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Abstract

Mobile robots have found numerous applications in recent years, in ar-
eas such as consumer robotics, environmental monitoring, security and trans-
portation. For information dissemination, multi-robot cooperation or opera-
tor intervention, reliable communications are important. The combination of
communication constraints with other requirements in robotics, such as navi-
gation and obstacle avoidance is called communication-aware motion planning.
To facilitate integration, communication-aware methods should fit into tradi-
tional layered architectures of motion planning. This thesis contains two main
contributions, applicable to such an architecture.

The first contribution is to develop strategies for exploiting multipath fad-
ing while following a reference trajectory. By deviating from the reference, a
robot can stop and communicate at positions with high signal strength, trad-
ing tracking performance for link quality. We formulate this problem in three
different ways: First we maximize the link quality, subject to deterministic
bounds on the tracking error. We control the velocity based on the position
and channel quality. Second, we consider probabilistic tracking error bounds
and develop a cascaded control architecture that performs time-triggered stop-
ping while regulating the tracking error. Third, we formulate a hybrid optimal
control problem, switching between standing still to communicate and driving
to improve tracking. The resulting channel quality is analyzed and we perform
extensive experiments to validate the communication model and compare the
proposed methods to the nominal case of driving at constant velocity. The
results show good agreement with the model and improvements of over 100%
in the throughput when the channel quality is low.

The second contribution is to plan velocities for a group of N robots,
moving along pre-determined paths through an obstacle field. Robots can
only communicate if they have an unobstructed line of sight, and the prob-
lem is to maintain connectivity while traversing the paths. This is mapped to
motion planning in an N-dimensional configuration space. We propose and
investigate two solutions, using a rapidly exploring random tree (RRT) and
an exact method inspired by cell decomposition. The RRT method scales bet-
ter with the problem size than the exact method, which has a worst-case time
complexity that is exponential in the number of obstacles. But the random-
ization in the RRT method makes it difficult to set a timeout for the solver,
which runs forever if a problem instance is unsolvable. The exact method, on
the other hand, detects unsolvable problem instances in finite time.

The thesis demonstrates, both in theory and experiments, that mobile
robots can improve communications by planning trajectories that maintain
visual connectivity, or by exploiting multipath fading when there is no line
of sight. The proposed methods are well suited for integration in a layered
motion planning architecture.
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Chapter 1

Introduction

Mobile robots have found use in numerous areas in recent years, includ-
ing consumer robotics, environmental monitoring, surveillance and trans-
portation. Many of the applications require that the robots communicate,

either with other robots or with a base station or operator. Communication can offer
many benefits, such as enabling coordination, collaborative processing or dissemi-
nation of sensor information. But these benefits come at a cost. The need to ensure
reliable communications adds to the complexity of controlling a robot. This is the
subject of this thesis: How can robotic motion planners be modified such that the
robots fulfill an additional requirement of maintaining communications with each
other or a base station? This is an emerging area of robotics, sometimes referred
to as communication-aware motion planning. It is different from traditional motion
planning, which is typically only concerned with avoiding collisions with obstacles
or other robots while trying to reach a configuration that is either given before-
hand or computed online to optimize some criterion such as coverage or formation
keeping.

In this chapter, we first present some motivating applications where communica-
tion is a key requirement, ranging from ground robots to formations of satellites in
space. Then we describe how communication-aware motion planning can be repre-
sented as interconnections between a typical architecture of robot motion planning
and the standard layered model of communication. Finally, we outline the thesis
and the contributions of each chapter and list what publications they are based on.

1.1 Motivating Applications

We present three applications where communication-awareness is a key criterion
for success. They are chosen to demonstrate various application domains and com-
munication constraints. There are requirements on maintaining clear lines of sight,
bounding the inter-agent distance or overcoming multipath fading. For the robots
to fulfill their mission, they need reliable communications with a base station or
within the group.

1



2 Introduction

Figure 1.1: A GroundBot rolling past a tent at the final demonstration of the AURES
project (Ögren et al., 2009). The project demonstrated autonomous capabilities such
as positioning for camera surveillance, minimum-time patrolling and searching and
securing designated areas.

Robots for Reconnaissance and Surveillance

Both during international missions and at its secure facilities in Sweden, the Swedish
Armed Forces see a need to enhance security by providing sentries with assistance
from unmanned ground vehicles (UGVs). UGVs can help in providing complete
coverage of sites, reduce the risks for sentries when responding to alarms and im-
prove sensing by using infrared vision. With this in mind, the project Autonomous
UGV-system for Reconnaissance and Surveillance (AURES) was pursued by the
Swedish Defence Research Agency, KTH and Saab (Ögren et al., 2009). The goal
of the project was to develop, demonstrate and evaluate algorithms which would
provide various levels of autonomy to UGVs, making them a useful tool for surveil-
lance personnel. The project resulted in new algorithms for autonomously choosing
robot positions and camera angles to provide coverage of designated buildings. Algo-
rithms were developed for patrolling a given area in minimum time and for searching
and securing a given area so that no intruder could return to the searched regions
without being detected. The project ended with a demonstration, demonstrating
the developed algorithms on the GroundBot robot, developed by Rotundus AB.
Figure 1.1 shows a photo of the demonstration site and one of the robots.

To maintain the connection to the operator, either directly or through relaying
within the group, the robots need to move in a communication-aware manner. In
typical applications, the main limiting factor for the communication range will be
shadowing and multipath fading caused by obstacles. If the robots can maintain
clear lines of sight between each other and use small-scale motion to avoid the
negative effects of fading, this increases their operational range. In this thesis, we
present algorithms for this.
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Figure 1.2: An artist’s impression of the Cluster-II satellites in orbit around the
Earth. (Copyright: European Space Agency)

Satellite Clusters

In the summer of 2000, two Russian Soyuz rockets were launched, carrying a total of
four Cluster-II satellites, illustrated in Figure 1.2. The purpose of the mission, orga-
nized by the European Space Agency, was to investigate the small-scale structure of
the Earth’s plasma environment. The researchers wanted to make detailed maps of
the magnetosphere that protects the Earth from the solar wind. To allow estimation
of the three-dimensional gradient of the magnetic field and to distinguish spatial
and temporal variations, measurements must be taken at several distant points at
the same time. Therefore, the four satellites were used to form a tetrahedron for-
mation, making up a giant three-dimensional sensor array. The spatial resolution
of the resulting synthetic sensor could be adjusted by changing the separation be-
tween the spacecraft. The distances were varied between 600 km and 200 000 km,
and in June 2007 two of the satellites were brought within 17 km from each other
as a test. This may not seem very close, but at the time, they were traveling at
6 km/s (Cluster Project Team, 2000; European Space Agency, 2007).

To precisely control their relative distances and orientations, the satellites must
maintain communications with each other. In space, one can expect to operate in
open sight, so the main limiting factor is the inter-agent distance. It is therefore im-
portant to include constraints on maintaining connectivity in the formation control
laws, also during reconfiguration and initial deployment. In this thesis, we present
methods to control groups of robots subject to such connectivity constraints.



4 Introduction

Figure 1.3: An example of a small military robot, suitable for use as a LANdroid.
It uses tracks for locomotion and has two powered paddles for passing obstacles or
righting itself if it lands upside down. (Copyright: iRobot Corp.)

LANDroids

Modern military operations in urban terrain rely on high-bandwidth communica-
tions for transmitting voice data, real-time maps and video images. In such scenar-
ios, radio signals are absorbed or reflected by buildings and other obstacles, making
it hard to achieve satisfactory coverage for moving soldiers. Therefore, the Amer-
ican Defense Advanced Research Projects Agency has launched a project aimed
at developing LANdroids, portable and disposable mobile base stations for an ad-
hoc communication network (McClure et al., 2009). The robots can be deployed
manually, and then move autonomously to improve the performance of the net-
work. An example mission for such a system would be to create coverage in part
of a city as preparation for a military campaign, or to provide rescue workers with
communications after a natural disaster has damaged the existing infrastructure.

The robots must plan their motion to avoid obstacles, maintain connectivity
with other LANdroids and maximize coverage. Even small movement, in the order
of a few wavelengths, can have a big impact on the range of a single node. Figure 1.3
shows an example of a rugged miniature robot for military use, which could provide
motion capabilities to each node. Algorithms for making such small motions are
developed and analyzed in this thesis.
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Figure 1.4: A typical layered architecture for robot motion planning, compared to
the lower layers of the OSI stack for communication. Communication-aware motion
planning can be described as interconnecting one or more of the planning layers with
a layer in the communication stack.

1.2 Layered Motion Planning

To handle the complexity of robot motion planning, systems are often organized
in a layered architecture (Varaiya, 2000). This is illustrated in Figure 1.4, along
with the standard Open Systems Interconnection (OSI) reference model for com-
munication networks, standardized in ISO/IEC 7498-1:1994. We will briefly explain
the role of each layer and then argue how communication-aware motion planning
can be represented as introducing connections between layers in the motion and
communication stacks.

In the motion planning stack, the lowest layer is the motion control layer, which
employs feedback from sensors to motors and other actuators on the robot to make
it track some given reference trajectory. This controller handles the platform-specific
dynamics and acts as a homogeneous abstraction to higher layers. The coordina-
tion layer produces continuous reference trajectories for the robots to track such
that they do not collide with obstacles or other robots. Every trajectory could be
associated with a specified tracking accuracy, both in space and time, to guarantee
safety. The highest level is the mission planning layer, which allocates the required
number of robots, assigns the communication topology and computes time-stamped
waypoints for each robot such that the overall mission is fulfilled. Examples of mis-
sions are sensor deployment, searching or transportation.

Wireless communication systems are also structured in layers, usually following
the OSI model (Goldsmith, 2005). The three lower layers in this model are shown
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in Figure 1.4. The lowest level is the physical layer, which interfaces the antenna.
Specifications of the physical layer include carrier frequency, modulation format
and output power. It provides an unreliable link for sending individual bits. The
next layer is the data link layer, which, among other functions, contains the medium
access control (MAC). The MAC controls access to the shared medium to avoid
collisions that incur losses of data. In wireless systems, this includes scheduling
transmissions in frequency and time, and handling conflicts. The data link layer
implements a reliable link for packets between two directly connected nodes. The
third level is the network layer, which uses the node-to-node links to provide multi-
hop connectivity for the network. This includes logical addressing and routing and
offers a reliable end-to-end packet link. Layer four is the transport layer, which
decomposes data into packets and reassembles it. The fifth layer is the session layer,
which handles setting up and recovering communication sessions. Layer six is the
presentation layer, which handles syntax conversion, compression and encryption.
Finally, the seventh layer is the application layer, which implements specific services
such as file transfer or terminal emulation.

Introducing communication awareness can be represented as implementing one
or more of the motion planning layers with a component that interacts with a layer
in the communication stack. To maintain the benefits of the layered structure, this
should not change the interface to the other layers in the motion stack. We now
give some examples of the benefits that such components could offer.

A natural part of mission planning is to specify the communication topology,
i.e., which robots should talk to which. If the mission planner communicates this
suggested topology to the network layer, it can compute a routing table for the
network. Depending on the mission requirements, the planner could decide on a
maximum number of hops or some lower bound on robustness to link failures and
query the network layer to see if the suggested topology allows it. If not, it could
update the topology or change the routing parameters in the network layer.

For the coordination layer, there are potential benefits in interconnecting it with
the MAC of the communication stack. The coordination layer ensures that no robots
come close enough to collide, but this could be extended. Given some performance
requirement such as bandwidth or maximum latency, the MAC could respond with
a minimum number of frequency bands needed. If frequency reuse is needed to
fulfill this, the coordination layer could enforce the required separation between
robots to avoid interfering transmissions. This may affect what corridors or narrow
passages the robots can traverse, so there will be a tradeoff between traversability
and communication. Another possibility, which we investigate in this thesis, is to
modify the reference trajectories so that the robots maintain visual contact with
each other while moving between waypoints. In indoor or urban environments, this
avoids the shadowing of radio signals by the obstacles. This represents an intercon-
nection with the network layer in the communication stack, which can determine if
the network is connected or not.

The motion of each platform, as dictated by the motion controller, will affect
the multipath fading that the radio receiver experiences. As we show in this thesis,
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Figure 1.5: A motivating scenario for this thesis. A group of robots is patrolling
an office, sending video streams to an operator. The robot communicating with the
remote base station should adapt its motion to multipath fading, and all robots should
maintain visual connectivity to avoid that obstacles block the wireless links.

interconnecting the physical layer of the communication stack with the motion
controller, allows significant improvements of the link capacity. While still tracking
the reference position, the robot can actively seek to spend more time at positions
where the multipath fading is favorable.

Having motivated how communication-aware motion planning would fit into an
existing architecture of a robot, we now formulate the high-level problem formula-
tion that has guided the research presented in the thesis.

1.3 Problem Formulation

We consider a scenario of the type illustrated in Figure 1.5. A number of robots are
patrolling an office floor, while sending video streams to an operator and exchang-
ing information to coordinate within the group. This suggests a layered motion
planning architecture, like that in Figure 1.4. A mission planner allocates rooms
to robots, a coordination layer plans trajectories between rooms and a motion con-
troller ensures that each robot tracks its given reference trajectory. While doing this,
the robots must ensure that the group stays connected and that the wireless link
to the base station maintains high channel quality. This problem can be formulated
as follows: How can the coordination or motion control layers be modified so the
motion planning requirements of the original architecture are fulfilled, as well as
additional communication constraints? This thesis considers two examples of such
constraints. The first example is that the robot communicating with the base sta-
tion must adapt its motion to multipath fading, while not deviating too far from its
reference trajectory. The second example is that the robots should maintain visual
connectivity within the group, to avoid that obstacles block the wireless links. They
should do so without leaving the obstacle-free paths computed by the coordination
layer.
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1.4 Outline and Contributions

To aid the reader, we now describe the outline of the thesis. For chapters that
contain novel contributions, we highlight the contributions and also list what pub-
lications the chapter is based on. We end by a list of other publications by the
author, which have inspired the thesis but are not treated further here.

Chapter 1
As seen above, this chapter contains some motivating applications and we also
give our view of how communication-aware motion planning relates to traditional
motion planning. One of the applications is searching and securing using unmanned
ground vehicles. We have proposed a novel algorithm to do this, using triangulation
of free areas to construct a graph representation of which areas are connected. We
have presented two search methods that represent different tradeoffs between the
completion time and the number of robots needed. Finally, we have reported from
an experimental demonstration of the system. This is described in

• F. Katsilieris, M. Lindhé, D. V. Dimarogonas, P. Ögren and K. H. Johans-
son. Demonstration of Multi-Robot Search and Secure. Workshop on Search
and Pursuit/Evasion at the IEEE International Conference on Robotics and
Automation, Anchorage, Alaska, USA, May 2010.

Chapter 2
This chapter contains brief overviews of some important background theory used
in the thesis. First we introduce the model of a single-integrator robot, which will
be used in the thesis. We show how the model can be reduced to a one-dimensional
model if the robot is constrained to follow a given path and comment on how this ap-
plies to various commercially available robot types. Then we present some methods
for robot motion planning, both exact and sampling-based methods. After that, we
describe propagation of wireless signals and how diversity can help reduce problems
caused by unfavorable propagation conditions. With the theoretical background in
place, we finally review some related work in the intersection of the above research
fields: communication-aware motion planning.

Chapter 3
This is the first of three chapters that all consider how a robot can exploit multipath
fading when following a pre-planned reference trajectory: Since multipath fading
causes fast variations in the channel quality, the robot could improve communica-
tion performance by deviating slightly from the trajectory to spend more time at
positions where the channel is better. In this chapter, we study this problem under
the constraint that the tracking error, i.e., deviation from the reference, must never
exceed a given limit.
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This is a novel problem formulation, which represents a new type of diversity. It
is similar to using multiple antennas and selecting the best one, but here we instead
leverage the mobility of the robot to achieve a similar effect at no extra cost in radio
hardware. We study five cases, differing in the assumptions on how densely the robot
can sample the channel and what prior channel information the robot has. For each
case, we derive the motion strategy that maximizes the expected link quality and
compute the distribution of the resulting signal-to-noise ratio. This can, in turn,
be used to compute the expected link capacity or throughput. We also report from
extensive experiments, where we validated the model of static multipath fading and
compared implementations of two of the motion strategies. This is reported in

• M. Lindhé and K. H. Johansson. Exploiting Multipath Fading with a Mobile
Robot. Submitted to the International Journal of Robotics Research.

• M. Lindhé, K. H. Johansson and A. Bicchi. An Experimental Study of Exploit-
ing Multipath Fading for Robot Communications. In Proceedings of Robotics:
Science and Systems, Atlanta, Georgia, USA, June 2007.

The second paper is an initial investigation of a special case, corresponding
to sparse sampling, full prior knowledge of the channel and a stationary reference
position.

Chapter 4
Here we also exploit multipath fading, but the novel contribution compared to the
above is to consider probabilistic constraints on the tracking error and a different
sensing model. We assume that the robot can only sample the channel when stand-
ing still. This motivates a strategy where the robot drives for a constant time and
then stops and samples the channel. The length of the stop, before it resumes driv-
ing, is a function of the sampled channel quality. By designing this function, called
a stop-length policy, we can maximize the throughput while fulfilling the tracking
constraints. The stop-length policy is embedded in a feedback architecture which
regulates the tracking error and adapts to varying channel conditions. The resulting
performance is illustrated by experiments. This chapter is based on

• M. Lindhé and K. H. Johansson. Adaptive Exploitation of Multipath Fading
for Mobile Sensors. In Proceedings of the IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, USA, May 2010.

• M. Lindhé and K. H. Johansson. Using Robot Mobility to Exploit Multipath
Fading. IEEE Wireless Communications, Special Issue on “Wireless Commu-
nications in Networked Robotics”, February, 2009.

The second paper is an overview, which also reports on the results from the
next chapter.
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Chapter 5
This is the last chapter on exploiting multipath fading, and the problem formula-
tion considered here does not place any constraints on the tracking error. Instead,
we include both tracking and communication in a cost function and optimize the
motion with respect to it. The robot and its on-board data buffer are modeled as a
switched linear system, such that the robot can choose to stop to communicate or
drive to catch up with the reference. The hybrid optimal control problem is solved
by relaxed dynamic programming and we illustrate the result by simulations. This
chapter is based on

• M. Lindhé and K. H. Johansson. Communication-Aware Trajectory Track-
ing. In Proceedings of the IEEE International Conference on Robotics and
Automation, Pasadena, California, USA, May 2008.

Chapter 6
This chapter considers visibility-constrained communication for a group of robots
moving along pre-planned paths among obstacles. We compute the velocities for all
robots along the paths so they reach their goals, under the additional constraint that
the group must maintain visual connectivity at all times. We first describe how the
problem can be mapped to a classic motion planning setting, using a configuration
space representation. Then we present two alternative solution methods. First we
use an RRT method, whose computation time scales favorably with the number of
robots. But it is only probabilistically complete, so if there is no solution, the solver
will run forever. We then propose an exact solution method, using a simplified
scenario with parallel paths and a constrained network topology. The method is
based on exact cell decomposition, but in contrast to most cell decompositions, we
use overlapping cells. The cells are convex and simple to construct, but instead it is
computationally expensive to test for cell adjacency. Using the decomposition, we
abstract the problem into A* searching on a graph, which in finite time either finds
a solution or correctly concludes that the problem is unsolvable. The worst-case
time complexity of the method is exponential in the number of obstacles. We end
by illustrating both methods with simulations. The RRT method is described in
the following paper:

• M. Lindhé, T. Keviczky and K. H. Johansson. Multi-Robot Path Following
with Visual Connectivity. Proceedings of the The Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, California, USA, November
2011.

Chapter 7
In this chapter, we summarize the thesis and draw conclusions. We also point out
some possible directions of future research.
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Other Publications
The author has previously worked on the problem of flocking, particularly using
Voronoi partitioning as a tool for decentralized collision avoidance. This has moti-
vated part of the thesis, since successful flocking requires communication between
the agents, but is not treated here. See

• M. Lindhé. On Communication and Flocking in Multi-Robot Systems. Licenti-
ate thesis, KTH Royal Institute of Technology, 2007. ISBN 978-91-7178-795-8.

• M. Lindhé and K. H. Johansson. A Formation Control Algorithm Using
Voronoi Regions. In Taming Heterogeneity and Complexity of Embedded Con-
trol, pages 419-434, edited by F. Lamnabhi-Lagarrigue, S. Laghrouche, A. Lo-
ria and E. Panteley, ISTE Ltd, 2006. (Awarded “Best PhD Student Presenta-
tion” at the CTS-HYCON Workshop on Nonlinear and Hybrid Control, Paris,
France, 2006.)

• M. Lindhé, P. Ögren and K. H. Johansson. Flocking with Obstacle Avoidance:
A New Distributed Coordination Algorithm Based on Voronoi Partitions. In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion, Barcelona, Spain, 2005.





Chapter 2

Background

This thesis builds on work in robotic motion planning and wireless communi-
cations. So before giving an overview of related research in communication-
aware motion planning, we will provide a broad overview of relevant back-

ground material in motion planning and communications. But first, we define the
model of robot dynamics that we consider in the thesis, show how it can be reduced
to one-dimensional motion along a given path and how this applies to commercially
available robots.

2.1 Robot Dynamics

Here we present the model of a single integrator robot, which will be used in this
thesis. We further define a reference trajectory and the one-dimensional position
along the corresponding path. We then relate this to existing robot platforms, which
often have additional constraints compared to our simplified models.

Single-Integrator Model

We consider robots with single integrator dynamics. The robot has position q ∈ R2

and control u ∈ R2, with dynamics q̇ = u. We assume that a coordination layer,
as discussed in Chapter 1, produces a reference trajectory qref : [0, T ] → R2 with
constant reference speed |q̇ref(t)| ≡ vref that takes the robot from one waypoint to
another, in a given time T . The corresponding path is the set

⋃
t∈[0,T ] qref(t) ⊂ R2

of all points that the trajectory passes. We further assume that q(0) = qref(0), and
that there is a control uref : [0, T ] → R2 such that

qref(t) = qref(0) +
∫ t

0
uref(τ)dτ.

13
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Motion Along the Path

We denote the robot position along the path as x(t) ∈ [0, T vref], with constraint
x(0) = 0. We further introduce the velocity along the path v(t), which controls x(t)
as

ẋ(t) = v(t). (2.1)

Now, if we apply the control u(t) = v(t)
vref

uref

(
x(t)
vref

)
to the robot, its position at time

t will be

q(t) = q(0) +
∫ t

0

v(τ)
vref

uref

(
x(τ)
vref

)
dτ = qref(0) +

∫ x(t)
vref

0
uref(s)ds = qref

(
x(t)
vref

)
.

In the second equality, we use the substitution s = x(τ)
vref

and the identity q(0) = qref(0).
We also see that

q̇(t) = v(t)
vref

uref

(
x(t)
vref

)
= v(t)ûref

(
x(t)
vref

)
,

where ûref

(
x(t)
vref

)
is a unit vector in the direction of the reference path at x(t). We

end by defining the reference position along the path at time t as xref(t) � tvref.

Differential-Drive Robots

In practice, most robots do not have the simple single-integrator dynamics described
above. In our experiments we have used a common type of robot, with differential
drive. As illustrated in Figure 2.1, it has two parallel, individually powered wheels
with wheel base L and radius r. Often, there are also one or more caster wheels to
maintain the balance. The controls are the angular velocities ωl, ωr of the left and
right wheel, respectively. The states of the robot are the position q = (q1, q2) and
orientation θ, relative to the positive q1 axis. Its dynamics are

q̇1 = r

2
(ωr + ωl) cos θ

q̇2 = r

2
(ωr + ωl) sin θ

θ̇ = r

L
(ωr − ωl).

We note two important things: First, the state of the robot not only contains the
position q, but also the orientation, θ. The full state (q1, q2, θ) is called the pose of
the robot. Second, the robot can only move along the direction of orientation, as
opposed to the single-integrator model which can move freely in any direction. To
emulate single-integrator dynamics, we can define a point q′ that is offset from the
wheel center point by a distance d > 0:

q′ = q + d

[
cos θ

sin θ

]
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q1

q2

q

q′

L

d

r

θ

Figure 2.1: A differential drive robot with two wheels, with radius r and wheel base
L. It has orientation θ and the point q cannot move in any direction, but q′ can.

It has dynamics

q̇′ = q̇ + d

[
−θ̇ sin θ

θ̇ cos θ

]
=

[
cos θ − sin θ

sin θ cos θ

]
︸ ︷︷ ︸

R(θ)

[
r/2 r/2

dr/L −dr/L

]
︸ ︷︷ ︸

A

[
ωr

ωl

]
.

The rotation matrix R(θ) is invertible, as is A, so to get q̇′ = u, we can choose the
state transformation [

ωr

ωl

]
= A−1R−1(θ)

[
u1

u2

]
.

Hence, the position of q′ can be controlled to have single-integrator dynamics
(d’Andréa Novel et al., 1995).
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Other Robot Dynamics

A differential drive robot can emulate the single-integrator model, as shown above,
assuming that it can instantly determine the wheel velocities, which is a good
approximation for ground robots with high gear ratios and high-traction wheels.
Other robots have car-like dynamics, which makes them unable to turn on the spot
or move sideways. Such robots can also be controlled to track the position of a single-
integrator robot, under some smoothness constraints on the path (Latombe, 1991).
Flying robots such as quadrotors or helicopters, or underwater rovers, typically
have higher-order dynamics where the acceleration is controlled, rather than the
direct velocities. With suitable controllers and strong enough control signals, they
can track the position of a single-integrator model, albeit in R3. Aircraft with
airplane-like dynamics are less well modeled by the single-integrator model, since
they must maintain a minimum forward velocity to stay airborne (LaValle, 2006).
This prevents them from stopping, which is required in all the motion strategies
presented in this thesis.

Summary

To summarize, given a constant-velocity reference trajectory and corresponding con-
trol sequence for a single-integrator model, we can use the one-dimensional velocity
v(t) to control its motion along the corresponding path. It is then possible to solve
for the required wheel velocities, ωl, ωr, to follow it with a differential drive robot.
With this in mind, in the following chapters, we will only consider the dynamics (2.1)
of the one-dimensional motion along the path.

2.2 Motion Planning

In the previous section, we discussed how to follow a given reference trajectory. It
should typically be computed to avoid collisions with obstacles or other robots. In
this section, we give a brief overview of methods to find such trajectories, which
also serves as an introduction to Chapter 6. This section follows the excellent book
by LaValle (2006).

Configuration Space

Motion planning techniques can be used to solve diverse problems, such as mount-
ing a mechanical part inside a car with a robotic arm, making a humanoid robot
walk or move a piano through a cluttered house. All these problems can be formu-
lated in a common way, using the fundamental notion of the configuration space, C.
It is equal to the state space of the system, so each state, or configuration, of the
system corresponds to a point in C. Sets of configurations that violate the problem-
specific constraints are called C-obstacles, and the union of all C-obstacles forms
the obstacle region, Cobs. Constraints arise from limited joint angles, collisions be-
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tween objects or, in the humanoid case, losing balance. All other configurations are
called free space, denoted Cfree. Given an initial configuration xI ∈ Cfree and a goal
configuration xG ∈ Cfree, the general motion planning problem can be defined as

Definition 2.2.1 (General Motion Planning Problem). Find a continuous path
τ : [0, 1] → Cfree such that τ(0) = xI and τ(1) = xG, or report that such a path does
not exist.

It can be shown that this general problem is NP-hard, mainly because the
dimensionality of C is unbounded. Note that a solution to the motion planning
problem is a path, which can be traversed at any velocity to yield a robot trajectory.
The field of motion planning is therefore often referred to as path planning. We also
note that, because of the geometry of C, there may be no admissible path. We will
see in the following that some solution methods can detect this in finite time, while
others run forever in this case. We now describe some classes of solution methods.

Completeness

Motion planning methods can be broadly categorized in two groups: Sampling-
based or combinatorial. Sampling-based methods probe C according to some sam-
pling scheme. Sampling makes the computational complexity scale well with the
dimensionality of the configuration space. The drawback is that if the sampling is
not dense enough, the solver may fail to detect solutions. The methods thus do
not offer completeness, i.e., a guarantee to either find a solution or report that
there is none. Instead, sampling-based methods that sample C in a deterministic
way may be resolution complete, which means that they are guaranteed to find a
solution if it exists, in the limit as the sampling becomes sufficiently dense. If there
is no solution, they may run forever. Similarly, randomized methods may be prob-
abilistically complete, meaning that the probability of finding a solution if it exists
converges to one as time approaches infinity. In contrast, combinatorial methods
find a path through C without using approximations and are therefore also called
exact. They are typically also complete. For low-dimensional problems, e.g., where
C = R2 or C = R3, there are efficient exact methods that offer good performance
in practice. For higher-dimensional configuration spaces, however, exact methods
have high computational complexity, making them impractical to use.

Sampling-Based Methods

Sampling-based methods can be divided into single-query or multi-query methods.
A single-query method solves the motion planning problem once, while a multi-
query method solves it multiple times. Each query may have new initial and goal
configurations, but the configuration space stays constant. This is applicable, for
example, for a robotic arm in a robot cell where only the position of the workpiece
changes between queries. Multi-query methods typically invest significant time for
pre-processing the problem, to reduce the solution time for each query. For both
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classes of methods, the only problem-specific component is the collision checker,
which provides information about the geometry of C. From the point of view of
the algorithm, it can be regarded as a black box that answers if a configuration
x ∈ C lies in Cfree or not. Later, we will propose a slightly more advanced collision
detector, which returns a straight-line path between two points if it exists.

A popular class of single-query algorithms builds a rapidly exploring dense tree
inside C, starting at xI. It is iteratively constructed by adding samples that can be
connected to the existing tree by free paths. The tree will cover all reachable parts
of Cfree as time goes to infinity. If the samples are chosen randomly, the tree is
called a rapidly exploring random tree (RRT). At regular intervals, the algorithm
tests if xG can be connected to the tree, in which case the problem is solved. The
RRT algorithm is probabilistically complete and is presented in more detail in
Chapter 6. For some applications, the algorithm is modified so multiple trees are
grown, starting at intermediate configurations. This may help to faster cover Cfree,
but checking for connectivity between the different trees increases the complexity
of the algorithm.

For multi-query problems, a popular solution is to build a sampling-based road-
map, which is a general graph with vertices representing points in Cfree and edges
representing free paths between points. If the roadmap is constructed by random
sampling, it is called a probabilistic roadmap (PRM). Figure 2.2 shows an example
of such a roadmap. Queries are solved by finding paths from xI and xG to any
vertices in the graph, and then using discrete planning over the graph to connect
them. One such solution is illustrated by the thick lines in the figure. Desirable
properties for a roadmap are that it should be reachable from any point in Cfree,
capture the connectivity of Cfree and contain few vertices so it can be searched
quickly.

Combinatorial Methods

Cell decomposition is an important class of combinatorial, or exact, motion planning
methods. The main idea is that Cfree is partitioned into cells. Cells should be defined
so path planning inside a cell is simple, and it should be efficient to determine if
two cells are adjacent, so there is a free path between them. The adjacency of cells
can be represented in a graph, and a path planning query is solved by first finding
the cells that contain the initial and goal configurations. Then a path is planned
between them in the adjacency graph, and finally the discrete path in the graph is
translated to a continuous path through Cfree. Note that the cell adjacency graph
can be interpreted as a roadmap, which is guaranteed to be reachable from all of
Cfree. For high-dimensional configuration spaces, computing the cell decomposition
is in general computationally expensive. The fastest known method to date executes
in time that is exponential in the dimensionality of C, and it is so complicated that
no general implementation of it exists.

Other combinatorial methods construct a roadmap directly, without using cells.
One popular such method for the case C = R2 is the visibility graph, or shortest-
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xI

xG

Cobs

Cobs

Figure 2.2: A sampling-based roadmap is a graph with vertices representing points
in Cfree and edges representing free paths between points. To solve the query (xI, xG),
one first finds paths from the points to the roadmap, then connects them by a discrete
search in the graph. The resulting path is drawn with thick lines.

path roadmap. Its vertices correspond to all corners of obstacles, and the edges
correspond to corners whose connecting line does not intersect Cobs. As the name
suggests, this graph is guaranteed to contain the shortest path between any two
obstacle corners. Another method instead finds the maximum-clearance roadmap,
i.e., the roadmap that contains all paths with maximum distance to any obstacle.
This increases robustness to errors in the map or robot navigation, at the expense
of path length.

As a final example of exact methods, we will mention potential-based algorithms.
They define a scalar potential φ : C → [0, ∞], with a minimum at xG. To reach the
goal from any point in C, the system should move in the direction of −∇φ, i.e., the
negative gradient of φ. If φ has a single minimum at xG and is infinite in all points
from which the goal cannot be reached, it is called a navigation function (Rimon
and Koditschek, 1992). Navigation functions can be computed on grids, but as the
dimensionality of the state space increases, the number of grid elements increases
exponentially for a given resolution. Alternatively, they can be computed directly
from the configuration space representation, but the methods to avoid introducing
local minima are difficult to apply to general high-dimensional problems.
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Multi-Robot Motion Planning
The transportation problem for N robots, i.e., reaching the goal configuration of
each robot while avoiding collisions with obstacles or other robots, could be naively
represented as any other motion planning problem. If each robot has three states,
the resulting configuration space would have 3N dimensions. Configurations inside
Cobs would correspond to collisions between a robot and an obstacle, or between two
robots. The problem could be solved with the methods above, resulting in a path
through C, which can be translated to a trajectory for each robot. Such methods are
called centralized and they are typically complete, but the time complexity scales
badly with N (Hopcroft et al., 1984). Thus, in practice, they can only be applied to
small groups (Barraquand and Latombe, 1991; Schwartz and Sharir, 1983; Svestka
and Overmars, 1995).

As an alternative to centralized methods, various so called decoupled meth-
ods have been proposed. An early approach was to assign priorities to the robots
and plan for one robot at a time, treating robots with higher priorities as moving
obstacles (Erdmann and Lozano-Pérez, 1987). This is a fast method, but it may
fail to find a solution even if it exists. Prioritization can also be combined with
potential-based methods to resolve conflicts (Warren, 1990). Another way to de-
couple the problem is the path–velocity decomposition: First plan an obstacle-free
path for each robot individually, then tune the velocities along the path to avoid
inter-agent collisions (Kant and Zucker, 1986). The velocity tuning is referred to as
the path coordination problem and was introduced by O’Donnell and Lozano-Perez
(1989). This has inspired the problem formulation in Chapter 6. As a final example,
there are also methods that can be applied in both a centralized and decoupled
framework (LaValle and Hutchinson, 1998). The methods above avoid planning in
a high-dimensional configuration space, but still assume a central planner that has
access to information about all robots. We now turn to completely decentralized
methods.

To achieve good scalability and avoid having a single point of failure, there has
recently been great interest in decentralized methods for multi-robot motion plan-
ning. Each robot then computes its own trajectory, without using global information.
There are decentralized methods for flocking (Olfati-Saber, 2006), coverage (Cortés
et al., 2004), target tracking (Martínez and Bullo, 2006) and formation control (Ji
and Egerstedt, 2007), to mention some applications. The specific problem of trans-
portation can be solved by potential-based methods (Roussos et al., 2010), using
reachability of hybrid systems (Tomlin et al., 1998; Pallottino et al., 2007) or local
negotiations (Zhang and Vaughan, 2006).
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2.3 Radio Communication

As a background primarily for Chapters 3–5, we here provide a short overview of
important concepts in radio communication. Since the thesis focuses on exploiting
multipath fading, the focus is on describing it and existing diversity methods for
mitigating it. The discussion on channel capacity follows Proakis and Salehi (2002)
and the discussion on wireless propagation follows Molisch (2005).

Channel Capacity and Throughput
For a radio receiver to successfully decode a received signal, it is important that
the signal is sufficiently strong compared to other signals in the same frequency
band, such as noise and interference. In this thesis, we do not consider interference,
i.e., intentional transmissions from other systems. Noise can arise from thermal or
quantum physical effects inside the receiver, atmospheric effects or unintentional
emissions from, e.g., fluorescent lights or car ignition systems. It is often described
as additive white Gaussian noise with spectral density N0, measured in W/Hz. For
a receiver with a bandwidth of B and a received useful signal power of PRX, the
signal-to-noise ratio (SNR) is

γ � PRX

BN0
.

We now define two quality metrics for the wireless link, which we will use in the
thesis. They will be denoted as utilities, U(γ). It would be straightforward to apply
the same analysis to other utilities, as long as U(γ) is strictly increasing with γ
so the inverse U−1 exists. The expectation of a given utility depends on the SNR
distribution fγ as

E[U(γ)] =
∫ ∞

0
U(γ)fγ(γ)dγ. (2.2)

For a wireless channel with additive white Gaussian noise, the maximal capacity
(measured in bits/s) depends on the SNR and bandwidth as

UC(γ) � B log2 (1 + γ) .

We will use the channel capacity as our first channel utility. It has the advantage
of being independent of the type of modulation, but on the other hand it cannot
be directly measured in experiments. We therefore continue by introducing a more
application-oriented utility.

For a given modulation method, it is possible to derive the bit error rate (BER),
Pb(γ). It gives the probability of incorrectly decoding a bit. Since the noise is white,
we assume that the bit errors are independent. Thus, the probability of correctly
decoding a sequence of NP bytes is (1−Pb(γ))8NP . We use this to define our second
utility: throughput. For a packet transmission rate of R0, measured in packets/s,
and a packet length of NP bytes, we define the throughput as

UT(γ) � R0 (1 − Pb(γ))8NP . (2.3)
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We now present some basics in wireless propagation, which links the received signal
power to the influence of the environment and the output power of the transmitter.

Wireless Propagation
Path Loss and Shadowing

Consider a mobile robot receiving radio signals from a base station. The distance
between the robot and base station is d and there is a free line of sight. The base
station emits a signal with power PTX to its antenna, which has an antenna gain
of GTX, compared to an isotropic antenna. The radio signal, with wavelength λ,
reaches the robot antenna, which has gain GRX. The received power is then

PRX|dBm = PTX|dBm + GTX|dB + GRX|dB + 20 log λ

4π
− n log d,

where |dB denotes a value in dB and |dBm denotes a value in dB, relative to 1 mW.
The constant n models how fast the signal decays with distance, and values in the
range 1.5 < n < 5.5 have been reported in the literature. This distance-dependent
attenuation of a wireless signal is called path loss. We will alternatively denote the
received power as received signal strength (RSS). Note that, for constant spectral
density of the noise, the SNR in the receiver is related to the RSS by a constant
offset:

γ|dB = PRX|dBm − BN0|dBm

If obstacles obstruct the line of sight, the signal is typically attenuated more than
predicted above, and this effect is called shadowing or large-scale fading. Shadowing
varies over distances in the same order as the size of the obstacles, and many exper-
iments have shown that it can be well approximated by a lognormal distribution.
This means that when plotted on a logarithmic scale, the shadowing attenuation
approaches the normal distribution.

Multipath Fading

Figure 2.3 illustrates another effect, which arises if the robot is surrounded by scat-
terers that reflect the incoming signal. Because of negative or positive interference,
the received signal strength will vary. This is called multipath fading or fast fading
and will cause variations in the signal strength as the robot moves only fractions
of a wavelength. The variations depend in a complex way on the environment, and
can be modeled using ray-tracing techniques (Fugen et al., 2006). This is, however,
computationally demanding and requires accurate maps of the environment and the
type of construction materials. As an alternative, multipath fading is often modeled
stochastically. This is the approach used in this thesis. If the reflections are equally
strong from all directions, this is called Rayleigh fading and the resulting SNR in
the receiver is exponentially distributed, with probability density function (PDF)

fR
γ (γ) = 1

Ω
exp
(−γ

Ω

)
, (2.4)
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Figure 2.3: A mobile robot will experience multipath fading if multiple reflections
of the transmitted signal interfere at its antenna. This typically happens in urban
or indoor environments, where the robot is surrounded by scattering objects. If the
environment is static, the fading is only a function of the position of the robot.

where Ω � E[γ] is the mean. If there is a dominant component, e.g., because there
is a free line of sight to the transmitter, the fading can be described as Nakagami
fading, with distribution

fN
γ (γ) = m

ΩΓ(m)

(mγ

Ω

)m−1
exp
(−mγ

Ω

)
, (2.5)

where Γ(·) is the Gamma function and m is the Nakagami parameter

m � Ω2

E[(γ − Ω)2]
, (2.6)

which describes the severity of the fading. The case m = 1 is Rayleigh fading, and
for m → ∞, the distribution becomes an impulse, corresponding to no fading. Note
that, for constant Ω, m is inversely proportional to the variance of γ. The cumulative
distribution function (CDF) for γ can be obtained by integration of (2.5) as

F N
γ (z) � P (γ < z) =

γinc(m, mz
Ω )

Γ(m)
, (2.7)

where γinc(s, w) =
∫ w

0 e−tts−1dt is the incomplete gamma function. Another popu-
lar model for multipath fading with a dominant component is Rice fading, which
we will not consider in this thesis. We just note that they have similar shapes and
that they can be used to closely approximate each other.
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Figure 2.4: Power correlation coefficient ρ for two SNR samples, taken a distance δ
apart.

Correlation in Space and Time

Under multipath fading with isotropic scattering, the power correlation coefficient
for two SNR samples γ1 and γ2 with mean Ω, taken at a distance of δ apart is

ρ � E[(γ1 − Ω)(γ2 − Ω)]√
E[(γ1 − Ω)2] E[(γ2 − Ω)2]

= J2
0 (2πδ/λ), (2.8)

where J0 is the zeroth-order Bessel function of the first kind. This is illustrated in
Figure 2.4, which shows that the correlation has a zero at δ = 0.38λ (i.e., 4.75 cm
at 2.4 GHz). As a rule of thumb, two samples are often considered independent if
the inter-sample distance is greater than half a wavelength (Jakes, 1974). Another
common assumption is to neglect the correlation already at a separation of λ/4,
when the amplitude correlation coefficient has decreased below 0.5, which leads to
ρ = 0.22 (Molisch, 2005). This allows denser sampling without the increased com-
plexity of considering correlation, which we will use in the experiments in Chapter 3.
If the scattering is not isotropic, the correlation between two samples depends also
on the relative incidence angle of the dominant component (Stüber, 1996). Note
that if the receiver moves at constant velocity, which is a common assumption
in cellular phone systems, the correlation above can equivalently be considered as
temporal correlation.
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In this thesis, we make heavy use of the assumption of static fading. This means
that the robot is the only moving object in the environment, so the multipath
fading is a function only of the pose of the robot. (We remind the reader that
the pose includes the orientation of the robot, so this applies even if the antenna
is not omnidirectional.) Particularly, it will be constant if the robot stands still.
This assumption applies to scenarios such as nighttime surveillance, rescue missions
inside collapsed buildings and bomb disposal. Static fading has been investigated
before (Puccinelli and Haenggi, 2006; Smith et al., 2009), and in Chapter 3, we
validate it experimentally. We also investigate what happens to the performance of
the proposed motion strategy if the assumption is violated.

Reciprocity

The wireless channel is reciprocal, in the sense that for a given configuration of base
station and robot, the path loss, shadowing and fading affects signals in both direc-
tions equally. The spatial correlation, however, can differ significantly. A common
example of this is when a cell phone experiences multipath fading, because it is
surrounded by scatterers. Moving just a fraction of a wavelength will then change
the fading, as predicted by (2.8). But the base station is typically mounted in a
more open location, surrounded by fewer and more distant scatterers. Two antennas
at the base station would therefore need much larger separation before they could
be considered to experience independent multipath fading. This is the reason why
antenna diversity, as explained below, is normally easier to achieve at the mobile
station than at the base station.

Finally, we consider transceivers with narrow bandwidth, so the fading is as-
sumed flat. This means that all frequency components of the signal are affected
equally, so the fading causes only attenuation, not distortion. Further, the tran-
sceivers are assumed to move slowly enough for the fading to be slow, i.e., the
channel is constant over the duration of the transmission of one bit.

Diversity

Multipath fading varies, as shown above, with the exact position of the receiver and
hence also over time if the receiver is moving. But it also depends on the frequency,
the polarization and the angle of the incoming signals. Exploiting signals that reach
the receiver over channels that differ in some of the above is called diversity. Of
course, diversity can be employed on a larger spatial or temporal scale to also
mitigate shadowing or even path loss, but that will not be treated here.

The most widely used diversity is spatial diversity, where multiple antennas
are used to receive the same signal. As remarked above, the antennas should be
separated by about half a wavelength for the channels to be considered independent.
An example of this is the wireless access point in Figure 2.5, using three antennas.

Once the receiver gets the same signal over different channels, or branches, they
need to be combined to yield a quality gain. A simple way of doing this is switched
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Figure 2.5: A wireless access point using spatial diversity to overcome multipath
fading. The frequency is 2.4 GHz, so the antennas are spaced about half a wavelength,
or 6 cm. (Copyright: D-Link Corp.)

diversity, where the receiver monitors the signal quality at the chosen branch and
switches to another only if some switching criterion is fulfilled. If higher performance
is needed, the receiver can monitor all branches and always switch to the best one.
This is called selection diversity, and it is a simple and cost-effective method since
simpler circuits than a full receiver can be used to monitor the branches. More
advanced methods combine all branches, which uses all the information available
but also needs more hardware. Hybrid methods select a subset of all branches and
then combine them.

In the context of diversity, the problem arises on how to compute the SNR dis-
tribution of the resulting signal. If the branches are correlated, this becomes more
complicated than for independent branches. There are exact expressions for the
joint PDF of correlated Nakagami fading branches, but in practice they are com-
putationally intractable for N > 4 (Zhang and Lu, 2002). Alternative approaches
are to approximate the correlation matrix with a Green’s matrix (Karagiannidis
et al., 2003) or using Householder matrices (Alexandropoulos et al., 2009) or as-
sume exponential correlation (Aalo, 1995). One can also estimate an equivalent
number of independent channels that yield the same performance, and use it for
the analysis (Muharemovic et al., 2008; Smith et al., 2010). We have chosen to use
the approximation of exponential correlation, since it yields results that agree best
with simulations.
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Figure 2.6: A Tmote Sky transceiver, used for the experiments in the thesis.

We end by noting that diversity can also be used to improve the network-wide
performance, rather than that of a single point-to-point link as discussed above. In
a network where all links are affected by time-varying fading, the total through-
put can be improved by monitoring the channels and transmitting to the receiver
which has the best channel at each moment. This is called opportunistic communi-
cation (Viswanath et al., 2002).

Tmote Sky Specifications
For the convenience of the reader, we end this section by a summary of the specifica-
tions of the specific transceiver board we have used for the experiments in this thesis.
It is called Tmote Sky (Moteiv Corporation, 2006) and is depicted in Figure 2.6.
The Tmote Sky is based on an MSP430 microcontroller and a CC2420 single-chip
radio transceiver. The board features an internal antenna with approximately om-
nidirectional radiation pattern, but it can also be reconfigured to use an external
antenna, connected to an SMA connector. The CC2420 transceiver complies with
the IEEE 802.15.4 standard, works at 2.4 GHz, has a maximum output power of
0 dBm and a bit rate of 250 kbit/s. It can detect the signal strength of received
packets, or measure the ambient noise level in a given channel. The CC2420 uses
QPSK modulation, for which the BER is (Proakis and Salehi, 2002)

Pb(γ) = Q(√γ). (2.9)
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Figure 2.7: Some popular communication models, which emphasize various wireless
propagation phenomena. In (a), the robot (R) and base station (B) can communicate
perfectly within a certain distance, and not at all outside it. In (b), the channel
quality decays gradually with the distance. Case (c) is a pure visibility model, where
communication can only happen if there is a free line of sight. Finally, (d) shows that
when the robot has no line of sight to the base station, signal strength variations
due to multipath fading are considered. This case is the most realistic and the one
considered in this thesis.

2.4 Communication-Aware Motion Planning

This section presents some related work in communication-aware motion planning,
which lies in the intersection of the research fields presented above. One way to cat-
egorize the literature on communication-aware motion planning is by the commu-
nication model used. There are several established such models, each representing
different tradeoffs between accuracy and simplicity of analysis. Figure 2.7 schemat-
ically illustrates four communication models for the case of a single robot commu-
nicating with a base station in an indoor environment. Below, we have roughly
divided the related work into path-loss models, shadowing and multipath fading.
Note that some papers, particularly in the multipath fading category, consider also
other propagation effects, but we have tried to isolate where the main contribution
lies.
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Path loss is a deterministic effect that is well suited for analysis. A simple model
is to assume perfect communication within a certain distance, and no connection
outside it. This leads to a disc-shaped coverage region, useful for the study of multi-
agent coordination under communication constraints, such as flocking (Zavlanos
et al., 2009), coverage (Spanos and Murray, 2004), relaying (Tekdas et al., 2010a)
or formation control (Ji and Egerstedt, 2007). Instead of such a sharp threshold,
one can let the throughput decay or the magnitude of some additive noise increase
with the distance. This allows joint optimization of communication and sensing
objectives (Chung et al., 2006; Hsieh et al., 2008; Stachura and Frew, 2011) or
motion planning for chains of routers (Stump et al., 2008). A related approach is to
only assume that the signal strength is a sufficiently smooth function of the position,
and then do gradient estimation to try to improve the signal strength (Dixon and
Frew, 2009). Similarly, there is work on robots that perform random motion inside
a bounded workspace if they are not sufficiently connected. This represents a model-
free algorithm, but it is analyzed using a distance-based model (Correll et al., 2009).
Models taking only path loss into account work well in space and open areas, but
less so in settings with obstacles.

Shadowing is an important effect for microwave signals, such as in the popular
2.4 GHz band, which propagate similar to light around obstacles. This suggests that
it is reasonable to assume that two robots can communicate if and only if there
is a clear line of sight between them. Such visibility-based models are of course
also relevant for optical communication. There are examples of rendezvous (Gan-
guli et al., 2009), transportation (Esposito and Dunbar, 2006; Lindhé et al., 2011),
sensor deployment (Ganguli et al., 2007) and searching (Sweeney et al., 2004) prob-
lems, solved under these constraints. Another example is autonomous router place-
ment (Tekdas et al., 2010b; Stump and Sadler, 2010), where robots have different
roles: A few robots explore while others only focus on communication, acting as
relays to ensure that the exploring robots stay connected. Connectivity can also
be required only at certain time instances (Anisi et al., 2010; Hollinger and Singh,
2010). Line of sight models typically incorporate discontinuities that complicate
analysis, and they are conservative since reflections or diffraction may make it pos-
sible to communicate even when there is no direct visibility. An alternative to the
geometric modeling of shadowing is to model it probabilistically, which helps to im-
prove communication while solving sensing tasks (Ghaffarkhah and Mostofi, 2011).

Visibility constraints are interesting not only for communication in the classi-
cal sense, but also for sensing the surroundings or non-cooperative evaders with a
camera or other optical device. This can be used to formulate problems in search-
ing (Tovar and LaValle, 2006; Park et al., 2001; Tovar et al., 2004), stationary
sensing (Shermer, 1992; Nilsson et al., 2008) or tracking (Murrieta-Cid et al., 2007;
Fabiani et al., 2002). The latter is an example of visual servoing (Chaumette and
Hutchinson, 2006) for mobile robotics.
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Multipath fading is mostly pronounced in indoor or urban settings, where radio
signals are scattered by objects. Even small movements of a sensor node will change
the fading, which can be exploited to improve the signal strength for a stationary
sensor node (McClure et al., 2009; Smith et al., 2009; Lindhé et al., 2007). If nodes
are connected in a network, such small movements will change the capacities of the
different links, which may be used for load balancing (Puccinelli et al., 2007) or
for improving the network throughput (Vieira et al., 2011). Estimating the spatial
correlation of the fading can also give important information. Mobile sensors can
adapt the step size of their movement so as to faster escape from deep fades (Mostofi,
2009). The stochastic model of multipath fading makes planning difficult and the
effect is less significant if there is a strong direct component in the signal, compared
to the reflections.



Chapter 3

Motion Planning under Multipath Fading:
Deterministic Tracking Constraints

In the following three chapters, we develop and analyze motion controllers for
a robot tracking a reference trajectory through areas which exhibit multipath
fading. As described in Chapter 2, multipath fading is mostly pronounced in

urban and indoor settings, particularly if there is no direct line of sight between
the robot and its base station. Also, if the environment does not change over time,
the fading is static, i.e., a function only of the position of the robot. In such a
scenario, we propose exploiting the fading by letting the robot deviate some from
its reference trajectory. By stopping at positions where the SNR is high and then
driving again to catch up with the reference position, the robot can improve the
average channel utility compared to the nominal case of perfect reference tracking.
This proposed stop-and-go motion is illustrated in Figure 3.1. In many applications,
such small deviations from the reference trajectory do not affect the main task. Also,
by deviating only along the reference trajectory, the robot is guaranteed to avoid
obstacles if the original trajectory was obstacle-free.

Stop-and-go motion is a tradeoff between reference tracking and communication.
The more the robot is allowed to deviate from the reference, the longer it can stay
at positions with high SNR and the greater the improvement of the average channel
utility. The optimal tradeoff depends on the application requirements and also the
nominal channel utility, i.e., that experienced when driving at constant velocity. If
the nominal channel utility is low, the robot may need more freedom to deviate to
maintain a given average utility, and if the nominal channel utility is high, stop-and-
go motion may not be needed. The following three chapters present three alternative
ways of quantifying this tradeoff, which lead to different methods of deriving motion
controllers. In this chapter, we consider the problem under deterministic constraints
on the maximum tracking error. Searching for the best SNR without violating the
constraints is then solved as an optimal stopping problem. In Chapter 4, we instead
formulate the constraints in a probabilistic way, which leads to a cascaded control
architecture: An inner loop ensures that the expected velocity is equal to that of

31
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STOP

STOP
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Figure 3.1: A robot follows a reference trajectory while communicating with a base
station, subject to multipath fading. By making short stops where the SNR is high
and then driving to catch up with the reference position, the robot can improve the
average link utility.

the reference, to avoid drift, and an outer loop regulates the tracking error. Finally,
in Chapter 5, we investigate a hybrid systems formulation: The robot is assumed
to have an onboard data buffer that fills up at a constant rate and is unloaded
through the wireless link. The robot switches between standing still to communicate
at a high utility or driving to reduce the tracking error. The tradeoff can then be
quantified by incorporating both tracking error and buffer size in a cost function.
A motion controller is derived by hybrid optimal control.

The proposed stop-and-go motion is a reactive approach, in the sense that it
does not in general require prediction of the fading. As discussed in Chapter 2,
predicting fading is difficult because of its complex dependence on the geometry of
the environment. Instead, the robot can stop when it finds a position where the
SNR is high. This suggests using feedback, which is implemented slightly differently
in all chapters. In this chapter, the robot is assumed to measure the SNR while
moving, so it can stop when it finds a good enough value. In Chapter 4, we relax
the requirements some and only assume that the robot can measure the SNR when
standing still. This leaves more time for a slow sensor, or allows averaging to avoid
noise. The robot then stops at regular intervals, but adapts the time it spends at
each position to the local SNR. In Chapter 5, the hybrid optimal control approach
requires that the robot knows what channel utility it can expect when stopping.
This can be achieved by letting the robot do a quick local search for the highest
SNR whenever it decides to stop. The resulting utility will in general vary from the
expected, but since the optimal controller uses feedback, it adapts the stop time to
the actual outflow of the buffer, providing robustness to this uncertainty.
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The assumption on static fading is important for successful reactive stop-and-
go motion. If the robot stops at a position with high SNR, it should experience
high channel utility until it resumes driving again. As discussed earlier, this is
the case if nothing in the environment is moving, which applies to scenarios like
surveillance in empty buildings or exploration of contaminated or restricted areas.
We will validate this model by measurements in locations that are more or less
static and experimentally test the robustness of the developed motion controllers
to violations of this assumption.

This chapter proposes and analyzes two novel strategies for communication-
aware trajectory tracking under deterministic tracking error bounds. The first pro-
posed strategy applies if only the SNR distribution is known. The second strategy
applies if the fading is known beforehand, such as if the robot has recently traversed
the trajectory. This represents an ideal case, which serves as an upper bound for
the achievable performance. Both strategies are developed and analyzed for sparse
SNR sampling, when the samples are assumed independent, and dense sampling,
when the samples are assumed correlated.

In the following section, we present models of the tracking error dynamics and
how the robot samples the SNR. We then formally define the problem, under five
different assumptions on the available channel information. In Section 3.2, we pro-
pose a motion strategy to maximize the channel utility for each of the five cases. In
Section 3.3, we analytically derive the resulting SNR distribution of each strategy,
which can be used to compute the expectation of any channel utility. To illustrate
this, Section 3.4 shows numerical results on how the expected link capacity and
throughput vary with the allowed deviation from the reference trajectory. We also
compare the analytical results with simulations. Then Section 3.5 presents mea-
surements to validate the model of static Nakagami fading. We also report from
experiments that compared the strategy for known SNR distribution to the nominal
strategy. We end by a summary in Section 3.6.
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3.1 Preliminaries

In this section, we present a model of the dynamics of the tracking error. It will
also be used in Chapters 4 and 5. We then state a model of how the robot samples
the SNR. Finally, we formulate the problem of this chapter.

Reference Tracking Error

In the following, we study the reference tracking error, Δ(t) � x(t) − xref(t). We
remind the reader that x(t) and xref(t) are the position of the robot and the ref-
erence, respectively, along the reference path. The tracking error has the following
dynamics

Δ̇(t) = v(t) − vref. (3.1)

As defined in Chapter 2, v(t) is the robot velocity along the path and vref is the
reference velocity, which is assumed to be constant. We define the maximal velocity
of the robot as vmax and assume that the reference path is smooth enough for
the robot to be able to follow it at any velocity v(t) ∈ [0, vmax]. The velocity is
restricted to be non-negative to avoid wasting energy by covering the same path
segment multiple times.

SNR Sampling

The robot is assumed to be able to measure the link SNR, either by comparing the
received signal strength of received packets with the background noise level, or by
getting reports back from the base station. We will assume that it can sample the
SNR at equidistant positions

xi � δi, i = 0, 1, . . . ,

⌊
T vref

δ

⌋
,

along the path, where δ is defined as the distance between samples. We also de-
fine the notation γi � γ(xi). In the following, we will distinguish between sparse
sampling, when δ ≥ λ/2 so the SNR samples can be regarded as independent, and
dense sampling, when δ < λ/2 so the samples are considered correlated.

Problem Formulation

As described above, the average utility of the wireless channel could be increased by
giving a robot freedom to deviate some from the reference position, so it can spend
more time at positions where the SNR is high. The robot can only get information
about the SNR at the sampling points, xi, so to maximize the time available to
spend at points with high SNR, we assume that it always moves at vmax between
sampling points. The problem is then how long to stop at each sampling point, or
equivalently, to control the velocity v(t):
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Table 3.1: Available channel information.

A priori information Sparse sampling
(δ ≥ λ/2)

Dense sampling
(δ < λ/2)

None Case 0
Known distribution of γ(xi) Case 1A Case 1B
Full knowledge of γ(xi) Case 2A Case 2B

We consider the tracking error dynamics (3.1) for a robot moving along a path
in an environment with static Nakagami fading, where the SNR is distributed as in
(2.5), with spatial correlation (2.8). The position x(t) and tracking error Δ(t) are
known, and the robot has access to channel information as specified in Table 3.1.
Find a stopping strategy, i.e., a rule that determines how long to stop at the current
sampling point, that yields high expected channel utility (2.2) while maintaining a
bounded tracking error |Δ(t)| ≤ Δmax ∀ t ∈ [0, T ]. We assume that Δmax > δ/2, so
the robot can always reach at least one sampling position.

We will study five different cases of available channel information. They differ
in the amount of a priori information available and the SNR sampling density, as
defined in Table 3.1. Having no a priori information (Case 0) is the nominal case,
which we will use as a reference. In Cases 1A and 1B, the joint distribution of
all SNR samples is assumed known. In practice, this could be predicted from a
map or estimated online, based on previous SNR samples. Finally, if the robot has
already traversed the path, it could store the full SNR as function of position, which
corresponds to Cases 2A or 2B. Note that this also requires accurate navigation, as
even small deviations from the previous path will reduce the correlation between the
current SNR and old measurements. For each case, we will derive the resulting SNR
distribution f j

γ , j ∈ {0, 1A, 1B, 2A, 2B}. This distribution can be used to compute
the expectation of any utility.

3.2 Stopping Strategies

In this section, we describe stopping strategies for each case above. We first derive
the decision horizon for the robot at each decision instance. We define the tracking
window, W (t) ⊂ R, as W (t) � {x : |x − xref(t)| ≤ Δmax}, i.e., the x-interval where
the tracking constraint is satisfied. Note that the window moves along the path at
velocity vref. As stated above, the robot always drives at vmax between the sampling
points, so it only needs to make stop-or-go decisions at sampling points. We denote
the current sampling point as xj , so at a decision time t, j = x(t)/δ. From xj , if the
robot drives at vmax without stopping, it can reach the positions xj+1, . . . , xj+N ,
where

N =
⌊

Δmax − Δ(t)
δ(1 − vref/vmax)

⌋
. (3.2)
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Figure 3.2: Illustration of the tracking window, W (t), i.e., the interval where
|Δ(t)| ≤ Δmax so reference tracking is maintained. From the current sample position
xj , the robot can reach xj+1, . . . , xj+N by driving at vmax, without stopping. It cannot
reach xj+N+1 without stopping first, since then it would go outside of W (t).

This is illustrated in Figure 3.2. It cannot reach xj+N+1 without stopping, since
then it would violate the tracking constraint. Thus, the robot must stop at one of
the N + 1 positions xj , . . . , xj+N for some time. Then the sample xj+N+1 becomes
reachable, and a new decision should be made.

The above discussion shows that when making a stop-or-go decision, the stop-
ping strategy only needs to consider a horizon of N future SNR samples. Note that
the driving time between samples does not need to be considered, since the robot
needs to traverse the whole path in a constant time T , regardless of the stopping
strategy. It will thus spend the time T vref/vmax driving, passing each part of the
trajectory once. Hence, the utility during this time is independent of the stopping
strategy. With this background, we now present stopping strategies for each case
of channel information.

No Channel Information (Case 0)
Without knowing the channel statistics, the robot cannot determine if a given SNR
sample is worth stopping at or not. Thus, we propose a stopping strategy that
maintains a low tracking error, Δ:

Uninformed Strategy: Stand still at xj until Δ(t) < −δ/2, then go to xj+1.
This strategy means that the robot stays close to the center of the tracking

window at all times. Note that the robot could still sample the SNR at all stops
and quickly have enough information for estimating fN

γ . Then it could switch to
the Partially Informed Strategy, described below, if it needs to improve the channel
utility.
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Known SNR Distribution
Knowing the SNR distribution, the robot can compare the current utility with what
can be expected further ahead. The decision to stop at a position where the utility
is high or continue exploring forward can then be formulated as an optimal stopping
problem (Chow, 1971). We now derive the optimal stopping rules for this problem
in the cases of sparse and dense sampling, respectively, and then summarize them
in a proposed partially informed strategy.

After sampling γj inside W (t), the robot can either stop there, which yields the
utility U(γj), or move forward to the next sample. If the robot rejects γj , there are
N samples left to choose from, so if it reaches γj+N , it must stop. This is an instance
of Moser’s problem of optimal stopping, which can be solved by induction (Moser,
1956). The result is a threshold function γ̄(N) such that the robot should stop at xj

if and only if γj > γ̄(N). Note that the threshold function will also depend on the
sampling density, δ. Below, we derive the threshold functions for the case of sparse
and dense sampling, respectively.

Sparse Sampling (Case 1A)

Define the maximal expected utility, when starting from sample γj , as

Vj(γj) � max{U(γj), E[Vj+1(γj+1)]}.

If the robot arrives at xj+N , it has to stop, so Vj+N (γj+N ) = U(γj+N ). We define
Aj+k � E[Vj+k(γj+k)], where k ∈ {1, . . . , N} and Aj+N+1 � 0. We compute Aj+k

through the induction

Aj+k = E[max{U(γj+k), Aj+k+1}]

=
∫ U−1(Aj+k+1)

0
Aj+k+1fN

γ (γ)dγ +
∫ ∞

U−1(Aj+k+1)
U(γ)fN

γ (γ)dγ.

The robot should stop if the current utility is higher than the maximal expected util-
ity ahead, so the stop threshold for γj is γ̄(N) = U−1(Aj+1). We remind the reader
that, through the induction above, Aj+1 depends on N , which depends on Δ(t).
As an example, if Δmax = λ, N ≤ 5, and the thresholds γ̄(N) for N = 1, . . . , 5 are
depicted in Fig. 3.3. In the figure, we have assumed U = UC, m = 1 and Ω = 0 dB.
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Figure 3.3: Stop thresholds for the Partially Informed Strategy, maximizing the
capacity and assuming independent SNR samples (Case 1A). If the robot has N future
samples to select from, it should stop at xj if γj > γ̄(N). Note that γ̄(0)|dB = −∞,
so it is not plotted.

Dense Sampling (Case 1B)

The correlation coefficient for any two samples γi and γj can be computed by (2.8),
with separation δ|i − j|. We define the maximal expected utility that can be found
after sampling until γj as

Ṽj(γ1, . . . , γj) � max{U(γj), E[Ṽj+1(γ1, . . . , γj+1)|γ1, . . . , γj]}.

Of course, Ṽj+N (γ1, . . . , γj+N ) = U(γj+N ). We define

Ãj+k(γ1, . . . , γj+k−1) � E[Ṽj+k(γ1, . . . , γj+k)|γ1, . . . , γj+k−1].

As above, we can let Ãj+N+1(γ1, . . . , γN ) = 0 and inductively compute

Ãj+k(γ1, . . . , γj+k−1)

=
∫ ∞

0
Ṽj+k(γ1, . . . , γj+k)fN

γj+k|γ1,...,γj+k−1
(γj+k|γ1, . . . , γj+k−1)dγj+k,

where fN
γj+k|γ1,...,γj+k−1

can be computed from the multivariate Nakagami PDF
fN

γ1,...,γj+k
(Aalo, 1995). Finding Ãj(γ1, . . . , γj−1) requires computing an N -dimen-

sional integral, which is computationally intractable as N grows.
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Figure 3.4: The first step in the induction to find stop thresholds for Case 1B. The
expected channel capacity at the last sample, Ãj+N (γj+N−1), is plotted as a blue line.
If it is less than the capacity at the current sample, UC(γj+N−1), (red dashed line),
the robot should stop. In this case, with ρ = 0.87, m = 1 and Ω = 0 dB, the threshold
is -1.7 dB, where the curves intersect.

To make the problem tractable, we propose a Markov assumption: Since the
correlation decays quickly with distance, we only consider the correlation between
adjacent samples. This yields the simplified induction

Ãj+k(γ1, . . . , γj+k−1) ≈ Ãj+k(γj+k−1)

=
∫ ∞

0
Ṽj+k(γj+k−1, γj+k)fN

γj+k|γj+k−1
(γj+k|γj+k−1)dγj+k,

which can be computed as a two-dimensional integral. To illustrate the first step of
the induction, Figure 3.4 shows Ãj+N (γj+N−1), for U = UC, m = 1 and Ω = 0 dB.
We assume a sample spacing of δ = λ/12, which gives a pairwise correlation coeffi-
cient of ρ = 0.87. We have assumed B = 1.15 Hz so the expected capacity for fN

γ (γ)
is 1 bit/s. The blue solid line depicts Ãj+N (γj+N−1) = E[Ṽj+N (γj+N )|γj+N−1]. Af-
ter sampling γj+N−1, the robot will stop if U(γj+N−1) (red dashed line) is higher
than Ãj+N (γj+N−1), or equivalently if γj+N−1 > U−1(Ãj+N (γj+N−1)). Otherwise
it moves on to xj+N . The threshold for stopping at xj is thus the intersection of
the graphs, i.e., γ̄(N) = γ : U(γ) = Ãj+1(γ). The graphs are flat at the intersec-
tion, but we have not experienced any accuracy problems in our simulations. As an
example, if Δmax = λ, N ≤ 30 in this case, and the thresholds for N = 1, . . . , 30
and U = UC are shown in Figure 3.5.
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Figure 3.5: Stop thresholds for the Partially Informed Strategy, maximizing the
capacity and assuming correlated SNR samples (Case 1B). If the robot has N future
samples to select from, it should stop at xi if γi > γ̄(N). Note that γ̄(0)|dB = −∞, so
it is not plotted.

To summarize this section, we have now computed the optimal stopping thresh-
olds for the following proposed strategy for Cases 1A and 1B:

Partially Informed Strategy: Stand still at xj while Δ(t) > −Δmax and
γj > γ̄(N), where N is computed from Δ(t) as in (3.2). Otherwise, continue to xj+1.

Note that the robot will never violate the tracking constraint by exceeding Δmax,
since the stop threshold for N = 0 is defined as 0. We now continue to the cases
when the robot has full information of the SNR as function of the position.

Full Channel Knowledge (Cases 2A and 2B)

If the robot knows the SNR along the whole path, we can expect higher result-
ing channel utility than when only the distribution is known. With full channel
knowledge, the optimal strategy does not depend on the choice of utility:

Fully Informed Strategy: Stand still at xj while Δ(t) > −Δmax and
γj = max{γj , . . . , γj+N }, where N is computed from Δ(t) as in (3.2). Otherwise,
continue to xj+1.

As above, the robot will never violate the tracking constraint by exceeding Δmax,
since if N = 0, the second stopping condition is vacuously satisfied. We now continue
to analyzing the resulting performance of each stopping strategy.
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3.3 Performance Analysis

In this section, we derive the resulting SNR distributions for each case, under the
proposed stopping strategies above. The distributions can be used to compute the
expectation with respect to any utility. We will give some examples of this in Sec-
tion 3.4.

No Channel Information (Case 0)
When the motion is independent of the SNR, the resulting SNR has the unbiased
original distribution:

f0
γ (γ) = fN

γ (γ)

We will use this later, assuming that whenever the robot drives at constant velocity,
it experiences the SNR distribution fN

γ .
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Known SNR Distribution
To derive the resulting SNR distribution, we first compute the distribution of the
value of N when the robot arrives at a sample. Using this, we can derive the CDF
of the SNR experienced while standing still. Finally, we add the influence of the
SNR distribution experienced when driving, as derived above.

To begin, we note that when standing still, the decision instances for the robot
occur when Δmax − Δ(t) is an even multiple of δ(1 − vref/vmax), i.e., with constant
intervals. If the robot decides to drive, Δ(t) increases by

δ

vmax
(vmax − vref) = δ

(
1 − vref

vmax

)
.

Thus, the robot always stands still for a constant time between decision instances.
Hence, to find the SNR distribution when standing still, we can find the distribution
of the SNR for each stop interval, as they have equal duration. Further, N increases
by one for each stop interval, and decreases by one if the robot drives. This will be
used in the analysis.

We define Nj as the value of N when the robot arrives at the sample position xj

and stopj as the event that, at a decision instance, the robot chooses to stand still
at xj . We further define the highest possible value of N as

Nmax �
⌊

2Δmax

δ(1 − vref/vmax)

⌋
.

To model the fact that the robot is forced to drive when Δ(t) ≤ −Δmax, we can
assume that γ̄(Nmax) = ∞. The cases of sparse and dense sampling are now treated
separately.

Sparse Sampling (Case 1A)

If and only if the robot moves to the next sample position, N decreases by one. It
is therefore a necessary and sufficient condition for Nj ≤ n that

γj−k ≤ γ̄(n + k) ∀ k ∈ {1, . . . , kmax},

where kmax � Nmax − n − 1. Note that these are all independent events. The condi-
tion is necessary since if there is any k ∈ {1, . . . , kmax} such that γj−k > γ̄(n + k),
then Nj−k+1 > n + k − 1, which implies that Nj > n. It is also sufficient, since it
implies that Nj−k ≤ n + k. Hence, the probability that Nj ≤ n is

P (Nj ≤ n) =
kmax∏
k=1

P (γj−k < γ̄(n + k)). (3.3)

We now have a distribution for Nj, i.e., the value of N as the robot arrives at xj .
Figure 3.6 shows how Nj and γj determine the number of stop intervals that the
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Figure 3.6: The number of time slots that the robot stands still at a sample posi-
tion xj is determined by Nj , the value of N when it arrives, and γj . This illustrates
the case Nmax = 4 and the thick red line indicates the half-open set where Nj ≤ 1
and γj > γ̄(1).

robot spends at xj . The CDF of γj , given that the robot decides to stand still, can
thus be computed as follows:

P (γj < z|stopj)

=
∑Nmax−1

n=0
∑kmax

k=0 (k + 1)P (Nj = n)P (γ̄(n + k) < γj < γ̄(n + k + 1) ∧ γj < z)∑Nmax−1
n=0

∑kmax
k=0 (k + 1)P (Nj = n)P (γ̄(n + k) < γj < γ̄(n + k + 1))

Here, each term is weighted by k + 1, which is the number of stop intervals corre-
sponding to each combination of Nj and γj . The double sums can be simplified to
a single sum, computed over half-open sets as the one indicated by the thick red
line in Figure 3.6. This yields

P (γj < z|stopj) =
∑Nmax−1

n=0 P (Nj ≤ n)P (γ̄(n) < γj < z)∑Nmax−1
n=0 P (Nj ≤ n)P (γj > γ̄(n))

,

which can be computed using the CDF (2.7), (3.3) and

P (γ̄(n) < γj < z) = max{0, P (γj < z) − P (γj < γ̄(n))}.

Hence the PDF for γ when standing still at some sample position xj can be com-
puted as

f1A
stop(z) = d

dz
P (γj < z|stopj). (3.4)
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Figure 3.7: Resulting SNR distributions for the cases of a priori knowledge of the
channel statistics and a maximal tracking error of Δmax = λ. The blue solid line
shows f1A

γ (γ), with 5 samples taken λ/2 apart, so they are considered independent.
The green dashed line shows f1B

γ (γ), with 30 correlated samples taken λ/12 apart.
The Nakagami distribution (dotted magenta line), is included for comparison. It cor-
responds to driving at constant velocity, as in Case 0.

To find the overall SNR distribution for Case 1A, we recall that the fraction
vref/vmax of the time is spent driving, when the robot experiences the SNR distri-
bution fN

γ . The rest of the time is spent standing still at an SNR sample, whose
distribution is given by (3.4). The resulting PDF is

f1A
γ (γ) =

(
1 − vref

vmax

)
f1A

stop(γ) + vref

vmax
fN

γ (γ), (3.5)

which is illustrated by the blue solid line in Figure 3.7. The figure assumes δ = λ/2,
Δmax = λ and vref/vmax = 0.2.

We now move on to the case of dense sampling, where the samples can no longer
be assumed independent.
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Dense Sampling (Case 1B)

The analysis is similar to Case 1A, but using conditional probabilities. As above,

P (N ≤ n|γj) = P (γj−1 < γ̄(n + 1)|γj)

×
kmax∏
k=2

P (γj−k < γ̄(n + k)|γj−k+1 < γ̄(n + k − 1)).

After simplification, the CDF of γj , given that the robot is standing still at xj is

P (γj < z|stopj) =
∑Nmax−1

n=0 P (Nj ≤ n|γ̄(n) < γj < z)P (γ̄(n) < γj < z)∑Nmax−1
n=0 P (Nj ≤ n|γj > γ̄(n))P (γj > γ̄(n))

.

The conditional probabilities above can be computed using the bivariate Nakagami
PDF fN

γ1,γ2 (γ1, γ2) (Simon and Alouini, 1998):

P (γ1 < z1|z2 < γ2 < z′
2) =

∫ z1
0
∫ z′

2
z2

fN
γ1,γ2(s, t)dtds∫∞

0
∫ z′

2
z2

fN
γ1,γ2(s, t)dtds

(3.6)

As in Case 1A, the robot will spend a fraction vref/vmax of the time driving, and
the rest of the time standing still. The resulting overall PDF for the SNR is then

f1B
γ (γ) =

(
1 − vref

vmax

)
d
dz

P (γj < z|stopj) + vref

vmax
fN

γ (γ), (3.7)

which is plotted as a green dashed line in Figure 3.7. The figure assumes δ = λ/12,
Δmax = λ and vref/vmax = 0.2.
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Full Channel Knowledge
Under the Fully Informed Strategy, if the robot chooses to stop at a sample γj , this
is the best out of Nmax samples. Selecting the best out of Nmax SNR samples taken
with a mobile robot is equivalent to selection combining diversity, where a receiver
selects the best out of Nmax antennas. For antennas separated enough so they can
be independent, the analysis is straightforward, as we will see below. For correlated
antennas, as discussed in Chapter 2, we use an approximation to compute the joint
CDF.

Sparse Sampling (Case 2A)

To find the PDF of the best out of Nmax independent samples, we start by comput-
ing the CDF of a single sample. Hence, the PDF of the best sample is

f2A
stop(γ) � d

dz

[
P (γ < z)Nmax

]
.

As above, the robot will spend a fraction vref/vmax of the time driving at constant
velocity, so the resulting PDF of the SNR will in this case be

f2A
γ (γ) =

(
1 − vref

vmax

)
f2A

stop(γ) + vref

vmax
fN

γ (γ). (3.8)

This is illustrated in Figure 3.8, which assumes that δ = λ/2, Δmax = λ and
vref/vmax = 0.2. We now turn to the case of correlated samples.

Dense Sampling (Case 2B)

To compute the PDF for the best out of Nmax correlated SNR samples, we use
the approximation of exponential correlation as discussed above. The correlation
coefficient of two adjacent SNR samples is ρ = J2

0 (2πδ/λ), where δ is the inter-
sample distance. We then approximate the correlation between any two samples γj

and γi as ρ|j−i|. This allows us to approximate the multivariate Nakagami CDF
P (γ1 < z, . . . , γNmax < z) (Aalo, 1995). Similar to the above case, the resulting PDF
is

f2B
γ (γ) =

(
1 − vref

vmax

)
f2B

stop(γ) + vref

vmax
fN

γ (γ), (3.9)

where
f2B

stop(γ) � d
dz

P (γ1 < z, . . . , γNmax < z).

It is illustrated in Figure 3.8, assuming that δ = λ/12, Δmax = λ and vref/vmax = 0.2.
Comparing Figures 3.7 and 3.8, we see that both the Partially Informed Strategy

and the Fully Informed Strategy produce a positive bias in the resulting PDF,
compared to the Nakagami distribution. The staircase effect in the PDFs for the
Partially Informed Strategy comes from the discrete thresholds, which are denser



3.3. Performance Analysis 47

−30 −20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

γ (dB)

P
D

F

Figure 3.8: An example of probability density functions f2A
γ (γ) (Case 2A, black solid

line) and f2B
γ (γ) (Case 2B, red dashed line). This shows the PDF of the resulting

SNR when the robot has full knowledge of the SNR waveform, e.g., if this has been
measured on a previous pass. The maximum tracking error is Δmax = λ, so in Case 2A,
the robot always drives to the best of the 5 independent samples that it can reach,
and in Case 2B it has 30 correlated samples to choose from. The PDF for Nakagami
fading (dotted magenta line), is included for comparison. It corresponds to driving at
constant velocity, as in Case 0.

in Case 1B than in Case 1A, making the resulting PDF smoother. The quantitative
differences between the cases will be clearer in the next section, where we use the
PDFs to compute expectations of the channel utilities.
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3.4 Simulations

To illustrate the performance of the proposed strategies, we have compared sim-
ulations with the analytically computed expected utilities under various tracking
constraints. We have also simulated a trajectory of the system under the Partially
Informed Strategy, to clarify how it works. But first we describe the simulation
setup.

Simulation Setup

In all simulations, we have assumed a distance of δ = λ/2 between samples for
sparse sampling and δ = λ/12 for dense sampling. In the latter case, this yields
a correlation coefficient of ρ = 0.87 between adjacent samples. We also assume
Rayleigh fading (m = 1) and, unless specifically stated, an average SNR of Ω = 0 dB.
Further, we assume that vref/vmax = 1/5, so 20% of the time is spent driving. The
bandwidth was chosen as B = 1.15 Hz so the capacity was normalized to 1 bit/s
in Case 0. We assumed QPSK modulation and a packet length of NP = 65 bytes
and normalized the throughput by assuming R0 = 1 packet/s. Sparse sampling was
simulated by generating independent samples from the distribution fN

γ . To generate
correlated samples, we used the Rayleigh fading simulator proposed by Zheng and
Xiao (Zheng and Xiao, 2003), setting the number of scatterers to 100.

Example Trajectory

To illustrate the Partially Informed Strategy, we have simulated a trajectory of the
system, with Δmax = λ. We have chosen to maximize the capacity, i.e., U = UC.
Figure 3.9 shows the relative position, Δ(t) and the instantaneous SNR, γ(t) during
8 s of the trajectory. The robot stops when it finds a high SNR value, creating
long periods of high capacity. This biases the SNR distribution, compared to the
Nakagami distribution. When the robot stands still, Δ(t) decreases. The SNR is
constant, but the stop threshold γ̄(N) increases as the number, N , of reachable
samples in front of the robot increases. Eventually the robot starts driving again,
either because the SNR is below the threshold or if Δ(t) = −Δmax. Similarly, the
robot will always stop before driving past Δ(t) = Δmax since γ̄(N = 0) = 0.

Utility vs. Tracking Tolerance

To illustrate how the expected utility, U(γ), improves when the tracking tolerance,
Δmax, is increased, we have used the PDF:s (2.5), (3.5), (3.7), (3.8), (3.9) to compute
the expectation. We have also compared with simulations, for each of the five cases.
The results, both for capacity, U = UC, and throughput, U = UT, show that the
greatest gain in utility is achieved already when allowing small deviations from the
reference. Table 3.2 shows Nmax, i.e., the maximal number of reachable samples for
the robot, for each value of Δmax.
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Figure 3.9: An example trajectory when using the Partially Informed Strategy. When
the robot drives, the SNR, γ, varies. By stopping at positions where γ is high, it can
increase the average link capacity. The relative position, Δ(t), increases when the
robot drives, and decreases when it stands still. The robot samples γ(xj) and stops
if it exceeds the stop threshold. The dashed red lines depict ±Δmax, which are the
tracking error bounds.

Table 3.2: Maximal number of reachable samples, Nmax

Δmax λ/4 λ/2 λ 3λ/2 2λ 3λ 4λ

Independent 1 2 5 7 10 15 20
Correlated 7 15 30 45 60 90 120
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Figure 3.10: Expected link capacity, UC, as a function of the tracking error tolerance,
Δmax, for the five cases considered. The bandwidth B was chosen so the capacity
was 1 bit/s in the nominal Case 0. Analytical predictions are drawn as solid lines, and
simulations are shown as markers in the same color.

Figure 3.10 shows the resulting expected capacity, UC, in all five cases. As
expected, knowledge of the full waveform yields higher expected capacity than just
knowing the SNR distribution. This is true both for sparse sampling (Cases 1A
and 2A) and dense sampling (Cases 1B and 2B). Also, dense sampling provides more
information than sparse sampling, which results in higher capacity. The differences
between simulation and theory for Cases 1B and 2B come from the approximations
described above, used to handle the correlation between non-adjacent samples. We
finally note that for wireless communication at 2.4 GHz, allowing a tracking error
in the order of 0.5 m (4λ) can offer a doubling of the link capacity, even with
knowledge only of the fading distribution.

Figure 3.11 shows analytical predictions and simulation results of how the ex-
pected throughput, UT, varies with the tracking error tolerance, Δmax. Here we
have assumed a mean SNR of Ω = 3 dB, which yields a throughput of 0.11 pack-
ets/s. Similar to the case of capacity, the throughput increases most rapidly for
small tracking error tolerances. Both the analytical prediction and the simulations
show that Case 1B yields higher throughput than Case 2A. This means that full
knowledge of the SNR is less important than sampling densely when optimizing
for throughput. A possible explanation is that UT(γ) transitions from 0 to R0 in a
very narrow SNR interval. Thus, exploring and stopping at the first SNR sample
with reasonable throughput yields similar performance as finding the highest SNR
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Figure 3.11: Expected link throughput, UT, as a function of the tracking error
tolerance Δmax, for the five cases considered. The packet transmission rate was chosen
as R0 = 1 packet/s for normalization. Analytical predictions are drawn as solid lines,
and simulations are shown as markers in the same color.

inside the tracking window. As above, we note that for a 2.4 GHz link with low
nominal throughput, allowing a tracking error of 0.5 m (4λ) can yield a throughput
improvement of five times or more.

3.5 Experimental Evaluation

The first objective of our experiments was to validate the model of static Nak-
agami fading by measurements in various environments. The second objective was
to implement the Partially Informed Strategy with sparse sampling (Case 1A) and
compare it to the Uninformed Strategy (Case 0). We have tested this in environ-
ments that exhibit static fading, as well as where the fading is more time-varying,
to investigate the robustness of the approach. Before going into the experiment
results, we describe the setup.

Experiment Setup

We used an indoor differential drive robot, equipped with a laptop and two Tmote
Sky transceivers. Specifications for the Tmote Sky are given in Chapter 2. As il-
lustrated in Figure 3.12, one transceiver was used for measurements. It listened to
another Tmote Sky which acted as base station, broadcasting R0 = 64 packets/s,



52 Motion Planning under Multipath Fading: Deterministic Tracking Constraints

Communication-aware
motion controller

Mission planner

Path planner

Robot

Base station Way-
points

64 beacons/s

SNR Reference
trajectory

Wheel
velocities

Figure 3.12: Experiment setup. A communication-aware motion controller onboard
the robot computes the wheel velocities based on the reference trajectory and the SNR
of the beacons from the base station. The reference trajectory in transmitted from a
path planner, which finds obstacle-free trajectories between waypoints specified by a
mission planner.

each NP = 65 bytes long. The other transceiver, using another channel, received
lateral steering commands for the robot from an operator, acting as path planner.
Letting the robot autonomously control its forward velocity while manually steering
it along the path, allowed quick setup at various test locations, without the need
for any navigation other than odometry. The paths were chosen such that different
segments were never closer than λ/2, to avoid undesired correlation between mea-
surements. The robot measured the received signal strength of each received packet.
Measurements of the background noise levels in the various locations indicate a con-
stant noise level of −96 dBm in the Tmote Sky, with a standard deviation of about
1 dB.

The experiments were carried out at eleven sites on the KTH campus, chosen
to represent different types of surroundings and various degrees of motion in the
environment. Below, we list the sites and some estimated parameters for the fading
distributions, to validate our communication model. Figures 3.13 and 3.14 contain
photos from each site.

Model Validation
The model of Nakagami fading is well-established, but we wanted to validate it
and the assumption of static fading at the locations where we later performed the
communication-aware motion planning experiments. To do this, we have compared
the distribution of the RSS while driving to that when standing still, at eleven
different locations on the KTH campus.

In the experiments, we measured the RSS while driving along a path. To isolate
the multipath fading from the effects of path loss and shadowing, we subtracted
the moving average of the RSS, computed over a window of 1 m. This length was
empirically chosen so the path loss and shadowing would be approximately constant
inside the window. We then estimated the Nakagami parameter m as in (2.6) for
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Figure 3.13: Sites 1 through 7 for the experiments, starting from the top left. These
sites had very little motion during the experiments.
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Figure 3.14: Sites 8, 9, 10 and 11 for the experiments, starting from the top left. At
these sites, people were passing by during the experiments, and Site 11 was signifi-
cantly more crowded than the others.

the deviations from the moving average and compared the resulting CDF, F N
γ (γ),

to the empirical distribution function, Fγ(γ), of our observations. As a metric of
the goodness of fit, we have used the Kolmogorov-Smirnov statistic (Massey, 1951)

D � sup
γ

|F N
γ (γ) − Fγ(γ)|.

Then we measured the RSS while the robot was standing still at five positions
along the path, 2 min at each. For each set of measurements, we estimated m for
the deviations from the mean. We also estimated mtot, which we define as the
Nakagami m-parameter for the total SNR histogram of all five stops. Note that the
deviations have a mean of about 0 dB, so m is inversely proportional to the SNR
variance. High values of m correspond to a narrow distribution, which means that
the assumption on static fading is valid.

The location with the highest value of mtot, i.e., the most static fading, was
Site 1, a workshop full of machinery and metal cabinets, but with no people present.



3.5. Experimental Evaluation 55

0 5 10 15 20 25 30 35 40 45
−95

−90

−85

−80

−75

−70

−65

−60

−55

x (m)

R
SS

(d
B

m
)

−30 −25 −20 −15 −10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

RSS deviation (dBm)

P
D

F
Figure 3.15: Measurements of the received signal strength when driving at constant
velocity in Site 1, a cluttered but unattended workshop. The left graph shows the
RSS (blue) and the moving average (red). The right graph shows the normalized
histogram of the deviations from the moving average (blue) and the corresponding
best fit Nakagami PDF (red), with m = 1.53.

The results of driving in the workshop are shown in Figure 3.15. On the left are
the RSS samples (blue) taken when driving, with the moving average (red) su-
perimposed. On the right is the normalized RSS histogram (blue) with the best
fit Nakagami PDF fN

γ (γ) (red) superimposed, with m = 1.53. The Kolmogorov-
Smirnov statistic was D = 0.048. Note that m = 1 corresponds to Rayleigh fading
and that the mean, Ω, is zero, since we consider deviations from the moving average.
The RSS recorded when standing still in the workshop is depicted in Figure 3.16.
Each subfigure corresponds to a stop of 2 min at some position along the path.
The Nakagami parameters, m, are 180, 27, 64, 77 and 240. As the values of m are
almost two orders of magnitude higher than those when driving, this indicates that
the assumption of static fading is very accurate in this environment.

The least static of the sites, i.e., with the lowest value of mtot, was Site 11,
a busy hallway. The experiment was carried out during daytime, with students
walking past the robot during the whole experiment. The measured RSS when
driving is shown in Figure 3.17 and m was estimated to 1.77. The Kolmogorov-
Smirnov statistic was D = 0.032. The RSS measured when standing still is shown
in Figure 3.18 and m was 17, 19, 19, 8.3 and 13. The values of m are one order of
magnitude less than those in the workshop, which makes this the least static of our
locations. Nevertheless, even at this site, the RSS variance is about one order of
magnitude less when standing still than when driving. In the next subsection, we
will see how the various degrees of static fading affect the resulting channel utility.
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Figure 3.16: Measurements of the received signal strength when standing still at
five different locations along the path at Site 1. The Nakagami parameter m for each
measurement set is 180, 27, 64, 77 and 240, starting with the top row. High values of
m correspond to a narrow RSS distribution, which indicates that this location exhibits
static fading.
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Figure 3.17: Measurements of the received signal strength when driving at constant
velocity in Site 11, a crowded hallway. The left graph shows the RSS (blue) and
the moving average (red). The right graph shows the normalized histogram of the
deviations from the moving average (blue) and the corresponding best fit Nakagami
PDF (red), with m = 1.77.
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Figure 3.18: Measurements of the received signal strength when standing still at five
different locations along the path at Site 11. The Nakagami parameter m is 17, 19,
19, 8.3 and 13, starting with the top row. This shows that this location exhibits less
static fading than the workshop. The sparsity of the first and last graph comes from
frequent packet losses.
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Table 3.3: Measured fading parameters.

Site Description Driving Standing still
no. (Activity level) m D m mtot

1 Workshop (0) 1.53 0.048 180 27 64 77 240 91
2 Corridor (0) 1.92 0.031 100 80 41 18 62 78
3 Storage (0) 1.60 0.021 58 36 360 125 99 75
4 Basement (0–1) 1.36 0.032 117 81 220 46 50 69
5 Hallway (0) 1.96 0.035 12 55 28 92 21 39
6 Basement (0) 1.47 0.033 44 25 24 72 86 36
7 Office (0) 1.26 0.030 40 59 22 32 66 35
8 Hallway (1) 1.54 0.032 47 18 23 26 31 26
9 Lab (1) 1.38 0.024 49 17 27 28 22 23

10 Corridor (1) 1.54 0.030 14 27 68 42 5.2 14
11 Hallway (2) 1.77 0.032 17 19 19 8.3 13 13

Table 3.3 summarizes the results of all validation experiments, with the sites
ordered by decreasing mtot. The level of activity at each site is judged on a scale of
0 (empty), 1 (people passing now and then) and 2 (crowded). The table suggests
that the estimated Nakagami parameter mtot is useful for reflecting the activity
level. The results show that the estimated Nakagami m parameter for the RSS
distribution ranges from 1.3 to 2.0, which indicates that the fading is slightly less
severe than Rayleigh fading. Each RSS histogram contained about 23 000 samples,
so the limit for the Kolmogorov-Smirnov test at the 99% significance level is D =
0.01 (Massey, 1951). The measurements thus do not validate the assumption on
Nakagami fading, but given that D is only about three times the rejection limit
and that the superimposed graphs of the PDF show high similarity between the
distributions, we believe that it is a useful approximation. With regards to the
assumption on static fading, all sites exhibited values of m that were one or two
orders of magnitude larger when standing still than when driving. This indicates
that even if the fading is not perfectly static, it makes sense to stop to communicate
if the RSS is high. The assumption on static fading is thus meaningful in all locations
tested. In the next section, we will see how the degree of static fading affects the
resulting channel utility when implementing the Partially Informed Strategy.
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Figure 3.19: Partial system trajectory during test 11A in Site 11, a crowded hallway.
The blue dots in the upper graph denote the RSS of received packets and the green
line is the lowest stop threshold, corresponding to γ̄(1). If the RSS at a sampling point,
xi, is higher than the threshold, the robot stops. Stopping causes periods of high RSS,
which increases the average throughput, compared to driving at constant velocity. The
lower graph shows the relative position, Δ, which is constrained to ±Δmax, shown by
red dotted lines.

Results

As a proof of concept and to investigate what happens to the performance of the
proposed method when the fading is less static, we have implemented the Partially
Informed Strategy for independent samples (Case 1A). As a comparison, we have
used the Uninformed Strategy (Case 0). We have allowed a maximum tracking error
of Δmax = 2λ = 25 cm and a sample spacing of δ = λ/4 = 3.1 cm. The velocities
were vref = 2.5 cm/s and vmax = 12.5 cm/s. To adapt the stop thresholds to changes
in path loss and shadowing along the path, we have continuously estimated the
RSS distribution based on previous measurements. To avoid biasing the estimate,
we have only used measurements taken when driving.

Figure 3.19 shows an example trajectory of the system, during test 11A, the first
test at Site 11, a crowded hallway. The upper graph shows the RSS (blue) of each
received packet. If the robot reached a sampling point xi and the RSS was higher
than the stop threshold, it stopped. As Δ(t) decreased during the stop, the RSS was
compared to increasingly higher thresholds, as defined in the Partially Informed
Strategy, until the robot started driving again. The RSS level corresponding to
the lowest threshold (green), γ̄(1), is included in the graph for illustration. Note
how the threshold changed as the estimate of the RSS distribution was updated.
Also note the complete outage for 25 s at t = 325 s. Due to shadowing, almost
all packets were lost in this interval, so the robot followed the forward edge of
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Figure 3.20: Expected throughput, UT, as function of the mean SNR, Ω, for Cases 0
and 1A when Δmax = 2λ. The red stars denote experiment results, equivalent to a
power gain of about 3 dB over Case 0.

the tracking window until the outage stopped. This happened very frequently in
all tests, reducing the efficiency of the proposed strategy. We believe that these
variations due to shadowing are the main reason for the differences between the
measured throughput and the analytical prediction, which assumes constant mean
SNR, Ω, during the whole experiment.

Table 3.4 summarizes the results of all experiments. It shows the number of the
experiment (derived from the site number), a site description, the average through-
put of the Uninformed Strategy (Case 0) and that of the Partially Informed Strategy
(Case 1A). The maximum throughput is R0 = 64 packets/s. Finally, the table also
states the relative throughput improvement of each test. The locations are ordered
by decreasing mtot as in Table 3.3, i.e., with the most static fading first.

Figure 3.20 illustrates the experiment results. For comparison, we have plotted
how the expected throughput UT for the Uninformed Strategy (Case 0) and the
Partially Informed Strategy with independent samples (Case 1A) vary with Ω for
m = 1.5 (the median of the measurements). The result of each experiment is shown
as a star, at the Ω that corresponds to the throughput of the Uninformed Strategy
and the UT that corresponds to the throughput of the Partially Informed Strategy.
The figure shows that the Partially Informed Strategy yields the highest benefits
in the transition region, where the throughput is low but not zero. The experiment
results are equivalent to an SNR improvement of about 3 dB, i.e., doubling the
received signal power.
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Figure 3.21: Throughput improvement of the experiments, as a function of the
nominal throughput of Case 0. The experiment results are categorized according to
the judged activity level. The results show that the Partially Informed Strategy can
yield significant throughput improvements if the nominal link utility is low. Also, the
strategy is robust to moderate levels of motion in the environment.

To further illustrate how the improvements of the Partially Informed Strategy
vary with Ω, Figure 3.21 shows the throughput improvement of each experiment, as
a function of the nominal throughput, for Case 0. For comparison, we have included
the analytic prediction, computed using (3.5), m = 1.5 and Ω chosen so that the
expected throughput for Case 0 equals the measured throughput. As commented
above, this represents an ideal case, when Ω is constant, so there is no change in
the path loss or shadowing. The experiment results are categorized according to
the judged activity levels, and there is no clear difference between results from sites
with activity level 0 or 1. The crowded Site 11 does, however, stand out and yielded
less improvements than the trend of the other experiments. This shows that the
strategy is robust to moderate violations of the assumption on static fading.
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Table 3.4: Experiment results.

Exp. Description UT (packets/s) Improvement
no. (Activity level) Case 0 Case 1A
1A Workshop 12 28 130%
1B (0) 11 23 120%
1C 49 57 18%
1D 48 56 16%
2A Corridor 42 53 27%
2B (0) 35 47 33%
3A Storage 36 51 44%
3B (0) 46 57 25%
3C 23 39 68%
3D 6.3 13 110%
4A Basement 9.4 21 120%
4B (0–1) 13 29 120%
5A Hallway 30 43 42%
5B (0) 27 42 56%
6A Basement 23 42 83%
6B (0) 23 42 80%
6C 48 56 17%
6D 48 57 18%
7A Office 23 38 63%
7B (0) 12 21 77%
8A Hallway 23 39 68%
8B (1) 25 40 61%
8C 27 41 50%
9A Lab 5.3 15 190%
9B (1) 21 37 76%
9C 22 36 68%
9D 44 53 20%

10A Corridor 26 44 68%
10B (1) 10 22 120%
10C 6.3 16 150%
10D 4.4 14 230%
11A Hallway 28 36 28%
11B (2) 20 27 40%
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3.6 Summary

Given a reference trajectory and an associated bound, Δmax, on the tracking error,
we have proposed and analyzed two novel strategies for communication-aware mo-
tion planning: If the SNR distribution is known (or can be estimated), the robot
can use an optimal stopping approach when sampling, to spend time at positions
that maximize the expected channel utility. If the SNR along the trajectory is fully
known, the robot should spend as much time as possible at the position with highest
SNR inside the tracking window.

The analysis shows that the expected link capacity or throughput can be signif-
icantly increased even by allowing small tracking errors, in the order of 2–4 wave-
lengths. Increasing the tracking tolerance above this yields minor improvements.
Having full knowledge of the SNR, as in Cases 2A and 2B, offers some performance
improvements, at the price of high requirements on the navigation accuracy and the
need to acquire the SNR information beforehand. For both Cases 1A/1B and 2A/2B,
increasing the sampling density provides a marginal increase in performance, at the
price of significantly higher complexity in the analysis and (for Case 1B) comput-
ing the stop thresholds. This is analogous to the analysis of uniform linear antenna
arrays, where is can be shown that the spectral efficiency quickly converges as the
number of antenna elements in a given space increase (Muharemovic et al., 2008).
As shown in Figure 3.20, the proposed strategies are most motivated in the transi-
tion region, where the link quality is low but not zero.

Our measurements in various locations validated the model of static multipath
fading. The SNR variance was one or two orders of magnitude less when standing
still than when driving, which motivates stopping at positions with high SNR to
introduce a positive bias in the SNR distribution over time. The assumption on the
fading being Nakagami distributed was not formally validated, but the results nev-
ertheless show that it is a good approximation. We have experimentally compared
implementations of the proposed Partially Informed Strategy and the nominal Un-
informed Strategy. The results show that the Partially Informed Strategy yields
throughput improvements of over 100% when the nominal link utility is low, and
that it is robust to moderate levels of motion in the environment.

The proposed stop-and-go motion represents a type of antenna diversity over
time, which closely parallels other types of diversity, as described in Chapter 2. As
mentioned above, the analysis of Cases 2A and 2B directly corresponds to selec-
tion combining, where a receiver uses the antenna with the best SNR. And the
optimal stopping in Cases 1A and 1B bears similarity to switch-and-examine diver-
sity (Alexandropoulos et al., 2010), except that the robot does not have the option
of going back to previous samples.

During the experiments, we observed that shadowing caused periods of complete
outage, when the proposed strategies were ineffective. Since the analysis assumes
constant path loss and shadowing, this appears to be the main reason for the dif-
ference between the measured and predicted throughput improvements. For future
work, it would be interesting to increase the tracking tolerance to the spatial scale
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of the shadowing, to allow the robot to quickly pass areas with unfavorable shadow-
ing. Another interesting extension would be to use transmitters with higher output
power, such as mobile phone base stations, which would allow the robot to operate
farther from the base station. This can be expected to lead to more constant path
loss and less pronounced shadowing, which would be beneficial for the performance
of the proposed strategies.



Chapter 4

Motion Planning under Multipath Fading:
Probabilistic Tracking Constraints

In this chapter, we continue the investigation of tracking a reference trajectory
in a multipath fading environment. We restrict the problem to a simple strategy
that is well suited for implementation on robots with low processing power and

slow channel quality sensors: Let the robot drive at a constant velocity vd for a
constant time τd and then stop. After stopping, it measures the SNR and then
stands still for a time τs(γ) before starting over and driving again. By choosing
a stop-length policy τs(γ) that stays longer at positions with high SNR, we can
improve the average link quality, compared to driving at constant velocity.

To maintain reference tracking, we will impose a probabilistic tracking error
constraint, as opposed to the deterministic constraint in Chapter 3. The stop-length
policy is chosen so that the expected velocity equals the reference velocity. Then we
propose a cascaded feedback controller to compensate for any drift away from the
reference position. This chapter also considers time-triggered stopping, as opposed
to stopping when we find high SNR, as in Chapter 3, or stopping on demand when
a data buffer is filling up, as in Chapter 5. This has some important advantages.
First, time-triggered stopping does not require searching for local maxima of γ.
By stopping and then sampling, we can use slow sensors and it is easy for the
robot to stand still to maintain the SNR if it is found to be high. Second, as we
will see below, the controller architecture is simple and implementable on resource-
constrained platforms. Third, by ensuring that the constant driving distance vdτd

between SNR samples is long enough, the samples can be regarded as independent,
which facilitates the statistical analysis.

In the following section, we describe the strategy of time-triggered stopping and
the proposed controller architecture. We then formulate the problems of designing
each subsystem of the communication-aware controller. First we design the rule for
stopping times in Section 4.2, then we design a feedback controller for the tracking
error in Section 4.3. The last subsystem is a channel estimator, designed in Sec-
tion 4.4. We report experiments on the system in Section 4.5 and then summarize.

65
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4.1 Preliminaries

Here we define time-triggered stopping and the proposed controller architecture,
then we formally state the problem.

We assume that the relative position, Δ(t), of the robot follows (3.1) and define
time-triggered stopping as moving with the velocity

v(t) =

{
0 when tk ≤ t < tk + τs(γ[k])

vd else,

for all k ≥ 0, where the stop time instances are

tk = kτd +
k∑

m=1
τs(γ[m − 1])

and γ[k] denotes the SNR, sampled at time tk.
Note that γ[k] is a discrete-time stochastic process and the distance vdτd between

samples is assumed long enough for the samples to be independent. We assume
static Rayleigh fading with distribution (2.4) for simplicity, but a similar approach
could be used for a more general SNR distribution. The choices of stop time lengths
τs do not affect the sampling. To allow comparison with the experiments, we will
optimize the throughput, UT(γ), defined in (2.3). We use a packet rate of R0 =
64 packet/s and assume QPSK modulation, with bit error rate given by (2.9).

We are now ready to specify the particular system architecture that we consider
in this paper, and formally state the associated control and estimation problems.

System Architecture
The proposed cascaded control structure is illustrated in Figure 4.1. The core of
the system is the stop-length controller, which drives the robot and determines the
stop durations, depending on the measured SNR, γ. To avoid drift away from the
reference position, the stop-length controller should maintain a given mean stop
length, with bounded variance. To determine what SNR values are worth stopping
for, it needs some information about the distribution of γ. Assuming Rayleigh
fading, the only parameter required is the mean SNR, Ω, which is estimated by a
channel estimator. If the estimate, Ω̂, is high, the robot will not stop very often.
If the estimate is low, the robot will think that many of the samples it finds are
unusually high, and thus stop more often. Hence, by adding a bias to the estimate,
we can affect the motion of the robot. This is what the tracking controller does, to
regulate the tracking error.
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Figure 4.1: Control architecture for time-triggered stopping. The stop-length con-
troller determines how long the robot should stand still at each equidistant sampling
position. The decision is based on the instantaneous SNR compared to the average, as
computed by the channel estimator. A tracking controller uses feedback to maintain
reference tracking.

Problem Formulation

The design of the communication-aware motion controller in Figure 4.1 can be
reduced to the following three subproblems:

1. Design a stop-length controller by finding a stop-length policy τs(γ) that max-
imizes the expected throughput while maintaining a given mean and variance
of τs.

2. Design a tracking controller that stabilizes the system around Δ = 0.

3. Design a causal channel estimator that uses samples of γ compute an estimate
Ω̂ of Ω.

In the next section, we describe the resulting stop-length controller. In Sec-
tion 4.3, a tracking controller is derived and Section 4.4 gives a suggested channel
estimator.

4.2 Stop-Length Controller

In this section, we first find the optimal stop-length policy and then approximate
it by a simpler threshold policy, better suited for implementation on a resource-
constrained robot. We compute the expected performance of both, which shows
that the threshold approximation gives negligible loss of performance. This is the
inner loop of the system in Figure 4.1. It works on a shorter time-scale than the
estimator and feedback controller. In this section, we therefore assume that the
fading is weak-sense stationary, so the mean SNR, Ω, is constant. We also assume
that it is known, but later we will replace it by an estimate from the channel
estimator.
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Optimal Stop-Length Policy
The optimal stop-length policy should maximize the throughput and maintain the
velocity vref.

When stopping at tk, the throughput is UT(γ[k]). When driving, the mean
throughput is

ŪT � E[UT(γ)] =
∫ ∞

0
[1 − Q(√γ)]8NP fγ(γ) dγ,

where NP is the number of bytes in each packet.
The average throughput of M stop and drive cycles is the total number of

packets received, divided by the total time:∑M
k=1
(
UT(γ[k])τs(γ[k]) + ŪTτd

)
∑M

k=1 (τs(γ[k]) + τd)
. (4.1)

In the limit as M → ∞, according to the strong law of large numbers, this converges
with probability one to

E[UT(γ)τs(γ)] + ŪTτd

E[τs(γ)] + τd
. (4.2)

To maintain the average velocity vref, we impose the constraint E[τs(γ)] = τd. Thus
maximizing the average throughput is equivalent to maximizing E[UT(γ)τs(γ)]. To
reduce the deviation from the reference position, we also limit the stop time variance,
denoted as σ2. The problem of designing the stop-length policy τs(γ) can then be
stated as:

max
τs(γ)

E[UT(γ)τs(γ)]

s.t. E[τs(γ)] = τd

E[(τs(γ) − τd)2] ≤ σ2

τs(γ) ≥ 0 ∀ γ

or equivalently

max
τs(γ)

∫ ∞

0
UT(γ)τs(γ)fγ(γ)dγ

s.t.
∫ ∞

0
τs(γ)fγ(γ)dγ = τd∫ ∞

0
(τs(γ) − τd)2fγ(γ)dγ ≤ σ2

τs(γ) ≥ 0 ∀ γ.

To solve the optimization, we quantize γ in steps of 1 dB, which yields a convex
quadratically constrained quadratic program (Boyd and Vandenberghe, 2004). An
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Figure 4.2: Optimal stop-length policy, τs(γ), (solid) for Ω=10 dB, τd=5 s (dotted),
σ2=75 s2 and QPSK modulation with packet length NP = 21. The corresponding
threshold policy (dashed) has the same expected stop-length and stop-length variance.

example solution, computed with the Matlab fmincon solver, for specific values of
Ω, τd, σ and NP , is illustrated in Figure 4.2. The solid line is the optimal stop-length
policy and the dotted line shows the constant drive time, included as a reference.
The dashed line is the threshold approximation, described below.

Threshold Approximation of the Optimal Policy
Solving for the optimal stop-length policy is computationally demanding and the
solution depends on Ω, so it cannot be done offline, unless the robot has enough
memory to store a complete look-up table. Inspired by the threshold nature of the
optimal policy, we instead propose a threshold approximation of the optimal policy:

τs(γ) =

{
ατd if γ > γth

0 else.
(4.3)

The stop length expectation and variance depend on the parameters α and γth:

E[τs(γ)] = ατde−γth/Ω

Var[τs(γ)] = α2τ2
d e−γth/Ω

(
1 − e−γth/Ω

)
(4.4)

By selecting α = σ2/τ2
d + 1 and γth = Ω ln α, the threshold policy yields the same

stop length expectation and variance as the optimal policy. Figure 4.2 shows the
threshold approximation of the corresponding optimal policy.
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Figure 4.3: Average normalized throughput, UT, as a function of the mean SNR, Ω.
The solid blue line represents the optimal stop-length-policy, the dashed green line is
the threshold stop-length policy and the dotted magenta line is the case of driving
at constant velocity. The figure shows that using the proposed time-triggered motion
is particularly beneficial in the transition region, where the signal is weak but still
detectable. The parameters are τd = 5 s, σ2=75 s2 and NP = 65.

Expected Performance
The optimal and threshold policies derived above can be compared with respect
to the average throughput. The average throughput (4.2) is plotted in Figure 4.3
for different values of the mean SNR. For comparison, we have also included the
throughput ŪT, achived when driving at constant velocity. The figure shows very
little difference in throughput between the optimal and threshold policies. We also
see that using the proposed strategy can improve the throughput by over 50%
compared to just driving, when the SNR is below 10 dB. The price we pay for this
improvement is some deviation from the reference position. In the next section, we
will discuss how to use feedback to keep this deviation small.

4.3 Tracking Controller

The tracking controller in Figure 4.1 uses the relative position Δ as input and
outputs an offset term u that is added to the estimate of the mean SNR. If u is
positive, the stop-length policy will increase its threshold for stopping, which makes
the robot stop less often and thus move faster. Conversely, a negative u leads to
lowering the threshold and thus slows the robot down. This allows us to maintain
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Figure 4.4: Model of the closed-loop system.

reference tracking and also adds robustness to errors in the channel model. If the
distribution of γ differs from (2.4), this may introduce a bias in the expected velocity,
which the feedback controller can compensate for.

Controller Design
We first derive a model of the system, in Figure 4.4, and then design a controller
using pole placement. The controller is formulated in discrete time, sampling irreg-
ularly at each instant tk so that Δ[k] � Δ(tk). We define d[k] as the change in
position during the interval tk ≤ t < tk+1, which yields Δ[k + 1] = Δ[k] + d[k]. The
transfer function from d to Δ is thus

G(z) � 1
z − 1

. (4.5)

The position change d[k] is a stochastic variable whose expectation does not depend
on k:

E[d] = τd(vd − vref) − vref

∫ ∞

0
τs(γ)fγ(γ)dγ.

With γth = 10u/10Ω̂ ln α, (4.4) yields the expectation

E[d] = τd

(
vd − vref − vrefα

(1−10u/10Ω̂/Ω)
)

.

As in Chapter 2, we use the notation |dB for a value in dB. This allows us to
introduce f as the expected value of d with the inputs in decibel:

f(Ω̂|dB + u) � τd

(
vd − vref − vrefα

(1−10(Ω̂|dB+u−Ω|dB)/10)
)

.

This static nonlinearity is shown in Figure 4.5. It has maximum slope

kmax � τdvref
ln 10
10

α(1−1/ ln α).
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Ω̂|dB + uΩ|dB

E[d]

τd(vd − vref)

τd(vd − (α + 1)vref)

Figure 4.5: The static nonlinearity f(Ω̂|dB+u), giving the expected change of relative
position per sampling period.

We do linear control design at the working point Ω̂|dB + u = Ω|dB, where the
nonlinearity f can be approximated with its derivative

k0 � τdvref
ln 10 ln α

10
.

The controller, F (z), is chosen to give the closed-loop transfer function

GΩΔ(z) = k0(z − 1)
(z − a)2

from Ω̃|dB to Δ. The zero in z = 1 ensures that any bias in Ω̃|dB does not give a
static tracking error, and the location 0 < a < 1 of the double pole determines the
time constant of the closed-loop system. We will discuss the choice of this design
parameter later. The result is the proportional-integral controller

F (z) = 2(1 − a)
k0

+ (a − 1)2

k0(z − 1)
. (4.6)

We now analyze the stability of the actual nonlinear system to find bounds on a.

Stability Analysis
For the stability analysis, we first model the stochastic variable d[k] with h[k]+w[k],
where h[k] is the expected value of d[k], and w[k] represents the unknown variations
of d[k]. This is illustrated in Figure 4.6. Since

d[k] ∈ [τd(vd − (α + 1)vref), τd(vd − vref)],
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Figure 4.6: A model of the original system, used for the stability analysis.
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Figure 4.7: The sector nonlinearity Φ.

each sample w[k] is also bounded.
Second, we introduce the estimation error

Ω̃|dB � Ω̂|dB − Ω|dB

as input to the system. We assume it to be constant but unknown. This allows us
to replace f by a sector nonlinearity

Φ(v) �

⎧⎪⎨
⎪⎩

f(Ω|dB + Ω̄|dB) + k0(v − Ω̄|dB) if v > Ω̄|dB

f(Ω|dB − Ω̄|dB) + k0(v + Ω̄|dB) if v < −Ω̄|dB

f(Ω|dB + v) otherwise,
(4.7)

where Ω̄ is the maximum permitted estimation error for stability to be guaranteed.
The resulting nonlinearity Φ is shown in Figure 4.7. Later, we will comment further
on Ω̄.
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Proposition 4.3.1 (Tracking Stability). The system in Figure 4.6, with G(z) as
in (4.5), F (z) as in (4.6) and Φ as in (4.7) has finite gain if 0 < a < 1 and

Re
F (ejθ)G(ejθ)

1 + F (ejθ)G(ejθ)k0/4 >
−1

kmax − k0/4 ∀ θ ∈ [0, 2π]. (4.8)

Proof. We start by doing a loop transformation, which turns the system into a feed-
back connection of an asymptotically stable linear system and a sector nonlinearity.
Then we apply the circle criterion.

The nonlinearity Φ can be decomposed into a constant gain k̃ = k0/4 and a new
nonlinearity Φ̃:

Φ(v) = k̃v + Φ̃(v).

By choosing

Ω̄|dB = τd(vd − vref)
k̃

,

the nonlinearity Φ̃ lies in the sector [0, kmax − k̃]. The closed-loop system can then
be redrawn as in Figure 4.8, where

G̃(z) = F (z)G(z)
1 + k̃F (z)G(z)

,

with pole polynomial
z2 − 1

2
(3 − a) z + 1

4
(
a2 + 3

)
,

so the squared magnitude of the poles is
√

4a2 + 12
4

< 1.

Hence, since 0 < a < 1, G̃(z) is asymptotically stable.
The circle criterion (Vidyasagar, 1993, Theorem 6.7.37) states that if G̃(z) is

asymptotically stable and Φ̃ is a nonlinearity in the sector [0, kmax − k0/4], the
nonlinear feedback system has finite gain if

Re G̃(ejθ) >
−1

kmax − k0/4
∀ θ ∈ [0, 2π].

This is equivalent to (4.8) in the proposition.

Remark 1: The proposition above concerns stability in discrete time. When
sampling irregularly, in general the sample interval could become infinitely short,
thus making it a poor representation of the actual continuous-time system. This
cannot happen in our case, since there is a minimum time τd > 0 between each
sampling instance.

Remark 2: Because Φ and f differ outside the interval −Ω̄|dB < Ω̃|dB+u < Ω̄|dB,
the result above implies local stability of the original system. But, as shown in the
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Figure 4.8: Loop transformed system.

examples below, in practice the permitted interval is large enough for the channel
estimator error never to fall outside it.

To interpret Proposition 4.3.1, we first note that

Δ(z) = G(z)
1 + k̃F (z)G(z)

E(z) − k̃G(z)
1 + k̃F (z)G(z)

Ω̃|dB(z).

Both transfer functions are asymptotically stable since they share the poles of G̃(z).
They both have a zero in z = 1, so the constant estimation error Ω̃|dB does not
affect the reference tracking error Δ. Further, since each sample w[k] is bounded,
Proposition 4.3.1 implies that e[k] is also bounded. As shown above, the transfer
function from e to Δ is asymptotically stable. Thus, the tracking error Δ[k] due to
the variations of d[k] is bounded.

Choosing Closed-Loop Time Constant

The design parameter a in the feedback controller can be chosen by the system
designer to set the time constant of the closed loop system. In the preceding section
we showed how to check that a certain choice of a maintains stability. Now we go
on to discuss how some feasible choices represent different trade-offs between link
capacity and reference tracking.

Intuitively, if the closed loop system is too fast, it will cause large changes to the
stopping threshold γth. This means that the decision to stop is mainly dictated by
the relative position, not by the instantaneous link capacity. This forces the robot
to stay very close to the reference position, without leaving much room to exploit
positions where the link capacity is high. Conversely, a slow closed-loop system
allows the robot to keep stopping at good positions, giving high link capacity, even
if it happens to be far from the reference. How to tune the controller depends on
the application.
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Table 4.1: Expected performance for different choices of closed-loop pole a.

Position error Throughput improvement
Ω=0 dB Ω=3 dB Ω=6 dB Ω=10 dB

Eq. (4.2) N.A. 150% 100% 40% 13%
a=0.99 4.3 m 150% 98% 39% 13%
a=0.95 2.0 m 142% 91% 39% 13%
a=0.9 1.5 m 133% 83% 39% 13%
a=0.8 1.1 m 117% 73% 37% 13%
a=0.5 0.83 m 84% 54% 30% 12%

To illustrate the tradeoff, we have simulated the system running a distance
of 5 km, for different mean SNR and with different settings of a. We have then
computed the average link capacity (4.1) and the RMS position error√√√√ 1

M

M∑
k=1

Δ2[k],

where M is the number of drive cycles. In the simulations, we have used τd = 5 s,
α = 4, vref = 0.1 m/s, vd = 0.2 m/s and NP = 65. With these parameters, closed-
loop stability can be guaranteed for a ≥ 0.5 if the estimation error is less than
Ω̄|dB = 12 dB.

Table 4.1 lists the resulting RMS position errors and throughput improvements,
compared to just driving at constant speed. For comparison, we have also included
the analytical prediction (4.2), corresponding to running in open loop with no
feedback control of the tracking error. The simulations and our experience indicate
that a ≈ 0.9 may in general represent a good tradeoff between throughput and
tracking performance.

4.4 Channel Estimator

The channel estimator in the control architecture in Figure 4.1 works as a feedfor-
ward controller, reacting to changes in the environment. The estimator averages
over a fixed number of SNR samples. Let γn be the sample taken n samples ago.
Then the estimate of the mean SNR is

Ω̂ = 1
ME

ME∑
n=1

γn, (4.9)

where ME is the window length of the estimator. Note that the samples γn are
taken at a higher rate than the samples γ[k], taken at each stop instant. Since the
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robot will stop at positions with high SNR, we only sample while moving, to avoid
biasing the estimate. To minimize the estimator lag, we sample as fast as possible
while still maintaining a sample distance of half a wavelength. As motivated above,
we then consider the samples as independent.

The window length can be based on two criteria: We can look at the scale of
obstacles in the environment and make sure that MEλ/2, the spatial window size,
is in the same order. Or, we can look at the variance of γn (which are i.i.d.) and use
the central limit theorem to determine ME such that the variance of the estimate
is in the same order as the accuracy of the one sample which we will compare it to
when stopping.

Selecting the fixed window size ME becomes a tradeoff between adaptability
of the estimator versus the accuracy of the estimate. A more elaborate approach
would be to have a separate detector for phase changes, such as moving between
rooms or turning a corner, where Ω would make abrupt changes. Then the window
size could be reduced or the buffer be flushed. If the robot follows the same path
several times, it could also use past measurements as a prior, reducing the estimate
variance.

4.5 Experiments

The proposed strategy of time-triggered stopping has been experimentally tested,
to verify the link throughput improvements and test the properties of the closed
loop system. The experiments were made in two different locations, both exhibiting
static Rayleigh fading and without persons or objects moving around.

Below, we first describe the experiment setup. We also discuss the issue that
we cannot measure the actual SNR, but only the received signal strength. Then we
show the results of measuring the throughput improvements. Finally, we illustrate
the tracking performance of the feedback controller.

Setup

The experiments were done indoors, at two different locations. A transmitter Tmote
Sky was placed about 10 m away, out of sight, from the receiver Tmote Sky, which
was mounted on a mobile robot. The robot used a line sensor to follow a closed
reference path, 15–20 m long, marked by tape on the floor. See Figure 4.9.

The transmitter sent R0 = 64 packets/s, each with a constant 50 byte payload,
making the total packet length 65 bytes. The receiver counted the number of cor-
rectly received packets and, when queried by the robot, reported the signal strength
of the last packet. If no packet was received within 1/64 s, it reported a packet loss.
The average throughput of an experiment run was measured as the total number
of received packets divided by the total experiment time.

The first location was a basement lab with reinforced concrete walls and com-
puters and metal lab benches all over the room. The second was a classroom on



78 Motion Planning under Multipath Fading: Probabilistic Tracking Constraints

Figure 4.9: Experiment setup in the basement lab. The robot follows a tape path
on the floor, while the attached Tmote Sky transceiver receives signals from another
Tmote Sky in the back of the room.

the ground floor, with wooden desks and plaster walls. To create multipath fading
in the classroom, we draped some desks in aluminum foil.

To justify our communication model, we recorded the received signal strength
along the path at intervals of 1 cm (lab) and 4 cm (classroom). Figure 4.10 shows
the resulting histograms, each based on about 1800 samples. The transmitter was
set to high power (0 dBm), which gave only 3 or 4 packet losses in each experiment.
For comparison, the corresponding PDF of Rayleigh fading, converted to decibel
scale, is overlaid in each graph. The graphs show that Rayleigh fading serves as a
useful approximation of the RSS distribution.

Measuring SNR

The proposed strategy assumes that we can measure the SNR of the radio signal
and then compare it to the local average to make decisions on stopping or driving.
In our system, we actually measured the received signal strength of successfully
received packets. This created two problems:

First, the estimator (4.9) got a positive bias since packets with low SNR are more
likely to be lost and thus not included in the averaging. This bias was compensated
by the feedback controller, but it caused a small transient at the start of each
experiment run. To reduce the transient when testing slow controllers, we initialized
the controller to u[0] = −2 dB.

Second, in scenarios where the mean SNR is low, the stopping threshold γth can
be close to the detection threshold γdet of the receiver. Then, if the controller reduces
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Figure 4.10: Justification the communication model: The histograms show 1800
samples of the deviation from the mean of the received signal strength along the paths
in the classroom (top) and lab (bottom). The PDF of Rayleigh fading is included as
a reference.
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Figure 4.11: An example 15 min run using time-triggered stopping. Each circle repre-
sents a received packet and its signal strength. Stars represent random values, replac-
ing lost packets as described earlier. Grey background represents the robot standing
still, thus maintaining a near constant signal strength. The solid line is the stopping
threshold, γth. The circles are denser at the high plateaus, since the higher signal
strength gives less packet losses. This is what causes the improvement in average
throughput.

u[k] to slow the robot down, it might happen that γth < γdet. This effectively cuts
off the feedback loop, since changes of γth do not lead to changes in stop probability.
To avoid this, when applying the stop time policy (4.3), we replace each lost packet
by a random RSS value

γ[k]dB = (γdet)dB − μ,

where μ is exponentially distributed with mean 5. This approximately recreates the
tail of the Rayleigh distribution and maintains the connection between Δ[k] and
u[k]. Figure 4.11 shows an example of this.

Throughput Improvement
To test the improvement in throughput, we first let the robot follow the reference
path at velocity vref for 15 min. Then, changing nothing in the room, we made
another 15 min run, using time-triggered stopping. The total throughput for each
run was then compared, to find the improvement. All experiments used α = 4,
τd = 5 s, NP = 65, vref = 0.1 m/s, vd = 0.2 m/s and ME = 100 unless specifically
stated otherwise.

Several such comparisons were performed in each room. We used different set-
tings of transmitter output power and different placements of the transmitter, to
vary the mean SNR over a wide range. We also used tracking controllers with dif-
ferent time constants, to see if the influence of the controller tuning matched the
simulations above.
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Figure 4.12: The improvement of the throughput when using time-triggered stopping,
as a function of ŪT, i.e., the throughput when driving at constant velocity. The
solid line is the expected improvement (4.2) for the open-loop case, corresponding to
unbounded tracking error. Each marker represents a pair of experimental runs, with
and without time-triggered stopping. The experiments were made in a basement lab
(stars) and in a ground floor classroom (circles and diamonds).

Figure 4.11 shows the result of one such run, using time-triggered stopping
with a = 0.9. The average throughput was 35 packets/s, compared to 21 packets/s
when driving at constant velocity under the same conditions. Thus the throughput
improvement was 67%.

To allow comparison between the achieved results and the expected through-
put (4.2) when running in open loop, we have plotted the throughput improvement
as a function of the throughput when driving at constant velocity. Figure 4.12 shows
the results of experiments in the basement lab and in the ground floor classroom.
The expectation of the open-loop case is included for reference. The experiments
in the basement used a = 0.95 (stars) and those on the ground floor used a = 0.9
(circles) or a = 0.95 (diamonds). The results follow the trend of the open-loop
case, where the improvement from time-triggered stopping increases as the channel
quality gets lower. It is expected that the resulting throughput should lie below
the open-loop case since the tracking controller sacrifices throughput for reference
tracking. At low SNR, there are large variations since there both the driving and
stop-and-go throughputs are low, making the ratio very sensitive to random varia-
tions. Using a = 0.9 or a = 0.95 seems to make little difference, as predicted by the
simulations in Table 4.1.
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Figure 4.13: Step responses in relative position, Δ(t), for a = 0.9 (red, solid),
a = 0.95 (blue, dashed) and a = 0.99 (green, dotted).

Tracking Stability
To demonstrate reference tracking, we started the robot at a position 30 m behind
the reference, using controllers with a = 0.9, a = 0.95 and a = 0.99, respectively.
To make these experiments faster, we used τd = 3 s. The step responses in relative
position are plotted in Figure 4.13. Note that the positive slope is limited to vd−vref,
corresponding to the robot never stopping.

Figure 4.14 shows the behavior of the controllers with a = 0.9 and a = 0.95 after
the system reached steady state in the step response experiment above. The magni-
tudes of the position fluctuations match those predicted by simulations in Table 4.1.
The recommended value of a ≈ 0.9 that gave a good tradeoff between tracking and
resulting throughput in simulations, appears to yield good performance also in the
experiments.
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Figure 4.14: Magnification of the steady-state behavior of two of the controllers
in Figure 4.13. Using a = 0.9 (red, solid line) gives tighter reference tracking than
a = 0.95 (blue, dashed line), at the expense of a smaller throughput improvement.

4.6 Summary

We have presented a time-triggered stopping strategy for communication-aware
trajectory tracking. The robot stops after driving a constant time, measures the
instantaneous SNR and makes a decision on how long to stand still before driving
again. This decision is affected by the SNR distribution, which may change along
the trajectory. The estimator tracks this and outputs an estimate of the average
SNR. The decision also depends on the relative position of the robot. Using the
tracking controller, this allows the robot to make shorter stops and thus catch up
if it falls behind the reference.

Our proposed control architecture makes a tradeoff between link throughput
and tracking accuracy, determined by the parameter 0 < a < 1. High values of a
correspond to allowing the robot to deviate far from the reference position, which
provides a high improvement in throughput. Small values of a give tight reference
tracking, but leave little freedom for communication-awareness, so the throughput
improvements are lower.

There are some free parameters in the suggested strategy that must be chosen
by the system designer. The reference velocity vref and the stop time variance σ2

encode the reference trajectory and its associated tracking accuracy. The drive time
τd should be chosen much longer than the time to measure the SNR after stopping,
so that the measurement time can be neglected. Finally, the driving velocity vd
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should be chosen as high as possible subject to the power constraints of the robot
and the requirement that the robot must be able to follow the reference trajectory
at this speed. This frees maximal time for the robot to stand still at positions with
good channel quality.

To validate the analytical results, we have performed experiments in two loca-
tions. The results showed that time-triggered stopping can yield throughput im-
provements in the range of 50-100% when the channel quality is low. The experi-
ments also showed that the tracking controller effectively compensated deviations
from the reference position.



Chapter 5

Motion Planning under Multipath Fading:
Hybrid Optimal Control

This is the last chapter on communication-aware motion along a reference
trajectory under multipath fading. We now consider a hybrid optimal control
formulation, where tracking error and link utility are combined in a cost

function. We explicitly model the inflow of sensor data to the robot, assuming that
there is a data buffer that stores data until it is sent through the wireless link. This
makes it possible to formulate a tradeoff: If the buffer is filling up, the robot can stop
at good positions to communicate, at the expense of falling behind the reference.
Then it drives to catch up again. Since we do not predict the multipath fading,
the only way for the robot to maintain a high signal strength is to stop completely.
When it switches to driving, the fading will vary so the robot experiences the mean
signal strength. Solving for the optimal hybrid controller is problematic due to the
“curse of dimensionality”. Therefore we have applied the method of relaxed dynamic
programming, proposed by Lincoln and Rantzer (2006), which uses an approximate
value function with small relative error.

This chapter begins with a derivation of the specific hybrid model we consider.
We then formally define the problem. In Section 5.2, we express the system dynamics
as a switched linear system and formulate an infinite-horizon hybrid optimal control
problem. Using relaxed dynamic programming, we present an algorithm to compute
a controller for both the switch sequence and the continuous input. In Section 5.3, we
simulate the resulting closed-loop system to illustrate its properties under different
non-ideal conditions. Finally we summarize in Section 5.4.

85
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5.1 Preliminaries

Here we define the specific robot motion model of this chapter, as well as the model
of the communication buffer. We then formally define the problem.

Robot Model

As before, we consider a robot moving along a given path. We only care about
its relative position Δ(t), with dynamics as in (3.1). To get smooth motion, we
model the acceleration as the control input u(t). We further want to model the fact
that many kinds of robots only consume negligible power when breaking, using disc
breaks or by short-circuiting its electric motors. So we consider the robot to have
two discrete modes, controlled by the discrete input σ(t) ∈ {0, 1}. When σ = 0, the
robot is stopped and σ = 1 corresponds to driving. The dynamics of the relative
position are thus

Δ̇(t) = v(t) − vref

v̇(t) =

{
−kvv(t) if σ = 0

u if σ = 1.

The parameter kv � 1 models the breaking action, making v(t) converge to zero
when stopping. Also note that we do not specifically consider any constraints on
v(t), since the robot velocities are moderate even for the unconstrained controller.

Data Buffer Model

We assume that data from the robot sensors are stored in a buffer onboard, and
then transmitted over the wireless link to a base station. The buffer has size z ≥ 0
and inflow rate Rin. The outflow from the buffer is equal to the throughput of the
wireless link, which we model in a hybrid fashion: When the robot drives without
adapting its velocity to the wireless channel, it experiences an average throughput
of ŪT, defined in Chapter 4. But when it decides to stop, we assume that it does
a very local search to find the highest signal strength before coming to a complete
stop. We assume that this corresponds to finding a higher throughput ÛT. The
resulting buffer dynamics are

ż =

{
Rin − ÛT if σ = 0
Rin − ŪT if σ = 1.

Note that the buffer is lossless, which means that no packets are discarded. We can
now formally state the problem.
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Problem Formulation
Find a controller that determines u, σ such that the tracking error Δ and buffer
size z are kept small, as well as the control effort u.

Note that this problem is mostly interesting in the interval ŪT < Rin < ÛT,
since if the inflow is lower than ŪT the robot can drive constantly without the
buffer filling up. Conversely, if it is greater than ÛT, some higher-level protocol
must discard data to stop the buffer from overflowing. Also note that this does
not require accurate navigation, since the robot can always find a high-throughput
position by just driving a few centimeters in any direction.

5.2 Hybrid Optimal Control

In this section, we formulate the control problem as a hybrid optimal control prob-
lem. We then present relaxed dynamic programming as a way of finding an approx-
imate solution. We state an algorithm that computes a value function from which
we can derive a control law. Finally we show how to do this computation in an
efficient way.

Switched Linear System
To describe the whole system, we collect the robot and buffer states in the same
state vector. We include an integral state ΔI to allow the controller to attenuate
a static error in Δ. We finally add a constant element to the state vector, which
allows writing the system on linear form. This yields

ẋ = Aσx + Bσu, x = (Δ, v, ΔI , z, 1)T
,

where the controls are u ∈ R and σ ∈ {0, 1}, and

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 −kv 0 0 0
1 0 0 0 0
0 0 0 0 Rin − ÛT

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , B0 = 0

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 Rin − ŪT

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We consider a sampled version of the continuous-time system above, with sam-
pling interval τ . We let x[n] = x(t) and u[n] = u(t) for nτ ≤ t < (n + 1)τ . We
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also assume that u is kept constant during the sampling intervals and that σ only
switches at sampling instances. The discrete dynamics can then be expressed as

x[n + 1] = f(x[n], u[n], σ[n]) = Φσ[n]x[n] + Γσ[n]u[n],

where
Φσ = eAστ and Γσ =

∫ τ

0
eAσsBσ ds.

Cost Function

To maintain low latency and margin for unexpected buffer inflow, it is desirable
to keep the buffer size low. At the same time we also want to stay close to the
reference trajectory and, for both smoothness and power conservation, limit the
control magnitude. Unfortunately, under the assumption that ŪT < Rin < ÛT, both
Δ and z cannot simultaneously converge to zero, since the robot must occasionally
stop to prevent the buffer from overflowing. We therefore introduce a decay factor
ηn, with 0 < η < 1, to get a finite cost even though we use an infinite horizon. Now,
given an initial condition x0, the optimal control problem can be defined as

min
σ[n],u[n]

∞∑
n=0

(
xT [n]Qx[n] + Ru2[n]

)
ηn (5.1)

s.t. x[n + 1] = f(x[n], u[n], σ[n])
x4[n] ≥ 0
x[0] = x0,

where Q = QT is positive semidefinite and R is a positive constant. We will use a
higher penalty on z to reduce its static error, which will be illustrated in Section 5.3.

Dynamic Programming

Dynamic programming is based on approximating the optimal value function (also
called cost-to-go) at state x, defined as

V ∗(x) = min
σ[n],u[n]

∞∑
n=0

�(x[n], u[n])ηn,

where
�(x, u) = xT Qx + Ru2,

under the same constraints as in (5.1), but with x0 = x. Once we have V ∗(x), we
can derive the optimal control law as

(u∗(x), σ∗(x)) = argminu,σ {ηV ∗(f(x, u, σ)) + �(x, u)} .
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We introduce the value function Vk(x) : R5 → R to approximate the optimal
value function, and use value iteration to recursively refine the approximation:

Vk+1(x) = min
u,σ

{ηVk(f(x, u, σ)) + �(x, u)} . (5.2)

We set V0 ≡ 0, which is used to start the iteration. For a given k, the iterate Vk(x)
answers the question “what is the lowest possible cost for k time steps of the system
trajectory, given that it starts in x?” Under mild assumptions on the contractiveness
of the system, which we ensure by introducing η, it holds that (Lincoln and Rantzer,
2006)

lim
k→∞

Vk(x) = V ∗(x).

The problem is that, if applied naively to a switched system, value iteration re-
quires that we consider all possible switching sequences of length k steps, so the
complexity of the problem grows exponentially with our horizon length k. This
“curse of dimensionality” is a well known drawback of dynamic programming. Be-
fore we present a way to avoid this, we will see how the optimal control u can be
computed for a known switching sequence.

To facilitate the notation, we here let Φ = Φσ[n] and Γ = Γσ[n] for some given
mode σ[n]. We also assume that, at time n+1, the value function can be written on a
quadratic form V (x[n+1]) = xT [n+1]P [n+1]x[n+1], where P [n+1] is a symmetric
positive definite matrix. Then the optimal cost at time n is xT [n]P [n]x[n], where

P [n] = ΦT P [n + 1]Φ + Q − ΦT P [n + 1]Γ

× [ΓT P [n + 1]Γ + R
]−1 ΓT P [n + 1]Φ (5.3)

and positive semidefinite (Åström and Wittenmark, 1997). Further, the optimal
control signal is

u∗(x[n]) = − [R + ΓT P [n + 1]Γ
]−1 ΓT P [n + 1]Φ x[n]. (5.4)

Since the cost is again on quadratic form, for a known switching sequence, we can
use that P [k] ≡ 0 to iteratively compute the optimal cost and control signal.

Relaxed Dynamic Programming

Let Nk be the number of candidates for the optimal switching sequence of length k.
Then switching sequence number κ ∈ {1, . . . , Nk} is σκ[n] : {0, 1, . . . , k} → {0, 1}.
Also let Πk = {P1, . . . , PNk

} be the set of matrices Pκ such that the cost associated
with σκ[n] is xT [0]Pκx[0]. Using horizon length k and a sufficiently rich set Πk, we
can now parameterize the value function in a way that can be used to perform the
iteration (5.2):

Vk(x) = min
Pκ∈Πk

xT Pκx.



90 Motion Planning under Multipath Fading: Hybrid Optimal Control

As mentioned above, the set Πk quickly becomes prohibitively large if we do
not discard some candidate switching sequences during the recursion. The method
of relaxed dynamic programming, proposed by Lincoln and Rantzer (2006), does
just that: at each iteration, it retains only the candidates Pκ that are needed to
represent the value function with a given bounded relative error. If this bound is
sufficiently large, the number of candidates will converge to a finite value as k → ∞.

More formally, the idea is to find an approximation Vk(x) of the optimal value
function such that, for α < 1 < α,

min
u,σ

{ηVk(f(x, u, σ)) + α�(x, u)} ≤ Vk(x)

≤ min
u,σ

{ηVk(f(x, u, σ)) + α�(x, u)} ∀ x. (5.5)

Using the appropriate “slack”, the cost-to-go function can be parameterized by a
much smaller set Πk, and we can discard many candidate switching sequences at
each iteration step. For the discarding procedure, we define Πk = {P 1, . . . , P Nk

} as
the set of matrices P κ such that α times the cost for the switching sequence σκ(n)
of length k is x(0)T P κx(0). The set Πk and the matrices P κ are defined analogously,
using α. The method to find Vk(x) is presented in Algorithm 5.1.

Algorithm 5.1 Relaxed Dynamic Programming
1: k := 0, Π0 = 0n×n

2: while (5.5) is not fulfilled do
3: k := k + 1
4: Form Πk and Πk by propagating the matrices in Πk−1 one step backwards

in time, both with σ = 0 and σ = 1, as defined in (5.3).
5: Sort the sets Πk = {P 1, . . . , P Nk

} and Πk = {P 1, . . . , P Nk
} so that

tr P 1 ≤ . . . ≤ tr P Nk
and P i ≥ P i ∀ i.

6: Πk := ∅, i := 0
7: while i ≤ Nk do
8: if � a convex combination P of matrices in Πk such that P ≤ P i then
9: Add Pi to Πk.

10: end if
11: i := i + 1
12: end while
13: end while

Note that step 8 of the algorithm is an S-procedure test to see if there exists an
x such that

xT P ix < min
P ∈Πk

xT P x.

If not, then Pi is not needed to represent the value function with sufficient accuracy.
Also note that by ordering the matrices by trace, we ensure that smaller matrices
are added first to Πk, which in practice means that we will add fewer elements.
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Figure 5.1: The value function Vk(x) converging to the close-to-optimal set. At k = k,
the stopping criterion is fulfilled.

When Vk(x) fulfills the stopping criterion (5.5) at, say, k = k, it can be applied
iteratively to yield that for all k ≥ k

αV ∗(x) = min
σ[n],u[n]

∞∑
n=0

α�(x, σ, u)ηn ≤ Vk(x) ≤ min
σ[n],u[n]

∞∑
n=0

α�(x, σ, u)ηn = αV ∗(x).

As an example, if α = α−1 = 1.05, this means that the computed Vk(x) under- or
overestimates the optimal cost-to-go by maximally a factor of 5%. This is illustrated
in Figure 5.1, from Lincoln and Rantzer (2006).

When the stopping criterion is fulfilled, it means that no more candidate switch-
ing sequences need to be added to represent the value function. Then the number
Nk of candidates stops growing, as depicted in Figure 5.2. For comparison we also
included the number of candidates Mk that would have to be considered using
normal dynamic programming. Note that Nk does not converge to a number, but
rather stops growing and then displays random variations due to numerical effects
and small random perturbations in the sorting of Πk to make the search more effi-
cient. The figure shows the result for α = α−1 = 2 and η = 0.9, which is also what
we used to compute the controller used in all simulations. We used the result after
100 iterations, when Nk had clearly stopped growing.
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Figure 5.2: The number, Nk, (blue solid line) of matrices in Πk needed to repre-
sent the value function at each iteration step. Nk stops increasing, indicating that
(5.5) is fulfilled, after about k = 50 iterations. Without discarding any candidates,
the complexity would grow as Mk = 2k (green dashed line), which is illustrated for
comparison.

Resulting Controller
Using the approximation of the value function, we could find the optimal mode
σ∗(x) as the first mode in the switch sequence corresponding to the matrix

P ∗ = argminP ∈Π100 xT P x.

The optimal continuous control u∗(x) was then computed using (5.4), substituting
P ∗ for P [n + 1]. In a resource-constrained robot, this could also be precomputed
and stored as a look-up table of feedback gains Lκ, each associated with a switching
sequence. The control signal would then be u∗(x) = −Lκx. The resulting control
law is plotted in Figure 5.3, for the subset v = 0, ΔI = 0 of the state space.
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Figure 5.3: The resulting control law for the subset v = 0, ΔI = 0 (corresponding to
standing still with an empty integral state in the controller). To also illustrate σ(x),
we have forced the control to u = 0 where σ(x) = 0. As one would expect, for small Δ,
the robot stops. If Δ decreases, the controller accelerates the robot and if Δ becomes
too large, it slows the robot down.
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Figure 5.4: A trajectory of the system, at position q ∈ R2 and with buffer size z,
sampled at regular intervals. The robot follows the reference path (thick solid line) in
the plane, while stopping from time to time to reduce the buffer size z, shown as the
height of the blue circle. The robot motion is from right to left.

5.3 Simulations

In this section, we first present an illustration of a system trajectory using the
controller derived in the previous section. We then investigate the sensitivity of
the closed-loop system to disturbances in buffer size, link throughput and reference
trajectory velocity. In all simulations, we have used the sampling time τ = 0.1 s for
the controller, but the system dynamics are simulated with much higher resolution.
We also set kv = 100, R = 1 and Q = diag(1, 0, 1, 5, 0).

Following a Curved Path

In Figure 5.4, we have simulated the system when following a sinusoidal reference
trajectory with reference velocity vref = 1 m/s. The robot performs the “stop-and-
go” motion dictated by its communication-aware controller along the reference path.
The figure consists of periodical samples of the states of the robot, where the height
of the circle over the robot indicates the buffer size. Thus it is possible to see how
it stops at some points to empty its buffer. We have used the exaggerated rates
Rin − ÛT = −1 and Rin − ŪT = 1 to illustrate the behavior of the system more
clearly.
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Figure 5.5: An example of a trajectory for the system, starting with an empty buffer
and with perfect reference tracking. The position Δ(t) is the blue solid line and the
buffer size z(t) is the green dashed line. The robot approaches a limit cycle with a
period time of 5.6 s, where it spends 50% of the time in the drive and stop modes,
respectively. After 40 s, extra data is added to the buffer, and this disturbance is
effectively attenuated.

Limit Cycle and Buffer Disturbance Rejection
We have also simulated the system starting with an empty buffer and perfect refer-
ence tracking. As seen in Figure 5.5, it approaches a limit cycle with a period time
of 5.6 s, where is spends 50% of the time in each mode. The position Δ(t) oscillates
around zero while there is still a small static error in z(t). However, at t = 40
s, extra data is added to the buffer, and this impulse disturbance is successfully
attenuated. Here we also used Rin − ÛT = −1 and Rin − ŪT = 1.
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Figure 5.6: A test of how the system performs when zero-mean white gaussian noise
with standard variation 2 is added to the link throughput ÛT in the stop mode. The
lag Δ(t) (blue solid line) oscillates around zero and the buffer size z(t) (green, dashed
line) remains bounded.

Robustness to Throughput Variations

As indicated in the derivation of the communication model, the actual link through-
put ÛT at the position where the robot stops can vary from the predicted value. We
have tested the robustness of the closed-loop system to this model error by adding
zero-mean white gaussian noise with standard deviation 2 to ÛT. With ÛT = 3,
ŪT = 1 and Rin = 2, the simulations indicate that the system still oscillates around
Δ = 0 and maintains a bounded buffer size z(t). This is illustrated in Figure 5.6.

5.4 Summary

In this chapter, we have continued the study of how to exploit multipath fading,
using a hybrid optimal control formulation where the robot switches between driv-
ing and stopping. When driving, it can reduce the tracking error but the outflow
from its onboard data buffer is low. When stopping, we assume that it can make
a local search to find a point with high throughput, so the buffer size decreases
but the tracking error grows. To quantify the tradeoff, we proposed a cost func-
tion that includes both the buffer size and the tracking error. The hybrid optimal
control problem was solved using relaxed dynamic programming. The resulting con-
troller can be stored in look-up tables and thus used also on resource-constrained
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robots. The only prior information needed about the radio link are the average
link throughputs ŪT (when driving) and ÛT (which can be found by a local search
when stopping). No map of the signal strength is needed. The closed-loop system
was simulated under various conditions and it maintains a bounded buffer size and
zero-mean tracking error.

The robustness to variations in the throughput ÛT when stopping, can be at-
tributed to feedback. When the robot stops, the decision to start again is governed
by the states, including the buffer size. So if the buffer is emptied faster or slower
than expected, the stop time will be adjusted accordingly. The value of ÛT encodes
an expectancy, and if the actual throughput differs from this, of course the resulting
motion is no longer optimal with respect to the cost (5.1). The tracking error and
buffer size, however, are still regulated.





Chapter 6

Motion Planning with Visual Connectivity
Constraints

In this chapter, we consider coordination of multiple robots moving along given
paths through an obstacle field. Only robots that have a free line of sight be-
tween each other can communicate, and the problem is for all robots to traverse

their paths while maintaining connectivity of the whole group. In terms of the mo-
tion planning architecture considered in this thesis, this corresponds to augmenting
the coordination layer so it not only avoids collisions with obstacles or other robots,
but also maintains visual connectivity. The result is a reference trajectory for each
robot, describing its velocity along the path as a function of time.

As described in Chapter 2, this is a similar formulation as in the path coor-
dination problem, which arises in multi-robot path planning. However, unlike the
path coordination problem, we assume that the robot paths are non-intersecting,
so there are no collision avoidance constraints on the individual velocities. An ex-
ample where this is applicable is when identical robots are used as sensors. If the
paths intersect, this can be avoided by exchanging the allocation of path segments
between robots. Without the velocity constraints due to collision avoidance, it is
possible to use this freedom to instead maintain communications.

This chapter describes two different solutions to this problem, both using a
configuration-space representation of the system. First we describe a sampling-
based solution and show that it can handle problems with many robots. The draw-
back is that if a problem instance is unsolvable, the solver runs forever. In response
to this, we then present an exact solution method, which in finite time reaches a
solution or concludes that the problem is unsolvable. The drawback of this is that
the worst-case computational complexity is higher and that we need to restrict the
problem some, to make the solver feasible. We end by simulations and a discussion
of the strengths and weaknesses of the two alternative methods.

99
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Figure 6.1: Robots i and j (black circles) are at positions ri(x) and rj(x), respectively.
Each state xi denotes the distance along the path (blue) that robot i has moved. Due
to the obstacle Wk, the robots have an obstructed line of sight (green).

6.1 Preliminaries

In this section, we present models for the motion of the robots, the obstacles and
visually constrained communication. Then we formally define the problem of main-
taining visual connectivity.

Robot and World Model

We consider a group of N robots, where each robot is given an obstacle-free ref-
erence trajectory, as discussed in Chapter 2. The corresponding path for robot i
is Pi ⊂ R2, consisting of Πi straight line segments. Each path Pi is defined by
its vertices {p1

i , . . . pΠi+1
i }, as illustrated in Figure 6.1. The group has configura-

tion x = (x1, . . . , xN ), where xi is the position along the path of robot i. The
goal configuration is xG = (L1, . . . , LN), where Li is the length of path Pi. Thus,
0 ≤ xi ≤ Li. Paths may intersect themselves, but not obstacles or other paths.

The world contains M obstacles. Obstacle Wk, k ∈ {1, . . . , M} is defined as
the interior of the (possibly non-convex) polygon with Ωk vertices {w1

k, . . . wΩk

k }.
Obstacles may intersect each other. Figure 6.1 illustrates the notation for paths
and obstacles.

Communication Model

We study a visibility-based communication model. We define a connectivity graph
GC(x) = (VC, EC(x)) with vertices VC = {1, . . . , N}. The configuration-dependent
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set of edges, EC(x), consists of an undirected link e = {i, j} for each pair i, j of
robots whose connecting line of sight (LOS) is not obstructed by any obstacles:

{i, j} ∈ EC(x) ⇔ convhull(ri(x), rj(x)) ∩ Wk = ∅ ∀ k ∈ {1, . . . , M}.

There are no constraints on the communication distance, as long as there is a line
of sight. For any configuration, GC(x) is connected if it contains a path between
any two vertices. Note that connectivity could also be evaluated over some time
interval, like in delay-tolerant networks (Jones et al., 2007), but in this paper we only
consider instantaneous connectivity. We further assume that GC(0) and GC(xG) are
connected, since otherwise the problem is trivially unsolvable.

Problem Formulation
Using the models above, we can now define the problem of path following with
continuous connectivity:

Definition 6.1.1 (Path Following with Continuous Connectivity). Given paths
P1, . . . , PN and obstacles W1, . . . , WM , find a continuous state trajectory
x : [0, T ] → RN such that x(0) = 0, x(T ) = xG and GC(x(t)) is connected for
all t ∈ [0, T ].

Note that this problem is not guaranteed to have a solution. It is easy to con-
struct problem instances where obstacles make it impossible to maintain connec-
tivity and still reach the goal. We will return to this later and comment on how it
affects the choice of solution method. But first we will show how the problem maps
to the General Motion Planning Problem, represented in a configuration space.

6.2 Configuration Space Representation

The system has N degrees of freedom, each corresponding to the position of one
robot along its path. We thus define the configuration space of the system as
C = [0, L1] × . . . × [0, LN ]. Configurations x ∈ C such that GC(x) is disconnected
are defined to be in outage. The obstacle region, Cobs, is the set of all configura-
tions in outage. The set of all configurations not in outage is the free space, Cfree.
The problem under consideration is thus an instance of the General Motion Plan-
ning Problem, defined in Chapter 2. Once a solution path τ is found, it can be
traversed at a suitable velocity to find the trajectory x(t). The choice of method to
solve this problem depends on, among other things, the geometry of Cobs and the
requirements on completeness of the solution.
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Under the general problem formulation of Definition 6.1.1, the obstacles can
be described as possibly non-convex semi-algebraic sets. This can be shown as in
Figure 6.2, with two path segments and an obstacle. There, êi and êj are unit
vectors in the direction of each path, so the position in the plane of robot i is
qi(x) = p1

i + xiêi. The line of sight between robots i and j intersects the obstacle
vertex wn

k when, for some real λ,

p1
i + xiêi + λ(wn

k − p1
i − xiêi) = p1

j + xj êj.

If we let v = wn
k − p1

i and d = p1
j − p1

i , we get[
λ

xj

]
=
[

v − xiêi −êj

]−1
(d − xiêi).

The inverse above does not exist in the special case when Pj is parallel to the line
of sight from robot i to wn

k , but this is easy to handle separately. Otherwise, we get
the following condition for when the line of sight is on the obstacle side of wn

k :

xi(wn
k − p1

j)⊥ · êi − xj(wn
k − p1

i )⊥ · êj − xixj(êi · ê⊥
j ) > v⊥ · d, (6.1)

where we define the orthogonality operator as a 90◦ counterclockwise rotation:

v⊥ �
[

0 −1
1 0

]
v.

Note that if êi ‖ êj , the boundary of the half-space is a plane. We will make extensive
use of this later in the chapter.

For a given pair {i, j} of robots and an obstacle Wk, the intersection of the
half-spaces (6.1) corresponding to all vertices of Wk, defines a region in C where
that obstacle causes the link {i, j} not to exist. Finding Cobs is then a combinatorial
problem: For each set of links such that GC cannot be connected without them, the
intersection of their corresponding regions is a C-obstacle. A very simple example
is shown to the right in Figure 6.2, where three half-spaces intersect to form a
non-convex C-obstacle in R2. Note that with only two robots, we cannot pass the
C-obstacle, but in higher dimensions there may be a free path around it.

To summarize, this discussion shows that Cobs will in general be non-convex.
As the number of robots grows, there is a combinatorial explosion in the number
of, possibly intersecting, C-obstacles. We now discuss how this affects the choice of
motion planning method.

Of the exact motion planning methods described in Chapter 2, some, such as
visibility graphs, are specifically tailored for 2D problems. Since the class of prob-
lems we consider typically has at least three robots, these methods are not suitable
here. Further, potential-based methods explicitly represent the C-obstacles, which
may be inefficient since there will be so many. Instead, it appears more compact to
represent Cfree, such as in exact cell decomposition methods. For general dimensions
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Figure 6.2: Notation for finding the half-space of C where the line of sight between
robots i and j is on the obstacle side of the vertex wn

k (left). The intersection of the
half-spaces of each vertex is the C-obstacle (grey) in the corresponding configuration
space (right).

and obstacle geometries, the best such methods have worst-case time complexity
that is exponential in the dimensionality. For our class of problems, this means that
they do not scale very well with the number of robots.

To make the time complexity scale better, an alternative is to use sampling-
based methods. We note that each problem is only solved once for each world
geometry, so multi-query roadmap methods are not motivated here. Instead, one
could use an RRT method. It is insensitive to the obstacle geometry and its time-
complexity scales well with the dimensionality of the problem. The main drawback
is that it is not complete, so in the very possible event that there is no solution, the
solver runs forever.

To explore the strengths and weaknesses of exact and sampling-based methods,
we have chosen to develop both an RRT solver and an exact solver based on cell
decomposition. To make the exact solver feasible, we will restrict the problem some,
as will be described in Section 6.4. But first we present the RRT solver.

6.3 Sampling-Based Solution

By connecting randomly chosen points in Cfree, we can construct a tree that even-
tually contains a path from the start to the goal configurations. The only problem-
specific component is the collision detector, which we refer to as the outage detector.
It determines if a new sample can be connected by a straight line to the nearest
part of the tree without colliding with a C-obstacle. We will present the RRT algo-
rithm and then describe how the outage detector can be implemented. We end this
section by discussing the computational complexity of the outage detector.
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Rapidly Exploring Random Tree
The RRT algorithm builds a rapidly exploring random tree, which is a tree graph
GR = (VR, ER), with Γ vertices VR = {r1, . . . , rΓ} ∈ Cfree and edges ER ∈ VR × VR.
If there is an edge {ri, rj} ∈ ER, the straight line between ri and rj is contained
in Cfree. The number of vertices, Γ, grows as the tree is constructed, as described
below in Algorithm 6.1, from LaValle (2006).

The algorithm iteratively constructs a tree that fills Cfree. In each iteration,
a random point y ∈ C is chosen. The function NEAREST(GR, y) returns the
configuration x ∈ VR that is closest to y. If y is closer to a point between two
configurations ri, rj such that {ri, rj} ∈ ER, than to a configuration x, the edge
{ri, rj} is split, a new vertex is inserted there and that vertex is returned. Then the
outage detector FIRST_OUTAGE(x, y) returns a configuration ỹ on the straight
line from x to y, as close to y as possible such that the line from x to ỹ is contained
in Cfree. If there is progress, so ỹ �= x, we add this new configuration and the
corresponding edge to GR.

Algorithm 6.1 Rapidly Exploring Random Tree (LaValle, 2006)
1: Γ := 1
2: VR := {0}
3: ER := ∅
4: loop
5: Randomly select y ∈ C
6: x := NEAREST(GR, y)
7: ỹ := FIRST_OUTAGE(x, y)
8: if ỹ �= x then
9: Γ := Γ + 1

10: VR := VR ∪ ỹ
11: ER := ER ∪ {x, ỹ}
12: end if
13: end loop

Note that Algorithm 6.1 will run forever, giving an RRT that is arbitrarily close
to any point in Cfree. To make it terminate in finite time, every 100th iteration, we
replace the random y with xG and abort if ỹ = xG. Then the RRT contains a path
to the goal. Next, we describe how the outage detector can be implemented.

Outage Detector
The outage detector answers the question of how far the system can go from a
configuration x towards another, y, before intersecting a C-obstacle, i.e., going into
outage.

Since under Algorithm 6.1, x ∈ VR, the communication graph GC(x) is always
connected. Hence, it is sufficient to check how far the system can go towards y
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before any link {i, j} ∈ EC is blocked by an obstacle. We update ỹ to this location
and search GC(ỹ) for an indirect path between vertices i and j. If it exists, the
link {i, j} ∈ EC was redundant, so we can continue. The iteration ends if GC(ỹ) is
disconnected or we reach y, as summarized in Algorithm 6.2.

Algorithm 6.2 ỹ = FIRST_OUTAGE(x, y)
1: ỹ := x
2: while ỹ �= y and GC(ỹ) is connected do
3: γ∗ := mine∈EC(ỹ) mink∈K(e) minn∈{1,...,Ωk} γ(e, wn

k , ỹ, y)
4: ỹ := ỹ + (y − ỹ) min(1, γ∗)
5: end while

To check GC(x) for connectivity in the iteration condition, we do a breadth-first
search with robot i as the root. Algorithm 6.2 uses the set

K(e) � {k : ∃ x ∈ C : convhull(ri(x), rj(x)) ∩ Wk �= ∅},

which are the indices of all obstacles that may block the link e = {i, j}. It also uses
the function γ(e, wn

k , x, y), which, for a link e = {i, j}, is defined as

γ(e, wn
k , x, y) � min{g : (1 − λ) [(1 − g)ri(x) + gri(y)]

+ λ [(1 − g)rj(x) + grj(y)] = wn
k , g ≥ 0, 0 < λ < 1}.

Finding candidate solutions g requires finding the intersections of two rectangular
hyperbola or, in degenerate cases, of two straight lines. As illustrated in Figure 6.3,
γ(e, wn

k , x, y) is the fraction of the straight line from x to y that the system can
move before the LOS between robots i and j intersects the obstacle vertex wn

k .
For simplicity, we assume that both robots i and j move on one single segment of
their paths. In the case of multi-segment paths, the computation is done separately
over each interval of g corresponding to different combinations of path segments.
If the problem is infeasible, we let γ = ∞. Note that we do allow solutions where
γ > 1. This allows the result to be reused to speed up computations, as described
in Section 6.3.

When implementing Algorithm 6.2, there is a numerical issue that requires
special attention. Many new vertices ỹ �= y are generated on the boundary of
C-obstacles. Answering an outage detector query where x is on the boundary of
Cfree is numerically sensitive, due to limited precision. For all vertices generated
by collisions with C-obstacles, it may therefore be useful to associate information
on which link e = {i, j} came in conflict with which obstacle vertex wn

k . Then
subsequent queries starting from x can first check if the direction of movement is
legal with respect to e and wn

k . This is equivalent to

min
m∈{1,...,Ωk}\n

γ(e, wm
k , x, y) = ∞.
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Figure 6.3: The core of the outage detector: For a link e = {i, j}, at what fraction
γ(e, wn

k , x, y) of the motion from configuration x to y does the line of sight of robots
i and j intersect the obstacle vertex wn

k ?

If the criterion is not fulfilled, it means that movement from x in the direction of
y will eventually cause the line of sight of the link e to intersect another vertex of
Wk.

Computational Complexity
In worst case, finding γ∗ in each iteration of Algorithm 6.2 requires checking M
obstacles per link and N2 links. If there is more than one iteration, γ(e, wn

k , x, y)
is never recomputed for a link. Instead, one only needs to subtract γ∗ to get an
updated value. Evaluating the iteration condition on connectivity requires testing
at most N2 links against M obstacles in each iteration. In worst case, there could
be O(MN2) iterations. Since computing γ(e, wn

k , x, y) and testing a link against an
obstacle are constant-time operations, the worst-case time complexity of each query
to the collision detector is O(M2N4).

As mentioned earlier, the RRT algorithm is only probabilistically complete, so
its worst-case execution time is unbounded. As described by LaValle (2006), the
running time of course increases with the dimensionality N of C, but also heav-
ily depends on the presence of narrow bottlenecks in Cfree. In our problem, this
corresponds to high obstacle density, so only a small set of robot configurations
allows the group to pass without going into outage. Below, we will illustrate how
the obstacle density affects the solution times.
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Figure 6.4: A simple example scenario with three robots and two obstacles. The
robots are depicted in the initial configuration.

Simulations
In this section, we show some simulations to illustrate the solution method. We also
demonstrate how the solution times increase when the obstacle density is higher,
creating narrower bottlenecks in C. All simulations were made in Matlab, and we
have not optimized the implementation for speed. It mainly serves as a proof of
concept and to elucidate the relative differences in typical solution times.

As a small illustrative example, Figure 6.4 shows a scenario with two obstacles
and three paths. The robots are depicted in the start configuration. The correspond-
ing configuration space is shown in Figure 6.5. It shows the C-obstacles, drawn as
point clouds. When the system is at a configuration x inside a C-obstacle, it means
that the group is in outage, i.e., that not enough robots have a clear line of sight
for the communication graph GC(x) to be connected. The RRT GR was grown be-
tween the obstacles, starting at (0, 0, 0) and expanding through free space towards
the goal xG. Its vertices are drawn as circles and the edges are drawn as straight
lines connecting the circles. Figure 6.6 shows eight snapshots of the resulting solu-
tion, with dashed red lines depicting lines of sight that are blocked. A movie of the
resulting robot motion can be found at http://www.ee.kth.se/~lindhe.
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Figure 6.5: Configuration space corresponding to the example in Figure 6.4. The
RRT vertices are shown as blue circles, joined by edges in the form of blue lines. The
C-obstacles are shown as red point clouds.

Figure 6.6: Snapshots of a solution trajectory for the example in Figure 6.4. The
robots stay connected during the whole trajectory, even though some lines of sight
(red dashed lines) are obstructed by obstacles.
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Figure 6.7: This problem instance with seven robots and 19 obstacles took 2 min
24 s to solve. The figure shows a snapshot of the solution.

To illustrate the size of problems that is feasible, we also constructed a larger
example scenario, in Figure 6.7. It contains 7 robots and 19 obstacles and it took
2 min 24 s to compute a solution on a laptop with an Intel Core 2 Duo processor
at 2.2 GHz and 2 GB of RAM. A movie of the solution can be found at the same
location as above.
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Figure 6.8: Solution times for 100 randomized scenarios with small obstacles. One
example realization is shown above.

Then, to demonstrate how the solution times depend on the obstacle density,
we defined a scenario with five paths and two triangular obstacles between each
path. The triangles were vertically centered between the paths, but the horizontal
position and the orientation were randomized for each trial. We first made 100
trials with small obstacles, where the base of the triangles was 20% of the distance
between paths. Figure 6.8 shows a histogram of the solution times, along with one
realization of a scenario. All scenarios were solved and the mean solution time was
6.3 s.

As a comparison, we made 100 similar trials with larger obstacles, where the
base of each triangle was 50% of the distance between paths. Figure 6.9 shows the
resulting solution time histogram and an example realization. (Note the different
time scale from Figure 6.8.) The maximum size of the RRT was bounded to 50 000
nodes, and with this termination rule, 89% of the scenarios were solved. The num-
ber of nodes was roughly proportional to the solution time, and the search was
terminated after about 700 s. The mean solution time for the solved scenarios was
78 s.

We finally note that in similar experiments, with all 100 trials using the same
scenario, the randomness of the RRT caused a similar spread in solution times,
both for scenarios with small and large obstacles. This is shown i Figure 6.10 and



6.3. Sampling-Based Solution 111

0 100 200 300 400 500 600 700
0

2

4

6

8

Solution time (s)

N
um

be
r

of
tr

ia
ls

Figure 6.9: Solution times for 100 randomized scenarios with larger obstacles. One
example realization is shown above. Larger obstacles cause narrow bottlenecks in the
configuration space, slowing down the RRT solver.

Figure 6.11 for the base of the triangular obstacles being 20% and 50% of the path
distance, respectively. This shows that the spread in Figure 6.8 and Figure 6.9 is
not mainly due to variations in the difficulty of the randomized scenarios, but the
inherent randomness of the RRT.

These tests illustrate two things: First, as expected, the solution times increase
when the obstacles become denser, since there are narrower bottlenecks that the
RRT needs to pass through. Second, the solution time distribution has a long tail
of solvable scenarios where the solution takes very long to find. As mentioned in
Section 6.2, this is a known problem with this class of sampling-based solvers. In
our application, this means it will be difficult to set a termination time when the
problem is assumed unsolvable. Not only does the solution time inherently vary in
the RRT method, but the distribution also depends on the obstacle density. Because
of this, we now go on to present an exact solution method.
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Figure 6.10: Solution times for 100 trials with the RRT solver on the same scenario,
with five paths and two small triangular obstacles between each path. For comparison
with Figure 6.8, 26 trials that took longer than 120 s are not included. Three trials
were aborted before finding a solution. The spread is due to the randomness of the
RRT.
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Figure 6.11: Solution times for 100 trials of the RRT solver on the same scenario,
with five paths and two large triangular obstacles between each path. Two trials were
aborted before finding a solution. The spread is due to the randomness of the RRT.
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6.4 Exact Solution

Our proposed exact solution is similar to cell decomposition methods, as described
in Chapter 2. But in contrast to the standard methods, the cells are allowed to
intersect, so they do not form a partition of Cfree. Before presenting the cell decom-
position and how to search the resulting graph of adjacent cells, we introduce two
restrictions to the general problem in Definition 6.1.1. At the end of this section,
we will comment further on what is gained by this, and how the solution relates to
the general problem.

Restricted Problem Formulation
We first introduce the restriction that the paths P1, . . . , PN are parallel. We will see
later that this restriction allows us to represent the cells as convex sets, making it
simple to test for adjacency of cells. We can then, without loss of generality, orient
the coordinate system so that the position of robot i is qi(t) = (x0

i +xi(t), yi), where
we assume that x0

i is constant and yi is constant and unique. This fixed vertical
ordering allows numbering the robots such that y1 < y2 . . . < yN . The neighbors of
robot i are i − 1 and i + 1 if these exist. The convex hull of the paths of robots i
and i + 1 is called corridor i.

Second, we restrict the types of connectivity that we consider. We define the
graph GC(x) to be locally connected if and only if there exists a j ∈ {1, . . . , N − 1}
such that

{i, i + 1} ∈ EC(x) ∀ i ∈ {1, . . . , N − 1} \ j

and
{{j, j + 1}, {j − 1, j + 1}, {j, j + 2}} ∩ EC(x) �= ∅.

This means that there is a link between all neighbors except possibly a single pair
{j, j + 1}, which must then be indirectly connected by any of the two-hop links
{j − 1, j + 1} or {j, j + 2}. This makes routing simple and still allows flexibility to
pass obstacles by local rerouting. Introducing this restricted notion of connectivity
will make the search of the cell adjacency graph faster. To simplify the presentation,
analogously to the problem in Definition 6.1.1, we assume that the initial and
final configurations are locally connected, since otherwise the problem is trivially
infeasible.

Based on the models defined earlier and the restrictions above, we can now for-
mulate the problem of following parallel paths while preserving local connectivity:

Definition 6.4.1 (Parallel Path Following with Local Connectivity). Given parallel
paths P1, . . . , PN and obstacles W1, . . . , WM , find a time-continuous state trajectory
x : [0, T ] → RN , such that x(0) = 0, x(T ) = xG and GC(x(t)) is locally connected
for all t ∈ [0, T ].

As before, instances of this problem may be unsolvable. The proposed solution
method either finds a solution or in finite time concludes that there is none. In this
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case, a planner on a higher level could adjust some paths, relax the connectivity
constraint or add more robots. In the following, we will describe how the configu-
ration space can be decomposed into cells and then present the proposed solution
strategy.

Cell Decomposition of Free Space

Following from the above definition of local connectivity, free space is the union of
two types of connected subsets, or cells: First there are cells with nearest-neighbor
connectivity, i.e., where all links {i, i + 1} exist, called n-cells. Then there are cells
where a two-hop link of type {i, i + 2} exists, allowing one nearest-neighbor link to
be broken so the robots can pass an obstacle. We call these t-cells, since they act as
tunnels between the n-cells. Regions where n-cells and t-cells intersect correspond
to configurations where it is possible to switch network topology without losing
connectivity. We now formally define cells and show that they are convex polyhedra,
so free space can be described as the union of overlapping convex polyhedra.

To fully specify a cell we must state the network topology and how every link
in the topology interacts with each obstacle, i.e., on which side of the obstacle it
passes. Let T be a minimal locally connected topology, i.e., a set of links {i, j} such
that (VC, T ) is locally connected but connectivity is lost if any link in T is removed.
This makes T a tree topology. Also let L(e, k) : VC × VC × {1, . . . , M} → {−1, 0, 1}
be a LOS constraint, i.e., a rule that defines how the line of sight corresponding to
link e should relate to obstacle k:⎧⎪⎨

⎪⎩
L = 1 ⇔ the LOS should be on the left of Wk

L = −1 ⇔ the LOS should be on the right of Wk

L = 0 ⇔ no constraint

Note that right and left are well-defined for instances of our problem, since all paths
lead from left to right. The empty constraint L(e, k) = 0 is used when e /∈ T , or
if there is no x such that e intersects Wk. With a slight abuse of notation, we say
that the rule L(e, k) is satisfied if and only if link e and obstacle k are related as
specified by L(e, k). The empty constraint L(e, k) = 0 is always considered satisfied.
Now we can define a cell:

Definition 6.4.2. A cell (T, L) is a set

{x ∈ Cfree : T ⊆ EC(x) ∧ L(e, k) satisfied ∀ e ∈ T, k ∈ {1, . . . , M}}.

Each cell can be expressed by a set of linear inequality constraints, derived as in
Figure 6.2. In this special case, (6.1) shows that the LOS between robots i and j > i
is to the left of the obstacle vertex wn

k if and only if

−(x0
i + xi)(wn

k,y − yj) + (x0
j + xj)(wn

k,y − yi) < wn
k,x(yj − yi).
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So the cell (T, L) can be expressed as

x ∈ (T, L) ⇔ ∀ e = {i, j} ∈ T, k ∈ {1, . . . , M}, n ∈ {1, . . . , Ωk} :
− L(e, k)(x0

i + xi)(wn
k,y − yj) + L(e, k)(x0

j + xj)(wn
k,y − yi) < L(e, k)wn

k,x(yj − yi).
(6.2)

We can now define the different types of cells: An n-cell is a cell where T = T0,
where

T0 =
⋃

i∈{1,...,N−1}
{i, i + 1}.

A t-cell has one of the two following types of topologies, depending on which re-
placement link is used:

Ti+ = T0 \ {i, i + 1} ∪ {i, i + 2}
Ti− = T0 \ {i, i + 1} ∪ {i − 1, i + 1}

As an example, Figure 6.14b shows a configuration that is in the intersection of a
T3− cell and a T0 cell. If the obstacles are numbered from below, the nonempty LOS
constraints for the T3− cell are L({1, 2}, 1) = 1, L({2, 3}, 2) = 1, L({2, 4), 2} = 1
and L({2, 4}, 3) = 1. In the following, we will alternatively denote n-cells as T0 cells
and t-cells as Ti± cells.

Figure 6.12 shows a simple example scenario, which corresponds to the configu-
ration space representation in Figure 6.13. All three nonempty n-cells are drawn in
red and the green t-cell, acting as a tunnel between two n-cells, has topology T2−.

Now that we have defined the cell decomposition of Cfree, we turn to the problem
of searching for a sequence of n- and t-cells that form a sequence from the initial
to the final configuration.

Searching the Cell Adjacency Graph
When two cells intersect, so the system can pass between them without losing local
connectivity, we consider them adjacent. Starting from a cell that contains the
initial configuration, we build a tree graph of adjacent cells, until we find a cell
containing the final configuration or the graph is fully explored. The latter case
means that there is no solution. We now give an algorithm for exploring the graph
and derive two properties of the graph that simplify the exploration.

We define the cell adjacency graph as (VA, EA), where the vertex set VA is a set
of explored cells (T, L). It is composed of two disjoint subsets, V E

A and V U
A . They

contain cells whose neighbors are all explored or not, respectively. EA ∈ VA × VA
is the set of edges, such that the cells (T, L) and (T ′, L′) intersect if there is an
edge {(T, L), (T ′, L′)} ∈ EA. To get efficient paths and reduce the search time, we
search for a path that passes the minimum number of cells. This is achieved with
A* searching (LaValle, 2006), using two cost functions: Let g(T, L) be defined for
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Figure 6.12: An example scenario with three paths and two obstacles. The corre-
sponding configuration space representation is illustrated in Figure 6.13.

all (T, L) ∈ VA as the minimum number of edges from the start to (T, L). Also let
h(T, L) be the minimum number of edges between (T, L) and the goal cell. To find
h, we note that it takes a sequence of at least a T0 and a Ti± cell to pass obstacles
in a corridor. Then the path needs to go through a T0 cell to pass obstacles in
another corridor. So for a T0 cell, h(T0, L) is equal to two times the number of
corridors where there are still obstacles to the right of the LOS. For a Ti± cell, it is
two times the number of corridors, except corridor i, where there are still obstacles
on the right of the LOS, plus one. If a feasible path is found, we can solve for a
point in each cell intersection in polynomial time, using (6.2), and then form a path
through Cfree by linear interpolation between the points. This path can be traversed
at arbitrary velocity to get the trajectory xi(t) for each robot.

Algorithm 6.3 uses NEW_NEIGHBORS(T, L), which returns the set of all cells
that intersect (T, L) but are not in VA. We now derive two properties of the graph,
which reduce the number of possible neighbor cells that must be considered:

Property 6.4.3. Two cells (T, L) and (T ′, L′) are disjoint if there exist e ∈ T ∩T ′

and k ∈ {1, . . . , M} such that L(e, k) �= L′(e, k).

This follows since no x fulfills (6.2) for both L and L′ in this case. Property 6.4.3
means that from a T0 cell, we only need to consider adjacency to Ti± cells where
the LOS constraints are the same, except for the link that replaces (i, i + 1). No T0
cells are adjacent.
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x1

x2

x3

Figure 6.13: The configuration space corresponding to the scenario in Figure 6.12.
There are three disjoint n-cells (red), i.e., regions of C where the robots have nearest-
neighbor connectivity. One green t-cell is also shown, where the links {1, 2} and {1, 3}
are available. This topology can be used to pass between n-cells with maintained
connectivity.

Algorithm 6.3 A* Search in the Cell Adjacency Graph
1: Find a cell (T, L) that contains x = 0
2: V E

A := ∅, V U
A := (T, L), EA := ∅

3: loop
4: if V U

A = ∅ then
5: Terminate, there is no solution
6: end if
7: (T, L) := argmin(T ′,L′)∈V U

A
g(T ′, L′) + h(T ′, L′)

8: V E
A := V E

A ∪ (T, L)
9: V U

A := V U
A \ (T, L) ∪ NEW_NEIGHBORS(T, L)

10: EA := EA ∪ {(T, L), NEW_NEIGHBORS(T, L)}
11: if xG ∈ NEW_NEIGHBORS(T, L) then
12: Terminate, a path is found
13: end if
14: end loop
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Property 6.4.4. The intersection of t-cells with topologies Ti± and Tj±, where
i �= j, is a subset of an n-cell.

In the intersection, all links Ti± ∪ Tj± must be available. Since T0 ⊂ Ti± ∪ Tj±,
the intersection is a subset of an n-cell. Together with Property 6.4.3, this means
that from a Ti+ cell, without loss of generality, we can consider only adjacency with
Ti− or T0 cells, and conversely from a Ti− cell. We finally note that many cells can
be empty, but this also means that the intersection with any existing cell is empty.

Solution Completeness and Complexity
The cell adjacency graph will contain finitely many cells, so Algorithm 6.3 will in
finite time either find a solution or conclude that the problem is unsolvable.

To determine the worst-case time complexity of searching the graph, we let mi

be the number of obstacles in corridor i. Obviously,
∑N−1

i=1 mi = M . A T0 cell has
one link through each corridor and it is uniquely defined by which obstacles in the
corridor are on the left or right of the link. Thus there are

N−1∏
i=1

2mi = 2M

possible T0 cells. A Ti+ cell has nearest-neighbor links in each corridor, except
corridor i. Instead, the link {i, i + 2} passes corridors i and i + 1, which gives

2mi2mi+1
∏

j∈{1,...,N−1}\i

2mj = 2mi+12M ≤ 22M

possible combinations. Similarly, there are at most 22M Ti− cells.
Due to Property 6.4.3, all possible neighbors of a T0 cell can be constructed by

removing one link {i, i + 1} and replacing it with either {i, i + 2} or {i − 1, i + 1}.
The former can have 2mi2mi+1 combinations of LOS constraints, and the latter can
have 2mi−12mi combinations. In total, that gives

N−2∑
i=1

2mi2mi+1 +
N−1∑
i=2

2mi−12mi = 2
N−2∑
i=1

2mi2mi+1 ≤ 2N2M

possible neighbors of each T0 cell. Every Ti+ cell can have at most 2mi T0 cells and
2mi−12mi Ti− cells as neighbors. Analogously, a Ti− cell can have the same number
of T0 cell neighbors and at most 2mi2mi+1 Ti+ cell neighbors. So a Ti± cell has at
most 2 · 2M possible neighbors.

Thus there are at most 2M ·2N ·2M edges from an n-cell to a t-cell. And there are
at most 22M ·2 ·2M edges from a t-cell to an n-cell. Testing for adjacency is a linear
programming problem with O(NM) constraints as in (6.2). Its time complexity
is polynomial in the number of constraints (Boyd and Vandenberghe, 2004). We
summarize this discussion in the following proposition:
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Proposition 6.4.5 (Completeness and Complexity). Algorithm 6.3 is complete.
Its worst-case time complexity is exponential in the number of obstacles, M , and
polynomial in the number of robots, N .

As mentioned in Chapter 2, the complexity of exact cell decomposition methods
is usually dominated by the dimensionality of the state space, since this affects the
number of possible neighbors of each cell. In our case, the number of neighbors
instead depends on the number of obstacles, so this is the main limitation. Note,
however, that the problem can be trivially decomposed if there is a corridor without
any obstacles, so in practice, M is lower bounded by N − 1. In the conclusions, we
will comment on how larger problems could be decomposed to reduce the number
of obstacles. But first, we describe some simulations.

Simulations
To illustrate the method and some of its properties, we include two simulations.
The first is a simple scenario to show the solution trajectory, and the second is
a larger example to show what problem sizes are practically solvable. All simula-
tions are made in Matlab on a laptop with an Intel Core i7 processor running at
2.7 GHz and with 8 GB of RAM. Movies of the resulting trajectories are available at
http://www.ee.kth.se/~lindhe.

Figure 6.14 shows a small example with four robots and three obstacles, which
took 2.9 s to solve. The figure shows snapshots of the motion, at every instance
when the robots move between cells and switch topologies. The blue lines are the
robot paths, black circles are robots and green lines show the LOS links. Dashed
lines are the links that are given up at each switch, and wider lines are the new
links.

A larger example is given in Figure 6.15, with six paths and ten obstacles. It
took 9 min 26 s to solve, and the resulting cell adjacency graph had 381 T0 cells.
(For efficiency, only the T0 cells are stored and once a solution path is found, the
sequence of Ti± cells is reconstructed along the path.) The solution path passes
21 cells.
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(a) T0 → T3− (b) T3− → T0 (c) T0 → T2− (d) T2− → T2+

(e) T2+ → T0 (f) T0 → T1+ (g) T1+ → T0 (h) Final configu-
ration

Figure 6.14: Snapshots of four robots passing three obstacles. At each snapshot but
the last, the robots are switching topologies, as labeled underneath. The link that is
given up after the switch is dashed, and the new link that is established is drawn
wider.

Figure 6.15: A larger example scenario with six paths and ten obstacles, solved in
9 min 26 s.
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6.5 Summary

We have presented two methods of computing visibility-constrained reference trajec-
tories, suitable for integration in the coordination layer of a motion planner. Both
methods construct a tree inside the free space, starting from the initial configura-
tion and trying to reach the final configuration. In the RRT case, the tree is grown
by adding straight line edges from the tree towards randomly chosen points. This
strategy works well in cases with sparse C-obstacles and its time complexity scales
favorably with the number of obstacles and robots. The main drawback is that it
cannot in finite time conclude that a problem instance is unsolvable. Also, the time
to compute a solution exhibits a large spread due to the randomness of the method,
making it difficult to set an empirical termination time for the solver. The exact
solution, on the other hand, represents free space as a tree of partially intersecting
convex cells. The cells can in finite time fill all reachable parts of Cfree, making it
possible to determine that there is no solution. The drawbacks of the method are
the high worst-case running time and that it applies only to a restricted class of
problems. In Chapter 7, we discuss how the problem could be decomposed by using
a receding horizon approach. We will now comment further on the restrictions of
the problem.

The proposed cell decomposition solution utilizes two key assumptions: that of
parallel paths and the restriction to only consider local connectivity. By assuming
parallel paths, we get convex cells, so path planning inside a cell is trivial and
solving for the intersection of two cells is a convex problem. In the case of non-
parallel paths, it would be an interesting direction of future research to investigate
other parameterizations of C, which may yield convex cells. We expect the results on
adjacency and complexity of the cell graph to carry over also to this case. Extending
that to multi-segment paths would mean expanding the configuration space into
multiple hyperrectangles, each of which corresponds to a combination of segments.
The other assumption, restricting to local connectivity, gives simple network routing
and also lowers the number of possible cells, making the cell adjacency tree faster to
search. It would be straightforward to allow a larger class of connected topologies.
It would just make the search tree larger.

We note that that it would be hard to compare the sampling-based and exact
methods on the same scenario, for two reasons. First, the comparison would be un-
fair since the scenario must have parallel paths, which the exact method is tailored
for, unlike the RRT method, which can handle a more general class of problems.
Second, the exact method is insensitive to narrow bottlenecks and for given N and
M , its solution time only depends on the topology of the cell adjacency graph. We
have seen that the solution time of the RRT method, on the other hand, depends
strongly on the obstacle density. So the comparison would be very sensitive to the
problem geometry.

In the introduction to this chapter, we commented that this problem bears simi-
larities to the path coordination problem. A solution to this was proposed by Siméon
et al. (2002), exploiting a cylindrical property of the C-obstacles, namely that colli-



122 Motion Planning with Visual Connectivity Constraints

sions between robots i and j are uniquely determined by the projection of C onto the
two-dimensional subspace (x1, xj). They also use a decomposition of the robots into
smaller interacting subsets. In our general problem formulation of Definition 6.1.1,
the C-obstacles are not cylindrical. The cylindrical property does, however, apply
when we restrict the problem to local connectivity in Definition 6.4.1. Connectiv-
ity for robots i and i + 1 is then uniquely determined by a projection of C onto
the four-dimensional subspace (xi−1, xi, xi+1, xi+2). The proposed decomposition
is however not applicable to neither problem formulation, since the connectivity
constraint guarantees that there are no non-interacting subsets of robots.



Chapter 7

Conclusions

This chapter contains a summary of the work presented in the thesis, some
conclusions and suggestions for possible extensions. We first discuss how
the results fit into the layered architecture of communication-aware motion

planning. Then we summarize the work on exploiting multipath fading. Finally, we
discuss the proposed methods for maintaining visual connectivity.

7.1 Communication-Aware Motion Planning

This thesis assumes a layered architecture for robot motion planning, where a mis-
sion planner computes waypoints that must be reached to complete some high-level
task. A coordination layer translates the waypoints into reference trajectories for
each robot, such that the robots avoid collisions with obstacles or each other. Fi-
nally, a motion controller in each robot tracks its reference trajectory, using feedback
to compensate for disturbances or model errors. We suggest doing communication-
aware motion planning by modifying the layers to also take communication con-
straints into account, while maintaining the interfaces of the architecture.

We have proposed and analyzed two communication-aware components that
are suitable for integration in a layered motion planner. First we considered how to
modify the motion controller, to exploit multipath fading by stopping at positions
where the SNR is high. The tradeoff between communication and reference tracking
can be quantified to ensure that the tracking accuracy required by the coordination
layer is maintained. Second, we considered how the coordination layer can determine
the velocity for each robot along its path, so that visual connectivity is maintained,
despite obstacles. The result is a reference trajectory for each robot, which can be
sent to the motion planner. The proposed components are tested in simulations and
experiments.

Both multipath fading and shadowing can be compensated for, by increased
transmission power, multi-hop relaying or hardware measures, such as diversity.
This thesis aims at providing another alternative, by using the motion of the robot.
This can be used as a complement or replacement to traditional methods of im-
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proving communications, depending on the application requirements. One segment
where this could be useful is for low-cost, power-constrained robots that want to use
cheap radios transmitting at low power, but still maintain reliable high-bandwidth
communications for streaming sound or images. Whenever the nominal link qual-
ity is too low, the robots could switch to communication-aware motion planning if
needed.

7.1.1 Extensions
The two main themes in this thesis, exploiting multipath fading and maintaining
visual connectivity, are complementary. In some situations it is possible to maintain
visibility, in which case multipath fading will not be very pronounced, but in some
cases there are not enough robots to do this without sacrificing mission completion.
Then the robots could switch to stop-and-go motion to make the best of the multi-
path fading instead. We have chosen not to focus on the effects of path loss on the
wireless link. The reason for this, as indicated in Chapter 2, is that the interconnec-
tion between path loss and motion planning has already been thoroughly studied in
the robotics literature. We believe that, to arrive at truly applicable and versatile
tools for communication-aware motion planning, the challenge of integrating all of
path loss, shadowing and multipath fading largely remains, both in planners as well
as in realistic simulators.

A first step towards more versatile communication-aware motion planning could
be to combine the methods presented in this thesis. An interesting line of future
research would be to reformulate the problem of visibility-constrained connectivity
to minimizing the duration of the longest outage. During periods of outage, the
robots could mitigate the multipath fading by stop-and-go motion and multi-user
diversity.

7.2 Exploiting Multipath Fading

When a robot is following a reference trajectory through an environment that ex-
hibits static multipath fading, it can improve the average quality of the wireless
link to a base station by stopping at positions where the signal strength is high. To
maintain reference tracking, it should only stop for a limited time, and then catch
up again with the reference position. We have formulated this in three different
ways, leading to three different methods for finding a communication-aware veloc-
ity controller for the robot. We have previously categorized them according to how
the constraints on reference tracking are formulated, but below we also discuss how
they differ in what triggers the stopping.
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Channel-, Time- or State-Triggered Stopping

The proposed methods for stop-and-go motion represent a feedback approach, where
the robot uses its position and measurements of the SNR to control its motion. The
advantage of this is that the fading does not need to be predicted, which is difficult
in general settings. Using feedback also adds robustness to errors in the models
of motion and communication. The robot can compensate if it moves slower than
expected, or if the statistics of the fading change over time. We now clarify how the
SNR measurements control the stopping of the robot in each proposed method.

In Chapter 3, we considered hard bounds on the tracking error and assumed
that the robot could sample the SNR at equidistant points. If the robot knew only
the distribution of the SNR, we proposed an optimal stopping strategy, where the
threshold for stopping depended on the tracking error. The more the robot was
lagging behind, the higher the threshold for standing still. If the robot instead had
complete knowledge of the SNR waveform, it should simply stand still at the best
position that did not violate the tracking bounds. Both approaches can be described
as channel-triggered stopping. We computed the resulting link capacity and through-
put, as a function of the tracking bounds. Finally, we performed experiments in a
number of locations, to test the performance of the optimal stopping strategy. The
results showed that it could improve the throughput by over 100%, compared to the
nominal case of driving at constant velocity. As expected, the resulting throughput
improvements depend strongly on how well the link performs in the nominal case.
But they also show that the approach is robust to moderate levels of motion in the
environment, which violates the assumption on the fading being static.

In Chapter 4, the tracking requirements were formulated in a probabilistic man-
ner: The robot stopped for a constant time if the SNR exceeded a given threshold,
and both the stop time and threshold level were chosen to yield a specified expected
velocity. To maintain reference tracking, this was embedded in an architecture with
a feedback controller that controlled the position of the robot by adding a bias to
the threshold. To allow for a slower channel quality sensor, the robot stopped after
a given time and only sampled the SNR while standing still. If the SNR was below
the stopping threshold, the robot immediately resumed driving. This was called
time-triggered stopping. We implemented this architecture on a robot, and in cases
with low channel quality, the results showed throughput improvements of 50–100%
compared to the nominal case.

The last chapter on multipath fading was Chapter 5, where we formulated an
optimal control problem with both throughput and reference tracking in the cost
function. The robot was assumed to have a data buffer with constant inflow, where
the outflow was equal to the wireless throughput. The robot motion and the buffer
were modeled as a switched linear system, where the SNR varied according to a
known distribution when the robot was moving and assumed a constant value of
the local maximum when the robot was standing still. A controller was found using
hybrid optimal control, and the resulting performance was illustrated in simulations.
The robot stopped if the buffer was large compared to the tracking error, and
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otherwise focused on driving to catch up with the reference. This could be described
as state-triggered stopping.

Comparison

One of the main differences between the proposed methods was how the tradeoff
between tracking and communication was controlled: In Chapter 3, we simply set
the maximum tracking error and we also analyzed how it affected the resulting
channel capacity or throughput. In Chapter 4, the tradeoff was controlled by the
closed-loop pole a, as well as the stop time variance σ2. Simulations illustrated
the expected result that a faster pole (smaller a) yielded better reference tracking,
but this meant that the tracking controller interfered more with the stop-time
policy. A smaller variance meant that the robot made shorter stops, which also left
less freedom to exploit good positions. Finally, in Chapter 5, the tradeoff between
communication and tracking was controlled by the choice of weights, Q, in the cost
function (5.1).

With regards to implementation, channel-triggered stopping required that the
robot could measure the SNR when driving. As the multipath fading varies quickly
with the position of the robot, this precluded averaging over several received packets
if the robot was moving fast. This made the stopping decision more noise-sensitive
than the time- or state-triggered stopping. In the case of full knowledge of the
SNR waveform, the main difficulty of channel-triggered stopping would instead be
navigation: To exploit previous measurements of the multipath fading, the robot
would need to be able to reproduce its position with accuracy in the order of a
fraction of a wavelength. Time-triggered stopping, on the other hand, placed less
demands on the channel sensor as well as the navigation. But it would be more
difficult to integrate in a layered motion-planning architecture because there were
more parameters to set and no hard bounds on the resulting tracking error. This
also held true for state-triggered stopping, which caused as much tracking error as
needed to maintain a bounded buffer size. To implement state-triggered stopping,
the system would have to be monitored against buffer overflow. If the channel
conditions were too bad so the buffer could not be balanced by stop-and-go motion,
the inflow would need to be reduced, by turning sensors off or reducing the sampling
rate or resolution.

The general approach suggested above, to spend more time at positions where
the fading is beneficial, is a form of diversity. It could be compared to other di-
versity schemes traditionally used to mitigate multipath fading, as described in
Chapter 2. The general idea of diversity is to create multiple independent channels
that can be combined to improve the link. The more channels, the better the result-
ing link performance. This is why our approach, which can be viewed as a type of
switched antenna diversity over time, is useful as a complement to other techniques,
to increase the number of independent channels. As an example, a robot could be
equipped with 3 antennas for diversity, or have 3 frequencies to choose between. But
if it could also choose any of 3 sampling positions, that would offer 9 independent
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channels. The advantage of our approach is that by leveraging the robot mobility,
it does not require any extra hardware, unlike antenna diversity. As robots get
smaller, it could also be difficult to fit multiple antennas on them, with sufficient
separation to get good diversity. Then using motion for diversity may be a more
efficient alternative. Finally, as modern radio circuits are moving towards higher
frequencies, the allowed deviation required for a given throughput will decrease,
since it is proportional to the carrier wavelength.

Extensions

Chapters 3–5 focused on the channel between a single robot and its base station.
But similar principles could be applied in multi-robot networks, where robots also
communicate between each other. A simple extension is when robots are deployed
to static locations and the communication topology is a tree. Starting from the root,
the robots could then sequentially make small movements to improve the channel
to their parent with respect to multipath fading. For other topologies, one could
use a distributed optimization framework, as proposed by Vieira et al. (2011). If
two moving robots are communicating, they could jointly decide to stop when the
channel is good. In a static environment, this is equivalent to the case of a base
station and a single robot. And if both robots have the same reference velocity,
the tradeoff between communication and reference tracking is identical, so they can
make the same stopping decisions.

The approaches above were derived under the assumption of static multipath
fading, but the principles carry over to more general propagation effects as well.
Making small deviations from a given reference position is relevant in any situation
where the signal strength varies over short distances. As an example, the tracking er-
ror bounds could be extended to overcome shadowing. A possible application would
be a robot searching office rooms, knowing that the signal strength is better in the
corridor or near windows. The principle of channel-triggered optimal stopping could
also be used for underwater robots, that surface regularly to try to communicate.
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7.3 Maintaining Visual Connectivity

We have proposed two methods for computing the velocities for N robots, mov-
ing along given paths, such that they maintain visual connectivity and still reach
their goals. In both cases, we translated the problem to motion planning in an N -
dimensional configuration space. The C-obstacles corresponded to configurations
where the robots were not connected, which must be avoided. The first proposed
method solved the motion planning problem using the RRT algorithm, which built a
tree that filled the free space by expanding in the direction of randomly chosen sam-
ple points. When the goal configuration was reachable from the tree, the solution
path could be extracted. This method could handle high-dimensional configuration
spaces, but in the likely case that there was no solution, the solver ran forever. We
therefore also proposed an exact method, which could detect an unsolvable prob-
lem in finite time. This method divided the free space into overlapping convex cells,
each corresponding to a certain communication topology and a certain relation be-
tween all obstacles and the lines of sight between robots. It was then possible to
construct a graph of adjacent cells. If there was a sequence of cells linking the cells
that contained the initial and goal configurations, a path could easily be extracted.
This method had higher computational complexity, so it could only handle cases
with up to about six robots. It also required that the problem was constrained to
only allowing parallel paths.

As described in the thesis problem formulation, the methods for maintaining
visual connectivity are intended for integration with the coordination layer of a
robot motion planner. This represents an open-loop control structure, using given
paths and a map of the obstacles to compute reference trajectories for each robot.
An important drawback of open-loop control is that it is sensitive to disturbances.
If a robot is delayed, the others will continue following their trajectories, possibly
losing connectivity. And the approach is not robust to errors in the map, which
can also lead to loss of connectivity. To improve robustness, the proposed methods
could be implemented in a closed-loop way, using a receding horizon framework.
The coordination layer would then solve for partial trajectories and replan regularly,
based on new information in the map and the updated robot positions. Below, we
comment further on this extension.

Extensions

In contrast to most cell decomposition methods, constructing the cells is trivial
in the exact method, but testing for adjacency is computationally expensive. This
is why the number of obstacles, M , which determines the branching factor of the
search tree, has higher impact on the complexity of the problem than the dimension
N of the configuration space. This suggests decomposing large problems by only
considering the next M̃ < M obstacles, rather than decomposing them along the
y-dimension by dividing the robots into subgroups. Formulating this as a receding
horizon problem and studying its completeness properties remains an open problem
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for future research.
The RRT framework is very flexible, in that it is straightforward to introduce

additional constraints. One such constraint would arise if intersecting paths were al-
lowed. The outage detector could then be augmented so it returns the configuration
x that is as close to y as possible without going into outage or having an inter-robot
collision. Algorithm 6.1 would not change. Similarly, it would be possible to enforce
constraints on the network topology. As an example, the outage detector could be
reconfigured to only consider two robots as connected if the path between them in
the communication graph has a given maximum number of hops.

Another example of the RRT flexibility is that one can exchange the local solver
in the outage detector. In our proposed outage detector, we have chosen to use a
very simple straight-line local solver to find paths between two candidate points in
C. It is important to note that this is not the only possible choice. A potential-based
method, where we allow local minima, could possibly yield better results, at the
expense of slower queries to the outage detector. The tradeoff between efficiency
of the exploration and the computational complexity of the outage detector (more
generally called collision detector) is discussed by Geraerts (2006).

We finally note that the formulated problem constitutes half of the solution to
the full visibility-constrained path planning problem. Before choosing velocities, we
would need to find collision-free paths. The advantage of the proposed exact solver
would be more apparent in this setting, since it would need to signal if the paths
do not allow maintained connectivity, so they can be replanned.
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