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Abstract

Wireless networked control systems use shared wireless links to communicate
between sensors and controllers, and require a channel access policy to arbitrate
access to the links. Existing multiple access protocols perform this role in an ag-
nostic manner, by remaining insular to the applications that run over the network.
This approach does not give satisfactory control performance guarantees. To enable
the use of wireless networks in emerging industrial applications, we must be able to
systematically design wireless networked control systems that provide guaranteed
performances in resource-constrained networks.

In this thesis, we advocate the use of state-based channel access policies. A
state-based policy uses the state of the controlled plant to influence access to the
network. The state contains information about not only the plant, but also the
network, due to the feedback in the system. Thus, by using the state to decide
when and how frequently to transmit, a control system can adapt its contribution
to the network traffic, and enable the network to adapt access to the plant state. We
show that such an approach can provide better performance than existing methods.
We examine two different state-based approaches that are distributed and easy to
implement on wireless devices: event-based scheduling and adaptive prioritization.

Our first approach uses events to reduce the traffic in the network. We use a
state-based scheduler in every plant sensor to generate non-coordinated channel
access requests by selecting a few critical data packets, or events, for transmission.
The network uses a contention resolution mechanism to deal with simultaneous
channel access requests. We present three main contributions for this formulation.
The first contribution is a structural analysis of stochastic event-based systems,
where we identify a dual predictor architecture that results in separation in design
of the state-based scheduler, observer and controller. The second contribution is a
Markov model that describes the interactions in a network of event-based systems.
The third contribution is an analysis of the stability of event-based systems, leading
to a stabilizing design of event-based policies.

Our second approach uses state-based priorities to determine access to the net-
work. We use a dominance protocol to evaluate priorities in a contention-based set-
ting, and characterize the resulting control performance. An implementation and
evaluation of this channel access mechanism on sensor nodes is also presented.

The thesis finally examines the general networked control problem of jointly
optimizing measurement and control policies, when a nonlinear measurement policy
is used to perform quantization, event-triggering or companding. This contribution
focuses on some of the fundamental aspects of analyzing and synthesizing control
systems with state-based measurement policies in a more generalized setting. We
comment on the dual effect, certainty equivalence and separation properties for this
problem. In particular, we show that it is optimal to apply separation and certainty
equivalence to a design problem that permits a dynamic choice of the measurement
and control policies.
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Chapter 1

Introduction

Information is essential to feedback control. We use evidence and information to
make decisions in our everyday lives, as informed decisions can outdo even the best
guesswork. Similarly, a control system uses measurements to compute a control
action. When applied to a physical process, the control action has the potential
to modify the behaviour of the process in a desired manner. Feedback control is
a hidden component of many engineering solutions, from boilers to autopilots for
spacecrafts. We use feedback control to regulate a physical process, or to automate
a manual decision process, with an agility, accuracy and computational capacity
that far surpasses human capability. Conceptually, a control system comprises of
four main components, as depicted in Figure 1.1: the physical process or plant to
be controlled, a sensor to take measurements, a controller to generate the control
signal and an actuator to apply the control signal to the plant. Underlying the func-
tional blocks in a feedback loop are the information channels that enable feedback
control; a dedicated sensing link that conducts measurements to the controller and
a dedicated actuation link that conducts control signals to the actuator.

Our ability to gather information necessary for decision-making is an important
factor that determines the use of feedback control to engineer the world around us.
If we could measure and collate information regarding the moisture content of soil,
we could irrigate fields more efficiently and potentially increase our agricultural
output. With knowledge of our vital signs, we might be able to train better and
recover more efficiently, leading to fewer sports injuries or better fitness and even
weight loss strategies. By learning the energy consumption of all the devices in
our homes, we might be able to reduce our energy consumption by choosing to
charge or run these devices during non-peak hours. All these applications require
extensive information gathering from numerous, possibly mobile, sources that need
not be located near each other. The impossibility of providing a dedicated, wired
link from a sensor at each source location, had relegated such applications to the
realm of futuristic dreams.

Fortunately, we have found new ways to harvest and collate information. Wire-
less sensor nodes have given us the ability to embed a little intelligence, some
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Figure 1.1: A control system, at its simplest, comprises of a plant (P), sensor (S),
controller (C) and actuator (A). The sensing and actuation links transmit information
that enables feedback control. In classical control, these are inherently assumed to be
dedicated links.

sensing capability and a wireless transceiver in almost any object around us (Aky-
ildiz et al., 2002; Chong and Kumar, 2003). Wireless and internet connectivity
now encompasses the globe, and our computing capability and storage capacity are
better and cheaper than ever before. The Internet-of-Things makes every device
capable of networking, and even physical objects can be addressable and reachable
via communications (Atzori et al., 2010). These technologies promise ubiquitous
and inexpensive computation, communication and sensing abilities, enabling us to
harvest information about everything around us. Favourably, these technologies
are almost ready and already in use. A plethora of applications from military and
biomedical sensing, environmental and building monitoring, and home surveillance
use it to monitor the world around us.

Now, paucity of information is no longer a constraint for control. The deluge
of data can be used to make decisions and compute control actions. However, by
advancing from monitoring to actuation, we arrive at a new paradigm. Future appli-
cations may now anticipate the ability to interact with, and expand the capabilities
of, the physical world through computation, communication, and control. The idea
of designing a non-interacting system or physical component appears outdated.
Every system or physical component must be able to be integrated with informa-
tion relevant to its functioning, and capable of reacting to this information. Thus,
physical systems come together with information networks to perform sensing and
actuation, resulting in a cyber-physical system (Lee, 2008; Rajkumar et al., 2010).

Many exciting applications have been conceived using this paradigm. Intelligent
transport systems envision sensors fitted on automobiles that can transmit road,
wind or traffic conditions to other vehicles. Such information can also be collated
to generate route guidance and traffic warnings to all motorists. Smart bio-sensors
can be used to constantly monitor critical patients and release medication, through
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Figure 1.2: In wireless NCSs, the sensing and actuation links from all the control
systems are aggregated into a shared wireless network. A wireline NCS uses a commu-
nication bus in place of the wireless network.

bio-patches, when necessary. This has the potential to bring down medical care
costs in an ageing society and enable independent living for those with manageable
conditions. Assisted living technology and environmental control can allow near-
normal interaction with smart homes and offices for the disabled. Future retail
environments and public areas can be designed as smart spaces, capable of inter-
acting with visitors and providing automated customer service. Fewer constraints
on sensing, communication and actuation can also result in big improvements in
robotics, factory automation and process control.

To execute this vision to its utmost potential, many of these applications re-
quire the exchange of information within a control system to occur over a wireless
network. This is a challenging problem. The wireless medium is notorious for its
unreliability, as anyone who has experienced dropped calls, or a slow WiFi connec-
tion, is well aware of. So, how do we design control systems capable of providing
performance guarantees to run over wireless networks? We examine this question
in the next section.

1.1 Wireless Networked Control Systems

A network of control systems with wireless-in-the-loop is depicted in Figure 1.2.
The sensing and actuation links of a wireless networked control system (NCS) are
accommodated within a shared wireless network, which is also used by the other



4 Introduction

control systems in the network. A wireline NCS uses a communication bus in place
of the wireless network. The communication bus provides a wired medium, but it is
not a dedicated link, as it is shared between all the control systems in the network.

There are many challenges in designing a wireless NCS. However, the benefits
of wireless outweigh these challenges. Wireless networks eliminate costs incurred in
the installation and maintenance of wiring. Wireless sensor networks are easy to
deploy, making it possible to modify existing systems by adding sensors on the fly.
Consequently, they offer possibilities of better sensing, which could lead to better
control. Wireless is sometimes the only choice, for example, in a network of mobile
agents, or in areas where infrastructure is difficult to install. A wireless system is
an enabler of our information-driven world, where decisions can be taken anywhere
and reach everywhere. There is also a compulsion to follow the trend; if wireless
sensors will soon be ubiquitous, how can control systems remain wired?

Thus, future applications have created a need for wireless in the feedback loop,
and the technology to fulfill that need already exists. Then, can we plug wireless
nodes into existing control systems, and achieve working solutions? No. There is
a disconnect between classical control theory and wireless communication. Classi-
cal control theory focuses on every aspect necessary to accomplish control action,
barring the informational transactions within the closed-loop. This is because ded-
icated, near-ideal transmission links appear transparent to a control system. As we
replace these dedicated connections with shared links, the imperfections of the com-
munication media can no longer be ignored. Wireless transmissions are susceptible
to much higher packet losses and delays than wireline transmissions, due to the na-
ture of the wireless medium. What should be done when the measurement packet
does not arrive or the control packet is not delivered? Wireless bandwidth is scarce.
How do we transmit real-valued measurements and controls through such links?
Wireless networks are interference-constrained. How do we accommodate simulta-
neous transmission requests from different control systems in the network? Thus,
control theory must grow to encompass a networked view of systems, as required
to deal with wireline and wireless control systems.

In the last decade, networked control theory has taken on this challenge, and
provided us with solutions to some of the above issues. The EU project SOCRADES
(Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded de-
vices) used some of these solutions to integrate wireless nodes into a process control
setup. As part of this project, wireless control experiments were conducted in a min-
ing plant at Boliden in Sweden. The froth-flotation process in this plant is shown
in Figure 1.3. The design of the control system had to overcome a harsh radio en-
vironment that introduced delays and packet losses in the wireless communication
between the nodes.

However, some key challenges with using a shared medium remain unsolved. A
wireless link cannot support simultaneous transmissions from different users. The
network requires a channel access policy to ensure that no more than one control
system transmits data at a given time, over a shared link. This policy must also
play a role in determining how often each control system in the network transmits.
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Figure 1.3: Wireless sensors were introduced in the froth-flotation processes at the
mining plant in Boliden. This is a real example of wireless networked control, carried
out in the EU project SOCRADES. (Courtesy of Boliden)

This is because a wireless link can only transmit a limited amount of data at a
given time. If a control system monopolizes a shared link, there is clearly no way to
accommodate any other user in this network. In other words, the finite capacity of
a wireless link corresponds to a scarcity of a shared resource and the fundamental
challenge here is to identify an efficient resource allocation policy. So, how should we
allocate a share of the common transmission medium between the network users?
Furthermore, can we design a resource allocation policy that delivers a performance
guarantee for a control system using a wireless network?

Any solution we identify must satisfy other general constraints imposed by fu-
ture applications and the underlying technology. A wireless communication protocol
must be robust to fluctuations in the medium and easily adapt to it. It must not be
fragile to a sudden breakdown of the wireless link. Sensor networks are character-
ized by high node densities, low data rates and energy constraints. In addition, a
network of control systems is likely to have small and equal packet sizes. However,
packet generation rates need not be low, relative to the data rates supported by the
network. We consider large networks, which are typically organized without much
hierarchy, due to similar energy constraints on all the nodes. Network planning and
deployment is a time- and energy-consuming task, and impractical for such net-
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Figure 1.4: A packet-based model for an instantaneous, memoryless multiple access
channel. The channel access policy associated with each source-destination pair using
the shared channel, generates an access request γj

k, for 1 ≤ j ≤ M . The source-
destination pairs j ∈ {2, . . . ,M} are represented by their channel access policies alone.
The channel is turned ‘on’ or ‘off’ by the corresponding δj

k, as determined by all the
access requests.

works. This is especially true for applications which involve a frequently changing
network, possibly due to the presence of mobile agents or other moving objects.

1.2 Motivating Examples

We now present a model for the interactions in a shared link between multiple
users. With the help of a number of examples, we illustrate the need for the channel
access policy presented in our model and the unsuitability of existing channel access
solutions. Following this, we present the state-based channel access policy explored
in this thesis.

1.2.1 A Packet-based Multiple Access Channel Model

In Figure 1.4, we consider M source-destination pairs that communicate over a
shared link. Each source-destination pair uses a channel access policy to request
access to the channel. The figure depicts only the first source-destination pair.
The other pairs using the shared medium are represented by their channel access
policies alone. Each channel access policy generates an access request γj

k ∈ Z
+, for

1 ≤ j ≤ M , where k denotes the discrete time index. The discrete-valued γj
k conveys

the need to transmit, and its range is determined by the transmission protocol and
the wireless transceiver. The channel between each source-destination pair is rep-
resented by a switch, which is controlled by the associated channel access indicator
δj

k ∈ {0, 1}. This indicator δj
k is determined by all the access requests {γ1

k, . . . , γ
M
k }

in a manner described by the probability kernel in the figure. The probability kernel
P(δk|γ1

k, . . . , γ
M
k ) models the interaction of the channel access requests in the shared
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wireless medium as instantaneous, memoryless and randomized. This probability
kernel represents our packet-based model for the multiple access channel between
the source-destination pair depicted in Figure 1.4.

We use an instantaneous interaction model, but this need not result in any loss
in generality. At first glance, such a model may not seem to capture the delay in ac-
cessing the network due to contention from other users. However, any delay induced
by the multiple access network is simply attributed to the channel access policy,
and not to the interaction in the channel. Thus, the delay due to multiple access
for a successfully transmitted packet can be measured by the number of channel
access requests1 issued before δj

k attains a value of 1. If the channel access policy
imposes a bound on the maximum number of attempts to transmit a given packet,
and transmission fails for each of these attempts, then the packet is discarded. In
such a case, the packet is considered as ‘lost’, and the delay is considered to be
unbounded for this packet.

Our interaction model is memoryless as the probability kernel does not depend
on past channel access requests or outcomes. However, the channel access policy may
use past outcomes to determine future access requests. Thus, this modelling choice
does not impose any limitations. Similarly, our choice of a randomized interaction
model ensures no loss of generality. As an added benefit, it can be used to model
physical losses from the medium, hidden terminals, unsynchronized clocks and other
such phenomena unique to the wireless medium.

Let us consider a simple example to illustrate the need for a channel access
policy. We allow two systems to use a broadcast network, such as a wireless link,
without an explicit access mechanism. Through this example, we learn the limita-
tions of the broadcast medium.

Example 1.1
We use a laboratory tank process, consisting of a coupled upper and lower tank,
with wireless sensing and actuation links. The single process experimental setup
is depicted by the illustration to the left in Figure 1.5. We wish to regulate the
level of water in the upper tank. The links use a shared medium, but no channel
access policy; they simply transmit when they generate a packet. We observe the
effect of interference from both the links on a reference tracking experiment. Next,
we conduct the same experiment with two similar processes, in place of one, to
observe the effect of four interfering links. The double process experimental setup
is depicted by the illustration to the right in Figure 1.5.

The results obtained from these real experiments are shown in Figure 1.6. To
evaluate the above scenarios, we compute the average probability of a packet loss.
We find that interference from two links causes 14% of the packets to be lost,
whereas interference from four links causes as much as 45% of the packets to be
lost. As expected, the performance of reference tracking with four interfering links
is worse than with two.

1The source-destination pair is considered to operate on a much slower time scale than the
channel access policy itself, thus allowing for multiple transmission requests per packet.
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Figure 1.5: The setup to the left depicts a single coupled tank process which uses a
wireless network to communicate with the controller. In the setup on the right side, two
such processes share the network. The sensor nodes broadcast when they have data to
transmit, without an explicit multiple access protocol in Example 1.1, or using random
access in Example 1.3.
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Figure 1.6: A comparison of two experiments: the solid line corresponds to the results
of the reference tracking experiment with a single process using the broadcast medium,
whereas the dashed line corresponds to the same experiment with two processes sharing
the medium. In the second experiment, one of the processes suffers a packet loss of
45%, and consequently, its control performance is worse.

Interference from just four links can cause almost half the packets to be lost in a
broadcast medium. Thus, a shared network requires a policy to arbitrate channel
access among its users.

The channel access policy is a randomized strategy that generates an access
request, and serves two main roles. Its first role is to prevent interference by ar-
bitrating access to the shared network. It accomplishes this by typically spacing
apart transmissions in time or frequency. However, any shared medium can only
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support a given amount of network traffic, and preventing interference in high traf-
fic networks is a futile task. Thus, the policy must also regulate network access
by curtailing transmissions from users to prevent congestion. Through this second
role, the channel access policy regulates the contribution of each node to the total
traffic in the network.

The next two examples illustrate two commonly used channel access policies that
accomplish these two roles in different ways. Through these examples, we examine
the unsuitability of existing channel access solutions. In the following example,
each user is allotted a slot in a transmission schedule. This constitutes a channel
access policy called Time Division Multiple Access (TDMA) and the resulting access
mechanism is typically non-randomized. However, we can still use the model in
Figure 1.4 to describe such a policy. The transmission schedule can be static or
dynamic; the order of transmission is fixed and does not change with time in a static
schedule, whereas the order of transmission may be altered with time in a dynamic
schedule. The following example illustrates the drawbacks of both approaches.

Example 1.2
We consider a network of wireless tank processes as in Figure 1.5, wherein each
node is allotted a time slot to transmit data according to a given schedule. Each
data packet in this network takes Ttx seconds to transmit, and each wireless tank
process is sampled every Ts seconds. Then, the maximum number of processes that
can be supported by this network is given by M = Ts/Ttx.

Now, consider a static schedule for a network of M processes. Once the water
level in the tank has been regulated, the nodes do not have much to convey until the
next reference change. However, each node is still allotted a slot every Ts seconds.
This is inefficient, and reduces the number of users the network can support. A static
schedule for more thanM processes can only be achieved by increasing time between
transmitted samples. Thus, some data samples must be discarded irrespective of
how important they are to the control system.

Next, consider a dynamic schedule for a network of 2M processes. A static
schedule cannot support 2M processes at the same sampling rate, and thus, a
dynamic schedule must be used. Now, slots can be allotted to nodes that require the
channel the most. However, the nodes that require access must first be identified. A
new schedule must be drawn up and all 2M nodes must be notified of the change.
In a wireless network, information collection and distribution is subject to the
vagaries of the wireless medium, and some data may be lost. If request notifications
are lost, the corresponding nodes do not get to access the network. If the schedule
change notification is lost, two or more nodes may access the channel simultaneously,
resulting in a collision.

Example 1.2 shows that static schedules are not scalable with the number of nodes
in the network. Static allocations result in a waste of scarce resources, while dynamic
allocations are difficult to implement over a lossy medium. A centralized scheduler,
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Figure 1.7: Effect of random access: When two processes share the medium and use
CSMA/CA, one of the processes suffers a packet loss of 33%. This reflects on its closed-
loop performance, and the reference tracking is much noisier. Also, it does not track
the reference for a small region indicated above, and there is a delay compared to the
single process.

which is susceptible to failure, or an energy intensive consensus algorithm must be
used to draw up dynamic schedules.

In the third example, we use a policy that determines access to the network in a
distributed, randomized way. This facilitates an easy deployment on wireless nodes.
The distributed nature of the access policy implies that two or more nodes in the
network may decide to transmit at the same time, resulting in a collision, wherein
all packets are lost. In this example, the nodes use the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol, to illustrate the effect of collisions
and random access on a control system.

Example 1.3
We return to our experimental setup from Example 1.1, with channel access deter-
mined by CSMA/CA. The results of a reference tracking experiment conducted on
the single and double process setup are depicted in Figure 1.7. Firstly, by comparing
with the results in Figure 1.6, note the remarkable improvement in performance
over the experiments in Example 1.1, due to using a multiple access mechanism.
However, random access results in random losses due to collisions. After a number
of random transmission attempts that result in collisions, an unsuccessful packet is
simply discarded irrespective of how important it is to the control system. The effect
of such random losses is particularly visible when there are four interfering links.
The reference tracking is noisier and delayed as well, compared to the performance
obtained with two interfering links.

Despite the ease of implementation, the randomness of channel access makes this
method unsuitable for critical control systems. Notice that both the access policies
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presented above were agnostic, or blind, to the application layer. The agnostic
approach ensures modularity in design, and is well-suited to serving heterogeneous
networks. However, such an approach cannot deliver a satisfactory performance
guarantee for control systems. In this thesis, we therefore seek an approach that
guarantees stability for a network of control systems over a shared medium, while
being easy to deploy, ad hoc and scalable.

1.2.2 State-based Channel Access

We propose a state-based channel access policy, in place of agnostic methods, with
an emphasis on distributed solutions that are well-suited to wireless nodes. A state-
based policy uses the state of the plant being controlled to influence the probability
of a successful transmission. The state contains information about the plant, as
well as the network, due to feedback control. Thus, by using the state to decide
when and how frequently to transmit, a control system can adapt its contribution
to the network traffic, and enable the network to adapt its output to the plant state.
However, directly using the state of the plant to determine an access probability
may result in a mechanism that is difficult to implement and analyze. Instead,
we envision a state-based access policy as a combination of a state-based directive,
and a contention resolution mechanism (CRM) that determines channel access in a
distributed manner. Our approach is motivated by an understanding of the two roles
played by a channel access policy: a CRM works by resolving contention between
simultaneous channel access requests, thus spreading traffic that arrives in bursts.
However, CRMs typically attempt to transmit a packet a few times, beyond which
the packet is discarded. We appropriate this latter role of discarding packets to the
state-based directive, as it can take an informed decision on the relevance of the
packet to the control system and its impact on the network.

In the next two examples, we illustrate two different realizations of a state-based
channel access policy. These examples establish that a state-based access policy can
provide better performance guarantees than agnostic methods. The first example
presents an event-based approach, where the state-based directive is a binary notifi-
cation of an event, and the CRM is a randomized access policy. The second example
is a priority-based approach, where the state-based directive is a discrete-valued pri-
ority associated with the current data packet. The control systems in the network
exchange and evaluate priorities in a distributed manner using a tournament.

Example 1.4
We consider a heterogenous network of 20 first-order stochastic plants, indexed by
j ∈ {1, . . . , 20}. There are three different types of plants, representing different
physical processes, sampled at different rates. These plants use a shared wireless
link between their sensors and controllers, while the actuation links are dedicated
connections. The channel access policy comprises of an event-triggering policy and a
CRM. The event-triggering policy selects a data packet for transmission if the state
satisfies the criterion (xj

k)2 > ǫj for each plant in the network. The CRM permits
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Table 1.8: A comparison of control costs with and without an event-based policy

Event-based Access Random Access

Control Cost for plant type 1 23.5785 45.3074

Control Cost for plant type 2 8.3489 10.0028

Control Cost for plant type 3 5.3803 6.1213

Table 1.9: A comparison of control costs with and without state-based priorities

Prioritized Access Random Access

Average Control Cost 0.2576 0.3524

three attempts to transmit this packet, depending on the outcome of a Bernoulli
process, with probabilities {1, 0.75, 0.5}, respectively. The controllers implement a
state feedback law, using an estimate of the state when the state is not available.
The control cost is a quadratic function of the state and the control signal, for a
finite number of time instances.

In Table 1.8, we compare the control costs obtained with and without an event-
triggering policy, i.e., with ǫj = 2.5 and ǫj = 0, respectively, for all j. There is a
marked improvement with an event-triggering policy due to fewer collisions when
using the CRM.

Example 1.5
We consider a homogenous network with 20 first-order linear stochastic plants.
These plants use a shared wireless link between their sensors and controllers, while
the actuation links are dedicated connections. The channel access policy comprises
of a state-based prioritization policy and a mechanism to compare priorities in a
distributed manner, called tournaments. Each plant generates a packet to transmit,
and these packets vie for NT = 10 transmission slots. The prioritization policy uses
a quadratic function of the innovations, which is the new information in the current
measurement, and discretizes this value to a 8-bit priority field. The winners of the
tournaments have the highest priority values. Thus, the probability of a successful
transmission varies with the priority of the data packet. On an average, each plant
in this network can be shown to transmit with probability 0.4403.

The controllers implement a state feedback law, using an estimate of the state
when the state is not available. The control cost is a quadratic function of the
state and the control signal, for a finite number of time instances. In Table 1.9,
we compare the control costs obtained with the state-based prioritization policy
against a random access policy with the same average probability of transmission.
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Figure 1.10: To the left, a network of control systems with a shared wireless sensing
link and individual, dedicated actuation links. To the right, a control system in this
network that uses a state-based policy to access the shared link. The block N is an
aggregated representation of all the other network users.

Clearly, the prioritization policy results in lower costs than random access, because
data packets with large associated costs are transmitted with a higher probability.

Thus, state-based channel access can significantly improve control performance,
and potentially provide better guarantees, for wireless NCSs. In the next section,
we formulate the problem of state-based channel access and identify some important
issues we deal with in this thesis.

1.3 Problem Formulation

We consider a network of M control systems, consisting of a plant Pj and a con-
troller Cj each, for 1 ≤ j ≤ M . The control systems share access to a common
wireless link between their sensors and controllers. We assume that the communi-
cation between the controllers and actuators occurs over a point-to-point link, not
a shared network, as depicted in Figure 1.10(a).

From the perspective of a single control loop, this system can be modelled as
shown in Figure 1.10(b). We drop the index j in this figure for simplicity. The block
N represents the network as seen by this loop and the block R denotes the CRM,
which determines whether the control loop or the rest of the network gets to access
the shared medium. Each of the blocks in the model are explained below.

Plant: We consider a linear, discrete-time stochastic plant P , with a state xk ∈ R
n.

The state is described by the recursive update equation xk+1 = Axk + Buk + wk,
where A ∈ R

n×n and B ∈ R
n×m are the system and input matrices, respectively.
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The process noise wk is an independent and identically distributed (i.i.d.) zero-mean
Gaussian process with covariance matrix Rw. The initial state x0 is a zero-mean
Gaussian with covariance matrix R0.

State-based Scheduler: There is a local scheduler S, situated in the sensor node
of each control system, which generates a discrete-valued channel access request γk.
The state-based channel access policy, denoted by f , is applied to input arguments
derived from the information pattern at the scheduler, Is

k. This information pattern
consists of the system variables known to the scheduler, such as the state of the
plant, previous access requests, channel outputs and applied controls. A successful
transmission results in an acknowledgement (ACK) from the receiver, enabling the
scheduler to keep track of previous channel outputs. The state-based channel access
policy can be realized as an event-triggering policy, with γk ∈ {0, 1} as an event
indicator, or as a prioritization mechanism, with γk ∈ {0, . . . , γmax} as the priority
values for some suitably chosen γmax > 0.

Network: The block N represents all the other traffic sources in the shared net-
work. The network traffic indicator is denoted nk, and its description depends on
the realization of the channel access mechanism. The network can consist of het-
erogenous sources, and thus, nk need not be generated by an information pattern
similar to I

S
k .

CRM: The CRM is a randomized strategy that resolves contention between multi-
ple simultaneous channel access requests. When the contention is resolved in favour
of our control loop, δk = 1, and otherwise 0. Thus, the channel access indicator is
given by δk = R(γk, nk). Notice that the policy R is a combination of the CRM and
the interaction between various access requests, denoted by the probability kernel
in Figure 1.4.

Controller: The channel output or the measurement across the network is denoted
by yk. When δk = 1, the full state is available to the controller C. When δk = 0,
the controller is only aware that it has not received a packet. The control law g
generates the control signal uk when applied to input arguments derived from the
information pattern at the controller Ic

k =
{

yk
0 , δk

0 ,u
k−1
0

}
. The bold font denotes a

set of variables such as aT
t = {at, at+1, . . . , aT }.

The controller tries to minimize the objective function, defined over a horizon N ,
and given by

J = E

[
x⊤

NQ0xN +
N−1∑

s=0

(x⊤
s Q1xs + u⊤

s Q2us)

]
,

where the weighting matrices Q0 and Q1 are non-negative, and Q2 is positive defi-
nite.
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Observer: Since the state is not always available to the controller, we sometimes
need an observer (O) to generate an estimate of the state. This estimate is given
by x̂k|k = E[xk|Ic

k]. The resulting estimation error is defined as x̃k|k , xk − x̂k|k ,
with error covariance Pk = E[x̃k|k x̃⊤

k|k |Ic
k].

In this thesis, we seek state-based channel access methods that are capable of
delivering performance guarantees for wireless NCSs. To this end, we address the
following questions:

Q1: Structural Analysis: Different multiple access architectures arise when we
have different information patterns at the scheduler. What is the impact of
the information pattern on the design and performance of a stochastic control
system?

Q2: Realizations of State-based Access: In what ways can we use these in-
formation patterns to design channel access methods? How do we find real-
izations for the desired functionalities of the blocks S and R?

Q3: Network Modelling: How do we model the interactions between different
control systems in a multiple access channel? Can we use such a model to
characterize the access probability of a state-based method?

Q4: Stability Analysis: Can we comment on the stability properties of a network
of wireless NCSs, given the channel access policy and the corresponding model
for network interactions?

Q5: Design: What choices of the scheduling policy f , the control policy g and
the CRM R must be made to achieve a certain performance or guarantee a
property for the control system and the network?

By designing a state-based channel access policy for a stochastic system, we are, in
effect, choosing a multiple access channel for our control system. Our work presents
some ways of doing this, while obtaining performance guarantees for each control
system and the entire network itself.

1.4 Inherent Limitations of the Problem Formulation

By choosing the above problem formulation, we have inherently limited the scope of
our research. We briefly motivate some of the choices and assumptions underlying
the formulation presented above.

Stochastic plant: We consider a stochastic plant in our setup for two main rea-
sons. Firstly, a wireless channel is modelled as a stochastic process, and any control
system using a wireless network will consequently be a stochastic process, irrespec-
tive of the plant model. Secondly, analyzing network traffic requires probabilities,
and a stochastic plant model will readily supply this. A benefit of the stochastic
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model is that stochastic control offers a suitable framework to interpret the results
we obtain.

Linear Quadratic Gaussian (LQG) Cost: The linear plant with Gaussian ran-
dom variables and a quadratic cost offers us the simplest scenario to understand
the implications of multiple access for control systems. This class of problems often
leads to well-defined and well-understood solutions.

Dedicated Actuation Links: This assumption allows us to focus on the impli-
cations of multiple access on the sensing link. It is a likely scenario of operation
in process control, as actuators require cables drawn from a power source and are
thus wired to the controllers (Willig et al., 2005). This architecture also arises when
the controller is implemented at the actuator. Even otherwise, a controller is likely
to have more processing power and may even be centrally located along with the
other controllers in the network. This would permit them to coordinate a sched-
ule for transmissions on the actuation links, thus avoiding the need for distributed
non-coordinated multiple access decisions at each controller.

Lossless transmissions: To focus on the implications of multiple access, we as-
sume that the physical medium itself does not lose packets. Many of our results can
be extended to include simple packet loss models.

Lossless ACKs: Most CRMs and network protocols provide ACKs when packets
are received successfully. The ACK directly follows a transmission slot, in most
protocols. Under fair conditions, a link may not see drastic changes within short
intervals of time. Hence, ACKs are assumed to be delivered without losses.

Real-valued Transmissions: The wireless channels we consider cannot support
real-valued transmissions. However, most network protocols provide sufficiently
large payloads to allow us to neglect the effect of quantization. In addition, this
assumption allows us to focus on the implications of multiple access.

1.5 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we provide a review
of existing literature pertaining to stochastic control, multiple access methods and
NCSs. We also cover recent developments in event-based control in some detail. In
the multiple access section of this chapter, we provide a framework to answer the
questions posed in this thesis, by introducing different classes of channel access,
including state-based access methods.

The next three chapters outline an event-based realization of a state-based chan-
nel access method. These chapters contain the main results of this thesis. Chap-
ter 3 contains a structural analysis of event-based systems, and answers Q1. It also
presents a control system architecture with design solutions related to Q2 and Q5.
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Chapter 4 contains a model for the interactions, resulting from event-triggered
policies and the CRM, between the control systems in a shared network. This
model uses an assumption from Bianchi (2000) to decouple the network-induced
correlation between the control systems, and the assumption and resulting model
are validated through simulations for various network configurations. This chapter
provides answers to Q3.

In Chapter 5, we provide sufficient conditions for Lyapunov mean square sta-
bility of a network of event-based systems. We also use this analysis to identify a
design procedure for event-triggering policies that guarantee stability of the plant
and network. This chapter provides answers to Q4 and Q5.

Chapter 6 provides an example of a state-based prioritization mechanism, which
is an alternate realization of a state-based channel access mechanism. We evaluate
the access probability and establish that a state-based access policy can provide
better performance guarantees than agnostic methods. This chapter answers parts
of Q2, Q3 and Q5.

In Chapter 7, we examine the general stochastic problem of jointly optimizing
measurement and control policies, when the measurement policy is nonlinear. Many
such examples can be found in networked control. We present a general formulation
for all these problems, and identify stochastic properties of the resulting control sys-
tem that permit the measurement and control properties to be separately designed,
with no loss in optimality. This work explores Q1 in a general context.

Chapter 8 provides conclusions and some notes for future work.

1.6 Contributions

This thesis is based on the following publications. The order of the authors indicates
the degree of contribution, where the first author performed most of the work.
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Chapter 2

Background

In this chapter, we present a summary of the main tools and methods that are
used frequently in the rest of the thesis, along with an overview of related work in
networked control systems (NCSs). The work presented in this thesis draws on many
existing concepts and methods in classical control theory, particularly stochastic
control. In addition, channel access and resource allocation are also well established
topics in computer networks, and many of the protocols and policies we refer to in
this thesis have been in use since the early days of computer networks. We present
a short review of these topics. Then, we model some basic types of multiple access
protocols, and comment on their applicability to NCSs. There is also a growing body
of research related to various aspects of state-based channel access. In recent years,
event-based systems have garnered much interest as a means to reduce congestion
in NCSs. Prioritized access has also seen some new developments. We present an
overview of some of the related work in NCSs, with a particular emphasis on event-
based systems. We begin with an introduction to stochastic control.

2.1 Stochastic Control

Control systems use the principle of feedback primarily to counter uncertainties
that cannot be accounted for using a deterministic model of the physical process,
such as disturbances and model errors. However, controller design often requires
even disturbances to be modelled, and stochastic processes offer us a natural way
to accomplish this (Åström, 1970). Dynamical systems subject to stochastic distur-
bances form the main focus of stochastic control theory. This theory is particularly
apt to study the impact of information and its availability on control systems. In
this section, we consider the general control problem of minimizing the expected
value of a quadratic cost criterion in the state and control variables of a linear mul-
tiple input multiple output plant. The controller observes the plant state through a
dynamical nonlinear measurement process. This simple setup is sufficient to present
some of the distinguishing aspects of stochastic control.

19
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Consider a linear plant P , described by

xk+1 = Axk +Buk + wk , (2.1)

where xk ∈ R
n denotes the state, uk ∈ R

p denotes the control signal, and A ∈ R
n×n

and B ∈ R
n×p denote the state and input matrices. The process noise wk ∈ R

n is
a zero-mean i.i.d. Gaussian process with covariance Rw ∈ R

n×n. The initial state
is also a zero-mean and i.i.d. Gaussian with covariance R0 ∈ R

n×n.
The measurement yk available to the controller is a dynamic, nonlinear function

of the information available to the measurement process. In classical control, the
measurement process is typically a noisy, static function of the state as measured
by a sensor, such as yk = Cxk + wk. The measurement process in our setup refers
to a combination of a classical sensor measurement, a strategy designed to compen-
sate other effects such as those induced by a transmission channel, and the channel
itself. A compensation strategy is, in general, a dynamic policy, and in the case of
network compensation, it is often a nonlinear policy. An arbitrarily varying channel
is also typically modelled as a dynamical process. Thus, we consider the information
available at the sensor to be the set of all the states and the past measurements
and controls, and is denoted as I

s
k = {xk

0 ,y
k−1
0 ,uk−1

0 }. Since this is a generic for-
mulation, we let the measurements belong to an undefined but measurable space
Υ, which is determined by the nature of the compensation policy and channel. The
measurements are generated by the causal policy fk, defined as the map

fk : Rn(k+1) × Υk × R
pk → Υ , (2.2)

taking (xk
0 ,y

k−1
0 ,uk−1

0 ) 7→ yk. We define the measurement strategy as the set of
measurement policies chosen over the control horizon N and denote it as f =
{f0, . . . , fN−1}.

The controller is also assumed to have perfect recall of all received measure-
ments, implying that it remembers all the received measurements and past actions.
Thus, the information pattern at the controller is given by I

c
k = {yk

0 ,u
k−1
0 }. The

control signal uk is generated by a causal policy gk, defined as the map

gk : Υk+1 × R
p(k+1) → R

p , (2.3)

taking (yk
0 ,u

k−1
0 ) 7→ uk. The control strategy is denoted as g = {g0, . . . , gN−1}.

For a given measurement strategy f , the control strategy g may be chosen to
minimize the classical finite horizon linear quadratic Gaussian (LQG) cost, given
by

JLQG = E

[N−1∑

t=0

(x⊤
t Q1xt + u⊤

t Q2ut) + x⊤
NQ0xN

]
. (2.4)

This results in the following controller-only optimization problem:

Problem 1 : min
g
JLQG
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Sometimes, the measurement strategy must also be chosen along with the control
strategy. In such cases, we denote the net cost as JLQC as there is an additive
communication or measurement penalty term in the cost, such that JLQC = JLQG +
E
∑N−1

t=0 λc(yt)), for some scalar λ > 0 and c : Υ → R
+
0 . Then, we have the following

joint measurement and control optimization problem:

Problem 2 : min
f , g

JLQC

In the rest of this section, we use Problem 1 to illustrate that probing incentives
lead to a dual role for the control signals. We use Problem 2 to illustrate the impact
of information patterns on decision makers in a control loop. Then, we consider the
simpler case of static measurement policies, and introduce the certainty equivalence
principle for such systems.

2.1.1 Probing and Dual Effect in Problem 1

We use the formulation of Problem 1 to examine the consequences of a nonlinear
measurement policy. When the information available at the controller is limited, the
control signal sometimes has a dual role of influencing the information available
to the controller in the future, in addition to its original role of regulating the
state. The benefit obtained by influencing future information is termed as a probing
incentive (Feldbaum, 1961).

In general, any measurable function induces a distribution on its output. More
precisely, let (X,A) and (Y,B) be measurable spaces where A and B denote the
σ-algebras on the sets X and Y , respectively. Also, let h : X → Y be measurable,
i.e., h−1(B) ∈ A whenever B ∈ B, where h−1 is the inverse image of B under
h. A probability measure PX on X induces a probability measure PX ◦ h−1 on
Y through h. In the context of stochastic control, the measurement and control
strategies induce a probability measure on the control signals and other system
variables in the feedback loop. Let us look at optimal estimation and control to
understand the consequences of this.

First, let the primitive random variables of our control system, comprising of
the initial state x0 and process noise wk for k ≥ 0, be defined on a suitable prob-
ability triple [Ω,F ,P]1. Then, the control strategy, the measurement strategy, and
the plant dynamics2, induce a distribution on the system variables. We make this
dependence explicit by using the notation zk(ω; P , g,f) for any system variable zk,
where ω denotes a realization of Ω. We can also write the expectation of a function
of a system variable, such as h(zk), as E

P,g,f [h(zk)] to emphasize the strategies
and functions that induce this expectation. We use this notation sparingly, in the

1The probability tripe [Ω, F , P] comprises of the event-space Ω, the σ-algebra of subsets on
Ω, F , and the probability measure on F , P.

2For a given plant P such as in (2.1), we denote the plant dynamics also by P, with a slight
abuse of notation.
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interest of brevity, and we only indicate a dependence on the policies that are
consequential to the discussion at hand.

The impact of a nonlinear measurement policy is made clear by contrasting with
the case of linear measurements. So, let us consider the classical setup, comprising
of a linear stochastic plant with linear measurements. The measurements are given
by ȳk = Ckxk + vk, where vk is a zero-mean Gaussian process with covariance
Rv, and the measurement noise vk

0 , the initial state x0, and the process noise
wk

0 are independent. Then, the estimate x̂k|k , E[xk|Ic
k] and the estimation error

x̃k|k , xk − x̂k|k obey

x̂k|k = Ax̂k−1|k−1 +Buk−1 +Kkek ,

x̃k|k = (I −KkCk)(Ax̃k−1|k−1 + wk−1) −Kkvk ,

where the innovations process is defined as ek , ȳk−Ck(Ax̂k−1|k−1 +Buk−1) (Kailath
et al., 2000; Åström, 1970). The filter gain Kk is given by

Kk = (APk−1|k−1A⊤ +Rw)C⊤
k (C(APk−1|k−1A⊤ +Rw)C⊤ +Rv)−1 ,

and the estimation error covariance Pk|k = E[x̃k|k x̃⊤
k|k |Ic

k] is given by

Pk|k = APk−1|k−1A⊤ +Rw −Kk(C(APk−1|k−1A⊤ +Rw)C⊤ +Rv)K⊤
k .

Notice that the estimation error x̃k|k and the innovations process ek do not depend
on the applied controls uk−1

0 and the policies gk−1
0 due to the linearity of the terms

involved.
When the measurement policy is not linear, x̃k|k and ek may depend on the

control signals and policies. In such cases, the estimation error covariance is also
influenced by the control policies. The controller, in such a setup, has an incentive to
alter the statistics of the estimation error at future time instants, and thus improve
the information available to it. This was termed as a probing incentive by Feldbaum
(1961). We now define the dual effect by defining when it is not present.

Definition 2.1. The control signals in the system, comprising of a linear stochastic
plant (2.1) and a measurement strategy consisting of nonlinear policies (2.2), are
said to have no dual effect of second order if and only if the filtering and prediction
errors for any two admissible control strategies (2.3) such as ḡ, g̃, are equal for any
two times k ≥ ℓ, i.e.,

E
P,ḡ,f



(
xk(ω; P , ḡ,f) − E

P,ḡ,f
[
xk(ω; P , ḡ,f)|yℓ

0

]
)2∣∣∣∣∣y

ℓ
0


 =

E
P,g̃,f



(
xk(ω; P , g̃,f) − E

P,g̃,f
[
xk(ω; P , g̃,f)|yℓ

0

]
)2∣∣∣∣∣y

ℓ
0


 . (2.5)
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Notice that the above definition requires the filtrations generated by the system
variables in both control systems to be equal. This definition is stated in a more
rigorous manner in Chapter 7. A similar notion of a neutral system has been implied
by Nayyar et al. (2014). Also, if we set one of the control strategies, say g̃k = 0 for
all k ≥ 0 in the above definition, we obtain the definition given by Bar-Shalom and
Tse (1974). Finally, the dual effect can be present in any moment of the estimation
error, not just the second central moment as described above. However, the second-
order dual effect has an important consequence for optimal control design with
respect to a quadratic cost, which we describe in a later section. We now examine
the optimal control policy for the LQG cost (2.4) to see how the probing incentive
introduces a dual effect.

The optimal control policy in the classical setup is found using dynamic pro-
gramming (Bellman, 1954). This method uses a backwards induction principle, and
solves for the optimal control by minimizing a cost-to-go function at each time
instant. In the absence of complete state information, the minimization of the cost-
to-go is assumed to result in a solution of the form E[x⊤

k Skxk|yk
0 ,u

k−1
0 ] + sk for the

cost-to-go, where Sk and sk are positive semi-definite matrices of the appropriate
dimensions. This assumption is usually proven using induction. We attempt to use
the same method for our problem setup, but find that a similar solution is difficult
to obtain in general.

At time N , the cost-to-go can always be assumed to have the form VN =
E[x⊤

NSNxN |yN
0 ,u

N−1
0 ] + sN , where SN = Q0 and sN = 0, with no loss in gen-

erality. At time N − 1, we have

VN−1 = min
uN−1

E[x⊤
N−1Q1xN−1 + u⊤

N−1Q2uN−1 + VN |yN−1
0 ,uN−2

0 ]

= min
uN−1

E

[
x⊤

N−1(Q1 +A⊤SNA)xN−1 + u⊤
N−1(Q2 +B⊤SNB)uN−1

+x⊤
N−1A

⊤SNBuN−1 + u⊤
N−1B

⊤SNAxN−1|yN−1
0 ,uN−2

0

]

︸ ︷︷ ︸
To be minimized

+ E[w⊤
N−1SNwN−1]

︸ ︷︷ ︸
because wN−1 is independent

.

The last equality is obtained by substituting for xN using the state equation (2.1),
and evaluating terms related to E[wN−1] to zero. The cost-to-go can be written as

VN−1 = E[x⊤
N−1SN−1xN−1|yN−1

0 ,uN−2
0 ] + sN−1

SN−1 = Q1 +A⊤SNA−A⊤SNB(Q2 +B⊤SNB)−1B⊤SNA

sN−1 = tr{SNRw} + tr{A⊤SNB(Q2 + B⊤SNB)−1B⊤SNAPN−1|N−1} ,

where the estimation error covariance is given by

PN−1|N−1 = E[x̃⊤
N−1|N−1 x̃N−1|N−1 |yN−1

0 ,uN−2
0 ] .
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This is similar to the classical setup. However, things become more interesting at
N − 2. Now, we have

VN−2 = min
uN−2

E[x⊤
N−2Q1xN−2 + u⊤

N−2Q2uN−2 + VN−1|yN−2
0 ,uN−3

0 ]

= min
uN−2

E

[
x⊤

N−2(Q1 +A⊤SN−1A)xN−2 + u⊤
N−2(Q2 +B⊤SN−1B)uN−2

+ x⊤
N−2A

⊤SN−1BuN−2 + u⊤
N−2B

⊤SN−1AxN−2

+ tr{A⊤SNB(Q2 +B⊤SNB)−1B⊤SNAPN−1|N−1}|yN−2
0 ,uN−3

0

]

︸ ︷︷ ︸
To be minimized

(2.6)

+ tr{SNRw} + tr{SN−1Rw} + 0 .

Notice that there is one more term to be minimized with respect to uN−2. This is
because the estimation error covariance PN−1|N−1 may depend on the past applied
controls, including uN−2, when a nonlinear measurement policy is used. This mini-
mization problem is in general non-convex due to the additional term, and a closed-
form solution to the cost-to-go of the form E[x⊤

N−2SN−2xN−2|yN−2
0 ,uN−3

0 ] + sN−2

may not be possible to find. This also illustrates the dual roles of the control; the
first role is to minimize the cost-to-go by regulating the state, and the second role
is to improve the estimation error at future time instants.

We return to this proof shortly to examine how controller design becomes sim-
plified when there is no dual effect.

2.1.2 Information Patterns in Problem 2

Dynamic programming was put forward by Bellman (1954) to study optimal se-
quential decisions, particularly in stochastic control. As the tool gained popularity,
there were many who were interested in understanding dynamic programming from
an information perspective. The optimal solutions obtained using dynamic pro-
gramming were a consequence of the information available to the decision makers.
In Problem 1 for example, if the controller ‘forgets’ past measurements, or con-
trol actions, will the optimal policy be different? These were the kind of questions
examined by Chernoff (1963). Striebel (1965) and Witsenhausen (1971) took this
further by examining ‘classical’ information patterns that resulted in the simple and
elegant solutions found in Markov decision processes using dynamic programming.
Non-classical information patterns, in general, introduce non-linearities and simple
solutions found by identifying recursive sufficient statistics may not exist for these
problems, as pointed out by Witsenhausen (1971). Partially nested information pat-
terns, identified by Ho and Chu (1972), constitute the last special class we consider.
This information pattern restores much of the simplicity of results obtained with
classical information patterns for certain non-classical information patterns.
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We now use the formulation of Problem 2 to examine the consequences of having
multiple decision makers and information patterns in the feedback loop. Notice
that in Problem 2, we are required to choose both the control and measurement
policies at each time instant, and the information available to make these choices is
not the same3. We now examine three information patterns and understand their
consequences for control design.

• Classical Information Pattern (Witsenhausen, 1971): An information pattern
is said to be classical if all decision makers receive the same information
pattern independent of the time index k and have perfect recall. This implies
that, for any design, the σ-fields determined in probability space by data
available at successive stages are nested.

• Non-classical Information Pattern (Witsenhausen, 1971): An information pat-
tern is non-classical if it is not strictly classical. Examples include delayed
sharing patterns with delays greater than one and forgetful decision makers,
among many others.

• Partially Nested Information Pattern (Ho, 1980): An information pattern is
said to be partially nested, if each decision maker knows the information
available to all the decision makers whose decisions affect the measurements
available to it.

The last two definitions are better understood by considering the following static
team decision problem.

Example 2.1
Let us consider a static team decision problem with six decision makers. The in-
formation available to the ith agent is denoted zi, and the action associated with
it is denoted ui, for 1 ≤ i ≤ 6. Let ξ represent the random process, say a scalar for
simplicity, that drives this system. The information structure can be inferred from
the following output equations:

z1 = H1ξ

z2 = H2ξ

z3 =



H1

H2

H3


 ξ +




0

0

D31


u1 +




0

0

D32


u2

z4 =

[
H2

H4

]
ξ +

[
0

D42

]
u2

3Problem 1 can also be seen to have multiple decision makers by treating each control policy in
the finite horizon strategy as a decision maker. In fact, each control policy is chosen with different
information sets.



26 Background

1 2

3 4

5 6

Figure 2.1: An information structure diagram for the static team decision problem
in Example 2.1 with a partially nested information structure. This diagram depicts
the dependence relationship between different agents. One agent’s action may affect
another agent’s information, as indicated by the arrow. The same diagram can also
represent a non-classical information pattern if some measurements are not available
to successive agents.

z5 =




H1

H2

H3

H5


 ξ +




0

0

D31

D51


u1 +




0

0

D32

0


u2 +




0

0

0

D53


u3

z6 =



H2

H4

H6


 ξ +




0

D42

D62


u2 +




0

0

D64


u4 .

The information structure in Figure 2.1 captures some of the above interactions.
However, the equations tell us more. For example, the above equations indicate that
agent 3 has access to z3 to generate its action u3. Also, the decisions of agents 1 and
2 affect agent 3. However, through z3, agent 3 also has access to z1 and z2, which
is the information used by agents 1 and 2 in generating u1 and u2, respectively.
Thus, it can anticipate u1 and u2 in a cooperative setup. A similar argument can
be made for agents 4, 5 and 6. Thus, the above information pattern is nested.

Now consider what happens if z5 = H5ξ + D51u1 + D53u3. The information
pattern is now non-classical, as the partial nestedness property no longer holds for
agent 5. Witsenhausen (1968) illustrated, in his celebrated counterexample, that the
optimal decision policies for such problems may be nonlinear even when the system
is linear, and the measurements are a linear function of the state. He surmised that
this was due to a signalling incentive; certain quadratic costs provide agents 1, 2 and
3 an incentive to signal the values of their measurements to agent 5. Furthermore,
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if the last term D53u3 were to be replaced by some nonlinear function f53(u3),
this could provide agents 1 and 2 a probing incentive to improve the information
available to agent 5 about u3. This could help agent 5 interpret u3 and learn the
state ξ better. It is the lack of complete information at agent 5 that induces both
the signalling and probing incentives. We can now understand the advantage of a
partially nested information pattern. With full availability of necessary information,
there are no signalling or probing incentives, and thus, the control policies are often
as simple as those obtained with a classical information pattern.

Note that any control problem can be expressed as a static team decision prob-
lem by aggregating all the primitive random variables into one random vector, such
as ξ = [x0 w0 . . . wN−1 v0 . . . vN−1]⊤. Thus, the above discussion is just as
relevant to dynamical systems, as long as one treats the controller, or any other
decision maker in the feedback loop, at each stage as a unique decision maker.

Now, returning to Problem 2, we see that the measurement policy fk influences
the information at the controller Ic

k through the measurement yk, which is the action
associated with the measurement policy. However, the controller does not have
access to all the information available to the measurement policy, i.e., {Is

k ∪ yk} ⊃
I
c
k. Thus, the resulting information pattern is non-classical. There is a signalling

incentive on the link between the measurement policy and the controller, which is
really the purpose of the measurement policy. The lack of complete information at
the controller induces a probing incentive in the controller at previous stages. This
probing incentive makes Problem 2 difficult to solve, in general.

2.1.3 Certainty Equivalence and Separation

We have now seen a number of problems where the full state is not available at
the controller. In these cases, one can always compute the deterministic optimal
controller, defined as the controller that minimizes the performance cost when it
knows the exact instantiations of all random variables involved in the cost. Let the
deterministic optimal control signal be denoted by ūk. Then, a reasonable approach
might be to use E[ūk|Ic

k] as the control signal, as explained by van de Water and
Willems (1981). The certainty equivalence principle is said to hold when there is
no loss of optimality in doing so. Certainty equivalence was proven to hold for the
classical setup with linear, noisy measurements. A commonly accepted notion of
certainty equivalence is given by Bar-Shalom and Tse (1974), which we present
below.

Definition 2.2 (Certainty Equivalent Controller). A certainty equivalent controller
uses the deterministic optimal controller, with the state xk replaced by the estimate
x̂k|k = E[xk|Ic

k].

Definition 2.3 (Certainty Equivalence Principle). The certainty equivalence prin-
ciple holds if the closed-loop optimal controller has the same form as the certainty
equivalent controller.
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We also state a related property of stochastic control systems, the separation
property. In a design problem with many decision makers, sometimes the optimiza-
tion problem permits a separation in design of each decision policy, with no loss
in optimality. In the context of optimal LQG with partial state information, this
implies a separation in design of the observer and controller. Here, the form of the
optimal controller can be different from that of the deterministic optimal controller.
However, the control signal is still derived using the estimate of the state alone.

Definition 2.4 (Separation Principle). The separation principle holds if the closed-
loop optimal control depends on the data only through the estimate x̂k|k .

Separation was initially suggested by Joseph and Tou (1961) for the classical
LQG setup, in the sense described above. In Chapter 7, we use the more general
notion of separation, implying that each decision maker in the feedback loop can be
designed independently, with no loss of optimality, when the separation principle
holds.

Bar-Shalom and Tse (1974) show that if a static nonlinear measurement policy,
such as hk(xk), results in no dual effect of the second order, then the certainty
equivalence principle holds for the given control system. We restate their result in
the following theorem.

Theorem 2.1 (Bar-Shalom and Tse (1974)). The optimal stochastic control for the
system with linear dynamics (2.1), a static nonlinear measurement policy such as
yk = hk(xk, vk), for some independent Gaussian process vk, and cost (2.4), has the
certainty equivalence property if the control has no dual effect of second order. The
minimizing control policy is then given by uk = −Lkx̂k|k , and the resulting control
cost is given by

J0 = x̂⊤
0 S0x̂0 + tr{S0P0} +

N−1∑

n=0

tr{Sn+1Rw + (L⊤
n (Q2 +B⊤Sn+1B)Ln)Pn|n} ,

(2.7)

where the optimal control gain Lk is given by

Lk = (Q2 +B⊤Sk+1B)−1B⊤Sk+1A , (2.8)

and the solution to the discrete-time Riccati equation Sk is given by

Sk = Q1 +A⊤Sk+1A−A⊤Sk+1B(Q2 +B⊤Sk+1B)−1B⊤Sk+1A ,

sk = tr{Sk+1Rw} + E[sk+1|zk
0 ,u

k−1
0 ]

+ tr{A⊤Sk+1B(Q2 +B⊤Sk+1B)−1B⊤Sk+1APk|k } ,

(2.9)

Proof. We return to the dynamic programming computation in Section 2.1.1. We
now show that a recursive solution to the optimization problem at any time step
can be found when the control signal has no dual effect of order 2. We also derive
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the form of the optimal controller and the resulting control cost, when there is no
dual effect of the controls.

At time N−2, we noted earlier, in (2.6), that the presence of an additional term
containing the estimation error covariance PN−1|N−1 does not permit us to find a
linear control policy that is optimal for the given cost-to-go VN−2. However, if there
is no dual effect of the second order, the estimation error covariance will not be
induced by the past control policies. Consequently, this additional term drops out
of the minimization problem. Then, the cost-to-go can be expressed in the desired
form as VN−2 = E[x⊤

N−2SN−2xN−2|yN−2
0 ,uN−3

0 ] + sN−2. With similar arguments,
this can be shown to be true for any k ≥ 0, using induction. The solution to the
minimization problem at any time k is then given by

uk = −Lkx̂k|k , (2.10)

where the optimal control gain Lk is given in (2.8). Furthermore, the matrix Sk in
(2.9) is positive semi-definite and not a function of the applied controls uk−1

0 . The
scalar sk is not a function of the applied controls uk−1

0 if and only if Pk|k has no
dual effect (Bar-Shalom and Tse, 1974). Since the optimal control signal (2.10) is
a function of only the estimate x̂k|k , the certainty equivalence principle holds.

Using the above equations, we can find an expression for the control cost as
J0 = E[V0] = E[E[x⊤

0 S0x0|z0] + s0]. This can be rewritten as

J0 = x̂⊤
0 S0x̂0 + tr{S0P0} + E[

N−1∑

s=0

tr{Ss+1Rw}]

+ E[
N−1∑

s=0

tr{A⊤Ss+1B(Q2 +B⊤Ss+1B)−1B⊤SS+1APS|s}] ,

where the above equation was obtained by substituting for s0. Using (2.9) and
(2.10) in the above equation, we obtain the expression given in (2.7).

2.2 Channel Access

In this section, we introduce various multiple access techniques drawn from com-
puter networks, and present some protocols used in control networks over the last
few years. When point-to-point channels are not available, broadcast channels must
be used, with techniques to minimize interference from other users who share the
same channel. Access schemes for such broadcast channels are known as Multiple
Access Protocols (Rom and Sidi, 1990). These protocols are implemented in the
Medium Access Control (MAC) layer, which forms a sub-layer to the second layer
of the OSI network model (Tanenbaum, 2002), see Figure 2.2.

Numerous multiple access protocols have been suggested for different applica-
tions until now. These are broadly classifiable as centralized or distributed protocols,
based on the hierarchies built into the protocols. Decentralized protocols, where all
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Figure 2.2: The multiple access protocol is implemented in the MAC layer of the
network stack.

nodes implement the same set of rules, with no centralized coordinator which has
its own set of rules, are the ones that we focus on in this thesis. Protocols are
also classified as contention-based or conflict-free protocols with static or dynamic
allocations. We described these terms in the following subsections.

2.2.1 Contention-free MACs

Contention-free methods assign a schedule for the users, which determines the order
of network access, as illustrated in Figure 2.3. The schedule can only accommodate
a fixed number of nodes commensurate to the capacity of the network. The biggest
advantage of contention-free protocols is that they are conflict-free; they ensure
that a transmission is always successful, when the physical medium does not cause
any losses. This is achieved by allocating the channel to the users in a static or
dynamic manner. The channel resources can be divided among the users in time,
frequency or using codes.

We use Time Division Multiple Access (TDMA) as a typical example of conflict-
free protocols in this thesis. In a network that uses TDMA, time is divided into
slots, which are allotted to different users as per the schedule. When the schedule
is static, this protocol typically results in a fixed delay, which depends on the
size of the network. If the resources required by each user are fixed, then such
a protocol is not scalable (refer to Example 1.2), despite its desirous property
of guaranteeing transmissions. Furthermore, a static schedule is never altered; a
transmission interval remains allotted to a network user, even if the user has no
current need to transmit. This is inefficient, and reduces the number of users the
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Schedule: [S1, S2, . . . ,SN ]

Figure 2.3: The network resources are partitioned and allocated using a schedule,
which determines the order of access, in a contention-free MAC. The allocations can
be static, when the schedule does not vary with time, or dynamic, when it does.

network can support. Thus, static allocations require over-provisioning of resources.
Dynamic resource allocations solve this problem. A new schedule is issued ev-

ery few frames, based on the requirements of the control system. However, the
requirements of all the control systems in the network must be collected to de-
sign a schedule, which must be distributed to all the systems as well. In a wireless
network, information collection and distribution is subject to the vagaries of the
wireless medium, and some data may be lost. Furthermore, these operations con-
stitute a significant overhead in an energy and resource-constrained network. It is
not easy to design cooperative, coordinated, dynamic protocols that are sufficiently
robust to the wireless medium (Akyildiz et al., 1999; Gummalla and Limb, 2000;
Ramaswami and Parhi, 1989; Goldsmith and Wicker, 2002).

2.2.2 Contention-based MACs

In a contention-based protocol, a transmitting user is not always successful, as illus-
trated in Figure 2.4. These protocols typically use a contention resolution mecha-
nism (CRM). The CRM provides a distributed, randomized way to determine access
to the network, in such a manner so as to eventually be successful in transmitting
all the messages. In finite time, however, the CRM is not always successful in trans-
mitting all messages. This is because packets transmitted using a contention-based
protocol sometimes result in a collision. None of the packets involved are trans-
mitted successfully as they interfere with each other. Collisions use up channel
resources, and along with random access, cause significant deterioration in the per-
formance of a control system. The CRM can be static or dynamic, and we look
at this classification in more detail at the end of this section. Despite the obvious
disadvantage of a possible collision, or the lack of a transmission guarantee, these
protocols are popular in practice, as they are easy to deploy in an ad hoc manner.
We look at some examples of these protocols below.
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Figure 2.4: The nodes attempt to access the network resources, and any resulting
contention is resolved using the protocol. The contention resolution can be successful,
resulting in a transmission, or unsuccessful, resulting in a collision.

Aloha: This was the first random access protocol family introduced in net-
working literature (Abramson, 1970). Pure Aloha uses a very simple idea: a node
attempts a transmission as soon as it generates a data packet. If the transmission
is unsuccessful due to a collision with other packets, the data packet is scheduled
for retransmission at a random time in the future, independent of other users. This
protocol fares poorly in a broadcast medium, for the same reasons illustrated in
Example 1.1. A broadcast medium is interference constrained, and simultaneous
transmissions cannot be supported by such media. A modified version of this pro-
tocol, called Slotted Aloha results in a slightly higher throughput.

Aloha protocols exhibit poor performance due to the ‘impolite’ behaviour of
users, who do not wait for an idle channel before commencing transmission. In
contrast, Carrier Sensing Multiple Access (CSMA) protocols sense the channel,
and only transmit when the channel is idle. If the channel is busy, they resort
to different mechanisms for retransmission. Some of these protocols are described
below.

p-persistent CSMA: In this protocol, a user who finds the channel busy waits
and transmits as soon as the channel becomes idle with a persistence probability p.
With probability 1 − p, the user delays transmission by τ seconds. The name of the
protocol derives from the persistence of the node in transmitting once it senses a
busy channel. In Non-persistent CSMA, for example, a user who finds the channel
busy schedules a transmission to a random time in the future. In contrast, in 1-
persistent CSMA, a user who finds the channel busy waits persistently and transmits
as soon as the channel becomes idle. A tradeoff between these two strategies gave
rise to p-persistent CSMA. These protocols were first proposed and analyzed by
Kleinrock et al. (1983). We use this protocol in the thesis as an abstraction of the
more complicated variant described below.

CSMA/CA: CA stands for collision avoidance. In this protocol, a user who
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Figure 2.5: In a Hybrid MAC, the transmission time is divided into frames, and each
frame consists of a contention-free period and a contention-access period.

finds the channel busy uses a more sophisticated retransmission mechanism. A
popular scheme is the exponential backoff mechanism, which is described below. At
each packet transmission instant, a backoff time is uniformly chosen in the range
(0, w − 1), where w is the maximum value of the backoff time, which is called the
contention window. With exponential backoff, the contention window is doubled
with the number of failed transmissions. This allows the user to increase its MAC
delay and waiting time proportional to the perceived traffic load of the network.
Thus, the transmission delay here is very small for low traffic, and scales upwards
as the traffic increases.

2.2.3 Hybrid MAC

The problem with contention-based protocols is the reduction in throughput with
high traffic. So, we now examine some protocols that combine the advantages of
both contention-free and contention-based methods with a hybrid MAC. In these
protocols, the transmission time is divided into frames, which are further divided
into a contention-free period and a contention-access period, as shown in Figure 2.5.
The slots in the contention-free period are reserved for nodes which request for them
using the contention-access period. Nodes may also request a contention-free slot
for multiple frames. A node is also permitted to use only the contention-access
period, if desired.

2.2.4 Protocols

We briefly outline the MAC layer of a few protocols relevant to control systems.

1. CAN Bus: This protocol is used by the smart distributed system, De-
viceNet and CAN Kingdom. CAN is a serial communication protocol, which
offers good performance for time-critical industrial applications (Robert Bosch
GmbH, 1991; Johansson et al., 2005). Messages are allotted different static
priorities, which are used to arbitrate access to the common bus. The arbitra-
tion is implemented using a bit-dominance strategy, which is described below.
A node with a packet to transmit, attempts to secure the transmission slot
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by winning a tournament slot. In the tournament slot, nodes transmit their
priority bits, starting with the most significant bit. Other nodes listen to the
network during their recessive bits, and drop out of contention when they hear
a dominant bit, as it indicates that a node of higher priority desires access
to the channel. The last node remaining secures the transmission slot. This
protocol guarantees that the allotted priorities are observed during contention
resolution, but it is hard to implement this protocol in a wireless network. An
adaptation for wireless networks is discussed in Pereira et al. (2007), and a
modification to the priority allocation is presented in Chapter 6.

2. Token Bus: This protocol is used by process field bus (PROFIBUS), manu-
facturing automation protocol (MAP), ControlNet and fiber distributed data
interface (FDDI). The nodes in a token bus network are arranged logically into
a ring, and each node knows the network address of its predecessor and suc-
cessor in the ring. The node with the token is permitted to transmit until the
end of the data packet, or until it runs out of time, whichever occurs earlier.
Then, the token is forwarded to the next node in the logical ring. This mech-
anism guarantees a maximum waiting time before transmission, and makes
the network deterministic. However, the token is susceptible to the vagaries
of the wireless medium, such as packet losses and hidden terminals, and is
hence not popular in wireless networks.

3. Distributed Coordination Function: This protocol is implemented in the
IEEE 802.11 standard and uses CSMA/CA with exponential backoff. How-
ever, it results in random access, which could significantly deteriorate the
performance of a closed-loop system (Liu and Goldsmith, 2004). It is also
hard to analyze, as shown by Bianchi (2000).

4. Beacon-enabled Hybrid MAC: This name is used to denote the MAC
layer specified by the IEEE 802.15.4 standard (IEEE, 2006) for wireless sensor
networks. It uses Slotted CSMA/CA in the contention-access period, and
TDMA in the contention-free period. The PAN coordinator is responsible for
allocating available slots in the contention-free period, also known as GTS
slots.

5. WirelessHART Hybrid MAC: This is another example of a hybrid MAC,
as specified by the WirelessHART protocol (HART Communication Founda-
tion, 2007). Here, the transmission time is divided into slots, and the MAC
uses TDMA. However, each slot can be allotted to more than one node, and
contention is permitted within the slot using CSMA/CA.

Time scales of the MAC and the control system: A natural unit of time
for the description of the CRM is the time slot. In some protocols such as TDMA
or p-persistent CSMA, the slot length can be equal to the time taken to transmit a
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Figure 2.6: A packet is generated at the start of the time slot. The transmission time
for a packet is equal to the slot time. A data packet is either delivered or discarded
before the expiry instant. The sampling period is much greater than the slot duration,
and the expiry instant occurs before the next sampling instant. Thus, there is no overlap
in system and MAC time scales.

packet. In other protocols, such as CSMA/CA, the slot length is much smaller than
the packet transmission time. In most of this thesis, we use a p-persistent MAC
as an abstraction of the CRM, and accordingly assume that the control network
time slot is equal to the transmission time of a single data packet. At the applica-
tion layer, a more natural unit of time for the description of discrete time control
theory is the sampling time of the physical process. In the rest of this thesis, we
assume that the sampling time is much larger than the slot time, as shown in Fig-
ure 2.6. Furthermore, the entire operation of the channel access protocol, including
all retransmission attempts, must be completed before the expiry instant. Thus, the
data packet is delivered or lost by the expiry instant, which occurs prior to the next
sampling instant. We do not consider an overlap in the time scales of the channel
access protocol and the physical process.

2.2.5 Congestion Control

The multiple access methods presented above work by spreading simultaneous chan-
nel access attempts in different ways. However, as the network traffic increases, these
methods are no longer effective, leading to network congestion. Users see a drastic
reduction in quality of service, which may occur in the form of longer delays in
accessing the network, or more collisions, depending on the access method used.

A congestion control or avoidance algorithm dynamically adapts the traffic con-
tribution of each node to the total network traffic, and can be used to obtain a
guaranteed quality of service. These algorithms typically use an indirect measure
of the traffic in the network, such as the delay or the probability of collision, as an
indicator of congestion. A class of optimal algorithms interpret this measure as the
network price for using the resource, and devise an update rule for the traffic rate
from the node based on the network price. For example, an increase in delay would
require an appropriate reduction in data rates from the node, whereas a reduction
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in delay could allow for an increase in the rate.

2.2.6 Channel Access Architectures

We have presented quite a number of channel access mechanisms in this section.
Now, let us return to the model we presented in Figure 1.4, and see if it can be used
to represent some of these mechanisms. For this purpose, we use the generalized
model in Figure 2.7, as applied to a system with a linear stochastic plant P as
source and a controller C as destination. Note that the channel requests γk are now
generated using the information pattern I

s
k defined in Section 2.1. The information

pattern helps us to identify three channel access architectures for NCSs:

Static Channel Access Mechanisms: Static protocols are random access meth-
ods with a fixed channel access probability. The access probability is independent
of the current data or the past history of transmissions. The channel access policy
f uses the information pattern I

s,S
k = {αk}, where αk is a binary random variable,

independent of the initial state x0 and the process noise wk−1
0 . This information

pattern turns the scheduling policy in this method into a binary random number
generator, such as a coin flip. An example of such a mechanism could be any static
contention-free mechanism, or p-persistent CSMA with no retransmissions.

Dynamic Channel Access Mechanisms: Dynamic protocols are random access
methods with a channel access probability that evolves over time. The access prob-
ability is still independent of the current transmission data, but depends on the
past history of transmission instants. The scheduling criterion f uses the informa-
tion pattern I

s,D
k =

{
γk−1

0 , δk−1
0

}
, where δ denotes the channel access indicator to

the channel access request γ from this plant, as defined in Section 1.3. This infor-
mation pattern induces memory into the scheduling policy. An example of such a
mechanism could be p-persistent CSMA with retransmissions, or CSMA/CA.
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Adaptive Channel Access Mechanisms: Adaptive protocols are random ac-
cess methods with a channel access probability that depends on the current data
packet, and possibly, evolves over time as well. The scheduling criterion f uses the
information pattern I

s,A
k =

{
xk

0 ,y
k−1
0 ,γk−1

0 , δk−1
0 ,uk−1

0

}
, where x denotes the state

of the plant (P) and y denotes the measurement available across the network. This
information pattern results in a state-based channel access mechanism, as discussed
in the problem formulation in Chapter 1. An example of such a mechanism could
be any of the methods presented in the following chapters of this thesis.

Both static and dynamic channel access mechanisms induce no dual effect (see
Definition 2.1), and thus, we can use the results of Bar-Shalom and Tse (1974) to
show that certainty equivalence holds. The optimal control costs can also be eval-
uated (Ramesh, 2011). An analysis of the structural properties of control systems
with adaptive or state-based channel access mechanisms is presented in Chapter 3.

2.3 Networked Control Systems

In this section, we present an overview of research in NCSs. Control systems have
seen rapid changes in the last forty years. Hybrid systems evolved with the intro-
duction of computers and digital technology, and NCSs emerged as the need for
networks in control settings arose. Murray et al. (2003) list NCSs as one of the
future research directions in control, and provide an interesting overview of the
motivations and origins of NCSs.

Control theory was already in use in the design of large industrial manufactur-
ing systems by the early 70s. Such applications required modular, easily scalable,
distributed control systems with integrated diagnostics. Point-to-point wiring was
expensive to install and maintain for such large systems. Thus, these systems had
to use a common-bus architecture, making these the first applications of closed-loop
control through a shared network (Halevi and Ray, 1988a,b). Research on NCSs
began as early as in the 70s, and continued through the late 80s and early 90s. The
focus was then on common bus architectures, and the need for a suitable protocol
to arbitrate access to the shared bus. These protocols introduced a varying delay in
the closed-loop system, which were compared, and suitable protocols were identified
(Ray, 1987; Lian et al., 2001). The effect of delays in a control system was studied
by Nilsson (1998), and the stability of control systems under real-time delays was
analyzed by Zhang et al. (2001). A network quality of service (QoS) was defined
in terms of delay, with modifications to network protocols proposed to guarantee
a certain QoS. Some of these methods included rate adaptations (Hong, 1995) and
the prioritization of real-time traffic over other categories of traffic. Other methods
included the use of deadbands to reduce the communication load in shared networks
(Yook et al., 2002; Otanez et al., 2002).

Wireless networks introduce additional problems such as packet losses and data-
rate constraints. These have been the focus of recent studies in NCSs (Hespanha
et al., 2007). However, the original problems plaguing shared networks remain even
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Figure 2.8: The network protocol is implemented as a stack consisting of some of
the layers depicted above. We relate the problems tackled in NCSs literature to the
layers in the stack. Interference from the physical medium, rate-limitations from the
data channel and congestion from higher layers result in packet losses and delays.

today, as wireless networks are interference constrained. The medium cannot sup-
port simultaneous transmissions, requiring mechanisms that arbitrate channel ac-
cess. Wireless networks make it hard to implement some of the older token-based
or prioritized channel access methods, which were the chosen solutions for control
systems on common bus architectures (Lian et al., 2001). Thus, there is a need
to re-examine some of this work and to identify channel access methods suited to
wireless NCSs.

In the rest of this section, we present a review of relevant work culled from the
long history of NCSs. In our presentation of this work below, we look at the impact
of each layer in a typical protocol stack on NCSs, as shown in Figure 2.8.

2.3.1 Control Design for Lossy Networks

The wireless medium is inherently lossy, and may cause packets to be dropped along
the sensor link or the control link. Network protocols such as TCP have been de-
signed to cope with such failures through the use of a retransmission policy, which
ensures that the packet is eventually delivered to the destination. However, this
property may not be very useful for a closed-loop system, as these systems are
not delay tolerant. In NCSs, a packet that is delivered beyond an acceptable delay
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is treated as a lost packet. The impact of such packet losses on optimal control
and estimation has been well studied by Matveev and Savkin (2003), Smith and
Seiler (2003), Schenato et al. (2007), Gupta et al. (2007), and others. Most of these
studies model packet losses on the sensing and actuation links with Bernoulli pro-
cesses. Some of these studies also consider packet loss distributions with correlations
(Gupta et al., 2007).

These results are quite relevant to channel access methods as well. Many com-
monly used channel access mechanisms can be modelled using a Bernoulli process
or a Markovian process, as shown in Figure 2.7. Then, the appropriate results from
the packet loss literature can be applied to these systems. Another relevant result is
the one on separation. Many of the above authors have established that the separa-
tion principle holds under both i.i.d. and correlated packet drop sequences, as long
as the applied control input is made available to the observer. This is possible with
a network protocol that returns an acknowledgement of a packet delivery. When
such an acknowledgement is not available, the applied control signal is unknown.
Then, the separation principle no longer holds, and the optimal control policy is
hard to find (Schenato et al., 2007). Other results in this area include derivations of
a critical probability of packet loss, below which the estimation error at the observer
does not remain bounded, and also of upper and lower bounds on the achievable
error covariance matrices.

2.3.2 Encoder Design for Limited Data-Rate Channels

A channel has a finite bandwidth, and the bandwidth constraint for wireless chan-
nels is more severe than that for wired channels. Thus, sensing and actuation links
are permitted only limited data rates. Consequently, it is not possible to transmit
a real-valued state or control signal on these links. The real values must be quan-
tized at the source and decoded at the receiver, to reconstruct the original values.
These tasks are performed by an encoder and a decoder, respectively. Many studies
analyzing the design of an optimal encoder and decoder for a closed-loop system
were carried out by Bansal and Başar (1989), Borkar and Mitter (1997), Tatikonda
et al. (2004), Nair et al. (2007) and others.

An important result in this area is that certainty equivalence holds with a state-
based encoder and decoder in the feedback loop. Bao et al. (2011) have commented
on the importance of side information in realizing an architecture where the cer-
tainty equivalence principle holds. This relates to the availability of the applied
control signal at the observer. Other results include designs for the optimal encoder-
decoder pair.

2.3.3 MAC Design for Delayed and Congested Links

A MAC protocol determines the channel access strategy for multiple nodes sharing
the same medium. Both contention-free and contention-based MACs introduce a
delay in the closed-loop system. In addition, the retransmission scheme used by
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a contention-based MAC determines the traffic contributed to the network by the
MAC. A limited retransmission policy could reduce the reliability, or the probability
of a successful transmission. Excessive retransmissions can increase the traffic in
the network, leading to congestion, and consequently, zero throughput from the
MAC (Rom and Sidi, 1990).

Scheduling strategies for real-time computer networks and systems have been
an active area of research since the early 70s (Liu and Layland, 1973; Horn, 1974;
Kay and Lauder, 1988), and some of the accomplishments in this area are well sum-
marized by Buttazzo (2004). However, computer networks or processor scheduling
do not present the same challenges in scheduling as controlling a physical process
over a wireless network. In NCSs, the most important drawback of MACs was con-
sidered to be the time-varying delay they introduced into closed-loop systems. The
impact of delays on a closed-loop system was studied by Nilsson (1998), who con-
sidered different time-varying delays on the sensor and control links. The delays
are assumed to be independent random variables with known probability distribu-
tions. However, with the use of time-stamped data in the network, the delays are
known when the measurement arrives. Nilsson derives the optimal control policy,
and shows that it is a delay-dependent function of the current state and the past
control. He also extends this to correlated delays across links.

Much of the earlier work presents a comparison between various MAC protocols,
and evaluates their suitability to control applications, such as in Lian et al. (2001)
and Ray (1987). Lian et al. (2001) compare CAN, Fieldbus and the DCF of IEEE
802.11, and conclude that CAN is better suited to networks with short and prior-
itized messages, while token bus is better suited to networks with large messages.
However, neither of these can be adapted easily to wireless networks. A significant
effort in this direction has been recently made by Pereira et al. (2007). They imple-
ment a CAN-like protocol for wireless nodes, called WiDOM. Another similar effort
is Blackburst by Gotzhein and Kuhn (2008), which has been adapted to obtain a
CAN-like protocol for wireless nodes. An important difference from CAN is that,
due to the wireless medium, these protocols are not error free. They are prone to
mis-detection of winners, hidden terminals, etc. that can result in collisions and
loss in throughput. These aspects of the wireless medium alter any token bus or
CAN-like protocol and make it randomized, irrespective of the design intent. We
present and analyze a contention-based approach to CAN bus in Chapter 6.

The idea of using the state or measurement of a physical system to determine
channel access has been prevalent for some time now (Walsh et al., 1999; Otanez
et al., 2002; Yook et al., 2002). Walsh and Ye (2001) demonstrated that dynamic
scheduling can result in significant benefits over static scheduling for NCSs. Dead-
bands around the nominal value were used to limit the use of the channel in (Otanez
et al., 2002; Yook et al., 2002). We discuss this work, and extensions to it in Sec-
tion 2.3.4. The deviation in the state from the nominal value was used to determine
a priority in Try-Once-Discard (Walsh et al., 1999). Maximum error first is the pri-
oritization principle used in this protocol, to guarantee input-to-state stability for
deterministic systems with disturbances. The implementation of the original idea
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was centralized, and required a network coordinator to collect and compare errors
from the various physical processes in the network. This contention-free implemen-
tation has been extended to include effects of packet losses by (Tabbara and Nesić,
2008). Recently, a distributed implementation for this protocol has been conceived
and implemented by (Christmann et al., 2014).

A related problem that deals with scheduling algorithms for networked plants
with multiple sensors has seen many contributions over the years (Herring and
Melsa, 1974; Baras and Bensoussan, 1989). These algorithms are often high-level
application-specific algorithms, designed to cooperatively attain the best estimation
or control performance in NCSs (Hall and Llinas, 1997; Savkin et al., 2000). It is
difficult to classify these approaches as a multiple access protocol, as they often do
not specify an implementation. This is especially true for wireless networks. Even
so, many of these ideas are interesting from the point of view of the deterministic
or stochastic policies they consider. Some sensor-scheduling algorithms for Markov
models are considered by Gupta et al. (2006), and more recently by Farokhi and
Johansson (2014) and Farokhi (2014).

The design of a channel access mechanism for wireless NCSs is still an open
problem. Designing a multiple access protocol that provides sufficient reliability for
control systems in the network, while retaining ease of implementation on wireless
systems, is a challenge (Willig, 2008; Åkerberg et al., 2011). An important aspect of
this problem is the ability of the channel access mechanism to adapt to the traffic
in the network, and even reduce data rates when there is congestion. We present
one approach to obtain such a solution in this thesis.

2.3.4 Event-based System Design for Congested Networks

Digital control systems often use the time-triggered paradigm, where a measure-
ment is periodically sent to the controller to generate a control signal. Event-based
systems provide an alternative, wherein only measurements that qualify as ‘events’
are sent to the controller. These systems could result in fewer transmissions (Åström
and Bernhardsson, 1999; Otanez et al., 2002; Yook et al., 2002), which is an im-
portant consideration when multiple closed-loop systems use a shared network to
communicate with their respective controllers. Event-based systems have been in
use for very long, due to their ease of implementation. Accelerometers and gyros
with pulse feedback were event-based. Relay systems with on-off control, satellite
thrusters and sigma-delta modulators are event-based. Event-based control appears
to be used even in biological systems (Wilson, 1999). A detailed overview of early
event-based systems can be found in Åström (2008). However, it is only in recent
years that an interest in the theoretical foundations of event-based systems has
picked up. Early work showed that the same control performance can be achieved
using fewer samples with event-based systems, for a single system (Tomovic and
Bekey, 1966; Åström and Bernhardsson, 1999). Various event-triggering policies
have been proposed and analyzed for different problem formulations, but mainly
for stochastic and deterministic setups. We review some contributions from these
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areas below. A more detailed review of these contributions can be found in Hen-
ningsson (2012) and also in Heemels et al. (2012).

Stochastic Event-based Sampling: Åström and Bernhardsson (2002) have
shown that event-based sampling can be interpreted as Lesbegue sampling, which
may be a useful alternative over periodic or Riemann sampling. An extension of
this work was presented in Rabi (2006), where optimal event-triggering rules were
shown to be derived by solving optimal stopping time problems. Furthermore, the
joint choice of stopping times and control signals were derived mainly for first-order
systems. This line of work has been pursued by Meng and Chen (2012) for second-
order systems, and by Rabi et al. (2012) for a Markov state process with hard
communication constraints.

An optimal method for reducing the communication load for remote estimation
was presented in Xu and Hespanha (2004a). A smart sensor chooses when to trans-
mit information to a remote observer, so as to minimize a long term average cost
consisting of a weighted estimation error term and a communication penalty term.
They show that the optimal communication policy is deterministic and stationary.
The same authors also show that threshold rules perform quite well, compared to
other sampling rules, in Xu and Hespanha (2004b). Interestingly, many of the op-
timal sampling rules in Rabi (2006) detect a level crossing in the plant state or
output. These are the kind of policies considered in this thesis as well.

Henningsson et al. (2008) consider two sporadic event-triggering rules that im-
plement a minimum inter-sampling constraint to facilitate implementability. They
compare the performances obtained with periodic systems, and conclude that event-
based systems can result in better control performance and reduced communication
costs. Henningsson (2011) uses path constraints to model a mixed continuous and
discrete time stochastic system. By converting these to constraints on the moments
of the trajectory, the author derives upper and lower bounds on the control costs
for a system that meets these constraints. Molin and Hirche (2009) deal with the
optimal closed-loop design for event-based systems, which involves a joint selection
of the event-triggering policy and control law. This is related to the work presented
in Chapter 7. These authors present similar results in (Molin and Hirche, 2010,
2013). Lipsa and Martins (2011) use majorization to show that a symmetric event-
triggering policy is optimal for remote estimation with first-order systems. Their
work rests on the characterization of jointly optimal paging and registration poli-
cies by Hajek (2002) and Hajek et al. (2008). Xia et al. (2013) have used a Markov
model to analyze an event-triggering policy based on the estimation error.

Deterministic Event-based Sampling: Tabuada (2007) used the input-to-
state stability framework to identify an event-based sampling rule for nonlinear
continuous time systems. A relative error criterion determines the event-triggering
instants in this approach. An extension to output-based triggering was presented by
Donkers and Heemels (2010, 2012). Wang and Lemmon (2008) use an exponentially
decaying reference to bound a Lyapunov function, and thereby determine event-
triggered sampling instants. Yu and Antsaklis (2011) present a dynamic output-
based event triggering rule for passive systems. To facilitate easy scheduling of



2.3. Networked Control Systems 43

event-triggered samples, a self-triggered approach has been proposed by Lemmon
et al. (2007) and Anta and Tabuada (2010). In this approach, the control signal
for the current time instant as well as the next sampling instant are identified in
such a manner so as to guarantee stability. A model predictive control approach to
this problem is presented by Henriksson et al. (2012), where the authors codesign
the controller and the time interval to the next sample. They also present stability
conditions and an off-line version of their optimal controller in the form of a look-up
table.

Network of Event-based Systems: Although event-based systems were
proposed to reduce congestion, most of the early work in this area dealt with a
single plant. It is only in recent years that networks of event-based systems have
been analyzed. Much of the work focussing on the design of event-based systems for
a shared network does not explicitly deal with the problem of multiple access (Wang
and Lemmon, 2011; Molin and Hirche, 2012). Others use protocols such as the CAN
bus for wired networks (Anta and Tabuada, 2009), or dynamic real-time scheduling
for multiple tasks on a single processor (Tabuada, 2007). These protocols are not
well-suited to wireless networks, as we have discussed earlier (Akyildiz et al., 1999;
Gummalla and Limb, 2000).

There had been a growing interest in analyzing a network of event-based sys-
tems with random access. This is not easy to accomplish as the multiple access
channel introduces correlations between different streams of data packets (Cervin
and Henningsson, 2008; Rabi and Johansson, 2009a). Some of the earlier work in
this area includes an empirical analysis of event-based systems with CSMA/CA
by Cervin and Henningsson (2008), which highlights the difficulties in analyzing
such a network. The analysis by Rabi and Johansson (2009a) assumes independent
packet losses in a network that uses Aloha. An extension of this analysis to certain
CSMA-type protocols with contention-windows was provided by Rabi et al. (2010).
A simple steady state model was presented by Henningsson and Cervin (2010), but
with an idealized multiple access protocol that results in no collisions. More re-
cently, event-based systems which use Aloha and Slotted Aloha have been analyzed
by Blind and Allgöwer (2011a,b), but with an event-triggering policy that is not
adapted to the network.

Many recent papers explicitly include a multiple access protocol in their analysis
of event-based systems. An interesting work in this direction, by Weimer et al.
(2012), also considers a policy to select the transmit and receive options of the
radio transceiver in sensor nodes, in the context of networked estimation. A related
approach to control radio modes using an event-triggering policy is presented by
Cardoso de Castro et al. (2012a,b). Araujo et al. (2014) consider the codesign
of a dynamic scheduling policy for the allocation of the contention-free slots in
the IEEE 802.15.4 MAC, along with the event-triggering policy for a network of
deterministic nonlinear systems.
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2.4 Summary

In this chapter, we have reviewed some aspects of stochastic control theory and
multiple access protocols that we use in the rest of this thesis. The problem formu-
lation we used to explore stochastic control in Section 2.1 recurs in Chapters 3 and 7,
along with the non-classical information pattern. We use the method of dynamic
programming highlighted in this chapter, along with the concepts of dual effect,
certainty equivalence and separation, in these later chapters. We will also use, and
compare with, some of the multiple access protocols presented in this chapter, par-
ticularly p-persistent CSMA. We have also presented a review of related work in
NCSs.

In this thesis, our aim is to design a channel access policy for a network of control
systems that provides a control-specific guarantee. In doing so, we also examine the
design of the control policy and the observer, when needed, in the feedback loop.
Alongside, we model the interference from other network users, and explore the
design of channel access policies that adapt to the traffic in the network.



Chapter 3

Structural Analysis

In the next three chapters, we present analysis and design methods for a network of
event-based systems. Event-based sampling is an alternative to periodic sampling,
where the state of the plant determines the next sampling instant. The resulting
samples are often aperiodic. We look at event-based sampling from a network per-
spective, as a means to reduce transmissions within a network. Within this context,
an event-triggering policy is a state-based channel access mechanism, comprising
of a state-based scheduler and a contention resolution mechanism (CRM). As op-
posed to agnostic channel access methods, the state-based scheduler is capable of
influencing the randomness of channel access in favour of the state of the plant in
the control system. It accomplishes this by using the state to select packets to send
to the CRM. Consequently, each plant sends fewer, but more important packets to
the CRM for transmission across the network. This results in benefits for the entire
network as well, due to the reduction in network traffic.

With the reduced traffic, the CRM is more likely to be able to successfully han-
dle all the transmission requests, within the maximum number of retransmissions
permitted by the protocol. Thus, the state-based scheduler takes on the role of reg-
ulating data flow from the source, while limiting the CRM’s role to that of resolving
contention between simultaneous channel access requests, by spreading traffic that
arrives in bursts. This implies that the state has a bearing in deciding when to dis-
card a packet. Furthermore, random decisions in the CRM do not impact channel
access itself, only intersample delay.

By introducing a state-based channel access mechanism on the sensing link,
we have introduced a nonlinear measurement with a dynamic measurement policy
that depends on the state. This may result in many unexpected properties for a
stochastic control system, such as those outlined in Chapter 2. Thus, we begin our
analysis by examining the impact of a state-based scheduler on the control system.
In this chapter, we seek to find structural properties that facilitate a simple and
modular design for a control system in this network.

45
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3.1 Contributions and Related Work

There are two main contributions in this chapter. The first contribution is an anal-
ysis of the impact of having a state-based scheduler in the closed-loop. Primarily, a
state-based scheduler permits the information available at the controller to be al-
tered with the plant state. This information is not entirely random, like in the case
of packet losses due to a noisy channel (Schenato et al., 2007; Gupta et al., 2007),
and it can result in a sharply asymmetrical estimation error, unlike in the case of
encoder design over limited data rate channels (Tatikonda et al., 2004; Nair et al.,
2007). It seems reasonable to ask if we can use the controller to move the plant
state across the threshold and force a transmission. If this is possible, the controller
plays two roles: the first one being to control the plant, and the second one being
to control the information available at the next time step. This relates to the clas-
sical concept of a dual effect, as described by Feldbaum (1961) and expounded by
Åström and Wittenmark (1995). The answer to this question determines the ease
of optimal controller design, as the certainty equivalence principle might not hold
if there is a dual effect (Bar-Shalom and Tse, 1974). We examine our system and
find that there is a dual effect with a state-based scheduler in the closed-loop, and
the certainty equivalence principle does not hold. Hence, the optimal state-based
scheduler, estimator and controller designs are coupled. A restriction on the input
arguments to the state-based scheduler, such that these arguments are no longer
a function of the past control actions, renders the setup free of a dual effect, and
enables the certainty equivalence principle to hold. These results can be seen as
an interpretation, within the state-based scheduler setup, of the classical work on
information patterns (Ho, 1980), dual effect, certainty equivalence and separation
by Witsenhausen (1971) and Bar-Shalom and Tse (1974), and on adaptive control
by Feldbaum (1961), Åström and Wittenmark (1995) and many others (Filatov
and Unbehauen, 2000).

The second contribution of this chapter is on the dual predictor architecture,
which is our proposed solution to the state-based scheduler design problem. In this
architecture, the state-based scheduler thresholds the squared difference of the in-
novation contained in the latest measurement to the estimator across the network.
This results in an optimal certainty equivalent controller, and a simple observer
which generates the minimum mean-squared error (MMSE) estimate. Tuning pa-
rameters in the state-based scheduler in this architecture based on the current
network traffic can result in a scheduling law that guarantees a probabilistic perfor-
mance. This is not easy to show, in general, as the performance analysis of a closed-
loop system with a state-based scheduler in a multiple access network is a difficult
problem (Cervin and Henningsson, 2008; Rabi and Johansson, 2009a). However,
we illustrate the guaranteed performance using simulations, and thus claim that
the state-based scheduler we propose results in a network-aware event-triggering
mechanism.

A similar strategy for the selective transmission of important packets has previ-
ously been proposed from the more general perspective of reducing network traffic
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(Otanez et al., 2002). This approach has driven the design of event-based sampling
systems (Rabi, 2006; Tabuada, 2007), which have been shown to outperform period-
ically sampled systems under certain conditions (Åström and Bernhardsson, 2002;
Cervin and Henningsson, 2008; Rabi and Johansson, 2009a). More recently, such
systems have been analyzed for estimation over networks (Lipsa and Martins, 2011;
Battistelli et al., 2012), but the extensions to the control setting remain incomplete.
We approach the networked control system (NCS) problem from a different per-
spective, but one that leads to a network-aware design of event triggering methods.
By this, we mean that the event triggering function will be chosen to achieve a
certain control performance with the current network traffic, and also, by taking
into account the impact it will have on the resulting network traffic.

The rest of the chapter is organized as follows. In Section 3.2, we present the
problem formulation. In Section 3.3, we derive theoretical results for the case when
full state information is available, with and without exogenous network traffic. In
Section 3.4, we present the dual predictor architecture. We look at an extension to
output-based systems in Section 3.5. We present a counterexample to validate our
results on the dual effect, along with other examples that illustrates our notion of
network-aware event-triggering, in Section 3.6.

3.2 Preliminaries

Consider a network of control systems, where the communication between the in-
dividual sensors and controllers of different control loops occurs through a shared
network, as shown in Figure 3.1. We present a problem setup for this network, along
with a few important definitions, in this section.

3.2.1 Problem Formulation

We consider a network of M control loops, as shown in Figure 3.2(a). Each control
loop, for j ∈ {1, . . . ,M}, consists of a plant Pj , a state-based scheduler Sj and
a controller Cj. The loops share access to a common medium on the sensor link.
A closed-loop system in this network can be modelled as shown in Figure 3.2(b),
with the index j dropped for simplicity. The block N represents the network as
seen by this loop, and the block R denotes the Contention Resolution Mechanism
(CRM), which determines access to the network. Each of the blocks in Figure 3.2(b)
is explained below.
Plant: The plant P has state dynamics given by

xk+1 = Axk +Buk + wk, (3.1)

where A ∈ R
n×n, B ∈ R

n×m and wk is i.i.d. zero-mean Gaussian with covariance
matrix Rw. The initial state x0 is zero-mean Gaussian with covariance matrix R0.
State-Based Scheduler: There is a local scheduler S, situated in the sensor
node, between the plant and the controller, which decides if the state is to be sent
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Figure 3.1: A network of M control loops, with each loop consisting of a plant Pj and
a controller Cj for j ∈ {1, . . . ,M}. The loops share access to a common medium on the
sensor link, along with K other communication flows from generic source-destination
pairs. The controllers and actuators communicate over dedicated networks, not shared
links.
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Figure 3.2: A plant (P1), state-based scheduler (S1) and controller (C1) share the
network (N ) with M−1 other closed-loop systems with state-based schedulers (Sj , j ∈
{2, . . . ,M}), and K generic devices (Di, i ∈ {1, . . . ,K}), in (a). A model, from the
perspective of a single closed-loop system in the network, is depicted in (b).
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across the network or not. The scheduler output is denoted γk, where γk ∈ {0, 1}.
It takes a value 1 when the state xk is scheduled to be sent and 0 otherwise. The
scheduling criterion is denoted by the policy f , which is defined on the information
pattern of the scheduler I

s
k, and is given by

γk = fk(uk−1
0 , ωs

k) , (3.2)

where fk is not a constant function of uk−1
0 , i.e., ∃ u1,u2 such that f(u1, ·) 6=

f(u2, ·). The scheduling policy fk is also a function of ωs
k ∈ Ωs

k, and Ωs
k is the

σ-algebra generated by the information set at the scheduler, given by I
s
k = {xk

0 ,
yk−1

0 ,γk−1
0 , δk−1

0 }. Here, we use bold font to denote a sequence of variables such
as aT

t = {at, at+1, . . . , aT }. Note that an explicit acknowledgement (ACK) of a
successful transmission is required for δk to be available to the scheduler. The
scheduler output γk is now a function of the state, as suggested by the epithet
‘state-based scheduler’.
Network: The network N generates exogenous traffic, as is indicated by nk ∈
{0, 1}. It takes a value 1 when the network traffic attempts to access the channel,
and 0 otherwise. The network traffic is considered to be stochastic, as it could be
generated by another control loop, or by any other communicating node in the
network. Thus, nk is a binary random variable, which is not required to be i.i.d.
We say that there is no exogenous network traffic if nk ≡ 0, for all k.
CRM: The CRM block R resolves contention between multiple simultaneous
channel access requests, i.e., when γk = 1 and nk = 1. If the CRM resolves the
contention in favour of our control loop, δk = 1, and otherwise 0. The CRM can
be modelled as the medium access control (MAC) channel response R, with MAC
output δk given by

δk = R(γk, nk) . (3.3)

For brevity, we also define δ̄k = 1 − δk, which takes a value 1 when the packet is
not transmitted. The MAC channel response R is modelled as a discrete memory-
less channel at the sampling time scale, requiring the CRM to resolve contention
with respect to this packet before the next sampling instant. This translates to a
limitation on the sampling rates supported by the model.
Measurement: The measurement across the network is denoted yk. It is a non-
linear function of the state xk, and is given by

yk = δkxk =

{
xk δk = 1 ,

∅ δk = 0 ,
(3.4)

where ∅ indicates an erasure. A successful transmission results in the full state being
sent to the controller. However, even non-transmissions convey information as the
scheduler output δk can be treated as a noisy and coarsely quantized measurement
of the state xk.
Controller: The control law g denotes an admissible policy for the finite horizon
N defined on the information pattern of the controller, Ic

k, and is given by

uk = gk(ωc
k) , (3.5)
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where, ωc
k ∈ Ωc

k, and Ωc
k is the σ-algebra generated by the information pattern

I
c
k =

{
yk

0 , δk
0 ,u

k−1
0

}
. The objective function, defined over a horizon N is given by

J(f, g) = E

[
x⊤

NQ0xN +
N−1∑

s=0

(x⊤
s Q1xs + u⊤

s Q2us)

]
, (3.6)

where Q0 and Q1 are positive semi-definite weighting matrices and Q2 is positive
definite.
In the rest of the chapter, we address the following questions:

1. For a NCS with a state-based scheduler, what is the optimal control policy
which minimizes the cost J in (3.6)?

2. Can we find a simple, but sub-optimal, closed-loop system architecture for
the given NCS?

To answer the first question, we need to examine whether the system exhibits a
dual effect. This also requires us to check if we can find an equivalent system,
in the sense of Witsenhausen, for which certainty equivalence holds. The second
question requires us to identify restrictions on the scheduling policy f , which can
ensure separation of the scheduler, controller and observer.

3.2.2 Definitions and Properties

We present a few definitions and properties that are used in the rest of the chapter.

Definition 3.1 (Uncontrolled Process). An auxiliary uncontrolled process (P̄) can
be defined for any closed-loop system, by removing the effect of the applied control
signals from the state. The resulting uncontrolled state is denoted x̄k, and given by

x̄k = Akx0 +
k∑

ℓ=1

Aℓ−1wk−ℓ . (3.7)

Last Received Packet Index: The time index of the last received packet is de-
noted τk at time k (illustrated in Figure 3.3), and for −1 ≤ τk ≤ k, it is given
by

τk = max{t : δt = 1, for − 1 ≤ t ≤ k , δ−1 = 1} . (3.8)

An iterative relationship for τk can be found as

τk = δ̄kτk−1 + δkk, τ−1 = −1 . (3.9)

If a packet arrives at current time k, the last received packet index τk = k. But,
if there is no packet at time k, then the last received packet index is the same as
the last received packet index from time k − 1, i.e., τk = τk−1. This implies that
τk ∈ {−1, . . . , k}.
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Figure 3.3: An illustration of the delay since the last received packet (dk) and the
index of the last received packet (τk).

Dual Effect and Certainty Equivalence: The dual effect and certainty equiv-
alence properties were defined in Chapter 2, in Definitions 2.1 and 2.3, respectively.
We reuse those definitions in this chapter.

Correlated Network Noise: We state a property of feedback systems with state-
based schedulers that share a contention-based multiple access network. Even if the
initial states and disturbances of all the plants in the network are independent, the
contention-based MAC introduces a correlation between the traffic sources, as noted
in Cervin and Henningsson (2008) and Rabi and Johansson (2009a).

Lemma 3.1. For a closed-loop system defined by (3.1)–(3.5), the exogenous net-
work traffic indicated by nk is correlated to the state of the plant xk.

Proof. The MAC output δk−1 is a function of the state xk−1 and the indicator of
network traffic nk−1, from (3.2) and (3.3). The control signal uk−1 is a function
of the MAC output δk−1 from (3.5), and is applied through feedback to the plant.
Thus, xk and γk are correlated to δk−1. Similarly, the network traffic from other
closed-loop systems (and its indicator nk) is correlated to δk−1, and consequently,
xk.

3.3 Optimal Controller Design

We present the main results of this chapter in this section. We first analyze the
effects of a state-based scheduler on a control loop with no exogenous network
traffic, i.e., nk ≡ 0. As a consequence of this, the MAC output is equal to the
scheduler output, i.e., δk = γk. We show that there is a dual effect of the control
signal, and that the scheduling policy must be restricted from using the past control
inputs for the certainty equivalence principle to hold. We illustrate this for a second-
order system with a state-based scheduler in Figure 3.4, and show that the controller
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is not oblivious to the scheduler boundaries. We extend our results to the case with
exogenous network traffic.

3.3.1 Dual Effect with State-based Scheduling

We observe that the estimation error is a function of the applied controls, and
that it does not satisfy the condition for no dual effect in (2.5). Thus, we have the
following result.

Theorem 3.2. For the closed-loop system defined by (3.1)–(3.5), with no exogenous
network traffic, i.e., nk ≡ 0, the control signal has a dual effect of order r = 2.

Proof. We examine the estimation error, and show that it is not equivalent to the
estimation error generated by the uncontrolled process P̄ (from Definition 3.1) in
place of P . Thus, we prove that the estimation error covariance is a function of the
applied controls uk−1

0 .
From (3.4), we know that a successful transmission results in the full state

being sent to the controller, whereas a non-transmission conveys only a single bit
of information (δk is binary) about the state to the controller. Thus, the estimate,
x̂k|k , E[xk|Ic

k], is given by

x̂k|k = δkxk + δ̄k E[xk|Ic
k, δk = 0] .

The variable δk cannot be removed from the above expression due to the asymmetry
in the resolution of the received information with and without a transmission. The
scheduler outcome, and consequently δk, are influenced by the applied control inputs
uk−1

0 in a state-based scheduler such as (3.2). The estimation error, defined as
x̃k|k , xk − E[xk|Ic

k], is given by

x̃k|k = (xk − E[xk|Ic
k, δk = 0]) · δ̄k , (3.10)

and thus depends on δk. The estimation error when there is no transmission is
defined as x̃0

k|k , xk − E[xk|Ic
k, δk = 0], and is given by

x̃0
k|k = Akx0 +

k∑

ℓ=1

Aℓ−1(Buk−ℓ + wk−ℓ)

− E[Akx0 +
k∑

ℓ=1

Aℓ−1(Buk−ℓ + wk−ℓ)|Ic
k, δk = 0]

= x̄k − E[x̄k|Ic
k, δk = 0] ,

where x̄k is the state of the uncontrolled process (see Definition 3.1). As shown
above, the additive terms containing the past applied controls can indeed be re-
moved with knowledge of the applied controls at the estimator. However, δk and δ̄k,
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Figure 3.4: For states x ∈ R
2, we define a state-based scheduling policy f that gen-

erates an event when the state lies outside the shaded region. The resulting estimation
error within the shaded region is non-zero, whereas it is zero outside this region. The
dual role of the controller, shown in Theorem 3.2, arises from the incentive to move
some states along path 2 (and remain outside of the shaded region), as compared to
path 1 (this only reduces the variance of the state).

the second factor of the product in (3.10), remain a function of the applied controls,
and cannot be generated by the uncontrolled process alone.

Thus, the estimation error is always dependent on the applied controls and this
distinguishes the current problem from other problems, such as the classical LQG
setup. The error covariance, Pk|k , E[x̃k|k x̃⊤

k|k |Ic
k], is given by

Pk|k = δ̄k · (E[x̃k|k x̃⊤
k|k |Ic

k, δk = 0]) . (3.11)

The covariance Pk|k is zero if the scheduling criterion in (3.2) is fulfilled, and non-
zero otherwise. Through δk, Pk|k is a function of the past controls. Hence, Pk|k does
not satisfy the condition (2.5) required to have no dual effect. Thus, the system
(3.1)–(3.5) exhibits a dual effect of order r = 2.

In this setup, there is an incentive for the control policy to modify the estima-
tion error along with controlling the plant, as illustrated in Figure 3.4. Thus, the
controller might choose to keep the state out of the shaded region to improve the
estimation error for future time steps, even if this results in an increased variance
of the state.

3.3.2 Witsenhausen Equivalence

Suppose that every state-based scheduler f , from (3.2), can be transformed into an
innovations-based scheduler f̃ , such as

γk = f̃k(ω̃s
k) , (3.12)

where, ω̃s
k ∈ Ω̃s

k, Ω̃s
k is the σ-algebra generated by the information pattern Ĩ

S

k =
{x0,w

k−1
0 }, and the policy f̃k is defined in advance, and can be realized without

any knowledge of the control policies used in the system. The output of such a
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scheduler is only a function of the innovations, and not a function of the applied
controls uk−1

0 . This distinguishes an innovations-based scheduler from a state-based
scheduler (3.2). The innovations-based scheduler does not result in a dual effect of
the control signal, as we show below. Even so, we cannot replace a state-based
scheduler (3.2) in a closed-loop system with an innovations-based scheduler (3.12),
unless it results in an equivalent control design. We now examine the question of
equivalent designs, following Witsenhausen (1971).

Definition 3.2. An equivalent design, in the sense of Witsenhausen, geq for the
optimal controller g∗, which minimizes the cost criterion (3.6) for the system defined
by (3.1)–(3.5), satisfies the equivalence relation given by

u∗ = Υ(ω, g∗) = Υ(ω, geq) , (3.13)

where Υ is obtained by recursive substitution for the control signals in the system
equations with the respective control policy and the primitive random variables ωk =
[x0,w

k−1
0 ].

For brevity, we adopt the following notation. Let {P , f1, g1} denote a system
with a plant P given by (3.1), with f1 as the given scheduler and g1 as the optimal
controller for the cost in (3.6). We now note the following result.

Theorem 3.3. Let there be no exogenous network traffic, i.e., nk ≡ 0. For any
state-based scheduler f and innovations-based scheduler f̃ that result in the same
schedules, the corresponding optimal designs, g∗ and g̃, respectively, are not equiv-
alent in the sense of Witsenhausen.

Proof. Definition 3.2 requires the control signals obtained using the policies g∗ and
g̃ to be equal. In this proof, we find the optimal control policies for g̃ and g∗ , and
show that they do not result in the same control signals.

For the optimal control policy, which minimizes the quadratic cost J in (3.6), to
be certainty equivalent, we need to find a solution to the Bellman equation (Åström,
1970), which is a one-step minimization of the form

Vk = min
uk

E[x⊤
k Q1xk + u⊤

k Q2uk + Vk+1|Ic
k] . (3.14)

In general, without defining a structure for the estimator, the solution to the func-
tional is given in the form of

Vk = E
[
x⊤

k Skxk|Ic
k

]
+ sk , (3.15)

where Sk is a positive semi-definite matrix and both Sk and sk are not functions
of the applied control signals uk−1

0 , see Bar-Shalom and Tse (1974). We now prove
that a solution of this form can be found for {P , f̃ , g̃}, but not for {P , f, g∗}.

First consider the system {P , f̃ , g̃}. We denote the state and control signals of
this system as x̃k and ũk. At time N , the functional has a trivial solution with
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SN = Q0 and sN = 0. This solution can be propagated backwards, in the absence
of a dual effect. To show this, we use the principle of induction, and assume that a
solution of the form (3.15) holds at time k + 1. Then, at time k, we have

Vk = min
uk

E[x̃⊤
k Q1x̃k + ũ⊤

k Q2ũk + x̃⊤
k+1Sk+1x̃k+1 + sk+1|Ic

k]

= min
uk

E[x̃⊤
k (Q1 +A⊤Sk+1A)x̃k|Ic

k] + tr{Sk+1Rw} + E[sk+1|Ic
k]

+ ũ⊤
k (Q2 +B⊤Sk+1B)ũk + ˆ̃x⊤

k|kA
⊤Sk+1Bũk + ũ⊤

k B
⊤Sk+1Aˆ̃xk|k ,

where ˆ̃xk|k , E[x̃k|Ic
k]. The optimal control is found to be

ũk = −Lk ˆ̃xk|k , Lk = (Q2 +B⊤Sk+1B)−1B⊤Sk+1A . (3.16)

Substituting the expression for ũk into Vk gives us a solution of the form in (3.15),
with

Sk = Q1 +A⊤Sk+1A−A⊤Sk+1B(Q2 +B⊤Sk+1B)−1B⊤Sk+1A ,

sk = E[sk+1|Ic
k] + tr{Sk+1Rw} + tr{A⊤Sk+1B(Q2 +B⊤Sk+1B)−1B⊤Sk+1APk|k } ,

(3.17)

where the matrix Sk is positive semi-definite and not a function of the applied
controls ũk−1

0 . The scalar sk is not a function of the applied controls ũk−1
0 if and

only if Pk|k has no dual effect (Bar-Shalom and Tse, 1974). From the expression for
the error covariance Pk|k (3.11), it is clear that a scheduling criterion that is not a
function of the past control actions, such as (3.12), results in no dual effect. Under
this condition, sk is not a function of the applied controls ũk−1

0 and the proof by
induction is complete. Since the optimal control signal (3.16) is a function of only
the estimate ˆ̃xk|k , the certainty equivalence principle holds.

Now, consider the system {P , f, g∗} with state xk and control u∗
k. Solving the

backward recursion as we did above, we find that VN and VN−1 have a solution of
the form (3.15), with SN = Q0 and sN = 0, and SN−1 and sN−1 given by (3.17)
with k = N − 1. However, VN−2 results in a different minimization problem for
this system because of the dual effect in {P , f, g∗}, as indicated next. The optimal
control signal u∗

N−2 can be obtained by solving

∂VN−2

∂u∗

N−2

=
∂

∂u∗

N−2

(
tr{(Q2 +B⊤SNB)KN−2 · E[PN−1|N−1 |Ic

N−2]}
)

+ 2(u∗

N−2)⊤(Q2 +B⊤SN−1B) + 2x̂⊤
N−2|N−2A

⊤SN−1B = 0 ,

where we set KN−2 = (Q2 +B⊤SN−1B)−1A⊤SNB(Q2 +B⊤SNB)−1B⊤SNA. Mul-
tiplying the above expression with (Q2 + B⊤SN−1B)−1 from the right and using
(3.16) to denote uCE

N−2 = −LN−2x̂N−2|N−2, we obtain the simpler equation

∂

∂u∗

N−2

(
tr{KN−2 E[PN−1|N−1 |Ic

N−2]}
)

+ 2((u∗

N−2)⊤ − (uCE
N−2)⊤) = 0 , (3.18)
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The first term in (3.18), related to the estimation error covariance PN−1|N−1, is not
equal to zero as implied by the dual effect property from Theorem 3.2. Due to this
term, the above minimization problem is not linear, and thus, the solutions uCE

N−2

and u∗
N−2 are not equal. Since uCE

N−2 has the same form as ũN−2, we also note that
ũN−2 and u∗

N−2 have very different forms. From this point on, the cost-to-go for
the optimal control policy g∗ does not have a solution of the form given by (3.15).
Hence, the control signals {ũ}N−3

0 and {u∗}N−3
0 will not be equal. Now, the joint

distribution of all system variables could be quite different for schedulers f̃ and f .
Thus, the described transformation of the scheduling criterion does not result in an
equivalent design.

The above theorem provides us a motivation for using a state-based scheduler,
despite the inherent difficulties associated with the closed-loop design. Due to the
dual effect, the optimal control action takes on two roles. One, to control the plant,
and the other, to probe the plant state which could result in an improved estimate
(Åström and Wittenmark, 1995). The innovations-based scheduler results in a sim-
pler closed-loop design, as shown in (3.16)–(3.17). However, a probing action cannot
be implemented in any controller in this setup due to the lack of a dual effect. Thus,
the resulting control actions for the closed-loop systems with the state-based and
innovations-based schedulers are not the same.

3.3.3 Conditions for Certainty Equivalence

From the previous discussions, it is clear that a scheduling criterion independent of
the past control actions, such as the innovations-based scheduler, results in no dual
effect. This result is presented below.

Corollary 3.4. For the closed-loop system defined by (3.1)–(3.5), with no exoge-
nous network traffic, i.e., nk ≡ 0, the optimal controller, with respect to the cost
in (3.6), is certainty equivalent if and only if the scheduling decisions are not a
function of the applied control actions, such as in (3.12).

Proof. In the proof of Theorem 3.3, it is clear from (3.16) that the optimal control
policy g̃ for the system {P , f̃ , g̃} is certainty equivalent.

To show the necessity of this condition for certainty equivalence, we need to
show that if the optimal control signal has the form in (3.16) at time k, then
the scheduling policy is not a function of the controls for n < k, for all k. Ac-
cordingly, assume that the optimal control signal is given by (3.16) for k = N −
1, . . . , n+ 1. Then, the optimal cost-to-go is of the form in (3.15), at time n+ 1 and
sn+1 =

∑N−1
k=n+1 E[tr{A⊤Sk+1B(Q2 + B⊤Sk+1B)−1B⊤Sk+1APk|k + Sk+1Rw}|Ic

k],
when written out explicitly. We know that the optimal control signal un is obtained
by minimizing (3.14) at time n. This control signal will have the form in (3.16) for
all Q2 > 0 only if sn+1 is independent of un, or if the estimation error covariances
Pk|k , for k = {n+ 1, . . . , N − 1}, are not a function of un. From the result in The-
orem 3.2, this is only possible when the scheduling policy is not a function of un.
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Since this is true for n = 0, . . . , N − 1, the scheduling policy must not be a function
of uk−1

0 .

Corollary 3.4 provides us with a restriction on the scheduler to ensure certainty
equivalence. Note that the resulting design is not equivalent to the optimal design,
as shown in Theorem 3.3.

3.3.4 Effect of State-based Schedulers with Exogenous Network
Traffic

In this subsection, we analyze the effects of a state-based scheduler on the control
loop in the presence of exogenous network traffic. Thus, we have nk 6≡ 0 and a
channel output given by (3.3). Recall from Lemma 3.1, that the network traffic
indicator nk is correlated to the state of the plant xk. The certainty equivalence
principle need not hold for plants where the measurement noise is correlated to
the process noise (Bar-Shalom and Tse, 1974). To focus on the effect of state-
based schedulers on the closed-loop system, the results presented in the previous
subsection did not include exogenous network traffic. Now, we derive some of the
above results for the system in the presence of exogenous network traffic.

Lemma 3.5. For the closed-loop system defined by (3.1)–(3.5), the control signal
has a dual effect of order r = 2.

Proof. The MAC output δk (3.3) is clearly still a function of the applied controls,
through the state-based scheduler outcome. Thus, the estimation error covariance
Pk|k , in (3.11), remains a function of the applied controls uk−1

0 . Since Pk|k does not
satisfy the condition (2.5) required to have no dual effect, we see that the system
(3.1)–(3.5) exhibits a dual effect of order r = 2.

With the above result, Theorem 3.3 can be easily extended to include the case
with exogenous network traffic. However, it is not as straightforward to extend
Corollary 3.4. When the measurement noise is correlated to the process noise, cer-
tainty equivalence need not hold. To see why, recall the proof of Theorem 3.3,
where we derive a solution of the form Vk = E[x⊤

k Skxk|Ic
k] + sk for the Bellman

equation (3.14). Now, if wk is correlated to the variables in the information set I
c
k,

specifically nk
0 , the minimization with respect to uk in (3.16) must include the term

tr{Sk+1Rw}. Then, the optimal controller will not have the form shown in (3.16),
and certainty equivalence will not hold.

We need to prove that wk is independent of nk
0 for the certainty equivalence

principle to hold, which we do below.

Corollary 3.6. For the closed-loop system defined by (3.1)–(3.5), the optimal con-
troller, with respect to the cost criterion (3.6), is certainty equivalent if the exoge-
nous network traffic indicator nk is independent of the process noise wk, and, if the
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scheduling decisions are not a function of the applied controls, i.e., if

γk = f̌k(ω̌s
k) , (3.19)

where, ω̌s
k ∈ Ω̌s

k, and Ω̌s
k is the σ-algebra generated by the information set Ǐ

S

k =
{x0,w

k−1
0 ,nk−1

0 }.

Proof. Note that nk is only correlated to δk
0 and thus, to the signals wk−1

0 , from
Lemma 3.1. As the process noise is i.i.d, nk is independent with respect to wk. A
scheduler of the form (3.19) is not a function of the applied controls, and thus,
certainty equivalence holds.

3.4 Closed-Loop System Architecture

In this section, we find that symmetric scheduling policies simplify the observer
design. We propose a dual predictor architecture for the closed-loop system, which
results in a separation of the scheduler, observer and controller designs.

3.4.1 Observer Design

Due to the non-linearity of the problem, the estimate in general can be hard to
compute. However, the estimation error is reset to zero with every transmission, as
we send the full state. Consider one such reset instance, a time k such that δk = 1.
The state is sent across the network, yk = xk, so the estimate x̂k|k = xk. A suitable
control signal uk is found and applied to the plant, which results in the next state
xk+1. Now, the scheduler can generate one of two outcomes. We consider each case,
and find an expression for the estimate below:

a) δk+1 = 0: We need an estimate of wk. We use the scheduler output as a coarse
quantized measurement to generate this, as follows:

x̂k+1|k+1 = E[xk+1|Ic
k+1, δk+1 = 0]

= Axk +Buk + E[wk|δk+1(f̀(wk)) = 0] , (3.20)

where, E[wk|δk+1(f̀(wk)) = 0] =
∑

γ∈{0,1} E[wk|f̀(wk) = γ, δk+1 = 0] ·

P(γk+1 = γ|δk+1 = 0) and f̀(wk) ≡ f(Axk +Buk + wk|xk, uk).

b) δk+1 = 1: The estimation error is zero as x̂k+1|k+1 = xk+1.

The transformation to f̀ in (3.20), is not intended to remove the dual effect, but
merely serves to remove the known variables from the expression. The dual effect
has influenced the packet’s transmission, i.e., the value of δk+1. To understand this
expression clearly, we look at the next time instant. Now a signal uk+1 is generated,
and applied to the plant. We note that xk+2 = A2xk + ABuk + Buk+1 + Awk +
wk+1. The state xk+2 is either sent to the controller or not depending on the
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scheduler outcome δk+2. Again, we look at both cases, and derive an expression for
the estimate:

a’) δk+2 = 0: We now need to estimate Awk + wk+1, as the rest is completely
known from xk+2. We use both scheduler outputs δk+1 and δk+2 to generate
an estimate of the unknown variables as

x̂k+2|k+2 = A2xk +ABuk +Buk+1

+ E[Awk + wk+1|δk+1(f̀(wk)) = 0, δk+2(f̀(Awk + wk+1)) = 0] .

b’) δk+2 = 1: Again, x̂k+2|k+2 = xk+2.

This process can be continued recursively through a non-transmission burst, until
finally a measurement is received and the estimation error is reset to zero. Thus,
the observer computes the estimate at any time k as

x̂k|k =





xk, δk = 1,

Ak−τkxτk
+

k−τk∑

s=1

As−1Buk−s

+ E[
k−τk∑

s=1

As−1wk−s|δ(f̀k), .., δ(f̀τk+1) = 0],

δk = 0,
(3.21)

where τk is the time index of the last received measurement at time k, as defined
in (3.8), and the argument to the function f̀t is given by the term

∑t−τt

s=1 A
s−1wt−s.

3.4.2 State-based Scheduler Design: Symmetric Schedulers

The computation of the term E[
∑k−τk

s=1 As−1wk−s|δ(f̀k), .., δ(f̀τk+1) = 0] makes the
estimate (3.21) hard to evaluate, because the quantized noise is not Gaussian. As
a sub-optimal approach, consider the scheduling criterion given by any symmetric
map fsym(r) = fsym(−r) with

γk = fsym(
k−τk−1∑

s=1

As−1wk−s) . (3.22)

Since τk is not defined without the MAC output δk in (3.8), we replace it with τk−1,
which is also a measure of the non-transmission burst. Choosing the scheduler in
this manner results in a zero mean estimate from the quantized noise when there is
no transmission. Now, the estimate (3.21) is easy to compute and the observer can
be designed without knowledge of the scheduling policy. Also, a certainty equivalent
control can be applied. This observation is summarized below, and is used to design
the scheduler presented in Section 3.4.3.

Proposition 3.7. For the closed-loop system defined by (3.1)–(3.6), the use of the
symmetric scheduling policy (3.22) implies that certainty equivalence holds, and it
also results in separation in design between the estimator and scheduler.
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Figure 3.5: State-based Dual Predictor Architecture: the innovations to the observer
serve as input to the scheduler. The resulting setup is certainty equivalent. The observer
is simple, and computes the MMSE estimate.

3.4.3 The Dual Predictor Architecture

In this section, we examine closed-loop design of the complete system, including
scheduler, observer and controller. From the results of Lemma 3.5 and Proposition
3.7, it is clear that the scheduler, observer and controller designs are coupled, in
general. It is not possible to design the optimal scheduling policy independently
and combine it with a certainty equivalent controller and optimal observer to get
the overall optimal closed-loop system. At the same time, solving for the jointly
optimal scheduler, observer and controller is a hard problem.

Thus, we propose an architecture, shown in Figure 3.5, for a design of the state-
based scheduler, and the corresponding optimal controller and observer. There are
two estimators in this architecture, and hence, we call it a dual predictor archi-
tecture. This architecture has been referred to previously in the context of mobile
networks (Xu et al., 2004). The scheduler, observer and controller blocks are de-
scribed below.
Scheduler (S): The scheduler output γk is given by

γk = f(xk, x̂k|τk−1 ) =

{
1, |xk − x̂k|τk−1 |2 > ǫ,

0, otherwise ,
(3.23)

where ǫ > 0 is a given threshold and x̂k|τk−1 is the estimate at the controller at time
k if the current packet is not scheduled for transmission. To realize such a scheduling
policy, the observer must be replicated within the scheduler, and for the observer to
be able to subtract the applied control, the controller must also be replicated within
the scheduler. An explicit ACK is required to realize this information pattern, as
indicated in Figure 3.5.
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Observer (O): The input to the observer is yk = δkxk. The observer generates
the estimate x̂k|k as given by

x̂k|k = δ̄kx̂k|τk + δkxk . (3.24)

Recall that δ̄k = 1−δk takes a value 1 when the packet is not transmitted. In such a
case, the estimate is given by x̂k|τk , a model-based prediction from the last received
data packet at time τk. This estimate is given by

x̂k|τk = Ax̂k−1|k−1 +Buk−1 . (3.25)

Controller (C): The controller generates the signal uk based on the estimate alone,
as given by

uk = −Lkx̂k|k , (3.26)

where Lk is defined in (3.16).
Note that the scheduling criterion described in (3.23) can be rewritten as

|xk − x̂k|τk−1 |2 = |Ax̃k−1|k−1 + wk−1|2 = |x̃k|τk−1 |2 .

Here, we use x̂k|τk−1 as τk is not defined without δk. The criterion |x̃k|τk−1 |2 ≤ ǫ
captures the per-sample variance of the estimation error, when no transmission is
scheduled. Taking expectations on both sides, we get tr{Pk|τk−1 } ≤ ǫ. The scheduler
attempts to threshold the variance of the estimation error, but this cannot be
guaranteed in a network with multiple traffic sources. Also, note that the scheduling
policy is a symmetric function of its arguments, as in Proposition 3.7. We now state
the main result of this section.

Theorem 3.8. For the closed-loop system given by the plant (3.1), the state-based
dual predictor (3.23)–(3.26), and the cost criterion (3.6), it holds that

i. The estimate (3.24) minimizes the mean-squared estimation error.

ii. The control signal does not have a dual effect.

iii. The certainty equivalence principle holds and the optimal control law is
given by (3.26).

iv. The LQG cost is given by

JDP = x̂⊤
0 S0x̂0 + tr{S0P0} +

N−1∑

n=0

tr{Sn+1Rw}

+
N−1∑

n=0

tr{(L⊤
n (Q2 +B⊤Sn+1B)Ln)Pn|n} , (3.27)

where Pk|k is the error covariance of the estimate at the observer, with SN =
Q0 and Sk obtained by backward iteration of (3.17).
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Proof. We know that

Ak−τkxτk
+

k−τk∑

n=1

An−1Buk−n = Ax̂k−1|k−1 +Buk−1 ,

E[
k−τk∑

ℓ=1

Aℓ−1wk−ℓ|δk
τk+1 = 0] = 0 ,

where the last expression results from the use of a symmetric scheduling policy.
Substituting for these terms in the expression for the estimate in 3.21, we get

E[xk|Ic
k] =

{
xk, δk = 1,

Ax̂k−1|k−1 +Buk−1, δk = 0.

Thus, the estimate in (3.24) is the MMSE estimate (Kailath et al., 2000).
The error covariance at the estimator is given by (3.11), where, from (3.23)

and (3.3), it is clear that the scheduler outcome γk and the MAC output δk do
not depend on the applied controls uk−1

0 . Thus, the error covariance satisfies the
definition in (2.5), and the control signal in this architecture does not have a dual
effect.

From the above conclusion, note that the scheduling policy in (3.23) is of the
form (3.19). Thus, from Corollary 3.6, we know that the optimal controller for this
setup is certainty equivalent. Then, the optimal control signal is given by (3.16),
which has the same form as the controller in this architecture (3.26). The expression
for the control cost remains the same as in the case with partial state information,
and is given by (3.27).

Thus, the dual predictor architecture results in a sub-optimal but simplified
closed-loop system.

3.5 Extensions and Discussions

In this section, we extend the above results to an output-based system. We also
identify the existence of a dual effect when the cost function penalizes network usage
and when the transmission, with a state-based scheduler, occurs over limited data-
rate channels. Finally, we discuss the dual effect property that we have encountered
in this problem with respect to other NCS architectures.

3.5.1 Measurement-based Scheduler

We now consider a system without full state information, but with co-located mea-
surements. We show that by placing an optimal observer, a Kalman Filter (KF)
at the sensor, to estimate the state of the linear plant, and basing the scheduler
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decisions on this estimate, instead of on the measurement, we are able to establish
the same conclusions as before.

Consider a linear plant with a state zk, and a measurement mk given by

zk+1 = Azk +Buk + wz,k , mk = Czk + vz,k , (3.28)

where wz,k is i.i.d. zero-mean Gaussian with covariance matrix Rw,z. The initial
state z0 is zero-mean Gaussian with covariance matrix Rz,0. Also, the measurement
m ∈ R

m and the matrix C ∈ R
n×m. The measurement noise vz,k is a zero mean

i.i.d. Gaussian process with covariance matrix Rv,z ∈ R
m×m, and it is independent

of wz,k.
We can place a KF at the sensor node, which receives every measurement mk

from the sensor and updates its estimate (ẑs
k|k) as

ẑs
k|k = Aẑs

k−1|k−1 +Buk−1 +Kf,kek , (3.29)

where Kf,k denotes the KF gain and ek denotes the innovation in the measure-
ment. The innovation is Gaussian with zero-mean and covariance Re,k. The error
covariances for the predicted estimate and the filtered estimate are denoted P s

k and
P s

k|k , respectively. These terms are given by

ek = mk − C(Aẑs
k−1|k−1 +Buk−1) ,

Kf,k = P s
kC

⊤R−1
e,k , Re,k = CP s

kC
⊤ +Rv,z ,

P s
k = AP s

k−1|k−1A
⊤ +Rw,z , P

s
k|k = P s

k −Kf,kRe,kK
⊤
f,k .

If we use the estimate to define a new state, such that xk , ẑs
k|k , we have a linear

plant disturbed by i.i.d. Gaussian process noise wk = Kf,kek. Thus, we have re-
established the problem setup from section 3.2.1, and the results from before can
be applied to this plant. Note that the scheduler is now defined with respect to
the estimate ẑs

k|k and not the measurements mk. However, the scheduler output
remains a function of the state and the measurement, through the estimate.

3.5.2 Penalizing Network Usage

We have shown, in the proofs of Theorem 3.2 and Theorem 3.3, that the applied
controls play a significant role in a state-based scheduler and cannot be removed
from the scheduler inputs to create an equivalent setup without a dual effect. How-
ever, the minimizing solution to a cost criterion can render the effect of the applied
controls redundant. To see an example of this, consider the problem of finding
the jointly optimal scheduler-controller pair for the classical LQG cost criterion in
(3.6). Since there is no penalty on using the network, the optimal scheduler pol-
icy is to transmit all the time. Now, the structure of the closed-loop system does
not resemble the one presented in Theorem 3.2, and consequently, that result does
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not hold. In this scenario, there is no incentive for the controller to influence the
transmissions and the jointly optimal scheduler-controller pair (f1, g1) is given by

f1 : δ1k = 1 ∀ k , g1 : u1k = −Lkxk ∀ k , (3.30)

where Lk is given in (3.16). Note that in the rest of this chapter, we do not consider
finding the jointly optimal scheduler-controller pair, as the use of a contention-based
MAC does not permit us to choose the schedule sequence.

Now, consider a cost criterion which penalizes the use of the network, such as

JΛ = min
u

N−1
0

,δ
N−1
0

E

[
x⊤

NQ0xN +
N−1∑

s=0

(
x⊤

s Q1xs + u⊤
s Q2us

)
+

N−1∑

s=0

Λδs

]
, (3.31)

where Q0,Q1 and Q2 are positive definite weighting matrices and Λ > 0 is the cost
of using the network. The optimal state-based scheduling policy chooses a schedule
in relation to the penalty Λ, such that the average network use, i.e., E[δk], decreases
as Λ increases. Thus, we state the following result.

Proposition 3.9. For the closed-loop system defined by (3.1)–(3.5), with no exoge-
nous network traffic, the control signals derived from the jointly optimal scheduler-
controller pair, which minimize the cost criterion in (3.31), exhibit a dual effect of
order r = 2.

Proof. It is easy to show that the scheduler-controller pair (f1, g1) does not mini-
mize the cost in (3.31). Now, the scheduler uses the policy in (3.2) to select packets
to send across the network. Thus, the closed-loop system has the same structure as
in Theorem 3.2, and there is a dual effect of order r = 2 for any control signal in
this setup.

Proposition 3.9 provides the controller an incentive to modify the transmission
outcome. We examine the above joint optimization problem in detail in Chapter 7.
Using the results of Lemma 3.5, the above results can be extended to include the
effect of exogenous network traffic.

3.5.3 Using a Rate-Constrained Channel

Our proof of the dual effect in Theorem 3.2 relies on the asymmetry in the resolution
of the received information; the full state is sent with a transmission and only a
single-bit quantized encoding of the state is sent when there is no transmission.
However, data channels are generally rate-constrained, and a full state can never
be sent. If the encoder-decoder pair on the sensor link uses R bits of information the
estimation error at the controller can be written as x̃k|k = δk · (xk − E[xk|Ic

k, δk =
1]) + δ̄k · (xk − E[xk|Ic

k, δk = 0]), in place of (3.10). Note that δk, and consequently
the applied controls, cannot be removed from the above expression, unless the
estimation error with and without a transmission result in the same expression,
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Figure 3.6: The estimate is not influenced by the applied controls in (a) and (b), with
knowledge of the applied controls. In contrast, the applied controls cannot be removed
from the decision process in (c).

i.e., xk − E[xk|Ic
k, δk = 1] = xk − E[xk|Ic

k, δk = 0] for R > 1. Hence, there is a dual
effect with a state-based scheduler, even when using a rate-constrained channel for
transmission.

3.5.4 Relation to Other NCS Architectures

The dual effect and certainty equivalence properties have been noted previously
in other NCS problems. We discuss these occurrences and the connections to our
problem setup below.

Packet Drops over a Lossy Network: Packet drops in a lossy network are not
influenced by the applied controls (Figure 3.6(a)). Hence, certainty equivalence
holds, when there are packet drops on the sensor link (Gupta et al., 2007). However,
when there are packet drops on the actuator link, separation holds only if there is
an ACK of packets received or lost (Schenato et al., 2007).

Importance of Side Information: In any NCS problem, the classical informa-
tion pattern must be reconstructed for the certainty equivalence principle to hold
(Witsenhausen, 1968). This may require one or more side information channels
to convey ACKs of received packets back to the transmitters (Bao et al., 2011;
Schenato et al., 2007).

Limited Data Rate Channels: This problem differs from our setup in the sense
that the encoder output is the only measurement available across the channel, and
this potentially contains the same number of information bits, see Figure 3.6(b).
In Tatikonda et al. (2004), the applied controls are shown to not influence the
estimation error.

Event-based Systems: The results we have encountered in this chapter show
that the applied controls can push the state across the scheduler threshold, and in-
fluence the transmission outcome, as illustrated in Figure 3.4. This is a consequence
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Table 3.7: A comparison of control costs with (JSS) and without (JCN) a state-based
scheduler in the closed-loop

Plant Type P [T 1] P [T 2] P [T 3]

JCN 45.3074 10.0028 6.1213

JSS 23.5785 8.3489 5.3803

of the unequal information in the measurement yk, with and without a transmis-
sion, see Figure 3.6(c). A similar problem with a cost function such as (3.31), has
been dealt with in Molin and Hirche (2009, 2010). They use a transformation simi-
lar to the one presented for the encoder design problem in Nair et al. (2007). There
are, however, subtleties in defining an equivalence class for a state-based scheduler:
using an equivalent scheduler need not result in an equivalent design, as shown in
Theorem 3.3.

3.6 Examples

We present three examples in this section. The first example describes the problem
setup, and illustrates the motivation for the problem. The second example illus-
trates the results of Theorem 3.2 and Theorem 3.3, which identify the dual role of
the applied controls towards the information available to the controller. A coun-
terexample is also presented, in which we identify some controllers which exploit
this dual role. The third example illustrates the dual predictor architecture and
provides an example of network-aware event triggering.

3.6.1 An Example of a Multiple Access NCS

This example illustrates the role of a state-based scheduler in our problem formu-
lation in Section 3.2.1, where a number of closed-loop systems share a contention-
based multiple access network on the sensor link. We use a p-persistent carrier
sense multiple access (CSMA) protocol in the MAC. The observer and controller
are chosen for simplicity of design, not as optimizers of any cost. We look at the
performance of this network of control loops, with and without the state-based
scheduler.

We consider a heterogenous network of 20 scalar plants, indexed by j ∈ {1, . . . , 20}.
There are three different types of plants, P [T 1],P [T 2] and P [T 3], given by

x
(j)
k+1 = a[i]x

(j)
k + u

(j)
k + w

(j)
k , (3.32)

where a[i] ∈ {1, 0.75, 0.5}, and R
[i]
w ∈ {1, 1.5, 2}, for the plant P [T i]. The systems

numbered j ∈ {1, . . . , 6} are of type P [T 1], j ∈ {7, . . . , 13} are of type P [T 2] and j ∈
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Figure 3.8: The state and the control signal with the channel use pattern: the red
dots denote transmission requests, the white inner dots denote MAC re-transmission
attempts, and the green dots denote transmission success. Note that the requested
bound on the state, which is marked with a dotted line, is sometimes exceeded due
to network traffic. Also, the control signal corresponds closely to the state only when
there is a successful transmission.

{14, . . . , 20} are of type P [T 3]. The plants are sampled with different periods given
by T [i] ∈ {10, 20, 25}, for the different types of plants, respectively. The state-based

scheduler uses the criterion x
(j)2

k > ǫ(j). A p-persistent MAC, with synchronized
slots, which permits three retransmissions is used. The persistence probability is
given by p(r)

α , where r denotes the retransmission index, and p(r)
α ∈ {1, 0.75, 0.5} for

r ∈ {1, . . . , 3}. The LQG criterion in (3.6), with N = 10 and Q0 = Q1 = Q2 = 1
is used to design a certainty equivalent controller (3.16) as an ad hoc policy, not
an optimal one, as we know from Corollary 3.6. The observer calculates a simple
estimate as given by (3.24)-(3.25).

We look at the performance of a closed-loop system in this network without
a state-based scheduler, i.e., when ǫ(j) = 0 for all j. The cost of controlling the
plants in the contention-based network is denoted J

[i]
CN, and the values are listed

in Table 3.7. We compare these values to the costs obtained with a state-based
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scheduler in the closed-loop system, denoted J [i]
SS, when ǫ(j) = 2.5. There is a marked

improvement with a state-based scheduler in the closed-loop. Figure 3.8 depicts the
state and the control signal for the first plant in this network, when a state-based
scheduler is used. The above improvement is obtained due to fewer collisions in
the contention-based MAC. The non-zero scheduling threshold reduces the traffic
in the network, and increases the probability of a successful transmission for all the
plants in the network.

3.6.2 A 2-Step Horizon Example

We now look at a simple example to see the computational difficulties in identi-
fying optimal estimates and controls for a system with a state-based scheduler in
the closed-loop. We also show that for a scheduler such as f̃ in Section 3.3.2, which
renders the control signal free of a dual effect, the entire plant is altered, so the
equivalence construction does not work. Finally, as a proof of the dual effect as-
sociated with a scheduler such as f in (2), we present a counterexample, obtained
through simulations.

Consider a scalar plant, given by xk+1 = axk + buk + wk, with R0 = Rw = 1.
The scheduling law is given by

δk =

{
1 xk ≥ 0.5 ,

0 otherwise .
(3.33)

Our aim is to find both the optimal controller, with dual effect, and the certainty
equivalent controller for the innovations-based scheduler and show that these result
in different control actions for the same scheduling sequence. The controllers are
designed to minimize the LQG cost (3.6), for a horizon of two steps, i.e., N = 2,
and with Q0, Q1, Q2 > 0. We first derive the optimal controller with dual effect.
Then, for the same schedule, we define the certainty equivalent controller, assuming
that an innovations-based scheduler of the form f̃ in (3.12) has been designed. We
compare the resulting control actions, and comment on the differences.
Estimator: The estimates x̂0|0 and x̂1|1 are obtained using (3.21). The estimation
error covariances P0|0 and P1|1 are presented in Appendix A. Since the estimation
error is non-Gaussian, we need to derive the probability density functions of the es-
timation errors at each time instant. This makes the computation of the estimation
errors and the error covariances hard.
Optimal Controller: To solve for the optimal control signals, we use V1 and V0

from (3.14). The complete derivations of V1 and V0 are presented in Ramesh (2011).
We find the control signal u1 that minimizes V1, and get

u1 = −
abQ0

Q2 + b2Q0
x̂1|1 . (3.34)

Then, to find u0, we take a partial derivative of the expression for V0 with respect
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to u0 and get

∂V0

∂u0
= 2u0(Q2 + b2S1) + 2x̂0|0abS1 +

a2Q2
0b

2

Q2 + b2Q0
·
∂

∂u0

(
E[P1|1|Ic

0]
)

= 0 . (3.35)

The optimal u0 can be obtained by substituting for P1|1 and solving the resulting
equation.
Certainty Equivalent Controller: For the same scheduler outcomes δ0, δ1 ob-
tained through an innovations-based scheduler which has no dual effect, the cer-
tainty equivalent controller gives us the control signals

u1 = −
AbQ0

Q2 + b2Q0
x̂1|1 ,

u0 = −
AbS1

Q2 + b2S1
x̂0|0 .

(3.36)

Note that the u1 is found by minimizing V1, which results in the same expression
as for the optimal controller (3.34). However, when there is no dual effect, the last
term in (3.35) vanishes, and u0 for the certainty equivalent controller is obtained
by solving

2u0(Q2 + b2S1) + 2x̂0|0abS1 = 0 . (3.37)

Discussion: A comparison of the control signals for the certainty equivalent con-
troller (3.36) with u1 and u0 obtained in (3.34) and (3.35), shows that the signal u1

remains the same. However, u0 is different, and displays a dual effect in the opti-
mal controller. From (3.37), it is clear that the additional term in (3.35) alters the
solution for the optimal controller. This observation can be explained as follows.
In a controller with a dual effect, the control signal can be chosen to probe the
plant state in order to improve the quality of the estimate. However, there is no
motive in improving the estimate in a one-step optimization process. Thus, u1 is
the same for both controllers. When the optimization is performed over two steps,
a probing effect in the first step can improve the estimate and the corresponding
control applied in the next step. Thus, u0 is different for the optimal controller.
Counterexample: To illustrate further the existence of the dual effect in the state-
based scheduler setup discussed above, we consider an explicit numerical example
with parameters a = 2, b = 1, R0 = 1 and Rw = 100 for the linear plant, and a
cost function with Q0 = 100, Q1 = 1 and Q2 = 1. Finding a u0 that solves (3.35) is
hard. Instead, we evaluate the cost of using a certainty equivalent controller with a
state-based scheduler such as in (3.33) and compare it with alternative controllers
u0 = −L0x̂0|0 , which use a different value for the control gain L0. We choose a range
of values for L0 centered around the certainty equivalent control gain LCE

0 , and plot
the control costs obtained against the control gain in Figure 3.9, for different values
of the scheduler threshold. The certainty equivalent control cost is marked by a
dotted line in all the plots, while the cost of using an alternate controller is plotted
with a solid line. For each of the scheduling thresholds shown in Figure 3.9, there
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Figure 3.9: A comparison of the control costs obtained using the certainty equivalent
controller (with gain LCE

0 = 1.664, shown in dotted lines) and some alternative con-
trollers (with gain L0, shown in solid lines), for scheduler threshold ǫ = {10, 20, 50}.
Clearly, there are values of L0 6= LCE

0 that result in a lower cost. This can be explained
by the dual effect in the control signal, as shown in Theorem 3.2.
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exists a range of values of L0 6= LCE
0 for which the resulting control cost is lesser than

the certainty equivalent control cost. This validates the discussion preceding the
counterexample, and provides an example of controllers which utilize the probing
incentive to improve upon the certainty equivalent controller. The improvement in
cost reduces for larger thresholds, which might be explained by noting that the
probing incentive, for a small threshold, is not accompanied by a high penalty in
cost. As the threshold grows larger, the probing incentive might not be beneficial
to exploit, in terms of the cost.

Another counterexample may be found in Curry (1970), who worked on the dual
effect with nonlinear measurements. He examines a system with a non-linearity in
the measurement, which may be interpreted as a simple state-based scheduling
policy, and illustrates that the optimal controller for a two-step horizon cost differs
from the certainty equivalent controller due to the dual effect.

This example shows that there is a dual effect, and even the same schedule can
result in a different control sequence for a system without a dual effect. Thus, an
equivalent construction for the scheduler does not result in an equivalent system.

3.6.3 An Example of the Dual Predictor Architecture

In this example, we present the dual predictor architecture applied to a shared
network. We tune the threshold of the state-based scheduling law to probabilistically
guarantee an achievable control performance, given the traffic over the network. We
use a homogenous network in this example to simplify the comparison of control
cost versus the scheduling threshold.

We consider a shared network of 20 scalar plants, indexed by j ∈ {1, . . . , 20} and
given by (3.32), where a(j) = 1 and R(j)

w = 1 for all j. The plants are sampled with
a period given by T = 10. The innovations-based scheduler uses a similar criterion
to (3.23), where ǫ is the threshold of the scheduler. A p-persistent MAC, with
synchronized slots, which permits three retransmissions, is used. The persistence
probability is given by p

(r)
α , where r denotes the retransmission index and p

(r)
α ∈

{1, 0.75, 0.5} for r ∈ {1, 2, 3}. The LQG criterion in (3.6), with N = 10 and Q0 =
Q1 = Q2 = 1 is used to design the optimal certainty equivalent controller (3.16).
The observer calculates the MMSE estimate given by (3.24)-(3.25).

The effect of varying ǫ on the control cost is shown in Figure 3.10. For high
values of ǫ, the network is under-utilized, and almost all the transmissions are
successful. However, the control cost is high as the number of transmissions is low.
As we decrease ǫ, the control cost initially decreases due to increased use of the
network. However, for very low values of ǫ, the network is over-utilized and this
results in collisions. Thus, the control cost increases again, due to dropped packets.
It is interesting to note that the cost function is quite flat. Thus, it is not important,
in practice, to use the optimal scheduling threshold ǫ.

Figure 3.11 depicts the state and control signal of the first plant obtained from
our simulation, for the best value of ǫ picked from the above plot. Note that the
estimation error is bounded, with a probability of 0.94, by the scheduling threshold,
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3.7. Summary 73

for the value ǫ(1) = 3.5, and the resulting control cost is JDP = 27.9235.

3.7 Summary

In this chapter, we examined the impact of a state-based scheduler on the design
of a control system in a network. We found that a state- or measurement-based
scheduler makes design of the optimal controller and observer hard, due to the
presence of a dual effect. In general, certainty equivalence does not hold, unless the
scheduler output is not influenced by the past applied control signals or policies.
Furthermore, a scheduling policy which is symmetric in its arguments reduces the
complexity of the estimator. We used these results to propose a dual predictor
architecture for closed-loop systems with a state-based scheduler.

Now, we are ready to look at how a network of such control systems interact
with each other. In the next chapter, we look at a network of systems with the dual
predictor architecture, and analyze the performance of the channel access method.





Chapter 4

Modelling Network Interactions

We continue our analysis of a network of event-based systems. So far, we have
identified the dual predictor architecture, which results in a separated design of
the state-based scheduler, observer and controller, for each control system in the
network. This architecture also gives us a precise form of the control law to be used.
However, the event-triggering policy, or state-based scheduling policy, is only speci-
fied to be a symmetric function of the innovations. In this chapter, we choose a more
specific template for this policy, and develop a method to analyze the performance
of a network of systems using this policy.

The design of an event-triggering policy must be accompanied by the selection
of a suitable multiple access protocol. In Example 1.1, we saw that the lack of
a multiple access protocol can result in significant losses in a broadcast medium,
even with very few interfering links. So, which multiple access protocol should we
choose? In a time-triggered network, transmission requests can be anticipated a
priori, and a schedule can be drawn up to accommodate all the transmissions. In
contrast, transmission requests cannot be anticipated in an event-based network.
Thus, the access decisions must be taken at each sensor node, in a distributed
manner. Furthermore, coordinating access decisions between nodes is not easy to
accomplish on wireless networks. Thus, we choose to use a random access protocol.
These protocols use a contention resolution mechanism (CRM) to arbitrate access
in a distributed, non-coordinated manner, between the nodes in the network, as
discussed in Chapter 2. The carrier sense multiple access with collision avoidance
(CSMA/CA) protocol is particularly well-suited to wireless networks and is used
in Wifi (IEEE, 1999), Zigbee (ZigBee Alliance, 2005) and WirelessHart (HART
Communication Foundation, 2007). In this chapter, we use the p-persistent CSMA
protocol, which provides an analytical approximation for the CRM in CSMA/CA
(Kleinrock and Tobagi, 1975).

So, we now consider a network of systems with the dual predictor architecture,
which use an event-triggering policy along with a CRM to access the network. For
such a network, we wish to understand how the network traffic affects the channel
access probability of each event-based system. The channel access probability is

75
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Figure 4.1: A network of M closed-loop systems, with each loop consisting of a plant
Pj and a controller Cj for j ∈ {1, . . . ,M}. The systems share access to a common
medium on the sensor link, and adapt their traffic rates to the feedback from the
network. The controllers and actuators communicate over dedicated links.

determined by the event-triggering policy and the CRM. The network traffic is
determined by the channel access policies of the other nodes in the network. Thus,
we develop a model for the interactions in the multiple access channel comprising
of event-based systems with CRMs. Using this model, we analyze the network
performance of each event-triggering policy. This will, in turn, help us to design an
event-triggering policy that adapts to the traffic in the network.

4.1 Contributions and Related Work

We begin by motivating our template for the event-triggering policy. We choose
a simple policy that respects the constraints imposed by the dual predictor archi-
tecture; our policy applies a symmetric threshold on the estimation error at the
scheduler. By varying the threshold with the delay since the last successful trans-
mission, we can make the event-triggering policy adapt to the traffic in the network.
This is a necessary property in an uncoordinated network, because packet collisions
are an unavoidable consequence of distributed access decisions. Collisions result
when two or more nodes transmit at the same time, and all the packets involved in
a collision are lost. Naturally, collisions are detrimental to the performance of the
control systems in the network. Adapting the event-triggering policy to the CRM
response can reduce the number of collisions. However, it also makes the systems
much harder to analyze. To see why, consider the systems illustrated in Figure 4.2.
A typical network user generates traffic at a certain rate, and the network returns
a probability of collision, which is a function of all the users’ traffic rates. Thus, the
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Figure 4.2: A typical network can be analyzed by evaluating the traffic rate of the
user, and the collision probability of the multiple access protocol, in isolation. In an
event-based network, the input traffic is adapted to the traffic in the network, i.e., Λj

is a function of pc,j . The event-triggering policy and multiple access protocol must be
jointly analyzed in such a network.

user’s rate and the performance of the multiple access protocol can be analyzed in
isolation, in this case. In adaptive event-based networks, however, the traffic rate of
each user is a function of the probability of collision of the network. Hence, a joint
analysis of the event-triggering policy and the CRM is required.

Another consequence of random access is that network access for some nodes
implies lack of access for other nodes in a resource-constrained network. Thus, the
network access decisions are correlated, and for closed-loop systems, this correlation
propagates to the system state. Closed-loop systems with exogenous noise processes
become correlated due to their network interactions (Cervin and Henningsson, 2008;
Rabi and Johansson, 2009a). Now, analyzing the resulting network is not a trivial
task. To solve this problem, we derive inspiration from Bianchi’s much-acclaimed
analysis of the Distributed Coordination Function (Bianchi, 2000) in IEEE 802.11.
To counter a similar problem of network-induced correlation between traffic sources,
Bianchi assumes that a node that is ready to transmit, sees a busy channel as a
time-averaged, independent process. The independence aspect of this assumption
restores a renewal property in our setup, enabling the use of a Markov model to
represent the interactions in an event-based network. The time-average assumption
permits a performance analysis in steady state. We verify these assumptions through
simulations.

There are two main contributions of this chapter. We present a joint analysis
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of the event-triggering policy and the CRM. The analysis is made possible by the
use of Bianchi’s assumption. In doing so, we also present a new configuration for
the applicability of Bianchi’s assumption. Our final contribution is the resulting
network model; a Markov chain which describes the event-triggering policy and
the multiple access protocol. With this model, we can view the event-triggering
policy as a set of steady state probabilities. This model facilitates the design of a
set of probabilities that ensure a system-level guarantee. In the next chapter, we
show that the model and analysis presented in this chapter can be used to design
a network of event-based systems.

Various event-triggering policies have been proposed for different problem for-
mulations (Rabi, 2006; Tabuada, 2007; Heemels et al., 2008; Henningsson et al.,
2008). However, the multiple access problem for event-based systems has not re-
ceived as much attention. Much of the work focussing on the design of event-based
systems for a shared network (Wang and Lemmon, 2011; Molin and Hirche, 2012)
does not explicitly deal with the problem of multiple access. Others use protocols
such as the CAN bus for wired networks (Anta and Tabuada, 2009), or dynamic
real-time scheduling for multiple tasks on a single processor (Tabuada, 2007). These
protocols are not well-suited to wireless networks (Akyildiz et al., 1999; Gummalla
and Limb, 2000).

There have been some attempts to analyze a network of event-based systems
with random access, albeit with simplifying assumptions such as independent packet
losses, or by ignoring collisions (Cervin and Henningsson, 2008; Rabi and Johansson,
2009a; Henningsson and Cervin, 2010). More recently, event-based systems which
use Aloha and Slotted Aloha have been analyzed by Blind and Allgöwer (2011a), but
with an event-triggering policy that is not adapted to the network. In this chapter,
we use a Markov chain to model the interactions between the event-triggering policy
and the CRM. A similar Markov chain has been used, but to model only the event-
triggering policy, by Demirel et al. (2013) and Xia et al. (2013). The work presented
in this chapter highlights the need for a joint analysis between the multiple access
protocol and the event-triggering policy.

The rest of the chapter is organized as follows. We present the problem formu-
lation in Section 4.2 and derive some important properties of the event-triggering
policy, with no network traffic, in Section 4.3. We present the consequences of multi-
ple access, and our solution using Bianchi’s assumption in Section 4.4. The Markov
model describing the joint interactions, and the corresponding performance anal-
ysis are presented in this section. Finally, we present some simulation results in
Section 4.6 and validate the assumptions of our model.

4.2 Problem Formulation

We consider a network of M plants and controllers (indexed by j ∈ {1, . . . ,M}),
which communicate over a shared channel with an event-trigger in the loop, as
shown in Figure 4.3. A model for the interactions between each event-based system
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Figure 4.3: A network of M event-based systems using a CRM to access the network,
where the jth control loop is illustrated with its dependency on the other control loops
i ∈ {1, . . . ,M}, i 6= j. The events are generated by the state-based schedulers. The
other control loops are represented with their state-based schedulers alone.

and the network is depicted in Figure 4.4. The blocks in this figure are explained
below.
Plant: The plant Pj has state dynamics given by

xj
k+1 = Ajx

j
k +Bju

j
k + wj

k , (4.1)

where xk ∈ R
n, uk ∈ R

m and the initial state xj
0 and the process noise wj

k are i.i.d.
zero-mean Gaussians with covariance matrices Rj

0 and Rj
w, respectively. They are

independent and uncorrelated to each other and to the initial states and process
noises of other plants in the network. This discrete time model is defined with re-
spect to a sampling period T for each plant, and the sampling instants are generated
by a synchronized network clock.
State-based Scheduler: There is a local scheduler Sj , situated in the sensor node,
between the plant and the controller, which decides if the state xj

k is to be ignored or
selected for transmission. The scheduler output γj

k is correspondingly chosen from
the set {0, 1}, by the event-triggering policy f j

k , implemented within this block.
The policy used in our setup is presented below, but motivated in Section 4.3. The
scheduler output is given by

γj
k = f j

k(xj
k − x̂j

F,k) =

{
1 |xj

k − x̂j
F,k|2 > ∆j(mj

k) ,

0 otherwise ,
(4.2)

where, ∆j is the threshold, which typically depends on the memory index of the
event-triggering policy mj

k. This index tracks the delay since the last received
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Figure 4.4: A model of the network in Figure 4.3, from the perspective of a single
event-based system. The event-triggering policy uses the prediction error to determine
when to transmit. An explicit acknowledgement (ACK) is needed to track the estimation
error at the sensor node.

packet, dj
k−1, for delays smaller than the maximum memory index F , i.e., mj

k =

min(dj
k−1, F ). In the above equation, x̂j

F,k plays the role of a memory-limited pre-
dicted estimate at the sensor node (4.6).
Other Network Traffic: The block N models a fictionalized source, representing
traffic from all other event-based systems in the network. This traffic is represented
by the network traffic index nj

k ∈ {0, 1}.
CRM: The multiple access protocol implements a CRM in each sensor node, which
resolves contention between simultaneous channel access requests in a distributed
manner. We consider the p-persistent CSMA mechanism, with R retransmissions.
The retransmissions occur in the CRM time scale, which is much finer in resolution
than the system time scale, as discussed in Chapter 2 and indicated in Figure 2.6.
The time scales are assumed to be separated, i.e., all retransmissions corresponding
to a single event are completed before the next sampling period. The access indicator
for each retransmission r = {1, . . . , R} is denoted αj

k,r ∈ {0, 1} at time k. The

persistence probability in the rth retransmission attempt is defined as P(αj
k,r =

1|γj
k = 1), and denoted by pα,r for brevity.

Channel Access Indicator: The channel access indicator δj
k ∈ {0, 1} denotes

transmission failure or success, respectively, after R retransmission attempts. A
transmission is successful if there is only one system that attempts to access the
channel in that CRM slot, as given by

δj
k =

R∨

r=1

[
αj

k,r · (1 − αN,j
k,r )

]
, (4.3)
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and then,
∑M

j=1 δ
j
k ≤ R. Thus, the number of retransmissions, R, also determines

the maximum number of transmissions supported by the network protocol, for every
system sampling instant.
Observer: The observer Oj receives yj

k, given by

yj
k =

{
xj

k δj
k = 1 ,

ε otherwise ,
(4.4)

where ε denotes a packet erasure when there is no event. The estimate is computed
as

x̂c,j
k|k =

{
xj

k δj
k = 1 ,

Aj x̂
c,j
k−1|k−1 +Bju

j
k−1 otherwise ,

(4.5)

with x̂c,j
−1|−1 = 0. We define the corresponding estimation error as x̃c,j

k = xj
k −

x̂c,j
k|k . A copy of this observer is used at the sensor node to facilitate the event-

triggering policy by generating the predicted estimate x̂s,j
k|τk−1

= A
(k−τk−1)
j xj

τk−1
+

∑k−1
l=τk−1

A
(k−l−1)
j Bju

j
l . This is used to generate the memory-limited predicted es-

timate x̂j
F,k in (4.2), which is given by

x̂j
F,k =

{
x̂s,j

k|τk−1
dj

k−1 < F ,

x̂s,j
k|k−F otherwise .

(4.6)

Thus, x̂j
F,k is given by the predicted estimate x̂s,j

k|τk−1
when the delay is less than

the memory F of the scheduler. When the delay exceeds this value, x̂j
F,k takes the

value x̂s,j
k|k−F , which is generated by assuming knowledge of xj

k−F , in place of xj
τk−1

.
Controller: The controller Cj generates an appropriate control signal, such as

uj
k = −Lj

kx̂
c,j
k|k , (4.7)

where Lj
k is selected to minimize an appropriate cost function, such as the linear

quadratic Gaussian (LQG) cost.
We are interested in analyzing the joint performance of the event-trigger and

CRM in this network, in steady state. To do so, we define two metrics that charac-
terize the network performance.

Definition 4.1 (Steady-state Delay Distribution). The delay since the last received
packet is given by dj

k = k−τ j
k , where τ j

k is the time index of the last received packet,
as illustrated in Figure 3.3. To avoid notational overhead, we skip the index j for τk

and dk, when the context is clear. The time index of the last received packet is defined
as τ j

k = max{t : δj
t = 1}, for −1 ≤ t ≤ k and δj

−1 = 1. Note that −1 ≤ τ j
k ≤ k.

Then, the steady-state delay distribution is defined as Pj
d(ζ) , limk→∞ P(dj

k = ζ),
for ζ ∈ Z.
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Figure 4.5: A plot of the simulated values of the reliability versus the scheduler thresh-
old. This plot clearly shows that the above relationship cannot be approximated by an
i.i.d. loss process or any other such simplistic modelling technique.

Definition 4.2 (Steady-state Reliability). Recall that δj
k is the channel access indi-

cator. The steady state probability of a successful transmission as a consequence of
the joint actions of the event-trigger and CRM is defined as pj

δ , limk→∞ P(δj
k = 1).

This indicates the network reliability on the sensing link for a given closed-loop sys-
tem.

The above information is a prerequisite for any design methodology that seeks
to achieve a certain network or system guarantee.

4.2.1 Motivating Example

Before we delve into the main results, we present an example of a network of
systems, and examine a performance analysis curve for this example obtained using
Monte-Carlo simulations. With this example, we wish to motivate the methods used
in the rest of this chapter.

Example 4.1
[Network and Experiment Setup] We consider a homogenous network of M = 10
nodes, with R = 5 retransmissions in the CRM. The dynamics of the plants are
given by (4.1) for xj

k ∈ R and wj
k ∼ N (0, 1). The plants are identical with state

transition matrix Aj = 1 and control matrix Bj = 1, for 1 ≤ j ≤ 10. We use a
state-based scheduler (4.2) with the event-triggering policy |xj

k −x̂j
F,k|2 > ∆j , where

∆j is a constant scheduler threshold that does not vary with the delay and x̂j
F,k

denotes the memory-limited predicted estimate (4.6) at time k. When the delay
exceeds the memory of the policy F , the value xj

k−F is assumed to be the last

successfully received value while computing x̂j
F,k, thus limiting the memory of the

event-triggering policy. To realize a scheduler such as this, we implement the dual
predictor architecture presented in Figure 4.4. The CRM used to arbitrate access
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is the p-persistent CSMA protocol, and pα = 0.2 for all 5 retransmission stages of
the CRM.

A plot of the simulated values of reliability pj
δ versus the scheduler threshold

∆j ∈ (0, 8) is shown in Figure 4.5. This plot has been obtained using Monte-
Carlo simulations. The nonlinear relationship depicted in the plot is not surprising,
considering that a given scheduler threshold translates to a certain traffic rate
depending on the distribution of the estimation error. However, it is important
to note that the distribution of the estimation error with delay evolves based on
the probability of a successful transmission, as a consequence of the adaptation
illustrated in Figure 4.2. Thus, it is apparent from Figure 4.5 that there is no
simple loss process that captures the interaction of a single system with the rest of
the network.

We return to this example in Section 4.6, where we comment on the non-
monotonic relationship obtained from simulations.

4.3 The Event-triggering Policy

We examine our event-triggering policy, to understand what it does for a single
closed-loop system without other network traffic. We show that this policy adapts
to the estimation error, or a part of it, when its memory is constrained. The renewal
property of the estimation error is used to construct a Markov model that represents
the functioning of the event-triggering policy. Since we only consider a single closed-
loop system in this section, we drop the index j. The lack of other network traffic
implies that nk ≡ 0 for all k ≥ 0. Now, there is no need for a multiple access
protocol and every event results in a successful transmission, i.e., δk = γk.

4.3.1 Properties of the Event-triggering Policy

We begin by motivating our selection of the event-triggering policy in (4.2). The
events generated by our policy are not influenced by the past applied controls,
resulting in a structural separation between the state-based scheduler, observer
and controller, as shown in Chapter 3. Thus, the role of the controller is limited to
regulating the estimate (4.5), and the role of the state-based scheduler is limited to
reducing the estimation error. Accordingly, the policy defined in (4.2) adapts to the
estimation error across the network; the input to this policy is the estimation error,
for delays not exceeding F , or a related quantity, when the delay is F or larger.
This can be seen from

|xk − x̂F,k|2 =





∣∣∣xk − x̂s
k|τk−1

∣∣∣
2

dk−1 < F ,
∣∣∣xk − x̂s

k|k−F

∣∣∣
2

otherwise .
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By substituting for the prediction error in the above equation, we get

|xk − x̂F,k|2 =





∣∣∣
∑k−1

l=τk−1
A(k−l−1)wl

∣∣∣
2

dk−1 < F ,
∣∣∣
∑k−1

l=k−F A
(k−l−1)wl

∣∣∣
2

otherwise .
(4.8)

Note that the estimation error for dk−1 ≥ F is given by
∑k−1

l=τk−1
A(k−l−1)wl. How-

ever, the value used in its place in the event-triggering policy is obtained by assum-
ing that xk−F was successfully transmitted, i.e., τk−1 = k−F . Thus, the statistical
properties of the inputs to the above event-triggering policy vary with delay for
dk−1 < F , but remain constant for dk−1 ≥ F . Hence, we limit the memory of our
adaptive policy to F .

Following a successful transmission, the estimation error is reset to zero at the
observer, and this leads to some desirable properties for our policy, discussed below.
For a sequence ak, the notation a

tf

t0
is used to denote the set {at0 , . . . , atf

}.

Lemma 4.1. For a single system given by (4.1)–(4.2), (4.5)–(4.7), with δk = γk,
ek = x̃k

τk is a Markovian representation for the estimation error at the observer,
x̃k. In other words,

P(ek|ek−1
0 ) = P(ek|ek−1) . (4.9)

Proof. At any time k, τk represents the time index corresponding to the last received
packet. Then, x̃τk

= 0, as the state xτk
is received by the observer. At time τk + 1,

the estimation error corresponds to the process noise wτk
. The process noise is i.i.d.,

and hence, independent of the state at τk or prior to it. This is also true for any
future estimation error. Thus, we have

P(x̃k|yk
0 , δk

0 ) = P(x̃k|yk
τk , dk) .

The delay since the last transmission, along with the measurement values since the
last transmission form a sufficient statistic for the estimation error. Using this, and
the relationship τk = τk−1 when δk = 0, we obtain (4.9).

Corollary 4.2. For a single system given by (4.1)–(4.2), (4.5)–(4.7), with δk = γk,
the inter-arrival times at the controller are independent.

Proof. The inter-arrival times are given by ti+1 − ti, where {t : dt = 0} denotes the
packet reception instants. Following the successful reception of a packet at time ti,
the future estimation error is independent of x̃ti|ti−1 . For the event-triggering policy
in (4.2), the estimation error x̃ti+s|ti , for s > 1, determines ti+1. Thus, ti+1 − ti is
independent of ti − ti−1.

From Corollary 4.2, we can thus conclude that the event-triggering policy in
(4.2) results in a traffic source that is a renewal process.
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qγ,1 qγ,2 qγ,3 qγ,Fpγ,1
pγ,2 pγ,3 pγ,f

qγ,f

Figure 4.6: A Markov chain model representing the event-triggering policy in (4.2),
when there is no exogenous network traffic. The estimation error grows with delay,
resulting in different probabilities for events and non-events until F .

4.3.2 Markov Chain Representation

Using Lemma 4.1, we construct a Markov chain to represent the event-triggering
policy, as shown in Figure 4.6. The state indices m = {0, . . . , F} represent the
memory of the event-triggering policy in (4.2). A return to the state m = 0 denotes
a successful transmission, when the estimation error is reset to zero. From here on,
the number of terms contributing to the input of the event-triggering policy con-
tinue to grow, as can be seen from the expression

∑k−1
l=τk−1

A(k−l−1)wl. For m < F ,
we see two transitions out of every state; one to the next state m+ 1 indicating a
non-transmission, and the other to 0 indicating a successful transmission. The cor-
responding probabilities are denoted qγ,m+1 and pγ,m+1, respectively, and defined
as

pγ,m+1 = P



∣∣∣∣

k−1∑

l=k−(m+1)

A(k−l−1)wl

∣∣∣∣
2

> ∆(mk)

∣∣∣∣dk−1 = mk


 , m < F ,

qγ,m+1 = 1 − pγ,m+1 .

(4.10)

For m = F , there are two transitions again, but a non-transmission returns to the
same state, with probability qγ,f = 1 − pγ,f . The probability pγ,f is defined as in
(4.10), with m = F − 1.

Event Probabilities: The probabilities of events and non-events in (4.10) can
be computed given the event thresholds in (4.2), though this computation is not
trivial as the estimation error does not have a Gaussian distribution. However, an
event-triggered policy can be specified both in terms of event-thresholds or event-
probabilities. For the rest of this chapter, we assume that the event-triggering policy
in (4.2) is specified in terms of event probabilities, rather than event thresholds. The
conversion from event probabilities to event thresholds becomes relevant when the
event-triggering policy must be implemented, and we deal with that in Section 4.6.

Effect of independent Packet Losses: It is straightforward to extend the above
model to include independent packet losses, which occur with probability pL. A
simple change of variables, with pL

γ,m = pγ,m · (1 − pL) in place of pγ,m and
qL

γ,m = 1 − pL
γ,m in place of qγ,m gives us our modified Markov chain. This is
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because the future estimation error and events remain independent of the past, af-
ter a transmission, and hence the statement of Lemma 4.1 continues to hold when
there are packet losses.

4.4 The Multiple Access Event-triggered Problem

We now look at what happens when there are many event-based systems in the same
network, i.e., nk 6= 0. In this case, the CRM plays an important role as δk 6= γk.
We first examine the consequences of introducing the CRM in the network. Then,
we use introduce Bianchi’s assumption, and use this to construct a Markov model
to represent the dynamics of the event-triggering policy and CRM.

4.4.1 Consequences of the CRM

The CRM impacts the network in two ways. The first consequence is that the
event-triggered policy must be jointly analyzed with the CRM, as has already been
illustrated in Figure 4.2. The other consequence is the correlation introduced be-
tween the various systems due to network interactions. We state and prove this
below.

Lemma 4.3. For the system described by (4.1)–(4.7), the estimation errors corre-
sponding to different plants in the network are correlated, i.e.,

P(x̃1
k, . . . , x̃

M
k ) 6=

M∏

j=1

P(x̃j
k) . (4.11)

Proof. A network that supports R retransmissions must satisfy the constraint∑M
j=1 δ

j
k ≤ R. Due to this, and the definition of δk in (4.3), the probability of a

successful transmission depends on the probabilities of all the events in the network
at time k. This can be expressed as

P(δj
k|γ1

k, . . . , γ
j
k = 1, . . . , γM

k ) 6= P(δj
k|γj

k = 1) . (4.12)

The estimate (4.5) and the corresponding estimation error x̃j
k are determined by

δk. Hence, the estimation error is correlated to all the events at time k. This is true
for all the plants in the network, and thus, they become correlated to one another
as indicated in (4.11).

The above result reaffirms that the CRM introduces correlations between dif-
ferent event-based systems, as has been noted earlier by Cervin and Henningsson
(2008) and also by Rabi and Johansson (2009a). The correlation between the esti-
mation errors leads to correlation in the states, prediction errors and future sched-
uler outputs. An example of a scenario that might arise due to the above result
is as follows; a large estimation error in a system that does not get to transmit,
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perhaps due to random access or collisions, might result in increased congestion for
the entire network due to persistent events from this system. This in turn might
cause the estimation error to grow in other systems, and lead to further congestion.
Hence, the properties in Lemma 4.1 and Corollary 4.2 do not hold for the systems
in such a network, as formally proven below.

Lemma 4.4. For the system described in (4.1)–(4.7), ej
k = {x̃j}k

τk is not a Marko-
vian process. Consequently, the inter-arrival times at the observer are not indepen-
dent.

Proof. The Markovian properties of ej
k in Lemma 4.1 followed from the indepen-

dence of the estimation error, following a transmission, from its past. This is no
longer true when there are interactions through the CRM. To see this, let us ex-
amine the prediction and estimation error following a transmission instant, τ j

k , for
the jth plant and for some k ≥ 0. The prediction error is given by x̃j

τk+1|τk
= wj

τk
,

and it is independent of the estimation error prior to τ j
k due to the independence

of the process noise wj
τk

. Thus, we have

P(x̃j
τk+1|τk

|x̃j
τk|τk

) = P(x̃j
τk+1|τk

) .

Consequently, γj
τk+1 is independent of all the other scheduler outputs. However,

δj
τk+1 is still determined by all the scheduler outputs at time τ j

k + 1, as shown
in (4.12). Thus, the estimation error x̃j

τk+1|τk+1 is correlated with the estimation
errors from all the other plants in the network, as shown in Lemma 4.3, some of
which may be correlated with the estimation error of plant j prior to τ j

k + 1. Thus,
the network interaction reintroduces a correlation with its past, and the estimation
error following a reception instant is not independent of its past. In other words,

P(x̃j
τk+1|τk+1|x̃j

τk|τk
) 6= P(x̃j

τk+1|τk+1) .

Consequently, ek is not Markovian. The lack of independence implies that arrival
times are also correlated in this setup.

A successful transmission for a node in a congested network need not reduce
congestion for the other nodes in the network. The event-backlog may take a few
sampling periods to dissipate. In the meanwhile, new events from the successful
nodes will continue to see traffic conditions similar to those encountered by previous
events from these nodes. Thus, the independence of the estimation error following
a successful transmission is lost due to these network interactions. Analyzing the
joint performance of the event-triggering policy and CRM is a challenging task due
to the correlations in the network.
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4.4.2 Bianchi’s Assumption

We now use an assumption from the seminal paper by Bianchi (2000) that simpli-
fies the network interactions. While presenting this assumption and utilizing it to
construct a model, we consider the simplest setup in the multiple access network,
which corresponds to the case when the CRM permits no retransmissions, i.e.,
R = 1. Accordingly, we denote the CRM access indicator αk,1 simply as αk, with
corresponding probability pα. These results can be extended to include multiple
retransmissions, which we discuss in Section 4.5.3.

Assumption 4.1. For the systems described in (4.1)–(4.7), the conditional prob-
ability of a busy channel for a node that attempts to transmit in steady state, is
given by an independent probability p for each node. Thus,

lim
k→∞

P(δj
k = 0|γj

k = 1, αj
k = 1) = pj , (4.13)

for all j ∈ {1, . . . ,M}.

Simulations in Section 4.6 validate this assumption as a reasonable one to make
for our problem setup. There are two aspects to this assumption; Firstly, (4.13)
removes the correlation of the channel access indicator δj

k with the scheduler outputs
of all the other plants in the network, which was shown in (4.12). Secondly, notice
that pj is not indexed by k; it is a time-average, and results in a steady state
analysis, as we show in the rest of the chapter. Now, we use the independence aspect
to extend the desirable properties of Lemma 4.1 and Corollary 4.2, to systems in
the multiple access network.

Theorem 4.5. For the systems described in (4.1)–(4.7), with Assumption 4.1,
ej

k = {x̃j}k
τk is a Markovian representation for the steady state estimation error at

the observer, x̃j
k, for all j ∈ {1, . . . ,M}. In other words,

lim
k→∞

P(ej
k|{ej}k−1

0 ) = lim
k→∞

P(ej
k|ej

k−1) . (4.14)

Consequently, the inter-arrival times at the observer for each plant is independent.

Proof. In Corollary 4.4, we showed that the estimation error following a packet
reception instant τ j

k +1, for some j ∈ {1, . . . ,M}, is not independent of its past due
to the correlation introduced by δj

τk+1. Re-examining (4.12), with Assumption 4.1,
we now get

P(δj
k|γ1

k, . . . , γ
j
k = 1, . . . , γM

k ) =
∑

αj

k
∈{0,1}

P(δj
k|γj

k = 1, αj
k) · P(αj

k|γj
k = 1) ,

which implies that

lim
k→∞

P(δj
k = 0|γ1

k, . . . , γ
j
k = 1, . . . , γM

k ) = pj · pα + 1 · qα ,

lim
k→∞

P(δj
k = 1|γ1

k, . . . , γ
j
k = 1, . . . , γM

k ) = qj · pα .
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Figure 4.7: A Markov chain representation for the event-triggering policy in (4.2) and
a simple CRM with no retransmissions. The variable F denotes the memory limit of
the transmission history used by the scheduler.

Thus, the dependence on the other scheduler outputs vanishes due to Assump-
tion 4.1. Now, the estimation error remains independent of its past, i.e.,

lim
k→∞

P(x̃j
τk+1|τk+1|x̃j

τk|τk
) = lim

k→∞
P(x̃j

τk+1|τk+1) .

Thus, using the same arguments as in the proof of Lemma 4.1, we can establish
the Markovian property of ej

k in (4.14). Consequently, the inter-arrival times are
independent.

Bianchi’s assumption has converted the traffic source corresponding to the event-
triggering policy and the CRM, into a renewal process. Now, analyzing the perfor-
mance of this network is straightforward.

4.4.3 Markov Chain Representation

We use Bianchi’s assumption to construct a Markov model of the event-triggering
policy and CRM. The presentation in this section corresponds to a single system
in the network, and thus, we skip the index j.

In the Markov chain in Figure 4.7, we assign two indices, (S,m), to each state
and denote the probability of being in the state as p

(S,m)
. The index m represents

the steady state memory of the scheduler and is given by min(dk, F ). The states
(S,m) and (S,m+ 1) are one sampling period away from each other. The index S
represents the four states a packet can be in during a sampling period. These are
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1. S = I [Idle State]: For m > 0, non-events and unsuccessful events return to
this state before the next sampling instant. The initial state (I, 0) indicates the
idle state before the next sampling instant following a successful transmission.

2. S = N [Non-event State]: This state is reached when the scheduler output
γk = 0. A transition out of this state occurs instantaneously, and always to
the idle state to wait for the next sampling instant.

3. S = E [Event State]: This state is reached when γk = 1. A transition out
of this state occurs to the transmission state or the idle state, depending on
the CRM access indicator αk. When αk = 0, the event is discarded and the
system moves to the idle state to wait for the next sampling instant.

4. S = T [Transmission in CRM State]: The CRM’s inclusion can be seen directly
in this state; it is reached only when the CRM permits channel access, or when
αk = 1. Note that only a node in state T actually attempts a transmission.
A transition out of this state occurs instantaneously, with two possibilities:
transmission success or failure.

The transition probabilities in Figure 4.7 are explained below:

• pγ,m and qγ,m denote the probability of an event and non-event respectively,
and are defined in (4.10).

• pγ,f and qγ,f denote the probability of an event and non-event, respectively,
when dk−1 ≥ F .

• pα denotes the probability of accessing the channel through the CRM. Con-
versely, qα = 1 − pα represents the probability of discarding an event.

• p denotes the conditional probability of a busy channel, as defined in (4.13).
A successful transmission occurs with probability q.

Note that the Markov chain in Figure 4.7 represents the event-triggering and
CRM of one system in the network. Thus, each system has its own such Markov
chain, and these interact to produce the busy channel process in (4.13).

4.5 Steady State Performance Analysis

In this section, we use the time-averaged aspect of Bianchi’s assumption along with
the Markov chain in Figure 4.7 to derive a steady state analysis. We also present
extensions to more advanced network settings.



4.5. Steady State Performance Analysis 91

4.5.1 Steady State Performance

Theorem 4.6. For a system described by (4.1)–(4.7), with Assumption 4.1, the
network reliability is given by

pj
δ = (1 − pj) · pj

tx , (4.15)

where, pj is the conditional probability of a busy channel for nodes attempting to
transmit as defined in (4.13), and pj

tx =
∑F

m=1 p
j
(T,m)

is the steady state probability
that a node attempts to transmit, or is in any of the (T,m) states.

Proof. We begin by evaluating the probabilities p
(S,m)

, in steady state, using the
transition probabilities defined above. Then, we describe the interaction between
the Markov models (Figure 4.7) corresponding to each of the systems in the network,
to find an expression for the probability of a successful transmission.

The state (I,m), for m > 0, is always reached unless there is a successful
transmission. The probability of a successful transmission in the mth stage is given
by pγ,mpαq. Thus, we obtain the recursive expression

p
(I,m)

= (1 − pγ,mpαq)p(I,m−1)
, m = 1, . . . , F − 1 ,

p
(I,F )

=
1 − pγ,Fpαq

pγ,fpαq
p

(I,F −1)
. (4.16)

In the final stage, (I, F ) can be reached from state (I, F − 1) and from state (I, F )
itself, which gives us the above equation. Also, at any sampling instant, a node
must be in any of the (I,m) states. Thus, we have

F∑

d=0

p
(I,m)

= 1 . (4.17)

The states (N,m) and (E,m) are reached by transitioning from state (I,m− 1)
with probabilities qγ,m and pγ,m, respectively. Thus, we have p

(N,m)
= qγ,mp(I,m−1)

and p
(E,m)

= pγ,mp(I,m−1)
, respectively, for m = 1, . . . , F − 1. The final states

(N,F ) and (E,F ) can be reached both from (N,F − 1), or (E,F − 1), and from
(N,F ), or (E,F ), respectively. This gives us p

(N,F )
= qγ,F p(I,F −1)

+ qγ,fp(I,F )
and

p
(E,F )

= pγ,Fp(I,F −1)
+ pγ,fp(I,F )

, respectively. The states (T,m), are reached only
from the event states (E,m), and so we have p

(T,m)
= pαp(E,m)

. Note that a node in
any of the (T,m) states gets to transmit. The transmission probability of a node,
denoted ptx =

∑F
m=1 p(T,m)

. A busy channel results when more than one such node
accesses the channel at the same time. For a network with M nodes, the jth node’s
probability of a busy channel is

pj = 1 −
M∏

i6=j,i=1

(1 − pi
tx) , (4.18)
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where pi
tx is the transmission probability of any of the other M − 1 nodes. Note

that we use the independence aspect of Assumption 4.1 here, which simplifies the
analysis.

For a network with M nodes, we have 2M equations (4.17) and (4.18) in 2M
variables, pj

(I,0)
and pj for j ∈ {1, . . . ,M}. These can be solved to find the corre-

sponding steady state solution for each node in the network. Finally, a node that is
successful in transmission, transitions to the state (I, 0). Thus, the probability of a
successful transmission is given by p

(I,0)
in (4.15).

The reliability is a joint measure of transmission obtained from the event-
triggering policy and CRM. Other performance measures can also be found from the
above Markov chain-based analysis. The steady state conditional probability of a
successful transmission given that an event has occurred is given by limk→∞ P(δj

k =
1|γj

k = 1) = pαq
j , which does not depend on the memory of the scheduler in steady

state. This quantity measures the contribution of the CRM and other network
traffic towards congestion, or the lack of it. Similarly, we can evaluate the delay
distribution for a node in this network, as we show below.

Corollary 4.7. The delay distribution for a system described by (4.1)–(4.7), with
Assumption 4.1 and ζ ∈ Z, is given by

Pj
d(ζ) =

{
pj

(I,dk)
pj

γ,dk
pαq

j dj
k < F ,

p̂j
(I,dk)

pj
γ,fpαq

j dj
k ≥ F ,

(4.19)

where p̂j
(I,dk)

= (1 − pj
γ,Fpαq

j)p
(I,F −1)

+ (1 − pj
γ,fpαq

j)(dk−F )p
(I,F )

.

Proof. The probability of a delay d < F is given by the probability of a successful
transmission from the state (T, d) to the state (I, 0), in Figure 4.7. We use the same
principle while computing the probability of a delay d ≥ F . A delay of dj

k = F is
incurred when a successful transmission from (T, F ) is preceded by a transition
from state (I, F − 1) to (I, F ). A delay of dj

k > F is incurred when a successful
transmission from (T, F ) is preceded by dj

k − F transitions from state (I, F ) to
itself and the aforemention transition from state (I, F − 1) to (I, F ). Using the
expressions in (4.16), we obtain (4.19).

Thus, the Markov model in Figure 4.7 helps us characterize the performance of
the event-triggering policy and the CRM, for the entire network.

4.5.2 An Event-triggering Policy as a Set of Probabilities

In the Markov model presented in Figure 4.7, the probability of an event pγ,m varies
with m. This is because the input arguments to the policy, defined in (4.8), and
the event thresholds, ∆ in (4.2), vary with m. Now, given that the event-triggering
policy uses the estimation error as input, the set of thresholds {∆(0), . . . ,∆(F )},



4.5. Steady State Performance Analysis 93

for 0 ≤ m ≤ F , represent the chosen policy. This set of thresholds can be translated
into the corresponding set of probabilities {pγ,1, . . . , pγ,F , pγ,f} using (4.10). Thus,
the set of probabilities are an alternative representation of the chosen policy. In fact,
the set of probabilities can represent any given event-triggering policy. Furthermore,
this set of probabilities determines the performance of the event-based network, as
we saw in Theorem 4.6 and Corollary 4.7. Thus, we consider this set of probabilities
as the specification of our event-triggering policy.

To implement a given event-triggering policy, a set of thresholds corresponding
to the specified set of probabilities must be found. This is not a trivial task, as
the prediction errors are not Gaussian. Furthermore, its probability densities are
determined by the conditional probability of a busy channel p. However, it is worth
noting that finding the set of probabilities corresponding to a set of thresholds
is equally hard, as the underlying density functions need to be evaluated either
way. It is easier to accomplish a translation from one representation to the other
numerically, as we show in Section 4.6.

4.5.3 Extensions to More General Network Settings

We now extend the Markov model presented in Figure 4.7 to include more general
network settings, such as retransmissions in the CRM and asynchrony.

CSMA with retransmissions

A realistic CRM is likely to use retransmissions to spread congested network traffic
over the sampling interval, as described in Figure 2.6. The model corresponding
to such a CRM requires a Markov chain of its own, as shown in Figure 4.8. Here,
the event and CRM states, (E,m) and (T,m) for each m, are replaced by multiple
states, (E,m, r) and (T,m, r), for r = 1, . . . , R retransmission attempts. Each suc-
cessive retransmission attempt sees the same or lesser traffic from all the nodes in
the network, due to a strictly non-negative probability of successful transmission in
the previous attempt. Thus, the resulting Markov chain must have a unique condi-
tional probability of a busy channel, pr, for each retransmission attempt 1 ≤ r ≤ R,
analogous to p in Assumption 4.1.

Assumption 4.2. For the systems described in (4.1)–(4.7), the conditional prob-
ability of a busy channel for a node that attempts to transmit is given by an inde-
pendent probability pr for each retransmission stage and each system. Thus,

lim
k→∞

P(δj
k = 0|γj

k = 1, αj
k,r = 1) = pj

r , (4.20)

for all j ∈ {1, . . . ,M} and all r ∈ {1, . . . , R}.

Generating a complete Markov chain for m = 0, . . . , F , using the states shown in
Figure 4.8, we can re-evaluate all the probabilities in the proof of Theorem 4.6. Note
that only some of the terms change. The probability of an unsuccessful transmission
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Figure 4.8: Embedding a CRM with R distinct re-transmission stages in the Markov
chain model

in the mth stage is now given by
∏R

r=1(pα,rpr +qα,r)pγ,m, as follows from Figure 4.8.
This gives us

p
(I,m)

=
R∏

r=1

(pα,rpr + qα,r)pγ,mp(I,m−1)
, m = 1, . . . , F − 1 ,

p
(I,F )

=

∏R
r=1(pα,rpr + qα,r)pγ,F

1 −
∏R

r=1(pα,rpr + qα,r)pγ,f

p
(I,F −1)

.

The probability of the states (T,m, r) is given by p
(T,m,r)

= (
∏r−1

q=1(pα,qpq + qα,q))
· pα,rpγ,mp(I,m−1)

, and the corresponding probability of transmission from any of

the (T,m, r) states, for different values of r, is given by ptx,r =
∑F

m=1 p(T,m,r)
. Now,

the conditional probability of a busy channel in the rth retransmission stage can be
derived as

pj
r = 1 −

M∏

i6=j,i=1

(1 − pi
tx,r) , for r ∈ {1, . . . , R} . (4.21)

Using the above equations in place of (4.16) and (4.18), we obtain similar expres-
sions for the reliability and delay distribution as in Theorem 4.6 and Corollary 4.7,
respectively.

We present simulations to validate Assumption 4.2 in Section 4.6.

Asynchronous networks

Consider an asynchronous network, with the CRM operating in a beacon-enabled
mode. In this mode, the CRM slots remain synchronized across the network, but
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Synchronous, No retransmissions:

Synchronous, 4 retransmissions:

Asynchronous, No retransmissions:

Asynchronous, 4 retransmissions:

Figure 4.9: A comparison between synchronous and asynchronous traffic, with and
without retransmissions in the CRM. The steady state analysis differs for each traffic
pattern, as nodes in the (T,m) or (T,m, r) states see different traffic patterns under
each configuration.

different systems can choose to initiate sampling at randomly selected CRM slots.
Consecutive samples are spaced by the sampling period T CRM slots, for all the
systems in the network. An illustration of the behaviour, with and without retrans-
missions in the CRM, for synchronous and asynchronous networks, is provided in
Figure 4.9. For an asynchronous network with no retransmissions in the CRM, the
number of interfering transmissions in the (T,m) states is given by Mj < M , where
Mj is the number of nodes whose sampling instants lie in the same CRM slot of
the jth node. Thus, the performance of the network depends on the initial sampling
slots chosen by the nodes. The more spread apart they are, the better the perfor-
mance. For an asynchronous network with retransmissions in the CRM, the steady
state seen by each retransmission state (T,m, r) can only be determined by know-
ing which of the retransmission states of other nodes interferes with transmissions
from the rth stage. Thus, to predict the performance of such a network, one must
know the initial sampling slots chosen by all the nodes in the network.

If we assume that the initial sampling slots are chosen uniformly across a frame,
we can predict the average performance of an asynchronous network. We can com-
pute the conditional probability of a busy channel by averaging across all possible
combinations of interactions in each retransmission state. This averaging makes a
node in the state (T,m, r) see a busy channel due to other nodes in any of their
(T,m, r) states, for all m and r. Thus, the probability of a busy channel is uniform
across all retransmission states, i.e., pj

r = pj for r = 1, . . . , R. The modified version
of Assumption 4.1 is stated below.

Assumption 4.3. For the systems described in (4.1)–(4.7) in an asynchronous
network, the conditional probability of a busy channel for a node that attempts to
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transmit, is given by an independent probability p for all retransmission stages, for
each system. Thus,

lim
k→∞

P(δj
k = 0|γj

k = 1, αj
k,r = 1) = pj , (4.22)

for all j ∈ {1, . . . ,M} and all r ∈ {1, . . . , R}.

To evaluate the probability in (4.22), we average across all the competing trans-
missions during the slots corresponding to state (T,m, r) of the jth node, for some
m and r. There are RM−1 different combinations of interactions between the R
retransmission stages of the other M − 1 nodes in the network, due to different
initial sampling slots. If each of these interactions are equally likely, the resulting
expression is quite simple. The conditional probability can be found to be

pj = 1 −
M∏

i6=j,i=1

(1 − qi
tx) , (4.23)

where qi
tx = (1/R) ·

∑R
r=1 q

i
tx,r denotes the average transmission probability across

all retransmission states. This equation can be used in place of (4.18) to find expres-
sions for the reliability and delay distribution as before. We perform simulations in
Section 4.6 to validate Assumption 4.3 and the resulting analysis. However, note
that to obtain this result, we simulate across RM−1 different combinations of in-
teractions, due to RM−1 different combinations of initial sampling slots. The result
obtained for a single selection of sampling slots can be quite different from the
averaged values.

4.6 Examples and Simulations

We now return to Example 4.1, and apply our analysis to this experimental setup.
We present a number of variations of this example to validate each of the assump-
tions we have used for analyzing different network configurations. In each case, we
present the reliability obtained through Monte-Carlo simulations, and compare it to
the analytical value obtained using the analysis presented above. The differences are
negligible in each case, thus validating our assumptions and verifying our analysis.
We also evaluate the LQG control cost, defined as

lim
N→∞

1
N

N−1∑

n=0

E
[
x⊤

nQ1xn + u⊤
nQ2un

]
,

where Q1 and Q2 are the state and control weighting matrices, respectively. We use
the LQG cost as a control-theoretic performance metric for a given event-triggering
policy.
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Table 4.10: A comparison of analytical and simulated values of p

Parameter Simulation Analysis

pδ 0.1840 0.1872

p1 0.5937 0.5944

p2 0.5655 0.5620

p3 0.5367 0.5277

p4 0.5076 0.4917

p5 0.4778 0.4542

Example 4.2
[Event-Triggering Policy as a Set of Probabilities] We use the same setup described
in Example 4.1, comprising of a homogenous network of M = 10 scalar systems,
with R = 5 retransmissions. The event-triggering policies are described by (4.2),
with constant thresholds. For a chosen set of event probabilities, we discuss the im-
plementation of the event-triggering policy. We also compare the results of Monte-
Carlo simulations with results obtained from our analysis.

The event probabilities are given to be pγ,m =
[
0.3171 0.5138

]
for m =

1, . . . ,M . Computing thresholds from a set of event probabilities is not easy, as
the estimation error distributions are not Gaussian. In fact, a closed-form expres-
sion cannot be found for the distribution, though the evolution of the distribution
can be described iteratively. Thus, we empirically select thresholds which result in
the desired probabilities. In fact, ∆ = 1 achieves the given probabilities.

The values of reliability and the conditional probabilities of a busy channel ob-
tained through simulations and analysis are presented in Table 4.10. The simulated
values agree closely with the analytical values computed using Theorem 4.6. Thus,
Assumption 4.2 is a reasonable approximation and motivates the Markov modelling.

Example 4.3
[Simple Network with No Retransmissions] We now consider a setup consisting of
M = 2 nodes. There are no retransmissions in this network, i.e., R = 1, and the
CRM probability is pα = 0.5. The plant model and event-triggering policy are iden-
tical to the ones in Example 4.1. The scheduler threshold is varied from ∆ = 0 to
∆ = 8 in this experiment. Each value of ∆ results in a set of event probabilities and
a corresponding network performance. The reliability pδ obtained through analysis
and simulations is plotted against the threshold in Figure 4.11. As the threshold
increases, the reliability decreases. Thus, at larger thresholds, too few events are
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Figure 4.11: A comparison of the analytical and simulated values of the reliability
versus the event-triggering threshold, in a simple network with no retransmissions in
the CRM. The close correspondence of these values validates Assumption 4.1 and the
results of Theorem 4.6.

being generated to completely utilize the network resources. Note the close corre-
spondence between the simulated and analytical values, validating Assumption 4.1.
The corresponding control costs obtained through simulations are also plotted in
the graph below, indicating an expected increase in cost with decreasing reliability.

Example 4.4
[Retransmissions in the CRM] We return to the problem setup in Example 4.1, with
M = 10 nodes andR = 5 retransmissions. A comparison of analytical and simulated
values of the reliability versus the threshold for this synchronized network is shown
in Figure 4.12. The performance obtained from the network is, in accordance with
expectations, poor due to synchronization and congestion. Low thresholds cause
many packets to flood the network, and result in a low probability of a successful
transmission due to congestion. High thresholds reduce the utilization of the net-
work, and the probability of a successful transmission decreases again. Note that
there is a threshold that optimizes use of the network resources. A system-level
performance analysis is required to characterize this threshold.
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Figure 4.12: A comparison of the analytical and simulated values of the reliability
versus the scheduler threshold, with retransmissions in the CRM. This example validates
Assumption 4.2. Note that low thresholds result in a low P(δk = 1) due to congestion.
High thresholds also result in a low P(δk = 1), but due to under-utilization of the
network.

Example 4.5
[Unsaturated Traffic] In this example, we look at sparse traffic and show that
Bianchi’s assumption holds well even in this scenario. We have now validated
Bianchi’s assumption in two different scenarios, with and without retransmissions
in the CRM. However, Bianchi’s assumption is theoretically motivated by a mean
field analysis. Thus, it is important to ascertain that this assumption holds just
as well when there is not much traffic in the network. So, consider a network with
M = 2 nodes and R = 5 retransmissions in the CRM. The sampling period corre-
sponds to T = 5 CRM slots. Thus, each of the nodes has sufficient slots to transmit
successfully. The plant model and event-triggering policy are the same as in Exam-
ple 4.1.

A comparison of the reliability obtained for different thresholds is shown in
Figure 4.13. Note that the maximum reliability obtained in this network is for the
lowest value of the threshold, i.e., ∆ = 0. In other words, all samples are chosen
as events, and even so, the network is largely successful in delivering them to the
respective controllers. Also note that the reliability falls sharply as the threshold
increases, indicating that too few events are generated to fully utilize the available
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Figure 4.13: A comparison of the analytical and simulated values of the reliability
versus the scheduler threshold, with unsaturated traffic. There are just 2 nodes in the
network and the CRM permits 5 retransmissions. Even so, Bianchi’s assumption seems
to hold, indicating that this is a good approximation of unsaturated and saturated
network conditions.

network resources.

Example 4.6
[Asynchronous Traffic] We now look at an asynchronous network, with M = 5
nodes, a sampling period of T = 3 slots and R = 2 retransmissions in the CRM. The
plant model and event-triggering policy are identical to the setup in Example 4.1.
The persistence probabilities of the CRM are chosen to be pα,1 = pα,2 = 0.4. A com-
parison of the reliabilities obtained for various thresholds is shown in Figure 4.14.
The analytical and simulated values bear close correspondence, thus validating As-
sumption 4.3. Note that the values obtained in this experiment are averaged across
all possible selections of initial sampling slots by all five nodes in the network.
The results may be quite different for a given selection of initial sampling slots. In
other words, the highest reliability obtainable from this system may far exceed the
average reliability shown in Figure 4.14.
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Figure 4.14: A comparison of the analytical and simulated values of the reliability versus
the event-triggering threshold, for an asynchronous network. The network consists of 5
nodes, with sampling periods of 3 slots and 2 retransmissions in the CRM. The reliability
obtained through analysis and simulations is averaged across all possible selections of
initial sampling slots by the 5 nodes in the network. This plot validates Assumption 4.3.

4.6.1 Discussion

Let us now compare the results we have obtained in the above examples, to com-
ment on the underlying network configurations. Examples 4.3 and 4.5 deal with
networks consisting of two closed-loop systems each, but permitting one and five
re-transmissions, respectively. The higher number of retransmissions results in a
significantly higher reliability, and correspondingly lower LQG cost. This can be
seen by comparing Figures 4.11 and 4.13. Example 4.4 deals with a network con-
sisting of ten synchronized closed-loop systems and five retransmissions. The ratio
of transmissions slots to number of systems is equal to 0.5, which is the same as for
Example 4.3. A comparison of Figures 4.12 and 4.11 indicates a slightly reduced
reliability in the multiple retransmission case, especially for small values of the
event-triggering threshold ∆. This can be attributed to the increase in congestion
at every sampling instant in a synchronized network with more systems. The relia-
bility curve for the asynchronous network in Figure 4.14 improves the performance
for small values of ∆.

We now comment on Bianchi’s assumption, which has been shown to hold un-
der different network configurations. The above results validate the use of Bianchi’s
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assumption for modelling the interactions of event-triggering policies and CRMs.
Previously, Bianchi’s assumption has been shown to hold in setups where the prob-
ability of accessing the network in different stages results from independent random
processes, such as random backoffs in CSMA/CA. The probability of accessing the
network in our model is not independent in each stage, as the estimation error for
event-triggering policies is correlated to its past, as shown in Lemma 4.4. Thus, what
we have here is a new configuration for the applicability of Bianchi’s assumption.
A theoretical motivation of this assumption is beyond the scope of this chapter. An
explanation of Bianchi’s assumption in the context of CSMA/CA is presented by
Bordenave et al. (2010).

4.7 Summary

In this chapter, we have presented a method to analyze the performance of a net-
work of event-based systems that use a CRM to access the shared network. We have
shown that a Markov model can be constructed to represent the event-triggering
policy and CRM, once we use Bianchi’s assumption. Based on this model, we have
analyzed the steady state performance of the resulting network. This analysis as-
sumed conditional independence from other traffic when a node attempts to trans-
mit. We validated this assumption through simulations, and provided extensions to
more complex network configurations.

We now have a model for the interference on a multiple access channel with
state-based channel access policies. Bianchi’s conditional independence assumption
provides us a conceptually simple model for this interference, with one caveat. The
busy channel probability is a nonlinear function of the parameters of the channel
access policy itself. Despite this, the model we have presented in this chapter can
be used to analyze the behaviour and control performance of an event-based system
in this network. It can also be used to design an event-based system, as we show in
the next chapter.



Chapter 5

Stability Analysis and Design

We are now ready to design a network of event-based systems. Our design method-
ology develops on the results we have achieved so far: We know how to choose event-
triggering and control policies to obtain separation in the feedback loop, using the
dual predictor architecture. Furthermore, we know how to model the network inter-
actions between multiple event-based systems, each of which use the dual predictor
architecture along with a contention resolution mechanism (CRM). In other words,
we have a model for the interference in a multiple access channel from a network
of event-based systems. We now use this interference model to analyze the stability
of each event-based system. Then, we use the results of this analysis to design a
network of event-based systems that guarantee stability.

In the previous chapter, we considered event-triggering policies that detect a
level crossing in the plant output. The thresholds in our event-triggering policy
were allowed to vary over time, to allow the event-triggering policy to adapt to
the traffic in the network. However, we did not specify how these thresholds or
triggering levels were to vary with the delay since the last successful transmission.
If the physical medium causes packet losses, then altering the triggering level to
permit more frequent transmissions improves the packet reception rate (Rabi and
Johansson, 2009a). However, this strategy may not work when packets are lost
due to collisions. This is because increasing the number of events may increase the
number of collisions. Thus, the triggering levels may have to be altered to reduce
the number of transmissions, so as to alleviate congestion in the network. This is the
same principle used in congestion control in TCP/IP or in the backoff mechanism
in carrier sense multiple access (CSMA) protocols. However, will such a policy lead
to stability of the networked control system (NCS)? In other words, how should
the levels be selected, to ensure stability of the network and stability of the control
system? Answering this question is one of the main objectives of this chapter.
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5.1 Contributions and Related Work

There are two main contributions in this chapter. Our first contribution is to iden-
tify stability conditions for a network of event-based systems. To analyze stability
of this network, we use the network-interaction model proposed in Chapter 4. Here,
Bianchi’s assumption (Bianchi, 2000) is used to decouple interaction between the
various loops, resulting in a steady state Markov model. A statistical description
of the system evolution through the states of the Markov chain is not analytically
tractable, and hence, we identify an upper bound to describe the system using ma-
jorization theory. We obtain sufficient conditions for Lyapunov mean square stabil-
ity by analyzing the resulting upper bound, and find that this notion of stability is
achievable, if the probability of increasing delay is suitably restricted.

Our second contribution is to use the above stability analysis to design event-
triggering policies that guarantee stability. We introduce a constant-law policy,
where the event probabilities are mandated to remain constant, with increasing
delay. We derive conditions for Lyapunov mean square stability for this policy, and
present a design algorithm that guarantees it for a network of control systems using
this policy. Hence, this chapter delivers an explicit policy that guarantees network
and closed-loop stability under suitable assumptions.

The problem of level selection after a packet loss was introduced by Rabi and
Johansson (2009a), where the authors evaluated the control cost of level triggering
subject to i.i.d. packet losses. Stochastic stability of event-based systems with i.i.d.
intervals between arrivals has been studied by Antunes et al. (2011) and Lemmon
and Hu (2011). However, event arrivals in a contention-based network are not i.i.d,
and the event arrivals considered in this chapter exhibit a dependence on the delay
since the last transmission. The notion of stability that we use in this analysis has
been used by Gupta and Martins (2010), to analyze i.i.d. erasures, with a provision
to extend to Markov models, in NCSs.

The rest of this chapter is organized as follows. The problem formulation, along
with a Markov chain representation, is presented in Section 5.2. The main results
on sufficient conditions for Lyapunov mean square stability are presented in Sec-
tion 5.3, and three design laws are presented in Section 5.4. Some examples follow
in Section 5.5.

5.2 Problem Formulation

We consider a network of M event-based systems, shown in Figure 4.3. We first de-
scribe a model for each event-based system in the network, indexed by j ∈ {1, . . . ,M},
and then present a model for the interaction of the M systems.

5.2.1 Closed-loop System Model

The network on the sensor link can be modelled from the perspective of a single
control system, as illustrated in Figure 5.1. We describe each block in this model
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Figure 5.1: A model of the control system from the perspective of a single NCS in the
network. The other control loops in the network are abstracted by the network traffic
block (N ). The resolution block (R) maps the CRM output α to the channel access
indicator δ. A copy of the observer (O) and controller (C) are required at the scheduler.

below. When the context is clear, we skip the system index j.
Plant: The plant Pj has state dynamics given by

xj
k+1 = Ajx

j
k +Bju

j
k + wj

k , (5.1)

where xj
k ∈ R

n, uj
k ∈ R

m and the initial state xj
0 and the process noise wj

k are i.i.d.
zero-mean Gaussians with covariance matrices Rj

0 and Rj
w, respectively. They are

independent and uncorrelated to each other and to the initial states and process
noises of other plants in the network. This discrete time model is defined with re-
spect to a sampling period T for each plant, and the sampling instants are generated
by a synchronized network clock.
Scheduler: A local scheduler Sj , situated in the sensor node, executes the event-
triggering policy. The event indicator is denoted γj

k ∈ {0, 1}, with γj
k = 1 in the case

of an event. The event-triggering policy uses the innovations process to determine
γj

k, as given by

γj
k =

{
1, ||xj

k − x̂s,j
k|τk−1

|| > ∆j
d,

0, otherwise.
(5.2)

Here, x̂s,j
k|τk−1

= Aj x̂
c,j
k−1|k−1 +Bju

j
k−1 and x̂c,j

k−1|k−1 denotes the estimate at the con-
troller, defined in (5.5) below. Furthermore, τ j

k is the time index of the last re-
ceived packet, given by τ j

k = {max{n,−1} : δj
n = 1, n ≤ k}. Also, ∆j

d > 0 is the
event threshold, and it may vary with the delay d = dj

k , k − τ j
k . The parame-

ters τ j
k and dj

k are illustrated in Figure 3.3. To realize the above event-triggering
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policy, the observer and controller must be replicated within the scheduler, and an
explicit acknowledgement (ACK) of a successful transmission is required.
Network: The network N generates exogenous traffic, as is indicated by nj

k ∈ {0, 1}.
It takes a value 1 when a network source generates an event, and 0 otherwise. The
network traffic is stochastic, and hence, nj

k ∈ {0, 1} is not required to be i.i.d.
CRM: The CRM resolves contention between simultaneous channel access requests.
For simplicity, we assume that the network uses p-persistent CSMA with either no
retransmissions or multiple retransmissions. We describe the CRM without retrans-
missions here, and explain how our model extends to the multiple retransmissions
case in Section 5.2.2. The CRM output is denoted αj

k ∈ {0, 1}, and we have

P(αj
k = 1|γj

k = 1) = p
α

(5.3)

where p
α

denotes the persistence probability of the CRM. Thus, with probability
q

α
= 1 − p

α
, some events are suppressed by the CRM and not permitted to access

the medium. Similarly, αN,j
k is the CRM output for the rest of the network, and

the persistence probability remains the same, i.e., P(αN,j
k = 1|nj

k = 1) = p
α
.

The resolution block (R) maps the CRM outputs αj
k and αN,j

k to the channel
access indicator δj

k, as given by

δj
k = αj

k(1 − αN,j
k ) (5.4)

where (δj
k = 1) indicates that a successful transmission of the event has occurred.

This is possible only when the CRM permits a transmission and none of the other
nodes attempt to transmit.
Observer (Oj): The input to the observer is the received measurement signal
yj

k = δj
kx

j
k. The observer generates the estimate x̂c,j

k|k as given by

x̂c,j
k|k = (1 − δj

k)(Aj x̂
c,j
k−1|k−1 +Bju

j
k−1) + δj

kx
j
k , (5.5)

where the estimate for δj
k = 0 is the model-based prediction from the last received

data packet at time τ j
k . The estimation error is defined as x̃c,j

k|k , xj
k − x̂c,j

k|k , and

P j
k|k = E[x̃c,j

k|k (x̃c,j
k|k )⊤] is the covariance of the estimation error. We denote the

variance as tr{P j
k|k }, where tr is the trace operator.

Controller (Cj): The controller generates the signal uj
k as given by

uj
k = −Ljx̂

c,j
k|k , (5.6)

where Lj is the controller gain chosen to minimize a control cost, such as an infinite
horizon linear quadratic Gaussian (LQG) cost function.

We are interested in investigating mean square boundedness of the plant state
in steady state, or equivalently Lyapunov mean square stability. It is defined below
for a control system in the above network. We skip the index j as the definition is
applicable for each control system.
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Definition 5.1 (Lyapunov Mean Square Stability (Kozin, 1969)). A state is said
to possess Lyapunov mean square stability if given ζ > 0, there exists ξ(ζ) > 0 such
that |x0| < ξ implies

lim sup
k→∞

E[x⊤
k xk] ≤ ζ . (5.7)

The certainty equivalence principle has been shown to hold in the architecture
described in (5.1)–(5.6) in Chapter 3. Thus, we can translate the stability property
in Definition 5.1 from the state to the estimation error, as shown below.

Lemma 5.1. For a control system in the network given by (5.1)–(5.6), there exists
a constant ς, with 0 < ς < ζ, such that (5.7) is equivalent to

lim sup
k→∞

tr{E[Pk|k ]} ≤ ς . (5.8)

Proof. The estimate at the controller in (5.5) can be rewritten as

x̂c
k|k = (A−BL)x̂c

k−1|k−1 + δk(Ax̃c
k−1|k−1 + wk−1) . (5.9)

Since x̂c
k−1|k−1 is the minimum mean square error estimate (see Theorem 3.8), we

have E[x⊤
k xk] = tr{(A−BL)E[x̂c

k−1|k−1 (x̂c
k−1|k−1 )⊤](A−BL)⊤}+ tr{E[Pk|k ]}, which

must be bounded in steady state for stability, as per Definition 5.1. Certainty equiv-
alence implies that the control law ensures mean square boundedness of the estimate
x̂c

k−1|k−1 in (5.9). Hence, the stability condition depends only on the estimation error,
so xk possesses Lyapunov mean square stability iff lim supk→∞ tr{E[Pk|k ]} ≤ ς.

In the rest of the chapter, we identify sufficient conditions that guarantee Lya-
punov mean square stability, in the sense of (5.8), for the states of each of the M
control systems described above. Furthermore, we seek a design procedure for se-
lecting the event thresholds, ∆d, so as to guarantee Lyapunov mean square stability
for the overall network of systems.

5.2.2 Network Interaction Model

We have defined a model and a notion of stability for each control system. Next, we
model the interactions in the network of M control systems, and define a notion of
stability for the entire network. We first present an example to motivate the need
for such a model.

Example 5.1
We consider scenarios corresponding to M ∈ {2, 4, 6, 8, 10} event-based systems.
The rest of the parameters, chosen identically for all the systems in the network, are
A = 1, B = 1, Σw = 1 and ∆d = 0.25, ∀d > 0. The network uses p-persistent CSMA
with 10 retransmissions in the CRM. Retransmissions improve the performance of
a CRM, and are further explained in Remark 5.2.2. From the simulations shown in
Figure 5.2, we see that the upper bound of the state magnitude varies with M .
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Figure 5.2: A comparison of the trace of the plant state x for identical plants in
different sized networks; the event-triggering design appears to result in stability for
small sized networks only.

The result of the example is not surprising. However, it is not clear how we can
identify the network size that can be supported by a given event-triggering policy.
Equivalently, for a given network size, how can we identify a stabilizing event-
triggering policy? From the example, it is clear that the network interaction between
the event-based systems provides the answer. Thus, we now present a model for the
network interactions, and derive stability conditions and stabilizing designs using
this model.

We use a Markov chain to jointly model the event-triggering policy and CRM,
through which each control system interacts with the rest of the network. Since
this model applies to each control system, we skip the index j unless we need it
to explain the interaction between multiple systems. However, it is useful to keep
in mind that every parameter in the following discussion, including probabilities,
are unique to each control system, and must be understood to be indexed by j.
The delay d and an index S are used to denote each state in the Markov chain in
Figure 5.3. The index S ∈ {I,N,E, T } denotes an idle state (I), a non-event state
(N), an event-state (E) and a transmission state (T ), respectively. We denote the
steady state probability of the state (S, d) as π

(S,d)
, and compute these values in

Lemma 5.2. A successful transmission brings the system to state (I, 0), where it
awaits the next sampling instant. If the packet is not transmitted, either due to a
collision or the lack of an event, the delay increases.

Let us trace through the chain for some delay dk−1 = d − 1, beginning with
the plant in the idle state (I, d − 1). At the next sampling instant k, the state
xk is declared to be an event or a non-event. The control system transitions to
(E, d) with event probability p

γ,d
, P(γk = 1|dk−1 = d − 1), or to (N, d) with

complimentary event probability q
γ,d

= 1 − p
γ,d

, respectively. From the non-event
state (N, d), the system transitions directly to the next idle state (I, d), to wait for
the next sampling instant.

An event is sent to the CRM, where it is either transmitted or suppressed. The
control system transitions to (T, d) with persistence probability p

α
, or returns to
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I: Idle
N : Non-event
E: Event
T : Transmission

I, 0

I, 1

I, d

N, 1 E, 1 T, 1

N, d E, d T, d

qγ,1

qγ,d

p
γ,1

p
γ,d

qα pα1 q

p

qα pα1 q

p

I, d− 1

Figure 5.3: A Markov chain representation for the event-triggering policy in (5.2) and
p-persistent CSMA with no retransmissions.

the next idle state (I, d) with complimentary persistence probability q
α

= 1 =
p

α
, respectively. A system in the transmission state, (T, d), sees a busy channel if

another control system in the network is in one of its transmission states, (T, d), for
any d > 0. This happens with probability p, and the packet is lost due to a collision.
The system then returns to the idle state (I, d). With complimentary probability
q = 1 − p, the transmission is successful, and the system transitions to the state
(I, 0), with the delay reset to zero.

We now present our first assumption, used in the construction of the Markov
model.

Assumption 5.1 (Bianchi’s Conditional Independence Assumption). The condi-
tional probability of a busy channel for a node that is ready to transmit (in state
(T, d), for d > 0), is given by an independent probability p. This probability, called
the busy channel probability, can be evaluated as

pj = 1 −
M∏

i6=j,i=1

(
1 −

∞∑

d=1

πi
(T,d)

)
, (5.10)

where, πi
(T,d)

is the steady state probability of the ith control system in the state

(T, d) in the Markov model in Figure 5.3.

This assumption was introduced by Bianchi in his much-acclaimed analysis of
CSMA/CA in 802.11, and has been verified by many studies (Bianchi, 2000; Ra-
machandran et al., 2007; Pollin et al., 2008). For the problem setup considered in
this chapter, it is verified through simulations in Chapter 4.
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Extension to CSMA with Multiple Retransmissions: The CRM typically
makes multiple attempts to transmit the same packet, within a single plant sam-
pling period. This is because the operational time-scale of the CRM is much finer
that that of the control system itself, as discussed in Chapter 2 and indicated in
Figure 2.6. The Markov model presented above can also be used to model such a
CRM, by redefining the conditional probability of a busy channel p. We do this by
first defining a unique conditional probability of a busy channel, pr, for each retrans-
mission attempt 1 ≤ r ≤ rmax. Applying Assumption 5.1 to each retransmission
attempt, the conditional probability of a busy channel in the rth retransmission
instant is given by

pj
r = 1 −

M∏

i6=j,i=1

(
1 −

∞∑

d=1

πi
(T,d,r)

)
, (5.11)

where πi
(T,d,r)

is the steady state probability of the ith control system in the state

(T, d) during the rth retransmission attempt. We now redefine the busy channel
probability p to represent an aggregate conditional probability of a busy channel
across all the retransmission instants, as given by

p = 1 −
1
p

α

(
1 −

rmax∏

r=1

(1 − p
α
qr)

)
, (5.12)

where qr denotes the complimentary probability 1 − pr.

We now analyze the reliability of a link, defined as the probability of a successful
transmission, in this network.

Lemma 5.2 (Reliability Analysis). For a network of event-based systems described
by (5.1)–(5.6) under Assumption 5.1, the network reliability in steady state is given
by limk→∞ P(δk = 1) = π

(I,0)
= q ·

∑∞
d=0 π(T,d)

.

Proof. The steady state distribution of the Markov chain, π
(S,d)

corresponding to
the state (S, d), can be calculated when Assumption 5.1 holds. The steady state
probabilities of a node in the states (I, d) and (T, d), respectively, are given by

π
(I,d)

= (1 − p
γ,d
p

α
q)π

(I,d−1)
, (5.13)

π
(T,d)

= p
γ,d
p

α
π

(I,d−1)
. (5.14)

Then, the probability of a successful transmission is given by P(δk = 1) = π
(I,0)

and
can be obtained by simultaneously solving

∑∞
d=0 π(I,d)

= 1 with (5.10) or (5.12).

We now define network steady state as a notion of stability for the network of
M control systems.

Definition 5.2. The network of M control systems is said to be in steady state
when 0 ≤ p < 1, for the busy channel probability p in (5.12).
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When p = 1, no transmissions occur in the Markov chain in Figure 5.3. Thus,
the network steady state property simply implies that at least some transmissions
occur successfully in the network. We show that network steady state is a necessary
condition for Lyapunov mean square stability, for unstable plants.

Proposition 5.3. For unstable plants with spectral radius ρ(A) > 1 in the network
given by (5.1)–(5.6), network steady state is a necessary condition for Lyapunov
mean square stability, under Assumption 5.1.

Proof. The states (S, d), ∀S ∈ {I,N,E, T }, d ≥ 0, are transient when the busy
channel probability p = 1, except for the infinite-delay states. For an unstable
system, the condition for Lyapunov mean square stability given by (5.8) cannot be
satisfied when p = 1, as the variance of the estimation error at infinite delay is not
bounded.

The above lemma clarifies that a control system cannot be Lyapunov mean
square stable without network stability, in the sense defined above. Thus, we begin
with the necessary condition that network steady state exists, and then proceed
to find conditions for Lyapunov mean square stability. Network steady state is not
sufficient to guarantee Lyapunov mean square stability. However, the Lyapunov
mean square stability conditions we derive guarantee that network steady state
holds.

Necessary Conditions for Bianchi’s Assumption to Hold: The existence of
the independent process in Bianchi’s assumption has been studied by Bordenave
et al. (2010), among others. The conditions for the decoupling to occur would pro-
vide necessary conditions for Proposition 5.3. An analysis of such conditions for
stability of the control system is out of the scope of this chapter.

From Event Thresholds to Event Probabilities: Note that the event thresh-
olds do not directly appear in the Markov model in Figure 5.3. The model uses a
set of event probabilities {p

γ,d
}, in place of the event thresholds {∆d} to represent

the event-triggering policy. The event probabilities are obtained using the event
thresholds and the underlying distributions. This alternative representation affords
no loss of generality.

We now summarize the design approach used in this chapter. We use a two step
strategy to design a stabilizing event-triggering policy. First, we select a stabilizing
set of event probabilities, and then, we find a set of event thresholds that result
in the designed event probabilities. The motivation for this strategy is because
our analysis of a network of event-based systems is parameterized by the event
probabilities, rather than the triggering levels, as we saw in the above model. To
select suitable event probabilities, we first find conditions that guarantee stability
of the control systems in the network, and then outline a design process based on
these conditions, as depicted in Figure 5.4.
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Select {p
α,r

}, {p
γ,d

}

Compute p, {π
(I,d)

}

Stable?

Yes

No

Figure 5.4: The event probabilities {p
γ,d

} and the persistence probability {p
α,r

} are
the inputs to our design process. The stability conditions that we derive in this chapter
give us a stability guarantee, as an output. The Markov model parameters, p in (5.12)
and {π

(I,d)
} in (5.13), are intermediary parameters that must be computed to check

the stability conditions.

5.3 Stability Analysis

We use the Markov chain in Figure 5.3 to analyze the stability of each control
system in this section. This analysis includes the effect of all the other control
systems in the network through the parameters of the Markov chain. We dispense
with the system index j in this section, as our analysis applies to each control
system in the network. We begin with the main stability result in this section, and
then develop its proof. To arrive at this proof, we examine the underlying density
of the estimation error, and construct an auxiliary system that furnishes an upper
bound for the variance of each control system.

5.3.1 Main Result: Stability Conditions for the Markov Chain

We begin by presenting one of the main results of the chapter. It is a sufficient
condition for stabilizing the Markov chain in Figure 5.3, in a Lyapunov mean square
sense.

Theorem 5.4. Consider the network of control systems (5.1)–(5.6) and suppose
Assumption 5.1 holds. Let ρ(Aj) denote the spectral radius of the jth control system.
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Figure 5.5: A sufficient condition for Lyapunov mean square stability that requires
the network reliability, π

(I,0)
, to be greater than the line demarcating the regions, with

respect to the spectral radius ρ(A). Thus, unstable processes require a higher network
reliability to guarantee stability.

For 1 ≤ j ≤ M , if

lim sup
d→∞

πj

(I,d+1)

πj
(I,d)

<
1

1 + ρ(Aj)2
(5.15)

holds, then each of the control systems in the network is Lyapunov mean square
stable.

The proof is presented in Section 5.3.5. The above result requires the probability
of the idle states in the tail of the Markov model in Figure 5.3 to decrease in a
stipulated manner, as determined by the spectral radius of each control system
ρ(A). The larger the value of ρ(A), the sharper is the mandated fall off in the
probabilities of the idle states.

The role of the spectral radius suggests a similarity to other mean square sta-
bility results in NCSs, particularly for packet losses in the sensing or actuation
channel (Gupta and Martins, 2010; Kar et al., 2012) and encoder design for data
rate limited channels (Nair and Evans, 2004; Tatikonda and Mitter, 2004a,b). The
results for packet loss channels specifies a critical probability of loss, beyond which
a control system cannot be stabilized in the mean square sense. This result is ob-
tainable only under a Bernoulli packet loss model, which cannot be applied to our
problem setup. The stability result in the case of encoder design specifies a stabiliz-
ing rate, derived from a source coding perspective. The Markov model we consider
in Figure 5.3 is quite general, and a more specific stability result is difficult to
find. In practice, one must find a finite parameterization of the Markov model pa-
rameters to obtain a stability condition that can be checked, as illustrated for an
event-triggering design that we present in Section 5.4.

Plant versus network stability: Network steady state is not sufficient to guar-
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antee Lyapunov mean square stability. This can be seen by noting that the condition
for the busy channel probability, p < 1, as required by network steady state, implies
that π

(I,d+1)
< π

(I,d)
. Thus, network steady state ensures that the loop is sometimes

closed, as against the case p = 1, when the loop is never closed. But, this feedback
may not be sufficient to stabilize the control system, in the sense of Definition 5.1.
However, Lyapunov mean square stability for all M control systems in the network
ensures a network steady state, in the sense of Definition 5.2. To see this, note that
π

(I,d+1)
<

π
(I,d)

1+ρ(A)2 < π
(I,d)

, for all ρ(A) > 0. Hence, network steady state is indeed
achieved by the control systems in stability.

Unstable Processes: Let us assume that we choose the event probabilities such
that (5.15) is true for all d ≥ 0, as opposed to the tail of the sequence alone. Then,
using (5.15) in

∑∞
d=0 π(I,d)

= 1, we get a lower bound for the network reliability as
π

(I,0)
> ρ(A)2/(1 + ρ(A)2). This implies that the network reliability must lie above

the line shown in Figure 5.5, and thus, unstable processes require a higher network
reliability to guarantee stability.

Role of the Persistence Probability: Using the recursive relationship for the
idle state probabilities p

(I,d+1)
in (5.13), along with the sufficient condition in (5.15),

we obtain

lim sup
d→∞

(1 − p
γ,d+1

p
α
q)π

(I,d)

π
(I,d)

<
1

1 + ρ(A)2
,

which can be rearranged to obtain lim supd→∞ p
γ,d
q > κ

α
, where κ

α
= 1

pα

ρ(A)2

1+ρ(A)2 .
The value of κ

α
can be tuned by varying the persistence probability p

α
. A small

value for p
α

can increase the lower bound for p
γ,d
q, which in turn can improve the

network reliability.

We first attempt to prove Theorem 5.4 directly by examining the underlying
density of the estimation error. This is a difficult approach, as we show in Sec-
tion 5.3.2. Then, we construct auxiliary systems in Sections 5.3.3 and 5.3.4, and
use these systems to prove Theorem 5.4 in Section 5.3.5.

5.3.2 A Difficult Direct Approach

We seek an expression for the variance of the estimation error. Let us associate
with each state (S, d) for S ∈ {I,N,E, T } a probability density function (PDF) for
the estimation error (filtered or predicted) at the controller, denoted by φ

(S,d)
, for

the appropriate estimation error corresponding to the state (S, d) of the Markov
model.

Then, the variance of the estimation error conditioned on a delay d is given by
tr{Pd}, where Pd =

∫∞
−∞ x̃x̃⊤φ

(I,d)
(x̃)dx̃. Marginalizing over the idle state distribu-

tion, we get

tr{E[Pk|k ]} =
∞∑

d=0

tr{Pd}π
(I,d)

. (5.16)
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The above expression is simple, but the PDFs can be hard to evaluate. To see
why, let us look at the evolution of these PDFs as the delay d increases. For
d = 0, φ

(I,0)
:= limk→∞ φ(x̃c

k|k−1 |δk−1 = 1) is the PDF associated with the pre-
dicted estimate, one step after a transmission. Clearly, φ

(I,0)
= φN (Σw), where

φN is the PDF of a normal distribution with covariance Σw. For any delay d,
the PDFs associated with the event (γk = 1) and non-event (γk = 0) states are
truncated versions of the PDF associated with the previous idle state. They can
be defined as φ

(N,d)
:= limk→∞ φ(x̃c

k|τk−1
|γk = 0, dk−1 = d − 1) and φ

(E,d)
:=

limk→∞ φ(x̃c
k|τk−1

|γk = 0, dk−1 = d− 1), respectively. Thus, we get

φ
(N,d)

=





φ
(I,d−1)

(x̃)

q
γ,d

|x̃| ≤ ∆d ,

0 otherwise ,
, φ

(E,d)
=





φ
(I,d−1)

(x̃)

p
γ,d

|x̃| > ∆d ,

0 otherwise ,
(5.17)

where, q
γ,d

=
∫∆d

−∆d
φ

(I,d−1)
(x̃)dx̃ is the probability of a non-event and p

γ,d
= 1−q

γ,d

is the probability of an event.
Then, let us denote ed as the innovations process that does not get transmitted

after a delay d, and denote its PDF as φe
(I,d)

:= limk→∞ φ(x̃c
k|k |δk = 0, dk = d). This

PDF can be rewritten as

φe
(I,d)

=φ
(N,d)

(x̃) ·
q

γ,d

q
γ,d

+ p
γ,d

(q
α

+ pp
α
)

+ φ
(E,d)

(x̃) ·
(q

α
+ pp

α
)p

γ,d

q
γ,d

+ p
γ,d

(q
α

+ pp
α
)

Substituting for φ
(N,d)

and φ
(E,d)

from (5.17), we obtain

φe
(I,d)

=




φ

(I,d−1)
(x̃) · 1

q
γ,d

+p
γ,d

(qα +ppα ) |x̃| ≤ ∆d

φ
(I,d−1)

(x̃) · (qα +ppα )
q

γ,d
+p

γ,d
(qα +ppα ) |x̃| > ∆d

(5.18)

The PDF of the idle state with delay d is defined as φ
(I,d)

:= limk→∞ φ(x̃c
k+1|τk

|dk =
d). For a plant with an invertible A matrix1, we can use the state update equation
in (5.1) to find an expression for φ

(I,d)
as

φ
(I,d)

=
1

| det(A)|
φe

(I,d)
(A−1x̃) ∗ φN (Σw) , (5.19)

where ∗ denotes the convolution operator.
The above operations must be performed recursively, to obtain the PDF asso-

ciated with the state (I, d). This computation is in general hard. Hence, we find
auxiliary systems that result in upper bounds for the variance of the estimation
error in the following subsections.

1If the matrix A is non-invertible, the PDF corresponding to the idle state is no longer defined
in R

n. A measure on the subspace orthogonal to the null-space of A is absolutely continuous
w.r.t. the Lebesgue measure, and the PDF, along with the expected value or covariance, is defined
using this measure. Thus, the approach presented in this chapter is applicable for plants with
non-invertible A matrices. However, for ease of exposition, we present the results assuming that
A is invertible.
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Figure 5.6: An illustration of symmetric rearrangement in Definition 5.4. The level
sets of the PDF on the left are symmetrically placed around the origin, to obtain the
symmetric rearrangement on the right. An example of a level set is G, given by the
union of the three shaded segments on the left. The symmetric rearrangement of this
level set results in Gσ on the right, with length equal to the sum of the lengths of the
three shaded segments on the left. From this figure, it is easy to see how the variance
of the symmetrically rearranged PDF is always less than the variance of the original
PDF (Lemma 5.5).

5.3.3 Auxiliary PDFs for First-Order Systems

We wish to find an upper bound for the variance of the estimation error in the idle
states of the Markov chain. To do this, we must first find a sequence of PDFs, φ̂

(I,d)
,

that are more ‘spread out’ than the PDFs φ
(I,d)

. We use stochastic majorization to
do this. Our approach, in this section, is restricted to first-order systems, due to a
symmetry requirement on PDFs. In the following section, we extend these results
to higher-order systems using other methods that give us more conservative results.
We need the following notation and definitions, adapted from Hajek et al. (2008),
to define majorization.

Definition 5.3 (Symmetric Non-increasing Function). A function f : R
n → R

is said to be symmetric non-increasing if f(x) = φ(|x|), for some non-increasing
function φ on R

+, where |x| denotes the Euclidean norm of x ∈ R
n.

Given any integrable, non-negative function, we wish to ‘rearrange’ the function
to obtain a symmetric non-increasing function. The exact sense in which we rear-
range the function is defined below. We begin with a definition for the symmetric
rearrangement of a Borel set. Then, we apply this definition to the level sets of a
non-negative function, and obtain its symmetric rearrangement. We illustrate this
notion in Figure 5.6.

Definition 5.4 (Symmetric Rearrangement). Let G ∈ B be a Borel set in R
n, with

finite Lebesgue measure L(G). The symmetric rearrangement of G, denoted by Gσ,
is the open ball in R

n centered at the origin, with measure L(Gσ) = L(G).
For an integrable, non-negative function h on R

n, its symmetric non-increasing
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rearrangement, denoted hσ is given by

hσ(x) ,
∫ ∞

0

I{x′:h(x′)>l}σ (x)dl , (5.20)

where I{x′:x′∈G}σ (x) = {x : x ∈ Gσ}, denotes the set of elements belonging to the
symmetric rearrangement of its argument set G.

We now define majorization with the help of the distribution functions corre-
sponding to the symmetrically rearranged densities.

Definition 5.5 (Majorization). Given two PDFs φa and φb on R
n, we say that φa

majorizes φb, denoted as φa ≻ φb, if

∫

|x|≤ρ

φσ
a(x)dx ≥

∫

|x|≤ρ

φσ
b (x)dx , ∀ρ ≥ 0 .

Thus, φa, as per the above definition is more contained, or less spread out, than
φb. Some results involving the majorization operator are listed in Appendix B.
The most important consequence for us is that we obtain an upper bound for the
estimation error variance. This is stated below.

Lemma 5.5 (Ordering of Estimation Error Variance). If φa and φb are sym-
metric non-increasing PDFs on R

n such that φa ≻ φb, then
∫∞

−∞ |x|2φa(x)dx ≤∫∞
−∞ |x|2φb(x)dx.

Proof. Use h(x) = |x|2 in Lemma B.5 to obtain the results.

We now describe the PDFs that we are interested in, as adapted from Lipsa and
Martins (2011).

Definition 5.6 (Neat PDF). We say that a PDF φ is neat if it is quasi-concave
and if there exists a real number r such that φ is non-decreasing on (−∞, r] and
non-increasing on [r,∞).

Note that PDFs on R are symmetric non-increasing if and only if they are neat
and even. Thus, for neat PDFs, the definition of majorization can be directly applied
to the PDF itself. Using Definition 5.5, we find a more spread out φ̂

(I,d)
, as stated

below.

Lemma 5.6. Let the auxiliary PDF, φ̂
(I,d)

, be defined by the recursive relation

φ̂
(I,d)

=
1
A
φ̂

(I,d−1)
∗ φN ,

with φ̂
(I,0)

= φN . Then, φ
(I,d)

≻ φ̂
(I,d)

for all d ≥ 0.
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Proof. We show this using induction. Trivially, at d = 0, φ
(I,0)

= φ̂
(I,0)

= φN .

Let us assume that, for some d, φ
(I,d)

≻ φ̂
(I,d)

. Then, from (5.18), we can show
that φe

(I,d+1)
≻ φ

(I,d)
. To see this, recall that φe

(I,d+1)
is obtained by appropriately

combining the truncated PDFs for the event and non-event states, as shown in
(5.18). Then, we have

• For |e| ≤ ∆d+1, we have

∫ e

−e

φ
(I,d)

(x̃)

q
γ,d+1

+ p
γ,d+1

(q
α

+ pp
α
)
dx̃ ≥

∫ e

−e

φ
(I,d)

(x̃)dx̃ ,

because q
γ,d+1

+ p
γ,d+1

(q
α

+ pp
α
) ≤ 1.

• For |e| > ∆d+1, we have

∫ −e

−∞
φ

(I,d)
(x̃)

(q
α

+ pp
α
)

q
γ,d+1

+ p
γ,d+1

(q
α

+ pp
α
)
dx̃

+
∫ ∞

e

φ
(I,d)

(x̃)
(q

α
+ pp

α
)

q
γ,d+1

+ p
γ,d+1

(q
α

+ pp
α
)
dx̃

≤

∫ −e

−∞
φ

(I,d)
(x̃)dx̃+

∫ ∞

e

φ
(I,d)

(x̃)dx̃ ,

because (qα +ppα )
q

γ,d+1
+p

γ,d+1
(qα +ppα ) ≤ 1.

Since φe
(I,d+1)

≻ φ
(I,d)

and φ
(I,d)

≻ φ̂
(I,d)

, we have

φe
(I,d+1)

≻ φ̂
(I,d)

1
A
φe

(I,d+1)
(
x̃

A
) ≻

1
A
φ̂

(I,d)
(
x̃

A
)

φN ∗
1
A
φe

(I,d+1)
(
x̃

A
) ≻ φN ∗

1
A
φ̂

(I,d)
(
x̃

A
) ,

where, the last two expressions are obtained from the results of Lemma B.4 and
Lemma B.1, respectively. Hence, φ

(I,d+1)
≻ φ̂

(I,d+1)
.

Worst-Case Evolution of the System: The PDFs given by φ̂
(I,d)

correspond
to the evolution of the control system when the busy channel probability p = 1,
in the Markov model. For such systems, no event is successfully transmitted, and
hence, the density of the tail (|x̃| > ∆) is never reduced, due to a perpetually busy
channel (p = 1). Thus, the gaussian property of the estimation error is retained
and its PDF is given by φ̂

(I,d)
.
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5.3.4 Auxiliary PDFs for Higher-Order Systems

In this section, we find an upper bound for the variance of the estimation error,
for higher-order systems. The PDF of the state for such control systems need not
be symmetric, and hence, the results developed in the previous section cannot be
directly applied to such systems. We denote the multivariate PDFs in this section
with Φ in place of φ.

We now find an upper bound for the variance of the estimation error associated
with the Markov chain states (I, d) for all d ≥ 0, by finding suitable PDFs Φ̂

(I,d)
.

We first define the matrix Ā = ρ(A)In, where ρ(A) is the spectral radius of A and
In ∈ R

n×n is an identity matrix. Let var(Φ) denote the variance of the PDF Φ. We
now have the following bound on the variance, cf. Lemma 5.6.

Lemma 5.7. Let the auxiliary PDF, Φ̂
(I,d)

, be defined by the recursive relation

Φ̂
(I,d)

(x̃) =
1

| det(Ā)|
Φ̂

(I,d−1)
(Ā−1x̃) ∗ ΦN ,

with Φ̂
(I,0)

= φN (Σw). Then, var(φ
(I,d)

) ≤ var(Φ̂
(I,d)

) for all d ≥ 0.

Proof. We show this using induction. Trivially, at d = 0, Φ
(I,0)

= Φ̂
(I,0)

= ΦN (Σw).
Thus, the variances are equal for d = 0. Let us assume that, for some d > 0,
var(φ

(I,d)
) ≤ var(Φ̂

(I,d)
). We denote the variance of ed, the innovations process that

does not get transmitted after a delay d, as var(φe
(I,d+1)

), following the notation in
(5.18). Then, we show that var(φe

(I,d+1)
) ≤ var(Φ

(I,d)
) in Lemma B.6. Combining this

with our induction assumption, we obtain var(Φ̂
(I,d)

) ≥ var(φ
(I,d)

) ≥ var(φe
(I,d+1)

).
At the next sampling instant, the state is updated according to the state-space

model, with a linear transformation and an addition of process noise. The linear
transformation of a random vector results in the PDFs denoted Φe,+

(I,d+1)
for the

original system, and Φ̂+
(I,d)

for the auxiliary system. The transformed PDFs are
given by

Φe,+
(I,d+1)

=
1

| det(A)|
Φe

(I,d+1)
(A−1x̃)

Φ̂+
(I,d)

=
1

| det(Ā)|
Φ̂

(I,d)
(Ā−1x̃) .

The variances can be written as

var(Φe,+
(I,d+1)

) = tr{AΣe
(I,d+1)

A⊤} = tr{Σe
(I,d+1)

A⊤A}

var(Φ̂+
(I,d)

) = tr{ĀΣ̂
(I,d)

Ā⊤} = tr{Σ̂
(I,d)

Ā⊤Ā} ,

where Σe
(I,d+1)

and Σ̂
(I,d)

are the covariance matrices associated with PDFs Φe
(I,d+1)

and Φ̂
(I,d)

, respectively. Now, note that Σe
(I,d+1)

and A⊤A are symmetric matrices,
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ql,1 ql,2 ql,d ql,d+1

Figure 5.7: The majorized PDFs, from Lemma 5.6, along with the probabilities from
the original Markov chain are combined to describe a lossy sensor link. The estimation
error variance of this system is an upper bound for the control system.

and that their product Σe,+
(I,d+1)

is also a symmetric matrix. Thus, the matrices
commute, and we can apply the spectral value inequality to obtain ρ(Σe,+

(I,d+1)
) ≤

ρ(Σe
(I,d+1)

) · ρ(A⊤A). Furthermore, tr{Σ̂
(I,d)

Ā⊤Ā} = ρ2(A)var(Φ̂
(I,d)

). Combining

these facts, we obtain var(φe,+
(I,d+1)

) ≤ var(Φ̂+
(I,d)

).
We have not yet accounted for the addition of process noise in the state update.

This operation results in an addition of a constant term tr{Rw}, corresponding to
the variance of the process noise wk, to both the original and auxiliary system. Thus,
the variance ordering is preserved, and we have the desired result var(φ

(I,d+1)
) ≤

var(Φ̂
(I,d+1)

).

Lossy Network as Upper Bound: The PDFs of the auxiliary systems are used
along with the probabilities in the Markov chain in Figure 5.3 to upper bound the
variance of the estimation error of the control system. The resulting approximation
describes the evolution of a system with a lossy sensor link, albeit with a loss
probability that varies with delay, as shown in Figure 5.7. The loss probability is
given by p

l,d
= 1 − p

γ,d
p

α
q. The estimation error covariance of this system for zero

delay is clearly P̂0 = Σw, and for all other delays d > 0, is given by

P̂d = ρ(A)2P̂d−1 + Σw . (5.21)

5.3.5 Proof of Theorem 5.4

Let us now prove the stability conditions in Theorem 5.4 using the auxiliary systems
we have identified.

Proof. The estimation error covariance can be bounded from above, using the ap-
proximations from Lemma 5.6, as

tr{E[Pk|k ]} =
∞∑

d=1

π
(I,d)

tr{Pd} ≤
∞∑

d=1

π
(I,d)

tr{P̂d} .
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For this expression to be bounded (Rudin, 1976), we require

lim sup
d→∞

π
(I,d+1)

tr{P̂d+1}

π
(I,d)

tr{P̂d}
< 1 .

Since tr{P̂d} = Σw(1 + ρ(A)2 + · · · + ρ(A)2(d−1)), the left hand side of the above
inequality can be written as

lim sup
d→∞

π
(I,d+1)

π
(I,d)

[
1 + ρ(A)2 ρ(A)2(d−1)

1 + ρ(A)2 + · · · + ρ(A)2(d−1)

]

≤ lim sup
d→∞

π
(I,d+1)

π
(I,d)

[1 + ρ(A)2] .

By requiring the last expression to be strictly less than 1, we satisfy the condition
in (5.15) required to obtain Lyapunov mean square stability.

5.4 Event-Triggering Policy Synthesis

We now look at the problem of designing stabilizing event-triggering policies. In
particular, how should the event probabilities {p

γ,d
} be chosen as a function of

d to achieve Lyapunov mean square stability? We can immediately think of three
possible ways to let the event probabilities vary with the delay: holding it a constant,
additively increasing or decreasing it, or multiplicatively increasing or decreasing it.
We discuss the constant-probability policy in detail and identify stability conditions
for such policies. We then discuss the feasibility of the other policies briefly.

5.4.1 Constant-Probability Policy

The constant-probability policy provides a constant event probability for all delays,
i.e. p

γ,d
= p

γ
, for all d > 0. Using the lossy network model from Section 5.3, we

identify stability conditions for this particular policy.

Theorem 5.8. For the control system given by (5.1)–(5.6), a sufficient condition
for Lyapunov mean square stability for the constant-probability event-triggering pol-
icy is given by

p
γ

( rmax∑

r=1

(
q

r
·

rmax−1∏

r=1

(1 − p
α
q

r
)
))

>
1
p

α

(1 −
1

ρ(A)2
) . (5.22)

Proof. Using a constant scheduling law, note that the lossy network model has a
constant loss probability, p

l
= 1 − p

γ
p

α
q. Thus, the estimation error variance in

this model, given in (5.21), converges if

p
l
ρ(A)2 < 1 .
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Substituting for p
l

above from (5.12), and rearranging, we obtain the condition in
(5.22).

The constant-probability policy results in simple, closed-form expressions for
the probability of successful transmission p

I,0
and the loss probability p

l
. To see

this, note that the sum of the probabilities of the idle states is given by the sum of
a geometric series,

∑∞
d=0 π(I,d)

= π
(I,0)

∑∞
d=0 p

d
l
. Thus, we have

π
(I,0)

= p
γ
p

α
q , (5.23)

using the expression for the loss probability, where q is the complimentary busy
channel probability 1 − p. The conditional probability of a busy channel in each
retransmission attempt can be computed using (5.11) and (5.14) as

∞∑

d=1

p
T,d,r

= p
γ
p

α

r∏

s=1

(1 − p
α
qs)

∞∑

d=1

π
(I,d−1)

which leads to

pr = 1 −

(
1 − p

γ
p

α

r∏

s=1

(1 − p
α
qs)
)M−1

, r ∈ {1, . . . , rmax} (5.24)

Equations (5.23)–(5.24) along with (5.22), gives us the event probability p
γ,d

for
a given persistence probability p

α
, that guarantees Lyapunov mean square stability.

The flowchart in Figure 5.4 gives us a set of p
α

and p
γ

that generate a stable system.
We present an example of this design procedure in Section 5.3.

5.4.2 Additive-Probability Policy

The additive-probability policy is designed to provide an additive increase/decrease
in the event probability with delay, i.e., p

γ,d
= p

γ,d−1
+ ν, for ν ≷ 0. Note that

limd→∞ p
γ,d

→ ∞ for ν > 0 and limd→∞ p
γ,d

→ −∞ for ν < 0. Thus, we
let the additive terms decrease in magnitude, such that

∑∞
d=1 νd is bounded and

limd→∞ p
γ,d

< 1. Many such examples can be found. A simple example is

p
γ,d

= p
γ,1 + η + η2 + · · · + ηd−1 , (5.25)

which gives rise to an increasing law when η > 0, and a decreasing law when η < 0.
Thus, p

γ,∞
= p

γ,1
+ η

1−η , and p
γ,1

and η must be chosen such that p
γ,1

< 1 and
p

γ,∞
< 1. Then, we can apply Theorem 5.4 to identify designs that are guaranteed

to result in Lyapunov mean square stability.

5.4.3 Exponential-Probability Policy

The exponential-probability policy is designed to provide an exponential increase
or decrease in the event probability with delay, i.e., p

γ,d
= µp

γ,d−1
, for µ < 1.



5.5. Example 123

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Innovations Process (log scale)

P
ro

b
a
b
il
it
y

 

 
Real

Approximate d

d

Figure 5.8: The approximate PDF in Lemma 5.6 is majorized by the actual PDF, as
seen in this comparison of the CDFs. The approximate distribution has a larger variance,
and is an upper bound for the actual variance.

Note that if µ > 1, p
γ,d

increases exponentially with delay and the sequence of
event probabilities {p

γ
}∞

1 diverges. For µ < 1, the decreasing probability law can
be checked for Lyapunov mean square stability using Theorem 5.4.

5.5 Example

We now illustrate some of the results presented in this work. We begin with an
illustration of the upper bound derived in Section 5.3.3. Our next example illus-
trates how the sufficient conditions for Lyapunov mean square stability, presented
in Theorem 5.4, can be used to infer stability properties of the control system. Our
third example illustrates the design of a constant-law scheduler that guarantees
Lyapunov mean square stability. The final example illustrates the selection of event
thresholds corresponding to a given design.

Example 5.2
[Illustration of Majorization] In Lemma 5.6, we find an approximating PDF φ̂

(I,d)
,

which is majorized by the real PDF φ
(I,d)

, for all delays d > 0. We illustrate this
for a control system with parameters A = 2, B = 1, Σw = 1 and a constant event
threshold ∆d = 1, for all d > 0. The CRM persistence probability is set to p

α
= 1,

and the conditional probability of a busy channel is p = 0.6. For this setup, we
compare the cumulative distribution function (CDF) corresponding to φ

(I,d)
, with

the CDF corresponding to φ̂
(I,d)

, for d = {1, . . . , 5}, in Figure 5.8. The arrows

indicate the increasing delays. Clearly, φ
(I,d)

≻ φ̂
(I,d)

, for each of the five delays,
according to Definition 5.5. This figure also illustrates why the estimation error
covariance of the approximated PDF is greater than that of the real PDF.
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Figure 5.9: The shaded region denotes the set of event and persistence probabilities,
p

γ
and p

α
, respectively, that guarantee Lyapunov mean square stability. We use the

sufficient conditions in Theorem 5.8, for a constant-probability scheduler, to determine
Lyapunov mean square stability.
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Figure 5.10: A surface plot of the network reliability π
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, and the probability of loss
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l
, respectively, versus the event probability p

γ
and the persistence probability p

α
, for

a constant-probability scheduler.
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The auxiliary system was chosen to correspond to the worst-case evolution of
the real system, with saturated network traffic. Thus, the upper bound is tighter
for a large busy channel probability p and small state transition matrix A.

Next, we return to Example 5.1, where we illustrated that different network sizes
result in different stability properties. We use our sufficient conditions for Lyapunov
mean square stability to confirm the observed stability properties for two network
sizes.

Example 5.3
[Checking for Lyapunov Mean Square Stability] We consider two network scenarios:
case 1 corresponds to a network with M = 2 nodes and case 2 to a network with
M = 10 nodes. The control systems in both network scenarios are identical to the
systems described in Example 5.1, and so is the CRM. We use Theorem 5.4 to show
that in case 1, Lyapunov mean square stability is achievable, and that in case 2,
Lyapunov mean square stability cannot be guaranteed. This can be seen by using
(5.15), where we see that the idle state probabilities must achieve a ratio of less
than 0.5 for large d. Case 1 achieves a ratio of less than 0.1 for d > 10, whereas
case 2 has a ratio of 0.98 even after d = 50. The Lyapunov mean square stability
properties can be inferred from a trace of the state x as illustrated in Figure 5.2.

In the next example, we illustrate the design procedure outlined in Figure 5.4.

Example 5.4
[Constant-Probability Policy] We consider a network of M = 5 control systems with
identical parameters A = 1.5, B = 1 and Σw = 1, and rmax = 10 retransmissions in
the CRM. For simplicity, we assume that the persistence probability p

α
is constant

for all retransmission attempts. Using an algorithm similar to the one outlined in
the flowchart in Figure 5.4, we obtain the set of event probabilities p

γ
, and the set

of persistence probabilities p
α
, that result in Lyapunov mean square stability. The

results are depicted in Figure 5.9. The shaded region in the figure corresponds to
this set. In Figure 5.10, we present surface plots of the network reliability π

(I,0)
and

the probability of loss p
l
, respectively, versus p

γ
and p

α
. It is interesting to note

the importance of jointly selecting p
γ

and p
α
.

Now, we compare the Lyapunov mean square stability regions obtained for the
same network, but with control system parameters A = 1.25 and A = 2, i.e., less
unstable and more unstable systems, respectively. The surface plots of the probabil-
ity of successful transmission are shown in Figure 5.11(a) and Figure 5.11(b). The
shaded regions in Figure 5.12(a) and Figure 5.12(b) denote the sets of event and
persistence probabilities that guarantee Lyapunov mean square stability. Notice
how the Lyapunov mean square stability region given by our sufficient condition in
Theorem 5.4 shrinks as A increases.

We now illustrate how to select event thresholds for an event probability p
γ

and
persistence probability p

α
chosen from the outcome of Example 5.4.
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Figure 5.11: Surface Plots of the probability of transmission success, for A = 1.25
(left) and A = 2 (right). The region guaranteed to be Lyapunov mean square stability
by our sufficient conditions shrinks considerably for highly unstable control systems.

Example 5.5
[Selecting Event Thresholds] For the control system with parameters A = 1.5, ,
B = 1 and Σw = 1, choose p

γ
= 0.8 and p

α
= 0.4. This choice of probabilities yields

a network reliability of π
(I,0)

= 0.7056 and a loss probability of p
l

= 0.2944, from
Figure 5.9 and Figure 5.10, respectively. The delay distribution for the constant-
probability scheduler is easily seen to be given by P(dk = d) = π

(I,0)
· pd

l
, for any

delay d ≥ 0. The exponential delay distribution considerably simplifies our task.
We now need to identify only a set of D event thresholds, where we choose D
to be sufficiently larger than the smallest probability we wish to consider. In this
example, we choose D = 12.

We now numerically compute event thresholds that give us the above event
probabilities. To do this, we simulate the evolution of distributions described in
(5.17)–(5.19), and assign the event thresholds as ∆d := t :

∫
|x|≤t

φddx = p
γ
, for all
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Figure 5.12: Plots indicating the region of stability, for A = 1.25 (left) and A = 2
(right). The region guaranteed to be Lyapunov mean square stability by our sufficient
conditions shrinks considerably for highly unstable control systems.
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Table 5.14: A comparison of analytical and simulated values of p
γ

Event Threshold Simulated Event Probability Designed Event Probability

∆1 = 0.2533 0.8000 0.8000

∆2 = 0.3444 0.7992 0.8000

∆3 = 0.3874 0.8006 0.8000

∆4 = 0.4027 0.8042 0.8000

∆5 = 0.4093 0.8068 0.8000

∆6 = 0.4098 0.8095 0.8000

∆7 = 0.4199 0.8067 0.8000

∆8 = 0.4198 0.8071 0.8000

∆9 = 0.4299 0.8030 0.8000

∆10 = 0.4297 0.8035 0.8000

∆11 = 0.4500 0.7943 0.8000

∆12 = 0.4500 0.7890 0.8000

d ≥ 0. We present the event thresholds, thus identified, in Figure 5.5. To validate our
design procedure, we run Monte Carlo simulations using the thresholds identified
above, and confirm that the event probabilities we obtain are as desired, as shown
in Figure 5.5. For delays larger than D = 12, the probabilities we obtain are not
accurate, as there are too few instances of these events to result in a precise value.

5.6 Summary

We have presented a design for a network of event-based systems that ensures
stability of each control system and of the entire network. Each control system
uses a CRM to access the shared network. The event-triggering policy and the
CRM sometimes result in congestion, and consequently packet losses and delays.
To counter this, our design for the event-triggering policy guarantees Lyapunov
mean square stability for each control system in the network. Our event probability
designs were based on the stability analysis presented in this chapter.

With this, we conclude our presentation of event-based systems. In the next
chapter, we look at another realization of a state-based channel access method.



Chapter 6

State-based Prioritized Access

In this chapter, we consider a state-based prioritized channel access mechanism.
The prioritized approach presented here can be thought of as an alternative to the
event-based approach presented so far. It is also an extension, in a sense, of the
event-based approach. An event-triggering policy can be seen as a prioritization
policy that generates two priority levels. It also chooses different channel access
probabilities for each priority level, even if one of them is simply zero. We now
extend this approach to a multilevel prioritization policy for a network of control
systems. We present a design for a prioritization policy, along with an analysis of
the resulting network and control performance.

Consider the scenario depicted in Figure 6.1, where a number of physical sys-
tems are monitored or controlled over a shared wireless network. This is typical
of wireless sensing and actuating networks, where many sensors monitor physical
systems and transmit the collected data to a Data Processing Unit (DPU) across
a shared network. In sensor networks, the DPU may track the state of the physical
system. In actuating networks, the DPU may issue a control signal to regulate the
state of the physical system. In either case, the sensing link from each system to
the DPU belongs to a shared network, as depicted in the figure. We wish to design
a prioritized multiple access protocol for this network. Wireless actuating networks
differ from sensor networks due to the consequences of delayed control action on
critical dynamical processes (Walsh and Ye, 2001; Schenato et al., 2007). The com-
munication infrastructure for such a network must meet harsher time constraints,
in proportion to how far the state or measurement is from the nominal value. At
the same time, the sensing paradigm continues to apply to actuating networks; im-
plying that there are many nodes in the shared network. Thus, any multiple access
protocol must be scalable with network size.

A prioritized access mechanism addresses most reliability concerns. In the ab-
sence of a prioritized access mechanism, a sensor containing critical information
could be blocked by a sensor containing regular or non-critical measurements. Static
priorities are easy to implement, but often inefficient. A fire detector in a chemical
plant is likely to be assigned a higher priority than a temperature sensor monitor-

129



130 State-based Prioritized Access

N

P1

PM

Pj

Data
Processing

Unit
(DPU)

123

Data Frame

Slot 3

Slot 1

Slot 2

Figure 6.1: An overview of a multiple access network (N ) of plants (Pj), j ∈
{1, . . . ,M}, with prioritized access in the MAC. The plant sensors communicate a
priority to the network, which evaluates it distributedly, and suitably orders data pack-
ets in the frame.

ing operational levels, but the temperature measurements at most time instants
are likely to contain more important information regarding operation of the plant
as compared to routine (safe) measurements from the fire detectors. Dynamic pri-
orities based on information in the current measurements solves the problem, but
these are hard to assign and evaluate in a wireless network. A protocol that al-
lows for prioritization of data based on the current measurement, in a distributed
setting, would meet all the above requirements.

6.1 Contributions and Related Work

The main contribution of this chapter consists of a method of assigning measurement-
based priorities. A node evaluates the criticality of the current measurement to be
transmitted to the controller or monitoring unit and assigns an appropriate pri-
ority. The priority is a measure of the attention that a packet requires from the
controller, and hence called the attention factor. These priorities are evaluated in
a distributed manner, through a tournament. The throughput and delay of such
an access mechanism are analyzed. This analysis is verified through simulations.
We also find an upper-bound for the resulting estimation and control costs in the
network.

In addition, we provide an implementation of the tournaments on low-rate wire-
less devices using IEEE 802.15.4 (IEEE, 2006) compliant radios. This is meant as
proof-of-concept, to illustrate that the proposed mechanism is compatible with cur-
rent radio transceivers, and can be implemented on current off-the-shelf hardware.
We explore the throughput-tradeoffs in the implementation, and include these ef-
fects in our analysis. The protocol is implemented as part of the IEEE 802.15.4 stan-
dard (IEEE, 2006), which serves as the basis for Zigbee (ZigBee Alliance, 2005). We
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also present experimental results from the KTH wireless testbed, with the proposed
modifications to the protocol.

Previous attempts at introducing priorities within the carrier sense multiple ac-
cess protocol with collision avoidance (CSMA/CA) include arbitration of interframe
space or contention window differentiation, such as in IEEE 802.11e (Bianchi et al.,
2005). This protocol still results in random access, but with prioritized access prob-
abilities. It also does not allow for sufficient priority levels, as will be required when
the priorities are based on the current measurement. In this chapter, we introduce
a prioritized access scheme with transmission slots reserved for nodes that win a
tournament. The idea of a tournament to resolve contention-based on static priori-
ties is already prevalent in the literature, e.g., the CAN Bus Protocol (Robert Bosch
GmbH, 1991) and its recent adaptation to wireless networks in WiDOM (Pereira
et al., 2007). However, the priority mechanism in our proposal is dynamic, and
priorities are assigned to data packets, not to nodes.

The idea of using the state or measurement of a physical system to determine
channel access has been prevalent for some time now (Walsh et al., 1999; Otanez
et al., 2002; Yook et al., 2002). The deviation in the state from the nominal value
was used to determine a priority in Try-Once-Discard (TOD) (Walsh et al., 1999).
Deadbands around the nominal value were used to limit the use of the channel by
Otanez et al. (2002) and Yook et al. (2002). Both these ideas have given rise to
many related works, which we discuss below.

Maximum error first is the prioritization principle used in TOD, to guarantee
input-to-state stability for deterministic systems with disturbances. The implemen-
tation of the original idea was centralized, and required a network coordinator to
collect and compare errors from the various physical processes in the network. This
contention-free implementation has been extended to include effects of packet losses
in Tabbara and Nesić (2008). Recently, a distributed implementation for this pro-
tocol has been conceived and successfully implemented in Christmann et al. (2014),
but without evaluating the robustness of the implementation to information loss.
In contrast, this chapter deals with state-based priorities for stochastic processes,
where the priorities are allocated and evaluated in a distributed manner. The em-
phasis in this chapter is on performance, not just stability. Finally, the design and
analysis methods presented in this chapter are shown to be easily extended to in-
clude packet losses from a real implementation.

A state-based priority can be viewed as an M -ary extension of binary-valued
events. Consequently, many of the analytical results in this chapter build on results
from the literature in stochastic event-triggered systems (Åström and Bernhardsson,
1999). Structural results for the closed-loop system that motivate the use of policies
such as maximum-error-first have been explored in Molin and Hirche (2013) and in
Chapter 3 of this thesis. The network interactions that result from state-based ac-
cess methods introduce correlations between exogenous processes, as pointed out in
Cervin and Henningsson (2008) and Rabi and Johansson (2009a). The state-based
policy presented in this chapter circumvents these complications, while retaining
the benefits of using the state to determine channel access. A related work from
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the event-triggered literature is presented in Araujo et al. (2014), which explores a
dynamic utilization policy for the Time Division Multiple Access (TDMA) slots of
the IEEE 802.15.4 protocol.

The outline of the chapter is as follows. We formulate the problem in Section 6.2.
We present the attention factor formulation and the tournament access mechanism
in Section 6.3, and analyze the performance of this protocol in Section 6.3.3. We
explain the implementation of tournaments in Section 6.4, motivate the choice of
many parameters in the protocol. Finally, we illustrate the simulation and experi-
mental results in Section 6.5.

6.2 Problem Formulation

We consider a network of M processes and their respective sensors, which com-
municate over a shared channel, as shown in Figure 6.1. Access to the network
is determined by a state-based priority, and the priorities are evaluated in a dis-
tributed manner. Sensors that secure access transmit their packets in the chosen
order. Each system in this network views the rest of the network through the model
depicted in Figure 6.2. The blocks in this figure are explained below.
Plant: Each plant Pj , for j ∈ {1, . . . ,M} has state dynamics given by

xj
k+1 = Axj

k +Buj
k + wj

k , (6.1)

yj
k = Cxj

k + vj
k , (6.2)

where the state xj
k ∈ R

n and the measurement yj
k ∈ R

m. The initial state xj
0,

the process noise wj
k and the measurement noise vj

k are i.i.d. zero-mean Gaussians
with covariance matrices R0, Rw and Rv, respectively. If the physical process is not
part of a control loop, there is no control term in the state equation, i.e., B = 0.
This discrete time model is defined with respect to a sampling period T for each
plant, and the sampling instants are generated by a synchronized network clock.
The different plants in the network are driven by exogenous noise processes. We
comment on an extension to heterogeneous networks in Section 6.3.
Kalman Filter: A Kalman filter (KF) is implemented in each sensor to provide
an estimate x̂s,j

k|k , where the superscript ‘s’ denotes the estimator at the sensor, and
is given by

x̂s,j
k|k = x̂s,j

k|k−1 +Kf,ke
j
k , x̂

s,j
k|k−1 = Ax̂s,j

k−1|k−1 +Buj
k−1 , (6.3)

whereKf,k denotes the Kalman gain, ej
k denotes the innovation in the measurement,

and x̂s,j
k|k−1 denotes the predicted estimate. The innovation is defined as

ej
k = yj

k − Cx̂s,j
k|k−1 . (6.4)

The Kalman gain is defined as Kf,k = P s
k|k−1C

⊤R−1
e,k, where Re,k = CP s

k|k−1C
⊤+Rv

is the covariance of the innovation ej
k. The prediction error covariance is given by
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Figure 6.2: A mathematical model of a single system in the network. The system
itself consists of a plant (P), a Kalman filter (KF) at the sensor, a state-based priority
synthesizer (S) and a Data Processing Unit (DPU) across the network. The priority αk

is used to determine access to the shared network. The rest of the traffic sources in the
network are abstracted away into the network block (N ), and this block produces an
aggregate priority αN

k , a vector of all the other priorities in the network. The priorities
are evaluated in the Tournament block (T ), and δk ∈ {0, 1} indicates if the current
packet is successfully transmitted across the network or not, respectively.

P s
k|k−1 = AP s

k−1|k−1A
⊤ + Rw and the filtered error covariance is given by P s

k|k =
P s

k|k−1 −Kf,kRe,kK
⊤
f,k.

State-based Priorities: There is a local scheduler S, situated in the sensor node,
between the plant and the network, which calculates the state-based priority, αj

k,
of the data packet. This block is formulated using a policy f , as given by

αj
k = fk(ωs,j

k ) , (6.5)

where, ωs,j
k ∈ Ωs,j

k and Ωs,j
k is the σ-algebra generated by the information set at

the scheduler, given by I
s,j
k =

{
{x̂s,j}k|k

0|0 , {y
j}k−1

0 , {αj}k−1
0 , {δj}k−1

0 , {uj}k−1
0

}
. The

notation {c}b
a := {ca, . . . , cb}, for a ≤ b.

Network: The network N generates other traffic, with an aggregate priority αN,j
k ,

which denotes a vector of all the other priorities in the network.
Tournament Block: The tournament T resolves contention between multiple
simultaneous channel access requests. The channel access indicator δj

k ∈ {0, 1} is
given by

δj
k = T (αj

k, α
N,j
k ) . (6.6)

DPU: The DPU receives zj
k = δj

kx̂
s,j
k|k , and utilizes the estimate of the state x̂s,j

k|k ,
when it receives it, in monitoring, control or detection applications. With no loss of
generality, we assume that the DPU contains an estimator followed by a controller.
The estimate at the DPU is denoted x̂c,j

k|k , where the superscript ‘c’ indicates the
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controller, and is given by

x̂c,j
k|k = δj

kx̂
s,j
k|k + (1 − δj

k)x̂s,j
k|τk

, (6.7)

where τk is the time index of the last received packet. The estimation cost is given
by the average estimation error variance at the DPU,

JE = tr{E[P c,j
k|k ]} , (6.8)

where P c,j
k|k is the estimation error covariance at the controller and tr{·} is the trace

operator.
The controller implements a policy gk, defined on the σ-algebra generated by

the information set of the controller, given by I
c,j
k =

{
{zj}k

0 , {δj}k
0 , {uj}k−1

0

}
. The

control policy is typically chosen to minimize the infinite horizon Linear Quadratic
Guassian (LQG) control cost, given by

JC = lim
N→∞

1
N

N−1∑

k=0

E

[
(xj

k)⊤Q1x
j
k + (uj

k)⊤Q2u
j
k

]
, (6.9)

where the weighting matrices, Q1 and Q2, are non-negative and positive, respec-
tively.

In this chapter, we present a formulation for the prioritization policy fk and the
tournament mechanism T . We identify properties of the resulting access mecha-
nism, and provide an analytical expression for the probability of a successful trans-
mission P(δj

k = 1). We also characterize the estimation and control costs, JE and
JC , respectively. In addition to the above theoretical investigations, we design a
modification to the existing IEEE 802.15.4 standard, to include tournaments, and
implementing the resulting protocol on state-of-the-art low-rate wireless devices
with IEEE 802.15.4 compliant radios. We validate the analysis using a wireless
networked control experimental setup.

6.3 Protocol Design and Analysis

We now present the main theoretical results in this chapter. We begin by introduc-
ing a formulation for the priorities, and identifying some of its properties. Then, we
present tournaments as a mechanism to evaluate priorities in a distributed man-
ner. We also present a network-level performance analysis of the resulting access
mechanism. We use the results of this analysis to evaluate upper bounds for the
estimation and control costs for systems that use this access mechanism.

6.3.1 Attention Factor

In this section, we derive an expression for the state-based priorities and in doing
so, identify the scheduling policy fk in (6.5). The priorities are assigned by each
sensor node to its own data packet, in isolation from the rest of the network.
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The attention factor is an adaptive priority designed to call the attention of
the DPU to the current data in the node, and to connote a penalty in not being
able to transmit this data. At some time k − 1, the jth sensor delivers a measure-
ment yj

k−1 to its local estimator (KF), which computes the estimate x̂s,j
k−1|k−1 . Let

us assume that the node is successful in sending this estimate to the DPU over
the network. The estimator at the DPU (6.7) can generate future estimates as
x̂c,j

k|k = x̂s,j
k|k−1 ,x̂c,j

k+1|k+1 = x̂s,j
k+1|k−1 , and so on. The motivation for allocating channel

resources to the sensor in order to deliver the next packet to the DPU, is the innova-
tion ej

k in the measurement yj
k, given by (6.4). The risk in not being able to deliver

this packet can be assigned a value equal to a function of the difference between the
predicted estimates x̂s,j

k+1|k−1 = Ax̂s,j
k|k−1 + Buj

k and x̂s,j
k+1|k = Ax̂s,j

k|k + Buj
k. In fact,

the quantity x̂s,j
k+1|k−1 − x̂s,j

k+1|k , is an indicator of the minimum risk in not delivering
the current packet, as the risk will only be larger if the packet at time k − 1 did
not reach the DPU. We have used the predicted estimate in the formulation so far
to emphasize process dynamics and make the attention factor sensitive to unstable
systems. To further emphasize the dynamics, the prediction horizon need only be
extended further more.

Since we deal with estimation and control in this chapter, let us look at a
distortion-like function of the quantity described above.

Definition 6.1 (Minimum Risk Indicator). The increase in the sample variance
of the prediction error due to not receiving a packet at time k is denoted ∆P j

samp,k

and given by

∆P j
samp,k = fMRI(y

j
k) := tr{(x̂s,j

k+1|k − x̂s,j
k+1|k−1 ) · (x̂s,j

k+1|k − x̂s,j
k+1|k−1 )⊤} . (6.10)

∆P j
samp,k is an empirical quantity based on knowledge of the measurement yj

k, and

can be rewritten as ∆P j
samp,k = tr{AKf,ke

j
k(ej

k)⊤K⊤
f,kA

⊤}.

A prioritized transmission scheme based on the quantity ∆P j
samp,k should ideally

result in

δj
k = Tideal({∆P i

samp,k}M
i=1) :=

{
1 j = arg maxi ∆P i

samp,k ,

0 otherwise ,
(6.11)

for the jth sensor node. Thus, the node with the largest priority gets to transmit. We
use this idealized tournament to inspect the merits of the prioritization mechanism.
First, note that the expected value of the minimum risk indicator can be shown to
be proportional to the minimum increase in the variance of the prediction error at
the DPU due to not possessing information about the measurement yj

k, i.e.,

E[∆P j
samp,k] = tr{AKf,k E[ej

k(ej
k)⊤]K⊤

f,kA
⊤} = tr{P s

k+1|k−1 − P s
k+1|k } .

Thus, the quantity ∆P j
samp,k can be said to be proportional to the increase in

the per sample variance of the prediction error at the DPU. Then, let ∆Psys,k ,
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∑M
j=1 ∆P j

samp,k be the net increase in the sample variance of the prediction error due

to not possessing information about measurements {y
j
k}M

j=1 from all the nodes in the
network at time k. Using ∆Psys,k as an optimization index, we find that the resulting
channel access mechanism is an optimal scheduling policy in a resource constrained
network. In addition, the prioritization mechanism results in a few desirable system-
level properties, such as separation between designs of the scheduler, observer and
controller, and a minimum mean-squared error (MMSE) estimate with a simple,
Kalman filter-like recursive update. All of these are compiled in the lemma below.

Proposition 6.1 (Properties of the Minimum Risk Indicator). For the network of
M systems given by (6.1)–(6.6), with fk = fMRI(y

j
k) for 1 ≤ j ≤ M as in (6.10)

and T = Tideal({∆P i
samp,k}M

i=1) as in (6.11), it holds that:

i. The resulting scheduling policy minimizes ∆Psys,k.

ii. The estimate (6.7) minimizes the mean-squared estimation error.

iii. The DPU estimates are correlated, but the network traffic remains inde-
pendent.

iv. The optimal control policy for a closed-loop system in this network is cer-
tainty equivalent.

Proof. To prove Claim i, let us define the ratio ηj
k , ∆P j

samp,k/∆Psys,k. In the
prioritized access scheme in (6.11), the channel is allotted to the data packet which
maximizes ∆P j

samp,k. This also maximizes ηj
k, which implies that

max
j

ηj
k = max

j

tr{(x̂s,j
k+1|k − x̂s,j

k+1|k−1 ) · (x̂s,j
k+1|k − x̂s,j

k+1|k−1 )⊤}
∑M

j=0 tr{(x̂s,j
k+1|k − x̂s,j

k+1|k−1 ) · (x̂s,j
k+1|k − x̂s,j

k+1|k−1 )⊤}
.

Thus, the data packet (measurement) which results in a maximum reduction of the
sample variance of the prediction error is allotted channel access. Thus, priorities
based on ∆P j

samp,k result in a sample-wise optimal scheduling strategy given limited
communication resources.

We now prove Claim ii. At any time k, let τk denote the time index of the last
received packet by the jth controller. Then, the MMSE estimate E[xj

k|Ic,j
k ] is given

by

E[xj
k|Ic,j

k ] = Ak−τk x̂s,j
τk|τk

+
k−τk∑

n=1

An−1Buj
k−n

︸ ︷︷ ︸
x̂s,j

k|τk

+E[xj
k − x̂s,j

k|τk
|{δj}k

τk+1 = 0]

= 1{δj

k
=1}x̂

s,j
k|k + 1{δj

k
=0}x̂

s,j
k|τk

= x̂c,j
k|k ,
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where the second expression above is obtained by virtue of the symmetric prioriti-
zation policy. The term E[xj

k − x̂s,j
k|τk

|{δj}k
τk+1 = 0] vanishes when δj

k = 0 due to the
symmetric function of the innovations chosen for fMRI in (6.10). Thus, the estimate
in (6.7) is indeed the MMSE estimate.

To see how Claim iii holds, note that E[xj
k|Ic,j

k ] is determined by δj
k, the channel

access indicator. Since only a fixed number of nodes can access the channel, the
variables {δj

k}M
j=1 are correlated. Thus, the network interaction induces a correla-

tion in the estimates E[xj
k|Ic,j

k ] across the network. However, the network traffic
is determined by the priorities assigned to the nodes, which are functions of the
independent innovations process. Thus, our choice of fMRI in (6.10) results in in-
dependent traffic, despite the network interactions.

The choice of the scheduling policy fk at each node is a symmetric function
of the innovations process, and thus, the closed-loop system is free of a dual effect
(from Chapter 3). This implies that the optimal control policy for a linear quadratic
cost is certainty equivalent, as stated in Claim iv.

Thus, our choice of the prioritization policy fMRI results in many desirable prop-
erties, both for the network and the system. Importantly, fMRI results in indepen-
dent network traffic due to its dependence on the innovations ej

k alone, simplifying
the analysis and design considerably. A prioritization policy based on the entire pre-
diction error, (x̂s,j

k+1|k − x̂s,j
k+1|τk

), rather than on ej
k alone, might well result in better

estimation and control costs. However, analyzing and designing such a scheme for
a network of systems would certainly be more complex, and we comment on this
later. Furthermore, our optimization index ∆Psys,k is a greedy index, emphasiz-
ing the current increase in per sample variance rather than the expected increase.
Nevertheless, such a choice can still result in considerable benefits in terms of the
estimation and control performance, as indicated by Theorem 6.8.

The tournament mechanism Tideal is impractical as it compares real-valued pri-
orities. To implement a prioritized access scheme, we require a fixed resolution
priority. We obtain this by quantizing the minimum risk indicator in (6.10) to give
us the attention factor, denoted as αj

k.

Definition 6.2 (Attention Factor). For a dynamical system given by (6.1), the
state-based priority αj

k ∈ Z for 1 ≤ j ≤ M is defined as

αj
k = round

(
tr{AKf,ke

j
k(ej

k)⊤K⊤
f,kA

⊤} ·
Amax

Ps,max

)
, (6.12)

where 0 ≤ αk ≤ Amax for some integer Amax ∈ Z, and Ps,max = tr{κKf,kRe,kK
⊤
f,kκ

⊤}

is the maximum tolerable increase, as defined by the tolerance parameter κ ∈ Z
+, in

sample variance of the prediction error for a node attached to a plant with identity
system matrix (A = I).

The tolerance parameter κ is used by the sensor node to dictate its own tol-
erance limits and influence the increase of α with deviating measurements. This
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Figure 6.3: The Frame Structure of the tournament access mechanism, with a tour-
nament comprising of 8 priority bits, for each of the NT = 8 transmission slots. An
example of a tournament is depicted here, with three nodes competing for the sixth
transmission slot. Nodes 2 and 3 lose the tournament to node 1, and the symbol L
depicts the priority bit during which the tournament is lost. Node 1 gets to transmit its
data packet in the sixth transmission slot.

constant determines the probability mass function (PMF) of the attention factor
for the entire network, and we comment on its selection in later sections. Note
that the merits of a prioritization scheme based on ∆P j

samp,k (Proposition 6.1) are

unaffected by the transformation to αj
k for sufficiently large values of Amax. Thus,

(6.12) determines our choice of fk in (6.5) at each node.

6.3.2 Evaluating Priorities Using Tournaments

Now that adaptive priorities have been assigned to the data packets, there remains
the task of designing an arbitration policy to resolve contention. In other words,
how should the data packets exchange priorities and decide who gets to transmit?
We use tournaments as a distributed access mechanism that evaluates priorities in
a non-coordinated manner and identify the function T in (6.6) corresponding to
this mechanism.
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Consider the frame structure presented in Figure 6.3. There areNT transmission
slots in each frame, and sensors that wish to transmit in this frame must generate
an attention factor as described in Section 6.3.1. The data frame begins with NT

tournaments, followed by the same number of transmission slots. To transmit in
one of the slots in this frame, a node must win the corresponding tournament.
During the tournament, qualifying packets transmit their attention factors, starting
with the most significant bit. Nodes transmit a suitably chosen pulse for a bit of
value one and remain silent during the zero bit. As wireless transceivers cannot
transmit and receive at the same instant, nodes can listen during the zero bits. A
busy channel indicates that they have lost the tournament. The packet(s) with the
largest attention factor wins the tournament.

As the attention factors are assigned by each node, more than one packet can
have the same attention factor and win the tournament. Multiple winners are
not aware of each other, and cause a collision. Using the same mechanism as in
CSMA/CA, nodes are aware of a collision by the lack of an acknowledgment (ACK).
Figure 6.3 illustrates the concept of a tournament between three nodes with atten-
tion factors of 59, 41 and 56 respectively. Nodes 2 and 3 lose the tournament after
transmitting the fourth and first bits of their priorities, respectively, as they hear a
busy channel during their recessive bits. Node 1 wins the tournament and transmits
in the corresponding slot.

Thus, using this access mechanism, a node can either lose a tournament or win
a tournament. A node that wins a tournament can either collide in the transmis-
sion slot or successfully transmit its data. We now define the tournament function
T (αk, α

N
k ).

Definition 6.3 (Tournament Access Mechanism). Let the NT highest values of
attention factors, selected from the attention factors of all the nodes in the network,
α1

k, . . . , α
M
k , be given by the set Ak = {ᾱ1, . . . , ᾱNT

}, where ᾱ1 > ᾱ2 > · · · > ᾱNT
.

Each of these values may be the attention factor corresponding to one or more nodes
in the network. It is clear that the values in the set Ak win the tournament, but if
any of these values occur more than at one node, then, the corresponding packets
are lost due to a collision. Thus, only the attention factors corresponding to unique
values from the set Ak succeed in transmitting a packet. Let us denote the set of
nodes that win a tournament at time k by Wk, and the set of nodes that successfully
transmit in a tournament by Tk. We write these sets as

Wk := {j : αj
k ∈ Ak} , for 1 ≤ j ≤ M ,

Tk := {j : αj
k 6= αs

k ∀ s ∈ Wk \ j} , for j ∈ Wk . (6.13)

If A = {1, . . . ,M}, then clearly, the set of nodes that lose a tournament is given
by Lk := A \ Wk, and the set of nodes that collide in a tournament is given by
Ck := Wk \ Tk. Thus, the tournament function is given by

T (αj
k, α

N,j
k ) =

{
1 j ∈ Tk

0 otherwise .
(6.14)
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6.3.3 Analysis of the Tournament Access Mechanism

We now analyze the performance of a node that uses the attention factor in the
tournament access mechanism. There are two performance metrics we identify - the
probability of a successful transmission, and the distribution of the delay since the
last successful transmission. These expressions will come of use in later sections to
evaluate the estimation/control performance of each system in the network. Our
analysis is presented for a homogenous network of M systems, but it will be shown
that this analysis extends to networks with different types of processes. The analysis
presented below depends on the statistical description of the system variables, which
are identical in a homogenous network. Thus, we skip the index j in this section.

An important property of the attention factor is that we can find the PMF
of each node’s attention factor. For the general model described in Section 6.2,
the innovations ek ∈ R

m may be a vector. The sum of unnormalized squared
Gaussian variables (tr{AKf,keke

⊤
k K

⊤
f,kA

⊤}) with unequal variances has a multivari-
ate Gamma-type distribution, as discussed in Krishnamoorthy and Parthasarathy
(1951). Then, the PMF is given by

P(αk = a) =





Φ(0.5 Ps,max

Amax
) a = 0

Φ((α + 0.5)Ps,max

Amax
) − Φ((α − 0.5)Ps,max

Amax
) 0 < a < Amax

1 − Φ((Amax − 0.5)Ps,max

Amax
) a = Amax

, (6.15)

where, Φ(·) is the cumulative distribution function corresponding to the multivari-
ate Gamma-type distribution of tr{AKf,keke

⊤
k K

⊤
f,kA

⊤}. If ek ∈ R, or if E[eke
⊤
k ] =

σ2I, a diagonal matrix with equal values on the diagonal, then the above distribu-
tion becomes a first-order or higher-order Chi-Squared distribution, respectively.

It is easy for each node to characterize the probability of another node in the
network with attention factor less than (pL), less than or equal to (pLE) and greater
than (pG) itself. In a homogenous network, these quantities are given by

pL(α) =
∑

a<α

P(a) , pLE(α) =
∑

a≤α

P(a) , pG(α) = 1 − pLE(α) . (6.16)

Let us denote pC,n(α) as the probability that n nodes with attention factors greater
than α collide in a single slot. This can be found as

pC,n(α) =
Amax−1∑

a=α+1

(P(a))n . (6.17)

A combinatorial analysis using the above quantities gives us the probability of a
node winning, successfully transmitting, losing or colliding in a tournament com-
prising of a number of tournament slots. We now present these results.

Theorem 6.2. For a homogenous network of M systems given by (6.1)–(6.6),
with fk as given in (6.12) and T as defined in (6.14), the probability of successful
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transmission in NT tournament slots for each node is given by

pT := P(δk = 1) =
∑

αk

P(TNT,M−1|αk) P(αk) , (6.18)

where P(TNT,M−1|αk) is the conditional probability of a node with attention factor
αk succeeding in transmission in NT slots against M − 1 other nodes.

Proof. Let P(WNT,M−1|α) denote the conditional probability of a node with atten-
tion factor α winning a tournament in NT slots against M − 1 other nodes. It is
given by

P(WNT,M−1|α) ≈
NT−1∑

n=0

CM−1
n pn

G(α)pM−1−n
LE (α)

+
M−1∑

n=NT

CM−1
n

( n∑

r=n−NT+2

Cn
r p

n−r
G (α)pC,r(α)

)
pM−1−n

LE (α) ,

(6.19)

where Cn
k = n!

(n−k)!k! refers to the binomial coefficient. The first term in this equation
states that there can be only up to NT − 1 packets with attention factors greater
than α and that the rest must have attention factors less than or equal to α. This
term does not take into account any collisions that might have occurred. The second
term computes the probability of winning a tournament in NT slots, given that one
collision has occurred before the node with attention factor α gets to transmit.
Thus, there can be more than NT −1 packets with attention factors greater than α,
as long as sufficient numbers of these additional packets collide in the same slot. The
exact expression for the quantity P(WNT,M−1|α) must contain NT − 2 additional
terms, corresponding to {2, . . . , NT − 1} collisions that occur before the node with
attention factor α gets to transmit. However, these terms can be neglected when a
collision is sufficiently rare.

The conditional probability of losing tournaments in all NT slots against M − 1
packets is then given by P(LNT,M−1|α) = 1 − P(WNT,M−1|α). The conditional
probability of succeeding in transmission in NT slots against M −1 packets is given
by

P(TNT,M−1|α) ≈
NT−1∑

n=0

CM−1
n pn

G(α)pM−1−n
L (α)

+
M−1∑

n=NT

CM−1
n

( n∑

r=n−NT+2

Cn
r p

n−r
G (α)pC,r(α)

)
pM−1−n

L (α) ,

(6.20)

which differs from (6.19) by requiring that the other packets have attention factors
strictly less than the value α. Finally, the conditional probability of a collision under
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these circumstances is given by P(CNT,M−1|α) = P(WNT,M−1|α) − P(TNT,M−1|α).
We can then define the probability of a successful transmission (pT) for each node
in the network using (6.18).

We can now use this expression to characterize delay and throughput. We define
the delay dk suffered by a node as the number of sampling periods since the last
successful transmission. Let τk denote the time-index of the last successful trans-
mission. This can be defined as τk := max{t : δt = 1}, for −1 ≤ t ≤ k and δ−1 = 1.
Then, it follows that dk := k − τk.

Corollary 6.3. For a homogenous network of M systems given by (6.1)–(6.6),
with fk as given in (6.12) and T as defined in (6.14), the probability distribution
of the delay dk for each node is given by

P(dk = d) = pT(1 − pT)d−1 . (6.21)

Proof. The attention factor αk is based on the innovations ek, which is a white
process. The results of Theorem 6.2 show that the outcomes of the tournaments
can be treated as independent. Now, we use the fact that a successful transmission
after a delay of d sampling instants implies a transmission failure for d−1 sampling
instants. Using the expression for pT from Theorem 6.2, we obtain (6.21).

We define throughput as the fraction of time that useful information is carried
on the network. This is a measure of the efficiency of our multiple access mechanism.

Corollary 6.4. For a homogenous network of M systems given by (6.1)–(6.6),
with fk as given in (6.12) and T as defined in (6.14), the throughput ST is given
by

ST ≈
NT · Len(P )

TT

, (6.22)

where Len(P ) is the packet payload size and TT is the length of the access period.

Proof. For M > NT and a negligible probability of collision, the definition yields
the expression in (6.22).

Extension to Heterogenous Networks: The combinatorial analysis performed
above can still be used when the network is heterogenous. If the network contains
two different types of physical processes with parameters Ai, Bi, etc. in (6.1) for
i = {1, 2}, then the analysis requires two types of probabilities for each of the ex-
pressions given in (6.16)–(6.17). The expressions in (6.19)–(6.20) must be modified
to include combinations of these two types of probabilities. Thus, the basic idea
behind the analysis remains the same, but the number of cases to be taken into
account are larger for heterogenous networks.
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6.3.4 Estimation and Control Performance

We now make use of the performance analysis results of the previous section in
order to evaluate the estimation and control performance. In this section as well,
we skip the index j for the same reason as before. We begin with the estimation
cost JE in (6.8).

In the tournament access mechanism, the DPU can gain information about the
statistics of the state even if the data packet is not received. This is because the
conditional probabilities of losing or colliding in a tournament alter the probability
density of the innovations. The altered probability density of the innovations can
be written as

ψ(ēk|δk = 0) =
Amax−1∑

αk=0

ψ(ēk|αk)
(1 − P(TNT,M−1|αk))

1 − pT
, (6.23)

where ēk = AKf,kek and ψ(·) is the probability density function of ēk, which is
a multivariate normal distribution. Thus, the innovations no longer appear to be
normally distributed to the DPU. In fact, if the DPU can ‘listen’ to the values of
the priorities broadcast during the tournaments, then it has even more information
to obtain a better posterior description of the innovations.

The posterior mean of the innovations cannot be improved in the above man-
ner, due to the choice of a symmetric policy fk in (6.12). However, the posterior
variance of the innovations, and consequently of the estimation error, is altered.
Finding an exact expression for this variance is difficult, as the density in (6.23) is
non-Gaussian. Instead, we find an upper bound for the variance. The upper bound is
the variance of the estimation error corresponding to a Bernoulli packet loss process
with loss probability (1 − pT). To see why, note that we can design the tournament
access mechanism to ensure that the conditional probability of transmitting a packet
is an increasing function of the attention factor. Then, the conditional probability
of transmission is a non-decreasing function of the magnitude of the innovations.
This will naturally result in a lower variance than a uniform probability of trans-
mission across all attention factors. We show this formally below, beginning with
the following property that reflects our design choice.

Property 6.4 (Non-increasing tail of the attention factor distribution). The dis-
tribution of the attention factor, P(αk = a), is said to possess the non-increasing
tail property if P(α) ≤ P(α− 1) for all α > 0.

This is not a surprising property to obtain from a Gaussian innovations process,
if it were not for the finite range of the attention factor. As the P(αk = Amax − 1)
in (6.15) is equal to the probability of the tail of the distribution, this value might
not confirm with the above property. However, there is always a suitable value of
the tolerance parameter κ in (6.12), for which the above property can be made to
hold. Furthermore, such a value of κ is indeed a desirable design for the attention
factor, as it reduces the probability of a collision for the highest value of attention
factor.
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Figure 6.4: This plot compares the empirically obtained probability distributions of
the attention factor for different values of the tolerance parameter κ. For κ = 1, the
distribution given by the dashed line does not satisfy Property 6.4, as can be seen from
the value of P(α = Amax − 1). However, for κ = 2.25, the solid line distribution clearly
satisfies this property.

Impact of the tolerance parameter κ: The impact of κ can be noted from the
attention factor distributions presented in Figure 6.4. The attention factors in this
example are calculated for a process with parameters A = 1, B = 1, C = 1 and
all initial variances equal to one. The maximum value of the attention factor is
Amax = 256. The parameter κ = 2.25 ensures Property 6.4, whereas κ = 1 does
not, as shown in Figure 6.4. In general, lower values of κ result in a peak at the
higher end of the probability distribution of the attention factor, while higher values
of κ under utilize the range of the attention factor. Critical nodes must set as low
a value for κ as possible to generate packets with high attention values for small
deviations in measurements.

Lemma 6.5. For a policy fk that results in a non-increasing tail for the attention
factor distribution, as defined in Property 6.4, the conditional probability of winning
P(WNT,M−1|α) is a non-decreasing function of α.

The proof for this lemma is presented in Appendix C. Using this lemma, we
derive a more interesting result below.

Lemma 6.6. For a policy fk that results in a non-increasing tail for the atten-
tion factor distribution, as defined in Property 6.4, the conditional probability of a
successful transmission P(TNT,M−1|α) is a non-decreasing function of α.

Proof. From Property 6.4, we have P(α) ≤ P(α − 1), for α > 0. This implies
that pG(α) ≤ pG(α − 1) and pL(α) ≥ pL(α − 1). With these inequalities, we use
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induction in Lemma 6.5 to show that P(WNT,M−1|αk) is a non-decreasing function
of the attention factor. Then, to obtain the probability of a successful transmission
P(TNT,M−1|αk), note that each of the occurrences of pn

LE must be altered as pn
LE ·

(1 −
∑n

r= C
n
r (P(α))r), to discount the possibility of a collision for a node with

attention factor α. Now, the second factor in this product term clearly increases
as P(α) increases, and hence does not alter the monotonic property of the other
terms. Thus, the resulting expression P(TNT,M−1|αk) has the same property as
P(WNT,M−1|αk).

An immediate consequence of this result is given below.

Lemma 6.7. For a homogenous network of M systems given by (6.1)–(6.6), with
a policy fk that results in a non-increasing tail for the attention factor distribution,
as defined in Property 6.4, and a tournament T , as defined in (6.14), the posterior
variance of the innovations is less than its a priori value.

The proof of this lemma is presented in Appendix C. We are now ready to
present the main result of this section, which highlights the benefits of using state-
based priorities.

Theorem 6.8. For a homogenous network of M systems given by (6.1)–(6.6), with
a policy fk that results in a non-increasing tail for the attention factor distribution,
as defined in Property 6.4, and a tournament T , as defined in (6.14), it holds that:

i. The variance of the estimation error at the DPU can be bounded from above
as

JE ≤ tr{Ploss(pT)} , (6.24)

where Ploss(pT) is the estimation error covariance obtained with a Bernoulli
packet loss process of probability 1 − pT (Schenato et al., 2007).

ii. The LQG control cost at the DPU can be bounded from above as

JC ≤ Jloss(pT) , (6.25)

where Jloss(pT) is the LQG cost obtained with a Bernoulli packet loss process
of probability 1 − pT (Schenato et al., 2007; Gupta et al., 2007).

Proof. We use the fact that the variance of the innovations as seen by the DPU
is less than its a priori value, shown in Lemma 6.7. Furthermore, from Proposi-
tion 6.1, we know that tr{AKf,k E[eke

⊤
k ]K⊤

f,kA
⊤} = tr{Pk+1|k−1 − Pk+1|k }. Thus,

the reduction in variance implies that

tr{P c
k|k−1 − P c

k|k } ≤ tr{P s
k|k−1 − P s

k|k } , (6.26)

following a successful transmission at time k−1, where P c
k|k = P s

k|k as this indicates
a successful transmission at time k as well. Thus, we have the desirable inequality
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tr{P c
k|k−1 } ≤ tr{P s

k|k−1 }, following a successful transmission at time k − 1. In fact,
for any burst of non-transmissions of length ℓ ≥ 0, the inequality tr{P c

k+ℓ|k−1} ≤
tr{P s

k+ℓ|k−1} holds due to the evolution of the prediction error covariance, even if we
assume that there are no further reductions in variance due to using the tournament
access.

Now, note that a Bernoulli packet loss process does not provide any information
about the innovations, and hence, the variance at the DPU is always given by
tr{P s

k|τk
}, where τk is the time index of the last received packet. Thus, the above

inequalities imply that the variance of the DPU with tournament access can be
upper-bounded by the variance of the DPU with a Bernoulli packet loss process.
Using these inequalities in the expression for the average estimation error variance
gives us the desired result for estimation. We have

tr{E[P c
k|k ]} =

∞∑

d=0

tr{P c
k|k−d} · P(dk = d)

≤
∞∑

d=0

tr{P s
k|k−d} · P(dk = d) = tr{Ploss(pT)} , (6.27)

where the average estimation error at any time k can be obtained by marginalizing
over the delay due to the independent packet transmission process at each time
instant.

Due to the certainty equivalence property from Proposition 6.1, the inequality
for the control cost follows from the inequality for the estimation error variance and
is given by (6.25).

Any non-state-based random access mechanism can be modelled as a Bernoulli
packet loss channel, with suitable assumptions on the operating time scales of the
system and the protocol. Thus, the above result indicates that a well-designed tour-
nament with state-based priorities can outperform any random access mechanism
that results in the same probability of transmission, for the estimation and control
costs considered in this chapter.

Extension to Packet Erasures due to a Lossy Medium: In the work pre-
sented so far, we have implicitly assumed that the physical medium does not drop
packets. However, this may not be the case in general. If we model the losses due to
the physical medium using a Bernoulli process with the probability of loss denoted
by ploss, then the probability of a successful transmission will be altered to be

p̂T := (1 − ploss)
∑

αk

P(TNT,M−1|αk) P(αk) , (6.28)

where the conditional probability of transmission P(TNT,M−1|αk), for 0 ≤ αk ≤
Amax, is multiplied by the compliment of the loss probability. Thus, note that ploss

is indiscriminate of the attention factor of the data packet, whereas the probability
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Figure 6.5: Example of a superframe structure of the tournament-based IEEE 802.15.4
MAC. The tournament occurs during the TAP, while the transmission of the winner
nodes is assigned to the T-GTSs, during the CFP. Scheduled communication for other
network nodes is performed during the S-GTS, while best-effort transmissions occur
during the CAP.

of transmission that we obtain in the above analysis varies with the attention factor.
By substituting the probability of transmission pT with p̂T in the above analysis,
we can include the effects of losses from the physical layer in evaluating the control
and estimation performance.

6.4 Tournament Access Mechanism

We implement the tournament access mechanism as part of the current IEEE
802.15.4 (IEEE, 2006) standard. The IEEE 802.15.4 physical and medium access
control (MAC) layers are used in some of the proposed protocols for control over
wireless, e.g., WirelessHART (HART Communication Foundation, 2007) and ISA
100.11a (International Society of Automation, 2010). This protocol is particularly
efficient for sensing applications as it provides a hybrid MAC layer that integrates
both guaranteed time slots and contention-based slots in a single scheme. However,
it is not optimized for wireless networked control systems (NCSs) as transmissions
can only take place through random access and/or be dynamically scheduled, while
incurring a fixed delay. The scheduled transmissions are delayed by at least one bea-
con interval, and can only be scheduled when guaranteed slots are available. This
feature in the protocol was meant for slow monitoring applications that require a
few continuous guaranteed transmissions, such as video or voice. Finally, adding pri-
oritized access makes this protocol suitable for wireless control applications. Thus,
the tournament access mechanism we propose is complimentary to existing features
of this protocol. The compatibility of the proposed protocol stack with the IEEE
802.15.4 is desirable since it represents a de-facto standard at physical and MAC
layer for sensor network solutions.

We focus on the beacon-enabled mode MAC specified in the standard. In such
a setup, a centralized coordinator node, the network manager, is responsible for
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synchronizing and configuring all the nodes. The synchronization and configuration
messages take place periodically at each beacon message which defines the time
bounds of the superframe structure. The Beacon Interval (BI) denotes the super-
frame length. The BI is further divided into active and inactive periods, as shown
in Figure 6.5. The active period has a time interval defined by the Tournament
Duration (TD) and the Superframe Duration (SD). The TD and SD can be divided
in a maximum of 32 equally sized slots each. The length of the active period is
given by the sum of the TD and SD, in which each can have a maximum of 32
equally sized slots. The TD contains the Tournament Access Period (TAP), which
comprises of multiple tournament slots. In each tournament slot, nodes transmit
priorities and receive acknowledgements if they are winners of the tournaments.

The SD contains the Contention Access Period (CAP) and the Collision Free Pe-
riod (CFP). During the CAP, nodes transmit best effort messages using CSMA/CA.
The CFP is intended to provide real-time guaranteed service, by allocating Guar-
anteed Time Slots (GTS) to the nodes using a TDMA scheme. In our protocol, two
types of GTS slots are defined: Tournament GTS (T-GTS), where the transmissions
of tournament winner nodes take place, and Standard GTS (S-GTS), which can be
scheduled by the network manager for communication between specific nodes, in
a TDMA fashion. An inactive period is defined at the end of the active period so
that the network nodes and the network manager enter a low-power mode and save
energy.

In the current implementation, we allow for the different channel access mech-
anisms to be used. Particularly, nodes which lose a tournament may be allowed to
transmit their information in a best-effort manner during the CAP at the current
superframe, or may be also scheduled for transmission by the network manager in
S-GTSs in the following superframe CFP. Such mechanisms are application specific
and are left to be defined by the user.

6.4.1 Tournament Access Mechanism Implementation

The implementation was performed for the Telos wireless platform (Polastre et al.,
2005). These nodes are equipped with a Texas Instruments MSP430 16-bit, 8 Mhz
microcontroller with 48 kB of Flash and 10 kB of RAM memory, 250 kbps 2.4GHz
Chipcon CC2420 IEEE 802.15.4 compliant radio and on-board sensors. The operat-
ing system used is TinyOS (Levis et al., 2004). The implementation of the protocol
is based on the IEEE 802.15.4 MAC TinyOS implementation (Hernandez, 2011).
The code for these experiments is available for download at KTH wireless NCS code
repository (2013). The implementation of the complete protocol requires 30 kB of
memory.

The tournament access mechanism is implemented according to the tournament
defined in Section 6.3.2. Each sensor node computes its attention factor according
to (6.12) (decimal number), converting it afterwards to a binary sequence. The
implementation is then carried out in the following manner. For a value of ’1’, an
unmodulated carrier pulse is transmitted by the CC2420 radio. When a recessive bit
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Table 6.6: Tournament access mechanism validation

Number of nodes topology distance to coordinator false positive %

4 circle 5m 0

4 circle 2.5m 0

2 line 15m 0.7

(value ’0’) is present, the node refrains from transmitting an unmodulated carrier
pulse, and detects unmodulated carrier pulses transmitted by other devices. This
action is performed by the Clear Channel Accessment (CCA) mechanism of the
CC2420 radio. When the CCA is issued, the average Received Signal Strength
Indicator (RSSI) value is measured for a duration of 128µs. Then, this value is
compared to a pre-defined threshold in order to decide if the radio channel is busy
or idle.

6.4.2 Tournament access mechanism validation

Several tests have been performed to validate the proposed tournament access mech-
anism. The results are summarized in Table 6.6. The tests were performed indoors.
In each test a network manager is deployed in addition to the number of nodes
specified in the table.

In the circle topology, all nodes were placed in a room at the same distance from
the network manager and spaced 90 degrees apart. In the line topology, the nodes
were placed in a long corridor stretch, with the network manager node in the middle.
The devices priority was fixed through all tournaments and set to {160, 72, 37, 32}
for the 4 node case, and {160, 72} in the 2 node case. A total number of 60000
tournaments was performed for each setup. As the results show, the tournament
mechanism has no errors for short distances. However, a small percentage of false
positives is verified for the case of a distance of 30 meters between the nodes.

6.5 Results

We provide two types of experimental results in this section. We first begin by
validating our analysis in Section 6.3 with simulation results. Next, we present ex-
perimental results obtained from testing our protocol on state-of-the-art low power
wireless devices.

6.5.1 Verification of Analytical Results using Simulations

We now present the results obtained from a Monte Carlo simulation, and use these
to validate the analysis in Section 6.3. For this experiment, we simulated a network
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Figure 6.7: The conditional probabilities of winning and losing in the tournament
access mechanism are plotted above. Note that the simulated probabilities of these
complimentary events match the analytical values. The probability of winning is a non-
decreasing function of the attention factor, as shown in Lemma 6.5.

of M = 20 control systems that use attention-based tournaments in Matlab. We
considered the process to be controlled as a first-order plant with a scalar mea-
surement. We chose the parameters in (6.1) to be A = 1, B = 1, C = 1, with all
variances set to one. Additionally, we used Q1 = 1 and Q2 = 1 in the infinite hori-
zon LQG cost in (6.9). Each sensor in the network generated a packet to transmit,
and these packets vied for NT = 10 tournament slots. The maximum value of the
attention factor Amax = 256, which is sufficiently large to prevent frequent collisions
while achieving sufficient throughput. The tolerance parameter κ = 2.25 is selected
to ensure Property 6.4, as shown in Figure 6.4. Recall that lower values of κ result
in a peak at the higher end of the probability distribution of the attention factor,
while higher values of κ under utilize the range of the attention factor.

The simulated results matched the analysis closely, as shown in Figs. 6.7 and
6.8. Thus, neglecting terms that accounted for more than two collisions in (6.19)
and (6.20) is justifiable when the probability of a collision is small. The conditional
probabilities of winning and transmitting successfully are almost 1 for packets with
high attentions. Furthermore, these plots show the non-decreasing nature of the
conditional probabilities of winning and transmitting successfully, verifying the re-
sults of Lemmas 6.5 and 6.6, respectively. The peak in the conditional probability of
collision (Figure 6.8) can be explained from the PMF of the attention factor, which
indicates that there are few packets with large attention factors. These are most
likely to win the tournament in the first few slots and transmit without collision.
Hence, the curve falls to nearly 0 for high values of α. Packets with lower values of
attention factor mostly win the tournament in the last few slots, and since there
are many such packets, collisions are very likely. Finally, the packets with very low
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Figure 6.8: The conditional probabilities of transmitting successfully and colliding in the
tournament access mechanism are plotted above. Note that the simulated probabilities
match the analytical values. The probability of transmitting is a non-decreasing function
of the attention factor, as shown in Lemma 6.6.

values of attention do not win the tournament often, and hence the probability of
collision is low for these values.

In the proof of Lemma 6.5, we claim that the second term in the expression for
the conditional probability of winning a tournament in (6.19) does not contribute
much to the net value. This claim can be validated from Figure 6.9, where we
compare the analytical values for the probability of winning and transmitting in
a tournament from (6.19) and (6.20), respectively. For both expressions, we plot
the first term alone, and compare with the full expression, to see that the effect
of including even the second term is negligible. This is because the probability of
collisions has been designed to be small enough to ignore.

In Table 6.10, we present a comparison of the estimation and control costs, JE

and JC , for three setups. The entries in the first column, titled Tournament Access,
correspond to values obtained from our Monte Carlo simulations of the network of
systems described in this section using the tournament access mechanism along with
attention factors for priorities. The average probability of transmission is found to
be pT = 0.4403 from the simulations. The entries in the second column, denoted
Packet Loss, corresponds to the same network of systems using a multiple access
mechanism or a physical medium that suffers from a Bernoulli packet loss process,
with a probability of loss equal to 1−pT. The third column corresponds to the net-
work of systems and a packet loss scenario termed as ‘ideal’ because the probability
of transmission is equal to the ratio of the available number of slots to the number
of processes in the network, NT/M = 0.5. The entries in the packet loss columns are
calculated using the expressions for the average estimation error variance in (6.27)
and for the LQG cost from (Åström, 1970). The control cost expression uses the
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Figure 6.9: The conditional probabilities of winning, transmitting and colliding in the
tournament access mechanism are plotted above. The solid line plots only the first term
in (6.19) and (6.20), while the dashed lines plot the entire expressions. The second terms
in both expressions contribute very little, as can be seen, due to the negligible probability
of collision.

Table 6.10: A comparison of estimation and control costs

Tournament Access Packet Loss Ideal Packet Loss

pT 0.4403 0.5

E[P c
k|k ] 0.9765 1.8894 1.618

J 0.2576 0.3524 0.3252

estimation error variance found in (6.27). The values from the tournament access
and packet loss columns in this table confirm the results from Theorem 6.8, show-
ing that a well designed tournament access mechanism outperforms an agnostic
packet loss mechanism that results in the same average probability of transmission.
Furthermore, the values from the ideal packet loss column indicate that even a
throughput achieving access mechanism cannot outperform the tournament access
mechanism, despite the collisions in the latter mechanism.

6.5.2 Experimental Results

In order to validate the performance of the proposed protocol, we assembled a
hardware-in-the-loop simulation of a network of wireless control systems, as de-
picted in Figure 6.11. The control systems, each comprising of a plant, sensor,
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Figure 6.11: Experimental setup for the hardware-in-the-loop experiments. The plant,
sensor, controller and actuator of each of the M control systems are simulated in
LabVIEW. The tournaments are conducted in M wireless nodes that communicate with
LabVIEW. The sensors send the attention factor (αj

k) to their corresponding wireless
node, and the wireless nodes conduct tournaments. They report whether they have
won (ξj

k ∈ {0, 1}), and if so, the tournament slot number that they have won (ljk ∈
{1, . . . , NT}).

controller and actuator, were simulated in a Matlab environment within LabView.
However, the protocol was implemented on a wireless sensor node, which was con-
nected to the computer using the serial port. The control systems generated atten-
tion factors in the simulated environment, which were sent to each node using the
serial port. Then nodes conducted NT tournaments, and returned their winning
status (using the binary variable ξj

k ∈ {0, 1}), along with the tournament number
that they won, to the computer. After discarding any tournament slots with mul-
tiple winners, the simulation environment closed the loop for the successful nodes.

In this setup, we considered M = 2 control systems, each with the same first-
order linear process described in the Matlab simulations in Section 6.5.1. We also
used the same parameters for the cost function as in Section 6.5.1. The data packets
from these systems vied for NT = 1 tournament slot. The maximum value of the
attention factor is Amax = 256. We set the tolerance parameter κ = 2.25 again, to
ensure a good design.
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We selected the beacon interval BI as 937.5 ms, 1 TAP slots, 1 CAP slots, 1
T-GTS slots and 1 S-GTS slots which give a total of two superframe slots. The
duration of each slot is 20 ms. The sampling period of the sensor node is then set
to the value of the BI. Thus, the sensor node will attempt to transmit once per
superframe.

The results obtained from the hardware-in-the-loop experiment are depicted
in Figures 6.14–6.13. A trace of the innovations ej

k and corresponding attention
factors αj

k, for 1 ≤ j ≤ 2, are depicted in Figure 6.12. The attention factors were
designed to be symmetric, quantized functions of the innovations (6.12), as can
be noticed from this figure. Also, at three different time instants, the attention
factors of both plants are identically zero. These result in collisions, as shown in
Figure 6.13. Winners of tournaments are denoted by ξj

k = 1 and the winners who
also get to transmit are denoted by δj

k = 1. Losers of tournaments and those who
do not get to transmit are denoted by the complimentary values ξj

k = 0 and δj
k = 0,

respectively. A trace of the attention factors, along with the indicators ξj
k and δj

k

are depicted in this figure, for 1 ≤ j ≤ 2. Notice that the highest attention factor
always wins, as desired in tournaments. Also, equal attention factors from both the
processes result in both of them winning, but none of them transmitting. This is
because these data packets result in collisions. Thus, Figures 6.14–6.13 validate the
implementation of the tournaments on sensor nodes.

A trace of the state xj
k and the controls uj

k, for 1 ≤ j ≤ 2, are depicted in
Figure 6.14. The winning and transmission records are superimposed onto the state
and control plots, respectively. This indicates the intermittent nature of feedback
control that is obtained using attention-based tournaments. The controls follow the
state only when there is a transmission. One instance of this behaviour is noticeable
at k = 10 in Figure 6.14. The state deviates considerably, giving rise to a large
attention factor (see Figure 6.13). The sensor succeeds in transmitting the state to
the controller, which reacts to this and successfully regulates the state at the next
time instant. When there is no transmission, the control signals are generated in
an open-loop manner.

6.6 Summary

We have presented a design for a distributed prioritized access mechanism using
tournaments and state-based priorities called attention factors. There are two main
merits of the tournament access mechanism. First, the priorities are assigned and
evaluated in a distributed manner, thus rendering it suitable for wireless networks.
Second, the state-based priorities result in better performance than agnostic access
methods, as shown by our analysis.

A major concern in such a study is often the implementability of the proposed
protocol. So, we have studied this issue in detail and implemented tournaments
on sensor nodes. We have also validated our implementation with experiments us-
ing these nodes. To popularize the protocol, we have proposed modifications to
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IEEE 802.15.4, which introduces priorities to a sensor network protocol, making it
suitable for estimation and control of physical systems over a wireless network.

With this chapter, we conclude our presentation of state-based channel access
mechanisms. In the next chapter, we consider a generalized NCS setting to exam-
ine the impact of a nonlinear dynamical measurement process on the structural
properties of the control system.



Chapter 7

Stochastic Systems with Nonlinear

Measurements

We consider discrete-time sequential decision problems for a control loop that has a
communication bottleneck between the sensor and the controller (Figure 7.1). The
design problem is to choose in concert an encoder and a controller. The encoder
maps the sensor’s raw data into a causal sequence of channel inputs. Depending on
the channel model adopted in this chapter, the encoder performs either sequential
quantization, sampling, or analog companding. The controller maps channel out-
puts into a causal sequence of control inputs to the plant. Such two-agent problems
are generally hard because the information pattern is non-classical, as the controller
has less information than the sensor (Witsenhausen, 1971). This gives scope for the
controller to exploit any dual effect present in the loop, even when the plant is lin-
ear (Feldbaum, 1960). These two-agent problems are at the simpler end of a range
of design problems arising in networked control systems (Borkar et al., 2001a; Bail-
lieul and Antsaklis, 2007; Goodwin et al., 2008; Andrievsky et al., 2010). Naturally,
one seeks formulations of these design problems as stochastic optimization problems
whose solutions are tractable in some suitable sense.

The classical partially observed linear quadratic Gaussian (LQG) optimal con-
trol problem is a one-agent decision problem (Wonham, 1968). Given a linear,
Gauss-Markov plant, one is asked for a causal controller, as a function of noisy
linear measurements of the state, to minimize a quadratic cost function of states
and controls. This problem has a simple and explicit solution, where the optimal
controller ‘separates’ into two policies; one to generate a minimum mean-squared
error estimate of the state from the noisy measurements, and the other to con-
trol the fully observed Gauss-Markov process corresponding to the estimate. A
networked version of this problem is the following two-agent LQG optimal control
problem (Borkar and Mitter, 1997). Given a linear Gauss-Markov plant and a chan-
nel model, one is asked for an encoder and controller to minimize a preformance
cost which is a sum of a communication cost and a quadratic cost on states and
controls. The communication cost is charged on decisions at the encoder, which are
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chosen to satisfy constraints imposed by the channel model. No causal encoding or
control policies are, in general, excluded from consideration. As in the one-agent
version, a certain ‘separated’ design is optimal, as has been noted in various settings
since the sixties (Larson, 1967; Sauer and Melsa, 1974; Fischer, 1982; Bansal and
Başar, 1989; Mitter, 2001; Tatikonda et al., 2004; Matveev and Savkin, 2004; Wu
and Arapostathis, 2005; Nair et al., 2007; Bao et al., 2011; Yüksel, 2012; Molin and
Hirche, 2013; Yüksel, 2013). Precisely, the following combination is optimal: cer-
tainty equivalence controls with a minimum mean-squared estimator of the state,
and an encoder that minimizes a distortion for state estimation at the controller.
The distortion is the average of a sum of squared estimation errors with time-varying
coefficients depending on the coefficients of the performance cost. This separation
is different from that obtained in the classical, partially observed LQG problem,
but it is still due to a linear evolution of the state, and the statistical independence
of noises from all other current and past variables. As in the classical one-agent
version (Root, 1969), the random variables do not need to be Gaussian.

7.1 Contributions and Related Work

The two-agent networked LQG problem has a long history. Different channel mod-
els have been treated, leading to different types of encoders. Thus we find in these
works, the encoder is either a quantizer, or an analog, time-dependent compander,
or an event-triggered sampler. But there is a common theme in these works. Sev-
eral authors suggest that for what we call the dynamic encoder-controller design
problem, separated design of encoder and controller is optimal, and that certainty
equivalence control is optimal.

When one treats a discrete alphabet channel, one has to treat the encoder as
a time-dependent quantizer. Quantized control has been explored since the six-
ties, and structural results for this problem have seen spirited discussions over the
years (Larson, 1967; Marleau and Negro, 1972; Fischer, 1982). This problem was
revisited by Borkar and Mitter (1997) in recent years, setting off a new wave of
interest. A survey can be found by Nair et al. (2007) and Fu (2012).

When one treats an additive noise channel, one has to treat the encoder as
a time-dependent, possibly non-linear, compander. The corresponding networked
LQG problem has been studied by Bansal and Başar (1989), and more recently
by Freudenberg et al. (2011). When one treats analog channels with channel use
restrictions, one has to treat the encoder as an event-triggered sampler (Åström and
Bernhardsson, 2002). The networked LQG problem for event-triggered sampling is
studied by Molin and Hirche (2013).

The above papers suggested separated designs for the two-agent LQG problem
with dynamic encoder and controller, and certainty equivalence controls. This is
despite other results by Curry (1970) and Feng and Loparo (1997), confirming the
dual effect in the two-agent networked control problem. Thus, there can be an
incentive to the controller to influence the estimation error, and yet the optimal
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controller chooses to ignore this incentive. Furthermore, for the two-agent LQG
problem with event-triggered sampling, and with zero order hold control between
samples, Rabi and Johansson (2009b) showed through numerical computations that
it is suboptimal to apply controls affine in the minimum mean square error (MMSE)
estimate. The optimal controls are nonlinear functions of the received samples.
Thus, the literature does not tell us when separation holds, and when it does not,
for the general class of two-agent problems.

We make three main contributions. Firstly, we show that for the combination of
a linear plant and nonlinear encoder, the dual effect is present. This confirms the
results of Curry (1970) and others (Feng and Loparo, 1997), by establishing through
a counter example that there is a dual effect in the closed-loop system. In fact, each
of the three models we allow for the channel endow the loop with the dual effect.
The dual role of the controller lies in reducing the estimation error in the future,
using the predicted statistics of the future state and knowledge of the encoding
policy. Due to this dual role, we show that, in general, separated designs need not
be optimal for linear plants with non-linear measurements, even with independent
and identically distributed (IID) Gaussian noise and quadratic costs. Examples 4,
5, 6, and 8 show instances where the dual effect matters.

Our second contribution is a proof for separation in one specific design problem.
We prove that for the dynamic encoder controller design problem, it is optimal to
apply separation and certainty equivalence. We also notice that the result holds
under a variety of schemes for charging communication costs. For example, it holds
even when the encoder is an analog compander with hard amplitude limits. Our
proof does not require the dual effect to be absent. Hence there is no contradiction
with the fact separation and certainty equivalence are not optimal for other design
problems concerning the same plant sensor combination. Our work also provides
a direct insight to explain separation or the lack of it, in the form of a property
of the optimal cost-to-go function. Furthermore, we show that when this property
does not hold separation is no longer optimal.

Our third contribution points out some subtleties that arise when dynamic poli-
cies are involved. We explicitly demonstrate that with dynamic encoders for LQ op-
timal control, one cannot extend and apply a result of Bar-Shalom and Tse (1974),
which mandates absence of dual effect for certainty equivalence to be optimal. The
classical notion of a dual effect was introduced for static measurement policies, and
the dual role of the controls has been motivated through the notion of a probing
incentive (Feldbaum, 1960). We ask if the concept of probing applies unchanged
for dynamic measurement policies. We point out some subtleties in answering this
question.

The chapter is organized as follows. In Section 7.2, we present a basic prob-
lem formulation, pertaining to encoder and controller design for data-rate limited
channels. In Section 7.3, we discuss the notion of a dual effect and certainty equiv-
alence, and present a counterexample to establish that there is a dual effect in the
considered networked control system (NCS). In Section 7.4, we present a proof for
separation in the two-agent networked LQG problem. In Section 7.5, we extend
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Figure 7.1: Control over a rate-limited channel that has a perfect feedback channel

our results to other channel models, including event-triggered samples and additive
noise channels. In Section 7.6, we present a number of counterexamples to illustrate
that in general, separation does not hold for constrained design problems.

7.2 Problem Formulation

In this section, we describe a version of the two-agent networked LQG problem,
corresponding to a rate-limited channel model. We consider an instantaneous, error-
free, discrete-alphabet channel and the logarithm of the size of the alphabet is the
bit rate. A control system that uses such a channel to communicate between its
sensor and controller is depicted in Figure 7.1, and comprises of four blocks. Each
of these blocks, along with the performance cost, are described below, followed by
a description of the design problems under consideration.

7.2.1 Plant

The plant state process {xt} is scalar, and its evolution law is linear:

xt+1 = axt + ut + wt, (7.1)

for 0 ≤ t ≤ T. Here {ut} is the controls process, and {wt} is the plant noise process,
which is a sequence of independent random variables with constant variance σ2

w, and
zero means. The initial state x0 has a distribution with mean x0 and variance σ2

0 .
At any time t, the noise wt is independent of all state, control, channel input, and
channel output data up to and including time t. We assume that the state process
is perfectly observed by the sensor.
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7.2.2 Performance Cost

The performance cost is a sum of the quadratic cost charged on states and controls,
and a communication cost charged on encoder decisions:

J = E

[
x2

T +1 + p

T∑

i=1

x2
i + q

T∑

i=0

u2
i

]
+ JComm (7.2)

where p > 0 and q > 0 are suitably chosen scalar weights for the squares of the
states and controls, respectively. The communication cost JComm is an average
quantity that depends on the encoding and control policies, and the channel model
adopted.

7.2.3 Channel Model

The channel model refers to an input-output description of the communication
link from the sensor to the controller. We denote the channel input at time t by
ιt, the corresponding output by zt, and the encoding map generating ιt by Et. In
Figure 7.1, we consider an ideal, discrete alphabet channel that faithfully reproduces
inputs, and thus, ιt = zt. The encoder’s job is to pick at every time t, the encoding
map Et producing a channel output letter from the pre-assigned finite alphabet
zt ∈ {1, . . . , N}, where the non-negative integer N is the pre-assigned size of the
channel alphabet. Since the alphabet is fixed, we have a hard data-rate constraint at
every time. Hence there is no explicit cost attached to communication, so JComm ≡ 0
in this case. In Section 7.5, we consider other channel models that permit the data-
rate or energy needed for each transmission to be chosen causally by the encoder.

7.2.4 Controller

The control signal ut is real valued and is to be computed by a causal policy based
on the sequence of channel outputs. The controller has perfect memory, and thus
remembers all of its past actions, and the causal sequence of channel outputs. Thus,
in general, at every time t the controller’s map takes the form:

Kt :
{
t, {zi}

t
0 , {ui}

t−1
0

}
7→ ut.

7.2.5 Encoder

At all times, the encoder knows the entire set of control policies employed by the
controller and the statistical parameters of the plant. With this prestored knowl-
edge, the encoder works as a causal quantizer mapping the sequence of plant out-
puts. Thus, the encoder’s map takes the form:

Et :
{
t, {xi}

t
0 , {zi}

t−1
0 , {Ki (·)}t−1

0

}
7→ zt.
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Notice that we do not allow the encoder to directly view the sequence of inputs to
the plant. This subtle point plays an important role in the examples we present in
Section 7.7.

7.2.6 Design Problems

For a given information pattern, different design spaces may arise due to engineering
heuristics, hardware or software limitations, etc. Any such design space is a subset
of the set of all admissible encoder and controller pairs. We identify a few design
problems, each associated with its own design space. For these design problems, an
adopted channel model can be either the one described in Section 7.2.3, or any of
the models from Section 7.5. First, we pose a single-agent design problem which
has a classical information pattern.

Design problem 1 (Controller-only Design). The controller-only design problem
is to pick a causal sequence of control policies {Kt}T

0 to minimize the performance
cost (7.2).

Next we pose a design problem where the design space is the largest possi-
ble non-randomized set of admissible encoder-controller pairs. We consider every
causally time-dependent encoder and controller. In other words, for this type of
design problem, regardless of the choices one makes for channel and communica-
tion cost, at any time, the controller can update the control signal using all of the
channel outputs up till then.

Design problem 2 (Dynamic Encoder-Controller Design). The dynamic encoder-
controller design problem is to pick causal sequences of encoding and control policies
{Et}

T
0 , {Kt}

T
0 to minimize the performance cost (7.2).

Next we pose a design problem where the controller and encoder must respect
a restriction on selecting the control signals or encoding maps. At every time, the
control values must be chosen from a restricted set U , such as the interval (−1, 1) or
the finite set {−1, 0, 1}. Likewise, the encoding maps have to be chosen from within
restricted sets. For example, the encoding maps may be constrained to consist of two
quantization cells (−∞, θ), (θ,∞), where the encoder threshold θ must be chosen
from a restricted set Θ, say the interval (−5, 5). Subject to these constraints, the
controller and encoder policies are still to be dynamically chosen.

Design problem 3 (Constrained Encoder-Controller Design). The constrained
encoder-controller design problem is to pick causal sequences of encoding and control
policies {Et}T

0 , {Kt}T
0 , subject to the constraints represented by θ ∈ Θ and uk ∈ U ,

to minimize the performance cost (7.2).

Next we pose a design problem where the controller must respect not only
the information pattern in the dynamic encoder-controller design problem (Design
problem 2), but must also respect a restriction on updating controls. Basically, the
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control waveform is generated in a piece-wise ‘open-loop’ way, while epochs and
encoding maps are picked using dynamic policies. Let ǫ0, ǫ1 ≥ 1, be two random
integers such that ǫ0 + ǫ1 = T + 1. Then the two epochs are {0, . . . , ǫ0 − 1} and
{ǫ0, . . . , T}. These epochs are chosen by the controller respecting the inequalities:
1 ≤ ǫ0 < T + 1 and ǫ1 = T + 1 − ǫ0, and hence have to be adapted to all the
data available at the controller. Within an epoch, the controller must pick controls
depending only on data at the start of the epoch. Precisely, given the condition
that t < ǫ0, and given the initial observation z0, the controls ut must be a fixed
function of (t, z0) regardless of the data {z1, . . . , zt}.

Design problem 4 (Hold-Waveform-Controller and Encoder Design). The hold-
waveform-controller and encoder design problem is to pick a causal sequence of
encoding polices {Et}T

0 in concert with a causal sequence of policies for epochs and
controls to minimize the performance cost (7.2). The controls are restricted to de-
pend on the controller’s data in the specific form:

ut =





K0
t

(
z0

)
for 0 ≤ t ≤ ǫ0 − 1, and,

K1
t

(
{zi}

ǫ0−1
0 , {ui}

ǫ0−1
0

)
for ǫ0 ≤ t ≤ T.

A special case of a hold-waveform controller is that of zero order hold (ZOH) control
where an additional restriction forces the control waveform be held constant over
each epoch.

For all four design problems presented above, we assume the existence of measur-
able policies minimizing the associated costs. We avoid investigating the necessary
technical qualifications except to say that if need be, one may allow randomized
polices, or even reject the class of merely measurable policies in favour of the class
of universally measurable policies (Bertsekas and Shreve, 1978).

7.3 Dual Effect and Certainty Equivalence

We begin by presenting a definition of the dual effect (Feldbaum, 1960) and certainty
equivalence (Joseph and Tou, 1961). We then present a counterexample to establish
that there is a dual effect of the controls in the NCS introduced in Section 7.2.

7.3.1 Dual Effect

In a feedback control loop, the dual effect is an effect that the controller may see
in the rest of the loop. When it is present, the control laws affect not just the
first moment, but also second, third and higher central moments of the controller’s
nonlinear filter for the state. Below, we state this formally for a controlled Markov
process with partial observations available to the controller:

xt+1 = Φt

(
xt, ut, wt

)
, zt = Ψt

(
xt, ut, κt

)
, (7.3)
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xt+1 = Φt (xt,ut,wt) Ψt (xt,ut,κt)

Kt (z
t

0
)

Markov Plant Encoder and Channel

Controller

xt zt

zt

ut

Figure 7.2: Setup for definitions in Section 7.3

where the sequences {xt} and {ut} are the real-valued plant state and control pro-
cesses, respectively, see Figure 7.2. The sequence {zt} is the observation process
and the sequences

{
wt

}
and

{
κt

}
are the plant noise and observation noise pro-

cesses, respectively. Assume that all the primitive random variables are defined on
a suitable probability triple, [Ω,F ,P ]. Now, consider two arbitrary admissible sets

of control policies:
{

K(t, ·)
}
,
{

K̃(t, ·)
}

. Once we pick one such set of control poli-

cies, they together with the measure P define the states, observations and controls
as random processes. The choice of policies fixes their statistics. We can advertise
this relationship by (1) specifying random variables, xt for example, in the form
xt (ω; K), (2) specifying a filtration, for example, the one generated by the z-process
as FK,z, or (3) specifying an expected value of a functional, E [Ft] for example, in
the form

EP,K
[
Ft

(
t, {xi (ω; K)}t

0 , {zi (ω; K)}t
0 , {ui (ω; K)}t

0

)]
,

where ω stands for any element of the sample space of the primitive random vari-
ables. To minimize the notational burden, we advertise the dependence on the set
of control policies only as needed. We now define the dual effect by defining its
absence.

Definition 7.1 (Dual effect). The NCS in Figure 7.2 is said to have no dual effect
of second order if

1. for any two sets K, K̃ of admissible control policies, and
2. for any two time instants t, s,

we have FK,z
t = F K̃,z

t for every t, and that for any given event X ∈ FK,z
t ,

EP,K

[(
xt (ω; K) − EP,K

[
xt (ω; K)

∣∣{zi (ω; K)}s

0
, ω ∈ X

])2
∣∣∣{zi (ω; K)}s

0
, ω ∈ X

]
=

E
P,K̃

[(
xt

(
ω; K̃

)
− E

P,K̃

[
xt

(
ω; K̃

) ∣∣∣
{

zi

(
ω; K̃

)}s

0

, ω ∈ X

])2
∣∣∣
{

zi

(
ω; K̃

)}s

0

, ω ∈ X

]
.
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Thus, we require equality of the two sets of covariances of filtering, prediction
or smoothing errors, corresponding to any two choices of control strategies. In the
definition above, by choosing one set of control policies, say K̃ as resulting in ut = 0,
for all t, we obtain the definition of Bar-Shalom and Tse (1974).

7.3.2 Certainty Equivalence

For the controlled Markov process (7.3), consider the general cost

Jgeneral = E

[
L
(

{xi}
T
0 , {ui}

T
0

)]
.

Imagine that a muse could at time t supply to the controller the exact values of all
primitive random variables by informing the controller the exact element ω of the
sample space Ω. With such complete and acausal information, the controller could,
in principle, solve the deterministic optimization problem

inf
u
Jt (u; ω) = inf

u
L
(

{xi (ω)}⊤
0 , {ui (ω)}t−1

0 , u , {ui (ω)}T
t+1

)
.

Let u∗
t (ω) be an optimal control law for this deterministic optimization problem.

We now state the definition of certainty equivalence from van de Water and Willems
(1981):

Definition 7.2. A certainty equivalence control law has the form:

E

[
u∗

t (ω)
∣∣{zi (ω)}t

0 , {ui (ω)}t−1
0

]
.

Clearly, this law is causal. Notice also that its form is tied to the performance
cost, and to the statistics of the state and observation processes. It is possible for
certainty equivalence control laws to be nonlinear, and such laws can be optimal
even when separated designs may not be. For linear plants, they can sometimes be
linear or affine.

Lemma 7.1 (Affine CE laws for linear plants). For the plant 7.3 with Φt(·) =
axt+ut+wt and the quadratic performance cost (7.2) with JComm = 0, the following
are certainty equivalence laws:

uCE
t = − kCE

t

(
a · E

[
xt

∣∣∣{zi}
t
0, {ui}

t−1
0

]
+ E

[
wt

∣∣∣{zi}
t
0, {ui}

t−1
0

])
,

where, the gains kCE
i = βi+1

q+βi+1
, αi = βi+1 +αi+1, βi = p+ a2qβi+1

q+βi+1
, and, αT +1 = 0,

βT +1 = 1.

For a proof, see van de Water and Willems (1981).

Definition 7.3 (Certainty equivalence property). The certainty equivalence prop-
erty holds for a stochastic control problem if the optimal control law is given by the
certainty equivalence control law.
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For the stochastic control problem described in Lemma 7.1, with non-linear
measurements that do not result in a dual effect of the controls, Bar-Shalom and
Tse (1974) showed that the certainty equivalence property holds.

We now consider a simple example, and show that there is a dual effect of the
control signal in the closed-loop system presented in Section 7.2.

Example 7.1
For the plant (7.1), let a = 1, x0 = 2, and σ0 = 0. Let this information be
known to the encoder and the controller, which simply means that z0 = x0. Let the
variance σ2

w = 0.72. For the objective function, let the horizon end at T = 1, and
let p = q = 0.01. Let the channel alphabet be {1, 2, 3}.

For the given threshold θ = 1.6, let the encoder at t = 1 be:

ξ1 (x1) =





1 if x1 ∈ (−∞,−θ) ,

2 if x1 ∈ (−θ, θ) ,

3 if x1 ∈ (θ,+∞) .

(7.4)

The optimal control law at t = 1 is u1 = − a
q+1 x̂1|1, where x̂1|1 = E [x1 |x0, u0, z1 ].

Using the encoding policy ξ1 and the optimal control signal u1, the performance
cost with JComm = 0 can be written as a function of u0 :

J(u0) = σ2
w + qu2

0 +
(
p+

qa2

q + 1

)
E
[
x2

1 |x0, u0

]
+

, Γ︷ ︸︸ ︷
a2

q + 1
E

[(
x1 − x̂1|1

)2
∣∣∣x0, u0, z1

]

In the above expression, Γ is the quantization distortion term, which is thus pro-
portional to the conditional variance of the controller’s minimum mean-squared
estimation error of x1. Notice that Γ is a function of u0, thus resulting in a dual
effect of the control signal in the plant-encoder-channel combination. Figure 7.3
shows how the quantization distortion Γ depends on u0. The total cost J is also
plotted and the optimal value u∗

0 is shown to be different from the certainty equiv-
alent value uCE

0 .

7.4 Dynamic Encoder-Controller Design

In this section we solve the dynamic encoder-controller design problem (Design
problem 2) which allows both controls and encoders to be dynamic. We work out the
details for the discrete alphabet channel with the fixed alphabet size N . We begin
by examining a known structural property of optimal encoders. This states that it
is optimal for the encoder to apply a quantizer on the state xt, with the shape of the
quantizer depending only on past quantizer outputs. Next, we present a structural
property for encoders called controls-forgetting, which leads to separation. Finally,
we show that one optimal encoder in design problem 2 does indeed possess this
property, which leads to separation and certainty equivalence for this problem.
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Figure 7.3: Plot of quantization distortion and performance cost for example 7.1

7.4.1 Known Structural Properties of Optimal Encoders

Let us now formulate the encoder’s Markov decision problem. Fix the control poli-
cies to be the admissible laws:

ut = K†
t

(
{zi}

t
0

)
.

Then the optimization problem reduces to one of picking encoding policies. This is
a single-agent, sequential decision problem, and hence one with a classical informa-
tion pattern. The action space for this decision problem is the infinite dimensional
function space of discrete-valued encoders. At time t, the encoder takes as input the
current and previous states, all previous outputs, and all previous encoding maps.
For convenience, we can view this encoding map as a function of only the current
state but with the rest of the inputs considered as parameters determining the form
of this function. Thus, without loss of generality the encoder can be described as
the function

ξt (·) : R → {1, . . . , N}

having xt as its argument with its shape determined by
(

{xi}
t−1
0 {zi}

t−1
0 {ξi (·)}t−1

0

)
.

Hence the action space at times t can be described as:

{
ξ (·) : R → {1, . . . , N}, Borel measurable

}
.
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Identifying encoders as decisions to be picked is not enough, as the signal xt need

not be Markov. By identifying an augmented state signal Ξt =
(
xt, t, z0 ·

1{t>0}, . . . , zi ·1{t>i}, . . . , zT ·1{t>T }
)

, it is possible to obtain a controlled Markov

process. Then, the encoder’s problem can be rewritten as a Markov decision prob-
lem with controls taking values in a function space. For such decision problems,
sufficient statistics have been laid down by Shiryaev (1964), and by Dynkin (1965)
for countable state spaces, and by Striebel (1965) for states and controls taking val-
ues in finite dimensional vector spaces. Even though our action spaces are infinite
dimensional spaces, Striebel’s proof technique holds true here. Hence, the variables(

Ξt, ξ0 (·) , . . . , ξt−1 (·)
)

are sufficient statistics for the encoder.

Hence, at every time t, performance is not degraded by the encoder choosing to
quantize just xt instead of quantizing the entire waveform {x0, . . . , xt}. Of course
the shape of the quantizer is allowed to vary with past encoder shapes, past encoder
outputs, and on past control inputs. But given the sufficient statistics, the encoder
can forget the data: {x0, . . . , xt−1}.

7.4.2 The Common Information Approach:

The core problem we consider in this chapter has two decision makers that jointly
minimize a given cost function. The information available to these decision makers
is not the same, and neither is the information available to each agent a subset of the
information available to the agent downstream in the loop. Thus, the information
pattern here is neither classical nor nested. We apply the common information
approach to our problem. This approach was first proposed by Witsenhausen (1971)
as an unproven conjecture, to deal with multiple decision makers and non-classical
information patterns in a general setting. This was shown to be true by Varaiya and
Walrand (1978) for a special case. Our terminology is derived from Nayyar (2011),
where this conjecture has been studied in detail.

Denote by D
con
t− the data at the controller just after it has read the channel

output zt and just before it has generated the control value ut. Similarly denote
by D

con
t+ the data at the controller just after it has generated the control value ut.

Then

D
con
t− =

{
{zi}

t
0, {ξi (·)}t

0, {ui}
t−1
0

}
,

D
con
t+ =

{
D

con
t− , ut

}
=
{

{zi}
t
0, {ξi (·)}t

0, {ui}
t−1
0 , ut

}
.

Also let x̂ t|t = E
[
xt

∣∣Dcon
t−

]
.

The common information approach allows a designer to treat a problem with
multiple decision makers as a classical control problem with a single decision maker
that has access to partial state information. When applied to our setup, this ap-
proach leads to the following structural result at the encoder. The encoding pol-
icy ξt (·) is selected based on the information available to the controller at the pre-
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vious time instant namely D
con
(t−1)+ . At times t−, t+ respectively, the data D

con
(t−1)− ,

D
con
(t−1)+ comprise the common information in this problem. The encoding map ξt (·)

is applied to the state xt, which is private information available to the encoder. This
approach has been used by many others, even within the context of quantized con-
trol (Borkar et al., 2001b; Walrand and Varaiya, 1983).

7.4.3 Controls-Forgetting Encoders and Separation

We now present a structural property of encoders which ensures separation in de-
sign. Recall that our plant evolution is linear: xt+1 = axt + ut + wt. Define the
following control free part of the state:

ζ0 = x0,

ζi+1 = xi+1 −
i∑

j=0

ai−1uj for i ≥ 0.

At the encoder, the change of variables
(
xt, {zi}

t−1
0 ; {Ki (·)}T

0

)
7−→

(
ζt, {zi}

t−1
0 ; {Ki (·)}T

0

)
(7.5)

is causal and causally invertible. Hence the statistics
(
ζt, {zi}

t−1
0 ; {Ki(·)}T

0

)
are also

sufficient statistics at the encoder. We now introduce the innovation encoding of
Borkar and Mitter (1997).

Definition 7.4 (Innovation encoding). An encoding map with the inputs and out-
puts:

(
ζt, {zi}

t−1
0 ; {Ki(·)}T

0

)
7−→ ιt

is admissible and is called ‘innovation’ encoding (Borkar and Mitter, 1997).

The control free part of the state is not affected by the control policies. It obeys
the recursion:

ζt+1 = aζt + wt.

The change of variables (7.5) also induces an one-to-one and onto map from the set

of encoders ξ acting on
(
xt, {zi}

t−1
i=0 , {Ki(·)}T

0

)
to the set of encoders ξinn acting

on
(
ζt, {zi}

t−1
i=0 , {Ki(·)}T

0

)
. For any sequence of causal encoders, one can find an

equivalent sequence of innovation encoders such that when these two sets operate
on the same sequence of plant outputs, they produce two sequences of channel
inputs that are equal with probability one. Hence, if for a plant and channel, the
dual effect is present in a certain class of causal encoders, then the dual effect is
also present in the equivalent class of innovation encoders (Feng and Loparo, 1997).
This is what the following example illustrates:
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
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

· ; {zi}
t−1

0
,
{

ξinn
i

(·)
}t−1

0
,{Ki (·)}

T

0
,












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








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
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
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
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Figure 7.4: The block diagram of Figure 7.1 with innovation encoding

Example 7.2
For the linear plant (7.1), let the coefficient a = 1, and let the initial state x0 = 2,
and σ0 = 0, and let this information be known to the encoder and the controller.
This simply means that z0 = x0. Let the variance σ2

w = 0.72. Let the horizon end
at T = 1, and let the coefficients p and q be equal to 0.01. Let the channel alphabet
be {1, 2, 3}. For the given threshold θ = 1.6, let the encoder at time t = 1 be the
following innovation encoder:

ξinn
1 (ζ1) =





1 if aζ1 + K0 (z0) ∈ (−∞,−θ) ,

2 if aζ1 + K0 (z0) ∈ (−θ, θ) ,

3 if aζ1 + K0 (z0) ∈ (θ,+∞) .

(7.6)

Let the control law at time t = 1 give: u1 = − a
q+1 x̂1|1, where x̂1|1 = E [x1 |x0, u0, z1 ].

Then the only choice yet to be made is the policy for control u0.
Notice that all the parameters of this example are the same as those of exam-

ple 7.1. The only possibly difference may be in the encoding policies. But looking at
equations (7.4), (7.6), tells us that this innovation encoder ξinn

t is equivalent to the
causal encoder ξt of example 7.1. For the same applied control policy K0, and for the
same realizations of primitive random variables, we get: ξinn

1 (ζ1 (ω)) = ξ1 (x1 (ω)).
Hence, with probability one the two nonlinear filters for the state given x0, z1 are
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the same. Thus for an event X ∈ F (x0,z1), we have:

P
[
x1 ∈ X

∣∣x0, z1 = ξinn
1 (ζ1)

]
= P [x1 ∈ X |x0, z1 = ξ1 (x1) ] .

Hence the graphs in Figure 7.3 are identical to corresponding graphs for this ex-
ample.

We now define special classes of controllers and encoders.

Definition 7.5 (Controls affine from time τ). We call a controller affine from
time τ if it takes the following multiplexed form:

Kmult, τ
i

(
D

con
i−

)
=

{
u†

i , if i < τ,

uaff
i = kix̂i|i + di, if i ≥ τ,

(7.7)

where, the controls u†
i are generated by an admissible strategy {K†

i (·)}T
i=0, and the

controls uaff
i are generated by an affine strategy {Kaff

i (·)}T
i=0. The gains {ki}T

0 and
offsets {di}T

0 must be computed offline and stored in the memory of the controller.

Definition 7.6 (controls-forgetting encoder). From time τ , denote by ρζ
τ |τ−1 (·) the

conditional density of ζτ given the data D
con
(τ−1)− . We call an admissible encoding

strategy controls-forgetting from time τ if it takes the form:

ξCF, τ
t

(
xt;Dcon

(t−1)−

)
=




ξ†

t

(
xt;Dcon

(t−1)−

)
, if t ≤ τ,

ǫt

(
ζt; ρ

ζ
τ |τ−1 (·) , {zi}

t−1
τ , {ǫi (·)}t−1

τ

)
, if t ≥ τ + 1,

where: (1) ξ†
t

(
·;Dcon

(t−1)−

)
is any admissible policy for encoding at time t, (2) for

times t ≥ τ + 1 the policies ǫt

(
·; ρζ

τ |τ−1 (·) , {zi}
t−1
τ , {ǫi (·)}t−1

τ

)
are adapted to the

data

D
CF, τ

(t−1)+ =
(
ρζ

τ |τ−1 (·) , {zi}
t−1
τ , {ǫi (·)}t−1

τ

)
⊂ D

con
(t−1)+ , for t ≥ τ,

and (3) for fixed values of the data D
CF, τ

(t−1)+ , the map ǫt (·) produces the same out-

put no matter what the controls {ui}
t
τ are, and no matter what the control poli-

cies {Ki (·)}T
t+1 are.

Clearly such controls-forgetting encoders exist. For example: a set of encoders
that quantize in sequence ζτ+1, . . . , ζT to minimize the estimation distortion

T∑

i=τ+1

E

[(
ζi − ζ̂i|i

)2
]
,

where ζ̂ i|i = E

[
ζi

∣∣∣DCF, τ

(i−1)+

]
. Let the non-negative function ψ (·) represent some

notion of cost. For example: ψ (x) := x2.
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Lemma 7.2 (Distortions incurred by CF encoders also forget controls). Fix the
distortion measure ψ. If the encoder is controls-forgetting from time τ , then for
times i ≥ τ + 1, the conditional expected distortions

E
[
ψ
(
xi − x̂i|i

)∣∣Dcon
i−

]

are statistically independent of the partial set of controls {ui}
T
i=τ .

Proof. The unconditional statistics of {ζt} are independent of the entire control
waveform, no matter what the encoder is. For times i ≥ τ + 1 and for sets X ∈ Fz

i

the conditional probabilities

P [ζi ∈ X |Dcon
i− ]

are independent of {ui}
T
i=τ because the encoding maps ξi are controls-forgetting

from time τ . Since ζt − ζ̂t|t = xt − x̂t|t ∀t, the lemma follows.

7.4.4 Preliminary Lemmas

The main result ahead is Theorem 7.7 that states that it is optimal for the design
problem 2 to apply a separated design and certainty equivalence controls. In this
subsection, we do some necessary ground work towards proving that theorem.

Once we are prescribed an admissible encoder, the controls {uj}T
j=i affect only

the cost to go: E
[
x2

T +1

]
+
∑T

j=i E
[
px2

j + qu2
j

]
. In the classical single agent LQ

problem, the ‘prescribed encoder’ is simply the linear observation process with pre-
scribed signal-to-noise ratios. There, this cost to go can be expressed as a quadratic
function of {uj}T

j=i, {xj}T
j=i and

{
x̂j|j

}T

j=i
. But in our two agent LQ problem, be-

cause of the dual effect, the cost to go may have a non-quadratic dependence on
the controls {uj}T

j=i. However we show that by restricting the controls-forgetting
encoders and affine controls the above cost to go does get a quadratic form. We
use this reasoning and dynamic programming to show that for time t = i going
backwards from T :

• it is optimal at time t = i to apply as control a linear function of x̂i|i , and,

• it is optimal at time t = i to apply as encoding map one that is controls-
forgetting from time i− 1.

Lemma 7.3 (Optimal control at time t = T ). The best control policy at time t =
T is the linear law: u∗

T = − a
1+q x̂T |T , and the optimum cost to go V ∗

T

(
D

con
T −

)
=

minut
E
[
x2

T +1 + qu2
T

∣∣Dcon
T −

]
is the expected value of a quadratic in xT and x̂T |T .
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Proof. At time T−, one is given D
con
T − , and is asked to pick uT to minimize the cost

to go

VT (uT ;Dcon
T − ) = E

[
x2

T +1 + qu2
T |Dcon

T −

]
,

= σ2
w + E

[
a2x2

T + 2axTuT + (1 + q) u2
T |Dcon

T −

]
,

= σ2
w +

a2

1 + q
E

[
q x2

T +
(
xT − x̂T |T

)2
∣∣∣Dcon

T −

]

+ (1 + q)
(
uT −

a

1 + q
x̂T |T

)2

,

and this lets us prove the lemma.

Lemma 7.4 (Optimal ξi for separated, quadratic cost to go). Consider the dynamic
encoder-controller design problem (Design problem 2), for the linear plant eqn. (7.1),
and the performance cost of eqn. (7.2). Suppose that we apply an admissible con-

troller K̃ along with an encoder ξCF,i
t that is controls-forgetting from time i. Fur-

thermore, suppose that the partial sets of policies:

{
ξCF,i

i+1 (·) , . . . , ξCF,i
T (·)

}

{
K̃i (·) , K̃i+1 (·) , . . . , K̃T (·)

}

are chosen such that the following three properties hold:

1. the cost to go at time i takes the separated form:

E


x2

T +1 + p

T∑

j=i

x2
i + q

T∑

j=i

u2
i

∣∣∣∣∣∣
D

con
i+


 = E [Jcon

i (ui, xi)|Dcon
i+ ] + E [Γi+1|Dcon

i+ ] ,

where, Jcon
i (ui, xi) = α+ ασ2

w + β xi + β̃ x2
i + ν x̂ i|i + ν̂ xix̂ i|i + ν̃ x̂2

i|i,

and the term Γi+1 is a weighted sum of future distortions and depends only

on the random sequence
{
xj − x̂j|j

}T

j=i+1
,

2. the coefficients of the quadratic Jcon
i may depend on the control policies

{
K̃j (·)

}T

i

but not on the partial set of encoding maps:
{
ξCF,i

j (·)
}T

i+1
and,

3. the term Γi+1 depends on the encoding maps
{
ξCF,i

j (·)
}T

i+1
but not on the

partial set of control policies
{

K̃j (·)
}T

i
.
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Then, it follows that the best choice for the encoding map at time t = i does not de-

pend on the data:

(
ui−1,

{
K̃j (·)

}T

i

)
. It also follows that the shapes of the encoding

maps
{
ξCF,i

j (·)
}T

i+1
and their performance do not depend on the control ui−1.

Proof. The proof exploits three facts: Firstly the special form of Jcon
i (ui, xi) makes

the encoder’s performance cost at time i a sum of a quadratic distortion between
xi and x̂ i|i, and a term gathering distortions at later times. Secondly the minimum
of the sum distortion depends only on the intrinsic shape of the conditional den-
sity ρ i|i−1 (·) and not on its mean. Thirdly, these facts and the controls-forgetting
nature of later encoding maps allows the encoder to ‘ignore’ the control ui−1. We
now start by writing the cost to go as:

E [Jcon
i (ui, xi) + Γi+1|Dcon

i+ ] , = E

[
α+ ασ2

w + β xi + β̃ x2
i + ν x̂ i|i

∣∣∣Dcon
i+

]
,

E

[
+ν̂ xi x̂ i|i + ν̃ x̂2

i|i

∣∣∣Dcon
i+

]
,+E [Γi+1|Dcon

i+ ] ,

= α+ ασ2
w + E

[(
β + ν

)
xi +

(
ν̂ + ν̃ + β̃

)
x2

i

∣∣∣Dcon
i+

]

− (ν̂ + ν̃)E
[
x2

i − x̂2
i|i

∣∣∣Dcon
i+

]
+ E [Γi+1|Dcon

i+ ] ,

= α+ ασ2
w + E

[(
β + ν

)
xi +

(
ν̂ + ν̃ + β̃

)
x2

i

∣∣∣Dcon
i+

]

− (ν̂ + ν̃)E
[(
xi − x̂ i|i

)2
∣∣∣Dcon

i+

]
+ E [Γi+1|Dcon

i+ ] .

Given the data D
con
(i−1)+ the part of the cost above that depends on the encoding

map ξi (·) is

− (ν̂ + ν̃)E
[(
xi − x̂ i|i

)2
∣∣∣Dcon

i+

]
+ E [Γi+1|Dcon

i+ ] .

Notice that the first term is the quantization variance of the quantizer ξi (·). This
reduction of the encoder’s performance cost to a sum of current and future quanti-
zation distortions is possible because the term Jcon

i (ui, xi) has been assumed to be
quadratic in xi and x̂ i|i. The reduced performance cost of the encoder is a function

only of the quantizer ξi (·) and the conditional density ρ i|i−1

(
x
∣∣∣Dcon

(i−1)−

)
. Indeed,

given the data D
con
(i−1)− this cost is the following average:

Γi

(
ξi (·) ;Dcon

(i−1)+

)

=
∑

cells ∆

P

[
xi ∈ ∆

∣∣∣Dcon
(i−1)− , ui−1

]
·
{
E

[
Γi+1 (Dcon

i− )
∣∣∣Dcon

(i−1)+ , xi ∈ ∆
]}

+
∑

cells ∆

P

[
xi ∈ ∆

∣∣∣Dcon
(i−1)− , ui−1

]
·
{
λ E

[(
xi − x̂ i|i

)2
∣∣∣Dcon

(i−1)+ , xi ∈ ∆
]}
,
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where λ = − (ν̂ + ν̃). The cost Γi does depend on both ξi (·) and ui, but for given
data D

con
(i−1)− and control ui−1, the minimum of Γi over all admissible quantizers

ξi (·) may possibly depend on D
con
(i−1)− but not on the control ui−1. To see this

consider two arbitrary possible values u, ũ for ui−1. Suppose that one is given the
quantizer

ξ (x) =





1 if x ∈ (−∞, δ1) ,

2 if x ∈ (δ1, δ2) ,
...

...

N if x ∈ (δN−1,+∞) ,

meant for quantizing a random variable with the density ρ i|i−1

(
x
∣∣∣Dcon

(i−1)− , ui−1 = u
)

.

Consider the quantizer ξ̃ constructed by taking each cell ∆ =
(
δ, δ
)

in ξ, and gen-

erating a new cell ∆̃ =
(
δ − u+ ũ, δ − u+ ũ

)
, and stipulating that the new quan-

tizer ξ̃ assigns to the cell ∆̃ the same channel input that the quantizer ξ assigns
to ∆.

Because of the linear evolution: xi = axi−1 + ui−1 + wi−1, and because the
random variable wi−1 is independent of the data D

con
(i−1)+ , we have the convolution

relations:

ρ (x) = ρ i|i−1

(
· − u

a

)
⊛ ρw (·)

∣∣∣∣
x

and,

ρ̃ (x) = ρ i|i−1

(
· − ũ

a

)
⊛ ρw (·)

∣∣∣∣
x

,

leading to the following symmetry w.r.t. translations:

ρ i|i−1

(
x− u

∣∣∣Dcon
(i−1)− , ui−1 = u

)
= ρ i|i−1

(
x− ũ

∣∣∣Dcon
(i−1)− , ui−1 = ũ

)
. (7.8)

Then we get the following equalities for each pair of cells ∆, ∆̃

P

[
xi ∈ ∆

∣∣∣Dcon
(i−1)− , ui−1 = u

]
= P

[
xi ∈ ∆̃

∣∣∣Dcon
(i−1)− , ui−1 = ũ

]
,

Γi+1

(
D

con
(i−1)− , ui−1 = u, , xi ∈ ∆

)
= Γi+1

(
D

con
(i−1)− , ui−1 = ũ, , xi ∈ ∆̃

)
,

E

[(
xi − x̂ i|i

)2
∣∣∣Dcon

(i−1)− , ui−1 = u, , xi ∈ ∆
]

=

E
[(
xi − x̂ i|i

)2
|Dcon

(i−1)− , ui−1 = ũ, xi ∈ ∆̃.
]
.

Then the performance of any quantizer ξ designed for ui−1 = u can be matched by
ξ̃ for ui−1 = ũ, and vice versa. Hence, we can conclude that for any u, ũ,

inf
ξ

Γi

(
ξ (·) ;Dcon

(i−1)− , ui−1 = u,
)

= inf
ξ

Γi

(
ξ (·) ;Dcon

(i−1)− , ui−1 = ũ,
)
.

Notice that this optimal encoder now become controls-forgetting from time i−1.
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As the optimal control u∗
T is a linear function on x̂T |T , the encoder ξT begets a

performance cost that is quadratic in xT , x̂T |T . Then the above lemma renders the
optimal encoding map ξ∗

T to be controls-forgetting from time T − 1. This reduction
also holds at earlier times.

Lemma 7.5 (Encoder separation for affine controls). If: (1) for any admissible con-
trol strategy, an admissible encoder strategy minimizing the performance cost (7.2)

exists, and (2) we apply as control strategy one affine from time τ : Kmult,τ
i

(
D

con
i+

)

(from defn. 7.5), then: (a) an encoder that is controls-forgetting from time τ mini-
mizes the partial LQ cost:

E

[
x2

T +1 + p

T∑

i=τ+1

x2
i + q

T∑

i=τ

u2
i

∣∣∣∣∣D
con
τ +

]
,

and, (b) the shapes of the minimizing encoding maps from time τ and their per-

formance are independent of the data:
{
u†

τ−1, {ki}T
i=τ , {di}T

i=τ

}
.

Proof. We prove by mathematical induction. For a given control strategy, define:

WT = E

[
x2

T +1 + px2
T + qu2

T

∣∣Dcon
(T −1)+

]
, W ∗

T = inf
ξT (·)

WT ,

Wi = E

[
px2

i + qu2
i

∣∣Dcon
(i−1)+

]
+ E

[
W ∗

i+1 (Dcon
i+ )

∣∣∣Dcon
(i−1)+ , ξi (·)

]
, W ∗

i = inf
ξi(·)

Wi.

Induction hypothesis. Induction hypothesis[for time i] For some time t = i such
that τ ≤ i < T , we have the following three facts: (1) for every j ≥ i+1, the optimal

value function W ∗
j

(
D

con
(j−1)−

)
takes the form:

αjσ
2
w + αj + β̃jE

[
xj

2
∣∣∣Dcon

j−

]
+ βj x̂j|j + E

[
Γ̃∗

j+1

(
D

con
(j+1)−

)∣∣∣Dcon
j−

]

+ λ̃jE

[(
xj − x̂ j|j

)2
∣∣∣Dcon

j−

]
,

where the αj , αj , β̃j , βj , λ̃j are known non-negative real numbers for j ≥ i+1, (2) for

each such j, the non-negative function Γ̃∗
j+1

(
D

con
j−

)
is assumed to be independent of

the partial waveform {uj , uj+1, . . . , uT }, and (3) the optimal partial set of encoding

maps
{
ξ∗

j (·)
}T

i+1
is a set that is controls-forgetting from time i.

We will now show: if this hypothesis holds for time i, then it holds for time i − 1.
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Assuming that the partial set of encodings maps
{
ξ∗

j (·)
}T

i+1
are employed, we get:

Wi = E

[
px2

i + qu2
i

∣∣Dcon
(i−1)+

]
+ E

[
W ∗

i+1 (Dcon
i+ )

∣∣∣Dcon
(i−1)+ , ξi (·)

]
,

= pE
[
x2

i

∣∣∣Dcon
(i−1)+

]
+ q E

[
u2

i

∣∣∣Dcon
(i−1)+

]
+ αi+1σ

2
w + αi+1

+ β̃i+1E

[
xi+1

2
∣∣∣Dcon

(i+1)−

]
+ βi+1E

[
xi+1

∣∣∣Dcon
(i+1)−

]

+ E

[
Γ̃∗

i+1

(
D

con
(i+1)−

)∣∣∣Dcon
i−

]
,

= αiσ
2
w + αi + β̃iE

[
x2

i |Dcon
i−

]
+ βiE [xi |Dcon

i− ]

+ E

[
Γ̃∗

i+1

(
D

con
(i+1)−

)∣∣∣Dcon
i−

]
+ λ̃iE

[(
xi − x̂ i|i

)2
|Dcon

i−

]
,

where, the coefficients:

αi = αi+1 + β̃i+1,

αi = αi+1 + β̃i+1d
2
i + q d2

i + βi+1di,

βi = 2
(
q kidi + aβ̃i+1di + β̃i+1kidi

)
,

β̃i = pi + a2β̃i+1 + k2
i β̃i+1 + 2akiβ̃i+1 + q k2

i β̃i+1,

λ̃i = q k2
i + k2

i β̃i+1 + 2akiβ̃i+1.

We have thus: Wi = E
[
A quadratic in xi, x̂i|i

]
+E [ Future distortions ] . This and

the fact that the encoder is controls-forgetting from time t = i meet the require-
ments of lemma 7.4. Then we get the optimal encoding map ξ∗

i to be controls-
forgetting from time t = i − 1, and

Γ̃i = min
ξ

E

[
Γ̃∗

i+1

(
D

con
(i+1)−

)∣∣∣Dcon
i−

]
+ λ̃iE

[(
xi − x̂ i|i

)2
|Dcon

i−

]

is independent of the partial set of controls {uj}T
j=i−1. From this it follows that the

induction hypothesis is also true for time i− 1.

Lemma 7.6 (CE controls for CF encoders). If the encoder is preassigned to be one
that is controls-forgetting from time τ , then the partial LQ cost

E

[
x2

T +1 + p

T∑

i=τ+1

x2
i + q

T∑

i=τ

u2
i

∣∣∣∣∣D
con
τ −

]
,

is minimized by the following control laws with a linear form: For i ≥ τ : u∗
i =

k∗
i x̂ i|i.

Proof. Define the following cost to go at time t = T − 1:

VT −1 = E

[
WT

(
ǫT (·) ;Dcon

(T −1)+

)]
.
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Because of lemma 7.3,

VT −1 = σ2
w +

(
p+

a2q

q + 1

)
E

[
x2

T

∣∣∣Dcon
(T −1)− , uT −1

]
+ E

[(
xT − x̂T |T

)2
∣∣∣Dcon

T −

]
.

Because the encoder is controls-forgetting from time τ , the last term, which is
the distortion due to the encoder ξT , is independent of the partial set of controls
{ui}

T
i=τ+1. Hence the only part of VT −1 that depends on the control uT −1 is the

quadratic

q u2 +
(
p+

a2q

q + 1

)
E

[
x2

T

∣∣∣Dcon
(T −1)− , uT −1

]

= q u2 +
(
p+

a2q

q + 1

){
a2
E

[
x2

T

∣∣∣Dcon
(T −1)− , uT −1

]}

+
(
p+

a2q

q + 1

){
2a x̂T −1|T −1 uT −1 + u2

T −1 + σ2
w.
}

Hence the best control law is: u∗
T −1 = −

a

(
p+ a2q

q+1

)

q+p+ a2q
q+1

x̂T −1|T −1 , and the resulting value

function:

V ∗
T −1 =

(
1 + p+

a2q

q + 1

)
σ2

w +
a2q

(
p+ a2q

q+1

)

q+p+ a2q
q+1

E

[
x2

T

∣∣∣Dcon
(T −1)− , uT −1

]

+
a2
(
p+ a2q

q+1

)

q + p+ a2q
q+1

E

[(
xT −1 − x̂T −1|T −1

)2
∣∣∣Dcon

(T −2)+

]

+ E

[(
xT − x̂T |T

)2
∣∣∣Dcon

T −

]
.

Repeating this procedure backwards in time, we get for times i ≥ τ , the optimal
control laws are: u∗

i = −k∗
i x̂i|i , where k∗

i = a βi+1

q+βi+1
, βi = p+ a2qβi+1

q+βi+1
, βT +1 = 1.

7.4.5 Main Theorem

Lemma 7.5 implies that for a pre-assigned controller affine from time zero, there ex-
ist optimal encoding maps that are controls-forgetting from time zero. Lemma 7.6 is
complementary. It implies that for a pre-assigned encoder that is controls forgetting
from time zero, the optimal control laws have linear forms.

For Design problem 2 an optimal pair of strategies have a similar simplified
structure. It is optimal to apply a combination of controls-forgetting encoding and
control laws linear in x̂i|i. In general, this controls forgetting encoder does not
minimize the aggregate squared estimation error. The goal accomplished by an
optimal encoder is slightly different. It is to minimize a sum of state estimation
errors with the time-varying weights λi.
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Theorem 7.7 (Optimality of separation and certainty equivalence). For Design
problem 2, with the discrete alphabet channel of constant alphabet size, the quadratic
performance cost (7.2) is minimized by applying the linear control laws

u∗
t = −k∗

t x̂ t|t (7.9)

in combination with the following encoder which is controls-forgetting from time 0:

ǫ∗
t

(
ζt ; {zi}

t−1
0 , {ǫi (·)}t−1

0

)
= arg inf

ǫ(·)
Γi

(
ǫ (·) ; {zi}

t−1
0 , {ǫi (·)}t−1

0

)
, (7.10)

where, k∗
i = a βi+1

q+βi+1
, βi = p+ a2qβi+1

q+βi+1
, βT +1 = 1, and λi =

a2β2
i+1

q+βi+1
and where,

Γt = λt E

[(
ζt − ζ̂ t|t

)2 ∣∣∣ǫt (·) ,Dcon
(t−1)+

]
+ E

[
Γ∗

t+1

(
x0, σ

2
0 , {zi}

t
0 , {ǫi (·)}t

0

)]
,

ΓT = E

[(
ζT − ζ̂T |T

)2 ∣∣∣ǫT (·) , x0, σ
2
0 , {zi}

T −1
0 , {ǫi (·)}T −1

0

]
,

Γ∗
t = inf

ǫ(·)
Γt (ǫ) .

Moreover, this control law is a certainty equivalence law.

Proof. Starting with the result of lemma 7.3 as a seed, repeatedly apply in sequence
theorems 7.5, 7.6. This proves optimality of the above combination. Lemma 7.1
implies that the controls laws of 7.9 are indeed certainty equivalence control laws
as per van de Water and Willems (1981).

The optimal controller splits into a least square estimator computing x̂ t|t and
a time-dependent gain. Computing x̂ t|t is intrinsically hard because quantization
is a nonlinear operation. If one ignores this computational burden, then, at least
formally, the optimal controller resembles that for the classical LQG optimal control
problem.

Note that in general the sequence of weights {λi}
T
0 depends on the parameters of

the performance cost including the control penalty coefficient q. In the two special
cases:

1. the coefficients q = 0, p = 1, or

2. the quantity p+ a2q − q > 0 and the following equality holds:

p+ a2q − q +
√

(p+ a2q − q)2 + 4pq = 2,

it turns out that the weights βi ≡ 1 ∀i, and hence the weights λi ≡ a2

q+1 ∀i. Thus
in these special cases, optimal encoders ‘ignore’ the parameters of the performance
cost and simply minimize the usual aggregate squared error in state estimation.
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7.5 Dynamic Designs for Other Channel Models

Clearly, our results for Design problem 2 extend to the case where we allow de-
terministic, time-varying coefficients for the plant equation and of the quadratic
performance costs. These results also apply to the case where the quantizer word-
lengths at different times are deterministic but time-varying. In this section, we
sketch how these results also apply to some wider settings. These include the case
where the quantizer word-lengths are chosen real-time by the encoder, as well as
situations where the bandwidth constraint takes different forms.

7.5.1 Kinds of Channel Models

We study a handful of channel models, but all coming from within three broad
classes of messaging a sequence of real numbers. These are: (1) quantized messag-
ing, (2) unquantized but irregular, event-triggered sampling, and (3) unquantized
but noise added messaging. What is common to our channel models is that the
dynamic LQ design problem gets a separated optimal solution. To obtain this de-
sign simplification, we also assume that at all times, the channel output is perfectly
visible to the encoder. Thus in each one of our channel models, there will be an
ideal, delay-free feedback channel copying the actual inputs for the controller back
to the encoder.

Ideal, discrete-alphabet channel

The first model is the instantaneous, error-free, discrete-alphabet channel. The
logarithm of the size of the alphabet is the bit rate. A variation is a channel which,
on each channel use provides instantaneous, error-free transmission of words of
varying but bounded length.

Ideal continuous-valued channel with limited use

The second model is suitable only with systems working in real-time, since it has
infinite capacity in the Shannon sense. It provides instantaneous, error-free trans-
mission of any input real number. Any arbitrarily large set of random quantities
can be encoded into a single real number and perfectly reconstructed by using a
suitable coding-decoding scheme. Hence with a single channel use, an arbitrarily
large number of bits can be transmitted. However we need not worry because in
real-time loops, one can do no better than to transmit the latest sample of the
state vector. To make this channel model represent a bottleneck, one must limit
how often the channel can be used over prescribed time intervals. This we do by
charging a communication cost for transmissions. This channel model is suitable
for loops with event-triggered sampling.
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Noisy linear channel

This model is a generalization of the classical AWGN channel. Since we let the
channel noise be coloured and non-Gaussian, we call this the AN channel. It accepts
a real valued input and delivers the input added with noise. This model asks for an
encoder that maps raw sensor measurements into a sequence of real valued channel
inputs; such a map must be causal, but can be nonlinear and memory-based. To
allow only finite-rate communications, we charge energy costs for inputs to the
channel.

7.5.2 Modified Performance Cost

The performance cost now has same form as before, but the communication cost
will take a positive functional form depending on the channel model:

J = E

[
x2

T +1 + p

T∑

i=1

x2
i + q

T∑

i=0

u2
i

]
+ JComm (7.11)

To show these extensions for all the other channel models we study, we only need
to find the appropriate versions of lemma 7.4. Once this is done, all the steps in
the proofs for theorems 7.5, 7.7 can be repeated with no hitch. For each of the
channel models we consider, an encoder that is controls forgetting from time 0 will
be optimal in combination with the certainty equivalence control laws of 7.9. In
what follows we will use the following symbols η, ηt, φ (·) , ϕ (·) and attach different
meanings to them, depending on the channel model.

7.5.3 Quantizer with its Rate Chosen Real-Time

We describe below the Design problem 2 for quantized control where the quanti-
zation rate is to be chosen real-time. We describe the situation where the rate has
an expense attached, and when there may be both a common upper bound on the
sizes of individual codewords and a separate upper bound on the average data rate
over the entire horizon.

Communication cost

The channel is a discrete alphabet channel with a variable sized alphabet. With
each channel use, the size of the alphabet must be chosen causally, and this choice
is to be made by the encoder. At every time t, the channel input and output are
the same: ιt = zt. And

zt = (ηt, νt) ,

where the positive number ηt is the size of the alphabet, and the codeword νt ∈
{1, 2, . . . , ηt}. Let φ (·) be a non-negative and increasing function of positive integers,
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such that φ (0) = 0. We use φ to measure data-rates. An example is: φ (η) = log2 η.
Let the positive integer η denote an upper limit on the alphabet size at any time.
Then the communication cost incurred at time t can be described thus:

ϕt (ηt) =

{
φ (ηi) if ηi ≤ η,

+∞ if ηi > η.

Let the positive real number R ≤ η denote an upper limit on the average data rate
over the entire horizon. We define the communication cost as follows:

JComm =

{
m · E

[∑T
i=0 ϕ (ηi)

]
if
∑T

i=0 ϕ (ηi) ≤ R × (T + 1) ,

+∞ if
∑T

i=0 ϕ (ηi) > R × (T + 1) ,

where the non-negative real m is a Lagrange multiplier. It is easy to see that the
signals xt, {ιj}t−1

0 {zj}t−1
0 , {ξj}t−1

0 are sufficient statistics for encoding decisions,
where of course zi = (ηt, νt). All that is left to do now is to present a suitable
version of lemma 7.4.

Lemma 7.8 (Variable rate CF encoder optimal for affine controls). Fix time t = i
and apply control laws affine from time i. Suppose that for all times j > i the best en-
coding policies E∗

j (·) (rules for variable alphabet sizes ηj as well as actual quantiza-
tion maps) and their performances are independent of the partial control waveform
{ui, . . . , uT }. Then, for all times j > i−1 the best encoding policies E∗

j (·) and their
performances are independent of the slightly longer waveform {ui−1, ui, . . . , uT }.

Sketch of proof. Consider the encoder choice at time t = i. For any fixed alphabet
size η, let Eη∗ (·) be the encoder possessing the two properties: (1) its alphabet size
equals η, and (2) this encoder in combination with optimal policies for the later

encoders
{

E∗
j

}T

j=i+1
(meaning policies for variable alphabet sizes and quantization

maps) achieves the lowest possible values for the performance costs. Where of course
by performance cost of the encoder we mean those parts of the performance cost
that, once affine control policies are fixed, depend on these encoders.

For every fixed η, we know that Eη∗ (·) and the statistics of its outputs are
independent of the policy for control ui−1. Hence when this quantizer is used in
combination with an optimal set of later encoders, the quantization distortion at
time t = i, and the statistics of channel outputs at all times j ≥ i become indepen-
dent of the control value ui−1. Likewise the communication costs incurred at times
j ≥ i become independent of the control value ui−1. Since every admissible choice
of ηt leads to this property, the lemma is proved.

We present without proof the main theorem:

Theorem 7.9 (Optimality of separation and certainty equivalence). For Design
problem 2, with the discrete alphabet channel of variable alphabet size, the perfor-
mance cost (7.11) is minimized by applying the linear control laws

u∗
t = −k∗

t x̂ t|t
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in combination with the following encoder which is controls-forgetting from time 0:

ǫ∗
t

(
ζt ; {zi}

t−1
0 , {ǫi (·)}t−1

0

)
= arg inf

ǫ(·)
Γi

(
ǫ (·) ; {zi}

t−1
0 , {ǫi (·)}t−1

0

)
,

where, k∗
i = a βi+1

q+βi+1
, βi = p+ a2qβi+1

q+βi+1
, βT +1 = 1, and λi =

a2β2
i+1

q+βi+1
and where,

Γt = λt E

[(
ζt − ζ̂ t|t

)2

+m · ϕ (ηt)
∣∣∣ǫt (·) ,Dcon

(t−1)+

]

+ E

[
Γ∗

t+1

(
x0, σ

2
0 , {zi}

t
0 , {ǫi (·)}t

0

)]
,

ΓT = E

[(
ζT − ζ̂T |T

)2

+m · ϕ (η
T

)
∣∣∣ǫT (·) , x0, σ

2
0 , {zi}

T −1
0 , {ǫi (·)}T −1

0

]
,

Γ∗
t = inf

ǫ(·)
Γt (ǫ) .

Moreover, this control law is a certainty equivalence law.

7.5.4 Event-Triggered Sampling

We now summarize parallel developments for event-triggered messaging. Here the
encoder transmits unquantized real numbers at selected event-triggered times. The
best signal to sample and transmit is the state signal xt.

Communication cost

The channel is an ideal, delay-free continuous valued one with no amplitude con-
straints. We will stipulate that the input to the channel is either a special silence
symbol or a real number. In either case, the output will be a faithful reproduction
of the input. Hence ιt ≡ zt. Let ηi denote the random number of state samples
transmitted up to and including time t = i. Then the encoder for event-triggered
sampling can be represented by the following map from plant output to channel
input

zi =

{
xi if xi /∈ Si

SILENCE if xi ∈ Si,

where policies for the silence sets Si have to be measurable w.r.t. the filtration
generated by the data D

con
(i−1)+ . Then we can write: ηt =

∑t
i=0 1{xt /∈Si}. Let the

non-negative number N0 ≤ T + 1 denote an initial budget of samples. This initial
budget is a hard limit and the total number of samples taken over the entire horizon
can never exceed N0. Then we define the communication cost as follows:

JComm =

{
m · E [ηT ] if ηT ≤ N0,

+∞ if ηT > N0,
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where the non-negative real m is a Lagrange multiplier. It is easy to see that the
signals

xt, {zj}t−1
0 , {ξj}t−1

0 , {ηj}t−1
0

are sufficient statistics for sampling decisions. Note also that the record of sample
counts {ηj}t−1

0 can be causally deduced from the record of channel outputs {zj}t−1
0 .

If we set N0 to be a finite number less than the horizon length T + 1 and set
the multiplier m to zero, then we get a design problem with a fixed budget N0 and
no cost attached to any number of samples within the budget. If instead we set the
multiplier m to be some positive number and set the bound N0 to be T + 1, then
we get a design problem with no budget constraint but with a communication cost
growing linearly with the number of samples taken over the entire horizon. These
two kinds of design problems and their hybrids will all be simultaneously studied
by examining the general case where m can be any nonnegative number, and N0

any positive number.

Lemma 7.10 (CF sampler optimal for affine controls). Fix time t = i and apply
control laws affine from time i. Suppose that for all times j > i the best silence
sets S∗

j (·) and their performances are independent of the partial control waveform
{ui, . . . , uT }. Then, for all times j > i − 1 the best silence sets S∗

j (·) and their
performances are independent of the slightly longer waveform {ui−1, ui, . . . , uT }.

Sketch of proof. As with proving lemmas 3,4 we carry out two steps. First we show
that because the cost to go is quadratic, the quantizer’s objective at time i is to
minimize a sum Γi of current and future estimation distortions. Second we show
that the minimum of this sum distortion is independent of the control ui−1. Thus
the encoder becomes controls-forgetting from time i− 1.

The main theorem for event-triggered sampling is the same as Theorem 7.9
except for cosmetic changes to do with the nomenclature of the running communi-
cation cost.

7.5.5 Messaging over a Noisy Linear Channel

This channel accepts real valued inputs ιt and delivers outputs zt with noise added.
For 0 ≤ t ≤ T :

zt = ιt + χt,

where the channel noise process {χi} is IID with mean zero and variance σ2
χ < ∞.

At time t, the noise χt is independent of the state, controls and process noises upto
and including time t. For this style of messaging, we describe a model that allows
the encoder to choose the SNR for each message. Naturally the model will also
specify costs incurred for choosing message SNRs.
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Communication cost

Let the real-valued even function φ(·) increase with increasing magnitude of argu-
ment, and let φ(0) = 0. An example is the function φ(ι) = ι2. Let the positive real
ι denote a constant, hard upper limit on inputs to the channel. Then the commu-
nication cost incurred at a time t can be described thus:

ϕt =

{
φ(ιt) if |ιt| ≤ ι,

+∞ if |ιt| > ι.

Let the positive real P ≤ φ(ι) denote an upper limit on the average power of channel
inputs over the entire horizon. We define the communication cost from time t to
the horizon end as follows:

JComm =

{
m · E

[∑T
j=t ϕ (ιj)

]
if
∑T

j=0 ϕ (ιj) ≤ P × (T + 1)

+∞ if
∑T

j=0 ϕ (ιj) > P × (T + 1) .

where the non-negative real m is a Lagrange multiplier.

Sufficient statistics and scope for the dual effect

It is straightforward to see that

xt, {ιj}t−1
0 , {ξj}t−1

0 , {zj}t−1
0

are sufficient statistics at the encoder. As with quantized and event-triggered mes-
saging, here too there is scope for the dual effect since the encoding map may be
nonlinear.

Clearly there is no dual effect introduced if the upper limit on inputs is removed,
and the encoder implements an affine encoder. But in general, there is scope for
introducing the dual effect. If the encoder implements the quadratic encoder:

ξquadratic
t = ηx2

t ,

then there is a second order dual effect. Another example of an admissible encoder
that introduces the dual effect in the loop is one that implements the piecewise-
constant encoder:

ξt =





−ι if xt ∈ (−∞,−θ) ,

0 if xt ∈ (−θ,+θ) ,

ι if xt ∈ (+θ,−∞) ,

where the threshold θ is fixed. In fact, this encoder has nearly the same input-output
behaviour as the encoders considered in examples 7.1, 7.2. Using this parallel, one
can setup an example of a loop with an AN channel such that the dual effect is
present. And, when there is a finite, hard limit on amplitudes of channel inputs,
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then the dual effect is present for any encoder other than the trivial ones of the
form: ξt ≡ constant ∀t.

As in the case of other types of messaging, we can show that even though the dual
effect is present, the dynamic problem has a separated solution and certainty equiv-
alence controls are optimal. In general, it is still hard to design optimal encoders,
especially when there is a finite hard limit on channel input amplitudes. With no
such hard limits, and with Gaussian plant and channel noises, optimal encoders are
linear (Sauer and Melsa, 1974; Bansal and Başar, 1989; Breun and Utschick, 2008;
Freudenberg et al., 2011). We now outline how one can prove optimality of separated
encoder design and certainty equivalence controls for the dynamic problem.

Lemma 7.11 (CF encoder optimal for affine controls). Fix time t = i and ap-
ply control laws affine from time i. Suppose that for all times j > i the best en-
coding policies E∗

j (·) and their performances are independent of the partial con-
trol waveform {ui, . . . , uT }. Then, for all times j > i − 1 the best encoding poli-
cies E∗

j (·) and their performances are independent of the slightly longer waveform
{ui−1, ui, . . . , uT }.

Sketch of proof. As with proving lemmas 3,4 we carry out two steps. First we show
that because the cost to go is quadratic, the quantizer’s objective at time i is to
minimize a sum Γi of current and future estimation distortions. Second we show
that the minimum of this sum distortion is independent of the control ui−1. Thus
the encoder becomes controls-forgetting from time i− 1.

The main theorem for communication over a noisy linear channel is the same as
Theorem 7.9 expect for the necessary changes in nomenclature of communication
cost.

We might also add that for all of he above channel models, the results for Design
problem 2 can also be extended to the case of vector valued states with only partial,
noisy linear observations available at the sensor (encoder). Such a situation is no
more complicated than that one where the encoder observes the state perfectly. In
the partially observed case, the role of the ’state’ falls on the estimate produced by
the encoder’s Kalman filter.

7.6 Constrained Encoder-Controller Design

We now use our understanding of the dynamic encoder-controller design prob-
lem (Design problem 2) to examine the constrained encoder-controller design prob-
lem (Design problem 3) and the hold-waveform-controller and encoder design prob-
lem (Design problem 4). In this section, we show that, in general, separation in
design of encoder and controller is not optimal for these design problems. We do
this by presenting a counterexample for each of these design problems. Some of
these counterexamples illustrate that the distortion term in the cost-to-go lacks
symmetry w.r.t. translations (7.8). Recall that this property was instrumental in
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ensuring separation in the dynamic encoder-controller design problem (see proof of
Lemma 7.4).

Thus, we begin with Example 7.3, which illustrates, through explicit calcula-
tions, that symmetry w.r.t. translations does indeed occur in the dynamic encoder-
controller design problem. Next, we impose a set of constraints on the decision
makers of the closed-loop system in Examples 7.4-7.6, which have the effect of re-
moving the symmetry w.r.t. translations. For these cases, we show that separation
in design is no longer optimal. In Example 7.8, we illustrate that separation is not
optimal when the control signals are held constant over random epochs.

7.6.1 Symmetry w.r.t. Translations Leads to Separation

We present a simple example of a dynamic encoder-controller design problem; the
encoder is specified in a parametric form, but the choice of the parameters can be
dynamic, with no restrictions on the set of parameters. We show that the optimal
controller uses the certainty equivalence law.

Example 7.3
For the linear plant (7.1), with initial state x0 given by a zero mean Gaussian
with variance σ2

x, and process noise wk given by a zero mean Gaussian with finite
variance σ2

w, let the horizon length be T = 2. Let the cost coefficients p and q
remain unspecified. Let the channel alphabet be {1, 2}. The controller receives a
quantized version of the state, denoted zk and given by

zk =

{
1 if xk ≤ δk ,

2 otherwise .

The quantizer thresholds δ0 and δ1 are to be chosen along with the control signals
u0 and u1, to jointly minimize the two-step horizon control cost.

We use dynamic programming to find the optimal values for u1, δ1 and u0,
and δ0, in the specified order. From Lemma 7.3, we know that u∗

1 is given by the
certainty equivalence law as − a

q+1 x̂1|1, where the MMSE estimate of x1 is given by

x̂1|1 = E

[
x1

∣∣ {zi}
1
0

]
.

Then, let us consider the cost-to-go at the previous time step,

V0 = min
u0,δ1

E

[
a2(p+ a2)x2

0 + (q + p+ a2)u2
0 + 2a(p+ a2)x0u0 −

a2

q + 1
x̂2

1|1

∣∣∣∣ z0

]
+ κ ,

(7.12)

where κ = (1 + p+ a2)σ2
w. The above cost-to-go is to be minimized by selecting a

suitable u0 and δ1 simultaneously. To do this, we first need to find an expression

for E

[
x̂2

1|1
∣∣z0

]
. The encoder outputs at times 0, 1 tell us the quantization cells in

which x0 and x1 lie. We use this information to find an expression for the estimate
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x̂1|1, as shown in Appendix D, and rewrite the cost-to-go as

V0 = min
u0,δ1

E


a

2(p+ a2)x2
0 +

function of u0︷ ︸︸ ︷
(q + p+ a2 q

q + 1
)u2

0 + 2a(p+ a2 q

q + 1
)x0u0

∣∣∣∣z0




−
a2

q + 1

∑N
j=1 ϑ

2
(

δj−1−u0

σ2
,

δj−u0

σ2

)

P (x0 ∈ (θl−1, θl))︸ ︷︷ ︸
,Γ1: function of u0 and E1

+(1 + p+ a2)σ2
w ,

(7.13)
where σ2

2 = σ2
w + a2σ2

x. The term ϑ(r, r̄) in the above equation is given by

ϑ(r, r̄) =
[

− aσxφ

(
θl

σx

)
Φ
(
r
σ2

σw
− θl

a

σw

)
− σ2φ(r)Φ

(
θl

σ1
− r

aσx

σw

)

+ aσxφ

(
θl−1

σx

)
Φ
(
r
σ2

σw
− θl−1

a

σw

)
+ σ2φ(r)Φ

(
θl−1

σ1
− r

aσx

σw

)]r̄

r=r

,

(7.14)
where σ2

1 = σ2
xσ

2
w/σ

2
2 and Φ(·) is the cumulative distribution function of the stan-

dard normal distribution.
The quantization distortion term Γ1 in (7.13) possesses symmetry w.r.t. transla-

tions, as defined in (7.8). Thus, for any value of the control signal u0, the minimum
value is given by Γ∗

1(E1), a term that depends only on the encoder. Then, the cost-
to-go with respect to the control signal u0 comprises of only the terms in the first
row in (7.13). Hence, we obtain separation. Furthermore, the optimal control sig-

nal is given by the certainty equivalence law, uCE
0 = −

a(p+a2 q
q+1 )

p+q+a2 q
q+1

x̂0|0. Thus, the

certainty equivalence property holds for this setup.

We illustrate symmetry w.r.t. translations in Figure 7.5. For the choice of pa-
rameters a = 1, p = 1 and q = 1, we evaluate the quantization distortion term
Γ1 from the above example and show that the minimum that this function attains
over the range of the quantizer threshold δ1 is invariant for different values of u0.
To evaluate the cost-to-go, we make an arbitrary choice for the quantizer threshold
at time k = 0 as δ0 = 0, and compute the estimates and probabilities using this
choice.

7.6.2 Optimal Constrained Encoder

We now impose a restriction on the choice of encoder parameters. The one-bit
quantizer that we consider in the previous example selects two semi-infinite intervals
as the quantizer cells, ∆1 = (−∞, δk] and ∆2 = (δk,∞). We restrict the choice of
the quantizer threshold to a constraint set, such that δk ∈ Θ. In the following
example, we see that separation is lost for this constrained optimization problem.
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Figure 7.5: This plot illustrates the symmetry w.r.t. translations of the quantization
distortion term Γ1 in (7.13). Different values of u0 result in the same minimum value
for Γ1 at different values of δ1, thus resulting in separation and certainty equivalence
in Example 7.3.

Example 7.4
Consider the same setup as in Example 7.3, with the restriction that the quantizer
threshold be chosen from the set Θ = (−1, 1). The quantizer thresholds δ0 ∈ Θ
and δ1 ∈ Θ are to be chosen along with the control signals u0 and u1, to jointly
minimize the two-step horizon control cost.

We follow the same procedure as before. The optimal control signal u1 is given
by the certainty equivalence law as u∗

1 = uCE
1 . This gives us the same cost-to-go V0

from (7.12). Evaluating Γ1 for the parameters a = 1, p = 1 and q = 1, we plot it
over a range of quantizer thresholds δ1 ∈ Θ, for three arbitrary choices of u0, in
Figure 7.6. By restricting the range of quantizer thresholds to Θ, we do not permit
all the curves to reach their minima from Figure 7.5. In particular, the minima for
u0 = −1, when x0 ∈ (−∞, 0), and u0 = 1, when x0 ∈ (0,∞) are higher than before.
Thus, the minimum value of Γ1 obtained over the range of δ1 now varies depending
on the choice of u0. Consequently, there is no longer a symmetry w.r.t. translations,
and separation cannot be achieved using the proof of Theorem 7.5. Furthermore, the
optimal control signal u∗

0 must be chosen along with δ∗
1 to optimize the entire cost-

to-go including the term Γ1. Thus, u∗
0 does not just minimize a quadratic expression

in this problem, and cannot be chosen independently of the encoding policy. Hence,
separation in design of the controller and encoder is no longer optimal.

7.6.3 Optimal Constrained Controller

We now remove the restriction on the encoder parameters, and instead impose the
following restriction on the controller: the controls are required to have limited
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Figure 7.6: This plot illustrates the lack of symmetry w.r.t. translations of Γ1, when the
quantizer thresholds are restricted to be chosen from an interval, such as in Example 7.4.
Different values of u0 do not result in the same minimum value for Γ1 over the range
of δ1, thus resulting in a lack of separation and certainty equivalence.

range. Specifically, the control values at ever time step must come from a specified
constraint set U . We present two versions of this constraint: in case 1, our con-
strained control set U is discrete, and in case 2, the constrained control set is an
interval U = (umin, umax).

Example 7.5
Consider the same setup as in Example 7.3, with the restriction that the control
signal be chosen from a discrete set U = {−1, 0, 1}. The quantizer thresholds δ0

and δ1 are to be chosen along with the control signals u0 ∈ U and u1 ∈ U , to jointly
minimize the two-step horizon control cost.

The unconstrained minimizer for the cost-to-go at the terminal time is given by
the certainty equivalent value uCE

1 . The best we can do, given the constraint set
U , is to choose the control value from the discrete set U that results in the lowest
cost-to-go. Using this principle, we find the optimal control signal u∗

1 to be

u∗
1 =





−1 x̂1|1 ≥ q+1
2a ,

0 q+1
2a ≥ x̂1|1 ≥ − q+1

2a ,

1 x̂1|1 ≤ − q+1
2a .

The optimality regions are identified by comparing minu1∈U V1(u1) evaluated at
each permissible value of u1, and determining the switching points.

The cost-to-go V0, obtained by averaging over the three different cost-to-go
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functions obtained at time k = 1, is given by

V0 = min
u0,δ1

E

[
a2(p+ a2)x2

0 + (q + p+ a2)u2
0 + 2a(p+ a2)x0u0

+ (−2ax̂1|1 + q + 1)1{x̂1|1≥ q+1
2a }

+ (2ax̂1|1 + q + 1)1{x̂1|1≤− q+1
2a }

∣∣∣∣z0

]
+ (1 + p+ a2)σ2

w .

We denote the terms in the above cost-to-go that directly depend on the choice
of the encoder threshold δ1 as ΓRC

1 . Using the expression for x̂1|1 and the posterior
density for x1 from Appendix D, we compute ΓRC

1 as

ΓRC
1 = E

[
(−2ax̂1|1 + q + 1)1{x̂1|1≥ q+1

2a } + (2ax̂1|1 + q + 1)1{x̂1|1≤− q+1
2a }

∣∣∣∣z0

]

=
N∑

j=1

P (x0 ∈ (θl−1, θl) , x1 ∈ (δj−1, δj))
P (x0 ∈ (θl−1, θl))

(
(−2ax̂1|1 + q + 1)1{x̂1|1≥ q+1

2a }

+ (2ax̂1|1 + q + 1)1{x̂1|1≤− q+1
2a }

)
.

Evaluating the above expression for parameters a = 1, p = 1 and q = 1, and
some arbitrary choice of quantizer threshold δ0, we plot ΓRC

1 over a range of quan-
tizer thresholds δ1, for different choices of u0 from the set U , in Figure 7.7. Notice
that the minimum values of ΓRC

1 obtained over the range of δ1 vary depending on
the choice of u0. In other words, there is no symmetry w.r.t. translations. Conse-
quently, a separation in design of the controller and encoder is no longer optimal.

We now present a slight variation in the restriction on the controller, and re-
confirm that separation in design of controller and encoder is not optimal.

Example 7.6
Consider the same setup as in Example 7.3, with the restriction that the control
signal be chosen from an interval U = (umin, umax). The quantizer thresholds δ0

and δ1 are to be chosen along with the control signals u0 ∈ U and u1 ∈ U , to jointly
minimize the two-step horizon control cost.

As in the solution to the previous example, note that the unconstrained mini-
mizer for the cost-to-go V1 is the certainty equivalent value uCE

1 . The best we can
do, given the constraint set U , is to choose the control signal closest to the uncon-
strained value. This follows from the convexity of the quadratic cost-to-go. Using
this principle, we find the optimal control signal u∗

1 to be

u∗
1 =





umin uCE
1 ≤ umin ,

uCE
1 umin ≤ uCE

1 ≤ umax ,

umax uCE
1 ≥ umax .
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Figure 7.7: This plot illustrates the lack of symmetry w.r.t. translations for ΓRC
1 , when

the controls are restricted to be chosen from a discrete set U , such as in Example 7.5.
Different values of u0 do not result in the same minimum value for ΓRC

1 over the range
of δ1, thus resulting in the lack of separation and certainty equivalence.

Evaluating the cost-to-go V1 using u∗
1, and reusing quantities derived in Appendix D,

we can write up the cost-to-go V0 as before. More interesting to us are the terms
in this expression that directly depend on the choice of the quantizer threshold δ1,
as given by

ΓIC
1 =E

[
(2ax̂1|1umin + (q + 1)u2

min)1{x̂1|1≥− q+1
a

umin}

−
a2

q + 1
x̂2

1|11{− q+1
a

umax≤x̂1|1≤− q+1
a

umin}

+ (2ax̂1|1umax + (q + 1)u2
max)1{x̂1|1≤− q+1

a
umax}

∣∣∣∣z0

]
.

Evaluating this expression for parameters a = 1, p = 1, q = 1, umin = −2 and
umax = 2, and some arbitrary choice of quantizer threshold δ0, we plot ΓIC

1 over
a range of quantizer thresholds δ1, for different choices of u0 from the set U , in
Figure 7.8. Notice that the minimum value of ΓIC

1 obtained over the range of δ1

varies depending on the choice of u0. Thus, there is no symmetry w.r.t. translations,
and a separation in design is no longer optimal.

In both the above examples, the constrained set U did not contain the certainty
equivalent values of the control signal u1 for at least some values of δ1. The result-
ing cost-to-go V0 was altered, such that the symmetry w.r.t. translations was lost.
Consequently, separation no longer holds. The restriction removed the certainty
equivalence property during time step k = 1, but the resulting cost and the infor-
mation pattern resulted in the lack of separation itself at time step k = 0. A similar
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Figure 7.8: This plot illustrates the lack of symmetry w.r.t. translations of ΓIC
1 , when

the controls are restricted to be chosen from an interval, such as in Example 7.6.
Different values of u0 do not result in the same minimum value for ΓIC

1 over the range
of δ1, thus resulting in lack of separation and certainty equivalence.

problem setup has been explored by Bernhardsson (1989), where the control gain
is restricted to be chosen from two given values. The dual effect has been shown
for this problem setup as well.

7.6.4 ZOH and Event-Triggered Sampling

We study numerically two cases of control under event-triggered sampling. Basically
these are problems with a sampling budget of exactly one. For the controller, we
must design a whole waveform to be applied up to the time when the first sample
is received. We are already given the control law to be applied from this random
sampling time to the end time. For the encoder, we must design an envelope to
generate exactly one sample between time t = 1 and t = T .

We study two examples, and in both of them, the encoder is allowed to be
dynamic. In the first example, the control waveform up to the first sample time is
pre-assigned, and it has a particular linear dependence on the Kalman predictor.
In the second example, the control waveform upto the first sample time must be a
zero order hold waveform.

Example 7.7
[Fixed linear control law upto an event-triggered sample] For the scalar linear
plant (7.1), let the coefficient a = 1, and let the initial state x0 = 2, and σ0 = 0,
and let this information be known to the encoder and the controller. This simply
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means that z0 = x0. This information is prestored at the controller. Let the vari-
ance σ2

w = 0.52. Let the horizon end T = 4, and let p = 1, q = 0.2. The control law
is fixed to be:

ut =

{
k∗

t E
[
xt

∣∣x0, {ui}
t−1
0

]
, for 0 ≤ t ≤ τ − 1,

k∗
t E
[
xt

∣∣xτ , {ui}t−1
τ

]
, for τ ≤ t ≤ T,

where the gains k∗
t are the ones from the CE law (7.9), and τ satisfies 1 ≤ τ ≤ T

and is the first and only sample time, which is chosen by encoder. Choose a policy
(sampling envelope) which comprises silence sets {S1, . . . ,ST } giving:

τ = min
{
T, min

t≥1
{t : xt /∈ St}.

}

Next we consider an example of a design problem with a ZOH control. Here we
specialize to the case where the control’s hold epochs are forced to be exactly the
inter-sample intervals.

Example 7.8
[ZOH control upto an ET sample] For the scalar linear plant (7.1), let the coeffi-
cient a = 1, and let the initial state x0 = 2, and σ0 = 0, and let this information be
known to the encoder and the controller. This simply means that z0 = x0. This in-
formation is prestored at the controller. Let the variance σ2

w = 0.52. Let the horizon
end T = 4, and let the coefficients p = 1, q = 0.2. There are exactly two epochs; and
they must be precisely {0, 1, . . . τ − 1} and {τ, . . . , T}, where τ is the first and only
sample time, and is chosen to occur at or later than time t = 1. The control laws
over the second epoch are fixed to have the form: ut = k∗

i E [xτ |xτ0 ] , for τ ≤ t ≤ T,
where the gains k∗

t are the ones from the CE law (eqn 7.9). Pick: (1) a control law
for the first epoch having the zero-order hold form:

ut = K0 (x0) , for 0 ≤ t ≤ τ − 1,

and (2) a sampling envelope which comprises silence sets {S1, . . . ,ST } for generating
the sample time:

τ = min
{
T, min

t≥1
{t : xt /∈ St}.

}

The optimal sampling envelope of the ZOH control example (Figure 7.8) shown
in Figure 7.9(b). This is clear pictorial evidence that the dual effect is present in
the loop. This becomes clear from the reasoning below. Supposing the dual effect
were absent, then the encoder’s goal would have been to pick the sample time τ
to minimize a weighted sum of squared estimation errors upto time τ − 1. The
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(a) Optimal sampling envelope for Example 7.7
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Figure 7.9: Event-triggered sampling with exactly one sample after time t = 0
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envelope optimal for that objective will be a sequence of silence set symmetric
about the means E

[
xt

∣∣x0, {ui}
τ−1
0

]
. When the plant noise is Gaussian, Hajek and

others (Hajek, 2002; Hajek et al., 2008; Lipsa and Martins, 2011; Nayyar et al., 2013)
predict a symmetric sequence of silence is optimal. They also imply that a sequence
of silence sets that are not symmetric about the respective means E

[
xt

∣∣x0, {ui}
τ−1
0

]

will lead to suboptimal state estimation. Since the optimal envelope computed
numerically is clearly non-symmetric about the means E

[
xt

∣∣x0, {ui}
τ−1
0

]
, there

must be a dual effect in the loop, which is exploited by this optimal pair of sampler
and ZOH controller.

7.7 Discussion

An interesting aspect of our results is that we have shown that separation and
certainty equivalence are optimal for Design problem 2, despite the dual effect
being present in the NCS of Section 7.2. To understand this result, we examine two
implementations of the optimal encoder-controller pair for this design problem,
and using these, we draw out an some subtle points concerning dual effect and
optimality of separation and certainty equivalence.

Bar-Shalom and Tse (1974) consider the loop shown in Figure 7.2, for a linear
plant with Φt(·) = axt + ut + wt. At the sensor, instead of our dynamic encoder
Ψt, they place a nonlinear map. This sensor map is time-varying but memoryless
and its exact functional form is given. For this setup, they have a result stating
the mutual exclusivity of the dual effect and optimality of certainty equivalence
controls. In their setting, if the linear ‘plant’ is such that the effect of controls is
never felt at the observation signal yt, then clearly there is no dual effect. This
happens in the case where the so-called ‘plant’ has a sub-system that produces the
‘plant’ output after explicitly removing the effect of controls.

However, for our setup (Figure 7.1), the sensor has a dynamic encoder even
after one performs the equivalence transformation by subtracting out the effect of
controls. The use of ‘innovation coding’ leads to a closed loop shown in Figure 7.4.
The crucial difference from the setup of Bar-Shalom and Tse is that rather than
being a memoryless nonlinear map, the encoder ξ̃t is a dynamical system. Hence
their result does not apply. But it springs the following question: Does the plant
sensor combination in the closed loop 7.4 have a dual effect if an encoder is used
that is optimal for the dynamic design problem ? To answer this question, one needs
to interpret carefully what it means to implement an optimal encoder. For different
interpretations, one gets different answers.

Assume that we are implementing the feedback loop Figure 7.1 with the optimal
encoder and any admissible controller. One possible implementation is the follow-
ing: The encoder stores the actual set of control policies used by the controller, and
uses this to carry out the innovation encoding, and on the result applies the se-

quential quantizer ξ∗
t

(
· ;
{
zi

}t

0
,
{
ξi(·)

}t−1

0
,
{
ui = 0

}t−1

0

)
. Clearly, because of exact

cancellation of controls, there is no dual effect in this loop and the answer to our
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question is: No.
The second implementation is the following: The encoder assumes that the con-

troller is applying the certainty equivalence laws (7.9). It subtracts out the effect of
the these certainty equivalence control laws. To the residue ζ̃t, it applies the sequen-

tial quantizer ξ∗
t

(
· ; {zi}

t
0 , {ξi (·)}t−1

0 , {ui = 0}t−1
0

)
. This encoder is not controls-

forgetting. But yet when used in combination with the certainty equivalence laws
of (7.9), it leads to minimum performance cost.

On the other hand, when this encoder is used in combination with a general ad-
missible control law, there is potential mismatch between the encoder’s assumption
and the actual controller behaviour. The effect of the controls is not absent in the
input to the sequential quantizer ξ∗

t

(
· ; {zi}

t
0 , {ξi (·)}t−1

0 , {ui = 0}t−1
0

)
. Clearly,

there is a dual effect. And for this interpretation, the common answer to our ques-
tion is: Yes.

This leads to an interesting consequence. If a pair of encoding and control strate-
gies is optimal, then the individual strategies that are components of the pair must
be person-by-person optimal. Since the combination of certainty equivalence con-
trols and the corresponding optimal encoder is optimal, it follows that the certainty
equivalence controls must be optimal for the single-agent control problem obtained
by fixing the encoder to be the optimal one. Since the second interpretation of
implementing the optimal encoder is perfectly valid, it turns out that certainty
equivalence controls can be optimal even though the dual effect is present in the
loop. Thus we can conclude that the theorem of Bar-Shalom and Tse cannot gen-
eralize to the scenario where sensors implement dynamic encoders.

7.8 Summary

In this chapter, we delve into the structural properties of stochastic systems with
nonlinear measurements such as those found in NCSs. We have seen through ex-
amples that the dual effect is present in the plant-encoder-channel combination.
Hence in general, it is suboptimal to apply a controls-free encoder, or to apply
an affine controller. It has long been known that for the design problem with a
static encoder, separation is not optimal, and that the optimal control laws are
nonlinear (Curry, 1970). Recent interest in the dynamic design problem was due to
Borkar and Mitter (1997) who describe advantages obtained by applying controls-
forgetting encoders. Many papers state that the separated design is optimal for the
dynamic design problem for the various channel models we have treated. We have
shown by dynamic programming that these statements are indeed correct. This is
an instance of the optimal decision policies ‘ignoring’ the presence of the dual effect.
But a separated design need not be optimal for other design problems. In particular,
for event-triggered sampling the dynamic design problem has a separated design,
but the ZOH control design problem does not have a separated solution. This is at
least partly surprising because, separated design is optimal for the classical LQG
partially observed control with or without the ZOH control restriction.
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In this thesis, we have dedicated two chapters to structural analyses of linear
stochastic systems with nonlinear measurement policies. In Chapter 3, we examined
structural properties of a control system for a given measurement policy. We found
that there is a dual effect for event-triggering policies in general, and this implied
that separation and certainty equivalence are not necessarily optimal for these con-
trol systems. In this chapter, we examined structural properties of a control system
where both the encoder and controller had to be simultaneously chosen. We found
a dual effect for three different channel models here, including the channel with
event-triggered sampling. However, we found that the consequences of a dual effect
for dynamic measurement policies need not be the same as for static measurement
policies. Thus, we were able to establish separation and certainty equivalence for
at least one design problem even in the presence of a dual effect.



Chapter 8

Conclusions and Future Work

This thesis examined the concept of a state-based channel access policy for net-
worked control systems (NCSs). We modelled a multiple access network on the
sensing link of the control system, and designed an access mechanism to guarantee
stability for each control system as well as the network. Along with this, we studied
structural properties of control systems with dynamic, nonlinear measurement poli-
cies, such as those found in NCSs. In this final chapter, we present a short summary
of the contributions of this thesis, and directions for future work.

8.1 Conclusions

In this thesis, we showed that state-based channel access policies enable network
access to be adapted to the needs of the plant, while also enabling the contribution
from each plant to be adapted to the total traffic in the network. We examined two
realizations of state-based policies, using event-triggering and prioritization policies,
while ensuring a distributed implementation for each to facilitate easy deployment
on wireless sensor nodes. Our main contributions were the following:

Innovations-based Policies: In Chapter 3, we found that there is a dual effect
when the scheduler uses the state of the plant to initiate a transmission in the
network. To simplify the control design, we suggested the use of static functions
of the innovations process in the scheduler. This resulted in certainty equivalence
for the optimal controller. This scheduling policy, along with Bianchi’s assumption,
also resulted in a Markov model for the interference from other users in the network
in Chapter 4.

Dual Predictor Architecture: In Chapter 3, we used the results of our struc-
tural analysis to identify a dual predictor architecture that resulted in separation
in design of the scheduler, observer and controller. This architecture specified a
symmetric scheduling criterion based on the innovations, along with a simple ob-
server and a certainty equivalent controller. We used this architecture for both the
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event-based formulation in Chapters 4 and 5, and the prioritization framework in
Chapter 6.

Interference Model for Event-based Systems: In Chapter 4, we analyzed
the interactions in a network of control systems that each implement the dual
predictor architecture along with a contention resolution mechanism (CRM). Using
Bianchi’s assumption, we constructed a Markov model for the steady state network
interactions and validated this assumption for various network configurations.

Analysis and Design of Event-based Systems: Once we identify an interfer-
ence model, each event-based system in a network can be analyzed in isolation.
Using this technique, in Chapter 4 we analyzed the network reliability and delay
for an event-based system, and in Chapter 5 we analyzed the stability of an event-
based system. We also used the results of our stability analysis to synthesize an
event-triggering policy that guarantees stability for the plant and the network.

Analysis and Design of Attention-based Tournaments: In Chapter 6, we de-
signed and implemented a distributed state-based prioritization policy for a network
of control systems. We presented a performance analysis for this access mechanism
and characterized the estimation and control performance of a system in this net-
work with upper bounds. Our results showed that attention-based tournaments
can result in better estimation and control costs than any agnostic random access
protocol with the same average channel access probability.

Joint Optimization of Measurement and Control: In Chapter 7, we found
that it is optimal to apply separation to the optimal dynamic state-based measure-
ment and control policies for the networked LQG problem, despite the presence of
a dual effect in the NCS. We found that the dual role of the controller due to the
probing incentive can be effected by both the control and measurement policies,
under some circumstances, leading to separation and certainty equivalence. On the
other hand, we identified a number of constrained design problems where separa-
tion in design was not optimal. In this work, we also highlighted some subtleties
that arise when dynamic policies are encountered in stochastic control systems.

A general conclusion from this thesis is that state-based channel access policies
can outperform agnostic policies. To enable the use of wireless control in future
applications, such solutions must be explored to obtain performance guarantees
from control systems using resource-constrained networks. However, state-based
channel access policies may not be as useful in heterogenous networks where the
models of some network users are unknown to the designer. Existing multiple access
methods are better suited for such networks.

8.2 Future Work

There are several directions to further develop the work presented in this thesis.
In general, the design methodology presented in this thesis must be applied to real
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experiments and evaluated in industrial settings. We have presented an initial at-
tempt in this direction in Chapter 6. However, our experiments are limited in scope
and scale. Furthermore, our design methodology may prove to be quite intensive
when applied to large-scale networks. A small change in any part of the network
would require a complete overhaul in design. A universal channel access design may
counter this drawback. A few specific problems for future work are discussed below.

Multiple Access on Other Links: This thesis explored the design of a chan-
nel access policy for the sensing link. A similar study can be performed for the
actuation link as well. There are some dualities in the problem setup which can be
exploited, but there are differences as well. If we consider multiple access on the
actuation link alone, with dedicated connections on the sensing link, much of the
underlying formulation will remain the same. This is due to the generic nature of
the causal policies that we seek in both formulations. However, the policies we ob-
tain must be re-imagined and re-interpreted as control, channel access or observer
policies. The resulting structural properties can be quite different based on the in-
terpretation we draw. A more interesting and challenging problem arises when there
is a multiple access channel on both the sensing and actuation links. In this case,
the controller must expand its role to act as a relay, which attempts to communicate
the information it receives on the sensing link to a smart actuator. This is related
to the signalling incentive that arises from the non-classical information pattern in
this problem, as illustrated by Witsenhausen (1968) in his famous counterexample.
Despite its inherent difficulties, this problem must be tackled to present a complete
wireless networked control solution.

In this thesis, we assumed that ACKs are always available and never lost. How-
ever, this is not realistic. A challenging problem arises if there are losses in the
acknowledgement channel, because the channel access policy can no longer keep
track of the information available at the controller. Now, even a channel access pol-
icy chosen as a static function of the innovations may no longer result in separation
or certainty equivalence. This is because the controller gains an incentive to signal
to the access policy on the measurements that it has received.

Optimal Controller Design: The results in this thesis established the sub-
optimality of certainty equivalent controllers for a closed-loop system with a state-
based scheduler, when the input arguments to the scheduling criterion include the
applied controls. The optimal controller can be found by solving the expression
in (3.18) for a 2-step horizon LQG cost. This could provide a starting point for
investigation into the design of the optimal controller.

Interference Model for Event-based Systems with advanced CRMs:
In Chapter 4, we identified an interference model for event-based systems that use
p-persistent CSMA to resolve contention. In practise, carrier sense multiple access
with collision avoidance (CSMA/CA) is the popular choice in protocols such as
IEEE 802.15.4 and IEEE 802.11. Thus, an extension of this analysis to include
CSMA/CA would prove very useful in analyzing realistic network setups. In the
case of a synchronized network, where all the nodes initiate a transmission of their
events at the same time, there is no direct extension to analyze CSMA/CA. This is
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because the conditional probability of a busy channel will no longer be a constant,
but vary with each backoff attempt. Modelling this variation is quite challenging.
However, analyzing the performance of asynchronous networks with CSMA/CA
might prove to be a simple extension, even if we only obtain an average performance
over all possible initial sampling instants.

Extensions of the Stability Analysis: In Chapter 5, we identified an upper
bound for the evolution of the estimation error covariance of an event-based system
in a multiple access network. A direct extension would be to identify tighter up-
per bounds, especially for networks with low traffic levels. Furthermore, Bianchi’s
assumption has been shown to hold only under certain conditions, and identifying
these might well provide a set of necessary conditions for stability in our problem.

In Chapter 5, the event-triggering policies we presented required an infinite
number of parameters, in terms of event-thresholds or event-probabilities, to be
completely characterized. In practice, it is only possible to synthesize policies with
finite parameterizations. The constant-probability event-triggering policy we pre-
sented was one such example. Identifying other realizations that can be easily syn-
thesized using the stability conditions we have is an interesting direction for future
work. At the moment, we do not know which realizations are better suited to differ-
ent network configurations, such as networks with high or low traffic. Analyzing and
identifying design principles for event-triggering policies in multiple access networks
are important to engineer designs of such networks.

Flow Control with Events and Tournaments: Event-triggering policies
make it possible to regulate the flow of traffic from a node in a network of control
systems, through appropriate choice of the scheduling threshold. In the results
presented in this thesis, the scheduling threshold was chosen to guarantee stability,
not performance. What is needed is an algorithm to choose the scheduling threshold,
possibly in a socially optimal manner. This would provide a strategy to perform
flow control for NCS. Attention-based tournaments also offer a simpler setup to
develop a flow control mechanism for NCSs.



Chapter A

Appendix to Chapter 3

Here are the complete derivations for the estimates and the Bellman equations for
the optimal controller for Example 3.6.2.

Derivation of Estimates

From (3.21), we get

x̂0|0 =

{
x0 δ0 = 1

E[x0|x0 < 0.5] δ0 = 0
. (A.1)

As x0 ∼ N (0, 1), we can find the expected value

x̄δ0 := E[x0|x0 < 0.5] =
∫ 0.5

−∞
xφxδ0

(x)dx ,

where φxδ0
is the conditional probability distribution function (pdf) of x0, condi-

tioned on x0 < 0.5. Thus, φxδ0
(x) = φx0 (x)/Pr(x0 < 0.5), where φx0 is the pdf of

x0. The probability of a non-transmission, Pr(x0 < 0.5), is given by

Pr(x0 < 0.5) =
∫ 0.5

−∞
φx0 (x)dx .

The estimation error x̃0|0 is thus given by

x̃0|0 =

{
0 δ0 = 1

x0 − x̄δ0 δ0 = 0
. (A.2)

The pdf of x̃0|0 is φx̃0(x) = φxδ0
(x+ x̄δ0). The estimation error variance is given by

P0|0 =

{
0 δ0 = 1

Rx̃0 δ0 = 0
, where,

Rx̃0 = E[(x0 − x̄δ0)2|x0 < 0.5]

=
∫ 0.5−x̄δ0

−∞
x2φxδ0

(x+ x̄δ0)dx .
(A.3)
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Let us denote e1 as the unknown part of x1 before y1 is received:

e1 =

{
w0 δ0 = 1

ax0 + w0 δ0 = 0
, and φe(ǫ) =

{
φw0 (ǫ) δ0 = 1

φeδ0
(ǫ) δ0 = 0

,

where, φe is the pdf of e1. The variable e1 is the sum of two random variables if
δ0 = 0, and its pdf is denoted φeδ0

, and given by

φeδ0
(ǫ) =

∫ 0.5

−∞
φxδ0

(x)φw0 (ǫ− ax)dx

=
e−ǫ2/2(1+a2)

√
2π(1 + a2)


Pr(t <

1+a2−2aǫ
2

√
1+a2 )

Pr(x0 < 0.5)


 ,

where, t ∼ N (0, 1). Then, at the next time instant, we get

x̂1|1 =





x1 δ1 = 1{
ax0 + bu0 + w̄0 δ0 = 1

bu0 + ēδ0 δ0 = 0
δ1 = 0

. (A.4)

As w0 ∼ N (0, 1), we can find the expected value

w̄0 = E[w0|w0 < 0.5 − ax0 − bu0] =
∫ 0.5−ax0−bu0

−∞
wφw0 (w)dw ,

where φw0 is the pdf of w0. Similarly, using the expression for φeδ0
, we can derive

ēδ0 = E[ax0 + w0|x0 < 0.5, ax0 + w0 < 0.5 − bu0]

=
1

Pr(e1 < 0.5 − bu0)

∫ 0.5−bu0

−∞
ǫφeδ0

(ǫ)dǫ ,

where Pr(e1 < 0.5 − bu0) is the probability of no transmission at time k = 1. We
know that

Pr(e1 < 0.5 − bu0) =
∫ 0.5−bu0

−∞
φeδ0

(ǫ)dǫ .

We now define ẽ1 as the error in estimating the term e1 after y1 arrives, with pdf
φẽ, so that

ẽ1 =

{
w0 − w̄0 δ0 = 1

ax0 + w0 − ēδ0 δ0 = 0
, (A.5)

and, φẽ(ǫ) =

{
φw̃(ǫ+ w̄0|w0 < 0.5 − ax0 − bu0) δ0 = 1

φeδ0
(ǫ+ ēδ0|e1 < 0.5 − bu0) δ0 = 0

.
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Now, we can define the estimation error variance P1|1 by

P1|1 =

{
0 δ1 = 1

Re1 δ1 = 0
, (A.6)

where Re1 = E[ẽ2
1|δ1 = 0] is given by

Re1 =





∫ 0.5−ax0−bu0−w̄0

−∞ w2 φw0 (w+w̄0)

P r(w0<0.5−ax0−bu0)dw δ0 = 1
∫ 0.5−bu0−ēδ0

−∞ ǫ2 φδ0(ǫ+ēδ0)
P r(e1<0.5−bu0)dǫ δ0 = 0

.

Note that increasing u0 will decrease Re1 .

Derivation of V1 and V0

We use dynamic programming to find the Bellman equations V1 and V0, which must
be minimized to get u1 and u0. Using (3.14), we write

V1 = min
u1

E[x2
1Q1 + u2

1Q2 + x2
2Q0|Ic

1]

= min
u1

E[x2
1(Q1 + a2Q0)|Ic

1] + tr{Q0Rw} + u2
1(Q2 + b2Q0) + 2abQ0x̂1|1u1 .

Minimizing the above expression with respect to u1, we get (3.34). Substituting for
u1 in the above expression for V1, we get

V1 = E[x2
1S1 + tr{

a2Q2
0b

2

Q2 + b2Q0
P1|1}|Ic

1] + tr{Q0Rw} ,

where S1 = Q1 + a2Q0 − a2Q2
0b2

Q2+b2Q0
. To derive V0, we need to find the expected value

E[P1|1|Ic
0]. From the definition of P1|1, we find that

E[P1|1|Ic
0] = Pr(δ1 = 0|Ic

0)E[Re1 |Ic
0] .

Then, we can find the u0 that minimizes V0. We have

V0 = min
u0

E[x2
0Q1 + u2

0Q2 + V1|Ic
0]

= min
u0

E[x2
0(Q1 + a2S1)|Ic

0] + tr{S1Rw} + tr{Q0Rw}

+ u2
0(Q2 + b2S1) + 2x̂0|0abS1u0 +

a2Q2
0b

2

Q2 + b2Q0
E[P1|1|Ic

0] .





Chapter B

Appendix to Chapter 5

We now present some lemmas and proofs used in deriving the stability results in
Chapter 5.

Properties of the Majorization Operator

We first need the following result on neat and even PDFs.

Lemma B.1. If the PDFs φa and φb on R are neat and even, then φa ∗ φb is also
neat and even.

Proof. The PDF φb is a convex combination of indicator functions, χn(x) = 1 for
x ∈ [−n, n] and zero otherwise. For any n, note that φa ∗ χn is symmetric and
non-increasing. Convex combinations of neat distributions are neat, and hence, the
result follows.

We now present a series of results that use the majorization operator. The proofs
presented here are adapted from (Hajek et al., 2008). These results are used in the
proofs presented in Section 5.3.3.

Lemma B.2. If the PDFs φa and φb on R
n are such that φa ≻ φb, then

∫
φσ

a (x)h(x)dx ≥∫
φσ

b (x)h(x)dx for any symmetric non-increasing function h.

Proof. The function h is a convex combination of indicator functions of balls cen-
tered at the origin. For any such indicator function, the above result is obvious from
the definition of majorization. Hence, the result follows.

Lemma B.3. If the PDFs φa, φb and ψ on R
n are such that φa ≻ φb, and if φa

and ψ are symmetric non-increasing, then φa ∗ ψ ≻ φb ∗ ψ.

This proof uses Riesz’s rearrangement inequality and is given as proof of Lemma 6.7
in (Hajek et al., 2008).
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Lemma B.4. If the PDFs φa and φb on R are such that φa ≻ φb, and φ+(x) ,
1

|a|φ(x
a ), then φ+

a ≻ φ+
b .

Proof. Using the definition of majorization, and the definitions of φ+
a and φ+

b , the
result can be shown to hold directly.

Lemma B.5. If the symmetric non-increasing PDFs φa and φb on R
n are such

that φa ≻ φb, and if h be a symmetric non-decreasing positive function, then∫
φσ

a(x)h(x)dx ≤
∫
φσ

b (x)h(x)dx.

Proof. Note that the function h is symmetric and quasi-concave, thus making it
Schur-concave. It is known that Eφa

[h] ≤ Eφb
[h], for Schur-concave functions. Thus,

the desired result follows.

Other Lemmas

Lemma B.6. For a general nth-order plant in the network setup given by (5.1)–
(5.6), the posterior variance of the innovations is less than its a priori value, i.e.,
var(φe

(I,d+1)
) ≤ var(φ

(I,d)
).

Proof. We can find expressions for the a priori variance, denoted σ2
(I,d)

, var(φ
(I,d)

),

and the posterior variance, denoted (σe
(I,d+1)

)2 , var(φe
(I,d+1)

), as

σ2
(I,d)

= σ2
∆−,d + σ2

∆+,d ,

(σe
(I,d+1)

)2 = σ2
∆−,d

1
1 − p

γ,d
p

α
q

+ σ2
∆+,d

(1 − p
α
q)

1 − p
γ,d
p

α
q
,

where σ2
∆−,d =

∫
|x̃|≤∆d

|x̃|2ψ(x̃)dx̃ and σ2
∆+,d =

∫
|x̃|>∆d

|x̃|2ψ(x̃)dx̃. Now, the vari-
ance of the posterior distribution can be rewritten as

(σe
(I,d+1)

)2 = σ2
(I,d)

+ σ2
∆−,d

(
1

1 − p
γ,d
p

α
q

− 1
)

+ σ2
∆+,d

(
(1 − p

α
q)

1 − p
γ,d
p

α
q

− 1
)

≤ σ2
(I,d)

+ max
(
σ2

∆−,d

(
1

1 − p
γ,d
p

α
q

− 1
)

+ σ2
∆+,d

(
(1 − p

α
q)

1 − p
γ,d
p

α
q

− 1
))

.

The maximum value of the first term can be found by evaluating the integral at
the upper boundary to obtain maxσ2

∆−,d = ∆2
dqγ,d

. However, the second term is

negative as (1−pα q)
1−p

γ,d
pα q < 1. The maximum value of this term is found by evaluating

the integral at the lower boundary. Doing so, we obtain

(σe
(I,d+1)

)2 ≤ σ2
(I,d)

+ ∆2
d

(
q

γ,d

(
1

1 − p
γ,d
p

α
q

− 1
)

− p
γ,d

(
(1 − p

α
q)

1 − p
γ,d
p

α
q

− 1
))

= σ2
(I,d)

+ 0 ,

where it is easy to check that the terms in the inner bracket sum to zero.
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Appendix to Chapter 6

We now present some lemmas and proofs used in deriving the results in Chapter 6.

Proof of Lemma 6.5

Simplification of the Proof: For the purpose of this proof, we consider only
the first term in (6.19). The contribution of the second term is negligible due to
the required number of collisions (

∑n
s=n−NT+2 C

n
s pC,s(α)). However, the proof can

easily be extended to show that the above result holds even when the second term
is taken into account by requiring the probability of the attention factor to fall
sufficiently fast, which is satisfied for PMFs obtained from multivariate Gamma-
type distributions or Chi-squared distributions, such as the one in (6.15).

Proof. We show this result using induction on the number of tournaments. We
begin with NT = 1. Then, P(WNT,M−1|αk) = pM−1

LE (α). Due to the inequality
pLE(α) ≥ pLE(α− 1), the desired result P(W1,M−1|α) ≥ P(W1,M−1|α− 1) follows,
for α > 0.

Let this be true for NT = n. Then, we have

n−1∑

i=0

CM−1
i (1 − pLE(α))ipM−1−i

LE (α) ≥
n−1∑

i=0

CM−1
i (1 − pLE(α− 1))ipM−1−i

LE (α− 1) .

This implies that the derivative of the above expression with respect to pLE must
be positive. We write this as

(M−1)
n−1∑

i=0

CM−1
i (1−pLE)ipM−2−i

LE −
n−1∑

i=0

((i+1)CM−1
i+1 +iCM−1

i )(1−pLE)ipM−2−i
LE ≥ 0 .

(C.1)
Now, we prove that the same holds when NT = n+ 1. To see this, note that the

derivative of the expression
∑n

i=0 C
M−1
i (1 − pLE(α))ipM−1−i

LE (α) has the following
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terms in addition to those in (C.1). These extra terms are given by

(M − 1)CM−1
n (1 − pLE)npM−2−n

LE − ((n+ 1)CM−1
n+1 + nCM−1

n )(1 − pLE)npM−2−n
LE

=((M − 1 − n)CM−1
n − (n+ 1)CM−1

n+1 )(1 − pLE)npM−2−n
LE .

Now, note that ((M − 1 − n)CM−1
n − (n+ 1)CM−1

n+1 ) can be simplified as

(M − 1 − n)CM−1
n − (n+ 1)CM−1

n+1 = MCM−1
n − (n+ 1)(CM−1

n+1 + CM−1
n )

= MCM−1
n − (n+ 1)CM

n+1

=
M · (M − 1)!
n!(M − 1 − n)!

−
(n+ 1) ·M !

(n+ 1)!(M − n− 1)!

= 0 .

Thus, the derivative of the expression for NT = n + 1 retains the same property
as in (C.1), and is positive. This proves that for NT < M − 1, the conditional
probability of winning a tournament is always a non-decreasing function of α.

Proof of Lemma 6.7

Proof. The a priori variance of ēk is given by σ2
ē,k = tr{AKf,kRe,kK

⊤
f,kA

⊤}, where
Re,k is given in (6.4). We denote the variance of the posterior distribution in (6.23),
as σ2

DP U,k. We can find expressions for both the variances as

σ2
ē,k = σ2

ē,k,1 + · · · + σ2
ē,k,Amax

,

σ2
DP U,k = σ2

ē,k,1

(1 − P(TNT,M−1|αk = 0))
1 − pT

+ . . .

+ σ2
ē,k,Amax

(1 − P(TNT,M−1|αk = Amax − 1))
1 − pT

,

where σ2
ē,k,a =

∫
∆a−1≤|ē|<∆a

|ē|2ψ(ē)dē, for 1 ≤ a ≤ Amax. The thresholds of the

symmetric scheduling policy are denoted {∆}Amax
0 , where ∆0 = 0 and ∆Amax = ∞.

Now, the variance of the posterior distribution can be rewritten as

σ2
DP U,k = σ2

ē,k + σ2
ē,k,1ρ(0) + · · · + σ2

ē,k,Amax
ρ(Amax − 1)

≤ σ2
e,k + max

(
σ2

e,k,1ρ(0) + · · · + σ2
e,k,Amax

ρ(Amax − 1)
)
,

where ρ(a) =
(1−P(TNT,M−1|αk=a))−(1−pT)

1−pT

. The maximum value of the latter terms
can be found by evaluating the integrals at their upper boundaries, such as max σ2

ē,k,a =
∆2

a P(αk = a − 1). However, not all of these terms are positive. This can be seen
from Lemma 6.6, as (1−P(TNT,M−1|αk = a−1)) > (1−pT) for small attention fac-
tors and vice versa. Thus, there is a value ā ∈ {0, . . . , Amax − 1}, such that ρ(a) for
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a ≤ ā are positive or zero and ρ(a) for a > ā are negative. The maximum value of
the negative terms are found by evaluating the integrals at their lower boundaries.
Doing so, we obtain

σ2
DP U,k ≤ σ2

ē,k +
(

∆2
1 P(αk = 0)ρ(0) + · · · + ∆2

ā P(αk = ā− 1)ρ(ā− 1)

− ∆2
ā P(αk = ā)ρ(ā) − · · · − ∆2

Amax−1 P(αk = Amax − 1)ρ(Amax − 1)
)
.

Now, the increasing order of the thresholds ∆1 ≤ · · · ≤ ∆Amax−1 implies that we
can upper bound the terms in parenthesis in the above expression as

σ2
DP U,k ≤ σ2

ē,k + ∆2
ā

(
P(αk = 0)ρ(0) + · · · + P(αk = ā− 1)ρ(ā− 1)

− P(αk = ā)ρ(ā) − · · · − P(αk = Amax − 1)ρ(Amax − 1)
)

= σ2
ē,k + 0 ,

where it is easy to check that the terms in the inner bracket sum to zero. From this
inequality, it is simple to deduce that the posterior variance of the innovations is
also less than its a priori value σ2

e,k = tr{Re,k}. Thus, the non-decreasing probability
of transmission leads to a lower variance than would have resulted otherwise.
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Appendix to Chapter 7

Evaluating the Cost-to-go V0 in Example 7.3

In the following notes, we find an expression for E

[
x̂2

1|1
∣∣z0

]
. The estimate x̂1|1 is

evaluated using the knowledge that x0 lies in the cell (θl−1, θl), for z0 = l, and x1

lies in the cell (δj−1, δj), for z1 = j, respectively. The estimate can then be found
as

E

[
x1

∣∣ {zi}
1
0

]
=
∫
x1P

(
x1

∣∣ x0 ∈ (θl−1, θl), x1 ∈ (δj−1, δj)
)
dx1

=
∫ δj

δj−1

∫ θl

θl−1

x1
P (x1, x0)

P (x0 ∈ (θl−1, θl), x1 ∈ (δj−1, δj))
dx0dx1 .

Then, the desired quantity E

[
x̂2

1|1
∣∣z0

]
can be written as

E

[
x̂2

1|1
∣∣z0

]
=

N∑

j=1

P
(
x1 ∈ (δj−1, δj)

∣∣ x0 ∈ (θl−1, θl)
)

·
(
E
[
x1

∣∣z0 = l, z1 = j
])2

=
1

P (x0 ∈ (θl−1, θl))

N∑

j=1

(∫ δj

δj−1

∫ θl

θl−1
x1P (x1, x0) dx0dx1

)2

P (x0 ∈ (θl−1, θl), x1 ∈ (δj−1, δj))
.

In the above expression, the joint probability of x0 and x1 is given by P (x1, x0) =
1

σx
φ( x0

σx
) · 1

σw
φ(x1−ax0−u0

σw
), where φ(n) is the probability density function of the

standard normal distribution, i.e., φ(n) = 1√
2π
e−n2/2. Using this, and the table of

normal integrals (Owen, 1980), we evaluate the integral in the numerator as
∫ δj

δj−1

∫ θl

θl−1

x1P (x1, x0) dx0dx1 =u0P(x0 ∈ (θl−1, θl) , x1 ∈ (δj−1, δj))

+ ϑ

(
δj−1 − u0

σ2
,
δj − u0

σ2

)
,
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where ϑ(r, r̄) is given in (7.14).

Thus, the desired quantity E

[
x̂2

1|1
∣∣z0

]
can be written as

E

[
x̂2

1|1
∣∣ z0

]
=u2

0 + 2au0σx

φ
(

θl−1

σx

)
− φ

(
θl

σx

)

P (x0 ∈ (θl−1, θl))
+

∑N
j=1 ϑ

2
(

δj−1−u0

σ2
,

δj −u0

σ2

)

P (x0 ∈ (θl−1, θl))
.

Now, note that x̂0|0 = σx

(
φ
(

θl−1

σx

)
− φ

(
θl

σx

))
/P (x0 ∈ (θl−1, θl)). Thus, the cost-

to-go to be minimized can be rewritten as in (7.13).



Index

ACK, 14, 16
Aloha, 32

Pure Aloha, 32
Slotted Aloha, 32

Certainty Equivalence Principle, 27
Certainty Equivalent Controller, 27
Collision, 31
Contention-based MAC, 31
CRM, 11
CSMA, 32

p-persistent CSMA, 32
CSMA/CA, 32

CSMA/CA, 10

Dual Effect, 22

Hybrid MAC, 33

Information Pattern, 25
Classical Information Pattern, 25
Non-classical Information Pattern,

25
Partially Nested Information Pat-

tern, 25

MAC, 29
MAC Protocols

Beacon-enabled Hybrid MAC, 34
CAN Bus, 33
DCF, 34
Token Bus, 34
WirelessHart Hybrid MAC, 34

Multiple Access Protocols, 29

NCS, 3, 37
Encoder Design, 39
Event-based Systems, 41
MAC, 39
Packet Losses, 38

Probing Incentive, 22

Separation Principle, 28
Signalling Incentive, 26

TDMA, 9, 30

215





Bibliography

N. Abramson. The ALOHA system: another alternative for computer communica-
tions. In Proceedings of the November 17-19, 1970, fall joint computer conference,
AFIPS ’70 (Fall), pages 281–285, New York, NY, USA, November 1970. ACM.

J. Åkerberg, M. Gidlund, and M. Björkman. Future research challenges in wireless
sensor and actuator networks targeting industrial automation. In Proceedings of
the 9th IEEE International Conference on Industrial Informatics (INDIN), pages
410–415, July 2011.

I. Akyildiz, J. McNair, L. Martorell, R. Puigjaner, and Y. Yesha. Medium access
control protocols for multimedia traffic in wireless networks. IEEE Network, 13
(4):39–47, 1999.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, Aug. 2002.

B. Andrievsky, A. Matveev, and A. Fradkov. Control and estimation under infor-
mation constraints: Toward a unified theory of control, computation and com-
munications. Automation and Remote Control, 71(4):572–633, 2010.

A. Anta and P. Tabuada. On the Benefits of Relaxing the Periodicity Assumption
for Networked Control Systems over CAN. In Proceedings of the 30th IEEE
Real-Time Systems Symposium, pages 3–12. IEEE, Dec. 2009.

A. Anta and P. Tabuada. To sample or not to sample: Self-triggered control for
nonlinear systems. IEEE Transactions on Automatic Control, 55(9):2030–2042,
Sept. 2010.

D. Antunes, J. Hespanha, and C. Silvestre. Volterra integral approach to impul-
sive renewal systems: Application to networked control. IEEE Transactions on
Automatic Control, 57(3):607–619, March 2011.

J. Araujo, M. Mazo, A. Anta, P. Tabuada, and K. Johansson. System architec-
tures, protocols and algorithms for aperiodic wireless control systems. IEEE
Transactions on Industrial Informatics, 10(1):175–184, February 2014.

K. J. Åström. Introduction to Stochastic Control Theory. Academic Press, 1970.
Republished by Dover Publications, 2006.

217



218 Bibliography

K. J. Åström. Event based control. In A. Astolfi and L. Marconi, editors, Anal-
ysis and Design of Nonlinear Control Systems, pages 127–147. Springer Berlin
Heidelberg, 2008.

K. J. Åström and B. Bernhardsson. Comparison of periodic and event based sam-
pling for first order stochastic systems. In Proceedings of the 14th IFAC World
Congress, volume 11, pages 301–306, 1999.

K. J. Åström and B. M. Bernhardsson. Comparison of Riemann and Lebesgue
sampling for first order stochastic systems. In Proceedings of the 41st IEEE
Conference on Decision and Control, volume 2, pages 2011–2016, Dec. 2002.

K. J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley, 1995.

L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

J. Baillieul and P. Antsaklis. Control and communication challenges in networked
real-time systems. Proceedings of the IEEE, 95(1):9–28, 2007.

R. Bansal and T. Başar. Simultaneous design of measurement and control strategies
for stochastic systems with feedback. Automatica, 25(5):679–694, 1989.

L. Bao, M. Skoglund, and K. Johansson. Iterative encoder-controller design for
feedback control over noisy channels. IEEE Transactions on Automatic Control,
56(2):265–278, 2011.

Y. Bar-Shalom and E. Tse. Dual effect, certainty equivalence, and separation in
stochastic control. IEEE Transactions on Automatic Control, 19:494–500, Octo-
ber 1974.

J. S. Baras and A. Bensoussan. Optimal Sensor Scheduling in Nonlinear Filtering of
Diffusion Processes. SIAM Journal on Control and Optimization, 27(4):786–813,
1989.

G. Battistelli, A. Benavoli, and L. Chisci. Data-driven communication for state
estimation with sensor networks. Automatica, 48(5):926–935, May 2012.

R. E. Bellman. The theory of dynamic programming. Technical report, The RAND
Corporation, July 1954.

B. Bernhardsson. Dual control of a first-order system with two possible gains. In-
ternational Journal of Adaptive Control and Signal Processing, 3(1):15–22, 1989.

D. P. Bertsekas and S. E. Shreve. Stochastic optimal control: The discrete time
case, volume 139 of Mathematics in Science and Engineering. Academic Press
Inc., New York, 1978. ISBN 0-12-093260-1.



Bibliography 219

G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications, 18(3):535–547,
Mar. 2000.

G. Bianchi, I. Tinnirello, and L. Scalia. Understanding 802.11e contention-based pri-
oritization mechanisms and their coexistence with legacy 802.11 stations. IEEE
Network, 19(4):28–34, July 2005.

R. Blind and F. Allgöwer. Analysis of networked event-based control with a shared
communication medium: Part I - Pure ALOHA. In Proceedings of the IFAC
World Congress, pages 10092–10097, 2011a.

R. Blind and F. Allgöwer. Analysis of networked event-based control with a shared
communication medium: Part II - Slotted ALOHA. In Proceedings of the IFAC
World Congress, pages 8830–8835, 2011b.

C. Bordenave, D. McDonald, and A. Proutiere. A particle system in interaction
with a rapidly varying environment: Mean field limits and applications. Networks
and Heterogeneous Media, 5(1):31–62, March 2010.

V. Borkar and S. K. Mitter. LQG control with communication constraints. In
A. Paulraj, V. Roychowdhury, and C. D. Schaper, editors, Communications,
Computation, Control, and Signal Processing, pages 365–373. Springer US, 1997.

V. Borkar, S. K. Mitter, and S. Tatikonda. Markov control problems under commu-
nication constraints. Communications in Information and Systems, 1(1):15–32,
2001a.

V. S. Borkar, S. K. Mitter, and S. Tatikonda. Optimal Sequential Vector Quanti-
zation of Markov Sources. SIAM Journal on Control and Optimization, 40(1):
135–148 (electronic), Nov. 2001b.

P. Breun and W. Utschick. On transmitter design in power constrained LQG
control. In American Control Conference, pages 4979–4984, 2008.

G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS,
Santa Clara, CA, USA, 2004. ISBN 0387231374.

N. Cardoso de Castro, C. Canudas de Wit, and F. Garin. Energy-aware wireless
networked control using radio-mode management. In Proceedings of the American
Control Conference, pages 2836–2841, June 2012a.

N. Cardoso de Castro, D. Quevedo, F. Garin, and C. Canudas de Wit. Smart
energy-aware sensors for event-based control. In IEEE 51st Annual Conference
on Decision and Control, pages 7224–7229, Dec 2012b.



220 Bibliography

A. Cervin and T. Henningsson. Scheduling of event-triggered controllers on a shared
network. In Proceedings of the 47th IEEE Conference on Decision and Control,
pages 3601–3606, Dec. 2008.

H. Chernoff. Backward induction in dynamic programming. Unpublished, 1963.

C. Y. Chong and S. Kumar. Sensor networks: evolution, opportunities, and chal-
lenges. Proceedings of the IEEE, 91(8):1247–1256, Aug. 2003.

D. Christmann, R. Gotzhein, S. Siegmund, and F. Wirth. Realization of try-once-
discard in wireless multi-hop networks. IEEE Transactions on Industrial Infor-
matics, 10(1):17–26, feb 2014.

R. E. Curry. Estimation and Control with Quantized Measurements. MIT Press,
1970.

B. Demirel, V. Gupta, and M. Johansson. On the trade-off between control perfor-
mance and communication cost for event-triggered control over lossy networks.
In Proceedings of the 12th European Control Conference, pages 1168–1174, 2013.

M. C. F. Donkers and W. P. M. H. Heemels. Output-based event-triggered control
with guaranteed L∞-gain and improved event-triggering. In Proceedings of the
49th IEEE Conference on Decision and Control, pages 3246–3251, 2010.

M. C. F. Donkers and W. P. M. H. Heemels. Output-based event-triggered control
with guaranteed L∞-gain and improved and decentralised event-triggering. IEEE
Transactions on Automatic Control, 57(6):1362–1376, 2012.

E. Dynkin. Controlled random sequences. Theory of Probability and its Applica-
tions, 10(1):1–14, 1965.

F. Farokhi. Decentralized Control of Networked Systems: Information Asymmetries
and Limitations. PhD thesis, Department of Automatic Control, KTH Royal
Institute of Technology, Sweden, March 2014.

F. Farokhi and K. Johansson. Stochastic sensor scheduling for networked control
systems. IEEE Transactions on Automatic Control, 2014. ISSN 0018-9286. doi:
10.1109/TAC.2014.2298733. To Appear.

A. A. Feldbaum. Dual-control theory. I. Automation and Remote Control, 21:
874–880, 1960.

A. A. Feldbaum. Dual-control theory. IV. Automation and Remote Control, 22:
109–121, 1961.

X. Feng and K. Loparo. Active probing for information in control systems with
quantized state measurements: a minimum entropy approach. IEEE Trans. Au-
tomatic Control, 42(2):216–238, 1997.



Bibliography 221

N. M. Filatov and H. Unbehauen. Survey of adaptive dual control methods. IEE
Proceedings - Control Theory and Applications, 147(1):118–128, Jan. 2000.

T. Fischer. Optimal quantized control. IEEE Transaction on Automatic Control,
27(4):996–998, 1982.

J. Freudenberg, R. Middleton, and J. Braslavsky. Minimum variance control over a
gaussian communication channel. IEEE Transactions on Automatic Control, 56
(8):1751–1765, 2011.

M. Fu. Lack of separation principle for quantized linear quadratic gaussian control.
IEEE Transactions on Automatic Control, 57(9):2385–2390, 2012.

A. Goldsmith and S. Wicker. Design challenges for energy-constrained ad hoc
wireless networks. IEEE Wireless Communications, 9(4):8–27, August 2002.

G. Goodwin, E. Silva, and D. Quevedo. A brief introduction to the analysis and
design of networked control systems. In Proceedings of the IEEE Control and
Decision Conference, pages 1–13, 2008.

R. Gotzhein and T. Kuhn. Decentralized Tick Synchronization for Multi-hop
Medium Slotting in Wireless Ad Hoc Networks using Black Bursts. In Pro-
ceedings of the 5th Annual IEEE ComSoc Conference on Sensor, Mesh, and Ad
Hoc Communications and Networks, pages 422–431, 2008.

A. C. V. Gummalla and J. O. Limb. Wireless medium access control protocols.
IEEE Communications Surveys Tutorials, 3(2):2–15, 2000.

V. Gupta and N. Martins. On stability in the presence of analog erasure chan-
nel between the controller and the actuator. IEEE Transactions on Automatic
Control, 55(1):175–179, Jan. 2010.

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray. On a stochastic sensor
selection algorithm with applications in sensor scheduling and sensor coverage.
Automatica, 42(2):251–260, Feb. 2006.

V. Gupta, B. Hassibi, and R. M. Murray. Optimal LQG control across packet-
dropping links. Systems & Control Letters, 56(6):439–446, 2007.

B. Hajek. Jointly optimal paging and registration for a symmetric random walk. In
Proceedings of the 2002 IEEE Information Theory Workshop, pages 20–23, oct
2002.

B. Hajek, K. Mitzel, and S. Yang. Paging and registration in cellular networks:
Jointly optimal policies and an iterative algorithm. IEEE Transactions on In-
formation Theory, 54(2):608–622, Feb. 2008.



222 Bibliography

Y. Halevi and A. Ray. Integrated communication and control systems. I - analysis.
ASME, Transactions, Journal of Dynamic Systems, Measurement and Control.,
110:367–373, December 1988a.

Y. Halevi and A. Ray. Integrated communication and control systems. II - design
considerations. ASME, Transactions, Journal of Dynamic Systems, Measurement
and Control., 110:367–373, December 1988b.

D. Hall and J. Llinas. An introduction to multisensor data fusion. Proceedings of
the IEEE, 85(1):6–23, Jan 1997.

HART Communication Foundation. WirelessHART Data Sheet, 2007. Datasheet.

W. Heemels, K. Johansson, and P. Tabuada. An introduction to event-triggered
and self-triggered control. In Proceedings of the IEEE 51st Annual Conference
on Decision and Control, pages 3270–3285, Dec 2012.

W. P. M. H. Heemels, J. H. Sandee, and P. P. J. Van Den Bosch. Analysis of
event-driven controllers for linear systems. International Journal of Control, 81
(4):571–590, Apr. 2008.

T. Henningsson. Sporadic event-based control using path constraints and moments.
In Proceedings of the 50th IEEE Conference on Decision and Control and Euro-
pean Control Conference, pages 4723 – 4728, 2011.

T. Henningsson. Stochastic Event-Based Control and Estimation. PhD thesis,
Department of Automatic Control, Lund University, Sweden, Dec. 2012.

T. Henningsson and A. Cervin. A simple model for the interference between event-
based control loops using a shared medium. In Proceedings of the 49th IEEE
Conference on Decision and Control, 2010.

T. Henningsson, E. Johannesson, and A. Cervin. Sporadic event-based control of
first-order linear stochastic systems. Automatica, 44(11):2890–2895, Nov. 2008.

E. Henriksson, D. E. Quevedo, H. Sandberg, and K. H. Johansson. Self-Triggered
Model Predictive Control for Network Scheduling and Control. In Proceedings of
the 8th IFAC International Symposium on Advanced Control of Chemical Pro-
cesses, volume 8, pages 432–438, 2012.

A. Hernandez. Modification of the IEEE 802.15.4 implementation extended gts
implementation. Technical report, KTH Royal Institute of Technology, July
2011. URL http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.

x-contrib/kth/index.html.

K. Herring and J. Melsa. Optimum Measurements for Estimation. IEEE Transac-
tions on Automatic Control, 19(3):264–266, 1974.

http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/kth/index.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/kth/index.html


Bibliography 223

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked
control systems. In Proceedings of the IEEE, volume 95, pages 138–162, Jan. 2007.

Y.-C. Ho. Team decision theory and information structures. Proceedings of the
IEEE, 68(6):644–654, June 1980.

Y.-C. Ho and K.-C. Chu. Team Decision Theory and Information Structures in
Optimal Control Problems - Part I. IEEE Transactions on Automatic Control,
17(1):15–22, February 1972.

S. H. Hong. Scheduling algorithm of data sampling times in the integrated commu-
nication and control systems. IEEE Transactions on Control Systems Technology,
3(2):225 –230, June 1995.

W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quar-
terly, 21(1):177–185, 1974.

IEEE. IEEE 802.11 standard: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 1999. URL http://www.ieee802.org/11.

IEEE. IEEE 802.15.4 standard: Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), 2006. URL http://www.ieee802.org/15/pub/TG4.html.

International Society of Automation. ISA-SP100 wireless systems for automation
website. http://www.isa.org/isa100, 2010.

K. H. Johansson, M. Törngren, and L. Nielsen. Vehicle Applications of Controller
Area Network. In D. Hristu-Varsakelis and W. Levine, editors, Handbook of
Networked and Embedded Control Systems, Control Engineering, pages 741–765.
Birkhäuser Boston, 2005.

D. P. Joseph and T. J. Tou. On linear control theory. Transactions of the American
Institute of Electrical Engineers, Part II: Applications and Industry, 80(4):193–
196, 1961.

T. Kailath, A. Sayed, and B. Hassibi. Linear estimation. Prentice-Hall information
and system sciences series. Prentice Hall, 2000. ISBN 9780130224644.

S. Kar, B. Sinopoli, and J. Moura. Kalman Filtering With Intermittent Observa-
tions: Weak Convergence to a Stationary Distribution. IEEE Transactions on
Automatic Control, 57(2):405–420, February 2012.

J. Kay and P. Lauder. A fair share scheduler. Communications of the ACM, 31:
44–55, 1988.

L. Kleinrock and F. Tobagi. Packet switching in radio channels: Part I–carrier
sense multiple-access modes and their throughput-delay characteristics. IEEE
Transactions on Communications, 23(12):1400–1416, Dec. 1975.

http://www.ieee802.org/11
http://www.ieee802.org/15/pub/TG4.html
http://www.isa.org/isa100


224 Bibliography

L. Kleinrock, Fouad, and A. Tobagi. Carrier sense multiple-access modes and their
throughput-delay characteristics. IEEE Transactions on Communications, 23:
1400–1416, 1983.

F. Kozin. A survey of stability of stochastic systems. Automatica, 5(1):95–112,
1969.

A. S. Krishnamoorthy and M. Parthasarathy. A multivariate gamma-type distri-
bution. The Annals of Mathematical Statistics, 22:549–557, 1951.

KTH wireless NCS code repository, October 2013. URL http://code.google.

com/p/kth-wsn/.

R. Larson. Optimum quantization in dynamic systems. IEEE Transactions on
Automatic Control, 12(2):162–168, 1967.

E. Lee. Cyber Physical Systems: Design Challenges. In Proceedings of the 11th IEEE
International Symposium on Object Oriented Real-Time Distributed Computing,
pages 363–369, May 2008.

M. Lemmon and X. S. Hu. Almost sure stability of networked control systems
under exponentially bounded bursts of dropouts. In Proceedings of the 14th
International Conference on Hybrid Systems: Computation and Control, Apr.
2011.

M. Lemmon, T. Chantem, X. S. Hu, and M. Zyskowski. On self triggered full-
information H-infinity controllers. In Proceedings of the 10th International Con-
ference on Hybrid Systems: Computation and Control, pages 371–384, 2007.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An operating system for wireless
sensor networks. Ambient Intelligence, 2004.

F. L. Lian, J. R. Moyne, and D. M. Tilbury. Performance evaluation of control net-
works: Ethernet, ControlNet, and DeviceNet. IEEE Control Systems Magazine,
21(1):66–83, Feb. 2001.

G. M. Lipsa and N. C. Martins. Remote State Estimation With Communication
Costs for First-Order LTI Systems. IEEE Transactions on Automatic Control,
56(9):2013–2025, Sept. 2011.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal ACM, 20(1):46–61, Jan. 1973.

X. Liu and A. Goldsmith. Wireless medium access control in networked control
systems. In Proceedings of the American Control Conference, volume 4, pages
3605–3610, June 2004.

http://code.google.com/p/kth-wsn/
http://code.google.com/p/kth-wsn/


Bibliography 225

R. Marleau and J. Negro. Comments on "optimum quantization in dynamic sys-
tems". IEEE Transactions on Automatic Control, 17(2):273–274, 1972.

A. S. Matveev and A. V. Savkin. The problem of state estimation via asynchronous
communication channels with irregular transmission times. IEEE Transactions
on Automatic Control, 48(4):670–676, April 2003.

A. S. Matveev and A. V. Savkin. The problem of LQG optimal control via a limited
capacity communication channel. Systems & Control Letters, 53(1):51–64, 2004.

X. Meng and T. Chen. Optimal Sampling and Performance Comparison of Periodic
and Event Based Impulse Control. IEEE Transactions on Automatic Control, 57
(12):3252–3259, 2012.

S. K. Mitter. Control with limited information. European Journal of Control, 7
(2-3):122–131, 2001.

A. Molin and S. Hirche. On LQG joint optimal scheduling and control under com-
munication constraints. In Proceedings of the 48th IEEE Conference on Decision
and Control, pages 5832–5838, Dec. 2009.

A. Molin and S. Hirche. Structural characterization of optimal event-based con-
trollers for linear stochastic systems. In Proceedings of the 49th IEEE Conference
on Decision and Control, pages 3227–3233, 2010.

A. Molin and S. Hirche. Adaptive event-triggered control over a shared network. In
Proceedings of the 51st IEEE Conference on Decision and Control, pages 6591–
6596, Dec. 2012.

A. Molin and S. Hirche. On the Optimality of Certainty Equivalence for Event-
Triggered Control Systems. IEEE Transactions on Automatic Control, 58(2):
470–474, 2013.

R. M. Murray et al. Control in an Information Rich World: Report of the Panel
on Future Directions in Control, Dynamics, and Systems. Society for Industrial
and Applied Mathematics, 2003. URL http://www.cds.caltech.edu/~murray/

cdspanel.

G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite
feedback data rates. SIAM Journal on Control and Optimization, 43(2):413–436,
Feb. 2004.

G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback control under
data rate constraints: An overview. Proceedings of the IEEE, 95(1):108–137, Jan.
2007.

A. Nayyar. Sequential Decision Making in Decentralized Systems. PhD thesis, The
University of Michigan, 2011.

http://www.cds.caltech.edu/~murray/cdspanel
http://www.cds.caltech.edu/~murray/cdspanel


226 Bibliography

A. Nayyar, T. Başar, D. Teneketzis, and V. Veeravalli. Optimal strategies for
communication and remote estimation with an energy harvesting sensor. IEEE
Transactions Automatic Control, 58(9):2246–2260, 2013.

A. Nayyar, A. Gupta, C. Langbort, and T. Başar. Common information based
markov perfect equilibria for stochastic games with asymmetric information: Fi-
nite games. IEEE Transactions on Automatic Control, 59(3):555–570, March
2014.

J. Nilsson. Real-Time Control Systems with Delays. PhD thesis, Lund Institute of
Technology, Department of Automatic Control, Sweden, January 1998.

P. G. Otanez, J. R. Moyne, and D. M. Tilbury. Using deadbands to reduce commu-
nication in networked control systems. In Proceedings of the American Control
Conference, volume 4, pages 3015–3020, 2002.

D. B. Owen. A table of normal integrals. Communications in Statistics B—
Simulation and Computation, 9(4):389–419, 1980. ISSN 0361-0918.

N. Pereira, B. Andersson, and E. Tovar. WiDom: A dominance protocol for wireless
medium access. IEEE Transactions on Industrial Informatics, 3(2):120–130, May
2007.

J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless
research. In Proceedings of the Fourth International Symposium on Information
Processing in Sensor Networks, pages 364–369, Apr 2005.

S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Der Perre, I. Moerman, A. Bahai,
P. Varaiya, and F. Catthoor. Performance analysis of slotted carrier sense IEEE
802.15.4 medium access layer. IEEE Transactions on Wireless Communications,
7(9):3359–3371, September 2008.

M. Rabi. Packet based Inference and Control. PhD thesis, Institute for Systems
Research, University of Maryland, 2006. URL http://hdl.handle.net/1903/

6612.

M. Rabi and K. H. Johansson. Scheduling packets for event-triggered control. In
Proceedings of 10th European Control Conference, pages 3779–3784, 2009a.

M. Rabi and K. H. Johansson. Optimal stopping for updating controls. In Procced-
ings of the second International workshop on sequential methods, UTT, Troyes,
France, June 2009b.

M. Rabi, L. Stabellini, A. Proutiere, and M. Johansson. Networked estimation under
contention-based medium access. International Journal of Robust and Nonlinear
Control, 20(2):140–155, 2010.

http://hdl.handle.net/1903/6612
http://hdl.handle.net/1903/6612


Bibliography 227

M. Rabi, G. Moustakides, and J. Baras. Adaptive sampling for linear state estima-
tion. SIAM Journal on Control and Optimization, 50(2):672–702, 2012.

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The next
computing revolution. In Proceedings of the 47th ACM/IEEE Design Automation
Conference, pages 731–736, June 2010.

I. Ramachandran, A. K. Das, and S. Roy. Analysis of the contention access period
of ieee 802.15.4 mac. ACM Transactions on Sensor Networks, 3(1), Mar. 2007.

R. Ramaswami and K. Parhi. Distributed scheduling of broadcasts in a radio
network. In Proceedings of the Eighth Annual Joint Conference of the IEEE
Computer and Communications Societies. Technology: Emerging or Converging,
volume 2, pages 497–504, April 1989.

C. Ramesh. Contention-based Multiple Access Architectures for Networked Con-
trol Systems. Licentiate thesis, KTH Royal Institute of Technology, 2011. URL
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:397755.

A. Ray. Performance evaluation of medium access control protocols for distributed
digital avionics. ASME, Transactions, Journal of Dynamic Systems, Measure-
ment and Control., 109:370–377, December 1987.

Robert Bosch GmbH. Bosch CAN Specification, ver. 2. Stuttgart, 1991. URL
http://www.semiconductors.bosch.de/pdf/can2spec.pdf.

R. Rom and M. Sidi. Multiple access protocols: performance and analysis. Springer-
Verlag New York, Inc., New York, NY, USA, 1990. ISBN 0-387-97253-6.

J. G. Root. Optimum control of non-Gaussian linear stochastic systems with inac-
cessible state variables. SIAM Journal on Control and Optimization, 7:317–323,
1969.

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, Inc., third edition,
1976.

G. Sauer and J. Melsa. Stochastic control with continuously variable observation
costs for a class of discrete nonlinear systems. IEEE Transactions on Automatic
Control, 19(3):234–239, Jun 1974.

A. Savkin, R. Evans, and E. Skafidas. The problem of optimal robust sensor schedul-
ing. In Proceedings of the 39th IEEE Conference on Decision and Control, vol-
ume 4, pages 3791–3796, 2000.

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry. Foundations
of control and estimation over lossy networks. Proceedings of the IEEE, 95(1):
163–187, January 2007.

http://kth.diva-portal.org/smash/record.jsf?pid=diva2:397755
http://www.semiconductors.bosch.de/pdf/can2spec.pdf


228 Bibliography

A. N. Shiryaev. On the theory of decision functions and control by the process
of observation on partial data [in russian]. In Transactions of the Third Prague
Conference on Information Theory, Statistical Decision Functions, and Random
Processes, pages 657–672, Prague, 1964.

S. C. Smith and P. Seiler. Estimation with lossy measurements: jump estimators
for jump systems. IEEE Transactions on Automatic Control, 48(12):2163–2171,
Dec. 2003.

C. Striebel. Sufficient statistics in the optimum control of stochastic systems. Jour-
nal of Mathematical Analysis and Applications, 12(3):576–592, Dec. 1965.

M. Tabbara and D. Nesić. Input-Output Stability of Networked Control Systems
with Stochastic Protocols and Channels. IEEE Transactions on Automatic Con-
trol, 53(5):1160–1175, 2008.

P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control, 52(9):1680–1685, September 2007. ISSN
0018-9286. doi: 10.1109/TAC.2007.904277.

A. Tanenbaum. Computer Networks. Prentice Hall Professional Technical Refer-
ence, 4th edition, 2002. ISBN 0130661023.

S. Tatikonda and S. Mitter. Control under communication constraints. IEEE
Transactions on Automatic Control, 49(7):1056–1068, 2004a.

S. Tatikonda and S. Mitter. Control over noisy channels. IEEE Transactions on
Automatic Control, 49:1196–1201, 2004b.

S. Tatikonda, A. Sahai, and S. Mitter. Stochastic linear control over a communica-
tion channel. IEEE Transactions on Automatic Control, 49(9):1549–1561, Sept.
2004.

R. Tomovic and G. Bekey. Adaptive sampling based on amplitude sensitivity. IEEE
Transactions on Automatic Control, 11(2):282–284, Apr. 1966.

H. van de Water and J. Willems. The Certainty Equivalence property in Stochastic
control theory. IEEE Transactions on Automatic Control, 26(5):1080–1087, 1981.

P. Varaiya and J. Walrand. On delayed sharing patterns. IEEE Transactions on
Automatic Control, 23(3):443–445, 1978.

J. Walrand and P. Varaiya. Optimal causal coding - decoding problems. IEEE
Transactions on Information Theory, 29(6):814–820, 1983.

G. Walsh and H. Ye. Scheduling of networked control systems. IEEE Control
Systems Magazine, 21(1):57–65, 2001.



Bibliography 229

G. Walsh, H. Ye, and L. Bushnell. Stability analysis of networked control systems.
IEEE Transactions on Control Systems Technology, pages 2876–2880, 1999.

X. Wang and M. D. Lemmon. Event design in event-triggered feedback control
systems. In Proceedings of the 47th IEEE Conference on Decision and Control,
pages 2105–2110, 2008.

X. Wang and M. D. Lemmon. Event-Triggering in Distributed Networked Control
Systems. IEEE Transactions on Automatic Control, 56(3):586–601, Mar. 2011.

J. Weimer, J. Araujo, and K. H. Johansson. Distributed event-triggered estimation
in networked systems. In Proceedings of the 4th IFAC conference on Analysis and
Design of Hybrid Systems, pages 178–185, June 2012.

A. Willig. Recent and emerging topics in wireless industrial communications: A
selection. IEEE Transactions on Industrial Informatics, 4(2):102–124, may 2008.

A. Willig, K. Matheus, and A. Wolisz. Wireless technology in industrial networks.
Proceedings of the IEEE, 93(6):1130–1151, june 2005.

H. R. Wilson. Spikes, Decisions, and Actions: The Dynamical Foundations of Neu-
roscience. Oxford University Press, 1999.

H. S. Witsenhausen. A counterexample in stochastic optimum control. SIAM
Journal on Control, 6(1):131–147, 1968.

H. S. Witsenhausen. Separation of estimation and control for discrete time systems.
Proceedings of the IEEE, 59(11):1557–1566, November 1971.

W. Wonham. On the separation theorem of stochastic control. SIAM Journal on
Control, 6(2):312–326, 1968.

W. Wu and A. Arapostathis. Optimal control of stochastic systems with costly
observations - the general markovian model and the LQG problem. In Proceedings
of the American Control Conference, volume 1, pages 294–299, 2005.

M. Xia, V. Gupta, and P. J. Antsaklis. Networked State Estimation over a Shared
Communication Medium. In Proceedings of the American Control Conference,
pages 4128–4133, June 2013.

Y. Xu and J. P. Hespanha. Optimal communication logics in networked control sys-
tems. In Proceedings of the 43rd Conference on Decision and Control, volume 4,
pages 3527–3532, Dec. 2004a.

Y. Xu and J. P. Hespanha. Communication logics for networked control systems.
In Proceedings of the American Control Conference, pages 572–577, 2004b.



230 Bibliography

Y. Xu, J. Winter, and W.-C. Lee. Dual prediction-based reporting for object track-
ing sensor networks. In The First Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, pages 154–163, Aug. 2004.

J. K. Yook, D. M. Tilbury, and N. R. Soparkar. Trading computation for bandwidth:
reducing communication in distributed control systems using state estimators.
IEEE Transactions on Control Systems Technology, 10(4):503–518, July 2002.

H. Yu and P. J. Antsaklis. Event-Triggered Output Feedback Control for Networked
Control Systems using Passivity: Triggering Condition and Limitations. In Pro-
ceedings of the 50th IEEE Conference on Decision and Control and European
Control Conference, pages 199–204, 2011.

S. Yüksel. Jointly optimal LQG quantization and control policies for multi-
dimensional linear gaussian sources. In Proceedings of the 50th Annual Allerton
Conference onCommunication, Control, and Computing, pages 466–473, 2012.

S. Yüksel. On optimal causal coding of partially observed markov sources in single
and multiterminal settings. IEEE Transactions on Information Theory, 59(1):
424–437, 2013.

W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked control
systems. IEEE Control Systems Magazine, 21(1):84–99, Feb. 2001.

ZigBee Alliance. ZigBee Specification, 2005. URL http://www.caba.org/

standard/zigbee.html.

http://www.caba.org/standard/zigbee.html
http://www.caba.org/standard/zigbee.html

	Contents
	Introduction
	Wireless Networked Control Systems
	Motivating Examples
	Problem Formulation
	Inherent Limitations of the Problem Formulation
	Thesis Outline
	Contributions

	Background
	Stochastic Control
	Channel Access
	Networked Control Systems
	Summary

	Structural Analysis
	Contributions and Related Work
	Preliminaries
	Optimal Controller Design
	Closed-Loop System Architecture
	Extensions and Discussions
	Examples
	Summary

	Modelling Network Interactions
	Contributions and Related Work
	Problem Formulation
	The Event-triggering Policy
	The Multiple Access Event-triggered Problem
	Steady State Performance Analysis
	Examples and Simulations
	Summary

	Stability Analysis and Design
	Contributions and Related Work
	Problem Formulation
	Stability Analysis
	Event-Triggering Policy Synthesis
	Example
	Summary

	State-based Prioritized Access
	Contributions and Related Work
	Problem Formulation
	Protocol Design and Analysis
	Tournament Access Mechanism
	Results
	Summary

	Stochastic Systems with Nonlinear Measurements
	Contributions and Related Work
	Problem Formulation 
	Dual Effect and Certainty Equivalence 
	Dynamic Encoder-Controller Design  
	Dynamic Designs for Other Channel Models  
	Constrained Encoder-Controller Design
	Discussion
	Summary 

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix to Chapter 3
	Appendix to Chapter 5
	Appendix to Chapter 6
	Appendix to Chapter 7
	Index
	Bibliography

