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Abstract

Networked control systems arise in a wide range of applications. These
systems typically have a global control objective, as to drive the states at
all network sites to a common setpoint, while the control is distributed and
relies only on local feedback from a neighborhood around each site. In this
thesis, we address the question of performance of large-scale networks with
such distributed feedback control.

We consider networked dynamical systems with single and double inte-
grator dynamics, subject to distributed disturbances. We focus on two types
of problems. First, we consider problems modeled over regular lattice struc-
tures. Here, we consider consensus and vehicular formation control problems
and evaluate performance in terms of measures of “global order”, which cap-
ture the notion of network coherence. Second, we consider electric power
networks, which we treat as dynamical systems modeled over general graphs.
Here, we propose a measure of performance in terms of the resistive power
losses that are incurred in maintaining network synchrony. These losses are
associated with transient power flows that are a consequence of “local disor-
der” caused by lack of synchrony. In both cases, we characterize fundamental

limitations to performance as networks become large.
It has been shown in previous studies that such limitations hold for co-

herence in networks with regular lattice structures. These studies show that
connections in 3 spatial dimensions are necessary to achieve full coherence,
when the controller uses static feedback from relative measurements in a lo-
cal neighborhood. We show that these limitations remain valid also with
dynamic feedback, where the controller at each network site has an internal
memory state. However, if the controller can access certain absolute state
information, dynamic feedback can improve performance compared to static
feedback, allowing also 1-dimensional formations to be fully coherent.

For electric power networks, we show that the transient power losses grow
unboundedly with network size. However, in contrast to previous results, per-
formance does not improve with increased network connectivity. We also show
that a certain type of distributed dynamic feedback controller can improve
performance by reducing losses, but that the losses’ scaling with network size
seems to remain an important limitation. We discuss possible implications of
these results in terms of design of future power grids, where an increasingly
distributed generation paradigm leads to larger networks with the potential
for greater performance issues.
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Chapter 1

Introduction

Networked systems are studied across all of science: from atomic networks through
neurobiology and the animal kingdom to social networks and the internet. Some of
the greatest engineering achievements of the 20th century, the electric power sys-
tem and telecommunications, are also large and complex networks. Today, further
networked systems arise in many engineering applications through the interconnec-
tion of smaller subsystems. For example, by connecting domestic solar panels into
microgrids, through formations of unmanned aerial vehicles (UAVs), or in vehicle
platoons. Some of these applications are illustrated in Figure 1.1.

In most of these applications, there is a desire to control the network to fulfill
certain global control objectives. Such an objective may be synchrony or power
balance in a power network, or a common cruising speed in a vehicle formation. It
is often, however, neither possible nor practical to control the networks centrally.
The control must therefore be distributed across the individual subsystems, and
rely on feedback from a local neighborhood. Given that the control relies on such
local feedback, an important question becomes whether there are limitations to the
overall performance of the network. In particular, can performance be maintained
as networks grow large?

In this thesis, we will address the question of performance in large-scale networks
and explore limitations to performance in systems with distributed feedback control.
Later in this chapter, we give a detailed problem formulation, but we first provide
some context to the key problems considered in this thesis.

1
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Examples of networked systems. (a) Fish school (b) Atomic network in
graphene (c) Formation of UAVs (d) Vehicle platoon (e) Transmission network in the
Nordic power grid (f) Visualization of personal network on LinkedIn (see List of Figures
for image sources)
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1.1 Control problems in large-scale networks

Due to their wide range of applications in engineering, networked control systems
have received much attention from researchers over the last decades. In this section,
we highlight key research problems related to the applications treated in this thesis.

Example 1.1 (Vehicle platoons and smart highway systems) The so-called pla-
tooning problem (control of strings of vehicles) has received much attention since
some pioneering work in the sixties [46, 51]. The control objective in a vehicle
platoon is typically to maintain a desired cruising velocity with a defined constant
spacing between the vehicles. By keeping this spacing small, aerodynamic drag can
be reduced, and thereby fuel costs and emissions, which motivates ongoing e�orts
for platooning in road freight transportation [1, 11]. By implementing platooning
with long strings of vehicles, such as is the vision for automated highway systems
[41, 78, 82], there is also a large potential to increase road capacity and throughput.

Figure 1.2: A vehicle platoon

The principle of a vehicle platoon is illustrated in Figure 1.2. An example
of a simple linear control law for the kth vehicle of the platoon is the combined
look-ahead and look-behind control (see e.g. [40]):

ẍ
k

= v̇
k

= f
+

(x
k+1

≠ x
k

≠ �
(k+1,k)

) + f≠(x
k≠1

≠ x
k

≠ �
(k≠1,k)

)+
+ g

+

(v
k+1

≠ v
k

) + g≠(v
k≠1

≠ v
k

) + w
k

. (1.1)

where f
+

, f≠, g
+

, g≠ are constant gains, �
j,k

denotes the desired spacing between
vehicles j and k, and w

k

is an external disturbance (due to, for example, wind
gusts, varying road conditions, and measurement errors).

Apart from a multitude of practical challenges of which [82] gives an early
overview, there are a number of control theoretical issues related to platooning
that have been addressed over the last decades. Some examples are:

• How can it be ensured that disturbances are not amplified along the string of
vehicles, in particular as the string grows large? This is an issue of so-called
string stability [77].

• What control architecture is more robust: a leader-follower architechture, or
a bidirectional architecture as in (1.1) [40]?

• What are optimal controller gains [47]?
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• What types of measurements are needed to achieve reasonable performance?
Do relative measurements with respect to neighbors (using for example radar)
su�ce, or is absolute position and velocity information (based on for example
speedometers or GPS) for each vehicle required [39, 7]?

In this thesis, we address the question of whether feedback of the type (1.1) is
su�cient to maintain coherence in a string of vehicles as it grows large. Coherence
is a notion of “global order” and describes how well the formation resembles a
rigid body. This important issue, which a�ects the throughput of a platoon, is a
di�erent concept from string stability mentioned above, as well as from the notion
of robustness in [40].

Example 1.2 (Dynamic load balancing in distributed computing) Distributed
computing means that a computational task is shared among a group of networked
computers, in order to increase total processing capabilities and thereby e�ciency.
An important issue in distributed computing is load balancing, which means that
each processor takes on a “fair share” of the total work load. If the computational
problem is complex, it may be di�cult to distribute sub-tasks a priori, and it is
therefore desirable to balance the work load during the execution. Such a strategy
is referred to as dynamic load balancing [16].

A very simple algorithm for dynamic load balancing can be written as follows
(see, for example, [16, 60, 85]):

x
i

(t + 1) = x
i

(t) +
ÿ

jœN
i

a
ij

(x
j

(t) ≠ x
i

(t)) + w
i

(t + 1), i = 1, . . . , N (1.2)

where the state x
i

(t) is the amount of work assigned to computer i at time in-
stance t, N

i

is the set of neighbors that computer i can share tasks with, and a
ij

are nonnegative constants. The parameter w
i

(t+1) accounts for the new work that
is generated at time t, less the amount of work that can be executed in one time
step. If the computer is precisely able to keep up with the expected amount of new
work, then w

i

can be seen as a zero-mean random variable, and can be thought of
as a distributed disturbance in the process (1.2).

The objective of this algorithm is to converge to an equilibrium where all work
loads are equal, that is x

i

= x
j

for all i, j œ {1, . . . , N}. Such a state of consensus
can only hold approximately when the system is subject to distributed distur-
bances w. Still, it is desirable to keep deviations from a state of consensus small
and the system’s performance can therefore be quantified through

E

Y
_]

_[

Q
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i

(t) ≠ 1
N

Nÿ

j=1

x
j

(t)

R

b
2

Z
_̂

_\
, (1.3)
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that is, the variance of the state x
i

’s deviation from the network average. This is
done, for example, by Xiao et al. in [85], who study optimal design of the weights
a

ij

in (1.2) and by Patterson et al. in [60], who evaluate systems with stochastic
communication failures. A further interesting problem is whether measures such
as (1.3) can be kept small when distributed computation networks grow very large,
as in a scenario where the internet is used to distribute computations. In other
words, how well can approximate consensus be maintained in large-scale networks?
In this thesis, we address such questions for continuous time equivalents of the
system (1.2).

Example 1.3 (Frequency synchronization in power networks) The electric power
system, which is one of the largest and most complex systems ever engineered, is
currently undergoing rapid changes. The future power grid is expected to have
higher levels of uncertainty from renewable energy sources [81], changing load pat-
terns [65] and increasingly distributed electricity generation [91]. Many of these
changes can a�ect the synchronous stability of the power network, which is the
network’s ability to recover synchrony after a disturbance [56]. This has therefore
become an important research topic over the last years.

b
12

b
23

b
13

◊
1

Ê
1

Ê
2

Ê
3

Figure 1.3: Mechanical analogy of the coupled swing equation (1.4), due to Dörfler et

al. [22]. Any deviation in phase angle ◊
i

or frequency ◊̇
i

= Ê
i

is propagated over the
springs (power lines) across the network.

Synchronization in power networks is typically studied through a system of
coupled swing equations, which describe the electromechanical oscillations in syn-
chronous generators, as in, for example, [22, 53]. The linearized swing equation
can, under some simplifying assumptions, be written as:

m
i

◊̈
i

+ d
i

◊̇
i

=
ÿ

jœN
i

b
ij

(◊
j

≠ ◊
i

) + P
m,i

. (1.4)

where ◊
i

is the phase angle at node i, ◊̇
i

= Ê
i

is the frequeny, and m
i

and d
i

are,
respectively, the inertia and damping coe�cients of the ith generator. P

m,i

can be
regarded as the net power injection at the generator, and N

i

is the neighbor set of
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node i. This swing equation (1.4) can be illustrated by the mechanical analogy in
Figure 1.3.

Even if the network is synchronously stable, lack of synchrony will arise when
the system is subject to disturbances due to, for example, generation and load fluc-
tuations that change P

m,i

. For the network to function properly, without damage
to the generators and other equipment, it is important that the frequency and phase
angles are kept close to their nominal operating points. It is therefore desirable to
keep the transient fluctuations “small”. This is a question of the power system’s
performance, which is what we will address in this thesis.

Example 1.4 (Control of power electronics in microgrids) One of the main
trends in today’s electric power system is the transition from a centralized gen-
eration paradigm towards a more distributed one. Local, small-scale generation
resources are expected to become prevalent in future power networks, as the pen-
etration of renewable energy sources increases [91, 30]. The microgrid concept
has gained popularity as a key strategy to facilitate this transition [50, 44]. Mi-
crogrids are networks composed of distributed generation (DG) units, loads and
energy storage elements which can either connect to a larger power grid, or operate
independently from it, in “islanded” mode.

The DG units within the microgrid are typically interfaced with the AC network
via DC/AC or AC/AC power electronic converters, or inverters, and the operation
of the network depends on control actions taken in these inverters [61, 89]. The
main control objectives are:

(1) to maintain stability and power balance,

(2) to achieve active power sharing, that is, a desired steady-state distribution of
the power injections from the individual inverter units, and,

(3) to maintain a steady frequency close to the nominal frequency Êref .

The standard control scheme employed to achieve these goals is droop control, which
is a decentralized proportional controller that controls the voltage phase angle ◊

i

at the ith inverter according to

◊̇
i

= Êref ≠ k
i

(P̂
i

≠ P ref

i

), (1.5)

where Êref , P ref

i

are the respective setpoints for frequency and active power injec-
tion. k

i

is a constant gain and P̂
i

is the measured power injection at the inverter.
We show in Chapter 5 how this control law can be cast in the same form as the
swing equation (1.4). The droop control law is, under reasonable conditions (see
e.g. [72]), successful at fulfilling the control objectives (1) and (2). However, as it
is e�ectively proportional control, it causes the steady-state network frequency Êss

to deviate from its nominal value Êref [61], and does therefore not achieve (3).
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This deficiency motivates so-called secondary control, the goal of which is to
eliminate the static error. In order to achieve this goal, control architectures with
various degrees of centralization have been proposed. Completely decentralized
controllers will, unless carefully tuned, destroy the power sharing properties estab-
lished by droop control, and may lead to a violation of generation constraints [5, 23].
Conversely, centralized control requires a dense communication architecture that
conflicts with the microgrid paradigm of autonomous management and scalabil-
ity. This has motivated the development of distributed control algorithms which
simultaneously eliminate frequency errors and maintain the optimality properties
of droop control [5, 72, 73, 88]. One such algorithm is the distributed averaging
proportional-integral (DAPI) controller:

◊̇
i

= Êref ≠ k
i

(P̂
i

≠ P ref

i

) + �
i

,

q
i

�̇
i

= Êref ≠ Ê
i

≠
ÿ

jœN
i

c
ij

(�
i

≠ �
j

), (1.6)

where �
i

is the secondary control variable and q
i

and c
i,j

are nonnegative parame-
ters. One of the main objectives of this thesis is to compare dynamic control laws,
such as the DAPI controller (1.6), to static control laws such as (1.5), with respect
to certain performance objectives.

1.2 Problem formulation

1.2.1 System model
In this thesis, we consider a number of distributed control problems with analogous
mathematical settings. We will consider first-order systems, where there is one local
state x

k

at each site (or node) k of the network, as well as second-order systems,
in which there are two such states: x

k

and ẋ
k

. The state x
k

may, for example,
represent the phase angle of the kth generator in an electric power network, while
ẋ

k

represents its angular frequency.
Throughout, we will assume that the systems are subject to distributed distur-

bances w
k

, which will in most cases be modeled as white noise1 that is uncorrelated
across the network. The systems can then be written as

ẋ
k

(t) = u
k

(t) + w
k

(t), (1.7)

in the first-order case, and

ẍ
k

(t) = u
k

(t) + w
k

(t), (1.8)
1We refer to “white noise” in continuous time as a stationary zero-mean stochastic process

with autocorrelation E{w(·)wú(t)} = ”(t ≠ ·)I, where ”(t) denotes the Dirac delta distribution.
This idealized process can be thought of as the time derivative of a Brownian motion, dB/dt,
although such a derivative does not formally exist, see [76, Theorem 4.1].
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in the second-order case. Here, u
k

(t) represents a control input.
The control objective in these systems is global; to drive the states at all nodes

to a common equilibrium, such as a constant cruising speed in a vehicle platoon
or synchrony in a power system. However, in all of the problems that we consider,
the control is distributed, meaning that the control signal at any given node will
only depend on local feedback from that node itself and from neighboring nodes,
as illustrated in Figure 1.4. As we shall see, this fact leads to limitations in the
system performance.

We consider linear feedback throughout and can therefore write the control
input for the second-order system (1.8) as

u
k

(t) =
ÿ

jœN
k

f
jk

(x
j

(t) ≠ x
k

(t)) +
ÿ

jœN
k

g
jk

(ẋ
j

(t) ≠ ẋ
k

(t)) ≠ fo

k

x
k

(t) ≠ go

k

ẋ
k

(t), (1.9)

where N
k

denotes the neighbor set of the kth node and f
jk

, g
jk

, fo

k

, go

k

are constant
gains. (In the first-order case (1.7), the control input can be written as in (1.9),
but without the terms containing ẋ

k

(t).)
Throughout the thesis, we will distinguish between and compare relative and ab-

solute state feedback. In (1.9) the terms ≠fo

k

x
k

(t) and ≠go

k

ẋ
k

(t) represent absolute
feedback (or self-damping) from the states x

k

and ẋ
k

respectively. If fo

k

= go

k

= 0,
the control relies only on relative di�erences between neighboring nodes. The avail-
ability of these types of feedback depends on the application. For example, the
self-damping of the angular freguency in the swing equation (1.4) is part of the
generator dynamics, while similar feedback from phase angles would require addi-
tional phasor measurement units (PMUs).

1.2.2 Performance measures
The systems (1.7) – (1.8) are subject to persistent stochastic disturbances w

k

, which
will cause the states at each network site to fluctuate around their equilibrium
points, even when the system is stable. Since this thesis limits the analysis to
linear systems, we can without loss of generality move these equilibrium points
to the origin through a change of variables. Thoughout this thesis, we will then
characterize system performance by quantifying how “tightly” the states in the
network stay together. Larger relative fluctuations between the network sites reflect
a more disordered network, while small variances imply better performance. More
precisely, we consider quantities such as:

Global error (coherence)

V dav

k

(t) := E

Y
_]

_[

Q

ax
k

(t) ≠ 1
N

Nÿ

j=1

x
j

(t)

R

b
2

Z
_̂

_\
, (1.10)
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that is, the variance of the kth node’s deviation from the global average over
all N nodes in the network. For a vehicular platoon, for example, (1.10)
characterizes how closely the platoon resembles a rigid body. In general,
(1.10) is quantifies the amount of “disorder” in the network. In stationarity,
this measure captures the notion of network coherence.

Local error (lack of synchrony)

V loc

k

(t) := E

Y
_]

_[

Q

a
ÿ

jœN
k

a
j,k

(x
k

(t) ≠ x
j

(t))

R

b
2

Z
_̂

_\
, (1.11)

that is, the variance of the kth node’s deviation from a local weighted average
over its neighboring nodes. The measure (1.11) captures the amount of local
disorder in the network, and quantifies the amount of interactions between
neighboring nodes. The a

j,k

here are appropriately selected weights.
In power networks, where the state x

k

represents phase angles, the quan-
tity (1.11) signifies lack of synchrony. When the phase angles at neighboring
nodes make excursions from their nominal values, non-equilibrium circulating
currents will pass between them [84]. Such non-equilibrium current fluctu-
ations act as a signaling mechanism that indicates the system needs to be
re-synchronized, but they also result in resistive losses over the power lines.
These losses are essentially the cost of using power flow fluctuations as the sig-
naling mechanism to achieve synchronization and we therefore refer to them
as the “price of synchrony”. We will show in Chapter 4 that the price of
synchrony can be written as a weighted sum of local errors over the entire
network.

While the performance measures (1.10) and (1.11) may appear very similar, they
capture two distinct phenomena in networked systems. For example, we will show
in Chapter 4 that it is possible for two networks with very di�erent global properties
to have the same performance in terms of local errors. Conversely, a given network
may appear well-regulated locally, although the network, when viewed as a whole,
has unregulated modes. Such situations are explored in Chapter 3.

1.2.3 Objective
The objective of this thesis is to characterize performance of networked dynamical
systems that can be written in the forms (1.7) and (1.8). We focus on two types of
problem settings. First, we consider problems modeled over regular lattice struc-
tures. Here, we treat the consensus and vehicular formation problems as examples
of the first- and second-order dynamics in (1.7) and (1.8), and evaluate performance
in terms of measures of network coherence. Second, we consider electric power net-
works, which we treat as dynamical systems modeled over general graphs. Here, we
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+ ++ w
k

w
k+1w

k≠1

P
k

P
k+1

P
k≠1

C
k

C
k+1

C
k≠1

Performance objective

u
k

u
k+1u

k≠1

Figure 1.4: Illustration of the distributed networked control problem. P
k

represents a
plant controlled by the controller C

k

. There is a common, global, performance objective.

focus on performance in terms of the resistive power losses incurred in maintaining
network synchrony. For all of these systems, and their associated control laws u

k

,
we address questions such as

• How does performance scale with network size?

• How does performance depend on network topology and controller structure?

• How does performance depend on the order of the system dynamics?

The focus of the thesis is to identify and characterize fundamental limitations to
performance, in particular as networks grow large. Such limitations imply that a
control law cannot be designed to satisfy any given performance objective, as long
as control e�ort is finite. They are therefore important in engineering applications,
where resources are always limited. Fundamental performance limitations indicate
a need to optimize the control under the given constraints, change the network
design, or revert to alternative control strategies for which the limitations do not
apply.

One of the main objectives of this thesis is therefore to address the question
of whether dynamic feedback, where the controllers are equipped with memory,
may alleviate performance limitations that hold for the standard, static feedback
law in (1.9). We consider di�erent structures of dynamic feedback laws with a
single memory state and characterize under which conditions they may improve
performance in large-scale networked systems.
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1.3 Outline and contributions

The outline of the remainder of this thesis and its main contributions can be sum-
marized as follows:

Chapter 2: Preliminaries

In this chapter, we provide some technical preliminaries on signal and system norms,
graph theory and spatially invariant systems that are of relevance for this thesis.

Chapter 3: Coherence of large-scale networks with distributed dynamic
feedback

As the first contribution of this thesis, we consider consensus and vehicular for-
mation control problems modeled over a d-dimensional toric lattice. We evaluate
performance of these systems in terms of notions of network coherence, quantified
through the measure (1.10). In particular, we study the asymptotic scaling of this
performance measure with respect to the lattice size. In [7], fundamental limitations
to performance were derived for consensus and vehicular formation problems with
local, static feedback on the form (1.9). The objective of Chapter 3 is to address
the question of whether dynamic feedback laws can alleviate these limitations.

We evaluate the systems and their asymptotic performance scalings through a
novel approach, where we exploit spatial invariance properties to study them in the
limit of an infinite lattice. This allows us to formulate stability conditions for the
dynamic feedback laws, revealing that several classes of controllers will inevitably
de-stabilize large networks.

This chapter’s main result shows that it is not possible to design a dynamic
feedback law, based on relative state measurements, with better performance than
static feedback. If the controller, however, can access some absolute state measure-
ments, we show that dynamic feedback has the potential to improve asymptotic
performance scalings compared to static feedback. We give examples of such feed-
back laws and discuss their limitations.

Chapter 3 is mainly based on

• E. Tegling, P. Mitra, H. Sandberg, B. Bamieh. Coherence and stability in
large-scale networks with distributed dynamic feedback. In prep. To be pre-
sented at 22nd International Symposium on Mathematical Theory of Networks
and Systems, Minneapolis, USA, Jul 2016.

Chapter 4: The price of synchrony: resistive losses in synchronizing power
networks

In the second main contribution of the thesis, we introduce the “price of synchrony”
as a notion of performance in electric power networks. That is, the transient resis-
tive power losses that are incurred in keeping a network of synchronous generators
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in a synchronous state. We show how the total network’s resistive losses can be
quantified using an H

2

norm of a linear system of coupled swing equations with
an appropriately defined performance output. We evaluate this norm for general
network topologies and provide a number of numerical examples as well as relevant
bounds on performance.

This chapter’s main results show that the price of synchrony scales unboundedly
with network size, while being only weakly dependent on the network topology.
These results point to a fundamental limitation to performance in networks where
the frequency synchronization relies on power flows, and provide a basis for the
analysis in Chapters 5 – 6.

The developments and results in Chapter 4 have been published in

• E. Tegling, B. Bamieh and D. F. Gayme. The price of synchrony: Evaluating
the resistive losses in synchronizing power networks. IEEE Transactions on
Control of Network Systems, Vol. 2, No. 3, pp.254-266, Sep 2015

Chapter 5: Renewable energy integrated power systems

In Chapter 5, we extend the model from Chapter 4 to account for certain aspects
of renewable energy integrated power networks. We first extend the network model
from Chapter 4 to explicitly include the frequency dynamics of loads and asyn-
chronous generation, which results in a system of coupled first- and second-order
dynamics. Second, we model a so-called microgrid, which is a low to medium
voltage grid with the ability to operate independently from the main transmission
network, in which renewable generation units are connected via controllable power
inverters. Such networks typically require tighter voltage control than transmission
systems. Therefore, we extend previous models to account for variable voltage dy-
namics, and quantify the additonal losses that arise through fluctuating voltages.
The results in this chapter have been published in the following articles:

• E. Sjödin2 and D.F. Gayme. Transient losses in synchronizing renewable
energy integrated power networks. In Proceedings of the American Control
Conference, pages 5217-5223, Jun 2014.

• E. Tegling, D. F. Gayme, and H. Sandberg. Performance metrics for droop-
controlled microgrids with variable voltage dynamics. In Proceedings of the
54th IEEE Conference on Decision and Control, pages 7502-7509, Dec 2015.

Chapter 6: Improving performance of microgrids through distributed dynamic
feedback

In the last main contribution of this thesis, we return to the question of whether
performance can be improved through dynamic feedback. As in parts of Chap-
ter 5, we consider inverter-based microgrids, where frequency synchronization is

2The name Sjödin was changed to Tegling in 2014.
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achieved through controllable power electronics. We compare the standard, static
control scheme to both a centralized and a distributed proportional-integral (PI)
controller. We show that while performance is unchanged with centralized PI con-
trol, the distributed PI controller has the potential to significantly reduce transient
power losses compared to the standard scheme. This performance improvement is
also shown to depend on network topology and we discuss optimal tunings of the
controller for loss reduction. The results in Chapter 6 have partly been published
in:

• E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg. Im-
proving performance of droop-controlled microgrids through distributed PI-
control. In Proceedings of the American Control Conference, Jul 2016. To
appear.

Chapter 7: Conclusions

In this chapter, we conclude the findings of this thesis. In particular, we discuss the
implications of the fundamental performance limitations found throughout this the-
sis for the applications introduced in the introduction. We also discuss limitations
of the results as well as potential directions for future work.

Other publications

The contributions in the following two articles are not explicitly covered in this
thesis.

• E. Sjödin, U. Topcu and D. F. Gayme. Risk-mitigated optimal power flow
for wind powered grids. In Proceedings of the American Control Conference,
pages 4431-4437, Jun 2012.

• N. Govindrajan, H. Arbabi, L. van Blargian, T. Matchen, E. Tegling and I.
Mezic. An operator-theoretic viewpoint to non-smooth dynamical systems:
Koopman analysis of a hybrid pendulum. Submitted.





Chapter 2

Preliminaries

In this chapter, we briefly review parts of the mathematical framework that will be
used in this thesis. We first introduce the signal and system norms that are used for
performance evaluations throughout. In Section 2.2, we then go through definitions
and notation for the theory of spatially invariant systems, which is the basis for
studying systems that are modeled over regular lattice structures. In Section 2.3 we
introduce relevant concepts from graph theory, which will later be used to model
electric power networks with general topologies.

2.1 Signal and system norms

Performance of control systems is often described in terms of the “size” of certain
signals of interest. In this thesis, we will consider such signals that in some sense
quantify the amount of network disorder, as described in Section 1.2.2. The size of
these signals is then measured through relevant signal and system norms. In this
section, we introduce the L

2

and H
2

norms and discuss how they can be computed
and interpreted. The theory is based on [90].

2.1.1 The L2 norm

Consider a vector-valued signal v(t) = [v
1

(t), . . . , v
n

(t)]T defined for t Ø 0. Its
L

2

norm is defined as the square root of the integral of v(t)úv(t):

||v||
2

=
3⁄ Œ

0

v(t)úv(t)dt

4
1/2

. (2.1)

Here, and throughout the thesis, we use ú to denote the complex conjugate trans-
pose of a vector or matrix. The L

2

norm can also be evaluated in the frequency
domain. We then use the Laplace-transformed signal v̂(s), evaluated on the imagi-

15
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nary axis s = jÊ:

||v̂||
2

=
3

1
2fi

⁄ Œ

≠Œ
v̂(jÊ)úv(jÊ)dÊ

4
1/2

. (2.2)

By Parseval’s theorem, the time-domain and frequency-domain norms are equal,
that is,

||v||
2

= ||v̂||
2

.

2.1.2 The H2 norm
Now, consider a general linear MIMO system in the Laplace domain: ŷ(s) =
G(s)ŵ(s), with input w, output y and transfer matrix G(s). If the system is
input-output stable, meaning that all controllable and observable system modes
are asymptotically stable, the H

2

norm is defined in analogy with the L
2

norm
in (2.2) as

||G||
2

=
3

1
2fi

⁄ Œ

≠Œ
tr(G(jÊ)úG(jÊ))dÊ

4
1/2

. (2.3)

The H
2

norm characterizes the system’s input-output behavior by, in a sense, quan-
tifying the size of the output y, as an average over all frequencies, given certain
inputs w. In control design, it is often a control objective to keep the H

2

norm
below a given limit, and the feedback is chosen accordingly.

The integral in (2.3) is, however, rarely evaluated in the frequency domain using
G(jÊ). It can instead be evaluated conveniently in the time domain, directly from
the corresponding state space representation:

Â̇(t) = AÂ(t) + Bw(t) (2.4)
y(t) = CÂ(t),

where G(s) = C(sI ≠ A)≠1B. Again using Parseval’s theorem, it is straightforward
to show that ||G||

2

is equal to the time-domain norm of the function H(t) = CeAtB
for t Ø 0 (H(t) = 0 for t < 0). We get that

||H||2
2

= tr
3⁄ Œ

0

BúeAú
tCúCeAtBdt

4
. (2.5)

Now, we define the observability Gramian as the matrix

X =
⁄ Œ

0

eAú
tCúCeAtdt, (2.6)

which allows (2.5) to be written as
||H||2

2

= tr (BúXB) . (2.7)
The observability Gramian is given by the Lyapunov equation:

AúX + XA = ≠CúC. (2.8)
We can also calculate ||H||2

2

using the controllability Gramian X
C

; ||H||2H2
=

tr(CX
C

Cú), with AX
C

+ X
C

Aú = ≠BBú.
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Unitary invariance

The H
2

norm from the input w to to the output y of the system (2.4) is unitarily
invariant. This means that the norm does not change if the input and output
are transformed through a unitary change of variables. Throughout this thesis,
we will exploit this property when evaluating system H

2

norms through spectral
decompositions.

For this purpose, consider a unitary matrix U and assume that it (block) di-
agonalizes the system matrix A, so that UúAU = Â, with Â = diag{Â

n

}, where
Â

n

, n = 1, . . . , N are either the eigenvalues of A, or small block matrices, whose
eigenvalues are, in turn, eigenvalues of A. We use the matrix U to transform the
state vector Â(t) according to:

Â(t) =: U Â̂(t).

The system dynamics (2.4) in terms of the transformed states Â̂ become (recall
that a unitary matrix U has the property that UúU = I):

˙̂
Â(t) = UúAU Â̂(t) + UúBw(t)
y(t) = CU Â̂(t),

Now, since the H
2

norm is unitarily invariant, we can multiply the input and
output by the unitary matrix U , without changing the H

2

norm. We therefore
define ŵ(t) := Uúw(t) to ŷ(t) := Uúy(t), and obtain the system Ĥ from ŵ to ŷ as

˙̂
Â(t) = UúAU Â̂(t) + UúBUŵ(t) =: ÂÂ̂(t) + B̂ŵ(t)
ŷ(t) = UúCU Â̂(t) =: ĈÂ̂(t).

Now, assume that B and C are such that they are like A (block) digonalized by U .
That is, B̂ = diag{B̂

n

} and Ĉ = diag{Ĉ
n

}. The norm (2.5), which can now be
written as

||Ĥ||2
2

= tr
3⁄ Œ

0

B̂úe
ˆAú

tĈúĈe
ˆAtB̂dt

4
,

is then, since all the matrices are diagonal, equivalent to

||Ĥ||2
2

= tr
A

Nÿ

n=1

⁄ Œ

0

B̂ú
n

e
ˆAú

n

tĈú
n

Ĉ
n

e
ˆA

n

tB̂
n

dt

B
. (2.9)

Since the trace and the sum can switch places, we recognize that this is the sum of
the respective squared H

2

norms of N decoupled subsystems Ĥ
n

:

˙̂
Â

n

(t) = Â
n

Â̂
n

(t) + B̂
n

ŵ
n

(t)
ŷ

n

(t) = Ĉ
n

Â̂
n

(t),
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which allows us to simply evaluate the H
2

norm of (2.4) as

||H||2
2

= ||Ĥ||2
2

=
Nÿ

n=1

||Ĥ
n

||2
2

.

In the first part of the thesis, we consider spatially invariant systems modeled over
regular, periodic, lattice structures. In this case, the systems are constructed using
circulant matrices, which can all be diagonalized using a spatial discrete Fourier
transform, which we introduce in Section 2.2.3. This is a unitary transformation
U , which allows us to use the spectral decomposition approach summarized in
this section to evaluate system H

2

norms. This approach will also be useful when
analyzing systems modeled over general graphs in Chapters 4 – 6. In that case,
we use the fact that the graph Laplacians used to model the network are unitarily
diagonalizable (see Section 2.3.1).

2.1.3 Interpretations of the H2 norm
In this thesis, we will use input-output H

2

norms to characterize system perfor-
mance in various scenarios. This usage is supported by some of the H

2

norm’s
standard interpretations, which we recap here. Denote by H the LTI system (2.4)
and consider the following three scenarios:

i. Response to a white stochastic input. When the input w is a white second or-
der process with unit covariance (i.e. E{w(·)wú(t)} = ”(t≠·)I), the (squared)
H

2

norm of the system is the steady-state total variance of all of the output
components, i.e.

ÎHÎ2

2

= lim
tæŒE{yú(t)y(t)}. (2.10)

ii. Response to a random initial condition. With zero input and an initial con-
dition that is a random variable Â

o

with correlation E{Â
o

Âú
o

} = BBú, the H
2

norm is the time integral

ÎHÎ2

2

=
⁄ Œ

0

E{yú(t)y(t)} dt (2.11)

of the resulting response y. This interpretation is closely related to interpreta-
tion (iii):

iii. Sum of impulse responses. Let e
i

refer to the vector with a 1 in the ith
component and zero everywhere else. Consider N experiments where in each
experiment, the system is fed an impulse at the ith input channel, that is,
w

i

(t) = e
i

”(t). Denote the corresponding output by y
i

. The (squared) H
2

norm is then the total sum of the L
2

norms of these outputs, i.e.

ÎHÎ2

2

=
Nÿ

i=1

⁄ Œ

0

yú
i

(t)y
i

(t) dt. (2.12)
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A stochastic version of this scenario corresponds to a system where the inputs
w

i

can occur with equal probability. Under this assumption ÎHÎ2

2

becomes the
expected value of this integral.

2.2 Spatially invariant systems

In Chapter 3, we will consider networked control systems over regular lattice struc-
tures. We will assume these systems to be spatially invariant with respect to the
network, which essentially means that the control dynamics are identical at each
site in the network. The spatial invariance property simplifies the analysis of these
systems by allowing us to block-diagonalize the system using spatial Fourier trans-
forms. The details of this technical framework are presented in Section 3.3, but we
provide some preliminaries here.

2.2.1 Topology
We will consider the problems over the undirected d-dimensional torus Zd

N

, with
M = Nd nodes. In the one-dimensional case (d = 1), Z

N

is simply the N node ring
graph, which we can represent by the set of integers {≠ N

2

, . . . , ≠1, 0, 1, . . . , N

2

≠ 1}
mod N for N even, and {≠ N≠1

2

, . . . , ≠1, 0, 1, . . . , N≠1

2

} mod N for N odd. Zd

N

is the direct product of d such rings. It will also be useful to define the infinite
d-dimensional torus Zd, which is the direct product of d copies of the integers.

2.2.2 Functions and operators
We define real-valued function arrays over the network Zd

N

, such as a : Zd

N

‘æ R,
where we will use multi-index notation to denote the kth array entry a

k

= a
(k1,...,k

d

)

.
Similarly, we denote the state at node k = (k

1

, . . . , k
d

) in the d-dimensional torus
as

x
(k1,...,k

d

)

(t),

which is a scalar in C in the consensus problems and a vector-valued signal in Rd in
the vehicular formation problems. We will in most cases omit the time dependence
in the notation.

Linear operators, denoted by upper case letters, will be used to define multi-
dimensional circular convolutions with function arrays over Zd

N

. For example, the
convolution operator A associated with the array a is defined as follows:

h = Ax = a ı x

Ì (2.13a)

h
(k1,...,k

d

)

=
ÿ

(l1,...,l

d

)œZd

N

a
(k1,...,k

d

)≠(l1,...,l

d

)

x
(l1,...,l

d

)

,
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or, in short,
h

k

= (Ax)
k

=
ÿ

lœZd

N

a
k≠l

x
l

. (2.13b)

In cases where the state x œ Rd, the array element a
k

is a d ◊ d matrix, which
in this thesis will be assumed to be diagonal due to coordinate decoupling. The
arithmetic for k+l = (k

1

, . . . , k
d

)+(l
1

, . . . , l
d

) is done in Zd

N

as follows: (k
1

, . . . , k
d

)+
(l

1

, . . . , l
d

) = (k
1

+l
1

, . . . , k
d

+l
d

) mod N . Here, mod N implies that the operation is
circulant. Note that all when considering systems over Zd

N

, we assume all operators
to be spatially invariant with respect to Zd

N

. They can therefore be represented by
convolution operators with single-index arrays as in (2.13).

2.2.3 Spatial Fourier transforms
The spatial Discrete Fourier Transform (DFT) of the array a will be denoted with
â, and we will use the letter n to denote the index, or wavenumber, of the spatial
Fourier transform. For example, the function array a

(k1,k2,...,k

d

)

has â
(n1,n2,...,n

d

)

as its Fourier transform, where the wavenumber (n
1

, n
2

, . . . , n
d

) can be thought of
as a spatial frequency variable. When analyzing systems over Zd

N

, we will use the
DFT, which for functions a

k

: Zd

N

‘æ C is defined as:

â
n

:=
ÿ

kœZd

N

a
k

e≠j

2fi

N

n·k, (2.14)

where j =


(≠1) denotes the imaginary number and n · k = n
1

k
1

+ · · · + n
d

k
d

.
The inverse Fourier transform is defined as a

k

= 1

M

q
kœZd

N

â
k

ej

2fi

N

n·k.
Function arrays can also be defined over the infinite d-dimensional torus Zd. We

then use the subscript Œ for the array, as in aŒ, with entries a
(k1,...,k

d

)

for k œ Zd.
The corresponding convolution operator is denoted AŒ. The Z-transform of aŒ
evaluated on the d-dimensional unit torus Td = [≠fi, fi]d is defined as:

âŒ(◊) :=
ÿ

kœZd

a
k

e≠j◊·k, (2.15)

where ◊ = (◊
1

, . . . , ◊
d

). Note that unlike DFT, which is discrete in the wavenumbers
n, the Z-transform is continous in ◊. Under certain conditions, which we will
exploit in Chapter 3, the DFT at wavenumbers n can be seen as subsamples of the
Z-transform at the points ◊ = 2fi

N

.
We will use the term (generalized) Fourier symbol of convolution operators for

the Fourier transform or Z-transform of the corresponding function array. For
example, â in (2.14) is the Fourier symbol of the operator A. The values that â
takes are exactly the eigenvalues of A [8]. In cases where a is matrix valued, the
eigenvalues of A are the union of all eigenvalues of â

(n1,...,n

d

)

as (n
1

, . . . , n
d

) runs
through Zd

N

(correspondingly, for AŒ, of âŒ(◊
1

, . . . , ◊
d

) for (◊
1

, . . . , ◊
d

) œ Td).
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2.3 Systems over general graphs

2.3.1 Graph theory
Let G = {V, E} be a graph, where V = {1, . . . , N} is the set of nodes, or vertices,
and E = {e

ij

} µ (V ◊ V) represents the set of edges, or network lines. Let N
i

denote the neighbor set of node i, that is, all nodes j such that e
ij

œ E .
Throughout this thesis, we will consider weighted graphs. That means that each

edge is associated with a constant, nonnegative, weight a
ij

. We can then define the
weighted graph Laplacian L by

L
ij

:=

Y
___]

___[

ÿ

kœN
i

a
ik

, if i = j,

≠a
ij

if i ”= j and j œ N
i

,

0 otherwise,

(2.16)

The elements on the diagonal L
ii

, are called the degree of node i and is equal to the
sum of the weights of all edges incident to that node. We denote the node degree
by ”

i

. In the special case where all edge weights a
ij

= 1, ”
i

is the number edges
incident to node i, which is then equal to |N

i

|.
Weighted graph Laplacians can be used to compactly describe the consensus

type dynamics in networked control problems as in the following simple example.

Example 2.1 (Average consensus) Consider a network of N agents, depicted in
Figure 2.1, each with a scalar information state x

i

, that is controlled according to:
ẋ

i

= u
i

. The control objective is for all agents to reach consensus over this state,
so that x

1

(t) = x
2

(t) = · · · = xavg, where xavg is the average of the initial states.
This can be achieved through the standard average consensus algorithm:

u
i

(t) =
ÿ

jœN
i

a
ij

(x
j

≠ x
i

).

Now, if we define the state vector x = (x
1

, . . . , x
N

)T , we can use the graph Lapla-
cian (2.16) to write the control dynamics as:

ẋ = ≠Lx. (2.17)

If the graph is connected, that is, if there is a path between any two agents in
the network, then it is well known that the control objective, i.e., consensus, will
be achieved (see for example [64]). That is, as t æ Œ, we have x

1

(t) = x
2

(t) =
· · · = xavg (in the absence of disturbances).
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Figure 2.1: A network of N sensors, where the lines symbolize communication links with
positive weights a

ij

.

Properties of graph Laplacians

We now consider a N ◊ N weighted graph Laplacian L defined as in (2.16) and list
some of its properties:

i. Symmetry. For undirected graphs, the edge from node i to node j is identical to
the edge from node j to node i. Therefore, L

ij

= L
ji

’i, j œ {1, . . . , N}, and L
is symmetric.

ii. Zero row/column sums. Since L
ii

= ≠ q
j ”=i

L
ij

, all rows and columns sum to 0.
That means that all graph Laplacians have as common eigenvector the vector 1

with all components equal to 1 that corresponds to the eigenvalue 0. That is,

L1 = 0.

Graph Laplacians are thus singular.

iii. Positive semidefiniteness. If the graph underlying the Laplacian is connected
(that is, any two nodes are connected by a path of edges), then, apart from the
simple zero eigenvalue, remaining N ≠ 1 eigenvalues are positive. If the graph is
not connected, the multiplicity of the zero eigenvalue will equal the number of
isolated subgraphs.

iv. Diagonalizability by unitary matrix. Since L is symmetric, it can be diagonalized
by a unitary matrix U whose columns are orthonormal (i.e., UúU = I), such
that L = Uú�U , where � = diag{⁄

1

, ⁄
2

, . . . , ⁄
N

} is a diagonal matrix of L’s
eigenvalues 0 = ⁄

1

Æ ⁄
2

Æ . . . Æ ⁄
N

.

2.3.2 Representation of power networks
A power network can be modeled as a graph G = (V, E), where the nodes V are
generator or load buses, and the edges E represent power lines. Each power line
has an impedance z

ij

= r
ij

+ jx
ij

, where r
ij

is the line’s resistance and x
ij

is
its reactance. Here, j =


(≠1) denotes the imaginary number in order to avoid
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confusion with the index j. An example of such a network for N = 7 is found in
Figure 4.1. The inverse of the impedance is called admittance:

y
ij

= 1
z

ij

= g
ij

≠ jb
ij

,

where g
ij

= r

ij

r

2
ij

+x

2
ij

and b
ij

= x

ij

r

2
ij

+x

2
ij

are respectively the conductance and suscep-
tance of the line. Furthermore, each node i œ V may have a shunt conductance ḡ

i

and a shunt susceptance b̄
i

which represent the node’s connection to ground.
The power network is generally modeled through the network admittance matrix

Y defined as:

Y
ij

:=

Y
___]

___[

ḡ
i

+ b̄
i

+
ÿ

kœN
i

(g
ik

≠ jb
ik

), if i = j,

≠(g
ij

≠ jb
ij

), if i ”= j and j œ N
i

,

0 otherwise.

(2.18)

where N
i

denotes the neighbor set of node i. The diagonal elements Y
ii

of the
admittance matrix is the self-admittance of node i and is equal to the sum of the
admittances of all lines incident (including the shunt) to that node.

Y can be partitioned into a real and an imaginary part and we define

Y = (L
G

+ diag{ḡ
i

}) ≠ j(L
B

+ diag{b̄
i

}) (2.19)

where L
G

is called the conductance and L
B

the susceptance matrix. The matrices
L

G

and L
B

are each weighted graph Laplacians, where the weights are, respectively,
the conductance and susceptance of each edge in the graph.





Chapter 3

Coherence of large-scale networks with

distributed dynamic feedback

In this chapter, we treat the consensus and vehicular formation problems modeled
over a d-dimensional toric lattice. We assume that the systems are subject to
distributed stochastic disturbances, and evaluate performance in terms of notions
of coherence, quantified through the steady state variance of nodal state fluctuations
with respect to a global mean, as in (1.10). In particular, we study the asymptotic
scaling of this performance measure with respect to network size. We call a system
that exhibits a better scaling more coherent than a system with bad scaling, as the
former will form a more rigid formation as the network grows.

Recent work has focused on characterizing performance limits in these types
of systems in various settings [7, 47, 9, 59, 70]. In [7], fundamental limitations
to performance in terms of network coherence were examined for consensus and
vehicular formation problems with relative, static feedback as in (1.9). In the most
problematic case, a 1-dimensional vehicle platoon, these limitations imply that even
though the network is stable and has only small errors between neighboring nodes,
it cannot be made coherent on a large scale. Instead, the formation exhibits an
“accordion-type” motion, which limits the throughput performance of the platoon.
It was shown that access to absolute measurements of all states are necessary to
achieve full coherence in such platoons.

The objective of this chapter is to address the question of whether dynamic
feedback, where the controllers are equipped with memory, may alleviate the funda-
mental performance limitations of local feedback found in [7]. We consider general
dynamic control laws with a single internal controller state at each network site.

Performance is evaluated through input-output H
2

norms, which according to
the theory in Section 2.1 can be calculated using traces of Gramians. These traces
are, in turn, sums involving eigenvalues of system matrices, which due to spatial in-
variance can be calculated as the values of the Fourier symbols of the corresponding
feedback operators. In order to evaluate the asymptotic performance of the systems,

25



26 Chapter 3. Coherence of large-scale networks with distributed dynamic feedback

bounds on the H
2

norms are established in terms of the scaling of the respective
sums with increasing network size. As a key contribution of the present work, we
propose a novel approach to evaluating such sums and their asymptotic scalings
based on general Fourier analysis, see e.g. [8]. We study the systems in the limit
of infinite toric lattices, and can therefore bound the discrete sums in the traces of
system Gramians through corresponding integrals. We show that the asymptotic
scalings of performance, as well as stability conditions, can be determined through
simple properties of these integrals.

This chapter’s main results show that it is not possible to design a dynamic
feedback law, based on relative state measurements, with better performance than
static feedback. If the controller, however, can access some absolute state measure-
ments, we show that dynamic feedback has the potential to improve asymptotic
performance scalings compared to static feedback. We give examples of such feed-
back laws and discuss their limitations.

The remainder of this chapter is outlined as follows. We first introduce the static
and dynamic control laws for the consensus and the vehicular formation problem in
Section 3.1. We define the performance meausure and give a preview of our main
result in Section 3.2 and provide the mathematical framework needed to derive this
result in Section 3.3. In Section 3.4, we evaluate the dynamic feedback laws with
respect to stability properties and performance, and discuss our main findings in
Section 3.5. We summarize and conclude this chapter in Section 3.6.

3.1 The consensus and vehicular formation problems

We now formulate models for two types of problems: consensus and vehicular for-
mations. Both problems are modeled on networks over the discrete torus Zd

N

. In
the consensus problem there is a local, scalar information state x

k

at each net-
work site, while there are two such states (position and velocity) in the vehicular
formation case.

For both models, we introduce a static controller, as considered in [7], which
we will compare to a dynamic controller with an additional memory state at each
network site, see Figure 3.1.

We also assume additive stochastic disturbances at each network site. These
persistent stochastic disturbances will cause the nodes to fluctuate around the equi-
librium point, and it is the variance of those fluctuations that we will consider as
the performance of the systems.

3.1.1 Consensus
We first consider the first order consensus algorithm in continuous time over the
discrete torus Zd

N

. The single integrator dynamics at each site k in the network is
then given by

ẋ
k

= u
k

+ w
k

, k œ Zd

N

, (3.1)



3.1. The consensus and vehicular formation problems 27

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

Figure 3.1: Controller structure for the dynamic feedback laws.

where u
k

denotes the control signal. The process disturbance w
k

, modeling random
insertions and deletions, is mutually uncorrelated across nodes, and we will model
it as a zero mean white noise.

We now introduce the two types of linear feedback control for the system (3.1).

Static feedback

In the case of static feedback, the control signal depends directly on the current
state, such that

u
k

= (Fx)
k

. (3.2)

The feedback operator F , can be suitably designed to fulfill the control objectives.
A common example of such a control scheme is the one where the control signal at
each node is the weighted average of the di�erences between that node and its 2d
neighbors, i.e.,

u
k

=f̃ [(x
(k1≠1,...,k

d

)

≠ x
k

) + (x
(k1+1,...,k

d

)

≠ x
k

) + · · ·
+ (x

(k1,...,k

d

≠1)

≠ x
k

) + (x
(k1,...,k

d

+1)

≠ x
k

)], (3.3)

where f̃ is a positive scalar. The algorithm (3.3) will be referred to as the standard
consensus algorithm. The associated function array is:

f
(k1,...,k

d

)

=

Y
_]

_[

≠2df̃ k
1

= · · · = k
d

= 0
f̃ k

i

= ±1, and k
j

= 0, for i ”= j

0 otherwise.

(3.4)

In the general case, we can write the consensus algorithm (3.1) with static
feedback as

ẋ = Fx + w. (3.5)
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k· · ·· · ·

a(k)
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N

2

0 1 2-1-2

Figure 3.2: A local function array a defined over Z
N

.

Dynamic feedback

To model the dynamic feedback, we let the controller have access to an internal
controller state z

(k1,...,k

d

)

, which is a scalar at each network site k:

u
k

= z
k

+ (Fx)
k

ż
k

= (Az)
k

+ (Bx)
k

,

where A, B, F are linear feedback operators, the properties of which will be dis-
cussed shortly. We can now write the consensus algorithm (3.1) with dynamic
feedback as:

5
ż
ẋ

6
=

5
A B
I F

6 5
z
x

6
+

5
0
I

6
w. (3.6)

3.1.2 Structural assumptions for the consensus algorithm
We now list the assumptions imposed on the system and on the feedback operators
A, B, F in the consensus algorithm. Assumptions 3.1-3.2 will also carry over to
the vehicular formation problems.
Assumption 3.1 (Spatial invariance) All feedback operators are spatially invari-
ant and fixed with respect to Zd

N

, and are therefore circular convolution operators,
as defined in (2.13).

For example, the standard consensus algorithm (3.3) can be written as the
convolution of the state x with the array (3.4).

Assumption 3.2 (Locality) All feedback operators use only local information from
a neighborhood of width 2q, where q is independent of N . For example, for the
function array f , associated with the operator F , this means that

f
(k1,...,k

d

)

= 0 if |k
i

| > q, (3.7)

for any i œ {1, 2, . . . , d}. The same condition holds for the operators A and B. The
situation is illustrated in Figure 3.2.
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Assumption 3.3 (Relative state measurements) We assume that all controllers
can only access relative measurements of the physical state x. Hence, the feedback
can only involve di�erences between states of neighboring nodes. For example, this
means that each term of the form f̃x

k

in the convolution Fx is accompanied by
another term ≠f̃x

l

, for some other index l, so that we obtain f̃(x
k

≠ x
l

).
In particular, this implies that the operators F and B in (3.5) and (3.6) have

the property ÿ

kœZd

N

f
k

= 0,
ÿ

kœZd

N

b
k

= 0. (3.8)

Since the state z is internal to the controller and is therefore always measurable,
we need not impose any similar requirements on A.

3.1.3 Vehicular formations
For the vehicular formation problem, consider M = Nd identical vehicles arranged
in the d-dimensional torus Zd

N

. The double integrator dynamics at each site k =
(k

1

, . . . , k
d

) in the torus is then

ẍ
k

= u
k

+ w
k

, (3.9)

where, as above, u
k

is the control signal and w
k

is white process noise, which models
random forcings at each site.

The position vector x
k

= [x1

k

· · · xd

k

]T at each network site, and its time deriva-
tive, the velocity vector v

k

= [v1

k

· · · vd

k

]T , are both d-dimensional vectors. Without
loss of generality, we will assume that they each represent absolute deviations from
a desired trajectory x̄

k

and constant heading velocity v̄, with

x̄
k

:= v̄t + k�
x

.

Here, �
x

is the constant spacing between the vehicles in Zd

N

.
We now introduce the two types of linear feedback control for the system (3.9).

Static feedback

The control input is here assumed to be full state feedback that is linear in the
variables x and v:

u
k

= (Fx)
k

+ (Gv)
k

.

An example of such feedback would be the combined look-ahead and look-behind
controller in a 1-D string:

u
k

=f
+

(x
k+1

≠ x
k

) + f≠(x
k≠1

≠ x
k

) + g
+

(v
k+1

≠ v
k

)+
+ g≠(v

k≠1

≠ v
k

) + f
o

x
k

+ g
o

v
k

, (3.10)

where the f ’s and g’s are positive design parameters. If f
o

and g
o

are both zero,
this control law satisfies Assumption 3.3 of relative state measurements. If f

o

”= 0
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or g
o

”= 0, we will refer to those terms in the feedback law as absolute feedback from
either position or velocity.

Suppressing the spatial index of all variables, the vehicular formation algorithm
(3.9) with the static feedback becomes

5
ẋ
v̇

6
=

5
0 I
F G

6 5
x
v

6
+

5
0
I

6
w. (3.11)

Dynamic feedback

To model the dynamic feedback law, we introduce the internal controller state
z

(k1,...,k

d

)

at each network site k, which is a d-dimensional vector containing a
memory of past position and velocity errors in each coordinate direction. We get:

u
k

= z
k

+ (Fx)
k

+ (Gv)
k

ż
k

= (Az)
k

+ (Bx)
k

+ (Cv)
k

.

An example of dynamic feedback control for double integrator systems is the
distributed averaging proportional-integral (DAPI) control from Example 1.4, which
has received much recent attention in the context of coupled oscillator systems and
control of microgrids [5, 72, 88, 79]. These systems are analogous to the present
vehicular formation problem under certain assumptions, such as absolute velocity
feedback. One DAPI control algorithm is:

u
k

=z
k

+ f
+

(x
k+1

≠ x
k

) + f≠(x
k≠1

≠ x
k

) ≠ g
o

v
k

ż
k

=a
+

(z
k+1

≠ z
k

) + a≠(z
k≠1

≠ z
k

) ≠ c
o

v
k

(3.12)

where the operator A achieves a weighted averaging of the internal state z across
nodes, which prevents unfavorable drift in the memory states at di�erent nodes
(see e.g. [5]). Such drift would, in practice, de-stabilize the system if A = 0, in
which case one has retrieved a decentralized proportional-integral (PI) controller
with respect to the velocity.

In general, we can write the equations of motion for the closed loop system with
dynamic feedback as:

S

U
ż
ẋ
v̇

T

V =

S

U
A B C
0 0 I
I F G

T

V

S

U
z
x
v

T

V +

S

U
0
0
I

T

V w. (3.13)

3.1.4 Structural assumptions for the vehicular formation problems
For the vehicular formation systems, we impose a number of assumptions in addition
to Assumptions 3.1 – 3.2 listed in Section 3.1.2:
Assumption 3.4 (Relative vs. absolute feedback) While we assume only relative
state measurements to be available in the consensus case, we will also consider the
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consequences of absolute state feedback from x and v for the vehicular formation
control. In particular, while relative feedback means that a given operator satisfies
the condition (3.8), we use the term absolute feedback when it does not.

The presence of viscous damping can be treated as a special case of absolute
state feedback. The model (3.9) can then be modified according to:

ẍ
k

= ≠µẋ
k

+ u
k

+ w
k

, (3.14)

where µ Ø 0 is the drag coe�cient. Comparing this to (3.10) we can identify µ
with g

0

, the absolute velocity feedback term.
The results presented in [7] showed that absolute state feedback is necessary

to avoid an unfavorable scaling of performance. In this thesis, we show that this
conclusion remains valid with dynamic feedback and list the results with the various
types of feedback in Theorem 3.1.

Assumption 3.5 (Reflection symmetry) The interactions between the vehicles on
Zd

N

are symmetric around each site k. This implies that the arrays associated
with the operators A, B, C, F, G have even symmetry, so that for each term like
–f

(k1,...,k

d

)

there is a term –f
(≠k1,...,≠k

d

)

. In the examples (3.10) and (3.12) this
condition requires a

+

= a≠, b
+

= b≠, f
+

= f≠ and g
+

= g≠.
A particular implication of this assumption is that the Fourier symbols of the

operators will be real valued.
This symmetry property, while not always enforced, will be relevant also in the

consensus case. By slight abuse of terminology, we will in the following refer to
a feedback operator as symmetric if the associated array has this property, and
asymmetric if it does not.

Assumption 3.6 (Coordinate decoupling) We assume that the feedback control
in each of the d coordinate directions is entirely decoupled from the vector com-
ponents in the other coordinates. We furthermore assume that the array elements
associated with the operators A, B, C, F, G are isotropic. By this assumption, the
array elements are diagonal and the convolution in (2.13b) will turn into d decou-
pled, identical, scalar convolutions.

3.2 Performance measure and main result

We are concerned with the performance of the consensus and vehicular formation
problems in terms of the amount of global “disorder” of the system at steady state.
This can be quantified as the steady state variance of nodal state fluctuations, which
are caused by persistent stochastic disturbances. In particular, we are interested
in the scaling of this performance measure with the system size. We call a system
which exhibits a better scaling more coherent than a system with bad scaling, as
the former will form a more rigid formation when the system grows. If the scaling is
such that the variance per node is bounded, the system is said to be fully coherent.
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To define the relevant performance measure, we adopt the approach in [7], but
restrict our attention to one of the three performance measures evaluated there.
First, recall from Section 2.1 a general linear MIMO system driven by zero mean
white noise w with unit intensity (that is, E{w(·)wú(t)} = ”(t ≠ ·)I):

Â̇ = AÂ + Bw (3.15a)
y = CÂ. (3.15b)

In our case, equation (3.15a) represents, for example, the feedback system in
(3.13), for which a performance output as in (3.15b) will now be defined.

Provided that the system (3.15) is input-output stable, its squared H
2

norm
from w to y can be intepreted as the total steady state variance of the output:

V :=
ÿ

kœZd

N

lim
tæŒE{yú

k

(t)y
k

(t)}. (3.16)

Throughout this chapter, we are considering spatially invariant systems over
the discrete torus Zd

N

. This implies that the variance of the output at all sites
k, E{yú

k

(t)y
k

(t)} in the network will be equal. We obtain this individual output
variance by simply dividing the total H

2

norm by the system size M = Nd:

V
M

= E{yú
k

(t)y
k

(t)} = V

M
. (3.17)

We next define the relevant output measurement:
Definition 3.1 (Deviation from average performance output) The deviation of
each state from the average of all states is measured as:

y
k

:= x
k

≠ 1
M

ÿ

lœZd

N

x
l

(3.18)

In operator form, this becomes

y = (I ≠ 1
M

J1)x =: Hdavx, (3.19)

where J1 is the convolution operator corresponding to the array of all elements
equal to 1.

We use this operator to define outputs for the consensus problems as y = Hdavx in
the case of static feedback and as

y =
#
0 Hdav

$ 5
z
x

6

in the case of dynamic feedback. In the vehicular formation case, the output will
involve positions only, so we set

y =
#
Hdav 0

$ 5
x
v

6
or y =

#
0 Hdav 0

$
S

U
z
x
v

T

V ,
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for static and dynamic feedback respectively.
It is well known that systems with consensus type dynamics, such as the ones

considered in this thesis, typically have a single marginally stable mode at the
origin corresponding to the motion of the mean state (this is a consequence of
Assumption 3.3 of relative measurements). In order for the steady state variance
in (3.16) to be finite, any unstable system modes must be unobservable from the
output. Here, the output operator Hdav is such that the corresponding array {h

k

}
has the property

q
kœZd

N

h
k

= 0 (condition (3.8)). Therefore, this mean mode is
unobservable from the output, and the H

2

norm in (3.16) will be finite, provided
remaining system modes are stable.

3.2.1 Performance scalings with static and dynamic feedback
Our main objective is to determine whether dynamic feedback in the forms (3.6)
and (3.13) may improve performance compared to the static feedback laws (3.5)
and (3.11) that were also evaluated in [7]. Throughout the following sections,
we introduce the methodology that we use to establish asymptotic scalings of the
individual output variances in (3.17). At this point, we summarize our main results
as follows:

Theorem 3.1 The asymptotic scalings of individual output variances (3.17) for the
consensus problem satisfying Assumptions 3.1 - 3.3 and the vehicular formation
problem satisfying Assumptions 3.1 - 3.2, 3.4 - 3.6 are as follows:

1. Consensus

a) Static feedback or dynamic feedback

V
M

≥ 1
—

Y
_]

_[

M d = 1
logM d = 2
1 d Ø 3,

(3.20)

2. Vehicular formations

a) Static feedback or dynamic feedback with relative position and relative
velocity feedback

V
M

≥ 1
—2

Y
______]

______[

M3 d = 1
M d = 2
M1/3 d = 3
log M d = 4
1 d Ø 5,

(3.21)

b) Static feedback or dynamic feedback with absolute position and relative
velocity feedback,
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Static feedback with relative position and absolute velocity feedback

V
M

≥ 1
—

Y
_]

_[

M d = 1
log M d = 2
1 d Ø 3,

(3.22)

c) Dynamic feedback with relative position and absolute velocity feedback,
Static feedback or dynamic feedback with absolute position and absolute
velocity feedback

V
M

≥ 1, (3.23)

where M = Nd is the total network size, — is an algorithm parameter reflecting
control e�ort, and the notation ≥ implies scaling up to a multiplicative factor that
is independent of M and —.

There are therefore no dynamic feedback laws on the forms (3.6) and (3.13)
based on only relative state measurements, that exhibit better coherence proper-
ties than static, memoryless feedback. In the vehicular formation case, the same
conclusion holds also in the case of absolute position and relative velocity feedback.

However, with absolute feedback from velocities it is, in theory, possible to
achieve full coherence in any spatial dimension using a dynamic feedback protocol,
even though position measurements are relative. This is in contrast to static feed-
back, where absolute measurements of all states are required to achieve the same
result. We will discuss implications of these results in more detail in Section 3.4.4.
Remark 3.1 All controllers we consider are strictly proper. This implies that in
the case 2b) of Theorem 3.1, absolute velocity feedback cannot be derived instan-
taneously from the absolute position measurements that are available. In order to
obtain full coherence, the controller must therefore access absolute velocity mea-
surements directly.

3.3 The limit from finite to infinite lattices

We now introduce the technical framework that will be used to determine the
asymptotic scalings of the H

2

norms in Theorem 3.1, for the consensus and vehicular
formation systems.

This novel framework is based on the idea of mapping the system dynamics
onto an infinite lattice. The H

2

norms, which are calculated using traces of system
Gramians that lead to sums involving system eigenvalues, can then, in the limit
of large systems, instead be estimated through integrals over continuous functions.
We show how the asymptotic scaling of the H

2

norm can be determined through
simple properties of that integral.
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3.3.1 Spatial convolution operators on infinite lattices

All feedback operators considered in this chapter define convolutions with local
arrays on Zd

N

, by Assumption 3.2. Hence, for a given operator A we have that
a

k

= 0 if |k| > q for some fixed q. This means that any operator array a can
be unambiguously re-defined on Z

N

Õ for any given N Õ > 2q by filling it with zero
components wherever |k| > q. This also means that any such local array can be
used to define a convolution over the infinite Zd, see Figure 3.3. As we shall see, it
will be useful to think of the sites in the finite lattice Zd

N

as sampling points of the
infinite torus Zd.

Let a be a local array defined over Zd

N

and aŒ its counterpart defined on Zd,
where the elements {a

k

} have been filled out with zeros for |k| > q up until infinity.
The Discrete Fourier Transform (DFT) of a becomes (see Section 2.2)

â
n

:=
ÿ

kœZd

N

a
k

e≠j

2fi

N

n·k (3.24)

We now take the Z-transform of aŒ evaluated on the d-dimensional unit torus
Td = [≠fi, fi]d:

âŒ(◊) :=
ÿ

kœZd

a
k

e≠j◊·k, (3.25)

where ◊ = (◊
1

, . . . , ◊
d

). Comparing (3.24) with (3.25) it is clear that the DFT of
a is simply the samples of the Z-transform of aŒ at the grid points ◊ = 2fi

N

n, for
n œ Zd

N

. That is,

â
n

= âŒ

3
2fi

N
n

4
, n œ Zd

N

. (3.26)

Given that we are interested in system behaviors as N æ Œ, it will be convenient
to consider these generalized Fourier symbols (Z-transforms) of operators over Zd,
and their behavior in the continuous variable ◊ œ [≠fi, fi]d rather than for discrete
wavenumbers.

For this purpose, let us take the general state space system (3.15) and map
the system operators A, B, C onto Zd to obtain AŒ, BŒ, CŒ. For example, in
the system (3.5), we have A = F . If we let F represent the standard consensus
algorithm (3.3), then AŒ = FŒ has the associated function array fŒ, defined just
as in (3.4), but filled with infinitely many zero components for |k| > 1.

By virtue of the spatial invariance property, AŒ, BŒ and CŒ are circulant
convolution operators and the Z-transform can be used to (block) diagonalize them,
see [8]. Then, at each ◊ œ [≠fi, fi]d, we obtain the matrix-valued ÂŒ(◊), B̂Œ(◊)
and ĈŒ(◊).

The DFTs Â
n

, B̂
n

, Ĉ
n

of A, B, C are now precisely the values of ÂŒ(◊), B̂Œ(◊)
and ĈŒ(◊) at ◊ = 2fi

N

n, for all wavenumbers n œ Zd

N

.
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k· · ·· · ·

a(k)

0 1 2-1-2

Figure 3.3: Principle for re-defining the local array a onto Z (compare to Figure 3.2).

3.3.2 H2 norm evaluation on the infinite lattice
From now on, let us assume that the state space system (3.15) is input-output
stable, so that its H

2

norm (3.16) exists. This norm can then be calculated as

V = tr
3⁄ Œ

0

BúeAú
tCúCeAtBdt

4
.

Since A, B and C are circulant convolution operators, their Fourier symbols Â
n

, B̂
n

, Ĉ
n

correspond to their eigenvalues. The trace can, according to the discussion in Sec-
tion 2.1.2, be re-written as

V = tr

Q

a
ÿ

nœZd

N

⁄ Œ

0

B̂ú
n

e
ˆAú

n

tĈú
n

Ĉ
n

e
ˆA

n

tB̂
n

dt

R

b (3.27)

Now, consider the output operator Hdav defined in (3.19). It is easy to verify that its
Fourier symbol is ĥ

0

= 0, and ĥ
n

= 1 for n ”= 0. This implies that the output matrix
Ĉ

0

= 0 for all systems we consider (the zero mode is unobservable). Consequently,
we can obtain the H

2

norm in (3.27) by summing only over n œ Zd

N

\{0}.
Furthermore, following the discussion in the previous section, we can regard the

Fourier symbols in (3.27) as subsamples of ÂŒ(◊), B̂Œ(◊) and ĈŒ(◊). Given this
relationship, we can state the individual output variances V

M

= V/Nd in (3.17), as

V
M

= 1
Nd

ÿ

◊=

2fi

N

n

nœZd

N

\{0}

tr
1

B̂ú
Œ(◊)X̂(◊)B̂Œ(◊)

2
. (3.28)

where the individual integrals are defined as follows:
Definition 3.2

X̂(◊) :=
⁄ Œ

0

e
ˆAú

Œ(◊)tĈú
Œ(◊)ĈŒ(◊)e ˆAŒ(◊)tdt (3.29)

We call X̂(◊) the observability Gramian at ◊.
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The observability Gramian at each ◊ is obtained by solving the Lyapunov equation

ÂŒ(◊)úX̂(◊) + X̂(◊)ÂŒ(◊) = ≠ĈŒ(◊)ĈŒ(◊), (3.30)

and is unique and finite provided ÂŒ(◊) is Hurwitz.
For all problem formulations from Section 3.1 that are considered here, B̂Œ(◊)

is a vector where one element1 is 1 and remaining elements are zero. Thus,
tr

1
B̂ú

Œ(◊)X̂(◊)B̂Œ(◊)
2

in (3.28) is just one element of the matrix X̂(◊) (or the
sum of d identical elements). This is a quantity that will be used throughout the
following sections and we make the following definition:
Definition 3.3

x̂tr(◊) := tr
1

B̂ú
Œ(◊)X̂(◊)B̂Œ(◊)

2
(3.31)

Since x̂tr(◊) contains all relevant properties of the observability Gramian, we will
sometimes, with a slight abuse of terminology, refer to x̂tr(◊) simply as “the Gramian”.

Now, notice that if the value of x̂tr(◊) is bounded for all ◊ œ [≠fi, fi]d, then
V

M

in (3.28) will remain bounded as N æ Œ and the system in question is to be
regarded as fully coherent. For the consensus and vehicular formation problems,
however, there is typically the single zero eigenvalue at wavenumber n = 0 (see
Section 5.3.2), which causes a singularity in x̂tr(◊) at ◊ = 0. Even though that
mode is unobservable from the system output, the singularity makes the Gramian
grow unboundedly for small ◊, that is, for small wavenumbers.

For this reason, we use the following appropriate integral to estimate the value
of the sum in (3.28) asymptotically:
Definition 3.4

I(�) :=
⁄

�Æ|◊1|Æfi

· · ·
⁄

�Æ|◊
d

|Æfi

x̂tr(◊) d◊
1

· · · d◊
d

(3.32)

where the argument � indicates the size of a deleted neighborhood around ◊ = 0.
We recognize the sum in (3.28) as a Riemann sum approximation of the inte-
gral (3.32) with volume element 1/Nd. The integral can therefore be used to bound
the sum asymptotically. Consider the following lemma:

Lemma 3.2 The individual output variances V
M

in (3.28) are upper and lower
bounded by the integral (3.32) as

I

3
4fi

N

4
Æ V

M

Æ I

3
2fi

N

4
. (3.33)

for all N > N̄ for some fixed N̄ .

1In the vehicular formation case, each “element” is a d ◊ d diagonal matrix, where each of the
d diagonal elements is equal by Assumption 3.6.
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✓

x̂

tr(✓)

-� �2�
N- 2�

N
4�
N- 4�

N

Figure 3.4: Riemann sum approximation in Lemma 3.2.

Proof: (Full argument provided in the appendix.) Since the system is assumed
input-output stable, the Gramian is continuous and bounded on any compact in-
terval [”, fi] away from zero, and therefore Riemann integrable on that interval. As
◊ æ 0, that is, for small wavenumbers, the Gramian may grow unboundedly, but
is does so montonically. Therefore, on an interval [�, ”), allowing for � æ 0, the
Gramian is monotonic and we can bound the sum by standard upper and lower
Riemann integral estimates. As N grows large, the part of the sum (3.28) where
n is such that (2fin/N) œ [”, fi] will converge to the corresponding integral so that,
beyond some N̄ , the entire sum can be bounded by the upper and lower integral
estimates as in (3.33). The integral and the the Riemann sum approximations are
illustrated in Figure 3.4.

The performance of the consensus and vehicular formation systems can now be
evaluated as follows. First, the system operators are re-defined on Zd and (block)
diagonalized using the Z-transform (3.25). Second, the Lyapunov equation (3.30) is
solved to determine x̂tr(◊). Bounds on the individual output variances V

M

are then
found through Lemma 3.2. Next, we derive general expressions for the asymptotic
scaling (in N) of the integral (3.32).

3.3.3 Bounds on asymptotic scalings
We are interested in the scaling of the individual output variances V

M

in (3.28),
with the total number of nodes M = Nd as this number grows large. Using the
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integral in (3.32) and the bounds in Lemma 3.2, we can now derive asymptotic
scalings of V

M

by exploiting properties of the Gramian x̂tr(◊).
As we described earlier, V

M

will be bounded asymptotically if the value of x̂tr(◊)
is bounded for all ◊. However, when the system has a zero eigenvalue, the Gramian
has a singularity and grows unboundedly as ◊ æ 0. This causes an unfavourable
scaling of performance. We give a simple example:

Example 3.1 Consider the standard consensus algorithm (3.3) and for simplicity
let the dimension d = 1. The Lyapunov equation (3.30) is scalar and solved by

X̂(◊) = x̂tr(◊) = 1
2

≠ĥ2

Œ(◊)
f̂Œ(◊)

(3.34)

for all ◊ œ [≠fi, fi]. The array f was given by f
0

= ≠2f̃ , f
1

= f≠1

= f̃ and f
k

= 0
for |k| > 1 and fŒ was constructed on Z by letting k æ Œ. Its Z-transform (3.25)
is then:

f̂Œ(◊) = f̃(≠2 + ej◊ + e≠j◊) = ≠2f̃(1 ≠ cos ◊). (3.35)

Recall, the output Hdav is defined such that ĥŒ(◊) = 1 for ◊ ”= 0 and ĥŒ(0) = 0.
Substituting this into (3.39), the integral in (3.32) becomes

I(�) = 1
4f̃

⁄

�Æ|◊|Æfi

1
1 ≠ cos ◊

d◊.

The lower bound in (3.33) is then

I

3
4fi

N

4
= ≠1

2f̃

5
cot ◊

2

6
fi

4fi

N

= 1
2f̃

cot 2fi

N
,

A series expansion of the cotangent function reveals that this scales as 1

˜

f

N asymp-
totically. The same holds for the upper bound in (3.33). This is in line with the
result in [7, Table 1].

In general, let us assume that the Gramian is such that

x̂tr(◊) ≥ 1
—p/2

1
(◊2

1

+ ◊2

2

+ · · · + ◊2

d

)p/2

, (3.36)

for some non-negative p. The number p characterizes the order of the singularity
of the Gramian at ◊ = 0. That is, how fast x̂tr(◊) grows as ◊ æ 0. Throughout the
thesis, we let the notation u(◊) ≥ v(◊) imply that cv(◊) Æ u(◊) Æ c̄v(◊), for some
fixed constants c, c̄ and all ◊ œ [fi, fi]d. We have also introduced — as an algorithm
parameter that reflects control e�ort (c.f. f̃ in Example 3.1).
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Example 3.2 The operator for the standard consensus algorithm (3.3) has the
(generalized) Fourier symbol f̂Œ(◊) = ≠2f̃(d≠cos ◊

1

≠ · · ·≠cos ◊
d

). Using standard
bounds of the cosine function, it is straightforward to show that the Gramian
X̂(◊) = x̂tr(◊) = ≠1

ˆ

f(◊)

satisfies (3.36) with p = 2.

The number p, that is, the order of the singularity at ◊ = 0 of x̂tr(◊), determines
the coherence properties for a given system. If p = 0, the system is fully coherent.
Otherwise, performance depends on the spatial dimension d of the network. We
now state the main result of this section:

Lemma 3.3 Assume x̂tr(◊) defined in (3.31) fulfills (3.36). The individual output
variances (3.28) then scale asymptotically as

V
M

≥ 1
—p/2

Y
_]

_[

Np≠d if d ”= p

log N if d = p

1 if d > p

(3.37)

up to some constant, which is independent of the lattice size N and the algorithm
parameter —.

Proof: First, substitute the approximation (3.36) into the integral I(�) in (3.32)
and denote the resulting integral Ĩ(�). Using hyperspherical coordinates we ob-
tain:

Ĩ(�) =
⁄

�Æ|◊1|Æfi

· · ·
⁄

�Æ|◊
d

|Æfi

1
—p/2

1
(◊2

1 +· · ·+◊2
d

)p/2 d◊1· · ·d◊
d

=
⁄

fi

�

⁄ 2fi

0

⁄
fi

0
· · ·

⁄
fi

0

1
—p/2rp

rd≠1 sind≠2„1· · ·sin „
d≠2drd„

d≠1 · · · d„1

= 1
—p/2 V

d

⁄
fi

�
rd≠p≠1dr, (3.38)

where V
d

is a constant that is proportional to the the volume of the d-dimensional
unit ball, but independent of all other variables.

By Lemma 3.2, we know that the individual output variances V
M

are bounded
as

cĨ

3
4fi

N

4
Æ I

3
4fi

N

4
Æ V

M

Æ I

3
2fi

N

4
Æ c̄Ĩ

3
2fi

N

4
,
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for all N Ø N̄ for some N̄ , and with the constants c, c̄ from (3.36). Now, substituting
for � in (3.38) the values 2fi

N

and 4fi

N

from these upper and lower bounds gives that

V
M

Æ c̄V
d

1
—p/2

I
1

p≠d

fid≠p

1!
N

2

"
p≠d ≠ 1

2
if d ”= p

log N ≠ log 2 if d = p

V
M

Ø cV
d

1
—p/2

I
1

p≠d

fid≠p

1!
N

4

"
p≠d ≠ 1

2
if d ”= p

log N ≠ log 4 if d = p

Noticing that these bounds are identical up to a constant for any given d, the result
(3.37) follows.

In the following sections we will show that all input-output stable formula-
tions of the systems considered in this chapter give observability Gramians that
satisfy (3.36) with p œ {0, 2, 4}.

3.4 Evaluation of dynamic feedback

The objective of this chapter is to study the dynamic feedback laws introduced in
Section 3.1, to determine whether they give di�erent coherence properties in large-
scale networks than static feedback. We now use the mathematical framework
introduced in the previous section to systematically evaluate these feedback laws.

We procede as follows. First, we examine stability properties of the dynamic
feedback protocols, in order to identify any feedback configurations that de-stabilize
the systems as networks grow large and which are therefore infeasible. We then
follow the approach introduced in Section 3.3 to derive asymptotic performance
scalings for feasible configurations of the consensus and the vehicular formation
problems separately. We end the section by discussing some practical implications
of our results as well as the role of control e�ort bounds.

3.4.1 Conditions for input-output stability of dynamic feedback
The performance measure (3.17) is only meaningful if the system (3.15) is input-
output stable. By the theory of Section 3.3.1, this is equivalent to ensuring that
the individual Fourier symbols are stable in their own right. We begin by re-stating
the following Theorem from previous work:

Theorem 3.4 [8, Corollary 1] The system (3.15) on Zd

N

is exponentially stable if
and only if for each n œ Zd

N

, the matrix Â
n

is stable.
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Proof: See [8, Theorem 1] and note that the group Zd

N

is compact.

In our case, since the mode at n = 0 is unobservable from the considered output,
input-output stability is guaranteed by ensuring Â

n

is stable for n œ Zd

N

\{0}.
Now, since we are evaluating these systems asymptotically, we must require

that they remain input-output stable for any given lattice size N , as this number
grows. Since the Fourier symbols Â

n

can be seen as subsamples of ÂŒ(◊), see
Section 3.3.1, the only way to ensure stability for any lattice size N is to make sure
that ÂŒ(◊) is stable for any ◊ away from zero:

Corollary 3.5 The system (3.15) on Zd

N

with output defined as in (3.19) will be
input-output stable for any lattice size N if and only if the matrix ÂŒ(◊) is stable
for all ◊ œ [≠fi, fi]d\{0}.

In the case of static feedback, it is easy to verify that the systems will be
input-output stable for any choice of feedback operators F, G in (3.5) and (3.11)
such that f̂Œ(◊), ĝŒ(◊) < 0 for all ◊ œ [≠fi, fi]d\{0}. With dynamic feedback,
however, the stability conditions are less straightforward, and it turns out that not
all feedback configurations can guarantee stability as networks grow large. We now
present such conditions on the feedback structures for the consensus and vehicular
formation problems.

Consensus

Consider the consensus protocol (3.6) with fixed feedback operators A, B, F . Corol-
lary 3.5 can only be fulfilled under certain conditions on these operators. The
following theorem provides necessary conditions for stability:

Theorem 3.6 The system (3.6) can be input-output stable with respect to the output
(3.19) for any lattice size N only if at least one of the following conditions holds:

a) The operator B is symmetric, implying that b̂Œ(◊) is real

b) The operator A involves absolute feedback, that is, A does not satisfy (3.8).

Proof: See appendix.
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Vehicular formations

For the vehicular formations, we consider the cases with relative and absolute state
feedback (see Assumption 3.4) separately and provide necessary conditions for sta-
bility.

Theorem 3.7 Assume that only relative measurements of the states x and v are
available, so that the operators F and G have the property (3.8). The system (3.13)
can be input-output stable with respect to the output (3.19) for any lattice size N
only if at least one of the following conditions holds:

a) The operator B = 0, while A ”= 0

b) The operator A involves absolute feedback, that is, A does not fulfill (3.8).

Proof: See appendix.

Theorem 3.7 implies that integral control based on position measurements cannot be
implemented for arbitrarily large networks, unless there is built-in “self-damping”
of the memory state through an absolute feedback term in A. If absolute measure-
ments of position or velocity are available to the controller, or if viscous damping
according to (3.14) is present, the criterion b) can be relaxed. Integral control based
on absolute position measurements, however, cannot be implemented regardless of
choice of A, unless absolute feedback from velocity measurements is present:

Theorem 3.8 If the operator B involves absolute feedback from positions x (i.e., B
does not have the property (3.8)), a necessary condition for stability of the system
(3.13) for any lattice size N is that the control also involves absolute feedback from
velocities v.

Proof: See appendix.

Remark 3.2 The stability criteria in Theorems 3.6 – 3.8 hold under the assumption
of fixed feedback laws, that is, that feedback gains do not change with the lattice
size N . If specific gains can increase arbitrarily as the network grows, stability can,
in theory, be maintained for any size of the network. We are, however, interested
in asymptotic scalings of performance and therefore require the feedback laws to
be “robust” with respect to system size N .
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3.4.2 Performance evaluation for the consensus case
We begin by deriving the asymptotic performance scaling for the static case (3.2).
In this case, the Lyapunov equation (3.30) is a scalar equation, which is solved by

X̂(◊) = x̂tr(◊) = ≠1
2Re{f̂Œ(◊)} , (3.39)

The real part of the generalized Fourier symbol (3.25) of FŒ is

Re{f̂Œ(◊)} =
ÿ

kœZd

f
k

cos(◊ · k)

=
ÿ

kœZd

f
k

[1 ≠ (1 ≠ cos(◊ · k))]

= ≠
ÿ

kœZd

f
k

(1 ≠ cos(◊ · k)) , (3.40)

where we have used Assumption 3.3 of relative measurements, which implies thatq
kœZd

f
k

=
q

kœZd

N

f
k

= 0. Now, since for any x, it holds that 1 ≠ cos x Æ x2, we
have

------

ÿ

kœZd

f
k

(1 ≠ cos(◊ · k))

------
Æ

ÿ

kœZd

|f
k

| (k
1

◊
1

+ · · · + k
d

◊
d

)2

Æ
ÿ

0 ”=kœZd

||f ||Œq2 (|◊
1

| + · · · + |◊
d

|)2

Æ (2q)d||f ||Œq2(2d + 1)(◊2

1

+ · · · + ◊2

d

), (3.41)

where the second inequality follows from the locality assumption (3.7) and the third
from the fact that for any d numbers:

A
dÿ

i=1

x
i

B2

=
dÿ

i=1

x2
i

+
dÿ

i=1

ÿ

j ”=i

x
i

x
j

Æ
dÿ

i=1

x2
i

+
dÿ

i=1

ÿ

j ”=i

(x2
i

+ x2
j

)

Æ
dÿ

i=1

x2
i

+ 2d

dÿ

i=1

x2
i

= (2d + 1)
dÿ

i=1

x2
i

. (3.42)

The corresponding lower bound is established by considering a “minimal” feed-
back strategy; nearest neighbor look-ahead control, u

k

= f̃ [(x
(k1+1,...,k

d

)

≠ x
k

) +
· · · + (x

(k1,...,k

d

+1)

≠ x
k

)]. The corresponding Fourier symbol is:

f̂Œ(◊) = ≠f̃

A
d +

dÿ

i=1

e≠j◊

i

B
= ≠f̃

dÿ

i=1

(1 ≠ cos ◊
i

) ≠ jf̃

dÿ

i=1

sin ◊
i

, (3.43)



3.4. Evaluation of dynamic feedback 45

and Re{f̂Œ(◊)} = ≠f̃
q

d

i=1

(1 ≠ cos ◊
i

). Using the fact that for any x œ [≠fi, fi],
1 ≠ cos x Ø 2

fi

2 x2 we get

f̃

dÿ

i=1

(1 ≠ cos ◊
i

) Ø f̃

dÿ

i=1

2
fi2

◊2

i

= 2d

fi2

f̃(◊2

1

+ ◊2

2

+ · · · + ◊2

d

). (3.44)

Combining (3.41) and (3.44) with (3.39), we obtain

1
2

1
(2q)d||f ||Œq2(2d + 1)(◊2

1

+ · · · + ◊2

d

) Æ x̂tr(◊) Æ 1
2

1
2

fi

2 f̃d(◊2

1

+ · · · + ◊2

d

)
. (3.45)

Now, we can identify the algorithm parameter — = f̃ = c||f ||Œ for some constant
c Æ 1. These parameters are bounded in terms of control e�ort, which we discuss
in Section 3.4.5. Remaining coe�cients are independent of network size N , and we
therefore have that

x̂tr(◊) = ≠1
2Re{f̂Œ(◊)} ≥ 1

—

1
(◊2

1

+ · · · + ◊2

d

) , (3.46)

that is, x̂tr(◊) satisfies (3.36) with p = 2. The individual output variances under
the feedback scheme (3.2) thus scale according to Lemma 3.3 with p = 2.

Note that the performance of the consensus system with static feedback is inde-
pendent of any imaginary parts of the Fourier symbols f̂Œ(◊), as seen from (3.39).
It is therefore independent of whether the feedback operator F is symmetric or not.
When answering the question of whether dynamic feedback, that is, an additional
layer of control, may improve performance, it is therefore reasonable to make the
following assumption:
Assumption 3.7 The operator F in the dynamic consensus protocol (3.6) is sym-
metric, that is, it fulfills the properties listed in Assumption 3.5.

Now we turn to the case of dynamic feedback (3.6), and assume that the choice of
operators A, B, F is feasible, that is, that the stability conditions from Section 3.4.1
are fulfilled. The solution to the Lyapunov equation (3.30) then gives that

x̂tr(◊) = ≠1
2f̂Œ(◊) + 2Ïc(âŒ(◊), f̂Œ(◊), b̂Œ(◊))

, (3.47)

where Ïc(âŒ(◊), f̂Œ(◊), b̂Œ(◊)) is a function of the respective Fourier symbols. This
Gramian would give an asymptotic scaling di�erent from (3.46) if the function Ïc

were non-zero and scaled di�erently in ◊ than f̂Œ(◊), for which we established
f̂Œ(◊) ≥ ≠—(◊2

1

+ . . . + ◊2

d

). This is, however, not the case for any admissible
configuration of the feedback operators A and B. Consider the following lemma:
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Lemma 3.9 For any feasible choice of the operators A, B, F in (3.6) satisfying
Assumptions 3.1 - 3.3, 3.7, the function Ïc in (3.47) is such that

f̂Œ(◊) + Ïc(âŒ(◊), f̂Œ(◊), b̂Œ(◊)) ≥ ≠—(◊2

1

+ . . . + ◊2

d

). (3.48)

Therefore, x̂tr(◊) in (3.47) will fulfill (3.36) with p = 2 for any design of the dynamic
feedback.

Proof: See appendix.

The asymptotic performance scaling will thus be unchanged compared to static
feedback. Rewriting the asymptotic scalings from Lemma 3.3 in terms of total
network size M = Nd gives the result in Theorem 3.1.

3.4.3 Performance evaluation for vehicular formations
Following the outline of the previous section, we begin by evaluating the static
feedback case (3.11). The solution to the Lyapunov equation (3.30) gives that

x̂tr(◊) = d

2f̂Œ(◊)ĝŒ(◊)
. (3.49)

In the case of relative position and relative velocity feedback, each of f̂Œ(◊) and
ĝŒ(◊) looks like Re{f̂Œ(◊)} in the consensus case, see (3.46). We can therefore
bound (3.49) as

x̂tr(◊) = d

2f̂Œ(◊)ĝŒ(◊)
≥ 1

—2(◊2

1

+ . . . + ◊2

d

)2

.

The individual output variances thus scale as in Lemma 3.3 with p = 4.
In the case of absolute velocity and relative position feedback, we can use (3.40)

to write ĝŒ(◊) = ĝ
0

≠q
kœZd

g
k

(1 ≠ cos(◊ · k)), where ĝ
0

=
q

kœZd

g
k

< 0 to ensure
stability. In this case, ĝŒ(◊) is uniformly bounded while f̂Œ(◊) scales as before.
We then have that x̂tr(◊) ≥ 1/(—

!
◊2

1

+ . . . + ◊2

d

"
). The same argument holds if

absolute position feedback is available, but velocity feedback is relative. In these
cases, performance scales as in Lemma 3.3 with p = 2.

In cases where there is absolute feedback from both position and velocity, f̂Œ(◊)
and ĝŒ(◊) are both uniformly bounded. Therefore, x̂tr(◊) in (3.49) remains bounded
for all ◊ œ [≠fi, fi]d (so p = 0 in Lemma 3.3) and the system is fully coherent.

These results for the static case, which are in line with those in [7, Table 1], are
summarized in Theorem 3.1.
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Now, consider dynamic feedback on the form (3.13). Provided the feedback
configuration is feasible, that is, that the stability conditions from Section 3.4.1 are
fulfilled, the solution to the Lyapunov equation (3.30) gives that

x̂tr(◊) = d

2f̂ ĝ + 2Ïv(â, b̂, ĉ, f̂ , ĝ)
, (3.50)

where Ïv(â, b̂, ĉ, f̂ , ĝ) is a function of the respective Fourier symbols (we have omit-
ted the Œ-subscripts and the ◊-arguments for notational compactness).

First, we note that in the case of absolute feedback from both position and ve-
locity, dynamic feedback can yield a fully coherent system just like static feedback.
This can be recognized by noting that if (3.49) is bounded, then so is (3.50) if Ïv

is non-negative. This is easy to achieve, for example by choosing A as in the stan-
dard consensus algorithm (3.3) and C = ≠c

o

I. In this case we have, using (3.71),
Ïv ≥ c

o

g
o

, where g
o

is the absolute feedback term in G.
We analyze (3.50) for remaining cases below:

Relative position and relative velocity feedback

In order for x̂tr(◊) in (3.50) to give a di�erent asymptotic scaling than (3.49), the
function Ïv would need to scale di�erently in ◊ from the product f̂Œ(◊)ĝŒ(◊), for
which we established f̂Œ(◊)ĝŒ(◊) ≥ —2

!
◊2

1

+ . . . + ◊2

d

"
2. This is, however, not the

case for any feasible configuration of the operators A, B, C, F, G with feedback only
from relative measurements of position and velocity. Consider the following lemma:

Lemma 3.10 For any feasible choice of the operators A, B, C, F, G in (3.13) with
only relative feedback in B, C, F, G, the function Ïv in (3.50) is such that

f̂ ĝ + Ïv(â, b̂, ĉ, f̂ , ĝ) ≥ —2(◊2

1

+ . . . + ◊2

d

)2, (3.51)

Therefore, x̂tr(◊) in (3.50) will satisfy (3.36) with p = 4 for any design of the
dynamic feedback.

Proof: See appendix.

We conclude that in the case of relative position and relative velocity feedback, dy-
namic feedback on the form (3.13) cannot improve asymptotic performance scaling
compared to static feedback.
Remark 3.3 Certain choices of A, B, C, F, G in (3.13) may make it seem as if one
could achieve Ïv ≥ ≠—(◊2

1

+ . . . + ◊2

d

)2, and thereby make x̂tr(◊) scale as in (3.37)
with p = 2. For example, if A = 0, it holds Ïv(â, b̂, ĉ, f̂ , ĝ) = b̂ + ĉĝ and one could
choose B as the standard consensus operator (3.3). However, such a choice always
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de-stabilizes the system at some given system size N , as seen from Theorem 3.7.
The performance metric (3.17) is therefore not defined asymptotically.

Absolute position and relative velocity feedback

By Theorem 3.8 it is not possible to design a stable distributed integral controller
based on absolute measurements of position, unless absolute velocity measurements
are available. Dynamic feedback on the form (3.13) can therefore not improve
performance compared to static feedback in this case:

Lemma 3.11 For any feasible choice of the A, B, C, F, G in (3.13) with absolute
position and relative velocity feedback, the denominator in (3.50) satisfies

f̂ ĝ + Ïv(â, b̂, ĉ, f̂ , ĝ) ≥ —(◊2

1

+ . . . + ◊2

d

). (3.52)

Therefore, (3.50) will satisfy (3.36) with p = 2 for any design of the dynamic
feedback.

Proof: See appendix.

Relative position and absolute velocity feedback

In this case, we first consider the distributed averaging proportional integral (DAPI)
controller (3.12) for the 1-dimensional vehicular platoon. The solution to the Lya-
punov equation yields

x̂tr

DAPI

(◊) = 1
2f̂ ĝ ≠ 2 ĉ

ˆ

f(â+ĝ)

â

2
+ĝâ≠ ˆ

f

, (3.53)

where we have, again, left out the Œ≠subscript and the arguments of the individual
Fourier symbols.

By Assumption 3.5, A and F in the DAPI algorithm are just standard consensus
operators with Fourier symbols as in (3.35), while G = ≠g

o

I and C = ≠c
o

I, with
c

o

, g
o

> 0 to ensure stability. Inserting into (3.53) yields (after some simplifica-
tions):

x̂tr

DAPI

(◊) = 1
4g

o

f
+

(1 ≠ cos ◊) + 2 c

o

g

o

f++2c

o

f+a+(1≠cos ◊)

f++a+g

o

+2a

2
+(1≠cos ◊)

,

which is uniformly bounded in ◊. By Lemma 3.3, the 1D vehicular platoon with
DAPI control is therefore fully coherent. This is in contrast to static feedback,
which for this feedback type yields the asymptotic performance scaling in (3.22),
and therefore requires 3 spatial dimensions to be fully coherent.
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Other designs of the dynamic feedback in (3.13) with absolute velocity measure-
ments can give the same result as the DAPI strategy. In particlular, G and C can
include feedback from velocity errors with respect to neighboring vehicles and B
can be non-zero. To achieve full coherence, however, all of these algorithms require
perfect measurements of the velocities. We discuss such limitations in Section 3.4.4.

The asymptotic performance scalings for all cases of the vehicular formation
algorithm with static and dynamic feedback are summarized in Theorem 3.1, where
they have been re-written in terms of total network size M = Nd.

3.4.4 Limitations of distributed integral control
In the previous section, we established that dynamic feedback such as the DAPI
algorithm (3.12) can yield a fully coherent vehicular formation in any spatial di-
mension provided that it has access to absolute measurements of velocities with
respect to a global reference frame. This situation is reasonable in actual vehicular
platoons, where one can assume that each vehicle’s speedometer can provide abso-
lute velocity measurements, while absolute position data, which would have to rely
on GPS, is less readily available.

An intuitive explanation to this result is that a dynamic feedback protocol can
serve as a distributed integral controller, which integrates absolute measurements
of velocities in time to yield a substitute for absolute position data. With absolute
data from both position and velocity, formations are known to be fully coherent.
However, this strategy is essentially so-called “dead reckoning” and, as may be
intuitively evident, it is sensitive to faulty measurements.

One issue arises when di�erent controllers’ memory states z
k

diverge due to
slight measurement errors. This issue appears in completely decentralized integral
control, but can be solved through distributed averaging of the memory states
between controllers, see e.g. [5]. In our case, distributed averaging is achieved
by allowing A in (3.13) to be a consensus-type operator, as in the DAPI example
(3.12).

Unfortunately, though, measurement errors still cause deteriorated coherence
properties in distributed integral control. As a simple analysis, consider the case
where the velocity measurements in (3.12) are subject to white measurement noise
wm

k

, in addition to the previously assumed process noise w
k

in (3.9). We get:

ẍ
k

=z
k

+ f
+

(x
k+1

≠ x
k

) + f≠(x
k≠1

≠ x
k

) ≠ g
o

v
k

+ w
k

ż
k

=a
+

(z
k+1

≠ z
k

) + a≠(z
k≠1

≠ z
k

) ≠ c
o

v
k

+ Áwm

k

, (3.54)

where Á is a scaling factor. Since the input matrix B in (3.15) has changed, it now
holds that tr

1
B̂ú

Œ(◊)X̂(◊)B̂Œ(◊)
2

= x̂tr

DAPI

(◊) + x̂z(◊), where x̂tr

DAPI

(◊) was given
in (3.53) and

x̂z(◊) = Á2

â + ĝ

2(≠âf̂)(âĉ + ĉĝ + f̂ ĝ ≠ âĝ2 ≠ â2ĝ)
. (3.55)
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Inserting the Fourier symbols from Section 3.4.3 reveals that x̂z(◊) ≥ Á2/(a
+

f
+

(1≠
cos ◊)2), and by the bounds established in Section 3.4.2, it holds x̂z(◊) ≥ Á2/(—2◊4).
By Lemma 3.3, the individual output variances then scale like V

M

≥ (Á2/—2)N3

in the 1-dimensional platoon. Through a simple modification of the algorithm, for
example an addition of the terms b

+

(x
k+1

≠ x
k

) + b≠(x
k+1

≠ x
k

) to the z-dynamics
in (3.54), we can instead obtain

V
M

≥ Á2

—
N. (3.56)

If the noise is small relative the feedback gains (making the quotient Á/— small),
variances remain small, but their scaling is unfavorable, preventing the system from
being fully coherent.

The result (3.56) shows that, unless measurements are faultless, performance
still scales badly asymptotically in 1-dimensional vehicular platoons. This indi-
cates that the limitation to performance of large-scale networks relying (partly) on
relative feedback described in [7] remains and cannot be alleviated in practice using
dynamic feedback on the form (3.13).

However, for moderately sized platoons, the performance measure in (3.17) can
still be improved in absolute terms, in particular if the factor Á is small. In Figure 6.3
we compare simulations of a 100-vehicle platoon with, respectively, static feedback
as in (3.10) and dynamic feedback of the type (3.54) (with b

+

(x
k+1

≠x
k

)+b≠(x
k+1

≠
x

k

) added to the z-dynamics.) We note that the best performance is achieved with
the DAPI-type dynamic feedback, despite noisy measurements.

3.4.5 Control e�ort bounds
In the above derivations, we introduced the algorithm parameter —, which reflects
the size of the feedback gains. This parameter a�ects the performance scaling, as
evident from our main result in Theorem 3.1. In particular, if feedback gains, and
thereby —, could be increased unboundedly and at the rate M (or M3/2 in the case
of (3.21)), coherence could be achieved in any spatial dimension. This is clearly
not feasible in any realistic control problem, where the amount of control e�ort is
bounded. In fact, the feedback array elements are bounded by the total control
e�ort at each network site, which we quantify through:

E{uú
k

u
k

}, (3.57)

that is, the steady state variance of the control signal at each network site. In [7,
Lemma 5.1], such bounds are presented for the case of static feedback. Here,
we present bounds for the dynamic feedback case, but limit the analysis to the
consensus algorithm with symmetric feedback for the sake of brevity:
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(c) Dynamic feedback, abs. velocity, rel. position

Figure 3.5: Vehicle position trajectories (relative to lead vehicle) for a 100 vehicle forma-
tion subjct to random disturbances. With only relative state measurements, the formation
has an accordion-type motion (a). Such motion is also present to a lesser extent in (b),
which displays the static feedback law in (3.10) with absolute velocity and relative posi-
tion feedback. With dynamic feedback (c) the formation is more coherent, even though
measurement noise is present. In the example Á = 0.1, and all feedback gains are 1.
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Lemma 3.12 Consider the consensus problem with dynamic feedback (3.6), where
the feedback operators A, B, F satisfy Assumptions 3.2 and 3.5. The following
bounds hold:

E{uú
k

u
k

} Ø 1
2 ||f ||Œ (3.58a)

E{uú
k

u
k

} Ø
Û3 ||a||Œ

4

4
2

+ ||b||Œ
4(2q)d

≠ ||a||Œ
4 (3.58b)

Proof: See appendix.

Note that the constants in the bounds are independent of network size. We can
conclude that the asymptotic scalings for the consensus problem in Theorem 3.1
will apply to any algorithm with control e�ort constraints.

3.5 Discussion

We now discuss some implications of our main results along with key limitations
and open questions.

3.5.1 Limitations of dynamic feedback
The main results of this chapter say that for consensus as well as for vehicular
formation systems, it is not possible to design a dynamic feedback protocol on the
forms (3.6) and (3.13), based on relative state measurements, that exhibits better
coherence properties than static, memoryless feedback. In this sense, the funda-
mental performance limitation of local feedback that was derived in [7] remains
valid also in the case where the controller at each site has a single memory state.
In the most problematic case, a 1-dimensional vehicle platoon, these limitations
imply that even though the network is stable and has only small and well-regulated
errors between neighboring nodes (see Figure 3.6), it cannot be made coherent on a
large scale [7]. Instead, it will exhibit an “accordion-type” motion, as displayed in
Figure 3.5a. We remark that the performance of a given network depends strongly
on the lattice dimension or, in other words, on how well-interconnected the network
is. For example, a vehicle platoon with relative feedback can, in theory, be fully
coherent if its feedback links build up a 5-dimensional lattice.

If the controller, however, has access to absolute state information at each net-
work site, we showed that a dynamic feedback protocol can be designed so that it
su�ces to have absolute information of one of the states to achieve full coherence in
a 1-dimensional formation, provided that measurement is noiseless. In contrast, a
static feedback protocol requires absolute measurements of all states. This implies
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Figure 3.6: Zoomed-in view of position trajectories in a 100 vehicle formation with only
relative feedback. Locally, errors are well-regulated. The system is, for example, string
stable (see Example 1.1). On a global scale, however, the platoon lacks coherence, as seen
in Figure 3.5a. We remark that the same comparison was also made in [7].

that a distributed integral controller utilizing absolute measurements of velocity
can, in theory, make a 1-dimensional vehicular platoon fully coherent, even though
position is measured locally. While this result requires perfect velocity measure-
ments to hold, it indicates that dynamic feedback can improve coherence, and thus
rigidity and throughput, in large vehicular platoons, where velocity information is
typically more readily available than position data.

The reason for this apparent performance improvement in the double-integrator
system (3.9) is that the dynamic feedback law serves as a distributed integral con-
troller, that integrates absolute measurements of one state to yield a substitute
for an absolute measurement of the other state. Intuitively, this idea can be ex-
tended to systems with n-integrator dynamics. In that case, n≠1 internal controller
states would be required to integrate one absolute state measurement and thereby
make absolute feedback of all states available. In practice, however, such a “dead
reckoning” strategy performs badly due to measurement noise and bias.

In the process of deriving these results, we showed that several classes of dy-
namic feedbacks will de-stabilize large networks, in particular in the case where only
relative, local, measurements are available. Therefore, many distributed dynamic
feedback laws that may work well for small formations, will become unstable if the
formation grows. In general, we show that this can be avoided if absolute feedback
is present, either from the physical states or from the internal memory state.

3.5.2 Model extensions
We made a number of limiting assumptions in the present study, partly to limit the
scope and partly for tractability purposes. The limitation of the scope to dynamic
feedback laws with a single memory state is arguably the most important restriction,
and for a complete evaluation of dynamic feedback, the number of memory states
should be arbitrary. In particular, it is an open question whether a controller with
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infinitely many memory states can eliminate the singularity in the system Gramian,
which otherwise causes unfavorable performance scaling.

We also restricted the feedback laws in the vehicular formation case to exhibit
reflection symmetry. The results in the consensus case were, however, derived
without such a limitation on the dynamic feedback layer. We therefore conjecture
that this assumption can be relaxed also for the vehicular formation system without
a�ecting the results.

The e�ect of di�erent control architectures was not considered in the present
study. A possible alternative architecture is one in which each controller can a�ect
the plants at neighboring nodes as well as the own plant. The the dynamic control
law would then look like u

k

= (Dz)
k

+(Fx)
k

in the consensus case and u
k

= (Dz)
k

+
(Fx)

k

+ (Gv)
k

in the vehicular formation case, where D is any feedback operator.
Preliminary evaluations show that this does not a�ect our main result. Since this
model, while being theoretically intriguing, may not be meaningful in a realistic
control system, we have limited the scope here to the control architecture depicted
in Figure 3.1. In Chapter 6, we also discuss a centralized control architecture in
the context of frequency control in power networks.

3.6 Concluding summary of Chapter 3

We have treated consensus and vehicular formation control problems modeled over
regular lattice structures. We evaluated performance in terms of notions of co-
herence, quantified through the variance of nodal state fluctuations, for which we
studied asymptotic scalings with respect to the network size. As the main contri-
bution of this chapter, we addressed the question of whether a dynamic feedback
law can improve performance compared to static feedback.

We developed a novel technical framework to evaluate the systems and their
asymptotic performance scalings based on general Fourier analysis. We exploited
the locality property of the feedback operators to redefine them on an infinite toric
lattice, which allowed us to regard the system’s discrete Fourier symbols as subsam-
ples of a Z-transform. The H

2

norms used to evaluate input-output performance,
which are calculated using sums involving Fourier symbols, could then be approx-
imated through corresponding integrals over functions of the Z-transform. The
asymptotic performance scalings were then derived using simple properties of such
integrals.

We found that it is not possible to design a dynamic feedback law based on rel-
ative state measurements that improves performance compared to static feedback.
With relative feedback, connections in 3 spatial dimensions are instead needed
to achieve full coherence in the consensus case, while 5 dimensions are needed in
the vehicular formation case. If the controller, however, can access some abso-
lute state measurements, dynamic feedback can improve asymptotic performance
scalings compared to static feedback, provided the absolute state measurements
are noiseless. This implies that a 1-dimensional vehicular formation using a dy-
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namic feedback protocol could in theory become fully coherent. Since noiseless
measurements are, however, never available in practice, our results show that the
fundamental limitation to feedback based on local, relative measurements that were
found in [7] remain valid with dynamic feedback.
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Appendix to Chapter 3

Proof of Lemma 3.2
Given that ÂŒ(◊) is Hurwitz, possibly except the unobservable mode ÂŒ(0), the
integrand x̂tr(◊) [≠fi, fi]d ‘æ R is continuous and bounded over the compact domain
given by the punctured multivariable rectangle. The function x̂tr(◊) is therefore
Riemann integrable on that domain. In particular, it is Riemann integrable on the
domain ” Æ |◊

i

| Æ fi for i = 1, . . . , d and any fixed ” > 0.
In the interval � < |◊

i

| < ”, allowing for � æ 0 the integrand will instead
be monotonic. For simplicity, we show this through the scalar case in which
ÂŒ(◊) = âŒ(◊) =

q
kœZd

a
k

e≠j◊·k, which we know to be negative outside ◊ = 0 for
stability reasons. Solving the Lyapunov equation (3.30) then gives X̂(◊) = x̂tr(◊) =

≠1

2

q
kœZd

a

k

cos(◊·k)

for ◊ œ [≠fi, fi]d\{0}. Its derivative in each coordinate direction
i = 1, . . . , d is

dx̂tr(◊)
d◊

i

=
≠2

q
kœZd

a
k

k
i

sin(k
1

◊
1

+ · · · k
d

◊
d

)
(2

q
kœZd

a
k

cos(k
1

◊
1

+ · · · k
d

◊
d

))2

.

By the locality asssumption (3.7), it satisfies dx̂

tr
(◊)

d◊

i

< 0 for ◊
i

œ (0, ”) and dx̂

tr
(◊)

d◊

i

>
0 for ◊

i

œ (≠”, 0) with ” Ø fi/q, since it holds

sgn(sin(kx)) = sgn(x) for|x| Æ fi

k
.

The integrand x̂tr(◊) is thus monotonically decreasing away from zero for |◊
i

| Æ ”,
where ” can always be fixed.

A similar argument holds for when ÂŒ(◊) is matrix-valued, in which case one
considers matrix-valued coe�cients of the Z-transform.

It is well-known that integrals of monotonic functions f(x) can be estimated
by upper and lower Riemann sums;

s
n+1

m

f(x)dx Æ q
n

k=m

f(k) Æ s
n

m≠1

f(x)dx if
f(x) decreasing (and the opposite if f(x) increasing). We use this to bound the
monotonic part of the sum in (3.28):

V ”
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= 1
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ÿ

◊= 2fi
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n

|n
i

|< ”N

2fi

tr
!
B̂ú

Œ(◊)X̂(◊)B̂Œ(◊)
"

(3.59)

by the integral from � to ”:

I”(�) :=
⁄

�Æ|◊1|Æ”

· · ·
⁄

�Æ|◊
d

|Æ”

x̂tr(◊)d◊1 · · · d◊
d

(3.60)

as
I”(4fi

N
) Æ V ”

M

Æ I”(2fi

N
), (3.61)
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since 2fi/N and 4fi/N are the first two wavenumbers (or sampling points in the
sum). Here, N

”

is the number of summands for which |n
i

| < ”N

2fi

. For the remainder
of the sum, we use the Riemann integrability away from zero. That is, let

V fi
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ÿ
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and note that lim
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= Ifi, where Ifi :=
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.
Therefore, at some N̄ , we will have that |V fi

¯
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≠ Ifi| < I”( 2fi

¯
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) ≠ I”( 4fi

¯

N

), so that

I”(4fi

N
) + Ifi Æ V ”
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+ V fi
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Æ I”(2fi

N
) + Ifi,

for all N > N̄ , which is precisely equivalent to the statement of Lemma 3.2.

Proof of Theorem 3.6

Each block matrix ÂŒ(◊) =
5
âŒ(◊) b̂Œ(◊)

1 f̂Œ(◊)

6
has eigenvalues

⁄
1,2

= f̂ + â

2 ±
ı̂ıÙ

A
f̂ ≠ â

2

B
2

+ b̂, (3.62)

where we omit the Œ≠subscript and the argument ◊ of the individual Fourier
symbols for notational compactness. The system is input-output stable if and only
if Re{⁄

1,2

(◊)} < 0 for every ◊ ”= 0. To find necessary conditions for stability, it
su�ces that we study this condition along one of the coordinate directions, so we
let ◊ = (◊

1

, 0, . . . , 0).
A necessary condition for stability becomes:

-----Re
I

f̂ + â

2

J----- >

-------
Re

Y
_]

_[

ı̂ıÙ
A

f̂ ≠ â

2

B
2

+ b̂

Z
_̂

_\

-------
. (3.63)

If â, b̂, f̂ are real, (3.63) holds as long as b̂ < âf̂ , which is true if b̂, â, f̂ < 0.
If â, b̂, f̂ are not all real, the number under the square root on the right hand side

of (3.63) will be complex-valued. Recall that for any complex number z = |z|ej„,
arg{z1/2} = 1

2

arg{z}. Therefore, in particular, if the argument is near ±fi/2, then
Re{Ô

z} =
|z| cos(„/2) can become large compared to Re{z} = |z| cos(„). In our

case, this means that in order to satisfy (3.63), the imaginary part of the number
under the square root cannot become too large compared to the real part.
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Consider therefore the standard Maclaurin expansions of the Z-transforms â, b̂, f̂
along ◊ = (◊

1

, 0, . . . , 0). To derive necessary conditions for stability, it su�ces
to consider the first approximations of the Z-transforms near ◊ = 0, which are
âŒ(◊) ¥ â
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2
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1

(b̂
0

= f̂
0

= 0 due to Assumption 3.3). Note that the coe�cients â
0

, â
1

and b̂
1

can
be zero if the corresponding operator is symmetric and/or lacks absolute feedback,
but b̂

2

, f̂
2

must be nonzero for a meaningful feedback design.
Expanding the radicand on the RHS of (3.63) with these Maclaurin expansions

gives
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Now, note that if b̂
1

”= 0, then the imaginary part of R, Im{R}, can grow linearly in
◊

1

near zero. Unless â
0

”= 0, the real part, on the other hand, will grow quadratically
in ◊

1

, causing Im{R} to become arbitrarily many times larger than Re{R} as ◊
1

æ
0. This puts arg{R} near ±fi/2 and Re{Ô

R} can become arbitrarily many times
larger than Re{R}. The LHS of (3.63) also grows quadratically in ◊
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and will therefore also be smaller than Re{Ô
R} near ◊

1

= 0. We conclude that
(3.63) cannot be fulfilled in the case where b̂

1

”= 0, â
0

= 0.
Necessary conditions for input-output-stability are therefore that b̂

1

= 0, i.e., b̂
real (B symmetric), or that â

0

”= 0 (absolute feedback in A).

Proof of Theorems 3.7 and 3.8
The characteristic polynomial of the matrix ÂŒ(◊) is

p(⁄, ◊) = ⁄3 ≠ (â + ĝ)⁄2 + (âĝ ≠ f̂ ≠ ĉ)⁄ + âf̂ ≠ b̂, (3.65)

where we have again omitted the Œ≠subscript and the argument ◊ of the Fourier
symbols. As in the previous proof, we study stability along the coordinate ◊

1

,
while letting ◊

2

, · · · , ◊
d

= 0. Recall that all Fourier symbols are now real-valued by
Assumption 3.5. We can therefore use the Routh-Hurwitz stability criteria which
state that; given a characteristic polynomial p(⁄) = m

3

⁄3 +m
2

⁄2 +m
1

⁄+m
0

, then
necessary and su�cient criteria for stability are that



3.6. Concluding summary of Chapter 3 59

(i) m
i

> 0, i = 0, 1, 2, 3,

(ii) m
2

m
1

> m
3

m
0

.

In the case of (3.65), a necessary condition for fulfilling (i) is that we do not have
â = 0, b̂ = 0 simultaneously. The condition (i) can otherwise easily be fulfilled, e.g.,
by ensuring â, b̂, ĉ, f̂ , ĝ < 0. Assuming (i) is fulfilled, consider (ii), which says that:

≠(â + ĝ)(âĝ ≠ f̂ ≠ ĉ) > âf̂ ≠ b̂. (3.66)

First, we note that if b̂ = 0, then (3.66) reduces to ≠â2ĝ ≠ âĝ2 + âĉ+ ĝf̂ + ĝĉ, which
is also automatically fulfilled if â, b̂, ĉ, f̂ , ĝ < 0.

For the case where b̂ ”= 0, we follow the approach in the previous proof and
substitute the Maclaurin expansions of the Fourier symbols into (3.66). That is,
we set âŒ(◊) ¥ â

0

+ â
2

◊2

1

and analogously for b̂, ĉ, f̂ , ĝ. Note that the absolute
term is only nonzero if absolute feedback is present. To a first approximation near
◊

1

= 0 (3.66) then becomes:

≠(â0+ĝ0+(â2+ĝ2)◊2
1)(â0ĝ0≠f̂0≠ĉ0+(â0ĝ2+â2ĝ0≠f̂2≠ĉ2)◊2

1 + â2ĝ2◊4
1)

> ≠b̂0≠b̂2◊2
1 +â0f̂0+(â0f̂2+â2f̂0)◊2

1 +â2f̂2◊4
1 (3.67)

By condition (i), both sides of the inequality are positive. Now, if the RHS scales in
lower powers of ◊

1

than the LHS, then near ◊
1

= 0 it becomes arbitrarily many times
larger than the LHS, and (3.67) cannot be fulfilled. In particular, if b̂

0

= 0, but
b̂

2

”= 0, then the RHS scales as ◊2

1

, and it must hold that at least one of â
0

, ĉ
0

, f̂
0

, ĝ
0

is nonzero for the LHS to have the same scaling. If only relative feedback from the
states x and v is available, then it is only possible to set â

0

< 0, which is then also
necessary. This concludes the proof of Theorem 3.7.

If b̂
0

”= 0 (absolute position feedback in B), we must by (3.67) require that ĝ
0

and at least one of f̂
0

, ĉ
0

or â
0

are nonzero, alternatively â
0

and ĉ
0

nonzero. In
either case, this requires access to absolute velocity feedback, in G and/or C. This
concludes the proof of Theorem 3.8.

Proof of Lemma 3.9
To prove Lemma 3.9 we treat the two feasible feedback configurations given by
Theorem 3.6 separately.

Case a) B symmetric

If b̂Œ(◊) is real, then

Ïc(â, f̂ , b̂) = b̂Re{â}(Re{â} + f̂)
b̂f̂ + Re{â}(b̂ ≠ Im{â}2 ≠ (Re{â} + f̂)2)

, (3.68)
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where we have again omitted the Œ-subscript and the argument of the individ-
ual Fourier symbols. We notice immediately, that if â © 0, i.e., if A = 0, then
Ïc(â, f̂ , b̂) © 0, and f̂ + Ïc(â, f̂ , b̂) scales just as f̂ .

For the case â ”= 0, recall that the notation u(◊) ≥ v(◊) implies cv(◊) Æ u(◊) Æ
c̄v(◊), where c, c̄ are positive constants. For a product and/or sum of two such
functions, it simply holds u

1

(◊)u
2

(◊) + u
3

(◊) ≥ v
1

(◊)v
2

(◊) + v
3

(◊), which means
that the bounds are c

1

c
2

v
1

(◊)v
2

(◊) + cv
3

Æ u(◊) Æ c̄
2

v
2

(◊)c̄
2

v
2

(◊) + c̄v
3

(◊). For
a quotient: u

1

(◊)/u
2

(◊) ≥ v
1

(◊)/v
2

(◊) implies (c
1

/c̄
2

)v
1

(◊)/v
2

(◊) Æ u
1

(◊)/u
2

(◊) Æ
(c̄

1

/c
2

)v
1

(◊)/v
2

(◊). To determine the scaling of the function Ïc(â, f̂ , b̂), we can
therefore derive the scalings of its individual terms, and simply substitute in (3.68).

We already established in (3.46) that f̂ ≥ ≠—(◊2

1

+ . . . + ◊2

d

), for some — Æ
||f ||Œ, and we will write f̂ ≥ ≠—◊2 for short. Under the given assumptions, B

has the same structure as F , so also b̂ ≥ ≠—◊2. For A on the other hand, we do
not impose Assumption 3.3 of relative measurements. Therefore, in general, the
condition (3.8) is not fulfilled and

q
kœZd

N

a
k

:= â
0

, where â
0

Æ 0 to guarantee
stability. By (3.40), we then have that Re{â} = â

0

≠q
kœZd

a
k

(1≠ cos(◊ ·k)). Since
the term

q
kœZd

a
k

(1 ≠ cos(◊ · k)) has the same structure as f̂ , and we can write
Re(â) ≥ â

0

+ —◊2.
If A is asymmetric, the imaginary part of the Z-transform (2.15) is Im{â} =

≠ q
kœZd

a
k

sin(◊ · k). Making use of the inequality (3.42), its square can be upper
bounded as

Im{â}2 Æ (2(2q)d + 1)
ÿ

kœZd

a2

k

sin2(◊ · k)

= ((2q)d + 1
2)

ÿ

kœZd

a2

k

(1 ≠ cos(2◊ · k)) (3.69)

Æ ((2q)d + 1
2)(2q)(d+2)||a||2Œ(◊2

1

+ · · · + ◊2

d

),

where the last inequality is derived in analogy with (3.41). We can thus write
Im{â}2 Æ c̄

a

—◊2 with c̄ Ø 0 for short. It is also evident that Im{â}2 Ø 0.
Now, consider the terms b̂ ≠ (Im{â})2 in the denominator of (3.68). We already

established b̂ ≥ ≠—◊2, which implies ≠c—◊2 Æ b̂ Æ ≠c̄—◊2 for some positive con-
stants c, c̄. Therefore, it also holds ≠c—◊2 ≠ c

a

—◊2 Æ b̂ ≠ Im{â}2 Æ ≠c̄—◊2, i.e.,
b̂ ≠ Im{â}2 ≥ ≠—◊2.

We now insert f̂ , b̂ ≥ ≠—◊2, Re{â} ≥ â
0

≠—◊2, b̂≠ (Im{â})2 ≥ ≠—◊2 into (3.68),
which gives

Ïc(â, f̂ , b̂) ≥ —◊2

≠2—◊2 + 2â
0

2—2◊4 + —(1 ≠ 3â
0

)◊2 + â2

0

.

This can be written as Ïc(â,f̂ ,b̂) ≥ ≠Ï̃—◊2, and it is easy to see that Ï̃ will be a
bounded, positive constant for any — and all ◊ œ [≠fi, fi]d. In fact, Ï̃ Æ 2 if â

0

= 0,
or Ï̃ Æ 2

|â0| if â
0

< 0.
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Therefore, f̂ + Ïc(â,f̂ ,b̂) ≥ ≠—◊2 ≠ c̃—◊2 ≥ ≠—◊2, which is precisely (3.48).

Case b) B asymmetric

If B is not chosen to be symmetric, we must by Theorem 3.6 require A to have a
su�cient amount of absolute (negative) feedback, so that â

0

< 0. Since the Fourier
symbol of A is then bounded by some scalar multiple of â

0

, it is not restrictive to
assume âŒ(◊) = a

o

for some a
o

< 0 from the beginning. We obtain:

Ïc(â, f̂ , b̂) = a
o

Re{b̂}(a
o

+ f̂) + Im{b̂}2

a
o

(Re{b̂} ≠ (a
o

+ f̂)2) + f̂Re{b̂} . (3.70)

In analogy to the discussion above, we have that f̂ ≥ ≠—◊2 and Re{b̂} ≥ ≠—◊2.
We can treat Im{b̂}2 in the same way as in (3.69) and derive 0 Æ Im{b̂}2 Æ c̄

b

—◊2.
Now, regard the term a2

o

Re{b̂} + Im{b̂}2, for which it will hold that ≠a2

o

c—◊2 Æ
a2

o

Re{b̂} + Im{b̂}2 Æ ≠a2

o

c—◊2 + c̄
b

—◊2. Therefore, provided that a2

o

c̄ Ø c̄
b

Ø 1
(which signifies that the amount of absolute feedback in A is su�cient to ensure
stability), we have a2

o

Re{b̂} + Im{b̂}2 ≥ ≠a2

o

—◊2.
Inserting in (3.70) gives

Ïc(â, f̂ , b̂) ≥ —◊2 a2
o

+ a
o

—2(a
o

≠ 1)◊4 + —a
o

(≠2a
o

+ 1)◊2 + a3
o

= ≠Ï̃—◊2

Here, Ï̃ is a positive constant, which for any — and all ◊ œ [≠fi, fi]dsatisfies c̃ Æ 1

|a
o

| .
We can again conclude that f̂ + Ïc(â,f̂ ,b̂) ≥ ≠—◊2.

Proof of Lemma 3.10

The function Ïv in (3.50) is

Ïv(â, b̂, ĉ, f̂ , ĝ)= b̂2+b̂(âĉ+ĉĝ≠âf̂ ≠âĝ2≠â2ĝ)≠ĉf̂ â(â+ĝ)
b̂≠âf̂ +â2(â+ĝ)

(3.71)

From the proof of Lemma 3.9, we have that â ≥ â
0

≠ —◊2, b̂, ĉ, f̂ , ĝ ≥ ≠—◊2 (where
◊2 = (◊2

1

+ · · · ◊2

d

)). For stability purposes, we require â
0

Æ 0.
We consider the two cases given by Theorem 3.7 separately.
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Case a) B = 0

Substituting the scalings of the individual Fourier symbols into (3.71) gives:

Ïv(â, b̂, ĉ, f̂ , ĝ)≥—2◊4 2—◊2 ≠ â0
2—2◊4 + —(1 ≠ 3â0)◊2 + â2

0
= Ï̃—2◊4.

For any — and for all ◊ œ [≠fi, fi]d, we identify Ï̃ as a positive constant, with Ï̃ Æ 1

|â0|
if â

0

”= 0, Ï̃ Æ 2 if â
0

= 0. Therefore, f̂ ĝ + Ïv(â, b̂, ĉ, f̂ , ĝ) ≥ —2◊4 + Ï̃—2◊4 ≥ —2◊4,
which is precisely (3.52).

Case b) B ”= 0

If the operator B is nonzero, by Theorem 3.7 A is required to have a su�cient
amount of absolute (negative) feedback, so â

0

< 0. We can then set â ≥ â
0

< 0
and:

Ïv ≥ —2◊4 —(1 ≠ 2â0)◊2 + 2â2
0 ≠ 1

—â0(â0 + 1)◊2 ≠ â3
0

= Ï̃—2◊2.

Again, Ï̃ can be identified as a bounded positive constant, so f̂ ĝ+Ïv(â, b̂, ĉ, f̂ , ĝ) ≥
—2◊4 also in this case (provided â

0

Ø 1, which signifies that the amount of absolute
feedback in A is su�cient to guarantee stability).

If we choose to set the operator C = 0, then

Ïv ≥ —2◊4 2—2◊4 ≠ —(3â0 + 1)◊2 + â2
0 + â0 ≠ 1

2—3◊6 + —2(1 ≠ 5â0)◊4 + —(4â2
0 ≠ â0 + 1)◊2 ≠ â3

0
,

and the same conclusion for the scaling holds as above. Notice that the case C = 0
is not a meaningful control design if B = 0, which is why it is not considered under
case a).

Proof of Lemma 3.11
The function Ïv in (3.50) is still given by (3.71). All Fourier symbols scale as in
the previous proof, except f̂ , due to the absolute feedback term. Let us therefore
write f̂ ≥ f

o

, in analogy with the proof of Lemma 3.9, case b). Recall that by
Theorem 3.8, there can be no absolute feedback term in B, even though absolute
position measurements are available.

It is possible to set either of A, B, C to zero (although, if B = 0, both C and A
must be non-zero for the feedback law to be feasible). To be able to regard all these
cases at once, we choose to write the scalings of the individual Fourier symbols
as â ≥ ≠ã◊2, (the case with an absolute feedback term in A is treated below),
b̂ ≥ ≠b̃◊2, ĉ ≥ ≠c̃◊2, f̂ ≥ f

o

and ĝ ≥ ≠g̃◊2. Inserting in (3.50) gives

Ïv ≥ ◊2 ãb̃g̃(ã + g̃)◊4 + c̃(ã + g̃)(b̃ ≠ ãf
o

)◊2 + b̃(ãf
o

≠ b̃)
ã2(ã + g̃)◊4 + b̃ ≠ ãf

o

. (3.72)
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If B = 0, i.e., b̃ = 0, then, by letting c̃, ã, g̃ ≥ —, (3.72) becomes Ïv ≥ ≠2f
o

—2◊4

1

2—

2
◊

4
+f

o

.
We know that f̂ ĝ ≥ ≠f

o

—◊2, and the sum of these functions scales as f̂ ĝ+Ïv ≥ —◊2

(recall, f
o

< 0).
If B is nonzero, we can write (3.72) as Ïv ≥ Ï̃—◊2. Then for any choice of A, C,

Ï̃ will be bounded, but it may be negative for some ◊ œ [≠fi, fi]d. For example, if
A = C = 0, then Ïv = ≠b̃◊2. However, for any feasible configuration, the system’s
H

2

norm must be positive, requiring that f̂ ĝ + Ïv > 0. In particular, the absolute
feedback term |f̂

0

| that is necessary to ensure stability according to the proof of
Theorem 3.8, must be su�ciently large. Since both f̂ ĝ and Ïv scale as ◊2, we can
then conclude that f̂ ĝ + Ïv ≥ —◊2.

If A has an absoute feedback term, i.e., â ≥ a
o

, then it su�ces to inspect (3.50)
to note that there will be a term like a

o

f
o

(a
o

c̃ + b̃)◊2 in the numerator of Ïv, while
in the denominator, there is a term a3

o

. Since we require that at least one of B or
C is nonzero for a meaningful feedback law, this means that Ïv will always scale
as —◊2 when A has absolute feedback. Thus, also in this case f̂ ĝ + Ïv ≥ —◊2.

Proof of Lemma 3.12
By rewriting the dynamics of the consensus algorithm in (3.6) with the control
signal as the output;

5
ż
ẋ

6
=

5
A B
I F

6 5
z
x

6
+

5
0
I

6
w (3.73)

u = z + Fx,

we can obtain the control signal variance (3.57) through the H
2

norm from w to
u, divided by the total network size Nd. We can use the DFT (2.14) to block-
diagonalize the system, and solve a Lyapunov equation for each wavenumber n, as
discussed in Section 2.1.2. In this case, we obtain that

ÿ

kœZd

N

E{uú
k

u
k

} =
ÿ

nœZd

N

\{0}

b̂
n

≠ f̂
n

(f̂
n

+ â
n

)
2(â

n

+ f̂
n

)
,

which, if M = Nd, is equivalent to

ME{uú
k

u
k

} = 1
2

A
||f̂ ||

1

+ || b̂

â + f̂
||

1

B
, (3.74)

where the equivalence of the sum and the l
1

-norm follows from the fact that we
must have f̂

n

, b̂
n

< 0 and f̂
n

+ â
n

< 0 for all n in order to guarantee stability (see
Theorem 3.4). Now, if f̂ is the Fourier transform of a function array f , then

||f̂ ||Œ Æ ||f ||
1

, ||f ||Œ Æ 1
M

||f̂ ||
1

(3.75)
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(see [7]). We can use this in (3.74) to obtain the first bound of the Lemma:

||f ||Œ Æ 1
M

||f̂ ||
1

Æ 2E{uú
k

u
k

}. (3.76)

It also holds that

2ME{uú
k

u
k

} Ø || b̂

â + f̂
||

1

Ø ||b̂||
1

||â + f̂ ||Œ
Ø ||b̂||

1

||â||Œ + ||f̂ ||Œ
,

where the last equality follows from the triangle inequality. Now, we can use the fact
that ||â||Œ Æ ||â||

1

Æ (2q)d||a||Œ (due to the locality assumption) and substitute
the bound (3.76) to get:

2ME{uú
k

u
k

} Ø ||b̂||
1

(2q)d(||a||Œ + 2E{uú
k

u
k

}) .

Now, we use that ||b||Œ Æ 1

M

||b̂||
1

to rewrite this as:

4(2q)d(E{uú
k

u
k

})2+2(2q)d||a||ŒE{uú
k

u
k

}≠||b||Œ Ø 0, (3.77)

which leads to the second bound of the Lemma.



Chapter 4

The price of synchrony: resistive losses in

synchronizing power networks

We now turn to a di�ererent type of networked dynamical system and study the
problem of synchronization in power networks. We model a synchronous generator
network as a system of coupled oscillators, as in Example 1.3, and evaluate per-
formance in terms of the resistive losses that are incurred in keeping this network
in a synchronous state. These losses, which we refer to as transient losses, are in
addition to the static losses associated with steady state flows in the power network.
They arise due to the transient power flow flucuations that occur when the system
is perturbed from a synchronous state by a small transient event, or in the face
of small stochastic disturbances. We term this performance measure the “price of
synchrony”, as it reflects the cost, in terms of real power losses, associated with
lack of synchrony.

In this chapter, we show how the total network’s transient power losses can be
quantified using the H

2

norm of a linear system of coupled swing equations with an
appropriately defined performance output that accounts for local phase deviations,
of the type (1.11). We show that the total transient losses will scale unboundedly
with the network’s size. Furthermore, they are shown to be only weakly dependent
on network topology, and it is therefore no longer true, as in Chapter 3, that
increasing network connectivity improves performance.

These limitations imply that even though the power losses that arise during
synchronization are typically a small percentage of the total real power flow, our
results (based on a simplified network model) indicate that these losses may become
significant as power networks evolve toward increasingly distributed systems. Fur-
thermore, merely adding links to the network to increase connectivity is unlikely
to alleviate the increases in transient power losses as the network grows. In this
chapter, we illustrate these findings through a number of numerical examples.

The remainder of this chapter is organized as follows. We begin in Section 4.1
with a short survey of some related work on synchronous stability in power net-

65
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works. We then derive the system model in Section 4.2 and introduce the per-
formance measure (the “price of synchrony”) in Section 4.3. Section 4.4 derives
algebraic expressions for the H

2

norms and provides the main results. A discussion
of generalizations and bounds on the H

2

norm is provided in Section 4.5. Sec-
tion 4.6 contains some numerical examples to illustrate the theory. We summarize
in Section 4.7.

4.1 The problem of frequency synchronization

The electric power network is a highly complex networked dynamical system. It
is constantly exposed to disturbances on di�erent scales due to, for example, line
failures, load fluctuations and generator rampings. Stability, by which we mean
the system’s ability to regain a state of operating equilibrium after a disturbance,
is therefore a prerequisite for a secure operation of the power network. Lack of
stability may lead to blackouts, like the one in southern Sweden in 1983 when 2/3
of the country’s network was shut down [43], or the major Northeastern blackout
of 2003 which a�ected 50 million people in the United States and Canada [31]. Al-
though power system stability is essentially a single problem, one typically regards
it as three di�erent issues related to, respectively, generation-load balance, voltage
stability, and rotor-angular or synchronous stability [56]. Synchronous stability,
which is what we consider in this thesis, is the ability of the power grid to recover
synchrony after a physical disturbance [56].

Synchrony, in this context, refers to the alignment of the phase and frequency of
all generators within a particular power network. In other words, it is when all of
the frequencies are equal [53] and the phase di�erences are at an equilibrium state
corresponding to balanced power flows throughout the network. Such a state is
reflected by the mechanical analogy in Figure 1.3. Maintaining synchrony thus de-
pends on a network’s ability to sustain or restore this condition when it is subjected
to disturbances from its nominal operating point.

Synchronous stability properties of power systems are typically studied using
a so-called network reduced, or Kron reduced, model. This means that loads are
modeled as impedances that are absorbed into the “lines” of the reduced network,
see for example [57, 83, 14, 53, 21] and the references therein. The resulting sys-
tem is a set of coupled swing equations that describe the dynamics of a network of
generators connected by these lines, as in Example 1.3. This system is then ana-
lyzed to determine conditions under which the synchronized state is stable, see for
example [53, 22]. These analyses are related to the well-studied transient stability
problem [13], which refers to the ability of a system to return to a stable operating
condition after a large disturbance.

A recent research trend has been to analyze synchronous stability properties in
power systems using tools from systems and control theory. The associated litera-
ture is vast and we only highlight a subset of the research. For example, a series
of works draws connections between power grids and coupled Kuramoto oscilla-
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tors [18, 19, 20, 22]. This modeling framework provides a first-order approximation
of the system and Dörfler and Bullo [19, 20] exploit properties of this well-studied
problem to provide analytical conditions for frequency synchronization. In a related
work [17] these authors also make connections between network reduced models and
the structure preserving network model of Bergen and Hill [10], which we will look
more into in Chapter 5. Models similar to Kuramoto oscillators have also been
used in [49] to investigate the e�ects of power flow scheduling and increased net-
work connectivity on the rate of convergence.

Control design for synchronizing oscillator networks has been investigated in [29,
23], where synchronization is defined in terms of voltage di�erences between con-
nected nodes rather than phase angle di�erences. These authors employ an H

2

system norm as a performance metric for control design. Here, we also evaluate
system performance using an H

2

norm based metric. However, since both the
system dynamics and the output are defined di�erently, these are two distinct per-
formance metrics.

The problem that we formulate in this chapter is new in the context of synchro-
nization of power networks. We assume that the synchronous stability conditions
are fulfilled and thus that the system will return to a synchronized state after being
subjected to small disturbances. We then focus, as already mentioned, on perfor-
mance in terms of the power losses associated with maintaining this syncronous
state. This method for performance evaluation in power networks was originally
proposed in [6]. A similar performance measure was used by the authors of [69] to
characterize a notion of transient energy in oscillator networks and in [36] it is used
to quantify amounts of interaction between generators. Recently, the similarity of
this performance measure and the notion of network coherence in Chapter 3 has also
been exploited in [63], where it is proposed as an optimization criterion for inertia
allocation in networks. In this chapter, we develop analytic expressions for this per-
formance measure under some simplifying assumptions, and discuss ways in which
they can be regarded as fundamental limitations to performance in synchronizing
power networks.

4.2 Formulation of coupled oscillator dynamics

4.2.1 Network model and swing equation
Consider a network G = {V, E}, where |V| = N is the total number of nodes,
or buses. E = {e

i,j

} represents the set of edges, or network lines. Throughout
this chapter, we will assume a Kron-reduced network model (see, for example,
[58, 13, 21, 54]) where the reduction procedure eliminates the constant-impedance
loads and absorbs their e�ects into the network lines E , along with any phase-
shifting transformers (this assumption will be relaxed in Chapter 5). Thus, at
every node i œ V, there is a generator with inertia constant m

i

, damping coe�cient
d

i

, voltage magnitude V
i

and voltage phase angle ◊
i

. Such a network is depicted in
Figure 4.1 for a system where N = 7. In the absence of any external control input,
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Figure 4.1: An example of a network of N = 7 generator nodes.

the dynamics of the ith generator can be described using the following classical
machine model [57]:

m
i

◊̈
i

+ d
i

◊̇
i

= P
m,i

≠ P
e,i

(4.1)
where P

m,i

is the mechanical power input from the turbine and P
e,i

is the real power
injected into the grid at node i, for which we will shortly provide an expression.

The swing equation (4.1) describes the physical acceleration or deceleration that
arises in a synchronous generator as soon as there is a power imbalance, and which,
provided the network is stable, will allow the network to resynchronize. This control
is spontaneous, as argued in, for example, [53]. Yet, we regard the swing equation
as a type of control actuation in accordance with our main problem formulation
in (1.8). The spontaneous control is di�erent from a typical control input, like the
ones we considered in Chapter 3, in that the controller parameters cannot be tuned
freely since they are physical properties. Later in this thesis, in the context of
control of power inverters, we will consider control dynamics that are designed to
emulate the swing equation (4.1), but where parameters can more readily be tuned.

4.2.2 The power flow equation
The real electric power flow injected to the grid at each node i œ V is given by

P
e,i

= ḡ
i

V 2

i

+
ÿ

jœN
i

g
ij

V
i

V
j

cos(◊
i

≠ ◊
j

) +
ÿ

jœN
i

b
ij

V
i

V
j

sin(◊
i

≠ ◊
j

), (4.2)

where N
i

denotes the neighbor set of node i in the Kron-reduced network G. The
parameters g

ij

and b
ij

are respectively the conductance and susceptance associated
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with the line e
ij

and ḡ
i

is the shunt conductance of node i (see Section 2.3.2 for
their computation). As per convention in power flow analysis, we assume that all
quantities in (4.2) have been normalized by system constants and are measured in
per unit (p.u.).

In what follows, we will use a simplified, linear model in which we consider
small deviations from a stable operating point

#
◊ss, Êss

$
T , which, without loss

of generality we can transfer to the origin through a change of variables. This
linearization allows us to investigate the e�ects of small disturbances or persistent
small amplitude noise within a neighborhood of the operating point. The standard
linear power flow assumptions include assuming constant voltage amplitudes, V

i

=
1 p.u. for all i œ V and retaining only the linear terms in (4.2), which leads to

P
e,i

¥
ÿ

jœN
b

ij

[◊
i

≠ ◊
j

] . (4.3)

See for example [42] for a detailed analysis of the applicability of such assumptions.
Having transfered the operating point to the origin, we may let deviations in the
constant P

m,i

in (4.1) be absorbed into the disturbance input w
i

, which character-
izes, for example, fluctuations in generation and loads. Substituting (4.3) into (4.1)
then gives

m
i

◊̈
i

+ d
i

◊̇
i

¥ ≠
ÿ

jœN
i

b
ij

[◊
i

≠ ◊
j

] + w
i

. (4.4)

Now, we can use the system’s suseptance matrix L
B

from (2.19) to rewrite this in
state space form as follows.

d
dt

5
◊
Ê

6
=

5
0 I

≠M≠1L
B

≠M≠1D

6 5
◊
Ê

6
+

5
0

M≠1

6
w, (4.5)

where M = diag{m
i

}, D = diag{d
i

}.

4.3 Performance measure

As mentioned in the introduction to this chapter, our concern is not to characterize
the stability of the system (4.5) but rather to evaluate its performance in terms of
losses associated with transient power flows. We therefore assume that the system
matrices are such that the dynamics are stable around the equilibrium manifold
for which all phases are equal. We now define the system output, or performance
measure, that will be used throuhout this thesis to evaluate the real power losses
arising from the fluctuating phase angle di�erences.

To define the relevant performance measure, we adopt the approach first pre-
sented in [6]. Consider the real power loss over the edge e

ij

, given by Ohm’s law
as

P loss

ij

= g
ij

|v
i

≠ v
j

|2,
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where v
i

= V
i

ej◊
i denotes complex voltage. If we enforce the linear power flow

assumptions and retain only the terms that are quadratic in the state variables,
standard trigonometric methods give that P loss

ij

¥ g
ij

(◊
i

≠ ◊
j

)2. Since ◊
i

, ◊
j

rep-
resent deviations from an operating point, this is equivalent to the power loss over
the edge during the transient. The corresponding sum of instantaneous, transient
resistive power losses over all links in the network can then be approximated as

P

loss =
ÿ

e

ij

œE
g

ij

(◊
i

≠ ◊
j

)2. (4.6)

We can now make use of the conductance matrix L
G

from (2.19) to rewrite (4.6)
as the quadratic form

P

loss = ◊úL
G

◊. (4.7)
Since L

G

is a positive semidefinite graph Laplacian, it has a unique positive semidef-
inite square-root L

1/2

G

. We can therefore define an output of the system (4.5) as
follows:
Definition 4.1 (Price of synchrony performance output) The instantaneous re-
sistive power losses in a network are measured as P

loss

= yúy, where the perfor-
mance output y is

y := L
1/2

G

◊ (4.8)

Note that this performance measure, as most easily seen from (4.6), represents the
sum of squared weighted di�erences in states between neighboring nodes, that is,
a sum of squared local errors over the networks. The expected value of (4.6) can
therefore be written as a sum over local error variances on the form (1.11).

For ease of reference we rewrite the state dynamics (4.5) and the output equa-
tion (4.8) together as the MIMO LTI system

d
dt

5
◊
Ê

6
=

5
0 I

≠M≠1L
B

≠M≠1D

6 5
◊
Ê

6
+

5
0

M≠1

6
w, (4.9a)

y =
Ë
L

1/2

G

0
È 5

◊
Ê

6
. (4.9b)

This LTI system is a Linear Quadratic approximation of the full nonlinear problem
in the sense that the dynamics have been linearized around an equilibrium corre-
sponding to the condition where the power flows in the system are balanced and all
generators are operating at a nominal frequency. The instantaneous resistive power
losses are quadratically approximated by the square of the Euclidean norm of the
output signal y. We next describe how these losses can be evaluated through the
system’s input-output H

2

norm.
Remark 4.1 The system (4.9a) represents linearized dynamics in which line re-
sistances are not present in the first approximation, having been assumed small
compared to the line reactances. The output (4.9b) represents a quadratic approx-
imation of the power losses and measures the e�ect of non-zero line resistances,
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given the state trajectories arising from the system dynamics. A justification for
these assumptions is given in Chapter 5, where line resistances are accounted for
in the dynamics.

4.3.1 H2 norm interpretations for swing dynamics
The LTI system (4.9) is formulated so that the square of the Euclidean norm of the
output y(t)úy(t) is the instantaneous resistive power loss at time t. The H

2

norm
of this system can be interpreted as the average (per time t) power loss in a setting
with persistent disturbances, or alternatively as the total (over all time) power loss
due to a transient event. These interpretations of the H

2

norm relate to its standard
intepretations given in Section 2.1. Here, we summarize physical scenarios which
permit the input-output H

2

norm of (4.9) to quantify resistive losses.

i. Response to a white stochastic input. When the input w is “white noise”,
the system’s H

2

norm is

||H||2
2

= lim
tæŒE{yú(t)y(t)}. (4.10)

For the swing dynamics (4.9) the disturbance vector w can be thought of as
persistent stochastic forcing at each generator. These disturbances, which are
uncorrelated across generators, can be due to uncertainties in local generator
conditions, such as changes in local load or supplied mechanical power. The
expression (4.10) is then exactly the expectation of the total (over the entire
network) instantaneous power losses.

ii. Response to a random initial condition. For (4.9) it holds that BBú =5
0 0
0 M≠2

6
, which is diagonal. Therefore, an initial condition Â

o

which is a

random variable with correlation E{Â
o

Âú
o

} = BBú corresponds to each gener-
ator having a random initial velocity perturbation that is uncorrelated across
generators and zero initial phase perturbation. In this case, the H

2

norm

ÎHÎ2

2

=
⁄ Œ

0

E{yú(t)y(t)} dt (4.11)

quantifies the total (over all time and the entire network) expected resistive
power losses due to the system returning to a synchronized state.

iii. Sum of impulse responses. Consider a scenario where an impulse can be
fed at each generator node with equal probability. For the system (4.9), this
input scenario corresponds to each generator being subject to impulse force
disturbances (note, w enters into the momentum equation of each generator).
Such disturbances could occur, for example, due to changed operation of the
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generator, a sudden lost load at the bus or a fault event. In these cases, the
H

2

norm

ÎHÎ2

2

=
Nÿ

i=1

⁄ Œ

0

yú
i

(t)y
i

(t) dt. (4.12)

quantifies the total (over all time and the entire network) expected resistive
power losses due to the system returning to a synchronized state.

4.3.2 Relations to network coherence

The LTI model (4.9a) is very similar to the model of vehicular dynamics studied in
Chapter 3. The notion of network coherence studied there can be translated into
the present context of power networks as quantifying how tightly the phases of all
generators drift together. More precisely the following quantity

E

Y
_]

_[

Q

a◊
i

≠ 1
N

Nÿ

j=1

◊
j

R

b
2

Z
_̂

_\
, (4.13)

expresses the variance of the deviation of the ith node from the average over all
nodes in the network. This quantity is never zero when there are stochastic distur-
bance inputs, even in a stable power network. Larger variances of relative phase
deviations would reflect a more disordered network while smaller variances imply a
more coherent network.

In Chapter 3, we studied the asymptotic behavior (in network size N) of the
performance measure (4.13) for systems with regular network structures. It was,
among other things, found that performance depends strongly on the lattice dime-
sion (see Theorem 3.1), which implies that more interconnected networks tend to
be more coherent and vice versa. In that analysis however, performance was consid-
ered as per vehicle, while in the present context, it is the total or aggregate transient
resistive power loss over the entire network that is of concern. Thus, although the
two settings have analogous dynamics, the performance objectives di�er.

We point out that the disorder measure (4.13) is not the Euclidean norm of
the output y defined in (4.9b). In other words, the amount of phase disorder in a
network as measured by (4.13) is not necessarily related to resistive power losses,
and in particular may not scale similarly with network size N or have the same
dependence on network connectivity. While networks with high phase coherence
may be desirable for other reasons (such as stability of the nonlinear model), the
results to be presented shortly indicate that the price of synchrony (total transient
resistive power losses) can be large even in highly coherent networks.
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4.4 Evaluating resistive losses

In this section we derive a formula for the H
2

norm of the system (4.9) in terms
of the system’s parameters. We then consider the implications for some important
special cases. Throughout this section we make the following simplifying assump-
tion, which allows us to derive analytic expressions for the H

2

norm:
Assumption 4.1 (Identical generators) All synchronous generators have identical
inerta and damping coe�cients, that is, m

i

= m and d
i

= d for all i œ V. This
gives M = mI and D = dI.

4.4.1 System reduction
As previously discussed, L

G

and L
B

are weighted graph Laplacians and as such,
they each have a zero eigenvalue, see Section 2.3.1. The zero eigenvalue implies
that these matrices are singular and that the system (4.9) is not asymptotically
stable. However, as in Chapter 3, the corresponding mode is not observable from
the performance output y, which is shown formally for the system at hand in
the Appendix. Assuming the network to be connected, remaining eigenvalues are
strictly in the left half of the complex plane, and the system therefore has a finite
H

2

norm.
In order to rigorously evaluate the H

2

norm of (4.9) we perform a system reduc-
tion procedure that e�ectively removes the unobservable mode at zero and enables
us to investigate a reduced system that is asymptotically stable.

We derive this reduced system by first defining a reference state k œ V. By
then deleting the kth rows and columns of L

G

and L
B

, we obtain the reduced or
grounded Laplacians L̃

G

and L̃
B

(see e.g. [34]). The states of the reduced system
◊̃ and Ễ are then obtained by discarding the kth elements of each state vector.
This leads to a system that is equivalent to one in which ◊

k

= Ê
k

© 0 for some
node k œ V. The physical interpretation of the reduced system is that the kth
node is connected to ground, and a corresponding mechanical analogy is shown in
Figure 4.2. We call the resulting reduced, or grounded, system H̃ and rewrite it as

d
dt

5
◊̃
Ễ

6
=

5
0 I

≠ 1

m

L̃
B

≠ d

m

I

6 5
◊̃
Ễ

6
+

5
0

1

m

I

6
w̃ =: AẪ + Bw̃; (4.14a)

ỹ =
Ë
L̃

1
2
G

0
È 5

◊̃
Ễ

6
=: CẪ, (4.14b)

where the reduced state vector is Ẫ =
#
◊̃ Ễ

$
T . Assuming a network where the

underlying graph is connected, the grounded Laplacians L̃
G

and L̃
B

are positive
definite Hermitian matrices (see, for example, [52] for a proof). All eigenvalues
of the system H̃ are thus strictly in the left half plane and it is evident that the
input-output transfer function from w̃ to ỹ has a finite H

2

norm.
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Figure 4.2: Mechanical analogy to the grounded network.

Remark 4.2 The dynamics of the grounded system (4.14) are not equivalent to
those of the original system. In particular, the eigenvalues, and thereby the swing
modes, di�er. This can be understood intuitively by comparing Figure 4.2 to Fig-
ure 1.3. However, as we will show, the two systems are equivalent in terms of the
performance metric considered here.

4.4.2 H2 norm calculation
The squared H

2

norm of the system H̃ can be calculated through the equations
(2.7) – (2.8). We call the obsevability Gramian X and partition it into four sub-
matrices. The Lyapunov equation (2.8) expanded for our system (4.14) is then

5
0 ≠ 1

m

L̃
B

I ≠ d

m

I

6 5
X

1

X
0

Xú
0

X
2

6
+

5
X

1

X
0

Xú
0

X
2

6 5
0 I

≠ 1

m

L̃
B

≠ d

m

I

6
= ≠

5
L̃

G

0
0 0

6
,

from which we extract the following two equations:

X
0

≠ d

m
X

2

+ Xú
0

≠ X
2

d

m
= 0 (4.15a)

≠ 1
m

L̃
B

Xú
0

≠ X
0

1
m

L̃
B

= ≠L̃
G

. (4.15b)

Then, using (4.15a) it is straightforward to compute d

m

tr(X
2

) = tr(Re{X
0

}). Equa-
tion (4.15b) can be rearranged to yield

L̃
B

Xú
0

L̃≠1

B

+ X
0

= mL̃
G

L̃≠1

B

,

where we make use of the fact that L̃
B

is nonsingular. Combining these expressions
and using standard matrix trace relationships leads to the following expression

tr (X
2

) = m2

2d
tr

!
L̃≠1

B

L̃
G

"
. (4.16)

Finally, noting that tr(BúXB) = 1

m

2 tr(X
2

), we derive the following Lemma.
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Lemma 4.1 The squared H
2

norm of the input-output mapping of the system (4.14)
is given by

||H̃||2
2

= 1
2d

tr
!
L̃≠1

B

L̃
G

"
, (4.17)

where L̃
B

and L̃
G

are the grounded Laplacians obtained using the procedure de-
scribed above and d is each generator’s self damping.

The choice of grounded node k has no influence on the H
2

norm in (4.17). We
illustrate this point through the following lemmas, which are used derive the main
result of Theorem 4.4.

Lemma 4.2 Let H denote the input-output mapping (4.9) under Assumption 4.1,
and let H̃ denote the corresponding reduced system (4.14). Then, the norm ||H||2

2

exists and
||H||2

2

= ||H̃||2
2

.

Proof: See Appendix.

Lemma 4.3 Let L̃
G

and L̃
B

be the reduced, or grounded, Laplacians obtained by
deleting the kth row and column of L

G

and L
B

respectively. Then

tr
!
L̃≠1

B

L̃
G

"
= tr

1
L†

B

L
G

2
, (4.18)

where † denotes the Moore-Penrose pseudo inverse.

Proof: See Appendix.

Remark 4.3 Lemma 4.3 extends to any pair of weighted graph Laplacians L
G

, L
B

œ
CN◊N , even if they do not have the same underlying graph. It is, however, a re-
quirement that the graph underlying L

B

is connected (so that L̃
B

is nonsingular).
This implies that the network grounding approach introduced here is amenable to
any performance output that satisfies yúy = ◊úL

G

Õ◊ where L
G

Õ is some graph Lapla-
cian. In particular, one could use this to measure performance over a subnetwork
of G.

Our main result can now be stated in the following theorem, which was also
independently derived in [69].
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Theorem 4.4 Given a network of N synchronous generators whose input-output
response is given by (4.9). Under Assumption 4.1, the squared H

2

norm of the
system is given by

||H||2
2

= 1
2d

tr
1

L†
B

L
G

2
. (4.19)

Thus, the total transient losses of the system are a function of what we term the
generalized Laplacian ratio of L

G

to L
B

.

Proof: The result follows directly from Lemmas 4.1 - 4.3.

In (4.9), we assumed that the mechanical input P
m,i

to each generator i is
lumped into the input w. If, instead, one chooses to scale the input by the genera-
tor’s inertia, that is, define wÕ := 1

m

w and BÕ := [0 I]T , then the squared H
2

norm
of the resulting system can be constructed in an analogous manner, as shown in
the following Corollary.

Corollary 4.5 Consider the modified input-output mapping

d

dt

5
◊
Ê

6
=

5
0 I

≠ 1

m

L
B

≠ d

m

I

6 5
◊
Ê

6
+

5
0
I

6
wÕ (4.20)

y =
Ë
L

1/2

G

0
È 5

◊
Ê

6
.

The squared H
2

norm of this system is

ÎH Õ||2
2

= m2

2d
tr

1
L†

B

L
G

2
.

Proof: Following the proof of Lemma 4.1, we first note that for this modified
system tr(BÕúXBÕ) = tr(X

2

). The result then follows directly from Lemmas 4.2
and 4.3.

Theorem 4.4 states that the price of synchrony (the transient resistive losses)
are proportional to what can be thought of as a generalized ratio between the
conductance and susceptance matrices. The ratio of line conductance to suscep-
tance, or equivalently, resistance to reactance, is generally small for transmission
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systems and is therefore often neglected in power flow calculations [42] and stability
analyses. However, the matrix trace operation in equation (4.19) implies that the
transient resistive losses increase with network size (number of generators). There-
fore, transient resistive losses may become significant in large networks with highly
distributed generation even when line resistances are small. In low to medium
voltage networks where distributed generation (DG) units are typically connected,
the resistance-to-reactance ratios are higher than in transmission systems1. In such
networks, this trend would be doubly problematic, as both the network size and the
resistance-to-reactance ratio are larger. The next section explores these e�ects di-
rectly for the important special case of uniform resistance-to-reactance ratios across
the network.

4.4.3 Special Case: Uniform line ratios
We now consider the special case when the generalized Laplacian ratio in (4.19) is
a scalar matrix –I, where

– := g
ij

b
ij

= r
ij

x
ij

.

In other words, all network lines e
ij

œ E have equal resistance-to-reactance ratios.
This assumption implies that the conductance matrix is a scalar multiple of the
susceptance matrix,

L
G

= –L
B

, (4.21)
and, of course, the same holds for the reduced Laplacians: L̃

G

= –L̃
B

.
In this case, the Lemmas 4.1 and 4.2 give that

||H||2
2

= 1
2d

tr(L̃≠1

B

–L̃
B

) = –

2d
(N ≠ 1), (4.22)

which is the result presented in [6]. This result is remarkable in that it says that,
for this special case, the size of the transient losses depends only on the network’s
size and is entirely independent of its topology.
Remark 4.4 If we instead define a network-dependent weighted mean – of the line
ratios –

ij

= g

ij

b

ij

for all lines e
ij

œ E , the result in (4.22) can be generalized to a
system with heterogeneous line ratios [69].

Remark 4.5 A choice of –
max

Ø g

ij

b

ij

for all edges e
ij

œ E , can be used to define
a conservative bound based on (4.22). One can similarly define a lower bound
–

min

Æ g

ij

b

ij

and bound the H
2

norm of the system as:
–

min

2d
(N ≠ 1) Æ ||H||2

2

Æ –
max

2d
(N ≠ 1), (4.23)

where –
min(max)

are the respective upper and lower bounds. These bounds, which
were also proposed in [69], both increase unboundedly with the number of genera-
tors and are independent of the network topology.

1Typically, this ratio is 1/16 in 400 kV lines but 2/3 in 11 kV systems [32].
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Performance scaling and topology independence

Using the notation from Chapter 3, the result (4.23) implies that

||H||2
2

≥ 1
—

N, (4.24)

where we can identify the algorithm parameter — with the generator damping d.
We can therefore, in the same way as in Chapter 3, regard this result as a funda-
mental limitation to performance in uniform power networks, in which the swing
equation (4.4) is the means by which synchrony is achieved. It is important to note
that the scaling (4.24) is independent of the network topology, unlike the coherence
scalings in Theorem 3.1.

This topology independence is also in contrast to other measures of power system
stability and performance metrics. For example, the topology of the system plays
an important role in determining whether a system of this kind can synchronize
[62, 18, 19, 67]. The network connectivity of a power system is also directly related
to its rate of convergence and damping properties [49]. Some intuition for the price
of synchrony being independent of network topology in the case of uniform line
ratios can be given as follows. We expect a highly interconnected network to have
much more phase coherence than a loosely interconnected network with the same
number of nodes. Consequently the power flows per link in a highly connected
network are relatively small, but there are many more links than in the loosely
connected network. Thus in the aggregate, the total transient power losses are the
same for both networks. A more coherent network is, however, in many ways more
stable.

Motivation for uniform line ratio assumption

The equal line ratio assumption is not unreasonable for power systems, as the ratio
of resistances to reactances of typical transmission links tend to lie within a small
interval. This assumption is used in many related studies, such as [48, 23], and it
can be motivated by a uniformity in the physical line properties in the network. A
recent study [53] also found that the node degrees of Kron-reduced networks tend
to be much more uniform than than those of the full power networks that they are
derived from. Those results suggest that the “lines” of such reduced systems are
also more uniform than those found in actual power networks and therefore the
equal line ratio assumption is suitable for the reduced network considered here.

In Example 4.1, we demonstrate numerically that the result (4.22) is a good
approximation of (4.19), when is – is chosen as the average line ratio. In other
words, the uniform line ratio assumption only leads to small errors with respect
to the performance measure of interest. In Chapters 5 – 6 we will return to this
assumption in order to make the developments and results more tractable.
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4.5 Generalizations and bounds

In this section, we provide bounds on the H
2

norm in Theorem 4.4 and discuss their
implications. We also address the more general case of systems with non-identical
generators.

4.5.1 Loss Bounds
As previously mentioned, the term tr(L†

B

L
G

) in Theorem 4.4 can be interpreted
as a generalized ratio between the power network’s conductance matrix L

G

and its
susceptance matrix L

B

. That is, a generalized ratio between the real and imagi-
nary part of the bus admittance matrix (without the shunt admittances). Let us
henceforth denote the respective eigenvalues of L

G

as ⁄G

N

Ø ... Ø ⁄G

2

> 0 and of
L

B

as ⁄B

N

Ø ... Ø ⁄B

2

> 0. The generalized ratio of these two Laplacians can then
be lower bounded in terms of their eigenvalues as

tr
1

L†
B

L
G

2
Ø

Nÿ

i=2

⁄G

i

⁄B

i

, (4.25)

(see e.g. [87] for a proof). In the case of uniform line ratios, each eigenvalue ratio
is equal to –, and the inequality in (4.25) turns into an equality. The unbounded
growth of the transient resistive losses with the network size N , which was noted
in (4.24), can also be seen from (4.25). In particular, the scaling with network size
is evident because the number of eigenvalues, and thus the number of summands,
grows with each added node. We illustrate this growth and the tightness of the
bound in (4.25) through Example 4.2.

The inequality (4.25) also provides some insight into why the H
2

norm does
not have a strong dependence on network connectivity even for networks of non-
identical line ratios. Although the eigenvalues of the Laplacian are di�cult to
characterize precisely for general graphs, it is well known that they relate strongly
to the node degrees (see, for example, [15, 86]). In (4.25) however, we consider the
ratio between the eigenvalues of L

G

and L
B

. Since these are two graph Laplacians
describing the same topology, their node degrees g

ii

and b
ii

can be related through
–̄

i

, the average ratio of line conductances to susceptances of the lines incident to
node i. This –̄

i

is independent of how many such incident lines there are. It is
therefore reasonable to infer that each eigenvalue ratio ⁄

G

i

⁄

B

i

is also more strongly
related to –̄

i

than to the number of lines connected to each node, which would be a
measure the network connectivity. We will further explore this notion through the
examples in Section 4.6.

As shown in Remark 4.5, the resistive losses can also be bounded as (4.23),
which allows for a simple and convenient analysis of the network, which simultane-
ously reveals the scaling of the performance measure with network size. However,
the bound may become loose if the system is heterogenous in terms of the line
resistance-to-reactance ratios. This may be the case if a combined transmission and
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distribution network is considered, or in cases of highly varying impedance loads.
In some cases, it is then better to bound the losses in terms of graph-theoretical
quantities. This can be done in the following manner.

⁄G

2

tr(L†
B

) Æ tr(L†
B

L
G

) Æ tr(L
G

)
⁄B

2

, (4.26)

where ⁄G

2

and ⁄B

2

are the algebraic connectivities of the graphs weighted by line
conductances and susceptances respectively. See [87] for a proof of (4.26).

In general, it holds that ⁄G

2

Æ N

N≠1

g
ii,min

and ⁄B

2

Æ N

N≠1

b
ii,min

, where g
ii

, b
ii

are
the respective node degrees in the weighted conductance and susceptance graphs.
Furthermore, the quantity tr(L†

B

) is proportional to what we can interpret as the
total e�ective reactance of the network, in analogy with the concept of graph total
e�ective resistance, as recently discussed in e.g. [34, 28, 37]. By Rayleigh’s mono-
tonicity law (see [24]), the total e�ective reactance can decrease unboundedly by
adding lines and increasing line susceptances. However, the algebraic connectivity
⁄

2

is very small for weakly connected networks and can also be found to decrease
with network size. Therefore, while the bounds (4.26) where ⁄

2

appears in the de-
nominator, are accurate for small and well-connected networks, they become loose
for the large, sparsely interconnected networks. The usefulness of the bound (4.26)
therefore depends on the network type.

4.5.2 Systems of Non-Identical Generators
The results derived under Assumption 4.1, that is, by considering a grid with iden-
tical generators, suggest that the losses scale with the network size as in (4.24).
In order to put these results in context it is desirable to understand the extent
to which these scaling properties apply to systems of non-uniform generators. In
this section we explore these ideas and use the results from previous sections to
gain some insight. We begin by examining the special case where one non-uniform
generator is added to the network.

From Theorem 4.4 we can deduce that

1
2d

max

tr
1

L†
B

L
G

2
Æ ÎHÎ2

2

Æ 1
2d

min

tr
1

L†
B

L
G

2
,

where d
min

= min
iœV d

i

and d
max

= max
iœV d

i

. The losses are thus lower and upper
bounded by the properties of the most strongly and lightly damped generators
respectively, and the overall scaling in (4.24) remains valid. However, not only the
losses’ scaling matters, but also their actual values, since they represent an actual
cost in the network. Therefore, some interesting questions that arise are: (1) How
does adding a generator to an existing network a�ect the total resistive losses? and
(2) What are the important parameters in determining this incremental cost? The
next result addresses one such scenario.
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Lemma 4.6 Consider a network of N generators with transient resistive losses
given by ||H

0

||2
2

. If one connects an additional generator with damping d
N+1

and
inertia m

N+1

to any node k œ {1, . . . , N} in the existing network by a single link
with line ratio of –

k,N+1

= r

k,N+1
x

k,N+1
, then the new network’s losses are given by

||H
1

||2
2

= ||H
0

||2
2

+ 1
2d

N+1

–
k,N+1

.

If the dynamics are as per (4.20) the additive term is instead m

2
N+1

2d

N+1
–

k,N+1

.

Proof: See Appendix.

This result can be interpreted as follows. The additional losses incurred through
the connecting a “light” (low inertia) or well damped generator are smaller than
those incurred due to adding a “heavy” (high inertia) or poorly damped generator.
In the face of increasingly distributed generation, this result implies that while the
synchronization losses do scale with the network size, the impact of low inertia
or small-scale distributed generators is relatively low, compared to that of large
conventional generators.

In this thesis, we will not present further analytical results for systems with non-
identical generators, but carry out most of the analysis under Assumption 4.1. The
numerical Example 4.3, however, provides some further insight into performance
of networks with non-uniform generation. That example shows that, although the
scaling relationships and topology independence results hold for limited parameter
variations, judicious sizing and placement of new generators can in fact improve
performance. This fact is further explored in a recent study by Poolla et al. [63],
which studies optimal placement of inertia in power networks.

4.6 Numerical examples

The results derived in the previous sections indicate that the price of synchrony
is highly dependent on the number of generators in the system. They were also
found to depend on the system’s resistance-to-reactance ratios and the generator
properties, but only weakly on the network topology. In this section, we provide
some numerical examples to illustrate these results and to explore more general
networks.

Example 4.1 (Non-uniform line ratios: increasing line ratio variance) We first
investigate the price of synchrony in systems with increasingly non-uniform network
line ratios –

ij

(defined in Section 4.4.3). We consider a hypothetical set of identical
generators with d = 1 placed at each node of, respectively, the IEEE 14 bus, 30
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Figure 4.3: H2 norms from Example 4.1 for the IEEE 14 bus, 30 bus, and 57 bus benchmark
networks. The edge weights are randomly generated using increasingly varying resistance-
to-reactance ratios –

ij

= r

ij

x

ij

. The bars illustrate the bounds in (4.23).

bus and 57 bus benchmark topologies [55]. We take the values for the reactances
x

ij

for each e
ij

œ E from the benchmark system data. We then define a random
series of heterogeneous line ratios by setting r

ij

= –
ij

x
ij

, where the –
ij

are each
drawn once from uniform distributions on the following range of intervals: 0.4, 0.4±
0.025, 0.4 ± 0.05, ..., 0.4 ± 0.2.

Figure 4.3 shows the resistive losses computed from the result in Theorem 4.4
for a number of these systems. The horizontal axis indicates the standard devia-
tion of the line ratios and the bars represent the upper and lower bounds of the
inequality (4.23).

This example shows that increasing the standard deviation of the line ratios
leads to a looser bound in (4.23). However, the actual resistive losses show only
small variations as long as the average line ratio remains constant. We can also
note that the transient losses depend strongly on the network size (here 14, 30 or
57 nodes), which is consistent with the relationship in (4.22).

Example 4.2 (Performance scaling and bounds for topology extremes) We now
demonstrate the fact that the price of synchrony is only weakly dependent on net-
work topology, but instead scales with the total number of network nodes. We
compare the H

2

norm in (4.19) and the bounds discussed in Section 4.5 for two
systems where the underlying topology is (a) a path graph, and (b) a complete
graph (see Figure 4.4) and let their respective system size increase. These two
topologies are chosen because they represent the two extremes with respect to con-
nectivity. Therefore, they demonstrate our, perhaps counterintuitive, result that
the price of synchrony does not depend on network connectivity. In Chapters 5 – 6,
where we change the control dynamics, we will return to these two types of networks
and there find that they sometimes di�er in terms of this performance objective.

We simplify the problem by assuming uniform dampings d = 1 for all generators
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(a) Path graph (b) Complete graph

Figure 4.4: The path graph and complete graph topologies over 6 nodes.

in the network and then assign random line parameters to each line in the following
manner. We draw both the line reactance x

ij

and line ratio –
ij

from a normal
distribution with mean 0.2 and standard deviation 0.1 (and replace any negative
values by the mean). By the previous example, one can then expect the norm for
each network to lie close to the result of equation (4.22) based on the mean ratio
–̄ = 0.2, and we should expect a linear relationship in N . This is also the main
trend in Figure 4.5.

Figure 4.5 shows the H
2

norms for the path and complete graph topologies as
the network size increases from a 5 node to a 50 node system. We also indicate the
bounds (4.23) and (4.25) on both panels. Due to space constraints we show the
bounds in (4.26) only in Figure 4.5b as this bound is very loose in the case of path
graphs. For both types of networks, the eigenvalue ratio bound in (4.25) provides
the tightest bound. We also note that the network-parameter dependent bounds
(4.26) are more accurate than the line ratio bounds (4.23) for the complete graph.

Example 4.3 (Placement of generators with non-uniform damping) Our final
example further relaxes Assumption 4.1 of equal generator parameters. We consider
again our 7 bus example network from Figure 4.1, and let the lines have equal line
impedances z

ij

= 0.1 + j0.6 = z
o

. The nodes in this network have the following
degrees in terms of the impedance z

o

:

”
1

= ”
7

= z
o

, ”
2

= ”
6

= 3z
o

, ”
3

= ”
5

= 2z
o

, ”
4

= 4z
o

.

The nodes thus have four di�erent degrees, and we will now place four di�erent
generators A ≠ D at them. These generators all have inertia m = 20

2fif

, but we let
the dampings be

d
A

= 2
2fif

, d
B

= 8
2fif

, d
C

= 14
2fif

, d
D

= 20
2fif

.

The situation is depicted in Figure 4.6.
We study this system under two conditions:
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Figure 4.5: H2 norms from Example 4.2 for a (a) path graph and a (b) complete graph
network of N nodes, with some of the bounds from in Section 4.5. Despite some variation
due to the randomness in the line parameters, the H2 norm scales directly with the network
size and is roughly the same for the path as for the complete graph. The bound related to
the Laplacian eigenvalue ratios (4.25) is the most accurate bound, and for the complete
graph, the inequality (4.26) linked to the algebraic connectivity ⁄2, also provides accurate
bounds (for the radial graph, the latter have been left out since they are o� by orders of
magnitude due to small connectivity).

(a) The strongly damped generators placed at the most interconnected nodes:

d
A

æ nodes 1 and 7
d

B

æ nodes 3 and 5
d

C

æ nodes 2 and 6
d

D

æ node 4

Here, dampings and node degrees are matched, and we call the resulting system
(with node 1 grounded) H̃

match

.
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o
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o
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o
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Figure 4.6: Illustration of the situation in Example 4.3. We place 4 generators with
di�erent dampings in the 7-node example network by considering the node degrees ”

i

.

(b) The strongly damped generators placed at the least interconnected nodes:

d
A

æ node 4
d

B

æ nodes 2 and 6
d

C

æ nodes 3 and 5
d

D

æ nodes 1 and 7

Here, dampings and node degrees are mismatched, and we call the resulting
system (with node 1 grounded) H̃

mismatch

.

We simulate the systems when they are subjected to a random initial angular
velocity disturbance according to the H

2

norm interpretation (ii) in Section 4.3.1.
The H

2

norms that give the expected transient power losses can be evaluated
numerically to:

||H̃
match

||2
2

= 18.9, while ||H̃
mismatch

||2
2

= 20.7.

This shows that losses are lower for the system corresponding to case (a) where the
dampings are matched to the node degrees.

Figure 4.7 shows the state trajectories of the two systems for a particular input
sequence. The figure shows that the transient behaviour of the system H̃

mismatch

(b) is less “coherent” than that of H̃
match

(a). Since the underlying graph, and
therefore the matrix L

G

in the performance output, is the same, it is clear in this
case that the additional oscillations in the mismatched case (b) lead to increased
transient losses. For the particular trajectories shown, the random input is such
that the “mismatched” network is particularly excited compared to the “matched”
network and, therefore, when we compute the respective losses for the particular
trajectories shown, these are for the matched case (a) 13.2, and in the mismatched
case (b) 27.9.
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(a) Damping size matched to node degrees
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(b) Damping size mismatched to node degrees

Figure 4.7: Simulation from Example 4.3 with network in Figure 4.6. In (a) the strongly
damped generators are placed at the most highly interconnected nodes, and in (b) the
strongly damped generators placed are at the most weakly interconnected nodes. The
system in (b) is less coherent and experiences larger resistive losses during the transient
response: 27.9 compared to 13.2 in system (a) for these particular trajectories.

These results and similar case studies have led us to conclude that for sys-
tems with non-uniform generator parameters, judicious network design that places
well-damped generators at highly interconnected nodes can reduce transient power
losses. An intuitive explanation to this is that a well-damped generator is able to
exert a larger e�ect on the entire network if it is well-connected than if it is remotely
located. However, note that although we are considering an extreme case where
the best damped generator has as much as a 10 times larger damping coe�cient
than the most poorly damped one, performance only di�ers by 10% between the
most optimal and least optimal generator arrangement for the particular example
topology.

4.7 Concluding summary of Chapter 4

We introduced a new performance measure associated with synchronization in elec-
tric power networks. This measure quantifies resistive losses that arise due to the
power flows associated with maintaining synchrony in a power network in the pres-
ence of persistent disturbances or small transient responses. These losses are the
cost of using power flow through transmission lines as the signaling mechanism for
synchronization control, which motivates the term “price of synchrony”. In the spe-
cial case of identical generators, we derived a formula for the total transient losses
expressed as a generalized ratio of the weighted graph Laplacians representing the
conductance and susceptance matrices. We showed that this quantity scales un-
boundedly with the number of nodes (generators) in the system. For the special case
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where all of the transmission lines have equal conductance to susceptance ratios, we
showed that the total transient resistive losses are independent of network topology,
and directly proportional to the number of nodes in the network. This topological
independence implies that while highly interconnected networks may have better
phase coherence and stability properties than a sparsely interconnected one, the
two types are equivalent in terms of the power losses associated with maintaining
synchrony. While this conclusion may at first seem surprising, some intuition can
be gained by considering the following contrast between highly versus sparsely in-
terconnected networks. A highly connected, and therefore highly phase-coherent
network has smaller phase fluctuations than a sparsely interconnected one. There-
fore, while the “per-link” resistive losses are smaller in the former, it has many more
links than the latter, and thus the total losses summed over all links are the same
for both networks.

The results we present have some interesting implications for the design of future
power grids. In particular, our results show that transient losses grow unboundedly
with network size. In addition, they indicate that that this growth is unlikely
to be mitigated by increasing network coherence through additional transmission
links, unless these links focus on an optimal matching of generator dampings to
node degrees (although our results show that even such strategic network design
is unlikely to have a significant impact on performance). These results point to a
fundamental limitation to a system where power flow is the mechanism by which
the system resynchronizes or maintains a synchronous state. This performance
limitation may be particularly relevant to future power networks that are likely
to have orders of magnitude more generators than today’s networks due to a high
integration of renewable distributed generation (DG) units. In the next chapter,
we will explore some further aspects of such renewable energy integrated networks.



88 Chapter 4. The price of synchrony: resistive losses in synchronizing power networks

Appendix to Chapter 4

Proof of Lemma 4.2
Consider the following state transformation of the system (4.9).

5
◊
Ê

6
=:

5
U 0
0 U

6 5
◊Õ

ÊÕ

6
,

where U is the unitary matrix which diagonalizes L
B

, that is, UúL
B

U = �
B

=
diag{0, ⁄B

2

, ..., ⁄B

N

}, with 0 = ⁄B

1

Æ ⁄B

2

Æ ... Æ ⁄B

N

being the eigenvalues of L
B

.
We have assumed, without loss of generality, that U = [ 1Ô

N

1 u
2

... u
N

], where u
i

,
i = 2, ..., N are the eigenvectors corresponding to the aforementioned eigenvalues.

Since the H
2

norm is unitarily invariant, see Section 2.1.2, we can also define
wÕ = Uúw and yÕ = Uúy to obtain the system

d

dt

5
◊Õ

ÊÕ

6
=

5
0 I

≠ 1

m

�
B

≠ d

m

I

6 5
◊Õ

ÊÕ

6
+

5
0

1

m

I

6
wÕ

yÕ =
Ë
UúL

1/2

G

U 0
È 5

◊Õ

ÊÕ

6 . (4.27)

Now, observe that

UúL
G

U =

S

WU
0 · · · 0
... L̂

G

0

T

XV , (4.28)

which implies that the first rows and columns of both UúL
G

U and �
B

are zero.
We thus have that the states ◊Õ

1

= 1Ô
N

q
N

i=1

◊
i

and ÊÕ
1

= 1Ô
N

q
N

i=1

Ê
i

satisfy the
dynamics

◊̇Õ
1

= ÊÕ
1

(4.29a)

Ê̇Õ
1

= ≠ d

m
ÊÕ

1

+ 1
m

wÕ
1

(4.29b)

yÕ
1

= 0. (4.29c)

Equation (4.29) reveals that the associated subsystem, which we denote H Õ
1

and
that corresponds to the single zero eigenvalue of L

B

, is unobservable. The re-
maining eigenvalues of the system (4.27) lie strictly in the left half of the complex
plane because L

B

is positive semidefinite. It follows that the input-output transfer
function from wÕ to yÕ is stable and has finite H

2

norm.
By the equivalence of the system (4.27) and H, we have thus established the

existence of the H
2

norm for the system H.
We can now partition the system (4.27) into the respective subsystems H Õ

1

in
(4.29) and Ĥ. We take L̂

G

as the Hermitian positive definite submatrix in (4.28)
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and define �̂
B

= diag{⁄B

2

, ⁄B

3

, ..., ⁄B

N

}. We then write the input-output mapping
Ĥ as:

d

dt

5
◊̂
Ê̂

6
=

5
0 I
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m

�̂
B

≠ d

m

I
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Ê̂
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0
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6 (4.30)

or … d

dt

„̃ = A„̃ + Bw̃; ỹ = C„̃.

Note that the systems Ĥ
1

and H̃ are completely decoupled and we therefore
have that ||H||2

2

= ||H Õ
1

||2
2

+ ||Ĥ||2
2

= ||Ĥ||2
2

.
The H

2

norm of Ĥ can then be calculated in perfect analogy to the derivations
in Section 4.4.2 and we obtain that

ÎHÎ2

2

= 1
2d

tr(�̂≠1

B

L̂
G

). (4.31)

Now, we show that the result of Lemma 4.1, that is in terms of the reduced
graph Laplacians, can be written in terms of the state transformed matrices �̂

B

and L̂
G

. Define the N ◊ (N ≠ 1) and the (N ≠ 1) ◊ N matrices R and P by:

R =

S

U
0 · · · 0

I
N≠1

T

V , P =

S

U
I

k≠1

0
≠1

0 I
N≠k

T

V ,

where k is the index of the grounded node and 1 is the (N ≠ 1) ◊ 1 vector with
all entries equal to 1. By this design, �̂

B

= Rú�
B

R, L̂
G

= RúUúL
G

UR and
L

B(G)

= P úL̃
B(G)

P . Further, to simplify notation, we define the (N ≠ 1) ◊ (N ≠ 1)
non-singular matrix V = PUR. Then we can write

tr(L̃≠1

B

L̃
G

) = tr(V V ≠1L̃≠1

B

(V ú)≠1V úL̃
G

),

since V V ≠1 = (V ú)≠1V ú = I. By the cyclic properties of the trace:

tr(V V ≠1L̃≠1

B

(V ú)≠1V úL̃
G

) = tr(V ≠1L̃≠1

B

(V ú)≠1V úL̃
G

V )
= tr((V úL̃

B

V )≠1V úL̃
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V ). (4.32)

But V úL̃
B

V = RúUúP úL̃
B

PUR = �̂
B

and V úL̃
G

V = RúUúP úL̃
G

PUR = L̂
G

.
Hence,

tr(L̃≠1

B

L̃
G

) = tr(�̂≠1

B

L̂
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).
In conclusion,

ÎHÎ2
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= 1
2—

tr(�̂≠1

B

L̂
G

) = 1
2—

tr(L̃≠1

B

L̃
G

) = ÎH̃Î2

H2 ,

which proves the Lemma.
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Proof of Lemma 4.3
By the proof of Lemma 4.2, we have that tr(L̃≠1

B

L̃
G

) = tr(�̂≠1

B

L̂
G

). Now,

tr(�̂≠1

B

L̂
G

) = tr
35

0 0
0 �̂≠1

B
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64
= tr

35
0 0
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6
UúL

G

U

4
.

By definition, see e.g. [38], UúL†
B

U = diag{0, 1

⁄

B

2
, ..., 1

⁄

B

N

} =
5
0 0
0 �̂≠1

B

6
, which

makes the above equivalent to: tr(UúL†
B

UUúL
G

U) = tr(UúL†
B

L
G

U). But since
the trace is unitarily invariant, it follows that

tr(�̂≠1

B

L̂
G

) = tr(L†
B

L
G

),

which concludes the proof.

Proof of Lemma 4.6
Without loss of generality, choose the node to which the new generator is connected
as the grounded node, and let it be numbered N . Let M̃ := diag{m

1

, ..., m
N

},
D̃ = diag{d

1

, ..., d
N

} and denote the new (N + 1)th node as NI for notational
compactness. The reduced new system H̃

1

can then be written as

d
dt

S

WWU

◊̃
◊

NI

Ễ
Ê

NI

T

XXV =

S

WWU

0 0 I
N≠1

0

0 0 0 1
≠M̃≠1L̃

B

0 ≠M̃≠1D̃ 0

0 ≠ b

N,NI

m

NI

0 ≠ d

NI

m

NI

T

XXV +

S

WWU

0 0

0 0
M̃≠1

0

0

1

m

NI

T

XXV

5
w̃

w
NI

6

(4.33)

5
ỹ

y
NI

6
=

5
L̃

1/2

G

0 0 0

0

Ô
g

N,NI

0 0

6
S

WWU

◊̃
◊

NI

Ễ
Ê

NI

T

XXV ,

where b
N,NI

, g
N,NI

are, respectively, the susceptance and conductance of the line
e

N,NI

. Let the input-output mapping H
NI

be the SISO subsystem of (4.33) given
by:

d
dt

5
◊

NI

Ê
NI

6
=

5 0 1
≠ b

N,NI

m

NI

≠ d

NI

m

NI

6 5
◊

NI

Ê
NI

6
+

5
0
1

m

NI

6
w

NI

y
NI

=
#Ô

g
N,NI

0
$ 5

◊
NI

Ê
NI

6
.
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From (4.33), it is clear that the systems H̃
0

and H
NI

are entirely decoupled. We
can therefore write H̃

1

= diag{H̃
0

, H̃
1

}, and have that

||H̃
1

||2
2

= ||H
0

||2
2

+ ||H
NI

||2
2

.

Now, the H
2

norm of H
NI

can be calculated in scalar analogy to the derivation in
Section 4.4.2 to yield

||H
NI

||2
2

= 1
2d

NI

g
N,NI

b
N,NI

= –
N,NI

2d
NI

,

and since, by Lemma 4.2 ||H̃
1

||2
2

= ||H
1

||2
2

, this concludes the proof.





Chapter 5

Renewable energy integrated power

systems: heterogeneous networks and

microgrids

Our study of power system dynamics in this thesis is to large extents motivated
by ongoing changes in the electric power system. We summarized some of these
changes in Examples 1.3 – 1.4 of the introduction. The overall trend is that elec-
tric power generation is becoming increasingly heterogeneous as numerous smaller,
local generation resources replace large centralized power plants. In traditional
power transmission systems, synchronization has typically been studied using a
Kron reduced network of synchronous generators, under standard linear power flow
assumptions that assume a flat voltage profile, as in Chapter 4. However, most
renewable energy based power generation does not use synchronous generators, so
a system of coupled swing equations cannot immediately be used to analyze sys-
tems with substantial renewable energy penetration. Furthermore, since much of
this generation is connected at low to medium voltage grids where a tight voltage
control is required, the assumption of flat voltage profiles is no longer valid. In this
chapter, we address each of these issues separately.

We begin this chapter by a short survey of the models that we use to represent
renewable energy generation. We present two such models: (a) a first-order model
used to represent asynchronous generation such as induction generators in wind
farms (as well as dynamic loads), and (b) models for frequency and voltage control
of power electric inverters. We will then use the model (a) together with the
synchronous generator model from Chapter 4 to derive a topology-preserving model
of a heterogeneous power transmission system in Section 5.2. We then address the
question of variable voltage dynamics by studying an inverter-based microgrid using
the models (b) in Section 5.3. In both cases, we show how the model extension
a�ects the price of synchrony performance measure introduced in Chapter 4.
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5.1 Modeling renewable energy integration

Renewable energy generation units are typically interfaced with the AC network
through asynchronous induction generators, or through DC/AC or AC/AC power
electronic converters, or inverters. In some cases, such as with doubly-fed induction
generators that are used to enable variable speed wind power, induction generators
and power electronic converters are combined [26]. We now introduce models for
the frequency dynamics for these respective systems, as well as for dynamic loads.

5.1.1 Asynchronous machine model
Based on the framework proposed by Bergen and Hill [10], we choose to model
dynamic loads, as well as asynchronous induction generators, through frequency-
dependent power withdrawals and injections. In the original framework, this model
was proposed for dynamic loads, and we will shortly provide a justification for
extending it to represent asynchronous generation.

Let L be a set of dynamic load buses. We model the (negative) power injection
P

e,i

from each bus i œ L as

P
e,i

= ≠P 0

load,i

≠ k
i

Ê
i

, i œ L (5.1)

where P 0

load,i

is the constant steady-state power withdrawn at node i, Ê
i

= ◊̇
i

is the
frequency and k

i

> 0 is the frequency coe�cient for each load i. Since the model
(5.1) was proposed in [10] in the 80’s, it has been used to represent induction motors
drawing power from the grid [45]. It captures the relationship between the active
power and frequency in induction machines by modeling it as a linear function of
the slip, which is the di�erence between the rotational speed of the machine and
the grid. Induction generators such as, for example, fixed-speed wind turbines with
cage-type generators, work in precisely the same way as induction motors. Equation
(5.1) is therefore also a suitable model for asynchronous induction generators. We
thus model the asynchronous generators in the set W as frequency-dependent power
injections P

e,i

of the form

P
e,i

= P 0

wind,i

≠ k
i

Ê
i

, i œ W (5.2)

where P 0

wind,i

is the constant steady-state input, k
i

> 0 is the frequency coe�cient
for each generator and the we use the index “wind” to refer to renewable power
generation in general. These power injections di�er from the loads in that they
enter the bus power balance with a positive sign to signify that they are injecting
power to the system. The magnitude of the parameters k

i

also tend to be di�erent
for loads versus renewable generation systems.

The frequency-dependent power injection model (5.2) is also applicable to the
increasingly common variable speed wind farm generators and other renewable
power sources such as photovoltaics that are grid-interfaced through inverters. As
was already mentioned in Example 1.4, a widely proposed control scheme for power
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inverters is so-called droop control. As we will see in the next section, the first-order
version of this droop control law is equivalent to (5.2). We conclude, therefore, that
(5.2) is well-suited to capture the physics of several types of renewable generation
in power systems, that is relevant to studying frequency synchronization.
Remark 5.1 The literature o�ers a number of more detailed descriptions of asyn-
chronous machines, particularly wind turbine generators [66, 25, 27], but it unclear
how such models would be adapted to studies of synchronous stability [45]. A
canonical modeling paradigm that captures the dynamics of interest has yet to be
established [32, 75, 80].

5.1.2 Inverter and droop control model
We now introduce models for the power inverters, adopting the framwork from [67].
We assume that these inverters are AC voltage sources, where both voltage ampli-
tude and frequency outputs can be regulated. We first consider frequency control,
and introduce the frequency droop controller, which is by now a standard approach
for frequency control in inverter-based networks [61, 89, 71, 72]. The focus on ana-
lyzing droop control also for voltage and reactive power stabilization in microgrids
is more recent, see for example [33, 48, 67, 68]. We introduce the voltage droop
controller at the end of this section.

Frequency droop control

Let the frequency output at the ith inverter be regulated according to:

◊̇
i

= u◊

i

, (5.3)

where u
i

is the control signal. The droop controller balances the active power
demand through simple proportional control

u◊

i

= Êref ≠ k
P,i

(P̂
i

≠ P ref

i

), (5.4)

where the controller gain k
P,i

> 0 is called the frequency droop coe�cient, Êref

and P ref

i

are the frequency and active power setpoints, and P̂
i

is the measured
active power by the power electronics at the inverter. Following [67], we assume
measurement delay dynamics where the active power is measured and processed
through a low-pass filter as

·
P,i

˙̂
P

i

= ≠P̂
i

+ P
e,i

, (5.5)

where ·
P,i

> 0 is the time constant of the filter and P
e,i

is the actual power injection
to the network at node i, given by (4.2).

Now, we substitute (5.4) into (5.3) and introduce the inverter frequency Ê
i

= ◊̇
i

to obtain
Ê

i

= Êref ≠ k
P,i

(P̂
i

≠ P ref

i

). (5.6)
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Taking the time derivative of (5.6) gives Ê̇
i

= ≠k
P,i

˙̂
P

i

and by (5.5) we have that
Ê̇

i

= k

P,i

·

P,i

(P̂
i

≠P
e,i

). Now, we can substitute P̂
i

using (5.6) and obtain the frequency
control dynamics as

◊̇
i

= Ê
i

·
P,i

Ê̇
i

= ≠Ê
i

+ Êref ≠ k
P,i

(P
e,i

≠ P ref

i

).
(5.7)

Note that the control dynamics (5.7) reduce to a first-order model if ·
P,i

= 0. In this
case, we have ◊̇

i

= ≠Ê
i

+ Êref ≠ k
P,i

(P
e,i

≠ P ref

i

) and by rearranging, one retrieves
the dynamics in (5.2). When ·

P,i

> 0, this coe�cient emulates inertia and the
droop control law emulates the swing equation (4.1) for synchronous generators.

Voltage droop control

Voltage regulation in power inverters is, unlike the frequency regulation in (5.3),
typically not immediate. We model the lag through a filter with time constant
·

V,i

Ø 0, and the control law becomes:

·
V

i

V̇
i

= ≠V
i

+ uV

i

. (5.8)

The voltage droop controller is implemented as simple proportional control based
on reactive power deviations:

uV

i

= V ref

i

≠ k
Q

i

(Q̂
i

≠ Qref

i

), (5.9)

where V ref

i

and Qref

i

are the respective setpoints for the voltage magnitude and
reactive power, and k

Q

i

> 0 is the voltage droop coe�cient. Q̂
i

is, just as in the
case of active power above, the filtered reactive power, which is obtained by

·
Q

i

˙̂
Q

i

= ≠Q̂
i

+ Q
i

, (5.10)

where ·
Q

i

> 0 is a filter constant and Q
i

are the actual reactive power injection
to the network at node i. We can assume that the time constant for the voltage
control, ·

V

i

is small compared to ·
Q

i

, so that it can be neglected [67]. We therefore
set ·

V

i

= 0 in (5.8), and then by substituting (5.9) into (5.8), we obtain:

V
i

= V ref

i

≠ k
Q

i

(Q̂
i

≠ Qref

i

). (5.11)

Taking the derivative (5.11) with respect to time gives V̇
i

= ≠k
Q

i

˙̂
Q

i

, in which we
can insert the filter equation (5.10). We then substitute Q̂

i

using (5.11) and obtain
the control dynamics for voltages as:

·
Q

i

V̇
i

= ≠V
i

+ V ref

i

≠ k
Q

i

(Q
i

≠ Qref

i

). (5.12)

Note that we will assume voltages to be fixed thrughout the first part of this chapter,
and only consider variable voltages in Section 5.3.
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5.2 Performance of mixed-oscillator systems

Based on the model introduced in Section 5.1.1, we now derive a dynamical system
model for a network consisting of both synchronous and asynchronous generators
as well as dynamic loads. This model is preserving of network topology, in the
sense that load buses are accounted for and are not absorbed into the network
lines as in the Kron reduced network model used in Chapter 4. We will refer
to this model as a mixed-oscillator system, since the synchronous generators are
second-order oscillators and the frequency-dependent elements (dynamic loads and
asynchronous generators) are, by some abuse of terminology, often referred to as
first-order oscillators.

We formulate a linear dynamical system subject to distributed disturbances,
and evaluate this system’s performance through an input-output H

2

norm as in
Chapter 4. We show that, under certain assumptions, the performance of this
mixed-oscillator system is equivalent to that of a system of second-order oscilla-
tors. We discuss implications of this result for renewable energy integrated power
networks at the end of this chapter.

5.2.1 Representation of mixed-oscillator systems
In the mixed-oscillator model, we consider a power network with the underlying
graph G

0

= (V
0

, E
0

), where V
0

:= {1, . . . N
0

} is the set of nodes (buses) and E
0

is a set
of edges (lines). Let L0

B

and L0

G

be the corresponding susceptance and conductance
matrices, as described in Section 2.3.2. Assume that each node i œ V

0

contains a
frequency dependent element (either a frequency-dependent load according to (5.1)
or asynchronous power source according to (5.2)). Assume further that a subset
S

0

œ V
0

of the buses also have synchronous generation, and let |S
0

| = NS Æ N
0

.

Network augmentation

The network preserving model based on [10] is derived by augmenting the network
as follows. Divide each generator bus j œ S

0

into two separate buses; one containing
the synchronous generator and one with the frequency dependent element, which
we will for simplicity assume to be a load. Then connect the resulting two buses
through a purely reactive line. This line represents the internal transient reactance
of the synchronous generator. The entire system is now described by an augmented
network with a total of N = N

0

+ NS nodes. We refer to the NS synchronous
generators nodes in this augmented network as ”fictitious generator buses”. Fig-
ure 5.1 illustrates this procedure for a sample network and gives an example of the
respective node sets described next.

Without loss of generality the buses can be renumbered as follows. The buses
in the set V

0

\S
0

:= W, which are those without synchronous generation in the
original network, are indexed as W = {1, ..., N

0

≠NS}. The (fictitious) synchronous
generator buses are the nodes {N

0

+ 1, ..., N
0

+ NS = N} =: S and the new buses
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with the frequency-dependent load elements that were in the set S
0

, are now in
the set {N

0

≠ NS + 1, ..., N
0

} =: L. The nodes i œ L are numbered in increasing
order with respect to the set S. Furthermore, we denote the set of the NS lossless
lines used to augment the system as E

aug

. The graph that describes the augmented
network can now be written as G

1

= (V
1

, E
1

), where V
1

:= W fi S fi L is the full set
of nodes and E

1

:= E
0

fiE
aug

. We denote the susceptance and conductance matrices
of the augmented network by L

B

and L
G

respectively. Each node in the augmented
N -bus network has an associated voltage magnitude V

i

and voltage phase angle ◊
i

.
We next state the dynamics in ◊

i

for the nodes in these various node sets.
Remark 5.2 The system augmentation method outlined above assumes that each
node j œ S

0

has a frequency dependent load element as well as a synchronous gener-
ator. In other words, a non-zero dynamic load is co-located with every synchronous
generator in the pre-augmented system. The load element could trivially be ex-
changed for a frequency-dependent power injection. The augmentation method
can also easily be adapted to include isolated synchronous generators (possibly
co-located with static loads). These nodes would then remain single synchronous
generator buses as the system is augmented.

Mixed-oscillator system dynamics

The synchronous generators are, as in Chapter 4, governed by the swing equation
(4.1), which we restate here as:

m
i

◊̈ + d
i

◊̇ = P 0

m,i

≠ P
e,i

, i œ S, (5.13)

where m
i

and d
i

are the inertia and damping coe�cients of the ith generator and
P 0

m,i

is the constant mechanical power input from the generator turbine. P
e,i

is
here, as well as for remaining nodes i œ V

1

, the real electrical power injection to
the grid that was introduced in Section 4.2.2.

Recall that the dynamics at nodes i œ L are given by (5.1) and those at i œ W
are given by (5.2). We can combine these with the swing equation (5.13), that holds
for i œ S, to compactly represent the dynamics at all nodes i œ V

1

= W fi S fi L as
follows:

m
i

◊̈
i

+ d
i

◊̇
i

+ k
i

◊̇
i

= P 0

m,i

+ P 0

wind,i

≠ P 0

load,i

≠
ÿ

jœN
b

ij

[◊
i

≠ ◊
j

] , i œ V
1

(5.14)

where we have also substituted the linearized power flow equation (4.3). For i œ S
it holds D

i

= 0, M
i

> 0, d
i

> 0, and P 0

m,i

> 0; for i œ W it holds m
i

= d
i

= 0,
k

i

> 0, and P 0

wind,i

> 0; for i œ L it holds m
i

= d
i

= 0, k
i

> 0 and P 0

load,i

> 0.
We will carry out the entire analysis of the mixed oscillator system using a

grounded network, as described in Section 4.4.1. Throughout, we will take N
as the grounded node, which means that we set ◊

N

© 0 and measure all other
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(a) Original network
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(b) Augmented network

Figure 5.1: An example of (a) a 5 bus network with 3 synchronous generators and (b) the
corresponding augmented network, in which every joint generator and load bus is replaced
by a separate load bus and a fictitious generator bus. Here, the respective sets of nodes
are W = {1, 2}, S = {6, 7, 8} and L = {3, 4, 5}. The lines in Eaug = {e36, e47, e58} model
the transient reactances of the generators. The arrows at buses 1 and 2 symbolize a power
injection by an asynchronous generation source.
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phase angles and frequency deviations in the system with respect to this reference.
Physically, this corresponds to allowing node N to behave as an infinite bus.

In order to rewrite the dynamics on matrix form we first define K = diag{k
j

}
for buses j œ W fi L, and M = diag{m

i

}, D = diag{d
i

} for buses i œ S. Let L
B

be
the susceptance matrix of the augmented network G

1

, and L̃
B

be the corresponding
grounded version (again, see Section 4.4.1). We then write the dynamics from (5.14)
on matrix form as

KÊ
K

= ≠ #
I

N0 0
$

(L̃
B

◊ ≠ P 0) (5.15)
M Ê̇

G

+ DÊ
G

= ≠ #
0 I

(NS ≠1)

$
(L̃

B

◊ ≠ P 0), (5.16)

where P 0 = diag{P 0

i

}, letting P 0

i

= P 0

m,i

+ P 0

wind,i

≠ P 0

load,i

. The state vectors are
defined so that ◊ =

#
◊

1

· · · ◊
N≠1

$
T and

◊̇ =
5
I

N0

0

6
Ê

K

+
5

0
I

(NS ≠1)

6
Ê

G

= T
1

Ê
K

+ T
2

Ê
G

. (5.17)

Filling (5.15) into (5.17) allows the state Ê
K

to be eliminated using

T
1

Ê
K

= ≠T
1

K≠1T T

1

(L̃
B

◊ ≠ P 0).

To simplify the notation, we define T
K

:= T
1

K≠1T T

1

and write the state equations
for the combined system as

d
dt

5
◊

Ê
G

6
=

5 ≠T
K

L̃
B

T
2

≠M≠1T T

2

L̃
B

≠M≠1D

6 5
◊

Ê
G

6
+

5
T

K

M≠1T T

2

6
w, (5.18)

where w is the disturbance input. By some abuse of notation, we have used the
same approach as in Chapter 4 and let the system (5.18) represent deviations from
a steady-state operating point as given by the constant P 0.

Performance output

As before, we study system performance by investigating the resistive losses that
arise due to the power flows required to return to a synchronous state after a
disturbance. We therefore use the performance metric from Definition 4.1. Here, we
have already assumed that node N is grounded and can therefore use the following
(N ≠ 1)-dimensional performance output for the system (5.18):

y =
Ë
L̃

1/2

G

0
È 5

◊
Ê

G

6
. (5.19)

This allows the squared output norm y ú y to represent the total instantaneous
losses over all lines e

ij

œ E
1

. Since L̃
G

is a positive semidefinite grounded graph
Laplacian, we have taken L̃

1/2

G

as the unique positive semidefinite matrix square
root.
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Recall that the lines e
ij

œ E
aug

connecting the buses in L with those of S in the
augmented network are purely reactive. This means that g

ij

= 0 for e
ij

œ E
aug

,
meaning that no real power flows over those lines and they induce no losses that
are accounted for by the performance output (5.19).

We can now define the system (5.18) and (5.19) as the input-output mapping
H from w to y as

d
dt

5
◊

Ê
G

6
=

5 ≠T
K

L̃
B

T
2

≠M≠1T T

2

L̃
B

≠M≠1D

6 5
◊

Ê
G

6
+

5
T

K

M≠1T T

2

6
w =: AÂ + Bw (5.20a)

y =
Ë
L̃

1/2

G

0
È 5

◊
Ê

G

6
=: CÂ, (5.20b)

where Â = [◊, Ê
G

]T .

5.2.2 Input-output analysis
In this section, we first show that the linear system (5.20) is asymptotically stable
in order to ensure that its H

2

norm is finite. We then derive an expression for this
norm and discuss bounds on its value. Following that, we relate this norm to the
results in Chapter 4.

Stability

We show that the system 5.20 is asymptotically stable using the following lemma,
whose proof follows the arguments in [10].

Lemma 5.1 The system (5.20) is asymptotically stable and the following is a Lya-
punov function for (5.20a)

V (◊, Ê
G

) = 1

2

◊T L̃
B

◊ + 1

2

ÊT

G

MÊ
G

.

Proof: Clearly, V (0, 0) = 0. It holds that M > 0 by definition. L̃
B

is positive
definite, since it is a reduced Laplacian of a connected graph [52]. Therefore,
V (◊, Ê

G

) > 0, ’◊, Ê
G

”= (0, 0). The derivative of V evaluated along the state
trajectories can, after some algebraic operations, be given as

V̇ (◊, Ê
G

) = ≠ÊT

G

DÊ
G

≠ ◊T L̃
B

T T

K

L̃
B

◊,

which is non-positive for all ◊, Ê
G

, since D > 0 and L̃
B

T T

K

L̃
B

Ø 0. For asymptotic
stability, we also require V̇ (◊, Ê

G

) = 0 … (◊, Ê
G

) = (0, 0) by LaSalle’s invariance
principle. Clearly, V̇ = 0 requires Ê

G

= 0 and T T

K

L̃
B

◊ = 0. The latter is equivalent
to T T

1

L̃
B

◊ = 0. By (5.18), however, Ê
G

= 0 implies ≠M≠1T T

2

L̃
B

◊ = 0. Now, if we
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let T =
#
T

1

T
2

$
= I

(N0+NS ≠1)

, the two give T L̃
B

◊ = 0. Since T is the identity
matrix and L̃

B

is positive definite, it must hold ◊ = 0. We therefore conclude that
the last criterion holds and all Lyapunov’s conditions for global asymptotic stability
are fulfilled.

H2 norm calculations

As in the previous chapter, the H
2

norm of the system H in (5.20) is computed
using the equations (2.7) – (2.8). Here, we partition X œ C(N+NS ≠2)◊(N+NS ≠2)

into four submatrices as
X =

5
X

1

X
0

Xú
0

X
2

6

where X
1

œ C(N≠1)◊(N≠1), X
0

œ C(N≠1)◊(NS ≠1) and X
2

œ C(NS ≠1)◊(NS ≠1). The
Lyapunov equation reduces to the following three linearly independent equations

L̃
B

T
K

X
1

+ L̃
B

T
2

M≠1Xú
0

+ X
1

T
K

L̃
B

+ X
0

M≠1T T

2

L̃
B

= L̃
G

(5.21a)
L̃

B

T
K

X0 ≠ L̃
B

T
2

M≠1X
2

+ X
1

T
2

≠ X
0

M≠1D = 0 (5.21b)
T T

2

X
0

≠ M≠1DX
2

+ Xú
0

T
2

≠ X
2

M≠1D = 0. (5.21c)

Using these equations, the norm from (2.7) becomes

||H||2
2

= tr(BúXB) = tr(T 2

K

X
1

) + tr(M≠2X
2

). (5.22)

For tractability purposes, we now impose Assumption 4.1 of uniform synchronous
generators, as well as the following assumption:
Assumption 5.1 (Identical asynchronous machines) All frequency dependent el-
ements given by (5.1) and (5.2) have identical coe�cients k

i

, that is, k
i

= k for all
i œ L fi S. This gives K = kI, where I is the N

0

◊ N
0

identity matrix.

Under these assumptions, (5.22) can be simplified to:

||H||2
2

= 1
2k

tr(L̃≠1

B

L̃
G

) +
3

1 ≠ d

k

4
1

m2

tr(X
2

), (5.23)

where X
2

can be evaluated using equations (5.21a) – (5.21c). According to the
discussion in Section 4.3.1, this expression represents the expected power losses due
to certain disturbance inputs w.

Generalized Laplacian ratios in the augmented network

In order to understand the losses described in the expression (5.23), it is useful to
first examine the properties of the generalized graph Laplacian ratio tr(L̃≠1

B

L̃
G

) in
the case where the underlying graph is that of an augmented network. To facilitate
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this discussion, recall Lemma 4.3, which says that tr(L̃≠1

B

L̃
G

) = tr(L†
B

L
G

) for
any two graph Laplacians L

B

and L
G

. This result extends to the augmented
system, since L

B

and L
G

are both weighted graph Laplacians for the augmented
system, even though the graph underlying L

G

is no longer connected. We will use
Lemma 4.3 to prove the theorem stated in this section.

We already discussed that the expression tr(L̃≠1

B

L̃
G

) can be thought of as a
generalized ratio of susceptance to conductance in a general graph. This notion is
further strengthened by the following result, which shows that for our augmented
network, the purely reactive edges in E

aug

do not contribute to the generalized
Laplacian ratio. In other words, only the main network, whose underlying graph is
G

0

(with vertex set L fi W) will influence the generalized graph Laplacian ratio and
the augmented, fictitious nodes will be irrelevant. This idea is formalized through
the following theorem.

Theorem 5.2 Let the graph G
0

describe a power network, and let G
1

denote the
corresponding augmented network, using the method described in Section 5.2.1. Let
the susceptance and conductance matrices associated with G

0

be, respectively, L0

B

and L0

G

and those associated with the augmented network G be L
B

and L
G

. Fur-
thermore, let L̃

B

and L̃
G

be the grounded versions of L
B

and L
G

. It then holds
that

tr(L̃≠1

B

L̃
G

) = tr(L†
B

L
G

) = tr(L0†
B

L0

G

).

Proof: See Appendix.

The fact that only the main, unaugmented, network a�ects the generalized
Laplacian ratio can be seen more clearly in the special case when the conductance
to susceptance ratios –

ij

of all lines (edges) are equal:

Corollary 5.3 Consider the network described in Theorem 5.2. Let all edges e
ij

œ
E

0

have equal resistance-to-reactance ratios, that is –
ij

= r

ij

x

ij

= g

ij

b

ij

= – Then

tr(L̃≠1

B

L̃
G

) = –(N
0

≠ 1). (5.24)

Proof: In this case, L0

G

= –L0

B

. By Theorem 5.2 and Lemma 4.3: tr(L̃≠1

B

L̃
G

) =
tr(L0†

B

L0

G

) = tr((L̃0

B

)≠1L̃0

G

) = tr((L̃0

B

)≠1–L̃0

B

) = tr(–I
(N0≠1)

) = –(N
0

≠ 1).

Remark 5.3 Note that Theorem 5.2 and Corollary 5.3 allow for the synchronous
generators’ transient reactances x

ij

for e
ij

œ E
aug

to take any value.
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5.2.3 Performance analysis for mixed-oscillator system
We now relate the H

2

norm of the mixed-oscillator system (5.20) to our earlier
results for synchronous generator systems from Chapter 4, as well as to the special
case where the system consists of only first-order dynamics. As we will show, all
of these systems have the same associated H

2

norm, provided that their dampings
are equal. We also discuss some interesting implications of this result.

H2 norm bound

From (5.23), it is clear that when d = k, the H
2

norm of the system (5.20) reduces
to ||H||2

2

= 1

2k

tr(L̃≠1

B

L̃
G

), which by Theorem 5.2 gives:

||H||2
2

= 1
2k

tr(L0†
B

L0

G

). (5.25)

The frequency dependence coe�cient k in (5.1) and (5.2) can be seen as a type of
damping, analogous to the dampings d of the synchronous generators. However,
wind power plants and loads generally have much lighter rotors than synchronous
generators. It is thus reasonable to assume that d Ø k which leads to the following
upper bound on (5.23):

||H||2
2

Æ 1
2k

tr(L0†
B

L0

G

). (5.26)

Even in the general case of non-uniform asynchronous dampings, a choice of k =
min

iœWfiL k
i

= k
min

makes this bound conservative.

Special case: first-order dynamics

An interesting special case is when S
0

= ÿ, which corresponds to a system without
synchronous generation, or equivalently, a network of only first-order oscillators in
our modeling framework. Such a model arises for example when studying inverter-
based microgrids in the limit where there are no time-delays in the dynamics (see
Section 5.1.2) and it is therefore highly relevant to ongoing related research, see for
example [72, 73].

Under Assumption 5.1, the reduced input-output system, denoted H̃
1

st , for this
special case becomes:

d
dt

◊̃ = ≠ 1
k

L̃0

B

◊̃ + 1
k

Iw̃ (5.27)

ỹ = (L̃0

G

)1/2◊̃,

where we have taken node N = N
0

as the grounded node and ◊̃ is the corresponding
reduced state vector. It is now easy to show that

||H̃
1

st ||2
2

= 1
2k

tr((L̃0

B

)≠1L̃0

G

) = 1
2k

tr(L0†
B

L0

G

),

which is precisely the result in (5.25). We remark that this result holds regardless
of whether one considers a grounded system or not.



5.3. Microgrids with variable voltage dynamics 105

Comparison of oscillator models

Not only the first-order model is equivalent to the mixed-order oscillator model in
terms of the input-output H

2

norm. By considering the parameter k as a surrogate
for the damping coe�cient d, the norm in (5.25) is also the norm of a system with
N

0

synchronous generators, as we showed by Theorem 4.4. In the current modeling
framework, the system (5.20) becomes such a system of N

0

synchronous generators
if S

0

= V
0

, but the nodes are not augmented, see Remark 5.2.
More interestingly, the main result of this section shows that the same H

2

norm
holds for a network where all nodes i œ V

0

have a first-order oscillator with damping
k and where the NS nodes in the set S

0

µ V
0

in addition have a synchronous
generator with damping d = k. This means that the NS nodes that have now been
added, compared to the first-order system in (5.27), do not change the input output
norm, even though they do change the dynamics.

We can conclude that if damping parameters k = d are uniform, the H
2

norm
and therefore the resistive losses are the same, regardless of whether the first-order
(5.27) model, a second-order model (4.9) or a combined model (5.20) is used. Any
di�erences in performance between these models can therefore be attributed to
the parameters that characterize the di�erent types of generators. Therefore, from
the perspective of the “price of synchrony” performance measure, the order of the
dynamics used to characterize the power network is irrelevant.

We should point out that these results do not claim the models to be equivalent,
and do not address any transient stability properties of the power system. The
transient responses of the respective systems are substantially di�erent and when
studying synchronous stability of power systems in general, the model order and
parameters should be chosen with care. The losses incurred in a synchronizing
network and the network’s ability to synchronize are two di�erent issues, and it is
only in terms of the H

2

norm with respect to the selected performance output, that
we claim the di�erent order models to be equivalent.

5.3 Microgrids with variable voltage dynamics

We now shift focus to a di�erent type of renewable energy integrated power net-
work and consider a model of an inverter-based microgrid. The dynamics in such
microgrids is assumed to be governed by controllable power electronics, for which
we will impose the control laws introduced in Section 5.1.2. Unlike our previous
analyses, we now account for variable voltages and non-zero resistances in the sys-
tem dynamics. This means that we also need to account for the full complex power
flow, and that the performance measure from Definition 4.1 needs to be extended
to include the power losses that arise due to voltage fluctuations.

This section’s main result shows that under the assumption of uniform inverter
parameters and resistance-to-reactance ratios in the network, the power losses can
be decomposed into two parts; one associated with frequency control which is iden-
tical to the result in Chapter 4, and an additional part associated with voltage
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control. In addition to these two parts of the norm, there are cross-terms associ-
ated with the cross-couplings of frequency and voltage dynamics. We demonstrate,
however, that these terms are typically small with respect to the overall power
losses.

Interestingly, we also find that the power losses associated with voltage control
depends strongly on network topology, unlike the losses associated with frequency
control that we have derived previously. In fact, these losses will be larger in a
highly interconnected network than in a sparsely interconnected one. We discuss
interpretations of this result as well as expressions and bounds for performance in
various network topologies.

5.3.1 Dynamic model of inverter-based microgrid
As before, we consider a network G = {V, E} with the set of nodes V = {1, . . . , N}
and a set of edges, or network lines, E = {e

ik

}. We assume that all constant
impedance loads have been absorbed into the network lines and that, consequently,
every node i œ V represents a generation unit with a power inverter as its grid
interface. That is, we again consider a Kron reduced network as in Chapter 41.
Each node has an associated phase angle ◊

i

and voltage magnitude V
i

.
We introduced the inverter model and droop control laws in Section 5.1.2. In

summary, the control dynamics for phase angles ◊
i

and voltage magnitudes V
i

are:

◊̇
i

= Ê
i

·
P

i

Ê̇
i

= ≠Ê
i

+ Êref ≠ k
P

i

(P
e,i

≠ P ref

i

)
·

Q

i

V̇
i

= ≠V
i

+ V ref

i

≠ k
Q

i

(Q
i

≠ Qref

i

).
(5.28)

We now derive the linearized equations for the power injections P
e,i

and Q
i

. The
equation for P

e,i

will di�er from the one derived in Section 4.2.2, since we no longer
assume a uniform voltage profile.

Linearized complex power flows

Introducing ◊
ik

= (◊
i

≠◊
k

) as the phase angle di�erence between neighboring nodes,
the active and reactive powers injected to the grid at node i œ V are given by

P
e,i

= ≠g
ii

V 2

i

+
ÿ

kœN
i

V
i

V
k

(g
ik

cos ◊
ik

+ b
ik

sin ◊
ik

) (5.29)

Q
i

= b
ii

V 2

i

+
ÿ

kœN
i

V
i

V
k

(g
ik

sin ◊
ik

≠ b
ik

cos ◊
ik

). (5.30)

1In line with the previous section, dynamic loads could be accounted for using an network-
preserving model. In order to make the analysis as tractable as possible and to isolate the e�ect
of variable voltages for performance, we limit the analysis here to a Kron reduced inverter-based
network.
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Where N
i

denotes the neighbor set of node i, and, as before g
ik

is the conductance
and b

ik

the susceptance of the line e
ik

. At each node i, g
ii

= ḡ
i

+
q

kœN
i

g
ik

and
b

ii

= b̄
i

+
q

kœN
i

b
ik

represent the respective self-conductance and self-susceptance,
which include the shunts b̄

i

and ḡ
i

. We will in the following make the common
assumption [35, 68] that the shunt elements are purely inductive, so that in our
notation ḡ

i

= 0 and b̄ Ø 0 for all i œ V.
We will be considering systems under the assumption of small deviations from an

operating point. We can therefore approximate the power flows by a linearization
around the points P 0

i

(◊0

ik

, V 0

i

, V 0

k

) and Q0

i

(◊0

ik

, V 0

i

, V 0

k

), where V 0

i

= V 0

k

= V 0 = 1
and ◊

ik

= 0 for all i, k œ N . This procedure gives the linearized power injections
at node i as:

�P
e,i

=
ÿ

k≥i

(≠g
ik

(�V
i

≠ �V
k

) + b
ik

�◊
ik

) (5.31)

�Q
i

=2b̄
i

�V
i

+
ÿ

k≥i

(b
ik

(�V
i

≠ �V
k

) + g
ik

�◊
ik

) . (5.32)

Note that, under the assumption of a uniform voltage profile, (5.31) reduces to (4.3).

Formulation of closed loop system

We now formulate the inverter dynamics as a closed loop linear system subject to
distributed disturbances that represent fluctuations in generation and loads. For
this purpose, we let the operating point around which the power flow equations
are linearized be given by the setpoints from the droop control laws in (5.28), so
that �P

e,i

= P
e,i

≠ P ref

i

and �Q
i

= Q
i

≠ Qref

i

for all i œ V. In an e�ort to avoid
cumbersome notation, we then omit the di�erence operator � and let the state
variables (◊

ik

, Ê
i

, V
i

) represent deviations from the operating point. As before, we
assume additive process noise through the disturbance input w.

We can then use the power flow equations (5.31) – (5.32) to express the dynamics
(5.28) of the ith inverter as:

◊̇
i

= Ê
i

·
P

i

Ê̇
i

= ≠Ê
i

≠ k
P

i

(≠
ÿ

k≥i

g
ik

(V
i

≠ V
k

) +
ÿ

k≥i

b
ik

◊
ik

) + wÊ

i

·
Q

i

V̇
i

= ≠V
i

≠ k
Q

i

(2b̄
i

V
i

+
ÿ

k≥i

b
ik

(V
i

≠ V
k

) +
ÿ

k≥i

g
ik

◊
ik

) + wV

i

.

Now, by defining ◊, Ê, V as column vectors containing the states ◊
i

, Ê
i

, V
i

, i œ V
and using the susceptance and conductance matrices L

B

and L
G

defined in (2.19),



108 Chapter 5. Renewable energy integrated power systems

we can summarize the above dynamics as follows:

S

U
◊̇
Ê̇
V̇

T

V =

S

U
0 I 0

≠K
P

T ≠1

P

L
B

≠T ≠1

P

K
P

T ≠1

P

L
G

≠K
Q

T ≠1

Q

L
G

0 ≠C
Q

T ≠1

Q

≠ K
Q

T ≠1

Q

L
B

T

V

S

U
◊
Ê
V

T

V

+

S

U
0 0

T ≠1

P

0
0 T ≠1

Q

T

V w, (5.33)

where w = [wÊ

i

, wV

i

]T represents the disturbance input. We have also introduced
C

Q

= diag{c
Q

i

} with c
Q

i

= 1+2k
Q

i

b̄
i

. The remaining system parameters are given
by K

P (Q)

= diag{k
P (Q)

i

}, T
P (Q)

= diag{·
P (Q)

i

}.

5.3.2 Performance measure with variable voltages
We now extend the “price of synchrony” performance measure introduced in Sec-
tion 4.3 to also account for losses associated with fluctuating voltages. For this
purpose, consider again the real power loss over an edge e

ik

, which is given by
Ohm’s law as

P loss

ik

= g
ik

|v
i

≠ v
k

|2, (5.34)

where v
i

, v
k

are the complex voltages at nodes i and k. We can now enforce the
common linearized system assumption of small phase angle di�erences. Standard
trigonometric methods then give that |v

i

≠ v
k

|2 ¥ (V
i

≠ V
k

)2 + (V
i

(◊
i

≠ ◊
k

))2. Since
we also assume V

i

¥ 1 p.u. around the linearization point for all i œ V, an approx-
imation of the power loss over the edge e

ik

is P loss

ik

= g
ik

#
(V

i

≠ V
k

)2 + (◊
i

≠ ◊
k

)2

$
.

The total instantaneous power losses over the network are then approximately

P

loss

¥
ÿ

i≥k

g
ik

Ë
(V

i

≠ V
k

)2 + (◊
i

≠ ◊
k

)2

È
. (5.35)

Making use of the conductance matrix L
G

, we can write (5.35) as the quadratic
form

P

loss

= V T L
G

V + ◊T L
G

◊, (5.36)

which allows us to make the following definition:
Definition 5.1 (Price of synchrony performance output with variable voltages)
The instantaneous resistive power losses in a power network with variable voltages
are measured as P

loss

= yúy, where the performance output y is

y := L
1/2

G

◊ + L
1/2

G

V. (5.37)

Here V and ◊ are the state vectors that were defined in the previous section.
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5.3.3 Performance analysis of decoupled microgrid dynamics
In this section, we analyze the dominant performance of (5.33) with respect to the
output (5.37), by assuming that the network’s resistances are small compared to
its reactances. Under this common assumption (see for example [33, 67, 73]), the
active power flow is a function only of the phase angles and the reactive power flow
is a function only of the voltage magnitudes, that is,

P (◊, V ) ¥ P (◊), Q(◊, V ) ¥ Q(V ).

This leads to a decoupling of the frequency and voltage dynamics and we obtain
L

G

= 0 in the system matrix of (5.33). The output (5.37) then measures the power
losses associated with the trajectories arising from these decoupled dynamics by
retaining the non-zero resistances through L

G

.
In Section 5.3.4, we relax this assumption of decoupled power flows, and show

that the results derived here are robust towards that relaxation, provided resis-
tances remain su�ciently small. In particular, the errors made by evaluating the
performance under decoupled (lossless) dynamics will be small in relation to the
overall performance of the network.
Remark 5.4 The assumption of small resistances compared to reactances is not,
in general, applicable to low to medium voltage grids [42]. However, it is not unrea-
sonable for an inverter-based network, given that inverter output impedances are
typically highly inductive [68]. When these impedances are absorbed into the net-
work through the Kron reduction they may therefore dominate the line resistances.

In the subsequent derivations we make the following further assumptions:
Assumption 5.2 (Identical inverters) All inverters have identical droop control
settings and low-pass filters for power measurement, i.e., K

P

= diag{k
P

}, K
Q

=
diag{k

Q

}, T
P

= diag{·
P

}, T
Q

= diag{·
Q

}.

Assumption 5.3 (Uniform shunt conductances) All nodes have identical shunt
conductances, i.e., b̄

i

= b̄ Ø 0 and C
Q

= diag{c
Q

}.

Assumption 5.4 (Uniform resistance-to-reactance ratios) The ratio of resistances
to reactances, equivalently conductances to susceptances, of all lines are uniform
and constant, i.e.,

– := g
ik

b
ik

,

for all e
ik

œ E . This implies L
G

= –L
B

.

Assumption 5.4, which is also applied in e.g. [48], [23], can be motivated first
by uniformity in the physical line properties in a microgrid (i.e., materials and
dimensions). Second, Kron reduction of a network increases its uniformity in node
degrees [53]. This makes the line properties more uniform than in actual power
networks. See also Section 4.4.3.
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For ease of reference, we now re-state the system (5.33) with the output (5.37)
under Assumptions 5.2 – 5.4 as the multiple-input multiple-output (MIMO) LTI
system H:
S

U
◊̇
Ê̇
V̇

T

V =

S

WU
0 I 0

≠ k

P

·

P

L
B

≠ 1

·

P

I 0
0 0 ≠ c

Q

·

Q

I ≠ k

Q

·

Q

L
B

T

XV

S

U
◊
Ê
V

T

V +

S

U
0 0

1

·

P

I 0
0 1

·

Q

I

T

V w =: AÂ + Bw,

(5.38a)

y =
CÔ

–L
1/2

B

0 0
0 0

Ô
–L

1/2

B

D S

U
◊
Ê
V

T

V =: CÂ. (5.38b)

Now, we will first show that the system (5.38) is input-output stable in order
to ensure that its H

2

norm is finite. We then proceed to derive an expression for
this norm and to state its value for specific network topologies.

Eigenvalues and stability

Like the systems we have studies so far, the system (5.38) inherits the zero eigen-
value from the graph Laplacian L

B

. The associated mode, which corresponds to
the drift of the mean phase angle, is however unobservable also in this system, as
we will show by a simple state transformation in the following section. Remain-
ing eigenvalues of (5.38) are however strictly in the left half of the complex plane.
Denote by ⁄B

n

the nth eigenvalue of L
B

and without loss of generality number the
eigenvalues so that ⁄B

1

= 0 and consider the following lemma:

Lemma 5.4 If the graph underlying the network G is connected, then the eigenval-
ues of the system (5.38a) are:

‡(A) =
;

0, ≠ 1
2·

P

3
1 ±

Ò
1 ≠ k

P

·
P

⁄B

n

4
, ≠ 1

·
P

, ≠c
Q

·
Q

, ≠c
Q

·
Q

≠ k
Q

·
Q

⁄B

n

<
,

for n = {2, . . . , N}. If the parameters k
P

, ·
P

, k
Q

, ·
Q

> 0 and the shunt susceptance
satisfies b̄ > ≠1

2k

Q

… c
Q

> 0, all eigenvalues apart from ⁄
1

= 0 lie strictly in the left
half of the complex plane and A is a stable matrix.

Proof: The eigenvalues are given by A’s characteristic polynomial. Since the graph
underlying L

B

is connected, L
B

is Hermitian positive semi-definite and 0 = ⁄B

1

<
⁄B

2

Æ . . . Æ ⁄B

N

. It is then easy to see that if k
P

, ·
P

, k
Q

, ·
Q

, c
Q

> 0, all eigenvalues
have negative real parts.

Using this result we conclude that the system (5.38) is input-output stable and that
its H

2

norm is finite.
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H2 norm calculation

To derive the H
2

norm of (5.38), we follow the approach introduced in Section 2.1.2
and use the following unitary state transformation:

S

U
◊
Ê
V

T

V =:

S

U
U 0 0
0 U 0
0 0 U

T

V

S

U
◊̂
Ê̂

V̂

T

V , (5.39)

where U is the unitary matrix which diagonalizes L
B

, i.e., L
B

= Uú�
B

U with
�

B

= diag{⁄B

1

, ⁄B

2

, . . . , ⁄B

N

}. Given that the H
2

norm is unitarily invariant, we can
also apply transformations to the input and the output, so that

ŷ =
5
Uú 0
0 Uú

6
y, and ŵ =

5
Uú 0
0 Uú

6
w.

Through these transformations, we obtain a system Ĥ in which all blocks of the
system (5.38) have been diagonalized. This system thus represents N decoupled
subsystems, each of which we denote Ĥ

n

:
S

WU

˙̂
◊

n

˙̂Ê
n

˙̂
V

n

T

XV =

S

WU
0 1 0

≠ k

P

·

P

⁄B

n

≠ 1

·

P

0
0 0 ≠ c

Q

·

Q

≠ k

Q

·

Q

⁄B

n

T

XV

S

U
◊̂

n

Ê̂
n

V̂
n

T

V +

S

U
0 0
1

·

P

0
0 1

·

Q

T

V ŵ
n

=: A
n

�̂
n

+ B
n

ŵ
n

,

ŷ
n

=
Ò

–⁄B

n

5
1 0 0
0 0 1

6 S

U
◊̂

n

Ê̂
n

V̂
n

T

V =: C
n

�̂
n

,

and the H
2

norm of the system Ĥ will be given as

||Ĥ||2
2

=
q

N

n=1

||Ĥ
n

||2
2

= ||H||2
2

.

Notice that the subsystem Ĥ
1

corresponding to ⁄
1

= 0 has the the output ŷ
1

= 0Â̂.
It is therefore unobservable and has ||Ĥ

1

||2
2

= 0.
The remaining subsystems’ H

2

norms are obtained by calculating their observ-
ability Gramians X

n

œ C3◊3 from the Lyapunov equation

AúX
n

+ X
n

A
n

= ≠Cú
n

C
n

. (5.40)

We then have that ||Ĥ
n

||2
2

= tr{Bú
n

X
n

B
n

} = 1

·

2
P

X
n22 + 1

·

2
Q

X
n33 . Since the expansion

of (5.40) is not very insightful, we omit it here, but note its solution for X
n22 and

X
n33 as:

X
n22 = –·2

P

2k
P

, X
n33 = –·

Q

2 · 1
c

Q

⁄

B

n

+ k
Q

.

Finally, summing up the N ≠ 1 non-zero subsystem norms leads to our main result:



112 Chapter 5. Renewable energy integrated power systems

Theorem 5.5 The squared H
2

norm of the input-output mapping (5.38) is given
by:

||H||2
2

= –

2k
P

(N ≠ 1) + –

2·
Q

Nÿ

n=2

1
c

Q

⁄

B

n

+ k
Q

. (5.41)

According to the discussion in Section 4.3.1, this expression represents the expected
power losses due to the disturbance input w.

Currently, we are evaluating the system under the assumption that the inverter’s
frequency and voltage control dynamics are decoupled. Due to the decoupled output
measurement, the H

2

norm in (5.41) can be shown to be the sum of the respective
norms of two decoupled subsystems: ||H||2

2

= ||H◊||2
2

+ ||HV ||2
2

.
The power losses associated with phase angle synchronization are

||H◊||2
2

= –

2k
P

(N ≠ 1). (5.42)

This is the same result as obtained for systems of synchronous generators in Chap-
ter 4, where the droop coe�cient k

P

is analogous to the generator damping d.
Earlier in this chapter, we also showed that this result holds for mixed-oscillator
systems, provided that the dampings k and d were matched. Again, we point out
that this expression scales linearly in network size N , but that it is independent of
network topology. That is, under Assumption 5.4, a loosely connected network will
incur the same transient losses during phase synchronization as a highly connected
one.

The losses associated with voltage control are given by

||HV ||2
2

= –

2·
Q

Nÿ

n=2

1
c

Q

⁄

B

n

+ k
Q

, (5.43)

and depend on the topology of the network through the eigenvalues ⁄B

n

of L
B

. The
losses increase when the eigenvalues ⁄B

n

are larger, which implies that they increase
with increasing line susceptances and network connectivity. The losses can be said
to be inversely related to what we may call the network’s total e�ective reactance
as studied in [37], but we defer further discussion of this notion to future work.
Instead, we will proceed to study the total power losses (5.41) for two extreme
underlying network toplogies; the complete graph and the path graph, both shown
in Figure 4.4.

Performance for specific network topologies

The result of Theorem 5.5 indicates that the transient losses increase with increasing
network connectivity. While microgrid network structures may vary, in terms of
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connectivity they all fall somewhere between the two extremes given by the complete
graph and the path graph depicted in Figure 4.4. We next present results for these
two special cases.

Theorem 5.6 If the graph underlying the network G is complete, i.e., there is a
line e

ik

connecting each node pair i, k œ N , then the expected power losses are
bounded from above by:

||H||2
2

Æ –

2 (N ≠ 1)

Q

a 1
k

P

+ 1
·

Q

1
c

Q

Nb

+ k
Q

2

R

b , (5.44)

where b is the arithmetic mean of the susceptances b
ik

for all network lines e
ik

œ E.
The losses are bounded from below by:

||H||2
2

Ø –

2 (N ≠ 1)

Q

a 1
k

P

+ 1
·

Q

1
c

Q

Nbmin
+ k

Q

2

R

b , (5.45)

where b
min

= minE b
ik

. If b
ik

= b = b
min

for all e
ik

œ E, then (5.44) – (5.45) turn
into equalities.

Proof: See Appendix.

Corollary 5.7 If the graph underlying the network G is complete, then for large N

||H||2
2

¥ –

2 (N ≠ 1)
3

1
k

P

+ 1
·

Q

k
Q

4
. (5.46)

Proof: For large N , c

Q

Nb

æ 0 and c

Q

Nbmin
æ 0 and the result follows.

By Corollary 5.7, the losses in a large fully connected network will depend on the
droop settings for active and reactive power respectively, where higher droop gains
give smaller losses. We also notice that the losses associated with the voltage control
decrease with increasing ·

Q

. In the limit where ·
Q

æ Œ, the voltages are constant,
and we retrieve the result in (4.22), in which a constant voltage profile was an
underlying modeling assumption. In any case, the losses will grow unboundedly
with the network size N (in the notation of Chapter 3, we can write (5.46) as
||H||2

2

≥ 1

—

N).
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Figure 5.2: Values of the H2 norm in (5.41) for sample networks with path graph and
complete graph topology, along with the approximation (5.46), for complete graphs and
the bound (5.47) for path graphs. Here, k

P

= k
Q

= c
Q

= 1, – = 0.2 and the line
susceptances are uniformly distributed on the interval (0.5, 3.25).

When modeling the inverter-based microgrid, we consider a Kron reduced net-
work model. Such reductions of power networks in general result in fully intercon-
nected e�ective networks [53], and the expressions (5.44) – (5.46) hold. However,
future microgrids may arise through the addition of generation units at some or all
nodes in distribution grids. Distribution grids typically have a radial network struc-
ture, that is, they have a path graph as their underlying topology. They would also
maintain path graph structure in the Kron-reduced case. The following theorem
describes the performance in this case:

Theorem 5.8 If the graph underlying the network G is a path graph, that is, E =
{e

i,i≠1

, e
i,i+1

} for i = 2, . . . , N ≠ 1, and b is the arithmetic mean of the associated
line susceptances, then the power losses are bounded by:

||H||2
2

Æ –

2 (N ≠ 1)
A

1
k

P

+ 1
·

Q

( c

Q

2b

+ k
Q

)

B
. (5.47)

Proof: See Appendix.

This bound also has an underlying scaling that is linear in the network size N .
However, the value of the losses will, for all N , have a dependence on the value
of the average line susceptance b, in contrast to the result for complete graphs in
Corollary 5.7 where susceptances became irrelevant for large N . In Figure 5.2 the
values of the H

2

norm as a function of network size N are displayed for the two
network topologies discussed in this section.

The fact that a highly interconnected network incurs larger power losses in
recovering or maintaining synchrony than a sparsely interconnected network stands
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Figure 5.3: Simulations of the system (5.38) with N = 5 inverters. Here, the complete
graph incurs, despite its higher rate of convergence, greater power losses.

in sharp contrast to our earlier result as well as to typical notions of power system
stability, which we already discussed in Section 4.4.3. Figure 6.3 shows the transient
behaviors obtained from simulations of a 5 node network with respective complete
and path graph topologies. The plot clearly shows a faster convergence in the
complete graph case. This faster convergence, however, comes at a greater cost in
terms of power losses.

Some intuition behind this result may be obtained in terms of self-damping, or
absolute feedback, which was a central topic in Chapter 3. Note that the voltage
dynamics in (5.28), which are of first order, include an absolute feedback term (or
self-damping) ≠V

i

. This means that a disturbance could theoretically be attenuated
even if node i were isolated, since the system V̇

i

= ≠V
i

is in itself asymptotically
stable. However, we require the network to be connected, and the dynamics at node
i must therefore also depend on neighboring nodes. The neighbors can support in
the voltage control, but the control occurs through power flows, which also give rise
to losses. Any additional line connected to node i increases the number of flows
and losses (recall, node i could attenuate disturbances on its own without causing
losses), and therefore, a more highly interconnected network leads to larger losses
than a more loosely interconnected one.

5.3.4 Generalization to cross-coupled voltage and frequency dynamics

We will now relax the assumption of decoupled microgrid dynamics and again
study the system (5.33). Under Assumptions 5.2 – 5.4 we can formulate the MIMO
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Figure 5.4: Norm error ÷ in (5.49) as a function of – for networks of size N = 50 with
complete graph and path graph structure, along with the approximation (5.59). Here,
x

ij

= 0.2, k
P

= 1, k
Q

= 2, ·
P

= ·
Q

= 0.5 and c
Q

= 1. Note that the errors are small and
decrease quadratically as – æ 0, as predicted by Proposition 5.9.

system H– as:

S

U
◊̇
Ê̇
V̇

T

V =

S

WU
0 I 0

≠ k

P

·

P

L
B

≠ 1

·

P

I k

P

·

P

–L
B

≠ k

Q

·

Q

–L
B

0 ≠ c

Q

·

Q

I ≠ k

Q

·

Q

L
B

T

XV

S

U
◊
Ê
V

T

V +

S

U
0 0

1

·

P

I 0
0 1

·

Q

I

T

V w (5.48a)

y =
CÔ

–L
1/2

B

0 0
0 0

Ô
–L

1/2

B

D S

U
◊
Ê
V

T

V . (5.48b)

Compared to the lossless dynamics in (5.38a), the system matrix in (5.48a) has
cross-couplings between the voltage and frequency dynamics which are proportional
to the resistance-to-reactance ratio –. We will examine the e�ect of these cross-
couplings on the system’s performance in terms of the cross-coupling strength –.
In particular, we are interested in characterizing the error obtained through the
assumption of lossless microgrid dynamics from Section 5.3.3.

Consider for this purpose the relative error in the squared H
2

norm between
the system H– in (5.48) and the decoupled system H in (5.38):

÷ = ||H–||2
2

≠ ||H||2
2

||H||2
2

. (5.49)

This quantity can be evaluated numerically and is shown in Figure 5.4 for – œ
(0.01, 0.5) for two sample networks of size N = 50. We observe that the error is
small and decreases faster than linearly as – æ 0. These observations are accounted
for by the following proposition:
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Proposition 5.9 The squared H
2

norm of the system H– in (5.48) is, for su�-
ciently small –, given by:

||H–||2
2

= c
1

(�
B

)– + c
2

(�
B

)–3 + c
3

(�
B

)(–5) + . . . , (5.50)

where c
k

(�
B

), k = 1, 2, . . ., are scalar functions of the eigenvalues of L
B

. The first
term corresponds to the H

2

norm of (5.38):

c
1

(�
B

)– = ||H||2
2

,

where ||H||2
2

was given in Theorem 5.5. It holds that

||H–||2
2

Ø ||H||2
2

, (5.51)

and the relative error ÷ is given by

÷ = c
2

(�
B

)
c

1

(�
B

)–2 + c
3

(�
B

)
c

1

(�
B

)–4 + . . . .

A proof outline is provided in this chapter’s appendix, where we also provide
analytic expressions for the coe�cients c

k

(�
B

) and the error ÷ in the special case
of a complete graph.

Proposition 5.9 shows that the results obtained by assuming a lossless microgrid
with decoupled dynamics are robust in the sense that the error ÷ is proportional
to higher order powers of the coupling strength –, provided – is small enough to
guarantee the finiteness of ||H–||2

2

. Even in cases where the coupling strength – is
such that the higher order terms are non-negligible, the inequality (5.51) shows that
a lower bound on the losses is obtained under the decoupling assumption. Therefore,
any limitations to system performance that are deduced from Theorem 5.5, such as
the fact that losses grow linearly in network size, will hold also for the system (5.48)
with the cross-coupled dynamics.

A weaker, yet insightful, result is given by the following corollary to Theorem 5.5
and Proposition 5.9:

Corollary 5.10 The H
2

norm of the system (5.48) satisfies

||H–||2
2

> ||H◊||2
2

,

where ||H◊||2
2

= –

2k

P

(N ≠ 1) represents the transient resistive losses associated with
frequency control in the microgrid (see (5.42)).

Proof: Follows immediately from (5.51) and (5.41).
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Now, recall that ||H◊||2
2

is (under Assumptions 5.2 – 5.4) precisely equivalent to
our previous results from Sections 4.4 and 5.2.2, where we analyzed frequency
synchronization in various settings. The bound in Corollary 5.10 therefore implies
that our previous results give a lower bound on performance, and that transient
resistive losses will be strictly larger if voltages are allowed to fluctuate.

5.4 Discussion

The results derived in this chapter have some interesting implications for future
renewable energy integrated power grids. Firstly, the results in Section 5.2 showed
that the order of the dynamics will not per se a�ect the performance measure we
consider, as the two models result in equal losses if damping coe�cients are equal.
This means that asynchronous generation, to the extent that it can be respresented
by the simple model (5.2), has the same performance as synchronous generation.
Therefore, a replacement of a traditional generator through, for example, a wind
farm, will not necessarily deteriorate the performance of the network.

However, large-scale integration of renewable energy will, as we already dis-
cussed, increase the number of network nodes, and thereby increase losses. This
limitation to performance remains valid in mixed-oscillator systems, a result that is
most easily seen through (5.24), as well as in microgrids, as seen from Theorem 5.5.
Furthermore, when vaiable voltages are included in the model, this leads to strictly
larger losses than when only considering frequency synchronization.

However, Theorem 5.2 implies that co-located asynchronous and synchronous
generation at a common bus only “count once” with respect to the performance
measure. This means that, given a fixed network size, adding new loads and
asynchronous generators at existing nodes does not a�ect transient power losses,
provided damping coe�cients are uniform. Therefore, if asynchronous generator
dampings (or droop control gains) can be adjusted to match the synchronous gen-
erators, they will not lead to increased losses in cases where they can be co-located
with synchronous generators (or replace them at the same nodes). This result is
striking, given that both generators would a�ect the system dynamics, and they
are each subject to uncorrelated disturbance inputs that cause phase fluctuations.
Overall, we can argue based on these results, that renewable energy integration
need not necessarily deteriorate performance in power networks. But, since perfor-
mance scales badly with network size, such integration should preferrably occur at
as few nodes as possible.

5.5 Concluding summary of Chapter 5

In this chapter, we extended the model from Chapter 4 to account for certain as-
pects of renewable energy integrated power networks. We introduced models for
phase, frequency and voltage dynamics for asynchronous generators, dynamic loads,
and controllable power electronic inverters. We then studied the performance of



5.5. Concluding summary of Chapter 5 119

a mixed-oscillator system, capturing the frequency dynamics of a heterogeneously
composed transmission network. We showed that if the dampings of synchronous
and asynchronous machines in such a network can be matched, then they are equiv-
alent in terms of the performance measure we consider. After that, we modeled
an inverter-based microgrid, and accounted for variable voltage dynamics. Here,
we showed that the previous results related to frequency synchronization provide
a lower bound on performance and that losses are strictly larger if voltages are al-
lowed to fluctuate. We also showed that the cross-couplings between the frequency
and voltage dynamics, that are proportional to the resistance-to-reactance ratio in
the power network, can be neglected without causing large errors with respect to
the performance measure in question. Against that background, we will continue
to focus on frequency control dynamics in Chapter 6, without further consideration
of voltage control.
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Appendix to Chapter 5

Proof of Theorem 5.2
By Lemma 4.3, tr(L̃≠1

B

L̃
G

) = tr(L†
B

L
G

). We now apply Lemma 4.3 once again, but
instead of grounding the Laplacians at node N , we now ground them at node N

0

.
We call these new grounded Laplacians L̃

B,N0 and L̃
G,N0 . It holds:

tr(L†
B

L
G

) = tr(L̃≠1

B,N0
L̃

G,N0
).

Recall that we had, without loss of generality, assumed that the numbering of the
nodes is such that the nodes N

0

≠ NS + 1, ..., N
0

are each connected in rising order
to one of the nodes N

0

+ 1, ..., N
0

+ NS = N , like in the example in Figure 5.1. We
can then consider the transformation matrix

V =

S

U
I

(N0≠NS )

0 0
0 I

NS 0
0 I

NS I
NS

T

V ,

for which it holds that
V úL

B

V =
5
L0

B

0
0 B

6
,

where L0

B

is the susceptance matrix of the main (pre-augmented) network and
B = diag{b

N0≠NS +1,N0+1

, ..., b
N0,N

}. We also observe that

V úL
G

V =
5
L0

G

0
0 0

6
= L

G

.

Continue to define the deleted transformation matrix Ṽ by the matrix that arises
when deleting row and column N

0

from V . Then

Ṽ úL̃
B,n0 Ṽ =

5
L̃0

B

0
0 B

6
, Ṽ úL̃

G,n0 Ṽ =
5
L̃0

G

0
0 0

6
,

where L̃0

B

and L̃0

G

are the reduced versions of the Laplacians L0

B

and L0

G

, with node
N

0

grounded.
It is evident from its structure that V is non-singular and that its deleted version,

Ṽ , has the same property. We can therefore write:

tr(L̃≠1

B,N0
L̃

G,N0
) = tr(Ṽ Ṽ ≠1L̃≠1

B,N0
(Ṽ ú)≠1Ṽ úL̃

G,N0
),

since Ṽ Ṽ ≠1 = (Ṽ ú)≠1Ṽ ú = I
(N0+NS ≠1)

. By the cyclic properties of the trace,

tr(Ṽ Ṽ ≠1L̃≠1

B,N0
(Ṽ ú)≠1Ṽ úL̃

G,N0
) = tr(Ṽ ≠1L̃≠1

B,N0
(Ṽ ú)≠1Ṽ úL̃

G,N0
Ṽ )

= tr((Ṽ úL̃
B,N0 Ṽ )≠1Ṽ úL̃

G,N0
Ṽ ).
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It holds that2

(Ṽ úL̃
B,N0 Ṽ )≠1 =

C
L̃0

B

≠1

0
0 B≠1

D
.

Then

tr
1

L̃≠1

B,N0
L̃

G,N0

2
= tr

35
(L̃0

B

)≠1 0
0 B≠1

6 5
L̃0

G

0
0 0

64
= tr

!
(L̃0

B

)≠1L̃0

G

"
+ tr

!
B≠10

"

= tr
!
(L̃0

B

)≠1L̃0

G

"
.

Now, again by Lemma 4.3:

tr
!
(L̃0

B

)≠1L̃0

G

"
= tr

1
L0†

B

L0

G

2
,

which concludes the proof.

Proof of Theorem 5.6
Consider the function

„(x) = 1
1

x

+ k
,

which is concave in x > 0 if k Ø 0 (note, „ÕÕ(x) = ≠2k

(1+kx)

3 < 0). We have that
⁄B

n

/c
Q

> 0 for n = 2, . . . , N and can therefore apply Jensen’s inequality of the
form

nÿ

i=1

„(x
i

) Æ n„

A
1
n

nÿ

i=1

x
i

B
(5.52)

to (5.41), where the function „(⁄B

n

/c
Q

) appears in the denominator, to obtain:

||H||2
2

Æ –

2k
P

(N ≠ 1) + –

2·
Q

(N ≠ 1) 1
c

Q

1
N≠1

q
N

n=2
⁄

B

n

+ k
Q

. (5.53)

Using the definition of L
B

in (2.19), we derive the average of the N ≠ 1 non-zero
eigenvalues of L

B

as

1
N ≠ 1

Nÿ

n=2

⁄B

n

= tr{L
B

}
N ≠ 1 = 2

q
E b

ik

N ≠ 1 = Nb,

2 This can be shown as follows:
5

L̃0
B

≠1
0

0 B≠1

6 5
L̃0

B

0
0 B

6
=

Ë
I

N0≠1 0
0 I

NS

È
=

I(N0+NS ≠1).
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where b is the arithmetic mean of the susceptances of the N(N ≠ 1)/2 edges in the
complete graph. Substituting the above into (5.53) yields the result (5.44).

Given that „(x) is monotonically increasing in x, the inequality (5.45) is derived
by setting L

B

= b
min

L+�L
B

. Here, L is an unweighted complete graph Laplacian,
and �L

B

is a complete graph Laplacian with edge weights b
ik

≠ b
min

Ø 0. Since L
and �L

B

are simultaneously diagonalizable [74, Lemma A.1], ⁄B

n

= b
min

N +⁄�B

n

Ø
b

min

N . If L
B

= b
min

L, �L
B

= 0 and (5.45) holds with equality.

Proof of Theorem 5.8
The argument follows the proof of Theorem 5.6. Here, the average of the N ≠ 1
non-zero eigenvalues in (5.53) is

1
N ≠ 1

Nÿ

n=2

⁄B

n

= tr{L
B

}
N ≠ 1 = 2

q
E b

ij

N ≠ 1 = 2b,

where b is the mean of the (N ≠ 1) edge susceptances in the line graph.

Proof outline of Proposition 5.9
To derive the H

2

norm of the full system (5.48), we begin by performing the same
unitary state transformation as in (5.39). As before, this gives us N decoupled
subsystems H–

n

(of which we can disregard H–

1

, since it is unobservable):
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(5.54)
Each of these subsystems is exponentially stable for all – such that

–2 <
k2
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, (5.55)

for all n œ {2, . . . , N}, a result that can be derived using standard Routh-Hurwitz
stability criteria. Henceforth, we will assume that this criterion is fulfilled.

The H
2

norm of (5.54) is then given by ||H–

n

||2
2

= tr{BúX–

n

B}, where X–

n

is the
observability Gramian of the nth subsystem (5.54). Now, let

X–

n

= X
n

+ X1

n

,
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where X
n

was the observability Gramian of the system without cross-couplings,
given by (5.40). Then

||H–

n

||2
2

= tr{Bú
n

X
n

B
n

} + tr{Bú
n

X1

n

B
n

} = ||H
n

||2
2

+ tr{Bú
n

X1

n

B
n

}.

We can therefore regard tr{Bú
n

X1

n

B
n

} as a correction term to the previously derived
H

2

norm. We will show that this correction term can be written as tr{Bú
n

X1

n

B
n

} =
c

2

(�
B

)–3 + c
3

(�
B

)(–5) + . . ..
Naturally, the new observability Gramian X–

n

satisfies the Lyapunov equation
A–ú
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We now substitute our previous Gramian X
n

into this Lyapunov equation and get
that A–ú

n

X
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By substituting this into (5.56), we obtain the following equation for X1

n

:

A–ú
n

X1

n

+ X1

n

A–

n

+ –2Z
n

= 0, (5.57)

which has the form of a Lyapunov equation. Solving (5.57) for X1

n

provides us with
the correction term that gives us ||H–

n

||2
2

.
In order to make the subsequent derivations somewhat more tractable, we write

the matrices A
n

, X1 and Z as:
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Substituting this into (5.57), straightforward calculations give that:
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where the coe�cients c̃ are somewhat involved functions of the eigenvalues ⁄B

n

and
the inverter coe�cients, but not of –:
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The expression (5.58) can be shown to be positive, provided the stability crite-
rion (5.55) is fulfilled, which leads to the statement (5.51) in the proposition. For
such su�cently small – (we state a tractable condition in the case of a complete
graph below), we can perform a Maclaurin series expansion of (5.58) which gives
us that:

tr{Bú
n

X1

n

B
n

} = –3

c̃
3

c̃
5

+ c̃
1

c̃
5

≠ c̃
2

c̃
4

c2

5

–5 + · · · =: –3c̃Õ
n

(⁄B

n

) + –5c̃ÕÕ
n

(⁄B

n

) + · · ·

Now, the full norm ||H–||2
2

is the sum of the N ≠ 1 subsystem norms, each asso-
ciated with one eigenvalue ⁄B

n

. This can be written as ||H–||2
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q
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) which is equivalent to the main statement of
the proposition.

Expression for full H2 norm in Proposition 5.9 for complete graphs
Consider the special case where the network graph G is complete. In this case, we
can provide a tractable analytic expression for (5.50). If the number of nodes N is
large, the coe�cients in (5.50) are given as
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) is in
this case given by Corollary 5.7.

The relative error ÷ for the complete graph then satisfies

÷ = k
P

·
Q

k
Q

–2 +
3

k
P

·
Q

k
Q

4
2

–4 + . . . . (5.59)

Numerical results indicate that (5.59) also provides an upper bound for the relative
error (5.49) for general network topologies.

The result (5.59) shows that faster voltage control (large k
Q

, small ·
Q

) will
decrease the e�ect of the cross-couplings on the transient power losses.



Chapter 6

Improving microgrid performance through

distributed dynamic feedback

So far, we have studied performance in synchronizing power networks by consider-
ing static feedback control laws. In Chapter 4, we modeled frequency control using
the swing equation for synchronous generators in the classical machine model. Sim-
ilar physical relationships between phase angles and power outputs where exploited
when modeling the static feedback control exerted by asynchronous machines in
Chapter 5. Power electronic inverters in microgrids, however, are modeled as con-
trollable voltage sources, and we therefore have a greater degree of freedom when
designing control laws. In Section 5.1.2, we introduced the static droop control law
for these inverters, which is designed to emulate synchronous machines. In this
chapter, we will append a secondary controller layer to the droop controller, and
consider dynamic feedback laws for frequency control of inverter-based microgrids.

Our results for the static feedback laws showed that there is a fundamental lim-
itation to performance in power networks, in that losses associated with frequency
synchronization scale unboundedly with network size. Furthermore, performance
could not be improved by increasing network connectivity. We now return to the
main question of Chapter 3 and address the question of whether dynamic feedback
has the potential improve performance. For this purpose, we compare the static
droop controller to two dynamic controllers with di�erent architectures; the dis-
tributed averaging proportional-integral (DAPI) controller from Example 1.4, and
a centralized averaging proportional-integral (CAPI) controller.

This chapter’s main result shows that although the unfavorable scaling of losses
with network size remains a limitation, they can be reduced by a constant factor by
applying distributed dynamic feedback through the DAPI controller. Interestingly,
the same conclusion does not hold for the centralized strategy, which achieves the
same performance as static droop control. Moreover, we find that the performance
improvement achieved through distributed dynamic feedback is larger in a sparsely
interconnected network than in a highly interconnected one. We discuss implica-
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tions of these results as well as optimal tuning of the controller for loss reduction.
The remainder of this Chapter is organized as follows. We introduce the control

laws in Section 6.1 and derive analytic expressions for their performance in Sec-
tion 6.2, where we also discuss the performance di�erences between the di�erent
control laws and for di�erent network topologies. In Section 6.3, we discuss optimal
tuning of the DAPI controller for loss reduction and in Section 6.4, we discuss the
findings and relate to previous results. We summarize and conclude this chapter in
Section 6.5.

6.1 Static and dynamic control laws for frequency control

We now introduce the control laws used to regulate frequency in the inverter-based
microgrid. As usual, we consider a network G = {V, E}, where V = {1, . . . , N} is
the set of nodes and E = {e

ij

} represents the set of edges, or network lines. To make
the analysis more tractable, we again assume a Kron-reduced network model, so
that every node i œ V represents a generation unit with a power inverter as its grid
interface. Each node has an associated phase angle ◊

i

and voltage magnitude V
i

.
In this chapter, we focus on the performance of frequency control laws in the

microgrid setting, and refer to Chapter 5 for an analysis of voltage control. There,
we also provided a justification for analyzing these problems decoupled from each
other. The first control law that we consider is therefore the standard frequency
droop controller, which we derived in Section 5.1.2 as:

◊̇
i

= Ê
i

(6.1a)
·

i

Ê̇
i

= ≠Ê
i

+ Êref ≠ k
i

(P
e,i

≠ P ref

i

), (6.1b)

where k
i

> 0 is the droop coe�cient, ·
i

> 0 is a filter time constant (see Sec-
tion 5.1.2) and Êref and P ref

i

are the respective setpoints for frequency and active
power.

The droop controller (6.1) is completely decentralized, requiring only local mea-
surements of active power for implementation. Under reasonable conditions, (6.1)
guarantees the desired power sharing, and synchronizes the inverter network to a
common steady-state frequency Êss; see [72] for an analysis. However, as droop
control is e�ectively proportional control, it typically leads to static deviations of
the steady-state frequency Êss from the nominal frequency Êref . This deficiency mo-
tivates so-called secondary integral control (dynamic feedback), the goal of which
is to eliminate the static error.

6.1.1 Distributed averaging proportional-integral (DAPI) control
Following [72, 5], we first consider a distributed dynamic control strategy which
we refer to as distributed averaging proportional-integral (DAPI) control. For this
purpose, assume that the inverters in the physical network, as described by G,
have access to a communication network represented by the weighted graph GC =
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{V, EC}, with weights c
ij

= c
ji

> 0 for all edges e
ij

œ EC . Let N C

i

denote the
neighbor set of node i in GC and let L

C

denote the graph Laplacian (defined as
in (2.16)) of GC . The controller takes the form

◊̇
i

= Ê
i

(6.2a)
·

i

Ê̇
i

= ≠Ê
i

+ Êref ≠ k
i

(P
e,i

≠ P ref

i

) + �
i

(6.2b)

q
i

�̇
i

= ≠Ê
i

+ Êref ≠
ÿ

jœN C

i

c
ij

(�
i

≠ �
j

), (6.2c)

where �
i

is the secondary control variable that is internal to the controller and
q

i

> 0 is a controller parameter reflecting the integral gain. Notice that equations
(6.2a) – (6.2b) are the droop controller dynamics (6.1), but with the additional
secondary control input �

i

. Hence, (6.2c) can be thought of as a distributed
integral controller appended to (6.2a) – (6.2b).

As shown in [72], if the communication network GC among the inverters is con-
nected, the distributed controller (6.2) restores the network frequency to Êref while
maintaining an optimal steady-state distribution of power injections among the
inverters established by droop control. When all gains c

ij

are zero, (6.2c) degen-
erates into a decentralized integral controller. In this case (6.2) possesses a large
subspace of undesirable equilibria [23, Lemma 4.1] and the slightest measurement
error causes phase angles to drift, in the way we discussed in Section 3.4.4 for vehic-
ular formations. In practice, such a control design destabilizes the network unless
the controllers have access to accurate phasor measurements units (PMUs). We
refer to [4] for an elaboration.

6.1.2 Centralized averaging proportional-integral (CAPI) control
The steady state frequency deviation that arises through static droop control can
also be eliminated through dynamic feedback with a centralized controller archite-
cure. We consider one such dynamic feedback law, based on [4], which we refer
to as centralized averaging proportional-integral (CAPI) control. In this case, the
secondary control layer uses proportional control with respect to the average fre-
quency over the entire network, in order to adjust the setpoint for the droop control
at each inverter. The controller takes the form:

◊̇
i

= Ê
i

(6.3a)
·

i

Ê̇
i
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i

+ Êref ≠ k
i

(P
e,i

≠ P ref

i

) + � (6.3b)

q�̇ = Êref ≠ 1
N

ÿ

iœV
Ê

i

, (6.3c)

where q > 0 is a positive constant. Note here that the centralized averaging in (6.3c)
is assumed to be instantaneous and that the same secondary control variable � is
shared among all interters as in (6.3b). This centralized control architecture thus
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requires that each inverter in the network has a communication link to the node
where the average is computed. This type of communication infrastructure is often
less scalable and more vulnerable than the communication structure required for
the DAPI algorithm, where it is only required that the network GC is connected.
Remark 6.1 The models (6.1) – (6.2) reduce to the first-order inverter models
considered in [73] if ·

i

= 0 for all i œ V.

Remark 6.2 The second-order frequency droop control model (6.1) for inverter-
based networks is analogous to the classical machine model for synchronous genera-
tors from Chapter 4. Even though we limit the analysis here to inverter-based net-
works, secondary control for frequency regulation makes sense also in synchronous
generator networks. We refer to [5] for the corresponding problem formulation.

Remark 6.3 Any distributed control law can also be implemented using a central-
ized controller architecture, see, for example [2]. Therefore, if the communication
structure for the CAPI controller is in place, it can also be used to implement the
DAPI control law in (6.2). In this chapter, we will, however, limit the analysis of
centralized control laws to the CAPI controller (6.3).

6.1.3 Power flows and closed loop dynamics
As before, we will consider the control dynamics for the inverter-based microgrids
under the assumption of small deviations from a stable operating point. We there-
fore approximate the power injections P

e,i

at all nodes i œ V using the standard
linear power flow assumption from Section 4.2.2:

P
e,i

¥
ÿ

jœN
i

b
ij

(◊
i

≠ ◊
j

). (6.4)

Substituting the linear power flow equation (6.4) into, respectively, the dynam-
ics (6.1), (6.2), and (6.3), we notice that an equilibrium is given by Ê = Êref ,
◊ = L†

B

P ref and � = 0 (L
B

is the susceptance matrix associated with the network
G and † denotes the Moore-Penrose pseudo inverse). Without loss of generality, we
translate this operating point to the origin through a change of variables.

Using our standard model, where the system is subject to small disturbances or
persistent small almplitude noise w acting on the inverters, we can summarize the
the system dynamics as follows:

Standard droop control:
5

◊̇
Ê̇

6
=

5
0 I

≠KT ≠1L
B

≠T ≠1

6 5
◊
Ê

6
+

5
0

T ≠1

6
w (6.5)

=: A
std

Â
std

+ B
std

w,
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DAPI control:
S

U
◊̇
Ê̇
�̇

T

V =

S

U
0 I 0

≠KT ≠1L
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≠T ≠1 T ≠1
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T
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T
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S

U
0

T ≠1

0

T

V w (6.6)

=: A
DAPI

Â
DAPI

+ B
DAPI

w.

CAPI control:
S

U
◊̇
Ê̇
�̇

T

V =

S

U
0 I 0

≠MT ≠1L
B

≠T ≠1 T ≠1

1
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1

T 0

T
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U
◊
Ê
�

T

V +

S

U
0

T ≠1

0

T

V w (6.7)

=: A
CAPI

Â
CAPI

+ B
CAPI

w.

Here, we have introduced the column vectors ◊, Ê, � containing the translated
system states, with total state vectors Â

std

= (◊, Ê)T œ R2N , Â
DAPI

= (◊, Ê, �)T œ
R3N , and Â

CAPI

= (◊, Ê, �)T œ R2N+1. The system parameters are given by K =
diag{k

i

}, T = diag{·
i

}, and Q = diag{q
i

}, and we have used 1 = (1, 1, . . . , 1)T .

6.2 Performance analysis

We are interested in evaluating performance of the distributed DAPI control law (6.6)
and the centralized CAPI control law (6.7), with respect to the transient resistive
power losses incurred in regulating frequency in the presence of the disturbance
w. We will compare the performance of these control laws to the standard droop
control law.

We use the performance measure from Definition 4.1 to define outputs of the
systems (6.5) – (6.7) respectively as

y =
Ë
L

1/2

G

0
È

Â
std

=: C
std

Â
std

(6.8)

y =
Ë
L

1/2

G

0 0
È

Â
DAPI

=: C
DAPI

Â
DAP I

(6.9)

y =
Ë
L

1/2

G

0 0
È

Â
DAPI

=: C
CAPI

Â
CAP I

, (6.10)

where L
G

is the conductance matrix associated with the network G. We now have
three input-output mappings from w to y:

• H
std

given by (6.5) and (6.8) ,

• H
DAPI

given by (6.6) and (6.9) ,

• H
CAPI

given by (6.7) and (6.10),



130 Chapter 6. Improving microgrid performance through distributed dynamic feedback

which are all linear-quadratic approximations of the full nonlinear problems. Ac-
cording to the discussion in Section 4.3.1, the output definitions (6.8) – (6.10) allow
us to evalute transient power losses over the entire network using the systems’ input-
output H

2

norms. In this section, we will derive closed-form expressions for those
norms under the following assumptions:
Assumption 6.1 (Identical inverters) All inverters have identical parameter set-
tings and low-pass filters, i.e., K = diag{k}, T = diag{·}, and Q = diag{q}.

Assumption 6.2 (Uniform resistance-to-reactance ratios) The ratio of resistance
to reactance, equivalently conductance to susceptance, of all lines are uniform and
constant, i.e.,

– := g
ij

b
ij

, (6.11)

for all e
ij

œ E . This implies L
G

= –L
B

.

Assumption 6.3 (Topology for GC) The topology of the communication network
GC used in the DAPI control law (6.2) is identical to that of the physical network
G. We also assume

L
C

= “L
B

, (6.12)

i.e., “ = c

ij

b

ij

, with “ Ø 0, for all e
ij

œ E = EC .

Assumption 6.3 implies that the secondary control layer for the DAPI control law
is set up along the physical network lines, and is shown in [5] to constitute a su�cient
criterion for load sharing with minimized generation costs. The assumption (6.12)
says that the gain on the averaging term �

i

≠ �
j

is set in proportion to the line
susceptance b

ij

, and will help us to obtain explicit analytic expressions for the H
2

norm of (6.6). In Section 3.5, we discuss possible implications of a relaxation of
that assumption.

6.2.1 H2 norm expressions
We lay out the details of the derivations of the H

2

norms in the appendix and
present the main result of this chapter here:

Theorem 6.1 Under Assumptions 6.1 – 6.3, the squared H
2

norm of the input-
output mapping H

std

as well as that of the input-output mapping H
CAPI

is

||H
std

||2
2

= ||H
CAPI

||2
2

= –

2k
(N ≠ 1). (6.13)

The corresponding norm of the mapping H
DAPI

is

||H
DAPI

||2
2

= –

2k

Nÿ

n=2

1
1 + “·⁄

n

+q

“⁄

n

(“·⁄

n

+q)+q

2
m⁄

n

. (6.14)
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According to the discussion in Section 4.3.1, these expressions represent the expected
power losses due to the disturbance input w.

Proof: See appendix.

By this theorem, the H
2

norm of the CAPI control law is the same as that of
the standard droop control law (and, in turn, the same as those derived for static
frequency control in Chapters 4 and 5). This means that centralized dynamic
feedback of the type (6.3) will not change performance compared to the static
droop control law, independently of the the integral gain. Instead, losses still scale
linearly with the total number of nodes N , and remain independent of network
topology.

When the secondary control layer is instead distributed, as in the DAPI control
law, the losses given by (6.14) still grow with the number of nodes, but they are
smaller in absolute terms. Consider the following Corollary to Theorem 6.1:

Corollary 6.2 For all k, q, ·, “ > 0,

||H
DAPI

||2
2

< ||H
std

||2
2

,

that is, the expected power losses due to the disturbance w are smaller with the DAPI
control strategy than with standard droop control or the CAPI control strategy.

Proof: Notice that 1+ “·⁄

n

+q

“⁄

n

(“·⁄

n

+q)+q

2
m⁄

n

> 1, since all terms are positive. Hence,
||H

DAPI

||2
2

< –

2k

q
N

n=2

1 = –

2m

(N ≠ 1) = ||H
std

||2
2

= ||H
CAPI

||2
2

.

These results imply that dynamic feedback has the potential to improve system
performance compared to static droop control, if it is implemented as in the DAPI
control law. Perhaps surprisingly, the centralized approach in the CAPI control
law does not achieve the same performance improvement in terms of power losses,
even though centralized strategies are typically expected to be superior from a
performance perspective (their downside being di�culty to implement and that
they may have a single point of failure). For example, a centralized averaging PI
controller for frequency control in power systems was shown in [3] to have a higher
rate of convergence than a comparable distributed controller. A similar result was
derived in [12] for wireless sensor networks in HVAC systems. We will demonstrate
later in this chapter that the performance improvement achieved by the DAPI
strategy can be attributed to a type of self damping, or absolute feedback, which
does not arise with the centralized CAPI strategy.
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Figure 6.1: H2 norms in (6.13) - (6.14) for sample networks of size N with path graph and
complete graph topologies. Note that ||Hstd||22 in (6.13) is topology-independent. Here,
k = “ = m = 1, line susceptances b

ij

are uniformly distributed on [0.5, 1.5].

We also note that the norms (6.13) and (6.14) both scale linearly with net-
work’s resistance-to-reactance ratio –, and hence that the ratio of the two norms is
independent of –. This suggests that, to first-order, the relative performance im-
provement of distributed PI-control over the other control laws does not deteriorate
as grid resistances increase. It can therefore not be attributed to the fact that we
consider the frequency control problem decoupled from the voltage control problem
(recall from Section 5.3.4 that the coupling strength is proportional to –).

In the next sections, we evaluate the room for performance improvement with
the DAPI strategy over the static droop control law (we do not analyze the CAPI
strategy further as it was shown to have the same performance as droop control).
First, we evaluate how performance with the DAPI control law depends on the
topology of the network.

6.2.2 Losses’ dependence on network connectivity
It is interesting to note that while the losses under standard droop control (6.13) are
entirely independent of network topology, the losses that are incurred under DAPI
control (6.14) depend on network topology through the eigenvalues ⁄

n

of L
B

. In
fact, the expression is monotonically increasing in ⁄

n

, implying that losses grow
with increasing network connectivity. This in particular implies that the relative
performance improvement of DAPI control over droop control will be largest for
sparse network topologies, such as those found in standard distribution networks
and microgrids. The best performance can be expected to be achieved for a path
graph topology, as this is the connected graph with the fewest number of edges.
In Figure 6.1 we compare such a topology to a complete graph with respect to the
results in Theorem 6.1. Although losses for both topologies grow with the network
size, as discussed in the previous section, the comparison confirms the lower losses
obtained in the path graph case.

The fact that a loosely interconnected network may outperform a highly inter-
connected network by incurring smaller power losses in maintaining synchrony is
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Figure 6.2: H2 norms in (6.14) as a function of “ for a complete graph with N = 50 nodes.
Here, k = m = 1, and the filter time constant · œ {0, 1, 4}. For · = 0, the system (6.6)
reduces to a first-order model, and the optimal “ı = 0.

surprising in light of typical notions of power system stability, although we also
found it to hold for losses associated with voltage control in Section 5.3. As we
have discussed before, the connectivity of a network is directly related to its ability
to synchronize [18, 62, 67] as well as its damping and rate of convergence [49]. Our
results show that, although additional network lines may improve phase coherence
and stability, they also lead to additional power flows that incur losses. Hence,
there is a trade-o� between performance objectives.

6.3 Control design for loss reduction

In the previous section, we established that the DAPI control strategy improves
performance in terms of transient power losses for droop-controlled microgrids. We
now turn to the question of optimal tuning of this controller. That is, how should
the integral action q in (6.2) and the communication gain parameter “ in (6.12)
be chosen to minimize transient losses, with respect to a given droop-controlled
network.

6.3.1 Communication gain
As discussed in Section 6.1, distributed PI control requires a communication net-
work through which inverters can communicate their secondary control variables
�

i

. While any non-zero gains c
ij

for the distributed averaging in (6.2c) will guar-
antee that the control objectives are reached [73], an important design question is
how to choose these gains to optimize the transient performance considered herein.
In our case, this choice is reflected through the parameter “ in (6.12).

Figure 6.2 displays the transient power losses associated with the DAPI control,
as given by (6.14), as a function of “ for a sample network with a complete graph
structure. As the figure indicates, it turns out that there exists a distinct optimal
value for “ Ø 0:
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Lemma 6.3 For a given network with DAPI control (6.6) and under Assump-
tions 6.1 – 6.3, there is a unique communication gain ratio “ı which minimizes the
H

2

norm (6.14).

Proof: The optimum is given by the positive root of d

d“

||H
DAPI

||2
2

--
“=“

ı

= 0. By
inspecting (6.14), we note that this corresponds to finding the root of a quadratic
function in “ with positive coe�cients, and therefore, the root characterizes a global
minimum. If there is no positive root, then ||H

DAPI

||2
2

is minimized by “ı = 0.

For complete graphs, the potential for performance improvement is smaller than
for more sparsely connected networks. An optimized controller tuning is therefore
particularly relevant. For this case, we provide a closed-form expression for “ı:

Corollary 6.4 If the graph underlying the network G is complete and the line sus-
ceptances b

ij

= b for all e
ij

œ E, then “ı is given by

“ı = q

Nb·

1Ô
Nbk· ≠ 1

2
(6.15)

if Nbk· > 1. Otherwise, “ı = 0.

Proof: When the edge weights b
ij

are uniform, the N ≠ 1 non-zero eigenvalues of
the complete graph Laplacian L

B

œ RN◊N are all given by Nb. It then su�ces to
evaluate d

d“

1

1+

“·Nb+q

“Nb(“·Nb+q)+q

2
kNb

= 0 and the result follows.

The value of “ı is strongly dependent on the network parameters, but once
these are given, it is easy to find the optimal tuning. We note that the optimal “ı

is often very small, in particular if the time constant · is small. In the limit where
· = 0, we have “ı = 0. However, we cannot choose a design where “ = 0 without
causing an undesirable drift in the system, which in practice causes instabilities (see
Section 6.1.1). If “, on the other hand, is set too large, the distributed averaging
term of (6.2) converges too fast compared to the phase angles, and deteriorates
the damping e�ect of the secondary control. A simulation of this case is shown
in Figure 6.3. In the theoretical limit where “ æ Œ, the distributed averaging of
the integral state � in the DAPI strategy in (6.2c) is instantaneous, and becomes
equivalent to the centralized strategy in (6.3c). In this limit, there is therefore no
performance improvement over static droop control.
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Figure 6.3: Simulation of the system (6.6) on a 20-node network with path topology, with
associated power losses (4.6). Here, k = q = · = 1 and “ = 0.1 (upper panel) and “ = 10
(lower panel).

6.3.2 Integral action
Now, consider the parameter q in (6.2), which reflects the amount of integral action
in the DAPI controller. First, notice that in the limit where q æ Œ the integral
action vanishes and the standard droop control dynamics (5.7) are retrieved, with
the associated H

2

norm (6.13). It is easy to show based on (6.14) that as q then
decreases, losses are reduced monotonically and at an increasing rate. On the other
hand, in the theoretical limit of an infinitely large integral gain (q = 0), the DAPI
strategy allows the system to become arbitrarily well damped and losses minimized.
Figure 6.4 displays the relative performance improvement achieved through the
DAPI strategy as a function of q, for a hypothetical network based on the IEEE
57-bus benchmark system topology [55].

Our results also indicate that the importance of the distributed averaging term
in (6.2) increases as the integral action decreases. That is, the optimal communi-
cation gain given by “ı grows as q grows. For a complete graph with uniform edge
weights, this relationship is linear, by Corollary 6.4. For the IEEE 57-bus bench-
mark system topology we display this relationship between q and “ı in Figure 6.4.
This relationship implies that the smaller the integral gain, the more important is
the distrbuted averaging term in (6.2c).

6.4 Discussion

This chapter’s main result shows that distributed dynamic feedback can improve
performance of inverter-based micgrogrids, in that transient losses associated with
frequency regulation are reduced, compared to static feedback and centralized dy-
namic feedback. However, the losses’ unbounded scaling with the network size N



136 Chapter 6. Improving microgrid performance through distributed dynamic feedback

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

q

R
el

.
lo

ss
re

du
ct

io
n

Rel. loss reduction

“

ı

0

0.5

1

1.5

2

“
ı

Figure 6.4: Relative loss reduction with DAPI control for a test network based on the
IEEE 57 bus benchmark system topology, at “ = “ı, as function of q. Here, k = · = 1.

remains. We now discuss some interpretations and implications of our results.

6.4.1 Relation to distributed dynamic feedback for vehicular
formations

One of the main results of Chapter 3 was that dynamic feedback of DAPI type
improves performance in vehicular formations that have access to absolute velocity
feedback, but where position measurements are relative. The apparent reason for
this performance improvement was that the DAPI strategy serves as a distributed
integral controller appended to the static controller, which integrates the absolute
velocity measurements and thus yields a substitute for absolute position measure-
ments. The relative position and absolute velocity feedback in vehicular formations
is analogous to the type of feedback that is typically available in power systems,
where one has access to absolute measurements of frequencies, but where phase
feedback is relative. We would therefore expect the DAPI control law to improve
performance also for a power system, which is indeed what this chapter’s main
result shows.

In the vehicular formation case, the performance with DAPI feedback came
close to that of static feedback where absolute measurements from positions were
also available. In a power system, absolute feedback from phase angles can only
be obtained with accurate phasor measurement units (PMUs). With such PMUs,
the corresponding feedback law is a special case of the DAPI controller (6.2). Con-
sider (6.2), and set all coe�cients c

ij

= 0 in (6.2c). This is equivalent to substituting
the absolute feedback term ≠ 1

q

◊
i

for �
i

in (6.2b), which is only feasible if PMUs
are available (see Section 6.1.1). In this case, we thus have absolute feedback from
phase angles. Note now, that this strategy also corresponds to setting the param-
eter “ = 0, which we found in Section 6.3 to be an optimal (though, infeasible)
choice for “, for example if the filter time constant · is small.

Based on these observations, we conclude that the reason for the improved
performance with the DAPI controller is that the secondary control variable �

i
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in (6.2) serves as a substitute for absolute feedback, or self-damping. With the
centralized CAPI strategy on the other hand, all inverters share the same secondary
control variable � regardless of their individual states ◊

i

and Ê
i

, and � in (6.3) can
therefore not act as a substitute for self-damping. By assigning more weight to
the distributed averaging term in the DAPI strategy, that is, by increasing the
parameter “, the DAPI strategy becomes more similar to the CAPI strategy and
the beneficial self-damping e�ect vanishes.

6.4.2 Topology dependence and self-damping
The main result of this chapter showed that the relative performance improvement
of the dynamic DAPI control law over the static droop control law is largest for
sparse network topologies. Therefore, adding power lines to increase network con-
nectivity will also increase the transient power losses. This is in sharp contrast to
standard notions of power system stability, as we already discussed. The apparent
reason for this result is also linked to the notion of DAPI control as a substitute for
self-damping. With self-damping, disturbances can be attenuated independently
of power flows. Increasing connectivity by introducing more lines generates more
power flows, which do not a�ect the self damping, but increase losses.

Recall that a similar conclusion was found to hold for the performance of voltage
control dynamics in Section 5.3.3, where the control dynamics included self-damping
explicitly. Our results indicate that in the presence of explicit or emulated absolute
self-damping, the price of synchrony performance measure will be smaller for a
sparsely interconnected network than for a highly interconnected one.

6.4.3 Optimal distributed averaging
We also derived results on optimal tuning of the DAPI controller for loss reduction.
In particular, the distributed averaging term in (6.2c) should be tuned so that
c

ij

= “ıb
ij

, where b
ij

is the line susceptance and “ı is a unique positive optimizer.
As we discussed, too large communication gains c

ij

causes a too strong reliance on
the distributed averaging in relation to the the self-damping. In the present work,
we made the restrictive assumption that the graph topology for the distributed
averaging follows that of the physical network, and found controller tunings that
minimize losses. With more degrees of freedom, we conjecture that losses can be
even further reduced by judicious control design. An important direction for future
work is therefore to find an optimal topology configuration of the communication
network.

6.5 Concluding summary of Chapter 6

In this chapter, we evaluated the performance of an inverter-based microgrid in
terms of the power losses incurred in regulating the frequency to a synchronous
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state after a disturbance. We compared the standard static frequency droop con-
troller to two dynamic controllers; a distributed averaging PI (DAPI) controller,
and a centralized averaging PI (CAPI) controller. We found that while the CAPI
controller does not change performance compared to droop control, the DAPI con-
troller has the potential to significantly reduce the transient power losses. This
relative performance improvement compared to droop control is largest for sparse
network topologies, such as those found in standard distribution networks and mi-
crogrids. We find that the reason for this performance improvement lies in the fact
that the DAPI controller emulates self-damping, or absolute feedback from phase
angles, which has a positive e�ect on performance.

It is important to note, however, that the losses’ scaling with the size of the net-
work remains unchanged with the DAPI strategy, and seems to remain a fundamen-
tal performance limitation in systems where active power flows are the mechanism
by which the system regulates frequency. Therefore, they may become increasingly
significant when power networks become increasingly distributed and the number of
generators grows. Since DAPI control both eliminates stationary control errors and
reduces transient losses and (unlike centralized CAPI control), our results provide
additional arguments in favor of distributed algorithms for secondary frequency
control in microgrids.
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Appendix to Chapter 6

Proof of Theorem 6.1
The H

2

norm for the system with frequency droop control (6.5) was derived in
Section 5.3.3 under the same assumptions as 6.1 – 6.2. We do not repeat the
derivations here, but note the result (6.13).

When deriving the norms of the DAPI system (6.6) and the CAPI system (6.7),
we follow the approach in [6] (also used in Section 5.3.3) and transform the state
vectors using a unitary transformation matrix U so that ◊ = U ◊̂, Ê = U Ê̂. For the
controller state �, we have � = U �̂ in the DAPI case, where � œ RN , but take
� = �̂ in the CAPI case, where � œ R.

We take U as the unitary matrix which diagonalizes L
B

. That is, L
B

= Uú�
B

U
with �

B

= diag{⁄
1

, ⁄
2

, . . . , ⁄
N

}. Without loss of generality, we number the eigen-
values so that 0 = ⁄

1

< ⁄
2

Æ · · · ⁄
N

, and therefore get that

U =
Ë

1Ô
N

1 v

2

· · · v

N

È
,

where v

2

, · · · , v

n

are the eigenvectors corresponding to eigenvalues ⁄
2

, · · · , ⁄
N

.
Note that by Assumptions 6.1 – 6.3, L

B

, L
C

and L
1/2

G

are simultaneously diago-
nalizable, so UúL

C

U = “�
B

and UúL
1/2

G

U =
Ô

–�1/2

B

. Given that the H
2

norm is
unitarily invariant, we can also define the transformed output ŷ = Uúy and input
ŵ = Uúw.

We now consider the DAPI and the CAPI systems separately.

DAPI

The transformations outlined above imply that Â̂
DAPI

is given by

Â
DAPI

= UÂ̂
DAPI

, where U =

S

U
U 0 0
0 U 0
0 0 U

T

V .

It then holds that Â̂
DAPI

= U

úA
DAPI

UÂ̂
DAPI

+U

úB
DAPI

Uŵ and ŷ = U

úB
DAPI

UÂ̂
DAPI

.
This system corresponds to one in which all blocks have been diagonalized. It can
therefore be written as N decoupled subsystems Ĥ

DAPI,n

:
S

WU

˙̂
◊

n

˙̂Ê
n

˙̂�
n

T

XV =

S

U
0 1 0

≠ k

·

⁄
n

≠ 1

·

1

·

0 ≠ 1

q

≠ 1

q

“⁄
n

T

V

S

U
◊̂

n

Ê̂
n

�̂
n

T

V +

S

U
0
1

·

0

T

V ŵ
n

=:Â
DAPI,n

Â̂
DAPI,n

+ B̂
DAPI,n

ŵ
n

(6.16)

ŷ
n

=


–⁄
n

#
1 0 0

$
S

U
◊̂

n

Ê̂
n

�̂
n

T

V =: Ĉ
std,n

Â̂
std,n

.
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The squared H
2

norm of H
DAPI

is the sum of the squares of the decoupled subsys-
tems’ norms, that is, ||H

DAPI

||2
2

= ||Ĥ
DAPI

||2
2

=
q

N

n=1

||Ĥ
DAPI,n

||2
2

.
Notice that the subsystem Ĥ

DAPI,1

corresponding to ⁄
1

= 0 has the output
ŷ

1

= 0. This verifies that the zero mode is unobservable and ||Ĥ
DAPI,1

||2
2

= 0. For
n ”= 0, the subsystem norms are calculated by solving the Lyapunov equation (2.8)
for the observability Gramians X

n

. We omit the expansion of that equation here,
but refer to Section 5.3.3 for a similar derivation.

CAPI

In this case, we have that the transformed state vector Â̂
CAPI

is given by

Â
CAPI

= UÂ̂
CAPI

, where U =

S

U
U 0

N◊N

0
N◊1

0
N◊N

U 0
N◊1

0
1◊N

0
1◊N

1

T

V

and it holds that Â̂
CAPI

= U

úA
CAPI

UÂ̂
CAPI

+U

úB
CAPI

Uŵ and ŷ = U

úB
CAPI

UÂ̂
CAPI

.
This system, denoted Ĥ

CAPI

, can be written as
S

WU

˙̂
◊
˙̂Ê
˙̂�

T

XV =

S

WU
0 I 0

≠ k

·

�
B

≠ 1

·

I
Ô

N

·

e
1

0 ≠ 1

q

Ô
N

eT

1

0

T

XV

S

U
◊̂
Ê̂

�̂

T

V +

S

U
0

1

·

I
0

T

V ŵ

=: Â
CAPI

Â̂
CAPI

+ B̂
CAPI

ŵ (6.17)

ŷ =
ËÔ

–�1/2

B

0 0
È

S

U
◊̂

n

Ê̂

�̂

T

V =: Ĉ
CAPI

Â̂
CAPI

,

where e
1

is the column vector (1, 0, . . . , 0)T . Here, we have used the fact that since
U is unitary, its column vectors satisfy v

j

‹ 1 for all j = 2, . . . , N . Therefore,
the block (2,3) above reads 1

·

Uú
1 = 1

·

1Ô
N

Ne
1

and the block (3,2) reads 1

Nq

1

T U =
1

Nq

1Ô
N

NeT

1

.
Now, we solve the Lyapunov equation

Âú
CAPI

X + XÂ
CAPI

= ≠Ĉú
CAPI

Ĉ
CAPI

, (6.18)

directly, after partitioning the Gramian X as:

X =

S

U
X

1

X
12

X
13

Xú
12

X
2

X
23

Xú
13

X
23

ú X
3

T

V ,

where X
1

, X
2

, X
12

œ RN◊N , X
13

, X
23

œ RN◊1 and X
3

œ R. Since

||H
CAPI

||2
2

= ||Ĥ
CAPI

||2
2

= tr{Bú
CAPI

XB
CAPI

} = 1
·2

tr{X
2

}, (6.19)
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we need only solve (6.18) for tr{X
2

}. Expanding (6.18), we obtain six linearly
independent equations, of which we only need four:

≠k

·
�

B

Xú
12

≠ X
12

k

·
�

B

= ≠–�
B

(6.20)

≠k

·
�

B

X
23

+
Ô

N

·
X

12

e
1

= 0 (6.21)

X
12

≠ 1
·

X
2

+ 1
q
Ô

N
e

1

Xú
23

+ Xú
12

≠ 1
·

X
2

+ 1
q
Ô

N
X

23

eT

1

= 0 (6.22)
Ô

N

·
eT

1

X
23

+
Ô

N

·
Xú

23

e
1

= 0, (6.23)

where (6.20) corresponds to element (1,1) of the Lyapunov equation, (6.21) to
element (1,3), (6.22) to element (2,2) and (6.23) to element (3,3).

First, note that by (6.23) it holds X
23

‹ e
1

, or, in order words, the first element
in X

23

must be zero. Therefore, the terms 1

q

Ô
N

e
1

Xú
23

, 1

q

Ô
N

X
23

eT

1

from (6.22)
vanish, and we obtain:

≠ 2
·

X
2

+ X
12

+ Xú
12

= 0 ∆ tr{X
2

} = ·tr{X
12

}, (6.24)

where the left hand side is the expression we are after. Now, in order to solve
remaining equations for tr{X

12

}, consider (6.20), which says:

�
B

Xú
12

+ X
12

�
B

= –·

k
�

B

… �
B

Xú
12

�†
B

+ X
12

Ĩ = –·

k
Ĩ, (6.25)

where �†
B

is the pseudo-inverse of �
B

, given as �†
B

= diag{0, 1/⁄
2

, . . . , 1/⁄
N

} and

we denote by Ĩ = �
B

�†
B

=
5

0 0
1◊N

0
N◊1

I
N≠1

6
. Now, we take the trace of both sides

of (6.25):
tr{�

B

Xú
12

�†
B

} + tr{X
12

Ĩ} = –·

k
tr{Ĩ} = –·

k
(N ≠ 1),

which, due to the circulant properties of the trace is equivalent to

2tr{X
12

Ĩ} = –·

k
(N ≠ 1). (6.26)

Now, if it holds that tr{X
12

} = tr{X
12

Ĩ}, then we can substitute (6.26) into (6.24)
and be done. This holds if element (1,1) of X

12

is zero. Indeed, note that (6.21)
implies that Ô

N

·
X

12

e
1

= k

·
�

B

,

and the first element of this N ◊ 1-vector equation reads (
Ô

N

·

X
12

)
1

= 0, since the
first row of �

B

is zero. Therefore,tr{X
12

Ĩ} = tr{X
12

} = 1

·

tr{X
2

}, and substituting
this into (6.26), we obtain that tr{X

2

} = –·

2

2k

(N ≠ 1), and thus, by (6.19)

||H
CAPI

||2
2

= –

2k
(N ≠ 1).
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Chapter 7

Conclusions and directions for future work

Networked control systems that rely on distributed feedback control generally have
limitations to their overall performance, in particular as the networks grow large.
This thesis has focused on characterizing such performance limitations for two types
of networked systems: consensus and vehicular formation problems modeled over
regular lattice structures; and electric power networks modeled as dynamical sys-
tems over general graphs. We now conclude the thesis by summarizing some of
our main findings concerning these systems, and by laying out some directions for
future work.

7.1 Main conclusions

There are several ways to characterize the performance of a networked control
system. For example, through the time or control e�ort required to reach a partic-
ular system state, through stability margins, or through robustness towards distur-
bances. In this thesis, we have chosen to study performance measures that quantify
nodal state fluctuations for systems that are subject to distributed stochastic dis-
turbances. Motivated by the applications mentioned in the introduction, we first
focused on measures of coherence, which characterize how well an approximate state
of consensus can be maintained, or how closely a vehicular formation resembles a
rigid body. We then studied a second performance measure, which characterizes
lack of synchrony, and used it to measure resistive power losses associated with
synchronization in power networks (the “price of synchrony”).

The two performance measures have in common that they typically scale badly
with network size, and that absolute state feedback, or self-damping, is key in
improving performance, both with static and dynamic feedback laws. However,
while increasing network connectivity improves network coherence, it often has no
e�ect on the price of synchrony. Similarly, the order of the system dynamics plays
slightly di�erent roles in the two problem settings. We elaborate on these topics
below.
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Performance scaling and fundamental limitations
In the consensus and vehicular formation problems, we evaluated performance in
terms of the individual (per node) variance of nodal phase fluctuations with respect
to a global mean, as in (1.10). We showed in Chapter 3 that this individual variance
generally increases as the network grows, preventing networks from being coherent
on a large scale. In power networks, we were instead interested in quantifying
the total network’s resistive power losses, and showed that this could be evaluated
as a sum of local errors, as in (1.11), over all network nodes. Therefore, even
though the losses remain bounded when counted per generator node (to the extent
this is meaningful, given that losses arise over the network lines), the total losses
will grow linearly with the size of the network. In both cases, the unfavorable
scaling of performance with network size can be seen as a fundamental limitation
to performance in the respective system.

When it comes to network coherence, this limitation can be alleviated by adding
links to increase network connectivity. Such a strategy does, however, typically not
a�ect the price of synchrony. Under certain assumptions, this means that a sparsely
interconnected power network incurs the same power losses in resynchronizing after
a disturbance as a highly interconnected network, even though the latter is more
coherent in terms of phase fluctuations. Still, we demonstrated that certain perfor-
mance improvement in terms of reduced losses can be achieved through a judicious
placement of well-damped generators in the network, or a co-location of generators
at a common node. In general, however, the unbounded growth of losses with net-
work size remains a limitation that may become important in future power grids,
which are expected to have highly distributed generation sources leading to larger
networks.

As one of the main objectives of this thesis, we also evaluated whether dynamic
feedback control could alleviate some of the performance limitations that had been
shown to hold with standard, static control laws. In the context of the consensus
and vehicular formation problems, we considered general dynamic feedback laws
with a single internal controller state. We found that no such feedback law can
improve performance scaling compared to static feedback, as long as it must rely on
relative measurements between neighboring nodes. The scaling of performance also
remains unchanged when the controller has access to absolute state measurements,
unless those measurements are noiseless. In this case, a performance improvement
by a constant factor can, however, be achieved using dynamic feedback, which may
of course be important in practice. We examined such a case in Chapter 6, where
it was shown that a particular distributed dynamic feedback law reduces the power
losses associated with frequency control in a microgrid setting.

Order of system dynamics
Throughout this thesis, we have considered both first- and second-order systems.
In physical systems, second-order dynamics are prevalent, but a first-order model
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can serve as an idealization or approximation. For example, in the droop control
laws that we derived for power inverters, the second-order model reduced to the
first-order model if there were no measurement delay dynamics or inertia. Against
that background, it has been relevant to determine in which way the choice of model
order a�ects performance.

Remarkably, we showed in Chapter 5 that first-order, second-order and mixed
first- and second-order systems are equivalent in terms of the price of synchrony.
This indicates, for example, that a replacement of traditional generators by re-
newable generators with faster dynamics will not a�ect performance in terms of
transient power losses, if their dampings can be matched. In terms of coherence,
however, higher order models typically have a more severe performance scaling.
For example, the second-order vehicular formation with relative feedback requires
5 spatial dimensions to be fully coherent, while the first-order consensus system
only requires 3 dimensions. If, however, the vehicular formation has absolute feed-
back from velocity, performance scales as in the consensus problem. With dynamic
feedback, performance may even be better.

Importance of absolute feedback

The most severe limitations to performance in the networked systems we have con-
sidered are for systems whose feedback relies entirely on relative measurements
between neighboring nodes. In a vehicle platoon, this could mean that radars are
used to measure the relative position error with respect to the vehicle ahead, and,
in a power system, that feedback relies on power flows, which are (approximately)
proportional to phase angle di�erences. In order to alleviate the performance lim-
itations, we have demonstrated that absolute state feedback, or self-damping, is
necessary. In these examples, one would thus have to broadcast position measure-
ments with respect to a global reference frame across the platoon, or install phasor
measurement units (PMUs) in the power network.

With a dynamic feedback law, there is however a possibility to emulate such ab-
solute feedback. The feedback laws which were shown in this thesis to improve per-
formance compared to static feedback laws were distributed proportional-integral
(PI) controllers, which integrate absolute velocity or frequency measurements to
yield a substitute for absolute position or phase feedback (or self-damping). Since
such a strategy is sensitive to measurement errors or bias, it is important that the
controllers at the di�erent nodes align their internal controller states through a dis-
tributed averaging (consensus) protocol. In the power system setting, we showed
that a too strong alignment of that type causes the feedback to rely too much on the
neighbors, which in turn reduces the self-damping e�ect. Consequently, a central-
ized integral controller that simply integrates the network average and shares this
with all network nodes cannot improve performance compared to static feedback.
This result serves as an additional argument in favor of distributed strategies for
frequency control in power networks.
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7.2 Directions for future work

Many of the results presented in this thesis also provide interesting openings for fur-
ther research, some of which we have already mentioned throughout the thesis. For
example, we limited the study of dynamic feedback laws in Chapter 3 to controllers
with a single memory state. It is an open research question whether our result
changes if the number of memory states is arbitrary. Other types of controllers,
for example controllers that are not strictly proper, or controllers with alternative
architectures, are also worth examining in terms of their performance limitations.

In Chapter 6, we showed that a distributed averaging PI controller can improve
performance in terms of the power losses associated with frequency regulation,
compared to both static droop control and a centralized averaging PI controller.
We showed that while the distributed averaging of the internal controller states is
necessary for the stability of the system, the gain should be kept small in order to
maintain a desired self-damping e�ect. Since this distributed averaging requires an
additional communication infrastructure, an interesting question for future work
is the optimal configuration of this network for loss reduction. It is also worth
investigating whether there are other control architectures, ranging from centralized
to decentralized, that perform better than the distributed averaging PI controller
while still fulfilling the control objectives related to frequency regulation in power
grids.

Throughout this thesis, we have evaluated performance in terms of output vari-
ances, which has amounted to H

2

norm based performance metrics. In Chapter 3,
this meant that we evaluated sums over inverted eigenvalues (see Example 3.1).
Such sums do not necessarily scale as individual inverted eigenvalues, such as the
smallest non-zero eigenvalue, which is instead related to the HŒ norm. An in-
triguing direction for future work is therefore to relate the present results to HŒ
norm based performance metrics and their interpretations in terms of, for example,
robustness.
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