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Abstract

The power industry and society are facing the challenges and opportunities
of transforming the present power grid into a smart grid. To meet these
challenges, new types of control systems are connected over IT infrastructures.
While this is done to meet highly set economical and environmental goals, it
also introduces new sources of uncertainty in the control loops. In this thesis,
we consider control design taking some of these uncertainties into account.

In Part I of the thesis, some economical and environmental concerns in
smart grids are taken into account, and a scheduling framework for static
loads (e.g., smart appliances in residential areas) and dynamic loads (e.g., en-
ergy storage systems) in the distribution level is investigated. This framework
aims to reduce both the electricity bill and the CO2 emissions in residential
areas. A robust formulation is proposed taking the user behavior uncer-
tainty into account, so that the optimal scheduling cost is less sensitive to
unpredictable changes in user preferences. In addition, a novel distributed
algorithm for the studied scheduling framework is proposed, which aims at
minimizing the aggregated electricity cost of a network of apartments sharing
an energy storage system. The proposed approach guarantees cooperation
among consumers, and fairness in the use of the shared resources. We point
out that the proposed scheduling framework is applicable to various uncer-
tainty sources, storage technologies, and programmable electrical loads.

In Part II of the thesis, we study smart grid uncertainty resulting from
possible security threats. Smart grids are one of the most complex cyber-
physical systems considered, and are vulnerable to various cyber and physical
attacks. These threats can affect the smart grid in different aspects such as
efficiency, safety, reliability and robustness. We identify potential vulnerabil-
ities in the interface between the physical and the IT infrastructures of the
power system. These vulnerabilities may lead to an abnormal operation of the
distribution network. In particular, relevant attack scenarios are introduced,
together with their threat models, based on which impact analysis is being
performed. The attack scenarios consider cyber adversaries that may corrupt
a few measurements and reference signals, which may degrade the system’s
reliability and even destabilize the voltage magnitudes. In addition, a prac-
tical attack-resilient framework for networked control systems is proposed.
This framework includes security information analytics to detect attacks and
a resiliency policy to improve the performance of the system running under
the attack. Stability and optimal performance of the networked control sys-
tem under attack and by applying the proposed framework, is proved here.
The framework has been applied to an energy management system and its
efficiency is demonstrated on a critical attack scenario.
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Chapter 1

Introduction

The world is facing an increasing energy demand. Simultaneously economical con-
siderations and environmental concerns of promoting lower-carbon and high effi-
ciency generation technology are becoming more and more important. Thus, the
power industry and society are dealing with the challenges and opportunities of
transforming the present power grid into a smart grid [13]. Development of the
power grid helps the power industry to manage generation-demand balance, opti-
mizing asset utilization, improving grid reliability, reducing environmental impact,
etc. [19].

The smart grid is an electrical grid which is composed of a variety of operational
and computational components including smart meters, smart appliances, renew-
able energy resources, and energy efficiency resources [35]. To monitor and control
smart grids, industrial control systems (ICSs) play an important role [93]. ICS is a
general term that encompasses several types of control systems used in industrial
production, including supervisory control and data acquisition (SCADA) systems,
distributed control systems (DCS), and other smaller control system configurations
such as programmable logic controllers (PLC) often found in the industrial sectors
and critical infrastructures.

In the electric power grid, residential areas are responsible for nearly 40% of
the energy consumption in developed countries and are important consumers in
the low voltage distribution level. Residential areas are known to have significant
potential for energy and CO2 emission saving, as well as for load shifting, compared
to industry and transportation [90]. Thus, automatic control of electrical/thermal
components in residential areal and buildings has become a necessary task for ICSs
in order to achieve optimal performance. An ICS is called an energy manage-
ment system (EMS) when it comes to the automatic control of electrical/thermal
components in buildings. The aim of a modern EMS is to enhance the function-
ality of interactive control strategies leading towards energy efficiency and a more
user friendly environment. In addition, penetration of distributed energy resources
(DER) units that are connected to the distribution grid, can help consumers to de-
crease their CO2 emission and electricity bill. DERs use renewable energy sources,
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2 CHAPTER 1. INTRODUCTION

including solar power, wind power, geothermal power, etc., and are located close to
the load they serve. Most of the DERs are small-scale and inverter-based, which
are connected at the low voltage distribution level. One way to take advantage of
small-scale inverter-based DER units (which have uncertainty in terms of produc-
ing electricity), and also make them more flexible and efficient for consumers to
manage their energy use, is to consider them to be collocated with energy storage
systems (ESSs). Local integration of DERs and ESSs, has led to the concept of
microgrids (MGs) [27, 71]. MGs can be defined as a cluster of loads, ESS and DER
units that are operated in coordination and perceived as a single element by the
main grid [51], which can operate in both grid-connected and islanded modes. EMS
of MGs are connected to the building communication network.

These developments introduce new types of uncertainties that we need to handle
in the smart grid, by making the control policies to be resilient against the emerged
uncertainties. In this chapter we will give some motivating examples and introduce
these uncertainties.

1.1 Motivating Applications

A few illustrative examples related to the smart distribution grid are presented
here, to motivate the problems considered in this thesis.

Example 1.1.1 (Active apartments).
Active apartments are apartments where effective demand response policies are en-
abled through the integration of smart appliances, ESSs, scheduling algorithms,
home automation systems, and information exchange over communication tech-
nologies. As an example, within the Stockholm Royal Seaport project [1], which is
a new and environmentally sustainable city district being built in Stockholm, some
active apartment buildings are available and occupied by families. Figure 1.1 depicts
a schematic of an active apartment in the Royal Seaport project. It is of interest to
investigate the potential of active apartments for saving electricity bill and reducing
CO2 emission by using an automation system for scheduling of smart appliances
and ESS.

Example 1.1.2 (HVAC system in a MG).
An energy management system optimally controls all energy sources in a MG in
order to minimise thermal and electrical energy consumption, while maximising
users’ comfort. Recently, a MG infrastructure [60] has been introduced to support
both types of loads, where some equipment such as Combined Heat and Power (CHP)
can be an energy source for both electrical and thermal demand. In this context, an
energy management system would consider an HVAC (heating, ventilating, and air
conditioning) system as an important contributor to the energy consumption. HVAC
is the technology of indoor and vehicular environmental, which provides thermal
comfort and acceptable indoor air quality. Figure 1.2 shows the HVAC system at
the demo-site at Cork Institute of Technology. Here, the energy management system
controls two main heating sources, the boiler and the CHP, which heat up the water
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Figure 1.1: Schematic of an active apartment in the Royal Seaport project in Stock-
holm [1].

to a temperature set-point. The header flow delivers the heated water to each floor
of the buildings (Nimbus and Rubicon), where a mixing valve is used to regulate each
floor flow temperature. At the end, supplied water to each of the floors is distributed
over several radiators in each building’s floor, where radiator is controlled using an
on/off controller to reach a predefined room temperature set-point. Since an energy
management system considers an HVAC system as an important contributor to
energy consumption, an HVAC system is a possible target for attacks with financial
impact and to damage the heating sources (e.g. CHP and boilers). It is of interest
to investigate a practical resilient policies to cope with possible adversarial actions
to the HVAC system.

Example 1.1.3 (Large DER penetration to the distribution grid).
High penetration levels of DER creates a different set of challenges at the distribu-
tion grid, than at transmission grid level. Given that distribution grid is generally
designed to be operated in a radial fashion with one way flow of power to cus-
tomers, and DER (including photovoltaic and wind technologies) interconnection
violates this fundamental assumption. Impacts caused by high penetration levels of
DER can be complex and severe and may include voltage increase, voltage fluc-
tuation, reverse power flows, power quality and protection concerns, and current
and voltage unbalance, among others. These impacts can become even more severe
when the system is under adversarial actions. As shown in Figure 1.3, the power
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Figure 1.2: Typical BMS for HVAC system
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Figure 1.3: A power distribution system comprised of interconnected MGs with
inverter-based DERs.

distribution grid is composed of a set of interconnected MGs that may be connected
to the main grid. In this figure, the ith MG (MGi) is represented by the busi to
which inverter-based DERi and Loadi are connected. It is of interest to investigate
the stability and power sharing analysis of the controlled MGs under adversarial
actions.

1.2 Objectives

The main objectives of this thesis are motivated by the examples discussed earlier.
As it is mentioned, ICSs play an important role in order to achieve optimal perfor-
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Figure 1.4: Generic block diagram of an ICS which is vulnerable to the uncertain-
ties.

mance in smart grids. A general hierarchical structure of ICSs is considered here,
which is composed of lower layer and supervisory layer (see Figure 1.4). The lower
layer consists of physical interconnected infrastructure and local controllers. As it
is shown in this figure, P1, ..., PN are the interconnected plants which are controlled
by the local controllers K1, ...,KN . Note that in different applications, Pi and Ki

model different types of plants and controllers. For example, in the active apartment
application, Pi refers to the aggregation of smart appliances in the ith apartment,
and Ki refers to the automation system in the ith apartment. On the other hand,
in the HVAC system in a MG application, Pi refers to different components of the
HVAC system in Figure 1.2 (e.g., the boiler), and Ki refers to the local controller
of that component (e.g., boiler’s on/off controller). The supervisory layer, which is
called control center here, can be viewed as the brain of the system. The control
center sends set-point ri to each controller Ki through the communication network
and receives the status of the local controllers and measurement signals.

Here, we consider that the control signals (e.g., ui), the measurement signals
(e.g., yi) and the reference signals (e.g., ri) could be modified by a1, a2, and a3,
based on existing uncertainties. For example, user behavior uncertainties may
modifies the control signal ui, or adversarial actions on yi or ri may corrupt the
measurement signal or the reference signal. These uncertainties may lead to a poor
system performance, or can even cause instability. Thus it is crucial to make the
ICS to be resilient against these uncertainties. To address these problems, the
objectives of this thesis are divided into Part I and Part II. The main objectives in
Part I are:

• Robust optimal control of residential loads, with the aim of minimizing elec-
tricity cost and CO2 emission, under user behavior uncertainties (e.g., control
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signal ui is modified by a1).

• Distributed scheduling of loads in residential areas sharing an ESS, guaran-
teeing cooperation among consumers and fairness in the use of the shared
resources among consumers.

The main objectives in Part II are:

• Voltage stability analysis of power distribution grids with high penetration
levels of DERs, under adversarial actions (e.g., reference signal ri is modified
by a3).

• Resilient optimal control of an HVAC system in a MG, in the sense of optimal
state estimation, stability satisfaction, and performance improvement, under
adversarial actions (e.g., measurement signal yi is modified by a2).

1.3 Thesis Outline

The contributions in each part of the thesis and the connection with the related
publications are presented below.

Part I - This part has been motivated by the problem of reducing electricity bill
and CO2 emissions related to the energy consumption in active apartments
equipped with automation system, smart appliances, and ESSs. A well stud-
ied scheduling framework for static loads (e.g., smart appliances in residential
areas) and dynamic loads (e.g., energy storage systems) in residential areas,
is presented here. Then a robust formulation of the studied scheduling frame-
work is proposed. This robust scheduling framework takes the user behavior
uncertainty into account so that the optimal scheduling cost is less sensitive
to unpredictable changes in user preferences. In addition, a novel distributed
algorithm for the studied scheduling framework is proposed in this part. The
proposed distributed scheduling framework aims at minimizing the aggregated
electricity costs of a network of apartments sharing an energy storage system.
The proposed approach guarantees cooperation among consumers, and fair-
ness in the use of the shared resources among consumers. These contributions
have been published in the following articles.

K. Paridari, A. Parisio, H. Sandberg and K. H. Johansson. Robust schedul-
ing of smart appliances in active apartments with user behavior uncertainty.
IEEE Transactions on Automation Science and Engineering, 13(1):247-259,
2016.

K. Paridari, A. Parisio, H. Sandberg and K. H. Johansson. Demand re-
sponse for aggregated residential consumers with energy storage sharing. In
Proceedings of the IEEE 54th Conference on Decision and Control (CDC),
2015.
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K. Paridari, A. Parisio, H. Sandberg and K. H. Johansson. Energy and CO2
efficient scheduling of smart appliances in active houses equipped with batter-
ies. In Proceedings of the IEEE 10th International Conference on Automation
Science and Engineering (CASE), 2014. Best student paper award final-
ist.

Part II - In this part, we investigate security of cyber-physical networked con-
trol systems. To this end, we first identify potential vulnerabilities in the
interface between the physical and the IT infrastructures of the power sys-
tem. We show that these vulnerabilities may lead to an abnormal operation
of the distribution network, which may degrade the system’s reliability and
even destabilize the voltage magnitudes. In addition, a practical cyber-secure
framework for networked control systems is proposed in this part. This frame-
work includes security information analytics to detect attacks, and a resilient
policy to improve the performance of the system running under the attack.
These contributions have been published in the following articles.

K. Paridari, et al. Attack-resilient industrial control systems: attack di-
agnosis and controller reconfiguration for energy management systems. In
preparation, 2016.

K. Paridari, A. E. Mady, S. La Porta, R. Chabukswar, J. Blanco, A. Teix-
eira, H. Sandberg and M. Boubekeur. Cyber-physical-security framework for
building energy management system. In Proceedings of the ACM/IEEE 7th
International Conference on Cyber-Physical Systems (ICCPS), 2016.

A. Teixeira, K. Paridari, H. Sandberg and K. H. Johansson. Voltage control
for interconnected microgrids under adversarial actions. In Proceedings of
the IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), 2015.
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Robust Optimal Demand Response
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Chapter 1

Introduction

The world is challenged by an increasing energy demand, economical consideration
(reducing electricity cost), and environmental concerns of promoting lower-carbon
and high efficiency generation technology. Thus, the power industry is facing the
challenges and opportunities of transforming the present power grid into a smart
grid. A smart grid is an electrical grid, composed of smart meters, smart appliances,
renewable energy resources, computing elements and energy efficiency resources,
which are integrated over a communication network.

1.1 Main Contributions

The main contributions of Part I are threefold. The first contribution presents a well
studied scheduling framework for static loads (e.g., smart appliances in residential
areas) and dynamic loads (e.g., ESSs), by considering the state of health of the
dynamic loads. In addition, a case study is performed to assess the performance of
the proposed scheduling framework to reduce both the electricity bill and the CO2
emissions in residential areas. The above results have been published in [57].

As the second contribution, a robust formulation of the studied scheduling
framework is proposed. This robust scheduling framework, takes the user behav-
ior uncertainty into account so that the optimal scheduling cost is less sensitive to
unpredictable changes in user preferences. In order to reduce the level of conser-
vativeness of the robust solution, we introduce a parameter allowing to achieve a
trade-off between the price of robustness and the protection against uncertainty.
Mathematical insights into the robust formulation are illustrated and the sensitivity
of the optimum cost in the presence of uncertainties is investigated. Although active
apartments equipped with smart home appliances and EESs are considered as the
case study here, we point out that the proposed scheduling framework is generally
applicable to many use cases, e.g., charging and discharging of electrical vehicles in
an effective way. In addition, it is applicable to various scenarios considering differ-
ent uncertainty sources, different storage technologies and generic programmable

11



12 CHAPTER 1. INTRODUCTION

electrical loads, as well as different optimization criteria. This contribution has
been published in [59].

The third contribution in this part of the thesis, proposes a novel distributed
algorithm for the studied scheduling framework. As the case study, a network of
consumers coupled by energy resource sharing constraints is considered. The pro-
posed distributed scheduling framework aims at minimizing the aggregated elec-
tricity costs. Each consumers is equipped with an energy management system that
schedules the shiftable loads accounting for user preferences, while an aggregator
entity coordinates the consumers demand and manages the interaction with the grid
and the shared ESS via a distributed strategy. The proposed approach guarantees
constraints satisfaction, cooperation among consumers, and fairness in the use of
the shared resources among consumers. Performance of the proposed distributed
algorithm in comparison with a centralized one is illustrated using numerical ex-
periments. The above results have been published in [58].

1.2 Outline

The rest of Part I of this thesis is structured as follows. Chapter 2 presents some
background in demand response, power consumption of an active apartment, and
scheduling methods for scheduling of static and dynamic loads. A well studied
scheduling framework for static and dynamic loads, by considering the state of
health of the dynamic loads, is presented in Chapter 3. In Chapter 4, a robust
formulation of the studied scheduling framework is proposed, which takes the user
behavior uncertainty into account. Chapter 5 proposes a novel distributed algo-
rithm for the scheduling framework. Finally, Chapter 6 provides conclusions and
suggestions for future studies.



Chapter 2

Background

In this chapter, we present the background in demand response, power consumption
of an active apartment, and scheduling methods for scheduling of static and dynamic
loads.

2.1 Demand Response

Residential areas are responsible for nearly 40% of the energy consumption and
CO2 emission in developed countries. These areas are known to have significant
potential for energy and cost savings, as well as load shifting (loads are classified
as controllable (interruptible and non-interruptible) and uncontrollable), compared
to industry and transportation [90]. Therefore, automation systems can be used to
assist residents to take advantage of these potentials [44]. Demand Response (DR)
is considered as the most cost-effective and reliable solution for the smoothing of
the demand curve, when the system is under stress [86]. Thus, it has received
increased attention in recent years since it can efficiently support load balancing
and economical/environmental cost reduction [52], [72]. DR is commonly defined as
changes in electricity use by consumers in response to changes in the electricity price
over time [52], and help power markets set efficient energy prices, mitigate market
power, improve economic efficiency, and increase safety [17]. Several studies have
investigated the potential changes in residential electricity use under time-varying
price rates by rescheduling smart (possible to control remotely) appliances [45,
25, 7]. The electricity use can also be sensitive to dynamic CO2 intensity that is
included in the demand response [80]. Thus, several works have focused on CO2
emission factors and its potential impacts on the changes in household load profile,
e.g., see [91], and also proposed load management strategies accounting for both
price and CO2 information (e.g., see [57, 76, 79, 77] and the Stockholm Royal
Seaport project [1]). To achieve energy and cost savings and have effective DR
policies, home appliances are required to be smart and have the ability of being
switched on or off remotely and in response to price and CO2 signals.

13



14 CHAPTER 2. BACKGROUND

2.2 Load Scheduling Methods

Load scheduling problem is being formulated as an optimization problem in the lit-
erature. The optimization task is to minimize the single or multi-objective function.
For example, in [77], a multi-objective optimization problem deal with a tradeoff
between electricity costs and CO2 emission, for which a dynamic programming
solution is provided. Note that this tradeoff exists in certain countries including
Sweden. To deal with this possible trade-off, different methods have been proposed.
Weighted sum and ε-constrained approaches are two of these methods that have
mostly been used in the literature [79, 77, 28]. In [28] a discrete time formulation is
proposed for the scheduling problem and solves it by a minimum cut algorithm. In
addition, to solve the multi-objective optimization problem, different conditions and
constraints on the load operation and user time preferences should be considered.

2.3 Robust Load Scheduling

In the optimization problem for scheduling of smart appliances and ESSs, different
sources of uncertainties may cause considerable deterioration in the expected out-
comes (electricity bill and CO2 emission savings), and should be taken into account.
In the uncertainties which are related to the DR signals, electricity tariff and CO2
foot-print are subject to real-time amendment or forecasting errors. These sources
of uncertainties are well addressed and studied in the literature [17, 38, 37, 8].

There exist also uncertainties related to the energy consumption of smart appli-
ances. For example, an optimization-based real-time residential load management
algorithm has been proposed in [66], which takes into account uncertainties related
to the power consumption and starting time of uncontrollable loads, in order to
minimize the energy payment for each user. In addition, the authors of [16] pro-
pose an energy efficient scheduling algorithm taking into account the uncertainty
in appliances energy consumption. The novelty in that work is the introduced en-
ergy consumption adaptation variable, which is used to model the stochastic energy
consumption patterns for various household appliances.

It is known that the uncertainty can be handled by stochastic programming
and robust approach, and stochastic programming generally requires higher com-
putational burden (e.g., see numerical evaluations in [17], which indicates that the
scenario based stochastic approach introduces higher computational burden than
the robust approach). However a robust approach is more computationally ap-
pealing, it can lead to a conservative and potentially more expensive scheduling
of appliances. In order to prevent too conservative solutions, the exist some ap-
proaches in the literature (see [9, 17, 22]).

2.4 Distributed Scheduling

Since ESS devices are still expensive, a reasonable solution to afford their expenses
and benefit from the use of them would be to share it among several consumers. In
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addition, when the number of appliance in the residential areas increases, the com-
putational burden for scheduling in a centralized fashion is remarkable. Therefore,
the households should be coordinated by an aggregator/coordinator to share the
benefits of shared ESS and also break down the computational burden. Aggrega-
tors are new entities in the electricity market that act as mediators between users
and the utility operator, and possess the technology to perform DR signals and
communicate with both users and utilities [24]. In [65], an algorithm is built on the
alternating directions method of multipliers (ADMM), focusing on decentralized
algorithms for Electric Vehicles charging. In addition, a coordination framework
based on ADMM is proposed in [87] to negotiate among the households and a coor-
dinator, with the main goal being to minimize the imbalance among communities,
while including objectives and constraints for each community and taking into ac-
count each user’s quality of life/activities. Based on our knowledge, the proposed
frameworks in the literature are based on some assumptions (e.g., convexity of the
problem) which may not be realistic, and thus their algorithm may not be directly
implementable.





Chapter 3

Scheduling Framework for
Constrained Power Consumption

Based on our knowledge, the mixed integer linear programming (MILP) framework
that was proposed in [79] is more extendable (e.g. for including ESSs as dynamical
loads) than the other methods proposed in the literature. Therefore, we base our
study on the MILP framework proposed in [79] in Part I of this thesis.

3.1 Load Modeling and Problem Formulation

In this section, we formulate the smart home appliances and ESS scheduling prob-
lem in a MILP framework [79]. This framework considers the minimum electricity
cost and CO2 emission, and satisfies technical operation constraints of smart ap-
pliances and ESS, and consumer preferences. Electricity tariff and CO2 footprint
signals are assumed to be piecewise constant. Here, for scheduling of smart appli-
ances, the appliances execution period is discretized into m uniform time slots ∆t
(e.g. ∆t=10 minutes per slot). The number of appliances considered for scheduling
is denoted by N , and ni for i = 1, 2, ..., N , denotes the number of un-interruptible
energy phases for each appliance. The energy assigned to energy phase j of appli-
ance i during the whole period of time slot k is denoted by pkij . In addition, auxiliary
binary decision variables (xkij) are required to indicate whether a particular energy
phase is being processed or not. Moreover, two other sets of binary decision vari-
ables are needed to model the decision problem. One is denoted as skij , with a value
of one indicating that, in appliance i, energy phase j is already finished by time
slot k. The other set is denoted as tkij . These decision variables are used to indicate
whether at time slot k, appliance i is making a transition between running phase
j − 1 to j. To minimize the electricity bill and CO2 emission, a multi-objective
optimization problem is proposed subject to the following constraints.

The constraint that is enforced to make sure that the energy phases fulfill their

17
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energy requirement is as
m∑
k=1

pkij = ERij , ∀i, j, (3.1)

where ERij is the energy requirements for energy phase j in appliance i. To
determine that the lower and upper power limitation being assignment to the phase
are satisfied, during time slot k, the constraint

pk
ij
xkij ≤ pkij ≤ pkijxkij , ∀i, j, k, (3.2)

is enforced, and the pk
ij

and pkij are the lower and upper limits. Also, the power
safety constraint can be imposed as

N∑
i=1

ni∑
j=1

pkij ≤ P
k
, ∀k. (3.3)

P
k is the upper limit of the total energy assigned at time slot k. The limits on

energy phases process time are imposed as

T ij ≤
m∑
k=1

xkij ≤ T ij , ∀i, j, (3.4)

where the T ij and T ij are the lower and upper limits of the number of time slots for
energy phase j in appliance i to be processed. To satisfy the sequential processing of
the energy phases of an appliance and also sequential operation between appliances,
the following constraints are imposed respectively

xkij ≤ ski(j−1), ∀i, k, ∀j = 2, . . . , ni,
xkij ≤ sk

ĩnĩ
, ∀k, (3.5)

with the ĩ being the index of the appliance which must be finished before the
appliance with i index can start running. To make sure that the energy phases are
un-interruptible the following constraint is imposed.

xkij ≤ 1− skij , ∀i, j, k,
xk−1
ij − xkij ≤ skij , ∀i, j, ∀k = 2, . . . ,m,
sk−1
ij ≤ skij , ∀i, j, ∀k = 2, . . . ,m.

(3.6)

To increase the benefits from DR signals, delays between energy phases are con-
sidered to be flexible in the smart appliances. This gives the smart appliances the
capability of flexible electricity consumption to help the consumers to reduce elec-
tricity bill and CO2 emission. To count the number of time slots spent between
the energy phases in an appliance and impose lower and upper limits (which are
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technical specifications of each appliance and are provided by companies) on these
numbers, the constraints

tkij = ski(j−1) − (xkij + skij), ∀i, j, ∀k = 2, . . . , ni, (3.7)

Dij ≤
m∑
k=1

tkij ≤ Dij , ∀i, ∀j = 2, . . . , ni, (3.8)

are considered, whereDij andDij are between-phase delay lower and upper bounds,
respectively. Finally, to meet the household preferences and finishing a particular
appliance within a specified time interval, the constraint

xkij ≤ TP
k
i , ∀i, j, k, (3.9)

is enforced, and TP ki is the time preference interval. To include an ESS in this
framework, the following set of constraints is defined. The level of energy stored
in the ESS at time slot k, should always satisfy the lower (bs) and upper (bs)
limitations

bs ≤ bks ≤ bs, ∀k, (3.10)
where bks is the state of charge (SOC) of the ESS in time slot k. Moreover, to
meet the lower and upper limitations on power exchanged with the ESS when it is
charging or discharging during time slot k, the two constraints

0 ≤ bkc ≤ b
k

cx
k
c , 0 ≤ bkd ≤ b

k

dx
k
d, ∀k, (3.11)

are enforced, in which the auxiliary binary decision variables xkc and xkd indicate
whether the ESS is charging or discharging in time slot k, respectively. The power
exchanged with the ESS during time slot k is denoted by bkc (or bkd) when the ESS
is charging (or discharging). In addition, the constraint

xkc + xkd ≤ 1, ∀k, (3.12)

should be satisfied to make sure that the ESS is not charging and discharging at the
same time slot. To take the state of health of ESSs into account, the total number
of charging and discharging cycles during a day should be limited to a determined
number Nc, and the constraints

xkc − xk−1
c ≤ ckt , ∀k = 2, . . . ,m,

xkd − x
k−1
d ≤ dkt , ∀k = 2, . . . ,m,

m∑
k=1

ckt + dkt ≤ Nc ,
(3.13)

should be satisfied, where the binary decision variables ckt and dkt determine the
transition time slots to start charging and discharging, respectively. The dynamic
system constraint

bks = αbk−1
s + ηcb

k−1
c − ηdbk−1

d , ∀k = 2, . . . ,m, (3.14)
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describes the evolution of energy stored in the ESS, in which the α is a constant
stored energy degradation in each sampling interval, and ηc and ηd are efficiencies
accounting for the losses during charging and discharging. To satisfy the power
balance in the system, the constraint

N∑
i=1

ni∑
j=1

pkij + bkc − bkd = pkG, ∀k, (3.15)

is enforced, where the exchanged power with the grid is denoted by pkG, and it
should satisfy lower and upper limitations.

pk
G
≤ pkG ≤ pkG, ∀k, (3.16)

where the lower limit is negative to allow energy selling to the grid. Finally, it
is reasonable to assume that the initial and the final energy levels (b0s and bTs
respectively) in the ESS are the same, since the final energy level is also the initial
condition for the next day scheduling. Hence, the following equality constraint on
the initial and final SOC is enforced

b0s = bTs . (3.17)

Moreover, the initial level should be high enough to allow a flexible use of the ESS:
in this study, we assume b0s = bs + bs−bs

2 . One can also consider b0s as a variable,
corresponding to the measured energy level of the ESS at the beginning of the day.
Now the proposed multi-objective optimization problem of jointly scheduling smart
appliances and ESS could be written as

minimize
p,x,s,t,bs,
bc,bd,xc,xd,
ct,dt,pG

m∑
k=1

Ckλ p
k
G

subject to constraints (3.1), (3.2), (3.4)− (3.9), (3.10)− (3.17)
λ ∈ [0, 1],

pkij ∈ R, ∀i, j, k,

xkij , s
k
ij ∈ 0, 1, ∀i, j, k,

tkij ∈ 0, 1, ∀i, k, ∀j = 2, . . . , ni,

bks , b
k
c , b

k
d, p

k
G ∈ R, ∀k,

xkc , x
k
d, c

k
t , d

k
t ∈ 0, 1, ∀k,

(3.18)

which is called nominal problem (NOM). In the objective function, the weighted
sum of electricity tariff and CO2 footprint ((1 − λ)Ek + λCk) is denoted by Ckλ ,
and pkG is the total energy exchanged by the grid at time slot k. Note that the cost
function is parameterized by the weighting parameter λ ∈ [0, 1] (that would be cho-
sen by end-users), in which λ = 0 implies end-users only care about the electricity
bill, while for λ = 1 they only take CO2 emission into account. Thus, by changing
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the parameter λ from 0 to 1,and solving the minimization problem in (3.18), the
convex hull for the Pareto curve ([14]) of our multi-objective minimization problem
would be generated. The following normalizations are applied in (3.18)

Ek = ek

max(e1, e2, ..., em) , Ck = ck

max(c1, c2, ..., cm) , (3.19)

where ek and ck denote the electricity bill and CO2 foot-print for time slot k
respectively and based on given 24-hour ahead tariff curves (which are piecewise
constant).
Remark 3.1.1. The formulation discussed in this section can be applicable for elec-
trical vehicles with a slight modification considering that an electrical vehicle may
drive during some periods in a day. Thus, to integrate electrical vehicles in the au-
tomation systems, time preferences for electrical vehicle batteries are to be modeled
in the problem formulation (similar to the time preferences introduced for smart
appliances in (3.9)). Hence, the constraints

xkc ≤ T kEc, xkd ≤ T kEd, ∀k, (3.20)

have to be added to the constraints defined from (3.10) to (3.14). Here, T kEc and
T kEd characterize time preference intervals for charging and discharging of electrical
vehicle’s battery, respectively.
Remark 3.1.2. The proposed framework can provide useful insights into more effec-
tive carbon pricing, which accounts for the CO2 emissions. Consider, for instance,
that the carbon price is set as eCO2 Euro per kg of CO2 emitted; hence, the emission
cost per kWh of exchanged power at each time slot k is ekc = eCO2e

k Euro. The
objective function of (3.18) can be slightly modified to include the environmental
taxes as

(
(1− λ)Ekc + λCk

)
pkG, where Ekc and Ck are obtained by normalizing re-

spectively ekc + ek and ck with respect to the total electricity price per kWh for the
consumers at time slot k. By doing so, lambda can be interpreted as the percentage
of the total cost associated to the carbon content of the electricity consumed; thus,
our framework can give indications of how to incentivize a desired user behavior.

3.2 Use Cases

Here we describe how the proposed scheduling framework can be applied to relevant
practical use cases, and capture relevant real world scenarios.

Power Consumption of an Active Apartment
To investigate the potential of active apartments (described in Example 1.1.1) for
saving electricity bill and reducing CO2 emission, it is necessary to have the in-
formation related to hourly energy consumption in these apartments. Within the
Stockholm Royal Seaport project [1], which is a new, environmentally sustainable
city district being built in Stockholm, some active apartment buildings are available
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and occupied by families. In the Stockholm Royal Seaport project, hourly power
consumption of two active apartments which are occupied by families is available.
The data has been kindly provided by Fortum Corporation, which is actively in-
volved in this project. To assess the potential of automated active apartments for
saving electricity bill and reducing CO2 emission, it is necessary to have the infor-
mation related to hourly energy consumption in apartments without automation
system, and the portion of household appliances in their energy consumption. Thus,
to determine the hourly power consumption of household appliances vs other con-
sumptions, a comparison with previous works is done. In [94], apartments average
hourly power consumption is a result of the empirical measuring of a total of 199
apartments between the years 2005-2008 in Sweden, which is done by the Swedish
Energy Agency. In that study, five types of apartments (singles 26-64 years old and
above the age of 64, couples 26-64 years old and above the age of 64 and families
26-64 years old) are taken into account. Among all these 199 apartments, 125 of
them were occupied by families 26-64 years old (more than 60%) and here the data
related to them is being used for comparison with the available data from Stock-
holm Royal Seaport project. Figure. 3.1 shows average hourly power consumption
of apartments occupied with families who are 26-64 years old, in which 4% of the
consumption is devoted to run washing-machine and dryer and 4% for dish-washer,
and the remaining consumption is used for the other appliances. Based on these
information and considering Figure. 3.1, estimated average hourly power consump-
tion of appliances vs other consumptions for the two active apartments is shown in
Figure. 3.2. As it is obvious in these two figures, the average hourly load curve
profile of the studied active apartments is very similar to that of the apartments
monitored in [94]. The only thing to be noticed, is that the total amount of en-
ergy being used in one day in the active apartments is approximately 9.9 kWh on
average, and in comparison with the apartments that were studied in [94] (consum-
ing 12,6 kWh on average) has decreased more than 20%. This reduction in power
consumption is reasonable based on the modern home appliances that are used in
the active apartments. For the simulation purposes in the next chapters of part I,
10000 active apartments with smart appliances and ESS, for the evaluation of DR
programs, have been considered.

Power Consumption of Electric Vehicles

Transportation is another application area of our mathematical framework, which
is the other major contributor to energy use. Transportation increases green house
gas in the atmosphere and is one of the largest fossil fuel users in the world [33].
Thus, electrical vehicles have the potential of reducing fuel consumption and CO2
emission, and optimal scheduling for charging and discharging the batteries in the
electrical vehicles is a key to integrate large numbers of them in the smart grid. By
optimal scheduling, electrical vehicles could function as distributed generation and
energy storage, supply loads, and smooth the unpredictable renewable generation
(e.g. wind and solar energy).
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Figure 3.1: Average hourly power consumption for years 2005-2008 [94].

Figure 3.2: Estimated average hourly power consumption of appliances vs other
consumptions (for March 2013 - January 2014) of two active apartments.

Carbon Pricing

The other relevant application area concerns environmental-related taxes and car-
bon pricing. The global increase in emissions raises the need of designing an effective
set of environmental-related taxes that effectively reduce the global energy-related
CO2 emissions, which should be based on the carbon content of fossil fuels that are
purchased and consumed. In this context, carbon pricing is a central issue. Current
prices put on carbon by means of taxes or emissions trading systems in developed
countries, including Sweden, are generally much lower than those needed to limit the
global average temperature increase. Governments should therefore take measures
to reduce the entire carbon footprint rather than their territorial emissions; namely,
an optimal policy for global pollutants like CO2 must consider the implications of
international trade [53, 32]. Further, since households have generally a relevant
impact on the carbon footprint, changing household consumption patterns is cen-
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tral to achieving sustainable development and incentivize substantial behavioural
adjustments to be successful in the climate change challenge. Considering Sweden
for instance, the majority of the impact on the carbon footprint is caused through
households (76%) [49]. In the current institutional Swedish setting, a low carbon
lifestyle is not sufficiently rewarded. Besides, the biggest portion, 43%, of the total
costs for electricity currently paid by the Swedish consumer are environmental taxes
(i.e., an energy tax and a quota obligation assigned to the electricity end-users for
renewable electricity) and a value added tax; however, these environmental taxes
for households account for other external effects than CO2 emissions, such as noise,
congestion and road wear from traffic [40].

3.3 Numerical Studies

To illustrate the efficiency of the proposed scheduling framework and also the po-
tential future benefits of automation systems in active houses, which are provided
by DR signals, 10000 apartments are considered as a case study. For this case study,
three different scenarios including reference apartments (without automation sys-
tem), test apartment (equipped with automation system), and test apartment with
ESS (equipped with automation system and ESS) have been taken into account
and compared with each other. Throughout the comparison, average hourly power
consumption data from the mentioned two real active apartments (Figure. 3.2) is
used, and is considered as the average hourly power consumption of the reference
apartment. The technical specifications of the smart appliances (dishwasher, wash-
ing machine, and dryer) in the simulations have been extracted from [79]. For each
scenario, the number and types of the smart appliances that are running in one day
in those 10000 apartments, can be calculated from these technical specification,
average hourly power consumption data from the two real active apartments in
the day, and considering the fact that 4% of energy consumption is devoted to the
washing-machine and dryer and 4% for dish-washer. Thus, by having the number
and types of smart appliances, solving the multi-objective optimization (3.18) for
scheduling of appliances yield to average hourly power consumption for the 10000
test apartments. To include ESS in the automation system, one should consider
some limitations (e.g. charging rate and capacity), inefficiencies, and nonlinear re-
lationships between life cycles and depth of discharge. An ESS with the following
specifications is considered for the apartments with ESS

• Storage capacity: 1700 Wh

• Maximum power exchange: 1000 W

• Maximum depth of discharge: 30%

• Stored energy degradation (α): negligible

• Charging and discharging efficiency: 90%

• Maximum charging and discharging cycles: 5 (per day).
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Table 3.1: Bill and CO2 saving in 10000 active apartments (June 2013).

λ 0 0.25 0.5 0.75 1
Saving without using ESS

CO2 (%) -2.88 -0.23 1.05 1.79 1.98
CO2 (kg) -2330 -183 849 1447 1602
bill (%) 2.41 2.16 1.56 0.68 -0.22
bill
(SEK)

19013 17032 12305 5336 -1751

Saving by using ESS
CO2 (%) -5.01 0.37 5.56 7.66 8.02
CO2 (kg) -4057 297 4501 6200 6491
bill (%) 4.94 4.10 2.46 0.70 -1.10
bill
(SEK)

38948 32304 19371 5502 -8669

Solving the multi-objective optimization (3.18) for scheduling of appliances and
ESS (with the mentioned specifications), yields the average hourly power consump-
tion for the 10000 test apartments with ESS. In Figure. 3.3 average hourly power
consumption curves related to smart appliances and ESS, for these three scenarios
of apartments for June 2013, is shown. Note that, to show the differences more
clearly, only the consumption related to the smart appliances and ESSs has beed
illustrated. In addition, the total bill and CO2 savings in these 10000 apartments
for the test apartment and test apartment with ESS are compared in Table 3.1,
in terms of percent and amount of saving. In all the simulations, hourly price
tariffs for June 2013 are downloaded from Nordpool website [2]. In addition, the
SVK website [3] provide us with electricity generation by fuel type data, electricity
import, and electricity export for 2013 and hourly CO2 foot print curves can be
computed based on these data [80]. Average hourly electricity generation by fuel
type data, import and export for June 2013 is shown in Figure. 3.4.

Simulations are all done on a 64bit Windows system with an Intel Core i7-3770,
3.40GHz and 16.0 GB of RAM, in Matlab R2014b. Note that the optimization prob-
lem here is posed as a MILP and solved by CPLEX (using the YALMIP MATLAB
interface), which is a commercial implementation of a branch-and-bound algorithm.

Environmental and Economic Benefits

As it is mentioned in [80], in certain countries like Sweden there sometimes exists a
trade-off between environmental and economic consideration, and for some electric-
ity generation mixes, price and CO2 intensity are negatively correlated. Moreover,
it is shown in [80] that the Swedish CO2 intensity is very sensitive to import of high
carbon intensity power generation. Thus, considering only economic incentives for
shifting load could result in an increased CO2 emission, and this is obvious in the
case under study. Figure 3.3 shows the comparison between the average hourly
energy profiles of smart home appliances and ESS for the reference apartment, test
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Figure 3.3: Average hourly load curves of three type of active apartments in June
2013 for different values of the weight parameter (λ).

apartment, and test apartment with ESS under different attitude of users toward
the electricity bill and CO2 emission (different λ). Comparing Figures 3.3 and 3.4
we may notice that for λ = 0 (considering economic profits only), the load tends to
be shifted to the hours when the ratio of import energy to energy sources such as
hydropower and nuclear power is higher (between 03:00 and 06:00), because Swe-
den imports are relatively inexpensive [77]. This leads to 4.94% bill saving for test
apartments with ESS (Table 3.1) that is more than twice the saving in test apart-
ment without ESS (2.41%). This scenario yields CO2 emission to be increased with
2.88% and 5.01% for test apartments without and with ESS, respectively, which is
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Figure 3.4: Average hourly Swedish Fuel-Type Specific Generation in June 2013.

not environmentally desired. This is due to the use of energy imported during night
from Denmark, Germany and Poland whose primary energy source is combustive
fuel power plants and is CO2 intense (303, 430, and 640 gCO2/kWh respectively),
while clean energy sources such as hydropower and nuclear power have negligible
CO2 intensity (4 and 16 gCO2/kWh respectively) [80].

On the opposite, for λ = 1 (caring about environmental impact only), the
load tends to be distributed within the hours when the ratio of import energy
to clean energy sources such as hydropower and nuclear power is lower (between
07:00 and 22:00). As it is illustrated in Table 3.1, scheduling in test apartment
with ESS yields 8.02% CO2 saving (more than four times of the saving in the test
apartment without ESS), while increasing the electricity expenses by 1.1%, which
is not desired economically. Therefore, for most customers it is most convenient to
care both environmental and economic benefits. Consider, for instance, λ = 0.5 and
the test apartments with ESS: in this case, we can have 5.56% and 2.46% CO2 and
bill saving, respectively, which is desirable both environmentally and economically.

ESS Profitability
To take the cost of ESS into account, and to investigate whether the ESS usage
in the proposed method is profitable or not, life cycles of the deployed ESS is
calculated. In the literature, lead-acid ESS for smart houses are commonly utilized
[50]. In the manufacturers ESS specification data sheet for the lead-acid ESS, the
number of life cycles versus different depth of discharge is given. Further, charging
and discharging efficiencies for lead-acid ESS are generally 85-95%. If we consider
the schedule of smart appliances and ESS in the test apartments in June 2013 (for
example for λ = 0.25), simulation results show that for 10000 apartment in 30
days, ESS will be used 475513 times in total, and the depth of discharge is 21% on
average. Based on the mentioned data sheet, for this percent of depth of discharge,
the number of life cycles is 2600 for an ESS. We can conclude that an ESS would
be economically viable if it costs less than 2500 SEK. However, we remark that the
use of ESS is environmentally beneficial.
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Table 3.2: Bill and CO2 saving in 10000 active apartments, affected by time pref-
erences (June 2013).

λ 0 0.25 0.5 0.75 1
Saving without using ESS

CO2 (%) -1.31 0.71 1.59 1.80 1.84
bill (%) 0.62 0.42 0.14 -0.09 -0.41

Saving by using ESS
CO2 (%) -3.44 1.31 6.10 7.67 8.02
bill (%) 3.15 2.36 1.04 -0.07 -1.39



Chapter 4

Robust Optimal Scheduling of
Smart Appliances and Energy
Storage Systems

In this chapter, we propose a robust approach for scheduling of smart appliances
and ESS in active apartments with the aim of reducing both the electricity bill and
the CO2 emissions.

4.1 Uncertainty Modeling

By running the optimization scheduling algorithm, the automation system will
achieve optimal points of running appliances, but there exists uncertainty in the
user behavior, and they might run the appliances earlier or later. Thus, in the
optimization problem (3.18) that is formulated as a MILP, there exist uncertainties
on the decision variables. Note that in the literature, usually the uncertainties
are assumed to be on coefficients of the inequality constraints [41, 9, 10]. Thus,
the idea here is to map the uncertainty on the decision variable to an equivalent
uncertainty in the weighted sum tariff, which is illustrated in Figure. 4.1. As should
be clear from this figure, deviating from starting times x1 and x2 by at most M
time slots (M∆t), turn into a variability of the tariff by at most ∆y1 and ∆y2,
respectively. The parameter M can be defined based on the empirical model of the
users, by having the historical data related to the uncertainties in their behaviors.
This means deviating from the optimal start time of appliances, would affect the
cost function, and could be equivalently considered as variability of the tariff curve
that depends on the behavior of the curve in the neighbourhood of starting time.
Thus, the variability in the tariff curve is mapped to the uncertainty in weighted
sum tariff Ckλ , and similar to what is done in [41], the uncertain tariff C̃kλ , range in
the interval:

|C̃kλ − Ckλ | ≤ εk|Ckλ |, ∀k. (4.1)

Here, the parameter εk ≥ 0 is an uncertainty level at time k. As it was mentioned,
deviating from the optimal start time of appliances, would affect the cost function

29
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Figure 4.1: Mapping the user behavior uncertainty to tariff uncertainty.

in accordance to the behavior of the tariff curve in the neighbourhood of starting
time. To apply the robust method, εk is defined as

εk =
max(Ckλ ,

k+M∑
i=k−M

Ci
λ

2M+1 )− Ckλ

max(Ckλ ,
k+M∑
i=k−M

Ci
λ

2M+1 )
, ∀k, (4.2)

which is a function of the tariff curve within an interval of ±M∆t minutes in the
neighbourhood of time slot k. Figure. 4.2 shows that the more variation we have
in the tariff curve in the neighborhood of a time slot, the larger the εk we have
for that time slot. The uncertain tariff C̃kλ in (4.1) appears as linear coefficient
in the above inequality constraint and the robust optimization technique which is
described in the following can be applied for that. Here, it is assumed that the
scheduling of the EES is done by the automation system in the active apartments
and only scheduling of the smart appliances is faced with uncertainty. The reason
is that, the automation system recommends users when to run the appliances, but
they can choose to ignore the recommendation and run the appliances earlier or
later, but the EES would be scheduled by the automation system.

Remark 4.1.1. When the exchanged power limitation in (3.16) is low, then customer
scheduling will also affect the ESS scheduling, as they are dependent regarding the
equation (3.15). This is not the case for Sweden, and as the upper limitation in
(3.16) is high enough, the EES will charge when the weighted sum tariff is low, and
discharge when it is high, and is independent of appliances scheduling.
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4.2 Robust Optimal Scheduling

Based on the uncertainty modeling and by defining the uncertain tariff C̃kλ , the
NOM problem in (3.18) can be expressed in a generalized way as

minimize
p,x,s,t,bs,
bc,bd,xc,xd,
ct,dt,pG

m∑
k=1

(
C̃kλ

N∑
i=1

ni∑
j=1

pkij + Ckλ(bkc − bkd)

)

subject to the constraints in (3.18).

(4.3)

By using the worst-case values of the uncertain parameter C̃kλ , the problem in (4.3)
can be written equivalently (e.g., see [41])as

minimize
p,x,s,t,bs,
bc,bd,xc,xd,
ct,dt,pG

m∑
k=1

Ckλ p
k
G +

m∑
k=1

εk Ckλ

(
N∑
i=1

ni∑
j=1

pkij

)

subject to the constraints in (3.18),

(4.4)

which is called robust optimization problem (ROB) here. A concern with this
approach is that it might be conservative, and produces solutions whose objective
function value is much worse than the nominal one. Effectively, by considering
uncertain parameters we provide a robust solution that is feasible in all scenarios
that uncertain parameters variations could be defined. For example, all the possible
tariff curves being located in the gray area in Figure. 4.2are possible scenarios.
However this comes at the cost of a degradation of the objective value, which
could be excessive as some of the uncertain scenarios rarely occur. This increase
in cost over the nominal solution is the so called price of robustness [10]. We then
formulate an optimization problem where the degree of uncertainty can be regulated
by a parameter denoted by Γ. The aim of the proposed approach is to compute
schedules that are insensitive against the variation of at most Γ time slots. By
varying Γ, the level of conservatism of the solution, can be controlled. The authors
in [9, 10] prove that, even when more than Γ elements vary, the robust solution will
be feasible with high probability.

Problem ROB is then modified such that the weighted sum tariff can be uncer-
tain in at most Γ time slots as follow

minimize
p,x,s,t,bs,
bc,bd,xc,xd,
ct,dt,pG,q,z

m∑
k=1

Ckλ p
k
G + z Γ +

m∑
k=1

qk

subject to the constraints in (3.18),

εk Ckλ

(
N∑
i=1

ni∑
j=1

pkij

)
≤ z + qk, ∀k,

0 ≤ qk, ∀k,
0 ≤ z,

(4.5)
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Figure 4.2: εk behavior for different time slot.

which is called flexible robust problem (ROB−Γ). The parameter Γ is also defined
as protection level of the schedule cost against uncertainty in the user behavior. This
parameter can be defined based on the empirical model of the users, by having the
historical data related to the uncertainties in their behaviors.
Remark 4.2.1. In the MILP problem ROB−Γ, by having Γ = 0 the problem turns
to the NOM problem and represents the most optimistic case, and the influence
of user behavior uncertainty on the cost variations is completely ignored. On the
other hand, by having Γ = m, user behavior uncertainty at all time slots will be
considered for possible cost variations, which is the most conservative case (see [9]
and [10]) and the problem is equivalent to the ROB problem.
Remark 4.2.2. The proposed framework can be generally applied to other scenarios
where different sources of uncertainty and different optimization criteria must be
considered. For instance, εk can represent the variation from the day-ahead price
at time slot k in the real-time energy market, while different optimization criteria
can account for the user comfort or the demand peak reduction.

Mathematical Insights into the Robust Formulation
Here we will provide some insights into the robust formulation in (4.5). In par-
ticular, we aim at investigating the effect of the protection level Γ on the robust
schedule.

Model of Cost Uncertainty: As described in [9], we assume that each entry
C̃kλ , k = 1, . . . ,m takes values in

[
Ckλ , C

k
λ + dk

]
, where dk = εkCkλ represents the

variation from the nominal cost coefficient, Ckλ . We allow the possibility to have
dk = 0, since εk can be zero for some k = 1, . . . ,m. We remind that, in this study,
cost variations model the uncertainty in the user behavior.

As in [9], the parameter Γ controls the protection level for the objective function
against cost variations.
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Let K = {k|εk > 0}; Γ is assumed to be integer and takes values in [0, |K|],
where 0 indicates the nominal solution and |K| the most conservative solution.
Generally, Γ represents a tradeoff between the level of conservativeness and the
cost of the robust solution: the higher is Γ, the less sensitive is the solution to cost
variations at the cost of a higher nominal cost.

In the next section, we will investigate more into detail the robust counterpart of
problem (4.4) in order to understand the effect on the robust schedule of increasing
or decreasing the protection level Γ.

In the following, vectors are denoted by bold letters.

Interpreting the Robust Counterpart of the Scheduling Problem: In
the robust approach, the best solution which is feasible for any realization of the
data uncertainty in the given set is computed through the solution of the robust
counterpart optimization problem. In our study, the robust counterpart of the
scheduling problem (3.18) can be written as

minimize
p,x,s,t,bs,
bc,bd,xc,xd,
ct,dt,pG

m∑
k=1

Ckλ p
k
G + β(p,Γ)

subject to the constraints in (3.18),

(4.6)

where β(p,Γ) is the protection function of the objective, ρk :=
N∑
i=1

ni∑
j=1

pkij and

p :=
[
ρ1, . . . , ρm

]′

. To solve the robust counterpart optimization problem, we will
show how to convert the objective function of the problem (4.6) to a linear one by
following the approach in [9] and resorting to the duality.

The protection function equals the objective function of the following linear
optimization problem

β(p,Γ) =maximize
z0

∑
k∈K

dk|ρk|z0k

subject to
∑
k∈K

z0k ≤ Γ,

0 ≤ z0k ≤ 1, ∀k ∈ K.

(4.7)

Notice that ρk is nonnegative in our study, hence |ρk| = ρk; in the following we
will drop the absolute value. Subsequently, we consider the dual problem of (4.7),
which is then the primal.

We recall that in a dual problem a variable is introduced for each constraint in
the primal so that the number of variables in the dual is equal to the number of
constraints in the primal. Then the variable z is associated to the first constraint
of (4.7), which involve the protection level Γ as right-hand side, and a variables qk
is associated to each constraint defining the upper bound on z0k. Notice that the
dual variables z and qk are the ones introduced in problem ROB − Γ.
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Consider then the dual of the problem (4.7)

minimize
z,q

∑
k∈K

qk + Γz

subject to z + qk ≥ dkρk,
0 ≤ z, 0 ≤ qk,∀k ∈ K.

(4.8)

Substituting to problem (4.6), we obtain that problem (4.6) is equivalent to prob-
lem (4.5). We refer the reader to [9] for further details.

We now aim at gaining some insights into the optimal value of the protection
function and how increasing the protection level Γ affects the robust solution. We
start with some definitions and assumptions. Given a vector p∗, let z0

∗ be the
optimal primal solution and (z∗, q∗) the optimal dual solution for problems (4.7)
and (4.8) respectively (under non-degeneracy, the primal and dual optimal solutions
are unique. In case of multiple optima, an unique optimal point can be selected by
the help of appropriate tie-break rules, e.g., the lexicographic order [68]).

Without loss of generality, we assume that the indices are ordered in such that
d1ρ1
∗ ≥ d2ρ2

∗ ≥ · · · ≥ d|K|ρ
|K|
∗ . Further, assume that there are n ≥ 0 time slots

corresponding to the same value of the cost variation due to the uncertainty level,
which we denote by d̄ρ̄. Define the following sets of indices for time steps k ∈ K

Ii := {i, i+ 1, . . . , i+ n},
I1 := {1, 2, . . . , i− 1},
I|K| := {i+ n+ 1, . . . , |K|},

with |I1| ≤ Γ. Notice that the set I1 contains the time steps k with the highest
values of dkρk∗, while the set Ii is the set of time steps with the same value of the
cost variation, defined above as d̄ρ̄.

We will now compute the optimal values of the primal variables in z0
∗ and the

dual variables in (z∗, q∗).
Notice that the dual variable z measures how the primal objective function will

change if the Γ increases. If increasing Γ the value of the objective function changes,
the corresponding dual, z, is positive. On the other hand, if when the primal
problem is solved, the constraint with Γ is not active, this means that increasing
Γ is not going to improve the objective function; hence z = 0. If z > 0, increasing
Γ would be beneficial; this means that the corresponding constraint should be
active at optimality. This relationship between dual variables and constraints in
the primal must satisfy the complementary conditions, which mathematically state
what has been explained above. At optimality, the complementary conditions must
hold ∀k ∈ K

1. z0k
∗ (z∗ + qk∗ − dkρk∗) = 0

2. z∗ (Γ−
∑
k∈K

z0k
∗ ) = 0

3. qk∗ (1− z0k
∗ ) = 0.
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Consider the case when n > 1. From the complementary conditions we can
derive the optimal solution of the primal and dual problems (4.7) and (4.8)

qk∗ ≥ 0, z∗ = dkρk∗ − qk∗ , ∀k ∈ I1,
qk∗ = 0, z∗ = d̄ρ̄, ∀k ∈ Ii,
qk∗ = 0, z∗ ≥ dkρk∗, ∀k ∈ I|K|,
z0k
∗ = 1, ∀k ∈ I1,
z0k
∗ ∈ (0, 1), ∀k ∈ Ii,
z0k
∗ = 0, ∀k ∈ I|K|.

Notice that, if n = |Ii| > 0 there will be multiple optimal solutions, since any
combination such that

∑
k∈Ii z

0k = Γ−|I1| is an optimal solution of problem (4.6),
corresponding to the same value of the objective function.

The optimal values of z∗ and qk∗ are then

z∗ = d̄p̄,
qk∗ = dkρk∗ − z∗, ∀k ∈ I1.

If n ≤ 1, at optimality there are clearly not time steps such that z0k
∗ ∈ (0, 1). This

means that we need only two sets of indices: i) I1 := {1, 2, . . . ,Γ}, containing Γ time
steps k with the highest values of dkρk∗; ii) I|K| := {Γ + 1, . . . , |K|}. In this case,
z∗ = maxk∈I|K| d

kρk∗. Summarizing, at optimality, given the optimal appliances
power assignment p∗, the optimal value of the protection function in (4.4) is

β(p∗,Γ) = (Γ− |I1|)z∗ +
∑
k∈I1

dkρk∗, (4.9)

where z∗ = maxk∈I|K|∪Ii d
kρk∗ and |I1| being the cardinality of set I1. From the

discussion above and, in particular from (4.9), we can draw some conclusions about
the effect of changing the protection level Γ on the robust solution

• as Γ grows, z∗ decreases and
∑
k∈I1

qk∗ increases, since the number of time
steps with qk∗ > 0, i.e. |I1|, become larger. This means that the robust
optimal solution is affected more and more by the uncertain cost profile C̃kλ
and less by the nominal cost profile Ckλ , ∀k ∈ K. Then, the power assignment
is generally shifted from time steps k with the lowest values of Ckλ to time
steps with lower values of C̃kλ , mainly where variations are small or zero,
despite the nominal tariff Ckλ is higher;

• when the protection level Γ is small, the solution is less robust against cost
variations. This entails that the optimal value of z is strictly positive and
it can be used to assign power to time steps with low nominal tariffs and
still high values of cost variations. When Γ increases, the optimal solution of
problem (4.8) is required to be less and less sensitive to cost variations: hence,
a larger number of qk∗ are to be strictly positive and a larger amount of power
is assigned to time steps with small or zero variations. It can be interesting



36
CHAPTER 4. ROBUST OPTIMAL SCHEDULING OF SMART APPLIANCES

AND ENERGY STORAGE SYSTEMS

to notice that, in cases when C̃kλ and Ckλ have similar profiles ∀k ∈ K, the
nominal and the robust schedules get closer as Γ grows. In this cases, having
a high protection level does not bring any benefit;

• if Γ is larger than the number of time steps k when dkρk∗ > 0, z∗ = 0 and
the set I1 collects all the time steps k such that dkρk∗ > 0. In this case, the
robust solution of problem (4.5) does not depend on Γ and stays constant as
Γ grows;

• for a certain value of Γ, the constraint with Γ in (4.7) is not active and
then z = 0. This occurs when a protection is required for a number of time
slots larger than the number of time slots when it is convenient to have a
positive cost variation, which entails that it is convenient to buy or sell energy
from/to the grid despite a positive uncertainty level. Since the constraints on
the overall energy requirements, the power limits and the process times do
not depend on Γ and stay the same both in the nominal and in the robust
formulations, the number of time slots with a positive cost variation associated
to the optimal nominal power schedule can provide a rough estimation of this
value of Γ. Increasing Γ further will not change the solution of the robust
optimization problem ROB − Γ.

4.3 Numerical Studies

In this section, effectiveness of the proposed robust approach, in the presence of
user behavior uncertainty, is shown by the simulation. In the simulations, user
time preferences are considered to be uncertain, which means for each appliance
the starting time, and consequently finishing time, are supposed to vary within an
interval of ±M∆t = ±120 minutes from their nominal value. Then we apply both
the nominal and the robust approaches and we compare the computed schedules
in terms of costs and sensitivity to variations of the time preferences from their
nominal values. The nominal schedule is computed by solving the problem ROB−Γ
with Γ = 0. The robust scheduling problem is solved with different choices of the
parameter Γ in order to find the best schedule accounting for an uncertain user
behavior with a reasonably small increase in cost compared to the nominal schedule.

In the simulations, the technical specifications of the smart appliances (dish-
washer, washing machine, and dryer), hourly price tariffs and CO2 foot print for
June 2013, and ESS specifications are the same as the ones in Section 3.3.

To generate scenarios for simulating user behavior uncertainties in the proposed
robust approach, a sampling method can be used, in which the starting time of
the first energy phase of each appliance (tki1) is considered as a variable or control
input, that is allowed to vary within an interval of t∗i1 ± M∆t. Here, the t∗i1 is
the optimum starting time for the first energy phase of ith appliance scheduled
by ROB − Γ approach. The most common sampling method is indisputably the
pure Monte Carlo, mainly because of its simplicity [23]. However, as the number
of samples are limited because of the computational time, this method is known to
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have poor space filling properties, and leaving large un-sampled regions. Here, the
Latin hypercube sampling (LHS) method [48] which is an extension of stratified
sampling is utilized to generate the scenarios. The LHS method ensures that each
of the input variables has all of its range represented, and partition it into the
equally probable intervals. In this method, a LHS of size Y (number of partitions
for each input, which is the number of time slots within the interval of t∗i1 ±M∆t,
that is equal to 2M + 1) with W number of inputs (each input is the start time
of one of the appliances in this work, and by having three appliances, the number
of inputs is three here), is obtained from a random selection of Y values (one per
stratum) for each input. Thus we achieve W Y -tuples that form the W columns
of the Y xW matrix of scenarios generated by LHS, that means the ith row of this
matrix contains one of the partition for each input variable and will correspond to
the ith scenario [29].

Sensitivity Analysis of Robust Approach

By solving the problem ROB − Γ, the sensitivity of the solution (e.g., minimum
electricity bill) with respect to the user behavior uncertainty (different M∆t) and
degree of robustness Γ is investigated here. The simulation results for the optimal
electricity bill (here λ = 0) on 14th of June 2013 in Sweden is depicted in Figure. 4.3.
The figure shows that the robust schedules outperform the nominal schedule, i.e.
the one corresponding to Γ = 0 in terms of costs in the presence of user uncertainty.
In particular, the best uncertain cost could be achieved when Γ = 18 and having
a value of Γ > 18 does not bring any benefit in terms of costs; this is because the
variable z in (4.5) is zero when Γ = 18, which implies that increasing the protection
level does not change the solution. In the simulations, time slot interval ∆t = 10
minutes has been considered.

Remark 4.3.1. Here, for the sensitivity analysis, different values ofM have been dis-
cussed. One should notice that in the future, and by having historical data related
to the user behavior uncertainties, it would be possible to determine the related M
for each user and subsequently defining uncertainty level εk more precisely.

In the other simulation, effect of degree of robustness Γ on shifting the loads
has been studied. In Figure. 4.4, scheduling of appliances by applying ROB − Γ
approach with Γ = 0 and Γ = 18, forM = 12, is depicted in Figure. 4.4. In addition,
day-ahead tariff, uncertain tariff and also uncertainty level εk are shown in that
figure. As it is shown in this figure, by changing the degree of robustness from Γ = 0
to Γ = 18, the scheduled dryer has been shifted from the evening to the morning to
avoid the possible occurrence (in the presence of user behavior uncertainty) with the
high price of electricity between 22:00 and 23:00. The number of binary variables,
continuous variables and constraints (which are the most important indicators in
MILP problem), in the ROB − Γ (Γ = 18) problem, are 6624, 3027, and 22461,
respectively. It takes 1.57 seconds to solve this problem by CPLEX in Matlab
R2014b.
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the possible occurrence with the high price of electricity between 22:00 and 23:00,
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Impact of DR Signals on the Electricity Bill and CO2 Saving in
the Robust Approach
Here, by considering the both CO2 intensity and electricity tariff signals, the effect
of robust scheduling on bill and CO2 emission savings in the automated apartment
equipped with ESS is investigated. Taking into account the impact of user time
preferences on the load shift, the scheduling of appliances have been computed for
time preferences between 08:00 and 24:00 hours. Note that this time interval has
been chosen based on Figure. 3.2, which shows that families in active apartments are
more interested to run their household appliances within this period. In Figure. 4.5,
impact of ROB − Γ approach on bill and CO2 savings for 10000 apartments (with
user behavior uncertainty consideration) in June 2013 is investigated. In this figure,
savings for three different scenarios have been studied: 1) the scenario with the
non-robust approach, in which there exists uncertainty and the NOM approach
has been applied, 2) the scenario with the robust approach, in which there exists
uncertainty and the ROB − Γ approach has been applied, and 3) the performance
bound scenario, in which there is no uncertainty on user behavior and the NOM
approach has been applied. Despite of having relatively small variability in the
electricity tariff and CO2 foot-print signals (low uncertainty level) in June 2013,
the simulation results show, that the proposed robust scheduling algorithm increases
the savings on CO2 emissions and the electricity bill in the presence of user behavior
uncertainty.

As it is shown in this figure, there exists a tradeoff between electricity costs
and CO2 emission in certain countries including Sweden. This means, the more
caring about the electricity price, the more CO2 emission is produced. Thus, the
automation system will provide the users with the cost of electricity and CO2
emission for different choice of λ (e.g., for λ = 0, 0.25, 0.5, 0.75, 1), and they can
decide which one is of their interest. For example, by choosing λ in the middle
range (e.g., for λ = 0.25, 0.5 in Figure. 4.5) for the case under study, users will have
both bill and CO2 emission savings. By choosing λ ≥ 0.75 (or λ ≤ 0.25), despite
the CO2 (or bill) saving, electricity cost (or CO2 emission) increases.

Simulations are all done on a 64bit Windows system with an Intel Core i7-3770,
3.40GHz and 16.0 GB of RAM, in Matlab R2014b. The computation times for
different simulation show that the computational time difference for solving the
NOM problem and ROB−Γ problem (for the same number of appliances with the
same characteristics, and same user input) is negligible.
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Chapter 5

Distributed Scheduling of Smart
Appliances and Energy Storage
Systems

In this chapter, a novel distributed optimization algorithm is proposed for schedul-
ing of smart appliances in residential areas sharing an ESS. Here, the detailed
modeling of loads and ESS is done and the state of health of the ESS is taken into
account. In addition, there is no unrealistic assumption in the algorithm and it is
directly implementable in the real world.

5.1 System Layout

As depicted in Figure 5.1, we consider a small-scale community here, which can
range from the apartments in one building to a small district of a city. Each apart-
ment is equipped with a Home Energy Management System (HEMS), which is re-
sponsible for locally operating end-user smart appliances. Each HEMS is connected
to the aggregator entity via a communication network, which aims at coordinating
the apartments, scheduling the ESS and managing the interaction with the distri-
bution grid. The overall system has one single point of common coupling (PCC)
with the distribution grid. The apartments are independent from each other and
coupled only through the shared ESS and the PCC’s power limits. In this structure,
the aggregator coordinates the apartments through energy shift request signals. In
this negotiation, the aggregator provides economical incentives to home users to
modify their energy pattern.

5.2 Distributed Scheduling Algorithm

Here we describe the distributed algorithm for the energy management of the sys-
tem under consideration. The algorithm comprises an initialization step, and the
definition of MILP problems at the apartment and aggregator levels.

41
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Figure 5.1: Schematic of interconnected apartments and aggregator.

Parameters and Variables: Table 5.1 reports all the other parameters and
variables defined in the algorithm.

Table 5.1: Parameters and variables involved in the algorithm

l iteration number within current time step
N number of apartments/single-family houses
Na number of appliances of apartment a
pG,l total exchanged power with the grid at iteration l
pija,l power feeding into the apartment a (for appliance i and energy phase j)

at iteration l
β penalty on the unsatisfied share of energy shift required by the Aggre-

gator
γ reward on the redistributed part of unsatisfied energy shift
p
G
, pG lower and upper bounds on the power exchanged with the grid

pT,l profile of aggregated energy demand at iteration l by all the apartments
ET total energy requirements by all the apartments during whole the day
GT,l total profit due to the ESS at iteration l

at the end of the horizon
Ga,l profit per apartment at iteration l
∆pl energy shift required by the Aggregator at iteration l
δpa,l accepted energy shift by apartment a at iteration l
p̃a,l unsatisfied share of energy shift by apartment a at iteration l
δp+a,l, δp−a,l redistributed energy shift by apartment a at iteration l

("+" for energy increase and "-" for energy decrease)

Assumption 5.2.1. In this chapter the main focus is on the distributed algorithm
and we do not consider uncertainties in the optimization problem.
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Remark 5.2.1. The proposed framework here can be generally applied to the scenar-
ios where different sources of uncertainty and different optimization criteria must
be considered. For instance, by adding the augmented term (see the robust opti-
mization problem ROB in (4.4)) to the cost function of optimization problems at
the apartment level, we can simply generalize the distributed algorithm to a robust
distributed algorithm.

Algorithm Initialization
For the initial iteration of the algorithm, the following problem is solved for each
apartment (∀a = 1, . . . , N):

min
T∑
k=1

ck

(
Na∑
i=1

ni∑
j=1

pkija,0

)
s.t. constraints (3.1)− (3.9).

(5.1)

The aggregated demand profile, resulting from solving the optimization problem (5.1)
for each apartment, represents the solution of the centralized problem (3.18) with-
out including ESS. This means, without considering shared ESS, the problem of
scheduling smart appliances for aggregated apartments is fully separable.
Remark 5.2.2. Sum of the optimal costs for all the apartment, without consid-
ering ESS, is an upper bound on the optimal solution of the centralized prob-
lem (3.18) with a shared ESS for all the apartments. This sum is computed as

GT,0 =
T∑
k=1

Ckλ

(
N∑
a=1

Na∑
i=1

ni∑
j=1

pkija,0

)
.

To initialize the aggregator, the following problem is solved:

min
∑
k C

k
λp

k
G,0

s.t. constraints (3.14)− (3.17)
pkG,0 + bkc − bkd = pkG,0
pk
G
≤ pkG,0 ≤ pkG

T∑
k=1

pkG,0 = ET .

(5.2)

Note that the aggregated energy profile computed through Problem (5.2) is the
best possible profile since it accounts only the total energy ET required to run all
the appliances in the network of apartments, without considering user preferences
and technical constraints on the energy assignment.
Remark 5.2.3. The optimal cost of Problem (5.2) is a lower bound on the optimal
cost of the problem (3.18) with a shared ESS and by considering user preferences
and technical constraints on the energy assignment.

Once all the apartment solve the corresponding Problem (5.1), they send the
computed optimal energy profile to the aggregator, which calculates the difference
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between the aggregated energy profiles obtained at the apartment and desired pro-
file at the aggregator level (pkG,0) as follows:

∆pk0 = pkG,0 −

 N∑
a=1

Na∑
i=1

ni∑
j=1

pkija,0

 .

This difference is sent to the apartments as shift request signal ∆pk0 and the algo-
rithm proceeds according the steps described in Algorithm 5.1.

Before describing the iterations of the proposed distributed algorithm, we for-
mulate the problems to be solved at apartment and aggregator levels, to be done
after initialization.

Problem at Apartment Level

The problem at apartment level a at iteration l is formulated as follows:

min
T∑
k=1

Ckλ

(
Na∑
i=1

ni∑
j=1

pkija,l + βp̃ka,l

)
s.t. constraints (3.1)− (3.9)

ni∑
j=1

pkij,l =
ni∑
j=1

pkij,l−1 + δpka,l

|∆p
k
l

N | − p̃
k
a,l ≤ |δpka,l| ≤ |

∆pkl
N |

(5.3)

where the decision variable δpka,l models the differences in the energy profile between
two consecutive iterations. The variable δpka,l has the same sign of ∆pkl , which is
the energy shift request signal sent by the aggregator at iteration l. Notice that
the unmet share of the energy shift p̃ka,l, which is requested by the aggregator at
time slot k, is penalized in the objective function with a factor greater than energy
prices by at least 2 order of magnitude. Unmet energy shift can be needed mainly
to avoid constraint violation in Problem (5.3).

Problem at Aggregator Level

The problem at aggregator level at iteration l is formulated as follows:

min
∑
k C

k
λp

k
G,l

s.t. constraints (3.14)− (3.17)
pkT,l + bkc − bkd = pkG,l

pkT,l =
N∑
a=1

Na∑
i=1

ni∑
j=1

pkija,l

pk
G
≤ pkG,l ≤ pkG.

(5.4)
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The shift request signal at iteration l is computed as follows:

∆pkl = pkG,0 −

 N∑
a=1

Na∑
i=1

ni∑
j=1

pkija,l



Computation of Cost Benefits Due to ESS: The overall profit at the end of
the scheduling horizon at each iteration l is: GT,l = GT,0 −

∑
k C

k
λp

k
G,l. The cost

benefits are equally shared among the apartments, however a penalty is assigned to
the unmet energy shift requested by the aggregator. The profit at apartment level
a at iteration l is then computed as: Ga,l = max(GT,lN −

∑
k C

k
λ p̃

k
a,l, 0).

Steps of the Distributed Algorithm The steps of the proposed algorithm are
detailed in 5.1.

Algorithm 5.1 Distributed algorithm
1: Initialization and computation of ∆pk0 , ∀k
2: for l = 1, 2, . . . ,MaxIteration do
3: each apartment solves Problem (5.3)
4: each apartment sends to aggregator the computed power profiles
5: aggregator solves Problem (5.4)
6: aggregator computes GT,l
7: each apartment a computes Ga,l
8: if Ga,l < Ga,l−1, apartment a accepts the energy profile, otherwise pkija,l =
pkija,l−1, ∀i, j, k

9: if all apartments accept, stop, otherwise compute ∆pkl and repeat
10: end for

Redistribution Strategy

An improvement in the solution obtained by Algorithm 5.1 at each iteration can
be achieved by trying to redistribute the unmet energy shift request from the Ag-
gregator among the apartments. Hence, the profiles of the total positive and nega-

tive unmet energy per time slot are computed respectively as p̃k+,l =
N∑
a=1

p̃k+a,l and

p̃k−,l =
N∑
a=1

p̃k−a,l. An additional step is to be included in Algorithm 5.1 between step

3 and 4. The redistribution is achieved by solving the following problem starting
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from the apartment level 1:

min
T∑
k=1

Ckλ

(
Na∑
i=1

ni∑
j=1

pkija,l − γ(δpk+a,l + δpk−a,l)
)

s.t. constraints (3.1)− (3.9)
ni∑
j=1

pkija,l =
ni∑
j=1

p̄kija,l + δpk+a,l − δpk−a,l
0 ≤ δpk+a,l ≤ p̃k+,l
0 ≤ δpk−a,l ≤ p̃k−,l.

(5.5)

where
ni∑
j=1

p̄kija,l is the energy per time slot computed at iteration l at step 3. The

total unmet energy per time slot is then updated by subtracting δpk+a,l and δpk−a,l
from p̃k+,l and p̃k−,l respectively. Problem (5.5) is solved then for the next apartments
until either there is still unmet energy shift or all the apartments have been asked
for redistribution.

Properties of Distributed Algorithm
Algorithm 5.1 has the following desirable properties:

• Feasibility of the solution: at the initialization step, bounds on the op-
timal value of Problem (3.18) are computed. Clearly, the optimal schedules
computed at the initialization step are not feasible solutions of the centralized
problem. After the initialization, during each iteration of Algorithm 5.1, fea-
sible solutions are obtained: this is guaranteed by the procedure defined by
the algorithm. Effectively, during a generic iteration, the energy profiles sent
by the apartments and included in (5.4) as given aggregated load satisfying all
the appliances constraints and user preferences, as defined by Problem (5.3);
on the other hand, the ESS schedule computed by solving (5.4) fulfills all
the technical and operational constraints concerning the ESS and the interac-
tion with the distribution grid. Every time the energy profiles at apartment
level are computed based on energy shift requests from the aggregator, an
updated ESS schedule is computed based on the resulting aggregated energy
profile. By doing so, the solution computed at each iteration satisfies all the
constraints formulated in the centralized problem (3.18);

• Suboptimality of the solution: as mentioned above, at the initialization
step a lower and an upper bound on the optimal value of Problem (3.18) are
computed. Subsequently, at each iteration of Algorithm 5.1, the solution steps
towards the optimal solution of the centralized problem. This is ensured by
two aspects of the procedure: i) an apartment accepts an update on it energy
use profile only if its local objective function, which includes also ESS-related
benefits, decreases; ii) the ESS schedule has to account for the energy profiles
computed at the apartment level, which certainly leads to a value of the
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objective function at the aggregator level greater than the one computed at
the initialization step. However, the algorithm provides a suboptimal solution
since there are no guarantees that the optimal solution is reached when the
algorithm terminates;

• Fair allocation of profits: the ESS-related profits at the end of the schedul-
ing horizon are equally divided among the apartments, so are the energy shift
requests. Further, an incentive mechanism is considered: users are penalized
for the unmet energy shift request and rewarded for taking on a share of
the total unmet energy shift requested by the aggregator. We will include
a mathematical proof of this third property in an extended version of this
study.

Remark 5.2.4. Infeasibility can occur at aggregator level during a generic iteration.
This can be prevented by modifying Problem (5.4) and replacing the constraint on
pkT,l with the following constraint:

pka,l −∆pkl ≤ pkT,l ≤ pka,l + ∆pkl ,

where pka,l =
N∑
a=1

Na∑
i=1

ni∑
j=1

pkija,l and ∆pkl is opportunely weighted in the objective

function.

5.3 Motivational Example and Preliminary Results

The centralized scheduling problem for a network of apartments, which are shar-
ing an ESS, is formulated in the (3.18). From (3.18), one may notice that pkG
is simply the power consumption of the apartments plus power exchange (charg-
ing/discharging) whit the ESS. The point is that, the pkG is often tightly limited
within upper and lower limits, to protect the network from overload. In this prob-
lem, aggregators goal is to minimize the electricity consumption cost for whole the
system, and in the most optimistic case the smart appliances in the apartments
will be scheduled (while satisfying their constraints) when the price of electricity is
minimum. Also, ESS will charge when the price is low and discharge when the price
is high, to make the most possible profit out of the grid. This optimistic case will
result in the optimal solution for the problem as far as the pkG is within the power
limitation bound for all the times during the day, and in this case we can say that
scheduling of appliances in the apartments is decoupled from the ESS scheduling.
This is not always the case, and by scheduling of the smart appliances and charging
of the ESS to be happened at the same time (when the price of electricity is low),
the pkG violates the power limitations at some points during the day. In this case,
the overload should be shifted to the other times by the aggregator, in which either
users should change their desired scheduling or the ESS scheduling should change.
In this sense, smart appliances and ESS scheduling are coupled with each other and
the optimization algorithm in the aggregator level should find an optimal solution,
by joint scheduling of smart appliances and ESS.



48
CHAPTER 5. DISTRIBUTED SCHEDULING OF SMART APPLIANCES

AND ENERGY STORAGE SYSTEMS

0 5 10 15 20
0

1

2
x 10−3 Electricity price

U
SD

/(k
W

h)

0 5 10 15 20
0

1

2
x 10−3 Electricity price

0 5 10 15 20

0

5

10

E
ne

rg
y 

(k
W

h) SHAs consumption of A
SHAs consumption of B

0 5 10 15 20

0

5

10

E
ne

rg
y 

(k
W

h) ESS scheduling

0 5 10 15 20

0

5

10

E
ne

rg
y 

(k
W

h)

hour

Exchange power at PCC

0 5 10 15 20

0

5

10
SHAs consumption of A
SHAs consumption of B

0 5 10 15 20

0

5

10
ESS scheduling

0 5 10 15 20

0

5

10

hour

Exchange power at PCC

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.2: Scheduling of appliances (in the apartments A and B) and the shared
ESS in two different cases, i) the boundaries on power exchange with the grid at
PCC are not limiting (in the left side), and ii) the power exchange at PCC is more
limited (in the right side).

Motivational Example In this example, apartments A and B (number of ap-
atments in Figure 5.1 is two) share an ESS, and whole the system is connected
to the grid at PCC. The scheduling of the shared storage, and also appliances in
these apartments are shown in Figure 5.2, for two different cases,i) the boundaries
on power exchange with the grid at PCC are not limiting (in the left side of the
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figure), and ii) the power exchange at PCC is limited in a narrow bound (in the
right side).

As it is shown in the left side of this figure, by having an upper limitation on
the pkG to be high enough (in this case 10kW), the scheduling of smart appliances
in the both apartments A and B and also ESS charging will be scheduled when the
electricity price has the lowest value (between 3:00 and 5:00 am). Therefore, in this
case the ESS charging and the smart appliances can be scheduled in a decoupled
fashion, and the maximum total power exchange (9kW between 3:00 and 5:00 am)
will not violate the power limitation. smart appliances and ESS scheduling, and the
total power consumption are illustrated in the parts (b), (c), and (d),respectively.

On the other hand, in the case that the power exchange limitation (6kW) is
lower enough, aggregator cannot keep the same scheduling for smart appliance and
ESS, otherwise a deviation from power limitation will happen at PCC (between 3:00
and 5:00 am). In this case, aggregator should manage for overload shifting from
3:00-5:00 am to another times of the day, either through negotiation with the apart-
ments to shift their smart appliances and incentivise them with monetary profit,
or by re-scheduling the ESS charging/discharging. In the first solution scenario,
shifting the smart appliances consumption from the lowest price time period (3:00-
5:00 am) to the other low price period (16:00-21:00), will cause a small increase in
electricity bill. This is because of the small difference between the electricity price
in these two period. In the second solution scenario, if the ESS-charging happens to
shift from 3:00-5:00 am time duration, it will not be able to discharge in 5:00-7:00
am, and will cause a big effect on profit making. Thats because of the difference
between the electricity price in these two period, which is noticeable. Thus, the
first solution scenario for this coupled case is more money affordable, and parts (f)
and (g) of the figure show the proper scheduling of the smart appliances and ESS.
This scenario causes no violation from the power limitation (see parts (h)). There-
fore, it is necessary for aggregator to apply an optimal operation strategy, through
coordinating with apartments, to schedule the smart appliances and the ESS, and
deal with the coupling cases. In addition, by applying a centralized approach, the
calculation time would not be reasonable when the number of apartments increases.
Therefore, essence of having a distributed scheduling approach is obvious.

Preliminary RSesults In order to evaluate the proposed distributed framework,
we present preliminary results obtained by applying the Algorithm 5.1 to coordi-
nate four active apartments, each of them equipped with 3 smart appliances: a
dishwasher, a washing machine and a dryer. In the simulations, the technical spec-
ifications of the smart appliances (dishwasher, washing machine, and dryer) are
the same as the ones in Section 3.3. We consider a piecewise constant electricity
tariff signal extracted from Nordpool website. The shared ESS has the following
technical features:

• Storage capacity: 20000Wh

• Maximum power exchange: 8000W



50
CHAPTER 5. DISTRIBUTED SCHEDULING OF SMART APPLIANCES

AND ENERGY STORAGE SYSTEMS

0 5 10 15 20
0

2

4 x 10−4 Electricity price

U
SD

/(k
W

h)

0 5 10 15 20 25
−5000

0

5000
T

ot
al

 c
on

su
m

pt
io

n 
(W

h)

Centralized
Distributed (l=1)
Distributed (l=6)

0 5 10 15 20 25
0

5000

SH
A

s c
on

su
m

pt
io

n 
(W

h) Centralized
Distributed (l=1)
Distributed (l=6)

0 5 10 15 20 25
−5000

0

5000

St
or

ag
e 

sc
he

du
le

 (W
h)

hour

Centralized
Distributed (l=1)
Distributed (l=6)

Figure 5.3: Comparison between the optimal solution of the centralized prob-
lem (3.18) and the solution computed by Algorithm 5.1 at iterations 1 and 6 (the
last iteration).

• Maximum depth of discharge: 30%

• Stored energy degradation (α): negligible

• Charging and discharging efficiency: 90%

• Maximum charging and discharging cycles: 5 (per day).

We then do a comparison between the centralized scheduling of smart appliances
and ESS by solving Problem (3.18) with the distributed scheduling by applying
Algorithm 5.1. Figure 5.3 depicts the comparison between the solution computed
by solving the centralized problem and the solutions obtained by the proposed dis-
tributed algorithm at iteration 1 and 6, which is the last iteration in this particular
case study. We can notice that, as Algorithm 5.1 (the distributed approach) is iter-
ated, the solutions get closer to the optimal one (the solution resulting from solving
the centralized problem). The total electricity cost of the optimal solution is 1.200
USD while the electricity cost resulting from the final iteration of Algorithm 5.1 is
1.215 USD, hence only 1.3% higher. On the other hand, the computational time of
the centralized problem (3.18) was 745 sec while the proposed distributed algorithm
computes the solution in 7.29 sec, hence the computational time has decreased by
two orders of magnitude.
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Note that in the simulation results here, the optimal electricity bill has been
discussed and the weighting parameter λ = 0 has been considered. In addition,
simulations are all done on a 64bit Windows system with an Intel Core i7-3770,
3.40GHz and 16.0 GB of RAM, in Matlab R2014b.





Chapter 6

Conclusion and Future Work

This chapter concludes Part I of this thesis in which a novel robust optimal schedul-
ing formulation is proposed for scheduling of smart appliances and ESS in residential
areas.

In Chapter 3 a multi-objective Mixed Integer Linear Programming (MILP),
which aims to decrease the CO2 emissions and the electricity bill is studied.

A robust formulation for the optimal scheduling, which consider the user behav-
ior uncertainty, is proposed in Chapter 4. In this formulation the optimal appliances
schedule is less sensitive to unpredictable changes in user preferences. The user be-
havior uncertainty is modeled as uncertainty in the cost function coefficients. We
point out that the proposed scheduling framework is applicable to scenarios with
various uncertainty sources, storage technologies, generic programmable electrical
loads, as well as different optimization criteria. Due to the high cost of ESSs and
computational burden for scheduling of large number of appliances, it could be
convenient to consumers to deploy and share ESSs in a cooperative manner. Thus,
in Chapter 5 we propose an iterative distributed approach to solve the problem of
coordinating the set of smart appliances located in a network of apartments shar-
ing an ESS, such that each household can profit from the use of the ESS while
technical and operational constraints, as well as user preferences, are satisfied. The
problem of coordinating the shared resources among the consumers is complicated
by a fairness requirement, i.e., storage will equally benefit consumers according
to their flexible loads. The novel distributed scheduling algorithm has the follow-
ing properties i) provides a feasible solution to the centralized scheduling problem;
ii) allocates fairly ESS-related profits among the users; iii) requires limited mes-
sages to be exchanged between each consumer and the aggregator, and no message
passing among the consumers, to keep consumers’ privacy, and (iii) is suitable for
online optimization-based control scheme, such as MPC. Several numerical studies
based on real energy consumption data from active apartments have been done in
Part I. In some of these numerical studies, we investigate the impact of DR policies
on electricity price and CO2 savings in the presence of user behavior uncertain-
ties. Some other numerical studies are performed to illustrate the effectiveness of

53



54 CHAPTER 6. CONCLUSION AND FUTURE WORK

the distributed algorithm. It has been shown in these studies that the computed
solution by the distributed algorithm is close to the optimal one computed by a
centralized problem.

Many interesting open questions remain in the area of demand response that
can be considered for future works. As an example, it was discussed in Chapter 3
that only 8% of the power consumption of the active apartments is devoted to the
smart appliances, while almost 50% of it is related to the lightning, heating and
cold appliances. Thus, by taking these consumptions into account in automated
systems, the bill and CO2 savings could be significantly increased. Note that this
study is based on a day-ahead electricity tariff, while one can investigate the prob-
lem considering real-time electricity tariff. Moreover, there are other uncertainties
that could be taken into account in Chapter 4, such as real-time tariff uncertainty
because of huge load shifting by using automation system in a large number of
apartments. This uncertainty could be taken into account, and interpreted as the
level of uncertainties (εk). In addition, in that chapter, degree of conservatism Γ
has been introduced, but no systematic approach has been proposed to tune this
parameter. One could find a tuning method for it, based on the user behavior his-
torical data. In Chapter 5, some of the proposed distributed algorithm’s properties
such as feasibility and sub-optimality of the solution, and fair allocation of profit
have been investigated. It would be interesting to study the other properties such
as convergence rate of the proposed iterative distributed algorithm.



Part II

Resilient Control for Energy
Management Systems

55





Chapter 1

Introduction

To monitor and control physical/chemical processes, industrial control systems
(ICSs) play an important role in daily life. ICS is a general term that encompasses
several types of control systems used in industrial production, including supervi-
sory control and data acquisition (SCADA) systems, distributed control systems
(DCS), and other smaller control system configurations such as programmable logic
controllers (PLC) often found in the industrial sectors and critical infrastructures.
ICSs are commonly seen in many critical infrastructures such as electricity gener-
ation, transmission and distribution, water treatment, manufacturing, etc [93]. In
electricity distribution grid, automatic control of electrical/thermal components in
buildings has become a necessary task for ICSs in order to achieve optimal per-
formance. An ICS is called an energy management system (EMS) when it comes
to the automatic control of electrical/thermal components in buildings. The aim
of a modern EMS is to enhance the functionality of interactive control strategies
leading towards energy efficiency and a more user friendly environment. By con-
nection of the EMS to the building communication network, the possibility of EMS
cyber-attack increases. The StuxNet cyber-attack supposedly targeting a nuclear-
enrichment plant (by corrupting the measurements and actuator signals) in Iran,
see [20], and BlackEnergy malware targeting several electricity distribution com-
panies in Ukraine, see [4], are concrete examples of cyber-attacks. In addiion, as
discussed in [83], attacks on the measurement signals may lead to a poor system
performance, or may even cause instability. Thus, it is crucial to make the control
of EMS to be resilient against cyber crime.

1.1 Main Contributions

The main contributions of Part II are twofold. As the first contribution, we identify
potential vulnerabilities in the interface between the physical and the IT infrastruc-
tures of distribution power system. These vulnerabilities may lead to an abnormal
operation of the distribution network. In particular, relevant attack scenarios are
introduced, together with their threat models, based on which impact analysis are
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performed. The attack scenarios consider cyber adversaries that may corrupt a
few measurements and reference signals, which may degrade the system’s relia-
bility and even destabilize the voltage magnitudes. For example, we show that
a cyber adversary, without having substantial model knowledge, may destabilize
the power system by merely redirecting measurements communicated through the
communication network. This contribution has been published in [83].

As the second contribution, a practical cyber-secure framework for networked
control systems is proposed. This framework, includes security information ana-
lytics to detect attacks, and a resilient policy to improve the performance of the
system running under the attack. Stability and optimal performance of the net-
worked control system, under attack and by applying the proposed framework, is
proved here. The framework has been applied to an energy management system and
its efficiency is demonstrated on a real critical attack scenario. This contribution
is studied in [56] and [55].

1.2 Outline

The rest of Part II of this thesis is structured as follows. Chapter 2 presents
some related background. Potential vulnerabilities in the interface between the
physical and the IT infrastructures of the power system has been identified, and
the impact of adversarial actions has been assessed in Chapter 3. In Chapter 4, a
practical cyber-secure framework for networked control systems is proposed. This
framework, includes security information analytics to detect attacks, and resilient
policy to improve the performance of the system running under the attack. Finally,
Chapter 5 provides conclusions and suggestions for future studies.



Chapter 2

Background

2.1 Voltage Stability in Distribution Grid

Motivated by environmental, economic and technological aspects, interests in re-
newable energy sources is growing worldwide. Most of these sources are small-scale
inverter-based distributed generation (DG) units connected at the low voltage and
medium voltage levels. Thus, the power generation infrastructure is moving from
purely large centralized plants at the high voltage levels to a mixed generation pool
consisting of conventional large plants and smaller distributed generation units at
lower voltage levels. In this new paradigm, it is more challenging to operate the
electric power networks in a reliable and resilient mode. These challenges may be
tackled by facilitating a local integration of renewable energy sources, which las
led to the concept of microgrids (MGs) [27, 71]. An MG is a low-voltage electri-
cal network, composed of several DGs, energy storage elements, and controllable
loads, and their integration with the main grid is accomplished by using suitable
power electronic devices (inverters). In addition, an MG is able to operate in the
grid-connected mode (connected to the wide-area electric power system), and also
in the islanded mode (disconnected from the main grid). The problem of voltage
stability and power sharing analysis of MGs has been carried out in several studies
in the literature. For radial lossless microgrids, and under the assumption of con-
stant voltage amplitudes, analytic conditions for proportional power sharing and
synchronization of have been derived in [73]. Conditions for voltage stability for
lossless parallel MGs with one common load have been derived in [74]. In addi-
tion, [70] gives conditions on the droop gains to ensure stability of droop-controlled
inverter-based lossless MGs with general meshed topology.

2.2 Smart Grids’ Vulnerabilities

Electrical power networks in the new energy generation paradigm are very com-
plex and face numerous challenges. To facilitate their safe and reliable operation,
they need to be tightly coupled with the supervisory control and data acquisition
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(SCADA) systems that monitor and operate the power infrastructure by collecting
data from remote facilities and meters, and sending back supervisory control com-
mands. On the other hand, the power networks coupled with the SCADA systems
face new challenges, as these systems may become susceptible to malicious cyber
threats through the communication infrastructure. The safe and stable operation
of power networks must be ensured, not only in the normal situations, but also in
the cases when the cyber security of SCADA systems is threatened by malicious
attacks [5]. Black-Energy malware targeting several electricity distribution compa-
nies in Ukraine [4], is one of the recent concrete examples of cyber-attacks. Thus,
it is important to analyze potential vulnerabilities of the system, by modeling and
studying different threats to the controlled system, and devise resilient schemes to
mitigate high-risk threats. Recently, there has been a substantial work on cyber
security of power transmission networks, addressing, for instance, certain classes
of undetectable false data injection attacks [42, 67, 31, 78]. In addition, the im-
pact of these attacks on the system operation [89, 84] and possible protective and
countermeasures [39, 88] have been investigated. In comparison with transmission
level, as mentioned in [34], security issues at the distribution system level have not
been as extensively studied. The impact of cyber attacks on centralized voltage
regulation in distribution systems was considered in [34]. The vulnerabilities that
may be introduced by the integrated Volt-VAR control scheme, when an adversary
is able to inject false data measurements into the system, is studied in [82]. To the
best of our knowledge, none of the previous works have studied cyber attacks on
the inverter-based microgrids.

2.3 Attack Resilient Control Policies

Recently, there has been an increase in control systems security research. To this
end, security information analytics (SIA) enables quick detection of cyber-attacks
by checking the system behaviour. As discussed in [15], SIA requires the ability to
handle processing of huge amounts of data, by using new analytics and visualiza-
tion techniques for attack detection. Once the attack is detected, control policies
which are resilient against the attacks, should be triggered. Design of control and
estimation algorithms which are resilient against faults is not a new problem, but
those algorithms may not be efficient against malicious cyber-attacks. For example,
virtual sensor (V S) and virtual actuator concepts, have been introduced in [46] to
deal with sensor and actuator failures, respectively. Attacks may be more complex
than faults, and may use some information of the system to corrupt the measure-
ments in an intelligent way, and result in worse consequences than faults. Thus,
there has been a recent increase in control systems security research and design of
resilient control and estimation algorithms against attacks [69, 26, 81, 21, 54, 11, 61].
In [69], the authors consider the problem of control and estimation in a networked
system when the communication links are subject to disturbances (corresponding
to packet losses), resulting from a denial of service attack for instance. In [26], a
more intelligent jammer is considered who plans his attacks in order to maximize a
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certain cost, while the objective of the controller is to minimize this same cost. The
results are however derived in the case of one-dimensional systems, which is the
main limitation of the work. The problem of reaching consensus in the presence of
malicious agents is studied in [81]. The authors characterize the number of infected
nodes that can be tolerated and propose a way to overcome the effect of the mali-
cious agents when possible. One particularity of that work is that the dynamics is
part of the algorithm and can be specifically designed, rather than being given as in
a physical system. The estimation and control of linear systems, when some of the
sensors or actuators are corrupted by an attacker, is studied in [21]. They propose
an efficient algorithm inspired from techniques in compressed sensing to estimate
the state of the plant despite attacks. The authors assume that the attacked nodes
does not change over time. In addition, a general framework to model and analyse
impact of attacks, is proposed in [85]. In [54], a method for state estimation in
presence of attacks, for systems with noise and modeling errors is proposed. It is
shown that the attacker cannot destabilize the system by exploiting the difference
between the model used for state estimation and the real physical dynamics of the
system. In [11], a control technique is proposed which is resilient against certain
sensor attacks. In that technique, a recursive filtering algorithm, to estimate the
states of the system, is implemented that takes advantage of redundancy in the
information received by the controller.





Chapter 3

Impact Assessment in Distribution
Grid

In this chapter, after recalling some properties of certain classes of linear time-
invariant (LTI) systems, we first tackle the problem of voltage stability and reactive
power balancing in the droop-controlled MGs, and provide criteria for designing the
controller gains in terms of the power system parameters. We then identify potential
vulnerabilities in the interface between the physical and the IT infrastructures of
the power system, and assess the impact of adversarial actions.

3.1 Preliminaries

In this section, we recall important properties of certain classes of linear time-
invariant (LTI) systems that will be useful in the subsequent sections. Let us
consider a general LTI system of the form:{

ẋ(t) = Ax(t) + Fu(t)
y(t) = Cx(t) +Du(t),

(3.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the system state, the control input,
and the controlled output at time t, respectively. Denoting aij = [A]i,j as the entry
of A in the i-th row and j-th column, the class of diagonally dominant matrices is
defined as follows.

Definition 3.1.1 (Diagonally dominant matrices). The matrix A is said to be
row-diagonally dominant if its entries satisfy the conditions

|aii| ≥
∑
j 6=i
|aij |, ∀i ∈ {1, . . . , n}. (3.2)

Given the above definition, the system (3.1) is said to be row-diagonally domi-
nant if the state matrix A is row-diagonally dominant.

63
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Another relevant class of systems is that of positive systems (see [64], for in-
stance), which play an important role here.

Definition 3.1.2 (Positive systems). The LTI system (3.1) is said to be positive
if the following conditions hold:

1. The matrix A is Metzler, i.e., it has non-negative off-diagonal entries;

2. The matrices F , C and D are non-negative, i.e., they only have non-negative
entries.

Positive systems have several interesting properties, e.g., x(0) ≥ 0 and u(t) ≥
0 result in trajectories satisfying x(t) ≥ 0 for all t, where x ≥ 0 for a vector
x denotes the element-wise inequality. In particular, the following properties of
positive systems are instrumental in our analysis.

Proposition 3.1.1 ([64]). If the system (3.1) is positive, the following statements
hold:

1. The matrix A is Hurwitz (every eigenvalue of A has strictly negative real part)
if, and only if, there exists a ξ ∈ Rn such that ξ > 0 and Aξ < 0.

2. Let m = p = 1, define H(s) = C(sI −A)−1F +D as the transfer function of
the system (3.1), and suppose A is Hurwitz. The L∞-induced norm of (3.1)
is given by

‖ H ‖∞−ind= sup
‖u‖L∞ 6=0

‖ y ‖L∞

‖ u ‖L∞

= H(0). (3.3)

3.2 Problem Formulation

As shown in Figure 3.1, the power distribution system is considered to be a set of
interconnected MGs that may be connected to the main grid through the feeder
substation (bus 0), where each MG is represented by a bus to which inverter-based
DER resources and loads are connected. Although Figure 3.1 depicts a line network,
we consider generic connected topologies where the network is characterized by
the undirected graph G(V, E), where V is the vertex set, E is the edge set, and
Ni = {j ∈ V : (i, j) ∈ E} denotes the neighbor set of the i-th bus. In this system,
the states are defined as Vi and θi, which are voltage magnitude and voltage angle
of the i-th bus, respectively, and i ∈ V.

Assumption 3.2.1. In the power distribution network under study, the following
assumptions are made:

1. The three-phase power network is balanced (so that it can be represented as
an equivalent single-phase system);

2. All N buses are assumed to be inverter buses [71], each represented by Vi and
θi for i = 1, . . . , N .
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Figure 3.1: A power distribution system comprised of interconnected microgrids
with inverter-based DERs.

Under the Assumption 3.2.1, the active and reactive power injections at bus i
is given respectively by

Pi = V 2
i Gi −

∑
j∈Ni

ViVj(Gij cos(θij) +Bij sin(θij)),

Qi = −V 2
i Bi −

∑
j∈Ni

ViVj(Gij sin(θij)−Bij cos(θij)),
(3.4)

in which, Gij = Rij/(R2
ij +X2

ij) ≥ 0 and Bij = −Xij/(R2
ij +X2

ij) ≤ 0 are respec-
tively the conductance and susceptance of the transmission line between the i-th and
j-th buses, and Rij and Xij are resistance and reactance of the same line between
the same buses, respectively. In addition, self-conductance and self-susceptance are
defined as Gi = Gii +

∑
j∈Ni Gij and Bi = Bii +

∑
j∈Ni Bij , respectively. Note

that the angle difference between node i and j, θi − θj , is simply written as θij in
the rest of this chapter.

Assumption 3.2.2. In the power distribution system under study, all transmission
line impedances are assumed to have the uniform ratio ρ = Rij/Xij = −Gij/Bij
for all (i, j) ∈ E.

Controller Structure

Using the capabilities of the local inverter-based DERs, each MG is controlled by a
droop controller, which remotely receives the reference signal (V ∗i as the reference
voltage for the i-th bus) and measurements (Vj and θj , as the voltage magnitude and
voltage angle of the j-th bus, respectively) through the communication network,
using a suitable communication protocol such as the IEC 61850. The controller
and related signals are shown in Figure 3.2. Since we are interested in the voltage
dynamics of the power system, the phase-angle dynamics are neglected and we
assume that all phase-angles are constant. In terms of the voltage dynamics, each
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Figure 3.2: The inverter-based DERs of a MG are controlled by a droop controller.
The physical quantities are measured by sensors at each node, which then transmit
their measurements (denoted by the superscript s) to the droop controllers. The
control signal is computed based on the measurements and reference signals received
by the controller (denoted with the superscript c).

MG i is modeled as the single integrator

τiV̇i(t) = uVi(t), (3.5)

where τi > 0 is the inverter’s time constant and uVi(t) is the control signal computed
by the droop controller at time t ≥ 0. In particular, we consider the voltage
quadratic droop controller [73, see equation (7)] described by

uVi(t) = −KiV
c
i (t) (V ci (t)− V c?i (t))−Qci (t), (3.6)

where Ki > 0 is the droop control gain and V ci (t), Qci (t), and V c?i (t) are the
voltage measurement, reactive injection measurement, and voltage reference signal
with respect to bus i, respectively, that are received by the droop controller, as
illustrated in Figure 3.2.

Under nominal operation, we have that these signals match the corresponding
physical variables and reference signals, i.e., V ci (t) = Vi(t), Qci (t) = Qi(t), and
V c?i (t) = V ?i (t) (V ?i (t) is sent by a higher level controller which is called Secondary
controller). Hence, the closed-loop dynamics of inverter node i under nominal
operation are given by the differential equations

τiV̇i = −KiVi (Vi − V ?i )−Qi

= −Vi

KiVi −KiV
?
i +

∑
j∈V

lij(θ)Vj

 , ∀i = 1, . . . , N,
(3.7)
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where the time argument has been omitted. In addition, under the Assump-
tion 3.2.2, the parameter lij is written as

lij =
{
Bij(ρ sin(θij) + cos(θij)), i 6= j

−Bi, i = j.
(3.8)

Denoting V = [V1 . . . VN ]> and [V ] as the diagonal matrix with [V ]ii = Vi, the
voltage dynamics under the quadratic droop control can be written in vector form
as

[τ ]V̇ = [V ] ([K]V ? − ([K] + L(θ))V ) , (3.9)

where the matrix L(θ) is defined as [L(θ)]ij = lij(θ) and [K] as the diagonal matrix
with [K]ii = Ki.

Linearization of the Voltage Dynamics

In the following sections, we consider that the power system (3.9) is linearized
around an equilibrium point (V̄ , V̄ c?) such that − ([K] + L(θ)) V̄ + [K]V̄ ? = 0.
Additionally, the following assumptions is considered throughout the remainder of
this chapter.

Assumption 3.2.3. The phase-angle differences between any neighboring nodes,
θij for (i, j) ∈ E, is assumed to be constant.

By Assumption 3.2.3, and denoting x(t) = V (t) − V̄ and u(t) = V c?(t) − V̄ c?
as the voltage and reference deviations, respectively, the corresponding linearized
system is given by

ẋ(t) = Ax(t) + Fu(t), (3.10)

where A = −[V̄ ][τ ]−1 ([K] + L(θ)) and F = [V̄ ][τ ]−1[K]. For simplicity, in the
following we suppose that V̄ = 1pu, where 1 denotes a vector with all entries equal
to 1.

3.3 Stability Analysis

In this section, we provide necessary and sufficient conditions on the power system
parameters so that the linearized dynamics are positive and row-diagonally dom-
inant. These properties are then used to establish the asymptotic stability of the
linearized system. Moreover, they play an important role when studying the power
system under the different attack scenarios in subsequent sections.

System Properties
First we derive necessary and sufficient conditions for the linearized system (3.10)
to be positive, which requires the following definition.
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Definition 3.3.1. The maximum phase difference between any two neighboring
nodes is defined as

∆θ = max
(i,j)∈E

|θij |. (3.11)

In addition, as in any conventional power system, here we assume that ∆θ < π/2
[70].

Theorem 3.3.1. Consider the power distribution network under study, having ac-
tive and reactive power injections (3.4) at bus i with ∆θ < π/2, and applying the
quadratic droop controller (3.7) for each MG. Then the necessary and sufficient
condition to make the linearized system (3.10) positive is

ρ ≤ | cot(∆θ)|. (3.12)

Proof. Recall the linearized system (3.10) with A = −[τ̃ ]−1 ([K] + L(θ)) and F =
[τ̃ ]−1[K]. From (3.8), aij read as

aij =
{
−τ−1

i Bij(ρ sin(θij) + cos(θij)), i 6= j

τ−1
i (−Ki +Bii +

∑
j∈Ni Bij), i = j.

(3.13)

Based on Definition 3.1.2, the system is positive if and only if [F ]i,j ≥ 0 and
aij ≥ 0 for all i and j. Since the controller parameters τi and Ki are positive, we
conclude that [F ]i,j ≥ 0 holds. Moreover, as the susceptance Bij is always negative,
the inequalities aij ≥ 0 for all i and j can be rewritten as{

ρ sin(θij) + cos(θij) ≥ 0
ρ sin(θji) + cos(θji) ≥ 0,

(3.14)

for all the neighboring i and j. From these inequalities, and assuming that ∆θ <
π/2, we have ρ ≤ | cot(∆θ)|.

Next we characterize necessary and sufficient conditions for a linearized positive
system to be row-diagonally dominant.

Lemma 3.3.2. Suppose the linearized system (3.10) is positive. The system (3.10)
is row-diagonally dominant if, and only if, the following inequality holds

Ki + |Bii| ≥ (
√
ρ2 + 1− 1)

∑
j∈Ni

|Bij |. (3.15)

Proof. Given the entries of A in (3.13) and Definition 3.1.1, the system (3.10) is
row-diagonally dominant if, and only if,

| −Ki +Bii +
∑
j∈Ni

Bij | ≥
∑
j∈Ni

| −Bij(ρ sin(θij) + cos(θij))|. (3.16)
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The proof follows by considering the worst-case phase-angle differences θij that
maximize the right-hand side term, i.e.,

θij = arg max
θ∈[−∆θ, ∆θ]

(ρ sin(θ) + cos(θ)) , (3.17)

for all (i, j) ∈ E . Since the system is positive from the inequalities in (3.14), we
know that

∂2

∂θ2 (ρ sin(θ) + cos(θ)) ≤ 0

holds for all the neighboring i and j. Hence, the solution to (3.17) can be obtained
by solving the following equations0 = ∂

∂θ
(ρ sin(θ) + cos(θ))

1 = sin(θ)2 + cos(θ)2
(3.18)

and verifying that its solution belongs to the feasible set θ ∈ [−∆θ, ∆θ]. In fact,
the system of equations (3.18) is solved for θ? such that cos(θ?) = 1/

√
1 + ρ2. Note

that θ? yields ρ sin(θ?) + cos(θ?) =
√

1 + ρ2 > 0, which indicates that θ? satisfies
the positivity constraints (3.14). Hence, since the linearized system is positive, we
conclude that θ? belongs to the set [−∆θ, ∆θ], thus solving (3.17).

Considering the optimal value of (3.17), ρ sin(θ?) + cos(θ?) =
√

1 + ρ2, and
noticing that the controller parameters Ki are positive and all the susceptance Bij
are negative, the proof concludes by rewriting the inequalities (3.16) as

Ki + |Bii|+
∑
j∈Ni

|Bij | ≥
∑
j∈Ni

√
ρ2 + 1|Bij |. (3.19)

These properties play important roles in the characterization of the attack im-
pacts, and they are also used in analyzing the stability of the linearized system.

Stability of the Power System

Next we establish the stability of the linearized system, using the positivity and
row-diagonally dominance properties of the linearized system. Specifically, when
the system is positive, the next result states the necessary and sufficient conditions
for stability and then shows that row-diagonally dominance ensures stability.

Theorem 3.3.3. Consider the linearized dynamics of the power system (3.10) and
suppose the necessary and sufficient condition (3.12) from Theorem 3.3.1 is satis-
fied. Then the linearized system is positive and the following statements hold:
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1. the system is asymptotically stable if and only if there exist positive scalars
ξi > 0 such that the following inequality holds for all i = 1, . . . , n:

ξi| −Ki +Bi| >
∑
j∈Ni

ξj | −Bij(ρ sin(θij) + cos(θij))|;

2. the system is asymptotically stable if it is row-diagonally dominant, i.e., the
following inequality holds for all i = 1, . . . , n:

| −Ki +Bi| >
∑
j∈Ni

| −Bij(ρ sin(θij) + cos(θij))|.

Proof. Recalling that the entries of A are given by (3.13), the necessary and suffi-
cient condition for stability follows directly from the positivity of the system and
Proposition 3.1.1, i.e., the existence of a positive vector ξ > 0 such that Aξ < 0.

On the other hand, the sufficient condition for stability is obtained by consider-
ing ξi = 1 for all i and verifying that A1 < 0 can be rewritten as (3.16), given that
τi and ρ sin(θij) + cos(θij) are positive and Bij is negative.

Remark 3.3.1. Note that we may not have control on self-susceptance (Bii) and it
belongs to the interval [0, B̄ii], so to be more conservative, the sufficient condition
in Proposition 3.3.3 can be written as:

Ki ≥
∑
j∈Ni

(
√
ρ2 + 1− 1)|Bij |. (3.20)

Remark 3.3.2. It could be interesting to characterize conditions on (3.10) under
which V satisfies |V − 1| < δ. This problem is related to the validity of (3.10),
which assumes that V is positive. It also relates to how V c? should be constrained
so that the system is safe.

3.4 Impact of Adversarial Actions

In this section, we consider different attack scenarios to the droop-controller and
discuss preliminary results on their impact with respect to a linearized version
of (3.9).

The following subsections follow a similar structure and each one considers a
specific attack scenario. In particular, each subsection begins by describing the
adversarial model and how it affects the droop-controller. Then, the impact of
the attack is characterized based on properties of the linearized system, such as
stability and input-output induced-norm. Such characterizations also aim at iden-
tifying which sets of attacked nodes yield possibly higher impacts, thus indicating
which threats may pose a high risk to the system. The theoretical analysis is then
complemented with numerical simulations of the attack scenarios in the nonlinear
system (3.9).
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Figure 3.3: An inverter-based droop controller under a reference signal attack at
bus i, where the adversary corrupts V c?i .

Voltage Reference Attack

The present scenario considers an adversary that injects false-data into the com-
munication network supporting the control system. In particular, we suppose that
the reference signal of bus j is corrupted, as depicted in Figure 3.3, so that

V c?j (t) = ua(t). (3.21)

Hence, the corresponding control signal at bus j is given by

uVj = −KjV
c
j

(
V cj − ua(t)

)
−Qcj , (3.22)

where the ua(t) is defined by the adversary. The impact of the attack is measured
in terms of the resulting changes to the voltage magnitude at another bus i 6= j in
the network, i.e. Vi. The resulting linearized system can be expressed as

ẋ(t) = Ax(t) + τ−1
j Kjeju

a(t)
yi(t) = e>i x(t)

(3.23)

where A = −[τ ]−1 ([K] + L(θ)) and ei ∈ Rn is the i-th column of the n-dimensional
identify matrix. In particular, we quantify the attack’s impact as the maximum de-
viation of yi(t) caused by a corrupted reference ua(t) that is bounded as |ua(t)| ≤ 1.
In fact, this metric corresponds to the L∞-induced norm of (3.23). For power
systems satisfying the conditions of Theorem 3.3.1 and Lemma 3.3.2, i.e., the sys-
tem (3.23) is positive and stable, the following characterization of the worst-case
attack naturally follows from Proposition 3.1.1.
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Lemma 3.4.1. Consider the linearized power system (3.10), which is assumed
to be positive and asymptotically stable, and let Hij(s) be the transfer function
of (3.23). The worst-case impact on node i of a reference attack on bus j, charac-
terized as the L∞-induced norm of (3.23), is given by Hij(0) = −τ−1

j Kje
>
i A
−1ej =

τ−1
j Kj [−A−1]i,j.

Such characterization of the worst-case impact can be leveraged to compare
different attacks and identify scenarios with higher impact. In particular, supposing
bus j is attacked, we are interested in assessing which other bus i 6= j is most
affected by the attack. That is, we seek to compute

i? = arg max
i
Hij(0) = arg max

i
[−A−1]i,j ,

where the common factor τ−1
j Kj has been omitted.

Although solving such problem would, in general, require the computation of all
entries of −A−1, specific power system topologies admit simpler solutions. Specifi-
cally, for power systems whose topology corresponds to a line graph, the following
result establishes that the L∞-induced norm [−A−1]i,j decreases as the distance
between i and j increases.

Theorem 3.4.2. Consider a power system satisfying the conditions of Theorem 3.3.1
and Lemma 3.3.2, whose topology corresponds to a line graph. Furthermore, sup-
pose the droop-controller at bus j is under a reference signal attack, being de-
scribed by (3.22). Then the L∞-induced norm of (3.23) is given by Hij(0) =
τ−1
j Kj [−A−1]i,j, which satisfies the monotonicity conditions

[−A−1]i,j > [−A−1]i+1,j , ∀j ≤ i
[−A−1]i,j > [−A−1]i−1,j , ∀j ≥ i.

(3.24)

Proof. Note that Theorem 3.3.1 and Lemma 3.3.2 imply that the power system (3.23)
is positive and asymptotically stable, respectively. Hence, from Lemma 3.4.1, the
L∞-induced norm of (3.23) is given by Hij(0) = [−A−1]i,j . Moreover, since the
power system’s topology is a line, the buses may be ordered so that the system
matrix A is tridiagonal. Define the variables

αi = [−A]i,i, βi = [−A]i,i+1, ςi = [−A]i+1,i,

which characterize the entries of the tridiagonal matrix −A. Assuming that βi 6= 0
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for all i ≤ N − 1, the inverse of A can be explicitly derived as [18, Theorem 2.1]

[−A−1]i,j =



(−1)i+j
∏j−1
l=i βl

N∏
l=j+1

φl

N∏
l=i

δl

, if j ≥ i

(−1)i+j
∏i−1
l=j ςl

N∏
l=i+1

φl

N∏
l=j

δl

, if j < i

with the convention that an empty product equals 1, where φi and δi are given by
the recursions

φi = αi −
βiςi
φi+1

, φN = αN ,

δi = αi −
βi−1ςi−1

δi−1
, δ1 = α1.

Hence, the conditions in (3.24) may be rewritten as

−φi+1

ςi
> 1, ∀j ≤ i

− δi−1

βi−1
> 1, ∀j ≥ i.

(3.25)

The proof follows through an induction argument, which makes use of the pos-
itivity and row-diagonally dominance properties of A. The induction argument for
the second inequality of (3.24) is derived as follows. First we show that having
− δi−1

βi−1
> 1 for some j ≥ i implies that − δi

βi
> 1 also holds. In fact, from the

recursion of δi we have

δi ≥ −βi − ςi−1 −
βi−1ςi−1

δi−1
= −βi − ςi−1(1 + βi−1

δi−1
) ≥ −βi > 0,

where the first inequality follows from the positivity and the diagonally dominance
properties of A, i.e., αi = −[A]i,i ≥ [A]i,i+1 + [A]i,i−1 = −βi − ςi−1, while the

hypothesis − δi−1

βi−1
> 1 yields the second inequality. The induction argument is

concluded by noting that −βi is positive and − δ1
β1

= −α1

β1
≥ β1

β1
.

A similar proof holds for the first inequality of (3.24).
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Considering line graphs, using the results of Theorem 3.4.2, we conclude that
the bus most affected by the attack at bus j, defined as i? = arg maxiHij(0),
corresponds to one of the neighboring buses of j, i.e., i? = arg max

i∈{j−1, j+1}
[−A−1]i,j .

Numerical Example

To illustrate the impact of the attack on the reference signal, we consider a radial
4-bus power system in island mode with identical power lines, loads, and inverters.
The power system is characterized by (3.4) with the parameters ρ = 0.5, Bij =
−0.2, and Gij = −ρBij for all edges (i, j) ∈ E and Bii = −0.001 and Gii = ρ|Bii|
for all buses. The power inverters are modeled by (3.5) and (3.6) with parameters
τi = 10−4 and Ki = 0.2 for all buses. Additionally, the phase-angle differences
are constant throughout the simulation of the voltage dynamics and are given by
θ12 = −0.11rad, θ23 = 0.045rad, and θ34 = −0.11rad.

The system dynamics are described by the nonlinear differential equations (3.9),
with the corresponding linearized dynamics characterized by (3.10) with

A = 10−4 ·


−4.01 1.88 0 0

2.1 −6.01 2.04 0
0 1.95 −6.01 1.88
0 0 2.1 −4.01

 .
Clearly, the system is positive and row-diagonally dominant. Since the diagonal
entries A are negative, the system is also asymptotically stable.

Now consider the reference signal attack scenario where the voltage reference
transmitted to bus 3 is corrupted by an adversary, which is modeled by (3.23). Fol-
lowing the discussion in this section, we seek to assess which buses, other than bus 3,
are most affected by such attack. From Lemma 3.4.1, the worst-case impact of such
attack on a given bus i in the network corresponds to Hi3(0) = −K3τ

−1
3 e>i A

−1e3.
In present example, the set of worst-case gains to buses 1, 2, and 4 are given by
H13(0) = 0.09, H23(0) = 0.19, and H43(0) = 0.25, respectively. As stated by The-
orem 3.4.2, for line graphs, the largest worst-case impact takes place at one of the
neighbors of bus 3, which here corresponds to bus 4.

The decrease of the impact as the distance to bus 3 increases is visible on the
voltage trajectories of the nonlinear system under a reference attack on bus 3, as
depicted in Figure 3.4.

Voltage Measurement Routing Attack
Here we consider an adversary that is able to redirect truthful data from its intended
destination to another receiving bus in the network. In particular, we suppose
that the adversary redirects the voltage measurement from bus j as if it were a
measurement from bus i, which is captured by having

V ci = V sj = Vj .



3.4. IMPACT OF ADVERSARIAL ACTIONS 75

Time [s] #10-3
0 1 2 3 4 5 6

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

V c?
3

V1

V2

V3

V4

Figure 3.4: Trajectories of the voltage magnitudes under a reference signal attack
at bus 3.
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Figure 3.5: An inverter-based droop controller under a voltage measurement routing
attack that feeds a measurement from bus j to bus i.

The corresponding control signal under attack is described as

uVi = −KiV
s
j

(
V sj − V c?i

)
−Qci

uVk = −KkV
c
k (V ck − V c?k )−Qck, ∀k 6= i.

(3.26)
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The resulting linearized system can be expressed as

ẋ(t) =
(
A− τ−1

i Kiei(ej − ei)>
)
x(t), (3.27)

where the term −τ−1
i Kiei(ej−ei)>x(t) can be interpreted as replacing the nominal

feedback term τ−1
i KiVi by the corrupted feedback τ−1

i KiVj at bus i. In fact, such
attack scenario can be rewritten as the following static output-feedback law

ẋ(t) = (A+ τ−1
i Kieie

>
i )︸ ︷︷ ︸

=Ãi

x(t) + τ−1
i eiu(t)

yj(t) = e>j x(t)
u(t) = −Kiyj(t),

(3.28)

where the matrix Ãi is independent of the control gain Ki.
Note that the closed-loop system under attack (3.27) is no longer positive, nor

diagonally dominant, since we have [A − τ−1
i Kiei(ej − ei)>]i,j = −Ki < 0 and

[A− τ−1
i Kiei(ej − ei)>]i,i = [A]ii +Ki. As such, the results of Section 3.3 may not

be used to establish the stability of (3.27). In fact, the closed-loop system (3.27)
may indeed be unstable for certain values of Ki ≥ 0, as established by the following
result.

Theorem 3.4.3. Consider the power system under routing attack described by (3.27).
There exists a control gain Ki ≥ 0 for which the system is unstable if dist(j, i) ≥ 2,
where dist(j, i) is the shortest length between buses i and j.

Proof. The trivial case occurs when Ãi is not Hurwitz, for which Ki = 0 yields an
unstable system. In the remaining of the proof, we suppose Ãi is Hurwitz. The
proof follows from examining the root locus of the closed-loop system (3.28) with
respect to the control gain Ki > 0. In particular, let r be the relative degree of
the system, which also corresponds to the number of asymptotes of the root loci
to which the closed-loop poles converge as Ki > 0 increases. Clearly, for r ≥ 3
there exists at least one asymptote intersecting the complex right half-plane and
we conclude that the system may become unstable for a sufficiently large gain Ki.
To conclude the proof, we next argue that r is characterized as r = dist(j, i) + 1.

Recall the definition of relative degree as the smallest integer r ≥ 1 yielding
a non-zero Markov parameter, i.e., CAr−1F 6= 0. Given the particular structure
of the feedback loop (3.28), this definition corresponds to the smallest integer for
which e>j Ãr−1

i ei = [Ãr−1
i ]ji 6= 0 holds. Note that Ã can be written as Ãi = −Di+A,

where Di is a diagonal positive definite matrix and A is a weighted adjacency matrix
with positive edge-weights. Hence Ãki can be characterized as

Ãki = Ak +
k−1∑
l=0

(
k
l

)
(−Di)k−lAl. (3.29)

Since the sparsity pattern ofAl is not altered by left-multiplying it with the diagonal
matrix (−Di)k−l, we conclude that min{r > 0 | [Ãr−1

i ]ji 6= 0} is equal to min{r >
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0 | [Ar−1]ji 6= 0}. The remaining of the proof follows by using the non-negativity of
A and Lemma 2.5 in [30], which states that there exists a path of length k between
buses i and j if and only if e>j Akei > 0. Since, by definition, dist(j, i) is the smallest
integer such that e>j Adist(j,i)ei > 0, we conclude that the system has relative degree
r = dist(j, i) + 1.

Theorem 3.4.3 establishes the existence of a positive gain Ki for which the
attacked system becomes unstable when dist(j, i) ≥ 2. Similar results were derived
in [6] under the assumption that the open-loop system remains diagonally dominant,
which does not hold for the present system.

Numerical Example

Recall the example described in Section 3.4 and consider the measurement routing
attack scenario where an adversary replaces the voltage measurement at bus 1 with
the voltage measurement of bus 4, which is modeled by (3.27) with i = 1 and j = 4.
The resulting closed-loop state matrix is

Ã1 −K1e1e
>
4 = 10−4 ·


−2.01 1.88 0 −2

2.1 −6.01 2.04 0
0 1.95 −6.01 1.88
0 0 2.1 −4.01

 ,
which is clearly not diagonally dominant, nor positive. Despite stability, the lack
of such properties leads to contradictory behaviors, as illustrated by the response
to a step-change in one reference, depicted in Figure 3.6. Despite the increase in
the reference signal, bus 1 further decreased its voltage.

As stated in Theorem 3.4.3, since the distance between buses 1 and 4 is greater
than 1, there exists a gainK1 ≥ 0 for which the system under attack becomes unsta-
ble. This is illustrated through the corresponding root-locus depicted in Figure 3.7.
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Figure 3.6: Trajectories of the voltage magnitudes under a voltage measurement
routing attack that feeds a measurement from bus 4 to bus 1, followed by a reference
change at bus 3.
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Chapter 4

Cyber-Physical Security
Framework of Energy Management
Systems

In this chapter, as a motivating application, a controlled HVAC system has been
described and modeled first. We then describe a general hierarchical structure of
an ICS, which is composed of lower layer and supervisory layer. A model for the
attack to the measurements of the ICSs’ lower layer, has been described, for which a
resilience policy is proposed. We then study the stability and optimal performance
of the this policy.

4.1 Application Domains

As we discussed in Example 1.1.2, an EMS optimally controls all energy sources in
a building and considers an HVAC system as an important contributor to energy
consumption. Connecting the EMS to the building communication network makes
it a target for attacks with financial impact. In addition, attacking the EMS can
lead to safety risks [36] due to damage to water transport system or to the heating
sources (e.g. CHP and boilers). Thus, a resilience policy in Section 4.4 is proposed
to mitigate the attack impacts. In order to evaluate the feasibility of the proposed
framework, a Simulink model was developed to capture the CIT demo-site dynam-
ics. The model was developed using Grey Box modelling [75], where the model
structure is created based on the thermodynamic theory of each component and
the model parameters are tuned using real-world data from the CIT demo-site. The
model has been validated using data trend analysis against the real-world data at
the CIT demo-site.

In order to evaluate the feasibility of the proposed framework, a Simulink model
was developed to capture the CIT demo-site dynamics. The model was developed
using Grey Box modelling [75], where the model structure is created based on the
thermodynamic theory of each component and the model parameters are tuned

79
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Figure 4.1: Typical BMS for HVAC system

using real-world data from the CIT demo-site. The model has been validated using
data trend analysis against the real-world data at the CIT demo-site.

System Model Identification
A nonlinear model of the controlled HVAC system (see Figure 4.1) can be repre-
sented by

[
xh(k + 1)
xb(k + 1)

]
︸ ︷︷ ︸

xs

= f1(xh(k), ub(k), dh(k), εh(k)) (4.1a)

yh(k) = f2(xh(k), ub(k), εh(k)) (4.1b)
ub(k) = f3(xb(k), yh(k), r(k)), (4.1c)

where, xh, xb, ub and yh are the HVAC system’s state, local controllers’ state,
control input and measurement signal, respectively. Here, dh and εh are disturbance
and noise, respectively. Here, the dynamic equation (4.1a) accounts for the thermal
dynamics of the HVAC system including heating sources, mixing valves, pipe-lines
and radiators, and dynamics of local controllers. The algebraic equation (4.1b)
accounts for the measurement of the system, and (4.1c) represent control input
vector ub, including the PI and on/off controllers’ signals being sent to the HVAC
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components. In addition, the signal r is being sent by the supervisory controller to
the local controllers, which is considered as a correction signal and will be discussed
in Section 4.4. Here, the noise εh can arise from measurement sensors, or water
circulation loop.

The proposed resilience policy in Section 4.2 estimates outputs of the system,
based on a linearized model of the controlled HVAC system shown in Figure 4.1. In
practice, the precise model (4.1) may not be known. In addition, having access to
the system-wide states xh and xb, for a bulk system, is not always the case. Thus,
a linear model that is able to explain the covariance of the outputs (e.g., the six
measurements of the sensors S1-S6 in Figure 4.1), is enough to estimate the out-
put. To arrive at a linear state-space model of the controlled HVAC system (4.1),
a subspace identification followed by a prediction error method [43] is applied here.
In this identification, the external temperature (which is the disturbance dh to the
system) is considered as the input, and the temperature of header flow, header re-
turn, Nimbus building ground floor, Nimbus building first floor, Rubicon building
ground floor and Rubicon building first floor are considered as the outputs, respec-
tively. The system modeling in this manner results in a simple linear third-order
system, in the innovation form [62]:

xs(k + 1) = Asxs(k) +Bsub(k) +Ksε(k)
yh(k) = Csxs(k) +Dsub(k) + ε(k),

(4.2)

where the matrices As, Bs, Cs, Ds and Ks are the system’s matrices with appro-
priate dimensions, and the innovation ε(k) is the noise (statistics of which is also
estimated in the system identification) and independent of past input and output
data [62].

4.2 Industrial Control Systems’ Hierarchy

In this section, we describe a general hierarchical structure of an ICS, which is
composed of lower layer and supervisory layer.

Lower Layer

Lower layer, which is called plant, consists of physical interconnected infrastructure
and local controllers. A schematic of the plant is illustrated in Figure 4.2. As it
is shown in this figure, the physical interconnected infrastructure is represented by
interconnected processes (Pi, i ∈ Φ), which are controlled by the local controllers
(Ki, i ∈ Φ). Here, Φ = {1, ..., N} is the index set of processes. In this networked
control system, ui, yi, ũi and ỹi are the sent control signal by the controller Ki,
the sent sensor measurement by the process Pi, the received control signal by the
process Pi, and the received measurement signal by the controller Ki, respectively.
Here, the process Pi is given by



82
CHAPTER 4. CYBER-PHYSICAL SECURITY FRAMEWORK OF ENERGY

MANAGEMENT SYSTEMS

𝑷𝑷𝟏𝟏 

𝑲𝑲𝟏𝟏 𝑲𝑲𝒊𝒊 

𝑷𝑷𝒊𝒊 

𝑲𝑲𝑵𝑵 

𝑷𝑷𝑵𝑵 
𝑦𝑦1 𝑦𝑦𝑁𝑁 𝑢𝑢�1 𝑢𝑢�𝑁𝑁 𝑢𝑢�𝑖𝑖 𝑦𝑦𝑖𝑖  

𝑦𝑦�1 𝑦𝑦�𝑁𝑁 𝑦𝑦�𝑖𝑖  𝑢𝑢1 𝑢𝑢𝑁𝑁 𝑢𝑢𝑖𝑖  

Physical interconnected infrastructure 

Local controllers 

𝑑𝑑1 𝑑𝑑𝑁𝑁 𝑑𝑑𝑖𝑖  

Plant 

Figure 4.2: Schematic of a linear closed-loop system.

ξi(k + 1) =Aiξi(k) +Biũi(k) +Didi(k) +
∑
j 6=i

JijCjξj(k) + wi(k),

yi(k) =Ciξi(k) + νi(k).
(4.3)

where, ξi ∈ Rni is the local state vector of the ith process, ũi ∈ Rsi is the received
control signal vector, and yi ∈ Rpi is the local measurement vector. In (4.3), di
is a deterministic disturbance vector, and wi and νi are process and measurement
zero-mean Gaussian white noise, respectively. Here, the matrices Ai, Bi, Ci, Di

and Jij have dimensions conformably with the vectors, and the matrix Jij captures
the interaction between the processes Pi and Pj . The local control signal ui(k) is
given by the controller Ki,

ηi(k + 1) = Eiηi(k) + Fiỹi(k),
ui(k) = Hiηi(k),

(4.4)

where, ηi ∈ Rqi is the local state vector of the controller, ui ∈ Rsi is the local control
signal vector calculated by the controller, and ỹi ∈ Rpi is the received measurement
vector. Here, the matrices Ei, Hi and Fi have dimensions conformably with the
vectors. Thus, the closed-loop interconnected system evolves as

[
ξ(k + 1)
η(k + 1)

]
=
[
[A] + J [C] [B][H]

[F ][C] [E]

]
︸ ︷︷ ︸

Acl

[
ξ(k)
η(k)

]
︸ ︷︷ ︸
x(k)

+
[
[D]
0

]
︸ ︷︷ ︸
Bcl1

d(k) +
[
I 0
0 [F ]

]
︸ ︷︷ ︸

M

[
w(k)
ν(k)

]

y(k) =
[
[C] 0

]︸ ︷︷ ︸
Ccl

[
ξ(k)
η(k)

]
+
[
0 I

]︸ ︷︷ ︸
N

[
w(k)
ν(k)

]
,

(4.5)

where, x ∈ Rnx is the state vector of the plant, [A] represents a block-diagonal
matrix with Ai as the i-th diagonal block, and J is a matrix with Jij as the (i, j)-th
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block (diagonal blocks are zero). Note that ξ = [ξ>1 ... ξ>N ]>, η = [η>1 ... η>N ]>, y =
[y>1 ... y>N ]>, d = [d>1 ... d>N ]>, u = [u>1 ... u>N ]>, w = [w>1 ... w>N ]> and ν = [ν>1 ... ν>N ]>.
Let the expectation and the covariance of w and ν to be

E
[
w(k)
ν(k)

]
= 0, E

[
w(k)
ν(k)

] [
w(l)
ν(l)

]>
=
[
R11 R12
R21 R22

]
︸ ︷︷ ︸

R

δkl, (4.6)

where, R11 and R22 are the covariance of w and ν, respectively, and R12 = R>21 is
the constant cross covariance between w and ν.

Note that the system described by (4.5) is under normal condition, and there is
no anomaly in the received control and measurement signals ũi and ỹi. This means
ũi = ui and ỹi = yi, i ∈ Φ. Under this condition, we have the following assumption,
which captures that the plant is assumed to be stable and well-configured initially.

Assumption 4.2.1. The linear closed-loop system (4.5) is stable, which means
the matrix Acl is Schur stable (i.e., ρ(Acl) < 1), and also the pair (Acl, Ccl) is
observable.

Supervisory Layer
Supervisory layer, which is called supervisory controller here, can be viewed as
the brain of the system. A schematic of the supervisory controller is illustrated in
Figure 4.3, which provides us with three crucial subtasks:

1. Attack detection: decide whether or not an attack (see Section 4.3 for attack
modeling) has occurred. This step determines the time at which some of the
measurement signals are subject to attacks. When an attack is being detected
we say it is in an abnormal condition.

2. Attack isolation: find in which measurements attacks have occurred. This
step determines the location of the attacks (e.g., ỹi 6= yi).

3. Controller reconfiguration: if attack is being detected and isolated, the related
control loops have to be reconfigured. Here, reconfiguration includes the
selection of a new control configuration where the corrupted measurement
signals are replaced by alternatives. To this end, correction signal ri is derived
and sent to the related local control loop to correct the corrupted signal ỹi.

The SIA tool in the supervisory controller, which consists of a set of outlier
detection algorithms and a web application, is responsible for attack detection (see
Section 4.5). To perform the controller reconfiguration, the resilience policy applies
estimation-based methods (see Section 4.4) to generate the correction signals ri.
Remark 4.2.1. Here, both the SIA and the resilience policy, perform attack isolation
using different methods, and the most conservative isolation is selected. This redun-
dancy in the attack isolation, increases defense-in-depth in our proposed security
framework.
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Figure 4.3: Schematic of the supervisory controller

4.3 Attack Model

Here, we consider the attacker as a man-in-the-middle, who can secretly listen to
and alter the communication between the processes and controllers in the lower
layer, knows the model of the plant (e.g., by applying system identification), and
corrupt the measurement signals yi. Here, the supervisory layer is assumed to not
be accessible by the attacker. An example of an attack to the lower layer of an ICS
is shown in the Figure 4.4, in which the measurement yi is perturbed by adding
the offset ∆yi. Thus, we define measurements’ attack vector ∆y = [∆y>1 ...∆y>N ]>,
which has zero entries for the unattacked measurements, and non-zero entries for
the attacked ones. Therefore, a general model for the received measurement signals
by the local controllers, and subsequently supervisory controller, is given by

ỹ = y + ∆y. (4.7)

Remark 4.3.1. Here, we assume that there is no attack on the control signals,
ũi = ui, i ∈ Φ. The setup can be easily extended to include also the attacks on the
control signals.

Undetectable Attack

As it is mentioned in Chapter 1, undetectable attacks are theoretically interesting,
since they cannot be detected by the anomaly detectors. By assuming that u = 0,
for an attack signal ∆y to be undetectable, we need to ensure there exists an initial
state x0, which results in ỹ = 0. Existence of such a signal can easily be checked
by considering the matrix pencil (Rosenbrock system matrix)

P(z) =
[
Acl − zI Ba
Ccl I

]
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where z is the invariant zero of the system (see [92]). Thus, an attack ∆y(k) =
zk0 ∆y0, ∆y0 ∈ CN , z0 ∈ C, is undetectable iff there exists x0 ∈ Rnx such that P(z0)
does not have full column rank and we have

P(z0)
[
x0

∆y0

]
= 0. (4.8)

Remark 4.3.2. The proposed resilience policy in Section 4.4 guarantees that such
undetectable attacks cannot be performed to the system.

4.4 Resilience Policy

A comprehensive security posture for the ICS should include mechanisms for attack
diagnosis (detection and isolation) and response to attacks (controller reconfigura-
tion). To keep the problem formulation contiguous with the previous section, and
easier for the reader to follow, in this section resilience policy is discussed, and the
next section is devoted to the attack diagnosis. The proposed resilience policy in
this paper guarantees the ICS to meet these criteria:

1. undetectable attack blocking: no undetectable attack is possible to be injected
to the measurement signals.

2. stability: system is stable under normal and abnormal conditions.

3. performance optimality: performance is optimal, in the measure of minimum
variance error of state estimation, under abnormal condition.

Remark 4.4.1. To achieve all these criteria we need to protect some of the measure-
ments. This protection can be done either by measurement signal encryption or
by making it hard wired. Later in this section it is described which measurements
should be protected.

Definition 4.4.1. Considering that some of the measurements are protected, we
define four types of measurements:

1) Unprotected measurements: we assume the attacker can have access to at
most m number of sensor measurements yj for j ∈ Γ. Here, Γ ⊂ Φ is the index set
of unprotected measurements, and the cardinality of Γ is card(Γ) = m.

2) Protected measurements: these measurement are not accessible by the at-
tacker. Here, ΓC = Φ \ Γ is the index set of protected measurements, where
card(ΓC) = N −m = h.

3) Attacked measurements: since attacking all the unprotected measurements is
costly for the attacker, some of them may be unattacked by the attacker. Thus, we
define the set of attacked measurements yj for j ∈ Γa. Here, Γa ⊂ Γ is the index
set of attacked measurements (0 ≤ card(Γa) ≤ m), and we have ỹi 6= yi, ∀i ∈ Γa.

4) Healthy measurements: here, Γh = Φ \ Γa is the index set of healthy mea-
surements, and we have ỹi = yi, ∀i ∈ Γh.
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Here, we consider the attacker to be able to secretly listen to, and alter the
unprotected measurements. From [63] we learn that if the closed-loop transfer
function from ∆yi to yi, which is seen by the attacker, is nonzero, then the attacker
can destabilize the system. To achieve this goal, the attacker derives the desta-
bilizing feedback policy ∆yi, that violates the small-gain theorem’s necessary and
sufficient conditions.
Remark 4.4.2. Thus, to ensure the stability of the closed-loop system, the resilience
policy should altogether eliminate the influence of the corrupted measurement from
the control loop, by means of correction vector signal r. In this way the transfer
function, from ∆yi to yi becomes zero.

Control Reconfiguration

The correction vector signal r is generated and sent to the local controllers to cor-
rect the attacked signals yj for ∀i ∈ Γa. This results to controller reconfiguration.
To generate the correction vector signal r, an observer that is called virtual sensor,
which is a Kalman filter, is implemented in the supervisory controller. Since the
virtual sensor is running in the supervisory level, it has access to system-wide mea-
surements (y1, ..., yny ) and can estimate the states of the plant (x̂i, i = 1, ..., nx),
based on the available model of the system and all the available healthy measure-
ments, in all the times. By having x̂, the correction vector signal r is calculated
and sent to the plant by the supervisory controller (see Figure 4.4).

Since the attacker has access to the m number of unprotected measurements
yi, ∀i ∈ Γ, we can consider 2m different attack scenarios. This means there are 2m
different modes σ ∈ {1, ..., 2m} for the system operation, and each mode indicates
which measurements are under attack. Considering different modes of operation,
the measurement attack vector and the correction vector signals are represented by
∆yσ and rσ, respectively, at any given time k.

Here, the system mode is σ = 1 if system is under normal condition (∆yσ = 0
if σ = 1), and we have σ ∈ {2, ..., 2m} for the all the possible abnormal conditions
(∆yσ 6= 0 if σ 6= 1). Note that by σ = 2m we mean the mode in which all the
unprotected measurements are attacked. Having different modes of operation, and
considering the introduced ∆yσ and rσ, the discrete-time LTI system model (4.5)
turns into a switched linear system (see [12])

x(k + 1) =Aclx(k) +Bcl1 d(k) +Bcl2 (∆yσ(k) + rσ(k)) +M

[
w(k)
ν(k)

]
y(k) =Cclx(k) +N

[
w(k)
ν(k)

]
,

(4.9)

where, Bcl2 =
[
0 [F ]>

]>. The switched linear model (4.9) is called abnormal
system model. Note that σ(k) can vary over time, and the goal of rσ(k) is to
replace the attacked measurement ỹ with ŷ. Here, for simplicity of notation, we
have used the subscript σ instead of σ(k) which is dependent on the given time k.
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Figure 4.4: Schematic of control system, which is resilient against the adversarial
actions on the measurements.

State Estimation Problem

Under the normal and abnormal conditions, and for different attack scenarios, the
virtual sensor generates an estimate of the outputs (Cixi(k), i ∈ Φ), by receiving
the measurement signals and based on the linear state-space model of the plant.
Remark 4.4.3. If the model of the processes Pi and the controllers Ki are not
available, or the system is bulk (as discussed in Section 4.1), a linear state-space
model that is able to explain the covariance of the outputs y and is being derived
by applying system identification, may be used instead.

Note that the virtual sensor is an output estimator (ŷi, i ∈ 1, ..., ny) based on all
the available healthy measurements (see [47]). Thus, the corrupted measurements
are not used by the virtual sensor, and based on the mode of attack σ, it results in
the switched linear systems. Under different operation modes σ, and at each given
time k, a linear estimation x̂ of the unknown system state x is determined here.
At each given time k, the SIA informs the virtual sensor that the measurements
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yj , j ∈ Γa are corrupted and should not be used for updating and predicting the
states of the system. This means, the system mode σ is determined by the SIA
and is being sent to the virtual sensor. To account for the fact that there can be
communication delays between the plant and the supervisory controller, we make
the following assumption. (The assumption can be relaxed at the expense of a
slightly more complicated estimator.)

Assumption 4.4.1. At the given time k, only the measurements until time k − 1
are available in the supervisory controller.

Based on Assumption 4.4.1, the virtual sensor, which is a switched Kalman filter
here (see [12]), takes the prediction step for the state of the system as

x̂(k + 1|k) = Aclx̂(k|k − 1) +Kσ(k) [yσ(k)− Cσx̂(k|k − 1)]︸ ︷︷ ︸
ε(k)

,
(4.10)

where, yσ(k) is a vector of healthy measurements. Here, Cσ is constructed from
the matrix Ccl by removing the rows related to the corrupted measurements and
based on the operation mode σ. Note that by x̂(k|k− 1) we mean an estimation of
x(k), given the measurements yσ(t) up until time t = k − 1, and the optimal one
step ahead prediction of y(k) is ŷ(k) = Cclx̂(k|k − 1). The time-varying Kalman
gain Kσ(k) is given by

Kσ(k) =
(
AclPσ(k)C>σ +R12σ

)
× (CσPσ(k)C>σ +R2σ)−1,

Pσ(k) =AclPσ(k − 1)Acl> +R1σ −
(
AclPσ(k − 1)C>σ +R12σ

)
×
(
CσPσ(k − 1)C>σ +R2σ

)−1 ×
(
AclPσ(k − 1)C>σ +R12σ

)>
.

(4.11)

where, Pσ(k) is the time-varying estimation error covariance matrix. In (4.11),
we have R1σ = MRM>, R2σ = NσRN

>
σ , and R12σ = MRN>σ . Here, Nσ is

constructed from the matrix N by removing the rows related to the corrupted
measurements and based on the operation mode σ.

In this assumption, the system is under the worst case attack mode σ = 2m,
in which all the m number of the unprotected sensor measurements (yj ,∀j ∈ Γ)
are under attack and the virtual sensor only uses the information of the protected
measurements’ noise. Therefore, the system is stabilizable for the all other modes
σ. By having x̂(k|k − 1), the correction signal for different mode is then given by

rσ(k) = Qσ(k)
(
ỹ(k)− Cclx̂(k + 1|k)

)
. (4.12)

Here, the matrix Qσ(k) is chosen to be a diagonal matrix, having −1 on diagonal
entries related to the measurements under attack, and 0 on the rest. In this way,
the resilience policy omits the attacked measurements (see Remark 4.4.2), and uses
the estimated outputs instead.

Based on the estimated states, the supervisory controller will send the correction
signal rσ to the plant for control reconfiguration and to improve the performance
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of the system under attack. The local controller receives the signal y + ∆yσ + rσ
to instead of y + ∆yσ. The signal y + ∆yσ + rσ would not be of the same quality,
and may be time-delayed compared to measurements of the system y under normal
condition. However, in this way we make sure that the attacker cannot destabilize
the system (see Remark 4.4.2). The other advantage of this approach is that it
does not require many changes in the lower-level designs. We next will prove that
the proposed scheme indeed preserves performance optimality and stability.

Definition 4.4.2 (Completely switched observability [12]). The deterministic part
of (4.9) is completely switched observable over the finite time horizon [k0, k1] if and
only if the observability matrix

D(k1, k0) :=


Cσ(k0)

Cσ(k0 + 1)Acl
...

Cσ(k1)
(
Acl
)k1−k0

 (4.13)

has full rank, rank D(k1, k0) = nx for each possible switching sequence σ(k0), ..., σ(k1).

However, the switched observability of the system (4.9) is not ensured by the
assumption that for each subsystem σ ∈ {1, ..., 2m}, the pair (Acl, Cσ) is observable.
Therefore we need the following result.

Assumption 4.4.2. There exists redundancy in the sensor measurements’ in-
formation, and the system is observable from only the protected measurements,
yi, i ∈ ΓC .

Lemma 4.4.1. Consider the switched system (4.9) with the finite number of switch-
ing modes σ ∈ {1, ..., 2m}. This system is completely switched observable over the
finite time horizon [k0, k1], ∀k1 ≥ k0 + nx − 1 under the Assumption 4.4.2.

Proof. Based on the Assumption 4.4.2, at most m number of measurements could
be corrupted, and there exist 2m different modes σ ∈ {1, ..., 2m} for the switched
system. Here, C2m relates to the worst case mode in which all the m measure-
ments are corrupted. We know that C2m is in a subset of Cσ,∀σ ∈ {1, ..., 2m}.
In addition, based on the Assumption 4.4.2, we know that Acl, C2m is observ-
able (Obsv(Acl, C2m) = nx). Thus, rankObsv(Acl, C2m) ≤ rankD(k1, k0),∀k1 ≥
k0 + nx − 1, which means that rankD(k1, k0) = nx.

Lemma 4.4.2. If for each possible switching sequence σ(k0), ..., σ(k1) over the
finite time horizon [k0, k1], the pair (Acl, Cclσ ) is completely switched observable and
the pair (Acl,M) is controllable, then by defining Pσ(k) = E(ex(k)ex(k)>), for
an arbitrary switching sequence σ(0), ..., σ(k),∀k, the error variance tr(Pσ(k)) of
the switching state estimation is bounded. Note that ex(k) = x(k) − x̂(k) is the
estimation error.

Proof. See [12], Lemma 2 for instance.
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Theorem 4.4.3. The application of the switching Kalman filter (4.10) yields an
unbiased linear estimate x̂(k) of the system state x(k) with minimum error variances
∀k ≥ nx − 1, for an arbitrary switching sequence σ(0), ..., σ(k).

Proof. Based on the Lemma 4.4.1, the switched linear system (4.9) is completely
switched observable over the finite time horizon [0, k], ∀k ≥ nx − 1. By having
completely switched observability, as it is shown in proof of Lemma 3 in [12], the
switching Kalman filter (4.10) leads to the minimum error variance ∀k ≥ nx−1.

Remark 4.4.4. Considering only the protected measurement for the estimation, in
all the conditions, gives a lower bound (tr (Pσ(k)) , σ = 2m,∀k) on the performance
of the system in the sense of variance of the estimation error ex(k). Thus, by
considering all the healthy measurements which gives us more information for the
estimation, the application of the switching Kalman filter (4.10) yields an unbi-
ased linear estimate x̂(k) of the system state x(k) with minimum error variance
(tr (Pσ(k)) , σ ∈ {1, ..., 2m},∀k).

By designing the switched observer (4.10) for the stochastic switched linear
system (4.9), for different modes of operation σk ∈ {1, ..., 2m},∀k, the closed-loop
dynamics of the system is given by

[
x(k + 1)
ex(k + 1)

]
=
[
Acl Bcl2 QσC

cl

0 Acl +Bcl2 QσC
cl −Kσ(k)Cσ

]
︸ ︷︷ ︸

Aspσ

[
x(k)
ex(k)

]
+
[
Bcl1
Bcl1

]
d(k)

+Bcl2
[
I +Qσ

0

]
∆yσ(k) +

[
M +Bcl2 QσNσ

M +Bcl2 QσNσ −Kσ(k)Nσ

] [
w(k)
ν(k)

]
.

(4.14)

Assumption 4.4.3. The states of the system (4.9) are all reachable, from the
protected measurements’ noise. This means that the pair (Acl−R12σR

−1
2σ Cσ, R1σ−

R12σR
−1
2σR

>
12σ) is stabilizable for σ = 2m.

Theorem 4.4.4. The closed-loop system (4.14) is asymptotically stable, for arbi-
trary switching sequence modes σ ∈ {1, ..., 2m},∀k.

Proof. Here, since (I +Qσ) is a diagonal matrix with diagonal zero entries for
the corresponding nonzero entries of ∆yσ(k), the we have (I +Qσ) ∆yσ(k) = 0. In
addition, ex(k) is the input for the state x(k), and the matrix Aspσ1

×Aspσ2
×···×Aspσl ,∀l,

which is an upper block triangular matrix, has bounded off diagonal block (since the
matrices Acl and Acl +Bcl2 QσC

cl −Kσ(k)Cσ are stable matrices). In [12], proof of
Lemma 4, it is shown that the deterministic part of the error ex(k) is asymptotically
stable in the sense of Lyapunov and vanishes for k → ∞. Thus, the closed-loop
system is asymptotically stable since the effects of ex(k) on x(k) vanishes, the effect
of ∆yσ(k) on x(k) is zero, and Acl is Schur stable by Assumption 4.2.1.
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4.5 Attack Diagnosis

Attack diagnosis play an important role to recover the system from attack and is
composed of attack detection and isolation, which are two of the crucial subtasks
in the supervisory controller (see Section 4.2).

Attack Detection
The SIA tool is responsible for detecting potential attacks and for providing in-
formation to the resilient control policy. It consists of a set of anomaly detection
algorithms that allows analysts to examine the results. The SIA tool uses a combi-
nation of (i) domain-specific expert knowledge and (ii) machine learning algorithms,
to understand the behavior of the system under normal, stable operating conditions,
and to detect any anomalies or deviations from normal behavior. These anomalies
are flagged as potential attacks and the resilient policy is triggered to maintain
stability of the system, while further investigation into the anomalies is carried out.
The combination of expert knowledge and data-driven machine learning approaches
aims to provide a high attack detection rate, in the face of highly sophisticated at-
tackers. The expert knowledge component exploits domain-specific physical laws
and system topology, to define the explicit relationships between different variables
in the system; if these relationships are not satisfied by the measured variables, it
may indicate that one or more of the variables is under attack. Despite not having
explicit definitions, these relationships between operating conditions and measured
variables can play an important role in detecting abnormal behavior in the sys-
tem. A well-designed machine learning algorithm can allow the implicit patterns
and dependencies in the data to be learned, building a model that represents the
normal behavior of the system. Measured data can then be compared to the model
to determine if the system is operating normally or not.

Attack Isolation
Attack isolation is one of the crucial subtasks in the supervisory controller (see
Section 4.2), which determines the location of the attacks (e.g., ỹi 6= yi). In other
words, it determines operational modes σk ∈ {1, ..., 2m} of the system in all the
times. To perform the attack isolation here, the steps of the proposed algorithm
are detailed in the following algorithm.
Remark 4.5.1. In the most conservative scenario, protected measurements are de-
termined as the set of healthy measurements and x̂(k′ + 1|k′) is computed based
on those measurements only.

4.6 Simulation Results

The performance of the proposed resilient control for the BMS, is evaluated in
this section. In the simulation results shown in the Figure 4.5, the temperature
of header flow, header return, the ground and first floor of Nimbus building, and
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Algorithm 4.1 Attack isolation algorithm
1: Attack is detected by SIA at time k′
2: Resilience policy generates the residue re, by using protected measurements

only at time k′
3: Attacked measurements are isolated based on re, and a set of healthy measure-

ments is determined by resilience policy
4: A set ofmodified measurements including healthy measurements plus estimation

of the attacked ones (being estimated by the resilience policy based on the
healthy measurements) is sent to SIA to confirm the normality of the set of the
modified measurements

5: If the normality of the set of the modified measurements is confirmed by SIA,
determine operational mode σk and compute x̂(k′ + 1|k′), otherwise a more
conservative residue generation policy is chosen and go to step 2

the ground and first floor of the Rubicon building are under consideration. These
temperatures are respectively corresponding to the six measurements of the sensors
S1-S6 in Figure 4.1. The results are shown for three different cases of healthy BMS,
attacked BMS, and attack-resilient BMS. In the simulations, a multi-attack scenario
(the combined attacks AT1 and AT2, which is shown in Figure 4.1) is considered
to start at the k′ =3000s. It means that after the k′, the measurements of the
header flow and header return temperatures are manipulated by adding 15◦C to
each of them, and are fed to the respective controllers. In this attack scenario,
the attack is considered to be detected by the SIA immediately after k′, and the
corrupted measurements are replaced with their estimates that are sent by the VS.
As it is illustrated in Figure 4.1, the multi-attack on the measurements leads to high
safety risk due to damaging of CHP in the attacked BMS, since return temperature
is below 65◦C after the attack. In this attack scenario, the attack-resilient BMS
is robust against the multi-attack and have the same performance as the healthy
BMS.

In Figure 4.6, measurements of the header flow and header return temperatures
in the healthy BMS are shown, and compared with the estimates of the outputs of
the attack resilient BMS. Note that the estimates of the outputs are computed by
the VS, and one can see that the VS accurately estimates the measurements of the
healthy system in the presence of the attack.

Some major factors such as communication delay, large amount of data, and
time-consuming security analysis algorithms, can affect the real-time attack detec-
tions. To investigate performance of the proposed resilient control in these situa-
tions, the following scenario is considered. Assume that the same attack as before,
starts at time k′ =3000s, and is detected at 3300s (with five minutes delay). As it
is shown in Figure 4.7, the attack-resilient BMS has the same outputs as the at-
tacked BMS until attack detection (3300s), but it can recover the system to return
to the normal conditions after that. We have done other simulations with different
delays for the attack detections, and in all the cases, the attack-resilient BMS has
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Figure 4.5: Performance comparison of the Healthy BMS, Attacked BMS and
Attack-Resilient BMS, in the presence of attack on the header flow and return
temperature measurements
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Figure 4.6: Measurements of the header flow and header return temperatures in
the healthy BMS in comparison with the estimation of the outputs (which are
computed by the VS) in the attack-resilient BMS.

recovered the system to return to the normal conditions after the attack detection.
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Figure 4.7: Performance comparison of the Healthy BMS, Attacked BMS and
Attack-Resilient BMS, in the presence of delay in attack detection (the attack
starts at time 3000s, and is detected at 3300s).



Chapter 5

Conclusion and Future Work

This chapter concludes Part II of this thesis. In Chapter 3, the properties of a volt-
age droop control scheme in interconnected microgrids under adversarial actions
have been studied. First the power system dynamics under nominal operation were
analyzed, and conditions ensuring relevant system properties, including stability,
were derived. Then, two attack scenarios were discussed, where the adversary is
able to manipulate the measurement data and reference signals received by the
voltage droop controllers. Each attack scenario admits multiple instances, depend-
ing of which set of nodes are attacked. The potential impact of different instances
of each scenario were compared using control-theoretic tools, which provides a ba-
sis to identify high-risk attack instance in each scenario. Our methodology was
illustrated on a line network through numerical examples. A cyber-security frame-
work applicable to a building Energy Management System is studied in Chapter 4.
The framework uses the physics of the system to drive the security information
analytics and resilient policy. System stability and framework efficiency is proved.
Simulation studies are performed on a critical attack scenario, where the security
information analytics algorithm triggers the resilient control to recover from the at-
tack. Simulation results show that the proposed resilient control policy can recover
the system from abnormal conditions, even when there exist delay for the attack
detections.

There are several research directions to explore regarding the work presented
in this part. In Chapter 3, quadratic droor controller has been applied for each
MG. However there exist other types of controllers (e.g., droop and reactive cur-
rent controllers), for which one can study the properties of voltage control scheme
in interconnected MGs under adversarial actions. Although it is shown that the
proposed resilience policy in Chapter 4 is able to cope with the attacks to the ICSs’
lower layer, it would be interesting to investigate the cases where the supervisory
layer is under attack at the same time. In this chapter virtual sensor generates an
estimate of the outputs based on the identified linear state-space model of the plant.
This model parameters are assumed to be perfect, while by considering uncertain-
ties in them, stability and performance analysis of the system remain unclear.
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