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Abstract

Networked systems accomplish global behaviors through local feedback in-
teractions. The purpose of a distributed control design is to select interaction
rules and control protocols that achieve desired global control objectives. In
this thesis, we address the question of fundamental limitations to such control
designs, in terms of the global performance that is achievable in large-scale
networks.

We consider networked dynamical systems with single- and double-
integrator dynamics controlled with linear consensus-like protocols. Such sys-
tems can be used to model, for example, vehicular formation dynamics and
synchronization in electric power networks. We assume that the systems are
subject to distributed disturbances and study performance in terms of H2-
norm metrics that capture the notion of network coherence. In the context
of power networks, we also show how such metrics can be used to quantify
resistive losses caused by non-equilibrium, or transient, power flows due to a
lack of synchrony.

Distributed static feedback control based on localized, relative state mea-
surements is subject to known limitations that, for example, cause coherence
metrics to scale unfavorably with network size in lattices of low spatial dimen-
sions. This causes an inevitable lack of rigidity in one-dimensional formations,
such as strings of vehicles. We show here that the same limitations in general
apply also to dynamic feedback controllers that are locally of first order. The
proof relies partly on a fundamental limitation of localized relative feedback
in networks of integrators of order three or higher, which we show to cause
instability if the network grows beyond a certain finite size.

This result holds unless the controller can access measurements of its lo-
cal state with respect to an absolute reference frame, in which case dynamic
feedback in the form of distributed derivative or integral control can funda-
mentally improve performance. This case applies, for example, to frequency
control in power networks. However, if the absolute state measurements are
subject to noise, the advantage of the distributed integral controller in terms
of its performance scaling is lost. We show that scalable integral control of
networks in principle requires centralization or all-to-all communication.

For electric power networks, we show that performance in terms of tran-
sient power losses scales with the number of generator nodes in a network.
However, in sharp contrast to the previous results, an increased connectivity
does not in general improve performance. We discuss possible implications
of these results in terms of the design of future power grids with increasingly
distributed electricity generation.
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Sammanfattning

Distribuerad reglering av nätverk går ut på att definiera lokala styrregler
och kommunikationsprotokoll, som leder till att nätverket i stort uppvisar
önskat beteende. Denna avhandling undersöker fundamentala begränsningar
hos sådana distribuerade regulatorer, utifrån den prestanda som kan uppnås
globalt i storskaliga nätverk.

Vi modellerar nätverk där den lokala dynamiken är en enkel- eller dub-
belintegrator, och som regleras genom linjär återkoppling från ett begränsat
antal grannsystem. En sådan modell kan till exempel representera formations-
körning med autonoma fordon eller frekvenssynkronisering i elnät. Vi antar
att systemet utsätts för störningar och mäter dess prestanda utifrån syste-
mets H2-norm med avseende på en lämplig utsignal. På det sättet kan vi
mäta ett nätverks koherens, som är ett mått på hur stor varians noderna har
i förhållande till nätverksgenomsnittet. Vi visar också att den här metoden
kan uppskatta de elektricitetsförluster som uppstår på grund av cirkulerande
strömmar i synkroniseringstransienten hos elnät.

Det är känt att det finns begränsningar hos distribuerad reglering som
är proportionell mot relativa tillståndsmätningar mellan grannsystem. Des-
sa innebär en dålig skalning av koherensmåttet i nätverk med lågdimensio-
nell gitterstruktur och leder till att en endimensionell fordonsformation inte
kan uppvisa en stelkroppsliknande rörelse. Avhandlingen visar att dynamiska
regulatorer med ett ytterligare regulatortillstånd generellt sett omfattas av
samma begränsningar. Beviset bygger delvis på en fundamental begränsning
hos relativ återkoppling i nätverk med tre eller fler lokala integratorer. Vi
visar att sådana system alltid blir instabila om nätverket tillåts växa utöver
en viss (ändlig) storlek.

Ett undantag till resultatet ovan inträffar om regulatorn har tillgång till
sitt eget lokala tillstånd med avseende på en absolut referensram. Det är till
exempel fallet med frekvensreglering i elnät, där den lokala frekvensavvikelsen
kan mätas. I dessa fall kan en dynamisk regulator innehålla en deriverande
eller integrerande del som leder till en fundamental prestandaförbättring och
ökar skalbarheten. Om den absoluta tillståndsmätningen är brusig tappar
dock den integrerande regulatorn sina fördelar och försämrar istället skalbar-
heten. Vi visar att integralverkan i stora nätverk därför i princip måste vara
centraliserad eller tillåta kommunikation mellan samtliga noder.

När det gäller synkronisering i elnät visar vi att de transientförluster som
uppstår på grund av till exempel laststörningar ökar linjärt med antalet ge-
neratornoder. Prestandan kan dock inte, som tidigare, förbättras av att öka
konnektiviteten hos nätverket. Vi diskuterar vad detta kan innebära för fram-
tidens elnät med distribuerad kraftproduktion.
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Chapter 1

Introduction

Understanding networked systems is essential for understanding today’s world.
Modern sensing, computation and communication technologies have made net-
worked engineering systems ubiquitous, and concepts such as the Internet of Things,
self-driving cars, or smart power grids no longer appear fictional. Along with the
increased relevance of networks in engineering, a networking perspective has per-
meated both the natural and social sciences. Phenomena in areas ranging from
signaling in nervous systems and epidemic spread to financial systems and social
networks are increasingly described in terms of interactions of individual subsys-
tems in large-scale networks. This thesis takes a control-theoretical approach to
understanding such interactions.

The desired behavior of a network can typically be described in terms of global
control objectives. Such an objective may be synchrony in an electric power net-
work, an agreement over measurements in a sensor network, or a common velocity
in a string of self-driving cars. In large and complex networks, centralized control
is often infeasible or undesirable, and the communication burden of all-to-all con-
nectivity becomes overwhelming. Objectives are instead fulfilled through control
actions that are distributed across the individual subsystems, and that rely on feed-
back interactions from local neighborhoods. Here, we address the question of what
this implies in terms of the overall performance of the network. In particular, can
performance be maintained as networks grow large?

We explore the limitations of local, distributed control in terms of achieving
global control and performance objectives in large-scale networks. We study how
such limitations depend on factors such as network topology, plant and controller
dynamics, and the quality and type of measurements. Since interactions of even
simple subsystems in large-scale networks can give rise to complex phenomena, these
dependencies are oftentimes counterintuitive. Understanding them is therefore es-
sential for an efficient analysis and design of the networked systems of the future.

In this introductory chapter, we present the problem formulation and point to
its relevance in applications. We also summarize our technical contributions and
provide an outline for the remainder of the thesis.

1
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(a) School of sardines (b) Geese in formation flight

Figure 1.1: The study of distributed coordination of multi-agent networks often takes
inspiration from flocking behaviors in the animal kingdom. In the fish school and the
bird formation above, the indivuduals can be seen to align themselves into formation
based on observations of their neighbors’ headings [77]. The limitations to this type of
feedback, which are treated in this thesis, can partly explain why the 3-dimensional fish
school can resemble a rigid body, while the 1-dimensional bird formation has a meandering
motion, see also [14]. We discuss whether alternative feedback laws in engineered multi-
agent networks can alleviate these limitations, and increase the rigidity of 1-dimensional
formations. Photos by (a) Erik Kilby/CC BY-SA 2.0 (b) Kelly Martin/CC BY-SA 3.0.

1.1 A performance perspective on networked systems

A central issue in the control of networked systems is to understand and quan-
tify how the limited sensing, actuation and connectivity of a distributed controller
structure affect global performance. A prototypical problem is that of distributed
consensus, where the objective is to drive a network of agents to a common state,
but where each agent only has access to limited and localized measurements. Nat-
ural questions arise as to how well a state of consensus can be upheld, for example,
under external disturbances, and how this depends on the size of sensing neighbor-
hoods and the topological connectivity of the controller. In other words, how does
the best-achievable performance of a system depend on the architectural controller
constraints that are imposed by a network structure? An understanding of these
issues is key in achieving efficient and robust control performance in a wide range of
applications, including vehicle platooning and formation control problems, wireless
sensor networks and electric power systems.

We will address this problem from several angles in this thesis. Before detailing
the problem formulation and the objectives, we will use this section to highlight a
few motivational problems from applications.



1.1. A performance perspective on networked systems 3

1.1.1 Examples
The problems we consider in this thesis are all examples of distributed coordination
and control problems, which can be modeled through consensus-type dynamics.
Since the seminal works by Fax and Murray [51], Olfati-Saber and Murray [118],
and Jadbabaie et al. [77] at the beginning of the 2000’s, these problems have become
some of the most active research topics in the field. While problems of stability and
convergence subject to various properties of the network are well-studied, several
questions related to emerging behaviors and performance limitations in large-scale
networks have remained open. Many of these questions are highly relevant in
applications, and problems range from animal flocking behaviors (Figure 1.1) to
electric power transmission (Figure 1.7). We next describe a few examples.

Example 1.1 (Vehicle platooning) The problem of controlling strings of vehicles
– the platooning problem – has raised much interest since some pioneering work in
the 1960’s [89,104]. The main control objective in a vehicle platoon is to maintain
a desired cruising velocity with a pre-determined constant spacing between the ve-
hicles. By keeping this spacing small, the aerodynamic drag can be reduced, saving
fuel costs and emissions. This has motivated significant platooning efforts in road
freight transportation [1, 22]. With the advent of automated driving, large-scale
platoons may emerge on highways. This would create long-envisioned automated
highway systems [70,74,173,182] that have the potential to increase road capacity
and throughput.

……

Figure 1.2: A truck platoon subject to disturbances.

The principle for a vehicle platoon is illustrated in Figure 1.2. An example of a
simple linear control law is the combined look-ahead and look-behind control, see
for example [68]. This gives the simplified closed-loop dynamics of the ith vehicle
of the platoon as:

ẍi(t) = v̇i(t) = f+(xi+1(t)− xi(t)−∆(i+1,i)) + f−(xi−1(t)− xi(t)−∆(i−1,i))
+ g+(vi+1(t)− vi(t)) + g−(vi−1(t) − vi(t)) + wi(t), (1.1)

where xi(t) is the vehicle’s position and ẋi(t) = vi(t) its velocity at the time t,
f+, f−, g+, g− are constant gains and ∆i,j denotes the desired spacing between
vehicles i and j. An external disturbance that can be due to, for example, wind
gusts, varying road conditions, and measurement errors is modeled through the
signal wi(t).
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Apart from a multitude of practical challenges of which [182] gives an early
overview, a number of theoretical questions arise. Some examples are:

• How can it be ensured that disturbances are not amplified along the string of
vehicles, in particular as the string grows large? This is an issue of so-called
string stability [17, 106,149,169,172].

• What control architecture performs better: a predecessor-follower architec-
ture, or a bidirectional architecture as in (1.1)? [68]

• What are optimal controller gains? [91]

• What types of measurements are needed to achieve reasonable performance?
Do relative measurements with respect to neighbors (using, for example,
radar) suffice, or is each vehicle required to access its absolute position and
velocity with respect to the lead vehicle or a global frame (based on, for
example, speedometers or GPS)? [14,67]

We return to some of these problems in the literature review of Section 2.1.3. In
this thesis, we address the limitations of feedback of the type (1.1) in terms of its
ability to maintain coherence in large vehicle platoons. Coherence, in this case,
describes the rigidity of the formation and is a concept that is distinct from string
stability mentioned above. Lack of coherence results in undesired motions in the
platoon, examples of which can be previewed in Figure 6.4 on page 115.

Example 1.2 (Frequency synchronization in power networks) The electric power
system, possibly rivaled by telecommunications, is the most significant networked
system ever engineered, as well as one of the largest and most complex. At present,
this system is undergoing important changes. An integration of increased levels of
renewable energy leads to an increasingly distributed system as conventional high-
capacity generation is replaced by local, small-scale resources [49, 75, 108]. The
future grid is also expected to have higher levels of uncertainty [180] and to feature
new load patterns [145].

On the one hand, these changes can affect the synchronous stability of the power
network, that is, its ability to recover a synchronous frequency after a disturbance.
On the other hand, the emerging distributed generation paradigm both enables and
demands novel distributed, scalable control schemes. These topics have therefore
seen an increased research interest over the last decade.

Synchronization in power networks is typically studied through a system of
coupled swing equations, which describe the electromechanical oscillations in syn-
chronous generators. The linearized swing equation can, under some simplifying
assumptions, be written as:

miθ̈i(t) + diθ̇i(t) =
∑
j∈Ni

bij(θj(t)− θi(t)) + Pm,i. (1.2)
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b12

b23
b13

θ1

ω1
ω2

ω3

Figure 1.3: Mechanical analogy of the coupled swing equation, due to Dörfler et al. [40].
Any deviation in phase angle θi or frequency θ̇i = ωi is propagated over the springs (power
lines) across the network.

where θi(t) is the phase angle and θ̇i(t) = ωi(t) is the frequency at the ith gen-
erator, and mi and di are, respectively, its inertia and damping coefficients. The
constants bij denotes the susceptances of the power lines connecting the ith gen-
erator to its neighbors in the set Ni, and Pm,i can be regarded as the net power
injection at the generator. This swing equation can be illustrated by the mechanical
analogy in Figure 1.3.

Even if the network is synchronously stable, a lack of synchrony arises whenever
the system is subject to disturbances. To secure safe and efficient operation of the
power grid, it is important that the frequency is kept close to its nominal operating
point, typically 50 Hz or 60 Hz. It is therefore desirable to keep the transient fluc-
tuations “small”. This is a question of the power system’s performance, which is
what we will address in this thesis. In particular, we analyze how the system’s tran-
sient performance can potentially be affected by a distributed generation paradigm
where the number of generator nodes may increase by several orders of magnitude.

Example 1.3 (Dynamic load balancing in distributed computing) In distributed
computing, a network of computers share a computational task in order to in-
crease total processing capabilities and thereby efficiency. An important issue in
distributed computing is load balancing, that is, ensuring that each processor is
assigned a “fair share” of the total work load. If the computational problem is
complex, it is difficult to distribute sub-tasks a priori and the work load must be
balanced during the execution. Such a strategy is referred to as dynamic load
balancing [34].

A simple algorithm for dynamic load balancing is through the standard average
consensus algorithm, which can be written as follows [34,128,190]:

xi(t+ 1) = xi(t) +
∑
j∈Ni

aij(xj(t)− xi(t)) + wi(t+ 1), i = 1, . . . , N (1.3)

where the state xi(t) is the amount of work assigned to computer i at time instance t,
Ni is the set of neighbors that the ith computer communicates with, and aij are
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nonnegative constants. The parameter wi(t) accounts for the new work that is
generated at time t, less the amount of work that can be executed in one time step.
If the computer is precisely able to keep up with the expected amount of new work,
then wi(t) can be seen as a zero-mean random variable, and can be thought of as
a distributed disturbance in the process.

The objective of this algorithm is to converge to an equilibrium where all work
loads are equal, that is xi = xj for all i, j ∈ {1, . . . , N}. Such a state of consensus
can only hold approximately when the system is subject to persistent disturbances.
Still, it is desirable to keep deviations from this state small and the system’s per-
formance can therefore be measured through

E


xi(t)− 1

N

N∑
j=1

xj(t)

2
 , (1.4)

that is, the variance of the state xi’s deviation from the network average.
Today’s computer networks are several orders of magnitude larger than in 1989

when [34] was published. An interesting question is therefore whether a load balanc-
ing algorithm like (1.3) would be able to keep measures like (1.4) small in a network
of millions, or billions, of nodes. And if so, what would the requirements be on the
network topology? In this thesis, we address such questions for continuous-time
equivalents of the system (1.3).

Example 1.4 (Voltage control in multi-terminal HVDC networks) Transmitting
power over long distances while maintaining low losses is one of the greatest chal-
lenges in power transmission systems. For example, this is one of the issues that
arise in the deployment of large off-shore wind farms, which require long-distance
undersea power transmission. This motivates the use of high-voltage direct current
(HVDC) technology. Its higher investment costs compared to AC transmission lines
are compensated by lower resistive losses for sufficiently long distances. These are
typically 500-800 km for overhead lines [121], but less than 100 km for undersea
cable connections [24]. As more energy sources and consumers are connected by
HVDC lines, the individual lines eventually form a grid with multiple terminals,
resulting in multi-terminal HVDC (MTDC) systems [181]. Figure 1.4 shows an
example of such a network.

MTDC networks require the ability to control the DC voltages at the terminals;
first, in order to govern the network’s current flows, and second, in order to avoid
damage to power electronic equipment [86, 181]. The voltage dynamics can be
assumed to be given by:

civ̇i(t) = −
∑
j∈Ni

(
1
rij

(vi(t)− vj(t))− iref
ij

)
+ ui(t), (1.5)
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C1
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V1 V2
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R24
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R34
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V3 V4

u1 u2

u3 u4

Figure 1.4: Example of an MTDC network consisting of 4 terminals (buses) and 5 lines.

where ci > 0 is the capacitance of the ith terminal, rij is the line resistance and
iref
ij is the nominal current on the (i, j)th line. The signal ui(t) is the controlled
injected current. Different control schemes have been proposed in the literature.
Examples are:

i) Droop control, which is a simple proportional controller:

ui(t) = kP,i(vref
i − vi(t)),

where kP,i > 0 is the droop gain [66,198].

ii) Distributed-averaging proportional-integral (DAPI) control, which appends in-
tegral action to the droop controller and thus eliminates stationary errors:

ui(t) = kP,i(vref
i − vi(t))− zi(t),

kI,iżi(t) = vref
i − vi(t)−

∑
j∈Ni

aij(zi(t)− zj(t)),

where zi(t) is an auxiliary controller state and kI,i, aij > 0 are fixed gains.
The DAPI controller has been proposed for frequency control in AC power
networks in [7, 159] and for DC microgrids in [198]. We will revisit it in
Chapter 4.

iii) Slack bus control, where the voltage at a single terminal is controlled and
allowed to regulate the network’s voltage drift. Somewhat idealized, we can
then set

v1(t) = vref
1 , ∀t ≥ 0.

Remaining buses’ voltages then evolve according to (1.5) with ui(t) = 0 for
i = 2, . . . , N .
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While all of these controllers succeed in stabilizing the voltage, their performance
differ. In particular, the slack bus controller does in many cases have worse scalabil-
ity to large networks. That is, its transient performance can be shown to deteriorate
as the network size grows. This is showcased through the simulation in Figure 1.5,
where the size of the network increases from N = 10 to N = 100.

The system (1.5) describes consensus dynamics (the slack bus control case de-
scribes leader-follower consensus). In this thesis, we will discuss reasons for lack
of scalability of the consensus algorithm. We will show that absolute feedback,
which in the MTDC case is introduced through voltage droop control with the
term −kP,ivi(t), is important for scalability, and that DAPI control has the po-
tential to further improve performance. We will not revisit the particular MTDC
control problem in this thesis, but refer the interested reader to [9].
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(a) Slack bus control, N = 10
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(b) Slack bus control, N = 100
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(c) Droop control, N = 10
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(e) DAPI control, N = 10
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(f) DAPI control, N = 100

Figure 1.5: Simulation of voltage droop controllers in multi-terminal HVDC networks
with N = 10 and N = 100 terminals. The network topology is a path graph (shown in
Figure 3.1). In the slack bus case, performance deteriorates substantially for the larger
network (b) compared to the smaller (a), which is not the case with droop or DAPI
control. The oscillatory behavior in the DAPI case is characteristic of integral control. In
this thesis, we formalize and explain the limited scalability of the slack bus controller.
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1.2 Problem formulation

1.2.1 Prototypical model
This thesis treats a number of distributed control problems with analogous math-
ematical settings. We will consider first-order systems, where there is one local
state xi at each node i of the network, as well as second-order systems, in which
there are two such states: xi and ẋi. The state xi may, for example, represent the
phase angle of the ith generator in an electric power network, while ẋi represents
its angular frequency.

We will assume that the systems are subject to distributed disturbances wi,
which in most cases will be modeled as white noise1 that is uncorrelated across the
network. The systems can then be written as

ẋi(t) = ui(t) + wi(t), (1.6)

in the first-order case, and

ẍi(t) = ui(t) + wi(t), (1.7)

in the second-order case. Here, ui(t) represents a control input.
The control objective is global; to drive the states at all nodes to a common

equilibrium, such as synchrony in a power network or a common cruising speed in
a vehicle platoon. However, in the problems we consider, the control is localized
and distributed, meaning that the control signal at any given node will only de-
pend on feedback from that node itself and from neighboring nodes in a bounded
neighborhood. As we shall see, this fact often leads to limitations to the system
performance.

We consider linear feedback throughout. With static state feedback, we can
therefore write the control input for the second-order system (1.7) as

ui(t) = −
∑
j∈Ni

fij(xi(t)−xj(t))−
∑
j∈Ni

gij(ẋi(t)− ẋj(t))−f0,ixi(t)−g0,iẋi(t), (1.8)

where Ni denotes the neighbor set of the ith node and fij , gij , f0,i, g0,i are constant
gains. In the first-order case (1.6), the control input can be written as in (1.8), but
without the terms containing ẋi(t). We refer to the control law (1.8) as static, or
proportional, feedback control since the feedback is proportional to state measure-
ments at time t.

Throughout the thesis, we will distinguish between and compare relative and
absolute state feedback. In (1.8) the terms −f0,ixi(t) and −g0,iẋi(t) represent abso-
lute feedback from the states xk and ẋk respectively. If f0,i = g0,i = 0, the control

1We refer to “white noise” in continuous time as a stationary zero-mean stochastic process
with autocorrelation E{w(τ)w∗(t)} = δ(t − τ)I, where δ(t) denotes the Dirac delta distribution.
This idealized process can be thought of as the time derivative of a Brownian motion, dB/dt,
although such a derivative does not formally exist, see [10, Theorem 4.1].
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relies only on relative differences between neighboring nodes. The availability of
relative and absolute feedback measurements depends on the application. For ex-
ample, the swing equation (1.2) describes relative feedback from phase angles, but
absolute feedback from angular frequency. Absolute feedback can also be regarded
as a type of self-damping.

We will also consider systems where the local dynamics are of order three or
higher, and where the control dynamics are analogous to (1.8). In this case, the
problem in focus will be one of stability, not of performance.

1.2.2 Performance measures
The systems (1.6)–(1.7) are subject to persistent stochastic disturbances wi, which
will cause the states at each network site to fluctuate around the equilibrium.
Throughout this thesis, we will characterize system performance through the vari-
ance of such fluctuations, which in a sense captures the amount of “disorder” in the
network. More precisely, we consider the quantities:

Global error (coherence)

V dav
i (t) := E


xi(t)− 1

N

N∑
j=1

xj(t)

2
 , (1.9)

that is, the variance of the ith node’s deviation from the average over all N
nodes in the network. It captures the amount of global disorder and therefore
a notion of network coherence. In the example of a vehicle platoon, V dav

i

characterizes how closely the platoon resembles a rigid body.

Local error (lack of synchrony)

V loc
i (t) := E


∑
j∈Ni

aij(xi(t)− xj(t))

2
 , (1.10)

that is, the variance of the ith node’s deviation from a local, weighted av-
erage over its neighboring nodes (the aij being appropriate weights). The
measure (1.10) captures local disorder in the network, and in a sense quanti-
fies the amount of interaction between neighboring nodes.
In power networks, V loc

i signifies a lack of synchrony, which incurs non-
equilibrium power flows. In Chapter 8, we will discuss how the losses as-
sociated with such flows are a meaningful measure of performance that we
term the “Price of Synchrony.” That measure can be written as a weighted
sum of local errors on the form (1.10).
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+ ++
wi wi+1wi−1

Pi Pi+1Pi−1

Ci Ci+1Ci−1

Performance objective

ui ui+1ui−1

. . .

. . .. . .

. . .

Figure 1.6: Illustration of the problem formulation. The plants Pi are, in our case, in-
tegrator chains controlled by the distributed controllers Ci. The arrows between plants
and controllers represent relative feedback interactions between neighboring nodes. The
performance objective is evaluated from a global perspective.

While the performance measures (1.9) and (1.10) may appear very similar, they
capture two distinct phenomena in networked systems. For example, we will show
in Chapter 8 that it is possible for two networks with very different global error
properties to have the same performance in terms of local errors. Conversely, a given
system may appear well-regulated locally, although the network, when viewed as a
whole, has unregulated modes. Such situations are explored in Chapters 6–7. The
problem setup is illustrated in Figure 1.6.

1.2.3 Objectives
The objective of this thesis is to characterize the performance and scalability of
distributed control laws on the form (1.8) in terms of the their ability to keep the
variance metrics (1.9)–(1.10) small under persistent stochastic disturbances. In
particular, we are interested in scaling bounds on these metrics in network size.

We show that this performance characterization, at steady state and typically
aggregated over the network, amounts to an evaluation of H2 performance with
suitably defined performance outputs. It will therefore also be relevant for describ-
ing transient performance under other input scenarios, such as impulse responses.

We mainly focus on two problem settings. First, the characterization of co-
herence properties in networks of first- and second-order integrators. Here, the
main question of interest is whether dynamic feedback laws perform better than
the static state feedback (1.8) in large-scale networks. Second, we consider electric
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power networks, where we evaluate performance in terms of resistive power losses
incurred in maintaining network synchrony. Here, the objective is to characterize
the losses through their dependence on physical properties of the network. In both
of these settings, we address how performance depends on

• the size of the network,

• the topology of the network and the connectivity of local controllers,

• the plant and controller dynamics, and

• the availability and quality of absolute state measurements.

We also consider a third problem setting with networks of third- and higher-order
integrators. Here, we study how system stability depends on the above properties.

Our overall objective is to identify and characterize fundamental limitations to
the performance achievable through distributed feedback control. In our case, such
limitations would imply that a given performance specification cannot be satis-
fied with finite control effort in a network of any size. Awareness of fundamental
limitations is at the very core of control theory, and is used not only to discard
impossible specifications but also to prove optimality of control designs. Unaccept-
able performance limitations indicate a need to change the system design or resort
to alternative sensing and control strategies for which the limitations do not ap-
ply. A key part of our objective has therefore been to investigate conditions under
which dynamic feedback control can relax known limitations to distributed static
feedback control.
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Figure 1.7: The problems of vehicle platooning and frequency synchronization of electric
power grids are both treated in this thesis. While these systems appear very different,
some of their key dynamical features can be described by our prototypical model (1.7), see
Examples 1.1–1.2. (a) Photo courtesy of Scania (b) Picture adapted from Nordel [115].
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1.3 Outline and contributions

The seven technical chapters of this thesis address different aspects of the problem
that was just set up. The first four treat general first- and second-order consensus
dynamics and also include a discussion on higher-order dynamics. The last three
focus on power systems. The chapters also differ in their feedback scenarios and in
the consideration of static versus dynamic controllers. An overview is provided in
Table 1.1.

The overall outline of the remainder of the thesis and its technical contributions
can be summarized as follows:

Chapter 2: Background

The background chapter provides an overview of the research that motivates or oth-
erwise relates to the work in this thesis. We put particular emphasis on describing
various notions of control performance in networks and their use in literature.

Chapter 3: Technical preliminaries

Chapter 3 reviews important technical and mathematical concepts that are used
throughout the thesis. We review aspects of signal and system norms, graph theory
and some operator theory that is useful for studying systems over regular networks.

Chapter 4: Coherence of large-scale networks with distributed PI and PD
control

Here, we address known limitations of the standard second-order consensus pro-
tocol (1.8), which cause the variance of nodal fluctuations in (1.9) to scale un-
boundedly with network size for a large class of networks. We propose distributed
proportional-integral (PI) and proportional-derivative (PD) controllers that relax
these limitations to achieve a bounded variance, that is, fully coherent networks,
in cases where absolute feedback of one of the two states is available. As we have
seen in Section 1.1.1, this case applies, for example, in frequency control of power
networks and in vehicular formation control with limited sensing. We also discuss
optimal tuning of the controllers with respect to network coherence.

Chapter 4 is based on:

E. Tegling and H. Sandberg, “On the coherence of large-scale networks with
distributed PI and PD control,” in IEEE Control Systems Letters, vol. 1, no.
1, pp. 170–175, July 2017.

Chapter 5: Inadmissibility of localized high-order consensus

Chapter 5 differs from remaining technical chapters of the thesis in that the ques-
tion of interest is not primarily one of performance, but of stability. We consider
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Table 1.1: Overview of the thesis chapters with respect to 1) the order of the local inte-
grator dynamics, 2) the availability of relative vs. absolute feedback from position xi and
velocity ẋi = vi and 3) the consideration of static or dynamic feedback control. We remark
that Chapter 5 studies admissibility (a problem of stability) rather than performance.

Static feedback Dynamic feedback

Power system 
dynamics

Higher order*
-

Chapter 6

Treated in literature, 
see Chapter 2

First order

Second order

Rel. feedback

Rel. position,  
rel. velocity

Rel. position,  
abs. velocity

Abs. position,  
rel. velocity

Chapter 4, Chapter 7

Chapter 4

Chapter 8, Chapter 9 Chapter 10

Chapter 5

*The admissibility question

distributed consensus in systems where the local agents have high-order (n ≥ 3)
integrator dynamics (compare to (1.6) where n = 1 and (1.7) where n = 2), and
where the feedback is localized in that each agent has a bounded number of neigh-
bors. We prove that no consensus algorithm based on only relative feedback can
then achieve consensus in networks of any size. That is, while a given algorithm
may allow a small network to converge to consensus, the same algorithm will lead
to instability if agents are added to the network so that it grows beyond a certain
finite size. In our terminology, this renders the algorithm inadmissible.

This result is shown to hold in classes of network graphs whose algebraic con-
nectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards
zero in network size. This applies, for example, to all planar graphs. The proof,
which relies on Routh-Hurwitz criteria for complex-coefficient polynomials, holds
true for weighted, directed graphs with normal graph Laplacians. We survey classes
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of graphs where this issue arises.
We also consider a case of inadmissibility of second-order consensus in toric

lattice graphs (the same type of networks as considered in Chapter 6). We show
that with relative feedback, any amount of asymmetry in the feedback around
each node will render the controller inadmissible. That is, if the lattice graph is
directed. We discuss the implications of both of these results for the implementation
of distributed integral action in first- and second-order integrator networks that is
the topic of Chapter 6.

Chapter 5 is partly based on:

E. Tegling, B. Bamieh and H. Sandberg, “Localized high-order consensus
destabilizes large-scale networks,” Submitted to 2019 American Control Con-
ference (ACC).

Chapter 6: Fundamental limitations of dynamic feedback control in regular
networks

Chapter 6 addresses the question of whether distributed dynamic feedback can
perform better than static feedback in terms of network coherence. A positive
answer to this question was given in Chapter 4 for second-order integrator networks
with partial access to absolute feedback. In Chapter 6, we consider both first- and
second-order systems (we here term them consensus and vehicular formation control
problems) and focus on the case with only relative feedback.

We model the consensus and vehicular formation control problems over toric
lattice networks. For the resulting spatially invariant systems, we study the large
scale asymptotics (in network size) of the global performance metric (1.9). With
static, relative feedback, such metrics are known to scale unfavorably in lattices of
low spatial dimensions, preventing, for example, a 1-dimensional string of vehicles
to move like a rigid object. Here, we show that the same limitations in general
apply also to dynamic feedback control that is locally of first order. This means
that the addition of one local state to the controller gives a similar asymptotic
performance to the memoryless case.

To derive our results, we present a general technical framework for the evaluation
of stability and performance of spatially invariant systems in the limit of large
networks. This framework, which is one of the key contributions of this work, allows
for an H2 performance analysis of large classes of dynamic feedback protocols that
would otherwise be intractable.

Chapter 6 is based on:

E. Tegling, P. Mitra, B. Bamieh and H. Sandberg, “On fundamental limi-
tations of dynamic feedback control in regular large-scale networks,” IEEE
Transactions on Automatic Control, provisionally accepted, August 2018.
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E. Tegling, P. Mitra, H. Sandberg and B. Bamieh, “Coherence and stability in
large-scale networks with distributed dynamic feedback,” 22nd International
Symposium on Mathematical Theory of Networks and Systems, Minneapolis,
MN, July 2016.

Chapter 7: Noise-induced limitations to distributed integral control

In Chapter 7 we address the question of how the performance of the distributed
integral controller introduced in Chapter 4 (called DAPI control) is affected by
measurement noise on the absolute feedback measurements. As in Chapter 6, we
consider the second-order vehicular formation control problem modeled over a toric
lattice network and analyze asymptotic scalings of the metric (1.9). While the
results in Chapter 4 and 6 suggested that DAPI control fundamentally improves
these performance scalings compared to static feedback control, this chapter shows
that an explicit inclusion of measurement noise leads to the opposite conclusion.
That is, under measurement noise, the asymptotic scaling of both global and local
performance is worse than with static feedback control.

We show that the noise’s impact on performance decreases with an increased
inter-nodal alignment of the local integral states. However, even though the con-
troller can be tuned for acceptable performance for any given network size, perfor-
mance will degrade as the network grows, limiting the scalability of any such con-
troller tuning. In particular, the requirement for inter-nodal alignment increases
with network size. We show that this in practice implies that large and sparse
networks will require any integral control to be centralized or have all-to-all com-
munication. In this case, the best-achievable performance scaling, which is shown
to be that of static feedback control, is retrieved.

Chapter 7 is based on:

E. Tegling and H. Sandberg, “Noise-induced limitations to the scalability of
distributed integral control,” Systems & Control Letters, under review, Au-
gust 2018.
Also presented at:
23rd International Symposium on Mathematical Theory of Networks and Sys-
tems, Hong Kong, China, July 2018.

Chapter 8: The Price of Synchrony: resistive losses in synchronizing power
networks

Chapter 8 introduces the “Price of Synchrony” as a notion of transient performance
in electric power networks. That is, the resistive power losses that are incurred in
keeping a network of synchronous generators at a synchronous state. We show
how the total network’s transient resistive losses can be quantified through an H2
norm of a linear system of coupled swing equations with an appropriately defined
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performance output. We evaluate this norm for general network topologies and
provide a number of relevant bounds on performance, as well as numerical examples.

The chapter’s main result shows that the Price of Synchrony scales unboundedly
with the number of generator nodes in the network. However, and in sharp contrast
to the results in Chapters 4–7, it is only weakly dependent on the network topology.
These results point to a fundamental limitation to performance in networks where
the frequency synchronization is reliant on power flow mechanisms. They also
provide a basis for the analysis in Chapters 9–10.

Chapter 8 is based on:

E. Tegling, B. Bamieh and D. F. Gayme, “The Price of Synchrony: Evaluating
the resistive losses in synchronizing power networks,” in IEEE Transactions
on Control of Network Systems, vol. 2, no. 3, pp. 254–266, Sept. 2015.

Chapter 9: Performance impact of variable voltage dynamics

The results in Chapter 8 were derived under the standard linear power flow assump-
tions, under which the voltage profile is assumed uniform across the network. In
Chapter 9, we study the impact of variable voltages on performance. The scenario
differs from Chapter 8 in that we here consider a microgrid with droop-controlled
inverters. We obtain a networked system with cross-coupled voltage and phase-
frequency dynamics (the latter being qualitatively identical to the swing dynamics
considered in Chapter 8), and we adapt the Price of Synchrony performance output
to quantify transient losses for this system.

The results demonstrate that while frequency synchronization results in losses
that scale with a network’s size but only weakly depend on its connectivity, the
losses associated with voltage droop control will be larger in a highly intercon-
nected network than in a loosely interconnected one. We discuss interpretations
of this somewhat counterintuitive result and provide bounds for different network
topologies. Furthermore, we show that while the cross-couplings between the volt-
age and phase-frequency dynamics lead to conditions on the droop controllers that
must be observed to guarantee stability, they only have a small impact on perfor-
mance. A decoupled analysis is therefore well motivated in systems with reasonable
stability margins.

Chapter 9 is partly based on:

E. Tegling, D. F. Gayme and H. Sandberg, “Performance metrics for droop-
controlled microgrids with variable voltage dynamics,” IEEE 54th Annual
Conference on Decision and Control (CDC), Osaka, 2015, pp. 7502–7509.
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Chapter 10: Advantages and limitations of distributed secondary frequency
control

In this chapter, we address the problem of secondary frequency control in power
networks, the objective of which is to eliminate the stationary control error that
arises through standard droop control (which is essentially proportional control).
The DAPI controller that we introduced in Chapter 4 is one of the controllers that
has been proposed as a distributed solution to this problem. Here, we evaluate its
performance in terms of the Price of Synchrony metric compared to both standard
droop control as well as to a corresponding centralized approach called CAPI.

In line with Chapter 4, we find that the DAPI controller can greatly reduce
transient losses compared both to droop and CAPI control, provided it has access
to noiseless frequency measurements. However, additive measurement noise has a
significant negative impact on the DAPI controller’s performance. In fact, the total
transient losses can be shown to scale faster than linearly in network size. The
negative impact of measurement noise, however, decreases with an increased inter-
nodal alignment of integral states. We prove that for any level of noise and any
network size, there is in fact a controller tuning that allows DAPI to perform better
than droop and CAPI control. Therefore, if the scaling of performance in network
size is not a priority, but rather the transient performance of a given network, our
results show that DAPI control is a good choice, but requires careful tuning.

Chapter 10 is based on:

E. Tegling, M. Andreasson, J. W. Simpson-Porco and H. Sandberg, “Im-
proving performance of droop-controlled microgrids through distributed PI-
control,” American Control Conference (ACC), Boston, MA, 2016, pp. 2321–
2327.

H. Flamme, E. Tegling and H. Sandberg, “Performance limitations of dis-
tributed integral control in power networks under noisy measurements,” Amer-
ican Control Conference (ACC), Milwaukee, WI, 2018, pp. 5380–5386.

M. Andreasson, E. Tegling, H. Sandberg and K. H. Johansson, “Coherence in
synchronizing power networks with distributed integral control,” IEEE 56th
Annual Conference on Decision and Control (CDC), Melbourne, VIC, 2017,
pp. 6327–6333.

Chapter 11: Conclusions

In this chapter, we conclude the findings of the thesis. In particular, we discuss
possible implications of the fundamental performance limitations for applications
like those presented in the introduction. We discuss certain limitations of the
methods and the results, and some open problems.
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Other publications

The contributions of the following article are included in this thesis in the form of
an illustrative example:

M. Andreasson, E. Tegling, H. Sandberg and K. H. Johansson, “Performance
and scalability of voltage controllers in multi-terminal HVDC networks,”
American Control Conference (ACC), Seattle, WA, 2017, pp. 3029–3034.

The contributions of the following articles have inspired parts of this thesis, but
they are not explicitly covered.

E. Sjödin2, U. Topcu and D. F. Gayme, “Risk-mitigated optimal power flow
for wind powered grids,” American Control Conference (ACC), Montreal, QC,
2012, pp. 4431–4437.

E. Sjödin and D. F. Gayme, “Transient losses in synchronizing renewable
energy integrated power networks,” American Control Conference (ACC),
Portland, OR, 2014, pp. 5217–5223.

N. Govindarajan, H. Arbabi, L. van Blargian, T. Matchen, E. Tegling and I.
Mezić, “An operator-theoretic viewpoint to non-smooth dynamical systems:
Koopman analysis of a hybrid pendulum,” IEEE 55th Annual Conference on
Decision and Control (CDC), Las Vegas, NV, 2016, pp. 6477–6484.

A number of the results presented in this thesis have previously appeared in the
following theses:

E. Tegling, On performance limitations of large-scale networks with distributed
feedback control, Licentiate thesis, KTH Royal Institute of Technology, 2016.

E. Sjödin, The Price of Synchrony: Evaluating transient power losses in re-
newable energy integrated power networks, M.Sc. thesis, KTH Royal Institute
of Technology, 2013.

Remark 1.1 (The author’s contributions) Wherever listed as the first author of a
publication, the author of this thesis had the most significant role in developing the
results, and has completed all or the majority of the writing. Remaining authors
have contributed to problem formulations and taken advisory or supervisory roles.

In the collaboration with H. Flamme, this thesis’ author defined the problem and
had an advisory role, with a leading role in the writing. In the collaborations with
M. Andreasson, the author contributed to the problem formulation and solution
methods, and completed a majority of the writing. Finally, in the collaboration
with N. Govindarajan et al., the publication’s first author contributed most to the
analysis and the writing. The order of the second to fifth authors is alphabetical
and reflects an equal contribution.

2The name Sjödin was changed to Tegling in 2014.



Chapter 2

Background

To describe the mechanisms by which local control and interaction rules lead to
globally desirable behaviors is at the core of the field of networked control. This
is a rich and challenging problem, and it is therefore not surprising that various
aspects of it have become some of the most active topics of control theory over the
last decades. These topics range from basic theoretical research, where objectives
include the description of fundamental limitations to performance and robustness,
to highly applied problems, such as the coordination of robots for specific missions,
or the control of power electronic inverters in microgrids. This thesis is motivated
by work on both ends of this spectrum. In this chapter we provide a brief overview
of the research that motivates and relates to the thesis.

2.1 Characterizing limitations of networked control systems

In the introduction of this thesis, we presented a number of control challenges in
networked and multi-agent systems. Overall, a common theme in addressing them
is the design of control and interaction rules for a given system, and then showing
that these rules lead to the desired performance, stability or robustness properties.
An issue with this approach is that when performance guarantees for the proposed
interaction rules cannot be found, it is not evident whether this is due to a funda-
mental limitation, or simply lack of ingenuity on the part of the control designer.
A systematic approach to understanding fundamental limitations would instead be
to solve optimal control problems and to check whether the best achievable perfor-
mance is acceptable or fundamentally limited. In fully centralized control, textbook
theory applies and several performance criteria based on the plant’s unstable poles
and zeros are well known [166,200]. In networked control problems, however, there
are architectural constraints on the controller, typically described by a graph struc-
ture. Under such constraints, the optimal control problem is, with few exceptions,
non-convex and difficult to solve.

It is known that for large-scale networks, the centralized solutions to linear-

21
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quadratic optimal control problems have an inherent degree of locality [15, 111].
However, the optimal control problem with a prescribed degree of locality tends to
be non-convex [184]. An important exception is the class of quadratically-invariant
problems [88, 146], which includes the subclass of funnel-causal problems in which
the propagation speed in the controller is as fast as in the plant [16]. A novel
approach to imposing controller sparsity while maintaining convexity was intro-
duced in [186] and applied to the type of locality-constrained spatially invariant
networks considered in parts of this thesis in [80]. Otherwise, the problem also
gains tractability for positive systems, which can be exploited for a distributed
controller synthesis [139].

For large-scale networks, a fruitful approach to understanding fundamental lim-
itations while overcoming the difficulty of non-convexity is to derive bounds on
the best-achievable performance in terms of various relevant metrics. Examples of
such metrics include notions of controllability and H2 or H∞ performance. Though
the corresponding optimization problems would be non-convex, informative perfor-
mance bounds that depend on the network size, topological properties and nodal
dynamics can often be derived. This will also be the approach taken in this thesis.
We will next review some of the notions of network performance and their use in
recent literature to describe fundamental limitations. These performance notions
are then summarized in Table 2.1. First, we make a remark on terminology.
Remark 2.1 (Demarcation of the performance problem) In this thesis, we
adhere to the standard terminology with respect to the terms “performance”, “sta-
bility” and “robustness” defined in, for example, [200, p. 211]. Consider therefore
the standard feedback control system depicted in Figure 2.1. This closed-loop sys-
tem is said to have nominal stability (NS) if the controllerK internally stabilizes the
nominal plant P , and nominal performance (NP) if performance objectives (usually
in terms of signal and closed-loop system norms) are satisfied for P . It is said to
have robust stability (RS) if K also stabilizes every plant in a larger model set
Π 3 P and robust performance (RP) if the performance objectives are also satisfied
for every such plant.

In this thesis, we treat nominal stability and performance problems, and will
therefore use the term “robustness” and its antonym “fragility” sparingly. We
remark, however, that related literature sometimes refers to a controller’s failure to
attenuate noise as lack of “robustness (towards noise).” We term this a problem of
(nominal) performance throughout. Similarly, we do not consider a small stability
margin a performance problem in and of itself. It is, however, a sign of poor
robustness and may lead to unfavorable performance. �

2.1.1 Notions of network controllability
The standard notion of controllability due to Kalman [83] is a binary one; it is
either possible to drive a system to any given target state by means of some control
input, or it is not. In a network context, it may for example be relevant to consider
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P

K

-

Figure 2.1: Standard feedback control system with (disturbance) input signals w1, w2,
output signal y1 and control signal y2.

how many actuator nodes that are required to gain controllability over a network,
see for example [94, 119], or [46] for an accessible overview. However, driving a
system in general and a network in particular to a given state that is theoretically
reachable may require a large control effort. A quantitative approach to studying
network controllability is therefore called for. Such an approach is presented by
Pasqualetti et al. in [126], where the worst-case energy required to steer a network
to a given state is considered.

Recall that the minimum signal energy required to steer a system on the form
ẋ(t) = Ax(t) + Bu(t) to a state xf from x(0) = 0 in the time tf is (provided the
system is controllable)

E(u, tf ) =
∫ tf

0
‖u(τ)‖22dτ = xTfW

−1
C,tf

xf ,

where

WC,tf =
∫ tf

0
eAτBBT eA

T τdτ

is called the controllability Gramian at time tf [166, Chapter 4]. If we let ‖xf‖2 = 1
then it holds that

E(u, tf ) = xTfW
−1
C,tf

xf ≤ λ−1
min(WC,tf ),

that is, the control energy is upper bounded by the inverse of the smallest eigenvalue
of the controllability Gramian, with equality if the target state xf is parallel to the
corresponding eigenvector. Based on these facts, [126] studies worst-case control-
lability in terms of λmin(WC,tf ) and investigates in particular the relation between
the number of control nodes and the control energy.1 They prove, for example, that
to guarantee an upper bound on the control energy, the number of control nodes
must be a linear function of the total number of network nodes. Otherwise, the
energy will grow exponentially with network size.

1In fact, [126] considers a discrete-time system and the discrete time equivalent of WC,tf .
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The same notion of controllability is also studied in a recent paper [125], where
there is shown to be a trade-off between the controllability Gramian eigenvalues and
the network robustness. That is, there is an inverse relation between λmin(WC,∞)
and the stability radius

r(A) = min{||∆|| : A+ ∆ ∈ CN×N is not Hurwitz stable},

proving that more robust networks are also intrinsically more difficult to control.
If the network size grows while the number of control inputs remains constant,
controllability or robustness, or both, will decrease.

The controllability Gramian can also be used to quantify the degree of control-
lability in other ways. The trace of its inverse

tr(W−1
C,tf

)

is proportional to the average minimal control energy required to reach any target
state xf with unit norm. Tzoumas et al. [179] seek to minimize this measure
through optimal placement of actuators in the network. However, as this problem
is NP-hard, they consider a perturbed version of the trace that permits an efficient
algorithm.

Another approach had earlier been taken by Summers and Lygeros in [171].
Motivated by the energy interpretation of tr(W−1

C,tf
), they choose to maximize

PC := tr(WC,∞)

in a sensor and actuator placement problem, as this effectively minimizes the av-
erage energy at the infinite horizon tf =∞. Considering the trace of the Gramian
itself rather than its inverse allows the optimization problem to be solved efficiently.
It is noted in [126], however, that the selection of nodes that maximizes this metric
does not necessarily minimize the worst-case control energy. We will see similar
conflicts between seemingly related performance objectives later in this thesis. At
this point, we also remark that the weighted trace tr(CPCCT ) corresponds to the
H2 norm of the system with the output y(t) = Cx(t). There is therefore a link be-
tween this notion of controllability and theH2 norm, which is the main performance
measure used in this thesis and which will be discussed next.

2.1.2 Notions of sensitivity and coherence: H2 and H∞ performance
A natural way to characterize a control system’s performance is through the size
of signals of interest, measured through norms. Indeed, the controllability measure
discussed above bounded the L2 norm of the control signal. By letting the system’s
output be the key signal of interest, the H2 and H∞ system norms will capture how
this signal is impacted by several classes of inputs. A derivation of hard bounds on
these norms therefore reveals some of the most important fundamental limitations
to the control system in question.
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A prototypical problem for characterizing bounds on the best-achievable per-
formance in networks was formulated by Bamieh et al. in [14] (with a preliminary
version appearing already in [13]). With a setup like the one in Section 1.2, they
inquire as to the level of network coherence achievable through distributed static
state feedback that is subject to locality constraints. The notion of coherence,
which is also central to this thesis, is captured through the variance of deviations
from a state of consensus:

V dav
i (t) = E


xi(t)− 1

N

N∑
j=1

xj(t)

2
 .

In other words, if this variance is small, the feedback interactions are successful
in upholding a state of consensus, and the network stays coherent. The same
metric (then termed mean-square deviation) had earlier been used as a performance
objective for the design of optimal interaction weights in the first-order consensus
problem by Xiao et al. [190]. Having modeled the system as being subject to a
white noise disturbance, the variance above is (at steady state) equivalent to an
H2 norm.

Bamieh et al. [14] consider large-scale networks built over lattices. They prove
a network dimensionality dependence in asymptotic (in network size) performance
scalings, which show that lower-dimensional lattices have worse levels of coherence.
This implies for example that vehicular platoon formations, being one-dimensional
lattices, exhibit limitations in terms of the feasibility of constructing a formation
that moves like a rigid object.

The particular aspect of the dependence on dimensionality of performance
bounds was also observed in [19] in the context of distributed state estimation
over lattice graphs. Their proofs rely on notions of effective resistance of graphs;
a concept that we will later return to. Seeking a generalization of the dimen-
sionality dependence observed in [14, 19], Patterson and Bamieh [128] studied the
coherence problem for fractal graphs. Though fractal graphs also have a well-
defined dimensionality, their coherence properties could be shown not to coincide
with those of lattice graphs. For d-regular random graphs, however, Jadbabaie and
Olshevsky [79] showed that good coherence properties can be expected provided
d is sufficiently large, which suggests a generalization of the lattice dimension to
other regular graphs. A similar result was shown in [28]. The proper translation of
the notion of dimensionality to characterize coherence properties in general graphs,
however, has remained an open question.

For consensus networks over general graphs, the question of coherence, and
sensitivity to noise in general, has been addressed in a number of works. Young et
al. [192] compared directed and undirected graphs and were among the first to
discuss the relation between the coherence properties, captured through the H2
norm, and the convergence speed of the consensus algorithm. Interestingly, the
convergence speed, which is proportional to the graph’s algebraic connectivity, need
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not scale well with network size in graphs with good coherence scaling, for example
a 3-dimensional lattice. Conditions for the two performance criteria coinciding are
given in [134] in the case of leader-follower consensus. The convergence speed,
in turn, is in the case of standard first-order consensus also proportional to the
system’s H∞ norm with respect to the error y(t) = x(t)− 11Tx(t). This norm can
be evaluated as [155]:

‖G‖∞ = 1
λ2
,

where λ2 is the algebraic connectivity of the graph (see Section 3.2). TheH∞ norm,
which can be interpreted as the system’s maximum L2 gain and thus quantifies the
worst-case deviation from consensus, will therefore not necessarily be small for
systems with small H2 norms.

In a series of works including [155,156], Siami and Motee characterize the coher-
ence behavior of a number of classes of network graphs such as trees and bipartite
graphs. They also consider noise sensitivity in terms of alternative performance
outputs and norms (H∞ in particular) and discuss overall trade-offs between net-
work sparsity and performance. Also Grunberg and Gayme [62] address the H2
performance problem in general graphs, by exploiting a connection to their effec-
tive resistances. As such, there is a strong connection to the earlier work in [57],
which studied the minimization of effective resistances of graphs from a general
standpoint. This connection allows [62] to provide an alternative proof of the per-
formance bounds in [14]. They also discuss the impact of localized disturbances
and propose a notion of inter-nodal (as opposed to global) performance and its
scalings. Finally, Pirani et al. [133, 134] discuss scalings of H2 and H∞ perfor-
mance of consensus networks. In particular, they derive asymptotic performance
bounds for random graphs, which are expressed in terms of their edge probability.

Though the best-achievable performance of networks in terms of notions of co-
herence is known to be fundamentally limited, optimization of the network and
feedback design with respect to these performance criteria remains a relevant prob-
lem. The literature is extensive and often focused on algorithmic aspects, but we
note a few examples. The problem of optimal leader selection with respect to net-
work coherence has been studied in [53,93,128,130]. Optimal edge weight selection
was addressed in [91] and optimal edge additions in [171] (note the correction [170]),
both considering coherence as the performance objectve. Algorithms for optimal
topology design with a joint sparsity and H2 performance objective was studied in,
for example, [69, 92].

The studies listed so far have focused on the dependence of the best-achievable
performance on the local node dynamics and the network topology. However, this
work has been limited to distributed static feedback control which does not alter
the structure of local dynamics. Hence, the possible impact of controller dynamics
on performance bounds, which is one of the key questions addressed in this thesis,
has remained an open question.

An exception is the recent work by Pates et al. [127] that proves underlying
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fundamental limitations to control based on noisy relative measurements between
neighboring nodes of a string formation. Regardless of the transfer function of
the local controllers, there will be a non-zero lower bound on the H∞ norm of
the closed-loop system. This means that certain disturbances will inevitably cause
unfavorable macroscopic behaviors in, for example, vehicular platoons. The setup
in [127] is not immediately comparable to the one used in this thesis, and theH2 and
H∞ performance objectives do not always coincide. However, this work generalizes
some of the disturbance amplification results from the platooning literature, which
we will discuss next.

2.1.3 Performance of vehicles platoons: disturbance amplification and
string stability

Apart from their applicational relevance, the fixed topological structure of vehicle
platoons has led to a particular research interest in their performance limitations
under different feedback protocols. The most well-known performance issue in pla-
toons is string instability, see for example [17, 106, 149, 169, 172]. String instability
implies that disturbances are amplified along the string of vehicles, though the
overall system can be stable in the classical sense (it is therefore a notion of perfor-
mance rather than of stability, see also [21]). A key objective in the string stability
literature is to find a bound on relevant error signals, typically an input-to-output
gain, that holds independently of the platoon size, and renders the control scalable.

For example, Seiler et al. [149] prove fundamental limitations in terms of error
scalings in both predecessor-follower and bidirectional platoons (see Figure 2.2).
They show that the H∞ norm from a disturbance d at the first vehicle to the
error e at a vehicle further down the string will grow unboundedly with the size of
the platoon. That is, there is a platoon size N̄ such that the transfer function

‖Gd,e‖∞ ≥M

for allN ≥ N̄ , given any numberM . They show this to be due to a constraint on the
complementary sensitivity function. The limitation can, however, be relaxed if the
control uses the vehicle’s absolute position with respect to the leader, which agrees
with the results on H2 performance limitations found in [14]. We will elaborate on
the importance of absolute measurements in this thesis.

An extension to [149] in the case of bidirectional control was presented by Ba-
rooah and Hespanha in [17]. For a string of identical vehicles they show that errors
will grow without bound as vehicles are added, regardless of the (linear) controller.
Their proof relies partly on the observation that if the local dynamics has three
or more integrators, the platoon is eventually rendered unstable as it grows. Yad-
lapalli et al. [191] generalize these results to platoons where feedback interactions
are extended to the q nearest neighbors in both directions. They demonstrate that
scalability in terms of a bounded spacing error without absolute measurements can
only be achieved if at least one vehicle allows q to increase linearly in the platoon
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(a) Predecessor-follower protocol

(b) Symmetric bidirectional protocol

(c) Asymmetric bidirectional protocol

Figure 2.2: A common theme in the platooning literature is the comparison of performance
bounds, typically in terms of string stability, with different types of feedback protocols.
In the predecessor-follower protocol (a), only measurements with respect to the vehicle in
front are used. In the bidirectional ones, measurements with respect to the vehicle behind
are also used. If the front and back measurements are given equal weight in the feedback,
the protocol is termed symmetric (b), else it is asymmetric (c).

size. In Chapter 5 of this thesis, we consider high-order integrator networks and
further generalize the stability results observed in [17,191].

Stability of vehicle platoons, more precisely the scaling of the stability margin
defined as the real part of the least stable eigenvalue, was studied in [20,67]. These
studies conclude that allowing for an asymmetry in the feedback protocol with
respect to the vehicle ahead and the vehicle behind (termed mistuning), improves
this scaling as the platoon size grows. Overall, comparing symmetric bidirectional
platooning protocols to asymmetric ones, or to the predecessor-follower protocol, is
a common theme in the platooning literature. For example, Hao and Barooah [68]
compared their respective H2 and H∞ performance, proving that the symmetric
protocol achieves the best scalings. They also show that a nonlinear feedback
protocol can alleviate some of the limitations of the predecessor-follower algorithm.
In a later study by Herman et al. [71], asymmetric protocols were shown to have
unfavorable H∞ performance scalings, regardless of the controller used. However,
they can be alleviated if the local controllers have access to the lead vehicle’s velocity
and thus eliminate one of the two integrators in the local dynamics [72]. In this
thesis, we will also discuss certain aspects of symmetric versus asymmetric feedback
protocols, but mainly consider symmetric ones.

In summary, issues concerning the scalability of distributed controllers in terms
of stability and performance have received a fair amount of attention in the pla-
tooning literature, and a number of fundamental limitations have been described.
These issues are less well studied in the consensus and multi-agent systems liter-
ature, where the set of agents tends to be assumed fixed, but network topologies
can be more complicated, see for example [117]. There have therefore been some
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recent efforts to generalize particularly the notion of string stability to general
networks [21, 169]. In [21], Besselink and Knorn propose the concept of scalable
input-to-state stability, which can be applied to any networked system, also with
nonlinear dynamics. It implies that state perturbations at all nodes remain upper
bounded for any bounded disturbance input anywhere in the network, regardless of
the network size. They present necessary conditions for this to hold true in spatially
invariant networks, but more general results are yet to be developed.

2.1.4 A note on notions of centrality
The term centrality often arises in the context of performance of networked systems.
Centrality indices are used to distinguish the relative importance of individual nodes
for the network’s global performance, and has been of particular importance in the
study of social networks. In traditional graph theory, the simplest and most well-
known characterization of centrality, apart from nodal degree, is that of closeness.
In this case, a node is central if its greatest distance to any other node is small [35,
Chapter 1]. However, depending on the performance objectives, other centrality
notions may be more relevant.

For example, in the context of network controllability, [171] defines an energy
controllability centrality as tr(WC,i), where WC,i is the controllability Gramian
obtained with only the ith input channel. Information centrality, which is a purely
graph theoretical measure proposed in [168], is shown in [53] to be of importance
for optimal leader selection with respect to coherence. In [153], a node’s relative
contribution to the network coherence is proposed as a measure of centrality. It is
evaluated as ηi = ∂V

∂σ2
i
, where σ2

i is the noise intensity at the ith node and V is the
total steady-state variance:

V = lim
t→∞

N∑
i=1

E


xi(t)− 1

N

N∑
j=1

xj(t)

2
 .

Finally, the resistance distance, a concept used to derive asymptotic error scalings
in [19], characterizes node centrality in [32].

Centrality notions will, however, not be important for the developments in this
thesis. With few exceptions, the networks we consider are homogeneous in terms of
nodal dynamics, and we do not treat placement or leader selection problems (apart
from the illustrative Example 8.3). Nevertheless, it may become relevant for future
extensions of topics considered in this thesis.
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Table 2.1: Summary of performance characterizations discussed in Section 2.1, and exam-
ples of their interpretation and evaluation in a network context.

Performance
characterization

Network
interpretation

Evaluation Example
reference

Convergence speed Time to reach
consensus

For 1st-order consensus
conv. speed ∼ 1

λ2

[192]

Degree of
controllability

Energy required to
steer network to a
given state

E.g., tr(W−1
C ) or

λ−1
min(WC)

[126]

H2 performance Coherence of network
driven by white noise

E.g., tr(CPCCT ). See
Section 3.1.

[14]

H∞ performance Worst-case
disturbance
amplification.

For 1st-order consensus
‖G‖∞ = 1

λ2

[127],
[134], [155]

String stability Amplification of a
disturbance d entering
at lead vehicle of a
platoon

‖Gd,e‖∞. [17], [149],
[191]
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2.2 Scalable frequency control for a new power system paradigm

Maintaining the frequency close to its nominal value is one of the key control
objectives in alternating current (AC) power systems. This is traditionally achieved
through a hierarchy of control actions, starting with decentralized primary control
(droop control), via the secondary control layer with the automatic generation
control (AGC) to the tertiary control layer, where an optimal economic dispatch
of generators takes place [76, 98]. These control layers operate at different time
scales and, traditionally, with different degrees of centralization. Power systems
are, however, entering a new paradigm where local, small-scale generation resources
are increasingly replacing high-capacity centralized power plants [49,108]. This has
motivated considerable research efforts in developing, first, a formal understanding
for frequency synchronization, and second, more flexible and scalable distributed
schemes for generation planning and frequency control.

In Chapters 8–10 of this thesis, we join this effort by addressing questions of
performance and scalability of distributed frequency controllers. This section high-
lights a small subset of the related research. The surrounding literature is, however,
vast and the interested reader is referred to the recent review articles [44,110], and
the references therein.

2.2.1 A systems and control perspective on power network
synchronization

Power networks, from having been viewed as well-understood (albeit complex) sys-
tems with little room for innovations, have received renewed research attention from
a systems and control perspective over the last decade. This is in particular true
for the problem of rotor-angular, or synchronous stability. Synchronous stability,
being one of several characterizations of power system stability, is the ability of
the system to recover synchrony after a disturbance [120]. In this context, syn-
chrony refers to the alignment of the phase and frequency of all generators within
a particular power network. In other words, it is when all of the frequencies are
equal [112] and the phase differences are at an equilibrium state corresponding to
balanced power flows throughout the network. Maintaining synchrony thus depends
on a network’s ability to sustain or restore this condition when perturbed from its
nominal operating point.

Synchronous stability properties of power systems are often studied using a so-
called Kron reduced model where constant-impedance loads are absorbed into the
“transmission lines” of the reduced network along with any phase-shifting trans-
formers, see [30, 39, 112, 123, 183]. The resulting system is a set of coupled swing
equations:

miθ̈i + diθ̇i = Pm,i − Pe,i,
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where the power flow is a trigonometric function of phase angle differences:

Pe,i = ḡiV
2
i +

∑
j∈Ni

gijVi Vj cos(θi − θj) +
∑
j∈Ni

bijVi Vj sin(θi − θj).

Here, Vi are voltage magnitudes2 and bij , gij , ḡi are constants (see Section 8.1 for
details). This system can then be analyzed to determine conditions under which
the synchronized state is stable [40,112].

In particular, Dörfler and Bullo have analyzed this problem in a series of works [36–
38,40] by drawing connections between power networks and coupled Kuramoto os-
cillators:

diθ̇ = ωi −
N∑
j=1

aij sin(θi − θj),

in which ωi is a natural frequency, di is a constant and the aij are coupling strengths.
Stability conditions for this model had earlier been derived by, for example, Jad-
babaie et al. in [78]. This modeling framework provides a first-order approximation
of the power system, and properties of the well-understood Kuramoto oscillator
problem can be exploited to provide analytical conditions for frequency synchro-
nization. An analogous analysis was presented for droop-controlled inverters in
microgrids in [158,159]. Mallada and Tang [101] used similar first-order models to
investigate the effects of power flow scheduling and increasing network connectivity
(that is, addition of transmission lines) on the rate of synchronization.

The question of optimal control design for synchronizing oscillator networks was
addressed in [48] and applied to so-called wide-area control to prevent inter-area
oscillations in transmission networks in [42]. These authors use sparsity-promoting
constraints to limit the number of exogenous control inputs and employ quadratic
performance objectives, equivalent to system H2 norms, for their control design.
We also analyze the performance of synchronizing power networks through an H2
norm metric in this thesis. However, the system dynamics and performance outputs
are defined differently, and the performance metrics are therefore distinct.

2.2.2 Novel approaches to frequency control

The new requirements posed by large-scale integration of distributed generation
sources has led to a questioning of the traditional hierarchical structure of frequency
control. This is especially true for microgrids, which are envisioned as networks
composed of distributed generation units, loads and energy storage elements, which
can either connect to the main power grid or operate independetly from it [87,103].
Traditional centralized planning and generation control conflicts with the microgrid

2In a power systems context, the notation Vi, i = 1, . . . , N will always be used to denote voltage
magnitudes. The notation for steady-state variance in a network coherence context: VN = V/N ,
is unrelated to voltages. The meaning of the notation in each case will be clear from the context.
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paradigm of autonomous operation and scalability, so more flexible, distributed
approaches are called for.

On the one hand, this problem has been addressed through online optimiza-
tion techniques, typically based on primal-dual gradient methods, that exploit the
frequency dynamics of the power system [90, 100, 102, 195, 197]. One approach is
through load-side frequency control, that is, the use of controllable loads rather
than generators to compensate for power imbalances. This is attractive in a sce-
nario with high penetration of renewable energy, which is often non-dispatchable
and variable in nature. Zhao et al. [197] address the primary frequency control prob-
lem and prove that the swing dynamics of the system uniquely solves an optimal
load control problem. This means that the problem can be solved in a completely
decentralized fashion. In [100, 102], this problem is extended to include secondary
frequency control, that is, a restoration of the synchronous frequency to the desired
setpoint. In this case, signals must be exchanged between neighboring nodes, but
the control remains distributed.

In an approach similar to [197], Li et al. [90] incorporate the optimal dispatch
problem (that is, the tertiary frequency control layer) to the AGC (the secondary
layer). The resulting optimization problem is again implemented online as fre-
quency control dynamics and solved in a distributed fashion. A slightly more de-
tailed model is used by Zhang and Papachristodoulou [195], where the physics of
the power system is shown to solve an optimal power flow problem at steady state.

Another line of research has studied various integral control strategies to address
the secondary frequency control problem [6, 7, 43, 151, 159, 178, 196]. Among the
proposed controllers are fully decentralized proportional-integral (PI) controllers,
which have been shown to suffer from poor robustness properties and to lead to sub-
optimal power injections [6,43]. When complemented by a distributed averaging of
the integral state, however, these controllers can eliminate frequency errors while
maintaining optimality properties, as shown independently by Andreasson et al. [7]
and Simpson-Porco et al. [159]. In particular, these distributed averaging integral
controllers (we will later refer to them as DAPI) maintain power sharing, by which
a fair allocation of power injections in accordance with the generators’ ratings is
meant. They can also be shown to solve the optimal dispatch problem [43, 196],
and thus eliminate the need for the tertiary frequency control layer. In this thesis,
we will discuss some of these integral controllers from a transient performance
perspective.

2.2.3 Characterizing transient performance
The most novel aspect of this thesis in a power systems context lies in the analysis
of transient performance, not in stability or convergence analysis. Transient perfor-
mance refers to how fast and successfully the power network rejects disturbances
in the form of faults, contingencies or rapid generation or load variations. It can
be described through a number of characteristics. The most important ones are
described in Figure 2.3. They include the maximum rate of change of frequency
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Figure 2.3: Schematic transient response of a power system after a disturbance or contin-
gency. The rate of change of frequency (RoCoF) is defined as the maximum frequency
gradient and the nadir is the maximal deviation from the frequency setpoint. Other per-
formance indicators are the steady-state frequency error ∆ωss and the time to recovery,
here trec.. H2-norm metrics (depending on the output definition) is related to the area
between the frequency curve and the ωss-line.

(RoCoF), the maximal frequency deviation (frequency nadir), the recovery time,
and the frequency deviation at steady state (stationary error). An H2 norm met-
ric, like the one we consider here, would in Figure 2.3 be related to the area of the
response. It thus captures many of these characteristics at once.

We study performance in terms of the resistive power losses incurred in regu-
lating frequency under persistent stochastic disturbances. These losses arise due to
non-equilibrium power flows that occur whenever the system is out of synchrony,
and can be quantified through the H2 norm of a system of coupled swing equations
with an appropriately defined output. We term this particular notion of perfor-
mance the Price of Synchrony. This type of analysis was first proposed by Bamieh
and Gayme [12], and was shortly thereafter extended into the more detailed analysis
in [175] that also appears in Chapter 8 of this thesis.

Since these studies, there has been an increased interest in using H2 norm-based
performance criteria for power system analysis and control design. Motivated by an
expected loss of inertia in renewable energy-integrated power networks, Poolla et al.
use various H2 norm based performance criteria in a problem of optimal allocation
of virtual inertia, and Pirani et al. [135] analyze the effect of loss of inertia through
system norms. The use of select control nodes for optimization of H2 performance
metrics similar to the Price of Synchrony was studied in [61].

The previously mentioned works focus on standard droop controlled networks,
but alternative frequency controllers have also been analyzed. For example, the
H2 performance of primal-dual methods for secondary frequency control (see Sec-
tion 2.2.2) was analyzed in [162] and its extension [161]. Their results show that
these methods may result in controllers with unfavorable performance scalings, but
propose regularization methods that lead to improved scalability. Secondary fre-
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quency control is also treated by Wu et al. [188], who analyze optimal topology
design for the distributed averaging integral controller that we also consider in this
thesis. Their results demonstrate that the H2-optimal centralized controller barely
outperforms a sparse one. Finally, a dynamic droop controller inspired by classic
lead-lag control proposed in [99] was analyzed forH2 performance in [82], and found
to outperform the regular droop controller.

The aforementioned studies, as well as the work to be presented in this thesis, are
subject to a number of limitations. First, power system dynamics are inherently
non-linear, so a use of system norms only allows for a small-signal analysis. A
meaningful generalization of the results to nonlinear dynamics remains an open
question. Second, power systems can be subject to a variety of disturbance scenarios
that do not lend themselves to the current modeling framework. To gain further
insights Coletta and Jaquod have recently analyzed the performance under line
contingencies [33], and colored noise in [32]. Third, much of the analysis requires
an assumption of uniformity in the generators, in terms of damping and inertia.
This assumption is partly relaxed in [122], which unlike most of the related work
takes a transfer function approach to the analysis. They also propose and analyze
norm-based measures that closely resemble the RoCoF and frequency nadir. We
will return to these references and elaborate on the limitations of our study later
in the thesis.

2.3 Concluding summary

This thesis is motivated by two areas of research whose overarching objectives are,
respectively, 1) to characterize fundamental limitations of feedback control under
architectural constraints, and 2) to develop new control strategies for a modern,
highly distributed power system paradigm. Our approach to these problems is to
analyze limitations to the performance and the scalability of distributed static and
dynamic feedback controllers. This is done in terms of H2-norm based performance
metrics. Our review of related literature has shown that this is not the only mean-
ingful way to characterize the performance of a networked system. Others include
convergence times, the degree of controllability, maximum error signals, and (in a
power systems context) the rate of change of frequency. Stability and robustness
properties are also highly important. We note that most of the reviewed literature
on the performance aspects of networked control is less than a decade old. It is
therefore reasonable that a consensus on the most relevant aspects of networked
control performance and their relations to each other have yet to be developed.

This chapter’s literature review describes an increasing interest for H2-norm
based performance measures in both general networked systems and in power sys-
tems. We argue that this use is well motivated, not only from a standpoint of
mathematical tractability. On the one hand, the H2 norm is closely related to
notions of network controllability via the controllability Gramian. On the other
hand, it captures expected deviations from a control objective, rather than worst-
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case scenarios. This means that a limitation on H2 performance is a limitation on
the system’s behavior under ordinary circumstances. While a control design should
also take worst-case and possibly very unlikely scenarios into consideration, such
scenarios do not necessarily give the best understanding for system behaviors such
as network coherence. Finally, in the context of transient frequency responses in
power networks, the H2 norm gives combined information of both amplitudes and
durations of transients, both of which are important. Provided stability conditions
can be met, the use of H2-norm criteria for control and topology design, which has
gained increased popularity, is therefore reasonable.



Chapter 3

Technical Preliminaries

Before proceeding to this thesis’ technical contributions, we review parts of the
mathematical framework that will be needed. We first review the signal and system
norms that will be used for performance evaluations throughout. In Section 3.2 we
introduce relevant concepts from graph theory and define entities like the graph
Laplacian matrix. Section 3.3 goes through definitions and notation for the analysis
of spatially invariant systems and Section 3.4 contains other important definitions
including the notion of asymptotic scalings.

3.1 Signal and system norms

Performance of control systems is usually described in terms of the “size” of certain
signals of interest. In this thesis, we will consider signals that, in a sense, quantify
the level of agreement, or order, in a network. Their size is measured through
relevant signal and system norms. In this section, we review L2 and H2 norms and
discuss how they can be computed and interpreted. This theory along with more
details can be found in [200, Chapter 4].

3.1.1 The L2 norm
Consider a vector-valued signal v(t) = [v1(t), . . . , vn(t)]T defined for t ≥ 0. Its
L2 norm is defined as the square root of the time integral of v∗(t)v(t):

||v||2 =
(∫ ∞

0
v∗(t)v(t)dt

)1/2
. (3.1)

Here, and throughout the thesis, we use ∗ to denote the complex conjugate trans-
pose of a vector or matrix1. The L2 norm can also be evaluated in the frequency

1We will often use the notation for the complex conjugate transpose v∗ even when the vector
or matrix is real valued and the ordinary transpose vT could have been used instead. This choice

37
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domain. We then use the Laplace-transformed signal v̂(s), evaluated on the imagi-
nary axis s = jω:

||v̂||2 =
(

1
2π

∫ ∞
−∞

v̂∗(jω)v(jω)dω
)1/2

. (3.2)

By Parseval’s theorem, the time-domain and frequency-domain norms are equal,
that is,

||v||2 = ||v̂||2.

3.1.2 The H2 norm
Now, consider a general linear MIMO system in the Laplace domain:
ŷ(s) = G(s)ŵ(s), with input w, output y and transfer matrix G(s). If the transfer
matrix G(s) is strictly proper (G(∞) = 0) and input-output stable, the H2 norm
is defined in analogy with the L2 norm in (3.2) as

||G||2 =
(

1
2π

∫ ∞
−∞

tr(G∗(jω)G(jω))dω
)1/2

. (3.3)

The H2 norm characterizes the system’s input-output behavior by quantifying the
size of the output y, as a sum over all frequencies, given certain inputs w. In control
design, a typical control objective is to keep the H2 norm below a given limit, and
the feedback is chosen accordingly.

The H2 norm of a system G is rarely evaluated from its definition in (3.3). It
is instead convenient to use its state space realization.

ψ̇(t) = Aψ(t) + Bw(t)
y(t) = Cψ(t),

(3.4)

where G(s) = C(sI −A)−1B. Through Parseval’s theorem, it is straightforward to
show that ||G||2 is equal to the time-domain norm (3.1) of the impulse response
g(t) = CeAtB for t ≥ 0 (setting g(t) = 0 for t < 0). That is,

‖G‖22 = tr
(∫ ∞

0
B∗eA

∗tC∗CeAtBdt
)
. (3.5)

Now, we define the observability Gramian as the matrix

P =
∫ ∞

0
eA
∗tC∗CeAtdt, (3.6)

which allows (3.5) to be written as

‖G‖22 = tr (B∗PB) . (3.7)

of notation is made for the sake of consistency, as some quantities will sometimes be real valued
and sometimes complex valued. This holds, for example, for Ân in (3.9).
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The observability Gramian is given as the solution to the Lyapunov equation:

A∗P + PA = −C∗C, (3.8)

which is unique if A is Hurwitz stable (that is, if all its eigenvalues have strictly neg-
ative real parts). We can also calculate ||G||22 using the controllability Gramian PC ;
||G||22 = tr(CPCC∗), with APC + PCA∗ = −BB∗.

Exploting the unitary invariance

The H2 norm is unitarily invariant. This means that it is unaffected by a unitary
change of variables in the system. Throughout this thesis, we will exploit this
property when evaluating system H2 norms through spectral decompositions.

For this purpose, consider a unitary matrix U and assume that it (block) diag-
onalizes the system matrix A in (3.4), so that U∗AU = Â, with Â = diag{Ân},
where Ân, n = 1, . . . , N are the eigenvalues of A (or small block matrices, whose
eigenvalues are the eigenvalues of A). We use the matrix U to transform the state
vector ψ(t) according to ψ(t) =: Uψ̂(t). Recalling that a unitary matrix has the
property U∗U = I, the system dynamics in terms of the transformed states ψ̂
become:

˙̂
ψ(t) = U∗AUψ̂(t) + U∗Bw(t)
y(t) = CUψ̂(t).

Since the H2 norm is unitarily invariant, we can multiply the input and output by
the unitary matrix U (assuming w, y ∈ RN , else zeros can be added). We therefore
define ŵ(t) := U∗w(t) and ŷ(t) := U∗y(t), and obtain the system Ĝ from ŵ to ŷ as

˙̂
ψ(t) = U∗AUψ̂(t) + U∗BU ŵ(t) =: Âψ̂(t) + B̂ŵ(t)
ŷ(t) = U∗CUψ̂(t) =: Ĉψ̂(t).

Now, assume that B and C are such that they are, like A, (block) diagonalized
by U . That is, B̂ = diag{B̂n} and Ĉ = diag{Ĉn}. The norm (3.5), which in terms
of the transformed matrices becomes

||Ĝ||22 = tr
(∫ ∞

0
B̂∗eÂ

∗tĈ∗ĈeÂtB̂dt
)
,

is then equivalent to

||Ĝ||22 = tr
(

N∑
n=1

∫ ∞
0
B̂∗neÂ

∗
ntĈ∗nĈneÂntB̂ndt

)
, (3.9)
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since all the matrices are (block) diagonal. Since the trace and the sum can switch
order, we recognize this as the sum of the respective squared H2 norms of N de-
coupled subsystems Ĝn:

˙̂
ψn(t) = Ânψ̂n(t) + B̂nŵn(t)
ŷn(t) = Ĉnψ̂n(t),

which allows us to simply evaluate the H2 norm of (3.4) as

||G||22 = ||Ĝ||22 =
N∑
n=1
||Ĝn||22. (3.10)

The individual subsystem norms can be calculated as ‖Ĝn‖22 = tr
(
B̂∗nPn B̂n

)
where

the observability Gramians Pn are obtained through the Lyapunov equations

Â∗nPn + PnÂn = −Ĉ∗nĈn, (3.11)

for n = 1, . . . , N .

3.1.3 Interpretations of the H2 norm
Throughout this thesis, H2 norms will be used to characterize system performance
in various settings. This usage is supported by some of the H2 norm’s standard in-
terpretations, which we recap here. Denote by G the LTI system (3.4) and consider
the following three scenarios:

i. Response to a white stochastic input. When the input w is a white second
order process with unit covariance, that is, E{w(τ)w∗(t)} = δ(t − τ)I, the
(squared) H2 norm of the system is the steady-state total variance of all of the
output components, that is,

‖G‖22 = lim
t→∞

E{y∗(t)y(t)}. (3.12)

ii. Response to a random initial condition. With zero input and an initial condi-
tion that is a random variable ψo with zero mean and correlation
E{ψoψ∗o} = BB∗, the (squared) H2 norm is the time integral of the result-
ing response y:

‖G‖22 =
∫ ∞

0
E{y∗(t)y(t)} dt. (3.13)

This interpretation is closely related to interpretation (iii):

iii. Sum of impulse responses. Let ei be the vector with a 1 in the ith component
and zero everywhere else. Consider N experiments where in each experiment,
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the system is fed an impulse at the ith input channel, that is, wi(t) = eiδ(t).
Denote the corresponding output by yei ∈ RN . The (squared) H2 norm is then
the total sum of the L2 norms of these outputs, that is,

‖G‖22 =
N∑
i=1

∫ ∞
0

y∗ei(t)yei(t) dt. (3.14)

A stochastic version of this scenario corresponds to a system where the in-
puts wi can occur with equal probability. Under this assumption ‖G‖22 becomes
the expected value of this integral: ‖G‖22 = NE

{∫∞
0 y∗(t)y(t) dt

}
, where the

expectation is taken over the input channels.

We will also consider the following non-standard scenario:

iv. Response to random steps. Let the individual inputs wi, i = 1, . . . , N be
step signals at time t = 0, whose sizes w0,i are independent with zero mean
and unit correlation. That is, w(t) = w0Θ(t) where E{w0w∗0} = IN and Θ(t)
is the unit step function. The expected L2 norm of the output:

E
{∫ ∞

0
y∗(t)y(t) dt

}
, (3.15)

where the expectation is taken over the input signals, is obtained as the H2
norm of the system from w to the signal z(t) =

∫ t
0 y(τ)dτ , provided it is L2-

bounded. That is, the H2 norm of the transfer matrix 1
sG(s), provided this

is an input-output stable system.

The interpretation iv. follows from the stochastic interpretation of iii., noting that
a step is an integrated impulse, and that we consider one in every channel. This
scenario is particularly useful in cases where the system state is ψ = [x, ẋ]T and
y = Cẋ. In this case, the measure (3.15) under a step input (which, note, is not an
H2 norm), can be obtained as the H2 norm with respect to the output z = Cx.
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3.2 Graph theory

The interactions between nodes, or agents, in a networked dynamical system are
modeled through graphs. Many of the results in this thesis are based on properties
of the underlying network graphs, in particular, spectral properties of the graph
Laplacian. The graph Laplacian is one of the standard matrices used to represent
graph structures. In this section, we review relevant definitions and properties of
the graph Laplacian. This theory can be found in textbooks like [35,59,105], though
we note that the notation tends to vary.

3.2.1 Definitions

Let G = {V, E} be a graph, where V = {1, 2, . . . , N} is the set of nodes (vertices),
and E = {(i, j)} ⊂ V × V is the set of edges. We will consider weighted graphs
throughout. This means that each edge (i, j) ∈ E has an associated nonnegative
weight w(i, j) : E 7→ R, which we will simply denote wij . We define wij = 0 if
(i, j) /∈ E . An unweighted graph is equivalent to one where wij = 1 for all (i, j) ∈ E .

If the graph G is directed, the edge (i, j) points from node i (the tail) to node j
(the head). The neighbor set Ni of node i is then the set of nodes j to which there
is an edge (i, j) ∈ E . The outdegree of node i is defined as d+

i =
∑N
j=1 wij and its

indegree is d−i =
∑N
j=1 wji. The graph G is balanced if d+

i = d−i for all i ∈ V. It
is strongly connected if there is a directed path connecting any two nodes i, j ∈ V
and has a connected spanning tree if there is a path from some node i ∈ V to any
other node j ∈ V\{i}.

The graph G is undirected if (i, j) ∈ E ⇒ (j, i) ∈ E for all i, j ∈ V and
wij = wji. The degree of a node i ∈ V is then di =

∑
j∈Ni wij , where the neighbor

set Ni is defined as for the directed graph. If the graph is unweighted, di = |Ni|.
An undirected graph is called connected if there is a path connecting any two
nodes i, j ∈ V. It is always balanced.

There exist several named, special graphs, some of which will be used in this
thesis. Figure 3.1 shows a number of such graphs.

3.2.2 The (weighted) graph Laplacian

Assume that G is undirected. The weighted graph Laplacian L ∈ RN×N of G is
defined as follows

Lij =


−wij if j 6= i and j ∈ Ni∑
k∈Ni wik if j = i

0 otherwise.
(3.16)

By this definition, L = D − A, where D = diag{d1, d2, . . . , dN} is the diagonal
matrix of node degrees and A is what is called the adjacency matrix of the graph.
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(a) Path graph

. .

(b) Complete graph

. .

(c) Ring graph

. .

(d) Star graph

. .
(e) Lattice graph (2D)

. .

(f) 2-fuzz lattice graph (2D)

. .

(g) Example of tree graph

. .
(h) Example of planar graph

Figure 3.1: Some special graphs.
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Properties of the graph Laplacian

The weighted graph Laplacian L defined as in (3.16) has the following properties:

i. Symmetry. Since G is undirected, the edge from node i to node j is identical
to the edge from node j to node i. Therefore, Lij = Lji ∀i, j ∈ V, and L is
symmetric.

ii. Zero row/column sums. Since Lii = −
∑
j 6=i Lij , all rows and columns of L

sum to 0. That means that the vector 1 with all components equal to 1 is an
eigenvector of L corresponding to the eigenvalue 0. That is,

L1 = 0.

Graph Laplacians are thus singular.

iii. Positive semidefiniteness. If the graph underlying the Laplacian is connected,
then, zero is a simple eigenvalue of L. Remaining N − 1 eigenvalues are positive.
If the graph is not connected, the multiplicity of the zero eigenvalue will equal
the number of isolated subgraphs.

iv. Diagonalizability by unitary matrix. Since L is symmetric, it can be diagonalized
by a unitary matrix2 U whose columns are orthonormal, such that L = U∗ΛU ,
where Λ = diag{λ1, λ2, . . . , λN} is a diagonal matrix of the eigenvalues of L.
Throughout, we let them be ordered so that

0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

Example 3.1 (Average consensus) Consider a network of N agents, depicted in
Figure 3.2, each with a scalar information state xi ∈ R, that is controlled according
to: ẋi = ui (omitting time dependence in the notation). The control objective is
for all agents to reach consensus over this state, so that x1 = x2 = · · · = xN = xavg,
where xavg is the average of the initial states. This can be achieved through the
standard average consensus algorithm:

ui =
∑
j∈Ni

wij(xj − xi).

Now, if we define the state vector x = (x1, . . . , xN )T , we can use the graph Lapla-
cian (3.16) to write the control dynamics as:

ẋ = −Lx. (3.17)

If the graph is connected, that is, if there is a path between any two agents in
the network, then it is well known that (3.17) achieves the control objective, that
is, consensus (see for example [141]).

2In fact, U will be a real-valued orthonormal matrix since L is real symmetric.
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……

xk xk+1xk�1

wk

Figure 3.2: A network of N = 6 sensors, where the lines symbolize communication links
with positive weights wij .

Graph Laplacians for directed graphs

If G is directed, the graph Laplacian can be defined just as in (3.16). Each di-
agonal entry Lii then represents the outdegree of the ith node. Clearly, L is not
symmetric in this case. However, the rows still sum to zero, so L1 = 0 and the
zero eigenvalue is simple if G has a connected spanning tree. Remaining eigenvalues
are in the right half of the complex plane and the eigenvalues can be numbered as
0 = λ1 < Re{λ2} ≤ . . . ≤ Re{λN}.

The graph Laplacian of a directed graph is not necessarily diagonalizable. How-
ever, if the graph is such that L is normal, that is, if LTL = LLT , then it is unitarily
diagonalizable as described under point iv. above. Normality of L implies that G
must be balanced.

3.2.3 The grounded graph Laplacian

It will sometimes be useful to consider the grounded graph Laplacian L̄. This is
the (N − 1)× (N − 1) matrix that is obtained by deleting the kth row and column
of L for some k.

For undirected graphs, the grounded Laplacian L̄ is symmetric positive definite,
provided the graph G underlying L is connected. See [107] for a proof. That is,
unlike the ordinary Laplacian, it lacks a zero eigenvalue. We will generally denote
the eigenvalues of L̄ by λ̄n for n = 1, . . . , N − 1.

Consider the following example for the use of the grounded Laplacian.

Example 3.2 (Leader-follower consensus) Consider the system from Example 3.1,
but now assume that Agent number 1 is a leader and that the objective is for all
agents to converge to its state x?1. Without loss of generality, we can transfer this
state to the origin so that x1(t) ≡ x?1(t) = 0. This is equivalent to the slack bus
control in the multi-terminal HVDC network from Example 1.4.

The dynamics of the remaining agents (“the followers”) can now be written

˙̄x = −L̄x̄,
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where L̄ is the grounded graph Laplacian obtained by removing the first row and
column of L, and x̄ = [x2, . . . , xN ]T . Since −L̄ is negative definite, this system
converges exponentially to 0 = x?1.

The electrical analogy of fixing the state at a given node to zero is to connect
it to ground. This is what motivated the term grounded Laplacian.

3.2.4 The algebraic connectivity of a graph
The second-smallest eigenvalue of the graph Laplacian, λ2, is of particular impor-
tance. It is called the algebraic connectivity of the graph G, as it reflects how
well interconnected the graph is. It can also be called the Fiedler eigenvalue after
Miroslav Fiedler who introduced the concept in [52].

The algebraic connectivity is a spectral property of the graph. The term “alge-
braic” should be understood in contrast to other notions of connectivity in tradi-
tional graph theory, such as edge or vertex connectivity, see [35, Chapter 1].

We will discuss the algebraic connectivity and its scaling in network size for
select graphs in Chapter 5.

3.2.5 Some important theorems
The following theorems from algebraic graph theory will be useful for the results
in this thesis.

Interlacing theorems

The following theorems reveal that eigenvalues can only increase if edges are added
to a graph or if their weights increase.

Theorem 3.1 ( [109], Theorem 3.2) Let G be a graph to which we add an edge e
to create the new graph G′ = {V, E ∪ {e}}. Then, the Laplacian eigenvalues of G
and G′ interlace, that is,

0 = λ1 = λ′1 < λ2 ≤ λ′2 ≤ λ3 ≤ . . . ≤ λN ≤ λ′N , (3.18)

where λn, n = 1, . . . , N are the eigenvalues of the graph Laplacian L of G and λ′n
are those of the graph Laplacian L′ of G′. At least one inequality is strict.

The following corollary follows trivially.

Corollary 3.2 Let G′ be a connected, weighted graph with the same vertex set as G,
but only a subset of the edges. That is, G′ = {V, E ′}, E ′ ⊂ E. Then,

0 = λ′1 = λ1 < λ′2 ≤ λ2 ≤ λ′3 ≤ . . . ≤ λ′N ≤ λN . (3.19)
Corollary 3.2 is relevant for the subgraphs of a graph G.

A similar result as in Theorem 3.1 holds if we instead of adding an edge consider
increasing the weight of an edge:
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Theorem 3.3 Consider a graph G = {V, E}. Construct the graph G′ by increasing
the weight of an edge e′ = (i′, j′) ∈ E. Then the Laplacian eigenvalues of G′ satisfy

λ′n ≥ λn
for each n = 2, . . . , N , where λn are the eigenvalues of G. At least one inequality
is strict.

Proof: Increasing the weight of an edge (i′, j′) by ∆w means that the new graph
Laplacian can be written L′ = L + ∆L, where ∆L is also a positive semidefinite
graph Laplacian (of a disconnected graph). By the Courant-Weyl inequalities, see
[25, Theorem 2.8.1], this implies that λ′n ≥ λn for each n = 1, . . . , N . The diagonal
elements L′i′i′ > Li′i′ and L′j′j′ > Lj′j′ . Therefore tr(L′) =

∑N
n=1 λ

′
n >

∑N
n=1 λn =

tr(L), so at least one inequality must be strict. �

Effective resistance and Rayleigh’s monotonicity law

There is a connection between graph Laplacian eigenvalues and the notion of the
effective resistance of a graph, see [45, 47, 57]. Consider a network of resistors as
in Figure 3.3. The effective resistance between any two nodes i and j is defined
as Reff

ij . This would correspond to the voltage one would measure if one were to
close a circuit with a one Ampere current source between nodes i and j. It can also
be called the resistance distance [85].

The total effective resistance of the network graph is called the Kirchhoff index
and is defined as

Kf :=
∑
i<j

Reff
ij = 1

2

N∑
i,j=1

Reff
ij . (3.20)

It is a scalar measure of how well “connected” the network is, or how “large” it is
in terms of resistance distance [57].

The Kirchhoff index has been shown, for example in [64], to equal:

Kf = N

N∑
n=2

1
λGn

, (3.21)

where λGn are the eigenvalues of the conductance matrix LG of the resistor network.
This is the weighted graph Laplacian defined as in (3.16) with the weights wij =
1/rij = gij (gij is the conductance of the line (i, j)). The following relation will
also be of importance:

tr(L†G) =
N∑
n=2

1
λGn

, (3.22)

where † denotes the Moore-Penrose pseudo inverse. The relation (3.22) holds for
any graph Laplacian.

We are now ready to state the following Lemma.
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1 2 3

4

5

6

Figure 3.3: A resistor network. The pairwise effective resistance between any two nodes
i and j is denoted Reff

ij . For example, Reff
13 = r12 + r23. The total effective resistance∑

i<j
Reff
ij is called the Kirchhoff index and can be evaluated through the Laplacian eigen-

values of the corresponding network graph.

Lemma 3.4 (Rayleigh’s monotonicity law) Removing an edge from a graph, or
increasing its resistance, can only increase the effective resistance between any two
nodes in the network. Conversely, adding edges or decreasing their resistance can
only decrease the effective resistance between any two nodes.

Proof: See, for example, [45]. �

The following corollary follows from Rayleigh’s monotonicity law as well as from
Theorems 3.1 and 3.3:

Corollary 3.5 Removing an edge from a graph, or increasing its resistance, can
only increase the Kirchhoff index Kf of a graph, and vice versa.

3.3 Spatially invariant systems

In several parts of this thesis, we will consider networked systems modeled over
regular lattice structures. These systems will then be assumed to be spatially
invariant with respect to the network, which essentially means that the control
dynamics are invariant to spatial translations. Spatial invariance can be viewed as a
counterpart to time invariance in spatio-temporal systems, and like the assumption
of time invariance, it provides a powerful set of tools for a tractable analysis.

The most important of those tools will be spatial Fourier transforms, which
allow for an analysis of system properties in what can be thought of as a spatial
frequency domain. Later in this thesis, we will introduce a technical framework for
evaluating the performance of spatially invariant systems based on such properties.
Here, we review some necessary preliminaries. More details to spatially invariant
systems can be found in [15].
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(a) d = 1 (b) d = 2 (c) d = 3 (without periodicity)

Figure 3.4: Illustration of the d-dimensional toric lattice ZdL for d = 1, 2, 3. In the one-
dimensional case ZL is a ring graph and in the two-dimensional case Z2

L is a torus. For
d = 3 the lattice is drawn without the periodic boundary conditions.

3.3.1 Topology

We will consider problems modeled over the d-dimensional torus ZdL with a total
of N = Ld nodes and d assumed finite. In the one-dimensional case (d = 1), ZL
is simply the L node ring graph, which we can represent by the set of integers
{−L2 , . . . , 0, 1, . . . ,

L
2 − 1} mod L for L even, and {−L−1

2 , . . . , 0, 1, . . . , L−1
2 } mod L

for L odd. ZdL is the direct product of d such rings. See also Figure 3.4.
Going forward, it will also be useful to define the infinite d-dimensional lat-

tice Zd, which is the direct product of d copies of the integers.

3.3.2 Operations

We will define real-valued function arrays over the network, such as a : ZdL 7→ R,
where we will use multi-index notation to denote the kth array entry ak = a(k1,...,kd).
Similarly, the state at node k = (k1, . . . , kd) in the d-dimensional torus is denoted

x(k1,...,kd)(t),

which in our case will either be a scalar in C or a vector-valued signal in Rd. We
will in most cases omit the time dependence in the notation.

Linear operators, denoted by upper case letters, will be used to define multi-
dimensional circular convolutions with function arrays over ZdL. For example, the
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convolution operator A associated with the array a is defined as follows:

h = Ax = a ? x

m (3.23a)

h(k1,...,kd) =
∑

(l1,...,ld)∈Zd
L

a(k1,...,kd)−(l1,...,ld)x(l1,...,ld),

or, in short,
hk = (Ax)k =

∑
l∈Zd

L

ak−lxl. (3.23b)

In cases where the state x ∈ Rd, the array element ak is a d × d matrix, which
in this thesis will be assumed to be diagonal due to coordinate decoupling. The
addition of multi-indices in the ZdL arithmetic is done as follows:

k + l = (k1, . . . , kd) + (l1, . . . , ld) = (k1 + l1, . . . , kd + ld)modL.

Here, modL implies that the operation is circulant. All operations on ZdL will
be assumed spatially invariant. They can therefore be represented by convolution
operators with single-index arrays as in (3.23).

3.3.3 Spatial Fourier transforms
The spatial discrete Fourier transform (DFT) of the array a will be denoted with â,
and we will use the letter n to denote the index, or wavenumber, of the spatial
Fourier transform. For example, the function array a(k1,...,kd) has â(n1,...,nd) as
its Fourier transform, where the wavenumber (n1, . . . , nd) can be thought of as a
spatial frequency variable. We will use the DFT that is defined as:

ân :=
∑
k∈Zd

L

ake
−j 2π

L n·k, (3.24)

where n · k = n1k1 + · · ·+ ndkd.
Function arrays can also be defined over the infinite d-dimensional lattice Zd.

We then use the subscript ∞ for the array, as in a∞, with entries a(k1,...,kd) for
k ∈ Zd. The corresponding convolution operator is denoted A∞. The Z-transform
of a∞ evaluated on the unit circle ejθ is:

â∞(θ) :=
∑
k∈Zd

ake
−jθ·k, (3.25)

where θ = (θ1, . . . , θd) denotes a spatial frequency, which takes values in the multi-
variable rectangle Rd := [−π, π]d.

We will use the term (generalized) Fourier symbol of convolution operators for
the DFT or Z-transform of the corresponding function array. For example, â
in (3.24) is the Fourier symbol of the operator A. The values that â takes are
exactly the eigenvalues of A. In cases where a is matrix valued, the eigenvalues
of A are the union of all eigenvalues of â(n1,...,nd) as (n1, . . . , nd) runs through ZdL.
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3.4 Miscellaneous definitions

3.4.1 Notation for scalings
Throughout this thesis, we derive what we term (asymptotic) scalings of perfor-
mance measures with respect to the size of networks. The symbol ∼ will be used
to denote scalings in the following manner:

u(N) ∼ v(N) ⇔ cv(N) ≤ u(N) ≤ c̄v(N), (3.26)

for any N ∈ N, where the fixed constants c, c̄ are independent of the variable N .
When a scaling is said to hold asymptotically, the relation (3.26) holds for allN > N̄
for some fixed N̄ .

The same notation can be used in the same manner for functions defined on
other domains than the natural numbers. We can for example write u(θ) ∼ v(θ)
for θ ∈ [−π, π] ⊂ R, which again means that cv(θ) ≤ u(θ) ≤ c̄v(θ) for some fixed
constants c, c̄.

3.4.2 Representation of AC power networks
An alternating-current (AC) power network can be modeled as an undirected graph
G = (V, E), where the nodes in V represent generator or load buses, and the
edges in E represent power lines. Each power line has an associated impedance
zij = rij + jxij , where rij is the line’s resistance and xij its reactance. An exam-
ple of such a network for N = 7 is found in Figure 8.1. The inverse of the line
impedance is called line admittance:

yij = 1
zij

= gij − jbij ,

where gij = rij
r2
ij

+x2
ij

and bij = xij
r2
ij

+x2
ij

are , respectively, the conductance and suscep-
tance of the line. Furthermore, each node i ∈ V may have a shunt conductance ḡi
and a shunt susceptance b̄i which represent the node’s connections to ground.

Power networks are generally modeled through the network admittance ma-
trix Y defined as:

Yij :=


ḡi + b̄i +

∑
k∈Ni

(gik − jbik), if i = j,

−(gij − jbij), if i 6= j and j ∈ Ni,
0 otherwise.

(3.27)

where Ni denotes the neighbor set of node i. The diagonal elements Yii of the
admittance matrix is the self-admittance of node i and is equal to the sum of the
admittances of all lines incident to that node (including the shunt).

The admittance matrix can be partitioned into a real and an imaginary part
and we define

Y = (LG + diag{ḡi})− j(LB + diag{b̄i}) (3.28)
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where LG is called the conductance matrix and LB the susceptance matrix. The
matrices LG and LB are weighted graph Laplacians where the weights are, respec-
tively, the conductance and susceptance of each edge in the graph.



Chapter 4

Coherence of Large-Scale Networks With
Distributed PI and PD Control

In this first technical chapter of the thesis, we consider the problem of distributed
consensus among agents with second-order dynamics. The consensus objective is
to drive the network of agents to a state of agreement or onto a common trajectory.
However, when the system is subject to external disturbances, there are limitations
to the achievable performance. In particular, there are limitations to how close the
agents of a large-scale network can come to a state of consensus, or what we term
the coherence of the network. Such fundamental limitations were studied in [14],
where scalings of measures of network coherence with network size were established
for first- and second-order consensus networks. It was shown that reasonable per-
formance in sparse networks, such as vehicle platoons, requires that each agent can
access measurements of its own states with respect to a global reference frame;
what we term absolute feedback.

The importance of absolute feedback for network coherence has also been rec-
ognized in [93, 128, 133], where the impact of leaders – select agents with access
to absolute measurements – was studied in first-order consensus networks. Here,
we focus on second-order consensus, and do not consider adding absolute state
feedback to improve performance, which would require increasing the agents’ sen-
sory capabilities. Instead, we propose the use of alternative controller structures,
namely controllers with integral and derivative action in addition to the standard
proportional control.

Proportional-integral-derivative (PID) control has been studied for consensus
networks in [95] and the role of integral action in disturbance rejection for these
systems was described in [5, 54, 150]. While these works have focused on proving
convergence of the respective control strategies, we address the question of per-
formance and scalability. We will show that in cases where agents have access to
absolute measurements of one of their two states, PI and PD control can relax the
performance limitations that apply to systems with only proportional control.

53
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The idea behind this result is simple; integral or derivative action, when applied
to the available absolute state measurement, emulates absolute feedback from the
other state. For example, the derivative of a position measurement corresponds to
a velocity measurement. Therefore, it is intuitive that a performance improvement
would be obtained with ideal integral or derivative action.

However, the controllers we consider here are modified to account for imperfec-
tions. In particular, we first consider a distributed averaging PI (DAPI) controller,
in which the integral state is passed through a consensus filter to prevent destabiliz-
ing drift due to measurement noise. A version of this controller has been proposed
in the context of electric power networks in [6,163,196]. Second, we model low-pass
filtering of the derivative action in the proposed filtered distributed PD (F-DPD)
controller. Interestingly, a fundamental performance improvement is achieved with
any design of these filters, yet this chapter also provides insights into how their
design impacts performance, as well as to their optimal tunings.

4.1 Problem setup

The problem treated in this chapter was already introduced in Section 1.2, but
we repeat the setup here in more detail. We also define the performance output
that allows us to measure network coherence through the system’s input-output
H2 norm.

4.1.1 Network model and definitions
Consider a network of N identical agents modeled by the undirected, connected
graph G = {V, E}, where V = {1, 2, . . . , N} is the set of nodes and E = {(i, j)} is
the set of edges. Assume that each edge has an associated weight wij = wji> 0 and
denote by L the weighted graph Laplacian of G, defined as in (3.16). Remaining
notation in this chapter adheres to the definitions in Section 3.2.

4.1.2 Second-order consensus
We consider a set V of agents, each governed by double-integrator dynamics and
subject to stochastic disturbances:

ẋi(t) = vi(t)
v̇i(t) = ui(t) + wi(t).

(4.1)

Here, ui(t) is a control input and wi(t) is assumed to be a zero-mean Gaussian
white noise process that is uncorrelated across nodes (see Section 1.2). Henceforth,
we will often drop the time-dependence in the notation. Without loss of generality,
we assume that the states xi, vi ∈ R for each agent i represent deviations from a
desired trajectory x̄i with common constant velocity v̄, so that

x̄i(t) := v̄t+ δi,
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where δi is a given setpoint. The states xi, vi may carry different meanings depend-
ing on the application. We recall two examples at the end of this section.

The control objective is for all agents to follow the desired trajectory, in our
case, to drive the states to zero. We model full state feedback control and first
consider a standard linear consensus algorithm (see, for example, [140])

ui = −
∑
j∈Ni

fij(xi − xj)−
∑
j∈Ni

gij(vi − vj)− f0xi − g0vi, (4.2)

where fij , gij , f0, g0 are nonnegative gains. In this chapter, we refer to (4.2) as
proportional (P) control.

Recall that we distinguish between two types of state measurements and feed-
back: relative and absolute. Relative measurements are taken with respect to neigh-
bors, as in (xi − xj), (vi − vj) for j ∈ Ni, while absolute measurements imply that
agent i can access its own state xi or vi. In (4.2), we say that absolute feedback
from the state xi (vi) exists if f0 > 0 (g0 > 0). In this chapter, we will consider
cases in which absolute measurements are only available for either xi or vi, and let
this apply to all agents. Regarding the assumption on uniform gains f0, g0, see
Remark 4.1.

By defining the state vectors x = [x1, . . . , xN ]T and v = [v1, . . . , vN ]T , we can
write the system (4.1) with control (4.2) as[

ẋ
v̇

]
=
[

0 I
−LF − f0I −LG − g0I

] [
x
v

]
+
[
0
I

]
w, (4.3)

where LF (G) is the weighted graph Laplacian defined as in (3.16), with edge weights
fij (gij) for (i, j) ∈ E . The vector w contains the noise.

In order to provide tractable closed-form solutions in what follows, we will
impose the following assumption:
Assumption 4.1 (Proportional gains) The ratio fij/gij is uniform across all
(i, j) ∈ E . We write fij = fwij and gij = gwij , so that LF = fL and LG = gL,
with f, g ≥ 0.

Example 4.1 (Vehicular formation) Consider a set of N vehicles in a formation,
where the control objective for each vehicle is to follow the trajectory x̄i(t) :=
v̄t+ i∆, despite being subject to random forcings wi. Here, v̄ is a common cruising
velocity and ∆ is the desired inter-vehicle spacing. Each vehicle controls its velocity
according to (4.2), with nearest-neighbor interactions, so that Ni = {i + 1, i − 1}
for i = 2, . . . , N − 1, N1 = {2} and NN = {N − 1}, resulting in a 1-dimensional
string formation. The closed-loop system becomes (4.3).

Consider a scenario in which the vehicles are not equipped with speedometers,
but have radars to measure relative positions and velocities with respect to neigh-
bors. Furthermore, the position of the lead vehicle is broadcast across the network,
so each vehicle can calculate its own position. In this example, there is therefore
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absolute feedback from the position x, but not from the velocity v, so f0 > 0 while
g0 = 0 in (4.2).

Example 4.2 (Frequency control in power network) Synchronization in power
networks is typically studied through a system of coupled swing equations. Under
some simplifying assumptions which we will discuss in Chapter 8, the linearized
swing equation can be written as:

mθ̈i + dθ̇i = −
∑
j∈Ni

bij(θi − θj) + Pm,i, (4.4)

where θi is the phase angle deviation at node i, θ̇i = ωi is the frequency deviation,
and mi and di are, respectively, inertia and damping coefficients. The term Pm,i
can be seen as the net power injection at the node, and bij is the susceptance of
the (i, j)th power line. In the absence of any additional control input, we also refer
to (4.4) as frequency droop control.

The system (4.4) can be cast as the P-controlled system (4.3), with x =̂ θ,
v =̂ ω, g0 =̂ d

m , LF =̂ bij
wijm

L, LG = 0 and f0 = 0. The power injection Pm
can be absorbed into the disturbance input w, which we take to represent random
fluctuations in generation and load. In this problem, there is absolute feedback
from the frequency ω, but only relative feedback from the phase angles θ (absolute
measurement of phase angles would require phasor measurement units (PMUs),
which in general are not available).

4.1.3 Performance metric
We will evaluate control performance in terms of a network coherence metric. This
can be understood as a measure of network disorder, or in other words, how well
the control objective of consensus is achieved. Similar to [14, 128], we define the
coherence metric as the steady-state variance of the agents’ deviation from the
network average:

V = lim
t→∞

∑
i∈V

E


xi(t)− 1

N

∑
j∈V

xj(t)

2
 . (4.5)

The quantity V can be evaluated analytically as the squared H2 norm of an input-
output system H from the disturbance input w(t) in (4.1) to a performance out-
put y(t) defined as

y(t) =
(
I − 1

N
11T

)
x(t), (4.6)

where 1 is the (N × 1) vector of all ones.
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To better analyze the scaling of (4.5) with the network size, we will normalize
it by the total number of agents:

VN = 1
N

V. (4.7)

It is the scaling of VN as N increases that we will refer to as the level of coherence
in the network. For a given control law to be scalable, VN should be uniformly
bounded, in which case the system can be regarded as fully coherent.

4.2 Limitations of proportional control

We begin the discussion on limitations of the proportional control law (4.2) by
stating the closed-form expression for its performance.

Theorem 4.1 The scaled performance output variance (4.7) for the P-controlled
system (4.3) is given by

V P
N = 1

2N

N∑
n=2

1
(f0 + fλn)(g0 + gλn) . (4.8)

Proof: See Appendix 4.A.

Clearly, in the absence of absolute feedback (that is, if f0 = 0 and/or g0 = 0), the
sum in (4.8) tends towards infinity if one or more of the Laplacian eigenvalues λn,
n ≥ 2 approaches zero. Laplacian eigenvalues typically tend to zero as a network
grows large, unless it is densely interconnected. If the sum increases faster than
linearly in N , the performance metric V PN will scale badly and the network lacks
coherence.

This was the problem considered in [14], where asymptotic scalings of expres-
sions such as (4.8) were derived for networks built over d-dimensional toric lattices.
Their results for the most problematic 1-dimensional network (a ring graph) show
that V PN scales linearly in N if one of f0, g0 is zero, and as N3 if both are zero.
The same scalings can be derived using arguments based on effective resistances
for networks that can be embedded in lattice networks, see [18], or for a recent ap-
plication in power systems [9]. We will return to such regular networks and prove
these scalings formally in Chapter 6.

This points at a fundamental limitation to the performance of the P con-
troller (4.3), as the variance (4.8) is only bounded for any network if there is absolute
feedback from both the states xi and vi. That is, both measurements are required
for P control to be scalable. An important question has therefore been whether
alternative controller structures can alleviate these limitations. In the next section,
we present linear controllers for which it suffices to have an absolute measurement
of either xi or vi to achieve bounded scalings for any network.
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Remark 4.1 The assumption that the absolute feedback gains f0, g0 are uniform
across the network is needed to derive the closed-form expression (4.8), but can be
shown not to be important for the main conclusion that V PN scales badly in the
absence of absolute feedback. With non-uniform gains f0, g0, a lower bound on V PN
on the form (4.8) can instead be stated in terms of the maximum available gains,
see Appendix 4.B. �

4.3 Distributed PI and PD control

We now introduce the distributed PI and PD controllers with which we propose
to address the limitations posed by proportional control. We show that these con-
trollers achieve bounded output variances (4.7), and demonstrate the performance
improvement through numerical examples.

4.3.1 Absolute v-feedback: Distributed PI control
Suppose that an absolute measurement of vi is available, while one of xi is not. For
this case, we propose to use the following distributed averaging proportional-integral
(DAPI) controller:

ui = −
∑
j∈Ni

fij(xi − xj)−
∑
j∈Ni

gij(vi − vj)− g0vi +KIzi

żi = −vi −
∑
j∈Ni

cij(zi − zj), (4.9)

where zi is the integral state, KI is a positive gain (integral gain), and we will
discuss the averaging filter −

∑
j∈Ni cij(zi − zj) shortly. First, note that if cij =

0 for all (i, j), it holds that zi(t) =
∫ t

0 vi(τ)dτ + zi(0) and since, by definition,∫ t
0 vi(τ)dτ = xi(t) − xi(0), the integral state zi would correspond to an absolute
measurement of the state xi, modulo initial values. In this case, we would therefore
expect that the controller (4.9) has a performance similar to (4.2) with absolute
feedback from both vi and xi. However, as mentioned in this chapter’s introduction,
an averaging filter on the integral states with positive gains cij is required to ensure
system stability [5]. We will show that also with this filter, the desired performance
scaling can be achieved.

By inserting (4.9) into (4.1) we obtain, in vector form:ẋv̇
ż

 =

 0 I 0
−LF −LG − g0I KI

0 −I −LC

xv
z

+

0
I
0

w. (4.10)

In line with Assumption 4.1, we make the following assumption on the weighted
graph Laplacian LC :
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Assumption 4.2 The gains cij are proportional to fij , gij for all (i, j) ∈ E . We
write cij = cwij , so that LC = cL, with c ≥ 0.

Under Assumptions 4.1–4.2, the system (4.10) is input-output stable with respect
to the output (4.6) [174] and its performance can be stated as follows:

Proposition 4.2 The scaled performance output variance (4.7) for the DAPI-
controlled system (4.10) is given by

V DAPI
N = 1

2N

N∑
n=2

1
fgλ2

n + KIf(g0+λn(c+g))+g0fλn(c2λn+f+cg0)
f+cg0+cλn(c+g)

. (4.11)

Proof: The result (4.11) is derived in the same manner as in the proof of Theo-
rem 4.1. �

While the expression (4.11) is convoluted, it allows for the following important
conclusion:

Corollary 4.3 For any positive and finite gains KI and c, V DAPI
N in (4.11) is uni-

formly bounded in N . It holds that

0 < V DAPI
N <

f + cg0

2KIfg0
. (4.12)

Proof: It is readily verified that the expression

sn := 1
fgλ2

n + KIf(g0+λn(c+g))+g0fλn(c2λn+f+cg0)
f+cg0+cλn(c+g)

(4.13)

from the terms in (4.11) is monotonically decreasing in λn ≥ 0. Its supremum
s̄n is therefore obtained as λn → 0 and is s̄n = f+cg0

KIfg0
. Thus, the sum

∑N
n=2 sn <

(N−1)s̄n < N f+cg0
KIfg0

, which inserted in (4.11) gives the upper bound in (4.12). The
lower bound is obtained when λn → ∞ for all n = 2, . . . , N . This is, for example,
the case when G is the complete graph KN , as N →∞. �

Corollary 4.3 implies that the DAPI controller, unlike the P controller, is scalable
and allows any network to be fully coherent.
Remark 4.2 If c → 0 in (4.11), the output variance for P control with absolute
feedback from both xi and vi is retrieved, substituting the integral gain KI for f0
in (4.8). This is in line with the discussion at the beginning of this section. In-
terestingly though, letting c → 0 does not necessarily minimize V DAPI

N . We will
discuss how to optimize c for performance in Section 4.4. �
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Example 4.2 (Continued) Applying DAPI control to the power system dynam-
ics (4.4) yields the closed-loop system:

ω̇i = − d

m
ωi −

1
m

∑
j∈Ni

bij(θi − θj) +KIzi + Pm,i

żi = −ωi −
∑
j∈Ni

cij(zi − zj).
(4.14)

In this case, the integral action is also referred to as secondary frequency control,
the role of which is to eliminate any stationary frequency control errors that arise
with only P control [6, 163]. As we have shown in this section, it also improves
transient performance.

On the one hand, the fact that V DAPI
N is bounded implies that the network

can remain fully coherent in terms of phase angles under white power injection
noise Pm = w. On the other hand, Interpretation iv. in Section 3.1.3 allows an
alternative scenario where

V DAPI
N = E


∫ ∞

0

1
N

n∑
i=1

ωi(t)− 1
N

N∑
j=1

ωj(t)

2

dt

 ,

and the expectation is taken over the net power injection (equivalently, the net
power load), which for t ≥ 0 is modeled as a zero-mean random variable with
correlation E{PmP ∗m} = IN . This interpretation relates directly to the control
objective of frequency synchronization; a large integral indicates a lack of frequency
coherence over the transient. Step changes in loads are also a realistic input scenario
in a power network.

In Figure 4.1, we show a simulation of P control (4.4) and DAPI control (4.14)
on a theoretical radial power network (here modeled by a path graph) with, respec-
tively, 10 and 100 nodes under random step changes in the load. The figures show
that DAPI control scales significantly better to the larger network than P control.

In the simulation, we have set m = 20
ωref , d = 10

ωref , with ωref = 2π60 Hz, KI = 1,
c = 0.1 and bij = 0.3 for all (i, j) ∈ E .

A simulation of the DAPI controller on a 469 generator model of the Nordic
power system depicted in Figure 1.7b is found in [8]. That simulation supports the
conclusions from this example.

4.3.2 Absolute x-feedback: Distributed PD control
Suppose now that an absolute measurement of xi is available, while one of vi is
not. In this case, distributed proportional-derivative (PD) control can be used to
improve performance compared to the P controller. With ideal derivative action,
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(a) P control (Droop), N = 10
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(d) DAPI control, N = 100

Figure 4.1: Frequency trajectories in power network with path graph topology with N = 10
and N = 100, under random step changes in the net power load at time t = 0 (only
subset shown for N = 100). We note that with droop control, performance deteriorates
significantly as N is increased, which is not the case with DAPI control.

the controller would take the form:

ui = −
∑
j∈Ni

fij(xi − xj)−
∑
j∈Ni

gij(vi − vj)− f0xi −KD
dxi
dt , (4.15)

which, since dxi
dt = vi(t), is identical to (4.2) with absolute feedback from both xi

and vi, substituting the derivative gain KD for g0. Clearly, this controller would
therefore also have the same performance. Ideal derivative action is, however,
neither possible nor desirable to implement, partly due to the sensitivity to high-
frequency noise. We therefore consider a controller where the derivative action is
low-pass filtered:

ui = −
∑
j∈Ni

fij(xi − xj)−
∑
j∈Ni

gij(vi − vj)− f0xi + zi

żi = −1
τ
zi −

1
τ
KD

dxi
dt .

(4.16)

Here, the state zi corresponds to the derivative action, and τ > 0 is the time
constant of the filter. We will refer to the controller (4.16) as filtered distributed
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PD control (F-DPD). Note that the ideal PD controller is retrieved for τ = 0.
Remark 4.3 An alternative approach would be to apply ideal derivative action
and low-pass filter the entire control signal ui in (4.15). The resulting performance
scaling is similar. We choose the controller (4.16) to enable a better comparison to
the P controller (4.2), as the proportional action is unfiltered in both. �

The system (4.1) with the controller (4.16) becomes:ẋv̇
ż

 =

 0 I 0
−LF − f0I −LG I

0 − 1
τKDI − 1

τ I

xv
z

+

0
I
0

w. (4.17)

The performance of this system, under Assumption 4.1, is given by the following
proposition:

Proposition 4.4 The scaled performance output variance (4.7) for the F-DPD-
controlled system (4.17) is given by

V F−DPD
N = 1

2N

N∑
n=2

1

(f0 + fλn)
(
gλn + KD(τgλn+1)

τ2(f0+fλn)+τgλn+1

) (4.18)

Proof: This result is derived in the same manner as in the proof of Theorem 4.1.
The system’s stability can in this case be verified through the characteristic poly-
nomial ξ3 + (gλn + 1

τ )ξ2 + (KD+gλn
τ + f0 + fλn)ξ + f0+fλn

τ = 0, which satisfies the
Routh-Hurwitz criterion. �

Again, the expression is convoluted, but it reveals that the output variance is
bounded for any network:

Corollary 4.5 For any positive and finite gains KD and τ , the variance V F−DPD
N

in (4.18) is uniformly bounded in N . It holds that

0 < V F−DPD
N <

τ2f0 + 1
2f0KD

(4.19)

Proof: Similar to the proof of Corollary 4.3, it can be verified that

sn := 1
(f0+fλn)

(
gλn+ KD(τgλn+1)

τ2(f0+fλn)+τgλn+1

)
from the terms in (4.18) is monotonically decreasing in λn > 0. An upper bound is
thus obtained as λn → 0, which gives sn < τ2f0+1

f0KD
for all n. Therefore, V F−DPD

N =
1

2N
∑N
n=2 sn <

N−1
2N

τ2f0+1
f0KD

< τ2f0+1
2f0KD

. As with Corollary 4.3, the lower bound of 0
is obtained, for example, by letting λn →∞. �

Corollary 4.5 implies that the F-DPD controller, unlike the P controller, is scalable
and allows any network to be fully coherent.
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Figure 4.2: Subset of position trajectories (relative to leader) for a 100 vehicle formation,
subject to noise. With F-DPD control, trajectories are more coherent.

Example 4.1 (Continued) Consider again the formation of vehicles. Since no ab-
solute feedback from velocities vi was available, we implement the F-DPD con-
troller (4.16).

Figure 4.2 shows a simulation of a 100 vehicle formation under a white noise
disturbance input. While the spacings between neighbors seem well-regulated in
both systems, the P-controlled system appears less coherent.

In the simulation, we have set f = g = f0 = KD = 1, and τ = 0.1.

4.4 Controller tuning for improved coherence

Neither the DAPI controller (4.9), nor the F-DPD controller (4.16) represents ideal
integral or derivative action. In both cases, we have modeled filters to mitigate
well-known issues related to noise and uncertainties. In this section, we discuss
how the design of those filters impacts performance.

4.4.1 Optimal distributed averaging in DAPI

As already discussed, robust stability of the DAPI controlled system (4.10) requires
an alignment between the agents’ integral states zi through a distributed averaging
filter. While the control objectives will be reached for any non-zero gains cij [163],
an important control design question is how to choose these gains to optimize
network performance. In our case, this choice is reflected through the constant c
(see Assumption 4.2). Consider the following proposition.

Proposition 4.6 For a given DAPI controlled system (4.10), there is either a finite
c? > 0 that minimizes V DAPI

N in (4.11), or V DAPI
N is minimized by c? = 0 and is

monotonically increasing for c > 0.
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The case c? > 0 holds if

f >
1
λn

(gλn + g0)2 ∀n = 2, . . . , N

and the case c? = 0 holds if

f ≤ 1
λn

(gλn + g0)2 ∀n = 2, . . . , N.

If none of these applies, c? must be evaluated case by case.

Proof: See Appendix 4.C.
Finding a closed form expression for c? is in general not tractable due to the many
terms in the sum (4.11), and must be done on a case-by-case basis. However, it is
possible in the special case of a complete network graph:

Proposition 4.7 If the network graph G is complete and the edge weights wij = w
for all (i, j) ∈ E, then c? is given by

c? =
√

f

Nw
− g + g0

Nw
(4.20)

if this is a positive number. Otherwise c? = 0.

Proof: In this case, the eigenvalues λn = Nw for n ≥ 2, and (4.20) follows from
the proof of Proposition 4.6. �

Remark 4.4 An explicit inclusion of measurement noise in the model increases the
output variance V DAPI

N , and shifts the optimal c?. Such a model reveals that c = 0
is always suboptimal, since V DAPI

N is then infinite. We will discuss in detail how
measurement noise impacts the performance of DAPI in Chapter 7. �

It is interesting to note that in cases where c? > 0, the performance of the
DAPI controlled system at the optimum is better than with P control and absolute
feedback from both xi and vi (as that performance is retrieved for c = 0, see
Remark 4.2). Looking at the expression (4.20), we note that this occurs in particular
if g is small relative to f , so that there is little alignment in the state v between
agents. This is the case in the power network example (Example 4.2), where g = 0.
We will return to analyzing optimal tuning of DAPI controllers for such systems in
Chapter 10.

4.4.2 Impact of low-pass filter in F-DPD
The low pass filter in the F-DPD controller (4.16) is included as a more realistic
implementation of derivative action, which is otherwise well-known to be highly
sensitive to high frequency variations and noise. While, by Corollary 4.5, F-DPD
achieves bounded output variance for any finite filter constant τ , choosing a small
value (corresponding to a high bandwidth) gives better performance:
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Proposition 4.8 For a given F-DPD controlled system (4.17), the output variance
V F−DPD
N in (4.18) is minimized by τ = 0 and is monotonically increasing for τ > 0.

Proof: It holds that

d
dτ V

F−DPD
N = 1

2N

N∑
n=2

KDgλ
2
nτ

2 + 2KDλnτ

2(g2λ2
nτ + fgλ2

nτ
2 + f0gλnτ2 +KDgλnτ + gλn +KD)2 .

Since KD, λn, f0 > 0, f, g ≥ 0, it holds d
dτ V

F−DPD
N = 0 for τ = 0 and d

dτ V
F−DPD
N >

0 for all τ > 0. �

This is an intuitive result, as τ = 0 would give ideal derivative action and
therefore the most accurate substitute for absolute feedback from vi. However, a
greater value for τ would make the system less sensitive to noise. This trade-off
must be done based on system-specific knowledge.
Remark 4.5 We have limited the analysis here to a first order filter, as higher order
filters make the expressions for output variances even more convoluted. However,
numerical results indicate that higher order filters increase V F−DPD

N , though it
remains bounded. �

4.5 Discussion

In this chapter, we have addressed limitations to the performance of standard static,
or proportional, feedback control in double-integrator networks. These limitations
imply that the variance VN defined in (4.5) that characterizes network coherence
may scale unboundedly in network size unless absolute feedback from both the
systems’ states is available. Here, we addressed these shortcomings by proposing
distributed PI and PD controllers, which radically improve performance by making
VN bounded if absolute measurements from one of the system’s states are available.

As we could see in this thesis’ introduction, the second-order consensus-type
dynamics considered here is relevant for a variety of applications ranging from
biological networks to coordination of robots, see, for example, [140]. Here, we
treated examples from vehicular formation and power networks. Our results imply
that if agents have limited access to absolute feedback, then the proposed PI and
PD controllers are preferable to P control, in particular for large-scale networks.
We remark that this conclusion holds even though the proposed controllers do not
model ideal integral or derivative action, but have filters that mitigate effects that
would arise in a practical setting.

However, an explicit inclusion of measurement noise on the available absolute
state measurements changes the conclusion that distributed PI control can funda-
mentally improve performance compared to P control. This does, namely, cause
additional variance that is small, but scales unboundedly with network size. We
treat this particular problem in detail in Chapter 7. The impact of other practical
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network aspects, such as communication delays, non-reliability of the channels and
non-symmetries, is an important research question that is left for future work.
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Appendix to Chapter 4
4.A Proof of Theorem 4.1
The output variance V in (4.5) is obtained as the squared H2 norm of the system H
from input w in (4.3) to the output y in (4.6). We derive the norm through a
unitary state transformation: x =: Ux̂, v =: Uv̂, where U is the unitary matrix
that diagonalizes the Laplacian matrix L (and by Assumption 4.1 also LF ,LG), so
that L = U∗ΛU with Λ = diag{λ1, · · · , λN}. Due to the unitary invariance of the
H2 norm (see Section 3.1.2), we can also transform the input and output according
to ŵ := U∗w, ŷ := U∗y.

This state transformation block-diagonalizes the system (4.3):[ ˙̂x
˙̂v

]
=
[

0 I
−fΛ− f0 −gΛ− g0

] [
x̂
v̂

]
+
[
0
I

]
ŵ

ŷ =
[
Ired 0

] [x̂
v̂

]
,

where the matrix Ired =
[

0 0TN−1
0N−1 IN−1

]
. This corresponds to N decoupled subsys-

tems Ĥn: [ ˙̂xn
˙̂vn

]
=
[

0 1
−fλn − f0 −gλn − g0

]
︸ ︷︷ ︸

=:Ân

[
x̂n
v̂n

]
+
[
0
1

]
︸︷︷︸
=:B̂n

ŵn

ŷn =
[
1 0

]︸ ︷︷ ︸
=:Ĉn

[
x̂n
v̂n

] (4.21)

for n = 2, . . . , N . The mode n = 1 corresponds to the average mode in x, which is
unobservable from the output (4.6), so ŷ1 ≡ 0. Therefore, even though this mode
would be undamped if f0 = 0, the overall system remains input-output stable since
Ân is Hurwitz for n ≥ 2 (its characteristic polynomial is ξ2 +(g0 +gλn)ξ+f0 +fλn,
which has only positive coefficients).

It holds that

V = ||H||22 =
N∑
n=1
||Ĥn||22 =

N∑
n=2
||Ĥn||22,

where the last equality is due to the fact that ŷ1 ≡ 0 and therefore ||Ĥ1||22 = 0. Each
subsystem norm is obtained as ||Ĥn||22 = tr{B̂TnPnB̂n}, where Pn is the solution to
the Lyapunov equation (3.11). Straightforward calculations give that

||Ĥn||22 = 1
2(fλn + f0)(gλn + g0)

for each n, and the result (4.8) follows. �
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4.B Performance bound in the case of non-uniform absolute feedback
gains

Consider Remark 4.1. With non-uniform absolute feedback gains, the control
law (4.2) reads

ui = −
∑
j∈Ni

fij(xi − xj)−
∑
j∈Ni

gij(vi − vj)− f0,ixi − g0,ivi. (4.22)

Assume f0,i ≤ fmax
0 , g0,i ≤ gmax

0 for i ∈ V and for technical reasons let fmax
0 > 0.

We prove the lower bound

V P
N ≥

1
2N

N∑
n=2

1
(fmax

0 + fλn)(gmax
0 + gλn) .

On vector form, we can write the system with the control law (4.22) as[
ẋ
v̇

]
=
( [ 0 I
−LF − fmax

0 I −LG − gmax
0 I

]
︸ ︷︷ ︸

A0

+
[

0 I
F ′ G′

]
︸ ︷︷ ︸

A′

) [x
v

]
+
[
0
I

]
w,

y =
[
0 I − 1

N 11T
] [x
v

] (4.23)

where F ′ = diag{fmax
0 − f0,i} ≥ 0 and G′ = diag{gmax

0 − g0,i} ≥ 0. Now, assume
P0 solves the Lyapunov equation

AT0 P0 + P0A0 = −CTC. (4.24)

This is the equation we solved in Appendix 4.A. Let P = P0+P ′ be the controllabil-
ity Gramian for the system (4.23), that is, the solution to: (A0 +A′)T (P0 + P ′) +
(P0 + P ′) (A0 +A′) = −CTC. This is equivalent to

AT0 P0 + P0A0 +A′TP0 + P0A′ + (A0 +A′)T P ′ + P ′ (A0 +A′)T = −CTC

⇔ (A0 +A′)T P ′ + P ′ (A0 +A′)T = −
(
A′TP0 + P0A′

)
=: −Q,

⇔ ATP ′ + P ′A = −Q (4.25)

where in the first step we subtracted (4.24) and in the second we re-introduced
A = A0 +A′. The matrix Q ≥ 0 since P0 ≥ 0 and A′ ≥ 0 (A′ is lower triangular
with nonnegative elements on the diagonal). Given that A is Hurwitz if fmax

0 > 0,
this means that the solution P ′ to (4.25) must be positive semidefinite, that is,
P ′ ≥ 0. This means that the diagonal elements {P ′}ii ≥ 0, and therefore that

‖H‖22 = tr(BTPB) = tr(BTP0B) + tr(BTP ′B)

≥ tr(BTP0B) =
N∑
n=2

1
2(fmax

0 + fλn)(gmax
0 + gλn) . (4.26)

The bound on V PN follows.
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4.C Proof of Proposition 4.6
Clearly, it holds that d

dcV
DAPI
N = 1

2N
∑N
n=2

d
dcsn, where sn was defined in (4.13).

Each term sn can be written as a fraction sn = pn
qn
. By the quotient rule, dsn

dc =
p′nqn−pnq

′
n

(qn)2 , where (qn)2 > 0 for any c, and

p′nqn − pnq′n = KIλ
2
n

[
c2 + 2

(
g + g0

λn

)
c+

(
g + g0

λn

)2
− f

λn

]
.

Inspecting this expression reveals that, since KI , λn, g0 > 0, and f, g ≥ 0, it holds
that dsn

dc > 0 for any c > 0 if f
λn
≤ (g + g0

λn
)2 for all n = 2, . . . , N . In this case

d
dcV

DAPI
N > 0 for all c > 0, and c? = 0.
Conversely, if f

λn
> (g + g0

λn
)2 for all n = 2, . . . , N then dsn

dc
∣∣
c=0 < 0, and each

sn is minimized by the positive root of the quadratic function above. In this case,
c?n > 0. Therefore, d

dcV
DAPI
N

∣∣
c=0 < 0 and some c? > 0 minimizes V DAPI

N .
Finally, if f

λn
> (g + g0

λn
)2 for some, but not all n, the existence of a positive

minimizer c? > 0 depends on remaining system parameters. �





Chapter 5

Inadmissibility of Localized High-Order
Consensus

The main focus of this thesis is to characterize performance limitations in networked
systems where the local dynamics are of order one or two. These are also the sys-
tems that most of the consensus literature has focused on. However, higher-order
algorithms, which we will look into in this chapter, have also received attention,
for example in [81,113,138,142–144,201]. Here, the local dynamics of each agent is
modeled as an nth order integrator (n ≥ 3), and the control signal – the consensus
algorithm – is a weighted sum of relative differences between states of neighboring
agents. This can be viewed as an important theoretical generalization of the first-
and second-order algorithms [81], but also has practical relevance. For example,
not only position and velocity, but also acceleration feedback play a role in flocking
behaviors, leading to a model where n = 3 [142]. Systems that can be re-cast as the
high-order consensus algorithm can also be constructed by applying dynamic feed-
back control to a first- or second-order system. This case is of particular importance
for this thesis, and will be revisited in Chapter 6.

Throughout the thesis, we are interested in the scalability of control algorithms
to large networks. In remaining chapters, this problem is posed as one of per-
formance, subject to a scaling of the network. We show in this chapter that the
problem in high-order consensus is more fundamental: can stability be maintained
as the network grows?

The first result we present here is clear-cut: the high-order (n ≥ 3) consensus
algorithm treated in, for example, [142,143] can not allow the network size to scale
in graphs where the algebraic connectivity is decreasing towards zero in network
size. We prove that at some finite network size, the closed-loop stability criteria will
then inevitably be violated, rendering the consensus algorithm inadmissible in our
terminology. While this can be avoided if the controller is re-tuned as the network
size grows, such a re-tuning would require global knowledge of the network and
thus prevent a truly distributed implementation.

71
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The algebraic connectivity, that is, the smallest non-zero eigenvalue of the
weighted network graph Laplacian, decreases towards zero in classes of graphs
where the interactions are localized, in that the size of each agent’s neighborhood
is bounded. In leader-follower consensus over undirected graphs, the locality prop-
erty alone is sufficient to cause inadmissibility. This latter result was shown by
Yadlapalli et al. in [191] using a different method than the one we present here.
We generalize their result to leaderless consensus and directed, weighted graphs
and describe an issue that, to the best of our knowledge, has otherwise not been
observed in literature.

We also discuss the standard second-order consensus algorithm in systems over
toric lattice graphs. Here, we show that localized consensus will render the system
unstable as the network grows if the graph is directed. That is, if the feedback inter-
actions are not symmetric around each node. This points to an important fragility
in second-order consensus in these networks; stability can only be guaranteed for
any network size if feedback interactions are perfectly symmetric. We remark that
while this result has not been observed in the wider consensus or formation control
literature, it recently appeared in [26] in the context of flocking.

In this chapter, we give some numerical examples to illustrate the results, and
also discuss their consequence for distributed dynamic feedback control that will
be treated in the following chapters.

5.1 The nth-order consensus problem

We begin by introducing the modeling framework for the nth-order consensus algo-
rithm. The algorithm we consider adheres to the ones considered in [113,142–144]
and is a straightforward extension to the standard first- and second-order consensus
algorithms introduced in Chapter 1.

5.1.1 Network model and definitions

Consider a network of N agents modeled by the graph G = {V, E}, where
V = {1, 2, . . . , N} is the set of nodes and E = {(i, j)} is the set of edges, each
with an associated weight wij > 0. We will in general let G be directed, but will
assume throughout that the weighted graph Laplacian L of G is normal (see Sec-
tion 3.2.2). We also assume that G has a connected spanning tree and number the
eigenvalues of L so that

0 = λ1 < Re{λ2} ≤ . . . ≤ Re{λN}.

All notation and terminology used in this chapter adhere to the definitions in Sec-
tion 3.2.
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5.1.2 nth order consensus algorithm
The local dynamics at each node i ∈ V is modeled as a chain of n integrators:

d
dtx

(0)
i (t) = x

(1)
i (t)

...
d
dtx

(n−2)
i (t) = x

(n−1)
i (t)

d
dtx

(n−1)
i (t) = ui(t),

where we let the information state xi(t) ∈ R (see Remark 5.1). The notation
for time derivatives is such that x(0)

i (t) = xi(t), x(1)
i (t) = d

dtxi(t) = ẋi(t) etc.
until x(n)

i (t) = dn
dtnxi(t). Going forward, we will drop the time dependence in the

notation.
We consider the following nth order consensus algorithm:

ui = −
n−1∑
k=0

ak
∑
j∈Ni

wij(x(k)
i − x

(k)
j ), (5.1)

where the ak are nonnegative fixed gains. All feedback is assumed relative through-
out this chapter. We will discuss the impact of absolute feedback in Section 5.5.

Defining the full state vector ξ = [x(0), x(1), . . . , x(n−1)]T , we can write the
system’s closed-loop dynamics as

d
dt ξ =



0 IN 0 · · · 0

0 0 IN · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN
−a0L −a1L −a2L · · · −an−1L


︸ ︷︷ ︸

A

ξ, (5.2)

where the graph Laplacian L was defined in (3.16) and IN denotes the N × N
identity matrix.
Remark 5.1 We limit the analysis to a scalar information state, though an ex-
tension to xi(t) ∈ Rm is straightforward provided the system is controllable in
the m coordinate directions. In this case, the system dynamics can be written
ξ̇ = (A⊗ Im)ξ, where ⊗ denotes the Kronecker product. This would not affect the
chapter’s main result concerning the stability of A.

Remark 5.2 This chapter focuses on the stability of A, rather than the system’s
performance under a disturbance input. Therefore, we need not consider an exoge-
nous input, nor define a performance output. �
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Leader-follower consensus

Wemay also consider leader-follower consensus as in [191]. Here, the state of agent 1
is assumed fixed, meaning that it acts as a leader for remaining agents (under the
assumption that there is a directed path to each of them from agent 1). Without
loss of generality we can then set x1 = ẋ1 = . . . , xn1 ≡ 0. The closed-loop dynamics
for remaining agents can be written

d
dt ξ̄ =



0 IN−1 0 · · · 0

0 0 IN−1 · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN−1
−a0L̄ −a1L̄ −a2L̄ · · · −an−1L̄


︸ ︷︷ ︸

Ā

ξ̄, (5.3)

where L̄ is the grounded graph Laplacian obtained by deleting the first row and
column of L and ξ̄ is obtained by removing the states of agent 1. Note that L̄
unlike L has all of its eigenvalues in the right half plane [189].

5.1.3 Conditions for consensus and admissibility

Consensus among the agents is said to be reached if x(k)
i → x

(k)
j for all i, j ∈ V and

for k = 0, 1, . . . , n − 1. It is known that the algorithm (5.1) achieves consensus if
the eigenvalues of A are in the left half plane, apart from exactly n zero eigenvalues
that are associated with the drift of the network average. This condition is in line
with standard results for first- and second-order consensus, and is shown in [143]
for n = 3:

Theorem 5.1 ( [143], Theorem 3.1 ) In the case of n = 3, the algorithm (5.1)
achieves consensus exponentially if and only if A has exactly three zero eigenvalues
and all of the other eigenvalues have negative real parts.

We also require the following lemma:

Lemma 5.2 ( [143], Lemma 3.1) In the case of n = 3, the matrix A has exactly
three zero eigenvalues if and only if L has a simple zero eigenvalue.

The proofs in [143] can be straightforwardly extended to n > 3.
This means that it is sufficient to verify that the (N−1) ·n non-zero eigenvalues

of A have negative real parts. Here, we will be dealing with systems where this is
true for small network sizes N , but where one or more eigenvalues leave the left
half plane and cause instability as the network grows beyond some network size N̄ .
In these cases, we call the control algorithm inadmissible.
Definition 5.1 (Admissibility) A control design u is admissible if the resulting
closed-loop system reaches consensus for any finite network size N .
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5.2 Inadmissibility of high-order consensus

This section is devoted to the chapter’s main result. We first describe the key
underlying assumptions, before proving that the high-order consensus algorithm
will be inadmissible if the network graph has what we term a decreasing algebraic
connectivity. This property applies to several classes of graphs, and we end this
section by listing a few of them.

5.2.1 Underlying assumptions

The following assumptions are important for the upcoming analysis.
Assumption 5.1 (Locality) The feedback is localized, meaning that the controller
uses measurements only from a neighborhood of size at most q, where q is fixed
and independent of N . That is,

|Ni| ≤ q ∀i ∈ V. (5.4)

Assumption 5.2 (Finite weights and gains) The system gains and edge weights
are finite, that is, wij ≤ wmax < ∞ for all (i, j) ∈ E and ak ≤ amax < ∞ for all
k = 0, 1, . . . , n.

Assumption 5.3 (Fixed parameters) The gains ak for all k = 0, 1, . . . , n, the max-
imum edge weight wmax, and the locality parameter q do not change if a node (with
connecting edges) is added to the graph G. That is, these parameters are all inde-
pendent of the total network size N .

In the following, the notion of an increase in the network size N should be under-
stood as the addition of nodes to the network (along with connecting edges) in such
a manner that Assumptions 5.1–5.3 remain satisfied. These assumptions contribute
to the key property; that the algebraic connectivity of G decreases towards zero.
This is clarified through examples in Section 5.2.3.

5.2.2 Main result

The chapter’s main result is negative, and states that if n ≥ 3, a consensus algorithm
on the form (5.1) can never be admissible in certain graphs.

Theorem 5.3 If n ≥ 3, no control on the form (5.1) is admissible under Assump-
tions 5.1–5.3 if the graph G is such that Re{λ2} → 0 as N →∞.

Proof: The first step of the proof is to block-diagonalize the matrix A. Let U be
the unitary matrix that diagonalizes the graph Laplacian L, so that U∗LU = Λ =
diag{0, λ2, . . . , λN}. By pre- and post-multiplying A by the (Nn × Nn) matrix
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U = diag{U,U, . . . , U}, we get

U∗AU =



0 IN 0 · · · 0

0 0 IN · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN
−a0Λ −a1Λ −a2Λ · · · −an−1Λ


︸ ︷︷ ︸

Â

. (5.5)

This can be re-arranged into N decoupled submatrices Âl:

Âl =



0 1 0 · · · 0

0 0 1 · · ·
...

0 0 0
. . .

...
0 0 0 · · · 1

−a0λl −a1λ1 −a2λl · · · −an−1λl

,

for l = 1, . . . , N . The eigenvalues of A are the union of the eigenvalues of all Âl.
Clearly, the n zero eigenvalues are obtained from Â1 since λ1 = 0. Therefore, we
must require all eigenvalues of all Âl, l = 2, . . . , N to have negative real parts for
any N to ensure admissibility.

The characteristic polynomial of each Âl is

pl(s) = sn + an−1λls
n−1 + . . .+ a1λls+ a0λl. (5.6)

In general, the eigenvalues λl are complex-valued. Consider therefore the Routh-
Hurwitz criteria for polynomials with complex coefficients. As these criteria do not
appear frequently in literature, we include a detailed derivation here.

Consider the polynomial

p(µ) = µn + (fn−1 + jgn−1)µn−1 + . . . (f0 + jg0) = 0, (5.7)

where j =
√
−1 denotes the imaginary number. The roots µ will be such that

Im(µ) > 0 if and only if all inequalities

−∆2 = −
∣∣∣∣1 fn−1
0 gn−1

∣∣∣∣ > 0, ∆4 =

∣∣∣∣∣∣∣∣
1 fn−1 fn−2 fn−3
0 gn−1 gn−2 gn−3
0 1 fn−1 fn−2
0 0 gn−1 gn−2

∣∣∣∣∣∣∣∣ > 0, · · · ,
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(−1)n∆2n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 fn−1 · · · f0 0 · · · · · · 0
0 gn−1 · · · g0 0 · · · · · · 0
0 1 · · · f1 f0 0 · · · 0
0 0 · · · g1 g0 0 · · · 0

...
0 · · · · · · 0 1 · · · f1 f0
0 · · · · · · 0 0 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (5.8)

are satisfied [177, pp 21f]. Evaluating the determinants, the first two conditions
become

gn−1 < 0, (5.9)
fn−1gn−1gn−2 − fn−2g

2
n−1 + gn−3gn−1 − g2

n−2 > 0. (5.10)

We are interested in the polynomial pl(s) in (5.6) and seek a condition for Re{s} < 0
for all l = 2, . . . , N . Therefore, we substitute µ = −js in (5.7) and identify the
coefficients from (5.6). The coefficients that appear in (5.9)–(5.10) are then

fn−1 = an−1Im{λl}, gn−1 = −an−1Re{λl},
fn−2 = −an−2Re{λl}, gn−2 = −an−2Im{λl},
fn−3 = −an−3Im{λl}, gn−3 = an−3Re{λl}.

(5.11)

Note that these relations hold regardless of n. Now, the condition (5.9) reads

an−1Re{λl} > 0,

which is always true for l = 2, . . . , N if an−1 > 0 since Re{λl} > 0. The second
condition (5.10) can after some manipulation be written as

an−1(Re{λl})2(an−1an−2Re{λl} − an−3)+
+ an−2(Im{λl})2(a2

n−1Re{λl} − an−2) > 0, (5.12)

for all l = 2, . . . , N . While the factors in front of the brackets remain positive for
all λl (provided ak > 0), the brackets will eventually become negative if Re{λl} → 0
for some l. Thus, if Re{λ2}, where λ2 is the eigenvalue with smallest real part, is
decreasing in N towards zero, the condition (5.12) will eventually be violated.

This implies that if n > 3, at least one root of the characteristic polynomial p2(s)
will not have a negative real part for any N . Therefore, it is not true that all
eigenvalues of A except the n zero eigenvalues have negative real parts (as required
by Theorem 5.1). The control is therefore not admissible. �

Remark 5.3 If the graph is undirected, then the polynomial (5.6) has real-valued
coefficients. The result can then be derived using the standard Routh-Hurwitz
criteria. This gives the simpler condition

an−1an−2λ2 − an−3 > 0, (5.13)

which can never remain satisfied if λ2 → 0 as N →∞. �
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Remark 5.4 The condition that L be normal can be relaxed if L is diagonalizable
as in (5.5) by some (non-unitary) matrix. The remainder of the proof would hold
true. �

Theorem 5.3 implies that the high-order consensus algorithm can never allow the
network size of certain graphs to increase indefinitely without leading to instability.
Instability will occur at the smallest N for which the Routh-Hurwitz criteria (5.8)
in the proof are not satisfied, and at least one eigenvalue leaves the open left half
plane. We will term this critical network size N̄ . In Figure 5.1 we display N̄ for
n = 3, 4, 5 in a path graph.

Inadmissibility of high-order leader-follower consensus

High-order leader-follower consensus on the form (5.3) in undirected networks will
always be inadmissible under the given assumptions. This was also observed
in [191], and before that in [17] for a path graph topology. We first require the
following Lemma:

Lemma 5.4 Consider the grounded Laplacian matrix L̄ of an undirected graph G.
Let the relation (5.4) hold. The smallest eigenvalue λ̄1 of L̄ then satisfies

λ̄1 ≤
q

N − 1wmax, (5.14)

where wmax is the largest edge weight in E.

Proof: By the Rayleigh-Ritz theorem [73, Theorem 4.2.2] it holds

λ̄1 ≤
vT L̄v
vT v

, ∀v ∈ CN−1\{0}.

This implies in particular that

λ̄1 ≤
1TN−1L̄1N−1

1TN−11N−1
=
∑
k∈N1

w1k

N − 1 ≤ qwmax

N − 1 ,

where 1TN−1L̄1N−1 =
∑
k∈N1

w1k is the weighted sum of all edges leading to the
leader node 1. The equality holds since each row k of the grounded Laplacian L̄
sums to zero if the corresponding node k has no connection to the leader, and
otherwise to w1k ≤ wmax. �

Theorem 5.5 Let the graph G be undirected. The leader-follower consensus algo-
rithm (5.3) is then inadmissible for n ≥ 3 under Assumptions 5.1–5.3.
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Proof: The arguments in the proof of Theorem 5.3 apply. In this case, N − 1
real-valued characteristic polynomials like (5.6) are obtained. The condition (5.12)
reduces to

an−1an−2λ̄l − an−3 > 0, (5.15)

for l = 1, . . . , N − 1. Using Lemma 5.4, we see that (5.15) requires an−1an−2 >
1

qwmax
an−3(N−1), which cannot be satisfied under Assumption 5.3. The algorithm

is thus inadmissible. �

5.2.3 Affected classes of graphs
The inadmissibility of high-order consensus applies to any network whose under-
lying graph is such that Re{λ2} is decreasing towards zero as N increases. The
second-smallest Laplacian eigenvalue λ2 of an undirected graph is real-valued and
known as the algebraic connectivity of the graph. While the correct generalization
of algebraic connectivity to directed graphs is not clear-cut, we know the following:

Lemma 5.6 If L is normal then

Re{λ2} = λs2,

where λs2 is the smallest non-zero eigenvalue of Ls = (L + LT )/2, that is, the
symmetric part of L.

Proof: See Lemma 9.1.2 in [63]. �

The matrix Ls is the graph Laplacian corresponding to the mirror graph Ĝ of G,
which is the undirected graph obtained as Ĝ = {V, E ∪ Ê}, where Ê is the set of all
edges in E , but reversed, and whose edge weights are ŵij = ŵij = (wij+wji)/2 [118].
Clearly, the mirror graph of an undirected graph is the graph itself. Lemma 5.6
implies that Re{λ2} of G is the algebraic connectivity of its mirror graph Ĝ. We
introduce the following terminology:
Definition 5.2 The graph G is said to have decreasing algebraic connectivity if, for
its mirror graph Ĝ, the algebraic connectivity λ2 → 0 as N →∞.

This means that Theorem 5.3 will apply to graphs with decreasing algebraic
connectivity, and it suffices to identify this property in undirected graphs. We next
give a (non-exhaustive) account of classes of graphs with this property.

Lattices, fuzzes, and their embedded graphs

Consider the d-dimensional toric lattice ZdL with N = Ld nodes, and let each node
be connected to its r neighbors in each direction (letting q = 2rd). Such a lattice
is called an r-fuzz.
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Lemma 5.7 (Algebraic connectivity of r-fuzz) For an r-fuzz lattice of d dimen-
sions,

λ2 ≤
c

N2/d , (5.16)

where c is a constant that depends on the fixed parameters r (that is, q), wmax
and d, but not on N .

Proof: Follows from the upcoming Lemma 6.8. There, the edge weights are as-
sumed uniform, but the result (5.16) follows from setting all edge weights to wmax
and then considering Lemma 5.8. �

The bound (5.16) also holds for any subgraph of the r-fuzz lattice, that is, any
graph that is embeddable in the lattice. This follows from the following important
lemma:

Lemma 5.8 Adding an edge to a graph or increasing the weight of an edge increases
(or leaves unchanged) λ2 of the corresponding graph Laplacian, and vice versa.

Proof: Follows from Theorems 3.1 and 3.3. �

Planar graphs

Planar graphs are embeddable in two-dimensional lattices so Lemma 5.7 applies.
For this important case, however, a more precise bound is available:

Lemma 5.9 (Algebraic connectivity of planar graphs) For a planar graph,

λ2 ≤
8qwmax

N
, (5.17)

Proof: See [167, Theorem 6]. �

Constant-genus graphs

Planar graphs can be generalized to graphs with constant genus. The genus of a
planar graph is g = 0. Higher genus implies that the graph can be drawn on a
surface with g handles (or “holes”) without any one edge crossing another. For
example, a torus would correspond to g = 1 and a pretzel shape to g = 3.

Lemma 5.10 (Algebraic connectivity of constant-genus graphs) Let G have con-
stant and bounded genus g. Then

λ2 ≤
c2
N
,

where c2 is a constant that depends on q, g and wmax, but not on N .

Proof: See [84, Theorem 2.3]. �
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Figure 5.1: Critical network size N̄ at which the stability conditions are violated for an
nth order consensus algorithm. The graph is an undirected path graph where each node is
connected to its q nearest neighbors. Increasing the neighborhood size q here increases N̄
faster than linearly. Also note that for higher n, the stability conditions are violated at
smaller N̄ .

Tree graphs with growing diameter

The diameter diam{G} of the graph G is defined as the longest distance between
any two nodes in the graph. If we let G be a tree graph, then, by [60, Corollary 4.4]
it holds λ2 ≤ 2wmax

(
1− cos

(
π

diam(G)+1

))
. This allows us to derive the following

lemma.

Lemma 5.11 (Algebraic connectivity of tree graphs) Let G be a tree graph. Then

λ2 ≤
π2wmax

(diam{G}+ 1)2 , (5.18)

and if diam{G} → ∞ as N →∞, then λ2 → 0.

Proof: Follows from the relation above, noting that 1 − cosx ≤ x2

2 for any x.
Clearly, the right hand side is decreasing in diam{G}. �

5.3 Numerical examples

In this section, we present two simple numerical examples to illustrate this chapter’s
main result.

Example 5.1 (Locality and critical network size) Assumption 5.1 of locality, that
is, a fixed upper bound on the size of each agent’s neighborhood, is key for this
chapter’s main result. Indeed, if each agent’s neighborhood were allowed to grow as
more and more agents are added to the network, the high-order consensus algorithm
could stay admissible.
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As an example, consider an undirected path graph where each node is connected
to its q/2 neighbors in each direction (q assumed even). If all edge weights are 1,
the algebraic connectivity of this graph is

λ2 =
q/2∑
k=1

2
(

1− cos
(
πk

N

))
,

which for any given N is larger, the greater q is. Increasing q thus delays the
violation of the stability criteria as N grows.

In Figure 5.1, we depict the critical network size N̄ as a function of the neigh-
borhood size q in the undirected path graph. Here, we have selected a consensus
algorithm where a0 = 0.1, a1 = 0.8, a2, a3, a4 = 1. The plot shows that increasing q
pushes the critical network size upwards faster than linearly.

We also note that the system becomes unstable at smaller N̄ for higher n. This
is because the higher-order conditions in (5.8) are violated sooner than the lower-
order ones (though only one condition, ∆4 > 0, was needed to prove inadmissibility
in Theorem 5.3).

Example 5.2 (Instability through node addition) The second example illustrates
the phase transition – from consensus to instability – that the system experiences
as the critical network size is reached. Figure 5.2a illustrates a graph that has been
randomly generated by means of triangulation. Here, the maximum neighborhood
size is q = 8 while the median is 5. All edge weights are set to 1.

We consider a third order consensus algorithm:

x
(3)
i = −

∑
j∈Ni

[0.5(xi − xj) + (ẋi − ẋj) + (ẍi − ẍj)] ,

which by the condition (5.13) ensures stability if λ2 > 0.5. With 34 nodes, the graph
in Figure 5.2a has λ34

2 = 0.536 and the system achieves consensus, as seen from the
simulation in Figure 5.2b. We then add a 35th node along with 4 connecting edges,
as indicated in red color in the graph in Figure 5.2a. Now, λ35

2 = 0.493 and the
system becomes unstable. Figure 5.2c shows how the agents’ positions x oscillate
at an increasing amplitude.
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Figure 5.2: Simulation of 3rd order consensus in graph depicted in (a), subject to random
initial accelerations. In (b) the network’s 34 agents converge to an equilibrium. In (c)
a 35th node has been added, indicated by red color in the graph. This addition leads to
instability. The plots (b) and (c) show position trajectories relative to Agent no. 1. Note
the different scales.

5.4 Inadmissibility of second-order consensus in directed lattices

We now turn the attention to second-order integrator networks (n = 2). These are
particularly important as they are the standard model for, for example, vehicular
formation networks. For these systems, it is also easy to guarantee admissibility
if the underlying graph is undirected. However, we show here that in the case
of a directed, balanced, periodic lattice network graph, the standard consensus
algorithm is in fact inadmissible under the locality constraint.

To formalize the result, let us assume in this section that the network graph is the
d-dimensional toric lattice of period L, ZdL. In Chapter 6 we will express feedback
operations on ZdL using the operator formalism from Section 3.3. To simplify the
reading of this Chapter, however, we adhere to the graph Laplacian-based notation
used thus far.

Therefore, consider first the case d = 1 and number the nodes as 1, 2, . . . , L.



84 Chapter 5. Inadmissibility of Localized High-Order Consensus

The control algorithm is assumed to be identical at each node i in the network:

ui = −a0

r∑
j=−r

wj(xi − xi+j)− a1

r∑
j=−r

wj(ẋi − ẋi+j), (5.19)

where r is a locality parameter such that q = 2rd. Enforcing the periodicity of the
lattice implies, for example, that x1−1 = xN and ensures normality of the graph
Laplacian. This way, the graph Laplacian L is a circulant matrix with the weight wj
on the jth diagonal. In the d-dimensional case, the Laplacian is the Cartesian
product of d such circulant matrices. The following assumption is important.
Assumption 5.4 (Asymmetric consensus) The feedback around each node i ∈ ZdL
is asymmetric, meaning that w−j 6= wj in (5.19) for at least one j ∈ {1, . . . , r}.
Now, consider the following theorem.

Theorem 5.12 Let n ≥ 2 and let Assumptions 5.1–5.4 hold. Then, the consensus
algorithm (5.19) is inadmissible.

Proof: We proceed as in the proof of Theorem 5.3 to obtain the characteristic
polynomials

pl(s) = s2 + a1λls+ a0λl, (5.20)

for l = 1, . . . , N , and the Routh-Hurwitz criterion derived from ∆4 > 0 in (5.8)
becomes

a0a1Re{λl}[a1(Im{λl})2 + a0Re{λl}]− a0(Im{λl})2 > 0, (5.21)

which must be satisfied for l = 2, . . . , N to grant admissibility. The smallest eigen-
value is:

λ2 =
r∑

i=−r
i 6=0

wi(1− cos
(

2πi
L

)
)− j

r∑
i=−r
j 6=0

wi sin
(

2πi
L

)
,

where, recall, L = N1/d is the lattice size. A series expansion of, respectively, the
real part and the squared imaginary part of λ2 around zero reveals that both
Re{λ2} ∼ 1/L2 and (Im{λ2})2 ∼ 1/L2 (the notation ∼ is defined in (3.26)).
See Chapter 6 and Appendix 6.F for further details to these bounds. In (5.21)
this means that the first term a0a1Re{λ2}(a1(Im{λ2})2 +a0Re{λ2}) ∼ 1/L4, while
the second term −a0(Im{λl})2 ∼ −1/L2. Since 1/L4 approaches zero at a faster
rate than 1/L2 as L → ∞, it means that (5.21) cannot be satisfied for sufficiently
large L (that is, sufficiently large N). The algorithm is thus inadmissible. �

Remark 5.5 By studying the proof of Theorem 5.12 carefully, we note that the
second-order consensus algorithm will in fact be inadmissible in any directed graph
(with diagonalizable Laplacian) where both Re{λ2} → 0 and Im{λ2} → 0 as
N →∞, but where the rate of decrease is higher in Re{λ2}. A characterization of
graphs where this property applies is an open problem. �
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This result implies that there is a fragility in the second-order consensus al-
gorithm (5.19), in that it can guarantee stability for any network size N if it is
symmetric (wj = w−j for j = −r, . . . , r). However, even the slightest asymmetry
will eventually cause instability in a periodic lattice if N is allowed to increase. We
remark again that the same result has been reported in [26] for nearest-neighbor
feedback (r = 1).

5.5 Alternative system dynamics

In this section, we discuss systems whose dynamics can not be written on the
form (5.2). We begin by discussing the impact of absolute feedback. To simplify
the exposition, we limit the analysis here to the case n = 3. We then consider im-
plications of this Chapter’s results for the possibility to apply distributed dynamic
feedback to systems with consensus dynamics of first and second order.

5.5.1 Impact of absolute feedback
The admissibility issues of the consensus algorithm (5.1) would not arise if the
control included absolute state feedback. In this case, the control algorithm would
be

ui = −
2∑
k=0

ak ∑
j∈Ni

wij(x(k)
i − x

(k)
j )− aabs

k x(k)

 . (5.22)

We say that absolute feedback from the state x(k) is available if one can set aabs
k > 0.

Consider the following proposition:

Proposition 5.13 There is a choice of ak, aabs
k , for k = 0, 1, 2 so that the algo-

rithm (5.22) is admissible for any undirected graph G if at least one of aabs
1 , aabs

2 > 0.
If G is directed, there is such a choice only if aabs

2 > 0.

Proof: In this case, the characteristic polynomial corresponding to (5.6) becomes

pl(s) = s3 + (a2λl + aabs
2 )s2 + (a1λl + aabs

1 )s+ (a0λl + aabs
0 ) (5.23)

Since aabs
k are real-valued, the real parts of the coefficients in the polynomial (5.23)

are now akRe{λl} + aabs
k , while the imaginary parts remain akIm{λl}. We can

therefore substitute (Re{λl}+aabs
k /ak) for Re{λl} in the relations (5.11) and obtain

the relevant stability criterion from (5.10) as:

(a2Re{λl}+ aabs
2 )

[
a1a2Re{λl}2 + (aabs

1 a2 + a1a
abs
2 )Re{λl}+ aabs

1 aabs
2

− a0Re{λl} − aabs
0
]

+ a1Im{λl}2[a2
2Re{λl}+ a2a

abs
2 − a1] > 0, (5.24)

for l = 2, . . . , N .
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Table 5.1: Summary of cases where absolute feedback can grant admissibility in third-
order consensus (n = 3). There is absolute feedback from the state x(k) if aabs

k > 0 in the
algorithm (5.22). Else, we term the feedback from x(k) relative. Note that availability of
absolute feedback as listed here is a necessary but not sufficient condition for admissibility.

Position x Velocity ẋ Acceleration ẍ Admissibility

relative or absolute relative relative No
relative or absolute absolute absolute Yes
relative absolute relative Yes1

relative relative absolute Yes
absolute absolute relative No
absolute relative absolute No

1in undirected graphs

If both aabs
1 and aabs

2 are non-zero, they can clearly be selected so that both
brackets can remain positive even as Re{λl} → 0 (setting a2a

abs
2 > a1, aabs

1 aabs
2 >

a0Re{λN}+ aabs
0 is sufficient).

If aabs
2 > 0 while aabs

1 = 0, then the first bracket can only remain positive as
Re{λl} → 0 if aabs

0 = 0. If so, setting a1a
abs
2 > a0 and a2a

abs
2 > a1 is sufficient.

If only aabs
1 > 0 while aabs

2 = 0, then the first bracket can only remain positive
as Re{λl} → 0 if aabs

0 = 0. If so, setting aabs
1 a2 > a0 is sufficient. The second

bracket will, however, become negative as Re{λl} → 0. Then, if Im{λ2}2 → 0 at
a rate slower than Re{λ2}2 → 0 as N → ∞, the condition (5.24) is eventually
violated. This is, for example, the case for periodic lattice graphs (see the proof of
Theorem 5.12). This means that aabs

1 > 0 can grant admissibility if aabs
0 = 0 and

Im{λ2} = 0 for l = 2, . . . , N , that is, if G undirected. �

This implies that absolute feedback from the high-order terms, that is, velocity or
acceleration, is necessary to grant admissibility to the high-order consensus algo-
rithm. Reading the proof in detail further reveals that if absolute measurements
exist of position, but only of one out of the remaining two states, then the algorithm
will be inadmissible if it includes absolute position feedback. This limitation can
likely be relaxed by applying derivative action in the manner described in Chap-
ter 4. In this chapter, however, we limit the analysis to static feedback. The results
of this section are summarized in a concise manner in Table 5.1.
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5.5.2 Implications for distributed dynamic feedback control
One of this thesis’ objectives is to address the question of whether distributed
dynamic feedback control can alleviate performance limitations that apply to static
feedback control in networks where the local dynamics are of first or second order.
The dynamic feedback we consider increases the order of the system dynamics,
meaning that not all designs are admissible.

We consider single-state dynamic feedback controllers that can be seen as a
generalization of the distributed integral controller (DAPI) from Chapter 4. That
is, for the first-order consensus problem (n = 1), we introduce the controller state z
and obtain the closed-loop dynamics

ẋ = −a0Lx+ z

ż = −b0Lx− (bzL+ babs
z )z,

(5.25)

where b0, bz are nonnegative gains. Note that we also allow absolute feedback,
babs
z ≥ 0 in the controller state z. Note, however that if babs

z > 0, the controller
state is stabilized and no integral action is eventually exerted on the system. For
the second-order problem (n = 2), we obtain:

ẍ = −a0Lx− a1Lẋ+ z

ż = −b0Lx− b1Lẋ− (bzL+ babs
z )z.

(5.26)

We assume that a0, a1 > 0, which is necessary for admissibility if z = 0.
Through a linear state transformation, the systems (5.25)–(5.26) can be cast

onto the form of (5.2). In the dynamically controlled first-order case, the trans-
formed system matrix becomes:

A =
[

0 IN
−b0L − a0L(bzL+ babs

z I) −a0L − (bzL+ babs
z I)

]
,

and in the second-order case:

A=

 0 IN 0
0 0 IN

−b0L−a0L(bzL+babs
z I) −(a0+b1)L−a1L(bzL+babs

z I) −a1L−(bzL+babs
z I)

.
The analysis in Sections 5.2–5.4 can now be applied to these systems. To begin
with, the proof of our main result in Theorem 5.3 reveals the following corollary:

Corollary 5.14 Let the graph G be undirected and let Assumptions 5.1–5.3 hold.
If G is such that λ2 → 0 as N → ∞, a necessary condition for admissibility of
the dynamic feedback protocol (5.26) is that at least one of the following conditions
holds:

a) b0 = 0,

b) babs
z > 0.



88 Chapter 5. Inadmissibility of Localized High-Order Consensus

Proof: Since G is assumed undirected, the eigenvalues λl are real-valued. The
Routh-Hurwitz criteria for the system (5.26) require that: b0 + a0(bzλl + babs

z ) > 0,
for l = 2, . . . , N , which is satisfied if we do not have b0 = 0 and bz = 0, and babs

z = 0
simultaneously, and that

(a1λl + bzλl + babs
z )(a0 + b1 + a1(bzλl + babs

z ))− b0 − a0(bzλl + babs
z ) > 0. (5.27)

If λ2 → 0, then (5.27) will eventually be violated unless babs
z > 0 or b0 = 0, or if

both of these conditions hold. �

Corollary 5.14 implies that relative position measurements cannot be included in
the dynamic feedback, unless the controller state is stabilized through absolute
feedback.

When it comes to the dynamically controlled first-order consensus problem (5.25),
its admissibility is limited by Theorem 5.12. We therefore again consider the system
over the toric lattice ZdL, so that L is circulant, and provide the following corollary:

Corollary 5.15 Let Assumptions 5.1–5.4 hold, so that the graph Laplacian L is an
asymmetric, circulant matrix. Then, a necessary condition for admissibility of the
dynamic feedback protocol (5.25) is that babs

z > 0.

Proof: Proceeding as in the proof of Theorem 5.12, we derive the Routh-Hurwitz
criterion for the system (5.25) (corresponding to (5.21)) as

(a1 + bz)Re{λl}
[
(a0 + bz)(a1 + bz)Im{λl}2Re{λl}+ babs

z (a0 + bz)Im{λl}2

+ (a0 + bz)(a1 + bz)Re{λl}3 + (babs
z (a1 + bz) + 2babs

z (a0 + bz))Re{λl}2

+ ((babs
z )2 a0 + bz

a1 + bz
+ 2(babs

z )2)
]

+ (babs
z )3 − (a0 + bz)2Im{λl}2 > 0, (5.28)

for l = 2, . . . , N . If babs
z = 0, the condition (5.28) will, like in the proof of The-

orem 5.12, eventually be violated since Re{λ2}2 approaches zero at a rate faster
than Im{λ2}2 as L → ∞. It is, however, possible to choose a babs

z > 0, so that
(5.28) remains satisfied for any λl > 0. �

Corollary 5.15 says that it is not possible to implement localized integral action to
a first-order consensus network that is built over a directed, periodic lattice.

These results will have implications in the next chapter, where we will con-
sider the performance of this type of dynamic feedback controllers. The set-up and
notation will differ, which also allows us to derive a slightly more general result
compared to Corollary 5.15. The main conclusion, however, is that dynamic feed-
back control in networks must be carefully designed to guarantee admissibility if
only relative measurements are available.
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5.6 Discussion

This chapter’s main result shows that there is an important difference between the
well-studied standard first- and second-order consensus algorithms, and the corre-
sponding higher-order algorithm, in that the latter is not always scalable to large
networks. When subject to locality constraints, it will cause instability at some
finite network size in an undirected leader-follower network. The same holds for
leaderless consensus in large classes of both undirected and directed graphs, includ-
ing planar graphs and graphs that are embeddable in d-dimensional lattices. An
interesting consequence of this result is that at some given network size, the addi-
tion of only one agent to a multi-agent network renders the previously converging
system unstable. This can be thought of as a type of phase transition, though the
physical intuition behind this result is yet to be described.

A further interesting consequence is that an analysis of asymptotic (in network
size) performance of localized, relative state feedback is only possible in first- and
second-order integrator networks. This means that the analysis in [14] cannot, as
was conjectured there, be extended to chains of n > 2 integrators.

We have also shown that the second-order consensus algorithm will be inadmis-
sible in any directed graph where the real part of at least one Laplacian eigenvalues
decreases faster towards zero than the imaginary part as the network size grows.
One class of graphs where this holds is periodic lattice graphs of the type we treat
in Chapters 6–7, but it is not unlikely that other classes of graphs share the prop-
erty. If so, it means that second-order consensus with only relative feedback can be
highly non-robust in the sense that a small asymmetry in the network can render
the system inadmissible. This robustness issue is worth investigating further, along
with other classes of graphs where it may appear.

Absolute state feedback partly alleviates the limitations of high-order consensus
in terms of admissibility. For example, absolute feedback from acceleration can
render third-order consensus admissible, but not absolute position feedback. It is
an interesting and open question whether the ideas from Chapter 4, that is, applying
integral or derivative action to the available absolute state measurement, can be
used to gain admissibility in cases where partial absolute state measurements are
available.

In order to discuss scalability of controllers, and admissibility in particular, an
assumption that the control algorithm be fixed is necessary. That is, the control
cannot be allowed to be re-tuned as the network size grows. This assumption also
underlies the performance analyses in the upcoming chapters. By re-tuning the con-
sensus algorithms in this chapter, for example by relaxing the locality assumption,
as shown in Example 5.1, or by adjusting the gains, they can achieve consensus also
as the network grows. However, such a re-tuning requires global knowledge of the
network and prevents “plug-and-play” distributed control.





Chapter 6

Fundamental Limitations of Dynamic
Feedback Control in Regular Networks

The central problem in this thesis is to understand and quantify how architectural
controller constraints affect global performance. In our case, these constraints can
be described by a network graph structure and imply that each controller’s con-
nectivity is limited and localized, compared to the overall large-scale network. The
question that motivates the work in this chapter is whether dynamic feedback
controllers perform better than static ones in large-scale networks under such con-
straints. In Chapter 4, we answered this question for the particular case where the
local controllers had partial access to absolute states. Here, the scope is larger, and
we address the performance limitations arising from constraining the feedback to
only relative state measurements.

We study comparatively the large-scale asymptotics (in network size) of global
performance of localized static versus dynamic feedback control in regular lattice
networks. It has previously been shown in [14] that localized static state feedback
is subject to limitations in terms of its asymptotic performance scalings in lattices
of low spatial dimensions. These limitations do, for example, prevent vehicle pla-
toon formations, which resemble 1-dimensional lattices, from exhibiting a coherent
behavior. An important question arises as to whether the use of localized dynamic
feedback may alleviate these limitations, that is, whether the controller’s additional
memory may compensate for the lack of global sensing.

This question of static versus dynamic feedback is a version of an old question
in the area of decentralized control [157]. It can be motivated by recalling the
following important fact about state feedback control. In fully centralized optimal
linear quadratic control (such as LQR or state-feedback H∞ control), static state
feedback is optimal. In other words, there is no additional advantage in using
dynamic or time-varying controllers over static gains when the full state of the
system is available for feedback. This is, however, no longer true when architectural
constraints are imposed on the controller, such as diagonal or banded structures [3,
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185, 187]. In our case, architectural constraints corresponding to bandedness are
imposed through a lattice-network structure, which motivates the use of dynamic
feedback in search for the best-achievable performance.

The dynamic feedback controllers we consider are modeled with first-order dy-
namics and can share their state locally. The resulting control laws can be seen
as generalized distributed proportional-integral (PI) controllers. The DAPI con-
troller, which we considered in Chapter 4 and which was previously proposed for
distributed frequency regulation in power networks, describes a subclass of such
control laws. Here, we consider two classes of systems with respectively first- and
second-order local integrator dynamics: consensus and vehicular formation control
problems. The systems are modeled over a class of regular networks, specifically
toric lattices, with a fixed number of neighbor interactions. In line with Chap-
ter 4, we characterize performance through the achievable network coherence that
is described through a nodal variance matric.

The chapter’s main result shows that the fundamental limitations in terms of
asymptotic performance scalings that apply to localized static feedback in these
networks in general carry over also to dynamic feedback control that is locally of first
order. This means that while additional memory in the controller may offer other
advantages in architecturally constrained control problems, it will not alleviate
the unfavorable scaling of nodal variance in low-dimensional lattice networks. An
important exception to this result is the case treated in Chapter 4, where a bounded
variance could be achieved through distributed PI control if the controller can access
noiseless absolute measurements of the local velocity.

As the problems we consider are modeled over toric lattice networks, the re-
sulting systems are spatially invariant, see Section 3.3. The topological restriction
is a consequence of the aim of the study; to characterize performance scalings in
network size. This requires a possibility to grow the network while preserving cer-
tain topological properties, such as locality. Hypercubic lattices (including those
with periodicity) is one of a few graph families with such topological invariance
properties. Others include triangular lattices and fractals, see for example [129].
The periodicity of the lattices allows feedback protocols to be defined using multi-
dimensional circulant operators. These enable a tractable characterization through
Fourier analysis. At large system sizes, however, the periodic boundary condi-
tion will have little or no effect on behaviors in the interior of the network. This
intuitive reasoning can be attributed to exponential spatial decay rates of local
perturbations [15]. This in particular implies that the lack of coherence that our
results predict for 1-dimensional ring-shaped lattices will also be observed in, for
example, vehicular platoons without the periodic boundary condition. This is also
demonstrated through a case study in Section 6.6.

Chapter overview

Next, we set up the consensus and vehicular formation problems with static versus
dynamic feedback control. In Section 6.2, we re-visit the performance measure,
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which is defined through the variance of nodal state fluctuations and corresponds to
a (scaled) system H2 norm. Section 6.3 introduces a novel framework for evaluating
such H2 norms and their asymptotic scalings in spatially invariant systems. This
framework allows for an analysis of large classes of dynamic feedback protocols
whose H2 norm expressions are otherwise intractable. It is also useful for analyzing
stability of these protocols, to which we devote Section 6.4. Building on the results
from Chapter 5, we show here that several control designs are inadmissible, that
is, they do not allow for a scaling of the network size without rendering the system
unstable. The performance of admissible feedback protocols is then analyzed in
Section 6.5, where our main result is derived. In Section 6.6 we discuss practical
implications of our results and present a numerical simulation. We end this chapter
in Section 6.7 with a discussion of our findings as well as some open problems.

6.1 Consensus and vehicular formations with static vs. dynamic
feedback

We now formulate models for two types of problems: (first-order) consensus and
vehicular formations. Both problems are modeled on networks that are built over
the discrete torus ZdL of spatial period L and in d dimensions. The total network
size is N = Ld. The resulting systems will be assumed spatially invariant, and we
will use the formalism and notation introduced in Section 3.3 throughout.

In the consensus problem, there is one local information state at each network
site, while there are two such states (position and velocity) in the vehicular for-
mation case. For both models, we introduce a static controller, as was considered
in [14], which we will compare to a dynamic controller with an auxiliary memory
state at each network site, see Figure 6.1.

6.1.1 Consensus
We first consider the first-order consensus algorithm in continuous time. The single-
integrator dynamics at each site k in the network is given by

ẋk = uk + wk, k ∈ ZdL, (6.1)

where uk denotes the control signal. The process disturbance wk, modeling random
insertions and deletions, is as usual assumed mutually uncorrelated across nodes
and modeled as white noise (see Section 1.2).

We next introduce the two types of linear time-invariant feedback control for
the system (6.1).

Static feedback

In the case of static feedback, the control input is a linear function of the current
state:

uk = (Fx)k. (6.2)
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Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

(xk�1�xk) (xk+1�xk)

Figure 6.1: Structure of the controller {Ck} and plant {Pk} interactions. For diagrammatic
simplicity only nearest neighbor interaction is depicted, though our analysis is applica-
ble to any fixed number of neighbor interactions. Dashed arrows indicate relative state
measurements and interactions. The controller states zk, rather than just their relative
values, can be shared between sub-controllers.

The feedback operator F , can be suitably designed to fulfill the control objectives.
A common example of such a control scheme is the one where the control signal at
each node is the weighted average of the differences between that node and its 2d
neighbors, that is,

uk =f̃ [(x(k1−1,...,kd) − xk) + (x(k1+1,...,kd) − xk) + · · ·
+ (x(k1,...,kd−1) − xk) + (x(k1,...,kd+1) − xk)], (6.3)

where f̃ is a positive scalar. The algorithm (6.3) will be referred to as the standard
consensus algorithm. The associated function array is:

f(k1,...,kd) =


−2df̃ k1 = · · · = kd = 0
f̃ ki = ±1, and kj = 0, for i 6= j

0 otherwise.
(6.4)

In general, we can write the consensus algorithm (6.1) with static feedback as

ẋ = Fx+ w. (6.5)

Dynamic feedback

To model dynamic feedback, we let the controller have access to an auxiliary con-
troller state z(k1,...,kd), which is a scalar at each network site k:

uk = zk + (Fx)k
żk = (Az)k + (Bx)k,

where A, B, F are linear feedback operators, the properties of which will be dis-
cussed shortly. We can now write the consensus algorithm (6.1) with dynamic
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feedback as: [
ż
ẋ

]
=
[
A B
I F

] [
z
x

]
+
[
0
I

]
w. (6.6)

Remark 6.1 The static control laws considered here correspond to what we termed
proportional (P) control in Chapter 4 and compared to PI and PD controllers. The
dynamic control laws considered here are more general, and we therefore use the
terms “dynamic” versus “static” in this chapter. �

6.1.2 Structural assumptions for the consensus problem

We now list the assumptions imposed on the system and on the feedback operators
A, B, F in the consensus algorithm. Assumptions 6.1–6.2 will also carry over to
the vehicular formation problems.
Assumption 6.1 (Spatial invariance) All feedback operators are spatially invari-
ant and fixed with respect to ZdL, and are therefore circular convolution operators,
as defined in (3.23).

For example, the standard consensus algorithm (6.3) on the 1-dimensional ring
graph ZL can be written as the convolution of the state x with the array f =
{0, . . . , 0, f̃ ,−2f̃ , f̃ , 0, . . . , 0}.

Assumption 6.2 (Locality) All feedback operators use only local information from
a neighborhood of width 2q, where q is independent of L. For the function array f
associated with the operator F , this means that

f(k1,...,kd) = 0 if |ki| > q, (6.7)

for any i ∈ {1, 2, . . . , d}. The same condition holds for all other operators. The
situation is illustrated in Figure 6.2.

Assumption 6.3 (Relative state measurements) All controllers can only access
relative measurements of the physical state x. Hence, the feedback can only involve
differences between states of neighboring nodes. This means that each term of the
form f̃xk in the convolution Fx is accompanied by another term −f̃xl, for some
other index l, so that we obtain f̃(xk − xl). In particular, this implies that the
operators F and B in (6.5) and (6.6) have the property∑

k∈Zd
L

fk = 0,
∑
k∈Zd

L

bk = 0. (6.8)

Since the state z is internal to each controller, we need not impose this requirement
on A in (6.6).
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k

· · ·· · ·

ak

-L2
L
2

0

2q + 1

Figure 6.2: Spatial interactions are defined by convolution with an array {ak}. As the lat-
tice size L increases, the locality property (ak = 0 for |k| > q) ensures that the interactions
are unambiguously defined.

6.1.3 Vehicular formations

For the vehicular formation problem, consider N = Ld identical vehicles arranged
in ZdL. The double-integrator dynamics at each site k = (k1, . . . , kd) ∈ ZdL is then

ẍk = uk + wk, (6.9)

where, as before, uk is the control signal and wk is white process noise, which
models random forcings at each site.

The position vector xk = [x1
k · · · xdk]T at each network site, and its time deriva-

tive, the velocity vector vk = [v1
k · · · vdk]T , are both d-dimensional vectors. Without

loss of generality, we will assume that they each represent absolute deviations from
a desired trajectory x̄k and constant heading velocity v̄, with

x̄k := v̄t+ k∆x.

Here, ∆x is the constant spacing between the vehicles in ZdL.
In analogy to the consensus case, we now introduce the two types of linear

feedback control for the system (6.9).

Static feedback

The control input is here assumed to be full state feedback that is linear in the
variables x and v:

uk = (Fx)k + (Gv)k.

An example of such feedback is the combined look-ahead and look-behind controller
in a 1-dimensional string:

uk = f+(xk+1−xk)+f−(xk−1−xk)+g+(vk+1−vk)+g−(vk−1−vk)−govk, (6.10)
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where the g’s and f ’s are positive design parameters. If go is zero, this control law
satisfies Assumption 6.3 of relative state measurements. If go 6= 0, we will refer to
that term in the feedback law as absolute feedback from velocity.

In practice, absolute velocity measurements can be made available through a
speedometer. The presence of viscous damping can also be treated as a special case
of absolute velocity feedback. The model (6.9) can then be modified so that

v̇k = −µvk + uk + wk,

where µ ≥ 0 is the drag coefficient. Comparing this to (6.10) we can identify µ
with go.

In this chapter, we do not consider the case where absolute feedback is available
from the position xk but not from the velocity vk. Such a scenario was described in
Example 4.1, and can be addressed through the F-DPD controller from Chapter 4.
See also Remark 6.4.

In summary, the vehicular formation problem (6.9) with the static feedback law
becomes [

ẋ
v̇

]
=
[

0 I
F G

] [
x
v

]
+
[
0
I

]
w. (6.11)

Dynamic feedback

To model the dynamic feedback laws, we introduce the auxiliary controller state
zk at each network site k, which is a d-dimensional vector containing a memory of
past position and velocity errors in each coordinate direction. We get:

uk = zk + (Fx)k + (Gv)k
żk = (Az)k + (Bx)k + (Cv)k.

An example of dynamic feedback control for double-integrator systems is the DAPI
controller from Chapter 4, which requires absolute velocity feedback. In the nota-
tion of this chapter, the DAPI controller on a 1-dimensional string can be written:

uk = zk + f+(xk+1 − xk) + f−(xk−1 − xk)− govk
żk = a+(zk+1 − zk) + a−(zk−1 − zk)− covk,

(6.12)

where the operator A achieves the weighted averaging of the internal state z across
nodes, which prevents de-stabilizing drift in the memory states at different nodes.

In general, we can write the equations of motion for the closed loop system with
dynamic feedback as: żẋ

v̇

 =

A B C
0 0 I
I F G

zx
v

+

0
0
I

w. (6.13)
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6.1.4 Structural assumptions for the vehicular formation problem
For the vehicular formation systems, we impose the following assumptions in addi-
tion to Assumptions 6.1–6.2 from before.
Assumption 6.4 (Relative position measurements) The controllers can only ac-
cess relative measurements of the position states x. This means that the operators F
and B in (6.11) and (6.13) have the property (6.8).

Remark 6.2 We will consider the case where the velocity feedback operators G
and C have the relative measurement property (6.8) as well as when they do not.
We refer to these cases as, respectively, relative and absolute velocity feedback. �

Assumption 6.5 (Reflection symmetry) The interactions between the vehicles
on ZdL are symmetric around each site k. This implies that the arrays associated
with the operators A,B,C, F,G have even symmetry, so that for each array element
f(k1,...,kd) = f(−k1,...,−kd). For example, in (6.12) this condition requires a+ = a−,
b+ = b−, f+ = f− and g+ = g−. A particular implication of this assumption is
that the Fourier symbols of the operators will be real valued.

The property of reflection symmetry, will be relevant (but not enforced) also in
the consensus case. By slight abuse of terminology, we will in the following refer
to a feedback operator as symmetric if the associated array has this property, and
asymmetric if it does not.

Assumption 6.6 (Coordinate decoupling) The feedback in each of the d coordi-
nate directions is entirely decoupled from the vector components in the other coordi-
nates. Furthermore, the array elements associated with the operators A,B,C, F,G
are isotropic. By this assumption, the array elements a, b, c, f, g are diagonal and
the convolution in (3.23) will turn into d decoupled, identical, scalar convolutions.
Assumptions 6.1–6.4 will be important for the upcoming analysis. Assumption 6.5
is imposed due to the inadmissibility of asymmetric static feedback on toric lattice
networks shown in Section 5.4, while Assumption 6.6 is mainly made to simplify
the calculations.

6.2 Performance measure and main result

We are concerned with the performance of the consensus and vehicular formation
problems in terms of the system’s coherence at steady state. This can be quanti-
fied as the steady-state variance of nodal state fluctuations, which are caused by
persistent stochastic disturbances. In particular, we are interested in the scaling
of this performance measure with the system size, as it grows asymptotically. We
call a system that exhibits a better scaling more coherent than a system with bad
scaling, as the former will form a more rigid formation when the system grows. If
the scaling is such that the variance per node is bounded, the system is said to be
fully coherent.

As before, we define the relevant performance output as:
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Definition 6.1 (Deviation from average performance measure)

yk := xk −
1
N

∑
l∈Zd

L

xl. (6.14)

In operator form, this becomes

y = (I − 1
N
J1)x =: Hx, (6.15)

where J1 is the convolution operator corresponding to the array with all elements
equal to 1.
Recall that each of the systems we consider is assumed to be driven by zero mean
white noise. Provided that it is input-output stable, the system’s squared H2 norm
therefore gives the total steady-state variance of the output (see Section 3.1.3):

V :=
∑
k∈Zd

L

lim
t→∞

E{y∗k(t)yk(t)}. (6.16)

We are now considering spatially invariant systems. This implies that the output
variance E{y∗k(t)yk(t)} will be independent of the site k in the network. We ob-
tain this per-site variance by simply dividing the total H2 norm by the system
size N = Ld:

VN = lim
t→∞

E{y∗k(t)yk(t)} = V
N
. (6.17)

Remark 6.3 The consensus type dynamics considered here will typically have a
single marginally stable mode at the origin corresponding to the motion of the
average (in each of the d coordinate directions). This is a consequence of Assump-
tion 6.3 of relative measurements. The H2 norm (6.16) is only finite if this mode
is unobservable from the system output. Here, the output operator H has the
relative measurement property (6.8), that is,

∑
k∈Zd

L
hk = 0, implying that the av-

erage mode is indeed unobservable. Provided remaining system modes are stable,
V in (6.16) will thus be finite for any finite system size N ; a condition equivalent
to bounded-input, bounded-output (BIBO) stability. �

6.2.1 Performance scalings with static and dynamic feeedback
Our main objective is to determine whether dynamic feedback may improve perfor-
mance compared to the static feedback laws that were also evaluated in [14]. The
following sections will introduce the methodology that is used to establish asymp-
totic scalings of performance. At this point, we summarize the chapter’s main
results as follows.
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Theorem 6.1 (Asymptotic performance scalings) Consider the first-order con-
sensus problem under Assumptions 6.1–6.3 and 6.7 and the vehicular formation
problem under Assumptions 6.1, 6.2, and 6.4–6.6. The steady-state per-site vari-
ance VN defined in (6.17) then scales asymptotically as follows:

1. Consensus
Static feedback or dynamic feedback

VN ∼
1
β


N d = 1
logN d = 2
1 d ≥ 3,

(6.18)

2. Vehicular formations

a) Relative feedback:
Static feedback or dynamic feedback

VN ∼
1
β2



N3 d = 1
N d = 2
N1/3 d = 3
logN d = 4
1 d ≥ 5,

(6.19)

b) Absolute velocity (but relative position) feedback:
Static feedback

VN ∼
1
β


N d = 1
logN d = 2
1 d ≥ 3,

(6.20)

Dynamic feedback
VN ∼ 1, (6.21)

where N = Ld is the network size, β = max{||f ||∞, ||g||∞} is an algorithm param-
eter reflecting the magnitude of feedback gains, and the symbol ∼ denotes scaling
up to a factor that is independent of N and β in the manner defined in (3.26).

Therefore, if only relative state measurements are available (Assumption 6.3), no
dynamic feedback laws on the forms (6.6) and (6.13) exhibit better coherence prop-
erties than static, memoryless feedback under the given assumptions.

However, a dynamic feedback law can theoretically achieve full coherence in
any spatial dimension using absolute feedback from velocities, even though position
measurements are relative. As previously shown in [14], and as will be evident from
the developments in Section 6.5, a static feedback protocol would require absolute
measurements of both states to achieve the same performance.
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Remark 6.4 The case with absolute position but relative velocity feedback is not
considered in this chapter. The interested reader is referred to [174] where it is
shown that VN then scales as in (6.20) for both the static and dynamic feedback
laws modeled in this chapter. A distributed PD controller was, however, shown in
Chapter 4 to give full coherence in this case. �

6.3 The H2-norm density and asymptotic scalings

We now introduce the technical framework that will be used to determine the H2
performance scalings in Theorem 6.1. This novel framework is based on the idea
of mapping the operators that define the system dynamics onto an infinite lattice.
Usually, H2 norms are calculated using traces of system Gramians that lead to
sums involving system eigenvalues. In the limit of large systems, they can instead
be estimated through integrals over a continuous function which we call the H2-
norm density. We show that simple properties of this H2-norm density determine
the asymptotic performance scalings.

6.3.1 The limit from finite to infinite lattices
All feedback operators considered in this chapter define convolutions with local
arrays on ZdL, by Assumption 6.2. Hence, for a given operator A we have that
ak = 0 if |k| > q for some fixed q. This means that any such array a can be
unambiguously re-defined on ZdL′ for any given L′ > 2q by filling it with zero
components wherever |k| > q. This also means that the same array can be used to
define a convolution over the infinite lattice Zd. As we shall see, such a re-definition
proves useful when analyzing the systems asymptotically.

Let a be a local array defined over ZdL and a∞ its counterpart defined on Zd, in
which the elements {ak} have been filled out with zeros for |k| > q up until infinity.
The discrete Fourier transform (DFT) of a, denoted ân is given by (3.24), while the
Z-transform of the array a∞, denoted â∞(θ), is given by (3.25). Comparing (3.24)
with (3.25) it is clear that the DFT of a are simply subsamples of the Z-transform
of a∞:

ân = â∞

(
2π
L
n

)
, n ∈ ZdL. (6.22)

Given that we are interested in system behaviors as N →∞, it will be convenient
to consider these Z-transforms of operators over the infinite lattice Zd, and their
behavior in the continuous spatial frequency variable θ ∈ Rd := [−π, π]d, rather
than the DFTs at discrete spatial wavenumbers.

For this purpose, let us take a general state space system on the form (3.4) and
map the system operators A, B, C onto Zd to obtain A∞, B∞, C∞. By virtue of the
spatial invariance property, A∞, B∞ and C∞ are circulant convolution operators
and the Z-transform can be used to (block) diagonalize them, see e.g. [15]. Then,
at each θ ∈ Rd, we obtain the transforms Â∞(θ), B̂∞(θ) and Ĉ∞(θ), which are
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matrix-valued in general. The DFTs Ân, B̂n, Ĉn of A, B, C are now precisely
the values of Â∞(θ), B̂∞(θ) and Ĉ∞(θ) at θ = 2π

L n, for all wavenumbers n ∈ ZdL.
Consider the following example:

Example 6.1 In the static consensus system (6.5), we have A = F . If we let F
represent the standard consensus algorithm (6.3), thenA∞ = F∞ has the associated
function array f∞, defined just as in (6.4) (note that it has infinitely many zero
components for |ki| > 1, i = 1, . . . , d).

The Z-transform of f∞ is:

f̂∞(θ) = f̃(−2 + ejθ + e−jθ) = −2f̃(1− cos θ), (6.23)

for θ ∈ Rd. The DFT of f , corresponding to the N eigenvalues of F , is therefore
given by f̂n = −2f̃(1− cos 2π

L n) for n ∈ ZdL.

6.3.2 H2 norm evaluation in the spatial frequency domain
From now on, let us assume that the system under consideration is input-output sta-
ble, so that its H2 norm (6.16) exists. Let the system be on the general form (3.4).
Its H2 norm can then be calculated as

V = tr
(∫ ∞

0
B∗eA

∗tC∗CeAtBdt
)
. (6.24)

Now, recall that the system could be (block) diagonalized by the DFT, where the
Fourier symbols Ân, B̂n, Ĉn correspond to decoupled diagonal elements. This is a
unitary transformation, so in line with the discussion in Section 3.1.2, the trace
in (6.24) can be re-written as:

V = tr

∑
n∈Zd

L

∫ ∞
0
B̂∗neÂ

∗
ntĈ∗nĈneÂntB̂ndt

 . (6.25)

Now, consider the output operator H defined in (6.15). It is easy to verify that its
Fourier symbol is ĥ0 = 0, and ĥn = 1 for n 6= 0. This implies that the output matrix
Ĉ0 = 0 for all systems (that is, the zero mode is unobservable). Consequently, we
can obtain the H2 norm in (6.25) by summing only over n ∈ ZdL\{0}.

Furthermore, following the discussion in the previous section, we can regard the
Fourier symbols in (6.25) as subsamples of Â∞(θ), B̂∞(θ), and Ĉ∞(θ). Given this
relationship, we can now state the per-site variance VN = V/N from (6.17) as

VN = 1
N

∑
θ= 2π

L n

n∈ZdL\{0}

tr
(
B̂∗∞(θ)P̂ (θ)B̂∞(θ)

)
, (6.26)

where the individual time integrals are defined as follows:
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Definition 6.2

P̂ (θ) :=
∫ ∞

0
eÂ
∗
∞(θ)tĈ∗∞(θ)Ĉ∞(θ)eÂ∞(θ)tdt. (6.27)

We call P̂ (θ) the observability Gramian at θ.
The observability Gramian at each θ 6= 0 is obtained by solving the Lyapunov

equation
Â∗∞(θ)P̂ (θ) + P̂ (θ)Â∞(θ) = −Ĉ∗∞(θ)Ĉ∞(θ), (6.28)

and is unique and finite provided Â∞(θ) is Hurwitz.
For all problem formulations considered here, B̂∞(θ) is a vector where one ele-

ment1 is 1 and remaining elements are zero. Hence, tr(B̂∗∞(θ)P̂ (θ)B̂∞(θ)) in (6.26)
is just one element of the matrix P̂ (θ)2. This is a quantity that will be used often
in the following, and we make the definition:
Definition 6.3 (Per-site H2-norm density)

p̂(θ) := tr
(
B̂∗∞(θ)P̂ (θ)B̂∞(θ)

)
. (6.29)

This quantity captures the distribution of the per-site variance VN over the spatial
frequency variable θ and we therefore refer to it as the per-site H2-norm density.

Now, notice that if the value of p̂(θ) is bounded for all θ ∈ Rd, then VN in (6.26)
will remain bounded as N → ∞ and the system in question is fully coherent. For
the consensus and vehicular formation problems, however, there is typically a single
zero eigenvalue at wavenumber n = 0 that corresponds to the spatial average mode
(see Section 6.2). This makes Â∞(0) non-Hurwitz, and in turn causes a singularity
in p̂(θ) at θ = 0. Even though the mode at θ = 0 itself is unobservable from the
system output, the singularity makes the H2-norm density grow unboundedly for
small θ, that is, for small wavenumbers.

For this reason, we use the following appropriate integral to estimate the value
of the sum in (6.26):

S(∆) :=
∫

∆≤|θ1|≤π
· · ·
∫

∆≤|θd|≤π
p̂(θ) dθ1 · · · dθd, (6.30)

where the argument ∆ indicates the size of a deleted neighborhood around θ = 0.
We recognize the sum in (6.26) as a Riemann sum approximation of the inte-
gral (6.30) with volume element 1/N = 1/Ld. The integral can therefore be used
to bound the sum asymptotically. Consider the following lemma:

1In the vehicular formation case, each “element” is a d× d diagonal matrix, where each of the
d diagonal elements is equal by Assumption 6.6.

2Or the sum of d identical such elements.
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θ

p̂(θ)

-π π2π
L

-2π
L

4π
L

-4π
L

Figure 6.3: Illustration of the upper and lower bounds in Lemma 6.2. The per-site vari-
ance VN is a sum that can be bounded by the lower (upper) Riemann integrals of the
H2-norm density p̂(θ) shifted by 2π

L
( 4π
L
) represented in red (blue). The systems we con-

sider have a zero eigenvalue at θ = 0, causing a singularity in p̂(θ). The order of this
singularity, that is, the rate at which p̂(θ) θ→0−→ ∞ determines how fast the integrals, and
thereby VN , grows as L → ∞. This growth corresponds to the asymptotic performance
scaling.

Lemma 6.2 The per-site variance VN in (6.26) is upper and lower bounded by the
integral (6.30) as

S

(
4π
L

)
≤ VN ≤ S

(
2π
L

)
, (6.31)

for all L > L̄, for some fixed L̄.

Proof: See Appendix 6.C.
The integral and the Riemann sum approximations are illustrated in Figure 6.3.

The performance of the consensus and vehicular formation systems can now be
evaluated as follows. First, the system operators are re-defined on Zd and (block)
diagonalized using the Z-transform (3.25). Second, the Lyapunov equation (6.28)
is solved to determine p̂(θ). Bounds on the variances VN are then found through
Lemma 6.2. Next, we derive general expressions for the scaling (in L) of the inte-
gral (6.30).
Remark 6.5 It is important to note that the systems we consider remain of finite
size N throughout. This is a preqrequisite for the finiteness of the H2 norm. Only
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the system operators are re-defined onto the infinite lattice, to facilitate an estima-
tion of the H2 norm by the integrated H2-norm density according to Lemma 6.2.

�

6.3.3 Bounds on asymptotic scalings
We are interested in the scaling of the per-site variance VN in (6.26) with the total
number of nodes N as this number grows large. Using the integral in (6.30) and the
bounds in Lemma 6.2, we can now derive asymptotic scalings of VN by exploiting
bounds on the per-site H2-norm density p̂(θ). We begin by a simple example.

Example 6.2 Consider the standard consensus algorithm (6.3) and for simplicity
let the dimension d = 1. The Lyapunov equation (6.28) is scalar and solved by

P̂ (θ) = p̂(θ) = 1
2
−1

f̂∞(θ)
(6.32)

for all θ ∈ [−π, π]\{0}, where we have used that Ĉ∞(θ) = ĥ∞(θ) = 1 for θ 6= 0.
The Fourier symbol f̂∞(θ) was given by (6.23) in Example 6.1. Substituting it into
the H2-norm density (6.32), the integral from (6.30) becomes:

S(∆) = 1
4f̃

∫
∆≤|θ|≤π

1
1− cos θdθ.

The lower bound in from Lemma 6.2 is

S

(
4π
L

)
= −1

2f̃

[
cot θ2

]π
4π
L

= 1
2f̃

cot 2π
L
,

and the upper bound has the same form. A series expansion of the cotangent
function reveals that this expression scales as 1

f̃
L = 1

f̃
N asymptotically.

This result is represented in case 1a) of Theorem 6.1 (f̃ here corresponds to the
algorithm parameter β).

In general, let us assume that the H2-norm density is such that

p̂(θ) ∼ 1
βr/2

1
(θ2

1 + θ2
2 + · · ·+ θ2

d)r/2
, (6.33)

for some non-negative r. The number r characterizes the order of the H2-norm
density’s singularity at θ = 0. In the upcoming analysis, we will show that any
admissible controller for the systems considered here results in H2-norm densities
that satisfy (6.33) with r ∈ {0, 2, 4}.

We have also introduced the algorithm parameter β, which reflects the size
of the system’s feedback gains (c.f. f̃ in Example 6.2). In particular, let β :=
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max{||f ||∞, ||g||∞}. All feedback array elements, which are bounded by assump-
tion, are then proportional to β. We show in Section 6.5.5 that the parameter β is
bounded by the system’s total control effort. It can therefore be considered a proxy
for control effort.

The number r, determines the coherence properties for a given system. If r = 0,
the system is fully coherent. Otherwise, the level of coherence depends on the
spatial dimension d of the network. We now state the main result of this section:

Lemma 6.3 Assume that the per-site H2-norm density p̂(θ) defined in (6.29) sat-
isfies (6.33). The steady-state per-site variance then scales asymptotically as

VN ∼
1

βr/2


Lr−d if d < r

logL if d = r

1 if d > r

(6.34)

up to some constant, which is independent of the lattice size L and the algorithm
parameter β.

Proof: First, substitute the approximation (6.33) into the integral S(∆) in (6.30)
and denote the resulting integral S̃(∆). We transform this to hyperspherical coordi-
nates by defining ρ = (θ2

1+· · ·+θ2
d)1/2 and the d−1 coordinates φ1, . . . , φd−2 ∈ [0, π]

and φd−1 ∈ [0, 2π] which are such that θi = ρ cosφi
∏i−1
j=1 sinφj for i = 1, . . . , d− 1

and θd = ρ
∏d−1
j=1 sinφj . We obtain:

S̃(∆) =
∫

∆≤|θ1|≤π
· · ·
∫

∆≤|θd|≤π

1
βr/2

1
(θ2

1 + · · ·+ θ2
d)r/2

dθ1· · · dθd

= cd
βr/2

∫ π

∆

∫ 2π

0

∫ π

0
· · ·
∫ π

0

1
ρr
ρd−1 sind−2φ1· · · sinφd−2dρdφd−1 · · · dφ1

= cd
βr/2
Sd
∫ π

∆
ρd−r−1dρ, (6.35)

where Sd is the (generalized) surface area of the d-dimensional unit sphere and cd
is a non-zero and finite scaling factor arising from integrating over a hypersphere
rather than a hypercube.

Now, by Lemma 6.2 we know that VN is bounded as

cS̃

(
4π
L

)
≤ S

(
4π
L

)
≤ VN ≤ S

(
2π
L

)
≤ c̄S̃

(
2π
L

)
,

for all L ≥ L̄ for some L̄, and with the constants c, c̄ from the scaling bounds
in (6.33). Substituting for ∆ in (6.35) the values 2π

L and 4π
L from these upper and

lower bounds and defining new constants c′, c̄′, the solution to the integral gives
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that

VN ≤ c̄′Sd
1

βr/2

{
1
r−dπ

d−r
((

L
2
)r−d − 1

)
if d 6= r

logL− log 2 if d = r

VN ≥ c′Sd
1

βr/2

{
1
r−dπ

d−r
((

L
4
)r−d − 1

)
if d 6= r

logL− log 4 if d = r

Noticing that these bounds are identical up to a constant for any given d, the
result (6.34) follows. �

6.4 Admissibility of dynamic feedback laws

We now turn to the question of stability of the consensus and vehicular formation
systems with dynamic feedback, which is a prerequisite for the H2 performance
evaluation laid out in the previous section. In particular, we must require the un-
derlying systems to be BIBO stable for any network size N to allow for the asymp-
totic performance analysis. In Chapter 5, we learnt that this is often not possible
for localized high-order algorithms. Some feedback configurations will namely cause
instability beyond a certain network size and therefore be inadmissible with respect
to our analysis. In order to rule these out, this section presents necessary conditions
for the admissibility of our controllers.

6.4.1 Conditions for input-output stability

The stability of a given LTI system on the form (3.4) can be verified by ensuring
that its individual Fourier symbols are stable in their own right. We begin by
re-stating the following Theorem from related work:

Theorem 6.4 [15, Corollary 1] The system (3.4) on ZdL is exponentially stable if
and only if the matrix Ân is Hurwitz stable for every n ∈ ZdL.

Proof: See [15, Theorem 1] and note that the group ZdL is compact. �

Now, we are evaluating these systems asymptotically, and must therefore require
that they remain stable for any lattice size L, as this number grows. Since the
Fourier symbols Ân can be seen as subsamples of Â∞(θ) (see Section 6.3.1), the
only way to ensure stability for any lattice size L is to make sure that Â∞(θ) is
stable for every θ. In our case, though, the mode at n = 0 is unobservable from
the considered output (see Remark 6.3). BIBO stability is therefore guaranteed if
Â∞(θ) is stable for every θ away from zero:
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Corollary 6.5 The system (3.4) on ZdL with output defined as in (6.15) is BIBO
stable for any network size N = Ld if and only if the matrix Â∞(θ) is Hurwitz
stable for all θ ∈ Rd\{0}.
The upcoming performance analysis should be constrained to feedback laws that
guarantee stability for any network size N according to Corollary 6.5. We therefore
make the following specific admissibility definition:
Definition 6.4 (Admissible feedback law) A feedback control law defined on ZdL
is admissible if the corresponding closed-loop system is BIBO stable with respect
to the output (6.15) for any network size N = Ld.

Remark 6.6 Note that the considered systems are finite-dimensional for any given
lattice size L. Their BIBO stability is therefore equivalent to the total variance V
being bounded. �

Under relative feedback, admissibility of the dynamic feedback laws is not straight-
forward. We next present some necessary conditions.

6.4.2 Admissibility conditions under relative feedback
First, consider the consensus problem with dynamic feedback (6.6) with feedback
operators A,B, F . Using Corollary 6.5, we derive the following theorem:

Theorem 6.6 Consider the consensus system (6.6). A necessary condition for
admissibility is that at least one of the following conditions holds:

a) The operator B is symmetric,

b) The operator A involves absolute feedback, that is, A does not satisfy (6.8).

Proof: See Appendix 6.D.
In the vehicular formation case with relative velocity feedback, a similar admis-

sibility condition holds:

Theorem 6.7 Consider the vehicular formation system (6.13), where the feedback
operators F,G,B,C have the relative measurement property (6.8). A necessary
condition for admissibility is that at least one of the following conditions holds:

a) The operator B = 0, while A 6= 0,

b) The operator A involves absolute feedback, that is, A does not satisfy (6.8).

Proof: See Appendix 6.E.
Theorem 6.7 implies that integral control based on position measurements can-

not be implemented for large networks, unless there is built-in “damping” of the
auxiliary state through an absolute feedback term in A. Note, however, that if
the purpose of the dynamic feedback law is to eliminate stationary errors through
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integral action, including such a term in A would defeat the purpose. In this case,
the auxiliary state z is namely stabilized and the integral action reduced to zero.
Remark 6.7 Theorems 6.6–6.7 imply that a system with a given feedback protocol
may be stable for small lattice sizes L, but becomes unstable at some lattice size
Lcrit unless the criteria are satisfied. As long as the control effort (feedback gains)
is bounded, Lcrit will always exist and be finite. �

Remark 6.8 A result that is analogous to Theorem 6.7 was presented in Corol-
lary 5.14 in a general network setting. This means that Theorem 6.7 is not an
artefact of this chapter’s topological restriction to a toric lattice network. �

6.5 Performance scalings with dynamic feedback

We established in Section 6.3 that the asymptotic performance scaling depends
on properties of the per-site H2-norm density. We now evaluate the H2 norm
densities for admissible feedback laws, and derive this chapter’s main result that
was previewed in Theorem 6.1. In order to establish results for dynamic feedback,
we first need to consider the respective problem under static feedback.

6.5.1 Consensus: performance with static feedback
We begin by deriving the performance scaling for the static consensus problem (6.2).
As seen in Example 6.2, the Lyapunov equation (6.28) is a scalar equation, which
is solved by

P̂ (θ) = p̂(θ) = −1
2Re{f̂∞(θ)}

. (6.36)

Now, consider the following lemma:

Lemma 6.8 Consider the static consensus system (6.2). Provided the feedback
operator F is admissible, it holds

Re{f̂∞(θ)} ∼ −β(θ2
1 + . . .+ θ2

d). (6.37)

Proof: By the definition of the Z-transform (3.25) it holds

Re{f̂∞(θ)} =
∑
k∈Zd

fk cos(θ ·k) =
∑
k∈Zd

fk[1−(1−cos(θ ·k))] = −
∑
k∈Zd

fk(1−cos(θ ·k)) ,

(6.38)
where we have used the relative measurement property (6.8), which implies∑
k∈Zd fk =

∑
k∈Zd

N
fk = 0. A Taylor series expansion of (6.38) around θ = 0

is ∑
k∈Zd

fk(1− cos(θ ·k)) =
∑
k∈Zd

fk

(
(θ ·k)2

2 − (θ ·k)4

4! + · · ·
)
, (6.39)
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which is upper bounded by its first term, that is,
∑
k∈Zd fk (1− cos(θ ·k)) ≤∑

k∈Zd fk
(θ·k)2

2 for all θ. Thus,

∑
k∈Zd

fk (1− cos(θ · k)) ≤ 1
2
∑
k∈Zd

|fk| (k1θ1 + · · ·+ kdθd)2

≤ 1
2
∑

0 6=k∈Zd
||f ||∞q2 (|θ1|+ · · ·+ |θd|)2

≤ 2d−1qd+2||f ||∞(2d+ 1)(θ2
1 + · · ·+ θ2

d), (6.40)

where the second inequality follows from the locality assumption (6.7) and the third
from straightforward algebra.

Next, the Taylor expansion (6.39) reveals that Re{f̂∞(θ)} goes to zero at a
quadratic rate. We can therefore always find a fixed, nonnegative c so that

−Re{f̂∞(θ)} =
∑
k∈Zd

fk (1− cos(θ · k)) ≥ c(θ2
1 + · · ·+ θ2

d) (6.41)

in some interval near zero; θ ∈ [−∆,∆]d for a small ∆. Note that no lower-degree
polynomial in θ (apart from the zero polynomial) could serve as a lower bound
in (6.41). Furthermore, given that the feedback law is admissible, it must hold
−Re{f̂∞(θ)} > ε > 0 for all θ ∈ Rd\[−∆,∆]d =: Rd∆ with any fixed ∆. We can
therefore always adjust c so that (6.41) holds for the entire region Rd.

Defining the algorithm parameter β = ||f ||∞, and noticing that remaining pa-
rameters of (6.40) and (6.41) are independent of θ and L, the result (6.37) follows.

�

Inserting the scaling from Lemma 6.8 into the H2-norm density (6.36) shows that

p̂(θ) = −1
2Re{f̂∞(θ)}

∼ 1
β

1
(θ2

1 + · · ·+ θ2
d)
, (6.42)

that is, the H2-norm density for the static consensus system (6.2) satisfies (6.33)
with r = 2. The per-site variance thus scales according to Lemma 6.3 with r = 2.

6.5.2 Consensus: performance with dynamic feedback
Before turning to the case of dynamic feedback, note that the performance of the
consensus system with static feedback is independent of any imaginary part of the
Fourier symbol f̂∞(θ). It is therefore independent of whether the feedback operator
F is symmetric or not. In the upcoming evaluation of dynamic feedback, we will
therefore limit the analysis to F being symmetric:
Assumption 6.7 The operator F in the dynamic consensus protocol (6.6) is sym-
metric, that is, it satisfies the properties listed in Assumption 6.5. It follows that
f̂∞(θ) = Re{f̂∞(θ)}.
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Remark 6.9 Assumption 6.7 is made to simplify the exposition by limiting the
number of possible feedback configurations that must be considered. It is our
belief, based on computer-aided evaluation, that the main result would hold also
without this assumption. �

Let us now assume that the choice of operators A,B, F is admissible. The
solution to the Lyapunov equation (6.28) then gives that

p̂(θ) = −1
2f̂∞(θ) + 2ϕc(θ)

, (6.43)

where ϕc(θ) is a function of the Fourier symbols of A,B and F . This H2-norm
density would scale differently from (6.42) if the function ϕc(θ) were non-zero and
scaled differently in θ than f̂∞(θ), for which we established a scaling in Lemma 6.8.
This is, however, not the case for any admissible configuration of the feedback
operators A and B. Consider the following lemma:

Lemma 6.9 For any admissible choice of the operators A,B, F in (6.6) satisfying
Assumptions 6.1–6.3, 6.7, the function ϕc(θ) in (6.43) is such that

f̂∞(θ) + ϕc(θ) ∼ −β(θ2
1 + . . .+ θ2

d). (6.44)

Therefore, the H2-norm density p̂(θ) in (6.43) will satisfy (6.33) with r = 2 for any
design of the dynamic feedback law.

Proof: See Appendix 6.F.

The asymptotic performance scaling will thus be unchanged compared to static
feedback. Rewriting the asymptotic scalings from Lemma 6.3 in terms of total
network size N = Ld gives the result in Theorem 6.1.

6.5.3 Vehicular formations: performance with static feedback
Consider the vehicular formation problem under static feedback (6.11). The solu-
tion to the Lyapunov equation (6.28) gives the H2-norm density

p̂(θ) = d

2f̂∞(θ)ĝ∞(θ)
. (6.45)

The following lemma is used to bound this H2-norm density:

Lemma 6.10 Consider the feedback operators F and G in the static vehicular
formation problem (6.11), and assume they are admissible. It holds f̂∞(θ) ∼
−β(θ2

1 + . . . + θ2
d). If G has the relative measurement property (6.8), then also

ĝ∞(θ) ∼ −β(θ2
1 + . . .+ θ2

d). Otherwise, ĝ∞(θ) ∼ ĝ0, for some constant ĝ0.



112 Chapter 6. Fundamental Limitations of Dynamic Feedback Control in Regular Networks

Proof: By Assumption 6.5, f̂∞(θ), ĝ∞(θ) are real valued. If they satisfy the
relative measurement property (6.8), they therefore have the same properties as
Re{f̂∞(θ)} from the consensus case, and scale as in (6.37). If G has absolute
feedback, it follows from (6.38) that ĝ∞(θ) = ĝ0 −

∑
k∈Zd gk (1− cos(θ ·k)), where

ĝ0 =
∑
k∈Zd gk < 0. Due to Assumption 6.2 of locality, this number is uniformly

bounded for all θ ∈ Rd. We can thus write ĝ∞(θ) ∼ ĝ0. �

In the case of only relative feedback, Lemma 6.10 bounds the H2-norm density
from (6.45) as

p̂(θ) = d

2f̂∞(θ)ĝ∞(θ)
∼ 1
β2(θ2

1 + . . .+ θ2
d)2 . (6.46)

The per-site variance thus scales as in Lemma 6.3 with r = 4.
With absolute velocity feedback we instead get that

p̂(θ) ∼ 1
β (θ2

1 + . . .+ θ2
d)
.

In this case, the per-site variance thus scales as in Lemma 6.3 with r = 2.
We can also note that relaxing Assumption 6.4 and allowing absolute feedback

from both position and velocity would let f̂∞(θ) ∼ f̂0 and ĝ∞(θ) ∼ ĝ0, making the
H2-norm density (6.45) uniformly bounded in θ. That is, r = 0 in Lemma 6.3 and
the system would be fully coherent.

The results for the static case outlined above, which are in line with those
in [14, Table 1], are summarized in Theorem 6.1.

6.5.4 Vehicular formations: performance with dynamic feedback
Now, consider the vehicular formation system with dynamic feedback. Provided
the feedback configuration is admissible, the Lyapunov equation (6.28) gives

p̂(θ) = d

2f̂∞(θ)ĝ∞(θ) + 2ϕv(θ)
, (6.47)

where ϕv(θ) is a function of the Fourier symbols of the operators A,B,C, F and G.
We now analyze (6.47) for the case with both relative and absolute velocity feed-
back.

Relative feedback

In order for the H2-norm density in (6.47) to scale differently from the static
case (6.45), the function ϕv(θ) would need to scale differently in θ from the product
f̂∞(θ)ĝ∞(θ), whose scaling was established in (6.46). This is, however, not possible
with only relative feedback:
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Lemma 6.11 For any admissible choice of the operators A,B,C, F,G in (6.13)
with only relative feedback in B,C, F,G, the function ϕv(θ) in (6.47) is such that

f̂∞(θ)ĝ∞(θ) + ϕv(θ) ∼ β2(θ2
1 + . . .+ θ2

d)2, (6.48)

Therefore, the H2-norm density p̂(θ) in (6.47) will satisfy (6.33) with r = 4 for any
design of the dynamic feedback.

Proof: See Appendix 6.G.
We conclude that in the case of only relative feedback, dynamic feedback on the
form (6.13) cannot improve the asymptotic performance scaling compared to static
feedback.
Remark 6.10 Certain choices of A,B,C, F,G in (6.13) may appear as though one
can achieve ϕv(θ) ∼ −β(θ2

1 + . . . + θ2
d), and thereby improve performance. For

example, if A = 0, it holds ϕv(θ) = b̂∞(θ) + ĉ∞(θ)ĝ∞(θ) and one may wish to set
B as the standard consensus operator (6.3), thus obtaining r = 2. However, by
Theorem 6.7, such a choice is inadmissible. �

Absolute velocity feedback

In this case, we first consider the distributed-averaging proportional-integral (DAPI)
controller (6.12) for the 1-dimensional vehicular platoon. The solution to the Lya-
punov equation yields

p̂DAPI(θ) = 1
2f̂ ĝ − 2 ĉf̂(â+ĝ)

â2+ĝâ−f̂

, (6.49)

where we have left out the∞−subscript and the arguments of the individual Fourier
symbols for notational compactness.

Now, A and F in DAPI are standard consensus operators whose Fourier symbols
look like (6.23), while G = −goI and C = −coI, which gives ĝ∞(θ) = −go, and
ĉ∞(θ) = −co. Inserting into (6.49) yields (after some simplifications):

p̂DAPI(θ) = 1
4gof+(1− cos θ) + 2 cogof++2cof+a+(1−cos θ)

f++a+go+2a2
+(1−cos θ)

,

which recognize as being uniformly bounded in θ ∈ R. The same conclusion holds
for d > 1. This implies that the DAPI controller, as we already found in Chapter 4,
yields full coherence.

If absolute velocity measurements are available, several designs of the dynamic
feedback in (6.13) can be shown to give the same result as the DAPI controller. In
particular, G and C can also include relative feedback and B can be non-zero.

The asymptotic performance scalings for the vehicular formation problem with
dynamic feedback are summarized in Theorem 6.1, where they have been re-written
in terms of total network size N = Ld.
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6.5.5 Control effort bounds
We have introduced the algorithm parameter β = max{||f ||∞, ||g||∞} in the deriva-
tions above. This parameter affects the performance scaling, as evident from our
main result in Theorem 6.1. In particular, if β were allowed to increase unbound-
edly, full coherence could be achieved in any spatial dimension. This is not feasible
in any realistic control problem, where the amount of control effort is bounded. We
now show that the size of the feedback array elements and therefore β are bounded
by the total control effort at each network site. We quantify the control effort
through:

E{u∗kuk}, (6.50)

that is, the variance of the control signal at each network site. In [14, Lemma 5.1],
such bounds are presented for the case of static feedback. Here, we present bounds
for the dynamic feedback case, but limit the analysis to the consensus algorithm
with symmetric feedback for the sake of brevity:

Lemma 6.12 Consider the consensus problem with dynamic feedback (6.6), where
the feedback operators A,B, F satisfy Assumptions 6.2 and 6.5. The following
bounds hold:

E{u∗kuk} ≥
1
2 ||f ||∞ (6.51a)

E{u∗kuk} ≥

√(
||a||∞

4

)2
+ ||b||∞4(2q)d −

||a||∞
4 (6.51b)

Proof: See Appendix 6.H.
Note that the constants in the bounds are independent of network size. Since we
have set β = ||f ||∞ and ||a||∞, ||b||∞ ∼ β, we can conclude that the asymptotic
scalings for the consensus problem in Theorem 6.1 will apply to any algorithm with
control effort bounds.

6.6 Implications and numerical example

The performance limitations discussed in this chapter are in terms of scalings of
global H2 performance, with respect to an output defined through nodal state
fluctuations. We argued that a better scaling implies that the network remains
more coherent, or rigid, when subjected to a process noise disturbance. Figure 6.4
shows simulations of strings of vehicles (that is, platoons) with both static and
dynamic feedback from relative measurements. As the platoons grow, they exhibit
an increasing lack of coherence. This is manifested through slow and large-scale
fluctuations of the platoon length, clearly indicating that the platoon does not
move like a rigid body. While the shape and size of these fluctuations are different
with dynamic feedback compared to static, the relative performance deterioration
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(a) Static feedback, N = 20 (b) Dynamic feedback, N = 20

(c) Static feedback, N = 100 (d) Dynamic feedback, N = 100

(e) Static feedback, N = 200 (f) Dynamic feedback, N = 200

Figure 6.4: Simulation of an N -vehicle platoon with static feedback (6.11) and dynamic
feedback (6.13) from relative measurements. At each time step of 0.1 s the independent
inputs wk are sampled from a Gaussian distribution. We display the time trajectories of
all vehicles’ positions, with the average motion of the platoon subtracted and a reference
spacing ∆x = 2 units inserted between vehicles. Under perfect control, the trajectories
would be N straight horizontal lines separated by ∆x. Note that the times displayed are
19000 s ≤ t ≤ 20000 s (approx. steady state), and that the scales on the vertical axes are
proportional to N . The platoon exhibits an accordion-like motion for large N with both
static and dynamic feedback, showcasing the lack of coherence predicted by Theorem 6.1.
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Figure 6.5: Mean variance (over the platoon) of the performance output (6.14) for the
system trajectories displayed in Figure 6.4. The data points agree with the VN ∼ N3

scaling predicted by Theorem 6.1.

is similar, as predicted by Case 2a in Theorem 6.1. This can also be seen from the
corresponding variances displayed in Figure 6.5.

The origin of these slowly varying mode shapes in vehicle platoons was discussed
in [14] and more recently in [127]. Our introduced concept of per-site H2-norm
density provides additional insights. The H2-norm density is largest near θ = 0,
revealing that the low spatial frequency modes are most energetic (see Figure 6.3).
As these correspond to the smallest system eigenvalues, they are also temporally
slow. This results in slowly varying modes that have long spatial wavelengths and
therefore span across the entire platoon.

Our derivations are made for spatially invariant systems, that is, lattices with
periodic boundary conditions. The simulation here, however, is done for a string
of vehicles where the first is not connected to the last. For large platoons, the
boundary condition has a limited effect on the interior of the network. The cor-
responding simulation for a ring of vehicles can indeed be verified to have a very
similar appearance to Figure 6.4.

While the relation (6.17) does not hold if the assumption of spatial invariance is
relaxed, the quantity VN can be evaluated as the mean variance over the network.
This is also what is displayed in Figure 6.5. Through graph embedding (that is,
noting that the string can be embedded in a ring graph) [18] it is straightforward
to show that the mean variance for the string will be at least as large as for the
ring graph case. It is therefore subject to the same limitations. Embedding argu-
ments can also be made in higher spatial dimensions, in particular to relate the
performance of 2D lattices to networks described by planar graphs.

The simulation in Figures 6.4–6.5 also demonstrates why it is the scaling of the
per-site variance, rather than its actual value for a given N , that is meaningful
for describing fundamental limitations. Even though a particular controller can
achieve lower per-site variance in a given finite-size network (here, for example, the
dynamic one at N = 200), the fact that it scales with network size implies that
performance inevitably degrades as the network grows. This holds regardless of
scaling coefficients. The result of Theorem 6.1 thus implies that neither static nor



6.7. Discussion 117

dynamic feedback from only relative measurements is scalable to large networks.
They are therefore both fundamentally limited.

6.7 Discussion

In this chapter, we have presented limitations to the achievable performance of
distributed static and dynamic feedback in networked systems built over toric lat-
tices. These limitations are described in terms of asymptotic scalings of H2 per-
formance (that is, of upper and lower bounds) that are derived under a number of
assumptions. In this section, we discuss some of these assumptions and possible
generalizations along with some general implications of our results.

6.7.1 Non-regular networks

The results in this chapter are derived for systems defined on toric lattice networks,
under certain restrictive assumptions. Accepting a generalization of the coherence
metric VN in (6.17) to a notion of mean variance, the assumptions of symmetry,
uniformity in gains, and isotropy can be relaxed at the cost of analytic tractability,
or by giving looser bounds on performance. Graph embeddings can, as already
discussed, also be used to bound performance of more general networks through
the lattices in which they can be embedded. The principle for this argument is
that the removal of any network connection can only decrease the graph Laplacian
eigenvalues (corresponding to the Fourier symbols in this study) and therefore in-
creases VN (see Section 3.2.5 for details). Any subgraph of a lattice (that is, any
embedded graph) would thus have greater VN than the lattice. We note that
our theory allows for q neighbor connections in each lattice direction, making such
embedding arguments less restrictive than they may seem.

Other concepts that are important for this chapter’s results, such as locality,
spatial dimension and a consistent notion of growing the network, are not straight-
forwardly generalized. For families of graphs where the behavior of the graph Lapla-
cian eigenvalues (that is, the Laplacian eigenvalue density) is known, the ideas in
Section 6.3 (for example, the H2-norm density) can be applied. A treatment of
Laplacian eigenvalue densities in the limit of large networks is found, for example,
in [2,50]. In this case, the notion of spatial dimension can possibly be generalized to
one of spectral dimension. However, such considerations would only apply to graph
families that can be scaled consistently, preserving properties like locality and di-
mensionality. Relevant contributions on performance limitations under alternative
topological assumptions have been made in [62, 127, 129, 156]. The proper gener-
alization of the topological properties that cause the limitations described here,
however, remains an open research question.
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6.7.2 Performance improvement with distributed integral control

As in Chapter 4, we established here that dynamic feedback such as the DAPI algo-
rithm (6.12) can yield a fully coherent vehicular formation in any spatial dimension,
provided that it has access to absolute measurements of velocities with respect to
a global reference frame. The intuition behind this result is that absolute measure-
ments of velocities are integrated in time to yield a substitute for absolute positions.
With absolute feedback from both position and velocity, formations are known to
be fully coherent [14]. However, as such a strategy is essentially so-called “dead
reckoning,” it can be sensitive to noisy measurements. In the next chapter, we will
investigate how measurement noise affects the performance of this controller.

6.7.3 The temporal aspect

This chapter demonstrated unfavorable asymptotic scalings in network size of the
steady-state variance of state fluctuations under a stochastic disturbance input.
This is one of the interpretations of the H2 norm introduced in Section 3.1.3.
Another aspect of these scalings that we did not consider here is the temporal one;
the time to reach the steady state also scales in network size. For the consensus
problem, the variance is an increasing function of time during the transient [190].
For very large, sparse networks, this means that the steady-state value may take a
long time to reach, but it can be seen as a worst-case variance. A detailed analysis
of the temporal aspects of performance scalings is a potential direction for future
work.

6.7.4 Higher-order dynamic feedback controllers

The dynamic feedback controllers considered in this chapter all contain a single
local memory state z, as illustrated in Figure 6.1. They thus describe a class
of distributed proportional-integral (PI) controllers with respect to the system’s
states. While we show that this type of controller cannot improve performance
scalings compared to static, memoryless controllers as long as they are limited to
relative state feedback, it is an open question whether a higher-order controller,
with an arbitrary number of local states, can.

The results from Chapter 5 reveal that increasing the order of local dynamics
leads to admissibility limitations. Though it may be possible to impose conditions
on the feedback similar to those in Theorem 6.7, it is likely increasingly difficult
with a higher number of states (compare to Figure 5.1).

Even if an admissible controller with a higher number of auxiliary states can
be designed, the limitation to relative state feedback implies that the marginally
stable mode at the origin remains. Therefore, the Fourier symbol Â(θ) is singular
at θ = 0. As a consequence, the H2-norm density will scale badly near θ = 0 (con-
sider the Lyapunov equation (6.28), and note that the right hand side is identity).
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We therefore conjecture that the unfavorable scaling of performance in low spatial
dimensions remains.

Performance scalings do, however, depend on the network’s spatial dimension,
with higher dimensions offering improved performance. It is an open and ongoing
research question whether a higher-dimensional structure can be emulated through
a high-order dynamic controller structure. Such an approach would, however, likely
require that the controller order grows asymptotically along with the physical net-
work, thereby creating a very high controller complexity.
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Appendix to Chapter 6
6.A Scalings of sums and products
Many of the proofs in this appendix are based on the behaviors, or scalings, of
functions of Fourier symbols in θ. Here we make some preliminary remarks on such
scalings.

Recall that the notation u(θ) ∼ v(θ) implies cv(θ) ≤ u(θ) ≤ c̄v(θ) for all
θ ∈ Rd = [−π, π]d, where c, c̄ are fixed, positive constants. For example, we
write f̂∞(θ) ∼ β(θ2

1 + . . . + θ2
d), or f̂∞(θ) ∼ β|θ|2 for short (the modulus |θ| =

(θ2
1 + . . .+ θ2

d)1/2).
For products and sums of such functions, it holds u′(θ) = u1(θ)u2(θ) + u3(θ) ∼

v1(θ)v2(θ) + v3(θ), implying that the bounds are c1c2v1(θ)v2(θ) + cv3 ≤ u′(θ) ≤
c̄2v2(θ)c̄2v2(θ) + c̄v3(θ). For a quotient: u′(θ) = u1(θ)/u2(θ) ∼ v1(θ)/v2(θ) implies
(c1/c̄2)v1(θ)/v2(θ) ≤ u′(θ) ≤ (c̄1/c2)v1(θ)/v2(θ).

Therefore, the scalings of functions of Fourier symbols can be determined simply
by inserting the individual Fourier symbols’ scalings. For example, if f̂∞(θ) ∼
β|θ|2, ĝ∞(θ) ∼ β|θ|2, then f̂∞(θ)ĝ∞(θ) ∼ β2|θ|4 and f̂∞(θ)/ĝ∞(θ) ∼ 1. This is
used throughout to determine scalings of H2-norm densities.

6.B Maclaurin expansions of Z-transforms
The Maclaurin series expansions of Z-transforms will be used to derive admissibility
conditions in Theorems 6.6–6.7. Consider an operator A, and its Z-transform â∞(θ)
given in (3.25). The Maclaurin expansion of â∞(θ) in the coordinate direction
θ = (θ1, 0, . . . , 0) is

â∞(θ1, 0, . . . , 0) = ā0 + jā1θ1 + ā2θ
2
1 + · · · . (6.52)

Note that if A fulfills Assumption 6.3 of relative measurements, then ā0 = 0. If A
fulfills Assumption 6.5 of symmetry, then â∞(θ) is real-valued and ā1,3,... = 0.

6.C Proof of Lemma 6.2
Given that Â∞(θ) is Hurwitz for θ 6= 0, the H2-norm density p̂(θ) is continuous
and bounded over the compact domain given by δ ≤ |θi| ≤ π for i = 1, . . . , d, and
any fixed δ > 0. It is therefore Riemann integrable on that domain.

On the interval ∆ < |θi| < δ, allowing for ∆→ 0, p̂(θ) will instead be monotonic.
For simplicity, we show this through the scalar case in which Â∞(θ) = â∞(θ) =∑
k∈Zd ake

−jθ·k, which is negative for θ 6= 0 as Â∞(θ) is Hurwitz. Solving the
Lyapunov equation (6.28) then gives P̂ (θ) = p̂(θ) = −1/2

∑
k∈Zd ak cos(θ · k) for

θ ∈ Rd\{0}. Its derivative in each coordinate direction i = 1, . . . , d is

dp̂(θ)
dθi

=
−2
∑
k∈Zd akki sin(k1θ1 + · · ·+ kdθd)

(2
∑
k∈Zd ak cos(k1θ1 + · · ·+ kdθd))2 . (6.53)
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Now, note that sgn(sin(kx)) = sgn(x) for for|x| ≤ π
k . Therefore, by the locality

asssumption (6.7), the derivative (6.53) satisfies dp̂(θ)
dθi < 0 for θi ∈ (0, δ) and dp̂(θ)

dθi >
0 for θi ∈ (−δ, 0) with δ ≥ π/q. The H2-norm density p̂(θ) is thus monotonically
decreasing away from zero for |θi| ≤ δ, where δ can always be fixed. A similar
argument can be construed for when Â∞(θ) is matrix-valued, in which case one
considers matrix-valued coefficients of the Z-transform.

It is well-known that integrals of monotonic functions f(x) can be estimated by
upper and lower Riemann sums according to:∫ n+1

m

f(x)dx ≤
n∑

k=m
f(k) ≤

∫ n

m−1
f(x)dx

if f(x) decreasing (and vice versa if f(x) increasing). We use this to bound the
monotonic part of the sum in (6.26):

V δN = 1
Ldδ

∑
θ= 2π

L n

|ni|<δ L2π

tr
(
B̂∗∞(θ)P̂ (θ)B̂∞(θ)

)
(6.54)

by the integral from ∆ to δ:

Sδ(∆) :=
∫

∆≤|θ1|≤δ
· · ·
∫

∆≤|θd|≤δ
p̂(θ)dθ1 · · · dθd

as
Sδ
(

4π
L

)
≤ V δN ≤ Sδ

(
2π
L

)
, (6.55)

since 2π/L and 4π/L are the first two wavenumbers, or sampling points in the sum.
Here, Lδ is the number of summands for which |ni| < δ L2π , corresponding to the
domain where p̂(θ) is known to be monotonic.

For the remainder of the sum, we use the Riemann integrability away from zero.
That is, let

V πN = 1
(L− Lδ)d

∑
θ= 2π

L n

|ni|≥δ L2π

tr
(
B̂∗∞(θ)P̂ (θ)B̂∞(θ)

)

and note that limL→∞ V πN = Sπ, where Sπ :=
∫
δ≤|θ1|≤π · · ·

∫
δ≤|θd|≤π p̂(θ)dθ1 · · · dθd.

In other words, the sum converges to the integral. Therefore, at some L̄, we will
have that |V π

N̄
− Sπ| < Sδ( 2π

L̄
)− Sδ( 4π

L̄
), so that

Sδ
(

4π
L

)
+ Sπ ≤ V δN + V πN ≤ Sδ

(
2π
L

)
+ Sπ,

for all L ≥ L̄, or N > N̄ , which is precisely equivalent to the statement of
Lemma 6.2. �
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6.D Proof of Theorem 6.6

Each matrix Â∞(θ) =
[
â∞(θ) b̂∞(θ)

1 f̂∞(θ)

]
has the characteristic equation

p(s, θ) = s2 + (−â∞(θ)− b̂∞(θ))s− b̂∞(θ) + â∞(θ)f̂∞(θ) = 0. (6.56)

Going forward, we omit the ∞−subscript and the argument θ of the individual
Fourier symbols for notational compactness. The system is input-output stable
if and only if Re{s1,2(θ)} < 0 for every θ 6= 0 by Corollary 6.5. First note that
if all operators are symmetric, then b̂, â, f̂ are real-valued, and Re{s1,2(θ)} < 0
if all coefficients of (6.56) are positive. This is achieved, for example, by setting
b̂, â, f̂ < 0.

Otherwise, to find necessary conditions for stability under asymmeric feedback,
it suffices to study this condition along one of the coordinate directions, so we let θ =
(θ1, 0, . . . , 0). We use the Routh-Hurwitz criteria for complex-valued polynomials
from the proof of Theorem 5.3. For the polynomial (5.7) with n = 2, the conditions
∆2 < 0, ∆4 > 0 for Im{µ} > 0 read: g1 < 0, f1g1g0−fog2

1−g2
0 > 0. Identifying the

coefficients from (6.56) and transforming the condition to one for Re{s} < 0 gives
first that Re{−â − b̂} > 0 (which is satisfied, for example, if Re{â},Re{b̂} < 0),
and second,

Re{â+ b̂}Im{â+ b̂}Im{−b̂+ âf̂}+
(

Re{â+ b̂}
)2

Re{−b̂+ âf̂}

−
(

Im{−b̂+ âf̂}
)2

> 0 (6.57)

To determine whether this can be satisfied for all θ, and in particular the small
θ that correspond to large N , we substitute the first terms of the Maclaurin expan-
sions of the Fourier symbols â, b̂, f̂ from (6.52) into (6.57):

(ā0 + (ā2 + b̄2)θ2
1)(−b̄1θ1 + ā0f̄1θ1 + (ā1f̄2 + f̄1ā2)θ3

1)(ā1 + b̄1)θ1︸ ︷︷ ︸
m1

+ (ā0f̄2 − ā1f̄1 + ā2f̄2θ
2
1)(ā2 + b̄2)2θ6

1︸ ︷︷ ︸
m2

− (−b̄1θ + ā0f̄1θ1 + (ā1f̄2 + f̄1ā2)θ3
1)2︸ ︷︷ ︸

m2
3

> 0, (6.58)

or in short m1 +m2 −m2
3 > 0. Note that m2

3 > 0, so m1 +m2 must be sufficiently
large for (6.58) to be satisfied.

Assume first b̄1 6= 0. In this case m2
3 ∼ θ2

1. We must then require m1 + m2 to
scale as θp1 with p ≤ 2, else m1 + m2 becomes too small for sufficiently small θ1.
While m2 ∼ θ6

1 or ∼ θ8, we can have m1 ∼ θ2
1, but only if ā0 6= 0. We conclude

that we must set
ā0 6= 0 if b̄1 6= 0.
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This means that absolute feedback in A is a necessary condition for admissibility if
B is asymmetric.

If b̄1 = 0, then if also ā0 = 0, m2
3 ∼ θ6

1, while m1 ∼ θ5
1 or θ6

1. If ā0 6= 0, we
have m2

3 ∼ θ2
1 while m1 ∼ θ1 or ∼ θ2

1, so it is possible to satisfy (6.58). Setting one
out of f̄1 or ā1 to zero will not affect these scalings (if they are both zero, m3 = 0
and (6.58) is also satisfied). We conclude that

b̄1 = 0

is a necessary condition if ā0 = 0, meaning that B must be symmetric if A has no
absolute feedback. This concludes the proof. �

Remark 6.11 An alternative proof for Theorem 6.6 is given in [176]. �

6.E Proof of Theorem 6.7
The characteristic polynomial of the matrix Â∞(θ) is

p(s, θ) = s3 − (â+ ĝ)s2 + (âĝ − f̂ − ĉ)s+ âf̂ − b̂, (6.59)

where we have again omitted the ∞−subscript and the argument θ of the Fourier
symbols. Recall that all Fourier symbols are now real by Assumption 6.5. We can
therefore use the standard Routh-Hurwitz stability criteria which state that; given
a characteristic polynomial p(s) = m3s

3 + m2s
2 + m1s + m0, then necessary and

sufficient conditions for stability are that

(i) mi > 0, and

(ii) m2m1 > m3m0.

In the case of (6.59), a necessary condition for satisfying (i) is that we do
not have â = 0, b̂ = 0 simultaneously. That is, if B = 0, then we must have
A 6= 0. Otherwise, the condition (i) can easily be satisfied, for example by ensuring
â, b̂, ĉ, f̂ , ĝ < 0. Assuming (i) is satisfied, consider (ii), which says that:

−(â+ ĝ)(âĝ − f̂ − ĉ) > âf̂ − b̂.

First, we note that if b̂ = 0, then this reduces to −â2ĝ − âĝ2 + âĉ + ĝf̂ + ĝĉ > 0,
which is also satisfied if â, ĉ, f̂ , ĝ < 0. For the case where b̂ 6= 0, we follow the
approach in the previous proof and expand the inequality with the first terms of
the Maclaurin expansions along θ1:

−(ā0 + (ā2 + ḡ2)θ2
1)(ā2ḡ2θ

4
1 + (ā0ḡ2− f̄2− c̄2)θ2

1) > −̄b2θ2
1 + ā0f̄2θ

2
1 + ā2f̄2θ

4
1 (6.60)

Both sides of this inequality are positive if condition (i) above is satisfied. Now, if
the RHS of (6.60) scales in lower powers of θ1 than the LHS, then near θ1 = 0 it
becomes arbitrarily many times larger than the LHS, and (6.60) cannot be satisfied.
In particular, if b̄2 6= 0, then the RHS scales as θ2

1, which is only true for the LHS
if ā0 6= 0. Therefore, absolute feedback in A is necessary if B 6= 0. This concludes
the proof. �
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6.F Proof of Lemma 6.9
To prove Lemma 6.9 we treat the two admissible feedback configurations given by
Theorem 6.6 separately.

Case a) B symmetric

If b̂∞(θ) is real, then

ϕc = b̂Re{â}(Re{â}+ f̂)
b̂f̂ + Re{â}(b̂− Im{â}2 − (Re{â}+ f̂)2)

. (6.61)

We notice immediately, that if â = 0, that is, if A = 0, then ϕc ≡ 0, and f̂ + ϕc

scales just as f̂ .
Otherwise, recall that f̂ ∼ −β(θ2

1 + . . . + θ2
d) (for short: f̂ ∼ −β|θ|2) by

Lemma 6.8. B now has the same properties as F , so b̂ ∼ −β|θ|2. A on the
other hand, may be asymmetric and have absolute feedback. Therefore, we in
general have

∑
k∈Zd

L
ak = â0, where â0 ≤ 0, and in line with (6.38) we obtain

Re{â} = â0 −
∑
k∈Zd ak(1 − cos(θ · k)), so Re(â) ∼ â0 − βθ2. If A is asymmetric,

the imaginary part of its Fourier symbol is Im{â} = −
∑
k∈Zd ak sin(θ ·k). Through

similar calculations as in the proof of Lemma 6.8, we can derive the bound

Im{â}2 ≤ (2(2q)d + 1)
∑
k∈Zd

a2
k sin2(θ · k) = ((2q)d + 1

2)
∑
k∈Zd

a2
k (1− cos(2θ · k))

≤ ((2q)d + 1
2)(2q)(d+2)||a||2∞(θ2

1 + · · ·+ θ2
d).

We can thus write Im{â}2 ≤ c̄aβ|θ|2 with c̄a ≥ 0. Clearly, it also holds Im{â}2 ≥ 0.
Now, consider the terms b̂ − (Im{â})2 in the denominator of (6.61). By the

arguments in Appendix 6.A, it holds b̂− Im{â}2 ∼ −β|θ|2. Inserting this, together
with f̂ , b̂ ∼ −β|θ|2, Re{â} ∼ â0 − β|θ|2 into (6.61) gives

ϕc ∼ β|θ|2 −2β|θ|2 + 2â0

2β2|θ|4 + β(1− 3â0)|θ|2 + â2
0
.

This can be written as ϕc ∼ −ϕ̄β|θ|2, and we note that ϕ̄ will be a bounded,
positive constant for any β and all θ ∈ Rd. In fact, ϕ̄ ≤ 2 if â0 = 0, or ϕ̄ ≤ 2

|â0| if
â0 < 0. Therefore, f̂ + ϕc ∼ −β|θ|2 − ϕ̄β|θ|2 ∼ −β|θ|2, which is precisely (6.44).

Case b) B asymmetric

If B is not symmetric, we must by Theorem 6.6 require A to have absolute feedback,
so that â∞(θ) ∼ â0 < 0. Inserting this into ϕc gives

ϕc ∼ â2
0Re{b̂}+ Im{b̂}2 + â0Re{b̂}f̂

â0(Re{b̂} − (â0 + f̂)2) + f̂Re{b̂}
. (6.62)
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Now, Im{b̂}2 satisfies the same inequality as Im{â}2 above. Since f̂ ∼ −β|θ|2,
and Re{b̂} ∼ −β|θ|2, the numerator terms from (6.62) satisfy â2

0Re{b̂}+ Im{b̂}2 ∼
−â2

0β|θ|2, provided that â0 is sufficiently large to ensure admissibility.
Inserting all scalings into (6.62) gives

ϕc ∼ β|θ|2 â2
0 + â0

β2(â0−1)|θ|4 + βâ0(−2â0+1)|θ|2+â3
0

=: −ϕ̄β|θ|2

Here, ϕ̄ is a positive constant, which for any β and all θ ∈ Rd satisfies ϕ̄ ≤ 1
|â0| .

We can again conclude that f̂ + ϕc ∼ −β|θ|2, which proves the lemma. �

6.G Proof of Lemma 6.11
The function ϕv in (6.47) is given as

ϕv = b̂2 + b̂(âĉ+ ĉĝ − âf̂ − âĝ2 − â2ĝ)− ĉf̂ â(â+ ĝ)
b̂− âf̂ + â2(â+ ĝ)

(6.63)

Now, the feedback operatorsB,C, F,G have the relative measurement property (6.8),
while A need not, so in line with Lemma 6.10, we have b̂, ĉ, f̂ , ĝ ∼ −β|θ|2 and
â ∼ â0 − β|θ|2 with â0 ≤ 0. We consider the two cases given by the admissibility
Theorem 6.7 separately.

Case a) B = 0

Substituting the scalings of the individual Fourier symbols into (6.63) gives:

ϕv ∼ β2|θ|4 2β|θ|2 − â0

2β2|θ|4 + β(1− 3â0)|θ|2 + â2
0

= ϕ̃β2|θ|4.

For any β and for all θ ∈ Rd, we identify ϕ̃ as a positive constant, with ϕ̃ ≤ 1
|â0| if

â0 6= 0, ϕ̃ ≤ 2 if â0 = 0. Therefore, f̂ ĝ + ϕv ∼ β2|θ|4 + ϕ̃β2|θ|4 ∼ β2|θ|4, which is
precisely (6.48).

Case b) B 6= 0

If the operator B is nonzero, A is required by Theorem 6.7 to have absolute feed-
back, so â0 < 0. We can then set â ∼ â0 < 0 and:

ϕv ∼ β2|θ|4 β(1− 2â0)|θ|2 + 2â2
0 − 1

βâ0(â0 + 1)|θ|2 − â3
0

= ϕ̃β2|θ|4.

Again, ϕ̃ can be identified as a bounded positive constant, so f̂ ĝ+ϕv ∼ β2|θ|4 also
in this case (provided â0 ≥ 1, which signifies that the amount of absolute feedback
in A is sufficient to guarantee admissibility).
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It remains to consider the case in which the feedback operator C = 0. This does
not give a meaningful control design if also B = 0, so it was not considered under
case a) above. Substituting ĉ = 0 and the scalings of remaining Fourier symbols
into (6.63) gives

ϕv ∼ β2|θ|4 2β2|θ|4 − β(3â0 + 1)θ2 + â2
0 + â0 − 1

2β3|θ|6 + β2(1− 5â0)|θ|4 + β(4â2
0 − â0 + 1)|θ|2 − â3

0
,

and the same conclusion as with C 6= 0 holds. �

6.H Proof of Lemma 6.12
Consider the dynamics (6.6), but define the control signal u = z+Fx as the output.
We can then obtain the control signal variance in (6.50) through the H2 norm from
w to u, divided by the total network size N . We use the DFT (3.24) to block-
diagonalize the system, and solve a Lyapunov equation for each wavenumber n.
We obtain that ∑

k∈Zd
L

E{u∗kuk} =
∑

n∈Zd
L
\{0}

b̂n − f̂n(ân + f̂n)
2(ân + f̂n)

,

which is equivalent to

NE{u∗kuk} = 1
2

(
||f̂ ||1 + || b̂

â+ f̂
||1

)
. (6.64)

The equivalence of the sum and the l1-norm follows from the fact that we must have
f̂n, b̂n < 0 and f̂n+ân < 0 for all n in order to guarantee stability (see Theorem 6.4).
Now, if f̂ is the Fourier transform of a function array f , then ||f̂ ||∞ ≤ ||f ||1 and
||f ||∞ ≤ 1

N ||f̂ ||1 (see [14]). Inserting in (6.64) gives the first bound of the Lemma:

||f ||∞ ≤
1
N
||f̂ ||1 ≤ 2E{u∗kuk}.

It also holds that

2NE{u∗kuk} ≥ ||
b̂

â+ f̂
||1 ≥

||b̂||1
||â+ f̂ ||∞

≥ ||b̂||1
||â||∞ + ||f̂ ||∞

,

where the last equality follows from the triangle inequality. Now, we can use the
fact that ||â||∞ ≤ ||â||1 ≤ (2q)d||a||∞ and substitute the bound above on ||f̂ ||∞ to
get that

2NE{u∗kuk} ≥
||b̂||1

(2q)d(||a||∞ + 2E{u∗kuk})
.

Now, we use that ||b||∞ ≤ 1
N ||b̂||1 to rewrite this as

4(2q)d(E{u∗kuk})2+2(2q)d||a||∞E{u∗kuk}−||b||∞ ≥ 0,

which leads to the second bound of the Lemma. �



Chapter 7

Noise-Induced Limitations to Distributed
Integral Control

In Chapters 4 and 6 of this thesis, we have shown that an addition of appropriately
filtered distributed derivative or integral action can alleviate performance limita-
tions that apply to distributed static feedback controllers. This holds in double-
integrator networks in cases where the controllers have access to an absolute mea-
surement of one of the two local states (position or velocity). In this chapter, we will
examine this result closer, and focus on the implementation of integral control in
the form of DAPI in the case where absolute velocity measurements are available.

Here, we investigate to which extent the superior performance of distributed
integral control compared to standard distributed static feedback is robust to mea-
surement noise in the controller. The apparent reason for the improved performance
is namely that integration of the absolute velocity measurements emulates absolute
position feedback. Any noise and bias in the velocity measurements is prevented
from causing destabilizing drifts in this position feedback by a distributed averaging
filter in the DAPI controller. Yet, we show here that noisy measurements may still
have a significant impact on performance.

We consider the same setup as in Chapter 6, that is, we model the vehicu-
lar formation control problem over a toric lattice network. However, we consider
asymptotic performance scalings not only in terms of the global error variance con-
sidered so far, but also of the local error variance that was also introduced as part of
our initial problem formulation in Chapter 1. We show that while the performance
of noiseless DAPI control scales well, the addition of measurement noise gives rise
to its own contribution to the error variance with an unfavorable scaling in low-
dimensional lattices. Even though this contribution, which is also proportional to
the noise intensity, may be small in absolute terms for small networks, it limits the
overall scalability of the controller. In fact, it becomes worse than with distributed
static feedback.

These unfavorable scalings hold under the assumptions imposed in Chapter 6, in
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particular, the assumptions of locality and of fixed feedback gains. Having observed
that the distributed averaging filter in the DAPI controller reduces the impact of
measurement noise, we study how a relaxation of those assumptions with regards
to this filter may improve performance. That is, as the lattice size grows, we
show how 1) increasing the size of each agent’s neighborhood in the communication
topology, and 2) increasing the distributed averaging gains affect the performance
scalings. Our main conclusion is that these manipulations can restore the best-
achievable performance scaling, which is shown to be that of distributed static
feedback. That, however, requires an increasing amount of inter-nodal alignment
through the distributed averaging filter. In a low-dimensional lattice, this eventually
implies either very large distributed averaging gains that in principle require a
centralized implementation, or all-to-all communication.

7.1 Noiseless vs. noisy distributed integral control

We will now consider the vehicular formation control problem from Chapter 6 and
focus on the distributed integral controller DAPI. The network setting in the d-
dimensional toric lattice along with all assumptions carry over to this chapter.

7.1.1 Static feedback
Recall from Section 6.1.3, that the vehicular formation control problem could be
written [

ẋ
v̇

]
=
[

0 I
F G

] [
x
v

]
+
[
0
I

]
w +

[
0
I

]
u, (7.1)

where F and G as before define convolution operators over ZdL, and w is a process
noise disturbance. Here, we have introduced the (secondary) control input u, which
will exert the integral control action. We refer to the system (7.1) as subject to
static feedback if u = 0.1

7.1.2 DAPI control under noisy measurements
Throughout this chapter, we assume absolute velocity measurements to be available,
and therefore consider the use of DAPI control, which we write here as:

u = z

ż = −covm +Az,
(7.2)

where z is the auxiliary controller state, vm is the velocity measured by the con-
troller, co > 0 is a fixed (integral) gain and A is a feedback operator subject to the

1Alternatively, any control on the form u = Fux + Guv, where Fu and Gu satisfy the same
assumptions as F and G, is possible. Without loss of generality we can then assume u = 0 and
absorb Fu and Gu in (7.1).
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Figure 7.1: Example structure of the distributed integral control. The inter-nodal align-
ment of integral states zk takes place over a communication network (dashed lines), while
the state feedback interactions take place over the physical network (solid lines). Note
that this schematic network is depicted without periodicity.

same assumptions as F , including the relative measurement and symmetry prop-
erties (see also Remark 7.1). Recall that the operator A represents the distributed
averaging filter, over which an alignment of the integral states takes place. The
purpose of this alignment is to prevent drifts in the integral states zk (due to noise
or bias), which would otherwise destabilize the system [6]. It is useful to think of
the information exchange through A as taking place over a communication network
layer, separate from the physical network. The setup is illustrated in Figure 7.1.

We have shown in Chapters 4 and 6 that the controller (7.2) improves per-
formance compared to static feedback. This could be attributed to the fact that
integration of absolute velocity measurements can provide a substitute for the oth-
erwise lacking absolute position feedback. It turns out, however, that this result is
sensitive to the accuracy of the absolute velocity measurements.

Here, let us therefore model additive measurement noise and let the velocity
measurement in (7.2) be

vm = v + η,

where the vector η contains uncorrelated white noise with the relative intensity ε
defined through E{ηηT } = εE{wwT }. We will refer to the DAPI control as noiseless
if ε = 0, and as noisy if ε > 0. Inserting this into (7.1) gives the closed-loop system:żẋ

v̇

 =

A 0 −coI
0 0 I
I F G

zx
v

+

0 −coε
0 0
I 0

 w̄, (7.3)

where w̄ ∈ R2N is a vector of uncorrelated white noise with unit covariance.
Remark 7.1 In this chapter, we will not consider DAPI control with absolute
feedback in the operator A. This would namely stabilize the state z and no integral
action would then be exerted on the system (7.1). �
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Remark 7.2 We have assumed that the velocity enters without noise in the system
dynamics (7.1). It may also be reasonable to model the same noise there, so that

v̇ = Fx+G(v + η) + u+ w.

This can, however, be shown not to affect the qualitative system behavior discussed
here. See Appendix 7.A for a mathematical argument. �

7.2 Scalings of local and global performance

We will now summarize the performance of the vehicular formation control problem
under static feedback and noiseless DAPI control, and compare it to the new results
under noisy DAPI control. As usual, we consider performance in terms of the scaling
of the per-site performance output variance VN defined in (6.17). Here, we will,
however, consider two performance outputs; one global and one local. The global
error, or deviation from the network average, is defined as in previous chapters:
Definition 7.1 (Global error)

yk = xk −
1
N

∑
l∈Zd

L

xl. (7.4)

The local error is here defined as follows:
Definition 7.2 (Local error)

yk = xk − xk−1. (7.5)

As before, it is only if the per-site variance VN = E{y∗k(t)yk(t)} = VN

N is bounded in
the network size N that we can say that a control law is scalable to large networks.
Consider the following result:

Result 7.1 (Performance scalings) Let Assumptions 6.1, 6.2, and 6.4–6.6 hold.
Table 7.1 lists the asymptotic scaling of the per-site variance VN of the local and
global error under

(i) Static feedback, that is, the system (7.1) with the input u = 0,

(ii) Noiseless DAPI control, that is, the system (7.3) with noise intensity ε = 0,
and

(iii) Noisy DAPI control, that is, the system (7.3) with noise intensity ε > 0.

Proof: The result (i) appeared in [14, Corollary 3.2], and (ii) follows from Corol-
lary 4.3 (for the local error, see also Proposition 7.2 here). The result (iii) follows
from the upcoming Proposition 7.2 and Corollaries 7.3–7.4. �
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Table 7.1: Asymptotic performance scalings for the system (7.1) with (i) u = 0 (static
feedback), (ii). u as in (7.2) with vm = v (noiseless DAPI) and (iii) u as in (7.2) with
vm = v + η (noisy DAPI). Scalings are up to a constant independent of network size N ,
algorithm parameter β = max{||f ||∞, ||g||∞} and relative noise intensity ε.

Local error Global error

(i) Static feedback VN ∼ 1
β for any d VN ∼ 1

β


N d = 1
logN d = 2
1 d ≥ 3

(ii) Noiseless DAPI VN ∼ 1
β for any d VN ∼ 1

β for any d

(iii) Noisy DAPI VN ∼ 1
β + ε2

β


N d = 1
logN d = 2
1 d ≥ 3

VN ∼ 1
β + ε2

β



N3 d = 1
N d = 2
N1/3 d = 3
logN d = 4
1 d ≥ 5

Remark 7.3 The DAPI controller offers no improvement in terms of the scaling
of the per-site variance of the local error compared to static feedback. In abso-
lute terms, however, the variance is reduced (see Proposition 7.2 and note that
|ϕ(θ)| > 0). �

Result 7.1 reveals that the measurement noise η leads to an unfavorable scaling
of both local and global error variance – even worse than with static feedback. This
may not be an issue for small networks, as the variance is scaled by the factor ε2,
which can be very small (recall, ε represents the intensity of the measurement noise η
relative to the process disturbance w). However, performance will deteriorate as
the network size grows, thus limiting the scalability of the DAPI controller.

7.3 Improving the scalability of DAPI

Let us now consider a situation where the static feedback in (7.1) is fixed and the
design of the DAPI controller (7.2) for performance is of interest. In Proposition 7.2
below, we show that the error variance consists of two terms due to, respectively,
disturbances and measurement noise. For any given system of a fixed network size,
it is possible to trade off these terms and to optimize the control design. We will
return to this problem in Chapter 10. However, the unfavorable scaling of the error
variance due to measurement noise sets fundamental limitations to the scalability
of any such control design to large networks. A numerical example showcasing this
issue is shown in Figure 7.2. The objective in this chapter, rather than to solve a
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performance optimization problem for a given system, is to point to the underlying
limitations.

However, we also analyze how a relaxation of some of the assumptions on the
DAPI control design may improve performance scalings. We therefore allow for a
re-tuning of the distributed averaging filter, which is parameterized through the
operator A, subject to the network size. This allows us to derive network size-
dependent conditions on A for improved scalability, and to discuss their implications
in the limit of a large network.

To enable this analysis, we use the technical framework from Section 6.3. Con-
sider the H2 norm density expressions in the proposition below.

Proposition 7.2 The H2 norm density of the system (7.3) with respect to the global
error measurement (7.4) is:

p̂(θ)= 1
2f̂∞(θ)

· d

ϕ(θ) + ĝ∞(θ)︸ ︷︷ ︸
p̂w(θ)

+ ε2

â∞(θ) ·
co

2f̂∞(θ)
· d

1 + ĝ∞(θ)ϕ−1(θ)︸ ︷︷ ︸
p̂η(θ)

. (7.6)

The H2 norm density with respect to the local error measurement (7.5) is:

p̂(θ)= l̂(θ)
2f̂∞(θ)

· d

ϕ(θ) + ĝ∞(θ)︸ ︷︷ ︸
p̂w(θ)

+ ε2

â∞(θ) ·
co l̂(θ)

2f̂∞(θ)
· d

1 + ĝ∞(θ)ϕ−1(θ)︸ ︷︷ ︸
p̂η(θ)

(7.7)

where
ϕ(θ) = co(â∞(θ) + ĝ∞(θ))

â2
∞(θ) + ĝ∞(θ)â∞(θ)− f̂∞(θ)

,

and l̂(θ) = 2(1−cos θ).
Here, p̂w(θ) corresponds to the H2 norm density of the system with noiseless

DAPI control and p̂η(θ) represents the contribution from the measurement noise.

Proof: The result follows from block-diagonalizing the system (7.3) through Fourier
transforms in line with Example 6.1. For the global performance output (7.4) we
have that Ĉ∞(θ) =

[
1 0

]
for θ 6= 0. For the local one (7.5) it holds Ĉ∗∞(θ)Ĉ∞(θ) =[

l̂(θ) 0
0 0

]
and it is easily verified using (3.25) that l̂(θ) = 2(1−cos θ). In both cases,

Ĉ∞(θ = 0) = 0 and the subsystem (Â∞(0), Ĉ∞(0)) is therefore unobservable.
Solving the Lyapunov equation (6.28) for all θ ∈ Rd\{0} gives the H2-norm

densities above. The contributions from the disturbance inputs w and η can be
separated since they are uncorrelated. �

The following corollaries lead to the results in Table 7.1.
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Figure 7.2: Scaling of local error variance with static feedback vs. noisy DAPI control in
1D lattice. For a given network size N , it is possible to set the gain ā in the distributed
averaging filter A so that the integral controller performs better than static feedback. Yet,
no such controller scales well in N . A centralized integral controller on the form (7.8) that
corresponds to ā → ∞ will, however, have the same performance as static feedback for
any N .

Corollary 7.3 It holds that p̂w(θ) is uniformly bounded with respect to both global
and local error, that is, r = 0 in Lemma 6.3.

Proof: Substituting the scalings from Lemma 6.10 into the expressions in Propo-
sition 7.2 reveals that ϕ(θ) ∼ 1/β|θ|2, where the modulus |θ| := (θ2

1 + . . .+ θ2
d)1/2.

The product f̂∞(θ)ϕ(θ) is thus bounded away from zero and the result follows. �

Corollary 7.4 It holds p̂η(θ) ∼ ε2/β|θ|4, or r = 4 (global error), and p̂η(θ) ∼
ε2/β|θ|2, or r = 2 (local error).

Proof: Lemma 6.10 gives that ϕ−1(θ) ∼ β|θ|2. Since f̂∞(θ) ∼ −β|θ|2, â∞(θ) ∼
ā|θ|2, the product f̂∞(θ)â∞(θ) ∼ −β|θ|4 and the result follows. �

7.3.1 From distributed to centralized integral control

Under the given assumptions, the performance scalings in Table 7.1 hold. With
regards to the DAPI control design (7.2), this means for any fixed, finite gain co
and any operator A with fixed, finite array elements subject to a locality constraint.
We now inquire as to whether better scalings than in Table 7.1 can be achieved if
these assumptions were relaxed. And if so, what requirements would this impose
on the DAPI controller? To begin with, the following conclusions can be drawn
from Proposition 7.2:

a. It is not possible to set â∞(θ) = 0, since in that case p̂η(θ) =∞.
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b. If â∞(θ) → ∞, or co → 0, then p̂η(θ) → 0, that is, the noise contribution to
the variance vanishes. At the same time, ϕ(θ) → 0 and p̂w(θ) becomes as with
static feedback (compare (7.6)–(7.7) to (6.45)).

c. If â∞(θ) is bounded away from zero, then p̂η(θ) ∼ ε2/β|θ|2 (global error) and
p̂η(θ) ∼ ε2/β (local error).
At the same time, ϕ(θ) becomes uniformly bounded. Then p̂w(θ) ∼ 1/β|θ|2
(global error), and p̂w(θ) ∼ 1/β (local error), that is, the same as with static
feedback.

Using these observations, the following result is derived:

Proposition 7.5 The best-achievable performance scaling for the noisy integral
controlled system (7.3) is that of distributed static feedback in Table 7.1.

Proof: First, note that for any fixed co > 0 and â∞(θ), the scalings in Table 7.1
hold. For a better performance scaling, the behavior of p̂η(θ) in θ must change
for the better (r in Lemma 6.3 must decrease). This can only happen if co → 0,
â∞(θ) → ∞ or if â∞(θ) becomes bounded away from zero. Since p̂w(θ) and p̂η(θ)
have inverse dependencies on the function ϕ(θ) in which both co and â∞(θ) appear,
this will lead to cases b and c above. �

This means that the system can never have bounded variance in terms of the global
error measurement (7.4). However, a bounded variance and thus scalability in terms
of the local error (7.5) can be achieved by a re-tuning of the DAPI controller.

Based on cases b and c above, the best-achievable performance scaling can be
retrieved by tuning the DAPI controller in three ways:

Decreasing the integral gain co

Decreasing the value of the gain co reduces the impact of the measurement noise η.
To counteract the unfavorable scaling of p̂η(θ), it must be ensured that co/â∞(θ)
is uniformly bounded in θ. Since by Lemma 4, â∞(θ) ∼ −ā|θ|2, this requires
co ∼ min |θ|2.

The smallest wavenumber that contributes to the error variance in (6.26) cor-
responds to θmin = 2π/L. This implies that co must be decreased as 1/L2.

As the network grows, this implies co → 0 and the integral action is eliminated.
In this case, the control input u is simply not used.

Increasing the distributed averaging gain

For a fixed co, the distributed averaging gain can be increased so that â∞(θ) be-
comes bounded away from zero even as L increases. Recall that â∞(θ) ∼ −ā|θ|2
where ā = ||a||∞. This need not approach zero if ā ∼ 1/|θ|2.

Again, θmin = 2π/L, meaning that ā must be increased as L2. This implies that
we must require ā→∞ when the lattice size L grows.
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While an infinite gain in distributed averaging is not feasible in practice, the
same result can be realized as centralized averaging integral control (CAPI). Here,
a central controller has instantaneous access to the integral states at all nodes. The
control signal uk is then the same for all k ∈ ZdL:

uk = z;

ż = 1
N

∑
k∈Zd

L

vmk .
(7.8)

It is not difficult to show that this controller has the same performance with respect
to the errors (7.4) and (7.5) as static feedback. We will elaborate on the CAPI
controller and its performance in Chapter 10.

Increasing communication network connectivity

By relaxing Assumption 6.2 of locality for A, we can also bound â∞(θ) away from
zero. To see this, recall that â∞(θ) = −

∑
k∈Zd ak(1− cos(θ · k)). Again, we know

that θmin = 2π/L, and therefore, the argument in the cosine |θ · k| ≥ 2πk/L. This
need not approach zero if we allow the feedback window qA := maxak 6=0 |k| to grow
as qA ∼ L. Then, â∞(θ) stays bounded away from zero as θ → 0.

Allowing qA to scale with the lattice size L in principle implies allowing an all-to-
all connection in the communication network. For large networks this is practically
challenging (if not impossible), and a centralized approach may be preferable.

7.3.2 Implications for distributed integral control
The previous section showed that the distributed averaging filter A in the DAPI
controller (7.2) is important for performance. Recall that the role of the filter A
is to align the controllers’ integral states zk across the network, in order to gain
robustness to measurement noise and bias. Our results in Chapter 4, as well as
those in related work [188], have indicated that “little” inter-nodal alignment (that
is, small gains ā and few interconnections in the communication network) is optimal
for performance in the absence of measurement noise. It is intuitively clear that the
inter-nodal alignment through A becomes increasingly important if measurement
noise is considered explicitly.

These results, however, reveal that it is not enough to scale the distributed
averaging gain ā with the noise intensity, here parameterized through ε. Perhaps
surprisingly, the need for inter-nodal alignment instead grows with the network
size. It is required that the distributed averaging gain ā ∼ L2 = N2/d, or that the
feedback window qA ∼ L = N1/d.

This means that large and sparse lattice networks require so much alignment
that centralized integral control will in principle be necessary. So, while the dis-
tributed integral controller (7.2) is not scalable under noisy measurements, the
centralized integral controller (7.8) is as scalable as distributed static feedback.
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7.4 Discussion

7.4.1 Control design for finite size networks
Our focus has been to characterize limitations of distributed integral control in
terms of the scaling of H2 performance to large networks. We showed that such
limitations arise due to noisy measurements, and can only be alleviated by asymp-
totically increasing the amount of inter-nodal alignment between controllers.

Naturally, any real-world application will have a finite number of nodes, and
the controller can thus always be tuned for acceptable performance. Our results
imply, however, that such a tuning cannot be done independently of the network
size. Therefore, even though the controller is implemented in a distributed fashion,
its tuning requires global knowledge. In other words, our results prevent “plug-
and-play” integral control.

7.4.2 General distributed integral control
A natural question to ask is whether alternative distributed integral control designs
are also subject to the limitations of DAPI control. In general, we can consider any
dynamic feedback from Chapter 6 and let: u = z, ż = Az + Bx + Cvm, where
A,B,C are feedback operators. Even with a controller on this form it is possible
to show a result in line with Proposition 7.5.

With such a controller, one must be aware that the important property of load
sharing is lost if B 6= 0. Load sharing implies that the control effort in regulating
a constant disturbance is shared equally (or proportionally) between controllers.
This is particularly important in electric power networks (where it is also referred
to as power sharing). Therefore, even though a controller with B 6= 0 can achieve
the same performance as static feedback, it may not be desirable in practice.

A similar issue applies if A contains absolute feedback. Again, the same perfor-
mance as with static feedback can be achieved, but the integral action is also lost
(see Remark 7.1).

The problem of scalability of distributed dynamic feedback controllers under
noise is also addressed in [161], which investigated saddle-point methods imple-
mented as distributed control algorithms. Similar to our results, they found that
careful algorithm design is necessary to prevent unfavorable scalings of H2 perfor-
mance. In particular, they find that an appropriately designed distributed algo-
rithm can achieve the same performance scaling as the corresponding centralized
one. To the best of our knowledge, however, the design of a fully scalable (in H2
sense) distributed feedback controller that satisfies the same objectives as DAPI
control (elimination of stationary errors, load sharing) remains an open problem.
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Appendix to Chapter 7
7.A Alternative noise model
Consider the case described in Remark 7.2, where the static feedback controller is
subject to the same measurement noise as the DAPI controller. In this case, the
H2-norm density with respect to the global error measurement can be verified to
be:

p̂(θ)= 1
2f̂∞(θ)

· d

ϕ(θ) + ĝ∞(θ) (1 + εĝ2(θ))+

+ ε2

â∞(θ) ·
co

2f̂∞(θ)
· d

1 + ĝ∞(θ)ϕ−1(θ)

(
1 + 2ĝ∞(θ)â∞(θ)

co

)
. (7.9)

Comparing this to (7.6), we note that the term p̂w(θ) has been multiplied by the
factor (1 + εĝ2(θ)) and the term p̂η(θ) by the factor

(
1 + 2ĝ∞(θ)â∞(θ)

co

)
. Both of

these factors are uniformly bounded away from zero in θ and do therefore not affect
the scaling behaviors of p̂w(θ) and p̂η(θ). The same situation applies to the case
with the local error.

The H2 norm density and thus VN does, however, increase slightly in absolute
terms. This is to be expected since the system is subjected to additional noise.





Chapter 8

The Price of Synchrony: Resistive Losses in
Synchronizing Power Networks

We now turn to a different type of networked dynamical system and study the
problem of frequency control in power networks. In this chapter, we model a syn-
chronous generator network as a system of coupled oscillators like in Example 1.2,
and evaluate performance in terms of the resistive losses that are incurred in keep-
ing this network at a synchronous state. These losses, which we refer to as transient
losses, are in addition to the static losses associated with steady-state flows in the
power network. They arise due to the transient power flow fluctuations that occur
when the system is perturbed from a synchronous state by a small transient event
or in the face of small stochastic disturbances. We term this performance mea-
sure the “Price of Synchrony”, as it reflects the cost, in terms of real power losses,
associated with lack of synchrony.

We show how the total network’s transient power losses can be quantified using
the H2 norm of a linear system of coupled swing equations with an appropriately
defined performance output. This output accounts for local phase deviations anal-
ogous to the local errors defined in (1.10). We show that the total transient losses
over the network will scale unboundedly with the network’s size. Furthermore,
they are shown to be only weakly dependent on network topology. It is therefore
no longer true, as in Chapters 4–7, that increasing network connectivity improves
performance.

These limitations imply that even though the power losses that arise during
synchronization are typically a small percentage of the total real power flow, our
results (based on a simplified network model) indicate that these losses may become
significant as power networks evolve toward increasingly distributed systems. Fur-
thermore, merely adding links to the network to increase connectivity is unlikely to
alleviate the increases in transient power losses as the network grows. We illustrate
these findings through a number of numerical examples.

139
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Figure 8.1: An example of a network of N = 7 generator nodes.

8.1 Formulation of coupled oscillator dynamics

8.1.1 Network model and swing equation
Consider a network described by the undirected graph G = {V, E}, where |V| = N
is the total number of nodes, or buses. E = {(i, j)} represents the set of edges,
or network lines. We will assume a Kron-reduced model of the power network
(see, for example, [29, 39, 114, 124]) where the reduction procedure eliminates the
constant-impedance loads and absorbs their effects into the network line models E ,
along with any phase-shifting transformers. Thus, at every node i ∈ V, there is
a generator with inertia constant mi and damping coefficient di. The voltage at
node i is vi = Vie

jθ, where Vi is the voltage magnitude and θi the phase angle. The
angular frequency is ωi = θ̇i. Such a network is depicted in Figure 8.1 for a system
where N = 7. In the absence of any external control input, the dynamics of the ith
generator can be described using the following classical machine model [123]:

miθ̈i + diθ̇i = Pm,i − Pe,i, (8.1)

where Pm,i is the mechanical power input from the turbine and Pe,i is the real power
injected into the grid at node i, for which we will shortly provide an expression.

The swing equation (8.1) describes the physical acceleration or deceleration
that arises in a synchronous generator as soon as there is a power imbalance and
which, provided the network is stable, will allow the network to resynchronize.1

1This thesis will not include a detailed review of power system dynamics and stability. The
interested reader will find an accessible introduction to the relevant concepts in [164, Chapter 2].
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This control is spontaneous, in the sense that it is a consequence of the physics of
the system [112]. Still, it will be useful for us to regard the swing equation as a
type of control actuation (“droop control”) in line with our prototypical problem
formulation in Section 1.2.

8.1.2 The power flow equation
The real electric power flow injected to the grid at each node i ∈ V is given by

Pe,i = ḡiV
2
i +

∑
j∈Ni

gijVi Vj cos(θi − θj) +
∑
j∈Ni

bijVi Vj sin(θi − θj), (8.2)

where Ni denotes the neighbor set of node i in the Kron-reduced network G. The
parameters gij and bij are, respectively, the conductance and susceptance of the
line (i, j) and ḡi is the shunt conductance of node i (see Section 3.4.2 for their
definitions). As per convention in power flow analysis, we assume that all quantities
in (8.2) have been normalized by system constants and are measured in per unit
(p.u.).

In what follows, we will use a simplified, linear model in which we consider small
deviations from a stable operating point

[
θss, ωss]T . Without loss of generality we

can transfer this operating point to the origin through a change of variables. This
linearization allows us to investigate the effects of small disturbances or persistent
small amplitude noise within a neighborhood of the operating point. The stan-
dard linear power flow assumptions include assuming constant voltage amplitudes,
Vi = 1 p.u. for all i ∈ V and retaining only the linear terms in (8.2), which leads to

Pe,i ≈
∑
j∈Ni

bij (θi − θj) . (8.3)

See for example [137] for a detailed analysis of the applicability of such assump-
tions. Having transferred the operating point to the origin, we may let deviations
in the constant Pm,i in (8.1) be absorbed into the disturbance input wi, which
characterizes, for example, fluctuations in generation and loads. Substituting (8.3)
into (8.1) then gives

miθ̈i + diθ̇i ≈ −
∑
j∈Ni

bij (θi − θj) + wi. (8.4)

Now, we can use the system’s susceptance matrix LB from (3.28) to rewrite this
on vector form as follows:

d
dt

[
θ
ω

]
=
[

0 I
−M−1LB −M−1D

] [
θ
ω

]
+
[

0
M−1

]
w, (8.5)

where θ =
[
θ1, θ2, . . . , θN

]T , ω =
[
ω1, ω2, . . . , ωN

]T , M = diag{mi}, and
D = diag{di}.
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8.2 The Price of Synchrony performance measure

The question of interest here is not to characterize conditions for the stability of
the power network, but to evaluate its performance in terms of losses associated
with transient power flows. We therefore assume that the system matrices in (8.5)
are such that the dynamics are stable around the equilibrium manifold for which
all phases are equal. We now define the performance output that will be used to
evaluate the real power losses arising from the fluctuating phase angle differences.

To define the relevant performance measure, we adopt the approach first pre-
sented in [12]. Consider the real power loss (the “copper losses”) over the line (i, j),
given by Ohm’s law as

P loss
ij = gij |vi − vj |2,

where vi = Vie
jθi denotes complex voltage. If we enforce the linear power flow

assumptions and retain only the terms that are quadratic in the state variables,
standard trigonometric methods give that P loss

ij ≈ gij(θi − θj)2. Since the quantity
θi − θj represents a deviation from an operating point, P loss

ij is equivalent to the
power loss over the edge during the transient (the excursion from the operating
point). The corresponding sum of instantaneous, transient resistive power losses
over all links in the network can therefore be approximated as

Ploss =
∑

(i,j)∈E

gij(θi − θj)2. (8.6)

We can now make use of the conductance matrix LG from (3.28) to rewrite (8.6)
as the quadratic form

Ploss = θTLGθ. (8.7)

Since LG is a positive semidefinite graph Laplacian, it has a unique positive semidef-
inite square-root L1/2

G . We can therefore define an output of the system (8.5) as
follows:

Definition 8.1 (Price of Synchrony performance output) The instantaneous re-
sistive power losses in a network are measured as Ploss = yT y with the performance
output

y := L1/2
G θ. (8.8)

Note that this Ploss represents a squared sum of weighted differences in states
between neighboring nodes. That is, a sum of squared local errors over the network.
This is most easily seen from (8.6). The expected power losses can therefore be
written as a sum over local error variances on the form (1.10).



8.2. The Price of Synchrony performance measure 143

For ease of reference we rewrite the state dynamics (8.5) and the output equa-
tion (8.8) together as the MIMO LTI system H:

d
dt

[
θ
ω

]
=
[

0 I
−M−1LB −M−1D

]
︸ ︷︷ ︸

A

[
θ
ω

]
+
[

0
M−1

]
︸ ︷︷ ︸
B

w (8.9a)

y =
[
L1/2
G 0

]
︸ ︷︷ ︸

C

[
θ
ω

]
. (8.9b)

This system is a linear-quadratic approximation of the full nonlinear problem in the
sense that the dynamics have been linearized around an equilibrium corresponding
to the condition where the power flows in the system are balanced and all generators
are operating at a nominal frequency. The instantaneous resistive power losses are
quadratically approximated by the squared Euclidean norm of the output signal y.
We next describe scenarios that allow these losses to be evaluated through the
system’s input-output H2 norm.
Remark 8.1 The system (8.9a) represents linearized dynamics in which line re-
sistances are not present in the first approximation, having been assumed small
compared to the line reactances. The output (8.9b) represents a quadratic approx-
imation of the power losses and measures the effect of non-zero line resistances,
given the state trajectories arising from the system dynamics. A justification for
these assumptions is given in Chapter 9, where line resistances are also accounted
for in the dynamics. �

8.2.1 H2 norm interpretations for swing dynamics
The LTI system (8.9) is formulated so that the square of the Euclidean norm of the
output yT (t)y(t) approximates the instantaneous resistive power loss at each time t.
The H2 norm of this system can be interpreted as the average (per time t) power
loss in a setting with persistent disturbances, or alternatively, as the total (over
time) energy loss due to a transient event. These interpretations of the H2 norm
relate to its standard interpretations given in Section 3.1. Here, we summarize
physical scenarios which permit the input-output H2 norm of (8.9) to quantify
resistive losses.

i. Response to a white stochastic input. When the input w is a white noise
disturbance, the system’s H2 norm is

||H||22 = lim
t→∞

E{yT (t)y(t)}. (8.10)

For the swing dynamics (8.9) the disturbance vector w can be thought of as
persistent stochastic forcing at each generator. These disturbances, which are
uncorrelated across generators, can be due to uncertainties in local generator
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conditions, such as changes in local load or supplied mechanical power. The
expression (8.10) is then exactly the expectation of the total (over the entire
network) instantaneous power losses due to the system’s maintaining synchrony.

ii. Response to a random initial condition. For the system (8.9) it holds that

BBT =
[
0 0
0 M−2

]
,

which is diagonal. Therefore, an initial condition ψo that is a random variable
with zero mean and correlation E{ψoψTo } = BBT corresponds to each genera-
tor having a random initial frequency perturbation that is uncorrelated across
generators and zero initial phase perturbation. In this case, the H2 norm

‖H‖22 =
∫ ∞

0
E{yT (t)y(t)} dt (8.11)

quantifies the total (over all time and the entire network) expected resistive en-
ergy loss due to the system returning to a synchronized state. The expectation
is taken over the initial conditions.

iii. Impulse responses. Consider a scenario where impulses can be fed at each
generator node with equal probability. For the system (8.9), this input scenario
corresponds to each generator being subject to impulse force disturbances (note,
the disturbance w enters into the momentum equation of each generator). Such
disturbances could occur, for example, due to changed operation of the gen-
erator, a sudden lost load at the bus or a fault event. In these cases, the H2
norm

‖H‖22 = NE
{∫ ∞

0
yT (t)y(t) dt

}
(8.12)

quantifies the total (over all time and the entire network) expected energy loss
due to the system returning to a synchronized state. The expectation is taken
over the set of generators.

8.2.2 Relations to network coherence
In Chapters 4, 6, and 7, we studied measures of network coherence, which in the
present context translates to phase coherence, that is, the tightness of the phases
of all generators. More precisely, the quantity

E


θi − 1

N

N∑
j=1

θj

2
 , (8.13)

expresses the variance of the deviation of the ith generator’s phase from the average
over all generators in the network. This quantity is never zero when there are
stochastic disturbance inputs.
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Asymptotic scalings (in network size N) of the performance metric (8.13) were
derived in Chapter 6 for systems with regular network structures. It was, among
other things, found that performance depends strongly on the lattice dimension
(see Theorem 6.1), which implies that more interconnected networks tend to be
more coherent and vice versa.

While phase coherence is not directly related to the control objective of syn-
chronization, the H2 norm used to quantify (8.13) is equivalent to a measure of
frequency coherence under step disturbances, see Example 4.2. The same scaling
behaviors therefore apply in both scenarios.

We note that our previous analyses considered performance as per node, while in
the present context, it is the total or aggregate transient resistive power loss over the
entire network that is of concern. Thus, although the two settings have analogous
dynamics, the performance objectives differ. We point out that the coherence
measure (8.13) is not the Euclidean norm of the output y defined in (8.9b). In
other words, the amount of phase disorder in a network as measured by (8.13)
is not necessarily related to resistive power losses, and in particular may not scale
similarly with network sizeN or have the same dependence on network connectivity.
While networks with high phase coherence may be desirable for other reasons (such
as stability of the nonlinear model), the results to be presented shortly indicate that
the Price of Synchrony (total transient resistive power losses) can be large even in
highly coherent networks.

8.3 Evaluating resistive losses

In this section, we derive a formula for the H2 norm of the system (8.9) in terms
of the system’s parameters. We then consider the implications for some important
special cases. Throughout this section we make the following simplifying assump-
tion, which allows us to derive analytic expressions for the H2 norm:
Assumption 8.1 (Identical generators) All synchronous generators have identical
inertia and damping coefficients, that is, mi = m and di = d for all i ∈ V. This
gives M = mI and D = dI.

8.3.1 System reduction
As previously discussed, LG and LB are weighted graph Laplacians and as such,
they each have a zero eigenvalue, see Section 3.2. The zero eigenvalue implies that
these matrices are singular and that the system (8.9) is not asymptotically stable.
However, as before, the corresponding mode is not observable from the performance
output y. This is shown formally for the system at hand in Appendix 8.A. Assuming
the network to be connected, remaining eigenvalues are strictly in the left half of
the complex plane, and the system therefore has a finite H2 norm.

In order to rigorously evaluate the H2 norm of (8.9) we perform a system re-
duction, or grounding, procedure that effectively removes the unobservable mode at
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Figure 8.2: Mechanical analogy of the grounded swing dynamics in (8.14).

zero and enables us to investigate a reduced system that is asymptotically stable.
We derive this reduced system by first defining a reference state k ∈ V. By then
deleting the kth rows and columns of LG and LB , we obtain the grounded Lapla-
cians L̄G and L̄B (see Section 3.2.3). The states of the reduced system θ̄ and ω̄ are
then obtained by discarding the kth elements of each state vector. This leads to
a system that is equivalent to one where θk = ωk ≡ 0 for some node k ∈ V. The
physical interpretation of the reduced system is that the kth node is connected to
ground. A corresponding mechanical analogy is shown in Figure 8.2. We call our
reduced, or grounded, system H̄ and rewrite it as

d
dt

[
θ̄
ω̄

]
=
[

0 I
− 1
m L̄B − d

mI

]
︸ ︷︷ ︸

Ā

[
θ̄
ω̄

]
+
[

0
1
mI

]
︸ ︷︷ ︸
B̄

w̄ (8.14a)

ȳ =
[
L̄

1
2
G 0

]
︸ ︷︷ ︸

C̄

[
θ̄
ω̄

]
, (8.14b)

where the reduced state vector is ψ̄ =
[
θ̄ ω̄

]T . Assuming a network where the
underlying graph is connected, the grounded Laplacians L̄G and L̄B are positive
definite Hermitian matrices. All eigenvalues of the system H̄ are thus strictly in
the left half plane and the input-output system from w̄ to ȳ has a finite H2 norm.
Remark 8.2 The dynamics of the grounded system (8.14) are not equivalent to
those of the original system. In particular, the eigenvalues, and thereby the swing
modes, differ. This can be understood intuitively by comparing Figure 8.2 to Fig-
ure 1.3. However, as we will show, the two systems are equivalent in terms of the
performance metric considered here. �

8.3.2 H2 norm calculation
The squaredH2 norm of the system H̄ can be calculated through the equations (3.7)–
(3.8). Here, we call denote the observability Gramian X and partition it into four
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submatrices. The Lyapunov equation (3.8) expanded for the system (8.14) then
becomes[

0 − 1
m L̄B

I − d
mI

] [
X1 X0
XT

0 X2

]
+
[
X1 X0
XT

0 X2

] [
0 I

− 1
m L̄B − d

mI

]
= −

[
L̄G 0
0 0

]
,

from which we extract the following two equations:

X0 −
d

m
X2 +XT

0 −X2
d

m
= 0 (8.15a)

− 1
m
L̄BXT

0 −X0
1
m
L̄B = −L̄G. (8.15b)

Then, using (8.15a) it is straightforward to compute d
m tr(X2) = tr(Re{X0}). Equa-

tion (8.15b) can be rearranged to yield

L̄BXT
0 L̄−1

B +X0 = mL̄GL̃−1
B ,

where we make use of the fact that L̄B is nonsingular. Combining these expressions
and using standard matrix trace relationships leads to the following expression

tr (X2) = m2

2d tr
(
L̄−1
B L̄G

)
. (8.16)

Finally, noting that tr(BTXB) = 1
m2 tr(X2), we derive the following Lemma.

Lemma 8.1 The squared H2 norm of the input-output mapping of the system (8.14)
is given by

||H̄||22 = 1
2d tr

(
L̄−1
B L̄G

)
, (8.17)

where L̄B and L̄G are the grounded Laplacians obtained using the procedure de-
scribed in Section 8.3.1, and d is each generator’s self damping.

The choice of grounded node k has no influence on the H2 norm in (8.17). We
illustrate this point through the following lemmas, which are then used to derive
the main result of Theorem 8.4.

Lemma 8.2 Let H denote the input-output mapping (8.9) under Assumption 8.1,
and let H̄ denote the corresponding reduced system (8.14). Then, the norm ||H||22
exists and

||H||22 = ||H̄||22.

Proof: See Appendix 8.A.
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Lemma 8.3 Let L̄G and L̄B be the reduced, or grounded, Laplacians obtained by
deleting the kth row and column of LG and LB respectively. Then

tr
(
L̄−1
B L̄G

)
= tr

(
L†BLG

)
, (8.18)

where † denotes the Moore-Penrose pseudo inverse.

Proof: See Appendix 8.B.

Remark 8.3 Lemma 8.3 extends to any pair of weighted graph Laplacians
LG,LB ∈ CN×N , even if they do not have the same underlying graph. It is,
however, a requirement that the graph underlying LB is connected (so that L̄B is
nonsingular). This implies that the network grounding approach introduced here is
amenable to any performance output that satisfies yT y = θTLG′θ where LG′ is some
graph Laplacian. In particular, one could use this result to measure performance
over a subnetwork of G. �

Our main result can now be stated in the following theorem, which was also inde-
pendently derived in [154].

Theorem 8.4 Consider a network of N synchronous generators whose input-output
response is given by (8.9). Under Assumption 8.1, the squared H2 norm of the sys-
tem is

‖H‖22 = 1
2d tr

(
L†BLG

)
. (8.19)

Thus, the total transient losses of the system are a function of what we term the
generalized Laplacian ratio of LG to LB.

Proof: The result follows directly from Lemmas 8.1 - 8.3. �

In (8.9), we assumed that the mechanical input Pm,i to each generator i is
lumped into the input w. If, instead, one chooses to scale the input by the gen-
erator’s inertia, that is, define w′ := 1

mw and B′ := [0 I]T , then the squared H2
norm of the resulting system can be derived in an analogous manner, as shown in
the following Corollary.

Corollary 8.5 Consider the modified input-output mapping

d
dt

[
θ
ω

]
=

[
0 I

− 1
mLB − d

mI

] [
θ
ω

]
+
[
0
I

]
w′ (8.20)

y =
[
L1/2
G 0

] [
θ
ω

]
.

The squared H2 norm of this system is

‖H ′||22 = m2

2d tr
(
L†BLG

)
.
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Proof: Following the proof of Lemma 8.1, we first note that for this modified
system tr(B′TXB′) = tr(X2). The result then follows directly from Lemmas 8.2
and 8.3. �

Theorem 8.4 states that the Price of Synchrony (the transient resistive power
loss) is proportional to what can be thought of as a generalized ratio between the
conductance and susceptance matrices. The ratio of line conductance to suscep-
tance, or equivalently, resistance to reactance, is generally small for transmission
systems and is therefore often neglected in power flow calculations [137] and sta-
bility analyses. However, the generalized ratio in equation (8.19) implies that the
transient resistive losses will increase with network size (that is, the number of
generators). Therefore, they may become significant in large networks with highly
distributed generation even when line resistances are small. In low to medium
voltage networks where distributed generation units are typically connected, the
resistance-to-reactance ratios are higher than in transmission systems.2 In such
networks, this trend would be doubly problematic, as both the network size and
the resistance-to-reactance ratio are larger. The next section explores these effects
directly for the important special case of uniform resistance-to-reactance ratios
across the network.

8.3.3 Special Case: Uniform line ratios
We now consider the special case when the generalized Laplacian ratio in (8.19) is
a scalar matrix αI, where

α := gij
bij

= rij
xij

.

In other words, all network lines (i, j) ∈ E have equal resistance-to-reactance ratios.
This assumption implies that the conductance matrix is a scalar multiple of the
susceptance matrix,

LG = αLB , (8.21)
and, of course, the same holds for the reduced Laplacians: L̄G = αL̄B . In this case,
the Lemmas 8.1 and 8.2 give that

||H||22 = 1
2d tr(L̄−1

B αL̄B) = α

2d (N − 1), (8.22)

which is the result presented in [12]. This result is remarkable in that it says that,
for this special case, the size of the transient losses depends only on the network’s
size and is entirely independent of its topology.

A choice of αmax ≥ gij
bij

for all edges (i, j) ∈ E , can be used to define a conser-
vative bound based on (8.22). One can also define a lower bound αmin ≤ gij

bij
, and

bound the H2 norm of the system as:
αmin

2d (N − 1) ≤ ||H||22 ≤
αmax

2d (N − 1), (8.23)
2Typically, this ratio is 1/16 in 400 kV lines but 2/3 in 11 kV systems [55].
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where αmin(max) are the respective upper and lower bounds. These bounds, which
were also proposed in [154], increase unboundedly with the number of generators
and are independent of the network topology.

Motivation for uniform line ratio assumption

The equal line ratio assumption is not unreasonable for power systems, as the ratio
of resistances to reactances of typical transmission links tend to lie within a small
interval. This assumption is used in many related studies, such as [42, 96], and it
can be motivated by a uniformity in the physical line properties in the network.
The study [112] also found that the node degrees of Kron-reduced networks tend
to be much more uniform than than those of the full power networks that they are
derived from. Those results suggest that the “lines” of such reduced systems are
also more uniform than those found in actual power networks and therefore the
equal line ratio assumption is suitable for the reduced network considered here.

In Example 8.1, we demonstrate numerically that the result for uniform line
ratios (8.22) gives a good approximation of (8.19) when is α is chosen as the average
line ratio. In other words, the uniform line ratio assumption only leads to small
errors with respect to the performance measure of interest. In Chapters 9–10 we
will return to this assumption in order to make the developments and results more
tractable.

8.3.4 Performance scaling and topology independence
In the notation from Chapter 6, the bounds expressed in (8.23) implies that the
Price of Synchrony scales as

‖H‖22 ∼
1
β
N, (8.24)

where we can identify the algorithm parameter β with the generator damping d.
We can therefore regard this result as a fundamental limitation to the performance
of (Kron reduced, linearized) power networks, in which the swing equation (8.4) is
the means by which synchrony is achieved. It is very important to note that the
scaling (8.24) is independent of the network topology, unlike the coherence scalings
in Theorem 6.1.

This topology independence is also in contrast to other measures of power system
stability and performance metrics. For example, the topology of the system plays
an important role in determining whether a system of this kind can synchronize
[36,37,132,147]. The network connectivity of a power system is also directly related
to its rate of convergence and damping properties [101]. Some intuition for this
topology independence can be given as follows. We expect a highly interconnected
network to have much more phase coherence than a loosely interconnected network
with the same number of nodes. Consequently the power flows per link in a highly
connected network are relatively small, but there are many more links than in the
loosely connected network. Thus in the aggregate, the total transient power losses
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are the same for both networks. A more coherent network is, however, in many
ways more desirable for stability reasons.
Remark 8.4 The conclusion that total transient losses scale as in (8.24) is contin-
gent on the modeling assumption that each generator is subject to a disturbance
input wi. If this is not the case, and only a subset Vdist are subject to distur-
bances, then the total losses are instead proportional to the size of that subset
|Vdist| = Ndist. That is, if (8.21) holds, then ‖H‖22 = α

2d (Ndist − 1). As long as
the ratio Ndist/N remains approximately constant as the network size grows, the
scaling in (8.24) will, however, hold. �

8.4 Generalizations and bounds

In this section, we provide some further bounds on the H2 norm in Theorem 8.4
and discuss their implications. We also address the more general case of systems
with non-identical generators.

8.4.1 Loss bounds
As previously mentioned, the term tr(L†BLG) in Theorem 8.4 can be interpreted
as a generalized ratio between the power network’s conductance matrix LG and its
susceptance matrix LB . That is, a generalized ratio between the real and imaginary
part of the network admittance matrix (without the shunt admittances). Let us
henceforth denote the respective eigenvalues of LG as λGN ≥ ... ≥ λG2 > 0 and of
LB as λBN ≥ ... ≥ λB2 > 0. The generalized ratio of these two Laplacians can then
be lower bounded in terms of their eigenvalues as

tr
(
L†BLG

)
≥

N∑
i=2

λGi
λBi

, (8.25)

(see, for example, [194] for a proof). In the case of uniform line ratios, each eigen-
value ratio is equal to α, and the inequality in (8.25) turns into an equality. The loss
scaling with network size in (8.24) can then also be seen from (8.25). This scaling
is evident because the number of eigenvalues, and thus the number of summands,
grows with each added node. We illustrate this growth and the tightness of the
bound in (8.25) through Example 8.2.

The inequality (8.25) also provides some insight into why the H2 norm does
not have a strong dependence on network connectivity even for networks of non-
identical line ratios. Although the eigenvalues of the Laplacian are difficult to
characterize precisely for general graphs, it is well known that they relate strongly
to the node degrees (see, for example, [31,193]). In (8.25) however, we consider the
ratio between the eigenvalues of LG and LB . Since these are two graph Laplacians
describing the same topology, their node degrees gii and bii can be related through
ᾱi, the average ratio of line conductances to susceptances of the lines incident to
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node i. This ᾱi is independent of how many such incident lines there are. It is
therefore reasonable to infer that each eigenvalue ratio λGi /λBi is also more strongly
related to ᾱi than to the number of lines connected to each node, which would be a
measure the network connectivity. We will further explore this notion through the
examples in Section 8.5.

The resistive losses can also be bounded as in (8.23), which is a simple way to
express the performance scaling with network size. However, the bound may become
loose if the system is heterogeneous in terms of the line resistance-to-reactance
ratios. This may be the case if a combined transmission and distribution network
is considered, or in cases of highly varying impedance loads. In some cases, it is
then better to bound the losses in terms of graph-theoretical quantities. This can,
for example, also be done in the following manner.

λG2 tr(L†B) ≤ tr(L†BLG) ≤ tr(LG)
λB2

, (8.26)

where λG2 and λB2 are the algebraic connectivities of the graphs weighted by, respec-
tively, line conductances and susceptances. See [194] for a proof of (8.26).

In general, it holds that λG2 ≤ N
N−1gii,min and λB2 ≤ N

N−1bii,min, where gii, bii are
the respective node degrees in the weighted conductance and susceptance graphs.
Furthermore, the quantity tr(L†B) is proportional to what we can interpret as the
total effective reactance of the network, in analogy with the concept of graph total
effective resistance, see Section 3.2.5. By Rayleigh’s monotonicity law (Lemma 3.4),
the total effective reactance can be decreased by adding lines and increasing line
susceptances. However, the algebraic connectivity λ2 is very small for weakly con-
nected networks and often decreases with network size (see Section 5.2.3). There-
fore, while the bounds (8.26) where λB2 appears in the denominator, can be accurate
for small and well-connected networks, they become loose for large, sparsely inter-
connected networks. The usefulness of the bound (8.26), compared for example
to (8.23), therefore depends on the network type. In Example 8.2, we evaluate
these bounds for different network topologies.

8.4.2 Systems of non-identical generators
The results derived under Assumption 8.1, that is, by considering a network of iden-
tical generators, show that transient losses scale with the network size as in (8.24).
In order to put these results into context it is desirable to understand the extent
to which these scaling properties apply to systems of non-uniform generators. In
this section we explore these ideas and use the results from previous sections to
gain some insight. We begin by examining the special case where one non-uniform
generator is added to the network.

From Theorem 8.4 we can deduce that

1
2dmax

tr
(
L†BLG

)
≤ ‖H‖22 ≤

1
2dmin

tr
(
L†BLG

)
, (8.27)
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where dmin = mini∈V di and dmax = maxi∈V di. The losses are thus lower and
upper bounded by the properties of the most strongly and lightly damped genera-
tors respectively, and the overall scaling in (8.24) remains valid. Therefore, some
interesting questions that arise from this observation are: (1) How does adding a
generator to an existing network affect the total resistive losses? and (2) What are
the important parameters in determining this incremental cost? The next result
addresses one such scenario.

Lemma 8.6 Consider a network of N generators with transient resistive losses
given by ‖H0‖22 = ‖H̄k‖22, where H̄k is the corresponding reduced system with node k
grounded. If one connects an additional generator with damping dN+1 and inertia
mN+1 to node k by a single link with line ratio of αk,N+1 = rk,N+1

xk,N+1
, then the losses

of the new, reduced, system are given by

‖H̄1‖22 = ‖H0‖22 + 1
2dN+1

αk,N+1.

If the dynamics are as per (8.20) the additive term is instead m2
N+1

2dN+1
αk,N+1.

Proof: See Appendix 8.C.

This fairly intuitive result can be interpreted as follows. The additional losses
incurred through the connection of a “light” (low inertia) or well damped generator
are smaller than those incurred due to adding a “heavy” (high inertia) or poorly
damped generator. In the face of increasingly distributed generation, this result im-
plies that while the synchronization losses do scale with the network size, the impact
of low inertia or small-scale distributed generators is relatively low, compared to
that of large conventional generators.

In this thesis, we will not present further analytical results for systems with non-
identical generators, but carry out most of the analysis under Assumption 8.1. The
numerical Example 8.3, however, provides some further insight into performance
of networks with non-uniform generation. That example shows that, although the
scaling relationships and topology independence results hold for limited parameter
variations, judicious sizing and placement of new generators can in fact improve
performance.

8.5 Numerical examples

The results derived in this chapter show that the Price of Synchrony is highly
dependent on the number of generators in the system. It was also found to depend
on the system’s resistance-to-reactance ratios and the generator properties, but
only weakly on the network topology. In this section, we provide some numerical
examples to illustrate these results and to explore more general networks.
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Figure 8.3: H2 norms from Example 8.1 for the IEEE 14 bus, 30 bus, and 57 bus benchmark
networks. The edge weights are randomly generated using increasingly varying resistance-
to-reactance ratios αij = rij

xij
. The bars illustrate the bounds in (8.23).

Example 8.1 (Non-uniform line ratios: increasing line ratio variance) We first
investigate the Price of Synchrony in systems with increasingly non-uniform net-
work line ratios αij (defined in Section 8.3.3). We consider a hypothetical set of
identical generators with d = 1 placed at each node of, respectively, the IEEE 14
bus, 30 bus and 57 bus benchmark topologies [116]. We take the values for the
reactances xij for each (i, j) ∈ E from the benchmark system data. We then define
a random series of heterogeneous line ratios by setting rij = αijxij , where the αij
are each drawn once from uniform distributions on the following range of intervals:
0.4, 0.4± 0.025, 0.4± 0.05, ..., 0.4± 0.2.

Figure 8.3 shows the resistive losses computed from the result in Theorem 8.4
for a number of these systems. The horizontal axis indicates the standard devia-
tion of the line ratios and the bars represent the upper and lower bounds of the
inequality (8.23).

This example shows that increasing the standard deviation of the line ratios
leads to a looser bound in (8.23). However, the actual resistive losses show only
small variations as long as the average line ratio remains constant. We can also
note that the transient losses depend strongly on the network size (here 14, 30 or
57 nodes), which is consistent with the relationship in (8.22).

Example 8.2 (Scalings and bounds for topology extremes) We now demonstrate
the fact that the Price of Synchrony is only weakly dependent on network topology,
but instead scales with the total number of network nodes. We compare the H2
norm in (8.19) and the bounds discussed in Section 8.4 for two systems where the
underlying topology is (a) a path graph, and (b) a complete graph (see Figure 3.1)
and let their respective system size increase.

These particular graph topologies are chosen because they represent the two
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Figure 8.4: H2 norms from Example 8.2 for a (a) path graph and a (b) complete graph
network of N nodes, with some of the bounds from in Section 8.4. Despite some variation
due to the randomness in the line parameters, theH2 norm scales directly with the network
size and is roughly the same for the path as for the complete graph. The bound related to
the Laplacian eigenvalue ratios (8.25) is the tightest bound, and for the complete graph,
the inequality (8.26) linked to the algebraic connectivity λ2, also gives tight bounds (for
the path graph, the latter have been left out since they are off by orders of magnitude due
to small connectivity).

extremes with respect to connectivity, as well as with respect to the coherence
metric (8.13) [156]. Therefore, they demonstrate our somewhat counterintuitive
result that the Price of Synchrony does not depend on network connectivity (that
is, neither algebraic connectivity, nor edge and vertex connectivity).

We simplify the example by assuming uniform dampings d = 1 for all generators
in the network and then assign random line parameters to each line in the following
manner. We draw both the line reactance xij and line ratio αij from a normal
distribution with mean 0.2 and standard deviation 0.1 (negative values are not
allowed). Based on Example 8.1, one can then expect the norm for each network
to lie close to the result of equation (8.22) with the average ratio ᾱ = 0.2, and we
should expect a linear growth of the H2 norm in N . This is also the main trend in
Figure 8.4.

Figure 8.4 shows the H2 norms for the path and complete graph topologies as
the network size increases from a 5 node to a 50 node system. We also indicate the
bounds (8.23) and (8.25) on both panels a and b. We show the bounds from (8.26)
only for the complete graph as this bound is very loose in the case of path graphs.
For both types of networks, the eigenvalue ratio bound in (8.25) provides the tight-
est bound. We also note that the graph-theoretical dependent bounds (8.26) are
more accurate than the line ratio bounds (8.23) for the complete graph, in line with
the discussion in Section 8.4.1.

Example 8.3 (Placement of non-uniform generators) Our final example further
relaxes Assumption 8.1 of equal generator parameters. We consider again our 7
bus example network from Figure 8.1, and let the lines have equal line impedances
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Figure 8.5: Illustration of the situation in Example 8.3. We place 4 generators with
different dampings in the 7-node example network with respect to their node degrees δi.

zij = 0.1+ j0.6 = zo. The nodes in this network have the following nodal degrees δi
in terms of the impedance zo:

δ1 = δ7 = zo, δ2 = δ6 = 3zo, δ3 = δ5 = 2zo, δ4 = 4zo.

The nodes thus have four different degrees, and we will now place four different
generators A −D at them. These generators all have inertia m = 20

2πf , but we let
their dampings be

dA = 2
2πf , dB = 8

2πf , dC = 14
2πf , dD = 20

2πf .

The situation is depicted in Figure 8.5. We study this system under two conditions:

(a) The strongly damped generators placed at the most interconnected nodes:

dA → nodes 1 and 7
dB → nodes 3 and 5
dC → nodes 2 and 6
dD → node 4

Here, dampings and node degrees are matched, and we call the resulting system
(with node 1 grounded) H̄match.

(b) The strongly damped generators placed at the least interconnected nodes:

dA → node 4
dB → nodes 2 and 6
dC → nodes 3 and 5
dD → nodes 1 and 7
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(a) Damping matched to node degrees
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(b) Damping mismatched to node degrees

Figure 8.6: Simulation from Example 8.3 with network in Figure 8.5. In (a) the strongly
damped generators are placed at the most well-interconnected nodes, and in (b) the
strongly damped generators placed are at the least interconnected nodes. The system
in (b) is less coherent and experiences larger resistive losses during the transient response:
27.9 compared to 13.2 in system (a) for these particular trajectories.

Here, dampings and node degrees are mismatched, and we call the resulting
system (with node 1 grounded) H̄mismatch.

We simulate the systems when they are subjected to a random initial angular
velocity disturbance (according to the H2 norm interpretation (ii) in Section 8.2.1).
The H2 norms can be evaluated numerically to:

||H̄match||22 = 18.9, while ||H̄mismatch||22 = 20.7.

This shows that transient energy losses are lower for the system corresponding to
case (a) where the dampings are matched to the node degrees.

Figure 8.6 shows the state trajectories of the two systems for a particular input
sequence. The figure shows that the transient behavior of the system H̄mismatch (b)
is less “coherent” than that of H̄match (a). Since the underlying graph and therefore
the matrix LG in the performance output is the same, it is clear in this case that
the additional oscillations in the mismatched case (b) lead to increased transient
losses. For the particular trajectories shown, the random input is such that the
“mismatched” network is particularly excited compared to the “matched” network.
Therefore, when we compute the losses for the particular trajectories shown, they
are for the matched case (a) 13.2, and for the mismatched case (b) 27.9.

These results and similar case studies have led us to conclude that for sys-
tems with non-uniform generator parameters, judicious network design that places
well-damped generators at highly interconnected nodes can reduce transient power
losses. A heuristic explanation to this fact is that a well-damped generator is able
to exert a larger effect on the entire network if it is well-connected than if it is
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remotely located. However, although we are considering an extreme case where
the best damped generator has as much as a 10 times larger damping coefficient
than the most poorly damped one, the best placement only achieves 10% lower
losses compared to the worst one (the optimality was confirmed numerically for
this example).

We remark that in general, node degree may not be the most relevant centrality
index3 with respect to the Price of Synchrony. In fact, in a similar problem of
inertia placement studied by Poolla et al. [136], some standard heuristics failed to
optimize H2 performance. Our example is therefore somewhat anecdotal, and more
work is needed to gain full insight to the optimal placement problem.

8.6 Discussion

In this chapter, we quantified the resistive line losses that occur due to the power
flows that are required to maintain synchrony in a power network in the presence of
persistent disturbances or transient events. These losses are the cost of using power
flow through transmission lines as the signaling mechanism for synchronization,
which motivates the term “Price of Synchrony”. In the special case of a network of
identical generators, we derived a formula for these losses, showing that they can be
expressed as a generalized ratio of graph Laplacians weighted by, respectively, line
conductances and susceptances. We showed that this quantity scales unboundedly
with the number of nodes (generators) in the system, but that it is only weakly
dependent on network topology. In this section, we discuss some of the implications
of these results as well as certain technical aspects of our analysis.

8.6.1 Topology independence
In the special case where all of the transmission lines have equal conductance to
susceptance ratios, we showed that the total transient resistive losses are indepen-
dent of network topology, and directly proportional to the number of nodes in the
network. This topological independence implies that while highly interconnected
networks may have better phase coherence and stability properties than a sparsely
interconnected one, the two networks are equivalent in terms of the power losses
associated with maintaining synchrony. This conclusion may at first seem surpris-
ing, but some intuition can be gained by considering the following contrast between
highly versus sparsely interconnected networks. A highly connected, and therefore
highly phase-coherent network has smaller phase fluctuations than a sparsely in-
terconnected one, and therefore less non-equilibrium power flows. So, while the
“per-link” resistive losses are smaller in the former, it has many more links than
the latter, and thus the total losses summed over all links can be the same for both
networks.

3See Section 2.1.4 for a brief discussion on centrality indices.
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8.6.2 Loss scaling

We evaluated the transient losses over the entire network, and not per node as
with previous performance metrics. This is motivated by the fact that the losses
arise over the power lines, so an evaluation per node is not physically motivated.
However, if normalized by the number of nodes, the transient losses are clearly
upper bounded for any network size. Additionally, we remarked that a generator
contributes to the total transient losses only if it is also subjected to a disturbance.
Hence, if we regard the issue of transient losses as an issue per generator, the scaling
is reasonable.

The unbounded growth of the total transient losses with the number of gener-
ators, however, has interesting implications for the design of future power grids.
This growth is, namely, unlikely to be mitigated by increasing network coherence
through additional transmission links, unless these links focus on optimal matching
of generator properties to node centrality. Such strategic addition of generation
may, however, be impractical for an existing system or when connecting new dis-
tributed generation. Furthermore, our numerical examples indicate that even a
strategic network design has relatively small impact on performance.

These results point to a fundamental limitation to a system where power flow
is the mechanism by which the system resynchronizes or maintains a synchronous
state. This performance limitation may be particularly relevant to future power
networks that are likely to have orders of magnitude more generators than today’s
networks due to a high integration of renewable distributed generation units. The
network as a whole will then experience a large increase in transient losses. Our
results can be construed as an argument in support of investigating the use of com-
munication links (for phase and frequency information) as an additional means of
stabilizing control in power networks. Strategies that compensate for disturbances
locally to prevent unnecessary inter-nodal power flows, or co-location of generators
at a common bus would also be beneficial for performance.

8.6.3 Model limitations

The linearized coupled oscillator model for the power network that we use here is
subject to a number of limitations. Some of them can be relaxed; variable voltage
dynamics are accounted for in Chapter 9 and the Kron-reduced network model can
be generalized to a structure-preserving Bergen-Hill model [165]. Neither of these
model generalizations affect the results herein qualitatively.

In the derivation of our closed-form results, we assumed uniformity in generator
damping and inertia. For non-uniform sets of generators, bounds like (8.27) that
are qualitatively equivalent to our main result can be shown to hold. This means
that our results do give insights to, for example, the scaling behavior of transient
losses also in more heterogeneous networks. Bounds of this type may, however, be
loose. As we could see in Example 8.3, heterogeneity in generator parameters can
also interact with network topology and affect performance within the bounds. An
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extended study that characterizes optimality of generator parameters with respect
to transient losses is part of ongoing work. The studies [122] and [136] also address
various aspects of performance in heterogeneous generator networks.

The Price of Synchrony metric allows an evaluation of total transient losses
under a variety of input scenarios, including persistent stochastic noise, impulses,
and initial perturbations. An alternative input scenario; step changes in loads, was
considered in Example 4.2 for the evaluation of frequency coherence. In all cases,
disturbances have been assumed uncorrelated across nodes. Possibly more realistic
disturbance scenarios have recently been addressed in [32], where performance un-
der colored (rather than white) noise is considered. The impact of line contingencies
on synchronization performance was also studied in [33].

Lastly, the applicability of the linearized model for power network synchroniza-
tion can be questioned. In our case, it limits the study to a small-signal analysis.
In this type of analysis, an H2-norm metric (rather than ∞-norms) is well suited
to characterize performance, since worst-case disturbances may drive the system
outside the basin of attraction of the synchronous state. Overall, a meaningful gen-
eralization of our study to nonlinear power system dynamics is an open problem.
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Appendix to Chapter 8
8.A Proof of Lemma 8.2
Consider the following state transformation of the system H in (8.9):[

θ
ω

]
=:

[
U 0
0 U

] [
θ′

ω′

]
,

where U is the unitary matrix which diagonalizes LB , that is, U∗LBU = ΛB =
diag{0, λB2 , ..., λBN}, with 0 = λB1 ≤ λB2 ≤ ... ≤ λBN being the eigenvalues of LB .
We have assumed, without loss of generality, that U = [ 1√

N
1 u2 ... uN ], where ui,

i = 2, ..., N are the eigenvectors corresponding to the aforementioned eigenvalues.
Since the H2 norm is unitarily invariant, see Section 3.1.2, we can also define

w′ = U∗w and y′ = U∗y to obtain the system

d
dt

[
θ′

ω′

]
=

[
0 I

− 1
mΛB − d

mI

] [
θ′

ω′

]
+
[

0
1
mI

]
w′

y′ =
[
U∗L1/2

G U 0
] [θ′
ω′

]
.

(8.28)

Now, observe that

U∗L1/2
G U =

 0 · · · 0
... L̂1/2

G

0

 , (8.29)

which implies that the first rows and columns of both U∗L1/2
G U and ΛB are zero.

We thus have that the states θ′1 = 1√
N

∑N
i=1 θi and ω′1 = 1√

N

∑N
i=1 ωi satisfy the

dynamics

θ̇′1 = ω′1 (8.30a)

ω̇′1 = − d

m
ω′1 + 1

m
w′1 (8.30b)

y′1 = 0. (8.30c)

We note the subsystem (8.30) by H ′1. It corresponds to the single zero eigenvalue
of LB and is clearly unobservable as y′1 ≡ 0. The remaining eigenvalues of the
system (8.28) lie strictly in the left half of the complex plane since λB2 , . . . , λBN > 0.
It follows that the input-output transfer function from w′ to y′ is stable and has
finite H2 norm. By the equivalence of the system (8.28) and H, we have thus
established the existence of the H2 norm for the system H.

We can now partition the system (8.28) into the respective subsystems H ′1
in (8.30) and Ĥ. We take L̂G as the symmetric positive definite submatrix in
(8.29) and define Λ̂B = diag{λB2 , λB3 , ..., λBN}. We then write the input-output
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mapping Ĥ as:

d
dt

[
θ̂
ω̂

]
=

[
0 I

− 1
m Λ̂B − d

mI

]
︸ ︷︷ ︸

Â

[
θ̂
ω̂

]
+
[

0
1
mI

]
︸ ︷︷ ︸
B̂

ŵ

ŷ =
[
L̂1/2
G 0

]
︸ ︷︷ ︸

Ĉ

[
θ̂
ω̂

] . (8.31)

Note that the systems Ĥ1 and H̄ are completely decoupled and we therefore have
that ||H||22 = ||H ′1||22 + ||Ĥ||22 = ||Ĥ||22.

The H2 norm of Ĥ can now be calculated in perfect analogy to the derivations
in Section 8.3.2 and we obtain that

‖H‖22 = 1
2d tr(Λ̂−1

B L̂G). (8.32)

Next, we show that the result of Lemma 8.1, which is in terms of the reduced
graph Laplacians, can be written in terms of the state transformed matrices Λ̂B
and L̂G. Define the N × (N − 1) and the (N − 1)×N matrices R and P by:

R =

0 · · · 0
IN−1

 , P =

Ik−1 0
−1N−1

0 IN−k

 ,
where k is the index of the grounded node and 1N−1 is the (N − 1) × 1 vector
with all entries equal to 1. By this design, Λ̂B = R∗ΛBR, L̂G = R∗U∗LGUR and
LB(G) = P ∗L̄B(G)P . Further, to simplify notation, we define the (N − 1)× (N − 1)
non-singular matrix V = PUR. Then we can write

tr(L̄−1
B L̄G) = tr(V V −1L̄−1

B (V ∗)−1V ∗L̄G),

since V V −1 = (V ∗)−1V ∗ = I. By the cyclic properties of the trace:

tr(V V −1L̄−1
B (V ∗)−1V ∗L̄G) = tr(V −1L̄−1

B (V ∗)−1V ∗L̄GV )
= tr((V ∗L̄BV )−1V ∗L̄GV ). (8.33)

But V ∗L̄BV = R∗U∗P ∗L̄BPUR = Λ̂B and V ∗L̄GV = R∗U∗P ∗L̄GPUR = L̂G.
Hence,

tr(L̄−1
B L̄G) = tr(Λ̂−1

B L̂G).

In conclusion,

‖H‖22 = 1
2d tr(Λ̂−1

B L̂G) = 1
2d tr(L̄−1

B L̄G) = ‖H̄‖22,

which proves the Lemma. �
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8.B Proof of Lemma 8.3
By the proof of Lemma 8.2, we have that tr(L̄−1

B L̄G) = tr(Λ̂−1
B L̂G). Now,

tr(Λ̂−1
B L̂G) = tr

([
0 0
0 Λ̂−1

B L̂G

])
= tr

([
0 0
0 Λ̂−1

B

]
U∗LGU

)
. (8.34)

By definition, see e.g. [65],

U∗L†BU = diag{0, 1
λB2

, ...,
1
λBN
} =

[
0 0
0 Λ̂−1

B

]
,

which makes (8.34) equivalent to tr(U∗L†BUU∗LGU) = tr(U∗L†BLGU). But since
the trace is unitarily invariant, it follows that tr(Λ̂−1

B L̂G) = tr(L†BLG), which is
precisely the statement of the lemma. �

8.C Proof of Lemma 8.6
Without loss of generality, number the nodes so that k = N . Let
M̄ := diag{m1, ...,mN}, D̄ = diag{d1, ..., dN} and denote the new (N + 1)th node
as NI for notational compactness. The reduced system H̄1 can then be written as

d
dt


θ̄
θNI
ω̄
ωNI

 =


0 0 IN−1 0
0 0 0 1

−M̄−1L̄B 0 −M̄−1D̄ 0
0 − bN,NImNI

0 − dNI
mNI

+


0 0
0 0

M̄−1 0
0 1

mNI

[ w̄
wNI

]
(8.35)

[
ȳ
yNI

]
=
[
L̄1/2
G 0 0 0
0 √

gN,NI 0 0

]
θ̄
θNI
ω̄
ωNI

 ,
where bN,NI , gN,NI are, respectively, the susceptance and conductance of the
line (N,NI). Let the input-output mapping HNI be the SISO subsystem of (8.35)
given by:

d
dt

[
θNI
ωNI

]
=
[ 0 1
− bN,NImNI

− dNI
mNI

] [
θNI
ωNI

]
+
[

0
1

mNI

]
wNI

yNI =
[√
gN,NI 0

] [θNI
ωNI

]
.

From (8.35), it is clear that the systems H̄0 and HNI are entirely decoupled. We
can therefore write H̄1 = diag{H̄0, H̄1}, and have that

||H̄1||22 = ||H0||22 + ||HNI ||22.
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Now, the H2 norm of HNI can be calculated as in Section 8.3.2 and becomes:

||HNI ||22 = 1
2dNI

gN,NI
bN,NI

= αN,NI
2dNI

,

and the result follows. �



Chapter 9

Performance Impact of Variable Voltage
Dynamics

The key motivation for studying power systems in this thesis is the transition
to a distributed generation paradigm. This implies that numerous smaller, local
generation sources replace large, centralized power plants. Much of this generation
will be connected at low- to medium-voltage grids. In such grids, the assumptions
of a flat voltage profile and negligible resistance-to-reactance ratios are no longer
valid, and a tight voltage control becomes important. In this chapter, we will
analyze how the results from Chapter 8 are impacted by a coupling of the phase-
frequency dynamics to variable voltage dynamics.

We address this question by studying a microgrid network. Microgrids, which
are envisioned as small, autonomously operated networks composed of distributed
generation units, loads and storage elements, have been proposed as a strategy
to facilitate the transition to a distributed generation paradigm [87, 103]. The
distributed generation units within a microgrid are typically interfaced with the
network via DC/AC or AC/AC power converters, or inverters. The network’s sta-
bility, synchronization and power balance depend on control actions taken in these
inverters [131, 199]. Droop control; essentially a decentralized proportional con-
troller, is a widely proposed control scheme in this context. In Chapter 2, we re-
viewed some research focused on deriving analytical conditions for synchronization
and power sharing in droop-controlled power networks. Most of these works have
assumed constant voltage profiles, though droop control for voltage and reactive
power stabilization in microgrids has recently attracted attention [56,147,148,160].
In particular, Schiffer et al. derive conditions on controller gains for frequency and
voltage stability in [147] and for reactive power sharing in [148].

In this chapter, we study the same type of inverter-based microgrid as in [148]
and characterize transient performance in terms of a Price of Synchrony metric
that is adapted to account for losses due to voltage variations. We will show, on
one hand, that the cross-coupling of phase-frequency and voltage dynamics leads to

165
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conditions on the respective droop controllers that must be observed to guarantee
stability of even the linearized model. Provided these conditions are satisfied with
a reasonable stability margin, we prove, on the other hand, that the cross-coupling
only has a small effect on the total transient losses. This means that frequency and
voltage droop control can be decoupled with respect to our performance analysis.
While frequency synchronization was shown to produce losses that scale with net-
work size but only have a weak topology dependence, the additional losses due to
voltage control will be larger in a well-interconnected network than in a sparsely
interconnected one. This means that the typically higher rate of convergence and
degree of coherence in a well-interconnected network comes at the cost of higher
transient losses.

9.1 Microgrid model with frequency and voltage droop control

In this chapter, we consider a model of an inverter-based microgrid. The inverters
are the interface between the typically asynchronous or DC renewable generation
sources and the synchronous AC power grid. They will be modeled as voltage
sources whose voltage amplitude and frequency outputs can be regulated, in our
case through droop controllers. The resulting closed-loop system is one where
the phase-frequency dynamics, which are analogous to the previous Chapter, are
coupled with voltage dynamics. Under certain conditions, which we discuss at the
end of this section, a decoupling of the two can, however, be motivated.

9.1.1 Network model and definitions

The microgrid is modeled through a Kron-reduced network model G = {V, E} as
in Chapter 8. Consequently, every node i ∈ V represents a generation unit with
a power inverter as its grid interface. Each of these has an associated complex
voltage vi = Vie

jθi , where Vi = |vi| is the voltage magnitude and θi is the phase
angle. The network itself is represented through its admittance matrix, introduced
in Section 3.4.2.

Special case: complete network graph

Many results in this chapter are derived for the special case when the graph un-
derlying the network G is complete, that is, there is a line (i, j) connecting each
node pair i, j ∈ V. Our focus on this case is partly motivated by the study [112],
which showed that Kron-reduction of power networks typically results in complete
network models.

It will often be useful to study these networks in the limit where N → ∞,
that is, when they are large. While the notion of large microgrids may appear an
oxymoron, it should be thought of as a highly distributed system scenario with a
large number of end points with controllable generation units.
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9.1.2 Inverter and droop control model
We now introduce the models of the power inverters, adopting the framework
from [147]. We assume that the inverters are voltage sources, whose amplitude
and frequency output are regulated according to:

θ̇i = uθi (9.1a)
τVi V̇i = −Vi + uVi , (9.1b)

where uVi and uθi are the respective control signals. The voltage regulation is
modeled with a small lag, represented by a filter with time constant τVi ≥ 0.

The controls uθi and uVi are then implemented as droop controllers; proportional
controllers based, respectively, on active and reactive power deviations:

uθi = ωref − kP,i(P̂i − P ref
i ) (9.2a)

uVi = V ref
i − kQ,i(Q̂i −Qref

i ), (9.2b)

where ωref , V ref
i , P ref

i and Qref
i are the respective setpoints for the frequency, voltage

magnitude, active and reactive power. The parameters kP,i, kQ,i > 0 are the
droop gains and P̂i and Q̂i are the active and reactive powers measured by the
power electronics at the inverter. These measurements are assumed to be processed
through low-pass filters given by:

τP,i
˙̂
Pi = −P̂i + Pi (9.3a)

τQ,i
˙̂
Qi = −Q̂i +Qi, (9.3b)

where τP,i, τQ,i > 0 are the filter time constants and Pi and Qi are the actual power
injections to the network at node i. The relations (9.1)–(9.3) can now be used to
formulate the closed-loop system dynamics. For this purpose, it first assumed that
the time constant for the voltage control, τVi is small compared to τQ,i, and can be
neglected [147]. We therefore set τVi = 0 in (9.1b), and then by substituting (9.2)
into (9.1), we obtain:

θ̇i = ωi (9.4a)
ωi = ωref − kP,i(P̂i − P ref

i ) (9.4b)
Vi = V ref

i − kQ,i(Q̂i −Qref
i ), (9.4c)

where we have introduced the inverter frequency ωi. Taking the derivatives of (9.4b)
and (9.4c) with respect to time gives ω̇i = −kP,i ˙̂

Pi and V̇i = −kQ,i ˙̂
Qi, in which we

can insert the equations (9.3). We then substitute P̂i and Q̂i using (9.4b) and (9.4c)
and obtain the control dynamics for the phase angles and voltages as:

θ̇i = ωi

τP,iω̇i = −ωi + ωref − kP,i(Pi − P ref
i )

τQ,iV̇i = −Vi + V ref
i − kQ,i(Qi −Qref

i ).
(9.5)
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We next derive the equations for Pi and Qi.
Remark 9.1 The procedure outlined above results in a second-order model for the
phase-frequency dynamics, which is analogous to the swing dynamics in Chapter 8.
Frequency droop control is sometimes, for example in [159], studied through a first-
order model. That model is obtained in the limit where τP → 0. Its performance
expressions also correspond to those of the second-order model in the same limit
We refer to [174, Chapter 5] for an elaboration on the first-order model. �

9.1.3 Linearized complex power flows
Introducing θij = (θi−θj) as the phase angle difference between neighboring nodes,
the active and reactive powers injected to the grid at each node i ∈ V are

Pi = −giiV 2
i +

∑
j∈Ni

ViVj(gij cos θij + bij sin θij) (9.6a)

Qi = biiV
2
i +

∑
j∈Ni

ViVj(gij sin θij − bij cos θij). (9.6b)

At the ith node, gii = ḡi +
∑
j∈Ni gij and bii = b̄i +

∑
j∈Ni bij represent re-

spectively the shunt conductance and shunt susceptance. We make the common
assumption [58, 148] that the shunt elements are purely inductive so that, in our
notation, ḡi = 0 and b̄i ≥ 0 for all i ∈ V.

As usual, we will be considering the system under the assumption of small
deviations from an operating point. For these reasons, we can approximate the
power flows by a linearization around the point P 0

i (θ0
ij , V

0
i , V

0
j ) and Q0

i (θ0
ij , V

0
i , V

0
j ),

where V 0
i = V 0

j = V 0 = 1 p.u. and θij = 0 for all i, k ∈ N . This procedure gives
the linearized power injections at node i as:

∆Pi =
∑
k∼i

(−gij(∆Vi −∆Vj) + bij∆θij) (9.7a)

∆Qi =2b̄i∆Vi +
∑
k∼i

(bij(∆Vi −∆Vj) + gij∆θij) . (9.7b)

9.1.4 Closed-loop dynamics
We now summarize the relations derived so far into one closed-loop system subject
to distributed disturbances that represent generation and load fluctuations. For
this purpose, we let the linearization points used in (9.7a)–(9.7b) be the setpoints
of the droop controllers in (9.2), so that ∆Pi = Pi − P ref

i and ∆Qi = Qi − Qref
i

for all i ∈ V. Without loss of generality we transfer this equilibrium to the origin.
In an effort to avoid cumbersome notation, we then omit the difference operator ∆
and let the state variables (θij , ωi, Vi) represent deviations from the operating
point. We assume that the system is driven by a disturbance input w.
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Inserting the power flow equations (9.7a)–(9.7b) to the control dynamics (9.5)
of the ith inverter gives:

θ̇i = ωi

τP,iω̇i = −ωi − kP,i(−
∑
k∼i

gij(Vi − Vj) +
∑
k∼i

bijθij) + wω
i

τQ,iV̇i = −Vi − kQ,i(2b̄iVi +
∑
k∼i

bij(Vi − Vj) +
∑
k∼i

gijθij) + wV
i .

(9.8)

Now, by defining θ, ω, V as column vectors containing the states θi, ωi, Vi, i ∈ V
and using the susceptance and conductance matrices LB and LG defined in (3.28),
we can summarize the above as follows: θ̇ω̇
V̇

=

 0 I 0
−KPT

−1
P LB −T−1

P KPT
−1
P LG

−KQT
−1
Q LG 0 −CQT−1

Q −KQT
−1
Q LB


︸ ︷︷ ︸

A

 θω
V

+

 0 0
T−1
P 0
0 T−1

Q


︸ ︷︷ ︸

B

w, (9.9)

where w = [wω, wV ]T is the disturbance input vector, and we define KP (Q) =
diag{kP,i(Q,i)}, TP (Q) = diag{τP,i(Q,i)} and CQ = diag{cQ,i} with cQ,i = 1+2kQ,ib̄i.

We emphasize that the phase-frequency dynamics and the voltage dynamics
in (9.9) are in general cross-coupled. Even though the droop controllers (9.2) are
decoupled, that is, the voltage V is controlled based on reactive power flow while
phase θ and frequency ω are controlled based on active power flow, these respective
power flows depend on both V and θ according to (9.7). The strength of this cross-
coupling depends on the network lines’ resistance-to-reactance ratio. Throughout
this chapter, we make the following assumption:
Assumption 9.1 The conductance-to-susceptance (equivalently, resistance-to-
reactance) ratio α is uniform for all network lines, that is,

α := gij
bij
, ∀(i, j) ∈ E .

It thus holds LG = αLB .

This assumption, which is used in several related studies [42,97,159], is not unrea-
sonable for power networks. See Section 8.3.3 for an elaboration.

Under Assumption 9.1, the cross-coupling between the phase-frequency and the
voltage dynamics in (9.9) will be proportional to α (note LG = αLB in the elements
A(2,3) and A(3,1) in (9.9)). The situation is illustrated in Figure 9.1. In the next
section, we will show that this cross-coupling will be important for the stability
properties of the system.
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�,!

Figure 9.1: Illustration of cross-coupling between voltage and phase-frequency dynamics
in (9.8). The strength of the cross-coupling is parameterized through the conductance-
to-susceptance (resistance-to-reactance) ratio α. If α is small, the cross-coupling is weak
and system properties can be studied through decoupled dynamics where one assumes
P (θ, V ) ≈ P (θ) and Q(θ, V ) ≈ Q(V ).

9.1.5 System decoupling

The dominating behavior of the system in (9.9) can be analyzed in the limit where
the network’s resistances are small compared to its reactances, that is, when α→ 0
(we show this formally with respect to our analysis in Section 9.4). Under this
common assumption, the active power flow is a function only of the phase an-
gles and the reactive power flow is a function only of the voltage magnitudes.
That is, P (θ, V ) ≈ P (θ), Q(θ, V ) ≈ Q(V ), see for example [23, 56, 147, 163].
This decouples the phase-frequency and voltage dynamics. The decoupled system
Hdec = (Adec,B, C) is formulated by setting LG = 0 in the matrix A in (9.9):

Adec:=

 0 I 0
−KPT

−1
P LB −T−1

P 0
0 0 −CQT−1

Q −KQT
−1
Q LB

 .
In power networks, and in particular in low-voltage distribution networks, the

assumption of small resistance-to-reactance ratios is not generally applicable. The
cross-couplings in the system therefore become increasingly relevant. In highly
resistive networks, it may even reasonable to consider the opposite dependencies;
P (θ, V ) ≈ P (V ) and Q(θ, V ) ≈ Q(θ) [23], though such considerations are not made
in this thesis.
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We are, however, modeling an inverter-based network. Given that inverter
output impedances are highly inductive they tend to dominate line resistances in
Kron-reduced network models [147,148]. Therefore, α will be relatively small in our
model, and we will indeed be able to show relevant characteristics of our problem
by considering the simpler, decoupled system Hdec.

9.2 The Price of Synchrony with variable voltages

We now extend the Price of Synchrony performance measure introduced in Sec-
tion 8.2 to also account for losses associated with fluctuating voltages. For this
purpose, consider again the real power loss over an edge (i, j), which is given by
Ohm’s law as

P loss
ij = gij |vi − vj |2, (9.10)

where vi, vj are the complex voltages at nodes i and j. We can now enforce the
common linearized system assumption of small phase angle differences. Standard
trigonometric methods then give that |vi− vj |2 ≈ (Vi− Vj)2 + (Vi(θi− θj))2. Since
we also assume Vi ≈ 1 p.u. around the linearization point for all i ∈ V, an approxi-
mation of the power loss over the edge (i, j) is P loss

ij = gij
[
(Vi − Vj)2 + (θi − θj)2].

The total instantaneous power losses over the network are then approximately

Ploss ≈
∑
j∈Ni

gij

[
(Vi − Vj)2 + (θi − θj)2

]
. (9.11)

Making use of the conductance matrix LG, we can write (9.11) as the quadratic
form

Ploss = V TLGV + θTLGθ, (9.12)
which allows us to make the following definition:
Definition 9.1 (Price of Synchrony performance output with variable voltages)
The instantaneous resistive power losses in a power network are measured as Ploss =
yT y, where the performance output y is

y := L1/2
G θ + L1/2

G V. (9.13)

Here V and θ are the state vectors that were defined in the Section 9.1.4.

9.3 Admissible frequency and voltage droop controllers

We have now derived a model for an inverter-based microgrid with both frequency
and voltage droop control. Although there is a large body of literature that treats
the stability properties of these droop controllers, they are typically treated sepa-
rately from each other, implicitly or explicitly assuming the problems to be decou-
pled. In this section, we will discuss stability conditions for the system (9.9), and
show that the cross-coupling of voltage and frequency dynamics indeed limits the
set of admissible droop control designs.
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We are here considering the linearized microgrid dynamics, and can therefore
clearly not perform a complete stability analysis of the cross-coupled system. How-
ever, our analysis provides necessary conditions for the full nonlinear system, and
can therefore give insights to the problem. In particular we show that certain rela-
tions between the voltage and frequency droop controllers must be observed, and
that these depend on the network’s resistance-to-reactance ratio α.
Remark 9.2 The term “admissibility” is used here in a slightly different meaning
than in Chapters 5–6. Here, admissible frequency and voltage droop controllers
refer to decoupled control designs that also guarantee stability of the cross-coupled
system. �

9.3.1 Conditions on droop gains versus α
To provide tractable closed-form stability conditions, we first consider the sys-
tem (9.9) in the hypothetical case of a system with identical inverters. Consider
the following assumptions:
Assumption 9.2 The power measurement time constants τP,i, and τQ,i are uniform
across all inverters, that is, τP,i = τP and τQ,i = τQ, ∀i ∈ V.

Assumption 9.3 All nodes have equal shunt susceptances b̄i = b̄ ≥ 0, and zero
shunt conductances ḡi = 0, ∀i ∈ V.

Assumption 9.4 The droop gains kP,i, and kQ,i are uniform across all inverters,
that is, kP,i = kP and kQ,i = kQ, ∀i ∈ V.
The system (9.9) has a single zero eigenvalue and the matrix A will therefore not
be Hurwitz. As usual, however, the corresponding mode that describes the drift
of the mean phase angle is unobservable from the output. Here, we will therefore
consider input-output (IO) stability of the system (9.9) with respect to the output
from Definition 9.1. This is equivalent to ensuring that remaining eigenvalues of A
have negative real parts. A condition for this is given in the following theorem:

Theorem 9.1 Let Assumptions 9.1–9.4 hold. Then, the system (9.9) is input-
output (IO) stable if and only if

k2
QτPλ

2
N + (kP τ2

Q + kQτQ + 2cQkQτP )λN + τP c
2
Q + τQcQ

kP kQτP τQλ2
N

> α2,

where λN is the greatest eigenvalue of LB.

Proof: See Appendix 9.B.

Theorem 9.1 shows that when α > 0, not any choice of kP and kQ is admissible.
Instead, a relation between these gains must be observed. This relation depends
on for example λN , that is, the underlying network topology.
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From Theorem 9.1 we derive a more tractable conservative stability condition,
which is tight in the limit where the eigenvalue λN is large. A case where λN is
large is when the graph G is complete and the number of nodes N becomes large
(see Section 9.1.1).

Corollary 9.2 Under Assumptions 9.1–9.4, the system (9.9) is IO stable if

kQ
kP τQ

> α2.

Proof: Follows from Theorem 9.1, noting that the left hand side is decreasing in
λN > 0, and letting λN →∞. �

In cases where λN is not large, the following alternative sufficient condition is
relevant:

Corollary 9.3 Under Assumptions 9.1–9.4 (9.9) is IO stable if

α2 ≤ τQ
τP

1
kQλN

=: α2
crit.

This implies that in case α ≤ αcrit due to kQ being chosen sufficiently small in
relation to λN , any kP is admissible. This is easier to satisfy if λN is small, that
is, in sparsely interconnected networks. Conversely, if α > αcrit, sufficiently large
gains kP will violate the stability condition in Theorem 9.1.

9.3.2 Stability of decoupled system
Let us now consider the special case of the decoupled system Hdec. Clearly, since
the parameter α = 0 in Adec, the condition in Theorem 9.1 is always fulfilled.
Therefore, Hdec is IO stable for any choice of the parameters. It also follows from
the following lemma:

Lemma 9.4 Under Assumptions 9.1–9.4, the set of eigenvalues of the decoupled
system matrix Adec is:

σ(Adec) =
N⋃
n=2

{
− 1

2τP

(
1±

√
1− kP τPλn

)
,−cQ

τQ
− kQ
τQ
λn

}
∪
{

0,− 1
τP
,−cQ

τQ

}
.

If the parameters kP , τP , kQ, τQ > 0 and the shunt susceptance satisfies cQ > 0 ⇔
b̄ > −1

2kQ , all eigenvalues apart from the zero eigenvalue lie strictly in the left half
of the complex plane and the system Hdec = (Adec,B, C) is IO stable.

Proof: Follows from block-diagonalizing the matrix Adec as in Appendix 9.A and
then evaluating the characteristic polynomials of Âdec

n . Since the Laplacian eigen-
values λn > 0 for n = 2, . . . , N , it is easy to see that if kP , τP , kQ, τQ, cQ > 0, all
eigenvalues of Adec (apart from the zero eigenvalue) have negative real parts. �
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Remark 9.3 The system Hdec can be shown to be IO stable also with non-uniform
system parameters. See, for example, [4]. �

9.4 Performance of frequency and voltage droop control

In this section, we present the Chapter’s main result. We begin by analyzing the
performance in terms of transient resistive losses for the cross-coupled system. After
showing that the error made by considering the decoupled system Hdec is small,
we proceed to analyzing the topology-dependence of that system’s performance.

9.4.1 System performance and error due to decoupling
Consider now the system (9.9). We noted in Section 9.1.4 that it has cross-couplings
between the voltage and phase-frequency dynamics that are proportional to the
resistance-to-reactance ratio α. These cross-couplings make the closed-form perfor-
mance expressions more or less intractable. However, we show here that it can be
expressed as a series expansion in α:

Proposition 9.5 Let Assumptions 9.1–9.4 hold. The squared H2 norm of (9.9)
with respect to the output from Definition 9.1 is, for sufficiently small α, given by:

‖H‖22 = cΛ0 α+ cΛ1 α
3 + cΛ2 α

5 + . . . , (9.14)

where cΛk , k = 0, 1, 2, . . ., are positive, scalar functions of the eigenvalues λn of LB.
The first term in the expansion corresponds to the squared H2 norm of the

decoupled system Hdec:
cΛ0 α = ‖Hdec‖22,

which is given by:

‖Hdec‖22 = α

2kP
(N − 1) + α

2τQ

N∑
n=2

1
cQ
λn

+ kQ
. (9.15)

Proof: See Appendix 9.C.

Remark 9.4 The requirement that α be sufficiently small is equivalent to requiring
IO stability. It is thus satisfied if the condition in Theorem 9.1 holds. �

The following corollary follows immediately from (9.14)–(9.15):

Corollary 9.6
‖H‖22 > ‖Hdec‖22.

This means that the cross-coupling between voltage and phase-frequency dynamics
is strictly detrimental for performance in terms of transient power losses.
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Notice that the part of the H2 norm that can be attributed to the cross-coupling
is in high-order terms of the resistance-to-reactance ratio α. Since α is (much)
smaller than 1 in the model considered here, the error made by decoupling the
system is small. Define the relative error η made by decoupling the system as:

η = ‖H‖
2
2 − ‖Hdec‖22
‖Hdec‖22

(9.16)

and consider the following corollary:

Corollary 9.7 The relative error η is given by

η = cΛ1
cΛ0
α2 + cΛ2

cΛ0
α4 + . . . =: c̄Λ1 α2 + c̄Λ2 α

4 + . . .

This means that the relative error η = O(α2). This quadratic trend is also seen
from the numerical example in Figure 9.2.

In the important special case where the graph G underlying the network is
complete and where the number of nodes N is large, the eigenvalues λn will become
large. For this case, we can derive the following result:

Proposition 9.8 If λn →∞ for all n = 2, . . . , N , then

‖Hdec‖22 ≈
α

2 (N − 1)
(

1
kP

+ 1
τQkQ

)
, (9.17)

and

η ≈ kP τQ
kQ

α2 +
(
kP τQ
kQ

)2
α4 + . . . . (9.18)

Proof: See Appendix 9.D.
We conjecture, based on numerical evaluation, that (9.18) provides an upper bound
on the relative error for any underlying network graph.

It is interesting to note that the coefficients in (9.18) are the inverted ratio from
the stability condition in Corollary 9.2. Both hold in the limit of a large, complete
graph. This is in line with the intuitition that the larger the stability margin, the
smaller is the error made by considering the decoupled system (which is always
stable) in the performance analysis.

In conclusion, the relative error η will be small provided a reasonable stability
margin is maintained. We therefore proceed to analyzing the transient power losses
of the decoupled system further.

9.4.2 Topology dependence of decoupled system performance
Consider now the norm expression (9.15). This expression is monotonically in-
creasing in the Laplacian eigenvalues λn, implying that transient losses increase



176 Chapter 9. Performance Impact of Variable Voltage Dynamics

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

·10−2

α

η

Complete graph
Path graph
Approximation (9.18)

Figure 9.2: Norm error η in (9.16) as a function of α for networks of size N = 50 with
complete graph and path graph structures. We also display the approximation (9.18).
The errors are small and decrease quadratically as α→ 0, as predicted by Proposition 9.5.
Here, xij = 0.2, kP = 1, kQ = 2, τP = τQ = 0.5 and cQ = 1.

with increasing network connectivity and line susceptances. While microgrid net-
work structures may vary, in terms of connectivity they will fall somewhere between
the two extremes given by the complete graph and tree graphs. We next present
results for these two cases.

Consider first the special case of a complete graph.

Proposition 9.9 Let Assumptions 9.1–9.4 hold. If the graph underlying the net-
work G is complete, then the transient power losses are bounded from above by:

‖Hdec‖22 ≤
α

2 (N − 1)

 1
kP

+ 1
τQ

(
cQ
Nb + kQ

)
 , (9.19)

where b is the arithmetic mean of the susceptances bij of all network lines (i, j) ∈ E.
They are bounded from below by:

‖Hdec‖22 ≥
α

2 (N − 1)

 1
kP

+ 1
τQ

(
cQ

Nbmin
+ kQ

)
 , (9.20)

where bmin = minE bij. If bij = b = bmin for all (i, j) ∈ E, (9.19)–(9.20) turn into
equalities.

Proof: See Appendix 9.E.
While a complete graph is a reasonable model for existing power networks after

Kron-reduction (see Section 9.1.1), future microgrids may arise through the addition
of generation units at many or all nodes in distribution grids. Distribution grids
typically have a radial network structure, meaning that a tree graph (a graph
without cycles) is the underlying topology. With generation units at most nodes,
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the tree graph structure can be maintained also after Kron-reduction. The following
proposition bounds the transient losses for this case:

Proposition 9.10 Let Assumptions 9.1–9.4 hold. If the graph underlying the net-
work G is a tree graph, then the transient power losses are bounded by:

‖Hdec‖22 ≤
α

2 (N − 1)
(

1
kP

+ 1
τQ( cQ2b + kQ)

)
. (9.21)

Here, b is again the mean line susceptance. A lower bound is given by:

‖Hdec‖22 ≥
α

2 (N − 1)
(

1
kP

+ 1
τQ( cQN

2

16bmin
+ kQ)

)
. (9.22)

Proof: See Appendix 9.F.
In all cases, losses scale with the network sizeN and will grow unboundedly for large
networks, in line with the conclusions in Chapter 8. The bound (9.22) is loose,
but supports this conclusion. This can be seen from Figure 9.3, which displays the
values of the H2 norm as a function of network size N for the topologies discussed
in this section (a path graph is used as an example of a tree graph). We also include
randomly generated planar graphs, whose performance lies in between the two, in
the figure.

Finally, we show that increasing the network connectivity always leads to in-
creased losses:

Proposition 9.11 Adding an edge to the set E or increasing the susceptance bij
of any edge (i, j) ∈ E (at constant α) can only increase the power losses given
by ‖Hdec‖22.

Proof: Note that the function φn = ( cQλn + kQ)−1 is monotonically increasing in λn
(since d

dλn
φn = 1

cqλn+kQλ2 > 0). Remaining terms in ||Hdec||22 are independent
of λn. The proposition thus holds if it is true that at least one λn increases while
the others do not decrease under the operations. This is precisely what is shown in
Theorem 3.1 (adding an edge) and in Theorem 3.3 (increasing the susceptance of
an edge). �

Remark 9.5 Proposition 9.11 implies that (9.22) provides a lower bound for any
underlying graph topology. �

The fact that a highly interconnected network incurs larger power losses in re-
covering or maintaining synchrony than a sparsely interconnected network stands
in sharp contrast to our earlier result as well as to typical notions of power sys-
tem stability, which we already discussed in Section 8.3.3. Figure 9.4 emphasizes
the counterintuitiveness of this result. It shows the transient behaviors obtained
from simulations of a 5 node network with, respectively, complete and path graph
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Figure 9.3: H2 norm in (9.15) for sample networks with path graph, complete graph, and
random planar graph topologies, along with the upper bound (9.19), for complete graphs
and (9.21) for tree graphs, and the lower bound (9.22). We note that performance in
terms of transient losses scales linearly in network size in all cases. In this example, kP =
kQ = cQ = 1, α = 0.2 and the line susceptances are uniformly distributed on the interval
[0.5, 3.25]. The random planar graphs were generated using Delaunay triangulation.

topologies. The plot clearly shows a faster convergence in the complete graph case.
This faster convergence, however, comes at a greater cost in terms of power losses.

Some intuition behind this result may be obtained in terms of self-damping, or
absolute feedback, which was a central topic in Chapter 4. Note that the voltage
dynamics in (9.5), which are of first order, include an absolute feedback term −Vi.
This means that a disturbance could theoretically be attenuated even if node i were
isolated, since the system V̇i = V ref

i −Vi is in itself asymptotically stable. However,
the network must be connected, and the voltage dynamics at node i therefore
inevitably depend on neighboring nodes. The neighbors can support each other
in attenuating disturbances and achieve faster voltage control, but this control
is exerted through power flows, which give rise to losses. This means that any
additional line connected to node i increases the number of flows and losses, and
therefore, a more highly interconnected network leads to larger transient losses than
a more loosely interconnected one.

9.5 Discussion

In this Chapter, we relaxed some of the simplifying assumptions from Chapter 8
and studied the impact of non-zero resistances and variable voltages on performance
in terms of the Price of Synchrony. We used an inverter-based microgrid model,
in which distributed generation sources are assumed grid-connected via inverters.
These are, in turn, modeled as voltage sources subject to both voltage and frequency
droop control.

Unsurprisingly, an explicit accounting for variable voltages strictly increases the
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Figure 9.4: Simulations of frequency and voltage droop control (cross-coupled) with N = 5
inverters in, respectively, a path and a complete graph topology. Despite its higher rate
of convergence, the complete graph incurs greater energy losses. These losses correspond
to the area under the curves on the bottom panels.

transient losses compared to our previous results. This is true both for the case
when the voltage dynamics are considered decoupled from the phase-frequency
dynamics and for the case when the two systems are cross-coupled. The cross-
couplings can be shown to only have a small contribution to the overall transient
losses, in that it is proportional to high-order terms of the ratio α, which is (much)
smaller than 1. On the other hand, the cross-coupling limits the set of admissible
voltage and frequency droop controllers. For example, in a network with a large,
complete graph as the underlying topology, the active power droop gain cannot be
set too large in relation to the reactive power gain.

The additional transient losses that arise through voltage control were shown
to increase with an increasing connectivity of the underlying network. That is,
while additional links in the network improve network coherence and give faster
convergence, they lead to greater transient losses. This is in sharp contrast to
the previous results in this thesis. It can be thought of as a consequence of the
performance measure on the one hand, which penalizes inter-nodal flows, and the
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presence of absolute feedback on the other, which stabilizes the local dynamics
independently of such flows. In the next chapter, we will see that a similar topology
dependence holds with (noiseless) integral control that emulates absolute feedback.
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Appendix to Chapter 9
9.A Diagonalization of system dynamics
Under Assumptions 9.1–9.4 the system (9.9) with the output y from Definition 9.1
can be diagonalized by a unitary state transformation as outlined in Section 3.1.2.
As before, we use the matrix U that diagonalizes LB (and LG, by Assumption 9.1)
for this transformation.

We obtain the block-diagonalized system Ĥ, which corresponds to N decoupled
subsystems, or modes, Ĥn: ˙̂

θn
˙̂ωn
˙̂
Vn

 =

 0 1 0
−kPτP λn − 1

τP
kP
τP
αλn

−kQτQ αλn 0 − cQτQ −
kQ
τQ
λn


︸ ︷︷ ︸

Ân

 θ̂nω̂n
V̂n

+

 0 0
1
τP

0
0 1

τQ


︸ ︷︷ ︸

B̂n

ŵn

ŷn =
√
αλn

[
1 0 0
0 0 1

]
︸ ︷︷ ︸

Ĉn

 θ̂nω̂n
V̂n

 (9.23)

for n = 1, 2, . . . , N . Note that since λ1 = 0, ŷ1 ≡ 0. Therefore, even though Â1 is
non-Hurwitz, the mode is not observable.

9.B Proof of Theorem 9.1
The system (9.9) is IO stable if and only if all observable (and controllable) system
modes are asymptotically stable. After performing the diagonalization outlined
in Appendix 9.A, this becomes equivalent to ensuring that Ân, n = 2, . . . , N ,
from (9.23) are all Hurwitz. The characteristic equation det(zI − Ân) = 0 for
n = 2, . . . , N reads

a3z
3 + a2z

2 + a1z + a0 = 0,
where

a3 = τP τQ,

a2 = τQ + τP (cQ + kQλn),
a1 = kPλn(cQ + kQλn(α2 + 1)),
a0 = cQ + kQλn(τQ + 1).

The coefficients ai are all are positive since τP , τQ, kP , kQ, cQ, λn > 0. Therefore,
by the Routh-Hurwitz stability criterion all eigenvalues z lie strictly in the LHP if
and only if ai > 0 for i = 0, . . . , 3 (clearly satisfied), and a1a2 > a0a3. Re-arranging
these terms gives the condition

k2
QτPλ

2
n + (kP τ2

Q + kQτQ + 2cQkQτP )λn + τP c
2
Q + τQcQ

kP kQτP τQλ2
n

> α2
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for each n = 2, . . . , N . The left hand side is decreasing in λn and the inequality is
thus satisfied for all n if it is with λN . �

9.C Proof of Proposition 9.5

After the block-diagonalization laid out in Appendix 9.A, it holds
‖H‖22 =

∑N
n=2 ‖Ĥn‖22. Each subsystem norm is obtained as ‖Ĥn‖22 = tr(B̂TnXnB̂n),

where the Gramian Xn satisfies ÂTnXn +XnÂn + ĈTn Ĉn = 0. Define

Xn = Xdec
n +X1

n, (9.24)

where Xdec
n is the observability Gramian of the decoupled subsystem, obtained as

the solution to ÂdecT
n Xdec

n + Xdec
n Âdec

n + ĈTn Ĉn = 0. Straightforward calculations
give that

Xdec
n = α

2

λnτP + 1
kP

τP
kP

0
τP
kP

τ2
P

kP
0

0 0 τQ
cQ/λn+kQ


and

‖Ĥdec
n ‖22 = tr(B̂TnXdec

n B̂n) = α

2kP
+ α

2τQ
/(cQ
λn

+ kQ).

Using the partitioning (9.24) of Xn, the Lyapunov equation becomes ÂTnX1
n +

X1
nÂn + ÂTnXdec

n + Xdec
n Ân + ĈTn Ĉn = 0. Substituting Xdec

n and ĈTn Ĉn into this
gives that

ÂTnX1
n +X1

nÂn + α2Zn = 0, (9.25)

where

Zn = λn
2

 0 0 cQ
cQ+kQλn

0 0 τP
cQ

cQ+kQλn τP 0

 .
Now, ‖Ĥn‖22 = ‖Ĥdec

n ‖22+tr(B̂TnX1
nB̂n). Note that (9.25) is a Lyapunov equation

and X1
n will be positive definite and tr(B̂TnX1

nB̂n) bounded provided Ân is Hurwitz,
that is, if the condition from Theorem 9.1 is satisfied. We derive

tr(B̂TnX1
nB̂n) = 1

τ2
P

X1
22 + 1

τ2
Q

X1
33 = α3 c̃1α

2 + c̃2
c̃3α4 + c̃4α2 + c̃5

,
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where the coefficients c̃i are somewhat involved functions of λn and the system
parameters, but not of α:

c̃1 = kP k
2
Qλ

3
nτP (kPλn + cQτQ + kQλnτQ)

c̃2 = (τP k2
P k

2
Q + τP τQkP k

3
Q)λ4

n + (2cQτP k2
P kQ + 2cQτP τQkP k2

Q − cQτP k3
Q)λ3

n

+ (τP c2Qk2
P + τP τQc

2
QkP kQ − 2τP c2Qk2

Q + τQcQk
2
P − τQcQk2

Q)λ2
n

− (kQτP c3Q + kQτQc
2
Q)λn

c̃3 = − 2k2
P k

2
Qλ

3
nτP τQ(cQ + kQλn)

c̃4 = 2kP kQλn(cQ + kQλn)(τP c2Q + 2τP cQkQλn − kP τP cQλnτQ + cQτQ+
+ τP k

2
Qλ

2
n − kP τP kQλ2

nτQ + kQλnτQ + kPλnτ
2
Q)

c̃5 = 2kP (cQ + kQλn)2(τP c2Q + 2τP cQkQλn + cQτQ + τP k
2
Qλ

2
n + kQλnτQ + kPλnτ

2
Q)

For sufficiently small α we can perform a series expansion around α = 0:

tr(B̂TnX1
nB̂n) = c̃2

c̃5
α3 + c̃1c̃5 − c̃2c̃4

c̃25
α5 + · · · =: c1,nα3 + c2,nα

5 + · · · ,

where the ci,n, i = 1, 2, . . . are functions of λn. The full norm is now written

‖H‖22 =
N∑
n=2
‖Ĥn‖22 =

N∑
n=2
‖Ĥdec‖22 + α3

N∑
n=2

c1,n + α5
N∑
n=2

c2,n + · · · .

Defining

cΛ0 = 1
α

N∑
n=2
‖Ĥdec

n ‖22 = 1
kP

(N − 1) + 1
2τQ

N∑
n=2

1
cQ
λn

+ kQ
= 1
α
‖Hdec‖22

and cΛi =
∑N
n=2 ci,n for i = 1, 2, . . ., the result follows. �

9.D Proof of Proposition 9.8

If λn →∞, then
∑N
n=2 1/

(
cQ
λn

+ kQ

)
→ 1

kQ
(N − 1) and (9.17) follows.

The higher order terms in ||H||22 are derived in line with the proof of Proposi-
tion 9.5, but noting that if λn →∞, then cQ

cQ+kQλn → 0. Using this to solve (9.25)
gives that

tr{B̂TnX1
nB̂n} = α3 kP + kQτQ

2k2
Q

· 1
1− kP τQ

kQ
α2

(9.26)
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in the limit where λn → ∞. Now, provided α2 kP τQ
kQ

< 1 (equivalent to Corol-
lary 9.2), the series expansion of (9.26) becomes

tr{B̂TnX1
nB̂n} = α3 kP + kQτQ

2k2
Q

(
1 + kP τQ

kQ
α2 +

(
kP τQ
kQ

)2
α4 + · · ·

)

= 1
N − 1(||Ĥ||22 − ||Ĥdec||22).

Therefore,

η =
α3

2
kP+kQτQ

k2
Q

∑∞
k=0 α

2k
(
kP τQ
kQ

)k
α
2

(
1
kP

+ 1
τQkQ

) = α2 kP τQ
kQ

∞∑
k=0

α2k
(
kP τQ
kQ

)k
,

which is equivalent to (9.18). �

9.E Proof of Proposition 9.9
Consider the function φ(x) = 1

1
x+k , which is concave for x > 0, k ≥ 0 (since

φ′′(x) = −2k
(1+kx)3 < 0). We have that λn/cQ > 0 for n = 2, . . . , N and can therefore

apply Jensen’s inequality of the form
∑m
i=1 φ(xi) ≤ mφ

( 1
m

∑m
i=1 xi

)
to (9.15) to

obtain:
||Hdec||22 ≤

α

2kP
(N − 1) + α

2τQ
(N − 1) 1

cQ
1

N−1

∑N

n=2
λn

+ kQ
. (9.27)

By the definition of LB , the average of its N − 1 non-zero eigenvalues is

1
N − 1

N∑
n=2

λn = tr{LB}
N − 1 =

2
∑
E bij

N − 1 =
2N(N−1)

2 b

N − 1 = Nb,

where b is the arithmetic mean of the susceptances of the N(N − 1)/2 edges in the
complete graph. Substituting the above into (9.27) yields the result (9.19).

Given that φ(x) is monotonically increasing in x, the inequality (9.20) is derived
by setting LB = bminL+∆LB . Here, L is an unweighted complete graph Laplacian,
and ∆LB is a complete graph Laplacian with edge weights bij − bmin ≥ 0. Since L
and ∆LB are simultaneously diagonalizable [164, Lemma A.1], λn = bminN+λ∆B

n ≥
bminN . If LB = bminL, ∆LB = 0 and (9.20) holds with equality. �

9.F Proof of Proposition 9.10
Again, the Jensen inequality from the proof of Theorem 9.9 is applied. Here, the
average of the N − 1 non-zero eigenvalues in (9.27) is

1
N − 1

N∑
n=2

λn = tr{LB}
N − 1 =

2
∑
E bij

N − 1 = 2(N − 1)b
N − 1 = 2b,
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where b is the mean susceptance of the (N − 1) edges of any tree graph.
Noting that the function φ(x) is monotonically increasing in x, in our case, in λn,

we obtain the lower bound by setting λn = λmin = bminλ
PN
2 for all n = 2, . . . , N .

Here, λPN2 = 2(1 − cos 2π
N ) is the algebraic connectivity of an unweighted path

graph PN , which is the tree graph with the smallest algebraic connectivity (see,
for example, [152]). Using the fact that for any x ∈ [−π, π], 1 − cosx ≥ 2

π2x
2, we

obtain that λPN2 ≥ 16
N2 and the bound follows. �





Chapter 10

Advantages and Limitations of Distributed
Secondary Frequency Control

So far, we have considered synchronization performance in power networks with
static feedback control. That is, with the frequency droop controller. While droop
control, under reasonable conditions (see for example [159]), is successful at stabiliz-
ing the network while achieving power sharing, it generally causes the steady-state
network frequency to deviate from its nominal value (50 Hz or 60 Hz) [131]. This
deficiency motivates so-called secondary frequency control, the objective of which
is to eliminate the stationary error. To achieve this objective, architectures with
various degrees of centralization have been proposed. Completely decentralized
secondary controllers tend to destroy the power sharing properties established by
droop control and may lead to a violation of generation constraints [6, 42]. Con-
versely, centralized control requires a network architecture that conflicts with a
scalable distributed generation paradigm. This has motivated the development of
distributed control algorithms that simultaneously eliminate frequency errors and
maintain the optimality properties of droop control [6, 159,163,196].

The DAPI controller, which we have treated earlier in this thesis, is one such con-
troller. We will re-visit this controller in this chapter, and evaluate its performance
in terms of transient power losses, that is, the Price of Synchrony. In particular,
we will compare it to a corresponding centralized averaging proportional-integral
controller (CAPI), which we briefly introduced in Chapter 7. This chapter’s main
results show that DAPI control has the potential to significantly reduce transient
power losses compared to the static droop controller, as well as to the CAPI con-
troller, which has the same performance. The room for performance improvement
is shown to be greater in a sparsely connected network.

However, the DAPI controller’s performance and scalability are significantly
limited by measurement noise. This means that unless it is carefully tuned – and
re-tuned as the network grows – the DAPI controller can cause much larger transient
losses than droop or CAPI control. In fact, frequency measurement noise leads to

187
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transient losses that, though initially small, can grow faster than linearly in network
size. In very large and sparse networks, we conclude in line with Chapter 7 that
the centralized CAPI controller may be preferable for secondary frequency control.

10.1 Distributed vs. centralized secondary frequency control

We will now introduce models for secondary frequency control in power networks.
The purpose of secondary frequency control is to eliminate any stationary frequency
errors. It is achieved through integral action. We therefore re-introduce the DAPI
controller from Chapter 4 and the CAPI controller from Chapter 7 and discuss their
implementation in a frequency control context.

The setup in this chapter is the same as in the previous, that is, we consider
the frequency droop controller introduced there for inverter-based networks. Re-
call, however, that while the notation differs slightly, this system is qualitatively
equivalent to the swing dynamics from Chapter 8.

10.1.1 Droop-controlled power network
Consider again a Kron-reduced model of a power network and denote the underlying
graph by GP = {V, EP }. Under standard droop control, and assuming linearized
power flows, the phase θi and frequency deviation ωi at each generator (or inverter)
i ∈ V evolves as:

θ̇i = ωi

τiω̇i = −ωi − ki
∑
j∈NP

i

bij(θi − θj) + Pi + ui, (10.1)

where NP
i is the neighbor set of node i in GP and ui is the input from the secondary

controller, to be introduced shortly. The net power injection Pi will, as before, be
modeled as a white stochastic disturbance input that is uncorrelated across the
nodes (though other input scenarios are also meaningful, see Section 8.2.1).

10.1.2 CAPI control
The droop-controlled power system (10.1) can be shown to return to a stable op-
erating point. However, since droop control is effectively a proportional control
law, the equilibrium will in general not be the desired operating point at ω = 0N
(recall, ω ∈ RN is the vector of frequency deviations). This issue can be over-
come by designing the secondary control input u to make ω = 0N the only stable
equilibrium.

One such design is to add an averaging integral control term, resulting in a
centralized averaging proportional integral (CAPI) controller, which was proposed
in [5], and generalized to arbitrary positive weights in [41,43]. The CAPI controller
requires the control signal u to be computed centrally through an integration of the
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average frequency deviation and, subsequently, to be broadcast to all generators.
The strategy thus resembles traditional automated generation control (AGC). The
controller takes the form:

uCAPI
i = z

qI ż = − 1
N

N∑
i=1

ω̂i
(10.2)

where ω̂i is the frequency measured at node i and qI > 0 is a controller gain
(an inverted integral gain). Notice that the control input ui is identical at all
nodes i ∈ V.

10.1.3 DAPI control
DAPI controllers have been proposed for frequency control of synchronous generator
networks as well as for microgrids [7,159,178]. By including a distributed averaging
of the integral states, this controller eliminates the need for a central control entity
and can be implemented in a distributed fashion. The distributed averaging takes
place over an additional communication layer that needs to be introduced on top
of the physical power network layer, see Figure 7.1. We model this layer by the
graph GC = {V, EC}, which is assumed to be undirected and connected.

Here, we write the DAPI controller as

uDAPI
i = −zi
qI,iżi = ωi −

∑
j∈NC

i

cij(zi − zj), (10.3)

where cij = cji > 0 and qI,i > 0 are controller gains and NC
i is the set of generators

that generator i can communicate with in GC .
The DAPI controller has been shown to achieve the important property of sta-

tionary power sharing, implying that the generated power of all generators is equal
at steady state [7, 159]. It can also be modified to achieve weighted power shar-
ing [159].

We remark that the DAPI controller corresponds to the CAPI controller in
the limit of infinite interaction gains cij . In this case, the distributed averaging is
infinitely fast, and the integral states zi in (10.3) are identical to z in (10.2). In the
other limit, when cij → 0, the control is entirely decentralized. In this case, the
slightest measurement errors cause a drift in the integral states that destabilizes
the system (see also Section 4.3.1). In power networks, decentralized secondary
frequency control on this form is only implementable with phasor measurement
units (PMUs) at every node [6].
Remark 10.1 Any distributed control law can also be implemented through a cen-
tralized controller architecture. Therefore, if the communication structure for the
CAPI controller is in place, it can also be used to implement the DAPI control
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law in (10.3). In this chapter, a comparison of distributed and centralized integral
control should, however, be understood as a comparison of the particular DAPI
and CAPI controllers. �

10.1.4 Noise model
Similar to Chapter 7, we will here consider the effect of imperfect frequency mea-
surements and therefore introduce the additional noise term ηi, which is modeled
as additive white measurement noise on the frequency, so that

ω̂i = ωi + ηi. (10.4)

As we will see, this noise has a large impact on the relative performance of the
secondary controllers.

The power injection fluctuations Pi were modeled as uncorrelated white distur-
bance inputs. We choose to relate their intensity to the white measurement noise ηi
through the constant ε > 0, so that

E{ηi(t′)ηTi (t)} = εE{Pi(t′)PTi (t)},

where P =
[
P1, . . . , PN

]T and η =
[
η1, . . . , ηN

]T . This allows us to define the
process w ∈ R2N with E{w(t′)wT (t)} = δ(t− t′)I, and construct the input vector[

P
η

]
=
[
I 0
0 εI

]
w. (10.5)

10.1.5 Closed-loop system dynamics
By substituting the secondary controller inputs uDAPI

i from (10.3) and uCAPI
i from (10.2)

along with the measurement noise model (10.4) into the system dynamics (10.1),
and by making use of the input vector w in (10.5), we obtain the closed-loop systems
on vector form as: θ̇

T ω̇
qI ż

 =

 0 I 0
−KLB −I I

0 − 1
N 1T 0

θω
z

+

0 0
I 0
0 ε1T

w (10.6)

for the CAPI controlled system, and θ̇
T ω̇
QI ż

 =

 0 I 0
−KLB −I I

0 −I −LC

θω
z

+

0 0
I 0
0 εI

w (10.7)

for the DAPI controlled system. At this point, we have (re-)introduced the state
vectors θ =

[
θ1, . . . , θN

]T , ω =
[
ω1, . . . , ωN

]T , and in the DAPI case z =
[
z1, . . . , zN

]T
(note that z is scalar in the CAPI case), as well as the matrices K = diag{ki},
T = diag{τi}, and QI = diag{qI,i}.



10.2. Performance analysis 191

Remark 10.2 In this model, we have assumed that the frequency ωi enters with-
out noise in the system dynamics (10.1). This is meaningful in a setting with
synchronous machines, but a power electronic inverter that interfaces a renewable
generation source may exert droop control using a noisy measurement of the fre-
quency. In this case, the DAPI controlled system would become θ̇

T ω̇
QI ż

 =

 0 I 0
−KLB −I I

0 −I −LC

θω
z

+

0 0
I εI
0 εI

w. (10.8)

This leads to correlations in the noise input between the input channels. These
correlations do, however, not affect the qualitative behavior of the system (see
Appendix 10.B). We therefore limit the upcoming analysis to the uncorrelated
inputs modeled in (10.6) and (10.7). �

10.2 Performance analysis

We now evaluate the performance of the systems under, respectively, CAPI and
DAPI control, with and without frequency measurement noise, and compare it to
the droop-controlled system. We will again characterize performance in terms of the
transient resistive power losses. That is, we use the Price of Synchrony performance
metric from Definition 8.1.

The closed-form expressions in this section will be derived under the following
assumptions:
Assumption 10.1 (Identical generators and controller parameters) All synch-
ronous generators have identical inertia and damping coefficients, and the secondary
frequency controllers have identical settings. That is, K = diag{k}, T = diag{τ},
and QI = diag{qI}.

Assumption 10.2 (Uniform resistance-to-reactance ratios) The resistance-to-
reactance, equivalently conductance-to-susceptance, ratio of all lines are uniform
and constant. That is,

α := gij
bij
, (10.9)

for all (i, j) ∈ E . This implies LG = αLB .

Assumption 10.3 (Topology for GC) The topology of the communication
network GC used in the DAPI control law (10.3) is identical to that of the physical
network G. We also assume

LC = γLB , (10.10)

that is, γ = cij
bij

, with γ ≥ 0, for all (i, j) ∈ E = EC .
Assumption 10.3 implies that the communication network layer for the DAPI con-
troller is set up along the physical network lines, and is shown in [6] to constitute a
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sufficient criterion for load sharing with minimized generation costs. Note that this
assumption was not imposed in Chapter 7, which considered a spatially invariant
network. The property (10.10) says that the distributed averaging gains are set in
proportion to the line susceptances bij , and will help us obtain tractable analytic
expressions for the H2 norm of (10.7).

10.2.1 Expressions for the Price of Synchrony
Consider now the input-output mappings HCAPI given by (10.6) with the perfor-
mance output y from Definition 8.1, and HDAPI given by (10.7) with the same
output. Let Hdroop be the corresponding system with a zero secondary control
input. Their respective H2 performance is given in the following proposition:

Theorem 10.1 (Performance of DAPI and CAPI) Let Assumptions 10.1–10.3
hold. The H2 norm for the DAPI-controlled system HDAPI is given by

||HDAPI||22 = ||HDAPI
P ||22 + ||HDAPI

η ||22, (10.11)

where

||HDAPI
P ||22 = α

2k

N∑
i=2

1
1 + ϕ(λi, γ, k, qI , τ)−1 (10.12)

is the expected power loss associated with the power injection noise P and

||HDAPI
η ‖22 = ε2 α

2k

N∑
i=2

1
γλi
· 1

1 + ϕ(λi, γ, k, qI , τ) (10.13)

is the expected loss associated with the frequency measurement noise η. The func-
tion ϕ is defined as

ϕ(λi, γ, k, qI , τ) := kq2λi + qIγλi + τ(γλi)2

qI + τγλi
, (10.14)

where λi with 0 = λ1 < λ2 ≤ . . . ≤ λN are the eigenvalues of LB.
The H2 norm for the CAPI-controlled system HCAPI is given by

‖HCAPI‖22 = ‖HCAPI
P ‖22 = α

2k (N − 1) .

‖HCAPI‖22 is independent of any measurement noise η and equal to ‖Hdroop‖22.

Proof: See Appendix 10.A.

Remark 10.3 The norm expression (10.13) is positive and represents the addi-
tional power losses arising due to the frequency measurement noise η in the DAPI
controlled system. In the CAPI case, η does not give rise to any additional power
losses. This can be explained by the fact that the CAPI controller affects all genera-
tors equally. Any error caused by the measurement noise may affect the synchronous
frequency, but will not induce additional power flows between generators. �
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We note that the function ϕi := ϕ(λi, γ, k, qI , τ) that appears in ‖HDAPI‖22
is positive. In the absence of any measurement noise, the following corollary is
therefore readily verified:

Corollary 10.2 For any k, qI , τ, γ > 0, and independently of the underlying network
graph, it holds

‖HDAPI
P ‖22 < ‖HCAPI

P ‖22,

that is, the expected power losses due to the power injection noise P are smaller
with the DAPI controller than with the CAPI controller.
This result is in line with the findings in Chapter 4, though the performance metric
here differs. It shows that, in the absence of noise, the Price of Synchrony perfor-
mance of the DAPI controller is superior to that of the CAPI controller. Perhaps
surprisingly, the CAPI controller does not offer a benefit compared to the droop
controller. This can be understood by noting that CAPI exerts integral action only
on the average state, and affects all nodes equally. It therefore does not affect the
inter-nodal flows and the synchronization itself, but it shifts the equilibrium point.

The measurement noise gives rise to the term ‖HDAPI
η ‖22, which is strictly detri-

mental to the DAPI controller’s performance. The careful reader will have noticed
the factor 1

λi
appearing the expression, which causes an unfavorable scaling of per-

formance in network size. We will discuss this scaling in Section 10.4. Until then, we
focus on characterizing performance in networks with a fixed number of generators.

10.2.2 The role of network connectivity
With standard droop control and under the given assumptions, the expected tran-
sient losses are entirely independent of network topology. This observation was
discussed in detail in Chapter 8. Theorem 10.1 shows that the same is true under
CAPI control. However, the losses incurred under DAPI control (10.11) do de-
pend on network topology through the eigenvalues λn of LB . We now analyze this
topology dependence for noiseless and noisy case separately.

Noiseless DAPI

In the absence of measurement noise, the transient losses will grow with increased
network connectivity:

Proposition 10.3 Adding an edge to the network GP or increasing its susceptance
(at constant α) can only increase the expected power losses associated with the power
injection noise ‖HDAPI

P ‖22 in (10.12), and vice versa.

Proof: It is readily verified that

dϕi
dλi

= 2λiγ2τqI + γq2
I + kq3

I

(qI + τqIλi)2 > 0,
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Figure 10.1: H2 norms with droop, CAPI and noiseless DAPI control for sample networks
of size N with path graph and complete graph topologies. Note that ||HCAPI

P ||22 in (10.1) is
topology-independent. In all cases, losses increase with network size, but they are smaller
for DAPI control in a path graph. Here, we have set k = γ = m = 1 and drawn the line
susceptances bij from a uniform distribution on [0.5, 1.5].

for all λi > 0 and therefore that d
dλi ‖H

DAPI
P ‖22 > 0 for all i = 2, . . . , n. The

proposition therefore holds true if at least one eigenvalue λi of LB increases while
the others do not decrease. This is precisely what is shown in Theorem 3.1 (adding
an edge) and Theorem 3.3 (increasing the susceptance of an edge). �

Proposition 10.3 implies, in particular, that the relative performance improvement
of DAPI control over droop and CAPI control will be largest for sparse network
topologies, such as those found in radial distribution networks. The best perfor-
mance is achieved in a tree graph, as they have the fewest possible edges: N − 1.
The least performance improvement can be expected for a complete graph topology,
as it has every possible edge. In Figure 10.1 we compare such a topology to a path
graph with respect to the results in Theorem 10.1. Although the losses for both
topologies can be seen to grow with the network size, the comparison confirms the
lower losses obtained in the path graph case.

The fact that a sparsely interconnected network outperforms a highly intercon-
nected network by incurring smaller power losses is somewhat counterintuitive. We
discussed in Section 9.4 that the result can be attributed to absolute state feedback.
In the case of DAPI control, absolute phase feedback is emulated through an inte-
gration of frequency measurements. This topology dependence holds if frequency
measurement noise is absent or small. If it is not, the conclusions change.

DAPI under measurement noise

Next, consider the losses associated with frequency measurement noise. This expres-
sion has the inverse dependence on network connectivity compared to the noiseless
loss term:
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Proposition 10.4 Adding an edge to the network GP or increasing its susceptance
can only decrease the expected power losses associated with the frequency measure-
ment noise ‖HDAPI

η ‖22 in (10.13), and vice versa.

Proof: Since dϕi
dλi > 0 and λi > 0 for i = 2, . . . , N , it holds d

dλi [γλi(1 +ϕi)]−1 < 0.
Since α is invariant to edge addition, but may decrease if susceptances increase, we
have that d

dλi ‖H
DAPI
η ‖22 < 0 for all i = 2, . . . , n, and the proposition follows. �

Remark 10.4 Proposition 10.4 does not require conductances gij to be constant,
but holds if the ratio α = gij

bij
= const. or decreasing. �

This result is in line with those in Chapter 7, where we showed that increasing the
connectivity of the communication network in DAPI improved its performance. It
shows that inter-nodal alignment reduces the impact of measurement noise. At the
same time, it leads to more power flows that induce losses.

Propositions 10.3–10.4 imply that the total transient losses’ dependence on the
network connectivity is not straightforward in the presence of measurement noise.
The best network topology for loss reduction thus depends on remaining system
parameters, and in particular, on the relative noise intensity parameterized by ε.

10.3 Control design for loss reduction

In the previous section, we established that the noiseless DAPI controller outper-
forms the droop and the CAPI controller in terms of transient resistive losses. We
will now focus on optimizing the performance of the DAPI controller by tuning its
parameters. In general, this amounts to minimizing the closed-form expressions
in Theorem 10.1. Such an exercise is straightforward if the system parameters, in
particular the eigenvalues of the susceptance matrix, are known. This is, however,
typically not the case. The objective of this section is therefore to provide general
insights to the optimal controller design. We approach the problem in two steps:
first, we optimize the noiseless DAPI controller and then discuss how the optimum
is affected by measurement noise.

10.3.1 Optimizing noiseless DAPI performance
Let us assume that the droop controller parameters are fixed and the design of the
DAPI controller for performance is of interest. By Assumptions 10.1 and 10.3 the
problem then reduces to minimizing ‖HDAPI

P ‖22 over (positive) γ and qI , assuming
a fixed inertia constant τ and droop gain k. Consider therefore the function

fi(qI , γ) := ϕ−1
i = qI + τγλi

kq2
Iλi + qIγλi + τ(γλi)2 , (10.15)

that appears in the denominator of ‖HDAPI
P ‖22 in (10.12). We note that

limqI→0 fi(qI , 0) = ∞, implying that for a communication gain γ = 0 and an
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Figure 10.2: Relative loss reduction with DAPI control (as given by (‖HCAPI
P ‖22 −

‖HDAPI‖22)/‖HCAPI‖22) for a test network based on the IEEE 57 bus benchmark system
topology, at γ = γ?, as function of qI . Here, k = τ = 1.

inverse integral gain qI → 0,
‖HDAPI

P ‖22 = 0.

That is, the losses are reduced to zero. Similarly, limqI→∞ fi(qI , γ) = 0, so for any
fixed γ,

‖HDAPI
P ‖22 = ‖HCAPI‖22 = α

2k (N − 1),

that is the performance of the noiseless DAPI controller approaches that of the
CAPI (or, equivalently, droop) controller. The same is also true in the limit where
γ →∞ for any qI . This is expected, as increasing the communication gain γ in the
DAPI controller to infinity implies arbitrarily fast distributed averaging, ultimately
resembling the centralized averaging in CAPI control.

Setting qI = 0, which can achieve zero synchronization cost, is not practically
feasible as it would require an infinite control effort. A question of practical rele-
vance is therefore that of choosing the optimal γ given a fixed qI , corresponding to
the desired or practically feasible integral control effort.

A numerical example is shown in Figure 10.2. It displays the relative perfor-
mance improvement achieved through DAPI control as a function of qI , along with
the corresponding optimal value for γ, for a hypothetical network based on the IEEE
57-bus benchmark system topology [116]. To address the question analytically, we
begin by considering a special case.

Special case: complete graphs

We first consider the special case of a complete graph with uniform susceptances
bij = b as the underlying topology. In this case, the eigenvalues of LB satisfy
λ2 = λ3 = . . . = λN = bN . Therefore, minimizing ‖HDAPI

P ‖22 with respect to γ is
equivalent to maximizing fi(qI , γ) from (10.15), with λi = bN . We can thus derive
a closed-form expression for the optimal value of γ, denoted γ?.
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Figure 10.3: H2 norms in (10.12) as a function of γ for a complete graph with N = 50
nodes. Here, k = qI = 1, and the inertia constant τ ∈ {0, 1, 4}.

Proposition 10.5 Let Assumptions 10.1–10.3 hold. If the graph G underlying the
power network is complete and the line susceptances bij = b for all (i, j) ∈ E, then
the γ? that minimizes ‖HDAPI

P ‖22 is given by

γ? = qI
Nbτ

(√
Nbkτ − 1

)
(10.16)

if Nbkτ > 1. Otherwise, γ? = 0.

Proof: First, let us re-write the function fi(qI , γ) from (10.15) as

fi(qI , γ) = 1
γλi + kq2λi

qI+τλi

=: 1
gi(qI , γ) .

Maximizing fi(qI , γ) is now equivalent to minimizing gi(qI , γ). Differentiating with
respect to γ, and setting the derivative equal to zero gives

dgi(qI , γ)
dγ = λi −

τkq2
Iλi

(qI + τγλ)2 = 0 ⇔ (qI + τγλ)2 − τkq2
Iλi = 0,

which gives that

γ?i = −qI +
√
τkλiqI

τλi
.

From this, we conclude that there is a positive extreme point γ?i if and only if√
τkλi > 1. If it exists, this positive extreme point will minimize gi(qI , γ) since

d2gi(qI ,γ)
dγ2 = 2 τ2kq2

Iλ
2
i

(qI+τγλ)3 > 0 for γ > 0. Otherwise, gi(qI , γ) is minimized by the
lower end point of the interval in γ, i.e., γ = 0. Recalling now that λi = bN for
i = 2, . . . , N , it holds that γ?i is equal for all i, and the result follows. �

Proposition 10.5 answers the question of when the DAPI controller has a theoretical
performance that is superior to completely decentralized PI control where γ = 0.
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Recall that γ = 0 is infeasible since it would lead to instability (as clearly seen from
the upcoming Corollary 10.7.) The case γ? > 0 holds, for example, if the inertia
constant τ or the droop gain k is large. The optimum’s dependence on τ is also
illustrated in Figure 10.3.

We also note that the optimal γ? is generally small. Yet, it increases, not only in
qI as we already discussed, but also in the droop gain k. An intuitive explanation
for this can be given as follows. Larger gains k and qI cause disturbances to
spread across the network rather than to be suppressed locally. A DAPI controller
with larger communication gain γ anticipates this spread by faster distributing the
integral action across the generators.

Finally, we note that for large N , the optimal γ? again approaches zero. This
means that, the larger the graph, the less important is the distributed averaging in
noiseless DAPI. This conclusion is, however, no longer true when the controller is
subject to measurement noise, as we will discuss shortly.
Remark 10.5 Proposition 10.5 is equivalent to Proposition 4.7, though the per-
formance objectives differ. This means that γ? is optimal with respect to both the
network coherence and the Price of Synchrony. �

General graphs with arbitrary susceptances

We now generalize the results of the previous section to power networks with gen-
eral underlying graph structures and present a result similar to Proposition 4.6.
In this case, the eigenvalues λi for i = 2, . . . , N will in general not be equal, so
minimizing ‖HDAPI

P ‖22 is no longer equivalent to maximizing each fi(qI , γ). The
following proposition summarizes the cases where there is a positive γ?, when it is
zero, and when the optimum must be evaluated on a case-by-case basis.

Proposition 10.6 Let Assumptions 10.1–10.3 hold. The choices of γ that minimize
‖HDAPI

P ‖22 are as follows:
If
√
τkλi ≤ 1 for all i = 2, . . . , N , then

γ? = 0,

if
√
τkλi ≤ 1 for 2 ≤ i ≤ l < N, then

0 ≤ γ? ≤ max
i

qI
τλi

(
√
τkλi − 1),

and if
√
τkλi > 1 for all i = 2, . . . , N , then

min
i

qI
τλi

(
√
τkλi − 1) ≤ γ? ≤ max

i

qI
τλi

(
√
τkλi − 1).
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Figure 10.4: Simulations of the noiseless DAPI-controlled system (10.7) under initial fre-
quency perturbations on a 20-node network with path graph topology. With a carefully
selected communication gain γ, the convergence rate of the integral state matches that of
the phase angles, and transient losses are minimized (they correspond to the area under
the curves on the bottom panels).

Proof: The case where
√
τkλi ≤ 1 for all i = 2, . . . , N is simple, since fi(qI , γ)

from (10.15) is then minimized by γ? = 0 for all i = 2, . . . , N by the proof of
Proposition 10.5. Now, consider the case when

√
τkλi > 1 for all i = 2, . . . , N

and assume for the sake of argument that γ? < mini qI
τλi

(
√
τkλi − 1). However,

in this case we would, by the proof of Proposition 10.5, have ∂gi(γ,qI)
∂γ

∣∣
γ=γ? < 0

for all i = 2, . . . , N and γ? cannot be the minimizer of ‖HDAPI
P ‖22, which gives a

contradiction. The remaining cases are proven similarly. �

The simulation in Figure 10.4 shows the performance improvement attainable
(in noiseless DAPI) by selecting an appropriate communication gain γ. If γ is
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selected too large, the distributed averaging converges too fast compared to the
phase angles and reduces the absolute feedback effect. This results in increased
inter-nodal power flows and greater transient losses. Recall, however that losses
remain smaller than with droop or CAPI control as long as the DAPI control is
noiseless.

10.3.2 The impact of measurement noise

From the previous section, we concluded that a small value for γ, or even γ = 0,
minimizes the DAPI controller’s losses in the absence of noise. However, when
measurement noise η is added to the model, it is immediately obvious that γ = 0 is
never an optimal, or even feasible choice (as predicted also by the stability analyses
in [6,159]). The following corollary to Proposition 10.1 follows directly from (10.13).

Corollary 10.7 It holds that

lim
γ→0
||HDAPI

η ||22 =∞

and therefore limγ→0 ||HDAPI||22 =∞.

This implies that if γ is chosen too small, the losses in the presence of noise may
become very large.

It turns out that an analytic expression for the optimal choice of γ in the presence
of measurement noise is difficult to obtain even for special graph structures, and a
numerical evaluation for each case is necessary. We can, however, give the following
proposition.

Proposition 10.8 Let γ?,η be optimal with respect to the power losses ‖HDAPI‖22
in (10.11) in the presence of measurement noise η, and let γ? be optimal in its
absence (that is, let γ? minimize ‖HDAPI

P ‖22). Then,

γ?,η > γ?.

Proof: See Appendix 10.C.

Figure 10.5 shows a numerical example that illustrates the results of this section.
Overall, our results imply that the distributed averaging of integral states that
takes place in the DAPI controller is increasingly important in the presence of
measurement noise. Selecting a too small γ may cause the transient losses under
DAPI to become very large, and in particular, they may vastly exceed those under
CAPI control. An important question therefore becomes whether there is always
a control design that allows DAPI to outperform CAPI, even under measurement
noise. The answer is positive and given in the next section.
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Figure 10.5: Shift of optimal γ? in DAPI due to measurement noise as predicted by
Proposition 10.8. The figure displays the norm ‖HDAPI‖22 (blue), corresponding to the
total expected transient power losses, and its two components ‖HDAPI

η ‖22 (orange) and
‖HDAPI

P ‖22 (green). As γ → 0, transient losses approach infinity in the presence of noise.
A sufficiently large γ must therefore be chosen. Here, we have modeled a complete graph
with n = 10 nodes and set k = 5, qI = τ = 0.8, α = ε = 1 and bij = 0.05 for all
(i, j) ∈ EP .

Existence of optimal control design

With the optimal choice of γ?,η, DAPI control outperforms CAPI control also under
measurement noise. Consider the following proposition:

Proposition 10.9 For any network GP it holds that

||HDAPI||22 < ||HCAPI||22 , if γ̂ < γ <∞, (10.17)

where γ̂ = ε2

λ2
, and λ2 is the smallest non-zero eigenvalue of LB.

Proof: The DAPI H2 norm (10.11) can be written as

||HDAPI||22 = α

2k

N∑
i=2

(
1

1 + ϕ−1
i

+ ε2

γλi

1
1 + ϕi

)
.

This expression can be upper bounded by (N − 1) times the largest summand:

||HDAPI||22 ≤
α

2k (N − 1) · sup
λi>0

{
1

1 + ϕ−1
i

+ ε2

γλi

1
1 + ϕi

}
.

Let λ? be the maximizing eigenvalue. We are looking to choose γ so that
||HDAPI||22 < ||HCAPI||22 = α

2k (N − 1) holds. Some simplifications reveal that this
holds if γ > ε2

λ? ≥
ε2

λ2
=: γ̂, and (10.17) follows. �

Proposition 10.9 implies that for γ > γ̂, and in particular for the optimum γ?,η,
DAPI will perform better than CAPI. Thus, the CAPI controller’s transient losses
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can still be seen as an upper bound for DAPI. Nonetheless, one should be aware
that selecting a too small γ in DAPI can lead to much worse performance.

It is very important to note that γ̂ in Proposition 10.9 depends on λ2, the
algebraic connectivity of the network. This means that the choice of γ that allows
DAPI to outperform CAPI cannot in general be made independently of the network
size. In other words, the optimal control design may not be scalable. This is due to
the unfavorable scaling of ‖HDAPI

η ‖22 in (10.13). We address this issue in the next
section.

10.4 Limitations to the scalability of DAPI control in power
networks

Already in Chapter 7, we observed that the DAPI controller does not scale well to
large networks when subjected to noise. Here, we will look closer into what this
result implies in terms of the Price of Synchrony in power networks.

To discuss the scalability of the DAPI controller, we need to assume that all
parameters and gains of the controller (10.3) are fixed. That is, they do not change
as the network size grows. Further, we will consider the transient power losses
from Definition 8.1 normalized by the total number of nodes N . These per-node
losses should at least remain bounded in order for the controller to be regarded as
scalable.

The expected power losses associated with measurement noise are given by
‖HDAPI

η ‖22 in (10.13). Notice the factor 1
λi
, which tends to infinity for small eigen-

values. As we have seen throughout this thesis, this causes an unfavorable scaling
of the losses in sparse networks. Scalings of this type of expression for lattice graphs
and their fuzzes were derived in Chapter 6, and we also noted that those scalings
will apply to any graph that can be embedded in such lattices. To facilitate the
upcoming discussion, we repeat the relevant scalings here.

Proposition 10.10 (Transient loss scaling in lattices) Let the graph GP be a lat-
tice or its r-fuzz in one or two dimensions (d = 1 or d = 2), and let the line
susceptances bij be bounded. Then, the per-node losses associated with measure-
ment noise scale asymptotically according to:

1
N
||HDAPI

η ||22 ∼
{
ε2N if d = 1
ε2 logN if d = 2,

The per-node losses associated with power injection noise are, on the other hand,
upper bounded as:

1
N
||HDAPI

P ||22 ≤
α

2k .
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Proof: See Appendix 10.D.

This result means that while the losses, when evaluated per node, were upper
bounded for DAPI in the absence of noise, they may in theory grow unboundedly
in large 1- or 2-dimensional lattice networks in the presence of noise. The situation
is the same as the one depicted in Figure 7.2. That is, with a suitable tuning, the
DAPI controller may perform well in a network of any given size, but losses will
increase unboundedly (per generator) as the network grows.

The unbounded growth of the power losses per generator can be understood
as caused by the secondary control input becoming increasingly distorted as the
network grows. In practice, however, there is clearly a limit on how large the
transient losses can become, which depends on the generators’ power ratings. The
scaling result in Proposition 10.10 should therefore be interpreted as setting a limit
on the feasible network size for each controller tuning.

With CAPI control, on the other hand, the per-generator losses are bounded in
network size also in the presence of noise. This means that the CAPI controller is
preferable to the DAPI controller from a scalability perspective.

10.5 Discussion

This chapter’s results show that the distributed DAPI controller can improve the
frequency control performance in power networks, in that transient losses are re-
duced compared to both the static droop controller and the centralized CAPI con-
troller. However, the DAPI controller’s sensitivity to measurement noise implies
that it requires very careful tuning to maintain its advantage. We now discuss some
interpretations and implications of our results.

10.5.1 Distributed versus centralized control
In line with previous results, the (noiseless) DAPI controller was found to improve
performance compared to the static droop controller. It is perhaps surprising that
the centralized CAPI approach does not achieve the same performance improve-
ment in terms of power losses, given that centralized strategies are often expected
to be superior from a performance perspective (their downside being difficulty to
implement and that they may have a single point of failure). For example, a central-
ized averaging PI controller for frequency control was shown in [7] to have a higher
rate of convergence than a comparable distributed controller. A similar result was
derived in [27] for wireless sensor networks in HVAC systems. We show here that,
unless subjected to noise, the DAPI controller is superior both in terms of transient
power losses and network coherence. We remark again, however, that the CAPI
controller is lonly a special centralized control strategy. It is, for example, limited
in that it affects all nodes equally.

Also under measurement noise, the DAPI controller can outperform CAPI pro-
vided its distributed averaging filter is carefully tuned. We found that the commu-
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nication gain for the distributed averaging should then satisfy γ > γ̂. However, the
parameter γ̂ is inversely proportional to the network’s algebraic connectivity, which
we saw in Section 5.2.3 to be a decreasing function in network size for many graphs.
This means that if the network size grows, the local DAPI-controllers may need to
be re-tuned to maintain good performance. For very large and sparse networks it
holds γ̂ →∞, meaning that one would have to revert to CAPI control.

10.5.2 Practical implications of scaling results
The results on performance scalings considered throughout this thesis reveal that
certain controllers are fundamentally limited in their scalability to large networks.
In this chapter, the most severe limitations of this type apply to the DAPI controller
under measurement noise. They imply that the total transient losses may even scale
faster than the number of generators (that is, faster than the number of disturbance
inputs) in network size.

From a practical perspective, it is worth pointing out two aspects of this result.
First, there is an upper bound on the feasible power flows in a network, so a faster-
than-linear growth of losses is eventually impossible. Second, and more importantly,
the losses due to measurement noise are scaled by the factor ε2. Recall that ε is
the relative intensity of the measurement noise compared to noise in the net power
injection. It is reasonable to assume that these differ by orders of magnitude. The
practical implications of the scaling results are therefore likely limited, at least for
moderately large networks.

10.5.3 Relaxing limitations through phasor measurements
A promising strategy to alleviate the limitations of DAPI control is through PMUs.
These measure the phase directly and thereby eliminate the need for integral states
that are distorted by noisy frequency measurements. Preliminary numerical results
indicate that equipping a fixed ratio of the generators with PMUs can indeed coun-
teract the unfavorable performance scaling due to measurement noise. A derivation
of analytical results, as well as a design of suitable control strategies, are part of
future work.
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Appendix to Chapter 10
10.A Proof of Theorem 10.1
For the DAPI case, the calculation of the H2 norm is done in the same manner as
in the proof of Theorem 4.1 in Appendix 4.A, and the details are therefore omitted.
Here, the fact that the H2 norm can be partitioned into one part associated with
the input P and one part associated with the input η is due to these inputs being
uncorrelated. The total H2 norm is therefore the sum of the contributions of each of
these inputs: ‖ĤDAPI

n ‖22 = tr(B̂TnXnB̂n) = 1
τ2X22 + ε2

q2
I

X33 = ‖ĤDAPI
P,n ‖+ ‖ĤDAPI

η,n ‖.
In the CAPI case, we also perform a unitary transformation using the matrix

U = blkdiag{U,U, 1} (U being the unitary matrix that diagonalizes LB). This gives
the decoupled subsystems:

d
dt

 θ̂1
ω̂1
ẑ1

 =

0 1 0
0 − 1

τ

√
N
τ

0 − 1
qI
√
N

0


 θ̂1
ω̂1
ẑ1

+

0 0
1
τ 0
0
√
Nε/qI

 ŵ1, ŷ1 = 0

for n = 1 and

d
dt

 θ̂nω̂n
ẑn

 =

 0 1 0
−kτ λn − 1

τ 0
0 0 0

 θ̂nω̂n
ẑn

+

 0 0
1/τ 0
0 0

 ŵn, ŷn =
[√
αλn 0 0

]  θ̂nω̂n
ẑn

 ,
for n = 2, . . . , N , since the first eigenvector u1 of U that corresponds to λ1 = 0 is
parallel to 1, and remaining eigenvectors un ⊥ 1. The subsystem norms for ĤCAPI

n

can now be evaluated in the same manner as in Appendix 4.A. Clearly, it is only
the power injection noise (corresponding to the first element of ŵn) that contributes
to the norm. �

10.B Alternative noise model
If the additional noise term enters the dynamic equation as in (10.8), the H2 norm
becomes ||S̃DAPI||22 = a

2k
∑n
i=2

(
(1 + ε2) 1

1+ϕ−1
i

+ ε2
(

2 + 1
γλi

)
1

1+ϕi

)
. Clearly, the

factor (1 + ε2) does not change the qualitative behavior of the first term. For the
second term it is the scaling in N that is of most interest (see Section 10.4). This
depends on the factor 1

γλi
and the qualitative result of Proposition 10.10 is not

affected by adding the term 2 to this factor.

10.C Proof of Proposition 10.8
The case of γ? = 0 is trivial due to Corollary 10.7. Assume therefore γ? > 0.

Define χ̄i(γ) = 1
1+ϕi(γ) and χ

i
(γ) = 1

1+ϕ−1
i

(γ) , and note that χ
i

+ χ̄i = 1.
Therefore χ̄i (that occurs in the expression for ||HDAPI

η ||22) is increasing whenever
χ
i
(that occurs in ||HDAPI

P ||22) is decreasing and vice versa.
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Now, since γ? is a minimizer for ||HDAPI
P ||22, the expression

∑N
i=2 χ̄i in ||HDAPI

η ||22
will have a maximum at γ?. We thus know that

0 <
N∑
i=2

χ̄i(γ) <
N∑
i=2

χ̄i(γ?)

for any γ in the open interval (0, γ?) and that

N∑
i=2

χ̄i(γ?) ≥ lim
γ→∞

N∑
i=2

χ̄i(γ) = 0.

That means that the set of values that
∑N
i=2 χ̄i(γ) can assume in the interval (0, γ?)

are also contained in the set of values that it can assume in (γ?,∞). The same
argument can be applied to

∑N
i=2 χi(γ). Therefore, for any γ− ∈ (0, γ?), there

exists a γ+ > γ? such that
∑N
i=2 χ̄i(γ−) =

∑N
i=2 χ̄i(γ+) while also

∑N
i=2 χi(γ

−) =∑N
i=2 χi(γ

+), since χ
i
+ χ̄i = 1.

From ε2

γ−λi
> ε2

γ+λi
follows that

N∑
i=2

ε2

γ−λi
χ̄i(γ−) >

N∑
i=2

ε2

γ+λi
χ̄i(γ+)

while
∑N
i=2 χi(γ

−) =
∑N
i=2 χi(γ

+) still holds. This means that

||HDAPI||22
∣∣
γ=γ− > ||H

DAPI||22
∣∣
γ=γ+ .

Therefore, if we assume γ− locally minimizes ||HDAPI||22 in the interval (0, γ?), then
γ+ would give an even smaller value for ||HDAPI||22. We conclude that γ?,η ≥ γ?.

It remains to show that γ? is not optimal in the presence of η. Since

d

dγ
||HDAPI||22

∣∣
γ=γ? = − aε2

2k(γ?)2

N∑
i=2

1
λi

1
1 + ϕi(γ?)

< 0,

it follows that γ? is not optimal. Hence,

γ?,η > γ?.

�

10.D Proof of Proposition 10.10
First we need to show that the factors 1

1+ϕi from (10.13) are uniformly bounded.
Recall that dϕi

dλi
> 0 for λi ≥ 0. Thus, λmin = 0 and λmax = maxi λi give the
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lower and upper bounds for ϕi, respectively. In a 1-dimensional lattice the largest
possible eigenvalue is 4bmax and in a 2-dimensional lattice it is 16b2max, where bmax =
max(i,j)∈EP bij , since the eigenvalues of an unweighted path graph are λi = 2(1 −
cos πiN ). Therefore, 0 ≤ ϕi ≤ ϕ(λmax, γ, k, qI , τ) and all 1

1+ϕi are uniformly bounded
with respect to N .

Now, we can bound 1
N ||H

DAPI
η ||22 as:

c
ε2

N

N∑
i=2

1
λ1
i

:= αε2

2knγbmax(1 + ϕ(λmax))

N∑
i=2

1
λ1
i

≤ 1
N
||HDAPI

η ||22

≤ αε2

2knγbmin(1 + ϕ(λmin))

N∑
i=2

1
λ1
i

=: c̄ ε
2

N

N∑
i=2

1
λ1
i

,

where λ1
i are the Laplacian eigenvalues of the corresponding unweighted graph (see

Section 3.2).
The scaling of the sum 1

N

∑N
i=2

1
λ1
i
in a (periodic) d-dimensional r-fuzz lattice

(with r = q/2) was derived in Chapter 6 in terms of Fourier symbols. We can also
make use of the Kirchoff indexKf of a lattice graph. We then use the relation (3.21)
to write

cε2

N2Kf ≤
1
N
||HDAPI

η ||22 ≤
c̄ε2

N2Kf .

It is proven in [18] that the Kirchhoff index for infinite lattices, including r-fuzzes,
scales like Kf ∼ N3 if d = 1 and Kf ∼ N2 logN if d = 2. The result follows. �





Chapter 11

Conclusions

The constraints imposed by a distributed controller structure lead to limitations on
the achievable global performance in large-scale networked systems. In this thesis,
we have described and quantified such limitations in terms of scalings of nodal
variance, that is, H2-norm metrics, on one hand, and in terms of network stability
on the other. In this final chapter of the thesis, we summarize the conclusions from
our findings. We will discuss how the various problems we have considered answer
the questions we set up in the introduction and which problems remain open.

11.1 Performance limitations and their dependence on system
properties

The problems we have studied in this thesis have been set up in different ways
(for example, over lattice networks or general networks), considered different ap-
plications (such as frequency synchronization or vehicular formation control prob-
lems) and different performance objectives (network coherence or transient resistive
losses). In many cases, we have revealed unfavorable scalings of performance in net-
work size. In principle, we have found that they can be attributed to constraining
the feedback to localized, relative state measurements. Yet the performance limi-
tations can be more or less severe depending on other properties of the system and
of the controller. We next discuss some of these properties and the roles they play
in different settings.

11.1.1 Network topology

Topological properties of the underlying network graphs are important for deter-
mining behaviors of networked systems. In our case, this is also where the locality
constraints are relevant; they limit the size of each node’s neighborhood and thereby
the connectivity of the network. In the problems we have considered, the network

209
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connectivity has played different roles. Our main conclusions can be summarized
as follows:

i. A high connectivity improves network coherence. The unfavorable scaling
of the global error variance is, simply put, due to the behavior of sums over
inverted graph Laplacian eigenvalues like

∑N
i=2

1
λi
. Under locality constraints,

some of these eigenvalues typically become very small as the network size
grows, causing the sum to grow fast. Increasing the network connectivity
increases the size of the eigenvalues, thus improving coherence. Full coherence
(a bounded global error variance per site) can, for example, be achieved if they
all remain bounded away from zero.
In lattice networks, full coherence is achieved in high spatial dimensions (d = 3
in first-order and d = 5 in second-order consensus). Note that this holds even
though the algebraic connectivity λ2 approaches zero in those networks. This
means that the algebraic connectivity is not necessarily a good indicator of
the scaling of network coherence, while the spatial dimension of a lattice is.
Therefore, arranging nodes in a grid is fundamentally better with respect to
coherence than arranging them in a string. The correct generalization of the
spatial dimension to general graphs is, however, an open research question.
Still, a bound on the coherence scaling for a general graph can be obtained if
it can be embedded in a d-dimensional lattice.
Local error variance may also have a scaling that depends on terms like∑N
i=2

1
λi
, and where the above conclusions therefore carry over. This is the

case with noisy distributed integral control, for example in power networks.

ii. A low connectivity renders high-order consensus inadmissible. The connec-
tivity of a graph is important for the admissibility of high-order (n ≥ 3)
consensus algorithms that are limited to relative feedback. If the algebraic
connectivity approaches zero as the network size grows, then the system be-
comes unstable beyond some critical network size. This property applies
to many network graphs where locality constraints apply. This means, for
example, that even though a 5-dimensional lattice allows full coherence in
second-order consensus, third-order consensus will be inadmissible in such a
lattice. The same conclusion holds for certain dynamic feedback protocols
that are applied in a second-order integrator network.

iii. The Price of Synchrony does not depend on network connectivity. Under
standard frequency droop control, the Price of Synchrony metric, which can
be cast as a local error variance, only depends weakly on the network topology.
Under the assumptions of uniform generator parameters and resistance-to-
reactance ratios in the network, it is entirely independent of topology.

iv. A low connectivity improves the Price of Synchrony with variable voltages. If
voltage droop control is considered, the Price of Synchrony metric is shown to
be an increasing function of network connectivity. This means that the lowest
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transient power losses are achieved for a sparse network topology. The result
can be attributed to the fact that voltage droop control involves absolute
feedback from the full local state.

The above results mean that while the two performance objectives we have
considered; coherence and the Price of Synchrony, often depend differently on the
network topology, they do not in general conflict. The only case where they have
opposite dependencies on connectivity is where absolute feedback from the full local
state is available, as in voltage droop control. In this case, the control already has
good performance and scalability properties, so the conflicting dependencies need
not be a great concern in the control design.

11.1.2 Order of local dynamics
We have considered networks of agents with integrator dynamics of different or-
ders n. If all state feedback is relative and static, the order of the dynamics has a
significant impact on the system’s stability and performance in large-scale networks:

n = 1 : The case n = 1 corresponds to the standard consensus problem. Here, the
per-site variance of the global error (coherence) has the worst-case asymptotic
scaling

VN ∼
1
β
N

for a 1-dimensional lattice (see Theorem 6.1). Recall that β is an algorithm
parameter that reflects the control effort.

n = 2 : The case n = 2 corresponds to the vehicular formation control problem.
Under relative feedback,

VN ∼
1
β2N

3

for a 1-dimensional lattice (except if the feedback is asymmetric and the lattice
has periodic boundary conditions, in which case the feedback is inadmissible).

n ≥ 3 : If n ≥ 3, then localized relative feedback is inadmissible and

VN =∞

if N > N̄ for some finite N̄ . This holds for graphs whose algebraic con-
nectivity is decreasing in network size, including lattice graphs of any finite
dimension.

We have also considered dynamic feedback controllers, which introduce addi-
tional states, thus increasing the model order n. We saw that the dynamic feedback
must be designed carefully for the control to remain admissible, but that it need
not deteriorate the system’s performance scaling. On the other hand, it cannot
improve the scaling as long as the feedback remains relative.
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If (partial) absolute feedback is available, the order of the system dynamics plays
a different role. This is evident in the consideration of frequency synchronization
dynamics. Here n = 2, but only the phase feedback is relative while frequency
feedback is absolute. With the static droop controller, this means that the scaling of
phase coherence is as for the standard consensus problem where n = 1. Frequency
synchronization is also often described in literature by a first-order model that
approximates the swing dynamics. Our analysis also reveals that the Price of
Synchrony metric, that is, the resistive power loss incurred in the synchronization
transient, is unchanged by such an approximation.

11.1.3 Absolute state measurements and distributed dynamic
feedback

The availability of absolute state measurements is important to ensure scalability
of a distributed control design, in terms of both performance and admissibility. For
second-order integrator networks, we showed that if absolute measurements of the
partial local state are available, then a dynamic feedback controller can fundamen-
tally improve performance in terms of the scaling of global error variance compared
to static feedback. It can also reduce the local error variance and in particular the
Price of Synchrony metric in absolute terms, thereby improving transient perfor-
mance in power networks. This is done by applying integral or derivative action to
the available state measurement to emulate absolute feedback from the other state.

In the case of derivative control, this is straightforward, and the performance
improvement is attained even with filtered derivative action. Distributed integral
control, however, is sensitive to measurement noise and bias. One of the issues is if
different controllers’ memory states diverge due to slight measurement errors. This
issue appears in completely decentralized integral control and leads to instability,
but is solved through an inter-nodal alignment of the memory states through a
distributed averaging filter. In some cases, an optimal design of this filter can even
improve performance beyond that of a system with absolute measurements of both
states. A second issue is, however, that noisy absolute measurements deteriorate
performance.

Measurement noise deteriorates the performance scaling of distributed integral
control in terms of both global and local error, and increases the need for inter-nodal
alignment of the integral states. As long as the relative intensity of the measure-
ment noise compared to the process disturbance remains small, the implications for
moderately sized networks are limited. However, the results imply that distributed
integral control is fundamentally limited in its scalability. The need for inter-nodal
alignment grows with network size, and our results indicate that very large and
sparse networks require all-to-all communication or centralized integral control to
be scalable.
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11.2 Implications for a distributed control design in large-scale
networks

Throughout this thesis, we have revealed fundamental limitations to the perfor-
mance of distributed control in large-scale networks. These have been in terms of
asymptotic scalings of global error variance in first- and second-order consensus
networks, which determine the achievable level of coherence of the network. In the
context of electric power networks, we have shown limitations in terms of resistive
losses that arise in the synchronization transient, which scale with the total network
size. We have also discussed secondary frequency control and revealed benefits of
using distributed integral control for this purpose, as well as its limitations in terms
of scalability. Finally, we have also revealed fundamental limitations to localized
consensus algorithms in high-order integrator networks that prevent them from
stabilizing large-scale networks.

The previous section summarized how various properties of the networked sys-
tem affect these limitations. Many of these properties, as well as the limitations,
are highly relevant in real-world networked systems like those mentioned in the
introduction of the thesis. Yet, we have treated them here using idealized models.
In this final section, we discuss how our results can be understood in the context
of practical distributed control design.

11.2.1 Expectations on a distributed control design
The fundamental limitations we describe show what performance can be expected
from a distributed feedback control design. This allows a control designer to dis-
tinguish whether a failure to meet a given specification is due to bad design or to
infeasibility. Fundamental limitations can also indicate a need to re-design the net-
work or the controller structure. Though the models we have used in this thesis are
simplified, and performance objectives in a practical system may be more complex,
our results reveal what properties are important for the performance and scalability
properties of a control design.

For example, our results give insights to questions like “What performance is
expected if the network size is doubled?,” “What is the effect of adding a certain
number of links?,” or “How much noise can be tolerated in the local measurements?”
Which particular properties or performance objectives that are most relevant, or
whether the performance limitations are tolerable, depends on the system in ques-
tion. For example, our results on distributed integral control show, on one hand,
that it can provide a large performance improvement compared to standard static
feedback, but on the other, that its scalability is limited when subject to noise. In
a practical situation, for example when designing controllers for power-electronic
inverters in a microgrid, one would need to determine the suitability of distributed
integral control based on estimations of the noise intensity and the size of the net-
work. Similarly, knowing the benefit of absolute measurements, a consideration of
whether to prioritize a sensing and communication infrastructure that give vehicles
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access to their absolute positions can weigh in the importance of scalability for the
particular system.

We have shown that the limitations to distributed control designs and their de-
pendencies on system properties are not always intuitive. Examples of partly coun-
terintuitive results include the inadmissibility of high-order consensus, given that
first- and second-order consensus are generally admissible (see Example 5.2), and
the topology (in)dependence of the Price of Synchrony metric in droop-controlled
power networks (see Example 8.2). Knowledge of such counterintuitive behaviors is
particularly important for imposing reasonable expectations on a networked system.

Model simplifications, including linearizations, topological restrictions, and, in
the case of power networks, Kron reductions, have been necessary to derive the
analytical results that, for example, allow us to draw the conclusions in Section 11.1.
This is not an unusual approach in control theory. Indeed, the most well-known and
applied results (including those on fundamental limitations) are derived for linear
time-invariant systems, though no such exact systems appear in the physical world.
Our results predict behaviors and limitations of networked control systems. The
predictions are evidently more accurate, the more similar the physical system is to
the idealized one. For highly nonlinear or very heterogeneous systems, our results,
like many others, have limited applicability. For such cases, further analysis is
required, or insights can be obtained through simulations or experiments.

11.2.2 Tuning and re-tuning of local controllers
Throughout this thesis, an underlying assumption has been that the local control
design is fixed and independent of a scaling of the network size. In practice, the
motivation for this assumption is to enable plug-and-play control, that is, the pos-
sibility to add subsystems to the network without re-tuning remaining subsystems’
controllers. In some of the applications we have considered, such as vehicle pla-
tooning or power networks with distributed generation, subsystems tend to have
different owners and therefore independent control designers. In such cases, plug-
and-play control is particularly relevant.

We have also shown that allowing for an appropriate re-tuning of local con-
trollers as the network grows can relax performance limitations. The downside of
such a re-tuning is the requirement for global model knowledge, which rules out
plug-and-play control. An interesting research question is therefore whether it is
possible to design a distributed re-tuning protocol, possibly using ideas from sys-
tem identification, that relies on limited, localized model knowledge, yet still relaxes
limitations.

11.2.3 The bigger picture
Though our results provide important insights to limitations of distributed feed-
back control in networks, they do not give a complete picture. Our results have,
for example, shown that certain controllers perform well in terms of the network
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coherence. However, they may still be limited in terms of, say, H∞ performance,
or lack robustness to changes in the model. The opposite case is also possible. To
a certain extent, this is acceptable and a control design should consider the most
relevant performance objectives for the system at hand. As a background to this
thesis, we therefore reviewed a number of performance characterizations for net-
worked systems that have been proposed in literature. If the objective, however, is
to gain a full understanding for the type of local control and interaction rules that
lead to globally desirable behaviors in networked systems, a more holistic approach
to the performance and robustness questions may be required.

One direction for such an analysis would be to take inspiration from traditional
control theory and study all relevant transfer functions of a system (the Gang of
Four, or Six [11]) jointly, under the architectural constraints imposed by a network
structure. For example, through gap metrics. This may reveal further fundamen-
tal limitations, but also give insights to inter-dependencies and trade-offs between
performance objectives. In this case, our analyses, which have considered transfer
functions one by one, provide a good starting point.
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