upper tank on the right side. An example of this
attack is presented in Figure 3.10, where the replay attack policy is the one described
in Section 3.5.2. The adversary starts by replaying past data from y2 at t ≈ 90 s and
then begins stealing water from tank 4 at t ≈ 100 s. Tank 4 is successfully emptied
and the attacks stops removing water at t ≈ 180 s. To ensure stealthiness, the replay
attack continues until the system recovered its original setpoint at t ≈ 280 s. As we
can see, the residue stays below the alarm threshold and therefore the attack is not
detected.

Zero-Dynamics Attack

The QTP has a non-minimum phase configuration in which the plant possesses
an unstable zero. In this case, as discussed in Section 3.5.3, an adversary able to
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ỹ2

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

Time [s]

R
es

id
u
e

 

 

‖rk‖2

δr + δα

Figure 3.9: Results for the DoS attack performed against both sensors since t ≈
100 s.
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Figure 3.10: Results for the replay attack performed against sensor 2 from t ≈ 90 s
to t ≈ 280 s. Additionally, the adversary opens the tap of tank 4 at t ≈ 100 s and
closes it at t ≈ 180 s.

corrupt all the actuator channels may launch a false-data injection attack where the
false-data follows the zero-dynamics. Moreover, since the safe region is described
by the set Sx = {x ∈ R

nx : ‖x − σ1‖∞ ≤ 15, σ = 15}, from Theorem 3.5.4 we
expect that the zero-dynamics attack associated with the unstable zero can drive
the system to an unsafe region. This scenario is illustrated in Figure 3.11.

The adversary’s goal is to either empty or overflow at least one of the tanks,
considered as an unsafe state. The attack on both actuators begins at t ≈ 30 s,
causing a slight increase in the residual. Tank 3 becomes empty at t ≈ 55 s and
shortly after actuator ũ2 saturates, producing a steep increase in the residual which
then crosses the threshold. However, note that the residual was below the threshold
when the unsafe state was reached.

After saturation of the water level and the actuators, the system dynamics
change and therefore the attack signal no longer corresponds to the zero-dynamics
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and is detected, although it has already damaged the system. Thus these attacks
are particularly dangerous in processes that have unstable zero-dynamics and in
which the actuators are over-dimensioned, allowing the adversary to perform longer
attacks before saturating.

Bias Injection Attack

The results for the case where u1 and y1 are respectively corrupted with bu∞ and by∞
are presented in the Figure 3.12. In this scenario, the adversary aimed at driving
the system out of the safe set Sx while remaining stealthy for δ = 0.25. The bias was
slowly injected using a first-order low-pass filter with β = 0.95 and the following
steady-state value, computed using Theorem 3.5.8,

a∞ =

[

bu∞
by∞

]

=

[

2.15

−9.42

]

.

The bias injection began at t ≈ 70 s and led to an overflow in tank 4 at t ≈ 225 s.
At that point, the adversary started removing the bias and the system recovered the
original setpoint at t ≈ 350 s. The residual remained within the allowable bounds
throughout the attack, thus the attack was not detected.

3.7 Summary

In this chapter, we have analyzed the security of networked control systems. An
attack-scenario space based on the adversary’s model knowledge, disclosure, and dis-
ruption resources was proposed and the corresponding adversary model described.
Attack scenarios corresponding to DoS, replay, zero-dynamics, and bias injection
attacks were analyzed using this framework. In particular, the maximum impact of
stealthy bias injection attacks was derived and it was shown that the correspond-
ing policy does not require perfect model knowledge. These attack scenarios were
illustrated using experimental setups based on a SCADA EMS software for electric
power networks and a quadruple-tank process controlled over a wireless network.
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Figure 3.11: Results for the zero-dynamics attack starting at t ≈ 30 s. Tank 3 is
emptied at t ≈ 55 s, resulting in a steep increase in the residual since the linearized
model is no longer valid.
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Figure 3.12: Results for the bias attack against the actuator 1 and sensor 1 in the
minimum phase QTP. The attack is launched using a low-pass filter in the instant
t ≈ 70 s and stopped at t ≈ 230 s.



Chapter 4

Cyber Security Metrics

for Networked Control Systems

The motivational examples in Chapter 1 and the attack scenarios described in
Chapter 3 had a common theme: a knowledgable adversary aiming at disrupting
the system in a covert way, without raising alarms. However, mitigating all threats
within such class of attacks may be a difficult task, given the large amount of dif-
ferent scenarios that need to be considered. Motivated by this difficulty, in this
chapter, we address resiliency of control systems under the perspective of risk man-
agement, where the notion of risk is defined in terms of a threat’s scenario, impact,
and likelihood. In particular, we consider attack scenarios with different sets of dis-
ruption resources and aim at developing tools to identify the scenarios yielding the
highest impact, while using the least amount of resources.

Contributions and Related Work

Data deception attack is a particular type of a complex cyber attack where the at-
tacker introduces corrupted data in the communication network. Several instances
of this scenario have been considered in the context of control systems, see (Cár-
denas et al., 2011; Esfahani et al., 2010; Sundaram and Hadjicostis, 2011) and
references therein. In this chapter we address stealthy false-data injection attacks
that are constructed so that they are not detected based on the control input and
measurement data available to anomaly detectors. A sub-class of these attacks have
been recently addressed from a system theoretic perspective. In (Smith, 2011) the
author characterizes the set of attack policies for stealthy false-data injection at-
tacks with detailed model knowledge and full access to all sensor and actuator
channels, while (Pasqualetti et al., 2011) described the set of stealthy false-data
injection attacks for omniscient attackers with full-state information, but possibly
compromising only a subset of the existing sensors and actuators. Similarly, Fawzi
et al. (2012) consider a finite time-interval and characterizes the number of cor-
rupted channels that cannot be detected during that time-interval. In the previ-

87
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ous approaches, the attacks were constructed so that the system’s output remains
unchanged by the attack. Instead, we allow more freedom to the adversary and
consider attacks that may be theoretically detectable, but are still stealthy since
they do not trigger any alarm by the anomaly detector.

In this chapter, we consider the typical architecture for a networked control sys-
tem under false-data injection attacks and adversary models presented in Chapter 3.
Under this framework, various formulations for quantifying cyber security of control
systems are proposed and formulated as constrained optimization problems. These
formulations capture trade-offs in terms of impact on the control system, attack
detectability, and adversarial resources. In particular, one of the formulations con-
siders the minimum number of data channels that need to be corrupted so that the
adversary remains stealthy, similarly to the security index for static systems pro-
posed in Sandberg et al. (2010). The formulations are related to system theoretic
concepts.

The outline of the chapter is as follows. The control system architecture and
adversary model are described in Section 4.1. Section 4.2 discusses security metrics
for static systems. Regarding dynamical systems, several formulations quantifying
cyber security are introduced in Section 4.3 for a given time-horizon and in Sec-
tion 4.4 for steady-state. Some particular metrics are posed as a mixed integer
linear programs in Section 4.5. The security metrics and their application to miti-
gation risk are illustrated through numerical examples in Section 4.6, followed by
conclusions in Section 4.7.

4.1 Problem Formulation

In this section, we recall the networked control system structure presented in Chap-
ter 3 and describe the attack scenario and the main problem to be tackled.

For the networked control system, we consider four main components described
in Chapter 3: the physical plant, the communication network, the feedback con-
troller, and the anomaly detector. The physical plant is modeled in a discrete-time
state-space form as

P :

{

xk+1 = Axk +Bũk

yk = Cxk
,

where xk ∈ Rnx is the state variable, ũk ∈ Rnu the control actions applied to the
process, and yk ∈ R

ny the measurements from the sensors. The sensor measure-
ments and actuator data are transmitted through a communication network, which
at the plant side correspond to yk and ũk, respectively. At the controller side we
denote the sensor and actuator data by ỹk ∈ Rny and uk ∈ Rnu , respectively.

The feedback controller is described by

F :

{

zk+1 = Aczk +Bcỹk

uk = Cczk +Dcỹk
,
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where the state of the controller is zk ∈ Rnz , while the anomaly detector is given
by

D :

{

sk+1 = Aesk + Beuk +Keỹk

rk = Cesk +Deuk + Eeỹk
,

where sk ∈ Rns is the state of the anomaly detector and rk ∈ Rnr is the residue
evaluated to detect and locate existing anomalies.

Let r[k0, kf ] = {rk0 , rk0+1, . . . , rkf
} be the residue discrete-time signal in the

time-interval [k0, kf ] = {k0, . . . , kf}, which is also denoted in vector form as
r[k0, kf ] ∈ Rnr(kf−k0+1), with r[k0, kf ] = [r⊤k0

, . . . , r⊤kf
]⊤. When the time-interval is

clearly defined from the context, the short-form notation r will be used in place of
r[k0, kf ]. Given the residue signal over the time-interval [k0, kf ] and a set U[k0, kf ],
an alarm is triggered if

r[k0, kf ] 6∈ U[k0, kf ]. (4.1)

In particular, we consider a norm-based characterization of U[k0, kf ], namely

U[k0, kf ] , {r : ‖r[k0, kf ]‖p ≤ δ},

where ‖r[k0, kf ]‖p with 1 ≤ p ≤ ∞ denotes the p-norm of the discrete-time signal r
in the time-interval [k0, kf ].

4.1.1 Attack Scenario: Data Deception

For the attack scenario, data deception attacks are considered. The deception at-
tacks modify the control actions uk and sensor measurements yk from their cal-
culated or real values to the corrupted signals ũk and ỹk, respectively. Denoting
Ru

I ⊆ {1, . . . , nu} and Ry
I ⊆ {1, . . . , ny} as the deception resources, i.e. set of actu-

ator and sensor channels that can be affected, and |Ru
I | and |Ru

I | as the respective
cardinality of the sets, the deception attacks are modeled as

ũk , uk + Γubuk ,

ỹk , yk + Γybyk,

where the signals buk ∈ R|Ru
I | and byk ∈ R|Ry

I
| represent the data corruption and

Γu ∈ Bnu×|Ru
I | and Γy ∈ Bny×|Ry

I | (B , {0, 1}) are the binary incidence matrices
mapping the data corruption to the respective data channels. The matrices Γu and
Γy indicate which data channels can be accessed by the adversary and are therefore
directly related to the adversary resources in deception attacks. The number of data
channels that may be compromised by the adversary are given by na = |Ru

I |+ |Ru
I |.

Defining the attack vector ak = [bu⊤k by⊤k ]⊤, the system components under
attack are now characterized. Stacking the states of the plant and controller as
ηk = [x⊤k z⊤k ]⊤ and the states of the plant, controller, and anomaly detector as
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ξk = [η⊤k s⊤k ]
⊤, the dynamics of the closed-loop system and the residue dynamics

under attack can be written respectively as

ηk+1 = Aηk +Bak

ỹk = Cηk +Dak,
(4.2)

ξk+1 = Aeξk +Beak

rk = Ceξk +Deak.
(4.3)

The matrices B, D, Be, and De capture the way in which the attack vector ak
affects the closed-loop and residue dynamics. For data deception attacks, these
matrices are characterized as

B =

[

BΓu BDcΓ
y

0 BcΓ
y

]

, D =
[

0 Γy
]

,

Be =

[

B

(BeDc +Ke)D

]

, De = (DeDc + Ee)D.

The remaining matrices are defined in Section 3.4.

Attack Goals and Constraints

In addition to the attack resources, the attack scenarios need to include the adver-
sary’s intent, namely the attack goals and constraints shaping the attack policy. The
attack goals can be stated in terms of the attack impact on the system operation,
while the constraints may be related to the attack detectability.

Several physical systems have tight operating constraints which if not satisfied
might result in physical damage to the system. In this work we use the concept of
safe sets to characterize the safety constraints.

Definition 4.1.1. For a given time-interval [k0, kf ], the system is said to be safe
if x[k0, kf ] ∈ S[k0, kf ], where S[k0, kf ] is a compact set with non-empty interior.

The above definition of safe set S[k0, kf ] allows one to consider both time-interval
and time-instant characterizations of safe regions, for instance signal energy and safe
regions of the state space, respectively.

Assumption 4.1.1. The system is in a safe state at the beginning of the attack,
i.e. x(−∞, k0−1] ∈ S(−∞, k0−1].

The physical impact of an attack can be evaluated by assessing whether or not
the state of the system remained in the safe set during and after the attack. The
attack is considered successful if the state is driven out of the safe set. For simplicity
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of notation, the safe set S[k0, kf ] will be simply denoted as S whenever the time-
interval is not ambiguous. Moreover, the safe sets considered in the remainder of
this chapter are of the form Sp[k0, kf ]

= {x : ‖x[k0, kf ]‖p ≤ 1}.
Regarding the attack constraints, we consider that attacks are constrained to

remain stealthy. Denote a[k0, kf ] = {ak0 , . . . , akf
} as the attack signal, and recall

that the residue signal r[k0, +∞) is a function of the attack signal. Assuming the
system is behaving nominally before the attack, the set of stealthy attacks is defined
as follows.

Definition 4.1.2. The attack signal a[k0, kf ] is stealthy over the time-interval
[k0, kf ] if r[k0, kf ] ∈ U[k0, kf ].

4.1.2 Risk Analysis

Recall, from Section 2.3.3, that risk is defined as the set of tuples

Risk ≡
{
(Scenario, Impact, Likelihood)

}
.

In the following, we develop quantitative methods for assessing the cyber security
of networked control systems through risk analysis. In particular, given the attack
scenario characterized in the previous section, we propose different metrics to assess
the risk of different threats, where attacks requiring large amounts of disruption
resources are considered to be less likely. The proposed metrics capture trade-offs
in terms of impact on the control system, attack detectability, and adversarial
resources.

4.2 Static Case

The risk assessment in this section focuses on analyzing the threat’s likelihood,
indicated by the minimum number of sensors that need to be compromised by
the adversary for a given attack scenario. The minimum number of compromised
sensors is a relevant indicator of the threat’s likelihood because the sensors are often
geographically distributed in networked control systems. As a result, coordinated
attacks compromising multiple sensors need to be carried out simultaneously in
different locations and they are difficult to implement.

The models in Section 4.1 are simplified in two regards: First, the plant is in
steady state. That is, in (4.2) and (4.3), the state vectors ηk and ξk are constant
for all k, so the subscript k is omitted. The second simplification is that there is
no feedback control. The simplifications are made because they can lead to a more
streamlined presentation of the main concept of risk assessment. In addition, in
its own right the simplified structure is relevant in analyzing the cyber security of
large-scale systems, such as electric power systems, and gas and water distribution
networks. In particular, this simplified structure will be illustrated for electric power
systems in Section 4.6. The risk assessment for the general dynamical models will
be deferred to a later section in this chapter.
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The model for risk assessment is the relationship between the static plant states
x and the measurements ỹ received at the anomaly detector. This is described by
the expression

ỹ = Cx+ Γyby = Cx+∆y, (4.4)

where C is the measurement matrix, and ∆y = Γyby is the measurement data
attack. In a typical static state estimation problem such as the power network
case, there are more measurements than states and hence C is assumed to have
full column rank (Abur and Exposito, 2004; Monticelli, 1999). Based on the risk
assessment model, the least squares estimate of the states is x̂ = (C⊤C)

−1
C⊤ỹ, and

the estimate of measurements can be expressed as ŷ = Cx̂ = C(C⊤C)
−1
C⊤ỹ. Thus,

the anomaly detector, which is based on measurement residual, can be described
by

r , Sỹ =
(

I − C(C⊤C)
−1
C⊤

)

ỹ. (4.5)

Such an anomaly detector is in general sufficient to detect ∆y in the form of a single
error involving only one faulty measurement (Abur and Exposito, 2004; Monticelli,
1999). However, in face of a coordinated malicious attack on multiple measurements
the anomaly detector can fail. In particular, in (Liu et al., 2009) it was reported
that an attack of the form

∆y = C∆x (4.6)

for an arbitrary ∆x would not result in any residual in (4.5), in addition to the
residual caused by other factors such as measurement noise. In fact, the set of
stealthy deception attacks with respect to the anomaly detector (4.5) and a zero
detection threshold is characterized by (4.6), and these attacks were also experi-
mentally verified in a realistic testbed in Section 3.6.1. Although stealthy attacks
may be obtained from (4.6), distinct choices of ∆x may yield attack vectors ∆y
requiring significantly different amount of adversary resources, in terms of the num-
ber of nonzero entries of the attack vector ∆y and the matrix Γy. This number is
also an indicator of the likelihood of the success of stealthy attack, as discussed
earlier in this subsection.

Next we characterize the stealthy attack vectors with the minimum number of
nonzero entries, as a concrete example of the quantitative method for risk assess-
ment.

4.2.1 Minimum-Resource Attacks

There is a significant amount of literature studying the stealthy attack in (4.6) and
its consequences to state estimation data integrity (Liu et al., 2009; Kosut et al.,
2010; Kim and Poor, 2011; Sou et al., 2013b; Giani et al., 2013)). Liu et al. (2009)
numerically showed that stealthy attacks ∆y = C∆x are often sparse. To analyze
the stealthy attacks with the minimum number of nonzero entries, in Sandberg et
al. (2010) the notion of security index ρj for a measurement j was introduced as
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the optimal objective value of the following cardinality minimization problem:

ρj , minimize
∆x∈Rnx

‖C∆x‖0
subject to e⊤j C∆x = 1,

(4.7)

where ‖C∆x‖0 denotes the cardinality (i.e., the number of nonzero entries) of the
vector C∆x, j is the label of the measurement for which the security index ρj is
computed, and ej denotes the j-th column of the identity matrix. In Section 3.6.1,
the previous optimization problem was solved to compute the sparsest normalized
attack used in the experiments on the SCADA EMS software. Computational al-
gorithms solving the combinatorial problem (4.7) are postponed until Section 4.5.

The security index ρj is the minimum number of measurements an attacker
needs to compromise in order to attack measurement j without being detected
by the anomaly detector. In particular, a small ρj implies that measurement j is
relatively easy to compromise in a stealthy attack, therefore indicating the likeli-
hood of such a threat. As a result, the knowledge of the security indices for all
measurements allows the network operator to pinpoint the security vulnerabilities
of the network, and to better protect the network with limited resource. For ex-
ample, Dán and Sandberg (2010) proposed a method to optimally assign limited
encryption protection resources to improve the security of the network based on its
security indices.

4.3 Dynamical Case: Transient Analysis

In this section, we consider dynamical systems and proposed cyber security metrics
assessing both the impact and likelihood of threats. As mentioned in Section 4.1.1,
the adversary aims at driving the system to an unsafe state while remaining stealthy.
Additionally we consider that the adversary also has resource constraints, in the
sense that only a small number of attack points to the system are available. In the
following, several formulations for quantifying cyber security of networked control
systems are discussed.

Consider the dynamical system in (4.2) and the time-interval [0, N ] with k0 = 0
and kf = N . Defining n = [η⊤0 . . . η⊤N ]⊤, a = [a⊤0 . . . a⊤N ]⊤, and y = [y⊤0 . . . y⊤N ]⊤,
the state and output trajectories can be described by the following mappings

n = Oηη0 + Tηa
y = Cηn+Dηa,

(4.8)
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where
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,

Cη = IN+1 ⊗C, Dη = IN+1 ⊗D

Similarly for (4.3), defining e = [ξ⊤0 . . . ξ⊤N−1|N−1]
⊤, r = [r⊤0 . . . r⊤N ]⊤ yields

e = Oξξ0 + Tξa
r = Cξe+Dξa.

(4.9)

Recall that the system is operating safely during the time-interval [k0, kf ] if
x ∈ S[k0, kf ]. Supposing Sp[k0, kf ]

= {x : ‖x[k0, kf ]‖p ≤ 1} for p ≥ 1, the system is
safe during the time-interval {0, 1, . . . , N} if

x , Cxn ∈ Sp[0, N ],

where Cx = IN+1 ⊗ [In 0]. In particular, for p =∞ we have that the system is safe
if ‖x‖∞ = ‖Cxn‖∞ ≤ 1.

4.3.1 Maximum-Impact Attacks

One possible way to quantify cyber security is by analyzing the impact of attacks
on the control system, given some pre-defined resources available to the adversary.
Recalling the safe set introduced earlier, Sp[0, N ] = {x : ‖x[0, N ]‖p ≤ 1}, the attack
impact during the time-interval [0, N ] is characterized by

gp(n) =

{

‖Cxn‖p , if Cxn ∈ Sp[0, N ]

+∞ , otherwise

since the adversary aims at driving the system to an unsafe state. Similarly, recall
the set of stealthy attacks a such that r ∈ U[k0, kf ] , {r : ‖r[k0, kf ]‖p ≤ δ}.

The attack yielding the maximum impact can be computed by solving

maximize
a

gp(n)

subject to
∥
∥Cξe+Dξa

∥
∥
q
≤ δ,

e = Oξξ0 + Tξa,
n = Oηη0 + Tηa,

(4.10)

with p and q possibly different. Given the objective function gp(n), the adversary’s
optimal policy is to drive the system to an unsafe state while keeping the residue be-
low the threshold. When the unsafe state is not reachable while remaining stealthy,
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the optimal attack drives the system as close to the unsafe set as possible by max-
imizing ‖x[0, N ]‖p = ‖Cxn‖p.

Letting ξ0 = 0 and η0 = 0, the optimal values of (4.10) can be characterized by
analyzing the following modified problem

maximize
a

‖Txa‖p
subject to ‖Tra‖q ≤ δ,

(4.11)

where Tx = CxTη and Tr = CξTξ + Dξ. The conditions under which (4.11) admits
bounded optimal values are characterized in the following result.

Lemma 4.3.1. The problem (4.11) is bounded if and only if Ker (Tr) ⊆ Ker (Tx).

Proof. Suppose that Ker (Tr) 6= ∅ and consider the subset of solutions where a ∈
Ker (Tr). For this subset of solutions, the optimization problem becomes

maximize
a∈Ker(Tr)

‖Txa‖p .

Since the latter corresponds to a maximization of a convex function, its solution
is unbounded unless Txa = 0 for all a ∈ Ker (Tr) i.e., Ker (Tr) ⊆ Ker (Tx). For
a 6∈ Ker (Tr) the feasible set is compact and thus the objective function over the
feasible set is bounded, which concludes the proof.

Supposing that the optimization problem (4.11) is bounded and p = q = 2,
(4.11) can be rewritten as a generalized eigenvalue problem. Moreover, a closed-
form solution parameterized by a generalized eigenvalue and eigenvector pair can
be obtained.

Theorem 4.3.2. Let p = q = 2 and suppose that Ker (Tr) ⊆ Ker (Tx). The optimal
attack policy for (4.11) is given by

a⋆ =
δ

‖Trv⋆‖2
v⋆,

where v⋆ is the generalized eigenvector associated with λ∗, the largest generalized
eigenvalue of the matrix pencil

(
T ⊤
x Tx, T ⊤

r Tr
)
. Moreover, the corresponding opti-

mal value is given by ‖Txa⋆‖2 =
√
λ∗δ.

Proof. The proof is similar to that of Theorem 3.5.7, and is thus omitted.

Given the solution to (4.11) characterized by the previous result, the maximum
impact with respect to (4.10) is given by

gp(Txa⋆) =
{ √

λ∗δ , if
√
λ∗δ ≤ 1

+∞ , otherwise.
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4.3.2 Minimum-Resource Attacks

Cyber security of control systems can also be quantified by assessing the number
of resources needed by the adversary to perform a given set of attacks, without
necessarily taking into account the attack impact, as formulated below.

Consider the set of attacks AG such that a ∈ AG satisfies the goals of a given
attack scenario. Recall that ak ∈ Rna for all k ∈ [k0, kf ] and denote a(i), [k0, kf ] =
{a(i),k0

, . . . , a(i),kf
} as the signal corresponding to the i−th attack resource, where

a(i),k is the i-th entry of the vector ak. Consider the function

hp(a) = [‖a(1)‖p . . . ‖a(na)‖p]⊤

with 1 ≤ p ≤ +∞. The number of resources employed in a given attack are ‖hp(a)‖0,
where ‖x‖0 denotes the number of non-zero elements of the vector x. For the set of
attacks AG, the minimum-resource attacks are computed by solving the following
optimization problem

minimize
a

‖hp(a)‖0
subject to

∥
∥Cξe+Dξa

∥
∥
q
≤ δ,

e = Oξξ0 + Tξa,
a ∈ AG.

(4.12)

Although the set AG may be chosen depending on the attack impact gp(n), i.e.,
AG = {a : gp(n) = ‖Txa‖p > γ}, this generally results in non-convex constraints
that increase the computational complexity of the problem. As an example, the
set AG = {a : ‖Txa‖∞ > γ} is formulated as a set of linear constraints with
binary variables in (4.21). However, AG might not be directly related to the impact
of the attack in terms of gp(n). For instance, the formulation (4.12) captures the
security-index proposed for static systems in Section 4.2.1, where the adversary aims
at corrupting a given measurement i without being detected. The security-index
formulation is retrieved by having ξ0 = 0, N = 0, δ = 0, and

AG = {a ∈ R
na : a(i) = 1}.

However, for dynamic systems with N > 0, the specification of the attack scenario
and corresponding set of attacks AG is more involved. The same scenario where the
adversary aims at corrupting a given channel i can be formulated by having δ = 0
and AG = {a : ‖a(i)‖p = ǫ}. For positive values of δ, the feasibility of the problem
depends on both δ and ǫ, which need to be carefully chosen.

4.3.3 Maximum-Impact Minimum-Resource Attacks

The previous formulations considered impact and resources independently when
quantifying cyber security. Here the impact and resources are addressed simultane-
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ously by considering the multi-objective optimization problem

maximize
a

[gp(n), −‖hp(a)‖0]⊤

subject to
∥
∥Cξe+Dξa

∥
∥
q
≤ δ,

e = Oξξ0 + Tξa,
n = Oηη0 + Tηa.

(4.13)

The vector-valued objective function indicates that the adversary desires to simul-
taneously maximize and minimize gp(n) and ‖hp(a)‖0, respectively. Solutions to
multi-objective problems are related to the concept of Pareto optimality (Marler
and Arora, 2004) and correspond to the optimal trade-off manifold between the ob-
jectives. These solutions can be obtained through several techniques, for instance
the bounded objective function method in which all but one of the objectives are
posed as constraints, thus obtaining a scalar-valued objective function. Applying
this method to (4.13) and constraining ‖hp(a)‖0 yields

maximize
a

gp(n)

subject to
∥
∥Cξe+Dξa

∥
∥
q
≤ δ,

e = Oξξ0 + Tξa,
n = Oηη0 + Tηa,
‖hp(a)‖0 < ǫ,

(4.14)

which can be interpreted as a maximum-impact resource-constrained attack pol-
icy. The Pareto frontier that characterizes the optimal trade-off manifold can be
obtained by iteratively solving (4.14) for ǫ ∈ {1, . . . , na}. This approach is illus-
trated in Section 4.6 for the quadruple-tank process.

4.4 Dynamical Case: Steady-State Analysis

Here we consider the steady-state of the system under attack. Let ν ∈ C and define

Gxa(ν) = [In 0](νI −A)−1B+D,

Gra(ν) = Ce(νI −Ae)
−1Be +De,

which correspond to the transfer functions from ak to xk and rk respectively.
Considering exponential attack signals of the form ak = gνk for fixed ν, denote
a(ν) = g ∈ Cna , x(ν) = Gxa(ν)a(ν), and r(ν) = Gra(ν)a(ν) as the phasor notation
of ak, xk, and rk, respectively. Since the analysis in this section is restricted to
steady-state, we consider ν to be on the unit circle,

ν ∈ S , {ν ∈ C : |ν| = 1}
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, and thus a(ν) corresponds to sinusoidal signals of constant magnitude. Defining
the frequency-domain safe set as Sp∞ = {x ∈ C

n : ‖x‖p ≤ 1}, the system under
attack is said to be safe at steady-state if x(ν) = Gxa(ν)a(ν) ∈ Sp∞.

4.4.1 Maximum-Impact Attacks

For a given ν ∈ S, the steady-state attack impact is characterized by

gp(x(ν)) =

{

‖x(ν)‖p , if x(ν) ∈ Sp∞
+∞ , otherwise.

Similarly, recall the set of steady-state stealthy attacks a(ν) such that

r(ν) ∈ U , {r ∈ C
nr : ‖r‖p ≤ δ},

where r(ν) = Gra(ν)a(ν).
The attack yielding the maximum impact can be computed by solving

sup
ν∈S

maximize
a(ν)

gp(Gxa(ν)a(ν))

subject to
∥
∥Gra(ν)a(ν)

∥
∥
p
≤ δ.

(4.15)

The maximum impact over all stealthy attacks can be computed by replacing
the objective function gp(Gxa(ν)a(ν)) with ‖Gxa(ν)a(ν)‖p, solving

sup
ν∈S

maximize
a(ν)

‖Gxa(ν)a(ν)‖p
subject to

∥
∥Gra(ν)a(ν)

∥
∥
q
≤ δ,

(4.16)

and evaluating gp(Gxa(ν)a(ν)) for the obtained solution. The conditions under
which (4.16) admits bounded optimal values are characterized as follows.

Lemma 4.4.1. The optimization problem (4.16) is bounded if and only if the
relation

Ker
(
Gra(ν)

)
⊆ Ker

(
Gxa(ν)

)

holds for all ν ∈ S.

Proof. The proof follows the same reasoning as that of Lemma 4.3.1.

The previous statement is related to the concept of invariant-zeros of dynamical
systems (Tokarzewski, 2006).

Definition 4.4.1. Consider a linear time-invariant system in discrete-time with
the state-space realization (A,B,C,D) and the equation

[

λzI − A −B
C D

] [

x0

uz

]

=

[

0

0

]

, (4.17)
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with λz ∈ C and x0 6= 0. For a given solution to the previous equation (λz , uz, x0),
denote λz as the invariant-zero, uz as the input-zero direction, and x0 as the state-
zero direction. Furthermore, the tuple (λz , uz, x0) is denoted as a zero-dynamics of
the system (A,B,C,D).

The relation between Lemma 4.4.1 and invariant-zeros is formalized in the fol-
lowing result.

Lemma 4.4.2. The optimization problem (4.16) is bounded if and only if either of
the following hold:

1. the transfer function Gra(ν) does not contain invariant-zeros on the unit cir-
cle;

2. all the invariant-zeros of the transfer function Gra(ν) on the unit circle are
also invariant-zeros of Gxa(ν), with the same input-zero direction.

Proof. For the first statement, note that if Gra(ν) does not contain invariant-zeros
on the unit circle, then Ker

(
Gra(ν)

)
= ∅ for ν ∈ S and thus (4.16) is bounded. As

for the second statement, suppose that Gra(ν) contains an invariant-zero λ̄z ∈ S and
recall that (Ae, Be, Ce, De) is the state-space realization of Gra(ν). For a non-zero
state-zero direction x0, (4.17) can be rewritten as

(λ̄zI −Ae)x0 −Beuz = 0,

Cex0 +Deuz = 0.
(4.18)

Since Ae is stable and |λ̄z| = 1, we have that λ̄zI −Ae is invertible and thus (4.18)
can be rewritten as

(
Ce(λ̄zI −Ae)

−1Be +De

)
uz = Gra(λ̄z)uz = 0. Hence we

conclude that the input-zero direction uz lies in the null-space of Gra(λ̄z). In this
case, applying Lemma 4.4.1 shows that the problem is bounded if and only if uz
also lies in the null-space of Gxa(λ̄z), which concludes the proof.

Supposing that the optimization problem (4.16) is bounded and p = 2 and
denoting GH as the Hermitian conjugate of G ∈ Cn×m, (4.16) can be rewritten as
a generalized eigenvalue problem.

Theorem 4.4.3. Let p = q = 2 and suppose that Ker
(
Gra(ν)

)
⊆ Ker

(
Gxa(ν)

)

for all ν ∈ S. The optimal maximum-impact attack policy is given by

a⋆(ν⋆) =
δ

‖Gra(ν⋆)v⋆‖2
v⋆,

where v⋆ is the eigenvector associated with λ∗, the largest generalized eigenvalue of
the matrix pencil

(
GH

xa(ν)Gxa(ν), G
H
ra(ν)Gra(ν)

)
maximized over ν ∈ S. Moreover,

the corresponding impact is given by ‖Gxa(ν
⋆)a⋆(ν⋆)‖2 =

√
λ∗δ.

Proof. The proof is similar to that of Theorem 3.5.7.
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Given the solution to (4.16) characterized by the previous result, the maximum
impact with respect to (4.15) is given by

gp(Gxa(ν
⋆)a⋆(ν⋆)) =

{ √
λ∗δ , if

√
λ∗δ ≤ 1

+∞ , otherwise.

Theorem 4.4.4. Supposing Gra(ν) is left-invertible for all ν ∈ S, the largest gener-
alized eigenvalue of the matrix pencil

(
GH

xa(ν)Gxa(ν), G
H
ra(ν)Gra(ν)

)
, λ⋆(ν⋆), max-

imized over ν⋆ ∈ S corresponds to the H∞-norm of Gxa(ν)G
†
ra(ν) with G†

ra(ν) =
(
GH

ra(ν)Gra(ν)
)−1

GH
ra(ν).

Proof. First observe that Ker
(
Gra(ν)

)
= ∅, since Gra(ν) is left-invertible for all

ν ∈ S. Letting δ = 1, without loss of generality, from Theorem 4.4.3 we then have
that

λ⋆(ν⋆) = sup
ν∈S

maximize
a(ν): ‖Gra(ν)a(ν)‖2=1

‖Gxa(ν)a(ν)‖2.

The proof concludes by noting that, since Gra(ν) is left-invertible and Gxa(ν) and
Gra(ν) are stable, we have a(ν) = G†

ra(ν)b(ν) for some b(ν) ∈ Cnr and so λ⋆(ν⋆)
can be rewritten as

λ⋆(ν⋆) = sup
ν∈S

max
b(ν): ‖b(ν)‖2=1

‖Gxa(ν)G
†
ra(ν)b(ν)‖22 , ‖Gxa(ν)G

†
ra(ν)‖∞.

4.4.2 Minimum-Resource Attacks

Consider the set of attacks AG such that a(ν) ∈ AG satisfies the goals of a given at-
tack scenario. For the set of attacks AG, the minimum-resource steady-state attacks
are computed by solving the following optimization problem

inf
ν∈S

minimize
a(ν)

‖a(ν)‖0
subject to

∥
∥Gra(ν)a(ν)

∥
∥
q
≤ δ,

a(ν) ∈ AG.

As in the security-index formulation for a given channel i (Sandberg et al., 2010),
one can define AG , {a(ν) ∈ Cna : a(i)(ν) = 1}.

4.4.3 Maximum-Impact Minimum-Resource Attacks

Similarly as for the transient analysis, the impact and adversarial resources can be
treated simultaneously in the multi-objective optimization problem

sup
ν∈S

maximize
a(ν)

[gp(Gxa(ν)a(ν)), −‖a(ν)‖0]⊤

subject to
∥
∥Gra(ν)a(ν)

∥
∥
q
≤ δ.
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Using the bounded objective function method (Marler and Arora, 2004), the
Pareto frontier can be obtained by iteratively solving the following problem for
ǫ ∈ {1, . . . , na}

sup
ν∈S

maximize
a(ν)

gp(Gxa(ν)a(ν))

subject to
∥
∥Gra(ν)a(ν)

∥
∥
q
≤ δ,

‖a(ν)‖0 < ǫ.

4.5 Computational Algorithms

In this section, different metrics are formulated as mixed-integer linear program-
ming problems. First, we consider the minimum-resource attacks for static systems
in Subsection 4.5.1, while the maximum-impact resource-constrained formulation
for dynamical systems is considered later in Subsection 4.5.2.

4.5.1 Minimum-Resource Attacks on Static Systems

Consider the minimum-resource attacks for static systems (4.7) reproduced below

ρj , minimize
∆x∈Rnx

‖C∆x‖0
subject to e⊤j C∆x 6= 0.

Because of the cardinality minimization, computing the security indices ρj can
sometimes be hard. In fact, it can be established that problem (4.7) is NP-hard us-
ing techniques from (Tillmann and Pfetsch, 2012; McCormick, 1983). As a result,
known exact solution algorithms for (4.7) are enumerative by nature. Three differ-
ent typical exact algorithms include (a) enumeration on the support of C∆x, (b)
finding the maximum feasible subsystem for an appropriately constructed system of
infeasible inequalities (Jokar and Pfetsch, 2008), and (c) the big M method (Tsit-
siklis and Bertsimas, 1997). In this section, the big M method is chosen because
it is easily adapted to more complex problems, as performed for the security met-
ric for dynamical systems in Subsection 4.5.2. Moreover, the resulting optimization
problem can be modeled as a mixed integer linear programming problem and solved
using available software such as CPLEX (IBM). The big M method sets up and
solves the following optimization problem:

minimize
∆x, γ=[γ1 ... γny ]

⊤

∑

i

γi

subject to C∆x ≤ Mγ

−C∆x ≤ Mγ

e⊤j C∆x = 1

γi ∈ {0, 1} ∀ i = 1, . . . , ny.

(4.19)
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In (4.19), the inequalities are interpreted entry-wise and 0 < M < ∞ is a user-
defined constant scalar. Hence, the inequality constraints can be interpreted as the
equivalent set of constraints

|e⊤i C∆x| ≤Mγi, ∀ i = 1, . . . , ny.

The latter constraint imposes that, for each i, the data corruption ∆yi = e⊤i C∆x is
constrained in magnitude by Mγi. Thus, having the variable γi = 0 yields |∆yi| ≤
0, which indicates that the i-th measurement is not be attacked. Furthermore,
since γi ∈ {0, 1} and the cost function is

∑

i

γi, we observe that the optimization

problem (4.19) aims at minimizing the number of corrupted measurements, i.e.,
‖∆y‖0.

On the other hand, having γi = 1 results in |∆yi| ≤ M which, for a large
M , renders the attack to the i-th measurement ∆yi relatively free. In fact, if M
is greater than the maximum entry of C∆x⋆ in absolute value, for some optimal
solution ∆x⋆ of (4.7), then the optimal solution to (4.19) is exactly an optimal
solution to (4.7). Otherwise, solving (4.19) yields a suboptimal solution, optimal
among all solutions ∆x such that the maximum entry of C∆x is less than or equal
to M in absolute value. The procedure described in (Schrijver, 1986) can always
find a sufficiently large M to ensure that the big M method indeed provides the
optimal solution to (4.7). In addition, the physics and insights of the underlying
application problem can also lead to a suitable M .

4.5.2 Maximum-Impact Resource-Constrained Attacks on

Dynamical Systems

Consider the maximum-impact resource-constrained formulation from the transient
analysis (4.14) reproduced below

maximize
a

gp(n)

subject to
∥
∥Cξe+Dξa

∥
∥
p
≤ δ,

‖hp(a)‖0 ≤ ǫ,
e = Oξξ0 + Tξa,
n = Oηη0 + Tηa.

For 1 ≤ p ≤ ∞, the constraint ‖hp(a)‖0 ≤ ǫ models the fact that the number
of channels the adversary can compromise is upper bounded by epsilon. Using the
big M method described in Subsection 4.5.1, by introducing the binary decision
variables γi, one for each channel, and a given large positive scalar Mh used to
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model “infinity”, the constraint can be modeled as follows:

a(i) ≤ Mhγi1 ∀ i = 1, . . . , na

−a(i) ≤ Mhγi1 ∀ i = 1, . . . , na
na∑

i=1

γi ≤ ǫ

γi ∈ {0, 1} ∀ i = 1, . . . , na,

(4.20)

where 1 is a vector of ones of appropriate dimension. The constant Mh is typically
chosen according to the physical limitation of the system. The binary decision
variables γi serve to count the number of channels the adversary can compromise,
similarly to the interpretation discussed in Subsection 4.5.1. That is, γi = 1 if
and only if channel i can be compromised. Once a channel is compromised, the
adversary is expected to be able to modify the time signal in that channel in any
way he desires. This is modeled by the first two sets of constraints in (4.20).

In the constraint
∥
∥Cξe+Dξa

∥
∥
p
≤ δ, the p-norm is chosen to be the infinity

norm, which models a constraint on the worst case output violation. This constraint
can be modeled as

Cξe+Dξa ≤ δ1

−Cξe−Dξa ≤ δ1.

In the objective function gp(n), the safety set Sp is chosen to be a∞-norm ball.
That is, Cxn ∈ Sp if and only if ‖Cxn‖∞ ≤MS for some given safety tolerance MS .
This is to model the fact that if any component of Cxn is too large, then the system
is considered to be unsafe. Consequently, the adversary’s goal is to maximize gp(n)
so that at least one component of Cxn is larger than the safety tolerance MS . In
hypograph form (Boyd and Vandenberghe, 2004), maximizing gp(n) amounts to
maximizing a slack variable ϕ with the additional constraint that gp(n) ≥ ϕ. The
latter constraint can be modeled as

Cxn ≥ +ϕ1−MCx

(
1− γ+

)

Cxn ≤ −ϕ1+MCx
(1− γ−)

γ+i + γ−i ≤ 1 ∀ i
∑

i

(

γ+i + γ−i

)

≥ 1

γ+i ∈ {0, 1} ∀ i
γ−i ∈ {0, 1} ∀ i.

(4.21)

In (4.21), MCx
is another given large number used to represent “infinity”. For each

i, when the binary decision variable γ+i = 1, the i-th constraint of Cxn ≥ ϕ1 −
MCx

(
1− γ+

)
implies that the i-th component of Cxn is greater than or equal to ϕ.

On the other hand, if γ+i = 0 then this constraint component can be ignored. A sim-
ilar interpretation holds for the combination of γ− and Cxn ≤ −ϕ1+MCx

(1− γ−).
Furthermore, the constraint γ+i + γ−i ≤ 1 models the fact that the i-th component
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of Cxn cannot be both greater than ϕ and less than −ϕ, when ϕ > 0. Together
with the above discussion, the constraint

∑

i

(

γ+i + γ−i

)

≥ 1 indicates that at least

one component of Cxn must be greater than or equal to γ in absolute value. Since
the objective is to maximize ϕ, it holds that ϕ = ‖Cxn‖∞ at optimality. Finally,
to model the fact that, once the goal ‖Cn‖∞ > MS is achieved, the adversary no
longer needs to maximize ϕ, an additional constraint can be imposed:

γ ≤MS .

In conclusion, the maximum-impact resource-constrained attack is modeled by
the following mixed integer linear program:

maximize
a,ϕ,γ,γ+,γ−

ϕ

subject to e = Oξξ0 + Tξa,
n = Oη0η0 + Tηa,
(4.20), (4.5.2), (4.21), (4.5.2).

(4.22)

4.6 Numerical Examples

Numerical examples are presented to illustrate some of the proposed formulations
for quantifying cyber security of control systems.

4.6.1 Electric Power Systems

Next, we present the results obtained by computing the minimum-resource security
index for data deception attacks on the measurements of electric power systems.

The power network used in this example is depicted in Figure 4.1 and consists
of 14 substations and the bus-branch model has 27 buses and 40 branches. Several
measurements are available at each substation, which can be corrupted by the
adversary. The system is modeled in Section 2.5.1, where formulas relating the
state and measurements are given. In particular, here we consider the DC model of
the power network, which is captured in the static model (4.4) reproduced below

ỹ = Cx+ Γyby = Cx+∆y.

Consider the security index ρj formulated as the combinatorial problem (4.7).
For each measurement j, the corresponding value of ρj was computed by solving
the mixed-integer linear programming problem (4.19). The result is presented in
Figure 4.2. Given the default measurement configuration of the power network, the
security metric ρj (the red full circles) yields quite heterogeneous results. Recalling
that ρj is the minimum number of measurements needed to perform a stealthy
attack on measurement j, we conclude that measurements with low ρj are relatively
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Figure 4.1: Power network considered in example.

easily attacked by coordinated attacks. Conversely, the measurements with large
ρj are relatively protected, in the sense that stealthy false-data injection attacks
corrupting them would require access to several measurements.

Recall that ρ̄j is the security metric computed assuming that all possible mea-
surements are being taken. Therefore, observing that ρ̄j is larger than ρj , we con-
clude that increasing the redundancy of the system, by adding more measurements,
increases the security level. However, note that this does not guarantee full protec-
tion, as all measurements with finite ρj still have finite ρ̄j .

Risk treatment approaches

One possible approach to decrease the risk of stealthy deception attacks is to en-
crypt the data and communication channels. Since a large part of today’s power
grid equipment is old, data encryption can be costly to implement because of the
corresponding update of the equipment. Therefore, the following question is of great
importance to measurement data integrity: given limited protection resources (the
number of devices for data encryption), which measurements should be encrypted
in order to maximize the benefits of the protection resources? The risk analysis
outcome from computing the measurements’ security indices may be used to sort
the measurements in terms of their vulnerability and identify those that should be
protected. In fact, a variant of the security index problem (4.7) can help provide
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Security metric (ρj)

Target measurement index (j)
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Figure 4.2: Security metrics for each measurement j: ρj (red full circles) was com-
puted considering the default measurement configuration, while ρ̄j (blue rings) was
computed assuming that all possible measurements are taken. Both represent the
minimum number of measurements needed to stealthily attack the target measure-
ment j.

an answer to the previous question:

minimize
∆x∈Rn

‖C∆x‖0
subject to e⊤j C∆x = 1,

e⊤i C∆x = 0, ∀i ∈ Cp,

where Cp is the index set of the encrypted measurements which cannot be attacked.
By comparing the security indices for different index sets Cp, it is possible to eval-
uate the effect of different protection strategies, and determine the best one to
implement. For example, Vukovic et al. (2012) consider a lexicographic optimiza-
tion of some security metrics which are based on the security index computation
related to (4.6.1).

In the case where it is impractical to encrypt all measurements, it becomes
critical to detect and isolate the measurements which are under attack. Effective
attack isolation enables the damage control (e.g., removing attacked measurements
for state estimation) to be performed in a timely fashion before the attack can
lead to any incident with significant consequences. Sou et al. (2013a) present a
distributed procedure for isolating the data attacks on power system transmission
line power flow measurements, based on secure bus voltage magnitude measure-
ments. The work by Kosut et al. (2011) develops a generalized likelihood ratio test
to detect the presence of data attacks, based on the assumption that the normal
measurements follow a known Gaussian distribution. Mechanisms to detect data
attacks based on known-secure PMU measurements and known pattern of system
states are presented in Giani et al. (2013).
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4.6.2 Networked Control System Testbed

Next, we illustrate some of the proposed formulations for the quadruple-tank pro-
cess (QTP) described in Section 2.5.2. The nonlinear plant model is linearized
for a given operating point and sampled with a sampling period Ts = 2 s. Re-
call that the state variable xk corresponds to the water-levels in each tank, i.e.
xk = [h1 h2 h3 h4]

⊤. The QTP is controlled using a centralized LQG controller
with integral action and a Kalman-filter-based anomaly detector is used so that
alarms are triggered according to (4.1), for which we chose δ = 0.25 for illustration
purposes.

For the time-interval [0, 50], the maximum-impact minimum-resource attacks
were computed for the process in minimum and non-minimum phase settings (with
stable and unstable zeros, respectively) by choosing p = q = 2 and iteratively
solving (4.14) with respect to ǫ. The respective impacts correspond to the energy
of the state signal x for value of ǫ and are presented in Table 4.1, while the risk is
depicted by the risk matrix plot in Figure 4.3a. As discussed in Section 2.3.3 for
the risk matrix plot in Figure 2.10, the scenarios farther away from the origin have
higher risk than those that are closer.

Table 4.1: Risk analysis results for the QTP. Each entry corresponds to the
maximum impact ‖x‖p for a given number of corrupted channels, computed
through (4.14) with p = q = 2 and δ = 0.15.

No. of compromised channels
4 3 2 1

Minimum phase ∞ ∞ 140.39 1.15

Non-minimum phase ∞ ∞ 689.43 2.80

As expected, due to the unstable zeros, the non-minimum phase system is less
resilient than the minimum-phase one. In both settings, the attack impact can be
made arbitrarily large by corrupting 3 or more channels, as explained next. Consider
an adversary corrupting the two available outputs and one input, i.e. {y1, y2, ui}
for i = 1, 2. Such an adversary may freely modify the input ui while corrupting
both outputs to remain stealthy, using for instance the replay attack illustrated
in Section 3.6.2. Thus the adversary can drive the state out of the safe set while
remaining stealthy.

The results in Table 4.1 indicate that the threats compromising 3 or more chan-
nels have high risk and should therefore be analyzed in more detail. The risk of
such threats can be mitigated by protecting the data channels, which is performed
in the next subsection.

For illustration purposes, the maximum-impact attack signal for the non-minimum
phase system with ǫ = 2, δ = 0.15, and p = q = 2 is presented in Figure 4.4a.
Supposing that the adversary corrupts both actuators, the attack signal can be
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(b) The risk matrix plot for the non-minimum
phase case when different pairs of resources are
protected.

Figure 4.3: The risk matrix plot for the QTP. The threat’s likelihood is taken
as a decreasing function of the number of compromised data channels, ‖hp(a)‖0,
and corresponds to the x-axis. The threat’s impact on the y-axis is the p-norm of
the state trajectory, ‖x‖p. In (a), the risk analysis results for the minimum phase
system (cross) and non-minimum phase (circle) from Table 4.1 are depicted and
qualitatively classified. From (b) one concludes that, when pairs of resources can
be protected in the non-minimum phase process, the most effective choice for risk
treatment is to protect both actuator channels, {u1, u2}.
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(a) Parameters: p = q = 2, δ = 0.15.
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(b) Parameters: p = q = ∞, δ = 0.025.

Figure 4.4: Simulation results of the multi-objective problem (4.14) with ǫ = 2 for
the non-minimum phase system.

computed through Theorem 4.3.2. We highlight the similarity to the zero-dynamics
attack signal used in the experiments reported in Section 3.6.2.

For the parameters ǫ = 2, δ = 0.025, and p = q = ∞, the maximum-impact
attack signal was computed using the mixed-integer linear programming prob-
lem (4.22) and is shown in Figure 4.4b. In both cases, the optimal attack corrupts
both actuator channels and ensures that no alarm is triggered, i.e. ‖r‖p ≤ δ. Al-
though the impact results in Table 4.1 do not consider the impact according to the
safe set

Sx = {x ∈ R
nx : ‖x‖∞ ≤ 5},

the state trajectory does indeed leave the safe set in both cases. The attack signals
illustrated in Figure 4.4 are related to the zero-dynamics of the QTP system, as
illustrated in the zero-dynamics attack scenario in Section 3.6.

Risk treatment approaches

The risk analysis identifies the data channels that, when corrupted, may lead to a
large impact on the system. The subsequent step in the risk management framework
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is the risk treatment stage, in which actions reducing the risk are chosen and imple-
mented. A common approach to decrease the risk of threats is to deploy protective
resources such as encryption, thus preventing the attacks from occurring. To assess
the effectiveness of protecting a given set of data channels, Cp, the optimization
problem (4.14) may be modified as follows

maximize
a

‖x‖p
subject to ‖r‖p ≤ δ,

‖hp(a)‖0 < ǫ,

(4.8), (4.9),
a(i) = 0, for all i ∈ Cp.

(4.23)

The QTP example is now considered to illustrate the risk treatment step using
channel encryption. The preventive action under study is the encryption of one pair
of data channels, so that the risk is minimized. The optimization problem (4.23) is
solved for each pair of data channels, and the corresponding risk matrices plots are
depicted in Figure 4.3b.

Consider the results in Figure 4.3b for the case where two unprotected chan-
nels are corrupted (‖hp(a)‖0 = 2). We observe that the largest impact obtained
from (4.23) occurs when {u2, y2} and {u1, y1} are protected. This means that
attacking the unprotected channels ({u1, y1} and {u2, y2}, respectively) yields a
high impact. On the other hand, the smallest impact occurs when the channels
{u1, u2} are protected, meaning that attacking the outputs {y1, y2} has a low im-
pact. Therefore, we conclude that the pair of actuators {u1, u2} should be protected
to minimize the risk. Moreover, recalling the original risk matrix plot in Figure 4.3a,
we observe that the maximum attack impact is substantially decreased by protect-
ing {u1, u2}. Such a protection choice is expected, since the adversary can no longer
inject an attack exciting the unstable zero-dynamics of the system when both actu-
ators are protected. Furthermore, since the resources accessible to the adversary are
y1 and y2, the adversary cannot have a direct impact on the physical system, but
instead needs to affect the system through the feedback controller by corrupting
the measurement signals.

Methods other than encryption have been proposed in the literature to reduce
the risk of threats. Concerning replay attacks, (Chabukswar et al., 2011) proposes
the use of a hypothesis test as the anomaly detector and the injection of random
zero-mean Gaussian noise with an optimally designed covariance in the control
input channels. The injected noise increases the performance of the hypothesis test,
since the noise statistics are assumed to be unknown to the adversary. Similarly,
in Chapter 5 we propose the insertion of uncertainty in the adversary’s model
knowledge, by modifying the system dynamics and control and output channels.
The effects of such actions on zero-dynamics attacks are also characterized in detail.
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4.7 Summary

Several formulations for quantifying cyber security of networked control systems
were proposed and formulated as constrained optimization problems, capturing
trade-offs among adversary goals and constraints such as attack impact on the
control system, attack detectability, and adversarial resources. Although the for-
mulations are non-convex, some can be related to system-theoretic concepts such
as invariant-zeros and modifiedH∞-norm of the closed-loop system. The maximum-
impact resource-constrained attack policy was also formulated as a mixed-integer
linear program for a particular choice of parameters. The results were illustrated
for the electric power network and quadruple-tank process.





Chapter 5

Revealing Stealthy Attacks

in Networked Control Systems

In this chapter, we address stealthy data deception attacks that are constructed
so that they cannot be detected based on control input and measurement data. In
Chapter 4, we have identified the zero-dynamics attack as an instance of stealthy
false-data injection attacks that may have high impact on the system, while re-
maining stealthy with respect to any time-invariant anomaly detector. As detailed
in Chapter 3, a zero-dynamics attack has been performed on a networked control
system testbed. The experiment showed that, although the attack is initially hard
to detect, it is in fact detected when the system dynamics change due, for instance,
to physical limitations. In the experiments on the quadruple-tank process, these
changes occurred when the water-tanks became empty and the actuator reached
saturation. Hence, changes in the system dynamics could be used to reveal stealthy
false-data attacks. In essence, when prompted by the system operator, such changes
create asymmetries in the information available to the adversary and operator. By
exploiting this asymmetry, the operator is able to detect attacks that were previ-
ously undetectable. An example of this concept was used by Mo and Sinopoli (2009)
to detect replay attacks, in which an auxiliary signal unknown to the attacker is
used to excite the system.

Contributions and Related Work

In recent years, stealthy data deception attacks have been addressed from a system-
theoretic perspective. Smith (2011) characterizes the set of attack policies for stealthy
false-data injection attacks with detailed model knowledge and full access to all
sensor and actuator channels, while Pasqualetti et al. (2011) described the set of
stealthy false-data injection attacks for omniscient attackers with full-state informa-
tion, but possibly compromising only a subset of the existing sensors and actuators.

The set of zero-dynamics attacks is considered in this chapter. As seen in Chap-
ter 3, the zero-dynamics attack is an open-loop attack, in the sense that no online

113



114 Revealing Stealthy Attacks in Networked Control Systems

information is used to construct the attack. Hence, the attack policy is defined in
terms of the available a priori information, namely the dynamical model of the sys-
tem. In fact, this class of attacks was characterized in Chapter 3 using a property
of the system known as zero-dynamics.

Using a geometric control framework, the system under a zero-dynamics attack
is characterized as an autonomous dynamical system with a given initial condition.
Furthermore, the attack detectability is cast as an observability property of the
derived autonomous system. These two steps provide the basis of our results.

It is shown that zero-dynamics attacks may not be completely stealthy since
they require the system to be at a non-zero initial condition. The effects of ini-
tial condition mismatch are then characterized and it is shown that they can be
made arbitrarily small. The problem of changing the system structure to reveal
the attacks is then considered. Specifically, we analyze how separately changing the
outputs, system dynamics, and inputs affects the attacks’ stealthiness. For each
component, we characterize classes of changes that reveal attacks, as well as those
that do not. Regarding changes on the system outputs, we provide an algorithm to
reveal all attacks by incrementally adding new measurements. As for the inputs, we
characterize the output effect of a scalar multiplicative perturbation to the inputs,
assuming it remains unknown to the attacker. This particular perturbation can be
interpreted as a coding or encryption scheme between the controller and actuator,
having the scalar factor as their shared private key. Moreover, the corresponding
contribution to the output energy is quantified as a function of the augmented
system state, which can be used to determine a suitable scaling factor.

The outline of the chapter is as follows. The control system architecture and
model under attack are described in Section 5.1. Section 5.2 follows with a geometric
control characterization of zero-dynamics attacks and the effects of non-zero initial
conditions are analyzed in Section 5.3. Different strategies to reveal zero-dynamics
attacks are then proposed and analyzed in Section 5.4, followed by numerical ex-
amples illustrating our results. Summary and conclusions follow in Section 5.6.

5.1 Problem Formulation

For ease of reading, we recall the networked control system structure and zero-
dynamics attack scenario presented in Chapter 3 and describe the main problem to
be addressed.

The physical plant, feedback controller, and anomaly detector are modeled in a
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discrete-time state-space form, respectively, as

P :

{

xk+1 = Axk +Bũk

yk = Cxk
(5.1)

F :

{

zk+1 = Aczk +Bcỹk

uk = Cczk +Dcỹk

D :

{

sk+1 = Aesk +Beuk +Keỹk

rk = Cesk +Deuk + Eeỹk

where xk ∈ Rnx , zk ∈ Rnz , and sk ∈ Rns are the state variables, ũk ∈ Rnu the
control actions applied to the process, yk ∈ R

ny the measurements from the sensors,
and rk ∈ Rnr the residue vector. The sensor measurements and actuator data are
transmitted through a communication network, which at the plant side correspond
to yk and ũk, respectively. At the controller side we denote the sensor and actuator
data by ỹk ∈ Rny and uk ∈ Rnu , respectively.

The anomaly detector is collocated with the controller and therefore it only has
access to ỹk and uk to evaluate the behavior of the plant. In particular, given the
time-interval [k0, kf ] and the residue signal r[k0, kf ], an alarm is triggered if the
residue meets

‖r[k0, kf ]‖p ≥ δ,
where δ ≥ 0 is chosen according to a suitable trade-off between detection and false
alarm rates and p ≥ 1.

5.1.1 Attack Scenario: Data Deception

The attack scenario and adversary model are described in the remainder of this
section.

Disruption and disclosure resources: In the present scenario, the attacker
is able to inject false data in the actuator and measurement channels, which is
captured by having

[

ũk

ỹk

]

=

[

uk

yk

]

+

[

Ba

Da

]

ak,

where ak ∈ Rna is the attack vector. However, the attacker cannot eavesdrop on
the sensor and actuator data. Hence, the corresponding attack policy does not use
any online data on the system and is further assumed to be computed a priori.
Therefore, it corresponds to an open-loop type of policy.

Model knowledge: The attacker also has access to the detailed model of the
plant P = (A,B,C), which is used to compute the attack policy.
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Attack goals and constraints: Recall from Chapter 3 that the adversary aims
at disrupting the system behavior while remaining stealthy. Next, we characterize
the set of stealthy attacks considered in this chapter.

Stacking the states of the plant, controller, and anomaly detector as ξk =
[x⊤k z⊤k s⊤k ]

⊤, the closed-loop dynamics under attack can be written as

ξk+1 =







A+BDcC BCc 0

BcC Ac 0

(BeDc +Ke)C BeCc Ae







︸ ︷︷ ︸

A

ξk +







BBa +BDcDa

BcDa

(BeDc +Ke)Da







︸ ︷︷ ︸

B

ak

rk =
[

(DeDc + Ee)C DeCc Ce

]

︸ ︷︷ ︸

C

ξk + (DeDc + Ee)Da
︸ ︷︷ ︸

D

ak

ỹk =
[

C 0 0
]

︸ ︷︷ ︸

Cy

ξk +Daak.

(5.2)

Consider that the attack starts at k = k0 and that the system is at the zero initial
condition, i.e. ξk0 = 0. Denoting a[k0, kf ] = {ak0 , . . . , akf

} as the attack signal, the
set of stealthy attacks are defined with respect to the decomposed system (5.2) as
follows.

Definition 5.1.1. The attack signal a[k0, kf ] is δ-stealthy with respect to the anomaly
detector D if ‖r[k0,+∞)‖p ≤ δ.

A particular subset of 0-stealthy attacks is characterized in the following lemma.

Lemma 5.1.1. Consider the output ỹk of the closed-loop system (5.2) with ξk0 = 0.
The attack signal a[k0, kf ] is 0-stealthy with respect to any output feedback controller
F and anomaly detector D if ỹk = 0 for all k ≥ k0.

Proof. The proof follows directly from considering the subsystem composed of the
feedback controller and anomaly detector and observing that ỹk is the only input
to this subsystem. Hence, given the initial condition ξk0 = 0, having ỹk = 0 for all
k ≥ k0 results in a zero residual signal.

Attack policy: The subset of 0-stealthy attacks satisfying the conditions in
Lemma 5.1.1 results in trajectories of the system that do not affect ỹk. Therefore,
using only the plant model P , such a set of attacks can be characterized as the
attack signals that render the output ỹk identically zero. For linear systems, the 0-
stealthy attack signals are related to the output zeroing problem or zero-dynamics
studied in the control theory literature (Tokarzewski, 2006), which we revisit in
the next section. In fact, this attack policy is used in the zero-dynamics attacks
described in Chapter 3.
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5.1.2 Revealing Attacks

In this chapter, the main goal is to devise methods to reveal 0-stealthy attacks
characterized in Definition 5.1.1, by modifying the system dynamics. To that end,
the following definition of revealed attacks is considered throughout this chapter.

Definition 5.1.2. Consider the system under a 0-stealthy attack characterized by
Lemma 5.1.1. The 0-stealthy attack signal a[k0, kf ] is said to be revealed if ỹk 6= 0
for some k ≥ k0.

The latter definition can be extended to also account for the anomaly detector,
by stating that an attack is revealed when rk 6= 0 for some k ≥ k0. In fact, based
on similar arguments as in Lemma 5.1.1, the anomaly detector may be designed so
that a revealed attack yielding ỹk 6= 0 for some k ≥ k0 leads to a non-zero residue
signal.

Next, we provide a geometric characterization of a system’s zero-dynamics,
which is instrumental to analyze how changes on the system’s dynamics affect the
stealthiness properties of the zero-dynamics attacks.

5.2 Geometric Control Characterization of Zero-Dynamics

Recalling Lemma 5.1.1, the zero-dynamics attacks can be analyzed by consid-
ering the plant dynamics due to the false-data injection attack. The set of zero-
dynamics attacks with Da = 0 and Ba = B in (5.2) are now characterized under a
geometric control framework (Basile and Marro, 1992).

Remark 5.2.1. The case for Da 6= 0 can be analyzed in a similar fashion when
the set of system zeros is finite (Tokarzewski, 2006).

Consider the linear time-invariant system P = (A,B,C). In general, the ma-
trices B and C may have linearly dependent columns and rows, respectively. This
means that there exists some redundancy in the actuators and sensors, in the sense
that removing one actuator or sensor does not affect the controllability and ob-
servability properties of the system. While this concept of redundancy is explored
in Chapter 7, dealing with it here would involve several additional technicalities.
Therefore, for the sake of a clear presentation of our results, in this chapter we
make the following assumptions.

Assumption 5.2.1. The matrix B has full column-rank and C has full row rank.
Moreover, P is the minimal realization of the system.

We now introduce the necessary concepts from geometric control theory (Basile
and Marro, 1992) to describe the zero-dynamics. Let Z and X be subspaces con-
tained in Cnx . In the following, we denote X ⊆ Z as the set inclusion of X by
Z, i.e. for all x ∈ X , it holds that x ∈ Z. Moreover, we denote Y = Z + X as
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the union of Z and X , defined as Y = {x ∈ Cnx : x ∈ X or x ∈ Z}. Given
a matrix A ∈ C

nx×nx and a subspace Z ⊆ C
nx , we define the subspace AZ as

AZ , {y ∈ Cnx : ∃x ∈ Z : y = Ax}. Additionally, we say that Z is A-invariant if
AZ ⊆ Z. Note that the eigenspace of A is the maximal A-invariant subspace, i.e.
any A-invariant subspace is contained in the eigenspace of A.

First, controlled invariant subspaces are characterized as follows.

Lemma 5.2.1. For a given non-empty subspace Z for which AZ ⊆ Z + Im (B)
holds, there exists a matrix F such that (A+BF )Z ⊆ Z. Furthermore, Z is called
an

(
A, Im (B)

)
-controlled invariant subspace.

The subset of controlled invariant subspaces contained in Ker (C) is the basis for
characterizing the system’s zero-dynamics, as summarized in the next statement.

Lemma 5.2.2. There exist an initial condition x0 6= 0 and control input ak such
that ỹk = 0 for all k ≥ 0 if and only if there exists a non-empty

(
A, Im (B)

)
-

controlled invariant subspace Z contained in Ker (C), i.e., there exits Z satisfying
AZ ⊆ Z + Im (B) and Z ⊆ Ker (C).

The set of all subspaces Z satisfying the conditions of Lemma 5.2.2 admits a
maximum, Z⋆, which we denote by the maximal output-nulling invariant subspace.
A procedure to compute Z⋆ can be found in Basile and Marro (1992).

Using the maximal output-nulling invariant subspace, one can compute all
output-nulling input signals that generate identically zero output signals, i.e., ỹk = 0
for all k ≥ 0. In fact, the output-nulling inputs of the plant (5.1) can be character-
ized as the output of an autonomous dynamical system, as stated in the following
theorem.

Theorem 5.2.3. Consider the plant (5.1) with an initial condition x0. For the
initial condition x0 = x̃0, the input ak = F x̃k with x̃k+1 = (A + BF )x̃k, (A +
BF )Z⋆ ⊆ Z⋆ ⊆ Ker (C), and x̃0 ∈ Z⋆ yields xk ∈ Z⋆ and ỹk = 0 for all k ≥ 0.

The invariant-zeros of a system, characterized in Definition 4.4.1, are related to
the matrix A + BF and the subspace Z⋆, as described next. Denote σ

(
A|Z

)
as

the eigenvalues of A whose associated eigenvectors belong to the subspace Z, i.e.
σ
(
A|Z

)
,

{
λ ∈ C : ∃x ∈ Z : (λI −A)x = 0

}
. Given the previous definition, the

invariant-zeros of the system P correspond to σ
(
(A+BF )|Z⋆

)
, i.e. the eigenvalues

of A + BF whose associated eigenvectors belong to Z⋆. In fact, note that the
equation characterizing the invariant-zeros of (A,B,C), i.e.

[

λzI −A −B
C 0

] [

x0

uz

]

=

[

0

0

]

,

is satisfied when the tuple (λz , uz, x0) is chosen such that λz ∈ σ
(
(A+BF )|Z⋆

)
,

x0 ∈ Z⋆ is the eigenvector of A+BF associated with λz , and uz = Fx0.
The zero-dynamics attack policy readily follows from Theorem 5.2.3.
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Corollary 5.2.4. The zero-dynamics attack policy is characterized by

x̃k+1 = (A+BF )x̃k

ak = F x̃k,
(5.3)

with x̃0 ∈ Z⋆ and F such that (A+BF )Z⋆ ⊆ Z⋆.

Note that the zero-dynamics characterized in Corollary 5.2.4 require the initial
condition to be non-zero and belong to Z⋆. Such a requirement contradicts the
definition of 0-stealthy attacks in Lemma 5.1.1, where the initial condition of the
system component under attack is the origin. The effect of having non-zero initial
conditions is addressed in the next section.

5.3 Effects of Non-Zero Initial Conditions

Note that the zero-dynamics do not match the definition of 0-stealthy attacks, since
a non-zero initial condition for the plant (5.1) is required. However, in some cases
the effects of the initial condition may be made arbitrarily small, as discussed below.

Using Corollary 5.2.4, the system under a zero-dynamics attack is described by
[

xk+1

x̃k+1

]

=

[

A BF

0 A+BF

][

xk

x̃k

]

ỹk =
[

C 0
]
[

xk

x̃k

] (5.4)

with x̃0 ∈ Z⋆. For x0 = x̃0 it directly follows that ỹk = 0 for all k ≥ 0. Introducing
the error variable ek = xk − x̃k, the previous system may be rewritten as

[

ek+1

x̃k+1

]

=

[

A 0

0 A+BF

][

ek

x̃k

]

ỹk =
[

C 0
]
[

ek

x̃k

] (5.5)

with x̃0 ∈ Z⋆ and e0 = x0 − x̃0. The next result readily follows.

Theorem 5.3.1. For a zero initial condition x0 = 0, a zero-dynamics attack
generated by x̃0 ∈ Z⋆ yields the output characterized by

ek+1 = Aek

ỹk = Cek

with e0 = −x̃0.
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The previous result allows us to characterize conditions under which the output
and residue signal energy caused by zero-dynamics attacks can be made arbitrarily
small. These conditions are related to the stable eigenvalues of A, where the complex
number λ ∈ C is said to be unstable if |λ| ≥ 1 and stable if |λ| < 1. Moreover, we
consider the coordinate transform ek = Tvk, where T = [Ts Tu] is a basis for the
eigenspace of A, with Ts ∈ Cnx×nv and Tu ∈ Cnx×nx−nv being associated with
the stable and unstable eigenvalues of A, respectively. The dynamics under the
coordinate transform are described by vk+1 = Λvk, where Λ is the Jordan block
matrix of A containing its eigenvalues. Given the structure of T , Λ can be written
as

Λ =

[

Λs 0

0 Λu

]

,

where Λs and Λu contain the stable and unstable eigenvalues of A, respectively.
Furthermore, the output of the autonomous system in Theorem 5.3.1 may be char-
acterized as

vk+1 = Λvk , v0 = T−1e0

ỹk = CTvk.
(5.6)

Using the previous definitions, first we derive the results for the open-loop sys-
tem, which are then directly applied to the closed-loop dynamics.

Corollary 5.3.2. Consider the open-loop system (5.1). The output of a zero-
dynamics attack generated by x̃0 ∈ Z⋆ with x0 = 0 has finite energy if and only if
[0nv

Inx−nv
]T−1x̃0 = 0.

Proof. From Theorem 5.3.1, we have that the autonomous system (5.6) character-
izes the output of (5.1) under a zero-dynamics attack generated by x̃0 ∈ Z⋆ and
with x0 = 0.

Recall that the system (5.6) is assumed to be observable, since (A,B,C) is
a minimal realization. Thus, by definition of observability, any initial condition
affects the output of the autonomous system (5.6). Furthermore, initial conditions
exciting unstable modes lead to unbounded output energy. On the other hand,
initial conditions that only excite stable modes lead to state trajectories that decay
asymptotically to zero, thus having finite output energy. Therefore, we conclude
that the output energy of (5.1) is finite if and only if e0 = −x̃0 only excites stable
modes of (5.6). The proof concludes by observing that initial conditions satisfying
[0nv

Inx−nv
]T−1x̃0 = 0 only excite stable modes of (5.6).

Now we analyze the case where x̃0 does not excite unstable eigenvectors of A,
i.e. x̃0 satisfies the equality [0nv

Inx−nv
]T−1x̃0 = 0. Supposing that x̃0 only excites

stable eigenvalues of A, the output of (5.6) may be characterized as

vsk+1
= Λsvsk

ỹk = CTsvsk
(5.7)
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where vk = [v⊤sk v
⊤
uk
]⊤ with vs0 = [Inv

0nx−nv
]T−1x̃0 and vu0 = [0nv

Inx−nv
]T−1x̃0 =

0. This leads to the following result.

Corollary 5.3.3. Consider a zero-dynamics attack generated by x̃0 ∈ Z⋆ with x̃0
such that [0nv

Inx−nv
]T−1x̃0 = 0 and let x0 = 0. The output energy of the attack

is given by ‖y‖22 = x̃⊤0 Q̄x̃0 where

Q̄ = T−⊤

[

Inv

0nx−nv

]

Qs

[

Inv
0nx−nv

]

T−1

and Qs � 0 is the solution to

Λ⊤
s QsΛs −Qs + T⊤

s C
⊤CTs = 0.

Proof. Using the transform T , decompose the open-loop system matrix A in its
stable and unstable components, Λs and Λu, respectively. Since x̃0 does not excite
unstable components, ‖y‖22 can be computed from the stable component (5.7).
Denoting Qs � 0 as the observability Gramian of (5.7), the output energy is
computed as ‖y‖22 = v⊤s0Qsvs0 . The proof concludes by recalling that Qs can be
computed through the Lyapunov equation above and using the equality vs0 =
[Inv

0nx−nv
]T−1x̃0.

The former analysis can be directly extended to the closed-loop system (5.2)
through the following results.

Theorem 5.3.4. Consider the closed-loop system (5.2), which is assumed to be
stabilized by a suitable controller, and define εk = [e⊤k z

⊤
k s

⊤
k ]

⊤. For a zero initial
condition ξ0 = 0, a zero-dynamics attack generated by x̃0 ∈ Z⋆ yields the residue
characterized by

εk+1 = Aεk

rk = Cεk,
, ε0 =







−x̃0
0

0






.

Proof. The proof follows directly from combining the closed-loop dynamics (5.2)
with the zero-dynamics attack in (5.5).

Corollary 5.3.5. Consider a zero-dynamics attack generated by x̃0 ∈ Z⋆. The
residue signal energy of the attack is given by ‖r‖22 = ε⊤0 Qε0, where ε0 = [−x̃0 0 0]⊤
and Q � 0 is the solution to

A⊤QA−Q+C⊤C = 0.

Proof. The proof follows with similar arguments as in Corollaries 5.3.2 and 5.3.3
and using the fact that the closed-loop system A is stable.
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From Corollary 5.3.5, we conclude that the residue signal energy caused by zero-
dynamic attacks can be made arbitrarily small by selecting a sufficiently small initial
condition x̃0 ∈ Z⋆ to generate the attack. Such attacks are particularly dangerous
if the initial condition x̃0 excites an unstable eigenvalue of A + BF , as illustrated
in the numerical example in Section 5.5. This motivates us to consider schemes to
reveal these attacks.

5.4 Revealing Zero-Dynamics Attacks

In this section, we discuss possible methods to reveal the zero-dynamics attacks
characterized in Section 5.2.

Given Definition 5.1.2, a 0-stealthy attack is revealed if it generates a non-zero
output signal. As seen in the previous section, all zero-dynamics attacks gener-
ate a non-zero output signal, due to the non-zero initial condition that is used
to compute the attack signal. Therefore, as per Definition 5.1.2, all zero-dynamics
attacks are revealed. However, recalling Corollaries 5.3.2 and 5.3.5, there exist cer-
tain conditions under which the residue and output generated by zero-dynamics
attacks can be made arbitrarily small. This is particularly relevant when the cor-
responding zero-dynamics are unstable, since the magnitude of the attack signal
increases exponentially. Motivated by these arguments, we tackle the problem of
revealing zero-dynamics attacks while assuming that they are indeed 0-stealthy at-
tacks. In other terms, in this section we let the system’s initial condition and the
zero-dynamics initial condition be the same, i.e. x0 = x̃0.

As per Definition 5.1.2, a zero-dynamics attack is revealed if the corresponding
attack signal a[k0, kf ] no longer matches the zero-dynamics of the system. As it
is well-known in the control literature (Skogestad and Postlethwaite, 1996), the
system zeros cannot be changed by state- or output-feedback policies. However,
state-feedback laws uk = Kxk can indeed modify the input-zero direction, and thus
the zero-dynamics, of the closed-loop system P̃ = (A + BK,B,C) so that (5.3) is
no longer an output-nulling input of the resulting system P̃.

A more general approach is to modify the system P = (A,B,C) in a certain
way to obtain P̃ = (Ã, B̃, C̃), so that the attack signal (5.3) is no longer an output-
nulling input of the resulting system

[

xk+1

x̃k+1

]

=

[

Ã B̃F

0 A+BF

][

xk

x̃k

]

ỹk =
[

C̃ 0
]
[

xk

x̃k

]

.

(5.8)

This formulation includes the aforementioned state-feedback approach, as we see
by having Ã = A + BK. Since (5.8) is an autonomous system, the concept of
unobservability is tightly related to the stealthiness of attacks.
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Definition 5.4.1. The autonomous system

xk+1 = Axk

yk = Cxk

is unobservable if there exists a non-empty subspace X ⊆ Cnx such that all initial
conditions x0 ∈ X yield yk = 0 for all k ≥ 0. Moreover, the subspace X is called
an unobservable subspace. The largest unobservable subspace X ⋆ is defined as the
maximal A-invariant subspace contained in kerC. Let {λi} and {xi} be the set of
all eigenvalues and corresponding normalized eigenvectors of A satisfying

[

λiI −A
C

]

xi =

[

0

0

]

,

which relates to the PBH observability test (Zhou et al., 1996, Theorem 3.4). The
subspace X ⋆ can be computed X ⋆ = span({xi}).

Considering the autonomous system (5.8) describing the plant under zero-dynamics
attacks, note that the concept of unobservability in Definition 5.4.1 is quite similar
to the properties of 0-stealthy attacks described in Definition 5.1.1, in the sense that
both yield a zero output. This relation is leveraged in the next result to characterize
when zero-dynamics attacks are revealed.

Lemma 5.4.1. Every zero-dynamics attack is revealed if and only if the sys-
tem (5.8) is observable for all x0 = x̃0 ∈ Z⋆.

Proof. Consider the system (5.8) with the initial condition w0 = [x̃⊤0 x̃⊤0 ]
⊤, where

x̃0 ∈ Z⋆. By Definition 5.4.1, a given subspace Xd ⊆ C
2nx is observable if and only if

all initial conditions w0 ∈ Xd yield ỹk 6= 0 for some k ≥ 0. Given Definition 5.1.2, w0

being observable implies that the corresponding attack is revealed, since ỹ 6= 0.

Attacks remaining stealthy after the perturbation can also be characterized
using similar arguments.

Corollary 5.4.2. Consider a zero-dynamics attack generated by x0 ∈ Z⋆. The
former attack remains stealthy after the perturbation if and only if w0 = [x⊤0 x

⊤
0 ]

⊤

belongs to the unobservable subspace of the system (5.8).

Proof. Suppose x0 is an eigenvector of A + BF , without loss of generality, and
consider the augmented system before the perturbation as in (5.4). Since the state
trajectories of (5.4) generated by the attack are contained in span(w0), the state
when the perturbation occurs can be written as w̃0 = αw0, for a given α ∈ C. The
remaining of the proof follows from Definition 5.1.2 and the notion of unobservable
subspace in Definition 5.4.1.

A less restrictive condition for revealing the set of zero-dynamics attacks asso-
ciated with unstable zeros follows from the above theorem.
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Corollary 5.4.3. Every unstable zero-dynamics attack is revealed if and only if
the system (5.8) is detectable for all x0 = x̃0 ∈ Z⋆.

Using the observability concepts presented in this subsection, next we propose
schemes to reveal the zero-dynamics attacks by separately changing A, B, or C.
In fact, the results from Lemma 5.4.1 and Corollary 5.4.2 are instrumental for the
discussions that follow below.

5.4.1 Modifying the Output Matrix C

Here, we consider modifications on the output matrix C to reveal zero-dynamics
attacks. In particular, we consider that a new output matrix C̃ is obtained by
adding and removing measurements. The following result directly follows from The-
orem 5.2.3.

Lemma 5.4.4. All the zero-dynamics attacks associated with a given x̃0 ∈ Z⋆

remain stealthy with respect to P̃ = (A,B, C̃) if and only if Z⋆ ⊆ Ker
(

C̃
)

.

Note that obtaining C̃ by removing measurements from C yields Ker (C) ⊆
Ker

(

C̃
)

. Hence, the latter result shows that only removing measurements does

not reveal any attack, since the following relation holds Z⋆ ⊆ Ker (C) ⊆ Ker
(

C̃
)

.
Moreover, attacks are revealed by adding measurements if and only if the dimension
of Z⋆ ∩ Ker

(

C̃
)

is reduced. The next result characterizes under what conditions
do there exist zero-dynamics attacks after modifying the output matrix.

Theorem 5.4.5. There exists a x̃0 ∈ Z⋆ generating a zero-dynamics attack to
P̃ = (A,B, C̃) if and only if there exists a non-empty (A+BF )-invariant subspace

X that is contained in Z⋆ ∩Ker
(

C̃
)

.

Proof. Consider a non-empty subspace X ⊆ Z⋆, from which an initial condition x̃0
is chosen to generate an open-loop zero-dynamics attack. From Theorem 5.2.3, we
have that the attack generated by x̃0 ∈ X is stealthy if and only if X is (A+BF )-

invariant and X ⊆ Ker
(

C̃
)

. The latter condition and X ⊆ Z⋆ can be replaced by

the equivalent condition X ⊆ Z⋆ ∩Ker
(

C̃
)

, which conclude the proof.

The previous results indicate that one should modify the measurement matrix
such that the dimension of X ⊆ Z⋆ ∩ Ker

(

C̃
)

is reduced as much as possible. In

particular, having dim (X ) < dim (Z⋆) indicates that a subset of the zero-dynamics
attacks has been revealed, while X = ∅ implies that none of the zero-dynamics
attacks remain stealthy.

Based on these arguments, Algorithm 5.1 can be used to incrementally deploy
measurements that reveal zero-dynamics attacks.
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Algorithm 5.1 Algorithm to deploy additional measurements revealing zero-
dynamics attacks.

1: InitializeM← {Ci} as the set of additional measurements available;
2: j ← 0;
3: X0 ← Z⋆;
4: repeat

5: for all Ci ∈M do

6: Yi ← Xj ∩Ker (Ci);
7: end for

8: Choose Ci ∈ M such that dim(Yi) is minimized;
9: Compute Xj+1 as the maximal (A+BF )-invariant contained in Yi;

10: j ← j + 1;
11: until Xj = ∅ or Xj−1 = Xj

To better understand the rational of Algorithm 5.1, consider the first iteration
j = 0, where X0 corresponds to Z⋆, i.e. the maximal (A+BF )-invariant contained
in Ker (C), from which initial condition x0 = x̃0 ∈ Z⋆ are taken to generate attacks.
In line 6, for each measurement candidate Ci that may be added to the system, the
subspace Yi = X0 ∩Ker (Ci) is computed. Denoting

C̃i =

[

C

Ci

]

as the candidate measurement set composed of C and the candidate Ci, note that we
have Ker

(

C̃i

)

= Ker (C)∩Ker (Ci). Moreover, the subspace X0 = Z⋆ is contained

in Ker (C), which yields X0∩Ker (C) = X0. Thus, using the two latter relations, we

conclude that the subspace Yi actually corresponds to X0 ∩Ker
(

C̃i

)

. We conclude
that, at the first iteration of line 8, Algorithm 5.1 chooses the measurement candi-
date that most reduces the dimension of Z⋆∩Ker

(

C̃i

)

, for all candidates C̃i. Once
the measurement candidate is chosen, X1 is computed in line 9 as the maximal
(A + BF )-invariant contained in X0 ∩ Ker

(

C̃i

)

and the next iteration begins. As
stated in Theorem 5.4.5, all attacks are revealed if X1 is empty. Moreover, note that
X1 is contained in Yi, which means that the dimension of X1 is reduced at least as
much as the dimension of Yi, when selecting Ci.

The previous discussion illustrates how Algorithm 5.1 is a greedy algorithm that,
at each iteration j, chooses the measurement candidate Ci that most reduces the
dimension of Yi = Xj ∩Ker (Ci), where Xj is constructed at the previous iteration
j − 1 as the subspace generating stealthy zero-dynamics attacks with respect to
the perturbed system. Moreover, the dimension of Xj+1, the maximal (A + BF )-
invariant contained in Yi, is reduced at least as much as the dimension of Yi, when
selecting Ci. This property agrees with the interpretation of Theorem 5.4.5, which
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states that all attacks are revealed if Xj+1 is empty. Furthermore, the proposed
algorithm requires the addition of at most dim(Z⋆) new measurements.

5.4.2 Modifying the System Matrix A

Perturbations to the system dynamics as Ã = A+∆A are now considered, resulting
in the system P̃ = (Ã, B, C). Recall that such an approach includes the case when
a state-feedback law K is used to design the perturbed matrix Ã = A+ BK. The
following result provides conditions under which an attack remains stealthy for such
perturbations.

Theorem 5.4.6. There exists a vector x̃0 ∈ Z⋆ generating a stealthy attack to
P̃ = (Ã, B, C) if and only if there exists a non-empty (A+BF )-invariant subspace
X that is contained in Z⋆ ∩Ker (∆A).

Proof. Let x̃0 ∈ Z⋆ and recall that w0 = [x̃⊤0 x̃
⊤
0 ]

⊤ belongs to the unobservable
subspace of the augmented system (5.4). From Corollary 5.4.2, the attack remains
stealthy if and only if w0 is also in the unobservable subspace of the perturbed
system (5.8). Using the PBH observability test (Zhou et al., 1996, Theorem 3.4),
this means that there exist a set of complex numbers {λi} and vectors {wi} such
that







λiI − Ã −BF
0 λiI − (A+BF )

C 0






wi =







0

0

0







(5.9)

and w0 belongs to the subspace spanned by the vectors {wi}. Without loss of
generality, suppose the unobservable subspace is one-dimensional. Next, we show
that the vector w0 = [x̃⊤0 x̃⊤0 ]

⊤ satisfies (5.9) for some complex number λ if and
only if x̃0 ∈ Z⋆ is an eigenvector of A+BF satisfying ∆Ax̃0 = 0.

Recall from Corollary 5.2.4 that Cx̃0 = 0 holds for any x̃0 ∈ Z⋆, which addresses
the third equation. Moreover, recall that the matrix F is designed so that the second
equation is satisfied if and only if λ is an invariant-zero of the system belonging to
σ
(
(A+BF )|Z⋆

)
and x̃0 ∈ Z⋆ is the corresponding eigenvector of A+BF .

For λ ∈ σ
(
(A+BF )|Z⋆

)
and x̃0 ∈ Z⋆ being the associated eigenvector, the

first equation can be rewritten as 0 =
(

λI − (Ã+BF )
)

x̃0 = ∆Ax̃0. Therefore, we

conclude that w0 = [x̃⊤0 x̃⊤0 ]
⊤ belongs to the unobservable subspace of (5.8) if and

only if x̃0 ∈ Z⋆ is an eigenvector of A+BF and ∆Ax̃0 = 0.
Denote X as the subspace spanned by all vectors x̃0 ∈ Z⋆ that are eigenvectors

of A+BF satisfying ∆Ax̃0 = 0. Thus, X is contained in Z⋆ and in the eigenspace of
A+BF . Consequently, X is (A+BF )-invariant. Moreover, requiring that ∆Ax̃0 = 0
holds for all x̃0 ∈ X ⊆ Z⋆ is equivalent to have X ⊆ Z⋆∩Ker (∆A), which concludes
the proof.
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Recall from Theorem 5.2.3 that the zero-dynamics attacks generate state tra-
jectories that belong to Z⋆. The above result states that perturbations ∆A that are
not excited by the state-trajectories of the system under attack cannot reveal the
corresponding zero-dynamics attacks. The next result follows directly from Theo-
rem 5.4.6 and characterizes perturbations ∆A that do not reveal any attack.

Corollary 5.4.7. All the zero-dynamics attacks associated with a given x̃0 ∈ Z⋆

remain stealthy with respect to P̃ = (Ã, B, C) if and only if Z⋆ ⊆ Ker (∆A).

The previous results indicate that ∆A should be designed so that X 6⊆ Ker (∆A)
for all (A+BF )-invariant subspaces X ⊆ Z⋆, thus revealing all the zero-dynamics
attacks. Based on this reasoning, Algorithm 5.2 can be used to incrementally per-
form perturbations to the system matrix A that reveal zero-dynamics attacks.

Algorithm 5.2 Algorithm to deploy system matrix perturbations revealing zero-
dynamics attacks.

InitializeM← {∆Ai} as the set of possible system changes;
j ← 0;
∆A0 ← 0;
X0 ← Z⋆;
repeat

for all ∆Ai ∈M do

Yi ← Xj ∩Ker
(
∆Aj +∆Ai

)
;

end for

Choose ∆Ai ∈ M such that dim(Yi) is minimized;
∆Aj+1 ← ∆Aj +∆Ai;
Compute Xj+1 as the maximal (A + BF )-invariant contained in Xj ∩
Ker

(
∆Aj+1

)
;

j ← j + 1;
until Xj = ∅ or Xj−1 = Xj

The interpretation of the latter algorithm is quite similar to that of Algo-
rithm 5.1. In fact, Algorithm 5.2 is a greedy algorithm that, at each iteration
j, selects the perturbation ∆Ai ∈ M that most reduces the dimension of Xj ∩
Ker

(
∆Aj +∆Ai

)
, where Xj is constructed at the iteration j − 1 as the subspace

generating stealthy zero-dynamics attacks with respect to (A+∆Aj , B, C).
Note that the proposed algorithm converges in at most dim(Z⋆) steps. Further-

more, all the zero-dynamics attacks become revealed if and only if the subspace Xj

is empty.

5.4.3 Modifying the Input Matrix B

Here, we consider modifications on the input matrix B to reveal zero-dynamics
attacks. A new input matrix B̃ is obtained by adding and removing actuators, or
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perturbing the matrix B by adding ∆B.
First, we consider the addition of secure actuators that may be used in state-

or output-feedback controllers. The results in Section 5.4.2 can be applied to the
case of state-feedback by having ∆A = B̃K. As for the output-feedback case, the
following result directly follows from the definition of 0-stealthy attacks.

Lemma 5.4.8. Suppose secure actuators are added to P, i.e. B̃ = [BBi], and
let the system P̃ = (A, B̃, C) be controlled by an output-feedback controller F =
(Ac, Bc, Cc, Dc). Then, all the zero-dynamics attacks on P remain stealthy with
respect to P̃.

Proof. Let the secure input signals uik be computed by Fi = (Ac, Bc, C
i
c, D

i
c) and

considering the closed-loop system under attack






xk+1

zk+1

x̃k+1






=







A+BiD
i
cC BiC

i
c BF

BcC Ac 0

0 0 A+BF













xk

zk

x̃k







ỹk =
[

C 0 0
]







xk

zk

x̃k







with x0 = x̃0 ∈ Z⋆ ⊆ Ker (C) and z0 = 0. Since Cx0 = 0, by induction we have
zk = z0 = 0 and xk = x̃k ∈ Z⋆. Thus, we conclude that ỹk = 0 for all k ≥ 0, which
completes the proof.

The former statement shows that only adding inputs does not reveal any at-
tack when output-feedback controllers are used. On the other hand, revealing zero-
dynamics attacks by removing actuators also reduces the controllability of the sys-
tem. A less intrusive approach is to change the actuator gains, i.e., have B̃ = BW
and ũk = W−1uk where W is an invertible matrix unknown to the attacker. This
can be interpreted as a coding or encryption scheme performed by the actuator
and controller with W as their shared private key. Assuming W is unknown by the
attacker, we then have the following result.

Theorem 5.4.9. There exists a vector x̃0 ∈ Z⋆ generating a stealthy attack to
P̃ = (A,BW,C) if and only if there exists a non-empty (A+BF )-invariant subspace
X that is contained in Z⋆ ∩Ker

(
B(W − I)F

)
.

Proof. Without loss of generality, let x̃0 ∈ Z⋆ be an eigenvector of A+BF generat-
ing a zero-dynamics attack. Recall from the proof of Theorem 5.4.6 that the attack
is stealthy with respect to the perturbed system if and only if w0 = [x̃⊤0 x̃

⊤
0 ]

⊤ is in
the unobservable subspace of the perturbed system (5.8). This in turn holds if and
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only if there exists a complex number λ such that






λI −A −BWF

0 λI − (A+BF )

C 0







[

x̃0

x̃0

]

= 0.

Following similar arguments as in the proof of Theorem 5.4.6, we conclude that
the second and third equations are satisfied for λ ∈ σ

(
(A+BF )|Z⋆)

)
, with x̃0 ∈

Z⋆ being an eigenvector of A + BF associated with λ. For x̃0 ∈ Z⋆ and λ ∈
σ
(
(A+BF )|Z⋆)

)
, the first equation can be rewritten as

(
λI − (A+BF )− B(W − I)F

)
x̃0 = −B(W − I)F x̃0 = 0.

Hence, the attack is stealthy if and only if B(W − I)F x̃0 = 0.
Denote X ⊆ Z⋆ as the subspace spanned by all vectors x̃0 ∈ Z⋆ that are

eigenvectors of A+BF . Recalling that X is (A+BF )-invariant, the proof concludes
by noting that having B(W − I)F x̃0 = 0 for all x̃0 ∈ X ⊆ Z⋆ is equivalent to have
X ⊆ Z⋆ ∩Ker

(
B(W − I)F

)
.

Theorem 5.4.9 has a similar interpretation as that of Theorem 5.4.6: perturba-
tions ∆B = B(W − I)F that are not excited by the state-trajectories of the system
under attack cannot reveal the corresponding zero-dynamics attacks. Consequently,
the next result readily follows.

Corollary 5.4.10. All the zero-dynamics attacks on P remain stealthy with respect
to P̃ = (A,BW,C) if and only if Z⋆ ⊆ Ker

(
B(W − I)F

)
.

A sufficient condition for zero-dynamics attacks to be revealed with such per-
turbations follows directly from the previous theorem.

Corollary 5.4.11. All the zero-dynamics attacks are revealed if

Z⋆ ∩Ker
(
B(W − I)F

)
= ∅.

The condition in Corollary 5.4.11 and the assumption that the system is observ-
able can be used to provide a method for choosing W . First, we derive the following
result.

Lemma 5.4.12. Assume that (A,C) is observable. For any matrix F such that Z⋆

is (A+BF )-invariant, it holds that Z⋆ ∩Ker (BF ) = Z⋆ ∩Ker (F ) = ∅.

Proof. Recall that Z⋆ is (A+BF )-invariant and suppose that Z⋆ ∩Ker (BF ) 6= ∅
i.e., there exists x̃0 ∈ Z⋆ such that BFx̃0 = 0. This then implies that x̃0 is A-
invariant and generates an unobservable state trajectory, which is a contradiction
since the system is observable. The proof concludes by observing that Ker (BF ) =
Ker (F ), since B has full column-rank.
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Using the above lemma, we conclude that a matrix W revealing all stealthy
attacks can be constructed as W = I+W̄ where W̄ is a non-singular matrix. In fact,
sinceB having full column rank yields Ker

(
B(W − I)F

)
= Ker

(
BW̄F

)
= Ker (F ),

such a choice of W results in Z⋆∩Ker
(
B(W − I)F

)
= ∅ and satisfies the condition

in Corollary 5.4.11 to reveal all zero-dynamics attacks.
In particular, a possible weight for revealing zero-dynamics attacks is W = αI

with α 6= 1 being a scalar design parameter. We now analyze the effects of such
a perturbation on the output energy of the system. Introducing the variable x̂k =
α−1xk, the perturbed system (5.8) can be rewritten as

[

x̂k+1

x̃k+1

]

=

[

A BF

0 A+BF

][

x̂k

x̃k

]

ỹk =
[

αC 0
]
[

x̂k

x̃k

] (5.10)

with x̂0 = α−1x̃0 and x̃0 ∈ Z⋆. The output of (5.10) is characterized as follows.

Theorem 5.4.13. Suppose the augmented system (5.8) is at the state x̃0 = x0 =
Z⋆ when the perturbation W = αI is performed. After the perturbation the output
is described by

ek+1 = Aek

ỹk = αCek

with e0 = (α−1 − 1)x̃0.

Proof. The proof comes from introducing the variable ek = x̂k − x̃k and rewrit-
ing (5.10) with respect to ek and x̃k.

Note that the output energy after the perturbation is dependent only on the
open-loop dynamics, the initial condition x̃0, and the scaling α. The results in
Section 5.3 can be directly applied to characterize the output and residue signal
energy when W = αI, as summarized in the following statements.

Corollary 5.4.14. Suppose the augmented system (5.8) is at the state x̃0 = x0 =
Z⋆ when the perturbation W = αI is performed. After the perturbation, the output
energy is finite if and only if x̃0 does not excite unstable eigenvalues of A.

For attacks satisfying the conditions of Corollary 5.4.14, the finite output energy
may be computed as follows, by using the coordinate transform ek = Tvk as in (5.6).

Corollary 5.4.15. Suppose that the perturbation W = αI is performed when
the augmented system under a zero-dynamics attack (5.8) is at the state x̃0 =
x0 = Z⋆, which does not excite unstable modes of A, i.e. x̃0 satisfies the equa-
tion [0nv

Inx−nv
]T−1x̃0 = 0. After the perturbation, the output energy is given by
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‖y‖22 = x̃⊤0 Q̄x̃0 where

Q̄ = T−⊤

[

Inv

0nx−nv

]

Qs

[

Inv
0nx−nv

]

T−1

and Qs is the solution to

Λ⊤
s QsΛs −Qs + α2T⊤

s C
⊤CTs = 0.

Similarly to the above result, the output energy can also be characterized for
the stable closed-loop system as follows.

Corollary 5.4.16. Consider the closed-loop system (5.2), which is assumed to be
stable. Suppose the closed-loop system under a zero-dynamics attack is at the state
ξ0 = [x⊤0 0 0]⊤ with x0 = x̃0 = Z⋆ when the perturbation W = αI is performed.
After the perturbation, the residue signal energy is given by ‖r‖22 = ε⊤0 Qε0, where
ε0 = [−x̃⊤0 0 0]⊤ and Q � 0 is the solution to

A⊤QA−Q+ α2C⊤C = 0.

Note that, for stable closed-loop systems, Corollary 5.4.16 establishes that the
perturbationW = αI results in a finite residue energy, even when the zero-dynamics
are unstable. Moreover, the output energy is parameterized by the constant α, which
is a design parameter.

5.5 Numerical Examples

To better illustrate the results from the previous sections, we provide an example
of a zero-dynamics attack on a process control system: the quadruple-tank process
described in Section 2.5.2. In the simulations, we consider the linearized model (2.6),
at a given operating point, which is sampled with a period of Ts = 0.5s. The
resulting discrete-time system is given by (5.1) with

A =









0.975 0 0.042 0

0 0.977 0 0.044

0 0 0.958 0

0 0 0 0.956









, B =









0.0515 0.0016

0.0019 0.0447

0 0.0737

0.0850 0









,

C =

[

0.2 0 0 0

0 0.2 0 0

]

.

The corresponding maximal (A, Im (B))-controlled invariant subspace contained
in Ker (C), Z⋆, is spanned by the columns of Z⋆, which is shown below together
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Figure 5.1: Unstable zero-dynamics attack applied to the system from k = 0, gen-
erated by x̃0 = ǫ[0 0 − 0.72 0.69]⊤.

with a suitable F :

Z⋆ =









0 0

0 0

−1 0

0 1









, F =

[

0 0 −0.8057 0.0302

0 0 0.0349 −0.9844

]

.

The system P = (A,B,C) has two zeros, λ = 0.89 and λ = 1.03, and A has
only stable eigenvalues. The unstable zero-dynamics corresponding to λ = 1.03 are
excited by x̃0 = ǫ[0 0 − 0.72 0.69]⊤, where ǫ > 0 is chosen so that the output
energy is sufficiently small. The respective attack signal is depicted in Figure 5.1.
This attack is considered in the examples below.

The interpretation of the attack signal with respect to the physical plant is as
follows. Recall that the state of the system can be interpreted as the water-level
deviations from equilibrium at each tank, i.e. x(i),k = h(i),k. Hence, the initial
condition x̃0 = ǫ[0 0 − 0.72 0.69]⊤ indicates that only the water-levels of the
3rd and 4th water tanks deviate from equilibrium. Since x̃0 is the eigenvector of
A+BF associated with the unstable eigenvalue λ = 1.03, the autonomous system
x̃k+1 = (A + BF )x̃k has x̃k = λkx̃0 for all k ≥ 0. Therefore, at any given time
k ≥ 0, only the water-levels of tanks 3 and 4 deviate from equilibrium. Recalling
that only the water-levels of tanks 1 and 2 are measured, as seen in the output
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matrix C, we conclude that the attack results in a zero output signal.
With respect to the physical plant, the attack signal can be interpreted as a

coordinated behavior of the water pumps that only affects the water-levels of tanks
3 and 4, while leaving the levels of tanks 1 and 2 unchanged. This interpretation
helps to illustrate the reasoning behind different solutions to detect the attack. For
instance, adding one additional sensor measuring either tank 3 or tank 4 would
reveal the attacks, as described next.

5.5.1 Modifying the Output Matrix C

Suppose that the following additional measurements can be used to reveal zero-
dynamics attacks:

C3 =
[

0 0 0.2 0
]

,

C4 =
[

0 0 0 0.2
]

,

where C3 and C4 measure the water-level of tanks 3 and 4, respectively. Consider
Algorithm 5.1 proposed in Section 5.4.1. The first iteration is initialized with X0 =
Z⋆ and we see that adding C3 yields Y3 = X0 ∩ Ker (C3) = span([0 0 0 1]⊤).
The next step is to compute X1, i.e. the maximal (A + BF )-invariant subspace
contained in Y3. Since Y3 is one-dimensional, X1 must be either empty or equal
to Y3. Note that Y3 is not (A + BF )-invariant, since the vector [0 0 0 1]⊤ ∈ Y3
is not an eigenvector of (A + BF ). Therefore, we conclude that X1 is empty and,
thus, all the zero-dynamics attacks to P are revealed. In fact P̃ = (A,B, C̃) with
C̃ = [C⊤ C⊤

3 ]⊤ has no zeros. In this particular example, adding C4 instead of C3

would also reveal all the zero-dynamics attacks. Note that, while Algorithm 5.1
is ensured to converge in at most dim(Z⋆) = 2 iterations, a single iteration was
enough to reveal all zero-dynamics attacks.

5.5.2 Modifying the System Matrix A

From Corollary 5.4.7, we have that any system perturbation of the type

∆A =
[

∆ 0
]

with ∆ ∈ R4×2 leaves all the zero-dynamics attacks stealthy, since ∆AZ⋆ = 0. In
terms of the physical plant, such perturbations are only driven by the states of
tanks 1 and 2, i.e., ∆Axk = ∆[x(1),k x(2),k]

⊤. Recalling that the attack does not
affect the water-levels of tanks 1 and 2, we conclude that the attack would remain
undetected. In fact, note that (A+∆A+BF )Z⋆ = (A+BF )Z⋆, which says that
the zero-dynamics of P and P̃ are identical. Therefore, such perturbations should
be avoided. On the other hand, the zero-dynamics change for perturbations of the
type

∆A =
[

0 ∆
]

.
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Figure 5.2: State trajectories of the system under attack with attack detection. The
zero-dynamics attack starts at k = 0 with an initial condition mismatch. The states
of tanks 1 and 2 remain close to zero until the system matrix A is perturbed at
k = 200. After the perturbation, the state of tank 1 significantly changes, which
reveals the attack.

For instance, adding an extra connection from tank 3 to tank 1 corresponds to

∆A =









0 0 0.0397 0

0 0 0 0

0 0 −0.0402 0

0 0 0 0









.

The outcome of such a perturbation can be seen in Figure 5.2 and Figure 5.3. The
attack begins at k = 0 with an initial conditions mismatch, leading to a small
increase in the output energy as initially seen in Figure 5.3. The change to the
system dynamics occurs at k = 200 and one immediately observes a perturbation
in the state trajectory. The extra coupling between tanks 3 and 1 changes the zero-
dynamics of the system and thus the current attack signal affects the water level of
tank 1. As a result the attack is revealed in the output, as illustrated in Figure 5.3.
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Figure 5.3: Output energy of the system under attack with attack detection. The
zero-dynamics attack starts at k = 0 with an initial condition mismatch. The
mismatch results in a small increase in the output energy. The system matrix A
is perturbed at k = 200, by connecting tank 3 to tank 1, which results in a steep
increase of the output energy and reveals the attack.

5.5.3 Modifying the Input Matrix B

Consider the case where the uniform input scaling W = 0.987I is applied to the
system. From the results in Section 5.4.3, all the zero-dynamics are revealed, since
Ker (BF ) = Ker

(
(1 − α)BF

)
and Z⋆ ∩ Ker (BF ) = ∅. Moreover, as stated in

Corollary 5.4.14, the scaling results in a finite energy output since A is stable. The
output energy resulting from the attack an input scaling is depicted in Figure 5.4.
As before, the attack begins at k = 0 with a mismatch in the initial condition,
resulting in a finite output energy. The input scaling is applied at k = 200, which
again results in a finite increment of the output energy since A is stable, as depicted
in Figure 5.4.

5.6 Summary

The problem of revealing zero-dynamics attacks on control system was tackled.
First, we studied the effect of initial condition mismatch in terms of the resulting
increase in the output energy. We concluded that for the subset of attacks excit-
ing unstable zero-dynamics, this effect can be made arbitrarily small while still
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Figure 5.4: Output energy of the system under attack with attack detection. The
zero-dynamics attack starts at k = 0 with an initial condition mismatch. The
mismatch results in a small increase in the output energy. The output energy sig-
nificantly increases after introducing the input scaling BW = 0.987B at k = 200,
which reveals the attack.

affecting the system performance. Then, we addressed the problem of revealing
zero-dynamics attacks by modifying the system structure in terms of the respec-
tive outputs, inputs, and dynamics. For changes in each component, we provided
necessary and sufficient conditions for all attacks to be revealed. Furthermore, we
provided an algorithm to incrementally add measurements and thus reveal attacks.
We also proposed a coordinated scaling of the inputs by the actuator and controller.
For this particular change, we quantified the resulting increase in output energy in
terms of the initial condition and scaling factor. Both these changes on the inputs
and outputs are able to reveal attacks while not affecting the system performance
when no attack is present.



Chapter 6

Distributed Fault Detection and Isolation

in Networked Systems

Increasing the cyber security by adding encryption and authentication schemes
helps to prevent some attacks by making them harder to succeed. However, it
would be a mistake to rely solely on such methods, as it is well-known that the
overall system is not secured simply because some of its components are. One way
to enhance resiliency of networked control systems is to design control algorithms
that are robust to the effects of certain categories of faults and attacks (Lynch, 1997;
Amin et al., 2009; Hou et al., 2009; Sundaram and Hadjicostis, 2011). Another
way is to develop monitoring schemes to detect anomalies in the system caused
by attacks and faults (Pasqualetti et al., 2007) and mitigate these threats upon
detection. The latter approach in general allows faster and more effective responses
to anomalies as opposed to the former, since properties of the fault such as location
and fault signal can be obtained. Moreover, monitoring schemes can also improve
the state-awareness of the system (Rieger, 2010).

Automatic detection of system faults is of growing importance as the size and
complexity of systems rapidly increase. Most of the available literature on model-
based fault detection and isolation (FDI) focuses on centralized systems where the
FDI scheme has access to all the available measurements and the objective is to
detect and isolate faults occurring in any part of the system (Isermann, 2004; Ding,
2008; Chen and Patton, 1999). Distributed implementations are more suitable than
centralized for large-scale interconnected dynamical systems such as power net-
works and multi-agent systems due to its lower complexity and less use of network
resources (Siljak, 1991). Traditional FDI schemes may not be applied to distributed
systems, since not all measurements are available in every node. However, in large-
scale networked systems such as electric power systems, even benign disturbances
such as model changes or unmeasured signals may hinder the detection of faults.
Additionally, a global model of the system may not be available, or the large size
of the system may lead to computationally intractable monitoring schemes. Hence
in order to meet the demands of resilient control system components, monitoring
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schemes need to be architectured and designed to provide scalable solutions suitable
for large-scale highly uncertain networked systems.

In this chapter, we address the design of distributed FDI for large-scale net-
worked systems that resilient to model changes and external faults, not requiring
the exact global model of the network to be known to the nodes.

6.1 Contributions and Related Work

Power networks are large-scale spatially distributed dynamical systems. Being a
critical infrastructure, they possess strict safety and reliability constraints (Shahideh-
pour et al., 2005). Monitoring the state of the system is essential to guarantee safety.
Currently this is typically done in a centralized control center through a single state
estimator. The core methodology for state estimation of power systems dates from
1970 (see Schweppe and Wildes, 1970; Abur and Exposito, 2004). Due to the low
sampling frequency of the sensors in these systems a steady-state approach is taken,
which only allow for an over-constrained operation of the system to ensure reliabil-
ity. Furthermore dynamic faults such as generator electro-mechanical oscillations
may pass undetected by schemes based on steady-state models and measurements,
possibly leading to cascade failures.

In recent years, measurement units with higher sampling rate have been devel-
oped, e.g., Phasor Measurement Units (PMU), opening the way to dynamic state
estimators and observer-based fault detection schemes taking in account the dynam-
ics of the system. As discussed in Section 2.2.1, there are various ways to detect and
isolate a fault in a dynamical system (Massoumnia and Verghese, 1989; Chen and
Patton, 1999; Isermann, 2004; Ding, 2008). A recent survey of different techniques
can be found in Hwang et al. (2010). One approach is to use the system model to
design a set of parity equations. In the case of dynamical systems, such parity equa-
tions can be obtained by exploiting the temporal correlation among state, input,
and output variables for a given time-horizon. This approach was used in Han et
al. (2005) to design a centralized FDI scheme insensitive to certain model changes
and disturbances. Our approach is similar, but relies on an observer-based approach
and results in a distributed FDI scheme.

Centralized observer-based FDI approaches have been well studied and some of
these methods have been proposed for power systems (Scholtz and Lesieutre, 2008;
Aldeen and Crusca, 2006; Demetriou, 2005). However, distributed FDI for systems
comprised of a network of autonomous nodes is still in its infancy. Recently, a
distributed FDI scheme for a network of interconnected first-order systems was
proposed by Pasqualetti et al. (2012). The authors analyzed limitations on fault
detectability and isolability in a system theoretic perspective. Distributed schemes
for power networks were also developed. Pasqualetti et al. (2013) studied central-
ized and distributed fault detection schemes for networked systems modeled by
differential-algebraic equations. Using swing-equation models of power networks,
Nishino and Ishii (2014) proposed distributed fault detection schemes for power
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i

(a)

i

(b)

Figure 6.1: The networked system with faults, where nodes correspond to dynamical
subsystems and undirected edges represent coupled dynamics between nodes. In
distributed FDI schemes, node i aims at detecting and isolating faults on the solid
white nodes and edges incident to them. Scenario (a) depicts the case where node i
has access to measurements from its neighbors, represented by directed edges, and
knows the entire network model. In scenario (b), node i only knows a local model of
the network, where the dashed nodes and edges are unknown to node i. Moreover,
node i receives measurements from the solid white and gray nodes.

networks using power flow and PMU measurements. In Ding et al. (2008), a bank
of decentralized observers is built where each observer contains the model of the
entire system and receives both measurements from the local subsystem and infor-
mation transmitted from other observers. In both contributions, the exact model of
the system is assumed to be known. Distributed FDI schemes using uncertain mod-
els were proposed in Ferrari et al. (2009). However, these schemes require bounded
interconnections between the subsystems and knowledge of these bounds. A similar
approach was followed by Zhang and Zhang (2012) and applied to nonlinear power
system models, but in addition to bounded model uncertainty they required also
communication between neighboring FDI filters.

This chapter tackles the problem of distributed FDI for large-scale intercon-
nected systems with respect to different fault models. The networked system with
different fault types are illustrated in Figure 6.1. The networked system is composed
of interconnected individual subsystems, represented by nodes. Each node has ac-
cess to local measurements from nodes in its vicinity, represented by directed edges.
As an example, the measurements available to node i are depicted in Figure 6.1.
The interconnections between subsystems are represented by undirected edges be-
tween nodes and model either physical couplings, as in the case of power networks,
or distributed control laws computed based on the local measurements, which are
present, for instance, in mobile multi-agent systems. Faults may affect the network
through the nodes, undirected edges, and directed edges. Given the system model
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and local measurements, distributed FDI aims at having each node of the network
detecting and isolating faults in its vicinity, as illustrated in Figure 6.1.

First we tackle the problem of distributed FDI with respect to faulty nodes
and faulty edges. In particular, we consider schemes based on Unknown Input Ob-
servers (UIO) and, given the local measurements and system model as depicted in
Figure 6.1a, we derive results on the existence of UIOs at each node for the different
fault models.

As our second contribution, we consider the case where the UIOs are designed
based on uncertain network models. More precisely, the model uncertainty is caused
by the removal of edges or nodes with respect to the nominal model. The proposed
distributed FDI scheme is shown to be somewhat resilient to network changes that
are external to a node’s local subsystem, i.e. that occur on the dashed nodes or edges
in Figure 6.1b. Additionally, we propose a novel distributed FDI scheme based on
local models and an augmented set of measurements from the local subsystem, as
illustrated in Figure 6.1b. As opposed to approaches similar to Ferrari et al. (2009);
Zhang and Zhang (2012), bounding the subsystems’ interactions is not required.
Instead, by using the additional measurements, the local FDI filter can be decoupled
from faults and model changes in the external subsystems and it can detect and
isolate faults in the neighboring nodes.

Our third contribution is to address the complexity reduction of the distributed
FDI scheme. More precisely, leveraging on our second contribution, we outline the
minimum amount of model information and measurements that are sufficient for a
node to achieve FDI using only its local measurements and models. In particular,
our results show that using the local model from a node’s 2-hop neighborhood
and the corresponding measurements may not be optimal. The proposed scheme
has reduced computational complexity and required model knowledge compared to
the schemes such as Pasqualetti et al. (2012); Sundaram and Hadjicostis (2011),
which use the global system’s model. Moreover, we propose a method to reduce
the number of monitoring nodes while ensuring that all nodes are being monitored.
Importantly, we do not assume that the monitoring nodes exchange information
with each other.

The outline is as follows. In Section 6.2, we describe the system and fault models
and define the problem of distributed FDI. Section 6.3 begins by recalling the ex-
isting FDI tools, which are then used to design distributed solutions to detect and
isolate faulty nodes and edges, respectively. In Section 6.4, we show how to distribut-
edly detect faults when the network model is uncertain using two different methods.
The first method adapts the detection thresholds of the original distributed FDI,
while the second consists of a novel distributed FDI method based on local models
that not only requires less computations than the one presented in Section 6.3, but
also is capable of handling uncertain network models. In Section 6.5 we propose
methods to further reduce the computational burden of the methods proposed FDI
schemes. Some numerical examples are given in Section 6.6. A summary of the
chapter is given in Section 6.7.
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6.2 Problem Formulation

Consider a network of N interconnected dynamical systems and let G(V , E) be
the underlying graph of this network, where V , {i}Ni=1 is the vertex set and
E ⊆ V × V is the edge set of the graph. Denote A ∈ RN×N as the weighted
adjacency matrix with nonnegative entries. The undirected edge {i, j} is incident
to vertices i and j if nodes i and j share a communication link, in which case the
corresponding entry in the adjacency matrix [A]ij is positive. The degree of node
i is deg (i) , A1N =

∑

j∈Ni
[A]ij , where the entries of 1N ∈ RN are equal to 1,

Ni ,
{
j ∈ V : {i, j} ∈ E

}
is the neighborhood set of i with Ni , |Ni|, and the

degree matrix of G is ∆ , diag(deg(1), . . . , deg(N)). The Laplacian of G is defined
as L(G) , ∆ − A. Consider a subset of the vertex set Ṽ ⊆ V and a subset of the
edge set Ẽ ⊆ E . The subgraph of G induced by Ṽ and Ẽ is denoted as G̃ , G(Ṽ , Ẽ).
Moreover, assume that the state of each node is given by xi(t) ∈ R2.

We call the set N ℓ
i ⊂ V the ℓ-hop neighbor set of node i where v ∈ N ℓ

i if
there is a path of length at most ℓ between i and v. Defining Vℓ

i , {i} ∪ N ℓ
i , we

call the subgraph Gℓi
(
Vℓ
i , Eℓi

)
⊆ G(V , E) the ℓ-hop neighborhood graph of node i

where {v, u} ∈ Eℓi if {v, u} ∈ E and u, v ∈ N ℓ
i . For the case where ℓ = 1, we drop

the superscript for the ease of notation. We call the graph Pi(VPi
, EPi

) ⊆ G(V , E),
where VPi

= {i} ∪ Ni ∪N i, and EPi
= Ei ∪ E i, the proximity graph of node i where

{v, u} ∈ Ei if {v, u} ∈ E and u, v ∈ Ni. Moreover, N i is the set of all the nodes in
the network that are not in Ni but share a link with at least one of the nodes in
Ni, and E i is the set of all edges incident to at least one of the nodes in Ni that are
not in Ei. Examples for the notation above are given in Figure 6.2.

Consider the linear time-invariant networked system described by

ẋ(t) = Ax(t) +Bv(t) + Ef(t),

yi(t) = Cix(t) +Dif(t), ∀ i ∈ V , (6.1)

where x(t) ∈ Rn is the global state vector containing all the agents’ states, v(t) ∈
R

N is a known input vector, yi(t) ∈ R
mi is the set of measurements available at

node i, and f(t) ∈ Rp is an unknown vector of faults affecting the system. We are
interested in the problem of distributed fault detection and isolation, as described
below.

Definition 6.2.1 (Distributed fault detection and isolation). Consider the sys-
tem (6.1) and suppose each node i has a model of the system and a local set of
measurements yi(t) to design a FDI scheme. A fault f(t) 6≡ 0 is said to be detected
if at least one node i ∈ V decides that there exists an active fault in the network.
Furthermore, a fault is said to be isolated if there exists a set of nodes that detect
the fault and identify the faulty components, i.e. identify the non-zero elements of
f(t).

The main aim of this work is to leverage the structural properties of the net-
worked system (6.1) to characterize under what conditions the problem of dis-
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Figure 6.2: (a) A network with 12 nodes. (b) The set of one-hop neighbors of node
1, N1, are nodes {2, 3, 4} and are coloured darker. (c) The one-hop neighborhood
graph of node 1, G1, is the set of dark nodes connected by solid lines. (d) The graph
represented by dark nodes that are connected to each other by solid lines is the
proximity graph of node 1, i.e., P1.
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tributed fault detection and isolation can be solved. In particular, we focus on the
networked second-order systems, while similar results for networked first-order sys-
tems can be obtained (see, for instance, Pasqualetti et al., 2012). For this case, the
state of each node, xi(t) = [ξi(t) ζi(t)]

⊤, ξi(t), and ζi(t) ∈ R, is governed by

ξ̇i(t) = ζi(t)

ζ̇i(t) = ui(t) + vi(t) + fi(t),

where ξi(t) and ζi(t) are the scalar states, vi(t) is the i-th entry of the external
reference input v(t), ui(t) is a scalar distributed control input capturing the inter-
actions between neighboring nodes, and fi(t) is an unknown fault affecting node i.
Additionally, each agent i has access to its own states and receives measurements
of its neighbors’ states, possibly corrupted by faults. Denoting

x(t) = [ξ1(t) . . . ξN (t) ζ1(t) . . . ζN (t)]⊤

as the global system state, the measurement vector with corrupted measurements
is described as

yi(t) = Cix(t) + Ci

∑

j∈Ni

(

ljf
ξ
ij(t) + lN+jf

ζ
ij(t)

)

= [ ξi(t) ξj1(t) . . . ξjNi
(t) ζi(t) ζj1(t) . . . ζjNi

(t) ]⊤

+ [ 0 f ξ
ij1

(t) . . . f ξ
ijNi

(t) 0 0 . . . 0 ]⊤

+ [ 0 0 . . . 0 0 f ζ
ij1

(t) . . . f ζ
ijNi

(t) ]⊤,

(6.3)
where jk ∈ Ni for all k = 1, . . . , Ni, li ∈ R2N is the i-th column of I2N , and
Ci = [C̄⊤

i C̄⊤
i ]⊤, with C̄i ∈ R|V1

i |×N being a full row rank matrix where each of the
rows have all zero entries except for one entry at the j-th position that corresponds
to those nodes that are in V1

i = {i} ∪Ni. The variables f ξ
ij(t) and f ζ

ij(t) for j ∈ Ni

denote measurement corruptions on ξj and ζj , respectively.
The distributed control input ui(t) is given by the linear control law on yi(t):

ui(t) =
∑

j∈Ni

(wij + fw
ij (t))

[

(ξj(t) + f ξ
ij(t)− ξi(t)) + µ(ζj(t) + f ζ

ij(t)− ζi(t))
]

− κiζi(t),

(6.4)
where wij = wji > 0 are the edge weights, κi, µ ≥ 0 for i, j = 1, . . . , N , and
fw
ij (t) = fw

ji(t) is an unknown fault affecting the weight of the edge {i, j}.
The overall dynamics of the networked system under the control law (6.4) are

described by (6.1) with

A =

[

0N IN

−L −µL−K

]

, B =

[

0N

IN

]

.

The matrix L is the weighted Laplacian matrix associated with the network where
wij is the weight of edge {i, j}, and K = diag(κ1, . . . , κN ).
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The control law described by (6.4) with f(t) ≡ 0 is a generalized form of the
two following well-known control laws:

u1i (t) = −κiζi(t) +
∑

j∈Ni

wij(ξj(t)− ξi(t)),

u2i (t) =
∑

j∈Ni

wij

[
(ξj(t)− ξi(t)) + µ(ζj(t)− ζi(t))

]
.

Analysis of these control laws and design rules for κi, wij , and µ may be found
in Ren and Atkins (2007); Qin et al. (2012).

Remark 6.2.1. Under both these control laws with f(t) ≡ 0, for all i, j ∈ V we
have |ξi − ξj | → 0 and |ζi − ζj | → 0 exponentially fast (Ren and Atkins, 2007; Qin
et al., 2012). Furthermore, we denote the consensus equilibria as x̄ = [ξ̄ ζ̄]⊤ ⊗ 1N

with ξ̄ = lim
t→+∞

ξi(t) and ζ̄ = lim
t→+∞

ζi(t), where ⊗ denotes the Kronecker product.

The introduced networked system can represent many practical systems, which
may lead to different fault models and interpretations. In this chapter, we consider
two application examples, namely mobile multi-agent systems and electric power
networks. For a mobile multi-agent system (Ren and Atkins, 2007), each node i
represents a vehicle, where the variables ξi and ζi can be interpreted as the cor-
responding position and velocity, respectively. In this case, the node fault fi(t)
corresponds to faults in the vehicle dynamics, which can represent, for instance, an
obstacle immobilizing the vehicle. In mobile multi-agent systems, the edges map to
communication or sensing links between the vehicles. For such systems, each node
implements the control law by obtaining state measurements from the neighbors.
Therefore, given the graph representation of the system, faults in the measurements
appear as sensing faults on edges, corresponding to the signals f ξ

ij(t) and f ζ
ij(t).

In the context of synchronous power systems (Kundur, 1994), each node i maps
to a generator or motor, with ξi and ζi being the corresponding phase and fre-
quency, respectively. In this case, node faults fi(t) may represent electro-mechanical
disturbances affecting the electrical machines, e.g. a sudden change in the mechan-
ical power supplied to the generators. For electric power networks represented by
graphs, the edges model physical transmission lines between electrical machines.
In this case, the control law corresponds to the model of the physical coupling be-
tween the nodes, thus being part of the physical system itself. Moreover, faults on
the edges represent are actually faults on the transmission lines. In this work, we
consider that such faults correspond to changes in the transmission line parameters.
In particular, the edge weights wij = wji may be affected by a fault and become
wij + fw

ij (t) = wji + fw
ji(t), which correspond to parameter faults.

Given the previous interpretations of the networked system (6.1) and corre-
sponding node and edge faults, we define faulty nodes and faulty edges as follows.

Definition 6.2.2. A node i ∈ V is faulty if fi(t) 6≡ 0. The system affected by the
fault f(t) = fi(t) is modeled by (6.1) with E = bi and Di = 0, where bi is the i-th
column of B.



6.3. Distributed Fault Detection and Isolation 145

Definition 6.2.3. An edge {i, j} ∈ E is faulty if any of the signals fw
ij (t), f

w
ji(t),

f ξ
ij(t), f

ξ
ji(t), f

ζ
ij(t), and f ζ

ji(t) are not identically zero. Moreover, we classify edge
faults as either sensing faults or parameter faults.

(i) A fault on edge {i, j} is a sensing fault from j to i if any of the signals f ξ
ij(t)

and f ζ
ij(t) are not identically zero and fw

ij (t) ≡ 0. The system affected by the

fault f(t) = [f ξ
ij(t) f

ζ
ij(t)]

⊤ is modeled by (6.1) with E = bi[wij µwij ] and
Di = Ci[lj bj ], where lj is the j-th column of I2N .

(ii) A fault on edge {i, j} is a parameter fault if the signals f ξ
ij(t), f

ζ
ij(t), f

ξ
ji(t),

and f ζ
ji(t) are identically zero and fw

ij (t) = fw
ji(t) 6≡ 0 . The system affected

by the fault f(t) = δij(t)f
w
ij (t) with δij(t) = ξj(t) − ξi(t) + µ(ζj(t) − ζi(t)) is

modeled by (6.1) with E = bi − bj and Di = 0.

Given the control input (6.4) and local measurements from its neighbors (6.3),
node i cannot compute each neighbor’s input. Therefore, FDI based solely on indi-
vidual models (6.2) is infeasible, as the neighbors trajectories cannot be estimated.
However, the control inputs and corresponding trajectories can be estimated by
using the global model of the networked system (6.1), as described next.

6.3 Distributed Fault Detection and Isolation

In this section we revisit some of the results on FDI using UIOs. The methodology
is presented for the case of faulty nodes, but applies straightforwardly to the other
scenarios.

Recall the problem of distributed FDI as per Definition 6.2.1, where each node
i monitors its neighborhood to detect and isolate faulty components. For each node
i = 1, . . . , N , consider a model of the form:

ẋ(t) = Ax(t) +Bv(t) +
∑

k∈Ni

Ekfk(t),

yi(t) = Cix(t) +
∑

k∈Ni

Di,kfk(t),
(6.7)

where, recalling Definition 6.2.2, a faulty node k is modeled by Ek = bk and Di,k =
0. For the ease of notation, we assume that there is at most one faulty node. Note
that this assumption is not essential and can be relaxed. In particular, one may take
any combination of simultaneous faults and consider it as a higher-dimensional fault
signal. For instance, a simultaneous fault on nodes j and k could be modeled using
(6.7) by replacing Ekfk(t) with [Ek Ej ][fk(t) fj(t)]

⊤.
As suggested in Chen and Patton (1999), a possible method of detecting and iso-

lating the faults is to use the so called generalized observer scheme (GOS), where we
construct a bank of observers generating a structured set of residuals such that each
residual is decoupled from one and only one fault, but being sensitive to all other
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faults. To achieve distributed FDI using this scheme, each node i ∈ V constructs a
bank of Ni UIOs. In particular, for each neighbor k ∈ Ni, an observer decoupled
from Ek and Di,k is implemented, as described next. Given the model (6.7), let
x̂ik(t) denote the state estimate decoupled from a faulty node k and calculated by
node i using the state observer

żik(t) = F i
kz

i
k(t) + T i

kBv(t) +Ki
kyi(t)

x̂ik(t) = zik(t) +Hi
kyi(t),

(6.8)

where zik(t) ∈ R2N is the observer’s state.
An unknown input observer (UIO) decoupled from a faulty node k is defined as

follows (Ding, 2008).

Definition 6.3.1. Consider the dynamical system (6.7) and the observer (6.8). The
observer is a UIO decoupled from a faulty node k if limt→+∞ ‖x(t) − x̂ik(t)‖ = 0
for any fault fk(t).

For the observer (6.8) to be an UIO, the observer matrices should be designed
to achieve decoupling from the faulty node k and should ensure the stability of the
observer. By choosing the matrices F i

k, T
i
k,K

i
k, H

i
k to satisfy the conditions

F i
k = (A−Hi

kCiA−K ′i
kC), T i

k = (I −Hi
kCi)

Ki
k = K ′i

k +K ′′i
k , K ′′i

k = F i
kH

i
k, (Hi

kCi − I)Ek = 0,
(6.9)

where F i
k is Hurwitz and recalling the model (6.7), we have the estimation error

dynamics
ėik(t) = F i

ke
i
k(t)− T i

k

∑

m∈Ni\{k}

Emfm(t) (6.10)

with eik(t) = x(t)− x̂ik(t). Clearly, the error dynamics (6.10) do not depend on fk(t)
and are stable, thus complying with Definition 6.3.1. In general, the UIO existence
condition are as follows (Chen and Patton, 1999).

Proposition 6.3.1. For the system (6.7), there exists an UIO decoupled from a
faulty node k in the sense of Definition 6.3.1 if and only if the following conditions
hold

rank(CiEk) = rank(Ek)

rank

[

sI −A Ek

Ci 0

]

= n+ rank(Ek),
(6.11)

for all s ∈ C with non-negative real parts.

Remark 6.3.1. The UIO existence conditions (6.11) correspond to the necessary
and sufficient conditions for asymptotic estimation of the unknown input fk(t).
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Consider the fault signal estimate f̂ i
k(t) = V (ẏi(t)−CAx̂ik(t)) with V = (CiEk)

† as
the pseudo-inverse of CiEk. From (Ding, 2008, Theorem 14.4), when y(t) and ẏ(t)
are available, the necessary and sufficient conditions for limt→+∞ |fk(t)− f̂ i

k(t)| = 0
are the same as the UIO existence conditions in Proposition 6.3.1.

The UIO error dynamics (6.10) are driven by the j-th fault, for some j 6= k, if
T i
kEj 6= 0. In fact, having T i

kEj 6= 0 for all j ∈ Ni\{k}, for all k ∈ Ni, plays an
important role in the detection and isolation logic later described. This condition
can be incorporated in the UIO design, as stated by the following result.

Proposition 6.3.2. Given the system (6.7), suppose the UIO existence condi-
tions (6.11) hold for a given k ∈ Ni. There exists an UIO decoupled from a faulty
node k with T i

kEj 6= 0 for all j ∈ Ni\{k} if rank(Ci[Ek Ej ]) = rank([Ek Ej ]) >
rank(Ek), for all j ∈ Ni\{k}.

Proof. The desired UIO must satisfy (6.9) and T i
kEj 6= 0 for all j ∈ Ni\{k}.

Recalling that T i
k = (I − Hi

kCi), we then have that T i
kEk = 0 and T i

kEj 6= 0
must hold. The rank condition in the proposition’s statement ensures that Hi

k =

Ek

(
(CiEk)

⊤CiEk

)−1
(CiEk)

⊤ satisfies T i
kEk = 0 and T i

kEj 6= 0 for all j ∈ Ni\{k},
since Ek and Ej are orthogonal. The rest of the proof follows directly from the
UIO design method detailed in Chen and Patton (1999), which constructs an UIO
satisfying (6.9) with Hi

k as chosen above.

Given the conditions in Proposition 6.3.1, we observe that the rank condition in
Proposition 6.3.2 holds when there exist UIOs for all k ∈ Ni and every pair of fault
directions Ek and Ej with j 6= k is linearly independent. Since the latter holds for
both node and edge faults, in the remainder of the chapter we focus only on the
UIO existence conditions from Proposition 6.3.1. In particular, we derive results
of existence and nonexistence of UIOs for the interconnected system (6.1) under
different fault models by using the conditions of Proposition 6.3.1.

For the moment, suppose that there exists a bank of UIOs at node i, where
each UIO is decoupled from a faulty node k ∈ Ni. The bank of UIOs computes a
set of state estimates x̂ij(t) for j ∈ Ni given the model of the system (6.7), which
is assumed to be accurate. Intuitively, recalling that noise is neglected, a mismatch
between the estimated and actual state trajectory of the system would indicate the
presence of faults in the system. In fact, node i can detect faults by analyzing the
difference between the estimated outputs ŷij(t) = Cix̂

i
j(t) for all j ∈ Ni and the

actual measurements yi(t), which are denoted as residual signals.

Definition 6.3.2. The signal rij(t) , yi(t) − Cix̂
i
j(t) = Cie

i
j(t) is a residual if

‖rij(t)‖ = 0 is equivalent to ‖fk(t)‖ = 0 for all k 6= j ∈ Ni.

Note that the residual dynamics of rik(t) are driven by the j-th fault if T i
kEj 6=

0, which can be ensured for j ∈ Ni\{k} through Proposition 6.3.2. Therefore,
according to Definition 6.3.2, having ‖rik(t)‖ > 0 indicates that there exists a fault
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in the network other than fk(t). Additionally, since rij(t) is computed by an UIO
decoupled from fj(t), if the only active fault is fj(t) we have ‖rij(t)‖ = 0 and
‖rik(t)‖ > 0 for all k 6= j. Motivated by this reasoning, we consider the following
detection and isolation logic for fault fj(t) monitored by node i:

∥
∥
∥rij(t)

∥
∥
∥ < Θi

j
∥
∥
∥rik(t)

∥
∥
∥ ≥ Θi

k , ∀k 6= j,
(6.12)

where Θi
j > 0 are isolation thresholds. These thresholds should be chosen according

to trade-offs between sensitivity to faults, robustness to unmodeled dynamics and
noise, misdetection rate, and false alarm rate, among others. Since choosing these
thresholds is not within the scope of this work, the reader is referred to Ding (2008)
for further discussions.

Using Algorithm 6.3 a faulty node j can be detected and isolated by all the
nodes in Nj . However, all the other nodes in the network i 6∈ Nj can only detect the
existence of a faulty node in the network, which occurs when

∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈ Ni,
while the identity of the faulty node is unknown to them. For the ease of notation
we drop the superscript i from the variable names for the rest of this chapter.

Algorithm 6.3 Distributed FDI of Faulty Nodes at Node i

for k ∈ Ni do

Generate rik(t).
end for

if ∃j :
∥
∥
∥rij(t)

∥
∥
∥ < Θi

j and
∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈ Ni 6= j then

Node j is faulty.
else if

∥
∥rik(t)

∥
∥ ≥ Θi

k ∀k ∈ Ni then

There exists a faulty node ℓ ∈ V \ Ni.
else if

∥
∥rik(t)

∥
∥ < Θi

k ∀k ∈ Ni then

There is no faulty node in the network.
end if

In the remainder of this section, we address the problem of distributed fault
detection and isolation of faulty nodes and faulty edges using the approach outlined
here. In particular, we adapt the model (6.7) and distributed FDI scheme to the case
of either node or edge faults and, for each case, we study the existence conditions
of UIOs in terms of the network graph and available measuremetns.

6.3.1 Distributed FDI for Faulty Nodes

The distributed FDI scheme to detect and isolate faulty nodes is outlined in Al-
gorithm 6.3. However, to solve the distributed FDI problem for faulty nodes using
Algorithm 6.3, there needs to exist a bank of UIOs for each node i ∈ V satisfying the
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isolability condition in Proposition 6.3.2. For the case of faulty nodes, the problem
of distributed FDI using UIOs can be stated as follows.

Problem 6.3.1. Consider the networked system (6.1) and faulty nodes as in Def-
inition 6.2.2. The answer to the following question is sought:

Consider the node j to be faulty, and let node i be a neighbor of j. Does there
exist an UIO for node i that is decoupled from the faulty node j?

The answer to Problem 6.3.1 is provided next by proving the existence of ma-
trices F i

k, T
i
k,K

i
k, H

i
k satisfying (6.9) for the system (6.7) with node faults and local

measurements (6.3) for all i ∈ V .

Theorem 6.3.3. Consider the networked system (6.7) with a fault at node k. In
the sense of Definition 6.3.1, there exists an UIO decoupled from the faulty node k
for node i if the graph G is connected and nodes k and i are neighbors.

Proof. For a faulty node k ∈ Ni, the system dynamics and measurement equations
are given by (6.7) with Ek = bk and Di,k = 0. Observing that the measurements at
node i are not corrupted, next we show that the UIO existence conditions in Propo-
sition 6.3.1 are satisfied. It follows that the first rank condition in Proposition 6.3.1
holds because

rank(CiEk) = rank(E⊤
k Ek) = rank(Ek),

where the first equality follows from the fact node i measures the states its neigh-
boring nodes, including the faulty node k.

As for the second rank condition in (6.11), consider the 1-hop neighborhood
graph of node i, Gi, with Vi = {i} ∪ Ni and Vi = |Vi|. Denote G̃i as the subgraph
induced by the vertex set Ṽi = V\Vi, with Ṽi = |Ṽi|. Without loss of generality, the
nodes may be rearranged so that the Laplacian of G and Ek can be written as

L =

[

Li ℓi

ℓ⊤i L̃i

]

, Ek =







0N

lk

0Ṽi







where ℓi ∈ RVi×Ṽi and the vector lk ∈ RVi is the k-th column of IVi
. The second

rank condition in (6.11) becomes

rank














sIVi
0Vi×Ṽi

−IVi
0Vi×Ṽi

0Vi

0Ṽi×Vi
sIṼi

0Ṽi×Vi
−IṼi

0Ṽi

Li ℓi α1(s) µℓi lk

ℓ⊤i L̃i µℓ⊤i α2(s) 0Ṽi

IVi
0Vi×Ṽi

0Vi×Vi
0Vi×Ṽi

0Vi

0Vi×Vi
0Vi×Ṽi

IVi
0Vi×Ṽi

0Vi














︸ ︷︷ ︸

P

= 2N + 1,
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where α1(s) = sIVi
+ µLi + K̄i and α2(s) = sIṼi

+ µL̃i + K̃i.
Observing that the first and third column blocks are linearly independent of the

rest and applying some row and column operations we have

rank(P ) = rank







− 1
µIṼi

−(1 + µs)IṼi
0Ṽi

ℓi 0Vi×Ṽi
lk

0Ṽi×Ṽi
−α(s) 0Ṽi






+ 2Vi,

with α(s) = µs2IṼi
+ µs(L̃i + K̃i) + L̃i. It follows from Barooah and Hespanha

(2006) that L̃i is positive definite if G is connected. Since µ > 0 and K̃i are positive
definite, we conclude that α(s) is invertible for s ∈ C with non-negative real part.
Therefore the first and second column blocks are independent of each other and the
third column block, which concludes the proof.

In particular, the existence conditions of Proposition 6.3.1 reduce to having the
graph G connected and k ∈ Ni. Therefore we make the following assumption for
the remaining of this chapter.

Assumption 6.3.1. The network graph G is connected.

6.3.2 Distributed FDI for Faulty Edges

In this subsection we extend the distributed FDI scheme to the case of faulty edges
as in Definition 6.2.3. Similarly to the detection and isolation scheme outlined for
node faults in Section 6.3.1, faults on edges may also be detected and isolated using
banks of UIOs. This subsection analyzes the existence of suitable UIOs that may
be used to detects faulty edges. In particular, the following problem is addressed.

Problem 6.3.2. Consider the networked system (6.1) and faulty edges as in Defi-
nition 6.2.3. The answers to the following two questions are sought:

1. Consider the edge between nodes j and k to be faulty, and let node i be a
neighbor of both j and k. Does there exist an UIO for node i that is decoupled
from the faulty edge {j, k}?

2. Does there exist an UIO for node i that is decoupled from a faulty edge incident
to node i?

First we consider the problem of distributed detection and isolation of those
faults that appear as corruptions in the communication or sensing links between
pairs of neighbors characterized by Definition 6.2.3.(i). Later the detection and
isolation of edge parameter faults described in Definition 6.2.3.(ii) is tackled.

To address the problem of distributed detection and isolation of faulty edges,
in addition to the bank of observers monitoring the fault in the neighbor nodes of
a given node i to detect misbehaving nodes, we construct a bank of observers for
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those pairs of nodes neighboring to i that share the same edge. Hence at each node
i, in addition to the observers for system models described by (6.7), observers for
the following systems are constructed for all {j, k} ∈ Ei:

ẋ(t) = Ax(t) +Bv(t) + Ejkfjk(t) + Ekjfkj(t)

yi(t) = Cix(t) +Di,jkfjk(t) +Di,kjfkj(t)
(6.13)

where fjk(t) = [f ξ
jk(t) f

ζ
jk(t)]

⊤, Ejk = bj [wjk µwjk], Di,ij = Ci[lj bj ], and Di,jk = 0
for j 6= i. Similarly as before, let x̂jk(t) denote the estimate of the states for this
system model and define the UIO decoupled from a faulty edge {j, k} and the
respective residual signal as follows.

Definition 6.3.3. Consider the dynamical system (6.13) and the observer (6.8).
The observer is a UIO decoupled from a faulty edge {j, k} if limt→+∞ ‖x(t) −
x̂ijk(t)‖ = 0 for any fault signals fjk(t) and fkj(t).

Definition 6.3.4. The signal rjk(t) , yi(t)−Cix̂jk(t) is a residual if ‖rjk(t)‖ = 0
is equivalent to ‖fj̄k̄(t)‖ = ‖fk̄j̄(t)‖ = 0 for all {j̄, k̄} 6= {j, k} ∈ Ei.

As seen in (6.13), the corrupted data sent along the faulty edge affects the
dynamics of the node at the receiving end. In fact, comparing with the formulation
in Pasqualetti et al. (2012), such false data appear in the dynamics as two concurrent
faulty nodes. However, note that the measurements yi(t) may also be affected by the
edge fault. The following proposition establishes the existence of such observers for
the system described above and addresses the first question posed in Problem 6.3.2.

Theorem 6.3.4. Consider the networked system (6.13) with a sensing fault at
the edge {j, k} and j, k 6= i. In the sense of Definition 6.3.3, there exists an UIO
decoupled from the faulty edge {j, k} for node i if the graph G is connected and node
i is a neighbor of both j and k.

Proof. For node i ∈ Nj ∩Nk, the system dynamics and measurement equations are
given by (6.13) with Ejk = bj[wjk µwjk] and Di,jk = 0. Observing that the mea-
surements at node i are not corrupted and defining fe

jk(t) = wjkf
ξ
jk(t)+µwjkf

ζ
jk(t),

the model can be rewritten as two simultaneous node faults:

ẋ(t) = Ax(t) + E{j,k}[f
e
jk(t) f

e
kj(t)]

⊤

yi(t) = Cix(t),

with E{j,k} = [bj bk]. Next we show that the UIO existence conditions in Proposi-
tion 6.3.1 are satisfied. It follows that the first rank condition in Proposition 6.3.1
holds because

rank(CiE{j,k}) = rank(E⊤
{j,k}E{j,k}) = rank(E{j,k}),

where rank(CiE{j,k}) = rank(E⊤
{j,k}E{j,k}) follows from the fact node i measures

the states of nodes j and k that are affected by the fault.
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As for the second rank condition in (6.11), it is the same as the case where
two concurrent faults occur in the system, so the proof is similar to that of Theo-
rem 6.3.3. Consider the 1-hop neighborhood graph of node i, Gi, with Vi = {i}∪Ni

and Vi = |Vi|. Denote G̃i as the subgraph induced by the vertex set Ṽi = V\Vi,
with Ṽi = |Ṽi|. Without loss of generality, the nodes may be rearranged so that the
Laplacian of G and E{j,k} can be written as

L =

[

Li ℓi

ℓ⊤i L̃i

]

, E{j,k} =







0N×2

ljk

0Ṽi×2







where ℓi ∈ RVi×Ṽi and the columns of ljk ∈ RVi×2 are the columns of IVi
corre-

sponding to nodes j and k. The second rank condition in (6.11) becomes

rank














sIVi
0Vi×Ṽi

−IVi
0Vi×Ṽi

0Vi×2

0Ṽi×Vi
sIṼi

0Ṽi×Vi
−IṼi

0Ṽi×2

Li ℓi α1(s) µℓi ljk

ℓ⊤i L̃i µℓ⊤i α2(s) 0Ṽi×2

IVi
0Vi×Ṽi

0Vi×Vi
0Vi×Ṽi

0Vi×2

0Vi×Vi
0Vi×Ṽi

IVi
0Vi×Ṽi

0Vi×2














︸ ︷︷ ︸

P

= 2N + 2,

where α1(s) = sIVi
+ µLi + K̄i and α2(s) = sIṼi

+ µL̃i + K̃i.
Observing that the first and third column blocks are linearly independent of the

rest and applying some row and column operations we have

rank(P ) = rank







− 1
µIṼi

−(1 + µs)IṼi
0Ṽi×2

ℓi 0Vi×Ṽi
ljk

0Ṽi×Ṽi
−α(s) 0Ṽi×2






+ 2Vi,

with α(s) = µs2IṼi
+ µs(L̃i + K̃i) + L̃i. It follows from Barooah and Hespanha

(2006) that L̃i is positive definite if G is connected. Since µ > 0 and K̃i are positive
definite, we conclude that α(s) is invertible for s ∈ C with non-negative real part.
Therefore the first and second column blocks are independent of each other and the
third column block, which concludes the proof.

Moreover we have the following result stating that, for any node i, an observer
decoupled from a faulty edge incident to i cannot be constructed. It addresses the
second question posed in Problem 6.3.2.

Proposition 6.3.5. Consider the networked system (6.13) with a sensing fault
at the edge {i, j}. In the sense of Definition 6.3.3, there does not exist an UIO
decoupled from the faulty edge {i, j} for node i.
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Proof. Consider a faulty edge {i, j} incident to node i with a sensing fault. Re-
calling (6.13), the system dynamics and measurement equations can be rewritten
as

ẋ(t) = Ax(t) +Bv(t) + E{i,j}f{i,j}(t)

yi(t) = Cix(t) +Di,{i,j}f{i,j}(t)

where f{i,j}(t) = [f⊤
ij (t) f

⊤
ji (t)]

⊤, E{i,j} = [Eij Eji] and Di,{i,j} = [Di,ij 0]. From
Ding (2008, Chapter 2) we recall that the following rank condition should hold for
the existence of UIOs:

rank

[

Di,{i,j} CiE{i,j}

0 Di,{i,j}

]

= rank(Di,{i,j}) + rank

[

E{i,j}

Di,{i,j}

]

,

where the second term equals 5. Given CiE{i,j} and Di,{i,j}, the first term of the
latter rank condition can be written as

rank

[

Cilj Cibj Cibiwij Cibiµwij

0 0 Cilj Cibj

]

≤ 4,

since each column-block is a column vector. Since the rank condition is not fulfilled,
there does not exist an UIO for this system.

Although in the case of bidirectional sensing faults in edges there is no UIO for
the nodes to which the faulty edge is incident to, the following result shows that
this is not the case for unidirectional faults, i.e., for the case where either fij(t) or
fji(t) is identically zero. We formalize this case in what follows.

Proposition 6.3.6. Consider the networked system (6.13) with a sensing fault at
the edge {i, j}. In the sense of Definition 6.3.3, if the graph G is connected, for node
i there exists an UIO decoupled from

1. The sensing fault from node j to node i, fij(t), when fji(t) ≡ 0.

2. The sensing fault from node i to node j, fji(t), when fij(t) ≡ 0.

Proof. In the first case, the dynamical system with respect to node i and the faulty
edge {i, j} is described by (6.13) with Eij = bi[wij µwij ], Eji = 0, Dij = Ci[lj bj],
and Dji = 0. Now consider that the measurements corresponding to node j have
been removed, yielding the following system

ẋ(t) = Ax(t) +Bv(t) + Eijfij(t),

ỹi(t) = C̃ix(t),

which corresponds to the model of a single node fault at node i and measurements
from V1

i \{j}. From Theorem 6.3.3, it follows that an UIO exists for this system.
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In the second case, the dynamical system with respect to node i is described by

ẋ(t) = Ax(t) +Bv(t) + Ejifji(t)

yi(t) = Cix(t)

which also corresponds to a single node fault at node j and, similarly to the previous
case, the corresponding UIO exists.

In the following we consider faulty edges with parameter faults, as described
in Definition 6.2.3.(ii). For detecting and isolating these faults at each node i, in
addition to the observers for system models described by (6.7), observers for the
following systems are constructed at each node i for all {j, k} ∈ Ei:

ẋ(t) = Ax(t) +Bv(t) + Ejkfjk(t)

yi(t) = Cix(t)
(6.14)

where Ejk = bj − bk and fjk(t) = δjk(t)f
w
jk(t). The existence of UIO’s for (6.14)

is a consequence of the results establishing the existence of UIO’s for faulty nodes
and will not be stated here for brevity.

Under the assumption that a single fault occurs at any given time, the following
algorithm may be implemented at each node to simultaneously detect and isolate
faulty nodes and edges.

Algorithm 6.4 Distributed FDI of Faulty Nodes and Edges at Node i

for j ∈ Ni do

Generate rj(t).
end for

for {j, k} ∈ Ei do

Generate rjk(t).
end for

if ∃k :
∥
∥rk(t)

∥
∥ < Θk and

∥
∥rj(t)

∥
∥ ≥ Θj , ∀j ∈ Ni 6= k then

Node k is faulty.
end if

if ∃{j̄, k̄} :
∥
∥
∥rj̄k̄(t)

∥
∥
∥ < Θ{j̄,k̄} and

∥
∥rj(t)

∥
∥ ≥ Θj , ∀j ∈ Ni 6= k and

∥
∥rjk(t)

∥
∥ ≥

Θ{j,k}, ∀{j, k} ∈ Ei 6= {j̄, k̄} then

Edge {j̄, k̄} is faulty.
end if

if
∥
∥rj(t)

∥
∥ ≥ Θj ∀j ∈ Ni and

∥
∥rjk(t)

∥
∥ ≥ Θ{j,k} ∀{j, k} ∈ Ei then

There exists a faulty node or edge in G\Gi.
end if

if
∥
∥rj(t)

∥
∥ < Θj ∀j ∈ Ni and

∥
∥rjk(t)

∥
∥ < Θ{j,k} ∀{j, k} ∈ Ei then

There is no faulty node or edge in the network.
end if
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6.4 Distributed FDI with Imprecise Network Models

As described earlier, to construct a bank of observers achieving distributed FDI
given the local measurements (6.3), the knowledge of the system matrix A is needed.
In this section we study the case where, after having designed observers under a
known network model and interconnection graph, some edges and nodes are re-
moved. The edge and node removal may correspond to either unexpected changes
in the system, or the removal of faulty edges and nodes. In both scenarios, it is
desirable to maintain the detection and isolation capabilities of the distributed FDI
scheme despite the model changes. Later in this section we show that a distributed
FDI scheme does not require the full knowledge of the network. Now we are ready
to pose the following problem.

Problem 6.4.1. Consider a network and a bank of observers as described in sec-
tion 6.3.1 and 6.3.2. Suppose the network loses l edges. What are the necessary and
sufficient conditions ensuring that node i can detect faults in the network using the
bank of observers and Algorithm 6.4?

Note that removing a node corresponds to removing all the edges incident to it,
thus the case of node removal is covered by the previous problem.

6.4.1 Distributed FDI with Global Models

We first address Problem 6.4.1 when the global model (6.7) is used to design the
UIOs. Consider the case where we design a bank of UIO’s to estimate the states
of the neighbors of node i and recall that we have the following observer error and
residual dynamics

ėk(t) = Fkek(t)− Tk
∑

m∈Ni\{k}

Emfm(t)

rk(t) = Ciek(t).

Introduce Eloss ⊆ E as the subset of edges removed from the network. Recalling the
system dynamics (6.7), under edge removal the new system and output matrices
Aℓ and Ciℓ, respectively, are given by

Aℓ = A+∆A,

Ciℓ = Ci +∆Ci.

The matrices ∆A and ∆Ci are perturbation matrices corresponding to the lost

edges. More precisely,∆A =

[

0N 0N

Lloss µLloss

]

, where Lloss is the Laplacian matrix

corresponding to the graph Gloss(V , Eloss). Moreover, all the entries of ∆Ci are zero
except those entries that correspond to a neighbor of i whose shared edge with i is
in Eloss, which are all equal to −1. We have the following assumption.
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Assumption 6.4.1. The network remains connected after losing the edges Eloss.

Using the existing parameters of the UIO (computed under the assumption of
no edge loss), the error dynamics are characterized by

ėk(t) =Fkek(t) + ∆Ax(t) +HkCi∆Ax(t) +Hk∆Ci∆Ax(t)

−Kk∆Cix(t)− Tk
∑

m∈Ni\{k}

Emfm(t).

If the removed links had not been connecting i to any of its neighbors, we have
∆Ci = 0. It is easy to check that then the error dynamics become

ėk(t) =Fkek(t) + (I +HkCi)∆Ax(t) − Tk
∑

m∈Ni\{k}

Emfm(t). (6.15)

The error dynamics described by (6.15), in the presence of no faults for m ∈ V \{k},
fm(t) ≡ 0, are

ėk(t) =Fkek(t) + (I +HkCi)∆Ax(t). (6.16)

Assume for the moment that the known input v(t) is zero. Recall from Re-
mark 6.2.1 that, if the network is connected, x(t) converges exponentially to [ξ̄ ζ̄]⊤⊗
12N when there is no fault. Given the structure of ∆A and recalling that L1N = 0
for any Laplacian matrix L ∈ R

N×N , it follows that ∆Ax(t) goes exponentially
fast to zero when there is no fault in the network. Therefore, since Fk is Hurwitz,
the error dynamics described by (6.16) are stable. Consequently rk(t) = Ciek(t)
goes to zero when there is no fault in the system, although the UIO parameters are
designed for a different interconnection network. However, if the input v(t) does not
drive the system to consensus, i.e. ‖xi(t) − xj(t)‖ does not go to zero as t goes to
infinity, then ∆Ax(t) does not generically converge to zero when there is no fault,
and neither does the residual rk(t).

On the other hand, if any of the removed edges had been connecting i to one of
its neighbors, the error dynamics may not even converge to zero when there is no
fault. In particular, suppose there are no faults and that the system has reached an
equilibrium so that ∆Ax(t) = 0, yielding the error dynamics

ėk(t) =Fkek(t)−Kk∆Cix(t).

Since in general Kk∆Cix(t) is not identically zero at the equilibrium, we conclude
that the error does not converge to zero and thus rk(t) is not a suitable residual,
as it violates Definition 6.3.2. Hence, the bank of observers should be redesigned
taking into account the updated network model. Formally, we have the following
result that addresses Problem 6.4.1.

Theorem 6.4.1. Consider a monitoring node i in an arbitrary connected network
described by (6.1) and a bank of UIO’s for this network. Using Algorithm 6.3 and
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the existing bank of observers, node i can detect the presence of a faulty node after
the loss of ℓ edges if and only if all the following conditions are satisfied: (1) the
network remains connected, (2) v(t) is such that ‖xi(t) − xj(t)‖ → 0 as t → ∞,
i.e. it drives the system to consensus, and (3) Ni is the same as in the original
network.

Proof. Consider the original graph G(V , E) and let k ∈ Ni. Suppose ℓ edges in set Ẽ
are lost and the corresponding subgraph to these edges is denoted by G̃(V , Ẽ). Since
node i cannot detect faults in network components that are not connected to it, a
necessary condition is that the subgraph G̃ remains connected, which corresponds
to condition (1). Regarding condition (2), another necessary condition is that v(t)
drives the system to consensus, thus ensuring that ∆Ax(t) does converge to zero.
Additionally, having ∆Ci = 0, or equivalently k ∈ Ñi for all k ∈ Ni, as in (3), is
also a necessary condition. Otherwise, in general the residuals do not converge to
zero.

Now suppose all the necessary conditions (1)–(3) hold. When there is no fault in
the network, ek(t) goes to zero and as a result ‖rk(t)‖ goes to zero as well. For the
faulty case, ‖rk(t)‖ will generically not converge to zero for k ∈ Ni. Hence, using
Algorithm 6.3 one can detect if there is a fault in the network or not.

Note that the faulty node cannot be isolated using the condition given by (6.12)
when the network model is imprecise. Moreover, detection is also not feasible when
the system is not driven to consensus by v(t). These limitations follow from the fact
that ∆Ax(t) does not go to zero because, in general, x(t) does not reach consensus
under the fault fk(t). Thus, the error of the UIO monitoring the neighbor node k
converges to a ball around zero with a nonzero radius. Hence, none of the residuals
goes to zero so (6.12) cannot be used to isolate the faulty node.

A possible way to overcome such limitations is to use additional measurements
from outside each node’s neighborhood and design the bank of UIOs using local
models of the system that are not not affected by changes in other parts of the
network. In particular, we consider the following problem.

Problem 6.4.2. For a given node i, consider a subgraph of the network G̃i con-
taining the 1-hop neighborhood graph Gi. Let any state measurement within G̃i be
available to node i. The following questions are considered:

1. For which subgraphs can node i design a bank of UIOs and implement Algo-
rithm 6.3 to detect and isolate faults in any of its neighbors?

2. Given the set of subgraphs for which an UIO-based FDI scheme exists, which
subgraph G̃i minimizes the number of edges in G̃i and required state measure-
ments?

In what follows we propose a method to address the problem of isolating the
faulty nodes and edges in the network, and tackle Problem 6.4.2.
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6.4.2 Distributed FDI with Local Models

Consider a fault-free network G(V , E) with the system dynamics ẋ(t) = Ax(t) +
Bv(t). Define Ĝi as a subgraph containing the proximity subgraph of node i, Pi ⊆
Ĝi ⊆ G(V , E). Let B(V̂i) ⊆ V̂i be the boundary vertex set such that ℓ ∈ B(V̂i), if
{ℓ, ℓ̄} ∈ E and ℓ̄ /∈ V̂i.

The dynamics of the subsystem associated with Ĝi are

φ̇i(t) = Ai
Ĝ
φi(t) + ψi(t) +Bi

Ĝ
vi
Ĝ
(t), (6.17)

where φi = [ξi ξi1 . . . ξi|V̂i |
ζi ζi1 . . . ζi|V̂i |

], im ∈ V̂i. Particularly i1 to i|Ni| are
associated with the nodes in Ni. Moreover, Ai

Ĝ
is the matrix associated with the

network with Ĝi as its graph, ψi(t) is an unknown vector with zero entries except
for the entries corresponding to nodes j ∈ B(V̂i) that represents the interaction of
the rest of the network with the subnetwork of interest. Additionally, vi

Ĝ
(t) is an

input vector in this subnetwork known to i, and Bi
Ĝ

is the input matrix associated
with these inputs. We have the following straightforward result for ψi(t).

Proposition 6.4.2. In the network induced by the proximity graph of node i as
described by (6.17), ψi(t) goes to zero exponentially fast for v(t) ≡ 0.

Proof. The proof is a direct consequence of the exponential stability of (6.1) to the
consensus equilibrium and the distributed control law (6.4).

The bank of UIOs at i can be designed for the subnetwork with Ĝi as its graph
and dynamics described by (6.17). An example of such a subnetwork for the network
of Figure 6.2 when Ĝi = Pi is given in Figure 6.3 (b).

In the case where there is no fault in the network and v(t) ≡ 0, the unknown
parts of the real network enter the equation dynamics as exponentially decaying
signals. As before, in this case the detection of a fault can be determined using the
bank of UIOs for Ĝi. Moreover, isolation can be achieved by choosing an appropriate
threshold value.

However, the selection of the threshold might be cumbersome, and it requires a
knowledge of the magnitude of the fault. In what comes next we propose a method
to achieve distributed FDI using only the full knowledge of the subgraph graph Ĝi,
without resorting to complicated ways of choosing the threshold value and allowing
v(t) 6≡ 0. Given Ĝi, let Si(V̂i) ⊆ V̂i be the set of the nodes for which node i measures
states. We make the following assumption that will be valid until the end of this
section.

Assumption 6.4.2. For each node i ∈ V and the corresponding subgraph Ĝi(V̂i, Êi) ⊆
G(V , E) containing the proximity graph Pi, the state measurements of nodes in
Si(V̂i) = {i} ∪ Ni ∪ B(V̂i) are available to node i.

An example for the measurement graph of node i is given in Figure 6.3(a). As
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Figure 6.3: (a) An example of a measurement graph of node i in the network of
Figure 6.2 under Assumption 6.4.2. (b) The subnetwork used for designing a bank
of UIO’s at node 1 of the network depicted in Figure 6.2.

before, to achieve the fault detection and isolation task each node i considers |Ni|
models of the form:

φ̇i(t) = Ai
Ĝ
φi(t) + ψi(t) +Bi

Ĝ
vi
Ĝ
(t) + Ei

kfk(t) (6.18)

where Ei
k is a vector of zeros except for the entry corresponding to node k ∈ Ni,

which is equal to one. We rewrite (6.18) as

φ̇i(t) = Ai
Ĝ
φi(t) +Bi

Ĝ
vi
Ĝ
(t) +

[

Ei Ei
k

]
[

ψi(t)

fk(t)

]

, (6.19)

with Ei = [Ei
m1

. . . Ei
m|B(V̂i)|

], where Ei
ml

, ml ∈ B(V̂i), is a vector of zeros except

for the entry corresponding to node ml ∈ B(V̂i) that is equal to one. For each of

these models, a UIO that is decoupled from the unknown input
[
Ei Ei

k

]

[

ψi(t)

fk(t)

]

is designed.

Lemma 6.4.3. Consider the distributed control system with a fault in node j ∈ Ni

given by (6.17) and measurements satisfying Assumption 6.4.2. In the sense of
Definition 6.3.1, there exists an UIO for node i that is decoupled from the faulty
node j and the subgraph V\V̂i.

Proof. Recall the UIO existence condition in Proposition 6.3.1. From Assump-
tion 6.4.2, node i measures its own states, as well as the states of nodes j ∈ B(V̂i)
and j ∈ Ni, which are the ones affected by the unknown input ψi(t) and the
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fault fj(t), respectively. Therefore it follows that rank(CiE
i) = rank(Ei⊤Ei) and

rank(CiE
i
k) = rank(Ei⊤

k Ei
k), thus the first rank condition holds.

As for the second rank condition in (6.11), consider the subgraph G̃i induced by
the vertex set Ṽi = B(V̂i) with Ṽi = |Ṽi|. Denote Ḡi as the subgraph induced by the
vertex set V̄i = V̂i\Ṽi, with V̄i = |V̄i| and note that V̂i , |V̂i| = Ṽi + V̄i. Without
loss of generality, the nodes may be rearranged so that the Laplacian of Ĝi, Ei

k, E
i,

and Ci can be written as

L̂ =

[

L̄i ℓ̄i

ℓ̄⊤i L̃i

]

, Ei
k =







0V̂i×1

lk

0Ṽi×1






, Ei =







0V̂i×Ṽi

0V̄i×Ṽi

IṼi






,

Ci =









C̄i 0Vi×Ṽi
0Vi×V̄i

0Vi×Ṽi

0Ṽi×V̄i
IṼi

0V̄i×V̄i
0V̄i×Ṽi

0Vi×V̄i
0Vi×Ṽi

C̄i 0Vi×Ṽi

0Ṽi×V̄i
0Ṽi×Ṽi

0Ṽi×V̄i
IṼi









,

where ℓ̄i ∈ RV̄i×Ṽi , lk ∈ RV̄i×1, and C̄i ∈ R|V1
i |×V̄i being a full row rank matrix where

each of the rows have all zero entries except for one entry at the j-th position that
corresponds to those nodes that are in V1

i = Ni∪{i}. Following a similar reasoning
as in Theorem 6.3.4, one can verify that the second rank condition in (6.11) also
holds.

Such an UIO scheme can clearly be implemented for any subgraph Ĝi containing
the proximity graph Pi. Applying Algorithm 6.3 or Algorithm 6.4 for the residuals
obtained from these UIOs, with G replaced with Ĝi, addresses the first part of
Problem 6.4.2. Hence, node i can detect and isolate a fault in node j ∈ Ni using
only local models and measurements, as stated in the following result.

Theorem 6.4.4. Consider a monitoring node i in a connected network satisfying
Assumption 6.4.1 and a bank of UIO’s calculated for the local subsystem (6.19).
Using Algorithm 6.3 and the bank of observers, node i can detect and isolate a
faulty node in its neighborhood.

Proof. The proof follows from Lemma 6.4.3 and Theorem 6.4.1.

6.5 Complexity Reduction of Distributed FDI

So far we have proposed the solutions to both Problems 6.4.1 and 6.4.2. In Section
6.4 we first showed that it is possible to detect the presence of a faulty node in the
network distributedly, i.e., address Problem 6.4.1, at each node i, if i knows the exact
model of its one-hop neighborhood and measuring the states of its neighbors. Then
we introduced a method to address the first part of Problem 6.4.2 that not only
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eliminates the need to have an exact network model beyond a subgraph containing
the proximity graph of a given node for that node to detect and isolate faults in
its one-hop neighborhood, but it also reduces the size of the observers. However,
such a result is derived under the assumption that the node has access to all the
measurements of the states of its two-hop neighbors. In this section we show that the
knowledge of the proximity graph is in fact the least amount of knowledge required
to achieve distributed FDI when equal costs are associated with each necessary
state measurement and network component that needs to be known, thus addressing
the second part of Problem 6.4.2. Later, the complexity of the overall distributed
FDI scheme is minimized by reducing the number of monitoring nodes while still
ensuring that every node in the network is monitored.

6.5.1 Local Models and Additional Measurements

Suppose node i has the local model (6.19) for a given subgraph Ĝi(V̂i, Êi). Consider
the case where equal costs are associated with each node ℓ in B(V̂i), and with
each of the edges that are known exactly, i.e., each {j, k} ∈ Êi. In other words, a
cost is associated with any piece of information available to a node i; be it extra
measurements or information about the existence of an edge between two nodes.
This cost is minimized by solving the following optimization problem:

minimize
Pi⊆Ĝi⊆G

|Si(V̂i)|+ |Êi|. (6.20)

We conclude this section by introducing the following result that shows that know-
ing Pi exactly is optimal, in the sense that it minimizes (6.20).

Theorem 6.5.1. Consider a monitoring node i in an arbitrary connected network
and a bank of UIO’s calculated for the local subsystem Ĝi. Setting Ĝi = Pi simulta-
neously minimizes the number of state measurements |Si| and the number of known
network connections |Êi| needed to design the bank of UIO’s.

Proof. Recall from Assumption 6.4.2 that Si(V̂i) = {i} ∪Ni ∪B(V̂i). From Lemma
6.4.3 we know that any Ĝi should be such that Pi ⊆ Ĝi. To obtain a contradiction,
assume that there is a G⋆i (V⋆

i , E⋆i ) such that Pi is a strict subset of G⋆i (V⋆
i , E⋆i ) that

results in a smaller value for the objective function in (6.20). We can obtain it
by adding vertices that are in V⋆

i \ VPi
one by one to Pi. If we introduce a single

vertex ℓ1 to Pi, then it is necessary that all the η̄ edges {ℓ1, j} such that j ∈ VPi

are exactly known, in addition to all the η edges incident to the vertices in N 2
i .

Call this new graph obtained from the addition of ℓ1 and the aforementioned edges
G+ℓ1
i (V+ℓ1

i , E+ℓ1
i ). Then we have

|B(V+ℓ1
i )|+ |E+ℓ1

i | = |B(VPi
)| − η + 1 + |EPi

|+ η + η̄

= |B(VPi
)|+ 1 + |EPi

|+ η̄.

Even for the case where there are no edges in the network connecting the nodes
in N 2

i , i.e., η̄ = 0, the cost function is increased by at least one. Repeating this
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argument for addition of any other vertex ℓj ∈ V⋆
i \ VPi

, one can deduce that the
cost function does not decrease. Hence, there exists no G⋆i , such that Pi 6⊆ G⋆i , that
minimizes the cost function given in (6.20).

Theorem 6.5.1 provides the optimal subgraph Ĝi that minimizes the amount
of model knowledge and number of measurements where they are equally valued.
However, if the cost of having measurements from a node is equal to cm ≥ 0 and
the cost of knowing the existence of an edge is equal to ce ≥ 0, and cm 6= ce, (6.20)
becomes

minimize
Pi⊆Ĝi⊆G

cm|Si(V̂i)|+ ce|Êi|. (6.21)

One can construct simple examples with cm 6= ce where taking Ĝi = Pi does not
necessarily minimize the cost function proposed in (6.21).

6.5.2 Reducing the Number of Monitoring Nodes

It is not necessary for all the nodes in a network to monitor their neighbors and
it is possible to decrease the number of monitoring nodes in the network while
guaranteeing that each node in the network is being monitored by at least another
node and calculating UIO’s for only these nodes.

Assuming that each node monitors only its neighbors, we say that a FDI system
in node i covers the set of nodes Ni. Therefore, the objective is to select a minimum
number of observer nodes that cover all the nodes in the network, i.e.,

minimize
So⊆V

|So|
subject to

⋃

i∈So

Ni = V , (6.22)

where So is the set of observer nodes.
As it can be seen, this is actually a set cover problem where we wish to determine

a minimum total dominating set, i.e., a set with minimum cardinality such that all
nodes in the graph have at least one neighbor in that set. This is a well studied
problem, having been classified as an NP-hard problem and two algorithms to
approximately solve this problem can be found in Grandoni (2006).

Although the number of observers obtained by using Ni as the set of nodes
covered by node i is not minimum, this method has one interesting property: all
nodes in So are monitored by at least one neighbor. This means that even if an
observer node is attacked, there is another observer node in the network that can
detect it. Obviously, this decreases the vulnerability to faults in the monitoring
nodes.

Other interesting properties may also be imposed by modifying the constraints
in (6.22), such as having So to be connected, which is related to the minimum
connected dominating set problem.
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Figure 6.4: Diagram of the IEEE 118 bus power network. The monitoring node 19
is encircled with a red dotted line, while its 2-hop neighborhood is delimited by the
blue dashed line.

Another way of minimizing the computational burden of the proposed method is
to find a set of nodes that monitors all the nodes in the network with the minimum
number of measurements, i.e., solving (6.22) with the cost function |So| replaced
with

∑

i∈So

deg(i). This problem can be solved first by finding all the dominating sets

in the network and choosing the set that minimizes the cost function.

6.6 Numerical Examples

In this section we illustrate the solution proposed in the present chapter on a power
network example. The simulations were carried out using the IEEE 118 bus network
example available with the MATPOWER toolbox (Zimmerman et al., 2009). A
diagram of the power network is depicted in Figure 6.4.

We considered the classical linearized synchronous machine model (Kundur,
1994) for each node of the power network, leading to the global network dynamics
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Figure 6.5: Residuals generated by the UIO bank at node 19 to detect node faults
in N19. A sinusoidal fault is injected by node 15 after t = 20 s. The fault in node
15 is successfully detected and isolated.

as in (6.1) with

A =

[

0N IN

−M̄L −M̄D̄

]

, B =
[
0N M̄

]⊤
,

M̄ = diag
(

1

m1
, · · · , 1

mN

)

, D̄ = diag (d1, · · · , dN ) ,

where mi > 0 and di > 0 are the inertia and damping coefficients of node i,
respectively, and N = 118 is the number of buses. Since these coefficients were not
available in the example data files, they were randomly generated so that the load
buses had considerably lower values than the generator buses, namely mg ≈ 103ml

and dg ≈ 103dl.

6.6.1 Faulty Node Detection using Local Models

In this example, node 19 is monitoring its neighbors for faulty behaviors using the
method proposed in Section 6.4. Thus the network model knowledge needed is its
2−hop neighborhood, which consists of 26 states, as opposed to the 236 states of the
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Figure 6.6: Residuals generated by the UIO bank at node 15 to detect edge faults.
The edge between nodes 15 and 33 is removed at t = 5 s. The edge fault is success-
fully detected and isolated.

global network. Using this smaller model, a bank of UIO’s was generated according
to Section 6.3.1 and Section 6.4.

In the simulations, node 15 exhibits a faulty behavior after t = 20 s, which is
successfully detected by node 19 as seen in Figure 6.5. Furthermore, all the residuals
corresponding to other neighboring nodes become large while the one for node 15
remains at zero. Following Algorithm 6.3, node 15 is then detected and identified
as the faulty node.

6.6.2 Faulty Edge Detection

Here we consider the case where node 15 monitors all its edges as proposed in
Section 6.3.2. Note that in power networks the edges represent physical couplings
and thus edge faults correspond to parameter faults described in Definition 6.2.3.(ii).
We consider the scenario where the system is at equilibrium when the transmission
line between nodes 15 and 33 is removed at t = 5 s, which is modeled as fw

15,33(t) =
−w15,33. This perturbation drives the system to another equilibrium point, enabling
us to monitor the state trajectories and locate the faulty edge.

The residuals generated by the observers at node 15 are presented in Figure 6.6.
As one can see, all the residuals diverge from zero except the one corresponding
to the edge between nodes 15 and 33, hence the fault is successfully detected and
isolated.
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6.7 Summary

A distributed FDI scheme was proposed for detecting and isolating faults in nodes
and edges of a networked multi-agent system. Additionally, the distributed FDI
scheme designed using a given initial network model was shown to be resilient to
the addition or removal of edges. Namely, fault detection can be achieved using
this scheme by choosing suitable thresholds, provided that the proximity graph of
the monitoring nodes remains constant. Later, we establish the minimum measure-
ments required to be able to not only detect but also isolate the faulty nodes by
each agent where the only model information they have is a local network model.
Then, a solution to reduce the computational complexity of the distributed FDI
scheme was proposed, where the solution lowers the number of monitoring nodes.
Numerical result demonstrating the effectiveness of the proposed solutions were
presented, taking the IEEE 118 bus power network as an example. As motivated
by the example, the proposed methods can be fused to design a scalable and re-
silient distributed FDI architecture that achieves local fault detection and isolation
despite unknown perturbations outside the local subsystem.



Chapter 7

Distributed Reconfiguration

in Networked Control Systems

The proliferation of low cost embedded systems with radio capabilities has enabled
the deployment of networked systems with increased performance and flexibility.
However, these systems become increasingly complex and must be efficiently de-
signed and operated. Several steps have been taken in this direction, in the devel-
opment of resilient and fault tolerant architectures and technologies (Ding et al.,
2008; Blanke et al., 2006) and plug-and-play control (Bendtsen et al., 2013; Riverso
et al., 2013; Bodenburg and Lunze, 2013). In this chapter, we focus on distributed
sensor and actuator reconfiguration in over-sensed and over-actuated networked
control systems. In the event of malfunctioning actuators, sensors or other system
components, control systems may exhibit poor performances or even become unsta-
ble (Blanke et al., 2006; Poovendran et al., 2012). Thus, the design of fault-tolerant
control systems is of major importance. Examples of safety-critical systems that
must be resilient to faults are power networks, aircrafts, nuclear power plants and
chemical plants.

7.1 Contributions and Related Work

Since the 1970s, much research has been conducted in fault-tolerant control systems,
fault detection and diagnosis (FDD) and reconfigurable control (Maciejowski, 1997;
Blanke et al., 2006; Lunze and Richter, 2008; Zhang and Jiang, 2008; Ding, 2008;
Härkegård and Glad, 2005). FDD deals with the identification of faults, while re-
configurable control proposes methods to reconfigure a system after a fault has been
detected. The objectives of reconfiguration are generally to recover stabilization of
the system, maintaining the same state trajectory (also known as model-matching),
achieving the same equilibrium point or minimizing the loss in performance inflicted
by the fault. Model-matching reconfiguration in particular, has been the focus of
much of the research in this area (Lunze and Richter, 2008). Many types of faults
in sensors, actuators and other system components have been considered in both

167



168 Distributed Reconfiguration in Networked Control Systems

linear and nonlinear systems. However, the vast majority of the solutions rely on a
centralized approach (Wu et al., 2000; Staroswiecki et al., 2007; Staroswiecki and
Cazaurang, 2008; Staroswiecki and Berdjag, 2010; Richter et al., 2011). Due to the
increased complexity and size of current control systems, such techniques may be
impractical (Åkerberg et al., 2011; Poovendran et al., 2012). Through the increased
computation and communication capabilities of embedded devices in these systems,
FDD can technically move from a centralized implementation to a distributed one.
However, distributed FDD and reconfiguration to enable distributed fault tolerant
systems has been much less explored. The architecture of such systems is discussed
by Campelo et al. (1999); Jiang et al. (2007); Jin and Yang (2009), while Yang et al.
(2010) employ a distributed FDD to perform a centralized reconfiguration. To the
best of our knowledge, distributed reconfiguration has not yet been addressed in
the literature. Application examples where distributed reconfiguration is beneficial
are distributed control of wind-farms (Morrisse et al., 2012), farming and livestock
systems (Bendtsen et al., 2013) and data-server cooling systems (Ellsworth et al.,
2008).

In this chapter, we address the problem of distributed reconfiguration for net-
worked control systems with sensor and actuator faults and redundancies. Using
the proposed scheme, healthy sensors and actuators are able to locally compen-
sate for faults while disabling the faulty sensors and actuators. The proposed
distributed method minimizes the steady-state estimation error covariance and a
linear-quadratic control cost under faults while achieving model-matching: the de-
sired closed-loop estimation error and dynamics remain the same with and without
the fault. The distributed algorithm is shown to converge to the optimal solution
asymptotically. Additionally, the stability of the closed-loop system is analyzed
when the distributed reconfiguration algorithm terminates in finite-time.

The rest of this chapter is organized as follows. Section 7.2 presents the system
architecture and formulates the problem. The centralized solution to the reconfig-
uration problem is presented in Section 7.3. In Section 7.4, it is shown that the
reconfiguration can be distributed among the sensor or actuator nodes and an effi-
cient algorithm is devised. Stability properties of the closed-loop system under the
proposed distributed reconfiguration scheme are given in Section 7.5. Finally, nu-
merical examples illustrate the distributed reconfiguration methods in Section 7.6
and Section 7.7 concludes this chapter.

7.1.1 Notation

For a vector x, ‖x‖ = ‖x‖2 denotes the Euclidean norm of x. Given a matrix A,
‖A‖2 = maxu

‖Au‖
‖u‖ denotes the induced 2-norm of A, while κ(A) = ‖A‖2‖A†‖2

denotes the condition number of A. Additionally, A\B denotes the set obtained by
removing set B from set A, for B ⊆ A. A network is represented by an undirected
graph G(V , E) with vertex set V and edge set E ⊆ V × V . The edge ek = (i, j) ∈ E
indicates that nodes i and j can exchange information. Denote Ni = {j ∈ V : j 6=
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Figure 7.1: Networked control system with a network of sensors S1, S2 and S3,
aggregator nodes F1 and F2 and actuators A1, A2 and A3. Sensors and actuators
are responsible for reconfiguring themselves when system failures occur, through
local information exchange in the network.

i, (i, j) ∈ E} as the neighbor set of node i, where we assume that the network has
no self-loops. Define C as the span of real symmetric matrices, Sn, with sparsity
pattern induced by the network, i.e., C = {S ∈ Sn : Sij = 0 if i 6= j and (i, j) /∈ E}.

7.2 Problem Formulation

The architecture of the considered networked control system is depicted in Fig-
ure 7.1. This architecture has two networks, one of sensors and one of actuators.
Each network has redundancy in components, which means that nominal operation
can be maintained in spite of faulty components. The precise meaning of redun-
dancy in our setup will be given later in this section. Each network is represented
by an undirected graph. Each sensor or actuator is able to exchange information
with its neighbors within the network. In typical applications such as building au-
tomation and industrial process control, a large number of sensors is expected to be
deployed. To reduce the sensor-to-estimator communication, the information from
the sensor nodes is fused at aggregator nodes, which connect to the estimator. The
estimator is responsible for computing the state-estimate to be broadcasted to the
actuators in the network which compute the control input values. The individual
components of the system are described below.
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7.2.1 System Model

Suppose the plant is modeled by a stochastic linear time-invariant differential equa-
tion,

dx(t) = Ax(t) dt+BΓu(t)u(t) dt+ dw(t) (7.1)

y(t) dt = Γy(t)
(
Cx(t) dt+ dv(t)

)
, (7.2)

with a state x(t) ∈ Rnx , y(t) ∈ Rny and u(t) ∈ Rnu are the measurement vector
and input vector, respectively, and w(t) ∈ Rnx and v(t) ∈ Rny are independent
Wiener processes with uncorrelated increments (Åström, 1970). The incremental
covariances are W dt and V dt, respectively.

Sensor and actuator faults are modelled by the diagonal matrices Γy(t) ∈
Rny×ny and Γu(t) ∈ Rnu×nu , respectively, with [Γy(t)]ii = γyi(t) ∈ {0, 1} and
[Γu(t)]ii = γui(t) ∈ {0, 1}. Here, γyi(t) (γui(t)) represents the effectiveness of sen-
sor (actuator) i at time t, where γyi(t) = 1 (γui(t) = 1) means that the sensor
(actuator) is functioning (healthy), while γyi(t) = 0 (γui(t) = 0) indicates that the
sensor (actuator) is faulty. The system is initially under nominal conditions, hence
Γy(t) = I and Γu(t) = I for t < 0. All faults are assumed to occur simultaneously
at time t = 0 and remain unchanged thereafter, which allows the time argument
to be omitted. However, the methods devised in this work directly apply to the
non-simultaneous fault case.

The sensor nodes apply a local linear transformation to the sensor measurements
and transmit these values through the network to aggregation nodes which fuse the
sensor data from several sensors. The fused signal is aggregated as

yp(t) dt = Ty(t) dt = TΓyCx(t) dt+ TΓy dv(t), (7.3)

where T ∈ Rnp×ny is the aggregation matrix and yp(t) ∈ Rnp is transmitted to the
estimator. It is assumed that the number of fused variables np is strictly smaller
than the number of measurements ny.

The sensor and actuator networks are represented by the connected and undi-
rected graphs Gy(Vy, Ey) with |Vy| = ny vertices and Gu(Vu, Eu) with |Vu| = nu

vertices, respectively. For simplicity of presentation, we assume that each aggrega-
tor node is connected to all sensor nodes. The set of sensor and actuator nodes is
defined as V , Vy ∪ Vu, whereas we denote Vf ⊆ V as the set of faulty nodes. Let
the set of healthy nodes be Vh , V \ Vf with Eh = {(i, j) ∈ E| i, j ∈ Vh}. The sub-
graphs Ghy (Vh

y , Ehy ) and Ghu(Vh
u , Ehu ) correspond to the graphs of the healthy sensor

and actuator nodes, respectively, where Vh
y , Vh∩Vy, Vh

u , Vh∩Vu, Ehy , Eh∩Ey,
and Ehu , Eh ∩ Eu.

We assume that the controller is given by the continuous-time linear-quadratic
Gaussian (LQG) controller (Åström, 1970). Let the pair (TC,A) be observable and
(A,B) be controllable. Next we describe the controller and estimator design under
nominal conditions with Γu = I and Γy = I. For LQG control, the feedback gain
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is obtained as the minimizer of the control cost criterion

Jc , lim
τ→∞

1

τ

∫ τ

0

E{x(t)⊤Qx(t) + u(t)⊤Ru(t)} dt

where Q � 0 and R ≻ 0 are weight matrices. We assume R is diagonal. The optimal
LQ controller is given by

u(t) = −Kx̂(t) = −R−1B⊤P x̂(t) (7.4)

where x̂(t) is the state estimate and P the solution to the Riccati equation

A⊤P + PA− PBR−1B⊤P +Q = 0.

The state-estimate is computed by the Kalman-Bucy filter (Åström, 1970) as follows

˙̂x(t) = (A− LTC)x̂(t) +Bu(t) + Lyp(t), (7.5)

with
L = ΣC⊤T⊤(TV T⊤)−1,

where Σ = limt→∞ E{e(t)e(t)⊤} is the steady-state covariance matrix of the esti-
mation error e(t) = x̂(t)− x(t) given by the Riccati equation

AΣ + ΣA⊤ − ΣC⊤T⊤(TV T⊤)−1TCΣ+W = 0.

The Kalman-Bucy filter minimizes the expected mean-squared error, which we de-
note as the estimation cost function:

Je , lim
τ→∞

1

τ

∫ τ

0

E{e(t)⊤e(t)} dt. (7.6)

From now on, we drop the time argument (t) when it is clear from the context.

7.2.2 Reconfiguration Problem

Consider a scenario where faults have disabled several sensor and actuator nodes,
yielding Γu 6= I and Γy 6= I. A possible corrective action is to modify the aggrega-
tion matrix T and feedback matrix K so that only the remaining healthy sensors
and actuators are used to guarantee a certain level of performance of the system.
Let ū ∈ Rnu and ȳp ∈ Rnp denote the reconfigured control and sensor fusion signals
after the fault. They are given by

ȳp dt = T̄ y dt = T̄ΓyCxdt+ T̄Γy dv,

ū = −K̄x̂.
Denote Āc(K̄) = A−BΓuK̄ and Āe(T̄ ) = A−LT̄ΓyC as the system matrices for the
closed-loop dynamics of the system and estimator, respectively. The objective of the
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reconfiguration is to achieve model-matching (Staroswiecki and Cazaurang, 2008)
for both the estimation dynamics and the closed-loop system dynamics by com-
puting T̄ and K̄ after the fault occurs, respectively. Model-matching is a common
reconfiguration goal, as it guarantees maintained system behavior in the presence
of faults. The definition of model-matching reconfiguration is as follows. Let us de-
note the closed-loop estimator dynamics before the fault as Ae = A − LTC and
the nominal closed-loop system matrix as Ac = A−BK. Then, model-matching on
the estimation error dynamics is achieved if Āe(T̄ ) = Ae for some new aggregation
matrix T̄ . Similarly, model-matching on the closed-loop system dynamics is achieved
if Āc(K̄) = Ac for some new feedback gain matrix K̄.

Assumption 7.2.1. The actuator and sensor networks have sufficient redundancy
such that model-matching is feasible in case of faults, i.e.,

Im (BK) ⊆ Im (BΓu) ,

Im
(

C⊤T⊤
)

⊆ Im
(

C⊤Γy

)

.

As the model-matching constraints are under-determined, i.e., they admit mul-
tiple solutions, we propose to find the model-matching solutions that minimize
certain quadratic costs. In particular, the cost function for sensor reconfiguration
is the quadratic estimation cost (7.6) under the fault

Je(T̄ ) = lim
τ→∞

1

τ

∫ τ

0

E{ē⊤ē} dt (7.7)

where ē is the estimation error after the fault occurred. Furthermore, we define the
objective function of the actuator reconfiguration as the quadratic control cost for
the reconfigured control input

Jc(K̄) = lim
τ→∞

1

τ

∫ τ

0

E

{

x⊤
(
Q+ K̄⊤ΓuRΓuK̄

)
x
}

dt

subject to ẋ =
(
A−BΓuK̄

)
x,

(7.8)

where the expectation is taken with respect to the initial condition x(0), which is
a zero-mean Gaussian random variable with the positive definite covariance matrix
R0 , E{x(0)x(0)⊤}.

The sensor and actuator networked reconfiguration problem is to find the re-
configured aggregation matrix T̄ and feedback gain matrix K̄ which minimize the
estimation (7.7) and control cost (7.8), respectively, subject to the model-matching
condition.

The sensor reconfiguration can be re-formulated as

minimize
T̄

Je(T̄ )

subject to A− LT̄ΓyC = A− LTC,
(7.9)
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while the actuator reconfiguration problem is

minimize
K̄

Jc(K̄)

subject to A−BΓuK̄ = A−BK.
(7.10)

The solution to the these optimization problems may be achieved in a centralized
or distributed fashion. Next we describe a centralized approach to solve them, in
which we assume that the reconfiguration takes place instantaneously. Later, we
propose an efficient distributed solution based solely on local information exchange
among sensor nodes and actuators nodes. In Section 7.5 we analyze the stability
properties of the proposed distributed algorithm when the reconfiguration is not
instantaneous.

7.3 Centralized Sensor and Actuator Reconfiguration

We now tackle the centralized sensor and actuator reconfiguration problems. Their
solutions are derived and the cnetralized reconfiguration mechanisms are illustrated.

7.3.1 Centralized Sensor Reconfiguration

The optimal solution to (7.9) can be characterized as follows.

Proposition 7.3.1. The solution to the optimization problem (7.9) is

T̄ ⋆ = TC(C⊤V −1ΓyC)
†C⊤ΓyV

−1. (7.11)

In order to prove Proposition 7.3.1, we use the following lemma.

Lemma 7.3.2. Optimization problem (7.9) is equivalent to

minimize
T̄

tr
(
(W + LT̄ΓyV ΓyT̄

⊤L⊤)Ze

)

subject to LTC = LT̄ΓyC

0 = A⊤
e Ze + ZeAe + I.

(7.12)

Proof. The first constraint in (7.12) is the model-matching constraint, which is
derived as follows. In Section 7.2.2, model-matching is guaranteed if the closed-
loop matrix before fault is the same as after the fault, i.e.,

A− LT̄ΓyC = A− LTC = Ae.

Moreover, the objective function and last constraint follow are given as follows. The
objective function Je in (7.7) is equivalent to Je = tr(Σ̄), where Σ̄ is steady-state co-
variance of the estimation error after a fault and defined as Σ̄ = limt→∞ E{ē(t)ē(t)⊤}.
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Additionally, under any given estimator gain L, Σ̄ is given by the following Lya-
punov equation (see Åström (1970) for details),

(A− LTC)Σ̄ + Σ̄(A− LTC)⊤ +W + LT̄ΓyV Γy
⊤T̄⊤L⊤ = 0.

The solution of the above Lyapunov equation, can also be expressed as

Σ̄ =

∫ ∞

0

eAet(W + LT̄ΓyV ΓyT̄
⊤L⊤)eA

⊤
e t dt.

By noticing that the term W + LT̄ΓyV ΓyT̄
⊤L⊤ is independent of time, one can

arrive to the following equivalence of the cost

Je = tr(Σ̄) = tr

(

(W + LT̄ΓyV ΓyT̄
⊤L⊤)

∫ ∞

0

eA
⊤
e teAet dt

)

.

By denoting Ze =
∫∞

0 eA
⊤
e teAet dt and noticing that Ze is the solution to the Lya-

punov equation A⊤
e Ze + ZeAe + I = 0, the proof is concluded.

We now derive the optimal solution to (7.12), which is also the solution to the
sensor reconfiguration problem (7.9).

Proof of Proposition 7.3.1. Consider the optimization problem (7.12), which is con-
vex. Note that the second equality constraint is a Lyapunov equation with the Hur-
witz system matrix Ae, determined by the model-matching condition. Hence, the
variable Ze is uniquely defined by the constraint and can be computed before hand.
The Lagrangian function for (7.12) is

L(T̄ ,Λ) = tr
(

(W + LT̄ΓyV ΓyT̄
⊤L⊤)Ze

)

+ tr
(

Λ⊤(LTC − LT̄ΓyC)
)

,

where Λ ∈ Rnx×nx represents the Lagrange multipliers. Using the trace derivative
expressions, the Karush-Kuhn-Tucker (KKT) optimality conditions can be written
as

0 =
∂

∂T̄
L(T̄ ,Λ) = 2L⊤ZeLT̄ΓyV Γy − L⊤ΛC⊤Γy

0 = LTC − LT̄ΓyC

and can be rewritten as

0 = T̄Γy −
1

2
(L⊤ZeL)

†L⊤ΛC⊤V −1Γy

0 = LTC(C⊤V −1ΓyC)
† − 1

2
L(L⊤ZeL)

†L⊤Λ.

Solving the above equations yields the optimal solution (7.11).
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Figure 7.2: Networked control system with centralized sensor and actuator reconfig-
uration. Faults are reported by the sensors and actuators to the centralized estima-
tor. Red dashed arrows represent the transmission of information related to faults.
In the sensor reconfiguration case, the fault information may also be first transmit-
ted from the centralized unit to the aggregators, and then from the aggregators to
the sensors.

Figure 7.2 illustrates the centralized reconfiguration that is performed by a
system component denoted as reconfiguration manager. A fault occurs at sensor S2,
which detects that it is faulty, reporting it to the reconfiguration manager which now
knows Γy. The reconfiguration manager solves (7.11) to derive the new aggregation
matrix T̄ = [T̄1 . . . T̄ny

], where T̄i is a column vector corresponding to the i-th
column of T̄ . Then, T̄1 is sent to sensor S1 and T̄3 to sensor S3, which compute
T̄1y1 and T̄3y3, where T̄iyi = [[T̄iyi]1 . . . [T̄iyi]np

]⊤. Each non-zero component [T̄iyi]j
is sent to the j-th aggregator, allowing each aggregator node to compute ypj

and
transmit this value to the estimator.

7.3.2 Centralized Actuator Reconfiguration

The optimal centralized actuator reconfiguration is now presented.
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Proposition 7.3.3. The solution to the optimization problem (7.10) is

K̄⋆ = ΓuR
−1B⊤(BΓuR

−1B⊤)†BK. (7.13)

To prove the above result, we use the following lemma.

Lemma 7.3.4. The optimization problem (7.10) is equivalent to

minimize
K̄

tr
(
(Q+ K̄⊤ΓuRΓuK̄)Zc

)

subject to BK = BΓuK̄

0 = AcZc + ZcA
⊤
c +R0.

(7.14)

Proof. For a given controller K̄ satisfying the model-matching constraint BΓuK̄ =
BK, the objective function Jc(K̄) in (7.8) is given by

Jc(K̄) =

∫ ∞

0

E
{
x(t)⊤(Q+ K̄⊤ΓuRΓuK̄)x(t)

}
dt

subject to ẋ(t) = Acx(t).

Solving the differential equation, the cost Jc(K̄) can be rewritten as

Jc(K̄) =

∫ ∞

0

E

{

x(0)⊤eA
⊤
c t

(

Q+ K̄⊤ΓuRΓuK̄
)

eActx(0)

}

dt

= tr

{
∫ ∞

0

E

{

eActx(0)x(0)⊤eA
⊤
c t

(

Q+ K̄⊤ΓuRΓuK̄
)}

dt

}

= tr

{∫ ∞

0

eActR0e
A⊤

c t dt
(

Q+ K̄⊤ΓuRΓuK̄
)}

= tr

{

Zc

(

Q+ K̄⊤RK̄
)}

,

where Zc ≻ 0 is the unique solution to the Lyapunov equation

(A−BK)Zc + Zc(A−BK)⊤ +R0 = 0,

thus concluding the proof.

Proof of Proposition 7.3.3. Consider the optimization problem (7.14). Similar to
the proof of Proposition 7.3.1, the variable Zc is the unique solution to the Lya-
punov equation given by the second equality constraint. The Lagrangian function
for (7.14) is L(K̄,Λ) = tr

(
(Q+ K̄⊤ΓuRΓuK̄)Zc

)
+ tr

(
Λ⊤(BK −BΓuK̄)

)
, where

Λ ∈ Rnx×nx represents the Lagrange multipliers. Moreover, the KKT optimality
conditions are

0 =
∂

∂K̄
L(K̄,Λ) = 2ΓuRΓuK̄Zc − ΓuB

⊤Λ

0 = BK −BΓuK̄
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and can be rewritten as

0 = ΓuK̄ −
1

2
ΓuR

−1B⊤ΛZ−1
c

0 = (BΓuR
−1B⊤)†BK − 1

2
ΛZ−1

c .

Solving the above equations yields (7.13).

Figure 7.2 depicts also a fault in the actuator network. A fault occurs at actuator
A2, which reports to the reconfiguration manager. The reconfiguration manager
then solves (7.14) to derive the new controller K̄ = [K̄⊤

1 . . . K̄⊤
nu

]⊤, where K̄i is
a row vector corresponding to the i-th row of K̄. Then, K̄1 is transmitted to to
actuator A1 and K̄3 to actuator A3, which allows them to compute and apply ū1
and ū3, respectively.

We highlight that the centralized actuator reconfiguration solution may be also
obtained through other problem formulations. Härkegård and Glad (2005) proposed
to solve actuator redundancy through control allocation, which was formulated as
an optimization problem using the concept of virtual actuators. By appropriately
choosing the objective function, the solution (7.13) can be obtained. Moreover, the
same result may be obtained using the pseudo-inverse method (Gao and Antsak-
lis, 1991; Staroswiecki, 2005) if the matrix R has identical elements. Otherwise, a
modification of the method, to take R into account, is required.

7.4 Distributed Sensor and Actuator Reconfiguration

In this section, we propose a distributed algorithm to solve the reconfiguration
problem. We begin by rewriting the centralized sensor and actuator reconfiguration
problems in Lemmas 7.3.2 and 7.3.4 as quadratic optimization problems with a
separable cost function and a global equality constraint.

Lemma 7.4.1. Consider a set of l vectors ηi ∈ Rr, for i = 1, . . . , l, and let S ∈ Rl×l

be a diagonal matrix with non-negative entries. The sensor and actuator reconfigu-
ration problems (7.12) and (7.14) can be rewritten in the following form:

minimize
η1,...,ηl∈Rr

l∑

i=1

Sii‖ηi‖2

subject to
l∑

i=1

Hiηi = ω

(7.15)

where Hi ∈ R
n2
x×r and ω ∈ R

n2
x . Let H =

[

H1 . . . Hl

]

and η =
[

η⊤1 . . . η⊤l

]⊤

.

For the sensor case, we have T̄ =
[

η1 . . . ηny

]

, H = (C⊤Γ⊤
y ) ⊗ L, ω =

vec (LTC), and Sii = [Γy]iiVii.
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The actuator case is retrieved with K̄ =
[

η1 . . . ηnu

]⊤

, H = (I ⊗BΓu)P
−1
r

with Pr ∈ Rnunx×nunx being a permutation matrix such that vec
(
K̄
)
= P−1

r η,
ω = vec (BK) and Sii = [Γu]iiRii.

In order to prove Lemma 7.4.1, we rewrite the sensor and actuator reconfigura-
tion problems (7.12) and (7.14) as quadratic optimization problems with equality
constraints.

Distributed sensor reconfiguration

For the sensor reconfiguration problem, we have the following result.

Lemma 7.4.2. Define T̄ =
[
η1 · · · ηny

]
, ηi ∈ Rnp and let He

i ∈ Rnx
2×np , for

i = 1, . . . , ny. The optimization problem (7.12) can be rewritten as

minimize
η1,...,ηny

ny∑

i=1

[Γy]iiVii‖ηi‖2

subject to

ny∑

i=1

He
iηi = ωe,

where He ,
[
He

1 . . . H
e
ny

]
=

(

(C⊤Γ⊤
y )⊗ L

)

and ωe = vec (LTC).

Proof. Recall that the cost Je in (7.6) is given by

Je = tr(Σ̄) = tr((W + LT̃ΓyV ΓyT
⊤L⊤)Ze),

as derived in (7.12). As shown in Proposition 7.3.1, the optimal solution is inde-
pendent of the constant terms W and L⊤ZeL, which can be replaced with 0 and I,
respectively. Since V and Γ are diagonal, one can write the new objective function
as

tr(T̄ΓyV ΓyT̄
⊤) = tr(

ny∑

i=1

[Γy]iiViiηiη
⊤
i ) =

ny∑

i=1

[Γy]iiVii‖ηi‖2.

The model-matching constraint follows directly by applying the vectorization op-
eration.

Distributed actuator reconfiguration

We now rewrite the centralized actuator reconfiguration problem from Lemma 7.3.4
as a quadratic problem with an equality constraint.

Lemma 7.4.3. Define K̄ =
[

η1 . . . ηnu

]⊤

, the column vector ηi ∈ Rnx , Pr as

the permutation matrix for which Prvec
(
K̄
)
=

[
η⊤1 . . . η

⊤
nu

]⊤
, and let Hc

i ∈ Rn2
x×nx
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for i = 1, . . . , nu. The optimization problem (7.14) can be rewritten as

minimize
η1,...,ηnu

nu∑

i=1

[Γu]iiRii‖ηi‖2

subject to
nu∑

i=1

Hc
iηi = ωc

where Hc , [Hc
1 . . . H

c
nu

] = (I ⊗BΓu)P
−1
r and ωc = vec (BK).

Proof. The proof follows the derivations from Lemma 7.4.2 and is therefore omitted.

Proof of Lemma 7.4.1. The proof follows directly from Lemmas 7.4.2 and 7.4.3.

The variables ηi ∈ R
r and qi ∈ R

nx
2

have the following interpretation. For
the case of sensor reconfiguration, each ηi represents the aggregation matrix T̄
components for the i-th sensor (i-th column of T̄ ), i.e., how sensor i transforms its
information to be transmitted to each of the fusion nodes that it is connected to. In
the same manner, each η⊤i corresponds to the i-th actuator state-feedback matrix K̄
components, i.e., the i-th row of K̄. The value of ω corresponds to the vectorization
of the closed-loop estimator dynamics and closed-loop system dynamics before a
fault occurs, for the case of sensor and actuator reconfiguration, respectively. This
represents the quantity that ideally must be maintained by the combination of
all sensor (actuator) nodes during the reconfiguration, which refers to the model-
matching constraint.

The optimization problem (7.15) may be solved distributedly using dual decom-
position and iterative algorithms (Everett III, 1963; Shor et al., 1985; Johansson,
2008). A requirement is that the network remains connected when faults occur.
Using dual decomposition algorithms, the optimal solution to problem (7.15) is
guaranteed to be achieved asymptotically in the number of iterations (Boyd et al.,
2011). The main drawback is that the global equality constraint of the problem is
only ensured asymptotically. Therefore, model-matching is not guaranteed at every
iteration. Due to this fact, we later analyze the stability of the system under the
distributed reconfiguration in Section 7.5.

To solve the dual optimization problem of (7.15) we resort to the distributed
alternating direction method of multipliers (ADMM) algorithm (Boyd et al., 2011).
In the following, the decision variable η at each iteration k ≥ 0 is denoted as η[k].

Theorem 7.4.4. Define q1, . . . , ql ∈ Rn2
x such that

∑l
i=1 qi = ω and local variables

ζ1, . . . , ζl ∈ Rn2
x . Let

ηi[k] =
1

2
S−1
ii H

⊤
i ζi[k]
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where ζi[k] is computed by the following algorithm:

ζi[k + 1] =
(1

2
HiS

−1
ii H

⊤
i + ρ|Ni|I

)−1(

qi − ρ
∑

j∈Ni

µi,(i,j)[k]− π(i,j)[k]
)

ξi,(i,j)[k + 1] = αζi[k + 1] + (1− α)π(i,j)[k],
ξj,(i,j)[k + 1] = αζj [k + 1] + (1 − α)π(i,j)[k],

π(i,j)[k + 1] =
1

2

(

ξi,(i,j)[k + 1] + µi,(i,j)[k] + ξj,(i,j)[k + 1] + µj,(i,j)[k]
)

,

µi,(i,j)[k + 1] = µi,(i,j)[k] + ξi,(i,j)[k + 1]− π(i,j)[k + 1],
(7.16)

where ρ > 0 is the step size, α ∈ (0, 2) is a relaxation parameter, ρµi,(i,j) is the
Lagrange multiplier of node i associated with the constraint ζi = π(i,j), and ξi,(i,j)
is an auxiliary variable private to node i associated with the edge (i, j). Then, η[k]
converges to the solution of (7.15).

Note that the algorithm in Theorem 7.4.4 is distributed since it only requires
communication between neighbors to exchange local values.

To prove Theorem 7.4.4, we first derive the dual form of (7.15).

Lemma 7.4.5. Let fi(ηi) = η⊤i Siiηi. The optimization problem (7.15) can be
rewritten in the following dual form:

minimize
{ζi}, {π(i,j)}

l∑

i=1

(
1

4
ζ⊤i HiS

−1
ii H

⊤
i ζi − q⊤i ζi

)

subject to ζi = π(i,j), ∀i ∈ V , j ∈ Ni.

(7.17)

Proof. Consider the optimization problem (7.15). Using the Lagrange multiplier ζ
associated with the equality constraint, the optimal solution may be computed by
solving

maxmize
ζ

minimize
η1, ..., ηl

l∑

i=1

(

fi(ηi)− ζ⊤Hiηi

)

+ ζ⊤ω.

Introducing the local variables ζ1, . . . , ζl and q1, . . . , ql satisfying
∑l

i=1 qi = ω
and imposing the constraint ζi = ζj for all i 6= j yields

maximize
ζ1, ..., ζl

l∑

i=1

minimize
ηi

(

fi(ηi)− ζ⊤i Hiηi

)

+ ζ⊤i qi

subject to ζi = ζj , ∀i, j, i 6= j.

Each inner optimization problem with respect to ηi can be rewritten in terms of
the convex conjugate function, i.e., −f⋆

i (ζ) = minηi
fi(ηi) − ζ⊤η. Introducing the
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convex conjugate function in the objective function results in the following

minimize
{ζi}, {π(i,j)}

l∑

i=1

(

f⋆
i (H

⊤
i ζi)− q⊤i ζi

)

subject to ζi = π(i,j), ∀i ∈ V , j ∈ Ni,

one can compute the value of the convex conjugate function as follows f⋆
i (H

⊤
i ζi) =

1
4ζ

⊤
i HiS

−1
i H⊤

i ζi. Substituting this value in the objective function of the dual prob-
lem, gives (7.17) in Lemma 7.4.5.

Proof of Theorem 7.4.4. The value of η[k] is obtained as η[k] = argminxi
fi(xi) −

ζ⊤Hixi = 1
2S

−1
ii H

⊤
i ζi[k]. The ADMM algorithm (7.16) follows from Boyd et al.

(2011) and is thus omitted.

The variables qi ∈ Rnx
2

and ζi ∈ Rnx
2

have the following interpretation. Vector
qi describes how the vectorization of the closed-loop dynamics, i.e. ω, is assigned
among all nodes in the network. Note that the assignment is only constrained by
the condition

∑l
i=1 qi = ω, thus admitting several solutions. For instance, one could

have the closed-loop dynamics available only to one node, by having q1 = ω and
qj = 0 for all j 6= 1. Variable ζi, only available at node i, is a local copy of the
Lagrange multiplier associated with the model-matching constraint Hη = ω.

The following result indicates how the parameters qi can be updated locally by
the healthy nodes after a fault has occurred.

Lemma 7.4.6. Let j ∈ Vf be an arbitrary faulty node, denote J ⊆ Nj ∩ Vh as a
subset of its healthy neighbors and assume J is not empty. Given the set {q̄i}i∈V

such that
∑

i∈V q̄i = ω, the set {qi}i∈V satisfying
∑

i∈Vh
qi = ω can be computed as

qi =

{

q̄i, i 6∈ J
q̄i + νiq̄j , i ∈ J ,

where νi ≥ 0 for all i ∈ J and
∑

i∈J νi = 1.

Proof. The computations are performed locally, since by construction only the
neighbors of the faulty node j are involved in the computations. The coefficient
νi indicates how much i compensates for the contribution of the faulty node j be-
fore the fault. Moreover, having q̄i + νiq̄j , i ∈ J and

∑

i∈J νi = 1 ensures that
∑

i∈V q̄i = ω. Hence, each healthy node i in the neighborhood of the faulty node
must solely exchange and agree on the set of parameters νi.

In the above scheme, since the sensor and actuator networks are disjoint, the
update of qi for a sensor (actuator) fault is performed within the sensor (actuator)
network.

The distributed reconfiguration algorithm can be summarized in Algorithm 7.5.
An illustration of the distributed sensor and actuator reconfiguration is shown in
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x̂(t)

x̂(t)
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ȳp1(t)
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F2

S3

S2

S1

ū2(t)

[T̄1y1]2

[T̄1y1]1[T̄2iy2]1

[T̄3y3]1

Figure 7.3: Networked control system with distributed sensor and actuator recon-
figuration. Faults are detected by the sensors and actuators which are responsible
for the reconfiguration. Reconfiguration is achieved through the communication
among sensors and among actuators in a distributed manner through the sensor
and actuator network, respectively.

Figure 7.3 where a fault occurs at sensor S2 and actuator A2 at t = 0. The sensors
locally infer that sensor S2 is no longer functioning, so sensors S1 and S3 reconfigure
themselves. This is performed locally by each sensor computing the value of T̄1
and T̄3, and calculating T̄1y1 and T̄3y3. Each component [T̄iyi]j is sent to the j-th
aggregator, allowing each aggregator node to compute zj and transmit this value to
the controller node. Similarly, the actuators locally infer that actuator A2 is faulty,
so actuators A1 and A3 reconfigure themselves. This is a local operation where each
actuator computes the value of K̄1 and K̄3.

7.5 Closed-Loop Stability under Distributed

Reconfiguration

The proposed distributed algorithm converges to the optimum asymptotically as
it solves the dual problem. Primal feasibility (model-matching), i.e., Hη[k] = ω, is
only achieved in the limit. Therefore, one relevant concern is the system’s stability
when the dual algorithm is terminated in finite time. The following result shows
that stability can be guaranteed in finite time, where the time will depend on the
particular set of faults that have occurred.
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Algorithm 7.5 Distributed sensor/actuator reconfiguration

1. Detect and isolate sensor/actuator faults and disconnect the faulty nodes at
t = 0;

2. Locally compute qi as per Lemma 7.4.6;

3. Compute the optimal solution ζ⋆i to the dual problem (7.17) using the ADMM
algorithm in Theorem 7.4.4;

4. Compute the primal optimal solution η⋆i = 1
2S

−1
ii H

⊤
i ζ

⋆
i ;

5. Each sensor/actuator node i applies η⋆i .

Consider the general system υ̇ =
(
(D +∆

)
υ with D stable and uncertainty

∆, where vec (∆) = Hη[k] − ω. For the sensor reconfiguration analysis, we have
υ = x̂, D = Ae, H = (C⊤Γ⊤

y ) ⊗ L and ω = vec (LTC). Similarly, in the actuator
reconfiguration case υ = x, D = Ac, H = (I ⊗BΓu)P

−1
r and ω = vec (BK).

First we recall a necessary and sufficient condition for robust stability with
bounded uncertainties.

Lemma 7.5.1 (Lee et al. (1996)). Consider the system υ̇ =
(
(D +∆

)
υ with D

stable and uncertainty ∆. The system is stable for any norm-bounded uncertainty
‖∆‖F ≤ φ with φ > 0 if and only if there exists a positive definite matrix X such
that

D⊤X +XD+XX + φ2I ≺ 0.

Theorem 7.5.2. Consider the sequence of vectors {η[k]} converging to η⋆ ∈ H =
{η : Hη = w} and define ∆[k] such that vec

(
∆[k]

)
= Hη[k]−w. Suppose there exist

matrices X ≻ 0 and M ≻ 0 satisfying the matrix equation D⊤X+XD+X2+M = 0
and a positive decreasing function of k, ǫ[k] > 0, such that ‖∆[k]‖F ≤ ǫ[k]‖∆0‖F
holds for all k. Let k̄ be an integer for which the following inequality holds:

ǫk̄ <

√

λmin(M)

‖Hη0 − w‖
.

Then, the system under faults with dynamics given by υ̇ =
(
D +∆[k]

)
υ is stable

for k ≥ k̄.

Proof. Suppose that ‖∆[k]‖F ≤ ǫ[k]‖∆[0]‖F and consider φ[k] = ‖∆[k]‖F . From
Lemma 7.5.1, the closed-loop system at time k is guaranteed to be stable if D⊤X+
XD +X2 + φ[k]2I = −M + φ[k]2I ≺ 0, which is equivalent to φ[k] <

√

λmin(M).
Note that the latter is ensured for k̄ when ǫ[k̄]φ0 <

√

λmin(M). Since ǫ[k] is de-
creasing with k, concludes the proof.
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The above result provides a method to terminate the dual algorithm while en-
suring stability. It only requires knowledge of the convergence properties of the dual
algorithm, namely the function ψ[k], and the initial distance ‖∆[0]‖F . The latter
can be computed at the beginning, since it only depends on the initial condition of
the algorithm and the nominal controller. Furthermore, note that a zero initial con-
dition of the dual algorithm yields φ[0] = ‖ω‖, which can be made locally available
to each agent. Convergence properties of dual algorithms are readily available in
the literature (Ghadimi et al., 2014; Nedic et al., 2010). Next we apply the results of
Theorem 7.5.2 to the ADMM algorithm for the distributed reconfiguration problem
formulated in Theorem 7.4.4.

Lemma 7.5.3. Consider the optimization problem (7.15), its equivalent dual for-
mulation (7.17), and the ADMM algorithm described in Theorem 7.4.4. Let ζ⋆ =
limk→∞ ζ[k] be the optimal solution to (7.17). Then, we have

‖ζ[k]− ζ⋆‖ ≤ ψ‖ζ[k − 1]− ζ⋆‖,

for all k with ψ ∈ [0 1).

Proof. The proof follows directly from Ghadimi et al. (2014, Theorem 1), where
the decay rate ψ can be found.

Theorem 7.5.4. Consider the optimization problem (7.15), its equivalent dual for-
mulation (7.17), and the ADMM algorithm described in Theorem 7.4.4. The closed-
loop system obtained at time k from η[k] is guaranteed to be stable for all k ≥ k̄
with

k̄ =











log(
√

λmin(M))− log
(

‖Hη0 − ω‖κ(HS−1H⊤)
)

log(ψ)











.

Proof. We have Hη[k] = −1/2HS−1H⊤ζk for all k. Furthermore, we can derive
the following bound

‖Hη[k]−Hη⋆‖ = ‖1/2HS−1H⊤(ζk − ζ⋆)‖ ≤ ‖1/2HS−1H⊤‖2‖(ζk − ζ⋆)‖.

Using Lemma 7.5.3, we have

‖Hη[k]−Hη⋆‖2 ≤ ‖1/2HS−1H⊤‖2ψk‖(ζ[0]− ζ⋆)‖
≤ κ(HS−1H⊤)ψk‖Hη[0]−Hη⋆‖.

Recalling that ‖∆[0]‖F = ‖Hη[0] − w‖ = ‖Hη[0] − Hη⋆‖ and applying Theo-
rem 7.5.2, we observe that the closed-loop system is stable for all k such that

ψk <

√

λmin(M)

‖Hη[0]−Hη⋆‖κ(HS−1H⊤)
.

The proof concludes by taking the logarithm of both sides and rearranging the
terms.
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Next, we compute the matrices X and M that maximize the magnitude of the
uncertainty for which stability is ensured.

Proposition 7.5.5. Denote X⋆ and σ⋆ as the optimal solution to the convex op-
timization problem

maximize
X, σ

σ

subject to σ > 0

X ≻ 0

0 ≻ D⊤X +XD + σI

0 ≺
[

−D⊤X −XD − σI X

X I

]

.

(7.18)

Then, matrix X⋆ satisfies the robust stability constraint D⊤X+XD+X2+φ2I ≺
0 with φ2 = σ⋆ being the largest disturbance magnitude for which stability is ensured
by Proposition 7.5.1. Additionally, we have that the optimal matrix M is given by
M⋆ = −D⊤X⋆ −X⋆D −X⋆2 ≻ 0.

Proof. Note that the largest disturbance magnitude φ for which stability is ensured
by Lemma 7.5.1 can be computed as

maximize
X≻0, φ2>0

φ2

subject to 0 ≻ D⊤X +XD +XX + φ2I.

Applying the Schur complement to −D⊤X − XD − σI − XX ≻ 0 and denoting
σ = φ2, the latter optimization problem can be rewritten as (7.18).

The value k̄ assures that stability can be achieved in a finite-time. Its calcu-
lation can be efficiently performed in a centralized manner, while a distributed
computation would require knowledge of the particular set of faults by all nodes.
We remark that, since Lemma 7.5.1 used in Theorem 7.5.4 provides a conservative
stability guarantee, the obtained k̄ is expected to be conservative. This will be later
illustrated in the numerical example.

7.6 Numerical Example

We now provide a numerical example in order to validate the proposed distributed
reconfiguration method. The aim is to control the temperature dynamics in two
adjacent rooms, where 9 sensors are deployed to measure the temperature and 4
heaters actuate the system. The system dynamics, measured outputs and aggre-
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Figure 7.4: Sensor and actuator network graph. The healthy nodes are colored black
and the faulty nodes are colored red.

gated outputs are given by (7.1), (7.2) and (7.3), respectively, where

A =

[

9 2.5

4 0

]

, B =

[

56.5705 80.2208 4.1595 −11.6809
−3.2132 −12.7760 57.3006 94.6012

]

,

C =





















1 0.1

−2 −0.2
4 0.4

0.1 1

−0.5 −5
0.3 3

1 1

1 1

0.5 0.5





















, T =





















0.3689 0.2634 0

0.0424 0.1773 0

0.2422 0 0.5250

0 0.8812 0.7350

0.2480 0 0.8610

0 0.6299 0.6075

0 0.6057 0.1400

0 0.6443 0.6351

0.6414 0 0.1869





















⊤

.
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To enable reference tracking, the plant is augmented with two integral states, rep-
resenting the integral error at each physical state. The control cost parameters are

R =









50 0 0 0

0 100 0 0

0 0 150 0

0 0 0 200









and Q = 100I, while the noise covariances are V = 2I and W = 5I. Moreover,
the state estimate and control input are given by (7.5) and (7.4), respectively. The
initial estimation gain L and control input gain K are the solutions to the LQG
controller design problem. The ADMM parameters in (7.16) are set to ρ = 1 and
α = 1.5. We highlight that there exist schemes to choose the ADMM parameters
ρ and α to increase the convergence speed of the algorithm (Ghadimi et al., 2014).
These methods are optimal if executed in a centralized manner, but sub-optimal
distributed methods are also provided in Ghadimi et al. (2014).

The sensor network graph is given in Figures 7.4a and 7.4b while the actuator
network is depicted in Figures 7.4c and 7.4d, for the nominal and faulty cases.

We start by analyzing the performance of the distributed reconfiguration scheme
presented in Section 7.4 for the sensor and actuator faults depicted in Figure 7.4.
As performance indicators, we consider the normalized objective function errors
|Je[k]−J⋆

e | and |Jc[k]−J⋆
c |, the errors in the model-matching constraint ‖Heη[k]−

we‖ and ‖Hcη[k] − wc‖ and the maximum real part of the eigenvalues of Ae[k] =
A − LT̄ [k]ΓyC and Ac[k] = A − BΓuK̄[k]. The results are depicted in Figure 7.5.
As it can be seen, the distributed method asymptotically achieves the optimal
cost and guarantees the model-matching constraint. Moreover, the state estima-
tion error dynamics is unstable for the first 2 steps, i.e., maxi

{

ℜ
(
λi(Ae[k])

)}

>

0, k = 1, 2, while the closed-loop dynamics are unstable for only the first step
since maxi

{

ℜ
(
λi(Ac[k])

)}

> 0, k = 1. Applying Theorem 7.5.4 from Section 7.5,

we achieve that Ae[k] is stable for k ≥ k̄ = 53 steps and Ac[k] is stable for
k ≥ k̄ = 8 steps. Since Lemma 7.5.1 used in Theorem 7.5.4, provides a conser-
vative stability guarantee, the obtained k̄ is expected to be conservative. The dis-
tributed sensor reconfiguration takes 15 steps to converge to |Je[k] − J⋆

e | < 10−3

and ‖Heη[k]−we‖ < 10−1. Similarly, the distributed actuator reconfiguration takes
approximately 16 steps to converge.

The time-responses of the distributed sensor and actuator reconfiguration un-
der the faults in Figure 7.4 are depicted in Figure 7.6 where are shown the state
trajectories, the estimation error and the control input values. In Figure 7.6 we
depict the case where the sensor and actuator detection, isolation and reconfig-
uration is assumed to take place instantaneously (solid line) and the case where
the sensor and actuator detection and isolation is instantaneous but the reconfig-
uration is performed in real-time (solid-star line). In the latter case, each step of
the reconfiguration is set to take 1 s to run, which includes both computation and
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Figure 7.5: Performance of the distributed sensor and actuator reconfiguration
method for the networks depicted in Figure 7.4.

communication time. Such a large time is selected so one can analyse the impact
of a slow real-time reconfiguration in the system dynamics. However, in practice,
the computation and communication times can be greatly reduced. This case aims
at demonstrating the impact of applying the reconfigured output, before the re-
configuration algorithm has converged to a stable region, which takes at least, 3 s
for the sensor reconfiguration and 1 s for the actuator reconfiguration. Additionally,
we depict the case where reconfiguration does not take place (dashed line). The
sensor faults occur at time t = 10 s and the actuator faults at t = 300 s. As it can
be seen, the system performance greatly deteriorates when reconfiguration is not
performed. When the actuator reconfiguration is not instantaneous, a slight loss of
performance (maximum deviation of 0.1◦C) occurs in the first 1 s, but is recovered
afterwards.
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Figure 7.6: Time-response of the state and estimation error trajectories and control
input for the distributed sensor and actuator reconfiguration in Figure 7.4. Refer-
ence value to be tracked is depicted by the black dotted line. Sensor faults occur
at time t = 10 s and actuator faults at t = 300 s. Instantaneous reconfiguration
(solid), real-time reconfiguration (solid-star) and no reconfiguration (dashed), are
compared.

7.7 Summary

In this chapter, we developed a distributed reconfiguration method for networked
control systems under sensor and actuator faults. The proposed approach guaran-
tees a model-matching reconfiguration while minimizing the steady-state estimation
error covariance and a linear-quadratic control cost. The distributed reconfiguration
method is guaranteed to achieve the same solution as the centralized reconfigura-
tion, while only requiring local cooperation among healthy sensors and actuators.
A numerical example demonstrates the effectiveness of our approach.





Chapter 8

Conclusions and Future Work

This thesis considered the cyber security and resilience of networked control sys-
tems, contributing towards a framework capable of analyzing and designing such
systems. Building upon existing approaches within fault-tolerant systems and IT
security, an conceptual architecture to study cyber security and resilience was dis-
cussed and illustrated in several attack scenarios. Metrics quantifying the impact
and effort of attacks were described, and methods to detect stealthy attacks were
proposed. Fault detection and isolation for large-scale systems with different types
of faults were also discussed. Regarding the mitigation of failures, distributed re-
configuration schemes for actuator and sensor networks were proposed.

A brief summary of the thesis contributions and possible future research direc-
tions are discussed below.

8.1 Conclusions

In this thesis, we addressed several topics concerning the cyber security and re-
silience of networked control systems. The main contributions are as follows.

Bridging IT Security and Fault-Tolerant Control: In Chapter 2, we gave
an overview of the fault-tolerant and IT security frameworks and discussed the
conceptual differences between security and fault-tolerance in networked control
systems. Some of these differences were illustrated through examples.

Modelling Framework for Malicious Adversaries: Models for malicious ad-
versaries from a control-theoretic perspective were proposed for several attack sce-
narios in Chapter 3. Following the concepts behind fault-tolerant control, the core
components relevant to security and resilience were identified and used to establish
a reference architecture for networked control systems with malicious adversaries.
An attack-scenario space based on this architecture was proposed, and it was used
to map and qualitatively compare several attack scenarios studied in the literature.
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Different scenarios were discussed in detail and illustrated through practical and
numerical experiments.

Cyber Security Metrics for Stealthy Adversaries: The modelling frame-
work was used to develop risk-related metrics in Chapter 4. In particular, the
proposed metrics were formulated as constrained optimization problems, captur-
ing trade-offs among adversary goals and constraints such as attack impact on the
control system, attack detectability, and adversarial resources. Although the prob-
lems are non-convex, some can be related to system theoretic concepts such as
zeros and weighted H∞-norm of the closed-loop system and, thus, may be solved
efficiently. Consequently, attacks stemming from unstable zeros were identified as
stealthy attacks with a high impact potential.

Detection of Stealthy Adversaries: Chapter 5 addressed this class of open-
loop stealthy attacks with high impact potential: the zero-dynamics attacks. The
problem of revealing open-loop zero-dynamics attacks computed offline was ad-
dressed by modifying the system structure in terms of the outputs, inputs, and
dynamics. For changes in each of these components, we provided necessary and suf-
ficient conditions for attacks to be revealed. Furthermore, we provided an algorithm
to incrementally add measurements and thus reveal attacks. A coordinated scaling
of the inputs by the actuator and controller was also proposed. We quantified the
resulting increase in output energy in terms of the initial condition and scaling fac-
tor. Both these changes on the inputs and outputs are able to reveal attacks while
not affecting the system performance when no attack is present.

Distributed Fault Detection: Distributed fault detection and isolation (FDI)
schemes for large-scale systems were proposed in Chapter 6. In particular, we con-
sidered this problem for networks of interconnected nodes with double integrator
dynamics, corresponding to simplified models for teams of mobile robots or power
networks. A distributed FDI scheme based on unknown input observers was pro-
posed and its feasibility was analyzed with respect to local measurements. Some
infeasibility results were also provided. The complexity of the proposed scheme was
also analyzed, showing that it may not be scalable in the number of network nodes.
Methods to reduce the complexity of the scheme were consequently discussed.

Distributed Reconfiguration in Networked Control Systems: In Chap-
ter 7, a distributed reconfiguration scheme for networked control systems under
sensor and actuator faults was proposed. The approach guarantees the recovery
of the closed-loop dynamics, while minimizing the steady-state estimation error
covariance and quadratic control cost. The distributed reconfiguration method is
guaranteed to achieve the same solution as the centralized reconfiguration, while
only requiring local cooperation among healthy sensors and actuators. Results es-
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tablishing the stability of the closed-loop system, when the distributed algorithm
is terminated in finite-time, are given.

8.2 Future Work

There are several research directions on cyber security and resilience to explore
extending the work presented in this thesis. In this section, we discuss some of
them.

Models for Resilient Control Systems: This thesis considered a reference
architecture for networked control systems that included an ideal communication
network and linear time-invariant models for the plant, controller, and anomaly de-
tector. While numerous relevant questions can be tackled with such models, it may
be necessary to generalize the architecture in order to capture other aspects. For
instance, fault-tolerant control architectures commonly have supervisory schemes
that choose the active components and control policies, depending on the output
from the anomaly detectors. Such schemes have nonlinear effects that are not cap-
tured by linear systems, thus their response to attacks may not be fully captured
with the models in the thesis. On a similar note, the performance of both the
networked control system and the adversaries may be affected by network imper-
fections, such as packet losses and time-varying delays. In particular, the attack
impact and stealthiness may drastically change in the presence of such uncertain-
ties, as attacks that are stealthy with ideal networks may become detectable using
schemes that explore statistical models of packet losses.

Security and Resilience Metrics: The metrics discussed in Chapter 4 con-
sidered trade-offs between impact and required resources for stealthy adversaries.
Although the case of stealthy adversaries is interesting, analyzing the performance
of resilient control systems with detectable adversaries is also relevant. In particular,
resilience metrics for the case when threats are detected and mitigated have been
proposed (Wei and Ji, 2010). The proposed maximum-impact metrics resemble the
H∞ robust control formulation, which suggests the design of control algorithms
reducing such metrics and, thus, improving resiliency. Some security metrics were
of combinatorial nature and may be hard to compute for large systems. Hence, de-
veloping efficient algorithms to compute or approximate such metrics is a relevant
direction. In particular, application-specific models may provide structural proper-
ties that can be leveraged to develop efficient algorithms, as was recently shown for
electric power systems (Sou et al., 2013b).

Distributed Fault Diagnosis: The proposed distributed FDI scheme was ap-
plied to a swing-equation model of a power transmission network. However, more
detailed models and different measurement configurations are sometimes needed.
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Developing distributed FDI schemes for such systems is an interesting research di-
rection. For instance, distributed FDI for linear differential-algebraic systems was
recently tackled by Pasqualetti et al. (2013).

Distributed Fault-Tolerant Control: The distributed reconfiguration scheme
discussed in the thesis did not require any particular system structure, apart from
sufficient actuator and sensor redundancy to satisfy a model-matching constraint.
However, certain structural properties may be leveraged to design fault-tolerant
control schemes for scenarios with less redundancy.

Privacy in Estimation and Control: The attack scenarios discussed in the
thesis were mostly comprised of data deception and denial-of-service attacks. In
these scenarios, the adversary aimed at disrupting the system by tampering with
the sensor and actuator data. In addition to such scenarios, disclosure attacks gath-
ering private information from the plant and control algorithms are also relevant.
Methodologies to address privacy while ensuring adequate levels of control and
estimation performance are required to handle disclosure attacks.
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