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Abstract

Achieving a sufficient level of security of control systems is very important,
yet challenging. Firstly, control systems operate critical infrastructures vital
for our society. Hence, attacks against them can result in dire consequences.
Secondly, large numbers of security vulnerabilities typically exist in these sys-
tems, which makes them attractive targets of attacks. In fact, several attacks
have already occurred. Thirdly, due to their specific nature, securing control
systems can be costly. For example, their real time availability requirements
complicate the deployment of security measures, and control system equip-
ment with limited computational power is unsuited for many security solu-
tions. Motivated by the necessity of control systems security, we study two
security-related applications.

The first application considers classifying and preventing security vulnerabili-
ties. We aim to first characterize the most critical vulnerability combinations
in a control system, and then prevent these combinations in a cost-effective
manner. To characterize the critical vulnerability combinations, we develop
an impact estimation framework. Particularly, we use a physical model of
the control system to simulate the impact that attack strategies may have on
the physical process. Our framework is compatible with a number of attack
strategies proposed throughout the literature, and can be used to estimate
the impact efficiently. To prevent critical vulnerability combinations in a
cost-effective manner, we develop a security measure allocation framework.
The framework includes an algorithm for systematically finding critical vul-
nerability combinations, and two approaches for allocating security measures
that prevent these combinations cost-effectively.

The second application considers actuator security. Actuators are vital com-
ponents of control systems to protect, since they directly interact with the
physical process. To evaluate the vulnerability of every actuator in a con-
trol system, we develop actuator security indices. These indices characterize
resources that the attacker needs to compromise to conduct a perfectly unde-
tectable attack against each actuator. We propose methods to compute the
actuator security indices, show that the defender can improve the indices by
allocating additional sensors, and discuss the robustness of the indices. We
also study a sensor allocation game based on actuator security indices. The
goal of studying this game is to develop a monitoring strategy that improves
the indices. We derive an approximate Nash Equilibrium of the game, and
present the cases when this approximate Nash Equilibrium becomes exact.
We also outline the intuition behind this equilibrium, and discuss the ways
to further improve the monitoring strategy from the equilibrium.
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Sammanfattning

Att säkerställa reglersystem mot manipulation utifrån är mycket viktigt, men
samtidigt utmanande. För det första styr reglersystem kritiska infrastruktu-
rer vars funktionalitet är avgörande för vårt samhälle. Således kan attacker
mot dem ha allvarliga konsekvenser. För det andra kan ofta ett stort antal
säkerhetsluckor hittas i dessa system, vilket gör dem sårbara för attacker.
Faktum är att flera attacker mot reglersystem redan har inträffat. För det
tredje, på grund av systemspecifika karaktäristika, kan säkerställandet av des-
sa reglersystem vara mycket kostsamt. Till exempel komplicerar realtidskrav
implementeringen av säkerhetsåtgärder; styrsystemutrustning med begränsad
beräkningskraft är inte väl lämpad för säkerhetsåtgärder. Givet de säkerhets-
krav moderna reglersystem har överväger vi två säkerhetsapplikationer.

Den första applikationen består av klassifikation och förebyggande av säker-
hetsproblem. Vi strävar efter att först karakterisera de mest kritiska sårbar-
hetskombinationerna i ett reglersystem och sedan förhindra dessa kombina-
tioner på ett kostnadseffektivt sätt. För att karakterisera de kritiska sårbar-
hetskombinationerna utvecklar vi ett ramverk för påföljdsanalys. Vi använder
en fysikalisk modell av reglersystemet för att simulera de effekter som at-
tackstrategier kan ha på den fysiska processen. Vårt ramverk är förenligt
med ett antal attackstrategier som övervägs i litteraturen och kan användas
för att effektivt uppskatta dessas påföljder. För att förhindra kritiska sår-
barhetskombinationer på ett kostnadseffektivt sätt utvecklar vi ett ramverk
för allokering av säkerhetsåtgärder. Ramverket inkluderar en algoritm för att
systematiskt upptäcka kritiska sårbarhetskombinationer och innefattar även
två metoder för att fördela säkerhetsåtgärder på ett kostnadseffektivt sätt.

Den andra applikationen avser ställdonssäkerhet. Ställdon är viktiga regler-
komponenter att skydda eftersom de direkt interagerar med den fysikaliska
processen. För att utvärdera varje ställdons sårbarhet utvecklar vi säkerhetsin-
dex för dessa. Detta index karakteriserar de resurser som angriparen behöver
för att utföra en oupptäckbar attack mot varje ställdon. Vi föreslår meto-
der för att beräkna dessa index, visar att försvararen kan förbättra indexen
genom att placera ytterligare sensorer och diskuterar relaterade robusthets-
frågor. Vi studerar också ett sensorplaceringsspel baserat på detta säkerhets-
index. Målet med att studera detta spel är att utveckla en övervakningsstra-
tegi som förbättrar säkerhetsindex för ställdon. Vi härleder en approximativ
Nash-jämvikt i spelet och presenterar de fall när denna approximativa Nash-
jämvikt blir exakt. Vi beskriver också intuitionen bakom denna jämvikt och
diskuterar metoder för att ytterligare förbättra övervakningsstrategin baserad
på denna jämvikt.
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Z The set of integers
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xT The transpose of the vector x
supp(x) = {i : xi 6= 0} (the support of the vector x)
‖x‖∞ = maxi |xi| (the infinity norm of the vector x)
‖x‖2 =

√
xTx (the euclidean `2-norm of the vector x)
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0n×m The n×m-dimensional matrix whose elements are equal to zero
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Chapter 1

Introduction

This thesis is on control system security. In the following, we explain what makes
this topic important and interesting to study, introduce four security-related prob-
lems addressed in the thesis, and outline our contributions.

1.1 Motivation

Control systems operate physical processes that are vital for our society. Elec-
tricity production, oil and gas distribution, water purification, manufacturing, and
transportation are just some of the numerous examples of these processes.
As depicted in Figure 1.1, control systems can roughly be divided into three layers:
the enterprise layer, the supervisory layer, and the field layer [1, 2]. The enterprise
layer is responsible for planning and optimizing the operation of the control sys-
tem [2]. This layer consists of equipment that can be found in regular Information
Technology (IT) systems, and is often connected to other external networks, the
Internet, and to the supervisory layer [1]. The supervisory layer is responsible for
monitoring and high-level control of the physical process. For example, operators
in a control center can monitor, collect, and analyze process information, or take
manual control over some of the equipment in the field layer.
This thesis mostly focuses on the field layer, which is responsible for the direct inter-
action with the physical process. This interaction can be captured by the equations

x(k + 1) = Ax(k) +Bu(k) + vx(k),
y(k) = Cx(k) + vy(k),

(1.1)

which describe how the physical process evolves over time. Here, x(k) ∈ Rnx are
the physical states (e.g., pressures, temperatures, or flows). The measurements
y(k) ∈ Rny of these states are collected by the sensors, and sent to the control
devices (e.g., programmable logic controllers (PLCs), intelligent electronic devices,
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Control center             Supervisory            Control center

layer
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Physical 

process
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layer

…

Figure 1.1: A typical three-layered architecture of a control system. Functions
of the enterprise layer include scheduling and planning, the supervisory layer is
responsible for monitoring and high-level control of the physical process, and the
field layer directly interacts with and controls the physical process.

or remote terminal units [3]). Based on these measurements, the control devices
compute appropriate control actions u(k) ∈ Rnu , and send them to actuators (e.g.,
motors and valves) for execution. Finally, vx(k) ∈ Rnx and vy(k) ∈ Rny are random
processes, which can model noise, disturbances, or faults.
From the description in the previous two paragraphs, one can see that control
systems are cyber-physical systems that utilize cyber components to control phys-
ical processes. This cyber-physical coupling is precisely the reason why ensuring
security of these systems is of utmost importance. Namely, by exploiting cyber-
vulnerabilities, an attacker may gain an opportunity to manipulate some of the
system components that directly interact with the physical process. He/she can
then utilize these components to conduct a malicious attack against the process.
How dangerous this could be is best illustrated by attacks that have occurred. We
now briefly recall some of the well known attacks.

Example 1.1. The Maroochy water services breach occurred in the year 2000,
in Australia [4, 5]. The series of attacks targeted a sewerage control system and
lasted for two months. During this time, one million liters of untreated sewage
was released into a stormwater drain. The contaminated water flooded waterways
and parks, resulted in the death of marine life, and an unbearable smell spread over
the area. The attacks were conducted by an engineer who had previously worked

2
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(b)

Control center
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Network(c)

Control center Centrifuges

REC

Figure 1.2: Illustration of the Stuxnet attack. Stuxnet: (a) infiltrated a nuclear fa-
cility through a USB and compromised controllers of uranium enriching centrifuges;
(b) recorded measurements of normal operation; and (c) damaged the centrifuges by
issuing malicious control actions while covering these actions by sending previously
recorded measurements of normal operation to operators.

on the system. The attacker was familiar with the system’s architecture, knew its
vulnerabilities, and possessed specialized radio equipment. Using these resources,
the attacker managed to alter configuration of control stations, issue malicious radio
commands to controllers, and disable alarms.

Example 1.2. Stuxnet was a computer worm specially designed to sabotage the
Iranian nuclear program [6–8]. Since its discovery in 2010, it has attracted con-
siderable attention in the media, industry, and research community. As shown in
Figure 1.2, the Stuxnet attack consisted of three stages. In the first stage, Stuxnet
infiltrated a uranium enrichment plant through a USB drive, localized controllers
of uranium enriching centrifuges, and compromised them (Figure 1.2 (a)). Stuxnet
then started recording sensor measurements of normal operation (Figure 1.2 (b)).
In the final stage, Stuxnet started issuing malicious control actions while sending
the previously recorded measurements to the control center (Figure 1.2 (c)). Thus,
the operators falsely believed that the centrifuges were operating normally, while the
harmful control signals were damaging the centrifuges.

Example 1.3. In 2015, three Ukrainian electricity distribution companies became
targets of an organized attack [9]. In this attack, e-mails containing the malware
BlackEnergy were sent to employees of the targeted companies. The employees were
tricked into installing BlackEnergy, after which the malware enabled the attacker
to infiltrate the companies’ networks. Next, the attacker localized control centers,
gained access to them, and familiarized himself/herself with the control centers’

3



environments. The attacker then disabled operators from interfering with the at-
tack while issuing malicious commands to the field layer equipment. These actions
caused the blackout of the system, leaving 225,000 customers without electricity.

Having the previous examples in mind, it is perhaps surprising that control system
security was neglected in the past [10]. One reason for this is that control systems
predominantly used to be isolated from other IT systems. Additionally, hardware
and software for control systems were specially designed [11]. Thus, it was security
through obscurity that provided a reasonably high level of protection.
However, this is no longer the case. Control systems are now connected to other
networks, and the technologies used in control systems are becoming standardized
and similar to those used in ordinary IT systems [12]. Moreover, these changes were
not accompanied by application of appropriate security solutions. This has resulted
in a large number of security vulnerabilities, and made attacks against control
systems easier to design. For example, communication protocols commonly used in
control systems are often lacking basic security features [13], a control center may
be connected directly or indirectly to the Internet without adequate protection [14],
and some devices within the system may be easily physically accessible [15].
Additionally, protecting control systems proves to be difficult. In contrast to ordi-
nary IT systems that have a typical life span of two to five years, control systems
are designed to last for decades. Thus, support for some of their equipment may
not exist anymore [15]. Control systems also have tight real time requirements,
which significantly complicates the deployment of security measures [15]. Further-
more, the equipment used in these systems is in many cases resource constrained.
Hence, security measures such as encryption that require additional memory and
computational resources may cause delays in the system, and thus, result in reduced
performance or even instability [16]. Finally, control systems can be highly complex
large-scale systems. Therefore, ensuring that each part of such a large-scale system
is sufficiently well protected may be prohibitively expensive.
Given the potentially large number of vulnerabilities, difficulties in implementing
security measures, and complexity of control systems, aiming to achieve perfect
protection of these systems is not realistic. Therefore, it is highly recommended
to deploy a security strategy according to a risk management program [12, 14, 15,
18]. As shown in Figure 1.3, this program consists of the risk framing, the risk
assessment, the risk response, and the risk monitoring [17].
The risk framing defines a strategy for the other steps of the risk management
program [17]. The risk assessment identifies attack scenarios of interest, estimates
how likely these scenarios are to occur, and estimates the possible impact if they
occur. Once the dangerous attack scenarios are identified, we move to the risk
response step, where a cost-effective defense strategy against these scenarios is de-
veloped. This strategy may consists of: (i) attack prevention (e.g., by encrypting
communication links or improving physical protection of devices [19,20]); (ii) attack
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• Prevention

• Detection

• Mitigation

• Identify attack scenarios

• Estimate impact  

• Estimate likelihood

• System changes

• New vulnerabilities

Risk

framing

Risk

monitoring

Risk
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Figure 1.3: The risk management cycle [17]: (i) the risk framing defines a strategy
for conducting the remaining three steps of the risk management; (ii) the risk
assessment determines the most critical attack scenarios; (iii) the risk response
develops a cost-effective defense strategy; and (iv) the risk monitoring evaluates
how the risk changes over time.

detection (e.g., by detecting anomalies in the physical behavior of the system or
network traffic [21, 22]); and (iii) attack mitigation (e.g., by reconfiguring the sys-
tem in such a way that the non-attacked components control the process [23, 24]).
Finally, the risk monitoring evaluates the effectiveness of the implemented strategy
over time, and determines how system changes affect the risk [17].
Motivated by the importance of the risk management program, in this thesis we
focus on developing mathematical models and tools that can be used for risk as-
sessment and risk response purposes. Our focus is on two practical applications
related to control systems, which are presented in the following.

1.2 Problem formulation

This section introduces two motivating applications that are considered in the the-
sis, together with the corresponding security problems.

Application 1: Classifying and preventing security vulnerabilities

We are given a set of security vulnerabilities V within a control system. Elements
of V can model an unprotected communication link, lack of antivirus software on a
computer in a control center, or insufficient physical protection of some devices [15].
By exploiting some of these vulnerabilities, the attacker can gain access to sensors
and actuators, and then use these components to endanger the physical world. To
prevent this, we seek to deploy some of the security measures from a setM. Exam-
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Figure 1.4: The problem of classifying and preventing critical vulnerability combi-
nations can be divided into two sub-problems: (a) classifying critical vulnerability
combinations based on their impact and likelihood (each circle represents one vul-
nerability combination); and (b) selecting the least expensive subset of security
measures to prevent the critical vulnerability combinations.

ples of these measures are the encryption of a communication link, the installation
and maintenance of anti-virus software, or the deployment of additional physical
protection. However, our budget is insufficient to deploy all the security measures.
Thus, the problem becomes how to deploy security measures in a cost-effective way.
To resolve this problem, we need to develop tools for conducting the risk assessment
and the risk response.
In this case, the risk assessment reduces to determining the critical vulnerability
combinations that we want to prevent. As shown in Figure 1.4, an important factor
in determining these combinations is the impact that can occur when a combina-
tion of vulnerabilities is exploited [17]. The impact can be estimated by modeling a
control system, and then simulating possible attack strategies [25]. Attack strate-
gies that attract special attention are those that can result in a large impact while
staying stealthy from the system operator. Examples of these strategies are optimal
False Data Injection (FDI) [26], bias injection [27], and replay [28] attack strate-
gies. However, simpler and easier-to-conduct strategies such as Denial of Service
(DoS) [29], rerouting [30], and sign alternation [31] strategies have also been con-
sidered. Since attacks against control systems may endanger the physical world,
it is natural to use a physical model of the system to estimate the attack impact.
Thus, the first problem we tackle in the thesis can be summarized as follows:

P1: How can we utilize a physical model of a control system to estimate the impact
of attack strategies in a unified framework?

Remark 1.1. Besides the impact, one should also consider the likelihood when
determining critical vulnerability combinations [17]. The likelihood is typically a
score representing the belief of an attack scenario occurring relative to other sce-
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narios [17]. This score can be formed based on expert knowledge [17, 32, 33], or by
using tools developed for this purpose [34, 35]. Since estimating the likelihood that
a combination of security vulnerabilities is exploited requires significantly different
models from those that we use in this thesis, we do not address this problem.

Next, assume that we have a way to determine critical vulnerability combinations.
The second step is to select the least expensive subsetM ⊆M of security measures
that prevents all the critical vulnerability combinations (risk response). We name
this problem the security measure allocation problem.
The security measure allocation problem is challenging for two reasons. Firstly, to
construct this problem, we need to find the critical vulnerability combinations. This
is difficult, since the number of vulnerability combinations equals to 2|V|. Hence,
simply searching through all the combinations is not feasible when the cardinality
of V is large. Secondly, the security measure allocation problem is a combinatorial
optimization problem. Thus, it is unclear if we can solve it efficiently. This leads
us to the second problem:

P2: Can we develop tools for constructing and solving the security measure allo-
cation problem in a scalable manner?

Application 2: Characterizing and improving the security level of
actuators in large-scale control systems

The second application considers actuator security (Figure 1.5). Actuators are
very important control system components, since they directly interact with the
physical process. Unfortunately, documented attacks have shown that actuators
can be compromised by an attacker [4,6,36]. These important components can then
be sabotaged, or used to endanger the physical world. Therefore, it is essential to
ensure that the actuators are well protected. However, if the control system is large,
then it is expected that we are unable to protect all the actuators. Thus, it is crucial
to develop tools for characterizing the most vulnerable actuators (risk assessment),
and improving their security level in a cost-effective manner (risk response).
For the risk assessment purposes, we introduce an actuator security index δ. The
security index δ(ui) of an actuator ui characterizes the minimum resources that the
attacker needs to compromise to conduct a perfectly undetectable attack against ui.
Perfectly undetectable attacks are very dangerous, since they do not leave any
trace in the sensor measurements [37]. Therefore, an actuator is more (resp. less)
vulnerable, if it has a small (resp. large) actuator security index.
However, as shown in this thesis, the index δ is not practical to be used in large-
scale control systems. Particularly, δ is difficult to compute and sensitive to system
variations that are expected in large-scale systems. Additionally, δ is based on
the assumption that the attacker possesses full model knowledge, which may be
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Figure 1.5: Application 2 consists of characterizing and improving the security
level of actuators in large-scale control systems. The tools that we develop can for
example be used to: (a) characterize vulnerable generators in a power grid; and
(b) strategically allocate protected sensors to detect attacks against the generators.

conservative to assume in the case of large-scale control systems. Hence, the third
problem we address is as follows:

P3: How to define actuator security indices for large-scale control systems?

Next, assume that we have actuator security indices that are suitable for large-scale
systems. Additionally, assume that we determine that some of the actuators have
low security indices. The question is then how to increase security indices of these
actuators (risk response). We show that one way to achieve this is by allocating
protected sensors to detect possible actuator attacks. However, since we focus on
large-scale control systems, it is reasonable to assume that a number of protected
sensors is insufficient to monitor every state in the system. Thus, the final problem
that we address is as follows:

P4: How to strategically allocate a limited number of protected sensors in a large-
scale control system such as to improve actuator security indices the most?

1.3 Structure and contributions of the thesis

This section explains the way we tackle the previously introduced problems, de-
scribes the structure of the thesis, and outlines our contributions.

Chapter 2: Literature review

Chapter 2 introduces the related literature. We also discuss how our work differs
from and extends the existing literature.
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Chapter 3: Mathematical preliminaries

Chapter 3 provides the mathematical background.

Chapter 4: Impact estimation

Chapter 4 tackles P1. Particularly, we propose and study a novel type of impact
estimation problem. We consider two impact metrics: The probability that some
of the critical physical states leave a safety region (IP ) and the expected value of
the infinity norm of the critical states (IE). A stealthiness constraint is defined
using the Kullback–Leibler divergence (KL–divergence) between the attacked and
non-attacked residual sequences. We also introduce constraints on attack signals
through which we impose different types of attack strategies.
The main results are as follows. We characterize conditions under which the impact
estimation problem is infeasible or its optimal value equals to the maximum impact.
When these conditions are not satisfied, we prove that the optimal value of the
impact IP can be computed by solving a set of convex problems. We also derive
lower and upper bounds for the metric IE , which can be computed efficiently. Next,
we show that our framework allows us to analyze the impact of the optimal FDI,
bias injection, DoS, replay, rerouting, sign alternation, and combined DoS and
FDI attack strategies. We also discuss how to use properties of these strategies
to more efficiently estimate the impact. Finally, we consider a control system of a
chemical plant, and illustrate how our framework can be used to compare security
vulnerabilities. We also clarify some of the technical results through examples.
The chapter is based on the publication:

• J. Milošević, H. Sandberg, and K. H. Johansson, “Estimating the impact of
cyber-attack strategies for stochastic control systems,” IEEE Transactions on
Networked Control Systems. Accepted in August 2019.

Related publications are:

• J. Milošević, D. Umsonst, H. Sandberg, and K. H. Johansson, “Quantifying
the impact of cyber-attack strategies for control systems equipped with an
anomaly detector,” in Proceedings of the European Control Conference, 2018.

• J. Milošević, T. Tanaka, H. Sandberg, and K. H. Johansson, “Analysis and
mitigation of bias injection attacks against a Kalman filter,” in Proceedings
of the 20th IFAC World Congress, 2017.
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Chapter 5: Security measure allocation

Chapter 5 addresses P2. We propose a security measure allocation framework that
is suitable for dynamical models of control systems. Our framework also captures
the cyber-physical interaction, which allows us to study the problem of classifying
and preventing security vulnerabilities.
The main results are as follows. First, we propose an algorithm that systematically
searches for the critical vulnerability combinations and provably returns the com-
binations necessary to construct the security measure allocation problem. We then
establish that the security measure allocation problem is NP-hard, and propose
two suboptimal approaches for addressing it. In the first approach, we show how
the problem can be simplified and tackled using integer linear program solvers. In
the second, we show that the problem possesses a suitable submodular structure.
This allows us to apply a polynomial-time greedy heuristic to find a suboptimal
solution of the problem with guaranteed performance. We additionally investigate
how to optimize these performance. Finally, we demonstrate the applicability of
our framework on a control system for temperature regulation.
The chapter is based on the publication:

• J. Milošević , A. Teixeira, T. Tanaka, H. Sandberg, and K. H. Johansson, “Se-
curity measure allocation for industrial control systems: Exploiting system-
atic search techniques and submodularity,” International Journal of Robust
and Nonlinear Control. Accepted in September 2018.

A related publication is:

• J. Milošević, T. Tanaka, H. Sandberg, and K. H. Johansson, “Exploiting
submodularity in security measure allocation for industrial control systems,”
in Proceedings of the 1st ACMWorkshop on the Internet of Safe Things, 2017.

Chapter 6: Actuator security indices

Chapter 6 focuses on P3. We first introduce a novel type of actuator security
index δ. We propose a way to compute δ in small-scale systems, show that δ
can be potentially increased by placing additional sensors, and that placement of
additional actuators may decrease δ. We then discuss issues that arise in large-scale
systems: The index δ is NP-hard to compute, sensitive to system variations that
are expected in large-scale systems, and based on the assumption that the attacker
knows the entire model of the system.
Next, we introduce the robust security index δr, which is based on a structural
model of the system [38]. We show that δr can be efficiently computed and related
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to both the full and limited model knowledge attackers. Since the results we derive
imply that actuators with a small value of δr are very vulnerable in any system
realization, we propose a sensor allocation strategy to increase δr. We first show
that δr is guaranteed to increase if sensors are placed at suitable locations, and
then discuss how to systematically allocate unprotected sensors.
Finally, we show how the indices we propose can be used to characterize vulnerable
generators in power grids. We also clarify the technical results through examples.
The chapter is based on the publication:

• J. Milošević, A. Teixeira, H. Sandberg, and K. H. Johansson, “Actuator secu-
rity indices based on perfect undetectability: Computation, robustness, and
sensor placement,” IEEE Transactions on Automatic Control. Provisionally
accepted in October 2019.

Related publications are:

• J. Milošević , H. Sandberg, and K. H. Johansson, “A security index for ac-
tuators based on perfect undetectability: Properties and approximation,”
in Proceedings of the 56th Allerton Conference on Communication, Con-
trol, and Computing, 2018.

• J. Milošević, S. Gracy, and H. Sandberg, “On actuator security indices,”
in Proceedings of the 14th International Conference on Critical Information
Infrastructures Security, 2019.

Chapter 7: Allocation of protected sensors

Chapter 7 considersP4. We model the sensor allocation problem as a game between
a system operator and an attacker. The operator seeks to allocate a limited number
of protected sensors to improve actuator security indices, while the attacker seeks
to select an actuator with a low value of the security index to attack. We focus on
the case where the attacker uses an extended replay strategy, which is inspired by
the Stuxnet attack (see Example 1.2).
The main results are as follows. Firstly, we introduce an approximate Nash Equi-
librium (NE) of the game, present cases when this NE becomes exact, and outline
some game-theoretic interpretations behind this equilibrium. Secondly, we discuss
how to further improve the monitoring strategy from the aforementioned equilib-
rium by deploying additional sensors, focusing on the most vulnerable actuators,
and using the so-called Column Generation Procedure (CGP). Finally, we conduct
experiments on a benchmark of a large-scale power grid, and show that the tools
we propose allow us to construct NE monitoring strategies in a scalable manner.
The chapter is based on the publication:
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• J. Milošević, M. Dahan, S. Amin, and H. Sandberg, “A monitoring game based
on actuator security indices,” under preparation for journal submission.

A related publication is:

• J. Milošević, M. Dahan, S. Amin, and H. Sandberg, “A network monitoring
game with heterogeneous component criticality levels,” in Proceedings of the
58th IEEE Conference on Decision and Control, 2019.

Chapter 8: Concluding remarks

This chapter summarizes the thesis and outlines possible directions for future work.

The author’s contributions and other publications

In the aforementioned articles, the author of the thesis had the most significant
role in formulating the problems, solving them, as well as writing the articles. The
coauthors have assisted through discussions, suggestions, and text polishing.
We also remark that parts of Chapters 1, 2, and 5 appeared in the licentiate thesis:

• J. Milošević. Model based impact analysis and security measure allocation
for control systems. KTH Royal Institute of Technology, 2018.

The following publications in which the author of the thesis participated are not
covered in the thesis:

• F. Farokhi, J. Milošević, and H. Sandberg, “Optimal state estimation with
measurements corrupted by Laplace noise,” in Proceedings of the 55th IEEE
Conference on Decision and Control, 2016.

• M. I. Müller, J. Milošević, H. Sandberg, and C. R. Rojas, “A risk-theoretic
approach to H2-optimal control under covert attacks,” in Proceedings of the
57th IEEE Conference on Decision and Control, 2018.

• S. Gracy, J. Milošević, and H. Sandberg, “Actuator security indices for struc-
tural systems,” in Proceedings of the American Control Conference, 2020.
To appear.
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Chapter 2

Literature review

This chapter surveys literature related to the thesis. We first briefly review rele-
vant results from control theory. We then provide a short comparison between IT
security and control system security, after which we review work in control system
security. Finally, we focus on the literature related to the security problems P1–P4
we tackle in the thesis, and explain how we differ from and extend this literature.

2.1 Related work in control theory

Researchers in the control community study how a feedback system performs in
the presence of different types of disturbances (Figure 2.1). So far, a number of
approaches for handling these disturbances have been proposed. For example:

(i) In fault tolerant control [39–41], the goal is to detect if a fault has occurred,
isolate the fault, and then respond to it. The detection can be achieved by
generating the so-called residual signal based on a model of the control system
and sensor measurements [40]. A norm of this signal is then compared with
some predefined threshold to determine if the fault has occurred or not. The
isolation can be achieved by generating a bank of residuals, and then checking
which combination of the residuals is active [39]. When the faulty components
are isolated, one can respond to the fault by re-configuring the system such
that the non-faulty components are used to control the process [23].

(ii) In stochastic control theory [42–44], the objective is to optimally control the
system or estimate its trajectory in the presence of stochastic noise. For linear
systems corrupted by Gaussian noise, the optimal estimator with respect to a
quadratic criteria is a Kalman filter, and the optimal controller with respect
to a quadratic criteria is a linear feedback from the state estimate to the
control action [42].
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Figure 2.1: A schematic of a control systems in the presence of disturbances. Due
to the disturbances, the measurements ỹ received by the controller and the anomaly
detector differ from the measurements y collected from the plant, and the corrupted
control actions ũ are applied to the plant instead of the control actions u computed
by the controller. While the tools for handling random disturbances such as noise,
faults, and packet drops are well studied, novel tools for preventing, detecting, and
mitigating malicious strategic attacks are required.

(iii) In robust control [45–47], one tackles the problem of designing controllers that
are robust with respect to model uncertainties. One popular approach is H∞
controller design. This approach aims at finding a stabilizing controller that
minimizes the H∞ norm of the transfer function from the bounded distur-
bances to the outputs of interest [46].

(iv) In the networked control systems literature [48–52], the goal is to investigate
how communication network imperfections such as packet drops and delays
influence the estimation and control performance. For example, [51] studies
the performances of the Kalman filter in the presence of Bernoulli packet
drops, and shows that there exists a critical value for the packet arrival rate
beyond which the estimation error covariance becomes unbounded. In [52],
the packet drops are also assumed to follow a Bernoulli distribution, and the
optimal communication and control policies are derived.

Unfortunately, attacks pose a potentially far greater threat to control systems then
the above-mentioned disturbances. Namely, disturbances such as faults, noise, or
packet drops are random in nature, sometimes assumed bounded or with a known
probability distribution, and without a malicious objective to fulfill. In contrast,
attacks may be conducted using several components in a coordinated manner, can
be designed based on system knowledge, have the intention to harm the system,
and can take arbitrary unknown values [53, 54]. Therefore, novel tools need to be
developed to protect control systems against malicious attacks.
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Figure 2.2: (a) The key properties of IT security are confidentiality (data and
services can be accessed only by authorized users), integrity (unauthorized change
of the information is not possible), and availability (data and services are available
upon a user’s request). (b) Attacks against aforementioned properties: Disclosure,
FDI, and DoS attacks.

2.2 IT security and control system security

As depicted in Figure 2.2 (a), the key properties of IT security are confidential-
ity, integrity, and availability of the information and services [55]. Confidentiality
means that data can be accessed only by authorized users, integrity guarantees that
unauthorized change of the information is not possible, and availability implies that
data and services are available upon a user’s request.
Attacks against these properties are illustrated in Figure 2.2 (b). Attacks against
confidentiality are called disclosure attacks. Through these attacks, the attacker
gains unauthorized access to the data or service. Attacks against integrity are called
FDI attacks. Due to FDI attacks, users may end up using the false information
thinking it is true. Finally, attacks against availability are called DoS attacks. In
DoS attacks, the attacker disables users from gaining access to data or services.
To defend IT systems against the above-mentioned attacks, a number of security
measures have been proposed. Examples of these measures include the encryption of
communication links [56], network segmentation using firewalls [57], access control
using passwords or smart cards [15], and the deployment of anti-virus software [14].
These security measures can and should be used in control systems as well. How-
ever, implementing these measures in control systems can be complicated and ex-
pensive, and can lead to undesirable consequences. Additionally, these measures
may be insufficient to protect control systems. Some of the reasons are as follows:

(i) Control systems have a significantly longer life span than IT systems [15].
Thus, security solutions for some control system equipment may not exist
anymore. This may force us to develop novel security solutions for such
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equipment, or to replace it with new equipment [2].

(ii) Some control system equipment may have insufficient computational power.
Hence, deploying security measures on this equipment may degrade system
performance or destabilize the system [16].

(iii) Control systems have real time availability requirements. Stopping these
systems to place security measures can be costly, and needs to be carefully
planned well in advance [15].

(iv) Since control systems operate physical processes, attacks against them may
have more severe consequences than attacks targeting IT systems. Therefore,
additional layers of protection should be placed.

In summary, IT security solutions alone are not enough to protect control systems.
These solutions need to be made more compatible with control systems. Addition-
ally, since the deployment of security measures in control systems can be costly,
tools for allocating these measures in a cost-effective manner need to be developed.
Furthermore, novel layers of defense that protect control systems when IT security
measures are breached are required.

2.3 Control system security

Due to the inability of traditional control theoretic and IT solutions to protect
control systems against malicious attacks, a novel area of control system security
emerged. The pioneering works in this area focused on showing that anomaly de-
tectors developed to detect faults can be ineffective against strategic attacks. One
of the first studies that revealed this was [58]. This study considered a power grid
monitoring problem, and showed that an attacker can degrade the state estimate
while staying undetected by the bad data anomaly detector. This result is illus-
trated in the following example.

Example 2.1. A power grid model y = Cx is used for estimating power flows.
Here, y ∈ Rny are the sensor measurements and x ∈ Rnx are the grid states. Based
on the measurements, the state of the grid can be estimated as x̂ = (CTC)−1CT y.
Since some of the measurements can be faulty, the operator also generates the resid-
ual r = y−Cx̂. A large (resp. small) magnitude of r indicates that faults are present
(resp. not present). Assume now that the measurements are subject to an attack,
so the operator receives the corrupted measurements ỹ = Cx+ a instead of y. Ad-
ditionally, let the attack be given by a = Cx̃, where x̃ ∈ Rnx . We then have

x̂ = (CTC)−1CT (Cx̃+ Cx) = x+ x̃,

r = Cx̃+ Cx− C(CTC)−1CT (Cx̃+ Cx) = Cx̃+ Cx− Cx̃− Cx = 0ny .
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Hence, the attack simultaneously degrades the quality of the estimate without leaving
any trace in the residual signal.

Motivated by the previous result, a number of other limitations that attacks impose
have been derived. For instance, Fawzi et al. considered an estimation problem
for a noiseless linear dynamical system, and characterized the maximum number of
attacked sensors for which the correct state can still be estimated [53]. Pasqualetti
et al. considered an attack detection problem in absence of noise, and proved that
attacks that excite the zero-dynamics of the system cannot be detected by a wide
range of monitors [59]. Limitations for the detection of attacks in stochastic systems
have also been investigated [60–62]. Attacks also pose restrictions on reaching
a consensus among agents in networked control systems [63–65]. For example,
Sundaram and Hadjicostis studied the resilience of linear iterative strategies [64].
They showed that if a number of vertex-disjoint paths from an agent xj to an agent
xi is less than or equal to 2n, then n malicious agents may conduct an attack such
that xi cannot recover xj ’s value.
The threat of attacks was also verified through experiments [66–70]. For exam-
ple, Teixeira et al. considered the above-mentioned power grid monitoring prob-
lem [66]. The experiments conducted on a realistic energy management software
showed that it is indeed possible to design undetectable attacks that degrade the
estimation quality. Another interesting experiment was reported in [67]. There,
the authors considered an attacker with the full model knowledge and the ability to
manipulate some of the measurements and control actions. Based on this attacker
model, several attacks against a control system operating a water canal network
were designed. The experiment demonstrated that these attacks can cause water
pilfering from the canal system without being detected.
For the above-mentioned reasons, it is not surprising that security-related problems
have attracted considerable attention within the control community [71–75]. Some
of the classical problems previously considered in an attack-free setting have been
extended to account for the presence of attacks. Examples include the design of
attack resilient controllers [76–83], anomaly detectors [84–90], estimators [53,91–94],
and consensus protocols [63–65,95–97]. Many other problems have also been studied
within the area. Examples include the four problems we address in this thesis. In
what follows, we focus on the literature treating these problems.

2.4 Impact estimation

To better understand the consequences of attacks and to better protect against
them, one needs to develop suitable models of attack strategies. Attack strategies
in which the attacker avoids being detected by anomaly detection mechanisms have
attracted most of the attention so far [26–28,98–103]. Examples of these strategies
include optimal FDI [26, 98], bias injection [27, 103], and replay [28] attack strate-

17



P C
𝑦(𝑘)

Attacker(a)
𝑦 𝑘 + 𝑎𝑦 (𝑘)

P C
𝑦(𝑘)

Attacker(b)
𝑦 𝑘 + 𝑎𝑦

P C
𝑦(𝑘)

Attacker(c)
𝑦 𝑘 − 𝑁

P C
𝑦(𝑘)

Attacker(d) ???

P C

𝑦1(𝑘)
𝑦2(𝑘)

Attacker(e) P C
𝑦(𝑘)

Attacker(f)
-𝑦 𝑘

𝑦2(𝑘)
𝑦1(𝑘)

Figure 2.3: Attack strategies that the attacker can implement upon compromising
the communication link between the plant (P) and the controller (C). (a) Optimal
FDI strategy: The attacker injects a carefully designed attack sequence into the
measurements. (b) Bias injection strategy: The attacker injects a carefully designed
constant bias into the measurements. (c) Replay strategy: The attacker sends
previously recorded measurements of normal operation to C. (d) DoS strategy: The
attacker blocks the communication between P and C. (e) Rerouting strategy: The
attacker reroutes the measurements coming from P. (f) Sign alternation strategy:
The attacker changes the sign of the measurements.

gies (see Figure 2.3 (a)–(c)). However, less complex strategies such as DoS [2, 29],
rerouting [30, 104], and sign alternation [31] attack strategies have also been con-
sidered (see Figure 2.3 (d)–(f)). Although not necessarily stealthy, these strategies
are easier to conduct, which makes them important to study.
We are interested in estimating the impact of above-mentioned attack strategies.
Initial studies on the impact estimation problem considered estimating the impact
of attacks that remain undetected by a chi-square detector [101,103,105–108]. The
focus of these studies was on the optimal FDI and bias injection attack strategies.
For example, [105] considers the Kalman filter equipped with the chi-squared de-
tector. The impact in this work was defined through the performance degradation
of the Kalman filter, and an algorithm that computes the upper and lower bounds
of the impact was proposed. Following [105], Murguia et al. proposed ellipsoidal
bounds that are easier to compute [106]. Another extension of [105] was presented
in [107], where the authors observed the performance degradation of the Kalman
filter in the presence of an authentication mechanism.
The impact estimation problem for other types of detectors have also been stud-
ied [26,109–113]. These works were also focused on optimal injection attack strate-
gies. In this set of literature, the work especially relevant to us is [26], which
considered a CUSUM detector, and used the infinity norm of critical states to de-
fine the impact metric. An important result derived in [26] is that the optimal value
of the impact with respect to the infinity norm metric can be computed by solving
a set of convex problems. This useful property of the infinity norm metric was also
recognized in [20, 114], where the impact with respect to the infinity norm metric
was computed by solving a set of linear programs. However, the studies [20,26,114]
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neglect the influence of noise and do not propose a substitute for the infinity norm
metric that can be used in stochastic systems.
Our work presented in Chapter 4 differs from and extends the previous literature
in the following aspects:

(i) As opposed to the works on the infinity norm metric [20, 26, 114], we focus
on more general stochastic systems. Particularly, we propose two metrics
that can substitute the infinity norm metric in these systems, and study the
impact estimation problem based on these metrics.

(ii) Compared to the studies on the impact estimation problem that focus on
optimal injection attack strategies [26,101,103,105–113], our analysis is more
general. Namely, our analysis covers both the optimal FDI and bias injection
attack strategies, as well as the DoS [2, 29], replay [28], rerouting [30, 104],
sign alternation [31], and combined DoS and FDI [115,116] attack strategies.

(iii) The studies [26, 101, 103, 105–113] focus their analysis on particular types of
anomaly detectors. Thus, the impact analysis is carried out for every detector
separately. In our work, we use the idea from [60,62,117,118], and model the
stealthiness constraint using the KL–divergence. In this way, we make our
analysis independent of the anomaly detector choice.

2.5 Security measure allocation

Previous works on the security measure allocation problem have mostly been in-
spired by power grid monitoring [58]. In [58], the grid was modeled as a static
linear system, and a particular combination of an estimator and an anomaly detec-
tor was used. It was shown that if the attacker compromises a right combination
of sensors, then he/she is able to conduct a stealthy attack [58]. In this case, the
security measure allocation problem can be formulated as securing some of the ex-
isting sensors, and/or placing additional secured sensors, to make stealthy attacks
harder to conduct. To solve this problem in large-scale power grids, many different
approaches have been taken [19,119–125].
For example, Bobba et al. proved that it suffices to protect the set of so-called
basic sensors to prevent stealthy attacks, and used LU decomposition to find these
sensors [119]. Kim and Poor approximated the attacker’s resources needed to con-
duct a stealthy attack with the optimal value of a linear program, and used greedy
algorithms to select sensors to secure such as to maximize these resources [120].
Vuković et al. allocated security measures based on the so-called security index
using an iterative algorithm [19]. This work also introduced more detailed models
of communication networks and security measures compared to the other studies.
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The problem of allocating security measures in dynamical control systems has at-
tracted less attention. In [109], several methods for estimating the attack impact
were introduced. It was also hinted that these methods can be used to select sen-
sors/actuators to protect. In [126], a flexible risk model based on which security
measures can be allocated was proposed. Additionally, it was discussed how to use
this model to determine where to invest the security budget. In [103], an estima-
tion problem in presence of bias injection attacks was considered. To mitigate the
impact of these attacks, a method for selecting sensors to secure was introduced.
The above-mentioned literature can be extended in the following directions:

(i) A framework for allocating security measures based on dynamical models
of control systems is lacking. The studies [103, 109, 126] do mention this
problem, but do not provide a systematic way to allocate security measures
when their number is large. Moreover, the tools developed for allocating
security measures in power grids cannot be straightforwardly extended to
dynamical systems, since they rely heavily on the model setup from [58].

(ii) To tackle the problem of classifying and preventing security vulnerabilities
presented in the introduction, we need a model that captures both the cyber
and the physical part of a control system. However, such a model is missing.
The issue is partially addressed in [19], but the authors were mostly concerned
with modeling the interaction between the communication infrastructure and
the physical process.

(iii) The optimality of the approaches for solving the security measure allocation
problem is rarely discussed. Hence, objective values obtained using these
approaches can be arbitrarily far from the optimal value.

Chapter 5 addresses these issues. Particularly, we propose a security measure allo-
cation framework that is suitable for dynamical systems. Our framework captures
the cyber-physical interaction, which allows us to study the problem of classifying
and preventing security vulnerabilities. Additionally, the framework includes tools
for systemically constructing and solving the security measure allocation problem
when the number of vulnerabilities and security measures is large. Furthermore,
we show that the security measure allocation problem has a suitable submodular
structure in our case. This allows us to use a polynomial time algorithm to compute
a suboptimal solution of the problem with performance guarantees.

2.6 Actuator security indices

The first security index α was introduced to localize the most vulnerable sensors in
a power grid [127]. Particularly, the security index α(yi) is defined for every sensor
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yi, and it equals to the optimal value of the following optimization problem:

minimize
x

‖y‖0

subject to y = Cx, yi 6= 0.
(2.1)

Here, y ∈ Rny are the sensor measurements, x ∈ Rnx are the grid states, and
C ∈ Rny×nx models the grid. The first constraint imposes that the attacked sensor
measurements need to correspond to a feasible power grid state, which ensures
attack stealthiness (see Example 2.1). The second constraint ensures that yi is
attacked. Thus, α(yi) characterizes the minimum number of sensors needed to
attack yi and remain stealthy. Naturally, sensors with low values of α are the most
vulnerable. Once these sensors are localized, the operator can allocate additional
security measures to protect them [19].
Although α proved to be a useful tool for both vulnerability analysis and develop-
ment of defense strategies, there exist two issues related to this index. Firstly, α is
NP-hard to compute [128]. This issue is addressed in [128–132]. For instance, [129]
proposes an upper bound on α that can be computed in polynomial time by solving
the minimum s-t cut problem. Additionally, this bound is tight in several cases of
interest. Secondly, α is defined for static systems and cannot be used to character-
ize vulnerable components in dynamical systems. In contrast to the first issue that
is well studied, the second has been addressed only by a few works [133–135].
In [133], Chong and Kuijper introduced the index that can characterizes vulnera-
bility of the entire system, but not system components such as actuators. In [135],
Zhao and Pasqualetti introduced the notion of nodal energy. It was also hinted
that this notion can be used as a measure of security and robustness in the control
system. However, no connection was made with any strategic attack. In [134],
Sandberg and Teixeira proposed a security index that resembles the static security
index α. This index is based on the definition of undetectability [59], and charac-
terizes the vulnerability of sensors and actuators within the system. Yet, this work
neither addressed the problems that appear in large-scale systems nor explained
how this index can be used for defense purposes.
Chapter 6 introduces the actuator security indices δ and δr. The main difference
compared to the studies on the static index α is that our indices are defined for
dynamical systems, and can be used to characterize the vulnerability of actuators.
We also show that some of the conclusions derived for the index α can be extended to
our dynamical indices. For example, the problem of computing the robust security
index δr can be formulated as the minimum s-t cut problem.
Compared to the related study on the dynamic index [134], our work differs in three
aspects. Firstly, while [134] introduced the index based on the definition of unde-
tectability, our indices are based on the definition of perfect undetectability. Hence,
a different approach is needed to analyze and compute these indices. Additionally,
perfectly undetectable attacks are more dangerous than undetectable attacks, since
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Figure 2.4: An illustration of a perfectly undetectable attack. Observe that the
attack manages to drive the state x far away from the origin, while not leaving any
trace in the sensor measurement y.

they do not leave traces in the measurements (see Example 2.2). Secondly, in con-
trast to [134], we discuss the issues that appear in large-scale systems and provide
a possible approach to overcome these issues. Thirdly, we discuss how to improve
the indices by placing additional sensors.

Example 2.2. Consider the system

x(k + 1) = 0.5x(k) + u(k) + a1(k),
y(k) = x(k) + a2(k).

Let u(k) = 5 and a1(k) = k for every k ∈ Z≥0, a2(k) = 0.5a2(k−1)−a1(k−1), and
x(0) = 0. The trajectories of the system state and the measurement in absence and
under the attack are shown in Figure 2.4. We observe that the attack is perfectly
undetectable, since it does not leave any trace in the sensor measurement.

Our work is also related to the studies on perfectly undetectable attacks [37, 136].
In [136], perfectly undetectable attacks were introduced, and algebraic conditions
for the existence of these attacks were derived. These conditions were generalized
in [37]. The study [37] also derived graph theoretic conditions for the existence of
perfectly undetectable attacks, and proposed a way to design a system such as to
make perfectly undetectable attacks harder to conduct.
In our work, we rely on the aforementioned algebraic and graph theoretic conditions
to compute the indices δ and δr. However, these conditions need to be extended to
be applied in our study. Furthermore, the studies [37,136] do not consider actuator
security indices, do not discuss attackers with limited model knowledge, and do not
study sensor allocation strategies for improving security indices.
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Figure 2.5: The problem of monitoring two decoupled states using one sensor.
(a) If the operator uses a static placement, then he/she can monitor only one state.
The strategic attacker then targets the other, inflicting one unit of damage to the
operator. (b) If the operator uses a mixed strategy and monitors each state with
probability 0.5, then he/she ensures the average worst case loss of 0.5 units.

2.7 Allocation of protected sensors

So far, a number of sensor allocation problems have been considered within the
control community. The objective of the allocation can be to minimize the esti-
mation error [137], achieve optimal coverage [138], detect and isolate faults [139],
or improve the system’s security level [140]. From this set of literature, the work
most relevant to us is [140]. This work introduced and analyzed actuator secu-
rity indices, and proposed two static sensor allocation approaches to improve these
indices. While we also consider sensor allocation strategies based on actuator se-
curity indices, we adopt a game theoretic approach to this problem and focus on
randomized (mixed) strategies. Thus, the theoretical analysis used to derive the
main technical results completely differs from the one in [140].
The existing works on game theoretic sensor allocation considered developing both
static [141–143] and mixed strategies [144, 145]. We focus on mixed strategies,
which are recognized to be more effective than static when the number of sensors
to allocate is limited [144,145]. A simple example from [145] illustrates why.

Example 2.3. Consider the system consisting of two physical states X = {x1, x2}
shown in Figure 2.5. The operator can monitor only one state at a time. Addition-
ally, the states are decoupled, so measuring one state does not give any information
about the other. Assume that an attack against a state that is not measured inflicts
one unit of damage to the operator. By using a static placement, the operator can
monitor at most one state. Hence, the strategic attacker targets the other, inflicting
one unit of damage to the operator (Figure 2.5.(a)). However, by using a mixed
strategy where the sensor measures each state with probability 0.5, the operator
ensures the average worst case loss of 0.5 units (Figure 2.5.(b)).

Our game is related to the one in [144], where the operator seeks allocating sensors
to maximize the number of detected attacks, while the attacker seeks attacking com-
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ponents with the opposite objective. The authors assumed homogeneous system
components, and derived an approximate NE (ε-NE) of the game. In this equi-
librium, the monitoring (resp. attack) strategy is derived from a solution to the
minimum set cover (resp. maximum set packing) problem. A similar approach for
characterizing equilibria was used in [146–148], but for specific models and player’s
resources. Additionally, [144] proposed the numerical CGP as a way to improve
the set cover strategy. However, CGP was neither implemented nor tested in [144],
since the strategies performed well.
We differ from and extend [144] as follows:

(i) We consider a more general game where system components (actuators) have
heterogeneous security indices associated to them;

(ii) We introduce ε-NE strategies that reveal some fundamental differences of our
game and the game from [144];

(iii) We show that the strategies from [144] are a special case of our strategies
when the security indices are homogeneous;

(iv) We show that CGP can be used in our game as well, implement it, and test
it on a benchmark of a large-scale power grid.
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Chapter 3

Mathematical preliminaries

This chapter introduces the mathematical preliminaries required to follow the the-
sis. Section 3.1 presents some terminology from graph theory. Section 3.2 considers
control system models. Section 3.3 introduces relevant results and terminology from
optimization theory. Section 3.4 revisits the KL–divergence. Section 3.5 reviews
needed results from game theory.

3.1 Graph theory

Let G = (V, E) be a directed graph with a set of nodes V and a set of directed
edges E ⊆ V ×V. Nodes v and w are adjacent if there exists an edge between them
and non-adjacent otherwise. A directed path from v1 to vn is a sequence of nodes
v1, v2, . . . , vn, where (vk, vk+1) ∈ E for all k ∈ {1, . . . , n− 1}. A directed path that
does not contain repeated nodes is a simple directed path. The in-neighborhood
of a node v is defined by N in

v = {w ∈ V : (w, v) ∈ E}. A vertex (resp. an edge)
separator of non-adjacent nodes v and w is a subset of nodes V ⊆ V \ {v, w} (resp.
edges E ⊆ E) whose removal eliminates all the directed paths from v to w. If each
edge (v, w) is assigned with a weight cvw ∈ R, then the cost of an edge separator E
is
∑

(v,w)∈E cvw. Since edge and vertex separators are important for the derivation
of some results in Chapters 6 and 7, we illustrate them in Figure 3.1.

3.2 Linear time-invariant systems and structured systems

Consider a linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + Ev(k),
y(k) = Cx(k) +Du(k) + Fv(k),

(3.1)
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Figure 3.1: A vertex separator of v1 and v6 is V = {v2, v4, v5}. An edge separator
of v1 and v6 is E = {(v1, v2), (v1, v4), (v1, v5)}. The cost of E is 6.

where x(k) ∈ Rnx are the system states, u(k) ∈ Rnu are the control actions, y(k) ∈
Rny are the sensor measurements, and v(k) ∈ Rnv are the disturbances present
in the system. We utilize linear-time invariant systems to estimate the impact of
attacks (Chapter 4), and to study the actuator security index δ (Chapter 6).
A convenient property of the system (3.1) that we exploit on several occasions is
that the system states x(k) and the sensor measurements y(k) can be written as
the sum of responses to the initial states x(0) and each of the inputs. Particularly,
let us define the operators CN (P,Q) =

[
PN−1Q . . . PQ Q

]
,

ON (P,R) =


R
RP
...

RPN

 , TN (P,Q,R, S) =


S 0p×m . . . 0p×m
RQ S . . . 0p×m
...

...
. . .

...
RPN−1Q RPN−2Q . . . S

 ,
where P ∈ Rn×n, Q ∈ Rn×m, R ∈ Rp×n, and S ∈ Rp×m. The system states at
time step N ∈ N are then given by

x(N) = ANx(0) + CN
(
A,B

)
u0:N−1 + CN

(
A,E

)
v0:N−1, (3.2)

and the measurements y0:N by

y0:N = ON (A,C)x(0) + TN
(
A,B,C,D

)
u0:N + TN

(
A,E,C, F

)
v0:N . (3.3)

Next, we consider a simplified version of the system (3.1)

x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k) +Du(k),

(3.4)

and introduce structural representation of this system [38]. The structural sys-
tem is defined by the binary matrices [A] ∈ {0, 1}nx×nx , [B] ∈ {0, 1}nx×nu , [C] ∈
{0, 1}ny×nx , and [D] ∈ {0, 1}ny×nu . A realization of the system (3.4) (given by the
matricesA,B,C,D) is a feasible realization of the structural system [A], [B], [C], [D],
if we can obtain it from the latter by replacing values equal to one with any number
in R. In the next example, we further clarify what we mean by a feasible realization.
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Figure 3.2: The structural graph G = (V, E) that corresponds to the structural
system from Example 3.1.

Example 3.1. Let the structural system be given by

[A] =

0 1 0
1 0 1
0 1 0

 , [B] =

1 0
0 1
0 0

 , [C] =
[
1 0 0
0 0 1

]
, [D] =

[
0 0
0 0

]
. (3.5)

Consider the following realizations of A,B,C,D:

(i) A =

 0 2 0
0.2 0 7
0 0 0

 , B =

3 0
0 2
0 0

 , C =
[
3 0 0
0 0 1

]
, D =

[
0 0
0 0

]
;

(ii) A =

 3 1 0
0.1 0 1
0 1 0

 , B =

1 0
0 1
0 0

 , C =
[
1 0 0
0 0 1

]
, D =

[
0 0
0 0

]
.

The realization (i) is a feasible realization of the structural system (3.5). Note that
having A(3, 2) = 0 although [A](3, 2) = 1 is permitted. However, the realization (ii)
is not a feasible realization of (3.5) because A(1, 1) = 3 and [A](1, 1) = 0.

The idea behind the structural analysis is to derive properties that hold for all, or
almost all, feasible realizations of the system (3.4) by analyzing the structural sys-
tem [A],[B],[C],[D]. To derive such results, it is sometimes convenient to represent
the structural system by the structural graph G = (V, E).
The set of nodes of this graph is V = X ∪ U ∪ Y, where X = {x1, . . . , xnx} is
the set of states, U = {u1, . . . , unu} is the set of actuators, and Y = {y1, . . . , yny}
is the set of sensors. The set of edges is given by E = Eux ∪ Exx ∪ Exy ∪ Euy,
where Eux = {(uj , xi) : [B](i, j) 6= 0} is the set of edges from the actuators to
the states, Exx = {(xj , xi) : [A](i, j) 6= 0} is the set of edges between the states,
Exy = {(xj , yi) : [C](i, j) 6= 0} is the set of edges from the states to the sensors, and
Euy = {(uj , yi) : [D](i, j) 6= 0} is the set of edges from the actuators to the sensors.
The following example further clarifies the structural graph.

Example 3.2. Consider the structural system from Example 3.1. The correspond-
ing structural graph is shown in Figure 3.2.
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This graph representation of the structural system is beneficial for several rea-
sons [38]. Firstly, it captures the same information as the structural matrices.
Secondly, many of the system properties of interest can be characterized through
easily understandable graph conditions. For example, graph conditions for deter-
mining structural controllability [149], observability [150], and many other system
properties [38] are well-known. Thirdly, some of these graph conditions can be
verified efficiently, which is especially useful when studying properties of large-scale
systems. In Chapter 6, we utilize the structural systems and their convenient graph
representations to study the robust security index δr.

3.3 Optimization theory

We now briefly revisit some results and terminology from convex and submodular
optimization theory that we use in the thesis. We mostly rely on the books [151,152].
We begin by introducing some basic notation and terminology concerning general
optimization problems. An optimization problem is usually written as follows:

minimize
x

f0(x)

subject to fi(x) ≤ 0, ∀i ∈ {1, . . . ,m},
hi(x) = 0, ∀i ∈ {1, . . . , p},

(3.6)

where x ∈ X are the decision variables, f0 : X → R is the objective function,
fi : X → R for all i ∈ {1, . . . ,m} are the functions that determine inequality
constraints, and hi : X → R for all i ∈ {1, . . . , p} are the functions that determine
equality constraints. An optimization problem is continuous (resp. discrete) if the
decision variables are continuous (resp. discrete). Note that the problem aiming
to maximize the objective function f0(x) can be formulated as the problem of
minimizing the function −f0(x).
The optimal value f∗0 of the problem (3.6) is defined by

f∗0 = inf
{
f0(x) | fi(x) ≤ 0, ∀i ∈ {1, . . . ,m}, hi(x) = 0, ∀i ∈ {1, . . . , p}

}
.

A point x ∈ X is a feasible point of the problem (3.6) if it satisfies all the inequality
and equality constraints. That is, if the following holds:

fi(x) ≤ 0, ∀i ∈ {1, . . . ,m}, hi(x) = 0, ∀i ∈ {1, . . . , p}.

If for every feasible point x we also have that −x is a feasible point, then the con-
straints are said to be symmetric. A point x∗ ∈ X is a solution to the problem (3.6)
if x∗ is a feasible point and f0(x∗) = f∗0 .

The problem (3.6) is infeasible if there are no feasible points, and unbounded if
f∗0 = −∞. Two optimization problems are equivalent if a solution of one can be
readily recovered from a solution of the other, and vice versa.
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In this thesis, we study several optimization problems, both continuous and discrete.
Our objective is to solve, or find a good approximate solutions, of these problems
efficiently. Yet, this is generally possible only for certain instances of optimization
problems. In the following, we revisit some of the instances that we encounter.

3.3.1 Convex optimization problems

Prior to introducing convex problems, we define convex sets and functions. A set
C is convex if

θx1 + (1− θ)x2 ∈ C

holds for all x1, x2 ∈ C and all θ ∈ [0, 1]. A function f : Rn → R is convex if its
domain is a convex set and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

holds for all x1, x2 in the domain of f and all θ ∈ [0, 1]. A convex optimization
problem can then be written as follows:

minimize
x

f0(x)

subject to fi(x) ≤ 0, ∀i ∈ {1, . . . ,m},
aTi x = 0, ∀i ∈ {1, . . . , p},

where f0, f1, . . . , fm are convex functions and a1, . . . , ap are real vectors of appro-
priate size. Algorithms that solve convex problems efficiently are well-known [153].
We utilize this fact to estimate the impact of attacks efficiently (Chapter 4).

3.3.2 Submodular optimization problems

While convexity is important for continuous optimization, submodularity is impor-
tant for discrete optimization [154]. Namely, certain classes of combinatorial opti-
mization problems that have submodular structures can be approximately solved
with performance guarantees in polynomial time. To define the problems relevant
to our study, we first define submodular functions.
Let A be a finite non-empty set, and F : 2A → R be a set function. The set function
F is submodular if

F (A ∪ a)− F (A) ≥ F (A′ ∪ a)− F (A′)

holds for all A ⊆ A′ and all a ∈ A \ A′. We also recall that F is nondecreasing if
F (A) ≤ F (A′) holds for all A ⊆ A′.
In words, if a set function is submodular, then adding an element to a set A results in
a larger gain than adding it to a set containing A. For this reason, submodularity is
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Algorithm 3.1 A greedy heuristic for Problem 3.1 [156]
1: Input: A = {a1, . . . , an}, F , ca1 , . . . , can
2: Output: AG
3: AG ← ∅
4: while F (AG) < F (A) do
5: a∗ ← argmin

{
ca/(F (AG ∪ a)− F (AG)) : a ∈ A \AG

}
6: AG ← AG ∪ a∗
7: end while

often called a diminishing returns property. The following properties of submodular
functions are well-known [155].

Lemma 3.1. If F1, . . . , Fn are submodular and nondecreasing set functions, then∑n
i=1 Fi(A) is a submodular and nondecreasing set function.

Lemma 3.2. Let c ∈ R and F be a set function. If F is submodular and nondecreas-
ing, then g(A) = min{F (A), c} is a submodular and nondecreasing set function.

In what follows, we briefly introduce some of the problems with submodular struc-
ture that we encounter in the thesis.

Minimizing a linear set function subject to a submodular constraint

We first consider the following problem.

Problem 3.1. Minimizing a linear function subject to a submodular constraint

minimize
A

∑
a∈A

ca

subject to F (A) = F (A).

Here, ca ∈ R+ for every a ∈ A, F is a submodular, nondecreasing, and integer
valued set function, and F (∅) = 0. We encounter Problem 3.1 in Chapter 5, where
we show that the security measure allocation problem is an instance of Problem 3.1.
The optimal value of Problem 3.1 can be approximated by Algorithm 3.1 in poly-
nomial time [156]. Algorithm 3.1 first creates an empty set AG. In every iteration,
the algorithm computes the cost benefit ratio ca/(F (AG ∪ a) − F (AG)) for every
a ∈ A \ AG. An element that corresponds to the lowest value of the cost benefit
ratio is added to AG. If F (AG) = F (A), then the algorithm terminates. Otherwise,
the process is repeated until the constraint is satisfied. The performance guarantees
of Algorithm 3.1 are provided in Lemma 3.3.
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Lemma 3.3. (Theorem 1 [156]) Let c∗ be the optimal value of Problem 3.1, cG
be the objective value computed by Algorithm 3.1, and H(n) =

∑n
i=1 i

−1. Then

cG ≤ H
(
maxa∈AF (a)

)
c∗. (3.7)

We stress that the bound (3.7) is the worst-case theoretical bound. Hence, Algo-
rithm 3.1 can perform better in practice.

The set cover problem

In this problem, we are given a set of elements U (called the universe) and a
collection S = {S1, . . . , Sn} of subsets of U . The goal is to pick the minimum
number of elements from S whose union equals U . We use this problem to establish
NP-hardness of the security measure allocation problem (Chapter 5), and to derive
a sensor allocation strategy (Chapter 7).
Although it is known that the set cover problem is generally an NP-hard prob-
lem [157], there exists several approaches to tackle this problem. Particularly, the
set cover problem can be formulated as the following integer linear program [158]:

minimize
x

∑
S∈S

xS

subject to
∑
S∈S

1[e∈S]xS ≥ 1, ∀e ∈ U ,

xS ∈ {0, 1}, ∀S ∈ S.

Hence, one can try to utilize integer linear program solvers to tackle the set cover
problem. In fact, modern-day solvers can solve large instances of this problem in
practice [144]. Furthermore, this problem represents an instance of Problem 3.1.
Hence, Algorithm 3.1 can be used to approximate the optimal value of the set cover
efficiently. Other efficient ways to approximate the optimal value of the set cover
problem are also known [158].

The minimum s-t cut problem

Let G(V, E) be a directed graph, and cvw ∈ R≥0 be the weight associated to every
edge (v, w) ∈ E . Let the source s and the sink t be the elements of V. An s-t cut is
a partition of the node set V into Vs and Vt = V \ Vs, such that s ∈ Vs and t ∈ Vt.
The cut capacity is defined by C(Vs) =

∑
{(v,w)∈E : v∈Vs,w∈Vt} cvw. The minimum

s-t cut problem can then be written as follows:

minimize
Vs

C(Vs)

subject to Vs and Vt form an s-t cut.
(3.8)

31



This problem can also be interpreted as the problem of finding a minimum cost
edge separator of s and t. Once (3.8) is solved, this separator can be recovered
from Vs as Ec = {(v, w) ∈ E : v ∈ Vs, w ∈ Vt}. The cost of Ec is C(Vs).
The minimum s-t cut problem can be solved in polynomial time using well-known
algorithms [159]. We use this fact in Chapter 6 to compute the robust security
index δr efficiently. It is also worth mentioning that the cut capacity C(Vs) is a
submodular function [152]. Hence, the minimum s-t cut problem is a constrained
submodular minimization problem.

3.4 The KL–divergence

The KL–divergence D(p||q) gives a distance between probability density functions
p and q. If p and q are continuous probability distributions over a sample space X,
then the KL–divergence is defined as follows [160]:

D(p||q) =
∫
X

log p(x)
q(x)p(x)dx.

We have that D(p||q) is non-negative and equals to zero if and only if p equals q
almost everywhere. If p and q are Gaussian distributions, then the KL–divergence
can be expressed in a closed form, as the next lemma asserts [161, Section 9].

Lemma 3.4. Let p = N (µ1,Σ1) and q = N (µ2,Σ2). If Σ1 and Σ2 are positive
definite matrices, then

D (p||q) = 1
2

(
Tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1) + log det(Σ2)

det(Σ1) − n
)
.

The KL–divergence has been used in numerous fields, such as information the-
ory [162], machine learning [163], and neuroscience [164]. In the area of con-
trol system security, the KL–divergence is used for modeling stealthiness con-
straints [60–62, 117, 118]. In Chapter 4 of this thesis, we use the KL–divergence
for the same purpose.

3.5 Zero-sum games

Game theory studies interactions between multiple strategic players [165]. Each of
the players tries to minimize or maximize his/her objective function by selecting one
of the available strategies. However, the objective function of a player depends on
the strategies of other players. Hence, besides his/her own strategies, a player needs
to consider the strategies of other players as well. Such situations arise naturally in
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control theory [166, 167]. For example, game theory has been used to design con-
trollers and estimators [168,169], develop charging plans for electrical vehicles [170],
and achieve cooperation in multi-agent systems [171]. Game theory has also been
used for studying various security-related problems. Examples include the analysis
of attacks [172–177], the design of defense strategies [146,178–180], the allocation of
security investment [181,182], the design and tuning of anomaly detectors [183–186],
the network interdiction [147,148], and the sensor allocation [141–145].
In Chapter 7, we are interested in two-player zero-sum games. In this type of games,
the player’s objectives are opposite. That is, the loss of the first player is the gain
of the second. A two-player zero-sum game Γ is defined by a tuple

Γ = 〈{P1,P2}, (A1,A2), f〉,

where P1 (resp. P2) denotes the first (resp. second) player, A1 (resp. A2) is a set
of pure strategies available to P1 (resp. P2), and f : A1 × A2 → R is the payoff
function that P1 (resp. P2) aims to maximize (resp. minimize). The following
example aims to clarify the terminology.

Example 3.3. Consider the matching pennies game where P1 and P2 have a penny
whose sides are referred to as heads and tails. The players secretly select the sides of
their pennies and then simultaneously reveal their selections. If the pennies match,
then P1 wins P2’s penny. Otherwise, P2 wins P1’s penny. Hence, the sets of pure
strategies A1 and A2 are given by: A1 = A2 = {Heads, Tails}. The payoff function
can be defined by f(a1, a2) = 1[a1=a2] − 1[a1 6=a2].

Besides pure strategies, the players may also use mixed strategies. A mixed strategy
of a player is a probability distribution over the set of his/her pure strategies.
Particularly, the set of mixed strategies of the ith player (i ∈ {0, 1}) is defined by

∆i =
{
σi ∈ [0, 1]|Ai|

∣∣ ∑
ai∈Ai σi(ai) = 1

}
.

Here, σi is a mixed strategy of the ith player that assigns a probability σi(ai) for
taking a pure strategy ai. In other words, the ith player selects a pure strategy to
play according to a sampling from the probability distribution σi. Given a strategy
profile (σ1, σ2) ∈ ∆1 ×∆2, the expected payoff is defined by

F (σ1, σ2) =
∑
a1∈A1

∑
a2∈A2

σ1(a1)σ1(a2)f(a1, a2).

The following example clarifies mixed strategies and the expected payoff.

Example 3.4. Consider again the game matching pennies from Example 3.3. An
example of a mixed strategy of P1 (resp. P2) is σ1 = [0.5 0.5] (resp. σ2 = [0.5 0.5]).
The expected payoff given these strategies is

F (σ1, σ2) = 0.5 · 0.5 · 1 + 0.5 · 0.5 · (−1) + 0.5 · 0.5 · (−1) + 0.5 · 0.5 · 1 = 0.
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We are interested in strategy profile(s) that are NE of Γ. A strategy profile
(σ∗1 , σ∗2) ∈ ∆1 ×∆2 is a NE if

F (σ∗1 , σ2) ≥ F (σ∗1 , σ∗2) ≥ F (σ1, σ
∗
2)

holds for all (σ1, σ2) ∈ ∆1 × ∆2. Put differently, if P2 plays according to σ∗2 , P1
cannot perform better than by playing according to σ∗1 . The same holds for σ∗2 and
P2. We now provide an example of a NE.

Example 3.5. In the game matching pennies from Example 3.3, a NE strategies
are given by σ∗1 = [0.5 0.5] and σ∗2 = [0.5 0.5], and the expected payoff in a NE is
equal to zero (see Example 3.4). Indeed, we have

F (σ∗1 , σ2) = 0.5 · σ21 · 1 + 0.5 · σ22 · (−1) + 0.5 · σ21 · (−1) + 0.5 · σ22 · 1 = 0.

Hence, P1 achieves the same payoff regardless of the strategy that P2 decides to
play. The same holds for P2 and σ∗2 .

We conclude this chapter by listing some properties of NE strategies:

(i) By playing σ∗1 , P1 is guaranteed to achieve the payoff of at least F (σ∗1 , σ∗2)
regardless of P2’s strategy. Similarly, by playing σ∗2 , P2 achieves the payoff
not grater then F (σ∗1 , σ∗2) regardless of P1’s strategy.

(ii) If (σ∗11, σ
∗
21) and (σ∗12, σ

∗
22) are two NE of a zero-sum game, then (σ∗11, σ

∗
22) and

(σ∗12, σ
∗
21) are also NE [187]. In words, the game value F (σ∗1 , σ∗2) is the same

in any NE. Therefore, it suffices for the players to find a single randomized
strategy that lies in a NE.

(iii) In finite two-player zero-sum games and in some security games, NE strategies
are also optimal for other solution concepts such as Strong Stackelberg, Min-
Max, and Max-Min equilibrium [188].

(iv) If a number of pure strategies is finite, then a NE of a zero-sum game exists.
Additionally, it can be obtained by solving a pair of linear programs [187].
Although linear programs often can be solved efficiently, in some zero-sum
games these programs can be challenging to solve due to their size. Such a
game is the topic of Chapter 7.
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Chapter 4

Impact estimation

This chapter studies the impact estimation problem. By solving this problem, we
test if an attacker can inflict significant damage to a control system while remaining
stealthy. Hence, the objective function of the problem is an impact metric that is
maximized, while the constraints include a stealthiness constraint. We consider two
impact metrics: The probability that some of the critical states leave a safety re-
gion (IP ) and the expected value of the infinity norm of the critical states (IE). For
the stealthiness constraint, we adopt the KL–divergence between attacked and non-
attacked residual sequences. Other constraints ensure that the system equations
are satisfied, and impose different types of attack strategies.
The main results of the chapter are as follows. We characterize conditions under
which the impact estimation problem becomes infeasible or its optimal value equals
to the maximum impact. When these conditions are not satisfied, we prove that the
optimal value of the metric IP can be computed by solving a set of convex problems.
We also derive efficient to compute lower and upper bounds for the metric IE .
We then show compatibility of our framework with a number of attack strategies
proposed throughout the literature, and discuss how properties of these strategies
can be used to more efficiently estimate the impact. Finally, we demonstrate on a
control system of a chemical process how our framework can be used to compare
security vulnerabilities, and illustrate some of the technical results with examples.
The chapter is organized as follows. Section 4.1 introduces the model setup. Sec-
tion 4.2 presents the impact estimation problem. Section 4.3 contains the main
technical results of the chapter. Section 4.4 introduces attack strategies compatible
with our framework, and discusses how to more efficiently estimate the impact.
Section 4.5 illustrates how our framework can be used to compare security vulner-
abilities, and clarifies some of the technical results through examples. Section 4.6
concludes the chapter. The appendix contains some formulas and lengthy proofs.
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Figure 4.1: A schematic of an attacked control system. The controller computes the
control actions u based on the references yr, the state estimates x̂, and the received
measurements ỹ. Due to attacks against sensors, the received measurements ỹ
differ from the measurements y collected from the plant. Due to attacks against
actuators, the corrupted control actions ũ are applied to the plant instead of u.
The critical states z are used to define the impact metrics, and the residuals r̃ are
used to define the stealthiness constraint.

4.1 Model setup

This section presents the control system model. As shown in Figure 4.1, the system
consists of the physical plant, the estimator, the controller, the residual filter, and
the attacker. In the following, we introduce each block in more detail.

4.1.1 Physical plant

The physical plant is modeled by

x(k + 1) = Ax(k) +Bũ(k) + vx(k),
y(k) = Cx(k) + vy(k),
z(k) = Czx(k),

(4.1)

where x(k) ∈ Rnx are the plant states, y(k) ∈ Rny are the sensor measurements,
ũ(k) ∈ Rnu are the control actions applied to the plant, vx(k) ∈ Rnx is the process
noise, vy(k) ∈ Rny is the measurement noise, and z(k) ∈ Rnz are the critical states.
The critical states may model the flow of energy through a power line that should
be maintained within predefined bounds, or a temperature that should not exceed
some safety limit. These states are later used to define the impact metrics.
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We assume the following: (i) vx and vy are independent, zero-mean, white Gaussian
processes with covariance matrices Σvx � 0 and Σvy � 0, respectively; (ii) the pair
(C,A) is observable and the pair (B,A) is controllable; and (iii) Cz is a full row
rank scaling matrix. The matrix Cz is chosen in such a way that having any of the
critical states’ magnitude larger than one indicates a dangerous system state. The
following example clarifies how Cz is constructed.

Example 4.1. Let x = [x1 x2]T be the plant states. Let x2 be the critical state that
should be kept within the interval [−2, 2]. We then have Cz = [0 1/2]. Therefore, if
|x2(k)| > 2, then |z(k)| > 1.

4.1.2 Estimator

The estimator is a steady state Kalman filter defined by

x̂(k + 1) = (A−KC)x̂(k) +Bu(k) +Kỹ(k), (4.2)

where x̂(k) ∈ Rnx are the state estimates, u(k) ∈ Rnu are the control actions
computed by the controller, and ỹ(k) ∈ Rny are the measurements received by the
estimator. The steady state Kalman gain is given by

K = AΣeCT (CΣeCT + Σvy )−1,

where Σe is the error covariance matrix obtained by solving the Riccati equation

Σe = AΣeAT + Σvx −AΣeCT (CΣeCT + Σvy )−1CΣeAT .

The gain K exists under the introduced assumptions, and it is known that A−KC
is asymptotically stable [44].

4.1.3 Controller

The controller is defined by

u(k) = −L1x̂(k)− L2ỹ(k) + L3yr(k), (4.3)

where yr(k) ∈ Rnyr are the references. We assume that the controller ensures
asymptotic stability and satisfactory performances in the absence of attacks. Ad-
ditionally, since the references are usually constants that are not updated often, we
adopt the following standing assumption.

Assumption 4.1. We assume that yr(k) = yr holds for every time step k ∈ Z.
The system has reached a stationary regime before an attack starts.

37



4.1.4 Residual filter

The residuals are defined by

r̃(k) = Σ−
1
2

r

(
ỹ(k)− Cx̂(k)

)
, (4.4)

where Σr = CΣeCT + Σvy . The residuals are used in the next section to define
the stealthiness constraint. In the absence of attacks, the sequence of residuals is a
zero-mean white Gaussian process with the identity covariance matrix. We denote
by r the non-attacked residuals to distinguish them from r̃.

4.1.5 Attacker

The attacked control actions ũ and the attacked measurements ỹ are defined by

ũ(k) = Λuu(k) + Γuau(k) + Γuasu(k),
ỹ(k) = Λyy(k) + Γyay(k) + Γyasy(k),

(4.5)

where au(k) ∈ Rnu (resp. asu(k) ∈ Rnu) are the deterministic (resp. stochastic) at-
tacks against the actuators, ay(k) ∈ Rny (resp. asy(k) ∈ Rny ) are the deterministic
(resp. stochastic) attacks against the sensors, and the matrices Γu, Γy, Λu, and Λy
depend on an attack strategy and the attacker’s resources. Section 4.4 explains
how these matrices are formed. We assume that an attack starts at k = 0.

4.1.6 Extended system model

From (4.1)–(4.5), the system dynamics under an attack become

xe(k + 1) = Ãexe(k) + B̃ev(k) + Ẽeyr + G̃ea(k) + G̃eas(k),
r̃(k) = C̃rxe(k) + D̃rv(k) + F̃ryr + H̃ra(k) + H̃ras(k),
z(k) = C̃zxe(k) + D̃zv(k) + F̃zyr + H̃za(k) + H̃zas(k),

(C1)

where xe(k) = [x(k)T x̂(k)T ]T , v(k) = [vx(k)T vy(k)T ]T , a(k) = [au(k)T ay(k)T ]T ,
and as(k) = [asu(k)T asy(k)T ]T . We denote by na the dimension of a(k) and as(k),
nv the dimension of v(k), and Σv the covariance matrix of v(k).
Finally, we introduce the equations for xe and y in the absence of attacks

xe(k + 1) = Aexe(k) +Bev(k) + Eeyr,

y(k) = Cyxe(k) +Dyv(k) + Fyyr,
(4.6)

which we later use in some derivations. We remark that the formulas for the
matrices from Equations (C1) and (4.6) are provided in Appendix 4.A.
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4.2 Problem formulation

This section defines the impact estimation problem. Prior to introducing the prob-
lem, we introduce the decision variables, the impact metrics, and the constraints.

4.2.1 Decision variables

Let N ∈ N be the length of a finite time horizon over which we want to estimate
the impact. We define the decision variables by

d =
[
a0:N
yr

]
. (4.7)

Although the system trajectory is influenced by other signals as well, we show that
the impact metrics and the constraints are only affected by the references yr and the
attack sequence a0:N . Since we perform off-line impact analysis, the exact value of
yr at the beginning of the attack is unknown. The sequence a0:N is also unknown,
since it depends on the attacker’s choice. Hence, by optimizing over d, we identify
the worst-case impact.

4.2.2 Impact metrics

In the related work on deterministic systems [26], the impact metric was defined
by ‖z1:N‖∞. If ‖z1:N‖∞ > 1, then the attacker can drive some of the critical states
outside the safety region in N time steps. Yet, in our work, the states are influenced
by the noise in addition to attacks. Hence, some of the critical states can leave the
safety region with non-zero probability even in the absence of attacks.
To make the impact metric suitable for stochastic systems, we define a new metric

IP (d) = maxi∈I P
(
|z(i)

1:N | > 1 ; d
)
,

where I = {1, 2, . . . , Nnz}. The worst-case for the operator occurs when IP (d)≈1.
This implies that some of the critical states leave the safety region with high prob-
ability. The best case for the operator occurs when IP (d) ≈ 0. In this case, the
critical states stay within the safety region with high probability. Another possible
impact metric based on the ∞-norm is the expected value of ‖z1:N‖∞, that is,

IE(d) = E{‖z1:N‖∞ ; d}.

Unfortunately, IE does not have a closed form expression and is hard to evaluate
in general. Thus, we are primarily focused on the metric IP in this chapter.
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4.2.3 Constraints

The problem constraints are denoted by (C1)–(C5). Constraint (C1) has already
been introduced, and it imposes that the system equations have to be satisfied.
Constraint (C2) is the reference constraint, which we define by

‖Qyryr‖∞ ≤ 1, (C2)

where Qyr ∈ Rnyr×nyr is a scaling matrix. Constraint (C3) is the stealthiness
constraint defined by

1
N + 1D(r̃0:N ||r0:N ) ≤ ε, (C3)

where D(r̃0:N ||r0:N ) is the KL–divergence between the probability density func-
tions of attacked r̃0:N and non-attacked r0:N residual sequences, and ε ∈ R≥0 is
the stealthiness level. As explained in Section 3.4, the KL–divergence measures
similarity between probability density functions. Thus, if D(r̃0:N ||r0:N ) is small,
then the density functions of r̃0:N and r0:N are similar, and the attacker is assumed
to stay stealthy. Finally, (C4) and (C5) are given by

Faa0:N = 0nFa , (C4)
as0:N = T1xe(Ns) + T2yr + T3vNs:−1. (C5)

Here, Ns ∈ Z−, the matrices T1, T2, T3, and Fa have appropriate dimensions, and
nFa is the number of rows of the matrix Fa. These constraints enable us to impose
different attack strategies (see Section 4.4).

4.2.4 Problem

Let I ∈ {IP , IE}. The impact estimation problem can then be formulated as follows:

Problem 4.1. The impact estimation

maximize
d

I(d)

subject to (C1)–(C5).

Problem 4.1 is a non-convex constrained maximization problem. Efficient algo-
rithms for solving these type of problems are generally unknown. Nevertheless, we
derive an efficient way to compute the optimal value of the metric IP . Addition-
ally, we derive lower and upper bounds for the metric IE . Before we move to the
analysis, we outline some properties of this problem.

Remark 4.1. The tuning parameters in Problem 4.1 are the length of the horizon N
and the stealthiness level ε. Naturally, we first want to discover stealthy attacks that
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result in a high impact in a short amount of time. Thus, choosing small values of
N and ε is a good starting point for the analysis. One can then start increasing N
and ε to discover less dangerous attacks.

Remark 4.2. One can also consider maximizing the impact in Nz steps and im-
posing the stealthiness in Nr 6= Nz steps. The case Nz < Nr captures attacks that
maximize the impact in Nz steps and ensure stealthiness in additional Nr − Nz
steps. The case Nz > Nr models ambush attacks [189], where the attacker stealthily
prepares Nr steps, and then launches a not necessarily stealthy attack in the re-
maining time. Although we focus on the case where Nr = Nz = N , the analysis in
the next section can be extended to cover the aforementioned cases.

Remark 4.3. Some of the advantages of using the KL-divergence to model the
stealthiness constraint are as follows: (i) As shown in Section 4.3, (C3) is a con-
vex and symmetric constraint in d; (ii) The analysis is made independent of the
choice of the anomaly detector; (iii) Generating attacks that satisfy (C3) can be
a reasonable choice by the attacker that does not know which anomaly detector is
deployed; and (iv) Some other types of stealthiness constraints can be replaced by a
KL–divergence based constraint [105].

Remark 4.4. Problem 4.1 can be infeasible due to (C3). If that is the case, then
we define the impact to be zero.

4.3 Main results

This section shows that the optimal value of the metric IP can be computed by solv-
ing a set of convex problems (Theorem 4.1), and derives lower and upper bounds for
the metric IE (Theorem 4.2). Prior to presenting Theorems 4.1 and 4.2, we intro-
duce some auxiliary lemmas, present a problem crucial for deriving Theorems 4.1
and 4.2, and characterize when Problem 4.1 becomes infeasible or unbounded.

4.3.1 Preliminary analysis

We first establish the distribution of the extended state xe prior to attacks.

Lemma 4.1. Let Ns ∈ Z−. The extended state xe(Ns) is distributed according to
N (T0yr,Σ0), where T0 = (I2nx − Ae)−1Ee, and the covariance matrix Σ0 is the
solution of the Lyapunov equation Σ0 = AeΣ0A

T
e +BeΣvBTe .

Proof. SinceNs < 0, attacks are not present, and the state xe propagates according
to (4.6). Assume that yr = 0nyr . Since Ae is asymptotically stable and the system
is assumed to be in the stationary regime, then xe(Ns) is a zero mean Gaussian
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vector, and its covariance matrix is of the desired form (see [44, Chapter 4]). If
yr 6= 0nyr , then only the mean value of xe(Ns) changes. We then have

E{xe(Ns)}
(i)= E{xe(Ns + 1)} (ii)= AeE{xe(Ns)}+ Eeyr, (4.8)

where: (i) holds since the system (4.6) has reached the stationary regime (Assump-
tion 4.1); and (ii) follows from (4.6), linearity of the expectation, and E{v(Ns)}=0nv .
From (4.8) and the fact that the inverse of I2nx − Ae exists (Ae is assumed to be
asymptotically stable), we have E{xe(Ns)} = (I2nx −Ae)−1Eeyr = T0yr. �

In the following, we use Lemma 4.1 to characterize probability density functions of
the vectors z1:N and r̃0:N .

Lemma 4.2. Under Constraints (C1) and (C5), z1:N is distributed according to
N (TZd,ΣZ) and r̃0:N according to N (TRd,ΣR). The matrices TZ , TR, ΣZ , ΣR are
independent of d, and ΣZ � 0 is satisfied.

Proof. We refer the reader to Appendix 4.B. �

We can now use Lemma 4.2 to show that the stealthiness constraint (C3) is a convex
and symmetric constraint in d. To show this claim, we also need ΣR � 0 to hold.
However, this condition is not always satisfied in the presence of attacks. In what
follows, we assume ΣR � 0, and later justify this assumption.

Assumption 4.2. The covariance matrix ΣR is a positive definite matrix.

Lemma 4.3. Under Assumption 4.2, Constraint (C3) becomes ‖TRd‖22 ≤ ε′, where
ε′ = (N + 1)(2ε+ ny)− Tr(ΣR) + ln det(ΣR).

Proof. The attacked residual sequence r̃0:N is distributed according toN (TRd,ΣR),
and the non-attacked residual sequence r0:N according to N (0(N+1)ny , I(N+1)ny ).
From the latter and Lemma 3.4, we have

D(r̃0:N ||r0:N ) = 1
2
(
Tr(ΣR) + ‖TRd‖22 − (N + 1)ny − log det(ΣR)

)
= 1

2‖TRd‖
2
2 + c,

where c = (Tr(ΣR)− (N + 1)ny − log det(ΣR))/2. Hence, (C3) can be rewritten as

‖TRd‖22 ≤ 2((N + 1)ε− c) = (N + 1)(2ε+ ny)− Tr(ΣR) + log det(ΣR) = ε′,

as claimed in the statement of the lemma. �

Remark 4.5. As we illustrate in Section 4.5, some attack strategies may result in ε′
being less than zero. Constraint (C3) is then impossible to satisfy, and Problem 4.1
is infeasible. Particularly, ε′ approaches −∞ when an eigenvalue of ΣR approaches
zero. This justifies focusing on the cases where ΣR is positive definite. Thus, if an
attack is such that ΣR is not positive definite, then we adopt the impact to be zero.
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Next, consider the problem

Pi : maximize
d

∣∣E{z(i)
1:N ; d

}∣∣
subject to (C1)–(C5),

where i ∈ I. This problem is crucial for computing the optimal value of the metric
IP and deriving bounds for the metric IE . In what follows, we use Lemmas 4.2
and 4.3 to show that Pi is equivalent to a convex problem with symmetric con-
straints. Thus, Pi can be solved efficiently using well known algorithms.

Lemma 4.4. Under Assumption 4.2, Pi is equivalent to the problem

maximize
d

TZ(i, :)d

subject to ‖Qd‖∞ ≤ 1, ‖TRd‖22 ≤ ε′, Fd = 0nFa ,
(4.9)

where Q = [0nyr×(N+1)na Qyr ], and F = [Fa 0nFa×nyr ].

Proof. We first rewrite Pi in a more convenient way. From Lemma 4.2, (C1)
and (C5) impose that z1:N ∼ N (TZd,ΣZ) and r̃0:N ∼ N (TRd,ΣR). Thus, the
objective function of Pi is equal to |TZ(i, :)d|. Since

‖Qyryr‖∞ = ‖[0nyr×(N+1)na Qyr ][a
T
0:N yTr ]T ‖∞ = ‖Qd‖∞ ≤ 1,

(C2) can be rewritten as the first constraint in the problem (4.9). From Lemma 4.3,
(C3) reduces to the second constraint in (4.9). Finally, (C4) can be rewritten as

Faa0:N = [Fa 0nFa×nyr ][aT0:N yTr ]T = Fd,

which is the third constraint in (4.9). Therefore, Pi is equivalent to

maximize
d

|TZ(i, :)d|

subject to z1:N ∼ N (TZd,ΣZ), r0:N ∼ N (TRd,ΣR), (C1’)
‖Qd‖∞ ≤ 1, ‖TRd‖22 ≤ ε′, Fd = 0nFa . (C2’–C4’)

(4.10)

Since (C1’) does not impose any restriction on d, and neither z1:N nor r0:N appears
in the objective function and the remaining constraints, we can eliminate (C1’).
The remaining constraints are symmetric in d, so we can substitute |TZ(i, :)d| with
TZ(i, :)d without affecting the optimal value. After these simplifications, the prob-
lem (4.10) reduces to the problem (4.9). Thus, Pi is equivalent to (4.9). �

Next, we investigate when Pi is infeasible or unbounded, and then explain the
importance of this result.

Proposition 4.1. The following statements hold:
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(i) Pi is infeasible for any i ∈ I if and only if ε′ < 0 holds.

(ii) Let ε′ ≥ 0. The problem Pi is unbounded for at least one i ∈ I if and only if
null([QT TTR FT ]T ) 6⊆ null( TZ) holds.

Proof. Statement (i): (⇒) If ε′ ≥ 0, then we can see from (4.9) that d = 0 is a
feasible point of Pi for any i ∈ I. Hence, ε′ < 0 has to hold.
(⇐) If ε′ < 0, then ‖TRd‖22 ≤ ε′ cannot be satisfied for any d, so the claim holds.
Statement (ii): (⇒) The proof is by contradiction. If null([QT TTR FT ]T ) ⊆ null( TZ)
and ε′ ≥ 0, then we have [QT TTR FT ]T d 6= 0 for every d for which TZd 6= 0. Hence,
TZ(i, :)d cannot be made arbitrarily large for any i ∈ I, since that would violate at
least one of the constraints.
(⇐) If null([QT TTR FT ]T ) 6⊆ null( TZ) and ε′ ≥ 0, then there exists d that satisfies
TZd 6= 0 and [QT TTR FT ]T d = 0. By increasing the magnitude of this d while
keeping its direction fixed, we can make TZ(i, :)d unbounded for at least one i and
simultaneously keep the constraints satisfied. �

Proposition 4.1 has two important consequences. Firstly, if Pi is unbounded,
then the system is seriously vulnerable. Namely, when the conditions ε′ ≥ 0 and
null([QT TTR FT ]T ) 6⊆ null( TZ) are satisfied, the attacker can make the determinis-
tic part of at least one critical state arbitrarily large while remaining stealthy. The
influence of the stochastic component then becomes negligible, and the optimal
value of Problem 4.1 for the metric IP (resp. IE) goes to 1 (resp. +∞). In words,
the attack results in the maximum impact.
Secondly, Pi is infeasible if and only if Problem 4.1 is infeasible, since these problems
have the same constraints. Hence, Problem 4.1 is infeasible if and only if the
attacker cannot satisfy a predefined stealthiness level.
Since Proposition 4.1 tells us the impact when Pi is infeasible or unbounded, in
the remainder we focus on the case where Pi is feasible and bounded. Thus, we
introduce the following assumption.

Assumption 4.3. We assume that ε′ ≥ 0 and null([QT TTR FT ]T ) ⊆ null( TZ).

4.3.2 Computing the optimal value of the metric IP

We now introduce Algorithm 4.1 that solves Problem 4.1 when I = IP . For every
i ∈ I, Algorithm 4.1 computes a solution d∗i of Pi. Based on d∗i , the algorithm
computes the probability

P̂ ∗i = P
(
|z(i)

1:N | > 1 ; d∗i
)
.
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Algorithm 4.1 Computing the optimal value of the metric IP
1: Input: TR, TZ , ΣZ , ΣR, Q, F , ε
2: Output: Î∗P
3: for every i ∈ I do
4: Compute a solution d∗i of Pi
5: Compute P̂ ∗i = P(|z(i)

1:N | > 1 ; d∗i )
6: end for
7: Î∗P = maxi∈I P̂ ∗i

Since z(i)
1:N is a Gaussian random variable (Lemma 4.2), P̂ ∗i can be computed effi-

ciently and accurately given d∗i . Finally, the algorithm returns Î∗P = maxi∈I P̂ ∗i as
the attack impact. We now establish that Î∗P is the optimal value of Problem 4.1.

Theorem 4.1. Let Assumption 4.3 be satisfied and I = IP . If I∗P is the optimal
value of Problem 4.1 and Î∗P is the value returned by Algorithm 4.1, then I∗P = Î∗P .

Proof. We refer the reader to Appendix 4.C. �

Theorem 4.1 represents an interesting extension of the work [26] that considered the
impact metric ‖z1:N‖∞. Particularly, Theorem 4.1 shows that the optimal value of
the metric IP can be computed by solving Pi nzN times, which is equivalent to
solving the convex problem (4.9) nzN times. This is the same favorable property
that the impact metric ‖z1:N‖∞ has. Furthermore, note that Pi can be solved in
parallel for every i ∈ I. Thus, the time needed to estimate the impact can be
considerably reduced using parallel computing. Moreover, we discuss in Section 4.4
how to further reduce this time by using properties of attack strategies.

4.3.3 Computing lower and upper bounds for the metric IE

We now use Pi to bound the metric IE . Let us define

Î∗E = maxi∈I µ∗i , (4.11)

where µ∗i is the optimal value of Pi corresponding to i. Theorem 4.2 provides lower
and upper bounds for the metric IE based on Î∗E .

Theorem 4.2. Let Assumption 4.3 be satisfied and I = IE. If I∗E is the optimal
value of Problem 4.1 and Î∗E is defined as in (4.11), then

Î∗E ≤ I∗E ≤ Î∗E +
Nnz∑
i=1

√
2ΣZ(i, i)

π
. (4.12)
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Proof. We refer the reader to Appendix 4.D. �

We highlight two consequences of Theorem 4.2. Firstly, we can see that the bounds
are tight in at least two cases: (i) Î∗E is considerably larger than the sum from (4.12);
and (ii) ΣZ(i, i) has a small value for every i (noise is negligible). The bounds can
be useful even if the tightness cannot be established. If the lower (resp. upper)
bound is large (resp. small), then I∗E is for sure large (resp. small). Secondly, note
that ΣZ is independent of d (Lemma 4.2). Hence, we only need Î∗E to compute the
bounds. Therefore, the bounds can be computed by solving Pi Nnz times, same
as the optimal value of Problem 4.1.

4.4 Attack strategies compatible with our framework

This section introduces attack strategies whose impact can be computed using our
framework, and discusses how properties of these strategies can be used to more
efficiently estimate the impact.

4.4.1 Attacks strategies

Prior to presenting the strategies, we introduce some notation. We denote by
Y = {y1, . . . , yny} the set of sensors and by U = {u1, . . . , unu} the set of actuators.
We also assume that by exploiting a group of security vulnerabilities, the attacker
gains control over a subset of sensors Ya ⊆ Y and a subset of actuators Ua ⊆ U .

DoS, rerouting, and sign alternation strategies

We first consider three attack strategies that can be modeled by

ỹ(k) = Λyy(k), ũ(k) = Λuu(k). (4.13)

The first such a strategy is the DoS attack strategy [2, 29], where the attacker
prevents the sensor measurements Ya and the control actions Ua from reaching their
destination. For example, the attacker can physically damage the corresponding
sensors and actuators, or jam a network over which these signals are transmitted [2].
Here, Λy and Λu are diagonal matrices defined by

Λy(i, i) =
{

0, yi ∈ Ya,
1, yi /∈ Ya,

Λu(i, i) =
{

0, ui ∈ Ua,
1, ui /∈ Ua.

(4.14)

In the sign alternation attack strategy [31, 101], the attacker flips the sign of the
measurements Ya and the control actions Ua. Such an attack can turn negative
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feedback into positive, and potentially destabilize the system. Moreover, in cer-
tain configurations with the Kalman filter, sign alternation attacks may be strictly
stealthy [101]. In this case, Λu and Λy are diagonal matrices given by

Λy(i, i) =
{
−1, yi ∈ Ya,

1, yi /∈ Ya,
Λu(i, i) =

{
−1, ui ∈ Ua,

1, ui /∈ Ua.

Finally, the rerouting attack strategy consists of the attacker permuting the values
of the measurements Ya and the control actions Ua [30, 104]. The attack can be
performed by modifying the respective senders’ identifiers, or by physically re-wiring
the cables [30]. In this attack, Λy and Λu are permutation matrices that satisfy
Λy(i, i) = 1 for yi /∈ Ya and Λu(i, i) = 1 for ui /∈ Ua.
The following proposition establishes compatibility of the above mentioned attack
strategies with our framework.

Proposition 4.2. The impact estimation problems on the DoS, rerouting, and sign
alternation attack strategies can be formulated as Problem 4.1.

Proof. It suffices to show that these attack strategies can be imposed through (C4)
and (C5). From (4.13), it follows that ay ≡ 0, au ≡ 0, and as ≡ 0. These constraints
on ay and au can be modeled by (C4), by setting Fa = I(N+1)na . The constraint
on as can be modeled by (C5), by setting T1, T2, T3 to zero. �

Remark 4.6. If every measurement Ya and every control action Ua can be blocked
separately, then the total number of choices for the matrices Λy and Λu equals
to 2|Ya|+|Ua|. Thus, computing the worst-case attack impact for all possible DoS
attacks can be expensive if |Ya| + |Ua| is large. A similar observation holds for
sign alternation attacks. A way to reduce this number is to use the nature of a
vulnerability that enables the attacker to corrupt Ua or Ya. For instance, if the
attacker jams the network over which multiple control or measurement signals are
transmitted, then the access to all of these signals is denied.

Remark 4.7. Computing the impact for all possible rerouting attacks can also
be computationally expensive. Namely, it can be shown that the total number of
possible choices for Λy and Λu is equal to |Ya|!|Ua|!. A way to reduce the num-
ber of combinations is by selecting combinations that are more likely to happen.
For example, to avoid easy detection, the attacker would do well to exchange two
measurements or control actions that are of similar nature.

Optimal FDI, bias injection, and combined FDI and DoS strategies

In the optimal FDI attack strategy [26,98], the attacker uses the model knowledge
to construct an optimal attack sequence a0:N . The signals ỹ and ũ are given by

ỹ(k) = y(k) + Γyay(k), ũ(k) = u(k) + Γuau(k), (4.15)
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where Γy and Γu are diagonal matrices defined by

Γy(i, i) =
{

1, yi ∈ Ya,
0, yi /∈ Ya,

Γu(i, i) =
{

1, ui ∈ Ua,
0, ui /∈ Ua.

(4.16)

In the bias injection attack strategy, the attacker injects a constant bias to the
measurements Ya and the control actions Ua [27,112]. Hence, ỹ and ũ are given by

ỹ(k) = y(k) + Γyay(0), ũ(k) = u(k) + Γuau(0), (4.17)

where Γy and Γu are defined in (4.16). One can notice that the only difference
between (4.15) and (4.17) is that au and ay are now constant.
Finally, one can imagine a situation where the attacker can inject corrupted data to
measurements YI and control actions UI , but can only deny access to measurements
YD and control actions UD. In this case, the attacker can use the combined FDI
and DoS attack strategy [115,116], in which ỹ and ũ are given by

ỹ(k) = Λyy(k) + Γyay(k), ũ(k) = Λuu(k) + Γuau(k). (4.18)

Here, Λy and Λu are defined based on YD and UD as in (4.14), and Γy and Γu are
defined based on YI and UI as in (4.16).
The above-mentioned injection strategies are also compatible with our framework.

Proposition 4.3. The impact estimation problems on the optimal FDI, bias, and
combined FDI and DoS attack strategies can be formulated as Problem 4.1.

Proof. Same as in the previous proof, we show that the attack strategies can be
imposed through (C4) and (C5). Consider first the optimal FDI attack strategy. In
this strategy, au and ay are free to choose. This can be modeled by (C4) by setting
Fa to zero. Next, note that as ≡ 0 can be modeled by (C5) by setting T1, T2, T3 to
zero. Hence, the optimal FDI attack strategy is compatible with our framework.
The proof for the combined FDI and DoS attack strategy is the same as for the
optimal FDI attack strategy, since au and ay are free to choose, and as ≡ 0.
The proof for the bias injection attack strategy is similar. The only difference are
the constraints ay(k) = ay(0), au(k) = au(0), for every k ∈ {1, . . . , N}. These
constraints are linear equality constraints that can be modeled by (C4). �

Replay strategy

The replay attack strategy is inspired by the Stuxnet attack [6]. A replay attack
on sensors can be modeled by

ỹ(k) = Λyy(k) + Γyasy(k), (4.19)
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where Λy is defined in (4.14), Γy is defined in (4.16), and

asy(k) = y(k −N − 1). (4.20)

Put differently, the attacker replaces the attacked measurements with the measure-
ments of the normal operation previously recorded at the time steps −N−1, . . . ,−1.
The purpose of attacking the sensors Ya is to cover an attack against the actuators
Ua. We model the attack against the actuators Ua as a DoS attack

ũ(k) = Λuu(k), (4.21)

where Λu is defined in (4.14). We remark that the attack against the actuators can
be modeled in other ways as well [190].
The replay attack strategy defined in this way is also compatible with our frame-
work, as shown in the following proposition.

Proposition 4.4. The impact estimation problem on the replay attack strategy can
be formulated as Problem 4.1.

Proof. We again prove the claim by showing that the replay attack strategy can
be imposed through (C4) and (C5). From (4.19) and (4.21), we have a ≡ 0, which
can be modeled by (C4) by setting Fa = I(N+1)na .
It remains to show that as can be expressed as in (C5). Let Ns = −N − 1. From
(4.20), we have asy0:N = yNs:−1. From the latter, (4.6), and (3.3), it follows that

asy0:N = yNs:−1 = T ′1xe(Ns) + T ′2vNs:−1 + T ′3(1N+1 ⊗ Inyr )yr,

where T ′1 = ON (Ae, Cy), T ′2 = TN (Ae, Be, Cy, Dy), and T ′3 = TN (Ae, Ee, Cy, Fy).
Therefore, the constraint (4.20) on asy has the same form as (C5). Additionally,
we have asu ≡ 0, which can also be imposed through (C5). Hence, it follows that
the replay attack strategy is compatible with our framework. �

4.4.2 Estimating impact more efficiently

Recall that we need to solve Pi multiple times to compute the optimal value of the
metric IP and the bounds for the metric IE . We now discuss how to use properties
of the attack strategies to simplify Pi or reduce the number of times we solve this
problem, and in that way, estimate the impact more efficiently. To simplify some
formulas from this section, we denote the dimension of a0:N by nA.

DoS, rerouting, sign alternation, and replay strategies

In the case of the DoS, rerouting, sign alternation, and replay attack strategies,
we have a ≡ 0. This implies that we can simplify Pi by eliminating the decision
variables a0:N and the constraint Fd = 0nFa . This is stated in Proposition 4.5.
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Proposition 4.5. Let Assumption 4.2 be satisfied. In the case of the DoS, rerout-
ing, sign alternation, and replay attack strategies, Pi is equivalent to

maximize
yr

T ′Z(i, :)yr

subject to ‖Qyryr‖∞ ≤ 1, ‖T ′Ryr‖22 ≤ ε′,
(4.22)

where T ′Z = TZ(:, nA + 1 : nA + nyr ) and T ′R = TR(:, nA + 1 : nA + nyr ).

Proof. Under Assumption 4.2, Pi is equivalent to the problem (4.9). The objective
function of (4.9) can be rewritten as

TZ(i, :)d a≡0,(4.7)= TZ(i, nA + 1 : nA + nyr )yr = T ′Z(i, :)yr.

The first constraint of (4.9) is equivalent to ‖Qyryr‖∞ ≤ 1 by the definition of Q.
The second constraint of (4.9) can be rewritten as

‖TRd‖22
a≡0,(4.7)= ‖TR(:, nA + 1 : nA + nyr )yr‖22 = ‖T ′Ryr‖22 ≤ ε′.

Finally, the last constraint of (4.9) becomes Faa0:N = 0nFa by the definition of F .
Since we showed that the objective function and the remaining constraints are not
dependent on a0:N , the last constraint of (4.9) and the decision variables a0:N can
be eliminated without affecting the optimal value. �

Bias injection strategy

In the bias injection attack strategy, we have

a(k) = a(0), ∀k ∈ {1, . . . , N}. (4.23)

This constraint can be used to simplify Pi by eliminating the decision variables
a1:N and the constraint Fd = 0nFa , as established in the following proposition.

Proposition 4.6. Let Assumption 4.2 be satisfied. In the case of the bias injection
attack strategy, Pi is equivalent to

maximize
a(0),yr

T ′Z(i, :)a(0) + T ′′Z(i, :)yr

subject to ‖Qyryr‖∞ ≤ 1, ‖T ′Ra(0)‖22 ≤ ε′,

where T ′Z = TZ(:, 1 : nA)(1N+1 ⊗ Ina), T ′′Z = TZ(:, nA + 1 : nA + nyr ), and T ′R =
TR(:, 1 : nA)(1N+1 ⊗ Ina).

Proof. We refer the reader to Appendix 4.E. �
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Optimal FDI strategy

In the case of the optimal FDI attack strategy, the number of times we solve the
problem Pi can be reduced from Nnz to nz. To explain why is this the case, we
need the following proposition.

Proposition 4.7. Let Assumption 4.3 hold, i be arbitrarily selected from {1, . . . , nz},
j be arbitrarily selected from {1, . . . , N}, and assume that the attacker uses the op-
timal FDI attack strategy. Consider the problems

P(1)
ij : maximize

d
|E{zi(j) ; d}| subject to (C1)–(C5),

P(2)
ij : maximize

d
P(|zi(j)| > 1 ; d) subject to (C1)–(C5).

If µ∗(i, j) is the optimal value of P(1)
ij and P ∗(i, j) is the optimal value of P(2)

ij , then
µ∗(i, j) ≤ µ∗(i,N) and P ∗(i, j) ≤ P ∗(i,N) hold.

Proof. We refer the reader to Appendix 4.F.
We now explain how Proposition 4.7 can be used to reduce the number of executions
of Pi. Firstly, note that P(1)

ij and Pi are the same problems written out in different
ways. By adopting the new notation, we emphasize that we focus on the ith critical
state at the jth time step. Secondly, the proof of Theorem 4.1 shows that computing
the optimal value of IP requires us to:

(i) solve P(1)
ij for every (i, j) ∈ {1, . . . , nz} × {1, . . . , N} to compute P ∗(i, j);

(ii) compute the optimal impact I∗P as the maximum of P ∗(i, j) over all i and j.

From Proposition 4.7, we have

maxi∈{1,...,nz} maxj∈{1,...,N} P ∗(i, j) ≤ maxi∈{1,...,nz} P
∗(i,N).

Therefore, it suffices to fix j = N and solve P(1)
ij for every i to compute the optimal

impact I∗P . In words, P(1)
ij is solved nz times instead of Nnz times. Similarly, since

µ∗(i, j) ≤ µ∗(i,N), the bounds for IE can be computed by solving P(1)
ij nz times.

Remark 4.8. Attack strategies other than optimal FDI do not generally satisfy this
useful monotonicity property. Counterexamples are provided in the next section.

4.5 Illustrative examples

This section illustrates how the modeling framework we propose can be used for
comparison of security vulnerabilities, and discusses some of the technical results
through examples. We begin by introducing the control system model.

51



4.5.1 Model: Chemical process

We consider a chemical plant from [41] shown in Figure 4.2 (a). The states are the
volume in Tank 3 (x1), the volume in Tank 2 (x2), and the temperature in Tank 2
(x3). The control actions are the flow rate of Pump 2 (u1), the openness of the
valve (u2), the flow rate of Pump 1 (u3), and the power of the heater (u4). We
assume that the control objective is to maintain a constant temperature in Tank 2.
The objective is achieved by injecting hot water from Tank 1, and cold water from
Tank 3. The matrices describing the physical plant are given by

A =

 0.9550 0 0
0.0442 0.9675 0
−0.0444 0.0007 0.8958

 , B =

 8.7961 −2.2479 0 0
0.2016 2.2109 4.9184 0
−0.2051 −2.2194 1.8958 21.1173

 ,
C = I3, Σvx = 0.05 I3, and Σvy = 0.01 I3. The controller matrices are given by

L1 =


0.1034 0.0182 −0.0012
−0.0196 0.0714 −0.0049
0.0135 0.1632 0.0022
−0.0044 −0.0069 0.0417

 , L3 =


0.1109 0.1126 0.0000
−0.0102 0.4405 0.0000

0 0 0
0.0000 0.0474 0.0474

 ,
and L2 = 0nu×ny . We adopt Qyr = 0.4 I3, and use the steady state Kalman filter
as an estimator.
We assume a cyber-infrastructure shown in Figure 4.2 (b). The communication link
between Slave PLC 1 and Master PLC is unprotected (vulnerability V1). The same
holds for the link between Slave PLC 2 and Master PLC (vulnerability V2). If the
attacker exploits V1, then he/she gains control over the components y2, y3, u3, u4.
As for V2, the attacker gains control over y1, u1, u2.

4.5.2 Example 1: Comparison of security vulnerabilities

We first illustrate how our framework can be used to compare security vulnerabil-
ities. We set N = 10, ε = 0.3, Cz = [01×2 1/3], and I = IP . We then compute
the impacts of the DoS, rerouting, replay, and bias injection attacks in the cases
when either V1 or V2 are exploited. Since the attacker can conduct DoS and rerout-
ing attacks in multiple ways, we compute the worst-case impact over all possible
implementations. For replay attacks, we assume that the attacker launches a DoS
attack against all the actuators under control.
The results of the analysis are illustrated in Figure 4.3. Note that the impact of
different attacks may result in different conclusions concerning the importance of
vulnerabilities. On the one hand, based on the impact of the DoS attacks, it follows
that V2 is more important to be prevented than V1. On the other hand, based on
the impact of the replay, optimal FDI, and bias attacks, V1 is more critical. The
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Figure 4.2: (a) The physical part of the system. There are four actuators (two
pumps, one heater, and one valve), and three sensors (two level sensors and one
temperature sensor). (b) The cyber part of the system. The communication link
between Slave PLC 1 and Master PLC is unprotected (vulnerability V1). The same
holds for the link between Slave PLC 2 and Master PLC (vulnerability V2).
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Figure 4.3: The impact of different attacks when vulnerability V1 is exploited (blue
bars) and when vulnerability V2 is exploited (red bars).

53



impact of rerouting attacks was not informative, since it was equal to zero in both
cases. Taking all the attacks into account, we can give a higher priority to V1, since
the impact in the majority of the cases is larger when V1 is exploited.
We also observe that sometimes less complex attack strategies can be just as dan-
gerous as the optimal FDI attack strategy. For example, in the case of V1, the
replay attack resulted in the same impact as the optimal FDI attack.

4.5.3 Example 2: Maximum impact condition

Observe from Figure 4.3 that if the attacker exploits V1 and uses the optimal FDI
attack strategy, then he/she can conduct an attack that results in the maximum
impact. In fact, this is an example of a scenario where the attacker can make
the deterministic part of the critical state x3 arbitrarily large, since the maximum
impact condition from Proposition 4.1 is satisfied. Namely, by manipulating the
compromised actuators, the attacker affects the volume x2 and the temperature x3
of Tank 2. The changes in the system behavior caused by the attack cannot be
seen neither from the sensors y2 and y3 (the effect is removed by the attacker), nor
from the sensor y1 (x2 and x3 do not affect y1).

4.5.4 Example 3: Feasibility of the impact estimation problem

We now illustrate how the stealthiness level ε influences the feasibility of the impact
estimation problem. We vary ε in the range [0, 2], and adopt the other modeling
parameters to be the same as in Example 1. The following attacks and attack
resources are considered: (i) a DoS attack against u1 and u2; (ii) a replay attack
against y1 combined with a DoS attack against u1 and u2; (iii) a rerouting attack
against y1 and y2; and (iv) an optimal FDI attack against u1 and y1. A plot of the
impact of these attacks with respect to ε is shown on Figure 4.4.
As we can see, the impact is non-decreasing with respect to ε in all four cases. This
is expected, since by increasing ε, the stealthiness constraint (C3) becomes easier
to satisfy. However, an important point is that some of the attacks require ε to be
larger than a certain threshold to have an impact larger than zero. For example, in
the case of the replay (resp. DoS) attack, ε needs to be larger than 0.1 (resp. 0.5).
In the case of rerouting attack, the impact is equal to zero for all the values of ε we
consider. The explanation is as follows.
From Lemma 4.3, the stealthiness constraint (C3) can be written as ‖TRd‖22≤ε′,
where ε′ = (N+1)(2ε+ny)−tr(ΣR)+ log det(ΣR). The replay, DoS, and rerouting
attack strategies are multiplicative in nature (Λu 6= Inu , Λy 6= Iny ), and may change
the residual covariance matrix ΣR. If ε is not large enough, then these attacks may
result in ε′ being less than zero. Problem 4.1 is then infeasible (Proposition 4.1),
and the impact is zero by the convention. In contrast, the optimal FDI attack
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Figure 4.4: The impact of attacks specified in Example 3 with respect to ε.

strategy is additive (Λu = Inu , Λy = Iny ), and does not affect ΣR. We then have
ΣR = I(N+1)ny and ε′ = 2(N + 1)ε ≥ 0, so Problem 4.1 is always feasible in the
case of this strategy.

4.5.5 Example 4: Monotonicity property from Proposition 4.7

This example shows that the attack strategies other than the optimal FDI generally
do not satisfy the monotonicity property from Proposition 4.7. However, we also
illustrate that these strategies can posses this property in some cases.
The following attacks and attacker’s resources are considered: (i) a DoS attack
against u2; (ii) a DoS attack against all the actuators; (iii) a replay attack against
y1 combined with a DoS attack against u1 and u2; (iv) a replay attack against y1
combined with a DoS attack against u1 and u2; (v) a bias injection attack against
all the actuators; and (vi) a bias injection attack against all the sensors. In the
cases (i), (iii), and (v), we use the same system model and the same values of N , ε,
and Cz as in Example 1. In the cases (ii), (iv), and (vi), we deviate from the model
as follows: (ii) ε = 4; (iv) N = 40; (vi) N = 20, ε = 0.2, Cz = [0 1/3 0],

L1 = −


0.0864 0.1151 −0.0012
−0.0862 0.0498 −0.0049
−0.1388 0.1694 0.0022
0.0021 −0.0088 0.0417

 , L3 =


0.0093 0.2128 −0.0000
−0.4079 0.4324 0.0000

0 0 0
−0.0428 0.0475 0.0473

 .
Plots of P ∗(1, j) with respect to j for the above-mentioned attacks are shown in
Figure 4.5. As we can see, the attacks we consider generally do not possess the
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Figure 4.5: The value of P ∗(1, j) with respect to j for the attacks specified in
Example 4. The maximum of the curve is indicated with a red circle.

property from Proposition 4.7. In (ii), P ∗(1, j) reaches the maximum value at the
beginning of the horizon. In (iv) and (vi), P ∗(1, j) reaches the maximum value be-
tween the beginning and the end of the horizon. However, one can observe that the
attacks specified in (i), (iii), and (v) do possess the property from Proposition 4.7.
That is, P ∗(1, j) reaches the maximum value at the end of the horizon. Thus, it
would be interesting to derive under which conditions this useful property holds for
the attack strategies other than optimal FDI.

4.6 Summary

This chapter considered the impact estimation problem. Two impact metrics suit-
able for stochastic systems were proposed and studied. We derived conditions under
which the impact estimation problem is infeasible or its optimal value equals to the
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maximum impact, proved that the optimal value of the first metric can be com-
puted by solving a set of convex problems, and derived lower and upper bounds for
the second metric. Additionally, we showed that our impact estimation framework
is compatible with a range of attack strategies, discussed how to use properties of
these strategies to estimate the impact more efficiently, and demonstrated how the
framework can be used to compare security vulnerabilities. We now move to the
next chapter, where we utilize the framework in allocation of security measures.

Appendix to Chapter 4

4.A The matrices from Equations (C1) and (4.6)

Ãe =
[
A−BΛuL2ΛyC −BΛuL1
(K −BL2)ΛyC A−KC −BL1

]
B̃e =

[
Inx −BΛuL2Λy

0nx×nx (K −BL2)Λy

]
Ẽe =

[
BΛuL3
BL3

]
G̃e =

[
BΓu −BΛuL2Γy

0nx×nau (K −BL2)Γy

]
C̃r = Σ−

1
2

r

[
ΛyC −C

]
D̃r = Σ−

1
2

r

[
0ny×nx Λy

]
H̃r = Σ−

1
2

r

[
0ny×nu Γy

]
F̃r = 0ny×nyr

C̃z = [Cz 0nz×nx ] D̃z = 0nz×nv
F̃z = 0nz×nyr H̃z = 0nz×na

Ae =
[
A−BL2C −BL1

(K −BL2)C A−KC −BL1

]
Be =

[
Inx −BL2

0nx×nx K −BL2

]
Ee =

[
BL3
BL3

]
Cy =

[
C 0ny×nx

]
Dy =

[
0ny×nx Iny

]
Fy = 0ny×nyr

4.B Proof of Lemma 4.2

We first prove that z1:N is distributed according to N (TZd,ΣZ). Consider the
non-attacked system (4.6). From (3.2), we have

xe(0) = P1axe(Ns) + P2avNs:−1 + P3ayrNs:−1, (4.24)

where P1a = A
|Ns|
e , P2a = C|Ns|(Ae, Be), and P3a = C|Ns|(Ae, Ee). Consider now

the attacked system (C1). From (3.3), it follows that

z0:N = P1bxe(0) + P2bv0:N + P3byr0:N + P4ba0:N + P4bas0:N , (4.25)
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where P1b = ON (Ãe, C̃z), P2b = TN (Ãe, B̃e, C̃z, D̃z), P3b = TN (Ãe, Ẽe, C̃z, F̃z), and
P4b = TN (Ãe, G̃e, C̃z, H̃z). By combining (4.24) and (4.25), we obtain

z0:N = P1cxe(Ns) + P2cvNs:N + P3cyr + P4ba0:N + P4bas0:N , (4.26)

where P1c = P1bP1a, P2c = [P1bP2a P2b], and P3c = [P1bP3a P3b](1|Ns|+N+1⊗Inyr ).
Let Pl = [0Nnz×nz INnz ]. From (4.26) and (C5), it follows that

z1:N = P1xe(Ns) + P2vNs:N + P3yr + P4a0:N , (4.27)

where P1 = Pl(P1c + P4bT1), P2 = Pl(P2c + [P4bT2 0(N+1)nz×(N+1)nv ]), P3 =
Pl(P3c + P4bT3), and P4 = PlP4b.
Note that P1xe(Ns) and P2vNs:N are independent Gaussian vectors. Additionally,
observe that P3yr and P4a0:N are deterministic vectors. Since the sum of indepen-
dent Gaussian vectors and deterministic vectors is a Gaussian vector, we conclude
from (4.27) that z1:N is a Gaussian vector. From linearity of the expected value
operator, the fact that xe(Ns) has the mean value T0yr (Lemma 4.1), and the fact
that the noise is zero mean, we obtain

E{z1:N} = P1T0yr + P3yr + P4a0:N
(4.7)= TZd,

where TZ = [P4 P1T0 + P3].
Next, since v is a white Gaussian sequence, the covariance matrix of vNs:N is given
by ΣV = I|Ns|+N+1 ⊗ Σv. Additionally, P1xe(Ns) and P2vNs:N are independent
Gaussian vectors. Thus, the covariance matrix of z1:N equals to the sum of the
covariance matrices of P1xe(Ns) and P2vNs:N , that is,

ΣZ = P1Σ0P
T
1 + P2ΣV PT2 .

Finally, notice that TZ and ΣZ are independent of d.
The proof that r̃0:N is distributed according to N (TRd,ΣR) is similar, so we briefly
summarize it. From (3.2), (3.3), (C1), and (4.6), r̃0:N can be written as

r̃0:N = M1axe(Ns) +M2avNs:N +M3ayr +M4a0:N +M4as0:N , (4.28)

whereM1a = ON (Ãe, C̃r)A|Ns|e ,M2a = [ON (Ãe, C̃r)C|Ns|(Ae, Be) TN (Ãe, B̃e, C̃r, D̃r)],

M3a = [ON (Ãe, C̃r)C|Ns|(Ae, Ee) TN (Ãe, Ẽe, C̃r, F̃r)](1|Ns|+N+1 ⊗ Inyr ),

and M4 = TN (Ãe, G̃e, C̃r, H̃r). From (4.28) and (C5), it follows that

r̃0:N = M1xe(Ns) +M2vNs:N +M3yr +M4a0:N ,

where M1 = M1a + M4T1, M2 = M2a + [M4T2 0(N+1)ny×(N+1)nv ], and M3 =
M3a + M4T3. Using the same arguments as in the case of z1:N , it can be shown
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that the mean value of r̃0:N is E{r̃0:N} = TRd, where TR = [M4 M1T0 +M3]. The
covariance matrix of r̃0:N is given by ΣR = M1Σ0M

T
1 +M2ΣVMT

2 .We can see that
TR and ΣR are independent of d.
Finally, we prove that ΣZ � 0. Equation (4.27) can be rewritten as

z1:N = P1xe(Ns) + P ′2vNs:−1 + P ′′2 vx0:N + P ′′′2 vy0:N + P3yr + P4a0:N ,

where the exact formulas for the matrices P ′2, P ′′2 , and P ′′′2 are omitted for the sake
of brevity. Since P1xe(Ns), P ′2vNs:−1, P ′′2 vx0:N , P ′′′2 vy0:N are independent Gaussian
vectors, ΣZ is the sum of the covariance matrices of these vectors. Thus, it suffices
to prove that one of these vectors has a positive definite covariance matrix.
From (4.1), P ′′2 is of the form

P ′′2 =


Cz 0nz×nx . . . 0nz×nx 0nz×nx
× Cz . . . 0nz×nx 0nz×nx
...

...
. . .

...
...

× × . . . Cz 0nz×nx

 .
Since Cz has a full row rank, we have null((P ′′2 )T ) = ∅. Since vx is a white Gaussian
process, the covariance matrix of vx0:N is given by ΣVx = IN+1⊗Σvx . Additionally,
from Σvx � 0, we have ΣVx � 0. It then follows that P ′′2 ΣVx(P ′′2 )T � 0, and we
conclude that ΣZ � 0 holds.

4.C Proof of Theorem 4.1

Since the constraints of Problem 4.1 are independent of i, the optimal value I∗P can
be obtained in the following two steps:

(i) We compute the optimal value P ∗i of the optimization problem

maximize
d

P(|z(i)
0:N | > 1 ; d) subject to (C1)–(C5) (4.29)

for every i ∈ I.

(ii) We compute I∗P as I∗P = maxi∈I P ∗i .

We now prove that Algorithm 4.1 performs these two steps.
Step 1. Note that Algorithm 4.1 computes a solution d∗i of Pi for every i ∈ I.
Under Assumption 4.2, d∗i always exists. Based on d∗i , Algorithm 4.1 computes
P̂ ∗i = P(|z(i)

1:N | > 1 ; d∗i ) (Lines 3–6). In the following, we prove that d∗i is also a
solution of the problem (4.29) for every i ∈ I. This implies that P̂ ∗i = P ∗i , and
shows that Algorithm 4.1 performs Step 1.
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Let i ∈ I be arbitrarily selected. Since ΣZ � 0, then N (TZd,ΣZ) is a non-
degenerate Gaussian distribution. Hence, z(i)

1:N is a Gaussian random variable with
the mean value µ = TZ(i, :)d and the variance σ2 = ΣZ(i, i). Since ΣZ is not
affected by d, it follows that d influences the probability P(|z(i)

1:N | > 1 ; d∗i ) only
through µ. We now analyze how P(|z(i)

1:N | > 1 ; d∗i ) changes with respect to µ.
Let c = (

√
2σ)−1, z̃ ∼ N (µ, σ2), and f(µ) = P(|z̃| > 1 ; µ). Observe that |z̃| is

distributed according to the folded normal distribution [191]. Therefore, we have

f(µ) = 1− 1
2erf(c− cµ)− 1

2erf(c+ cµ), (4.30)

where erf(x) = π−1/2 ∫ x
−x e

−t2dt is the error function (for instance, see [191]).
From (4.30), it follows that f(−µ) = f(µ), so f(µ) is symmetric in µ (Property 1).

Using the formula d erf(z)/dz = 2π−1/2e−z
2
, we obtain

df(µ)
dµ

= c√
π
e−c

2(1−µ)2
− c√

π
e−c

2(1+µ)2
.

Note that e−c2(1+µ)2
< e−c

2(1−µ)2 for µ > 0, and e−c2(1+µ)2
> e−c

2(1−µ)2 for µ < 0.
Hence, it follows that f is monotonically increasing with respect to µ on the interval
(0,+∞), and decreasing with respect to µ on the interval (−∞, 0). Due to this fact
and Property 1, we have that f(µ) is increasing with respect to |µ| (Property 2).
Next, recall that Pi is on maximizing |µ| under the constraints (C1)–(C5). From
Property 2, it follows that d∗i that maximizes |µ| under (C1)–(C5), also maximizes
P(|z(i)

1:N | > 1 ; d) under (C1)–(C5). Hence, d∗i is also a solution of (4.29).

Step 2. From Step 1, P̂ ∗i = P ∗i holds for every i ∈ I. From the latter, it directly
follows that maxi∈I P ∗i = maxi∈I P̂ ∗i . Therefore, Algorithm 4.1 performs Step 2 as
well, and we conclude that I∗P = Î∗P holds.

4.D Proof of Theorem 4.2

Before we establish the bounds, we outline the connection between Î∗E and the
infinity norm. Since E{z1:N} = TZd (Lemma 4.2), then Î∗E is the optimal value of
the following optimization problem

maximize
i∈I

maximize
d

|TZ(i, :)d| subject to (C1)–(C5). (4.31)

Since ‖TZd‖∞ = maxi∈I |TZ(i, :)d| and (C1)–(C5) are independent of i, the prob-
lem (4.31) can be rewritten as

maximize
d

‖TZd‖∞ subject to (C1)–(C5). (4.32)
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Note that both (4.31) and (4.32) are feasible, since ε′ ≥ 0. Hence, if d′ is a solution
of (4.32), then Î∗E = ‖TZd′‖∞. We are now ready to establish the bounds.
Lower bound. Let Z ′ ∼ N (TZd′,ΣZ), and note that Z ′ is with the finite mean
value (integrable) under Assumption 4.3. We then have

Î∗E = ‖E{Z ′ ; d′}‖∞
(*)
≤ E{‖Z ′‖∞ ; d′} = IE(d′)

(**)
≤ I∗E .

Here, (*) follows from the convexity of the infinity norm and Jensen’s inequal-
ity [192]. Additionally, (**) follows from the fact that d′ is a feasible point of
Problem 4.1, so IE(d′) has to be lower than the optimal value I∗E of Problem 4.1.
Upper bound. Let d∗ be a solution of Problem 4.1 when I = IE , and let
Z∗ ∼ N (TZd∗,ΣZ). Note that Z∗ can be written as Z∗ = TZd

∗ + Z, where
Z ∼ N (0Nnz ,ΣZ). Since ΣZ � 0 (Lemma 4.2), then N (0,ΣZ) is a non-degenerate
Gaussian distribution. Hence, Zi ∼ N (0,ΣZ(i, i)), and |Zi| is a random variable
distributed according to the folded normal distribution [191]. We then have

I∗E = E{‖Z∗‖∞ ; d∗}
(i)
≤ E{‖Z‖∞ ; d∗}+ ‖TZd∗‖∞

(ii)
≤ E{‖Z‖∞ ; d∗}+ Î∗E

(iii)
≤

Nnz∑
i=1

E{|Zi| ; d∗}+ Î∗E
(iv)=

Nnz∑
i=1

√
2ΣZ(i, i)

π
+ Î∗E ,

where:

(i) follows from the triangle inequality and linearity of the expectation;

(ii) follows from ‖TZd∗‖∞ ≤ ‖TZd′‖∞ = Î∗E , since d∗ is a feasible point and d′ is
a solution of (4.32);

(iii) follows from ‖Z‖∞ ≤
∑Nnz
i=1 |Zi| and linearity of the expectation;

(iv) follows from E{|Zi| ; d∗} =
√

2ΣZ(i, i)/π (for instance, see [191]).

4.E Proof of Proposition 4.6

Under Assumption 4.2, Pi is equivalent to the problem (4.9). The objective function
of (4.9) can be rewritten as

TZ(i, :)d (4.23)= TZ(i, 1 : nA)(1N+1 ⊗ Ina)a(0) + TZ(i, nA + 1 : nA + nyr )yr,

which equals to T ′Z(i, :)a(0) + T ′′Z(i, :)yr.
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The first constraint of (4.9) can be rewritten as ‖Qyryr‖∞ ≤ 1 by the definition of
Q. The second constraint of (4.9) reduces to ‖T ′Ra(0)‖22 ≤ ε′, since

‖TRd‖22
(4.23)= ‖TR(:, 1 : nA)(1N+1 ⊗ Ina)a(0) + TR(:, nA + 1 : nA + nyr )yr‖22

(∗)= ‖T ′Ra(0)‖22,

where (∗) follows from the fact that the references yr do not affect the residuals r̃.
To show this, let us define the estimation errors by e(k) = x(k) − x̂(k). From the
formulas in Appendix 4.A, Λy = Iny , and Λu = Inu , we have

e(k + 1) = Ã′ee(k) + B̃′ev(k) + Ẽ′eyr + G̃′ea(k),

where Ã′e = A−KC, B̃′e =
[
Inx −K

]
, Ẽ′e = 0nx×nyr , and G̃

′
e =

[
BΓu −KΓy

]
.

Since Ẽ′e = 0nx×nyr , the estimation errors e(k) are not affected by the references yr.
Additionally, the residuals r̃(k) can be rewritten as

r̃(k) (4.4)= Σ−
1
2

r

(
ỹ(k)− Cx̂(k)

) (4.5),(4.17)= Σ−
1
2

r

(
y(k) + Γyay(k)− Cx̂(k)

)
,

(4.1)= Σ−
1
2

r

(
Ce(k) + vy(k) + Γyay(k)

)
.

(4.33)

Hence, we conclude that the references yr do not affect the residuals r̃.
Finally, the last constraint of (4.9) reduces to (4.23). Since we showed that the ob-
jective function and the first two constraints are not affected by a1:N , this constraint
and the decision variables a1:N can be eliminated.

4.F Proof of Proposition 4.7

The proof relies on Lemmas 4.5 and 4.6 that we introduce next.

Lemma 4.5. Let Assumption 4.2 be satisfied and T ′R = TR(:, 1 : nA). In the case
of the optimal FDI attack strategy, P(1)

ij can be rewritten as follows:

maximize
yr,a0:N

|C̃z(i, :)(Cj(Ãe, G̃e)a0:j−1 + T0yr)|

subject to ‖Qyryr‖∞ ≤ 1, ‖T ′Ra0:N‖22 ≤ ε′.
(4.34)

Proof. Under Assumption 4.2, P(1)
ij can be rewritten as

maximize
d

|E{zi(j) ; d}|

subject to ‖Qd‖∞ ≤ 1, ‖TRd‖22 ≤ ε′, Fd = 0nFa .
(4.35)
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The proof follows the same steps as the proof of Lemma 4.4. We first analyze
the objective function of (4.35). Since optimal FDI attacks are purely additive
(Λu = Inu , Λy = Iny ) and the system is linear, we can write

E{xe(k) ; d} = µh(k) + µa(k).

Here, µh(k) (resp. µa(k)) characterizes influence of xe(0) and yr (resp. a0:k−1) on
the mean value of xe(k). Firstly, since the system has entered the stationary regime
prior to the attack and optimal FDI attacks do not affect the system matrices
(Ãe = Ae, B̃e = Be, Ẽe = Ee), we have µh(k) = T0yr. Secondly, from (C1)
and (3.2), we have µa(k) = Ck(Ãe, G̃e)a0:k−1. Therefore, it follows that

E{zi(j) ; d} = E{C̃z(i, :)xe(j) ; d} = C̃z(i, :)
(
T0yr + Cj(Ãe, G̃e)a0:j−1

)
.

Hence, the objective functions of (4.34) and (4.35) are equal.
Next, from the definition of Q, we have ‖Qd‖∞ = ‖Qyryr‖∞. Since r̃ is decoupled
from yr when Λu = Inu and Λy = Iny (see the proof of Proposition 4.6), we have
‖TRd‖22 = ‖T ′Ra0:N‖22. Finally, since no constraints are imposed on a0:N in the
optimal FDI attack strategy, we can simply discard the constraint Fd = 0nFa . �

Lemma 4.6. Let i be arbitrarily selected from {1, . . . , nz}. Under the optimal FDI
attack strategy, zi(j) has the variance ΣZ(i, i) for any j ∈ {1, . . . , N}.

Proof. Since optimal FDI attacks are deterministic and purely additive, only the
mean value of z(k) changes. Hence, the variance of the critical state zi is equal to
the one in stationary regime, and remains the same for any time step j ∈ {1, . . . , N}.
Since the critical state zi(1) has the variance ΣZ(i, i), the claim holds. �

We are now ready to prove Proposition 4.7. We first establish µ∗(i, j) ≤ µ∗(i,N)
for any j ∈ {1, . . . , N} using contradiction. Let us assume that there exists j∗ ∈
{1, . . . , N − 1} for which µ∗(i, j∗) > µ∗(i,N) holds. Let

d∗ =
[
a∗0:N
y∗r

]
be a solution of P(1)

ij∗ , and let us define

k∗ = N − j∗, a′0:N =
[
0k∗na
a∗0:j∗

]
, d′ =

[
a′0:N
y∗r

]
.

In the following, we show that d′ is a feasible point of P(1)
iN (Claim 1) and that it

yields the objective value larger than or equal to µ∗(i, j∗) (Claim 2). This contra-
dicts existence of j∗ and concludes the first part of the proof.

Claim 1. From Lemma 4.5, it follows that P(1)
iN can be rewritten as (4.34). The

first constraint of (4.34) is only affected by the references. Hence, d′ automatically
satisfies this constraint. To show that d′ satisfies the second constraint of (4.34),

we rewrite T ′R in the form T ′R =
[
T ′R1 T ′R2
T ′R3 T ′R4

]
, where
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(i) T ′R1 maps a0:k∗−1 to r0:k∗−1;

(ii) T ′R2 maps ak∗:N to r0:k∗−1;

(iii) T ′R3 maps a0:k∗−1 to rk∗:N ;

(iv) T ′R4 maps ak∗:N to rk∗:N .

Note that T ′R2 is equal to zero due to the causality of the system. By plugging d′
into the second constraint of (4.34), we obtain

‖T ′Ra′0:N‖22 =
∣∣∣∣∣∣∣∣[T ′R1a

′
0:k∗−1 + T ′R2a

′
k∗:N

T ′R3a
′
0:k∗−1 + T ′R4a

′
k∗:N

]∣∣∣∣∣∣∣∣2
2

(*)= ‖T ′R4a
∗
0:j∗‖22, (4.36)

where (*) follows from a′0:k∗−1 = 0k∗na , a′k∗:N = a∗0:j∗ , and T ′R2 being zero. Let us

now rewrite T ′R in the form T ′R =
[
T ′′R1 T ′′R2
T ′′R3 T ′′R4

]
, where

(i) T ′′R1 maps a0:j∗ to r0:j∗ ;

(ii) T ′′R2 maps aj∗+1:N to r0:j∗ ;

(iii) T ′′R3 maps a0:j∗ to rj∗+1:N ;

(iv) T ′′R4 maps aj∗+1:N to rj∗+1:N .

Additionally, note that T ′′R2 is equal to zero due to the causality of the system, and
that T ′′R1 = T ′R4 due to the fact that the system is time invariant. By plugging d∗
into the second constraint of (4.34), we obtain

‖T ′Ra∗0:N‖22
(*)=
∣∣∣∣∣∣∣∣[ T ′′R1a

∗
0:j∗

T ′′R3a
∗
0:j∗ + T ′′R4a

∗
j∗+1:N

]∣∣∣∣∣∣∣∣2
2
≥ ‖T ′′R1a

∗
0:j∗‖22, (4.37)

where (*) follows from T ′′R2 being zero. We then have

ε′ ≥ ‖T ′Ra∗0:N‖22
(4.37)
≥ ‖T ′′R1a

∗
0:j∗‖22

T ′′R1=T ′R4= ‖T ′R4a
∗
0:j∗‖22

(4.36)= ‖T ′Ra′0:N‖22.

Hence, d′ satisfies the second constraint of (4.34), and Claim 1 holds.
Claim 2. We now prove that d′ yields the objective value larger than or equal
to µ∗(i, j∗). Let M = CN (Ãe, G̃e) be the mapping from a0:N−1 to xe(N). Note
that we can write M = [M1 M2], where M1 maps a0:k∗−1 to xe(N) and M2 maps
ak∗:N−1 to xe(N). Since the system is time invariant, we have M2 = Cj∗(Ãe, G̃e).

From Lemma 4.5, the objective value of P(1)
iN in d′ equals to∣∣∣∣C̃z(i, :) [M T0

] [a′0:N−1
y∗r

]∣∣∣∣ (*)=
∣∣C̃z(i, :) [M2a

′
k∗:N−1 + T0y

∗
r

]∣∣
(**)=

∣∣C̃z(i, :) [Cj∗(Ãe, G̃e)a∗0:j∗−1 + T0y
∗
r

]∣∣ (4.34)= µ∗(i, j∗),

where (*) follows from a′0:k∗−1 = 0k∗na , and (**) follows from a′k∗:N−1 = a∗0:j∗−1

and M2 = Cj∗(Ãe, G̃e). In words, the objective value of P(1)
iN for a feasible point d′
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is equal to µ∗(i, j∗). Since d′ is a feasible point of P(1)
iN , it yields the objective value

smaller than the optimal value µ∗(i,N). Hence, µ∗(i, j∗) ≤ µ∗(i,N) has to hold.
We now prove that P ∗(i, j) ≤ P ∗(i,N) for any j ∈ {1, ..., N}. Under Assump-
tion 4.3, we know that a solution d∗i of P(1)

ij exists. Denote by N (µij , σ2
ij) the

distribution of zi(j) assuming d = d∗i . Observe that:

(i) d∗i is also a solution of P(2)
ij (established in the proof of Theorem 4.1);

(ii) the mean value magnitude |µij | for a fixed i is largest for j = N (this was
established earlier in the proof);

(iii) the variance σ2
ij is equal to ΣZ(i, i) for every j ∈ {1, . . . , N} (Lemma 4.6);

(iii) if z̃ ∼ N (µ, σ2), then P(|z̃| > 1 ; µ) is monotonically increasing with |µ| when
σ2 is fixed (established in the proof of Theorem 4.1).

From (i)–(iv), it directly follows that P ∗(i, j) ≤ P ∗(i,N).
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Chapter 5

Security measure allocation

The security measure allocation problem consists of computing the least expensive
subset of security measures that prevents all the critical vulnerability combinations.
This problem is challenging for two reasons. Firstly, to construct an instance of
the security measure allocation problem, we need to find the critical vulnerability
combinations. If the number of vulnerabilities is large, then it is infeasible to simply
search through all the vulnerability combinations to find those that are critical.
Secondly, the security measure allocation problem proves to be NP-hard. Hence,
known polynomial-time algorithms cannot solve this problem.
To tackle the first challenge, we introduce several tools that can be used to system-
atically search for the critical vulnerability combinations. Based on these tools, we
propose an algorithm that provably finds the critical combinations needed to con-
struct the security measure allocation problem. To tackle the second challenge, we
introduce two approaches. The first approach is to simplify the problem, and then
use an integer linear program solver to compute a solution. The second approach
consists of proving that the problem possesses a suitable submodular structure.
This enables us to use a polynomial-time algorithm to compute a suboptimal so-
lution with performance guarantees. We also investigate how to optimize these
guarantees. The applicability of our approach is demonstrated on a control system
that is used for regulating temperatures. Additionally, we explain how the impact
estimation framework from Chapter 4 can be combined with the security measure
allocation framework from this chapter.
The chapter is organized as follows. Section 5.1 introduces the security measure al-
location problem. Section 5.2 presents the algorithm that systematically constructs
the problem. Section 5.3 establishes NP-hardness of the problem and introduces
two suboptimal approaches to tackle it. Section 5.4 discusses the security mea-
sure allocation problem on an example. Section 5.5 concludes the chapter. The
appendix contains lengthy proofs and numerical values of some matrices.
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5.1 Model setup and problem formulation

This section introduces the control system model, the risk model, and the security
measure allocation problem.

5.1.1 Control system model

We characterize the control system through the following four finite sets:

(i) the set of vulnerabilities V present in the system;

(ii) the set of security measuresM that can prevent the vulnerabilities;

(iii) the set of actuators U ;

(iv) the set of sensors Y.

A vulnerability v ∈ V can model a communication link without protection, lack
of anti-virus software on computers in a control center, or insufficient physical
protection of some control equipment. By exploiting a vulnerability v, the attacker
gains control over the actuators Uv ⊆ U and the sensors Yv ⊆ Y. He/she can then
use these components to attack the physical plant. If vulnerabilities V ⊆ V are
exploited by the attacker, which we refer to as a scenario V , then the actuators UV
and the sensors YV under the attacker’s control can be written as follows:

UV =
⋃
v∈V

Uv, YV =
⋃
v∈V

Yv.

The vulnerabilities can be prevented by deploying security measures from M. A
security measure m ∈ M can model the encryption of a communication link, the
installation of anti-virus software, or the deployment of better physical protection.
With every m ∈M, we associate the cost of deployment cm ∈ R+ and the vulner-
abilities Vm ⊆ V prevented by m. If security measures M ⊆M are deployed, then
the total cost cM and the prevented vulnerabilities VM can be written as follows:

cM =
∑
m∈M

cm, VM =
⋃
m∈M

Vm. (5.1)

We assume that the prevented vulnerabilities cannot be exploited by the attacker.
Based on this assumption, we say that a scenario V is prevented if it contains any
of the prevented vulnerabilities. That is, if V ∩ VM 6= ∅ holds. We also assume
that every vulnerability can be prevented by at least one security measure, which
ensures feasibility of the security measure allocation problem. The set containing
all the security measures that prevent v is denoted by Mv.
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5.1.2 Risk model and critical scenarios

To introduce the risk model, we need to define an impact function and a likelihood
function. The impact function I : 2U × 2Y → R+ characterizes the negative impact
that the attacker can inflict to a physical plant through compromised sensors and
actuators. In Section 5.4, we use the impact estimation framework from Chapter 4
to form the impact function I. The likelihood function π : 2V → R+ is typically
a score representing the belief of a scenario occurring [17]. This score can be
formed based on expert knowledge [17, 32, 33], or by using tools developed for
this purpose [34, 35]. Factors that can be used to estimate the likelihood include
site architecture, security measures that are already installed, cost of attack, and
technical difficulty [32]. We assume that I and π have the following properties.

Assumption 5.1. Let (U, Y ), (U ′, Y ′) ∈ 2U × 2Y . If U ⊆ U ′ and Y ⊆ Y ′, then
I(U, Y ) ≤ I(U ′, Y ′) holds.

Assumption 5.2. Let V, V ′ ∈ V. If V ⊆ V ′, then π(V ) ≥ π(V ′) holds.

Assumption 5.1 states that the more resources the attacker compromises, the higher
impact he/she can inflict. Assumption 5.2 states that more vulnerabilities the
attacker exploits, the less likely the scenario becomes.
We are now ready to introduce the risk model. We consider the model from [193],
where the risk was modeled as a set of triplets

〈
Scenario, Impact, Likelihood

〉
. In

our context, these triplets can be defined by
〈
V, I(UV , YV ), π(V )

〉
. Here, a subset of

vulnerabilities V models an attack scenario, I(UV , YV ) is the impact if the scenario
V occurs, and π(V ) is the likelihood of V occurring.
We now use the risk model to define the critical scenarios, which are crucial for
defining the security measure allocation problem. Essentially, a scenario is critical
if it is sufficiently likely to occur and can lead to a sufficiently high impact.

Definition 5.1. A scenario V ⊆ V is critical if I(UV , YV ) ≥ Imin and π(V ) ≥ πmin,
where Imin ∈ R+ and πmin ∈ R+ are predefined thresholds.

Remark 5.1. The thresholds Imin and πmin should be seen as tuning parameters.
One way to tune these thresholds is to initially set them relatively high. In this
way, we restrict our attention to scenarios that can have high impact and are highly
likely to occur. If these scenarios are inexpensive to prevent, then we can decrease
the thresholds and re-solve the problem to prevent less dangerous scenarios.

5.1.3 Problem formulation

Let C ⊆ 2V be the set of all the critical scenarios. The security measure allocation
problem consists of computing a subset of security measures that prevents all the
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scenarios from C and has the minimum cost. This problem can be formulated as
the following integer linear program:

Problem 5.1. Security measure allocation

minimize
x

∑
m∈M

cmxm

subject to
∑
m∈Mv

xm = yv, ∀v ∈ V, (C1)

∑
v∈V

yv ≥ 1, ∀V ∈ C, (C2)

xm ∈ {0, 1}, ∀m ∈M. (C3)

Here, every security measure m ∈ M is modeled by a decision variable xm, which
equals to one (resp. zero) if m is deployed (resp. not deployed). Thus, the objective
function is the total cost of the deployed security measures. Every vulnerability v is
modeled with a variable yv. Constraint (C1) imposes that yv is greater than or equal
to one if v is prevented. Otherwise, yv is equal to zero. Therefore, Constraint (C2)
ensures that all the critical scenarios are prevented.
Solving Problem 5.1 is difficult for two reasons. Firstly, we have to find the set of
critical scenarios C to construct Constraint (C2). This is challenging because the
number of possible scenarios equals to the number of subsets of V. Thus, searching
through all the subsets of V to find those that are critical is not tractable when
the cardinality of V is large. Secondly, Section 5.3 shows that Problem 5.1 is NP-
hard. Hence, known polynomial-time algorithms cannot solve Problem 5.1. In the
following two sections, we address these issues.

5.2 Constructing the security measure allocation problem

This section presents Algorithm 5.1 that systematically constructs Constraint (C2)
of Problem 5.1. Before we present Algorithm 5.1, we introduce systematic search
tools that the algorithm utilizes.

5.2.1 Systematic search tools

Reducing number of explored scenarios

The first way to reduce the number of explored scenarios is by using the fact that
the likelihood function is nonincreasing. Namely, if we find a scenario V for which
π(V ) < πmin, then we do not need to investigate scenarios that contain V . These
scenarios have likelihoods lower than πmin, and hence, they are not critical.
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Lemma 5.1. If π(V ) < πmin holds for a scenario V , then any scenario V ′ that
satisfies V ⊆ V ′ is not critical.

Proof. From Assumption 5.2, we have π(V ′) ≤ π(V ). Hence, π(V ′) < πmin holds.
From the latter and Definition 5.1, it follows that V ′ is not critical. �

The second way is by showing that we do not need to find the entire set of critical
scenarios C. Instead, it suffices to find a suitable subset of C. We use an example
to explain the idea.

Example 5.1. Let V = {v1, v2, v3}, C =
{
{v1}, {v1, v2}, {v1, v3}, {v2, v3}

}
, and

consider the subset C′ =
{
{v1}, {v2, v3}

}
of C. The scenarios from C′ are prevented

if and only if the set of prevented vulnerabilities is one of the following: {v1, v2},
{v1, v3}, or {v1, v2, v3}. One can observe that the same holds for C. Hence, if we
find a subset of security measures M ⊆M that prevents all the scenarios from C′,
then all the scenarios from C are also prevented.

Motivated by the previous example, we define a sufficient representation of C.

Definition 5.2. A subset Ĉ ⊆ C is a sufficient representation of C, if every V ′ ⊆ V
that satisfies V ′ ∩ V 6= ∅ for all V ∈ Ĉ also satisfies V ′ ∩ V 6= ∅ for all V ∈ C.

In words, a sufficient representation Ĉ is a subset of C with the property that
when we prevent all the critical scenarios from Ĉ, all the critical scenarios from C
are also prevented. Thus, it sufficies to find any sufficient representation of C to
construct (C2). We also remark that a sufficient representation is generally not
unique. Indeed, we see from Example 5.1 that both C and C′ satisfy Definition 5.2.
In the following, we focus on finding a sufficient representation that has the min-
imum cardinality. The reason is twofold. Firstly, this representation helps us to
reduce the number of critical scenarios we need to find. Secondly, Section 5.3 shows
that such a representation is also beneficial for solving the security measure allo-
cation problem. The following lemma characterizes the sufficient representation of
minimum cardinality, and establishes its uniqueness.

Lemma 5.2. Let Ĉ∗ be a sufficient representation of C. Then Ĉ∗ is the unique
sufficient representation of minimum cardinality if and only if V * V ′ holds for
any two scenarios V, V ′ ∈ Ĉ∗.

Proof. We refer the reader to Appendix 5.A. �

Put differently, if a scenario V belongs to Ĉ∗, then any other scenario that contains
V does not belong to Ĉ∗. Hence, if we find a scenario that belongs to Ĉ∗, then we
do not need to explore any other scenario that contains V .
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Reducing number of executions of the impact set function

We now provide a way to reduce the number of executions of the impact function I.
This can be useful when I is costly to evaluate. The idea is to store combinations
of sensors and actuators for which we evaluate I. These combinations can then be
divided into the lists K+ and K−. The list K+ contains combinations of sensors
and actuators for which the impact is greater than or equal to Imin. The list K−
contains combinations that result in the impact less than Imin. The following result
can then be established.

Lemma 5.3. Let (U, Y ), (U ′, Y ′) ∈ 2U × 2Y . The following claims hold:

(i) If (U ′, Y ′) belongs to K+, U ′ ⊆ U , and Y ′ ⊆ Y , then I(U, Y ) ≥ Imin;

(ii) If (U ′, Y ′) belongs to K−, U ⊆ U ′, and Y ⊆ Y ′, then I(U, Y ) < Imin.

Proof. (i) Firstly, from U ′ ⊆ U , Y ′ ⊆ Y , and Assumption 5.1, it follows that
I(U ′, Y ′) ≤ I(U, Y ). Secondly, since (U ′, Y ′) belongs to the list K+, we have
I(U ′, Y ′) ≥ Imin. Thus, I(U, Y ) ≥ Imin holds.
(ii) In this case, U ⊆ U ′, Y ⊆ Y ′, and Assumption 5.1 imply that I(U, Y ) ≤
I(U ′, Y ′) . Since (U ′, Y ′) belongs to the list K−, we have I(U ′, Y ′) < Imin. There-
fore, we conclude that I(U, Y ) < Imin holds. �

Lemma 5.3 can be used to limit the number of executions of I as follows. Assume
that we need to check if I(UV , YV ) ≥ Imin holds. If the combination (UV , YV )
contains a combination from K+, then we can conclude that I(UV , YV ) ≥ Imin
without evaluating the impact function. Similarly, if the combination (UV , YV ) is
contained in a combination from K− , then we know that I(UV , YV ) < Imin holds.

Power set enumeration tree

The power set enumeration tree is a graph representation of the power set 2V [194].
Each node of the tree represents one subset of V. The tree has |V| + 1 layers
enumerated with 0, 1, . . . , |V|, where the pth layer contains all the scenarios with
the cardinality p. The edges of the tree are determined as follows:

(i) The node ∅ is connected to all the nodes from the first layer.

(ii) Let p ∈ N. A node V from the pth layer, is connected to a node V ∪ vj from
the (p+ 1)th layer if j < i holds for every vi ∈ V .

For instance, the power set enumeration tree when V = {v1, v2, v3} is shown in
Figure 5.1. Note that the node {v2} is connected to {v1, v2}, but not to {v2, v3}.
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{v1,v2,v3} 
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Ø 

Layer 1 

Layer 2 

Layer 3 

Layer 0 

Figure 5.1: The power set enumeration tree when V = {v1, v2, v3}.

5.2.2 Algorithm 5.1: Constructing the sufficient representation
of minimum cardinality

Recall that we can construct Constraint (C2) by finding the sufficient representa-
tion of minimum cardinality. In the following, we introduce Algorithm 5.1 that
systematically searches for this sufficient representation.

Working principle of Algorithm 5.1

Algorithm 5.1 explores the power set enumeration tree by layers. In each layer, the
algorithm performs scenario classification and scenario generation.
The scenario classification is performed as follows. Algorithm 5.1 receives the list
CL of scenarios that should be classified in the current layer. For every scenario V
from CL, the algorithm checks if π(V ) is lower than πmin. If it is, then the algorithm
moves to the next scenario. Otherwise, the algorithm checks if I(UV , YV ) ≥ Imin
holds. The algorithm first tries to determine this based on the lists K+ and K−
(Lemma 5.3). If that is not possible, then the impact function is evaluated, and
(UV , YV ) is stored in K+ or K− depending on the impact. If I(UV , YV ) ≥ Imin,
then the algorithm adds V to the list C̃∗, which corresponds to the sufficient rep-
resentation of minimum cardinality. Otherwise, V is stored in the list CO, which is
later used to generate new scenarios. When the classification is completed, the list
CL is emptied, and the algorithm moves to the generation step.
The generation of scenarios is performed as follows. If a scenario V is critical or with
a likelihood lower than πmin, then any scenario that contains V does not belong to
the sufficient representation of minimum cardinality (Lemmas 5.1 and 5.2). Hence,
we only need to generate new scenarios based on the list CO. For every V ∈ CO, the
algorithm adds a scenario V ∪ vj to CL if: (i) j < i for every vi ∈ V ; and (ii) there
does not exist a critical scenario in C̃∗ contained in V ∪ vj . The first rule follows
from the power set enumeration tree structure. The second rule ensures that we
obtain the sufficient representation of minimum cardinality (Lemma 5.2).
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Algorithm 5.1 Finding the sufficient representation of minimum cardinality
1: Input: V = {v1, . . . , vnv}, πmin, Imin, π, I
2: Output: C̃∗
3: Form the list CL (initialized with scenarios of cardinality one)
4: Form the list C̃∗ (initially empty)
5: Form the list CO (initially empty)
6: Form the lists K+,K− (initially empty)
7: while CL 6= ∅ do
8: % Classification step
9: for every scenario V ∈ CL do

10: if π(V ) ≥ πmin then
11: Determine if I(UV , YV ) ≥ Imin (try using the lists K+ and K− first)
12: if I(UV , YV ) ≥ Imin then
13: Add V to C̃∗
14: Add (UV , YV ) to K+ if I was evaluated
15: else
16: Add V to CO
17: Add (UV , YV ) to K− if I was evaluated
18: end if
19: end if
20: end for
21: % Generation step
22: Empty CL
23: for every V ∈ CO do
24: Find a vulnerability vi ∈ V with the minimum index
25: for every vj ∈ {v1, . . . , vi−1} do
26: if there does not exist a scenario from C̃∗ contained in V ∪ vj then
27: Add V ∪ vj to CL
28: end if
29: end for
30: end for
31: Empty CO
32: end while

Once the new scenarios are generated, CO is emptied. If CL is empty, then the
algorithm returns C̃∗ and terminates. Otherwise, the algorithm moves to the clas-
sification step in the next layer, and the whole procedure is repeated again.

Properties of Algorithm 5.1

Before we move to the next section, we list some properties of Algorithm 5.1. Firstly,
Algorithm 5.1 returns the sufficient representation of minimum cardinality. This
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property of Algorithm 5.1 is formally established in the following theorem.

Theorem 5.1. If C̃∗ is the set of scenarios returned by Algorithm 5.1 and Ĉ∗ is
the sufficient representation of minimum cardinality, then C̃∗ = Ĉ∗ holds.

Proof. We refer the reader to Appendix 5.B. �

Secondly, the running time of Algorithm 5.1 depends on many factors, including
the choice of the functions I and π, the thresholds Imin and πmin, and the size of
V in a nontrivial way. Although it is expected that the number of scenarios we
search through would be significantly reduced due to the systematic search tools,
Algorithm 5.1 may still end up searching every subset of V.
Based on the available time, the search can be restricted to the first n layers of
the power set enumeration tree. In that case, the algorithm searches in the worst
case

∑n
i=1
(|V|
i

)
scenarios. Moreover, let Cn be the set that contains all the critical

scenarios with cardinality less than or equal to n. The following corollary states
that if Algorithm 5.1 is restricted to search the first n layers of the tree, then the
sufficient representation of minimum cardinality of Cn is returned.

Corollary 5.1. Let Cn = {V ∈ C | |V | ≤ n}. If Algorithm 5.1 is restricted to search
the first n layers of the power set enumeration tree, then it returns the sufficient
representation of minimum cardinality of the set Cn.

Proof. We refer the reader to Appendix 5.C. �

Finally, if we update the lists K+ and K− after the classification step, then the
clasification of scenarios can be executed in parallel [20]. Since the classification
step involves evaluating the impact and likelihood functions a large number of
times, which is expected to be time consuming, significant reduction in execution
time can be achieved with parallelization. However, to simplify the implementation
of Algorithm 5.1, we do not consider parallelization in this chapter.

5.3 Solving the security measure allocation problem

This section establishes that the security measure allocation problem is NP-hard,
and discusses two suboptimal approaches for solving it.

5.3.1 NP-hardness of the security measure allocation problem

The following proposition establishes NP-hardness of Problem 5.1. Thus, known
polynomial-time algorithms cannot solve Problem 5.1.

Proposition 5.1. The security measure allocation problem is NP-hard.
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Proof. To prove the claim, we show that every instance of the set cover problem
introduced in Section 3 can be mapped into Problem 5.1. Since the set cover
problem is NP-hard [157], the claim of the proposition immediately follows. Note
that every instance of the set cover problem is determined by a universe set S
and a set of subsets Sc. For any S and Sc = {S1, . . . , Sn}, we can establish the
following mapping between the set cover problem and Problem 5.1: (i) the set
of vulnerabilities V equals S; (ii) the set of critical scenarios C contains only the
subsets of V with cardinality equal to one; and (iii) we set M = {m1, . . . ,mn},
Vm1 = S1, . . . , Vmn = Sn, and cm = 1 for every m ∈ M. Problem 5.1 then reduces
to the set covering problem, where the goal is to cover the vulnerability set V using
the sets Vm1 , . . . Vmn . This shows that every instance of the NP-hard set cover
problem can be mapped into Problem 5.1, and the proof is completed. �

In the following, we propose two sub-optimal approaches to tackle Problem 5.1. We
then show in Section 5.4 that these approaches may compute an exact or a good
approximate solution of Problem 5.1 efficiently in spite of NP-hardness.

5.3.2 Approach 1: Simplifying the problem

The first approach consists of two steps. The first step is to simplify Problem 5.1
using the sufficient representation of minimum cardinality Ĉ∗. Recall that Con-
straint (C2) imposes that every scenario from C has to be prevented. Since by
preventing all the scenarios from Ĉ∗ we also prevent all the scenarios from C, Con-
straint (C2) can be substituted with the following constraint:∑

v∈V
yv ≥ 1, ∀V ∈ Ĉ∗.

In this way, we obtain a simplified problem whose number of constraints is by
|C| − |Ĉ∗| smaller than the number of constraints of Problem 5.1. The second step
is to use an integer linear program solver to tackle the simplified problem.

5.3.3 Approach 2: Exploiting submodularity

Let M be a subset of security measures. Recall that VM is the subset of vulnerabil-
ities prevented by M , and that scenarios that have a non-empty intersection with
VM are prevented. To model this relation, we define a gain function

fV (M) = min{|VM ∩ V |, 1}

with every scenario V ∈ C. If a scenario V is prevented, then fV (M) = 1. Other-
wise, fV (M) = 0 holds. Next, we introduce the total gain

F (M) =
∑
V ∈C

fV (M) =
∑
V ∈C

min{|VM ∩ V |, 1}.
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Note that F (M) = |C| once all the scenarios from C are prevented. From the latter,
it follows that Problem 5.1 can be reformulated as follows:

minimize
M

∑
m∈M

cm

subject to F (M) = |C|.
(5.2)

Here, the objective function equals to the total cost of deployed security measures.
The constraint guarantees that the scenarios from C are prevented.
In the following, we show that polynomial-time Algorithm 3.1 can compute an
approximate solution of the problem (5.2) with performance guarantees. The proof
consists of showing that (5.2) has the same submodular structure as Problem 3.1.

Theorem 5.2. Let c∗ be the optimal value of the problem (5.2), cG be the value
found by Algorithm 3.1, and H(n) =

∑n
i=1 i

−1. The following then holds:
cG
c∗
≤ H

(
maxm∈MF (m)

)
. (5.3)

Proof. We refer the reader to Appendix 5.D. �

Theorem 5.2 implies that the objective value obtained using Algorithm 3.1 is upper
bounded by H

(
maxm∈MF (m)

)
c∗. We point out to two properties of this bound.

Firstly, the bound (5.3) has logarithmic growth with respect to maxm∈M F (m).
Secondly, the bound characterizes the worst case performance guarantees of Algo-
rithm 3.1, which means that the algorithm can perform better in practice.
However, one issue that we have not mentioned so far is that the problem (5.2) is
difficult to construct. The reason is that we need to find the set of critical scenarios
C to form the total gain F . To overcome this issue, we can form the total gain
based on the sufficient representation of minimum cardinality Ĉ∗:

F̂ ∗(M) =
∑
V ∈Ĉ∗

fV (M). (5.4)

The constraint of the problem (5.2) can then be substituted with F̂ ∗(M) = |Ĉ∗|.
In fact, one can use any other sufficient representation to form the total gain.
Yet, by using Ĉ∗ for this purpose, we achieve an additional benefit. Particularly,
note that the bound (5.3) is dependent on the function used in the constraint
of the problem (5.2). We now prove that if we form the total gain using Ĉ∗,
then we minimize the bound. Therefore, the worst case performance guarantees of
Algorithm 3.1 are optimized when the total gain is formed based on Ĉ∗.

Proposition 5.2. Let Ĉ∗ be the sufficient representation of minimum cardinal-
ity, Ĉ be any other sufficient representation, F̂ ∗ be given by (5.4), and F̂ (M) =∑
V ∈Ĉ min{|VM ∩ V |, 1}. The following then holds:

H
(
maxm∈M F̂ ∗(m)

)
≤ H

(
maxm∈M F̂ (m)

)
.
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Proof. We refer the reader to Appendix 5.E. �

We conclude this section with the following remark.

Remark 5.2. If Algorithm 5.1 is stopped after n layers and Ĉ∗ is not obtained,
then the discussion from this section would hold for the set of critical scenarios Cn
and the sufficient representation of minimum cardinality of Cn.

5.4 Illustrative examples

This section illustrates how our security measure allocation framework can be used
in practice, explains how it can be combined with the impact estimation framework
from Chapter 4, and tests how fast can we construct and solve Problem 5.1. The
experiments are performed on Intel Core i7-8650U computer.

5.4.1 Model: A control system for regulating temperatures

We consider a control system that is used for regulating temperatures within
five identical areas. We first introduce the physical part of the system (Fig-
ure 5.2 (a)), which was derived in [195]. The ith area is modeled with the states
xi = [Tai Twi Pi]T . Here, Tai is the temperature of the ith area, Twi is the temper-
ature of the ith evaporator’s lumped coil wall, and Pi is the refrigerant’s pressure
after leaving the ith evaporator. The control actions in the ith area are denoted
by ui = [ωfi avi]T , where ωfi is the speed of the ith evaporator’s fan, and avi is
the control action that changes the fluid resistance of the ith Electronic Expansion
Valve (EEV). We model the compressor with a single state xc = PC , where PC is
the refrigerant pressure after leaving the compressor. The pressure PC is regulated
through the control action uc = ωK , where ωK is the speed of the compressor. For
simplicity, we assume that every state of the system is measured.
In summary, the dynamics of the physical part are given by

x(k + 1) =


A1 A2 . . . A2 A3
A2 A1 . . . A2 A3
...

...
. . .

...
...

A2 A2 . . . A1 A3
A4 A4 . . . A4 A5

x(k) +


B1 B2 . . . B2 B3
B2 B1 . . . B2 B3
...

...
. . .

...
...

B2 B2 . . . B1 B3
B4 B4 . . . B4 B5

u(k) + vx(k),

y(k) = I16x(k) + vy(k),
(5.5)

where x = [xT1 . . . xT5 xc]T , u = [uT1 . . . uT5 uc]T , and the matrices A1, . . . , A5 and
B1, . . . , B5 are obtained by discretizing the system from [195] with a sampling
time 0.1s. The numerical values of these matrices are provided in Appendix 5.F.
Since [195] modeled the system as a noiseles, we adopt Σvx = Σvy = 10−7 I16.
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Figure 5.2: The control system used for regulating temperatures in five identical
areas. (a) The physical part of the system. (b) The cyber part of the system.

The controller is given by

u(k) =


L11 L12 . . . L12 L13
L12 L11 . . . L12 L13
...

...
. . .

...
...

L12 L12 . . . L11 L13
L14 L14 . . . L14 L15

 x̂(k) +


L31 L32 . . . L32
L32 L31 . . . L32
...

...
. . .

...
L32 L32 . . . L31

 yr, (5.6)

where x̂(k) are the state estimates generated by the steady state Kalman filter,
and yr ∈ R5 are the references that are used to set desired temperatures in the
areas. The references are assumed to satisfy ‖Qyryr‖ ≤ 1, where Qyr = 0.2 I5. The
numerical values of the controller matrices can be found in Appendix 5.F.
We assume the cyber-part of the system to be as shown in Figure 5.2 (b). The
control actions are computed in the Control Center (CC) based on the collected
measurements, and then sent for the execution to the controllers. In every area,
there are two controllers: A master PLC and a slave PLC. The ith master PLC
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collects the measurement of Twi, controls the fan through ωfi, and communicates
with the ith slave PLC and CC. The ith slave PLC collects the measurements of Pi
and Tai, controls the ith EEV through avi, and communicates with the ith master
PLC. The compressor is controlled through a single PLC. This PLC collects the
measurement of PC , regulates PC through ωk, and communicates with CC.
The vulnerabilities within the system V are presented in Table 5.1, and the available
security measures M in Table 5.2. These sets are modeled based on the lists of
common vulnerabilities and countermeasures from [15]. We now briefly introduce
the vulnerabilities and the security measures.
Firstly, CC is connected to other networks without adequate protection. Addition-
ally, physical ports on the computers in CC are not secured. These vulnerabilities
enable the attacker to gain control over all the sensors and actuators within the sys-
tem. The first vulnerability can be prevented by deploying and properly adjusting
firewalls, and the second one by locking the physical ports.
Secondly, it was identified that the communication links in the system are un-
secured. This allows the attacker to intercept the communication and conduct
man-in-the-middle attacks. The sensor measurements and control actions that the
attacker is able to manipulate are dependent on the link that is compromised (see
Table 5.1, Rows 3 and 5). The vulnerabilities of this type can be prevented by
implementing encryption and authentication schemes.
Finally, lack of physical protection of control devices is identified. Sensors and
actuators that the attacker gains control over are dependent on which device is
compromised (see Table 5.1, Rows 4 and 6). Unauthorized access can be prevented
by improving security of an area where components are located, or by protecting
components individually by locking them in secured cabinets.

5.4.2 Example 1: Impact and likelihood functions

We now provide concrete examples of the impact and likelihood functions. To form
the impact function I, we use the impact estimation framework from Chapter 4.
Firstly, observe that the only matrices in the system equations (4.1)–(4.5) that are
dependent on a scenario V are Γu, Γy, Λu, and Λy. These matrices are formed
based on the set of attacked sensors YV , the set of attacked actuators UV , and an
attack strategy. We focus on the optimal FDI attack strategy, so Γu and Γy are
given by (4.16), and Λu and Λy are the identity matrices. Secondly, we need to
choose the horizon length N , the stealthiness level ε, the matrix Cz, and the impact
metric I. We use N = 20, ε = 0.1, Cz = [01×15 0.002], and I = IP . Finally, we
compute the impact I(UV , YV ) by solving Problem 4.1.
The impact function formed in this way satisfies Assumption 5.1. Namely, say that
I(U1, Y1) = I1. The attacker can then make the impact larger than or equal to
I1 with the components U2 and Y2, where U2 ⊇ U1 and Y2 ⊇ Y1. For example, if
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Table 5.1: The vulnerabilities identified within the system. Each row contains the
description of a vulnerability v, the sensors Yv and actuators Uv that the attacker
gains control over by exploiting v, and the complexity πv of exploiting v.

Vulnerability Compromised sensors and actuators πv

CC connected to other networks
without appropriate protection All the sensors and actuators 3

Insecure physical ports in CC All the sensors and actuators 3
An insecure comm. link between a
PLC and a sensor yi/an actuator ui

yi / ui 2

Insufficient physical protection
of a sensor yi/an actuator ui

yi / ui 2

An insecure comm. link between:
(i) a slave PLC and its master PLC
(ii) a master PLC and CC
(iii) the compressor PLC and CC

The sensors and actuators attached to:
(i) the slave PLC
(ii) the master and its slave PLC
(iii) the compressor PLC

1

Insufficient physical protection of:
(i) a slave PLC
(ii) a master PLC
(iii) the compressor PLC

The sensors and actuators attached to:
(i) the slave PLC
(ii) the master and its slave PLC
(iii) the compressor PLC

1

Table 5.2: The security measures and vulnerabilities prevented by these measures.

Security measure Prevented vulnerabilities

Separating CC from other networks
using firewalls

The attacker cannot access CC from other
networks

Locking the physical ports in CC The attacker cannot inject malware through
the physical ports

Protecting a communication link The attacker cannot intercept and modify
the messages going through the link

Physical protection of a sensor yi/
an actuator ui/a PLC The attacker cannot access yi/ui/the PLC

Physical protection of an area
where a PLC is located

The attacker cannot access the PLC and
all the sensors and actuators attached to
it, and cannot exploit unprotected comm.
links between these control components

he/she injects the same attack signals to U1 and Y1, while setting the attack signals
corresponding to U2 \ U1 and Y2 \ Y1 to zero, then the impact equals I1.
We form the likelihood function based on [32]. The first step is to assign complexity
of exploitation πv ∈ R+ to every vulnerability v ∈ V. As mentioned earlier, this can
be done based on expert knowledge [17, 32, 33], or by using vulnerability ranking
tools [34,35]. We assume the complexities from Table 5.1. In the second step, these
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complexities πv are combined to estimate the likelihood of a scenario. Under the
assumption that the scenarios that are more complex to conduct are less likely to
occur, a possible choice for the likelihood function is

π(V ) =
(∑

v∈V πv
)−1

. (5.7)

This function makes scenarios containing vulnerabilities with higher complexity
values πv less likely than those containing equal number of vulnerabilities with
lower values of πv. This likelihood function is also decreasing with respect to V , so
it satisfies Assumption 5.2.

5.4.3 Example 2: Constructing Problem 5.1

This example is on constructing the security measure allocation problem. We focus
on the following five vulnerability sets:

(i) vulnerabilities related to Compressor, CC, and Area 1 (22 vulnerabilities);

(ii) vulnerabilities related to Compressor, CC, and Areas 1–2 (36 vulnerabilities);

(iii) vulnerabilities related to Compressor, CC, and Areas 1–3 (50 vulnerabilities);

(iv) vulnerabilities related to Compressor, CC, and Areas 1–4 (64 vulnerabilities);

(v) vulnerabilities related to Compressor, CC, and Areas 1–5 (78 vulnerabilities).

We set the impact threshold Imin = 9/10, and consider three values for the likeli-
hood threshold πmin: 1/4, 1/6, and 1/8. Observe that the minimum value of πv is
one (see Table 5.1). It then follows from (5.7) that all the scenarios consisting of five
or more vulnerabilities have the likelihood lower than the threshold πmax = 1/4.
This implies that the critical scenarios belong to the first four layers of the power
set enumeration tree if πmax = 1/4. Similarly, the critical scenarios belong to the
first six layers if πmin = 1/6, and to the first eight layers if πmin = 1/8.
The execution time of Algorithm 5.1 with respect to the number of vulnerabilities
nv and the threshold πmin is shown in Figure 5.3 (a). Observe that the execu-
tion time increases when the number of vulnerabilities nv increases, or when the
threshold πmin decreases. Nevertheless, Algorithm 5.1 manages to find the suf-
ficient representation of minimum cardinality in all the cases we consider. The
highest execution time of Algorithm 5.1 is 50.36 minutes, and it is reached for the
vulnerability set consisting of 78 vulnerabilities and πmin = 1/8.
For the sake of comparison, let us fix πmin = 1/8 and measure the time needed to
brute force search through the first two layers of the power set enumeration tree.
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Figure 5.3: (a) The execution time of Algorithm 5.1 with respect to the number
of vulnerabilities nv. Three different values of πmin are considered. (b) The time
needed to brute force search through the first two layers of the power set enumera-
tion tree, and the estimated times of the brute force search through the first four,
six, and eight layers of the tree. We assume πmin = 1/8 in this experiment.

Based on this time, we estimate the time needed to brute force search through the
other layers of the tree according to the following formula:

T̂ (L, nv) =
∑L
i=1
(
nv
i

)∑2
i=1
(
nv
i

)T (2, nv).

Here, T (2, nv) is the time needed to brute force search through the first two layers
of the tree when the vulnerability set contains nv vulnerabilities, and T̂ (L, nv)
is the estimated time to brute force search through the first L layers of the tree
corresponding to the same vulnerability set. The measured time T (2, nv) and the
estimates T̂ (4, nv), T̂ (6, nv), T̂ (8, nv) are plotted in Figure 5.3 (b). Observe that
T (2, 78) is approximately 40 minutes. This is only 10 minutes less than the time
it took Algorithm 5.1 to systematically search through the first eight layers in
the case nv = 78. It can also be seen that T̂ (4, 78) is greater than 104 minutes
(6.9 days), T̂ (6, 78) is greater than 106 minutes (1.9 years), while T̂ (8, 78) is greater
than 108 minutes (190 years).
Overall, this experiment demonstrates that Algorithm 5.1 may indeed allow us to
construct the security measure allocation problem in cases when the brute force
search is prohibitively time consuming. However, we also see that the execution
time of Algorithm 5.1 rapidly increases with the number of vulnerabilities nv. This
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Table 5.3: The number of decision variables and the number of constraints of
Problem 5.1 for five vulnerability sets that we consider.

No. of vulnerabilities No. of decision variables No. of constraints

22 25 105
36 41 191
50 57 277
64 73 363
78 89 1473

indicates that constructing the security measure allocation problem for the vul-
nerability sets containing several hundred vulnerabilities may become overly time
consuming. If that is the case, then one can try to decrease the execution time
of Algorithm 5.1 by using paralelization, or by restricting the search to the first
several layers of the power set enumeration tree.

5.4.4 Example 3: Solving Problem 5.1

This example considers solving the security measure allocation problem. We focus
on the case πmin = 1/8, and construct Problem 5.1 using the sufficient represen-
tations of minimum cardinality that we computed in the previous example. The
number of the decision variables and the constraints of Problem 5.1 for five vulner-
ability sets that we consider is shown in Table 5.3. The security measure costs are
randomly generated 100000 times from the interval [0,10000].
To tackle Problem 5.1, we use the integer linear program solver included in the
Matlab package and Algorithm 3.1. First, we compare the execution times of the
solver and Algorithm 3.1. The worst case and the mean execution time over all
the realizations of costs are plotted in Figure 5.4. Notice that both the solver
and Algorithm 3.1 converge in less that 0.1 second in all the cases we consider.
Particularly, the longest execution time was 49.86 milliseconds for the solver, and
19.71 milliseconds for Algorithm 3.1. Additionally, Algorithm 3.1 is considerably
faster than the solver, both in terms of the worst case and the mean execution time.
Next, we compare the objective value cG returned by Algorithm 3.1 with the ob-
jective value cI returned by the solver. In Figure 5.5, we plot the largest value of
the quotient cG/cI , the mean value of the quotient cG/cI , and the theoretical worst
case bound from Theorem 5.2. We stress that the solver manages to compute the
optimal objective value of the problem for all five vulnerability sets and for all re-
alizations of costs. Interestingly, cG was relatively close to cI in the average. In the
worst case, cG was 3.4 times larger than cI . We also observe that the bound from
Theorem 5.2 is considerably larger than the largest quotient for all five vulnerability
sets. This illustrates that this bound can be conservative.
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Figure 5.4: Comparison of Algorithm 3.1 and the integer linear program solver in
terms of the execution time.
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Figure 5.5: Comparison of Algorithm 3.1 and the integer linear program solver in
terms of the objective values obtained.
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To summarize, these findings demonstrate that although Problem 5.1 is generally
NP-hard, the integer linear program solver can sometimes compute a solution of
this problem in less than a second. Furthermore, Algorithm 3.1 may return a
suboptimal solution close to the optimal one. Algorithm 3.1 also proves to be
significantly faster than the integer linear solver. This indicates that we can rely
on this algorithm if the use of the solver becomes prohibitively time consuming.

5.5 Summary

This chapter tackled the security measure allocation problem (Problem 5.1). We
first derived Algorithm 5.1 that uses several systematic search tools to constructs
Problem 5.1. We then showed that Problem 5.1 is NP-hard, and discussed two
suboptimal approaches for solving it. The first approach was to first simplify the
problem, and then use an integer linear program solver to compute a solution.
The second approach was to use Algorithm 3.1 that works in polynomial time and
returns a suboptimal solution with performance guarantees. Finally, we conducted
an experiment, which demonstrated that: (i) the impact estimation framework
from Chapter 4 can be used for security measure allocation; (ii) Algorithm 5.1 can
construct Problem 5.1 when the brute force search is prohibitively time consuming;
and (iii) a solution of Problem 5.1 can sometimes be efficiently computed using an
integer linear program solver, or well approximated using Algorithm 3.1. We now
move to Chapter 6, where we study the second motivating application of the thesis.

Appendix to Chapter 5

5.A Proof of Lemma 5.2

(⇒) The proof is by contradiction. Assume that Ĉ∗ is the sufficient representation
of minimum cardinality, but there exist two scenarios V, V ′ ∈ Ĉ∗ for which V ⊂ V ′
holds. Let us define Ĉ = Ĉ∗\V ′, and let VM be an arbitrary subset of vulnerabilities
that has a nonempty intersection with every scenario from Ĉ. Since Ĉ∗ = Ĉ ∪ V ′, it
follows that VM has a nonempty intersection with every scenario from Ĉ∗, except
perhaps V ′. However, since V ∩ VM 6= ∅ and V ⊂ V ′, then V ′ ∩ VM 6= ∅ has
to hold. Hence, any VM that intersects every scenario of Ĉ also intersects every
scenario of Ĉ∗. Additionally, since Ĉ∗ is the sufficient representation of minimum
cardinality, any VM that intersects all the scenarios from Ĉ also intersects all the
scenarios from C. From the latter, the fact that Ĉ ⊆ C holds, and Definition 5.2,
it follows that Ĉ is a sufficient representation of C. Furthermore, we also have
|Ĉ| = |Ĉ∗ \ V ′| = |Ĉ∗| − 1. This implies that Ĉ∗ is not the sufficient representation
of minimum cardinality, which contradicts the initial assumption.
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(⇐) Let Ĉ∗ be a sufficient representation for which V * V ′ holds for any two
scenarios V, V ′ ∈ Ĉ∗. In what follows, we prove that every scenario that belongs to
Ĉ∗ has to belong to any other sufficient representation. From this fact, it directly
follows that Ĉ∗ is the sufficient representation of minimum cardinality.
Let Va be an arbitrarily selected scenario from Ĉ∗, and Ĉ be any other sufficient
representation of C. Three cases can occur.
Case 1: V \ Va 6= ∅ holds for every V ∈ Ĉ. Let VM be formed as follows: For
every scenario V ∈ Ĉ, we add to VM a vulnerability v ∈ V \ Va. The set VM
constructed in this way intersects all the scenarios from Ĉ. However, VM does not
intersect Va, which implies that VM does not intersect all the scenarios from Ĉ∗.
This is inconsistent with the fact that both Ĉ∗ and Ĉ are sufficient representations
of C. Namely, any VM that intersects all the scenarios from Ĉ also intersects all the
scenarios from C. Since Ĉ∗ ⊆ C, all the scenarios from Ĉ∗ have to be intersected by
VM . Thus, Case 1 is impossible.
Case 2: there exists a scenario Vb ∈ Ĉ for which Vb ⊂ Va holds, and Va /∈ Ĉ. Since
V 6⊆ Va holds for every V ∈ Ĉ∗ \ Va , then V \ Vb 6= ∅. Let us define VM as follows:
For every V ∈ Ĉ∗, we add to VM a vulnerability v ∈ V \ Vb. By construction, the
set VM intersects all the scenarios from Ĉ∗. However, VM does not intersect all the
scenarios from Ĉ, since Vb is not intersected. Thus, Case 2 is also impossible.
Case 3: Va ∈ Ĉ. The only remaining possibility is to have Va ∈ Ĉ. Since Va was
arbitrarily selected, the proof is completed.

5.B Proof of Theorem 5.1

We first prove by induction that C̃∗ contains Ĉ∗ (Claim 1). We then show that C̃∗
is a sufficient representation of C (Claim 2). Finally, we establish that C̃∗ is the
sufficient representation of minimum cardinality (Claim 3).
Claim 1. Let p = 1. Since the list CL is initialized with the scenarios from the
first layer of the power set enumeration tree, all of the critical scenarios among
these are added to C̃∗. Hence, the claim holds for the first layer. Suppose now
that the algorithm reaches the pth layer with a given set C̃∗ that contains all the
scenarios from Ĉ∗ with the cardinality up to p. In the (p + 1)th layer, all the
critical scenarios among the generated ones are added to C̃∗. The scenarios that
are not generated either contain the scenarios that have likelihood lower than πmin,
or a critical scenario added to C̃∗. From Lemmas 5.1 and 5.2, we know that these
scenarios do not belong to Ĉ∗. Hence, the claim holds for the (p+1)th layer as well.
Therefore, we conclude that C̃∗ contains Ĉ∗.
Claim 2. Firstly, since C̃∗ contains only critical scenarios, we have C̃∗ ⊆ C. Sec-
ondly, since C̃∗ contains Ĉ∗, by preventing all the scenarios from C̃∗, we also prevent
all the scenarios from Ĉ∗. Since Ĉ∗ is the sufficient representation of minimum car-
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dinality, it follows that by preventing all the scenarios from C̃∗, we also prevent all
the scenarios from C. Hence, C̃∗ is a sufficient representation of C (Definition 5.2).
Claim 3. To show that C̃∗ is the sufficient representation of minimum cardinality,
we need to prove that V 6⊆ V ′ holds for any two scenarios V, V ′ ∈ C̃∗ (Lemma 5.2).
If V and V ′ belong to the same layer, then the condition V ⊆ V ′ cannot hold. If
V and V ′ belong to different layers, then the condition V ⊆ V ′ cannot hold either.
Namely, when we generate scenarios to be explored in the pth layer, we check if
these scenarios contain any of the scenarios previously added to C̃∗ (Line 26 of
Algorithm 5.1). Hence, we conclude that C̃∗ = Ĉ∗ holds.

5.C Proof of Corollary 5.1

Let π be an arbitrary selected likelihood function. Consider the function

π′(V ) = π(V ) · 1[|V |≤n] + min{π(V ), π′min} · 1[|V |>n]. (5.8)

where π′min < πmin. If |V | ≤ n and V ′ ⊇ V , then

π′(V ) = π(V )
Asm. 5.2
≥ π(V ′)

(5.8)
≥ π′(V ′). (5.9)

If |V | > n and V ′ ⊇ V , then

π′(V ) = min{π(V ), π′min}
Asm. 5.2
≥ min{π(V ′), π′min}

|V ′|>n, (5.8)= π′(V ′). (5.10)

From (5.9) and (5.10), we conclude that π′ satisfies Assumption 5.2. Hence, it
represents a candidate for the likelihood function.
Note that the set Cn containing the critical scenarios with cardinalities lower than or
equal to n is the same for both π′ and π. However, any scenario with a cardinality
greater than n is with the likelihood lower than πmin when π′ is used instead of π.
Hence, any scenario with cardinality greater than n is not critical (Lemma 5.1).
This implies that the set of critical scenarios is equal to Cn when π′ is used instead
of π. Therefore, if we apply Algorithm 5.1 with π′ used as a likelihood function,
then it follows from Theorem 5.1 that the sufficient representation of minimum
cardinality for the set Cn is returned. The same holds if we stop Algorithm 5.1
after n layers, since the critical scenarios from Cn lie in the first n layers.

5.D Proof of Theorem 5.2

To prove the claim, we show that F is submodular, nondecreasing, and integer
valued. This implies that the problem (5.2) is an instance of Problem 3.1. The
claim of the theorem then directly follows from Lemma 3.3.
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Claim 1: F is submodular. It suffices to show that fV is submodular, since
submodularity is preserved under a nonnegative sum (Lemma 3.1). Let

∆m(M) = fV (M ∪m)− fV (M)

be the gain achieved by adding a measure m to a set of measuresM . We show that
∆m(M) can take only values zero or one. The following situations can occur:

(i) the scenario V is prevented by the security measures M , in which case
fV (M) = 1 and fV (M ∪m) = 1;

(ii) the scenario V is not prevented by the security measures M ∪ m, in which
case fV (M) = 0 and fV (M ∪m) = 0;

(iii) the scenario V is prevented by the security measure m and not by M , in
which case fV (M) = 0 and fV (M ∪m) = 1.

Note that fV (M) = 1 and fV (M∪m) = 0 cannot hold, since VM ⊆ VM∪m(from Equa-
tion (5.1)). In summary, ∆m(M) can be written as follows:

∆m(M) = 1[VM∩V=∅] · 1[Vm∩V 6=∅]. (5.11)

We now prove by contradiction that fV is submodular. If fV is not submodular,
then there existM ,M ′ ⊇M , andm ∈M\M ′ such that ∆m(M) < ∆m(M ′). That
is only possible if ∆m(M) = 0 and ∆m(M ′) = 1. From (5.11) and ∆m(M ′) = 1, it
follows that VM ′∩V = ∅ and Vm∩V 6= ∅. Yet, since VM ⊆ VM ′ , we have VM∩V = ∅.
From the latter, Vm ∩V 6= ∅, and (5.11), we conclude that ∆m(M) = 1. Therefore,
we have ∆m(M) = ∆m(M ′), which leads to a contradiction.
Claim 2: F is nondecreasing. Let M ⊆M ′. From (5.1), we have VM ⊆ VM ′ . This
implies that |VM ∩ V | ≤ |VM ′ ∩ V | holds for every V ∈ C. Then it directly follows
from the definition of fV that fV (M) ≤ fV (M ′) holds for every V ∈ C. From the
latter, it follows that F is a nonnegative sum of nondecreasing set functions. Thus,
we conclude that F is a nondecreasing set function.
Claim 3: F is integer valued. For every V ∈ C, fV can take only values zero or
one. Since F (M) =

∑
V ∈C fV (M), it follows that F is an integer valued function.

5.E Proof of Proposition 5.2.

In the proof of Lemma 5.2, we showed that the sufficient representation of minimum
cardinality belongs to any other sufficient representation. Thus, we can write Ĉ =
Ĉ∗ ∪ (Ĉ \ Ĉ∗), where Ĉ \ Ĉ∗ is a nonempty set.
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Let m ∈M be an arbitrarily selected security measure. It then follows that

F̂ (m) =
∑
V ∈Ĉ∗

fV (M) +
∑

V ∈Ĉ\Ĉ∗
fV (M) = F̂ ∗(m) +

∑
V ∈Ĉ\Ĉ∗

fV (M)
(*)
≥ F̂ ∗(m),

where (*) holds because fV is a nonnegative function for any V ∈ C. Next, since
F̂ ∗(m) ≤ F̂ (m) for any m, we have

n∗ = max
m∈M

F̂ ∗(m) ≤ max
m∈M

F̂ (m) = n̂.

It then follows that

H(maxm∈M F̂ ∗(m)) =
n∗∑
i=1

1
i
≤

n∗∑
i=1

1
i

+
n̂∑

i=n∗+1

1
i

= H(maxm∈M F̂ (m))

has to hold, which completes the proof.

5.F Numerical values of the matrices used in simulations

A1 =

0.9998 0.0002 0
0.0119 0.9788 0.0002

0 0 0.9030

 A2 =

0 0 0
0 0 0
0 0 −0.0154


A3 =

 0
0

−0.0665

 A4 =
[
0 0 −0.0045

]
A5 = 0.9758

B1 =

 0 0
0.0001 −0.0015

0 0.1029

 B2 = 10−5

0 0
0 −0.0001
0 −0.2653


B3 = 10−4

 0
−0.0001
−0.8509

 B4 =
[
0 −0.0250

]
B5 = 0.0024

L11 =
[
−204.9676 84.0710 1.0988
−1.1400 −0.2779 8.5412

]
L12 =

[
1.8443 −0.0319 −0.0492
−0.0554 −0.0087 −0.3643

]
L13 =

[
−0.2158
−1.6118

]
L14 =

[
−30.9138 −5.4842 24.2483

]
L15 = 108.9814 L31 =

[
0

−166.2425

]
L32 =

[
0

−11.7937

]
L33 = 0
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Chapter 6

Actuator security indices

This chapter introduces the security indices δ and δr, which are used to character-
ize vulnerable actuators in control systems. The index δ(ui) is defined for every
actuator ui, and it is equal to the minimum number of sensors and actuators that
need to be compromised by an attacker to conduct a perfectly undetectable attack
against ui. Since perfectly undetectable attacks do not leave traces in the sensor
measurements, an actuator with a small value of δ is very vulnerable. We propose
a method to compute δ in small-scale systems and show that δ may be increased by
placing additional sensors, or decreased by placing additional actuators. We then
identify three issues that appear in large-scale systems. Namely, δ is NP-hard to
compute, sensitive to system variations that are expected in large-scale systems,
and based on the assumption that the attacker knows the entire system model,
which can be a conservative assumption in the case of large-scale systems.
We then introduce the robust security index δr, which can characterize actuators
vulnerable in any realization of the system. We show that this index can be com-
puted efficiently and related to both full and limited model knowledge attackers.
Since our results imply that actuators with a small value of δr are very vulnerable,
we investigate how to increase δr. We show that δr is guaranteed to increase if
sensors are placed at suitable locations in the system, and then formulate a sensor
allocation problem with the objective to increase δr. It turns out that this prob-
lem has a submodular structure similar to the security measure allocation problem
from Chapter 5. This enables us to find its suboptimal solution with guaranteed
performance efficiently. We also illustrate the theoretical results through examples.
The chapter is organized as follows. Section 6.1 introduces the security index δ.
Section 6.2 investigates properties of δ. Section 6.3 defines the robust security index
δr. Section 6.4 outlines properties of δr. Section 6.5 presents illustrative examples.
Section 6.6 concludes the chapter. The appendix contains lengthy proofs.
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6.1 The security index δ

The system model we use to define the security index δ is given by

x(k + 1) = Ax(k) +Bu(k) +Baa(k),
y(k) = Cx(k) +Daa(k),

(6.1)

where x(k) ∈ Rnx are the system states, u(k) ∈ Rnu are the control actions, y(k) ∈
Rny+ne are the sensor measurements, and a(k) ∈ Rnu+ny are the attacks. We
allow the last ne ≥ 0 elements of y to be protected, so the attacker cannot directly
manipulate them. We also assume that the attacker cannot directly manipulate
the non-attacked sensors and actuators, so the elements of a that correspond to
these components always equal zero. For the analysis that follows, it is convenient
to assume that x(0) = 0nx and u ≡ 0. Due to linearity, this assumption is without
loss of generality for most results in the chapter. The exceptions are clearly outlined.
We denote by X = {x1, . . . , xnx} the set of states, U = {u1, . . . , unu} the set of
actuators, Y = {y1, . . . , yny+ne} the set of sensors, and I = {1, . . . , nu + ny} the
attack vector indices. The first nu elements of a correspond to attacks against the
actuators, and the last ny to attacks against unprotected sensors. Thus, we have

Ba =
[
B 0nx×ny

]
, Da =

[
0ny×nu Iny
0ne×nu 0ne×ny

]
.

We also assume that B has a full column rank. This excludes the degenerate cases
where the attacks trivially cancel each-other, or cases where an actuator does not
affect the system. We adopt the following attacker model.

Assumption 6.1. The attacker can change the values of attacked control actions
and measurements arbitrarily, and knows the matrices A,B,C.

Next, we assume that the attacker seeks to conduct a perfectly undetectable at-
tack [37, 136]. Perfectly undetectable attacks are potentially very dangerous, since
they do not leave traces in the sensor measurements.

Definition 6.1. An attack a 6≡ 0 is perfectly undetectable if y ≡ 0.

We are now ready to introduce the security index δ. The security index δ(ui)
is defined for every actuator ui ∈ U , and it is equal to the minimum number of
sensors and actuators that need to be compromised by the attacker to conduct a
perfectly undetectable attack. Additionally, the actuator ui has to be actively used
in the attack. This models a goal or intent by the attacker. Hence, the problem of
computing δ(ui) can be written as follows:
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Problem 6.1. Computing the security index δ(ui):

minimize
a

‖a‖0

subject to x(k + 1) = Ax(k) +Baa(k), (C1)
y(k) = Cx(k) +Daa(k), (C2)

y ≡ 0, x(0) = 0nx , (C3)
ai 6≡ 0. (C4)

The objective function reflects the attacker’s desire to find the minimum number of
sensors and actuators to conduct a perfectly undetectable attack (sparsest signal a).
The constraints (C1) and (C2) ensure that the attack satisfies the system dynamics,
(C3) imposes the attack to be perfectly undetectable, and (C4) ensures that the
actuator ui is actively used in the attack.
Before we start analyzing δ, we outline some remarks.

Remark 6.1. Actuators with small values of δ are more vulnerable than those with
large values. The worst case for the operator occurs when δ(ui) = 1. This implies
that the attacker can attack ui and stay perfectly undetectable without compromising
other components.

Remark 6.2. Problem 6.1 is not always feasible. The absence of a solution implies
that the attacker cannot attack ui while staying perfectly undetectable. In this case,
we adopt δ(ui) = +∞.

Remark 6.3. Problem 6.1 can be extended to capture the case where sensors and
actuators are not equally hard to attack. This can be achieved by changing the ob-
jective to

∑
j∈I cj1[aj 6≡0], where cj ∈ R+ models a cost of attacking a component j.

6.2 Properties of the security index δ

This section shows how to compute δ, analyzes how the deployment of new sensors
and actuators affects δ, and outlines issues that appear in large-scale systems.

6.2.1 Computing the security index δ

In the following proposition, we derive a necessary and sufficient condition that a
set of attacked components needs to satisfy, so that an attack signal a feasible for
Problem 6.1 can be constructed.

Proposition 6.1. Let G be the transfer function from a to y, Ua be attacked
actuators, Ya be attacked sensors, and Ia ⊆ I be the indices of a corresponding to Ua
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and Ya. A perfectly undetectable attack conducted with the components Ua and Ya
with active use of an actuator ui ∈ Ua exists if and only if

nrank[G(Ia) ] = nrank[G(Ia\i) ]. (6.2)

Proof. We refer the reader to Appendix 6.A. �

There are three important consequences of this result. Firstly, we can use the con-
dition (6.2) to compute δ(ui) as follows. We form all the combinations of attacked
sensors Ya and actuators Ua for which ui ∈ Ua and |Ua| + |Ya| = p. The initial
value of p is set to one. For each combination, we check if (6.2) is satisfied, which
can be done efficiently (for example, by using the Matlab function tzero). If there
exists a combination for which (6.2) holds, then we return δ(ui) = p. Otherwise,
we increse p by one and repeat the process.
Secondly, the proof shows that the attacker can cover an arbitrarily large attack sig-
nal injected in ui when (6.2) holds. This malicious signal can damage the actuator,
as shown in the Stuxnet attack [6] and the Aurora experiment [36]. Furthermore,
since B has a full column rank, the attack necessarily results in some of the system
states becoming large. We also point out that such an attack can be constructed
off-line using the model knowledge. This makes the attack decoupled from x(0)
and u. Thus, the attack remains perfectly undetectable for any x(0) and u, and
the assumption x(0) = 0nx and u ≡ 0 is without loss of generality.
Finally, Proposition 6.1 helps us to avoid checking the infinite number of constraints
in Problem 6.1. Instead, it suffices to check if the condition (6.2) is satisfied for a
given combination of attacked sensors and actuators.

6.2.2 Increasing and decreasing the security index δ

We now investigate how the deployment of new sensors and actuators affects δ.

Proposition 6.2. Assume that a new component j is deployed. Let δ(ui) be the
security index of an actuator ui before the deployment of j. If δ′(ui) is the security
index of ui after the deployment of j, then:

(i) δ(ui) ≤ δ′(ui) ≤ δ(ui) + 1 holds when j is an unprotected sensor;

(ii) δ(ui) ≤ δ′(ui) holds when j is a protected sensor;

(iii) δ(ui) ≥ δ′(ui) holds when j is an actuator.

Proof. The placement of a new sensor introduces additional constraints to Prob-
lem 6.1, which restrict the set of possible solutions. Thus, δ′(ui) < δ(ui) cannot
hold. If the new sensor is unprotected, then the attacker can gain control over it.
This can be interpreted as removing the aforementioned constraints. Problem 6.1
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then becomes the same as before the placement, so δ′(ui) ≤ δ(ui)+1 has to hold. By
placing a new actuator, the number of decision variables in Problem 6.1 increases,
and the constraints remain unchanged. Thus, δ′(ui) ≤ δ(ui) holds. �

Proposition 6.2 implies that we can potentially increase δ by placing additional
sensors to monitor the system. Furthermore, δ can be used to determine which
sensor placement is the most beneficial. For example, one optimality criterion can
be to select the placement such that the minimum value of δ is as large as possible.
If the system is of sufficiently small scale, and if a small number of sensors is being
allocated, then we can test all the sensor placements and pick the best.
Proposition 6.2 also illustrates an interesting trade-off between security and safety.
On the one hand, to make the system easier to control and more resilient to actuator
faults, more actuators should be placed in the system. On the other hand, this may
decrease the security indices, making the actuators easier to attack.

6.2.3 Large-scale control systems and the security index δ

We now outline three issues that appear when a control system is large scale.

Issue 1: The security index δ is NP-hard to compute

We now establish that Problem 6.1 is NP-hard. This implies that known polynomial-
time algorithms cannot solve this problem.

Theorem 6.1. Problem 6.1 is NP-hard.

Proof. We refer the reader to Appendix 6.B. �

Remark 6.4. The proof of Theorem 6.1 shows that Problem 6.1 can sometimes
be reduced to a problem with a finite number of constraints. Nevertheless, such a
problem is still NP-hard to solve due to the `0-norm in the objective.

Issue 2: Fragility of the security index δ

Large-scale control systems are complex systems that can change their configuration
over time. For example, in a power grid, micro-grids can detach from the grid [196],
some power lines may be turned off [197], or certain measurements may become
unavailable due to unreliable communication [198]. Unfortunately, the security
index can be sensitive with respect to changes in the realization of the system
matrices A,B,C. This is illustrated in the following example

Example 6.1. Let the realization of the system be

A =
[

0.1 0
0.01 0.1

]
, B =

[
1
0

]
, C =

[
0 1
0 1

]
. (6.3)
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Assume that the sensors measuring x2 are protected. Then δ(u1) = +∞ because any
input influences the protected outputs. However, if A(2, 1) = 0, then the transfer
matrix from the actuator to the sensors is zero, in which case δ(u1) = 1.

The lack of robustness of δ has two consequences. Firstly, an actuator that appears
to be secure in one realization of the system may be vulnerable in another. Thus, to
find actuators that are vulnerable, one should compute δ for different realizations
of A,B,C. Due to NP-hardness, this is infeasible in large-scale systems. Secondly,
even if we compute indices for all the realizations, ensuring that δ of every actuator
is large enough in every realization may be prohibitively expensive.
A reasonable strategy is therefore to first focus on defending those actuators that
are vulnerable in any system realization. However, the question to answer is if we
can find these actuators efficiently.

Remark 6.5. We assume that system variations occur infrequently compared to the
time scale of the perfectly undetectable attacks. Hence, to the attacker, the system
is linear and time-invariant.

Issue 3: Full model knowledge attacker

If the system is large-scale, then Assumption 6.1, which imposes that the attacker
has the exact knowledge of A,B,C, may be conservative. The lack of the full model
knowledge represents a serious disadvantage for the attacker and can lead to his/her
detection [85] (see also Section 6.5.6). It is therefore relevant to develop indices that
are also valid for attackers limited to local model knowledge.

Summary of Section 6.2.3

Due to the previous three issues, δ is not practical to be used in large-scale control
systems. Therefore, we introduce the robust security index δr that can be used
to characterize actuators that are vulnerable in any system realization, is easy to
compute, and can be related to attackers with limited model knowledge.

6.3 The robust security index δr

The robust security index we introduce in this section is based on a structural
model [A], [B], [C] of the system. The structural matrix [A] ∈ {0, 1}nx×nx has
binary elements. If [A](i, j) = 0, then A(i, j) = 0 for every realization A. If
[A](i, j) = 1, then A(i, j) can take any value from R. The same holds for the
matrices [B] ∈ {0, 1}nx×nu and [C] ∈ {0, 1}(ny+ne)×nx . In the remainder of the
chapter, we focus our attention on a special case of the matrix [B].
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𝑢𝑢2 

Figure 6.1: The extended graph Gt corresponding to the structural matrices
[A], [B], [C] from Example 6.2.

Assumption 6.2. We assume that: (i) [B] = [ei1 . . . einu ] and rank[B] = nu; and
(ii) [B](i, j) = 1 implies that B(i, j) 6= 0 for every realization of B.

Assumption 6.2 imposes that each actuator directly influences only one state,
which is commonly assumed in actuator allocation problems for large-scale sys-
tems [199, 200]. Additionally, Assumption 6.2 imposes that every realization of
B has a full column rank, which ensures compatibility with the index δ. We re-
mark that Assumption 6.2 is necessary for the derivation of the results that follow.
Additionally, even under this assumption, Problem 6.1 remains NP-hard to solve.

Proposition 6.3. Problem 6.1 remains NP-hard under Assumption 6.2.

Proof. In the proof of Theorem 6.1, we set B = Inx to establish NP-hardness of
Problem 6.1. Since Inx is compatible with Assumption 6.2, the claim holds. �

We now introduce the extended graph Gt = (V, E) to represent [A], [B], [C]. The
node set is given by V = X ∪ U ∪ Y ∪ t, where the node t can be seen as a control
center that receives the measurements from the process. The edge set is given by
E = Eux ∪ Exx ∪ Exy ∪ Eyt, where Eux = {(uj , xi) : [B](i, j) = 1} are the edges from
the actuators to the states, Exx = {(xj , xi) : [A](i, j) = 1} are the edges between
the states, Exy = {(xj , yi) : [C](i, j) = 1} are the edges from the states to the
sensors, and Eyt = {(yi, t) : ∀yi ∈ Y} are the edges from the sensors to t. Since the
extended graph Gt is crucial for analyzing the robust index δr that we define in the
following, we introduce an example to clarify it.

Example 6.2. Let the structural matrices be given by

[A] =

0 1 0
1 0 1
0 1 0

 , [B] =

1 0
0 1
0 0

 , [C] =
[
1 0 0
0 0 1

]
.

The extended graph Gt is shown in Figure 6.1.

Let [A], [B], [C] be given, and let us define the set R of system realizations (A,B,C)
that have the same structure as [A], [B], [C] and satisfy Assumption 6.2. The robust
security index δr(ui) of an actuator ui can then be defined as follows:
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Problem 6.2. Computing the robust security index δr(ui):

minimize
Ia⊆I

|Ia|

subject to ∀(A,B,C) ∈ R, ∃a :
supp(a) ⊆ Ia,
x(k + 1) = Ax(k) +Baa(k),

y(k) = Cx(k) +Daa(k),
y ≡ 0, x(0) = 0nx ,
ai 6≡ 0.

Put differently, the robust security index δr(ui) characterizes the minimum number
of sensors and actuators that enables a perfectly undetectable attack against ui
in any system realization (A,B,C) ∈ R. Thus, a small δr(ui) indicates a serious
vulnerability of the actuator ui. Particularly, the attacker can not only conduct a
perfectly undetectable attack against ui using a small number of components, but
he/she can do that in any system realization from R.

Remark 6.6. Just as Problem 6.1, Problem 6.2 is not always solvable. This occurs
when the attacker cannot gather the resources that allow him/her to conduct a
perfectly undetectable attack against ui in every system realization from R. In that
case, we adopt δr(ui) = +∞.

Apart from its ability to characterize actuators vulnerable in any system realization,
the robust index δr has also other favorable properties that we outline next.

6.4 Properties of the robust security index δr

This section shows that δr can be efficiently computed by solving the minimum s-t
cut problem, relates δr with different attacker models, and shows how δr can be
improved through sensor allocation.

6.4.1 Computing the robust security index δr

We first introduce Theorem 6.2 that gives a necessary and sufficient condition that
a set of attacked components needs to satisfy, so that an attack signal a feasible
for Problem 6.1 can be constructed in any system realization (A,B,C) ∈ R. Theo-
rem 6.2 is inspired by [37], where the connection between the existence of perfectly
undetectable attacks and the size of a minimum vertex separator was introduced.

Theorem 6.2. Let Ua be attacked actuators, Ya be attacked sensors, and

Xa = {xj ∈ X : (uk, xj) ∈ Eux, uk ∈ Ua \ ui } . (6.4)
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A perfectly undetectable attack conducted with Ua and Ya with active use of an
actuator ui ∈ Ua exists in any realization (A,B,C) ∈ R if and only if Xa ∪ Ya is a
vertex separator of ui and t in the extended graph Gt.

Proof. We refer the reader to Appendix 6.C �

The intuition behind Theorem 6.2 is the following. An attack against ui can be
thought of as the attacker injecting a flow into the system through ui. To stay
perfectly undetectable, he/she seeks to prevent the flow from reaching the operator
modeled by t. The attacker uses a simple strategy where he/she injects negative
flows into the states Xa using the actuators Ua \ ui, and in that way, cancels out
the flows going through these states. The same applies to Ya. If Xa∪Ya is a vertex
separator of ui and t, then the flow is successfully canceled out, and the attack
remains perfectly undetectable. However, if there exists a directed path connecting
ui and t not intersected by Xa∪Ya, then we can find a realization from R for which
any flow injected in ui reaches the operator.
From Theorem 6.2, it follows that computing the robust security index δr(ui) re-
duces to computing a minimum vertex separator between ui and t that consists of
Xa and Ya. Hence, Problem 6.2 can be reformulated as follows:

minimize
Ua,Ya

|Ua|+ |Ya|

subject to Xa is given by (6.4),
Ya consists of unprotected sensors,
Xa ∪ Ya is a vertex separator of ui and t,
ui ∈ Ua.

(6.5)

Here, the objective reflects our goal to find a minimum vertex separator. The first
two constraints ensure that the separator consists only of statesXa and unprotected
sensors Ya, the third constraint ensures that Xa ∪ Ya is a vertex separator of ui
and t, and the fourth imposes that ui is included in the attacked components.
We now show that the problem (6.5) can be reduced to the minimum s-t cut problem
(see Section 3.3.2). This implies that the problem (6.5) can be solved in polynomial
time using well established algorithms [159]. To prove this claim, we first transform
Gt to a more convenient graph Gi = (Vi, Ei), with a set of edge weights Wi.
Let a state xj be of Type 1 if it is adjacent to an actuator from U \ui, and of Type 2
otherwise. The set Vi contains ui (the source), t (the sink), every state of Type 2,
and the measurements Y. Additionally, we introduce the nodes xjin and xjout for
every state xj of Type 1, and add them to Vi. The sets Ei and Wi are constructed
according to the following rules:

(i) If (ui, xj) ∈ Eux, then we add (ui, xj) to Ei, and we set wuixj = +∞.
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Figure 6.2: The graph G1 corresponding to the actuator u1.

(ii) For every (xj , xk) ∈ Exx, xj 6= xk, we add an edge of the weight +∞ to Ei
subject to the following rules:
- if xj and xk are Type 1, then we add (xjout , xkin) to Ei;
- if xj is Type 1 and xk is Type 2, then we add (xjout , xk) to Ei;
- if xj is Type 2 and xk is Type 1, then we add (xj , xkin) to Ei;
- if xj and xk are Type 2, then we add (xj , xk) to Ei.

(iii) For every xjin and xjout that correspond to a state xj of Type 1, we add
(xjin , xjout) to Ei, and we set wxjinxjout = 1.

(iv) For every (xj , yk) ∈ Exy where xj is of Type 1, we add (xjout , yk) to Ei, and
we set wxjoutyk = +∞.

(v) For every (xj , yk) ∈ Exy where xj is of Type 2, we add (xj , yk) to Ei, and we
set wxjyk = +∞.

(vi) For every yj ∈ Y, we add (yj , t) to Ei. If yj is a protected sensor, then we set
wyjt = +∞. Otherwise, we set wyjt = 1.

To clarify the graph Gi, we introduce an example.

Example 6.3. Assume the same structural matrices as in Example 6.2. Let the
first sensor be unprotected and the second one protected. The graph G1 constructed
for the purpose of solving the problem (6.5) for actuator u1 is shown in Figure 6.2.

We now introduce Proposition 6.4, which tells us that we can compute the robust
security index δr(ui) by solving the minimum ui-t cut problem in Gi.

Proposition 6.4. Let δr(ui) be the optimal value of the problem (6.5), and δ∗ be
the optimal value of the minimum ui-t cut problem in Gi. If the problem (6.5) is
feasible, then δr(ui) = δ∗ + 1. Otherwise, δr(ui) = δ∗ = +∞ holds.

Proof. We refer the reader to Appendix 6.D. �

Remark 6.7. Proposition 6.4 extends the previous findings on the static security
index α [129], where α was computed by solving the minimum s-t cut problem.
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6.4.2 The robust security index δr and attacker models

We now explain how δr is related to the full model knowledge attacker and two
limited model knowledge attackers. To distinguish between the different attackers,
in the remainder we refer to the full model knowledge attacker as Attacker 1, and
to the newly introduced attackers as Attackers 2 and 3.

Attacker 1: The full model knowledge attacker

As mentioned earlier, δr(ui) characterizes the minimum number of sensors and
actuators that enable Attacker 1 to attack ui and remain perfectly undetectable
in any realization from R. Hence, a large (resp. small) δr(ui) prevents (resp.
enables) Attacker 1 to easily gather disruption resources to attack ui in any system
realization. It is also worth mentioning that δr(ui) upper bounds δ(ui) in any
system realization. This is established in the following proposition.

Proposition 6.5. For any (A,B,C) ∈ R and ui ∈ U , we have δr(ui) ≥ δ(ui). If
δr(ui) = +∞, then δ(ui) = +∞ for at least one realization (A,B,C) ∈ R.

Proof. Case δr(ui) 6= +∞: Let (Ua, Ya) be a solution of the problem (6.5). From
Theorem 6.2, we know that the attacker can conduct a perfectly undetectable attack
against ui in any system realization from R using Ua and Ya. Therefore, for any
(A,B,C) ∈ R, we can find an attack a with the following properties: (i) ‖a‖0 =
|Ua|+|Ya|; and (ii) a is a feasible point of Problem 6.1. From the latter, we conclude
that δ(ui) ≤ |Ua|+ |Ya| = δr(ui) has to hold in any realization (A,B,C) ∈ R.
Case δr(ui) = +∞: The proof is by contradiction. Assume that δ(ui) 6= +∞ for
any (A,B,C) ∈ R. Thus, Problem 6.1 is feasible in any system realization. Let
Ua = U , and let Ya be the set of all unprotected sensors. If the attacker can conduct
a perfectly undetectable attack against ui in any system realization with some set
of components, then he/she can do it with Ua and Ya as well. However, this implies
that (Ua, Ya) is a feasible point of the problem (6.5), which is impossible since
δr(ui) = +∞. Hence, δ(ui) = +∞ has to hold for at least one (A,B,C) ∈ R. �

Unfortunately, Section 6.5 illustrates that δr(ui) is not a tight upper bound of δ(ui).
Thus, there generally exist realizations in which fewer than δr(ui) components suf-
fice for Attacker 1 to conduct a perfectly undetectable attack against ui. However,
Attacker 1 needs to be sure that such a realization is present when he/she decides
to attack. If these realizations occur rarely, then the attacker may need to wait
for a long time, which increases his/her chances to be discovered. To avoid this,
Attacker 1 may still want to compromise δr(ui) components that allow him/her to
conduct a perfectly undetectable against ui in any system realization from R.
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Attacker 2: The attacker with local model knowledge

We now show that a small δr(ui) implies that ui is vulnerable even if the attacker
does not know the entire realization A,B,C. Consider the following attacker.

Assumption 6.3. Attacker 2:

(i) can read and change the values for control and measurements signals that
correspond to attacked actuators Ua and attacked sensors Ya;

(ii) knows [A], [B], [C];

(iii) knows the rows A(j, :) and B(j, :) for every state xj that is adjacent to an
actuator from Ua;

(iv) knows for every k ∈ Z≥0: xj(k) for any xj that is adjacent to an actuator
from Ua, and xl(k) for any xl ∈ N in

xj ;

(v) seeks to remain perfectly undetectable.

Attacker 2 does not know the entire realization A,B,C, but only the structural
model and the rows of A and B that correspond to the actuators Ua. Attacker 2 is
also assumed to know the values of the states adjacent to the actuators Ua and their
in-neighbors. He/she can obtain these values by placing additional sensors, but can
also get this information free of cost. Namely, control algorithms sometimes base
decision on local and neighboring states to achieve better performance [201]. Hence,
the neighboring nodes may continue sending the information to the compromised
actuator nodes if the attacker remains undetected.
The following proposition relates Attacker 2 to δr.

Proposition 6.6. Let Ua be attacked actuators, Ya be attacked sensors, ui ∈ Ua,
and Xa be defined as in (6.4). Attacker 2 can conduct a perfectly undetectable attack
with active use of ui in any realization (A,B,C) ∈ R if and only if Xa ∪ Ya is a
vertex separator of ui and t in Gt.

Proof. We refer the reader to Appendix 6.E. �

Recall that δr(ui) equals the minimum number of components that ensures Xa∪Ya
is a vertex separator of ui and t, and ui ∈ Ua. Hence, Proposition 6.6 implies that
Attacker 2 with the right combination of δr(ui) components can conduct a perfectly
undetectable attack against ui in any system realization. Therefore, a small δr(ui)
implies that ui is vulnerable even if the attacker does not know the full model.
We also point out that the assumption x(0) = 0nx and u ≡ 0 is needed for this
result to hold. Particularly, we show in the proof that Attacker 2 can construct
an attack similar to the one introduced in the proof of Theorem 6.2. However, to
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compensate for the lack of the full model knowledge, Attacker 2 implements the
strategy in a feedback manner using local states and measurements, and exploits
the steady state assumption. Section 6.5.6 illustrates that if u starts changing
during the attack, Attacker 2 can be revealed.

Attacker 3: The attacker limited to structural knowledge

While the previous two propositions show that a small δr(ui) implies that ui is
vulnerable, a perhaps more interesting question to answer is if a large δr(ui) implies
that ui is secured. Unfortunately, we cannot make such a claim, since Attackers 1
and 2 may be able to conduct a perfectly undetectable attack against ui with less
than δr(ui) components. However, we do argue that having a large δr(ui) provides
a reasonable level of security.
Intuitively, having a large δr(ui) implies that attacking ui can trigger a large number
of sensors. To avoid being detected from these sensors, an attacker should make
a synchronized attack with attacked sensor and actuators. However, to be able
to use the attacked actuators other than ui for covering an attack against ui, the
attacker should have a precise model. Otherwise, he/she needs to compromise a
large number of sensors. To illustrate this point, we introduce Attacker 3.

Assumption 6.4. Attacker 3: (i) can read and change the values of control and
measurement signals that correspond to attacked actuators and attacked sensors;
(ii) knows [A],[B],[C]; and (iii) seeks to remain perfectly undetectable.

Since Attacker 3 knows only [A],[B],[C], he/she cannot constructively use other
actuators to cover an attack against ui. Namely, he/she does not know what
signals to inject in these actuators. Yet, if the system is in a steady state, then
Attacker 3 can use the replay attack strategy to conduct a perfectly undetectable
attack against ui. In this strategy, the attacker tries to cover an attack against ui by
replicating previously recorded steady state values from compromised sensors [84].
The following proposition shows that Attacker 3 needs to compromise at least
δr(ui)−1 sensors to ensure that an attack against ui remains perfectly undetectable.
Hence, a large δr(ui) makes more difficult for Attacker 3 to attack ui.

Proposition 6.7. Let ui be an attacked actuator and Ya be attacked sensors. If
Attacker 3 can attack ui and ensure the attack remains perfectly undetectable, then
|Ya| ≥ δr(ui) − 1 has to hold. If δr(ui) = +∞, then Attacker 3 cannot attack ui
while ensuring perfect undetectability.

Proof. Case δr(ui) 6= +∞: We prove the claim by showing that Ya has to be a
vertex separator of ui and t in Gt. Existence of a path from ui to t that is not
intersected by a separator implies that at least one sensor yj is not compromised
by the attacker. From the proof of Theorem 6.2, we know that there exists at least
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one realization in which any attack against ui triggers yj . Since Attacker 3 knows
only [A], [B], [C], he/she does not know if attacks against ui are visible in yj . Thus,
Attacker 3 needs to attack yj to ensure being perfectly undetectable. Therefore,
Ya has to form a vertex separator of ui and t. From Theorem 6.2, δr(ui)− 1 is the
size of a minimum vertex separator of ui and t in Gt (we subtract one from δr(ui)
to exclude ui). Hence, |Ya| ≥ δr(ui)− 1 holds.
Case δr(ui) = +∞: In this case, there has to exist a directed path between ui
and a protected sensor. This implies that Ya cannot be a vertex separator. Hence,
Attacker 3 cannot ensure that an attack against ui remains perfectly undetectable,
because he/she does not know if the aforementioned protected sensor is triggered
when he/she attacks ui. �

Summary of Section 6.4.2

The main conclusions are as follows: (i) if δr(ui) is small, then ui is vulnerable with
respect to Attackers 1 and 2 in any system realization from R; (ii) a large value
of δr(ui) does not imply security with respect to these attackers, but it prevents
them from easily gathering resources for attacking ui in any system realization
from R; and (iii) a large δr(ui) indicates security with respect to Attacker 3. For
these reasons, it is useful to derive strategies for increasing δr that can be used in
large-scale systems. This is the problem we address next.

Remark 6.8. Increasing δr does not generally imply that we increase δ. However,
the placement of new sensors cannot decrease δ (Proposition 6.2), so we definitely
do not decrease this index. In fact, we illustrate in Section 6.5 that increasing δr
may indirectly increase δ.

6.4.3 Increasing the robust security index δr

We now derive a sensor allocation strategy for increasing δr. We assume that each
of the newly deployed sensors measures only a single state, which is a commonly
adopted assumption in sensor placement problems for large-scale systems [202].
Let ui be an actuator for which we want to increase the robust security index.
Consider the extended graph Gt, and let xjn be a state for which there exists a
directed path ui, xj1 , . . . , xjn in which the states xj1 , . . . , xjn are not adjacent to
the actuators U \ ui. We denote the set of all such states by Xi (see Figure 6.3
for an illustration). We now show that if we place a new sensor to measure a state
from Xi, then we are guaranteed to increase δr(ui). Moreover, if every state that
is directly controlled by an actuator is also directly measured by a sensor, then
placing a new sensor to measure a state from Xi is the only way to increase δr(ui).
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Figure 6.3: (a) An example of the extended graph Gt. (b) The set X1 of the
actuator u1. For example, x2 ∈ X1 because of the directed path u1, x1, x2 (this
path does not contain the states adjacent to u2). Since x4 is adjacent to u2, we
have x4 /∈ X1. (b) The set X2 of the actuator u2.

Theorem 6.3. Let ui be an actuator with δr(ui) 6= +∞, and let the set Xi be
defined as above. The following statements holds:

(i) If a sensor yj is placed to measure a state from Xi and if δ′r(ui) is the robust
index after the placement, then δ′r(ui) = +∞ if yj is a protected sensor, and
δ′r(ui) = δr(uj) + 1 if yj is an unprotected sensor.

(ii) If every state directly controlled by an actuator is directly measured by a sen-
sor, then δr(ui) is increased if and only if a new sensor is placed to measure
a state from Xi.

Proof. We refer the reader to Appendix 6.F. �

The sets X1, . . . , Xnu have two important properties. Firstly, they are not affected
by the placement of new sensors. Thus, if we place n sensors to measure states from
Xi, then δr(ui) increases by n. Secondly, if we remove from Gt all the states that
are adjacent to an actuator from U \ ui, then Xi contains all the states to which
ui is connected with a directed path. Hence, Xi can be computed using the depth
first search algorithm [203].
In what follows, we use the sets X1, . . . , Xnu to formulate a sensor allocation prob-
lem. In this chapter, we focus on allocating unprotected sensors. The goal is to
place these sensors to increase δr for every actuator ui by at least ki ∈ Z≥0. We
assume unprotected sensors to be inexpensive, so we do not have a sharp constraint
on the number of sensors we should place. Yet, we still want to place the minimum
number of them to achieve the desired benefit.
Let the set of unprotected sensors be Ys = {y1, . . . , yns}, and let xyi be the state
measured by yi ∈ Ys. For every actuator ui, we define a gain function

gi(Yp) = min{
∑
yj∈Yp |xyj ∩Xi|, ki},

where Yp ⊆ Ys is the set of newly placed sensors. This function equals ki, if at least
ki sensors from Yp measure the states from Xi. We then have from Theorem 6.3
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that δr(ui) increases by at least (or exactly) ki. Thus, the problem we want to
solve can be written as follows:

minimize
Yp

|Yp|

subject to G(Yp) =
∑
ui∈U

ki,
(6.6)

where G(Yp) =
∑
ui∈U gi(Yp). The objective function we are minimizing is the

number of deployed sensors. Additionally, if the constraint is satisfied, then the
robust indices of all the actuators are increased by the desired values.
We now show that this problem has the same submodular structure as the secu-
rity measure allocation problem. Hence, its suboptimal solution with performance
guarantees can be computed efficiently using Algorithm 3.1.

Proposition 6.8. Let m∗ be the optimal value of the problem (6.6), mG be the
value found by Algorithm 3.1, and H(n) =

∑n
i=1 i

−1. The following then holds:

mG ≤ H
(
maxyj∈YsG(yj)

)
m∗. (6.7)

Proof. It suffices to show that G is submodular, nondecreasing, and integer-
valued. The problem (6.6) is then an instance of Problem 3.1, and the claim of the
proposition immediately follows from Lemma 3.3. Let f(Yp) =

∑
yj∈Yp |xyj ∩Xi|.

Since |xyj∩Xi| is a constant, f(Yp) is a linear set function. Since linear set functions
are submodular [152, Section 2], it follows that f(Yp) is submodular. Furthermore,
f(Yp) is a nondecreasing function, since it represents a sum of nonnegative numbers.
Next, note that gi(Yp) = min{f(Yp), ki}, so it follows from Lemma 3.2 that gi is
submodular and nondecreasing. The function gi is also integer valued, since f is
integer valued and ki is an integer. From the previous discussion and Lemma 3.1,
it follows that G is submodular, nondecreasing, and integer valued. �

The problem (6.6) can also be formulated as the following integer linear program:

minimize
z∈{0,1}ns

ns∑
j=1

zj

subject to
ns∑
j=1

1[xyj∈Xi] zj ≥ ki, ∀i ∈ {1, . . . , nu}.

Here, z models the unprotected sensors that we intend to place. If zj = 1 (resp.
zj = 0), then the sensor yj ∈ Ys is placed (resp. not placed). The objective function
reflects that we want to place the minimum number of unprotected sensors, and the
constraint guarantees that the robust security index of every actuator is sufficiently
improved. Thus, one can also use integer linear program solvers to tackle (6.6).
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Figure 6.4: The IEEE 14 bus system (the figure is courtesy of Pasqualetti et al. [59]).

6.5 Illustrative examples

We now discuss the theoretical developments on illustrative numerical examples.

6.5.1 Model 1: Power grid

We consider the IEEE 14 bus system shown in Figure 6.4. We model the sys-
tem using linearized swing equations where the generators are represented by two
states (rotor angle φi and frequency ωi) and load buses with one state (voltage
angle θi) [204]. The parameters given in [205] are used. The system is con-
trolled using five generators located at buses {1, 2, 3, 6, 8}. We assume that the
operator has access to phasor measurement units providing the measurements of
{θ1, θ3, θ5, θ7, θ9, θ11, θ13}. We also assume that every generator and every mea-
surement can be compromised by the attacker, as well as some of the loads [206].
Particularly, the loads at buses {2, 5, 9, 14} are assumed to have considerable effect
to the network, and are modeled as additional actuators.
We consider the following system realizations: (i) normal operation, as shown in
Figure 6.4; (ii) the power line between Buses 4 and 7 switched-off; (iii) a micro-
grid consisting of Bus 3 and Generator 3 detaches from the grid; and (iv) the
measurement of θ1 stops being available.

6.5.2 Example 1: Robustness of δ and δr

We first investigate the robustness of δ and δr with respect to system variations. To
do this, we compute the values of δ and δr of all the generators in the aforementioned
four realizations of the system, and plot the results in Figure 6.5.
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Figure 6.5: The values of the security index δ (blue bars) and the robust security
index δr (red lines) of Generators 1-5 for different realizations of the system.

The results confirm that δ changes with respect to system realizations. Thus, if the
operator decides to use δ as a security index, it is not sufficient to consider only one
realization. For example, Generator 3 that appears to be the second most secure
in the first realization, becomes one of the two most vulnerable in the third.
A less evident observation is that the use of δ can lead to a considerable security
allocation cost. Particularly, we see that the minimum value of δ for all the gen-
erators is quite similar (except for maybe Generator 4). Therefore, ensuring that
each generator has a sufficiently large security index δ for every realization of the
system may require a large security investment.
Evidently, the values of δr do not depend on the realization. Therefore, having a
small value of δr(ui) implies that actuator ui is vulnerable in any system realization.
For example, since δr(G2) = 2, Attackers 1 and 2 can attack Generator 2 in any
realization of the system by compromising only two components.
However, as it can be seen, δr is not a tight upper bound on δ. Thus, large δr does
not necessarily imply security, which is the main drawback of δr. For instance, note
that δ(G3) = 2 in the third realization. Hence, Attacker 1 can conduct a perfectly
undetectable attack against Generator 3 in this realization by compromising two
components, although δr(G3) = 6.

6.5.3 Example 2: Increasing δ and δr

Next, we investigate if by increasing δr we also increase δ. We focus on Generators 1
and 2, since these generators have the lowest values of δr. Based on the discussion
from Section 6.4.3, we obtain that suitable locations for placing additional sensors
are X1 = {φ1, ω1, θ1} for Generator 1, and X2 = {φ2, ω2} for Generator 2.

108



In
cr

ea
se

 o
f 

Protected sensor: G1

In
cr

ea
se

 o
f 

Unprotected sensor: G1

In
cr

ea
se

 o
f 

Protected sensor: G2

In
cr

ea
se

 o
f 

Unprotected sensor: G2

Figure 6.6: Increase of the security index δ for Generator 1 and Generator 2.

We first investigate how the placement of one protected sensor at a location fromX1
influences δ. While placing the protected sensor at any location from X1 increases
δr(G1) to +∞, it can be seen from Figure 6.6 that δ(G1) does not increase to +∞
in any of the four realizations. Yet, the increase of δ(G1) by more than one is
achieved in majority of the cases, which is impossible to achieve by placing a single
unprotected sensor (Proposition 6.2).
The experiment is also conducted for Generator 2. Similarly, δ(G2) does not in-
crease to +∞ in any of the four realizations. However, the placement of one pro-
tected sensor leads to increase of δ(G2) by at least three for all the locations from
X2 and all the realizations we consider.
We also consider placing one unprotected sensor at locations from X1, which in-
creases δr(G1) by one. Interestingly, as seen in Figure 6.6, the placement of one
unprotected sensor at any of the locations from X1 increases δ(G1) in all four
realizations. The same holds for X2 and δ(G2).
Overall, the experiment illustrates that by increasing δr, we may also indirectly
increase δ. However, the experiment with the protected sensor demonstrates that
we do not achieve the same level of improvement. This again shows that protecting
the system against the advanced Attacker 1 may require much more resources than
protecting it against less advanced attackers such as Attacker 3.

6.5.4 Example 3: Increasing δr in large-scale systems

We now demonstrate that the robust security indices δr can be computed and
increased efficiently in large-scale systems. For this purpose, we use the IEEE 2383
bus system. This large-scale system has 3037 states and 327 generators. We model
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Figure 6.7: The values of the lowest forty robust security indices before and after
the placement of unprotected sensors.

the system in the same way as the IEEE 14 bus, randomly select 40 percent of the
states to be measurable, and 10 percent of the load buses to be attackable.
Next, we compute the robust indices of all the generators, and plot the lowest 40
robust security indices in Figure 6.7.(a). We emphasize that it takes only 114.03
seconds to compute the robust indices of all the generators on Intel Core i7-8650U
computer. This confirms that the robust security indices can be computed efficiently
in large-scale systems. As one can see, there is a large number of generators whose
robust security indices are equal to 2, 3, or 4. Hence, these generators are vulnerable
in any system realization.
Therefore, we consider the problem of allocating unprotected sensors to increase all
the robust indices to at least 5. For this purpose, we first compute suitable locations
for placing additional sensors according to the discussion from Section 6.4.3, and
then solve the problem (6.6) using Algorithm 3.1. As we can see from Figure 6.7.(b),
the robust indices are successfully increased after the placement. Additionally, this
process takes only 0.57 seconds.

6.5.5 Model 2: Vehicular system

Consider the system consisting of two autonomous vehicles shown in Figure 6.8.
Each vehicle is modeled by a single state representing its position relative to some
moving reference frame. The operator can control both vehicles through signals u1
and u2, and knows the position of the second vehicle y = x2. The operator’s goal
is to keep the distance between the vehicles equal to ten.
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𝑦𝑢1 𝑢2

1 2

Figure 6.8: The platoon consisting of two autonomous vehicles. Each vehicle can
be controlled by the operator through the signals u1 and u2. The operator also
knows the position y of the second vehicle.

To study this formation control problem, we use the model from [136]:

x(k + 1) =
[
1− 2α1 α1
α2 1− 2α2

]
x(k) +

[
1 0
0 1

]
u(k),

y(k) =
[
0 1

]
x(k),

where α1 = α2 = 0.1. We initially assume that x(0) = [0 10]T and u(k) = [−1 2]T
for any k ∈ Z≥0, so that desired behavior is achieved prior to attacks.

6.5.6 Example 4: Properties of Attacker 1 and Attacker 2

We now illustrate some properties of Attackers 1 and 21. Both attackers control
u1 and y, and have the goal to disrupt the platoon formation without the operator
noticing. In the following, we discuss in which situations the attackers can achieve
this objective. By ∆y1 (resp. ∆y2), we denote the difference between the measure-
ment expected in the normal operation and the received measurement in the case
of the first (resp. second) attacker. If Attacker 1 (resp. Attacker 2) conducts a
perfectly undetectable attack, then ∆y1 ≡ 0 (resp. ∆y2 ≡ 0) holds.
Case 1: The first case illustrates that both of the attackers can conduct a perfectly
undetectable attack when the system is in a steady state. Attacker 1 constructs
the attack as follows:

a1(k) = −k, a3(k + 2) = 1.6a3(k + 1)− 0.63a3(k)− 0.1a1(k), (6.8)

which is according to the strategy introduced in the proof of Proposition 6.1. At-
tacker 2 applies the attack signals

a1(k) = −k, a3(k) = −x2(k) + y(0), (6.9)

which is according to the strategy introduced in the proof of Proposition 6.6. As we
can see from Figure 6.9, Case 1, both of the attackers remain perfectly undetectable.

1The properties of Attacker 2 we outline next are the same as for Attacker 3, which is the
reason why we do not explicitly consider Attacker 3 in this example.
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Figure 6.9: Differences ∆y1 and ∆y2 of the expected and attacked sensor measure-
ments in three different cases. If Attacker 1 (resp. Attacker 2) conducts a perfectly
undetectable attack, then ∆y1 ≡ 0 (resp. ∆y2 ≡ 0) holds.

Case 2: The second case illustrates the fragility of Attacker 1 with respect to
modeling errors. Particularly, assume that Attacker 1 believes that α′2 = 0.11. In
that case, he/she constructs the attack as follows:

a1(k) = −k, a3(k + 2) = 1.58a3(k + 1)− 0.613a3(k)− 0.11a1(k).

Attacker 2 applies the same signals as in the previous case. From Figure 6.9,
Case 2, we can see that Attacker 1 is revealed, while Attacker 2 remains undetected.
Generally, Attacker 2 can also be vulnerable to modeling errors. However, the fact
that this attacker uses only a fraction of the model (in this case none), lowers
his/her chances to be detected because of modeling errors.
Case 3: Finally, assume the scenario where the operator increases u2 by 0.1 at
k = 2. The attackers apply the attacks from Case 1. From Figure 6.9, Case 3, we
see that Attacker 2 is revealed. This illustrates that the steady state assumption
is generally required for Attacker 2 to remain perfectly undetectable. Namely,
Attacker 2 does not know neither u2 nor the equation for x2. Hence, when y starts
changing, he/she cannot distinguish if this is because of the attack or a change
in u2. We also see that Attacker 1 remains undetected. The reason is that the
attack (6.8) can be computed prior to the attack and implemented in a feedforward
manner. This makes the attack decoupled from x(0) and u.
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6.6 Summary

This chapter introduced the actuator security indices δ and δr. A method for com-
puting δ was derived, and it was shown that δ can potentially be increased (resp.
decreased) by placing additional sensors (resp. actuators). We then showed that
δ may not be an appropriate index for large-scale systems, since it is NP-hard to
compute, vulnerable to system variations, and based on the assumption that the
attacker knows the entire system model. In contrast, the robust index δr can be
computed efficiently, can characterize actuators vulnerable in any system realiza-
tion, and can be related to both the full and limited model knowledge attackers.
Additionally, a sensor placement problem for increasing δr was proposed, and it
was shown that a suboptimal solution with performance guarantees of this problem
can be computed efficiently. Finally, the properties of δ and δr, as well as some
of the theoretical results, were clarified by means of numerical examples of power
grids and autonomous vehicles. We now move to the next chapter, where we study
a sensor placement game based on actuator security indices.

Appendix to Chapter 6

6.A Proof of Proposition 6.1

We first introduce an auxiliary lemma that we use in the proof.

Lemma 6.1. [136, Theorem 1] [37, Theorem 7] A perfectly undetectable attack
conducted with components Ia ⊆ I exists if and only if nrank[G(Ia) ] < |Ia|.

Proof of Proposition 6.1: (⇒) Let A be the Z-transform of an attack a. We
show that if there exists a perfectly undetectable attack A with Ai 6= 0, then the
condition (6.2) has to hold. We split the proof into two cases.
Case 1: nrank[G(Ia\i) ] = |Ia| − 1. Since undetectable attacks are possible to
conduct using the components Ia, then it follows from Lemma 6.1 that

nrank[G(Ia) ] < |Ia|. (6.10)

In addition, we have

nrank[G(Ia) ] ≥ nrank[G(Ia\i) ] = |Ia| − 1. (6.11)

From (6.10) and (6.11), it follows that nrank[G(Ia) ] = |Ia| − 1. Therefore, we
conclude that nrank[G(Ia) ] = nrank[G(Ia\i) ].
Case 2: nrank[G(Ia\i) ] = r < |Ia| − 1. Let z′ ∈ C satisfy rank[G(Ia\i)(z′) ] = r,
and let Ib be a set that contains indices of any r linearly independent columns of

113



G(Ia\i)(z′). Since G(Ib) has r columns and nrank[G(Ib) ] cannot be larger than the
number of the columns of G(Ib), we have

nrank[G(Ib) ] ≤ r. (6.12)

From the definition of the normal rank, it follows that

nrank[G(Ib) ] = maxz∈C rank[G(Ib)(z) ] ≥ rank[G(Ib)(z′) ] = r. (6.13)

From (6.12) and (6.13), we conclude that the following equality holds:

nrank[G(Ia\i) ] = nrank[G(Ib) ] = r. (6.14)

Next, note that nrank[G(Ib) G(j) ] = r for any j ∈ Ia \ i. Otherwise, we would have
nrank[G(Ia\i) ] > r. Hence, we can find rational matrices P and Q 6= 0 that satisfy
G(Ib)P +G(j)Q = 0 [207, p. 31]. Thus, the columns of G(Ib) span all the columns
of G(Ia\i), and we can find A′ such that

G(Ia\i)A(Ia\i) = G(Ib)A′, (6.15)

where A(Ia\i) is the vector that contains the elements of A from the set Ia \ i.
From (6.15) and GA = 0 (A is a perfectly undetectable attack), we have

GA = G(Ia\i)A(Ia\i) +G(i)Ai
(6.15)= G(Ib)A′ +G(i)Ai

GA=0= 0.

This implies that [A′T Ai]T is a perfectly undetectable attack against [G(Ib) G(i)]
with Ai 6= 0. From this fact and nrank[G(Ib) ] = |Ib|, it follows from Case 1 that
the condition (6.2) holds for the set of components Ib ∪ i. Thus, we have

nrank[G(Ib) G(i)] Case 1= nrank[G(Ib) ] (6.14)= nrank[G(Ia\i) ]. (6.16)

Since G(Ib) spans the columns of G(Ia\i), we have

nrank[G(Ib)G(i) ] = nrank[G(Ia\i)G(i) ] = nrank[G(Ia) ]. (6.17)

From (6.16) and (6.17), we conclude that nrank[G(Ia) ] = nrank[G(Ia\i) ]. Thus,
the condition (6.2) holds in this case as well.
(⇐) If (6.2) holds, then the column G(i) has to be spanned with the columns of
G(Ia\i). Therefore, there exist real rational functions P and Q 6= 0 of appropriate
dimensions that satisfy

G(Ia\i)P +G(i)Q = 0.

Thus, an arbitrary attack Ai can be masked by applying A(Ia\i) = PAi/Q on the
remaining attacked components.
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6.B Proof of Theorem 6.1

To prove NP-hardness of Problem 6.1, it suffices to show that every instance of an
NP-hard problem can be mapped into an instance of Problem 6.1. For this purpose,
we use the sparse recovery problem:

minimize
d

‖d‖0

subject to Fd = z,
(6.18)

where F ∈ Rp×m and z ∈ Rp are given. This problem is known to be NP-hard [208].
Let F and z be arbitrarily selected. Set A = 0m×m, B = Im, C = [−z F ],
Da = 0p×m, and ui = u1. Then x(k + 1) = a(k) and y(k) = Ca(k − 1). Hence,
Problem 6.1 reduces to

minimize
a

‖a‖0

subject to Ca(k) = 0m,
a1 6≡ 0.

(6.19)

To solve (6.19) for all k, it suffices to solve it for a single k. Thus, (6.19) reduces to

minimize
a(0)

‖a(0)‖0

subject to Ca(0) = 0m, a1(0) = 1,

where the substitution of a1(0) 6= 0 with a1(0) = 1 is without loss of generality. Let
a(0) = [1 dT ]T . Then minimizing ‖a(0)‖0 is equivalent to minimizing ‖d‖0, which
is the objective function of (6.18) (Observation 1). Moreover, we also have

Ca(0) = [−z F ]a(0) = −z + Fd.

Thus, the constraint Ca(0) = 0 is equivalent to the constraint Fd = z from the
problem (6.18)(Observation 2). From Observations 1 and 2, it directly follows that
every instance of the NP-hard problem (6.18) can be mapped into Problem 6.1,
which concludes the proof.

6.C Proof of Theorem 6.2

(⇐) Let Xa ∪ Ya be a vertex separator of ui and t in the extended graph Gt. To
prove the claim, we introduce an attack strategy that uses the components Ua
and Ya. We then prove that this strategy is actively using ui and remains perfectly
undetectable in any system realization from R.
For actuator ui, the attacker injects a signal ai 6≡ 0, which ensures that ui is used
in the attack actively. For other actuators uj ∈ Ua \ ui, the attack is given by

aj(k) = − A(p, :)
B(p, j)x(k). (6.20)
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Here, A(p, :) is the row of A corresponding to the state xp adjacent to uj , and
B(p, j) is the non-zero element of B multiplying uj (B(p, j) 6= 0 in any system
realization due to Assumption 6.2). For every yl ∈ Ya, the attack is given by

anu+l(k) = −C(l, :)x(k). (6.21)

For the attacker with the full model knowledge, this strategy can be constructed for
any system realization. Firstly, the attacker knows A(p, :), B(p, j), C(l, :). Secondly,
the attacker can predict the value of x(k) for any k ∈ Z≥0 based on the model
knowledge and the attack signals he/she injects in the system. We now prove that
this strategy is perfectly undetectable, that is, y ≡ 0.
Consider first the attacked sensors. For any yl ∈ Ya and k ∈ Z≥0, we have

yl(k) = C(l, :)x(k) + anu+l(k) (6.21)= 0.

Thus, the attacked sensor measurements are equal to zero.
Consider now the states Xa. Let xp ∈ Xa and uj ∈ Ua \ ui. Then

xp(k + 1) = A(p, :)x(k) +B(p, j)aj(k) (6.20)= 0.

Thus, the attack cannot be detected by measuring the states Xa.
Let Xb be the set of all the states for which there exists a directed path from ui that
does not contain the states from Xa. These states cannot be measured using the
non-attacked sensors. That would imply that there exists a directed path between
ui and t not intersected by Xa ∪ Ya, which is in contradiction with the assumption
that Xa ∪ Ya is a vertex separator of ui and t.
Finally, let Xc = X \ (Xb ∪ Xa). Note that the directed edges (xb, xc), xb ∈ Xb,
xc ∈ Xc, cannot exist. That would imply that there exists a directed path from ui
to xc that does not contain the states from Xa, so xc would belong to Xb. Thus,
the states from Xc cannot be directly influenced by the states from Xb. Since
x(0) = 0nx , u ≡ 0, and the states Xa are equal to zero, we conclude that the states
Xc are also equal to zero during the attack. Thus, the attack cannot be detected
by measuring the states Xc.
From the previous four paragraphs, it follows that both the attacked and the non-
attacked sensor measurements are equal to zero. Therefore, the proposed attack
strategy is perfectly undetectable, which completes the first part of the proof.
(⇒) The proof is by contradiction. Assume that Xa ∪ Ya is not a vertex sep-
arator of ui and t in Gt. Then there exists at least one simple directed path
ui, xi0 , . . . , xin , yl, t (Path 1) not intersected by Xa ∪Ya. We show that this implies
existence of at least one realization (A,B,C) ∈ R in which a perfectly undetectable
attack against ui cannot be conducted. Particularly, let us consider any feasible
realizations of A and C with the following properties:
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(i) for xi0 from Path 1, A(i0, :) = 0Tnx (xi0 is not influenced by other states);

(ii) for any xik 6= xi0 from Path 1, we have A(ik, j) 6= 0 if j = ik−1, and A(ik, j) =
0 otherwise (ensures that the only state that influences xik is xik−1);

(iii) we have C(l, j) 6= 0 if j = in, and C(l, j) = 0 otherwise (ensures that yl(k) 6= 0
every time xin(k) 6= 0).

Let ai 6≡ 0 be an arbitrary attack signal against ui, and let k0 be the first time
instant for which ai(k0) 6= 0. Since ai is the only attack signal that can directly
influence xi0 (Assumption 6.2), we have

xi0(k0 + 1) = A(i0, :)x(k0) +B(i0, i)ai(k0).

Since A(i0, :) = 0Tnx (by the construction) and B(i0, i) 6= 0 (Assumption 6.2), we
have xi0(k0+1) 6= 0. Next, note that A is such that the only state that influences xi1
is xi0 . Moreover, since xi1 cannot be directly influenced by the attacked actuators
(xi1 /∈ Xa), it follows that

xi1(k0 + 2) = A(i1, i0)xi0(k0 + 1) 6= 0.

By applying the similar reasoning to all other states from Path 1, it can be shown
that xin(k0 + n + 1) 6= 0. From the way we constructed C, it immediately follows
that yl(k0 + n+ 1) 6= 0. Therefore, the attack is revealed. Since ai was arbitrarily
selected, perfectly undetectable attacks with ui actively used do not exist in this
realization. This contradicts the initial assumption and establishes the claim.

6.D Proof of Proposition 6.4

Case 1: The problem (6.5) is solvable. Let (Ua, Ya) be a solution of the prob-
lem (6.5) and Xa ∪ Ya be a corresponding vertex separator. Let Ec ⊆ Ei be con-
structed as follows: (i) for every xk ∈ Xa, we add (xkin , xkout) to Ec; and (ii) for
every yj ∈ Ya, we add (yj , t) to Ec. It follows from the construction of Gi that the
edges added to Ec have the cost

δc = |Ua \ i|+ |Ya| = δr(ui)− 1.

We now show that Ec is an edge separator of ui and t in Gi (Claim 1) of the
minimum cost (Claim 2). This implies that δr(ui) = δc + 1 = δ∗ + 1.
Claim 1. The proof is by contradiction. Assume that Ec is not an edge separator.
Then there exists a simple directed path

ui, xj1 , . . . , xjn , yl, t (Path 1)
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in Gi that is not intersected by Ec. By the construction of Gi, it follows that there
exists a simple directed path

ui, xk1 , . . . , xkm , yl, t (Path 2)

in Gt obtained from Path 1 by replacing every pair xpin , xpout that corresponds to
xp of Type 1 by xp. Path 2 has to be intersected with Xa ∪ Ya, so either there
exists xp ∈ Xa that belongs to Path 2 or yl ∈ Ya. Yet, then either (xpin , xpout) or
(yl, t) belongs to Ec. This implies that Path 1 has to be intersected by Ec. This
contradicts the existence of Path 1, so Claim 1 holds.
Claim 2. The proof is again by contradiction. Assume there exists an edge sep-
arator E′c with a cost δ′ < δc. Let U ′a and Y ′a be constructed as follows. For each
(xkin , xkout) ∈ Ec, we add uj to U ′a, where uj is adjacent to xk. We also add ui to
U ′a. For each (yl, t) ∈ Ec, we add yl to Y ′a. Note that E′c cannot contain edges of
other types, because their weight is +∞, which would imply δ′ > δc.
We now prove that (U ′a, Y ′a) is a feasible point of the problem (6.5). Assume this is
not the case. It then follows that there exists a simple directed path

ui, xk1 , . . . , xkm , yl, t (Path 1’)

in Gt in which the states xk1 , . . . , xkm are not adjacent to U ′a \ ui and yl /∈ Y ′a.
This implies that there exists a simple directed path in Gi obtained from Path 1’
by replacing each node xp of Type 1 from this path by the pair xpin , xpout . By
the construction of U ′a, Y ′a, and Gi, this path cannot be intersected by E′c. This
contradicts the assumption that E′c is an edge separator. Hence, (U ′a, Y ′a) has to be
a feasible point of the problem (6.5).
However, then (Ua, Ya) is not a solution of the problem (6.5). Namely, by the
construction of U ′a and Y ′a, we have

|U ′a ∪ Y ′a| = δ′ + 1 < δc + 1 = |Ua ∪ Ya|.

Thus, E′c cannot exist. This implies that Ec is an edge separator of the minimum
cost, so Claim 2 holds.
Case 2: The problem (6.5) is not solvable. This situation occurs when there exists
a simple directed path

ui, xj1 , . . . , xjn , yl, t

in Gt that consists of only Type 2 states and a protected measurement yl. By the
construction of Gi, this path exists also in Gi, and the weights of its edges are +∞.
Any edge separator needs to cut this path, which implies δ∗ = +∞.

6.E Proof of Proposition 6.6

(⇒) The proof is by contradiction. If Xa∪Ya is not a vertex separator of ui and t in
Gt, then we know from the proof of Theorem 6.2 that we can find a realization from
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R in which it is impossible to conduct a perfectly undetectable attack against ui.
Thus, Xa ∪ Ya has to be a vertex separator of ui and t.
(⇐) If Xa ∪ Ya is a vertex separator of ui and t, then the attacker can conduct a
perfectly undetectable attack against ui using the following strategy:

(i) For the targeted actuator ui, the attacker injects an arbitrary signal ai 6≡ 0.

(ii) For uj ∈ Ua \ ui, the attack is given by (6.20).

(iii) For yl ∈ Ya, the attacker selects al+nu(k) to maintain yl ≡ 0.

Attacker 2 can construct this attack. Firstly, for any uj ∈ Ua \ ui, we have

aj(k) = − A(p, :)
B(p, j)x(k) = − 1

B(p, j)
∑

xr∈N in
xp

A(p, r)xr(k),

where xp is the state adjacent to uj . Attacker 2 can construct this signal because
he/she knows A(p, :), B(p, :), and xr(k) for any of the in-neighbors of xp.
Secondly, Attacker 2 can set the measurements and control actions corresponding
to the attacked sensors and actuators to an arbitrary value. Hence, he/she can
maintain yl ≡ 0 for any yl ∈ Ya. The proof that y ≡ 0 can then be found in the
proof of Theorem 6.2.

6.F Proof of Theorem 6.3.

Proof of (i): By placing yj to measure any of the states from Xi, we introduce
at least one directed path ui, . . . , yj , t from ui to t, which does not contain states
adjacent to U \ ui. Thus, the only way to eliminate this path is by adding yj to a
new vertex separator. If yj is protected, then the path is impossible to eliminate.
Hence, δ′r(ui) = +∞ holds. Otherwise, the attacker has to attack yj to eliminate
the path. Thus, δ′r(ui) = δr(ui) + 1 holds in this case.
Proof of (ii): Let (Ua, Ya) be a solution of the problem (6.5). We first form
another solution (U ′a, Y ′a) of (6.5). The set Y ′a is formed by removing from Ya any
ys which directly measures xk ∈ X that is adjacent to ul ∈ U \ ui. As a substitute
of ys, we add ul to U ′a. We then add all the actuators Ua to U ′a. This ensures
that for all the states that are both directly controlled by an actuator and directly
measured by a sensor, we always select an actuator to belong to a solution of the
problem (6.5) rather than a sensor. Let X ′a be defined as in (6.4) based on U ′a.
Assume that a new sensor is placed on a location xl /∈ Xi. If there are no directed
paths from ui to xl, then (U ′a, Y ′a) is still a solution of the problem (6.5). Thus,
δr(ui) is not increased in this case.

119



Assume now that there exists at least one simple directed path from ui to xl. Let
us select arbitrarily one of these paths ui, . . . , xl (Path 1). Since xl /∈ Xi, there has
to exist at least one state xp from Path 1 such that (uk, xp) ∈ Eux. Then we have
the following three possibilities.

(i) X ′a ∪ Y ′a is a vertex separator of ui and xp;

(ii) xp ∈ X ′a;

(iii) X ′a ∪ Y ′a is not a vertex separator of ui and xp.

In cases (i) and (ii), X ′a ∪Y ′a intersects Path 1. We now show by contradiction that
(iii) cannot hold. Suppose that (iii) holds. Since every state directly controlled
by an actuator is directly measured by a sensor, we conclude that there exists a
directed path between ui and t passing through xp that is not intersected byX ′a∪Y ′a.
This implies that (U ′a, Y ′a) is not a solution of (6.5), which leads to a contradiction.
From the previous paragraph, it follows that Path 1 has to be intersected byX ′a∪Y ′a.
Since Path 1 was arbitrarily selected, we conclude that directed paths from ui to
xl that are not intersected by X ′a ∪ Y ′a do not exist. Therefore, δr(ui) cannot be
increased by placing sensors at locations outside Xi.
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Chapter 7

Allocation of protected sensors

This chapter studies an operator-attacker game based on actuator security indices.
In this game, the operator seeks to allocate a limited number of protected sensors
to improve actuator security indices, while the attacker seeks to select an actuator
with a small value of the security index to attack. We also assume that the attacker
uses the extended replay strategy, which is inspired by the Stuxnet attack. The
purpose of studying this game is to compute a mixed monitoring strategy that lies in
a NE. Such a strategy can be computed by solving a linear program. However, this
program is challenging to solve for large-scale systems, since the size of the program
grows combinatorially with the number of protected sensors that the operator seeks
to allocate. Therefore, the question we pursue is how to compute a NE monitoring
strategy, or a good approximation of this strategy, in a tractable manner.
To answer this question, we first express the payoff function of the game analyti-
cally. Using this expression, we derive an approximate NE (ε-NE). We then present
cases when the ε-NE becomes exact, and outline some game-theoretic intuition
behind this equilibrium. We also discuss ways to further improve the monitoring
strategy from the ε-NE by deploying additional sensors, focusing on the most vul-
nerable actuators, and using numerical CGP. Finally, we conduct experiments on
a benchmark of a large-scale power grid, and show that the tools we propose allow
us to construct NE monitoring strategies in a tractable manner.
The chapter is organized as follows. Section 7.1 introduces the problem. Section 7.2
derives an analytical expression for the payoff function. Section 7.3 presents and
discusses the aforementioned ε-NE of the game. Section 7.4 explains how the mon-
itoring strategy from this ε-NE can be improved. Section 7.5 contains numerical
experiments. Section 7.6 concludes the chapter. The appendix contains lengthy
proofs, and the definition of the security index we use in this chapter.
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7.1 Model setup and problem formulation

This section introduces the system model, the game, and the problem of computing
a NE monitoring strategy.

7.1.1 System model

We model the control system by

x(k + 1) = Ax(k) +Bu(k) +Bau(k),
y(k) = Cx(k) + ay(k),

(7.1)

where x(k) ∈ Rnx are the system states, u(k) ∈ Rnu are the control actions applied
through the actuators, y(k) ∈ Rny are the sensor measurements, au(k) ∈ Rnu are
the actuator attacks, and ay(k) ∈ Rny are the sensor attacks. The elements of au
(resp. ay) that correspond to the attacked actuators (resp. sensors) can take any
value. The remaining elements of au and ay are equal to zero for any k. We define
by X = {x1, . . . , xnx} the set of states, U = {u1, . . . , unu} the set of actuators, and
Y = {y1, . . . , yny} the set of sensors. All the sensors from Y and all the actuators
from U can be compromised by the attacker. We adopt the following assumptions.

Assumption 7.1. We assume that x(0) = 0nx and u ≡ 0.

Assumption 7.1 is introduced because we focus on an attack strategy that exploits
the fact that the system is in a steady state. The steady state x(0) = 0nx and u ≡ 0
is assumed for the sake of conciseness, and can be replaced with any other steady
state where x and u are constant in absence of attacks. Since control algorithms
often have a goal to maintain the system in a steady state, we believe that this
assumption is without a significant loss of generality.

Assumption 7.2. The following statements hold: (i) B = [ei1 . . . einu ] and C =
[ej1 . . . ejny ]T ; (ii) rank[B] = nu; and (iii) every state directly controlled by an
actuator is directly measured by a sensor.

Assumption 7.2.(i) is commonly adopted in placement problems [199, 200, 202]. It
implies that every actuator (resp. sensor) directly controls (resp. measures) only
one state. Same as in the previous chapter, Assumption 7.2.(ii) excludes the cases
where attacks trivially cancel each-other, and the cases where an actuator does not
affect the system. Assumption 7.2.(iii) enables some derivations. This assumption
can be justified by the fact that modern day control systems are highly sensed [128].
Additionally, states that are directly controlled by an actuator can be measured to
compute a control signal for that actuator [201].
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Remark 7.1. To keep the model simple, we assume the matrices A, B, C to be
fixed. Nevertheless, we show that monitoring strategies derived in this chapter are
robust with respect to changes that can occur in these matrices.

7.1.2 Game model

To derive a monitoring strategy, we consider a two-player zero-sum game. We now
introduce the components of this game, and some game-theoretic terminology.

Players, pure strategies, and the payoff

Player 1 (P1) is the operator, whose goal is to improve security of the actuators by
allocating n protected sensors at a subset of states X ⊆ X . Hence, the set of pure
strategies A1 of P1 is given by A1 = {X ⊆ X | |X| ≤ n}.
Player 2 (P2) is the attacker, who seeks to attack an actuator and remain per-
fectly undetectable (see Definition 6.1). P2 also seeks to compromise the minimum
number of components to achieve these goals. To simplify the analysis, we are not
interested in the exact set of components P2 compromises, but only their number.
This number is determined by a security index, which we define later in this section.
In that case, we can define the set of pure strategies of P2 by A2 = U . That is, P2
only selects the target of an attack.
Next, P2 is assumed to follow the extended replay strategy. Let Ua be attacked
actuators, Ya be attacked sensors, and ui ∈ Ua be the target of an attack. The
extended replay strategy can be defined as follows:

(i) aui is an arbitrarily selected nonzero attack;

(ii) auj (k) = −A(l, :)x(k) for every actuator uj ∈ Ua \ ui, where l is the index of
the state xl directly controlled by uj ;

(iii) ayj (k) = −C(j, :)x(k) for every sensor yj ∈ Ya.

In words, P2 first collects the information on the steady state values of the states
directly controlled by the attacked actuators Ua \ ui and the attacked sensor mea-
surements Ya. He/she then tries to cover an attack against the targeted actuator ui
by keeping the aforementioned states and measurements at their steady state val-
ues. An illustrative example is provided in Figure 7.1.

Remark 7.2. The extended replay strategy can be constructed with limited model
knowledge. In fact, Attacker 2 from the previous chapter is able to construct this
strategy. Particularly, to construct ayj corresponding to yj ∈ Ya, P2 needs only a
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Figure 7.1: An illustration of the extended replay attack. The states, control
actions, and measurements that remain in the steady state during the attack are
indicated with blue. In this case, P2 covers the attack against u1 by keeping the
value of y1 and x3 in the steady state.

steady state value of yj. An attack auj corresponding to uj ∈ Ua can be written as

auj (k) = −A(l, :)x(k) = −
∑

xr∈N in
l

A(l, r)xr(k),

where N in
l = {xr ∈ X : A(l, r) 6= 0} is the in-neighborhood of xl. Hence, P2 can

construct auj based on the local model knowledge and the measurements of local
states. Moreover, this strategy can be lucrative for P2 even if he/she possesses the
full model knowledge. The next section shows that resources that enable a perfectly
undetectable extended replay attack against ui can be found efficiently in large-scale
systems. These properties make the extended replay strategy a serious threat.

Remark 7.3. In a traditional replay strategy [84], P2 tries to cover an attack by
sending the steady state measurements from attacked sensors to P1. The extended
replay strategy generalizes the traditional replay strategy, since P2 also uses ac-
tuators to maintain the measurements in the steady state. In that way, P2 may
decrease the number of components he/she needs to compromise to cover an attack.

To define the payoff, we introduce a security index δER. Particularly, δER(X,ui) is
equal to the minimum number of components that the attacker has to compromise
to conduct a perfectly undetectable extended replay attack against ui. Following
the convention from Chapter 6, we adopt δER(X,ui) = +∞ if the attacker cannot
gather components that allow him/her to conduct a perfectly undetectable extended
replay attack against ui. The security index δER is related to both security indices
introduced in the previous chapter. Namely, the problem of computing δER can be
obtained by adding to the problem of computing δ an additional constraint that
imposes the extended replay strategy (see Appendix 7.A). Additionally, Section 7.2
shows that δER can be computed and improved in the same way as δr.
P1 seeks to make perfectly undetectable extended replay attacks against actuators
harder to conduct, which corresponds to maximizing δER(X,ui). P2 seeks to con-
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duct a perfectly undetectable extended replay attack against an actuator with the
minimum effort, which corresponds to minimizing δER(X,ui). Thus, we define the
payoff as the scaled value of the security index:

f(X,ui) = ϕ (δER(X,ui)) .

Here, ϕ : [1,+∞]→ (0, 1] is a known scaling function that is nondecreasing on the
interval [1,+∞]. Additionally, we assume that ϕ(x) = 1 if and only if x = +∞.

Remark 7.4. The security index δER is not used as the payoff function since it
can be equal to +∞. In that case, the expected payoff we introduce in the following
would be ill defined.

Remark 7.5. The analysis from this chapter is valid for any scaling function with
the above-mentioned properties. A concrete example of ϕ is provided in Section 7.5.

Mixed strategies

Each player may use mixed strategies, which are probability distributions over the
set of pure strategies of that player. We define mixed strategies by

σ1 ∈ ∆1, ∆1 =
{
σ1 ∈ [0, 1]|A1|

∣∣ ∑
X∈A1

σ1(X) = 1
}
,

σ2 ∈ ∆2, ∆2 =
{
σ2 ∈ [0, 1]|A2|

∣∣ ∑
ui∈A2

σ2(ui) = 1
}
,

where σ1 (resp. σ2) is a mixed strategy of P1 (resp. P2), and σ1(X) (resp. σ2(ui))
is the probability the strategy X (resp. ui) is taken.
The expected payoff is given by

F (σ1, σ2) =
∑
X∈A1

∑
ui∈A2

σ1(X)σ2(ui)f(X,ui).

We use F (X,σ2) (resp. F (σ1, ui)) to denote the payoff when P1 (resp. P2) plays a
pure strategy X (resp. ui).

Remark 7.6. One interpretation of σ1 is that it provides a randomized monitoring
strategy. For example, in a day-to-day play in which both players play myopically,
P1 selects a sensor placement according to sampling from the probability distribu-
tion σ1. The similar observation holds for σ2.

Equilibrium concepts

We focus on NE and ε-NE. A strategy profile (σ∗1 , σ∗2) is a NE if

F (σ∗1 , σ2) ≥ F (σ∗1 , σ∗2) ≥ F (σ1, σ
∗
2)
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holds for all (σ1, σ2) ∈ ∆1 × ∆2. Hence, if P2 plays σ∗2 , then P1 cannot perform
better than by playing σ∗1 . Similar observation holds for σ∗2 . Other favorable
properties of NE strategies are summarized in Section 3.5.
Let ε ∈ R≥0. A strategy profile (σε1, σε2) is an ε-NE if

F (σε1, σ2) + ε ≥ F (σε1, σε2) ≥ F (σ1, σ
ε
2)− ε

holds for all (σ1, σ2) ∈ ∆1 × ∆2. Thus, if P2 plays σε2, then P1 may be able to
increase the payoff by deviating from σε1. However, not more than ε. Thus, σε1 is a
good approximation of σ∗1 if ε is small. Similar observation holds for σε2.

7.1.3 Computing a NE monitoring strategy

We aim computing a NE monitoring strategy, or a good approximation of this
strategy, in a tractable manner. Since our game is a finite zero-sum game, a NE
monitoring strategy can be computed by solving the following linear program [187]:

Problem 7.1. Computing a NE monitoring strategy

maximize
z∈R,σ1∈∆1

z

subject to F (σ1, ui) ≥ z, ∀ui ∈ U .

Unfortunately, Problem 7.1 is challenging to construct and solve when the system is
of a large scale. Namely, since the cardinality of A1 grows combinatorially with re-
spect to n, so does the number of variables of Problem 7.1. Thus, another approach
is needed to compute or approximate a NE monitoring strategy in this case.
Sections 7.3 and 7.4 are discussing one possible approach. Particularly, Section 7.3
introduces an ε-NE monitoring strategy that can be constructed in a tractable
manner, and Section 7.4 discusses the ways to improve this monitoring strategy.
Before we move to these sections, we derive the expression for the payoff function
based on which we define the above-mentioned ε-NE monitoring strategy.

7.2 An analytic expression for the payoff function

To derive the expression for the payoff, we introduce the extended graph Gt = (V, E)
representing the system matrices A,B,C. Same as in the previous chapter, the set
of nodes is V = X ∪ U ∪ Y ∪ t, where t models P1. The set of edges is given by
E = Eux ∪ Exx ∪ Exy ∪ Eyt, where Eux = {(uj , xi) : B(i, j) 6= 0} are the edges from
the actuators to the states, Exx = {(xj , xi) : A(i, j) 6= 0} are the edges between the
states, Exy = {(xj , yi) : C(i, j) 6= 0} are the edges from the states to the unprotected
sensors, and Eyt = {(yj , t) : y ∈ Y} are the edges from the unprotected sensors to t.
We also need the following assumption.
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Assumption 7.3. Let A′ be obtained from A by setting an arbitrary set of elements
of A to zero, and G′t be the extended graph defined based on A′, B,C. If there exists
a directed path from an actuator ui to a state xj in G′t, then the transfer function
from ui to xj is nonzero.

We argue that Assumption 7.3 is mild. Let us collect all the nonzero elements of A′
in the vector λ ∈ Rnλ . If there exists a directed path between ui and xj in G′t, then
the transfer function from ui to xj is nonzero for almost all vectors λ ∈ Rnλ [209].
That is, the vectors λ ∈ Rnλ for which the transfer function from ui to xj equals
zero form a set of Lebesgue measure zero.
Next, for every ui ∈ U , we define mi as the size of a minimum vertex separator
of ui and t consisting of: (i) a subset of unprotected sensors; and (ii) a subset
of states that are directly controlled by the actuators U \ ui. We also define the
set Xi that contains every state xin with the following properties: (i) there exists a
directed path ui, xi0 , xi1 , . . . , xin ; and (ii) the states xi0 , xi1 , . . . , xin are not directly
controlled by the actuators U \ ui. The payoff can then be expressed as follows.

Lemma 7.1. Let Assumptions 7.1–7.3 hold, and let us define ϕi = ϕ(mi + 1). If
P2 uses the extended replay attack strategy, then

f(X,ui) =
{
ϕi, if Xi ∩X = ∅,
1, if Xi ∩X 6= ∅.

(7.2)

Proof. We refer the reader to Appendix 7.B. �

Put differently, the scaled security index of every actuator ui prior to the placement
of protected sensors equals to ϕi. If P1 measures any state from Xi with a protected
sensor, then the scaled index of ui increases to one. This implies that every extended
replay attack against ui can be detected by the protected sensors. If P1 does not
measure states from Xi with protected sensors, then the scaled index of ui remains
equal to ϕi. In the next section, we use this convenient form of the payoff to derive
an ε-NE. Before we move to the next section, we introduce some remarks.

Remark 7.7. The payoff (7.2) is similar to the one considered in [144]. Yet,
an important difference is that the payoff from [144] does not model the fact that
network components may be of different importance to the players, while in our case
it does. The next section shows that this significantly affects the player’s strategies.

Remark 7.8. The proof of Lemma 7.1 shows that computing the security index δER
reduces to computing a minimum vertex separator of ui and t consisting of a subset
of unprotected sensors and a subset of states directly controlled by the actuators
U \ ui. Theorem 6.2 establishes the same claim for the robust security index δr.
Additionally, Lemma 7.1 shows that the index δER can be increased in the same
way as the robust security index δr.
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Remark 7.9. Both mi and Xi can be computed efficiently. The problem of com-
puting mi can be reduced to the minimum cut problem and solved in polynomial
time (Section 6.4.1), and Xi can be computed using a breadth first search on Gt
(Section 6.4.3). This implies that: (i) the payoff can be efficiently constructed; and
(ii) the attacker that knows the extended graph Gt can efficiently localize components
that enable a perfectly undetectable extended replay attack against ui.

7.3 Game analysis

This section introduces an ε-NE of the game and discusses its properties. We begin
by introducing some preliminaries.

7.3.1 Preliminaries

Firstly, we define a set Ui = {uj ∈ U | Xj 3 xi} associated to every state xi ∈ X ,
which we refer to as the monitoring set of xi. The set Ui contains actuators whose
scaled indices become equal to one when we measure xi with a protected sensor.
We denote by ϕ̄i the minimum scaled security index among the actuators from
Ui, and by UX = ∪xi∈XUi the actuators whose security indices are improved by
measuring states X ⊆ X with protected sensors.
Secondly, we introduce set packings and set covers.

Definition 7.1. A subset of actuators U ⊆ U is a set packing if |U ∩Ui| ≤ 1 holds
for every xi ∈ X . A set packing U is maximal, if adding any actuator from U \ U
to U results in a set that is not a set packing. A maximum set packing is a set
packing of the maximum cardinality.

Definition 7.2. A subset of states X ⊆ X is a set cover if UX = U holds. A set
cover X is minimal, if removing any state from X results in a set that is not a set
cover. A minimum set cover is a set cover of the minimum cardinality.

Set packings are of interest for P2. Namely, each of the actuators from a set
packing needs a separate protected sensor to improve its index. Thus, P2 can make
it challenging for P1 to detect an attack by randomizing the targeted actuators
over a set packing. Set covers are of interest for P1. If P1 can form a set cover
using n protected sensors, then he/she can improve the indices of all the actuators.
As discussed later in this section, the game is then easy to solve. Since we focus
on large-scale control systems, a more interesting and relevant situation is one in
which P1 cannot improve the indices of all the actuators simultaneously. Hence,
unless otherwise stated, we assume that n < |X| holds for any set cover X ⊆ X .
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Finally, to characterize monitoring strategies in a convenient manner, we introduce
the marginal probability:

ρσ1(xi) =
∑
X∈A1

σ1(X)1[xi∈X]. (7.3)

This is the probability that a protected sensor measures xi when P1 plays σ1. We
point out that σ1 can be recovered from ρσ1 systematically by solving a sequence
of linear programs (see [144, Section EC.4.]).

7.3.2 An approximate ε-NE of the game

We first introduce P1’s strategy. Let X∗ = {xi1 , . . . , xin∗ } be a minimal set cover,
ϕ̄i1 , . . . , ϕ̄in∗ be the scaled indices associated with the elements of X∗, and α1 ≤
. . . ≤ αn∗ be a sorted sequence of these indices. Next, we define the set

Zx(n,X∗) =
{
i ∈ {1, . . . , n∗}

∣∣∣∣αi ≤ 1− i− n∑i
j=1(1− αj)−1

}
,

which we use to determine the states from X∗ that are to be measured by the
protected sensors. The following lemma introduces two properties of this set, which
we later use in some of the proofs.

Lemma 7.2. The following statements hold:

(i) Let n1, n2 ∈ N and n1 < n2 ≤ n∗. If p1 is the largest element of Zx(n1, X
∗)

and p2 is the largest element of Zx(n2, X
∗), then p1 ≤ p2 holds.

(ii) If p is the largest element of Zx(n,X∗) and p ≤ n∗, then αp < αp+1.

Proof. We refer the reader to Appendix 7.C. �

Let p be the largest element of Zx(n,X∗). A monitoring strategy σε1 of P1 can be
characterized as follows:

ρσε1(xi) =
{

1− p−n
Sx(1−ϕ̄i) , if xi ∈ X∗p ,

0, if xi /∈ X∗p ,
(7.4)

where X∗p = {xi ∈ X∗ | ϕ̄i ≤ αp } and Sx =
∑p
i=1(1 − αi)−1. Thus, P1 measures

only the statesX∗p using the protected sensors, with the marginal probabilities (7.4).
Note that Lemma 7.2.(ii) implies that X∗p contains exactly p elements.

Remark 7.10. The monitoring strategy σε1 is constructed based on the extended
graph Gt. This makes the strategy robust with respect to changes in A,B,C.
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We now introduce P2’s strategy. Let U∗ = {uj1 , . . . , ujm∗} be a maximal set pack-
ing, ϕj1 , . . . , ϕjm∗ be the scaled indices associated with the elements of U∗, and
β1 ≤ . . . ≤ βm∗ be a sorted sequence of these indices. Let us define the set

Zu(n,U∗) =
{
i ∈ {1, . . . ,m∗}

∣∣∣∣βi ≤ 1− i− n∑i
j=1(1− βj)−1

}
,

which we use to determine the actuators attacked by P2. We remark that the
properties of the set Zx(n,X∗) introduced in Lemma 7.2 also hold for Zu(n,U∗).
Let q be the largest element of Zu(n,U∗), U∗q = {ui ∈ U∗ | ϕi ≤ βq }, and
Su =

∑q
i=1(1− βi)−1. The strategy σε2 of P2 is then given by

σε2(ui) =
{

1
Su(1−ϕi) , if ui ∈ U∗q ,
0, if ui /∈ U∗q .

(7.5)

Hence, the strategy of P2 consists of targeting the actuators from U∗q with the
probabilities given by (7.5).
We now show that σε1 and σε2 form an ε-NE of the game, and derive an upper bound
for ε. We then present several cases when this ε-NE becomes an exact NE, outline
some game-theoretic intuition, and discuss the general case of the game.

Theorem 7.1. The following statements hold:

(i) There exists a strategy profile (σε1, σε2) that satisfies (7.4)–(7.5).

(ii) Any profile (σε1, σε2) that satisfies (7.4)–(7.5) is an ε-NE of the game, where

ε ≤ p− n
Sx

−max
{

0, q − n
Su

}
. (7.6)

(iii) F (σε1, σ2) ≥ FLB(n,X∗) holds for any σ2 ∈ ∆2, where

FLB(n,X∗) = 1− p− n
Sx

. (7.7)

Proof. We refer the reader to Appendix 7.D. �

Non-overlapping monitoring sets

Consider the case where the monitoring sets do not overlap. That is, Ui ∩ Uj = ∅
holds for any two states xi, xj ∈ X . We show in the following that this is one of the
cases where the previously introduced ε-NE becomes exact. We also remark that an
example of the system where the monitoring sets do not overlap is a transportation
system considered in [37], where B = Inx .
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Lemma 7.3. If B = Inx , then Ui ∩ Uj = ∅ holds for any two states xi, xj ∈ X .

Proof. Recall that the set Xi contains every state xin for which there exists
a path ui, xi, xi1 , . . . , xin in which the states xi, xi1 , . . . , xin are not adjacent to
actuators U\ui. Note that the state xi adjacent to ui always satisfies this condition.
Additionally, since B = Inx , then every state from X \xi is adjacent to an actuator
from U \ ui. Hence, Xi = {xi} for every ui. From the latter, it follows that
Ui = {ui} for every xi, and we conclude that the claim holds. �

Let us define a set X̃∗ = {xi1 , . . . , xir} that contains every state xi ∈ X for which
Ui is not empty. Since X∗ contains all the states whose monitoring sets are not
empty, X∗ is a set cover. Let us now define Ũ∗ = {u∗1, . . . , u∗r}, where u∗j is an
actuator from a monitoring set Uij with the scaled index ϕ̄ij . Note that Ũ∗ is a
maximum set packing, since it contains a single actuator from each of the nonempty
monitoring sets. In what follows, we show that the strategies σε1 and σε2 constructed
based on X̃∗ and Ũ∗ form a NE.

Corollary 7.1. Assume that Ui ∩ Uj = ∅ holds for any two states xi, xj ∈ X , and
let X̃∗ and Ũ∗ be defined as above. Then any strategy profile (σε1, σε2) constructed
based on X̃∗, Ũ∗, and (7.4)–(7.5) is a NE.

Proof. Since the actuators from Ũ∗ are chosen such as to have the scaled indices
ϕ̄i1 , . . . , ϕ̄ir , we have α1 = β1, . . . , αr = βr. Thus, Zx(n, X̃∗) = Zu(n, Ũ∗), and we
conclude that p = q and Su = Sx. From the latter and (7.6), we have ε = 0. �

We now discuss Corollary 7.1. Firstly, it follows from (7.4) that P1 measures with
the protected sensors only the states from X∗p . If p < r, then the indices of the
actuators from U \UX∗p are never improved. This is in contrast with Proposition 3
from the related game [144], where it was shown that P1 monitors all of the network
components with a nonzero probability in any NE.
Secondly, the proof of Corollary 7.1 shows that p = q. Hence, P2 targets the
actuators with the p smallest indices from Ũ∗. By the construction of Ũ∗, these
actuators belong to UX∗p . Thus, P2 does not target the actuators U \ UX∗p whose
indices are not improved. Namely, it can be shown that these actuators have the
scaled indices lower than the value of the game. Hence, P2 gains more by targeting
the actuators UX∗p , even though he/she may get detected by P1.
Finally, it follows from (7.5) that P2 targets the actuators with small indices with
low probabilities. On the first glance, this may appear counterintuitive. Yet, we
observe from (7.4) that P1 improves actuator indices that are initially small with
high probabilities. Hence, P2 targets corresponding actuators with low probabilities
to decrease the probability of being detected.
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Homogeneous security indices

Assume that the scaled indices are homogeneous, that is, ϕ1 = . . . = ϕnu = ϕ̃. We
show that in this case, the strategies σε1 and σε2 reduce to those proposed in [144].
We first establish the following auxiliary lemma.

Lemma 7.4. If ϕ1 = . . . = ϕnu = ϕ̃ is satisfied, then p = n∗, q = m∗, Sx =
n∗(1− ϕ̃)−1, and Su = m∗(1− ϕ̃)−1 hold.

Proof. We first observe that n∗ ∈ Zx(n,X∗), since

αn∗ = ϕ̃
ϕ̃≤1
≤ ϕ̃+ (1− ϕ̃) n

n∗
= 1− n∗ − n∑n∗

j=1(1− ϕ̃)−1
= 1− n∗ − n∑n∗

j=1(1− αj)−1
.

Next, note that the largest element of Zx(n,X∗) cannot be larger than n∗. There-
fore, it follows that p = n∗. From the latter and the fact that the indices are
homogeneous, we have Sx = n∗(1 − ϕ̃)−1. The same procedure can be used to
establish q = m∗ and Su = m∗(1− ϕ̃)−1. �

From (7.4), (7.5), and Lemma 7.4, the strategies σε1 and σε2 reduce to

ρσε1(xi) =
{

n
n∗ , if xi ∈ X∗,
0, if xi /∈ X∗,

σε2(ui) =
{

1
m∗ , if ui ∈ U∗,
0, if ui /∈ U∗.

(7.8)

In words, P1 measures every state from X∗ with the probability n/n∗, while P2
targets every actuator from U∗ with the probability 1/m∗. Interestingly, these
are the strategies introduced in the related game [144]. The following corollary
investigates performance of these strategies.

Corollary 7.2. If ϕ1 = . . . = ϕnu = ϕ̃, then any strategy profile (σε1, σε2) that
satisfies (7.4)–(7.5) is an ε-NE, where

ε ≤ (1− ϕ̃)n
∗ − n
n∗

− (1− ϕ̃) max
{

0, m
∗ − n
m∗

}
. (7.9)

Proof. The inequality (7.9) follows directly from (7.6) and Lemma 7.8. �

Corollary 7.2 has the following consequences. Firstly, it follows from (7.9) that
(σε1, σε2) is a NE when n∗ = m∗. It turns out that n∗ and m∗ can be equal or
close to each other when X∗ is a minimum set cover and U∗ is a maximum set
packing [144]. Hence, the strategies can form a NE or a good ε-NE in this case.
Secondly, Corollary 7.2 shows that having heterogeneous security indices associated
to the actuators adds an additional layer of complexity to the game. As it can be
seen from (7.6), values of the scaled security indices affect ε in a non-trivial way in
the heterogeneous case. Hence, (σε1, σε2) is generally not a NE even if n∗ = m∗.
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Finally, observe from (7.8) that the set of states measured by the protected sensors
is always X∗. Since X∗ is a set cover, security indices of all the actuators are
improved with nonzero probability regardless of n. Thus, it follows that neglecting
security indices may result in excessive spending of the security budget. Namely, if
P1 selects the scaling function such as to make all the actuators equally important,
then he/she needs to spread the resources to improve the indices of all the actuators.
To ensure that the security index of each actuator is improved with sufficiently high
probability, P1 needs to make n/n∗ sufficiently large by increasing n.

P1 can form a set cover

If n = n∗, then it directly follows that n∗ ∈ Zx(n,X∗) and p = n∗ = n. From the
latter and (7.4), it follows that the strategy σε1 reduces to measuring every state of
a set cover X∗ with probability one. In words, P1 plays a pure strategy X∗ in this
case. Additionally, from p = n and (7.7), we have FLB(n,X∗) = 1. It then directly
follows that (σε1, σε2) is a NE.

Corollary 7.3. If n = n∗, then (σε1, σε2) is a NE.

Proof. Since FLB(n,X∗) = 1 and the maximum value of the expected payoff is
one, P1 cannot increase its payoff. Additionally, if P1 plays σε1, then P2 cannot
decrease its payoff by deviating from σε2. Thus, the claim holds. �

General case

Besides the above-mentioned cases, (σε1, σε2) is a NE every time (p − n)/Sx equals
max {0, q − n} /Su. Additionally, the monitoring strategy σε1 guarantees that the
payoff is at least equal to FLB(n,X∗). If FLB(n,X∗) is sufficiently large, then P1
can adopt σε1 in spite of its suboptimality. If FLB(n,X∗) is small, then P1 can try
to improve σε1 and FLB(n,X∗) in several ways. This problem is discussed next.

7.4 Improving the monitoring strategy σε1

This section discusses three approaches for improving the monitoring strategy σε1.

7.4.1 Approach 1: Increasing the number of protected sensors

The following proposition shows that FLB(n,X∗) is increasing with n. Hence, a
simple way to improve the worst-case guarantees on the payoff of σε1 is by increasing
a number of protected sensors. Particularly, if n = n∗, then FLB(n,X∗) = 1, in
which case σε1 becomes a NE monitoring strategy.
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Proposition 7.1. Let n1, n2 ∈ N. If n1 < n2 ≤ n∗, then FLB(n1, X
∗) < FLB(n2, X

∗).

Proof. Let p1 (resp. p2) be the largest element of Zx(n1, X
∗) (resp. Zx(n2, X

∗)).
Recall from Lemma 7.2 that p1 ≤ p2 holds. If p1 < p2, then

FLB(n1, X
∗)

(7.22)
< αp1+1

p1<p2
≤ αp2

(∗)
≤ 1− p2 − n2∑p2

i=1(1− αi)−1
(7.7)= FLB(n2, X

∗),

where (*) follows from the fact that p2 belongs to Zx(n2, X
∗). If p2 = p1 = p, then

FLB(n1, X
∗) (7.7)= 1− p− n1∑p

i=1(1− αi)−1
n1<n2
< 1− p− n2∑p

i=1(1− αi)−1 = FLB(n2, X
∗),

which concludes the proof. �

7.4.2 Approach 2: Focusing on the most vulnerable actuators

We now discuss an approach that can be used when P1 is low in resources. Let us
denote by Umin the set of actuators that have the scaled index ϕmin smaller than all
the other actuators. Let X̄∗ be a minimum set cover of the actuators Umin, Ū∗ be a
maximum set packing of Umin, n̄∗ = |X̄∗|, and m̄∗ = |Ū∗|. Consider the strategies
characterized by

ρσ̄ε1(xi) =
{

n
n̄∗ , xi ∈ X̄∗,
0, xi /∈ X̄∗,

σ̄ε2(ui) =
{

1
m̄∗ , ui ∈ Ū∗,
0, ui /∈ Ū∗.

(7.10)

Put differently, P1 focuses on improving the indices of the actuators Umin, while
P2 focuses on targeting the actuators Ū∗ ⊆ Umin. These strategies can be seen as
a modification of the strategies σε1 and σε2, where the players focus on the subset of
the actuators with the smallest security indices.
Let us define ϕ̄min = minui∈U\Umin ϕi, and assume that

ϕ̄min > ϕmin + (1− ϕmin) n
n̄∗
. (7.11)

Observe that the condition (7.11) holds when P1 is low in resources. Indeed, if
n/n̄∗ ≈ 0, then (7.11) reduces to ϕ̄min > ϕmin. The following proposition investi-
gates the strategies σ̄ε1 and σ̄ε2 assuming that the condition (7.11) holds.

Proposition 7.2. Assume that the condition (7.11) is satisfied. The following
statements then hold:

(i) There exists a strategy profile (σ̄ε1, σ̄ε2) that satisfies (7.10).
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(ii) Any profile (σ̄ε1, σ̄ε2) that satisfies (7.10) is an ε̄-NE of the game, where

ε̄ ≤ (1− ϕmin) n̄
∗ − n
n̄∗

− (1− ϕmin) max
{

0, m̄
∗ − n
m̄∗

}
. (7.12)

(iii) F (σ̄ε1, σ2) ≥ F̄LB(n) holds for any σ2 ∈ ∆2, where

F̄LB(n) = 1− (1− ϕmin) n̄
∗ − n
n̄∗

. (7.13)

(iv) F̄LB(n) ≥ FLB(n,X∗) for any minimal set cover X∗ of actuators U .

Proof. We refer the reader to Appendix 7.E. �

Proposition 7.2 shows that the worst-case guarantees on the payoff of the monitoring
strategy σ̄ε1 cannot be lower than those for σε1 once (7.11) holds (Statement (iv)).
If in addition n̄∗ = m̄∗, then σ̄ε1 is a NE monitoring strategy (Statement (ii)).

7.4.3 Approach 3: Column Generation Procedure

CGP can be used to solve linear programs with a large number of decision variables
and a relatively small number of constraints [210]. Since Problem 7.1 satisfies these
properties, we can use CGP to tackle it. The first step is to solve a master problem
of Problem 7.1, which can be formulated as

maximize
z̃≥0,σ̃1≥0

z̃

subject to
∑
X∈Ã1

FX σ̃1(X) ≥ z̃1nu ,
∑
X∈Ã1

σ̃1(X) = 1,
(7.14)

where FX ∈ Rnu is the column vector defined by

FXi =
{
ϕi, if ui /∈ UX ,
1, if ui ∈ UX .

(7.15)

In words, the master problem (7.14) is obtained from Problem 7.1 by considering
only a subset of pure strategies Ã1 instead of the whole set A1. To improve the
strategy σε1, one should initialize Ã1 with pure strategies that are played with
nonzero probability under σε1. However, we stress that one can also initialize Ã1
arbitrarily, and try to compute a NE monitoring strategy directly.
Let (z̃∗, σ̃∗1) be a solution of (7.14). The next step is to check if the optimal value
z̃∗ of (7.14) can be further improved. This can be done by solving the subproblem

maximizeX∈A1 (ρ∗)TFX − π∗, (7.16)
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where ρ∗ ∈ Rnu is an optimal dual solution of (7.14) that corresponds to the
inequality constraints, and π∗ ∈ R is an optimal dual solution of (7.14) that corre-
sponds to the equality constraint. We stress that the elements of Ã1 cannot be a
solution of the subproblem [210]. Hence, CGP is guaranteed to converge.
Let the optimal value of (7.16) be c̃. If c̃ > 0, then z̃∗ can be improved. A solution
of (7.16) is then added to Ã1, and the procedure is repeated with the new set Ã1.
If c̃ ≤ 0, then z̃∗ is the optimal value and σ̃∗1 is a solution of Problem 7.1. The
procedure then terminates.
The crucial point of CGP is to solve the subproblem (7.16) in a scalable manner,
which is not always possible. However, we show that a solution of the subproblem
in our case can be computed by solving the following integer linear program:

maximize
p,q

nu∑
i=1

ρ∗i
(
ϕi(1− qi) + qi

)
− π∗

subject to
nx∑
i=1

1[uj∈Ui] pi ≥ qj , ∀j ∈ {1, . . . , nu},

nx∑
i=1

pi ≤ n, p ∈ {0, 1}nx , q ∈ {0, 1}nu .

(7.17)

An important observation is that the problem (7.17) has n+ nu decision variables,
and nu + 1 constraints. This implies that the size of this problem does not grow
combinatorially with n. In the next section, we show that this allows us to use
CGP even when the system is of a large scale. Before we proceed, we explain in
the next proposition how a solution and the optimal value of the problem (7.17)
can be transformed to a solution and the optimal value of the problem (7.16).

Proposition 7.3. If c̃ is the optimal value and (p̃, q̃) is a solution of (7.17), then
c̃ is the optimal value and X̃ = {xi ∈ X | p̃i = 1} is a solution of (7.16).

Proof. We refer the reader to Appendix 7.F. �

7.5 Illustrative examples

This section gives an example of the scaling function, shows that σε1 can be con-
structed in a scalable manner in large-scale systems, investigates optimality of σε1,
and tests CGP. The experiments are performed on Intel Core i7-8650U computer.
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Table 7.1: The table contains five categories of the security level, and explains how
to determine to which category an actuator belongs based on its security index.

Security level
(qualitative scale)

Security level
(quantitative scale)

Assigning security
level to actuators

Very low 0.2 δER(X,ui) ≤ 5
Low 0.4 5 < δER(X,ui) ≤ 15

Moderate 0.6 15 < δER(X,ui) ≤ 20
High 0.8 20 < δER(X,ui) < +∞

Very high 1.0 δER(X,ui) = +∞

7.5.1 Model: Power grid

We consider the IEEE 2383 bus power grid (3037 states and 327 generators). We
model the system using linearized swing equations, where the generators are rep-
resented by two states (rotor angle and frequency), and load buses with one state
(voltage angle) [204]. We assume that all the states are measurable, and that the
attacker can conduct an attack using some of the loads [206]. We randomly select
30% of the loads to be attackable.

7.5.2 Example 1: Scaling function

We now explain a possible way to form the scaling function ϕ. Firstly, we define five
security levels according to Table 7.1, Column 1. The qualitative scale we adopt
was used in [17] to characterize values of several security metrics. Secondly, since
the scaling function takes values from the set of real numbers, we need to assign
quantitative values to each of the levels. We adopt the values from Table 7.1,
Column 2. Other ways to transform the qualitative scale to quantitative scale can
also be used [17]. Thirdly, we use the actuator security index δER to determine
a security level of an actuator (Table 7.1, Column 3). In summary, the scaling
function maps δER to the security levels, and can be defined as follows:

ϕ(x) = 0.2 · 1[x≤5] + 0.4 · 1[5<x≤15] + 0.6 · 1[15<x≤20] + 0.8 · 1[20<x<+∞] + 1 · 1[x=+∞].

7.5.3 Example 2: Comparing monitoring strategies

We now construct and compare two monitoring strategies: (i) a monitoring strat-
egy σε1; and (ii) a NE monitoring strategy σ∗1 using CGP. To construct σε1, we:
(i) compute a minimum set cover using an integer linear program solver that is
included in the Matlab package; (ii) compute the marginal probabilities ρσε1 ac-
cording to (7.4); and (iii) use the procedure from [144, Section EC.4.] to obtain σε1
from ρσε1 . The strategy σ∗1 is constructed using CGP, as explained in Section 7.4.3.
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Figure 7.2: The times needed to construct the monitoring strategies σε1 and σ∗1 , and
the worst-case payoffs of these strategies.

The plots of the execution times and the worst-case payoffs with respect to the
number of protected sensors are shown in Figure 7.2. Observe that the strategies
performed equally well in the terms of the worst-case payoff. In words, the strategy
σε1 is a NE monitoring strategy in this case. Moreover, it can be seen that the
time needed to construct σε1 is not significantly affected by the number of deployed
sensors. Particularly, it remains bellow 30 seconds in all the cases. Thus, σε1 can
also be efficiently constructed.
Although we are able to construct σ∗1 using CGP, the time required to construct this
strategy is rapidly increasing with the number of deployed sensors. The maximum
time is reached in the case of 120 deployed sensors, and it is equal to 44.61 minutes.
This indicates that CGP may become restrictive to use if the network size and/or
the number of protected sensors exceeds several thousand. In that case, we can
first try to construct σε1, and then run a limited number of iterations of CGP to
improve this strategy (if needed).

7.6 Summary

This chapter investigated an operator-attacker security game. The objective behind
studying this game was to compute a mixed monitoring strategy for improving the
actuator indices. Since the problem of computing a NE monitoring strategy was
difficult to construct and solve for large-scale systems, we derived an ε-NE of the
game. The monitoring strategy from this ε-NE can be constructed in a scalable
manner and further improved by deploying additional sensors, focusing on the most
vulnerable actuators, and using CGP. We also presented several situations in which
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the ε-NE becomes exact, and outlined game-theoretic interpretations behind this
equilibrium. Finally, we demonstrated in simulations that the approaches we pro-
posed can be used to compute NE monitoring strategies in a large-scale system.
We now move to the next chapter, in which we conclude the thesis.

Appendix to Chapter 7

7.A The security index δER

Let us first define the protected sensor measurements by

yp(k) = CXx(k).

Here, CX ∈ Rn×nx depends on the statesX ⊆ X measured by the protected sensors.
Particularly, if the states X = {xi1 , . . . , xin} are measured, then CX = [ei1 . . . ein ]T .
The problem of computing δER(X,ui) can then be formulated as follows:

minimize
au,ay

‖au‖0 + ‖ay‖0

subject to x(k + 1) = Ax(k) +Bau(k), (C1)
y(k) = Cx(k) + ay(k), (C2)
yp(k) = CXx(k), (C3)

y ≡ 0, yp ≡ 0, x(0) = 0nx , (C4)
au, ay form an extended replay attack against ui. (C5)

The objective function reflects the attacker’s desire to find the minimum num-
ber of components to conduct an attack. Constraints (C1)–(C3) ensure that the
attack satisfies the system dynamics, (C4) imposes that the attack is perfectly un-
detectable, and (C5) ensures that the attack follows the extended replay strategy.

7.B Proof of Lemma 7.1

We first introduce an auxiliary lemma.

Lemma 7.5. Let Assumptions 7.1–7.3 hold, Ua be attacked actuators, Ya be at-
tacked sensors, ui ∈ Ua, and

Xa = {xj ∈ X : (uk, xj) ∈ Eux, uk ∈ Ua \ ui} . (7.18)

Additionally, assume that protected sensors are not present in the system. P2 can
conduct a perfectly undetectable extended replay attack against ui if and only if
Xa ∪ Ya is a vertex separator of ui and t in Gt.
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Proof. (⇒) The proof is by contradiction. Assume that Xa ∪ Ya is not a vertex
separator of ui and t in Gt. Then there exists a directed path from ui to at least
one non-attacked sensor yj (Path 1), which is not intersected with Xa ∪ Ya. Let xp
be the state that is directly measured by yj . We show that any extended replay
attack against ui affects xp, and therefore, is visible in yj .
First, observe that under the extended replay attack, any state from Xa remains
equal to zero for any k ∈ Z≥0. Hence, the states of the system (7.1) under the
extended replay attack propagate according to

x(k + 1) = A′x(k) +B(:, i)aui(k),

where A′(q, r) = A(q, r)1[xq /∈Xa] and x(0) = 0nx . Next, let G′t be the extended
graph defined based on A′,B,C. Note that G′t can be obtained from Gt by deleting
the edges from Exx that end in the states from Xa. Since Path 1 does not contain
the nodes from Xa, then Path 1 exists in G′t as well. It then follows from Assump-
tion 7.3 that the transfer function from ui to xp is nonzero. Hence, extended replay
attacks against ui are not perfectly undetectable, since they are visible from the
non-attacked sensor yj that directly measures xp.
(⇐) In the proof of Theorem 6.2, we used the extended replay strategy to prove
that the attacker can conduct a perfectly undetectable attack against ui in any
system realization when Xa ∪ Ya is a vertex separator of ui and t. Hence, we can
follow the steps from the proof of Theorem 6.2 to complete this part of the proof. �
From Lemma 7.5, it follows that prior to the placement of protected sensors, the
minimum number of sensors and actuators needed to conduct a perfectly unde-
tectable extended replay attack against ui equals mi + 1. Namely, mi is the size of
a minimum vertex separator of ui and t consisting of: (i) a subset of unprotected
sensors; and (ii) a subset of states which are directly controlled by the actuators
U \ ui. Additionally, we add one to mi to account for ui. Hence, the scaled index
of ui prior to the placement of protected sensors equals to ϕi.
To complete the proof of Lemma 7.1, it suffices to show that: (i) the scaled index
of ui increases to one when we place a protected sensor to measure a state from Xi

(δER(X,ui) becomes equal to +∞); and (ii) the scaled index of ui remains the same
when we place protected sensors to measure states not contained in Xi. This is
equivalent to showing that: (i) there does not exists a vertex separator of ui and t
when we place a protected sensor to measure a state from Xi; and (ii) the size of
a minimum vertex separator of ui and t does not change when we place protected
sensors to measure states outside Xi. To show these claims, we can use the same
procedure as in the proof of Theorem 6.3.
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7.C Proof of Lemma 7.2

Proof of (i): Observe that n1 ∈ Zx(n1, X
∗) and n2 ∈ Z(n2, X

∗), so both p1 and
p2 exist. Next, we have

αp1

(∗)
≤ 1− p1 − n1∑p1

i=1(1− αi)−1
n1<n2
< 1− p1 − n2∑p1

i=1(1− αi)−1 ,

where (*) holds since p1 ∈ Zx(n1, X
∗). Hence, it follows that p1 ∈ Zx(n2, X

∗).
Since p2 is the largest element of Zx(n2, X

∗), we conclude that p2 ≥ p1 holds.
Proof of (ii): The proof is by contradiction. Assume that αp = αp+1. We show
that this implies that p+ 1 ∈ Zx(n,X∗). If p+ 1 ∈ Zx(n,X∗), then

αp+1 ≤ 1− p+ 1− n∑p
i=1(1− αi)−1 + (1− αp+1)−1

has to hold. By multiplying both sides by
∑p
i=1(1 − αi)−1 + (1 − αp+1)−1 and

rearranging the terms, we obtain

αp+1 ≤ 1− p− n∑p
i=1(1− αi)−1 .

Since αp+1 = αp and p ∈ Zx(n,X∗), the last inequality holds. Thus, p + 1 ∈
Zx(n,X∗), which is inconsistent with the fact that p is the largest element of
Zx(n,X∗). Thus, αp < αp+1 has to hold.

7.D Proof of Theorem 7.1

Proof of (i): To prove existence of σε1, we prove that ρσε1(xi) ∈ [0, 1] for any
xi ∈ X and

∑
xi∈X ρσε1(xi) = n. It then follows from Farkas’ lemma that σε1 ∈ ∆1

(for instance, see [144, Lemma EC.6]).
Note that n ∈ Zx(n,X∗), so p ≥ n. Hence, from (7.4), we have ρσε1(xi) ≤ 1 for any
xi ∈ X . From α1 ≤ . . . ≤ αp, it follows that

p− n
(1− α1)Sx

≤ . . . ≤ p− n
(1− αp)Sx

. (7.19)

From the fact that p ∈ Zx(n,X∗), we have

αp ≤ 1− p− n
Sx

=⇒ p− n
Sx

≤ 1− αp =⇒ p− n
(1− αp)Sx

≤ 1.

From the latter, (7.19), and (7.4), we conclude that 0 ≤ ρσε1(xi) holds for any
xi ∈ X . Thus, ρσε1(xi) ∈ [0, 1]. Additionally, we have∑
xi∈X

ρσε1(xi)
(7.4)=

∑
xi∈X∗p

(
1− p− n

Sx(1− ϕ̄i)

)
= p−

p∑
i=1

p− n
Sx(1− αi)

= p− p− n
Sx

Sx = n.
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Therefore, we conclude that σε1 ∈ ∆1.
We now prove that σε2 ∈ ∆2. From (7.5), 0 ≤ σε2(ui) holds for any ui ∈ U .
Additionally, by the definition of Su , we have Su(1 − ϕi) ≥ 1 for any ui ∈ U∗q . It
then follows that σε2(ui) ≤ 1 holds for any ui ∈ U . Finally, we have

∑
ui∈U

σε2(ui)
(7.5)=

∑
ui∈U∗q

1
Su(1− ϕi)

=
q∑
i=1

1
Su(1− βi)

= 1
Su
Su = 1,

so we conclude that σε2 ∈ ∆2.
Proof of (ii): Let (σε1, σε2) be a strategy profile that satisfies (7.4) and (7.5). We
first establish a lower bound on P1’s payoff when he/she plays σε1. Consider an
actuator ul from a set Ui, where xi ∈ X∗p . Let Pσ1(ϕl 6→ 1) be the probability that
the security index of ul is not improved when P1 plays σ1. We then have

F (σε1, ul) =
∑
X∈A1

σε1(X)
(
1[X∩Xl 6=∅] + ϕl1[X∩Xl=∅]

)
= 1− Pσε1(ϕl 6→ 1) + ϕlPσε1(ϕl 6→ 1)
= 1− (1− ϕl)Pσε1(ϕl 6→ 1)
(∗)
≥ 1− (1− ϕl)(1− ρσε1(xi))
(7.4)= 1− (1− ϕl)

p− n
Sx(1− ϕ̄i)

(∗∗)
≥ 1− p− n

Sx
= FLB(n,X∗).

(7.20)

Here, (*) follows from the fact that ul belongs to Ui. Thus, the security index of ul
is improved every time we place a sensor at xi, so Pσε1(ϕl 6→ 1) ≤ 1− ρσε1(xi) holds.
Additionally, (**) follows from the fact that ϕ̄i is the smallest scaled security index
within Ui. Since ul was arbitrarily selected, we have that F (σε1, uj) ≥ FLB(n,X∗)
for any actuator uj whose index is improved by measuring states X∗p . Hence,
FLB(n,X∗) lower bounds P1’s payoff if p = n∗.
Next, we show that FLB(n,X∗) lower bounds P1’s payoff in the case p < n∗. Since
p+ 1 /∈ Zx(n,X∗), it follows from the definitions of Zx(n,X∗) and Sx that

αp+1 > 1− p+ 1− n
Sx + (1− αp+1)−1 . (7.21)

By multiplying both sides by Sx + (1 − αp+1)−1 and rearranging the terms, we
obtain that (7.21) is equivalent to

αp+1 > 1− p− n
Sx

= FLB(n,X∗). (7.22)

142



Next, observe that all the actuators with the scaled indices smaller than αp+1
belong to UX∗p . Thus, the minimum scaled security index among the actuators
whose indices are not improved cannot be smaller than αp+1. Hence, by targeting
an actuator whose index is not improved, the lowest value of the payoff that P2
can achieve is αp+1. This corresponds to the case when the scaled index αp+1 of an
actuator cannot be improved by measuring the states X∗p . Therefore, FLB(n,X∗)
lower bounds the operator’s payoff in this case as well.
We now derive an upper bound on P2’s payoff when he/she plays σε2. For any
X ∈ A1 , we have

F (X,σε2) =
∑
ui∈U∗q

σε2(ui)
(
1[UX3ui] + ϕi1[UX 63ui]

)
=
∑
ui∈U∗q

σε2(ui)
(
1[UX3ui] + 1[UX 63ui] − 1[UX 63ui] + ϕi1[UX 63ui]

)
= 1−

∑
ui∈U∗q

σ∗2(ui)(1− ϕi)1[UX 63ui]

(7.5)= 1−
∑
ui∈U∗q

1
Su

1[UX 63ui]

(∗)
≤ 1−max

{
0, q − n

Su

}
= FUB(n,U∗),

(7.23)

where (*) holds since U∗q is a set packing, so the indices of at most n actuators can
be improved by the placement X.
Therefore, we conclude that (σε1, σε2) is an ε-NE, where

ε ≤ FUB(n,U∗)− FLB(n,X∗) = p− n
Sx

−max
{

0, q − n
Su

}
.

Proof of (iii): Follows from (7.20) and (7.22).

7.E Proof of Proposition 7.2

Proof of (i): We first show that if the condition (7.11) holds, then n ≤ n̄∗. Assume
that n > n̄∗. We then have

ϕ̄min
(7.11)
> ϕmin + (1− ϕmin) n

n̄∗

n>n̄∗,ϕmin<1
≥ ϕmin + 1− ϕmin = 1.

From the later, it follows that ϕ̄min > 1, which cannot hold due to the properties
of the scaling function ϕ.
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Therefore, ρσ̄ε1(xi) ∈ [0, 1] for any xi ∈ X and
∑
xi∈X ρσ̄ε1(xi) = n. From the

latter, it follows that there exists σ̄ε1 that satisfies (7.10) (for instance, see [144,
Lemma EC.6]). It is also easy to see that σ̄ε2(ui) ∈ [0, 1] for any ui ∈ U and∑
ui∈U σ̄

ε
2(ui) = 1. Hence, Statement (i) holds.

Proof of (ii): Let P1 plays σ̄ε1, ui ∈ Umin, and Pσ̄ε1(ϕi 6→ 1) be the probability
that the security index of ui is not improved when P1 plays σ̄ε1. We then have

F (σ̄ε1, ui) =
∑
X∈A1

σ̄ε1(X)
(
1[X∩Xi 6=∅] + ϕmin1[X∩Xi=∅]

)
= 1− Pσ̄ε1(ϕi 6→ 1) + ϕminPσ̄ε1(ϕi 6→ 1)
= 1− (1− ϕmin)Pσ̄ε1(ϕi 6→ 1)
(∗)
≥ 1− (1− ϕmin) n̄

∗ − n
n̄∗

= F̄LB(n).

(7.24)

Here, (*) follows from the fact that ui belongs to Umin. Therefore, the security
index of ui is improved with probability that is greater than or equal to n/n̄∗.
Hence, Pσ̄ε1(ϕi 6→ 1) ≤ 1− n/n∗ holds. If P2 attacks ui /∈ Umin, then

F (σ̄ε1, ui)
(∗)
≥ ϕ̄min

(7.11)
> ϕmin + (1− ϕmin) n

n̄∗
= F̄LB(n), (7.25)

where (*) holds since the lowest payoff occurs if the scaled index of ui is not im-
proved and equals ϕ̄min. Thus, F̄LB(n) lower bounds P1’s payoff when he/she plays
according to σ̄ε1.
Let us now assume that P2 plays σ̄ε2. For any X ∈ A1 , we have

F (X, σ̄ε2) =
∑
ui∈Ū∗

σ̄ε2(ui)
(
1[UX3ui] + ϕmin1[UX 63ui]

)
=
∑
ui∈Ū∗

1
m̄∗

(
1[UX3ui] + 1[UX 63ui] − 1[UX 63ui] + ϕmin1[UX 63ui]

)
= 1− (1− ϕmin)

∑
ui∈Ū∗

1
m̄∗

1[UX 63ui]

(∗)
≤ 1− (1− ϕmin) max

{
0, m̄

∗ − n
m̄∗

}
= F̄UB(n).

(7.26)

Here, (*) holds since Ū∗ is a maximum set packing and |X| ≤ n. Hence, the indices
of at most n actuators from Ū∗ can be improved by positioning X.
From (7.24), (7.25), and (7.26), we have that (σ̄ε1, σ̄ε2) is an ε̄-NE with

ε̄ = F̄UB(n)− F̄LB(n) = (1− ϕmin) n̄
∗ − n
n̄∗

− (1− ϕmin) max
{

0, m̄
∗ − n
m̄∗

}
.
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Proof of (iii): Follows from (7.24) and (7.25).
Proof of (iv): Let xi1 , . . . , xin∗ be the elements of X∗, ϕ̄i1 , . . . , ϕ̄in∗ be the scaled
indices associated with these elements, and α1 ≤ . . . ≤ αn∗ be a sorted sequence of
these indices. Let r be the largest number for which αr = ϕmin. Note that n̄∗ ≤ r
(otherwise, the size of a minimum set cover of Umin would be smaller than n̄∗). We
show that r is the largest element of Zx(n,X∗). Then Sx = r(1− ϕmin)−1, and

FLB(n,X∗) (7.7)= n

r
(1− ϕmin) + ϕmin

n̄∗≤r
≤ n

n̄∗
(1− ϕmin) + ϕmin = F̄LB(n).

To prove that r is the largest element of Zx(n,X∗), we show that r ∈ Zx(n,X∗)
(Claim 1), and that the elements larger than r do not belong to Zx(n,X∗) (Claim 2).
Claim 1. Since α1 = . . . = αr = ϕmin, we have

1− r − n∑r
i=1(1− αi)−1 = 1− r − n

r(1− ϕmin)−1 = n

r
(1− ϕmin) + ϕmin

ϕmin≤1
≥ ϕmin = αr.

From the latter and the definition of Zx(n,X∗), we have r ∈ Zx(n,X∗).
Claim 2. The proof is by induction. If r + 1 /∈ Zx(n,X∗), then

αr+1 > 1− r + 1− n
r(1− ϕmin)−1 + (1− αr+1)−1

has to hold. Observe that

αr+1 > 1− r + 1− n
r(1− ϕmin)−1 + (1− αr+1)−1

⇐⇒ αr+1r(1− ϕmin)−1 > r(1− ϕmin)−1 − r + n

⇐⇒ αr+1 > ϕmin + n

r
(1− ϕmin).

The last inequality is satisfied, because

αr+1 ≥ ϕ̄min
(7.11)
> ϕmin + n

n̄∗
(1− ϕmin)

n̄∗≤r
≥ ϕmin + n

r
(1− ϕmin)

holds. Hence, r + 1 /∈ Zx(n,X∗).
We now show that if s /∈ Zx(n,X∗), then s + 1 /∈ Zx(n,X∗). Let us define S′ =∑s
i=1(1− αi)−1. If s+ 1 /∈ Zx(n,X∗), then

αs+1 > 1− s+ 1− n
S′ + (1− αs+1)−1 (7.27)

has to hold. By multiplying both sides by S′ + (1 − αs+1)−1 and rearranging
the terms, we obtain that (7.27) is equivalent to αs+1 > 1 − (s − n)/S′. Since
αs+1 ≥ αs and αs > 1 − (s − n)/S′ (by induction), the inequality (7.27) holds.
Therefore, Claim 2 holds, so r is the largest element of Zx(n,X∗).
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7.F Proof of Proposition 7.3

Note that |X̃| ≤ n, since p̃ has to satisfy the second constraint of (7.17). Thus, X̃
is a feasible point of (7.16). We now show that X̃ is a solution of (7.16), and that
the optimal values of (7.16) and (7.17) coincide.
Note that ϕi ∈ (0, 1] by the definition of the function ϕ, and ρ∗ ≥ 0 as a dual
solution of (7.14). Thus, the best way to maximize the objective function of (7.17)
is to set as many elements of q to one. Yet, the first constraint in (7.17) imposes
that an element qj can be set to one only if uj belongs to the monitoring set Ui for
which p̃i = 1. Equivalently, qj can be set to one only if uj ∈ UX̃ . Hence, for a fixed
p̃, the largest objective value over all feasible q̃ is

c̃ =
nu∑
i=1

ρ∗iϕi1[ui /∈UX̃ ] +
nu∑
i=1

ρ∗i1[ui∈UX̃ ] − π∗. (7.28)

Next, observe that the value of the objective function from (7.16) for X̃ is given by

(ρ∗)TFX̃ − π
∗ (7.15)=

nu∑
i=1

ρ∗iϕi1[ui /∈UX̃ ] +
nu∑
i=1

ρ∗i1[ui∈UX̃ ] − π∗
(7.28)= c̃.

Thus, the optimal value of (7.16) is at least c̃.
We now prove by contradiction that the optimal value of (7.16) cannot be larger
than c̃. Let X ′ be a solution and c′ be the optimal value of (7.16). Suppose that
c′ > c̃ and let p′ be given by p′i = 1[xi∈X′]. Since |X ′| ≤ n, p′ satisfies the constraints
of (7.17). For this p′, we define q′ by q′i = 1[ui∈UX′ ]. By the construction, q′ satisfies
the constraints of (7.17). Furthermore, we have

nu∑
i=1

ρ∗i
(
ϕi(1− q′i) + q′i

)
− π∗ =

nu∑
i=1

ρ∗iϕi1[ui /∈UX′ ] +
nu∑
i=1

ρ∗i1[ui∈UX′ ] − π
∗ . . .

(7.15)= (ρ∗)TFX′ − π∗ = c′.

This contradicts the assumption that the optimal value of the problem (7.17) equals
c̃, since c′ > c̃. Thus, c̃ is the optimal value and X̃ is a solution of (7.17).
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Chapter 8

Concluding remarks

Control system security is an important topic to address. Namely, control sys-
tems operate critical physical processes such as power production, transportation,
and water distribution, so attacks against them may have dire consequences. For
instance, the attacks that occurred in Maroochy shire led to an environmental
hazard [4], the Stuxnet attack sabotaged the Iranian nuclear program [6], and the
attack against the Ukranian power grid operators left thousands of households with-
out electricity [9]. Moreover, control systems are both challenging and expensive
to secure. Some reasons for this include their long life span, real time availabil-
ity requirements, and potentially large size. Therefore, it is essential to develop
cost-effective defense strategies for these systems.
Motivated by control system security, we studied two security-related applications:
(i) classifying and preventing security vulnerabilities; and (ii) characterizing and
improving the security level of actuators in large-scale control systems. For both
applications, we developed security metrics that can help control system operators
to determine where to focus security resources (risk assessment). Additionally, we
provided tools that allocate security resources in a cost-effective manner based on
these metrics (risk response). In the following, we summarize the results presented
in the thesis in more detail, and outline possible directions for future work.

8.1 Summary

Application 1: Classifying and preventing security vulnerabilities

Chapter 4 addressed the problem P1 presented in the introduction. Particularly,
we introduced and studied a novel type of impact estimation problem. Two impact
metrics that can be used in stochastic linear systems were proposed: The probability
that some of the critical states leave a safety region and the expected value of

147



the infinity norm of the critical states. For the first metric, we proved that the
optimal value of the problem can be computed efficiently by solving a set of convex
problems. For the second metric, we derived lower and upper bounds that are
efficient to compute. We then showed that our framework can be used to estimate
the impact of a range of attack strategies proposed throughout the literature, and
explained how to use properties of these strategies to estimate the impact more
efficiently. Finally, we demonstrated on a control system of a chemical process how
our framework can be used for classifying security vulnerabilities.
Chapter 5 consideredP2. We proposed an algorithm that utilizes several systematic
search tools to constructs the security measure allocation problem. We then showed
that the problem is NP-hard, and introduced two suboptimal approaches to tackle
the problem. The first approach is to first simplify the problem, and then use
integer linear program solvers to compute a solution. The second approach exploits
submodular structure of the problem, and uses a polynomial-time algorithm to
compute a suboptimal solution with performance guarantees. The applicability of
our security measure allocation framework was demonstrated on a control system for
regulating temperatures. We also explained how the impact estimation framework
from Chapter 4 can be combined with the security measure allocation framework.

Application 2: Characterizing and improving the security level of
actuators in large-scale control systems

Chapter 6 tackledP3. We introduced the actuator security indices δ and δr that can
be used for localizing vulnerable actuators. A method for computing δ was derived,
and it was shown that δ may increase (resp. decrease) by placing additional sensors
(resp. actuators). We then explained that δ is NP-hard to compute, sensitive to
system variations, and based on the assumption that the attacker knows the entire
system model. In contrast, the robust security index δr can be computed efficiently
by solving the minimum s-t cut problem, can characterize actuators vulnerable
in any system realization, and can be related to both the full and limited model
knowledge attackers. We argued that these properties make δr more suitable for
large-scale systems than δ. Finally, we illustrated how the indices we proposed can
be used to characterize vulnerable generators in power grids.
Chapter 7 studied P4. We modeled this problem as a game, where the operator
allocates a limited number of protected sensors to improve actuator security indices,
while the attacker selects an actuator with a small value of the security index to
attack. We focused on the case where the attacker uses the extended replay strategy.
Our goal was to compute a NE monitoring strategy, or a good approximation of this
strategy. Since the problem of computing a NE monitoring strategy was difficult
to construct and solve for large-scale systems, we derived an ε-NE of the game. We
then presented cases when this ε-NE becomes exact, explained how actuator security
indices impact decision making of the players, and discussed how the monitoring
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strategy from this ε-NE can be further improved. Finally, we demonstrated on
a benchmark of a large-scale power grid that the tools we proposed allow us to
compute NE monitoring strategies in a scalable manner.

8.2 Future work

Extending the impact estimation framework: The impact estimation frame-
work from Chapter 4 was developed for stochastic linear systems. Thus, a possible
extension is to consider more general system models such as nonlinear or hybrid
systems. One can also make the network model more realistic by incorporating
network imperfections such as packet drops and delays. Additionally, the attack
strategies considered in Chapter 4 are all feedforward. That is, these strategies do
not use on-line information about measurements and control actions to update an
attack sequence over time. Hence, incorporating feedback attack strategies in the
framework is another relevant extension.
Studying monotonicity of the attack impact: As shown in Chapter 4, the
impact of the optimal FDI attack strategy is largest at the end of the estimation
horizon. This useful property helped us to estimate the impact for this strategy
more efficiently. We also showed through examples that other attack strategies can
sometimes posses this property. Deriving conditions under which this happens can
be an interesting problem to explore.
Reformulating the security measure allocation problem: Another way to
formulate the security measure allocation problem is to set an upper bound on the
security budget, and then maximize the number of prevented critical vulnerability
combinations under this constraint. In this case, it is insufficient to find the suffi-
cient representation of minimum cardinality to construct the problem. The reason
is that we do not know which of the critical vulnerability combinations would be
prevented. Hence, novel tools for constructing and solving this type of security
measure allocation problem are required.
Expanding systematic search tools: In Chapter 5, we introduced Algorithm 5.1
for constructing the security measure allocation problem. Although Algorithm 5.1
managed to construct the problem in the experiments we conducted, we saw that
the running time of this algorithm grows rapidly with the number of vulnerabilities
present in the system. Thus, one future research direction is to further increase the
efficiency of Algorithm 5.1 by deriving additional systematic search tools. Particu-
larly, the goal is to investigate how to exploit prior information about the structure
and symmetry of the control system for this purpose. Another idea is to focus on
specific instances of the impact and likelihood functions, and then use properties
of these instances to derive additional tools.
Generalizing sensor allocation strategies: The sensor allocation strategy from
Chapter 6 was focused on increasing the robust security index δr, and did not take
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the index δ into consideration. The future work may investigate if it is possible to
increase the indices δ and δr simultaneously. A starting point can be to investigate if
there exist system states Xi that satisfy the following property: If we place sensors
to measure a subset of states from Xi, then both δ(ui) and δr(ui) increase.
Probabilistic robust security index: The modeling framework from Chapter 6
can be extended by taking the probability that a realization of the system will
occur into account. The attacker may then want to gather resources such as to
conduct an attack with sufficiently high probability of success. Hence, it is relevant
to develop new security indices to capture this scenario.
Relaxing assumptions in the sensor allocation game: Chapter 7 considered
the case where the attacker uses the extended replay strategy. We plan to gen-
eralize our analysis by allowing the attacker to use an arbitrary attack strategy,
and try to derive a scalable way to construct a NE monitoring strategy for this
case. Another possible extension is to relax the assumptions that we made on the
matrices B and C.
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