
On Distributed Optimization in
Networked Systems

B J Ö R N J O H A N S S O N

Doctoral Thesis in Telecommunication
Stockholm, Sweden 2008

www.kth.se

TRITA-EE 2008:065
ISSN 1653-5146

ISBN 978-91-7415-190-9

BJÖ
RN

 JO
H

A
N

SSO
N

 O
n D

istributed O
ptim

ization in N
etw

orked System
s

KTH
 2008

On Distributed Optimization in Networked Systems

BJÖRN JOHANSSON

PhD Thesis
Stockholm, Sweden 2008

TRITA-EE 2008:065
ISSN 1653-5146
ISBN 978-91-7415-190-9

Automatic Control Laboratory
School of Electrical Engineering

Royal Institute of Technology (KTH)
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen
den 30 januari 2009 klockan 13:15 i sal F3, Kungliga Tekniska högskolan, Lindst-
edtsvägen 26, Stockholm.

© Björn Johansson, December 2008. All rights reserved.

Tryck: Universitetsservice US-AB

Abstract
Numerous control and decision problems in networked systems can be posed as

optimization problems. Examples include the framework of network utility maxi-
mization for resource allocation in communication networks, multi-agent coordina-
tion in robotics, and collaborative estimation in wireless sensor networks (WSNs).
In contrast to classical distributed optimization, which focuses on improving compu-
tational efficiency and scalability, these new applications require simple mechanisms
that can operate under limited communication. In this thesis, we develop several
novel mechanisms for distributed optimization under communication constraints,
and apply these to several challenging engineering problems.

In particular, we devise three tailored optimization algorithms relying only on
nearest neighbor, also known as peer-to-peer, communication. Two of the algorithms
are designed to minimize a non-smooth convex additive objective function, in which
each term corresponds to a node in a network. The first method is an extension of
the randomized incremental subgradient method where the update order is given by
a random walk on the underlying communication graph, resulting in a randomized
peer-to-peer algorithm with guaranteed convergence properties. The second method
combines local subgradient iterations with consensus steps to average local update
directions. The resulting optimization method can be executed in a peer-to-peer
fashion and analyzed using epsilon-subgradient methods. The third algorithm is a
center-free algorithm, which solves a non-smooth resource allocation problem with
a separable additive convex objective function subject to a constant sum constraint.

Then we consider cross-layer optimization of communication networks, and
demonstrate how optimization techniques allow us to engineer protocols that mimic
the operation of distributed optimization algorithms to obtain an optimal resource
allocation. We describe a novel use of decomposition methods for cross-layer opti-
mization, and present a flowchart that can be used to categorize and visualize a
large part of the current literature on this topic. In addition, we devise protocols
that optimize the resource allocation in frequency-division multiple access (FDMA)
networks and spatial reuse time-division multiple access (TDMA) networks, respec-
tively.

Next we investigate some variants of the consensus problem for multi-robot co-
ordination, for which it is usually standard to assume that agents should meet at
the barycenter of the initial states. We propose a negotiation strategy to find an
optimal meeting point in the sense that the agents’ trajectories to the meeting
point minimize a quadratic cost criterion. Furthermore, we also demonstrate how
an augmented state vector can be used to boost the convergence rate of the stan-
dard linear distributed averaging iterations, and we present necessary and sufficient
convergence conditions for a general version of these iterations.

Finally, we devise a generic optimization software component for WSNs. To this
end, we implement some of the most promising optimization algorithms developed
by ourselves and others in our WSN testbed, and present experimental results,
which show that the proposed algorithms work surprisingly well.

To my mother, Inger, and my late father, Tommy.

Acknowledgments

“Someone told me that each equation I included in the book would
halve the sales.”

S. W. Hawking, A Brief History of Time, 1988.1

Foremost, I would like to thank my advisor, Associate Professor Mikael Johans-
son, for your help, encouragement, and fruitful discussions; it has been a pleasure
working with you! My co-advisor, Professor Karl Henrik Johansson, has also been
most helpful. Everytime we spoke, both of you made me feel that I could conquer
the world with my research. Not likely, I guess, but nevertheless an amazing feeling!

I’m grateful to all fellow PhD students in the control group and Karin Karlsson
Eklund and Anneli Ström, for making KTH a fun and warm place to work.

A big thanks to all present and former collaborators: Cesare Maria Carretti,
Assistant Professor Tamás Keviczky, Dr. Alberto Speranzon, Dr. Carlo Fischione,
Tekn. Lic. Pablo Soldati, Dr. Constantin Adam, Professor Rolf Stadler, Associate
Professor Mung Chiang, Assistant Professor Jianwei Huang, and Helen Li. Extra
thanks to Cesare Maria Carretti who performed the NS2 simulations and did most
of the coding of the WSN experiments in Chapter 6, and to Tekn. Lic. Pablo Soldati
who performed the STDMA simulations in Chapter 4.

I am also very grateful to Associate Professor Mung Chiang for hosting my
pleasant visit at Princeton University in 2007. At Princeton, I really enjoyed the
lunches and discussions with Dr. Yung Yi.

Several free software packages, SeDuMi, YALMIP, TinyOS, Graphviz, and Jem-
doc, as well as the websites www.google.com and www.wikipedia.org, have made
my life substantially easier. Thanks.

Thanks to Dr. Märta Barenthin Syberg, Tekn. Lic. Oscar Flärdh, M.A. Dmitry
Kiper, Tekn. Lic. Magnus Lindhé, Dr. Maben Rabi, and Tekn. Lic. Pablo Soldati
for proofreading various parts of this thesis. The errors are of course my own fault.
Thanks to PanGun Park, Piergiuseppe Di Marco, and Chithrupa Ramesh for assis-
tance with motes and TinyOS.

Without financial support this work would not have been possible, and I’m
grateful to the Swedish Research Council (CoopNets), the European Commission

1If we keep the potential circulation of this thesis modestly upper bounded by 6 · 109, then,
since it contains over 100 equations, fewer than 4.7332 · 10−21 persons will read it.

vii

viii Acknowledgments

(Socrades), the Swedish Agency for Innovation Systems (WISA I/II), and ultimately
the Swedish taxpayers for this support.

Finally, I would like to thank my family, friends, and especially the loves of my
life, Selma and Charlotte, for being there.

Björn Lindgren Johansson
Stockholm, December 2008

Contents

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Resource Allocation in Communication Networks 2
1.2 Wireless Sensor Networks . 5
1.3 Why Should We Use Optimization? 6
1.4 Outline and Contributions . 8

2 Preliminaries 13
2.1 Convex Optimization . 13
2.2 Graphs . 16
2.3 Peer-to-Peer Algorithms and Consensus 17
2.4 Markov Chains and Fast Mixing 19
2.5 Centralized Optimal Resource Allocation 21
2.6 Optimization Algorithms . 23
2.7 Decomposition Methods . 28
2.8 Summary . 37

3 Novel Distributed Optimization Algorithms 39
3.1 Background . 40
3.2 Non-smooth Coupled Convex Optimization 40
3.3 Markov Incremental Subgradient Method 41
3.4 Distributed Subgradient Method using Consensus Iterations . . . 54
3.5 Numerical Results for MISM and CSM 64
3.6 Non-Smooth Center-Free Resource Allocation 68
3.7 Numerical Results for NCRM . 74
3.8 Summary . 75

4 Resource Allocation in Communication Networks 79
4.1 Background . 80
4.2 Network Utility Maximization . 83

ix

x Contents

4.3 Decomposition and Distributed Protocol Design 85
4.4 Optimization Flow Control . 86
4.5 How Should NUM Problems be Posed, Decomposed, and Solved? 87
4.6 Network-wide Resource Constrained Networks 95
4.7 STDMA Wireless Networks . 105
4.8 Summary . 115

5 Optimal Consensus 119
5.1 Optimal Multi-Agent Consensus 120
5.2 Faster Linear Iterations for Distributed Averaging 127
5.3 Summary . 141

6 Optimization in Wireless Sensor Networks 143
6.1 Background . 143
6.2 Problem Formulation . 145
6.3 A Taxonomy of Solution Approaches 145
6.4 Algorithms . 148
6.5 Simulations . 152
6.6 Implementation on Tmote Sky Motes 160
6.7 Summary . 166

7 Discussion and Future Work 167
7.1 Chapter 3 . 167
7.2 Chapter 4 . 168
7.3 Chapter 5 . 170
7.4 Chapter 6 . 171

A Notation 173
A.1 Symbols . 173
A.2 Acronyms . 175

B Numerical Experiments 177
B.1 Numerical Experiment Details for Chapter 3 177

Bibliography 179

Chapter 1

Introduction

“It follows that the Scientist, like the Pilgrim, must wend a straight
and narrow path between the Pitfalls of Oversimplification and the
Morass of Overcomplication.”

R. Bellman, Dynamic Programming, 1957.

The world is connected. Cellular phone networks, power grids, and the In-
ternet are examples of vital infrastructures that connect everything on this
planet. These crucial systems share one striking feature: they are composed

of subsystems that make local decisions and coordinate with other subsystems to
accomplish their tasks. We denote such systems as networked systems.

The most well-known networked system is probably the Internet, which com-
prises a mind boggling number of computers and users. It is interesting, and per-
haps even surprising, that the Internet actually works as well as it does. Networked
systems are also present where you might not suspect. For example, in most mod-
ern cars and aircraft, several controllers are working together to make your life as a
driver or pilot easier and safer. A novel example is so-called wireless sensor networks
(WSNs), which are composed of tiny wireless sensors, so-called motes. These sensor
networks can be used for, e.g., monitoring and surveillance; see Fig. 1.1 for an ex-
ample of a WSN. In addition, there are numerous examples of networked systems
in nature as well, and the prototypical example is a school of fish, which is shown
in Fig. 1.2.

We really depend on networked systems in our daily lives, but we do not yet
understand these phenomena fully, and there is no comprehensive theory. Thus,
engineers designing such large scale systems usually have to rely on intuition, trial
and error, and empirical experience. Although these techniques are very useful,
which we can deduce from the fact that many of these systems work extremely well,
it is rather widely believed that we could do better if we had a firmer theoretical
understanding of these phenomena. There is a major on-going research effort in
understanding such systems, and this thesis is a part of that effort. Thus, the aim
of this thesis is to add knowledge to the broad theory of networked systems.

1

2 Introduction

Figure 1.1: The picture shows a part of the wireless sensor network testbed mounted
in the ceiling at the Automatic Control Lab at KTH; see Maciel (2008) for full details.
Each box contains a Tmote Sky mote equipped with a temperature sensor, and a
majority of the motes also have an ultrasound receiver. The motes communicate with
each other using radios compliant with the IEEE 802.15.4 standard. The wiring that
can be seen supplies power and is not used for communication.

More specifically, in this thesis, we consider decision problems that are posed as
optimization problems and where there is a natural communication structure im-
posed on the disparate parts of the system. The communication structure specifies
which subsystems can directly communicate with each other; see Fig. 1.3 for an
illustration. Two important problems emerge: which optimization problems should
we solve and how should we solve them? We partly address both questions in this
thesis. First, we consider the how-problem and devise specialized optimization algo-
rithms, which only rely on nearest neighbor communication, or so-called peer-to-peer
communication (Chapter 3). Second, we address the which-problem and consider
resource allocation problems to obtain communication protocols that make commu-
nication networks more efficient (Chapter 4). Furthermore, we consider multi-agent
rendezvous problems; we investigate where the agents should rendezvous and how
they should get there (Chapter 5). Finally, we put our novel algorithms to the test,
and we implement some of the most promising algorithms on our WSN testbed
(Chapter 6).

Two applications in particular motivate this thesis: resource allocation in com-
munication networks and wireless sensor networks.

1.1 Resource Allocation in Communication Networks

The world has an immense appetite for communication and bandwidth, and the
demand seems to only increase. At the same time, the physical resources are lim-
ited, e.g., there is only a limited spectrum available for wireless communications.

1.1. Resource Allocation in Communication Networks 3

Figure 1.2: A school of fish is a networked system; it is an example of rather simple
subsystems cooperating to accomplish a task. In this case, the task is to form a
school, which according to some theories create protection against predators (Cushing
and Jones, 1968). Cooperation is an essential component in our notion of networked
systems. Photography © Dejan Sarman | Dreamstime.com.

1 2 3
f1(·) f2(·) f3(·)

Figure 1.3: The figure shows an example of a networked system consisting of three
nodes. A line between two nodes implies that the nodes can communicate with each
other. Furthermore, each node is associated with a cost function, and the nodes co-
operate to find the minimum of the sum of the cost functions,

∑n

i=1 fi(x). Numerous
tasks in several applications can be posed as optimization problems of this type.

Therefore, there are financial incentives to use current and future communications
hardware and the available medium as efficiently as possible.

A data network consists of several nodes (a node is, e.g., a cell phone) communi-
cating with each other using some physical medium; see Fig. 1.4 for an illustration.
The connections between nodes are called links, and they can be considered to be
pipes in which data flow. If a node desires to communicate with a distant node,
then it has to use several links to reach the other node.

A design strategy often used in engineering is to divide a system into separate
subsystems (i.e., divide-and-conquer), which allows a more or less modular design.
This paradigm has also been used in network design, and the resulting subsystems
are often called layers. The layers are logically stacked on top of each other, where

4 Introduction

(a) (b)

Figure 1.4: The circles denote nodes in a communication network with controllable
link capacities, but the sum of the capacities is constant. The solid lines illustrate
the links and the thickness of the lines corresponds to the capacity. The two nodes
to the left and the node in the center desire to send as much data as possible to the
rightmost node. (a) This is the network before cross-layer optimization. All links have
the same capacity and the link to the right is a bottleneck. (b) This is the network
after cross-layer optimization. Now, the two left links have less capacity and the right
link has more capacity, and the bottleneck link has been relieved; more data can now
be transferred from the left side and the center to the right side.

the lower layers provide basic functionality for the higher layers. The higher layers
can use the functionality provided by the lower layers without knowing anything
about their inner workings. The layered structure will make the design and the
maintenance of the network design much simpler. However, if the layers are allowed
to cooperate more closely, then there could be performance benefits. This cooper-
ation can be achieved by using cross-layer optimization. The drawback with this
increased entanglement is that the design probably has to be redone if one layer
is changed. Thus, the performance is improved at the expense of greater complex-
ity. An enlightening discussion on the potential benefits and pitfalls of cross-layer
optimization can be found in Kawadia and Kumar (2005).

We consider communication networks where the physical medium is shared and
the capacities can be changed by allocating some limited physical resource (e.g.,
a cellular phone network). Returning to the pipe analogy that we used earlier, we
consider networks where the pipes have variable radii that we can control. More
specifically, we will concentrate on the interplay between the data-flow rates and
the capacity allocation in the links.

The benefit of cross-layer optimization is illustrated by the four node example
network in Fig. 1.4. This network has links where the capacities are controllable,
but the total capacity is limited. If capacity is shifted from lightly loaded links to
heavily loaded links, the amount of data transferred over the network can increase.

Finally, an example of cross-layer optimization at work can be seen in Fig. 1.5. In
this example, which is more thoroughly introduced and analyzed in Chapter 4, we
consider a spatial reuse time-division multiple access communication network. Here
is a brief description of how it works: in time-division multiple access networks, only
one transmitter can transmit at a given time and the transmissions occur according

1.2. Wireless Sensor Networks 5

0 50 100 150 200 250 300 350
10

20

30

40

50

60

70

80

90

100

Number of transmission groups in schedule

T
ot

al
 u

til
ity

Optimal STDMA solution
Cross decomposition
Mean−value cross decomposition

Figure 1.5: The figure shows the utility of a communication network versus the num-
ber of time slots in the transmission schedule. The solid line denotes the total utility
(the utility should be as high as possible) using optimal Spatial reuse Time-Division
Multiple Access (STDMA) of a communication network, which is computed using a
centralized algorithm and provides an upper bound on the achievable performance.
The dashed and dash dotted lines denote two algorithms, described and discussed
in detail in Chapter 4, that computes a good STDMA schedule in a decentralized
fashion.

to a schedule. In a spatial reuse time-division multiple access communication net-
work, transmitters, which are sufficiently far away from each other, can transmit at
the same time. This generalization increases the capacity of the network. But how
can such a schedule be automatically constructed in a decentralized fashion? This
is one of the topics in Chapter 4.

1.2 Wireless Sensor Networks

Wireless sensor networks are composed of tiny sensors with wireless communica-
tion abilities that cooperate to perform a task. An overview of potential applica-
tions and research challenges, can be found in, e.g., Culler et al. (2004) or Akyildiz
et al. (2002). The motes are envisioned to be mass-produced at a very low cost and
could therefore be deployed in huge amounts to allow ubiquitous sensing. Culler
et al. (2004) suggest that the applications of WSNs can be roughly differentiated
into monitoring space, monitoring things, and monitoring the interactions of things
with each other and the encompassing space. Another way to partition sensor net-
work applications, especially information processing, is into the following two areas:
monitoring and estimation of spatially distributed and interacting phenomena, and
increasing the fidelity and/or robustness of the estimation of a local phenomena by
cooperation.

6 Introduction

Wireless sensor networks is a very active area of research and there has been a
lot of activity recently1. The author believes that many researchers are intrigued
by this area due to the fundamental engineering challenges, on theoretical as well
as practical levels. The challenges stem from inherent limitations such as energy
scarcity; unreliable wireless communication links; limited processing and storage
capabilities; and the distributed mode of operation.

An interesting example of a recent application involving monitoring space is a
project in San Francisco, USA, where sensor networks are used to monitor parking
spaces. The information will be used to provide real-time information on available
spaces as well as to open up for popularity based parking fees (Markoff, 2008).

Another intriguing example is the Quake-catcher network (QCN, 2008), which
uses built-in sensors in volunteers’ laptops to detect earth-quakes. Such sensors are
already mounted in most new laptops to detect if the laptop is dropped; if a sudden
acceleration is detected, the hard drive is protected from impact.

Finally, in Fig. 1.6, a generic optimization example is shown. In this example,
6 motes cooperate to solve an optimization problem with a network-wide decision
variable. The figure shows the convergence of a number of algorithms that exhibit
strikingly different behavior; these algorithms and aspects of their implementation
will be discussed in Chapter 6.

1.3 Why Should We Use Optimization?

Who can say “No” to something that is optimal? Optimization is an attractive
framework to use for solving a multitude of decision problems; especially quantita-
tive problems in engineering are well suited for this framework. The crux of this
approach is that we need to summarize all design criteria into one performance
measure. Once this major hurdle has been passed, we also need to actually find an
optimal solution. Here we have a classic trade-off between fidelity and tractability:
the closer we get to capturing all details of the engineering problem at hand, the
more likely the resulting optimization problem will be very hard to solve. If the
model is simple and yields an easily solvable optimization problem, then the prob-
lem may be pointless to solve since the solution does not say anything about the
true system.

Optimization can enter into the system structure in several distinct ways. For
example, when we consider resource allocation in communication networks, we in-
terpret the communication network as an optimization solver, whereas when we
consider WSNs, we devise a generic optimization software component that could
be used for a variety of tasks. We will now elaborate on how optimization fits into the
different applications, and we use the ideal feedback loop as a prototype. Further-

1A search for “sensor network” (searching for the whole phrase), November 14, 2008, on Google
yields approximately 5.0 · 106 hits, a search on Google Scholar yields circa 7.0 · 104 hits, and a
search on ISI Web of knowledge yields circa 1.8 · 104 hits.

1.3. Why Should We Use Optimization? 7

5 10 15 20 25 30

10
−1

Time (s)

∑ 6 i=
1
|f

�
−

f
(x

(k
)

i
)|/

(6
|f

�
|)

LIM
DBSM α = 0.01
DBSM α = 0.1
MISM α = 0.01
MISM α = 0.1

Figure 1.6: The plot shows the convergence (the curves should go to zero as fast
as possible) versus number of iterations for different optimization algorithms imple-
mented on a 6 mote WSN. The algorithms have inherently different communication
patterns, which, in combination with the numerics of the algorithm, influence the
performance. As can be seen, the convergence behavior depends quite a bit on the
algorithm. This example will be discussed in detail in Chapter 6.

more, we use the following classification (inspired by Skogestad and Postlethwaite
(2005, page 386)):

Open-loop optimization The system is controlled in open-loop and the inputs
are chosen by solving an optimization problem off-line. This approach is very
sensitive to modeling errors and disturbances. The setup is shown in Fig. 1.7a.

Set-point provided by optimization The system is controlled in closed-loop by
a controller. Typically, the job of the controller is to keep the output of the
system at a given set-point or to follow a given trajectory. The optimal set-
point or trajectory is computed by solving an optimization problem off-line.
Then the set-point or trajectory is followed by the controller. See Fig. 1.7b
for a block diagram illustration.

Optimizing controller The system is directly controlled by solving an optimiza-
tion problem on-line. This approach often requires a better model of the
plant, compared with the model needed for synthesizing simpler controllers.
The block diagram is shown in Fig. 1.7c.

Note that there are of course always cases that do not fit into this classification,
and it is also possible to combine the previously mentioned classes.

In Chapter 4, we consider resource allocation in communication networks. The
key idea in this chapter is to “view the TCP/IP network as an optimization solver,”

8 Introduction

Optimization

Objectives

u
System

(a)

r

+ - u
Objectives System

Optimization

y

Controller

(b)

Objectives

Optimizing
Controller

uy

System

(c)

Figure 1.7: Different combinations of optimization and control. (a) The control signal
is found by optimization and is applied in open-loop. (b) The set-point is provided by
solving an optimization problem. The set-point is then achieved by a controller. (c)
The control signal is found by solving an optimization problem on-line using feedback
information.

using the words of Chiang et al. (2007). The optimal resource allocation in the net-
work is posed as a static optimization problem, and if everything was known a priori,
we could in principle solve the problem off-line and use approach Fig. 1.7a (adjust
the resource allocation according to the optimal solution) or Fig. 1.7b (use the opti-
mal solution as a set-point, which is achieved by a controller). However, everything
about the network is not known, and it is impossible, or at least practically difficult,
to collect all information. Therefore, we need to solve the optimization problem on-
line, where the iterates are actually used in the network to evaluate the currently
achieved utility. This approach corresponds to Fig. 1.7c.

In Chapter 5, we consider a multi-agent optimal rendezvous problem, where
the rendezvous point is chosen (in fact, found through decentralized negotiations
between the agents) such that the agents’ trajectories minimize a quadratic cost.
The basic setup is that the rendezvous point is found before any action is taken,
which corresponds to Fig. 1.7b. However, the setup could potentially be run in
the mode of Fig. 1.7c. In addition, we also consider the consensus problem where
linear iterations should converge to the barycenter of the initial states. This scheme
is optimized by choosing the coefficients of the linear iteration in an optimal way
before the iteration is executed. This corresponds to off-line optimization of the
algorithm itself, which is not exactly covered by Fig. 1.7.

In Chapter 6, we devise a generic optimization software component for WSNs,
and we evaluate how some of the most promising optimization algorithms will ac-
tually perform in simulated as well as real networked systems. This means that Fig.
1.7 is not directly applicable, since we do not consider a specific application.

1.4 Outline and Contributions

We now describe the outline and contributions of the thesis in more detail. The
applications and the corresponding related work are further and more thoroughly
presented in each chapter.

1.4. Outline and Contributions 9

1.4.1 Chapter 2

In this chapter, we present background material, such as fundamental definitions
and algorithms, on which the rest of the thesis is built. In particular, we present
basic convexity notions, some standard optimization algorithms, and decomposition
techniques.

1.4.2 Chapter 3

Three novel optimization algorithms are presented in this chapter. More specifically,
we consider an optimization problem were a convex and potentially non-smooth ad-
ditive objective function should be minimized subject to convex constraints. The
objective function consists of n terms, and each term is a function of the vector x.
Furthermore, an n-node connected graph is associated with the optimization prob-
lem, and each node is associated with a term in the objective function. Therefore,
the optimization problem can interpreted as a networked system; the nodes should
cooperate to find the network-wide decision variable x. First, we develop an exten-
sion of the random incremental subgradient method due to Nedić and Bertsekas.
Second, we develop a novel algorithm which is based on a combination of a sub-
gradient algorithm interleaved with a fixed number of consensus iterations. Third,
we consider a special case of the previously presented optimization problem; in this
case, the objective function is assumed to be separable, as well, and we have a
network-wide constant sum constraint. We propose an optimization algorithm for
this problem class by extending the center-free resource allocation algorithm, due
to Ho et al, to the non-smooth case.

The chapter is based on the following publications.

B. Johansson, M. Rabi, and M. Johansson. A simple peer-to-peer algorithm for
distributed optimization in sensor networks. In Proceedings of IEEE CDC (2007)

B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgra-
dient method for distributed optimization in networked systems. SIAM J. Optim.
(2008d). Submitted

B. Johansson, T. Keviczky, K. H. Johansson, and M. Johansson. Subgradient
methods and consensus algorithms for solving convex optimization problems. In
Proceedings of IEEE CDC (2008b)

1.4.3 Chapter 4

This chapter considers how to use decomposition techniques in conjunction with
algorithms from Chapter 3 to perform cross-layer optimization in communication
systems. We also present a flowchart that can be useful to categorize many of the
existing approaches to cross-layer optimization existing in the literature. Further-
more, we devise two algorithms for cross-layer optimization in a frequency-division

10 Introduction

multiple access and a spatial reuse time-division multiple access network, respec-
tively.

The following publications provide the cornerstones for this chapter.

B. Johansson and M. Johansson. Primal and dual approaches to distributed
cross-layer optimization. In 16th IFAC World Congress (2005)

P. Soldati, B. Johansson, and M. Johansson. Proportionally fair allocation
of end-to-end bandwidth in STDMA wireless networks. In Proceedings of ACM
MobiHoc (2006b)

B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition tech-
niques for distributed cross-layer optimization of data networks. IEEE Journal on
Selected Areas in Communications, 24(8): 1535–1547 (2006b)

P. Soldati, B. Johansson, and M. Johansson. Distributed optimization of end-
to-end rates and radio resources in wimax single-carrier networks. In Proceedings
of IEEE GLOBECOM (2006a)

P. Soldati, B. Johansson, and M. Johansson. Distributed cross-layer coordina-
tion of congestion control and resource allocation in s-TDMA wireless networks.
Wireless Networks, 14: 949–965 (2008)

B. Johansson, H. Li, J. Huang, M. Chiang, and M. Johansson. Network utility
maximization website (2008c). URL http://www.networkutilitymaximization.
org/

1.4.4 Chapter 5

In this chapter, we first consider a multi-agent rendezvous problem in which an
optimal consensus point is found through decentralized negotiations between the
agents in the system. The consensus point is optimal in the sense that the agents’
trajectories to this point minimize a quadratic cost criteria. Second, we look into
the canonical problem of consensus, i.e., how should linear iterations be devised
such that a state vector at each node asymptotically converges to the barycenter of
the nodes’ initial state vectors. In particular, we investigate the potential benefit of
an augmented state vector. Finally, we provide necessary and sufficient convergence
conditions for a general augmented state vector linear iteration.

The chapter is founded on the publications below.

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. Distributed
model predictive consensus. In Mathematical Theory of Networks and Systems
(2006c)

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. On decen-
tralized negotiation of optimal consensus. Automatica, 44: 1175–1179 (2008e)

B. Johansson and M. Johansson. Faster linear iterations for distributed averag-

1.4. Outline and Contributions 11

ing. In IFAC World Congress (2008)

1.4.5 Chapter 6
In this chapter, we show how to implement some of the presented algorithms on a
real networked system, namely a WSN. First, we implement the algorithms in the
network simulator NS2 and perform detailed Monte Carlo simulations. Second, we
implement the algorithms on the Tmote Sky mote, a specific wireless sensor, and
evaluate the performance in experiments.

The chapter is based on the following publications.

B. Johansson, C. M. Carretti, and M. Johansson. On distributed optimization
using peer-to-peer communications in wireless sensor networks. In Proceedings of
IEEE SECON (2008a)

The NS2 simulations and the major part of the WSN coding were made by
Cesare Maria Carretti. The NS2 simulations are described in detail in the following
master thesis, which was supervised by the author.

C. M. Carretti. Comparison of Distributed Optimization Algorithms in Sensor
Networks. Master’s thesis, Royal Institute of Technology (KTH) (2008)

1.4.6 Chapter 7
In this chapter, we summarize the thesis and discuss the results. We also outline
the natural steps to continue the work started with this thesis.

1.4.7 Other Publications
The following publications are not explicitly part of this thesis, but they have
influenced the contents.

A. Speranzon, C. Fischione, B. Johansson, and K. H. Johansson. Adaptive dis-
tributed estimation over wireless sensor networks with packet losses. In Proceedings
of IEEE CDC (2007)

B. Johansson, C. Adam, M. Johansson, and R. Stadler. Distributed resource
allocation strategies for achieving quality of service. In Proceedings of IEEE CDC,
1990–1995 (2006a)

B. Johansson and M. Gäfvert. Untripped SUV rollover detection and prevention.
In Proceedings of IEEE CDC (2004)

Chapter 2

Preliminaries

“Convexity thus plays a role much the same as that of linearity in the
study of dynamical systems.”

L. S. Lasdon, Optimization Theory for Large Systems, 1970.

In this chapter, we present the mathematical building blocks, on which this
thesis is built. The presentation is at times rather brief, but there are point-
ers to the relevant literature. The detailed outline of the chapter is as follows.

In Section 2.1, we introduce important notions for convex optimization. Then, in
Section 2.2, we present some graph related notation that we will use. Section 2.3
introduces so-called peer-to-peer (nearest neighbor) algorithms and consensus algo-
rithms. In Section 2.4, we review some theory regarding Markov chains. Then, in
Section 2.5, a generic resource allocation problem is introduced, as well as its op-
timality conditions. Section 2.6 reviews related and relevant standard optimization
methods. In Section 2.7, we describe some decomposition techniques that can be
used to decompose an optimization problem. Finally, we summarize the chapter in
Section 2.8.

2.1 Convex Optimization

This section introduces important convexity notions; see, e.g., Boyd and Vanden-
berghe (2004) or the classic Rockafellar (1970), for a more thorough exposition.

Definition 2.1.1. A set, X ⊆ R
ξ, is convex if

(αx+ (1− α)y) ∈ X
for all x and y in X and 0 ≤ α ≤ 1.

Definition 2.1.2. A function, f : X ⊆ R
ξ → R, where the domain X is a convex

set, is convex if
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

13

14 Preliminaries

(a) (b)

Figure 2.1: a) Example of a convex set. b) Example of a convex function.

for all x and y in X and 0 ≤ α ≤ 1. If −f is convex, then f is concave.

A convex set is illustrated in Fig. 2.1a and a convex function is illustrated in
Fig. 2.1b.

If the objective function in a minimization problem is convex and the feasible
set is convex, then we have a convex optimization problem. Likewise, maximization
of a concave function over a convex set is also a convex optimization problem, since
infx∈X f(x) = supx∈X −f(x).

The convexity assumption is restrictive, but convex optimization problems have
a very attractive property: a local solution is also a global solution. We have the
following lemma (see, e.g., Bertsekas et al. (2003, Proposition 2.1.2)).

Lemma 2.1.3. A local minimum for a convex optimization problem is also a global
minimum for the same problem.

Convex optimization problems also have some useful optimality conditions; see
Section 2.7.1. Furthermore, surprisingly many relevant engineering problems can be
posed as, or at least approximated with, convex optimization problems. Numerous
examples are provided in Boyd and Vandenberghe (2004).

Not all objective functions are differentiable and to handle this case, we make
the following definition.

Definition 2.1.4. A vector a ∈ R
ξ is a subgradient of a convex function f : R

ξ → R

at a point x ∈ R
ξ if

f(y) ≥ f(x) + aᵀ(y − x), ∀y ∈ R
ξ, (2.1)

where ᵀ denotes the transpose operator. The set of all subgradients of a convex
function f at x ∈ R

ξ is called the subdifferential of f at x, and is denoted by ∂f(x):

∂f(x) =
{
a ∈ R

ξ|f(y) ≥ f(x) + aᵀ(y − x),∀y ∈ R
ξ
}
. (2.2)

Note that it follows from the definition that a subgradient can be used to form
an affine global underestimator of the convex function. Furthermore, if the subdif-
ferential at x only contains one element, the function f is differentiable at x with
∇f(x) = ∂f(x) (Bertsekas et al., 2003, Proposition 4.2.2).

2.1. Convex Optimization 15

(a)

ε

(b)

Figure 2.2: a) The solid line is y = |x| and the dashed line, y = x
4 , is drawn in the

direction of one of the corresponding subgradients 1
4 . b) Example of an ε-subgradient.

Example 2.1.1. A simple example of a convex non-differentiable function is
f(x) = |x|, x ∈ R. This function is non-differentiable at x = 0 and ∂f(0) =
{a ∈ R| − 1 ≤ a ≤ 1}; see Fig. 2.2a for an illustration.

Definition 2.1.5. Let the scalar ε ≥ 0. A vector a ∈ R
ξ is an ε-subgradient of a

convex function f : R
ξ → R at a point x ∈ R

ξ if

f(y) ≥ f(x) + aᵀ(y − x)− ε, ∀y ∈ R
ξ. (2.3)

The ε-subdifferential of a convex function f at x ∈ R
ξ is the set of ε-subgradients:

∂εf(x) =
{
a ∈ R

ξ|f(y) ≥ f(x) + aᵀ(y − x)− ε,∀y ∈ R
ξ
}
. (2.4)

An example of an ε-subgradient is shown in Fig. 2.2b. We also have the fol-
lowing additional notions: the conditional subdifferential and the conditional ε-
subdifferential, which were first introduced by Dem’yanov and Shomesova (1980).

Definition 2.1.6. Let the scalar ε ≥ 0 and the function f : X → R be convex,
where X ⊆ R

ξ is a closed and convex set. The conditional subdifferential at x,
∂X f(x), is defined as

∂X f(x) =
{
a ∈ R

ξ|f(y) ≥ f(x) + aᵀ(y − x)− ε,∀y ∈ X}
. (2.5)

The conditional ε-subdifferential at x, ∂Xε f(x), is defined as

∂Xε f(x) =
{
a ∈ R

ξ|f(y) ≥ f(x) + aᵀ(y − x)− ε,∀y ∈ X}
. (2.6)

Using the conditional subdifferential, some optimality conditions for constrained
minimization becomes quite elegant (Dem’yanov and Shomesova, 1980, Lemma 4):

x� ∈
{
x ∈ X

∣∣∣f(x) = inf
x∈X
f(x)

}
⇔ 0 ∈ ∂X f(x�).

16 Preliminaries

1 2 3

4

5

Figure 2.3: An example graph with 5 nodes (vertices) and 5 links (edges).

2.2 Graphs

For our developments, we will use some graph notation and a very small subset of
the rich spectrum of available graph theory results. More details on graphs can be
found in, e.g., Diestel (2005) and Godsil and Royle (2001).

A graph, G = (V, E), consists of a vertex set, V, and an edge set, E ⊆ V ×V. An
edge is an unordered pair of distinct vertices of G. We consider graphs only with
finitely many vertices. A graph is connected if any two vertices in the graph have
a path between them. The adjacency matrix A(G) of a graph G is a symmetric
01-matrix. Furthermore, the elements are defined as [A(G)]ij = 1 if (i, j) ∈ E
and [A(G)]ij = 0 otherwise. The set of neighbors of a vertex i in G is denoted
N (i) = {j ∈ V | (i, j) ∈ E}. The number of neighbors of a vertex (or node) is
called the degree, di(G) = |N (i)| or di if the underlying graph is understood by the
context. The Laplacian matrix L(G) of a graph G is defined as L(G) = D(G)−A(G),
where D(G) is a diagonal matrix with [D(G)]ii = di(G). Furthermore, we denote the
maximum degree Δ(G) = maxi∈V di(G). The adjacency matrix and the Laplacian
matrix have some interesting properties from which you can say a great deal about
the graph (see, e.g., Godsil and Royle (2001)), but we will not go into those details
here. Finally, it is also possible to use directed graphs, where the edges have an
orientation, but we will not use such graphs in this thesis.

Example 2.2.1. An example graph, G, is shown Fig. 2.3. It has the following
adjacency matrix and Laplacian matrix,

A(G) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 1 0
1 0 1 1 1
0 1 0 0 0
1 1 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ and L(G) =

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 1 0 0
−1 −1 0 2 0
0 −1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

2.3. Peer-to-Peer Algorithms and Consensus 17

2.3 Peer-to-Peer Algorithms and Consensus

The optimization problems we consider in this thesis have a corresponding undi-
rected connected graph, G, where each node (also called agent or vertex) is asso-
ciated with some part of the optimization problem, e.g., a term in the objective
function or an element in the decision variable. Furthermore, the nodes in the
graph can only communicate with neighboring nodes, and the edges can thus be
interpreted as bidirectional communication links. More formally, the interpretation
is that if (i, j) ∈ E , then node i can communicate with node j. We consider iterative
algorithms that solve such optimization problems by letting the nodes cooperate
with their neighbors; we denote such algorithms to be peer-to-peer algorithms. All
algorithms that we devise and analyze in this thesis belong to this class of algo-
rithms. Since we would like to find a globally optimal solution to the optimization
problem, all nodes need to coordinate with all other nodes, at least implicitly1. In
view of this, we make the following rather natural assumption.

Assumption 2.3.1. The graph, G, is connected.

Our notion of a peer-to-peer algorithm fits into the broad framework for dis-
tributed computation that was first proposed in Tsitsiklis et al. (1986), and it has
been used by many others since then. Tsitsiklis et al. (1986) consider a rather gen-
eral communication case, namely asynchronous communications; we on the other
hand, as we will see later, address the more specific synchronous communication
case. In addition, they focus on gradient algorithms, whereas we will consider the
more general case of subgradient algorithms; see Chapter 3.

The consensus problem considers conditions under which using a certain me-
ssage-passing protocol, the local variables of each agent will converge to the same
value. However, this value does not generally represent an optimizer of a problem of
interest, and is typically a function (e.g., the average) of the initial values held by
the agents and the information exchange policy. The field was pioneered by DeGroot
(1974), and nowadays, a wide variety of results exist related to the convergence of
local variables to a common value using various information exchange procedures
among multiple agents; see, e.g., the informative survey by Olfati-Saber et al. (2007)
and the references therein.

For our developments, we will consider the following consensus iteration in
discrete-time:

y(k+1) =Wy(k), (2.7)

where the ith element of vector y(k) ∈ R
n, denoted by [y(k)]i, corresponds to agent i.

The information exchange among agents is represented by the matrix W , for which
we make the following assumptions.

1Explicit coordination between all nodes is of course possible, but it will require that the
network is fully connected (every node can communicate directly with all nodes) or that message
relaying is provided in some way.

18 Preliminaries

Assumption 2.3.2 (Consensus Matrix Properties). The matrix W ∈ R
n×n, with

n = |V|, fulfills

a) [W]ij = 0, if (i, j) /∈ E and i
= j,
b) 1ᵀ

nW = 1ᵀ
n, c) W1n = 1n, d) ρ (W − 1n1ᵀ

n/n) ≤ γ < 1,

where 1n ∈ R
n is the column vector with all elements equal to one and ρ(·) is the

spectral radius.

The sparsity constraints on W can be summarized as W ∈ W, where

W � {W ∈ R
n×n|[W]ij = 0, if (i, j) /∈ E and i
= j}. (2.8)

It turns out that these assumptions are necessary and sufficient for consensus; see,
e.g., Xiao and Boyd (2004, Theorem 1).

Lemma 2.3.3. If and only if Assumption 2.3.2 b)-d) is fulfilled, then

lim
k→∞
W k = 1n1ᵀ

n

n
and lim

k→∞
y(k) = ȳ(0).

The matrix W can for example be chosen as W = I − εL(G), which is the
so-called Perron matrix of the associated graph G with parameter ε. We have the
following result, which is an existence result for W fulfilling Assumption 2.3.2; see,
e.g., Olfati-Saber et al. (2007, Theorem 2).

Lemma 2.3.4. If the graph, G, is connected and if W = I − εL(G) with 0 < ε <
1/Δ(G), then W fulfills Assumption 2.3.2 b)-d) and Lemma 2.3.3 applies.

The drawback with the Perron matrix is that it requires global information,
namely the value of ε. However, there is a rather simple and distributed scheme
that will give us a W fulfilling Assumption 2.3.2, based on the so-called Metropolis-
Hastings scheme (Hastings, 1970); see Boyd et al. (2004).

Lemma 2.3.5 (Metropolis-Hastings). If the graph, G, is connected, then W fulfills
Assumption 2.3.2, if the elements of W are set to

[W]ij =

⎧⎪⎨⎪⎩
min{d−1

i , d
−1
j } if (i, j) ∈ E and i
= j∑

(i,k)∈E max{0, d−1
i − d−1

k } if i = j
0 otherwise.

(2.9)

The convergence behavior of W k to 1n1ᵀ
n/n can vary quite a bit depending on

how W is chosen, as well as on the underlying graph; there exist different metrics,

2.4. Markov Chains and Fast Mixing 19

which can be used to quantify the speed of convergence. The most commonly used
metrics are the per-step convergence factor,

sup
x�=0

‖(W − 1n1ᵀ
n/n)x‖

‖x‖ = ‖(W − 1n1ᵀ
n/n)x‖ ,

which is the definition of the spectral norm, and the worst case geometric average
convergence factor (Varga, 1962, Theorem 3.2),

lim
k→∞

(
sup
x�=0

∥∥(W − 1n1ᵀ
n/n)kx

∥∥
‖x‖

)1/k

= lim
k→∞

∥∥(W − 1n1ᵀ
n/n)k

∥∥1/k = ρ(W −1n1ᵀ
n/n).

In addition, we have that ρ(A) ≤ |||A|||, for any square matrix A and any matrix
norm |||·|||, including the spectral norm ‖·‖ (Horn and Johnson, 1985, Theorem
5.6.9). Clearly, the worst case per step convergence factor is always worse than
the worst case geometric average convergence factor. If we restrict ourselves to
symmetric W , the spectral norm and the spectral radius coincide. Furthermore,
it is possible to efficiently find the optimal symmetric matrix, in the sense that
‖W − 1n1ᵀ

n/n‖ is minimal, using the following semi-definite program (SDP) (Xiao
and Boyd, 2004),

minimize
W,s

s

subject to −sI ≤W − 1n1ᵀ
n/n ≤ sI

[W]ij = 0, if (i, j) /∈ E and i
= j
W1n = 1n, W ᵀ =W,

(2.10)

where the inequality −sI ≤W−1n1ᵀ
n/n, a so-called linear matrix inequality (LMI),

indicates that the matrix W − 1n1ᵀ
n/n + sI is positive semi-definite, and so forth.

This optimization problem can easily be set up in Matlab using the software pack-
age Yalmip (Löfberg, 2004) and efficiently solved with an SDP solver, such as
SeDuMi (SeDuMi, 2008).

2.4 Markov Chains and Fast Mixing

Markov chains are stochastic processes without memory: only the current state
influence the future path. More formally, a sequence of random variables {xk}∞k=0
with values in the set {1, ..., n} is a Markov chain, MC, if

P{xk+1 = j|xk = i, xk−1 = ik−1, ..., x0 = i0} = P{xk+1 = j|xk = i},
for all non-negative integers k and all states i0, ..., ik−1, i, j, where P{·} is the prob-
ability of the event {·}. If the following holds for all positive integers k

P{xk+1 = j|xk = i} = P{xk = j|xk−1 = i},

20 Preliminaries

we have a homogeneous Markov chain, HMC. For a more detailed exposition, see,
e.g., Norris (1998) or Brémaud (1999). Many useful properties, characterized using
matrices, of finite Markov chains are given in Kemeny and Snell (1960). We will
now go through some more notions and properties that will be very useful later.
The transition matrix P of an HMC is defined as [P]ij = P{xk+1 = j|xk = i}, and
it fulfills

∑n
i=j [P]ij = 1 and [P]ij ≥ 0. An MC is irreducible if [P k]ij > 0 for some

k ≥ 1 for all i, j ∈ V. Furthermore, an MC is aperiodic if [P k]ii > 0 for sufficiently
large k ≥ 1 for all i ∈ V.

An integer random variable, τ , for which the event {τ = l} only depends on
the random variables {xk}lk=0, is called a stopping time with respect to {xk}∞k=0.
More specifically, we have I{τ = l} = ψ(x0, x1, ..., xl), where I{·} is the indicator
function of the event {·}. We have the following useful lemma; see, e.g., Theorem
7.1 in Brémaud (1999).

Lemma 2.4.1 (Strong Markov property). Let τ be a stopping time with respect
to the HMC {xk}∞k=0 with transition matrix P . Then, the process after τ and the
process before τ are independent. Furthermore, the process after τ is an HMC with
transition matrix P .

If the probability of jumping between two states is zero whenever the correspond-
ing nodes in the graph are not connected, we can use this MC to model a stochastic
peer-to-peer algorithm. For precisely this reason, as we will see in Section 3.3, it is
useful to be able to construct an MC with uniform stationary distribution, where
each state corresponds to nodes in a graph. Furthermore, the properties of P are
closely related to the properties of W previously presented in Section 2.3. The
only difference is that we have the extra condition that the elements in the tran-
sition matrix should be non-negative. This enables us to use the powerful theory
of Perron-Frobenius (Horn and Johnson, 1985). For our purposes, the transition
matrix P should fulfill the following.

Assumption 2.4.2 (Transition Matrix Properties). The matrix P ∈ R
n×n, with

n = |V|, fulfills

a) [P]ij = 0, if (i, j) /∈ E and i
= j,
b) [P]ij ≥ 0, ∀i, j
c) 1ᵀ

nP = 1ᵀ
n, d) P1n = 1n, e) ρ (P − 1n1ᵀ

n/n) ≤ γ < 1.

We have the following lemma.

Lemma 2.4.3. If Assumption 2.4.2 b)-e) is fulfilled, then P is a transition matrix
with

lim
k→∞
P k = 1n1ᵀ

n

n
.

2.5. Centralized Optimal Resource Allocation 21

We assume that the graph G is connected in this section as well, and this implies
that there is a (multihop) path between any pair of nodes. How do we to construct,
using only local information, the transition matrix of MC, P , such that the iterate,
xk, only jumps to an adjacent and reachable node? Since the Perron matrix and
the Metropolis-Hastings scheme presented in Section 2.3 yield a weight matrix W
with non-negative elements, we get a P that fulfills 2.4.2 if we set P =W .

It is also possible to devise an optimal symmetric transition matrix using the
following semi-definite program (SDP),

minimize
P,s

s

subject to −sI ≤ P − 1n1ᵀ
n/n ≤ sI

[P]ij = 0, if (i, j) /∈ E and i
= j
[P]ij ≥ 0,∀i, j = 1, ..., n, P1n = 1n, P ᵀ =W,

(2.11)

which is the same as (2.10) except an additional non-negativity constraint on each
element in P . This optimal matrix will be the fastest converging (sometimes called
fastest mixing) symmetric matrix having a uniform stationary distribution and
fulfilling the sparsity constraints.

2.5 Centralized Optimal Resource Allocation

In this section, we review some properties of a simple resource allocation problem
that will turn out to be useful later on in the thesis. First, we consider the case when
the allocated resources are continuous variables. Second, we add the constraint that
the allocated resources have to be integers.

2.5.1 Convex Case

The simple resource allocation problem

maximize
x

∑n
i=1 ui(xi)

subject to
∑n
i=1 xi = xtot

xi ≥ 0, i = 1, ..., n,
(2.12)

is a special instance of the more general problem (2.27), which we will present later.
Furthermore, we assume xi ∈ R for all i = 1, ..., n. The problem can be interpreted
as that all resources should be used and they should be allocated to maximize the
sum of the utilities for each resource. This is a standard problem in economics and it
is central in order to solve some of the subproblems we will encounter later. Several
solution algorithms exist when ui(xi) is strictly concave and twice differentiable.

22 Preliminaries

The optimal point of (2.12) can be characterized by the Karush-Kuhn-Tucker
conditions (see (2.33e) or, e.g., Boyd and Vandenberghe (2004))2⎧⎪⎨⎪⎩

u′i(x�i) = ψ� if x�i > 0
u′i(x�i) ≤ ψ� if x�i = 0∑
i x
�
i = xtot.

(2.13)

This means that at the optimal point, the slopes of the utility functions will be the
same, except for those resources that are equal to zero. Since the utility functions
are concave, their slopes are decreasing, and if one utility function has a higher
slope than the other utility functions for some allocation, then that utility function
should get more resources.

As we will see in Chapter 4, these properties can be exploited in the distributed
search for the optimal point.

2.5.2 Discrete Case
In some applications where the resources are inherently discrete, we have to add
the constraint that the x variables in (2.12) have to be integers. We then get the
following problem

maximize
x

∑n
i=1 ui(xi)

subject to
∑n
i=1 xi = xtot

xi ∈ {1, 2, 3, ..., xtot}, i = 1, ..., n.
(2.14)

This problem is nonconvex, which in general implies that it is hard to verify if a
local optimal solution is globally optimal. However, in this case, with ui(·) concave
or strictly concave, it is in fact possible to quite easily find the globally optimal allo-
cation. This case is a so-called discrete resource allocation problem with a separable
and concave objective function.

To describe the optimal allocation, we define3 Δi(xi), the marginal utility, for
integer xi greater than zero, as

Δi(xi) = ui(xi)− ui(xi − 1).

Thus, Δi(xi) is the increase in utility when one resource is added to xi− 1 to reach
xi, and ui(xi) = ui(0) +

∑xi
i=1 Δi(i), xi ∈ {1, ..., xtot}. Furthermore, since ui(·) is

concave or strictly concave, we have that

Δi(1) ≥ Δi(2) ≥ · · · ≥ Δi(xtot). (2.15)

2According to Danskin (1967), the conditions for this problem are also known as Gibbs lemma,
after J. Willard Gibbs, who laid the foundation of modern chemical thermodynamics in Equilib-
rium of Heterogenous substances, 1876. However, according to Patriksson (2008), the theorem
was first proved using diagrams by Hermann H. Gossen in Die Entwicklung der Gesetze des men-
schlichen Verkehrs und der daraus fliessenden Regeln für menschliches Handeln, 1854.

3This definition is not related to Δ(G).

2.6. Optimization Algorithms 23

The optimal allocation consists of the xtot largest elements in the set of all
possible Δ’s (see Ibaraki and Katoh (1988, Theorem 4.1.1)). Since the Δ’s are
sorted for each xi by (2.15), we can find the largest elements in a greedy fashion.
The greedy algorithm, which is one of the most well-known algorithms to find the
optimal allocation, is now as follows: starting from a zero allocation, the algorithm
adds a resource one at a time. One resource is added to the variable that have the
greatest marginal utility. The algorithm stops when the total number of resources
are allocated. More efficient algorithms also exist, but they are more complicated;
see, e.g., Ibaraki and Katoh (1988) for details.

If we define

Δi(0) =∞,

then we can express the optimal allocation of (2.14) in a similar way to (2.13),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δi(x�i) ≥ ψ for all i
Δi(x�i + 1) ≤ ψ for all i∑
i x
�
i = xtot

x�i ∈ {0, 1, ..., xtot} for all i.

(2.16)

This is a direct consequence of that the optimal allocation consists of the xtot largest
elements of the Δ’s. The ψ variable is a threshold between the xtot largest elements
and the other smaller elements. This means that an interval can be optimal, i.e.,
ψ� ∈ Ψ�, whereas in the convex case, the threshold, ψ�, is a fixed number.

2.6 Optimization Algorithms

A huge number of optimization algorithms have been devised through the years,
and we will not make any attempt at all to provide a survey here. We will, however,
go through some of the most standard algorithms for general convex optimization
problems that are relevant for this thesis, as well as more specialized distributed
(also relevant) algorithms, which exploit extra information about the structure of
the problem. We would like to emphasize that without assumptions (such as con-
vexity) on the objective function and the feasible set, any attempt to construct a
efficient general solution algorithm seems to be rather futile. This is due to the so-
called No Free Lunch Theorem of Optimization, which is an impossibility theorem
that tells us that a general-purpose universal optimization strategy is impossible;
see, e.g., the very interesting and readable discussion in Ho and Pepyne (2002).
Finally, a more thorough background on the methods presented here are given in
Boyd and Vandenberghe (2004), Bertsekas et al. (2003), or Bertsekas (1999).

24 Preliminaries

Algorithm 1 Subgradient Method

1: Let k ← 0 and x(0) ∈ X .
2: loop
3: Compute a subgradient at x(k).
4: Compute x(k+1) via (2.18) and let k ← k + 1.
5: end loop

2.6.1 Gradient and Subgradient Methods
In this section we consider

minimize
x

f(x)
subject to x ∈ X ,

(2.17)

where the function f : R
ξ → R is convex and the set X ⊆ R

ξ is convex and closed.
One of the simplest methods for solving (2.17) is the gradient descent algorithm,
which attempts to maximize the decrease of the objective function in each iteration
by updating the current iterate in the opposite direction of the gradient of f . If a
fixed stepsize is used, the new iterate may be outside of the feasible set X ; if that is
the case, then the iterate is typically projected on the feasible set X , and the new
iterate is set to be the projection. In many cases, however, f is non-differentiable.
A natural extension of gradients for non-differentiable functions are subgradients;
see Definition 2.1.4.

Subgradients can be used instead of the gradient to find the minimum, and
these subgradient methods take steps in the opposite direction of a subgradient,
i.e., proceed according to

x(k+1) = PX
[
x(k) − α(k)a(k)(x(k))

]
, (2.18)

where PX [·] denotes projection on the convex and closed set X and a(k)(x(k)) ∈
∂f(x(k)). If the projection on the feasible set X or the computation of the subgradi-
ent is expensive, then the execution of this algorithm will be very expensive, since
it requires many projections and subgradients. The subgradient method is outlined
in Algorithm 1.

Contrary to the gradient method, the objective value does not necessarily de-
crease in each iteration of the subgradient method. Rather, the distance between
the iterate and the optimal solution will decrease. To show asymptotic convergence,
it is enough to use diminishing stepsizes and that the subgradients are bounded.
Typically, the stepsizes are chosen according to

α(k) ≥ 0,
∞∑
k=1

α(k) =∞,
∞∑
k=1

(
α(k)

)2
<∞, (2.19)

2.6. Optimization Algorithms 25

and this condition is satisfied with, e.g., α(k) = 1/k. The following lemma formalizes
the previous discussion on convergence using such stepsizes; see, e.g., Bertsekas et al.
(2003, Proposition 8.2.6).

Lemma 2.6.1. If a solution to problem (2.17) exists, the subgradients are bounded
by some constant ϕ, and the stepsizes are chosen to fulfill (2.19), then Algorithm 1
converges, limk→∞ x(k) = x�.

If a fixed stepsize is used, i.e., α(k) = α, then the best value so far will converge
to an area around the optimal point as pointed out in the following lemma; see,
e.g., Bertsekas et al. (2003, Proposition 8.2.2).

Lemma 2.6.2. If a solution to problem (2.17) exists, the subgradients are bounded
by some constant ϕ, and the stepsizes are set to a constant, α(k) = α, then the best
value of Algorithm 1 converges to a ball around the optimal point,

lim inf
k→∞

f(x(k)) ≤ f(x�) + αϕ
2

2 .

If the objective function is differentiable, then ordinary projected gradient meth-
ods can be used, which basically are identical with (2.18), except that the subgra-
dient is replaced by the gradient. If the gradient also is Lipschitz, i.e., there exists
ϑ ≥ 0 such that ||∇f(x)−∇f(y)|| ≤ ϑ||x−y||, ∀x, y ∈ X , then a projected gradient
method with fixed stepsize can achieve convergence to an optimizer. In this method,
the subgradient is replaced by the gradient, as previously mentioned, and the di-
minishing stepsize is replaced with a fixed stepsize. Convergence of this method is
shown in the following lemma; see, e.g., Bertsekas (1999).

Lemma 2.6.3. If a solution to problem (2.17) exists, the gradient is Lipschitz with
Lipschitz constant ϑ, and the stepsize, α, fulfills 0 < α ≤ ϑ

2 , then Algorithm 1
converges, limk→∞ x(k) = x�.

If the Lipschitz property does not hold, then a search can be done to find a
stepsize that decreases the function value in each iteration. However, this requires
global coordination and does not appear to be a viable alternative to use in the
applications we have in mind.

2.6.2 Conditional Gradient Method

Instead of using the projected gradient method, it is possible to use the so-called
conditional gradient method (Bertsekas, 1999). We consider again the problem (2.17)
with the additional requirement that the set X is also compact and that the function
f is differentiable. The update equation of the conditional gradient method is

x(k+1) = x(k) + α(k)(x̂(k) − x(k)), (2.20)

26 Preliminaries

Algorithm 2 Conditional Gradient Method

1: Let k ← 0 and x(0) ∈ X .
2: loop
3: Compute x̂(k) according to (2.21).
4: Compute α(k) according to (2.22).
5: Let x(k+1) ← x(k) + α(k)(x̂(k) − x(k)) and k ← k + 1.
6: end loop

where α(k) is a stepsize and

x̂(k) = arg min
x∈X
∇f(x(k))ᵀx. (2.21)

The stepsize α(k) can be chosen in different ways, but a typical way is to use

α(k) = arg min
α∈[0,1]

f
(
x(k) + α(k)(x̂(k) − x(k))

)
. (2.22)

Dunn and Harshbarger (1978) consider the conditional gradient method in a Banach
space setting, where α(k) is chosen according to an open-loop scheme. The term
open-loop refers to that the choice of α(k) does not depend on local properties of
f . This type of scheme will turn out to be useful in Chapter 4. For our purposes,
X ⊂ R

ξ is general enough, and we have the following result.

Lemma 2.6.4 (Adapted from Dunn and Harshbarger (1978, Theorem 1)). Let
X ⊂ R

ξ be a compact convex set and let f : R
ξ → R be convex and bounded below,

with a continuous derivative, ∇f . Furthermore, let {x(k)} ⊂ X and {x̂(k)} ⊂ X be
generated by (2.20) and (2.21), respectively, where α(k) fulfills,{

kα(k) ≤ κ, ∀k ≥ σ
α(k+1) = α(k)

1+α(k) ,
(2.23)

for some σ>0 and κ > 0, then

lim
k→∞
f(x(k)) = min

x∈X
f(x).

Note that α(k) = 1
1+k fulfills (2.23).

2.6.3 Center-Free Resource Allocation
Ho et al. (1980) and Xiao and Boyd (2006) consider the problem

minimize
x

∑n
i=1 fi(xi)

subject to
∑n
i=1 xi = xtot

(2.24)

2.6. Optimization Algorithms 27

where the functions fi : R→ R are strictly convex and twice continuously differen-
tiable with the second derivatives fulfilling

li ≤ f ′′i (xi) ≤ ui, i = 1, ..., n, (2.25)

where li > 0 and ui are known. Ho et al. (1980) have the additional constraints xi ≥
0, i = 1, ..., n, and they propose a peer-to-peer solution algorithm. The algorithm
has two parts, an initialization phase and an iterative phase. In the initialization
phase, some of the nodes for which the optimal allocation is zero are identified and
their allocations are fixed to zero. More specifically, the initialization step identifies
the largest set of nodes I ⊆ {1, ..., n} such that{

f ′i(xi) ≥ maxi∈I{f ′i(0)}, ∀i ∈ I∑
i∈I xi = xtot.

Furthermore, Ho et al. (1980) show that i /∈ I implies x�i = 0. Only the nodes in
the set I take part in the iterative phase and the other nodes’ allocations are set
to zero.

In the iterative phase, the nodes exchange resources according to a peer-to-peer
algorithm, where the update equation can be written as

x(k+1) = x(k) −W∇f(x(k)).

Xiao and Boyd (2006) focus on (2.24), without the additional non-negativity con-
straint, and provide more general (than Ho et al. (1980)) sufficient conditions; an
algorithm for finding the optimal weights W (similar to (2.10)); and some sim-
ple schemes to find a suboptimal W . We will only use a suboptimal W for which
sufficient conditions for convergence are

W ᵀ =W,
W1n = 0,
W is irreducible,

{
Wij ≤ 0, if (i, j) ∈ E
Wij = 0, if (i, j) /∈ E and i
= j,∑
j∈Ni |Wij | < umax,

where umax = maxi={1,..,n} ui. The condition 1ᵀW = 0 in combination with a fea-
sible initial iterate imply that all iterates are feasible (since 1ᵀx(k+1) = 1ᵀx(k) +
1ᵀW∇f(x(k)) = 1ᵀx(k)). A simple, but suboptimal, way of guaranteeing conver-
gence is thatW should satisfy the following conditions (cf., the Metropolis-Hastings
weights (2.9)) (Xiao and Boyd, 2006))⎧⎪⎪⎨⎪⎪⎩

Wij = −min
{

1
diui ,

1
djuj

}
+ ε, j ∈ N (i)

Wii = −∑
j∈N (i)Wij

Wij = 0, otherwise,
(2.26)

where ε is a sufficiently small positive constant.

28 Preliminaries

2.7 Decomposition Methods

Decomposition methods are characterized by that the original optimization prob-
lem is split into several subproblems. The subproblems are often independent but
need to be coordinated to reach an optimal solution to the original problem. This
coordination is usually done by having two levels of optimization problems: a master
problem that coordinates several subproblems; see Fig. 2.4. We demonstrate some
decomposition methods by applying them to the following optimization problem

maximize
x,c

u(x)

subject to g(x) ≤ c, c ∈ C
x ∈ X ,

(2.27)

where the objective function u : R
ξ → R is concave, the constraint function g :

R
ξ → R

χ is convex, the feasible sets X ⊆ R
ξ and C ⊆ R

χ are convex and closed.
Hence, we have a convex optimization problem.

The development relies on some basic results on subgradients, which were previ-
ously reviewed. Although several surveys over decomposition techniques have been
written in the mathematical programming community, e.g., Lasdon (1970), Flippo
and Rinnooy Kan (1993), and Holmberg (1995), their focus is typically on exploit-
ing problem structure to improve computational efficiency. In this thesis, our focus
is different. Rather than trying to divide the network utility maximization into sub-
problems that can be solved efficiently (say, in terms of memory or CPU cycles), we
use decomposition techniques to divide the optimization of a network-wide perfor-
mance measure to functions that can be executed in a distributed manner, which
fits the structure of the networked system where the optimization problem should
be solved. Below, we will review three classes of decomposition principles: primal,
dual, and primal-dual. We use primal and dual in their mathematical programming
meaning: primal indicates that the optimization problem is solved using the original
formulation and variables, while dual indicates that the original problem has been
rewritten using Lagrangian relaxation4.

2.7.1 Dual Decomposition
Dual decomposition is sometimes referred to as price-directive decomposition. The
name comes from the economic interpretation that the system is directed towards
its optimal operation by pricing the common resources. Constraints on the common
resource are not explicitly enforced, but the demand is aligned with the supply using
a simple pricing strategy: increase the prices on resources that are in shortage and
decrease the price of resources that are in excess.

4This is in contrast with the literature on congestion control, which we will get back to in
Chapter 4, where primal usually implies dynamics in the algorithms at the nodes, and dual usually
implies dynamics in the algorithms at the links. For further details, see, e.g., Palomar and Chiang
(2006)

2.7. Decomposition Methods 29

Original

Optimization Problem

Master

Problem

Sub-

problem

Sub-

problem

Sub-

problem

⇔

Figure 2.4: The optimization problem is decomposed into two levels: a master prob-
lem and several subproblems.

Formally, we apply Lagrange duality to the coupling constraint of (2.27), g(x) ≤
c, and form the partial Lagrangian5

L(x, c, λ) = u(x)− λᵀg(x) + λᵀc, (2.28)

where λ are the Lagrange multipliers. The dual function is defined as

d(λ) = max
x∈X , c∈C

L(x, c, λ).

Note that d(λ) is separable and can be written as

d(λ) = max
x∈X
{u(x)− λᵀg(x)}︸ ︷︷ ︸
Subproblem 1

+ max
c∈C
{λᵀc}︸ ︷︷ ︸

Subproblem 2

. (2.29)

Thus, to evaluate the dual function for a given price vector we need to solve sub-
problem 1 and subproblem 2.

If u� denotes the optimal value of (2.27), then d(λ) ≥ u�, so we can think of
d(λ) as an optimistic estimate of the total utility. Intuitively, the coupling constraint
is not present as such, but accounted for using the pricing scheme. Since d(λ) is
convex, both prices that are too low and too high will yield larger value of d(λ).
The optimal prices are obtained by solving the dual problem

minimize
λ

d(λ)

subject to λ ≥ 0.
(2.30)

The minimization tries to recreate the effect of the constraints g(x) ≤ 0 on the
relaxed problem. Furthermore, denote the optimal value of the dual problem by d�;
in general, we have that d� ≥ u�. When d� = u�, we say that strong duality holds,
and the optimal value of the original problem can be computed via its dual. One
condition that guarantees strong duality is Slater’s condition, which basically says
that if there exists a feasible point where strict inequalities hold (a precise definition

5Apparently, Lagrangian was systematically misspelled as Lagrangean in the Physical Review
Letters in the 1980’s (Mermin, 1988). We will try to avoid that error here.

30 Preliminaries

is given below), then strong duality holds. Conditions that guarantee strong duality
are often called constraint qualifications; we have the following lemma Bertsekas
et al. (2003, Proposition 5.4.1).

Lemma 2.7.1. Consider the following optimization problem

maximize
x

u(x)
subject to g(x) ≤ 0, h(x) = 0

x ∈ X ,
(2.31)

where the utility function u is concave, the set X is convex and closed, the function
g is convex, and the function h is affine. If there exists a point x̂ in the relative
interior of X such that h(x̂) = 0, and there exists a feasible point x̌ such that
g(x̌) < 0, then strong duality holds.

Remark 2.7.2. If the set X � R
ξ, then Lemma 2.7.1 reduces to the previously

mentioned Slater’s condition.

See, e.g., Boyd and Vandenberghe (2004), Bertsekas et al. (2003), Rockafellar
(1970), or Luenberger (1969) for more details on Lagrangian duality.

Karush-Kuhn-Tucker Conditions

Lagrange multipliers can also be helpful to characterize the optimal point. Let us
consider the problem

maximize
x

f(x)
subject to g(x) ≤ 0

h(x) = 0,
(2.32)

where f : R
ξ → R, g : R

ξ → R
χ are differentiable convex functions and h :

R
ξ → R	 is an affine function. We have the following lemma (see, e.g., (Boyd and

Vandenberghe, 2004, Page 244))

Lemma 2.7.3. If there is a point x̂ such that g(x̂) < 0 and a point x̌ such that
h(x̌) = 0 (Slater’s condition), then strong duality holds and the following equations,
the so-called Karush-Kuhn-Tucker (KKT) conditions, are necessary and sufficient
for an optimal point to the optimization problem (2.32),

g(x�) ≤ 0 (2.33a)
λ� ≥ 0 (2.33b)

[λ�]i[g(x
�)]i = 0, i = 1, ..., χ (2.33c)
h(x�) = 0 (2.33d)

∇f(x�)− (∇g(x�))λ� + (∇h(x�))ς� = 0, (2.33e)

where λ� ∈ R
χ and ς� ∈ R

	 are Lagrange multipliers.

2.7. Decomposition Methods 31

Algorithm 3 Dual

Let k ← 0 and λ(0) ∈ Λ.
loop

Compute a subgradient at λ(k) by solving subproblem 1 and subproblem 2.
Update λ(k+1) via (2.34) and let k = k + 1.

end loop

Solving the Dual Problem

We have the following useful lemma (see, e.g., Bertsekas et al. (2003, section 8.1)).

Lemma 2.7.4. Let λ ≥ 0 be given, and let x and c be the associated optimal
solutions to subproblem 1 and subproblem 2 from (2.29), respectively. Then, a sub-
gradient of d(λ) at λ is given by c− g(x).

Now that we have a subgradient available, we can solve the dual problem using
the previously discussed subgradient method. We update the prices according to

λ(k+1) = PΛ{λ(k) − α(k)(c(k) − g(x(k)))}, (2.34)

and we have the following lemma, which follows from the previous subgradient
method discussion.

Lemma 2.7.5. If a solution to (2.30) exists, the subgradients are bounded, and the
stepsizes fulfill (2.19), then Algorithm 3 converges to an optimal solution to (2.30).

There are a number of issues in applying dual decomposition in a distributed
setting. The first one is that we often have to resort to diminishing stepsizes to
get complete convergence to an optimal solution, using Lemma 2.7.5. The speed of
convergence would be better and the implementation would be easier if we could
use a fixed stepsize. However, this requires that the dual function is differentiable
and Lipschitz continuous. Unfortunately, this is not the case in general, and even
if the dual is Lipschitz continuous, the Lipschitz constant is often hard to compute.
Another, maybe more critical, issue is that the primal variables obtained for a given
price vector λ may not be feasible, even if the dual variables are set to their optimal
values (Holmberg, 1995). The following example is a simple case illustrating this
phenomena.

Example 2.7.1. Consider the following optimization problem

maximize
x

x

subject to x ≤ K, x ∈ R.

Strong duality holds and the Lagrangian is L(x, λ) = x−λ(x−K). The optimal
Lagrange multiplier is λ� = 1 yielding the optimal value d(λ�) = K. However,

32 Preliminaries

the Lagrangian at λ�, L(x, λ�) = K, is maximized by an arbitrary x, and,
depending on the implementation, we can get primal solutions that are neither
optimal nor feasible. However, using the KKT conditions, we get the correct
primal solution.

Within linear programming, this property has been referred to as the non-coordi-
nability phenomenon. In off-line schemes, this problem can be circumvented if one
can devise a method for supplying a feasible primal solution. The following result
gives us conditions for convergence of the subproblem solutions.

Lemma 2.7.6. If the Lagrangian is maximized for a unique s and c for every λ ≥ 0,
then the subproblem solutions corresponding to the optimal λ� are primal optimal.

Proof. There exist a dual optimal solution λ�, strong duality is assumed to hold,
and a primal feasible optimal solution exist. Therefore (Bertsekas et al. (2003,
Proposition 6.1.1)), any optimal primal-dual solution must fulfill L(s�, c�, λ�) =
mins∈S,c∈C L(s, c, λ�). Since this is fulfilled for a unique pair (s�, c�) they must be
primal optimal.

There are several approaches for attaining primal convergence in dual decompo-
sition schemes. One approach is to add a strictly concave term to the maximization
objective, as is done in proximal point methods (see, e.g., Bertsekas (1999)). The
original problem is then replaced by a sequence of optimization problems

maximize
x,c

u(x)− ε‖c− c̃‖22
subject to g(x) ≤ c, c ∈ C, c̃ ∈ R

χ,

which is solved one optimization problem at a time. Before solving each optimiza-
tion problem, we let c̃← c�, where c� is the optimal c for the previous optimization
problem in the sequence. The added term makes the dual function smooth, and con-
vergence of the primal variables in the limit follows. For centralized optimization
problems, one may also impose primal convergence by solving a master problem (see,
e.g., Johansson and Xiao (2006)); however, since the master problem is typically
a large-scale convex optimization problem, the approach appears less applicable
to distributed implementation. Another alternative is based on forming weighted
averages of subproblem solutions in a way that guarantees convergence to the opti-
mal primal variables in the limit (Larsson et al., 1999); however, since the iterates
themselves may not be well-behaved, this approach is not always suitable.

2.7.2 Primal Decomposition

Primal decomposition is also called resource-directive decomposition. Rather than
introducing a pricing scheme for the common resources, the primal decomposition
approach sequentially updates the resource allocation to maximize the total utility.

2.7. Decomposition Methods 33

Algorithm 4 Primal

Let k ← 0 and c(0) ∈ C.
loop

Compute a subgradient at c(k). Solve (2.35) and the optimal dual variables to
the corresponding optimization problem is the subgradient.
Update c(k+1) via (2.37) and let k ← k + 1.

end loop

Mathematically, primal decomposition relies on re-writing (2.27) in terms of the
primal function

ν(c) = max
x∈X
{u(x) | g(x) ≤ c}. (2.35)

Note that the primal function is a pessimistic estimate of the achievable utility,
since the resource allocation may be fixed at sub-optimal values. The optimal total
utility can be found by solving the primal problem

maximize
c

ν(c)
subject to c ∈ C.

(2.36)

Although the primal function is potentially non-smooth, a subgradient is given by
the following lemma (see, e.g., Bertsekas et al. (2003, Section 6.5.3))

Lemma 2.7.7. Let λ be a vector of optimal dual variables for the constraint g(x) ≤
c in the optimization problem corresponding to ν(c). Assume that the allocated c is
such that there exist a strictly feasible x, i.e., ∃x ∈ X : g(x) < c. A subgradient of
ν(c) at c is given by λ.

We can thus use the previously discussed subgradient methods to solve the
primal problem, updating c using the iteration

c(k+1) = PC{c(k) + α(k)λ(k)}. (2.37)

We have the following lemma, which follows from the previous subgradient method
discussion.

Lemma 2.7.8. If there exists a solution to (2.36), the subgradients are bounded,
and the stepsizes fulfill (2.19), Algorithm 4 converges to an optimal solution to
(2.36).

Contrary to dual decomposition, primal decomposition guarantees that the it-
erates always are feasible by construction.

34 Preliminaries

2.7.3 Primal-Dual Decomposition
In primal-dual decomposition schemes, one tries to exploit both primal and dual
problem structures. One class of methods, sometimes called mixed decomposition
applies price- and resource-directive to different components within the same sys-
tem (Obel, 1978). We will make use of an alternative decomposition scheme, called
cross decomposition (Van Roy, 1983).

In essence, cross decomposition is an alternating price directive and resource
directive decomposition approach. One alternates between the primal and dual
subproblems and there is no master problem involved. In general, the pure cross
decomposition approach does not converge. However, mean value cross decomposi-
tion (MVC), where one uses the mean value of all previous solutions, has recently
been shown to converge (Holmberg and Kiwiel, 2006). The MVC algorithm, see
Algorithm 5, solves the following problem (presented in its original form)

maximize
x,c

u(x) + v(c)

subject to A1(x) +B1(c) ≤ b1
A2(x) +B2(c) ≤ b2
x ∈ X
c ∈ C,

(2.38)

where u(x) and v(c) are concave, A1(x), A2(x), B1(c), and B2(c) are convex func-
tions, and X and C are convex and compact sets. Let the optimal value be u� + v�.
It is also assumed that for any fixed c ∈ C, there exists a point x ∈ X such that

A1(x) +B1(c) < b1 and A2(x) +B2(c) < b2,

implying that strong duality holds for the two coupling constraints. Define the
partial Lagrangian as

L(x, c, λ) = u(x) + v(c)− λᵀ(A1(x) +B1(c)− b1),

and define κ(c̄, λ̄) for any c̄ ∈ C and λ̄ ≥ 0 as

κ(c̄, λ̄) = max
x∈X

{
L(x, c̄, λ̄)

∣∣A2(x) +B2(c̄) ≤ b2
}
.

The primal subproblem is defined as

minimize
λ

κ(c̄, λ)

subject to λ ≥ 0,

and the dual subproblem is defined as

maximize
c

κ(c, λ̄)
subject to c ∈ C.

(2.39)

2.7. Decomposition Methods 35

Algorithm 5 MVC

1: Let c̄(0) ∈ C, λ̄(0) ≥ 0, and k ← 0.
2: loop
3: Solve the primal subproblem (2.40) for c̄(k) to get λ(k+1).
4: Solve the dual subproblem (2.39) for λ̄(k) to get c(k+1).
5: Update the averages with (2.41) and let k ← k + 1.
6: end loop

By strong duality (applicable by assumption), the primal subproblem can be rewrit-
ten as

maximize
x

u(x) + v(c̄)
subject to A1(x) +B1(c̄) ≤ b1

A2(x) +B2(c̄) ≤ b2
x ∈ X .

(2.40)

The primal and dual subproblem are solved alternatingly for the mean values of all
previous iterations, where the mean values are defined as

λ̄(k) =
k∑
i=1

λ(i)

k
and c̄(k) =

k∑
i=1

c(i)

k
, (2.41)

and we have the following lemma for the these averages.

Lemma 2.7.9 (Holmberg and Kiwiel (2006, Theorem 1)). Under the assumptions
given, Algorithm 5 converges to the optimal solution to (2.38), i.e.,

lim
k→∞

dist
C�

(c̄(k)) = 0 and lim
k→∞

dist
Λ�

(
λ̄(k)) = 0,

with
C� = {c ∈ C|min

λ≥0
κ(c, λ) = u� + v�},

Λ� = {λ ≥ 0|max
c∈C
κ(c, λ) = u� + v�},

and distX (x) � inf{‖x− z‖ | z ∈ X}.

2.7.4 Saddle-Point Computations and Min-Max Games
An alternative path to finding primal-dual optimal solutions to (2.27) goes via the
so-called saddle-point characterization of optimal points.

A saddle point for a function f : R
ξ × R

χ �→ R is any pair (w̃, z̃) such that

f(w̃, z) ≤ f(w̃, z̃) ≤ f(w, z̃)

36 Preliminaries

holds for all feasible w, z, i.e.,

f(w̃, z̃) = max
z
f(w̃, z) and f(w̃, z̃) = min

w
f(w, z̃).

This implies that the strong max-min property

max
z

min
w
f(w, z) = min

w
max
z
f(w, z)

holds (and that the common value is f(w̃, z̃)).
By weak duality, we have

max
x∈X , c∈C

min
λ≥0

L(x, c, λ) ≤ u� ≤ min
λ≥0

max
x∈X , c∈C

L(x, c, λ).

This inequality, known as the max-min inequality, simply states that the primal
problem underestimates the optimal value, while the dual problem overestimates
it. Under strong duality, the inequality holds with equality as the primal and dual
optimal values are equal. The optimal point can then be given the following alterna-
tive characterization: (x�, c�, λ�) is a primal-dual optimal point to the optimization
problem if and only if (x�, c�) ∈ X ×C, λ� ≥ 0 and (x�, c�, λ�) forms a saddle point
of the Lagrangian, in the sense that

L(x, c, λ�) ≤ L(x�, c�, λ�) ≤ L(x�, c�, λ)

for all (x, c) ∈ X × C, λ ≥ 0 (cf., Bertsekas (1999, Proposition 5.1.6)). In other
words, λ� minimizes L(x�, c�, λ) while (x�, c�) maximizes L(x, c, λ�).

Moreover, for (2.27) we have that if (x, c, λ) form a saddle point of the La-
grangian, then (x, c) are primal optimal and λ is dual optimal, without any convex-
ity assumptions on (2.27) (Lasdon, 1970, Theorem 2, page 85).

One of the most well-known algorithms for finding saddle points is the algorithm
due to Arrow-Hurwicz (Arrow et al., 1958)

x(k+1) = PX
{
x(k) + α(k)∇xL(x(k), c(k), λ(k))

}
c(k+1) = PC

{
c(k) + α(k)∇cL(x(k), c(k), λ(k))

}
λ(k+1) = PΛ

{
λ(k) − α(k)∇λL(x(k), c(k), λ(k))

}
,

where α(k) is the stepsize. Although the iteration is not guaranteed to converge
(unless one imposes the additional requirements of strict convexity-concavity (Ne-
mirovski and Judin, 1978)), it provides a unified view of the primal and dual decom-
position methods. In particular, the decomposition schemes can be interpreted as
methods that run the above updates on different time-scales. Primal decomposition
lets the x and λ dynamics run on a fast time-scale (essentially, until convergence)
while the resource updates, c, are run on a slow time-scale. Similarly, dual decom-
position can be seen as letting the x and c updates run on a fast time-scale, while
the λ variables are updated slowly.

2.8. Summary 37

Further insight into the decomposition schemes can be gained from the fol-
lowing so-called zero-sum game interpretation of the max-min inequality: consider
a game where the dual player selects λ, while the primal player picks s, c and
collects L(x, c, λ) dollar from the dual player (i.e., the primal player gets what
the dual player loses, hence a zero-sum game). If the dual player goes first, he
will try to minimize the amount that he can be forced to pay, i.e., he will let
λ = arg minλ≥0{maxx∈X ,c∈C L(x, c, λ)} resulting in the payoff ū. Conversely, if the
primal player goes first, he will try to maximize the amount that the dual player is
guaranteed to pay and thus let (x, c) = arg maxx∈X ,c∈C{minλ≥0 L(x, c, λ)}, leading
to the payoff u. The max-min inequality simply states that it is best to go second,
ū ≥ u. In convex games with strong duality there is no advantage to go second,
since the inequality holds with equality. These min-max and max-min solutions are
Nash equilibriums.

The mean value cross decomposition can be seen as a repeated zero-sum game
where the dual and primal players act alternatingly. During the course of the game,
the players remember earlier moves and decide their own strategy under the as-
sumption that the other will use the average strategy over the history of the game.

2.8 Summary

In this chapter, we have introduced important definitions and notions. We also re-
viewed some standard optimization methods as well as a few more exotic optimiza-
tion methods, namely, the conditional gradient method with open-loop stepsizes,
the mean value cross decomposition method, and the center-free resource alloca-
tion method. Finally, we also reviewed some well-known decomposition techniques.

Chapter 3

Novel Distributed Optimization Algorithms

“...the ‘dragon’ of optimization is multiheaded and it takes a special
sword to cut-off each head.”
V. F. Dem’yanov and L. V. Vasilev, Nondifferentiation Optimization,

1985.

Distributed algorithms, and distributed optimization algorithms in particu-
lar, can be useful from several viewpoints. Such optimization algorithms
are typically used for speed and numerical efficiency. On the other hand, in

this thesis, we are primarily interested in such optimization algorithms to be able to
easily implement them in a networked system to let the subsystems jointly solve an
optimization problem, e.g., resource allocation or maximum likelihood estimation.
Furthermore, large-scale networked systems are becoming ubiquitous and increas-
ingly complex to manage. If the desired behavior of the networked system can be
formulated as an optimization problem, then complexity issues can be mitigated
by solving the resulting optimization problem with a distributed algorithm. In this
chapter, we develop such distributed algorithms.

The specific outline of the chapter is as follows. We start with some general
background in Section 3.1. Then, we will consider two problems: first, we look
at a coupled non-smooth convex optimization problem, which is rather general
with many applications. This problem is described in Section 3.2. We then devise
two different algorithms that solve this problem in Section 3.3 and Section 3.4.
The performance of the two algorithms is assessed using numerical experiments
in Section 3.5. Second, in Section 3.6, we develop an optimization algorithm for a
non-smooth resource allocation problem with a global resource constraint, which
extends the center-free resource allocation algorithm in Section 2.6.3. In Section 3.7,
we explore the performance of this algorithm using numerical experiments. Finally,
we summarize our findings and conclude with Section 3.8.

39

40 Novel Distributed Optimization Algorithms

3.1 Background

There is a substantial interest in distributed optimization algorithms, since cen-
tralized algorithms scale poorly with the number of nodes and are less resilient to
single node failure (especially sensitive to the failure of the central node). Moreover,
peer-to-peer algorithms, which only exchange data between immediate neighbors,
are attractive, since they make minimal assumptions on the networking support re-
quired for message passing between nodes. Application examples include estimation
in sensor networks, coordination in multi-agent systems, and resource allocation in
wireless systems; see, e.g., Johansson et al. (2008e) and Rabbat and Nowak (2004).

A general and thorough background on distributed and parallel algorithms can
be found in Bertsekas and Tsitsiklis (1997). Distributed algorithms are also fre-
quently used in other areas than optimization; Lynch (1996) provides a computer
science perspective.

We will consider subgradient based algorithms, which is a class of algorithms
that enjoy wide applicability and do not require many assumptions on the objective
functions (convexity is the most crucial required assumption). The drawbacks are
that these methods can be rather slow and that it is hard to guarantee progress
at each iteration. But subgradient based methods are very simple, at least from a
mathematical point of view, to implement. We will discuss our experiences from
implementing some of these algorithms in a real networked system in Chapter 6).

The workhorse of distributed optimization is most often Lagrangian relaxation,
where the optimization problem is decoupled into smaller subproblems and a mas-
ter problem; see Section 2.7. However, we will not use this approach in this chap-
ter. Other fundamentally different approaches to distributed optimization, typically
based on heuristic arguments, include particle swarm optimization and parallel ge-
netic algorithms; see, e.g., van Ast et al. (2008) and Alba and Troya (1999).

3.2 Non-smooth Coupled Convex Optimization

We will now consider the following convex optimization problem

minimize
x

∑n
i=1 fi(x)

subject to x ∈ X ,
(3.1)

where fi : X → R are convex functions and X ⊆ R
ξ is a convex and closed set.

Let f(x) =
∑n
i=1 fi(x); the optimal value and the optimizer of (3.1) are denoted

f� and x�, respectively. To the problem we associate a connected n-node network,
specified by the graph G = (V, E). We can now interpret the problem as a networked
system, where each node incurs a loss fi(x) of operating at x and nodes cooperate
with their neighbors to find the optimal operating point (the optimizer x� of (3.1)).
In other words, each component in the objective function corresponds to a node in
a network; see Fig. 3.1 for an example setup. We make the following assumptions.

3.3. Markov Incremental Subgradient Method 41

1 2 3
f1(·) f2(·) f3(·)

Figure 3.1: Example setup with three nodes. A line between nodes implies that they
are connected and that they can communicate with each other.

Assumption 3.2.1. i) The functions fi : X → R are convex and the set X ⊆ R
ξ

is closed, convex, and non-empty. ii) The subgradients are bounded,

sup {‖z‖ | z ∈ ∂fi(x), i ∈ 1, ..., n, x ∈ X} ≤ ϕ,
with ϕ > 0.

Remark 3.2.2. Two important examples where the subgradients are bounded are:
Firstly, the functions fi are the pointwise maximum of a finite set of linear functions.
Secondly, the set X is compact.

Assumption 3.2.3. The undirected graph G = (V, E) is composed of n nodes and
is connected.

The last assumption guarantees that there is a path between any pair of nodes.
Several important problems in applications such as resource allocation in com-

puter networks (Chiang et al., 2007; Johansson et al., 2006b), estimation in sensor
networks (Rabbat et al., 2005), and the rendezvous problem in multi-agent systems
(Johansson et al., 2008e), can be posed as coupled optimization problems. In these
problems, each node or agent in the network is associated with a component of the
objective function, which depends on a network-wide decision variable.

3.3 Markov Incremental Subgradient Method

In this section, we devise and analyze a novel distributed algorithm that iteratively
solves (3.1) by passing an estimate of the optimizer between neighboring nodes in
the network.

One popular way of solving (3.1), is to use subgradient methods, which were pi-
oneered by Shor (1964) and Ermol’ev (1966); see Shor (1985) for an early summary.
These methods have recently been unified in Kiwiel (2004), where an extensive ref-
erence list also can be found. The methods’ popularity stems from their ease of
implementation and their capability of handling non-differentiable objective func-
tions. Another key property is that subgradient methods often can be executed in
a distributed fashion. The prototype subgradient method iteration for constrained
convex minimization is

x(k+1) = PX
[
x(k) − α(k)a(k)(x(k))

]
, (3.2)

42 Novel Distributed Optimization Algorithms

where α(k) is a stepsize, and a(k)(x(k)) is a subgradient of the objective function
at x(k); there exist quite a few variations and extensions, but none of them fit our
needs.

Naturally, the structure of the problem can be exploited and tailored algorithms,
e.g., so-called incremental subgradient methods, can be used. These algorithms are
based on the iteration

x(k+1) = PX
[
x(k) − α(k)aw(k)(x(k))

]
, (3.3)

where aw(k)(x(k)) is a subgradient of the function fw(k) at x(k). This type of al-
gorithm was pioneered by Kibardin (1980). Depending on how w(k) and α(k) are
chosen, the resulting algorithms have rather diverse properties; the stepsize, α(k),
typically needs to be diminishing to insure asymptotic convergence of the iterates
to an optimizer. To the author’s knowledge, most results on deterministic incremen-
tal subgradient methods are covered and unified in Kiwiel (2004). Although these
methods were originally devised to boost convergence speed, they can also be used
as decentralized mechanisms for optimization. A simple decentralized algorithm,
proposed and analyzed in Nedić and Bertsekas (2001), is to use (3.3) with a fixed
stepsize and let w(k) cycle deterministically over the set {1, ..., n} in a round-robin
fashion. We call this algorithm the deterministic incremental subgradient method
(DISM). In Nedić and Bertsekas (2001), another variant, also suitable for distributed
implementation, is proposed: it is a randomized algorithm where w(k) is a sequence
of independent and identically distributed random variables which take on values
from the set {1, ..., n} with equal probability. We call this algorithm the random-
ized incremental subgradient method (RISM). If the problem setup permits, it is
also possible to use incremental gradient methods (Blatt et al., 2007). In all of
these methods, the iterate can be interpreted as being passed between the nodes in
the network. Finally, the iteration (3.3) is similar to the iterations used in stochastic
approximation (Kushner and Yin, 2003). However, in stochastic approximation al-
gorithms, the stepsize is typically diminishing and not fixed as it is in the algorithm
we propose and analyze in this section.

We will now develop an algorithm that is based on (3.3) where the sequence
w(k) is constructed such that only neighbors need to communicate with each other
(in techspeak, this means that the network does not need to provide any multi-hop
routing mechanism for the message passing). This is in contrast with both RISM
and DISM, where nodes far apart need to communicate with each other.

The following sections constitute a refined version of our previous work Johans-
son et al. (2007) and Johansson et al. (2008d). We note that there is similar work,
namely Ram et al. (2008), which is also based on Johansson et al. (2007), that has
been conducted in parallel with our developments. Ram et al. (2008) consider a
similar algorithm, which is based on a non-homogeneous Markov chain and allows
for stochastic errors in the subgradient; they analyze diminishing stepsizes as well
as constant stepsizes. As they point out, it is not possible to directly compare the
resulting bounds, since they assume a more general model, which results in different

3.3. Markov Incremental Subgradient Method 43

and weaker bounds.
In Section 3.3.1, we present the novel algorithm, and in Section 3.3.2 we analyze

its convergence properties. Then, in Section 3.3.3, we compare, in the sense of
performance bounds, the novel algorithm with the existing algorithms DISM and
RISM.

3.3.1 Algorithm
We associate an n-state homogeneous Markov chain, MC, with the optimization
problem (3.1). We make the following assumptions.

Assumption 3.3.1. The Markov chain MC is irreducible, aperiodic, and its sta-
tionary distribution is uniform.

We are now ready to define our novel algorithm, which we denote the markov
incremental subgradient method (MISM). The iterations are defined as follows

x(k+1) = PX
[
x(k) − αaw(k)(x(k))

]
, k ≥ 0, (3.4)

where w(k) ∈ {1, ..., n} is the state of MC.

Remark 3.3.2. The generalization (3.4) is interesting in its own right, but it is
particularly interesting in the context of distributed implementation: if the graph
G is connected and MC fulfills the constraints [P]ij = 0 when (i, j) /∈ E , then x(k)

can be interpreted and implemented as an estimate of the optimizer that is passed
around in the network between neighboring nodes and thereby iteratively improved.
The sparsity constraints guarantee that the state of MC only can jump from state
i to state j in one time tick if (i, j) ∈ E . Furthermore, as we saw in Section 2.4, MC
can be constructed using only local topology information.

3.3.2 Convergence Analysis
To show convergence we need some notation and three lemmas.

Technical Preliminaries

Denote the starting state of MC by i. Under Assumption 3.3.1 and with probability
1, all states in MC are visited infinitely often. Thus, we can form the subsequence
{x̂(k)}∞k=0 of {x(l)}∞l=0 by sampling it whenever the Markov chain visits the state i,
i.e., w(l) = i. For example, if w(0) = i, w(3) = i, and w(5) = i, then

w(0), w(1), w(2), w(3), w(4), w(5), ...

x(0) , x(1), x(2), x(3)︸ ︷︷ ︸
R

(0)
i

, x(4), x(5)︸ ︷︷ ︸
R

(1)
i

, ...

x̂(0), x̂(1), x̂(2), ...,

(3.5)

44 Novel Distributed Optimization Algorithms

where x̂(0) = x(0), x̂(1) = x(3), x̂(2) = x(5). In addition, let R(k)
i be the recurrence

time for state i,

R
(k)
i =

⎧⎪⎪⎨⎪⎪⎩
inf

{
t−∑k−1

m=0R
(m)
i |w(t) = i, t ≥∑k−1

m=0R
(m)
i + 1, t ∈ N

}
, k > 0

inf
{
t |w(t) = i, t ≥ 1, t ∈ N

}
, k = 0

0, k < 0.
(3.6)

Successive recurrence times to a state form an independent and identically dis-
tributed sequence of random variables, due to the strong Markov property (see
Section 2.4), and we note that the statistics of R(k)

i will not depend on k. Also
note that R(k)

i is independent of {x̂(k), x̂(k−1), x̂(k−2), ...}. Furthermore, we let v(k)i,j
be the random number of visits to state j during the time interval

[∑k−1
m=0R

(m)
i +

1,
∑k
m=0R

(m)
i

]
.

The first lemma concerns the average number of visits to other states over a
recurrence time.

Lemma 3.3.3. Under Assumption 3.3.1, we have that(
E[v(k)i,1] . . . E[v(k)i,n]

)
= 1ᵀ

n and E

[
R

(k)
i

]
= n, for all i = 1, ..., n, k ≥ 0.

Proof. Note that the statistics of v(k)i,1 and R(k)
i do not depend on k due to the

strong Markov property. From Norris (1998, Theorem 1.7.5), we have that(
E[v(k)i,1] . . . E[v(k)i,n]

)
P =

(
E[v(k)i,1] . . . E[v(k)i,n]

)
.

Furthermore, we also know that the transition matrix P has only one eigenvec-
tor with eigenvalue 1, namely the invariant distribution (Kemeny and Snell, 1960,
Theorem 4.1.6). Since P is assumed to have a uniform stationary distribution,
we have that

(
E[v(k)i,1] . . . E[v(k)i,n]

)
= 1ᵀ

n, which is the desired result. Finally,

E

[
R

(k)
i

]
=

∑n
j=1 E[v(k)i,j] = n.

The next lemma concerns the second moment of the recurrence times, E

[
(R(k)
i)2

]
.

Lemma 3.3.4 (Kemeny and Snell (1960, Theorem 4.5.2)). Under Assumption
3.3.1, the second moment of the recurrence time R(k)

i is finite and given as

E

[(
R

(k)
i

)2
]

= 2[Γ]iin2 − n,

with Γ =
(
I − P + limk→∞ P k

)−1
.

3.3. Markov Incremental Subgradient Method 45

The last lemma concerns a bounding inequality that we will use in the conver-
gence proof.

Lemma 3.3.5. Under Assumptions 3.2.1 and 3.3.1, the sequence {x̂(k)}∞k=0, formed
by sampling the sequence {x(l)}∞l=0, which is generated by (3.4), whenever w(l) = i,
fulfills

E

[∥∥∥x̂(k+1) − y
∥∥∥2∣∣∣x̂(k)

]
≤

∥∥∥x̂(k) − y
∥∥∥2
− 2α

(
f
(
x̂(k)

)
− f (y)

)
+ α2ϕ2κ, (3.7)

with κ = maxi E
[(
R

(k)
i

)2
]
<∞.

Proof. In this proof, we need to use both sequences {x̂(k)}∞k=0 and {x(l)}∞l=0, and
we need to keep track of which elements correspond to each other. For this purpose,
let l =

∑k−1
m=0R

(m)
i , so that x(l) = x̂(k) and x(l+R(k)

i
) = x̂(k+1). Using the non-

expansion property of Euclidean projection, the definition of a subgradient, and
the assumption that the subgradients are bounded, we have that, for any y ∈ X ,∥∥∥x(l+1) − y

∥∥∥2
≤

∥∥∥x(l) − y
∥∥∥2
− 2α

(
aw(l)

(
x(l)

))ᵀ (
x(l) − y

)
+ α2ϕ2

≤
∥∥∥x(l) − y

∥∥∥2
− 2α

(
fw(l)

(
x(l)

)
− fw(l) (y)

)
+ α2ϕ2.

Along the same lines of reasoning, we get the family of inequalities∥∥∥x(l+1) − y
∥∥∥2
≤

∥∥∥x(l) − y
∥∥∥2
− 2α

(
fw(l)

(
x(l)

)
− fw(l) (y)

)
+ α2ϕ2,∥∥∥x(l+2) − y

∥∥∥2
≤

∥∥∥x(l+1) − y
∥∥∥2
− 2α

(
fw(l+1)

(
x(l+1)

)
− fw(l+1) (y)

)
+ α2ϕ2,

...∥∥∥x(l+R(k)
i

) − y
∥∥∥2
≤

∥∥∥x(l+R(k)
i
−1) − y

∥∥∥2

− 2α
(
f
w(l+R(k)

i
−1)

(
x(l+R(k)

i
−1))− f

w(l+R(k)
i
−1)

(
y
))

+ α2ϕ2.

Combining all of them together we get

∥∥∥x(l+R(k)
i

) − y
∥∥∥2
≤

∥∥∥x(l) − y
∥∥∥2
− 2α

R
(k)
i
−1∑

j=0

(
fw(l+j)

(
x(l+j)

)
− fw(l+j) (y)

)
+R(k)

i α
2ϕ2,

46 Novel Distributed Optimization Algorithms

which can be rewritten as

∥∥∥x(l+R(k)
i

) − y
∥∥∥2
≤

∥∥∥x(l) − y
∥∥∥2
− 2α

R
(k)
i
−1∑

j=0

(
fw(l+j)

(
x(l+j)

)
− fw(l+j)

(
x(l)

))

− 2α
R

(k)
i
−1∑

j=0

(
fw(l+j)

(
x(l)

)
− fw(l+j) (y)

)
+R(k)

i α
2ϕ2. (3.8)

Notice that

fw(l+j)

(
x(l)

)
− fw(l+j)

(
x(l+j)

)
≤

∥∥∥aw(l+j)(x(l))
∥∥∥∥∥∥x(l+j) − x(l)

∥∥∥
≤ ϕ

∥∥∥x(l+j) − x(l)
∥∥∥ ≤ αjϕ2.

This enables us to re-write inequality (3.8) as follows

∥∥∥x(l+R(k)
i

) − y
∥∥∥2
≤

∥∥∥x(l) − y
∥∥∥2
− 2α

R
(k)
i
−1∑

j=0

(
fw(l+j)

(
x(l)

)
− fw(l+j) (y)

)
+ α2ϕ2

(
R

(k)
i

)2
.

Using v(k)i,j as defined in Lemma 3.3.3, we express (3.8) as

∥∥∥x(l+R(k)
i

) − y
∥∥∥2
≤∥∥∥x(l) − y

∥∥∥2
− 2α

n∑
j=1
v

(k)
i,j

(
fj

(
x(l)

)
− fj (y)

)
+ α2ϕ2

(
R

(k)
i

)2
. (3.9)

Now, due to the Markov property and Lemma 3.3.3, we have

E

[
n∑
j=1
v

(k)
i,j

(
fj

(
x(l)

)
− fj (y)

) ∣∣∣∣∣x(l), w(l)

]

=
n∑
j=1

E[v(k)i,j]
(
fj

(
x(l)

)
− fj (y)

)
= f

(
x(l)

)
− f (y) . (3.10)

Define

κ = max
j∈{1,...,n}

E

[(
R

(k)
j

)2
]
, (3.11)

3.3. Markov Incremental Subgradient Method 47

which is known to be finite and easily computable1 from Lemma 3.3.4. Note that κ ≥
E

[(
R

(k)
j

)2
]

= E

[(
R

(k)
j

)2 ∣∣x(l), w(l)
]

for any j ∈ {1, ..., n}. By taking the conditional
expectation of (3.9) with respect to x(l) and w(l), and using the equations (3.10)
and (3.11), we obtain the desired result.

Proof of Convergence

Now we are ready for the main result of this section.

Theorem 3.3.6. Let {x(l)}∞l=0 be generated by (3.4). Under Assumption 3.2.1,
Assumption 3.3.1, and with probability 1, we have the following:

a) The sequence {x(l)}∞l=0 fulfills{
lim inf l→∞ f

(
x(l)) = f�, if f� = −∞

lim inf l→∞ f
(
x(l)) ≤ f� + αϕ2κ

2 , if f� > −∞.

b) If the set of all optimal x, X � = {x ∈ X |f(x) = f�}, is non-empty, then the
sequence {x(l)}∞l=0 fulfills

min
0≤l≤τ

f
(
x(l)

)
≤ f� + αϕ

2κ

2 + δ,

where τ is a stopping time with bounded expected value

E [τ] ≤ n2αδ
(

dist
X�

(x(0))
)2
,

with distX�(x(0)) = inf{‖x(0) − y‖|y ∈ X �}.

Proof. We begin with showing a). Denote the starting state of MC by i. With prob-
ability 1, all states are visited equally often, and thus we can form the subsequence
{x̂(k)}∞k=0 of {x(l)}∞l=0 by sampling it whenever MC visits the state i; see (3.5) for
an illustration of this sampling.

We attack the problem using an approach similar to that of the proof of Propo-
sition 3.1 in Nedić and Bertsekas (2001). The proof idea is to show that the iterates
will always enter a special level set. For this purpose, let � and θ be positive integers.
If supx∈X f(x) < f� + 1

	 , then the iterates trivially fulfill

x(l) ∈
{
x ∈ X

∣∣∣∣f(x) < f� + 1
�

}
, l ≥ θ.

1The constant κ is easily computable in a centralized fashion if P is known. The transition
matrix P is usually not known by any node in the setups we consider, but κ is only needed for
the theoretical performance bounds, and it is not needed to execute the algorithm.

48 Novel Distributed Optimization Algorithms

Otherwise, if supx∈X f(x) ≥ f� + 1
	 , we can let y	 ∈ X be such that

f (y) =
{
−ψ, if f� = −∞
f� + 1

	 , if f� > −∞,

for some ψ ≥ �. We now introduce the special level set L	, defined by

L	 =
{
x ∈ X

∣∣∣f(x) ≤ f (y) + 1
�

+ αϕ
2κ

2

}
.

Note that this set includes y	. To simplify the analysis, we derive a stopped sequence
from {x̂(k)}∞k=θ by defining the sequence {x̃(k)}∞k=θ as follows

x̃(k) =
{
x̂(k) if x̂j /∈ L	 ∀j ∈ {θ, ..., κ}
y	 otherwise.

When x̃(k) /∈ L	, by setting y = y	 in (3.7) in Lemma 3.3.5, we get

E

[∥∥∥x̃(k+1) − y	
∥∥∥2∣∣∣x̃(k), w(k)

]
≤ ∥∥x̃(k) − y	

∥∥2
+α2ϕ2κ−2α

(
f
(
x̃(k))− f (y)

)
.

On the other hand, whenever x̃(k) ∈ L	, the sequence is forced to stay at y	, and
we have the trivial inequality

E

[∥∥∥x̃(k+1) − y	
∥∥∥2

∣∣∣∣x̃(k), w(k)
]
≤

∥∥∥x̃(k) − y	
∥∥∥2

+ 0.

If we define z(k) through

z(k) =
{

2α
(
f
(
x̃(k))− f (y)

)− α2ϕ2κ if x̃(k) /∈ L	
0 if x̃(k) ∈ L	,

we can write

E

[∥∥∥x̃(k+1) − y	
∥∥∥2∣∣∣x̃(k), w(k)

]
≤

∥∥∥x̃(k) − y	
∥∥∥2
− z(k), ∀k ≥ θ. (3.12)

When x̃(k) /∈ L	, we have(
f
(
x̃(k)

)
− f (y)

)
≥ 1
�

+ αϕ
2κ

2 ,

which is equivalent to

z(k) = 2α
(
f
(
x̃(k)

)
− f (y)

)
− α2ϕ2κ ≥ 2α

�
.

3.3. Markov Incremental Subgradient Method 49

If we take the expectation of (3.12), the result is

E

[∥∥∥x̃(k+1) − y	
∥∥∥2

]
≤ E

[∥∥∥x̃(k) − y	
∥∥∥2

]
− E

[
z(k)

]
, ∀k ≥ θ,

and starting from x(θ), we recursively get

E

[∥∥∥x̃(k+1) − y	
∥∥∥2

]
≤ E

[∥∥∥x̃(θ) − y	
∥∥∥2

]
− E

[
k∑
i=θ

z(i)

]
, ∀k ≥ θ. (3.13)

Furthermore, from the iterations (3.4) and the bounded subgradients assumption,
we have that

∥∥x̃(θ) − y	
∥∥ ≤ ∥∥x̃(0) − y	

∥∥ + αϕ
∑θ−1
m=0R

(m)
i . This means that

E

[∥∥∥x̃(θ) − y	
∥∥∥2

]
≤

∥∥∥x̃(0) − y	
∥∥∥2

+ 2αϕθn
∥∥∥x̃(0) − y	

∥∥∥ + ω(θ, α, ϕ),

where ω(θ, α, ϕ) = E[(αϕ
∑θ−1
m=0R

(m)
i)2] is a function that we know is bounded

from Lemma 3.3.4. Let τ̃ be the stopping time defined as

τ̃ = inf{t|x̃(t) ∈ L	, t ≥ θ, t ∈ N},

then τ̃ is the number of non-zero elements in the non-negative sequence {z(k)}∞k=θ.
We have that the limit

∑∞
k=θ z

(k) either exists finitely or is equal to infinity since
the partial sums are monotonic. Hence

∑∞
k=θ z

(k) ≥ 2α
	 τ̃ . By letting k go to infinity

in (3.13) and using the non-negativity of a norm, we have

0 ≤
∥∥∥x̃(0) − y	

∥∥∥2
+ 2αϕθn

∥∥∥x̃(0) − y	
∥∥∥ + ω(θ, α, ϕ)− E

[∞∑
i=θ

zi

]

≤
∥∥∥x̃(0) − y	

∥∥∥2
+ 2αϕθn

∥∥∥x̃(0) − y	
∥∥∥ + ω(θ, α, ϕ)− 2α

�
E [τ̃]

and the bound

E [τ̃] ≤ �2α
(∥∥∥x(0) − y	

∥∥∥2
+ 2αϕθn

∥∥∥x(0) − y	
∥∥∥ + ω(θ, α, ϕ)

)
,

where we used that x̃(0) = x(0). Thus, the stopping time τ̃ is almost surely finite
and at least one element in the sequence {x̂(k)}∞k=θ will be in the set L	. Since
{x̂(k)}∞k=θ is a subsequence of {x(l)}∞

l=l̃ with l̃ =
∑θ−1
m=0R

(m)
i ≥ θ, it follows that at

least one element of {x(l)}∞l=θ will be in the set L	. Therefore, we have that

inf
l≥θ
f(x(l)) ≤ f (y) + 1

�
+ αϕ

2κ

2 ,

50 Novel Distributed Optimization Algorithms

and since the choice of θ is arbitrary, we have that

lim inf
l→∞

f(x(l)) ≤ f (y) + 1
�

+ αϕ
2κ

2 .

By letting � go to infinity and noting that Lemma 3.3.5 holds for all i, we have
shown part a).

Now we proceed with part b), and the proof idea is the same as in part a);
we show that the iterates will always enter a special level set. If supx∈X f(x) ≤
f� + αϕ2κ

2 + δ or f(x0) ≤ f� + αϕ2κ
2 + δ, then the claim in b) is trivially fulfilled.

Otherwise, let Lδ be the level set defined by

Lδ =
{
x ∈ X

∣∣∣f(x) ≤ f� + αϕ
2κ

2 + δ
}
.

Define the sequence {x̃(k)}∞k=0 as follows

x̃(k) =
{
x̂(k) if x̂j /∈ Lδ ∀j ≤ k
x̌ ∈ X � otherwise,

where x̌ is an arbitrary point in X �. When x̃(k) /∈ Lδ, Lemma 3.3.5 gives us

E

[∥∥∥x̃(k+1) − x̌
∥∥∥2∣∣∣x̃(k), w(k)

]
≤

∥∥∥x̃(k) − x̌
∥∥∥2

+ α2ϕ2κ − 2α
(
f
(
x̃(k)

)
− f (x̌)

)
.

Otherwise, when x̃(k) ∈ Lδ, the sequence will stay at x̌, and we have the trivial
inequality

E

[∥∥∥x̃(k+1) − x̌
∥∥∥2∣∣∣x̃(k), w(k)

]
≤

∥∥∥x̃(k) − x̌
∥∥∥2

+ 0.

By defining z(k) through

z(k) =
{

2α
(
f
(
x̃(k))− f (x̌)

)− α2ϕ2κ if x̃(k) /∈ Lδ
0 if x̃(k) ∈ Lδ,

we have z(k) ≥ 2αδ if x̃(k) /∈ Lδ, and we can write

E

[∥∥∥x̃(k+1) − x̌
∥∥∥2∣∣∣x̃(k), w(k)

]
≤

∥∥∥x̃(k) − x̌
∥∥∥2
− z(k), ∀k. (3.14)

Let τ̃ be the stopping time defined as

τ̃ = inf{t|x̃t ∈ Lδ, t ≥ 0, t ∈ N},

3.3. Markov Incremental Subgradient Method 51

then τ̃ is the random number of non-zero elements in the non-negative sequence
{z(k)}∞k=0 and

∑∞
k=0 z

(k) ≥ 2αδτ̃ , where the limit
∑∞
k=0 z

(k) either exists finitely or
is equal to infinity, since the partial sums are monotonic. By letting k go to infinity
in (3.14) and using the non-negativity of a norm, we have

0 ≤
∥∥∥x̃(0) − x̌

∥∥∥2
− E

[∞∑
i=0
zi

]
≤

∥∥∥x̃(0) − x̌
∥∥∥2
− 2αδE [τ̃] (3.15)

and the bound

E [τ̃] ≤ 1
2αδ

∥∥∥x̃(0) − x̌
∥∥∥2

= 1
2αδ

∥∥∥x(0) − x̌
∥∥∥2
. (3.16)

Now let τ be the stopping time defined as

τ = inf{t|x(t) ∈ Lδ, w(t) = i, t ≥ 0, t ∈ N}.

This means that the stopping conditions will be fulfilled when x(t) is in the set Lδ
and the Markov chain is in state i; note that f(x(τ)) ≤ f�+ αϕ2κ

2 + δ. By using the
recurrence time R(k)

i , which counts the number of elements in the original sequence
{x(l)}∞l=0 between the elements in the sampled sequence {x̂(k)}∞k=0, we can write

τ =
τ̃∑
k=1

R
(k−1)
i ,

where τ̃ ≥ 1 since x(0) /∈ Lδ by assumption. Since τ̃ is a stopping time for the
sequence {x̂(0), x̂(1), ...}, occurrence of the event {τ̃ ≥ j} is decided by the sequence
{x̂(0), ..., x̂(j−1)}. In particular, I{τ̃ ≥ j} =

∏j−1
m=0 I{x̂(m) /∈ Lδ}, where I{·} is

the indicator function of the event {·}. Furthermore, due to the construction of
{x̂(k)}∞k=0 and {R(k)

i }∞k=0, and the Markov property of the sequence {w(k)}∞k=0, the
recurrence times R(j−1)

i , R
(j)
i , R

(j+1)
i , ... are independent of x̂(j−1), x̂(j−2), x̂(j−3),

More specifically, we have that

E

[
I{τ̃ ≥ j}R(j−1)

i

]
= E

[j−1∏
m=0
I{x̂(m) /∈ Lδ}R(j−1)

i

]
= P{τ̃ ≥ j}E

[
R

(j−1)
i

]
,

where P{·} denotes the probability of the event {·}. Using the previous properties
with a Wald’s identity (see, e.g., Chung (1974, Theorem 5.5.3)) type of argument,

52 Novel Distributed Optimization Algorithms

we have

E[τ] =
∞∑
l=1

E

[
I{τ̃ = l}

τ̃∑
k=1

R
(k−1)
i

]
= (3.17a)

=
∞∑
l=1

l∑
k=1

E

[
I{τ̃ = l}R(k−1)

i

]
=
∞∑
k=1

∞∑
l=k

E

[
I{τ̃ = l}R(k−1)

i

]
= (3.17b)

=
∞∑
k=1

E
[
I{τ̃ ≥ k}R(k−1)

i

]
=
∞∑
k=1

P{τ̃ ≥ k}E
[
R

(k−1)
i

]
= E[τ̃]E

[
R

(0)
i

] ≤
(3.17c)

≤ n2αδ
∥∥∥x(0) − x̌

∥∥∥2
. (3.17d)

The change of summation order in (3.17b) holds since the series converges absolutely
∞∑
k=1

∞∑
l=k

∣∣∣E [
I{τ̃ = l}R(k−1)

i

]∣∣∣ =
∞∑
k=1

∞∑
l=k

E

[
I{τ̃ = l}R(k−1)

i

]
= E[τ̃]E

[
R

(0)
i

]
<∞,

where we used the non-negativity of τ̃ andR(k)
i . The relation

∑∞
k=1 P{τ̃ ≥ k} = E[τ̃],

used in (3.17c), follows from Chung (1974, Theorem 3.2.1). Since (3.17d) holds for
arbitrary x̌ in X �, we can replace ‖x(0) − x̌‖2 with

(
distX�(x(0))

)2.

Remark 3.3.7. When the n-node network is connected and Assumption 3.2.1
holds, Lemma 2.3.5 and Theorem 3.3.6 imply that MC can be devised using only
local topology information and that the iterations (3.4) can be executed using only
peer-to-peer communication and that they converge in the sense of Theorem 3.3.6.

3.3.3 Comparison with Existing Incremental Subgradient
Algorithms

For the DISM and the RISM, there exist results of the same type as Theorem 3.3.6,
i.e.,

min
0≤l≤τ

f(x(l)) = f� + αβ + ν with E[τ] ≤ ρ
αν
, (3.18)

where β and ρ are positive constants that depend on the algorithm (α is still the
constant stepsize). To compare the algorithms, we need the minimum expected num-
ber of iterations needed for each algorithm for a given accuracy (min0≤l≤τ f(x(l)) =
f� + γ). For the general case (3.18), we get the following optimization problem

minimize
α,ν

ρ
αν

subject to αβ + ν ≤ γ
α ≥ 0, ν ≥ 0

⇔
maximize
α,ν

αν

subject to αβ + ν = γ
α ≥ 0, ν ≥ 0

⇒
{
α� = γ

2β
ν� = γ

2 .

3.3. Markov Incremental Subgradient Method 53

Table 3.1: Expected number of iterations, E[τ], needed to reach the accuracy
min0≤l≤τ f(x(l)) ≤ f� + γ. For brevity2, let ϑ = nϕ2γ−2 (distX�(x0))2.

Algorithm E[τ]

DISM n2ϑ

RISM nϑ

MISM κϑ

Using these optimal values, we compute an upper bound of the expected number
of iterations, E[τ], needed to reach the accuracy min0≤l≤τ f(x(l)) ≤ f� + γ for the
DISM, RISM, and MISM. The results are presented in Table 3.1. Since

κ ≥ E

[(
R

(k)
i

)2
]

= E

[(n∑
i=1
v

(k)
i

)2
]
≥ E

[
n∑
i=1

(
v

(k)
i

)2
]
≥ E

[
n∑
i=1
v

(k)
i

]
= n,

where we used the non-negativity and integrality of v(k)i , the results in Table 3.1
indicate that the RISM is the best algorithm, and that the ranking between the
DISM and the MISM will depend on the topology of the network as well as the
transition probability matrix of the Markov chain. However, it is not only the
expected number of iterations that are of interest, and in applications, the ease
of implementation and energy consumption are crucial. Experiments show that the
MISM has favorable properties in these two respects, as reported in Johansson et al.
(2007), and we address implementation issues and performance in Chapter 6.

It is interesting to note that we can recover the DISM and RISM from the MISM
by choosing the transition probability matrix in the following way:

PDISM =

⎛⎜⎜⎜⎜⎝
0 1 0 ...

0 0 1 ...
...

...
1 0 0 ...

⎞⎟⎟⎟⎟⎠ and PRISM =

⎛⎜⎜⎝
1
n . . . 1

n
...

. . .
...

1
n . . . 1

n

⎞⎟⎟⎠
with

E[RDISM] = n2 and E[RRISM] = 2n2 − n.
The transition matrix PDISM will make the Markov chain deterministically explore
the topology in a logical ring and R(k)

i = n. Note that the Markov chain correspond-
ing to PDISM does not satisfy Assumption 3.3.1, but the analysis in Theorem 3.3.6

2The constant ϕ is defined in a slightly different way for DISM and RISM in Nedić and
Bertsekas (2001). There it is assumed that the norm of the subgradients for the actual trajectory
of the algorithms are upper bounded by ϕ. This is more general and less conservative than our
definition of ϕ, but it is very hard to check if it is fulfilled and therefore not practical. Our analysis
holds for the less conservative definition of ϕ as well.

54 Novel Distributed Optimization Algorithms

still holds. The transition matrix PRISM will make the Markov chain jump to any
node in the topology with equal probability at each time step, precisely as the RISM,
and E[RRISM] = 2n2−n is given by Lemma 3.3.4. The convergence bound given by
the MISM analysis for PDISM is identical with the convergence bound given by the
DISM analysis in Nedić and Bertsekas (2001). On the other hand, the convergence
bound given by the MISM analysis for PRISM is much worse than the original RISM
result. This is due to the fact that in the original RISM analysis, all iterates are
analyzed, while in the MISM analysis, only iterates in the starting state, which is
arbitrary, are analyzed.

3.4 Distributed Subgradient Method using Consensus
Iterations

As mentioned in Section 3.3, subgradient methods are popular for solving problems
of the type (3.1). The subgradient method can be implemented in an incremental
fashion as proposed in Bertsekas et al. (2003). This entails changing the variable
x(k) incrementally through n steps, in each iteration using only the subgradient
corresponding to a single component function fi. The advantage of this method
from a computational aspect is that it can be performed in a distributed way by
assigning each component function to a processing unit or “agent”, which performs
the local incremental update on the variable x. This means that x(k) needs to be
passed between the agents, which perform a subgradient update using only a single
subgradient corresponding to the agent’s component function. This incremental
subgradient scheme has advantages over the standard one in terms of convergence
rate and distribution of computations. However, in its usual form the incremental
updates are performed in a sequential manner, which assumes that the variable x(k)

passes through all agents either in a cyclic or randomized sequence. Implementation
of such a communication scheme can sometimes be problematic in practice. This
predicament was addressed in Section 3.3, where we developed a new randomized
algorithm.

Notice that we can think of the computing agents mentioned above as each hav-
ing a copy of the decision variable x, which they maintain locally and update based
on the value obtained from the previous subiteration (the preceding agent in the
update sequence) and the local subgradient of the component function evaluated
at this value. Under appropriate assumptions and using a properly chosen dimin-
ishing stepsize, the subgradient iterations converge asymptotically to an optimizer
x� of the problem. This means that eventually all “local” versions of the decision
variable converge to the same value. This resembles to some extent agreement or
consensus problems in multi-agent systems, which has a long history and has re-
ceived renewed interest in the recent literature (Olfati-Saber et al., 2007). It is thus
interesting to investigate whether the convergence properties of certain consensus
algorithms can be combined with subgradient iterations in order to optimize prob-
lems of type (3.1) using a wider variety of communication topologies than what the

3.4. Distributed Subgradient Method using Consensus Iterations 55

standard incremental subgradient method allows.

3.4.1 Algorithm
Inspired by Nedić and Ozdaglar (2007b,a), we propose to combine the subgradient
iterations with a number of consensus iterations in the following way:

x
(k+1)
i = PX

[
n∑
j=1

[W θ]ij
(
x

(k)
j − α(k)aj(x(k)

j)
)]
, (3.19)

where aj(x(k)
j) ∈ ∂fj(x(k)

j) and [W θ]ij denotes the element of W θ in the ith row
and jth column. We call this algorithm the consensus subgradient method, CSM.
Agents maintain their local variable x(k)

i and perform the update procedure of (3.19)
in parallel. First, they exchange information with neighboring agents for θ number
of consensus iterations. More specifically, (3.19) implies that each agent i runs θ
number of consensus iterations with its neighbors, defined by (2.7), for each row in
the local vector x(k)

i . Then, all agents implement the component subgradient update
locally. The total number of iterations in the algorithm up to step k is therefore kθ.
For a more compact notation we define

u
(k)
i = x(k)

i − α(k)ai(x(k)
i) (3.20)

and

v
(k)
i =

n∑
j=1

[W θ]iju(k)
j , i = 1, ..., n. (3.21)

Let us assume for the moment that in each subgradient iteration θ → ∞, and
the consensus updates converge to the average of the initial values (this holds if W
fulfills Assumption 2.3.2). Then, for all i = 1, . . . , n and x(0)

i ∈ R
ξ,

lim
θ→∞

n∑
j=1

(
[W θ]iju(0)

j

)
= 1
n

n∑
j=1

(
x

(0)
j − α(0)aj(x(0)

j)
)
.

Let us denote the initial state of the projected consensus variable with

x̆(1) = PX
[

1
n

n∑
j=1

(
x

(0)
j − α(0)aj(x(0)

j)
)]
.

In the next iteration, each agent will possess the same value x̆1, thus the local
subgradients aj will be evaluated at the same point. The update procedure in
(3.19) for k ≥ 1 will thus be equivalent to

x̆(k+1) = PX
[

1
n

n∑
j=1

(
x̆(k) − α(k)aj(x̆(k))

)]
= PX

[
x̆(k) − α(k) 1

n

n∑
j=1

(aj(x̆(k)))
]
.

(3.22)

56 Novel Distributed Optimization Algorithms

This is the same process as the standard subgradient method of (3.2) performed on
the consensus variable x̆(k) with a stepsize of α(k)/n. Convergence analysis of this
scheme can be done following the procedure in for example Kiwiel (2004) or Bert-
sekas et al. (2003).

We are interested however in a more realistic scenario, where the consensus
iterations are performed only for a finite number of θ steps. We intend to analyze
such a scheme with the use of properly chosen approximate subgradients and the
approximation error of the average consensus process achieved in a finite number
of steps. Finally, we assume that the stepsize in (3.19) is constant, α(k) = α, which
makes the algorithm easily implementable.

Our algorithm is similar to the algorithm proposed in Nedić and Ozdaglar
(2007b,a), but there are some differences. Firstly, Nedić and Ozdaglar (2007b,a)
propose to use one consensus step per subgradient iteration, which in our notation
can be written as

x
(k+1)
i =

(n∑
j=1

[W (k)]ijx(k)
j

)
− α(k)

i ai(x
(k)
i)

where W (k) is time varying. Whereas (3.19) allows us to use more consensus iter-
ations to make the step taken more similar at each node. Secondly, they use the
partially asynchronous model stemming from the seminal work of Tsitsiklis (1984),
which is much more general than our synchronous model. Using the average of the
nodes’ iterates, x̄(k) =

∑n
i=1 x

(k)
i /n, they show that the individual nodes iterates

are close to this average under some communication assumptions, where connectiv-
ity in the long run and bounded intercommunication intervals are the most crucial
ones. Furthermore, they show how that the time average of the nodes’ iterates,
x̂

(k)
i =

∑k
j=1 x

(j)
i /k, as well as the time average of the average of the nodes’ iter-

ates, ˆ̄x(k) =
∑k
j=1 x̄

(j)
i /k, asymptotically converge to something close to the optimal

set. As we will see later, we also use the approach of analyzing x̄(k) and provide
bounds on the distance between x̄(k) and x(k)

i . However, we provide a convergence
analysis of x̄(k) and not of ˆ̄x(k), and most importantly, we also include projections
on the closed and convex set X in the analysis, which allow us to handle constrained
optimization problems.

The following three lemmas will be instrumental in the convergence analysis of
the proposed scheme. We will denote the average value of the local variables at time
k with x̄(k) = 1

n

∑n
i=1 x

(k)
i and v̄(k) = 1

n

∑n
i=1 v

(k)
i .

The following inequalities serve to characterize the Euclidean distance of agent
variables from each other and from their average.

Lemma 3.4.1. 1) If
∥∥x(k)
i − x(k)

j

∥∥ ≤ β for all i, j = 1, ..., n, then

∥∥x(k)
j − x̄(k)∥∥ =

∥∥x(k)
j −

1
n

n∑
i=1
x

(k)
i

∥∥ ≤ n− 1
n
β.

3.4. Distributed Subgradient Method using Consensus Iterations 57

2) If
∥∥x(k)
i − x̄(k)

∥∥ ≤ β for all i = 1, ..., n, then
∥∥x(k)
i − x(k)

j

∥∥ ≤ 2β.

Proof. 1)

∥∥∥x(k)
j − x̄(k)

∥∥∥ = 1
n

∥∥∥∥∥nx(k)
j −

n∑
i=1
x

(k)
i

∥∥∥∥∥ ≤ 1
n

⎛⎝ n∑
i=1,i �=j

∥∥∥x(k)
i − x(k)

j

∥∥∥
⎞⎠ ≤ n− 1

n
β

2) ∥∥∥x(k)
i − x(k)

j

∥∥∥ ≤ ∥∥∥x(k)
i − x̄

∥∥∥ +
∥∥∥x(k)
j − x̄

∥∥∥ ≤ 2β

Lemma 3.4.2. If
∥∥[y(k)]i − [y(k)]j

∥∥ ≤ σ for all i, j = 1, ..., n and y(k+1) =W θy(k),
with W fulfilling Assumption 2.3.2, then

∥∥[y(k+1)]i − [y(k+1)]j
∥∥ ≤ 2γθnσ for all

i, j = 1, ..., n.

Proof. Let us write y(k) as y(k) = ȳ(k) + a(k) with
∑n
i=1[a(k)]i = 0 and ȳ(k) =

1n1ᵀ
ny

(k)/n. The results of Lemma 3.4.1 show that
∥∥[a(k)]i

∥∥ ≤ σ for all i. Further-
more, y(k+1) =W θ(ȳ(k) + a(k)) = ȳ(k) +W θ(a(k) − 0n). Now we have,∥∥∥[y(k+1) − ȳ(k)]i

∥∥∥ ≤ ∥∥∥y(k+1) − ȳ(k)
∥∥∥ =

∥∥∥W θ(a(k) − 0n)
∥∥∥ =

∥∥∥∥(W θ − 1n1ᵀ
n

n

)
a(k)

∥∥∥∥
≤

∥∥∥∥W θ − (
1n1ᵀ

n

n

)θ∥∥∥∥∥∥∥a(k)
∥∥∥ ≤ ∥∥∥∥W − 1n1ᵀ

n

n

∥∥∥∥θ ∥∥∥a(k)
∥∥∥ ≤ γθ ∥∥∥a(k)

∥∥∥ ≤ γθnσ,
where we used that

∥∥W−1n1ᵀ
n

n

∥∥ = ρ
(
W−1n1ᵀ

n

n

)
, which holds for symmetric matrices.

Finally, from the above discussion and Lemma 3.4.1, we have∥∥∥[y(k+1)]i − [y(k+1)]j
∥∥∥ ≤ 2γθnσ for all i, j = 1, ..., n.

The following lemma establishes a lower bound on the number of consensus
steps, which will ensure that the local variables will remain in a ball of radius β of
their average, from one iteration to the next.

Lemma 3.4.3. Let {x(k)
1 , ..., x

(k)
n }∞k=0 be generated by (3.19) under Assumptions

3.2.1 and 2.3.2. If
∥∥∥v(k)i − v̄(k)∥∥∥ ≤ β for all i and

θ ≥ log(β)− log(4ξn(β + αϕ))
log(γ) ,

then
∥∥∥v(k+1)
i − v̄(k+1)

∥∥∥ ≤ β for all i.

58 Novel Distributed Optimization Algorithms

Proof. Using Lemma 3.4.1, the closeness condition means that
∥∥v(k)i − v(k)j ∥∥ ≤ 2β

for all i, j = 1, ..., n, which implies that
∥∥[v(k)i − v(k)j]

l

∥∥ ≤ 2β for all i, j = 1, ..., n
and l = 1, ...,m.

We can now decide the distance between the iterates before the consensus step.∥∥∥[u(k+1)
i

]
l
−[u(k+1)

j

]
l

∥∥∥ =
∥∥∥[PX [v(k)i]− αai(PX [v(k)i])− PX [v(k)j] + αaj(PX [v(k)j])

]
l

∥∥∥
≤

∥∥∥v(k)i − v(k)j ∥∥∥ + 2αϕ ≤ 2(β + αϕ), (3.23)

where we used the non-expansive property of the projection on a convex set. Fur-
thermore, we have

∥∥∥v(k+1)
i − v(k+1)

j

∥∥∥ =

∥∥∥∥∥
n∑
l=1

[W θ]ilu(k+1)
l −

n∑
l=1

[W θ]jlu(k+1)
l

∥∥∥∥∥
≤

ξ∑
o=1

∥∥∥∥∥
[
n∑
l=1

[W θ]ilu(k+1)
l −

n∑
l=1

[W θ]jlu(k+1)
l

]
o

∥∥∥∥∥ .
Consider now one of the terms in the sum above and notice that∥∥∥∥∥

[
n∑
l=1

[W θ]ilu(k+1)
l −

n∑
l=1

[W θ]jlu(k+1)
l

]
o

∥∥∥∥∥
=

∥∥∥∥∥
n∑
l=1

[W θ]il
[
u

(k+1)
l

]
o
−
n∑
l=1

[W θ]jl
[
u

(k+1)
l

]
o

∥∥∥∥∥ =
∥∥∥∥[W θy(k)]i − [

W θy(k)
]
j

∥∥∥∥ ,
with y(k) =

([
u

(k+1)
1

]
o
...

[
u

(k+1)
n

]
o

)ᵀ. Using Lemma 3.4.2 and (3.4.1), which
states that

∥∥[y(k)]
i
− [
y(k)

]
j

∥∥ ≤ 2(β + αϕ), we obtain
∥∥[W θy(k)]

i
− [
W θy(k)

]
j

∥∥ ≤
4γθn(β + αϕ).

Combining the above results yields
∥∥v(k+1)
i − v(k+1)

j

∥∥ ≤ 4γθξn(β + αϕ), and∥∥v(k+1)
i − v(k+1)

j

∥∥ ≤ β is fulfilled if θ is set to

θ ≥ log(β)− log(4ξn(β + αϕ))
log(γ) .

3.4.2 Convergence Analysis
We will prove convergence of the algorithm in two cases: Firstly, convergence is
proved when the feasible set is the space R

ξ, i.e., the unconstrained optimization
problem. Secondly, with an additional assumption on the objective functions, con-
vergence is proved for a general convex feasible set.

3.4. Distributed Subgradient Method using Consensus Iterations 59

Unconstrained Case

In the following, we will analyze the unconstrained case and we make the following
assumption.

Assumption 3.4.4. The feasible set of (3.1) is X = R
ξ.

We need the following Lemma which allows us to interpret the algorithm as an
ε-subgradient algorithm.

Lemma 3.4.5. Under Assumptions 3.2.1 and 2.3.2 and if ‖x(k)
i − x̄(k)‖ ≤ β for

all i = 1, ..., n, then ai(x(k)
i) ∈ ∂εfi(x̄(k)) and

∑n
i=1 ai(x

(k)
i) ∈ ∂nεf(x̄(k)), with

ε = 2βϕ.

Proof. Using the definition (2.1) and the bound on the subgradient in Assump-
tion 3.2.1, leads to

fi(x(k)
i) ≥ fi(x̄(k)) + ai(x̄(k))ᵀ(x(k)

i − x̄(k)) ≥ fi(x̄(k))− ‖ai(x̄(k))‖‖x(k)
i − x̄(k)‖

≥ fi(x̄(k))− ϕβ.
For any y ∈ X , using the subgradient inequality leads to

fi(y) ≥ fi(x(k)
i) + ai(x(k)

i)ᵀ(y − x(k)
i) ≥ fi(x̄(k)) + ai(x(k)

i)ᵀ(y − x(k)
i)− ϕβ

≥ fi(x̄(k)) + ai(x(k)
i)ᵀ(y − x̄(k) + x̄(k) − x(k)

i)− ϕβ
≥ fi(x̄(k)) + ai(x(k)

i)ᵀ(y − x̄(k))− 2ϕβ.

Using the definition of an ε-subdifferential (2.4), this implies ai(x(k)
i) ∈ ∂2βϕfi(x̄(k)).

Summation of terms yields

f(y) ≥ f(x̄(k)) +
(n∑
i=1
ai(x(k)

i)
)ᵀ

(y − x̄(k))− n2βϕ.

Based on Definition 2.1.5, this implies
∑n
i=1 ai(x

(k)
i) ∈ ∂n2βϕf(x̄(k)).

Now we are ready for the convergence theorem for the unconstrained case.

Theorem 3.4.6. Under Assumptions 3.2.1, 2.3.2, and 3.4.4, with the sequence
{x(k)

1 , ..., x
(k)
n }∞k=0 generated by (3.19) with

θ ≥ log(β)− log(4nξ(β + αϕ))
log(γ)

and ‖x(0)
i − x̄(0)‖ ≤ β, we have:

If f� = −∞, then
lim inf
k→∞

f(x(k)
i) = −∞, ∀i = 1, ..., n.

60 Novel Distributed Optimization Algorithms

If f� > −∞, then

lim inf
k→∞

f(x(k)
i) ≤ f� + αnϕ2/2 + 3nϕβ, ∀i = 1, ..., n.

Proof. From Lemma 3.4.3, we know that
∥∥x(k)
i − x̄(k)

∥∥ ≤ β for all i = 1, .., n
and all k ≥ 0, since x(k)

i = v(k)i . Furthermore, from Lemma 3.4.5, we know that∑n
i=1 ai(x

(k)
i) ∈ ∂2nβϕf(x̄(k)) for all k ≥ 0. Hence, from the definitions of x̄(k) and

x
(k)
i in combination with the results above, we have

x̄(k+1) = 1
n

n∑
i=1

(n∑
j=1

[W θ]ij
(
x

(k)
j − αaj(x(k)

j)
))

=

= 1
n

n∑
j=1

(
x

(k)
j − αaj(x(k)

j)
)

= x̄(k) + α
n
h(x̄(k)),

with h(x̄(k)) ∈ ∂2nβϕf(x̄(k)) and
∥∥h(x̄(k))

∥∥ ≤ nϕ. This is precisely the approximate
subgradient iteration and from Nedić (2002, Proposition 4.1) we have

lim inf
k→∞

f(x̄(k)) = −∞, if f� = −∞

and
lim inf
k→∞

f(x̄(k))≤f� + α(nϕ)2/(2n) + 2nϕβ, if f� > −∞.
By noting that

f(x(k)
i) ≤ f(x̄(k)) + nϕβ, ∀i = 1, ..., n, k ≥ 0,

we have the desired result.

Remark 3.4.7. We can get lim infk→∞ f(x(k)
i) to be arbitrarily close to f�, by

choosing the constants α and β arbitrarily small. Note that the number of required
consensus negotiations, θ, to reach a fixed β does not depend on k.

Constrained Case

To show convergence in the constrained case, we need the following additional
assumption on the functions fi.

Assumption 3.4.8. There exist ζ > 0 and τ > 0 such that for all x ∈ X , ai(x) ∈
∂fi(x), and ν ∈ R

ξ with ‖ν‖ ≤ τ , the following holds:

ai(x) + ν ∈ ∂ζfi(x).
As mentioned before, Assumption 3.4.8 is an additional assumption compared

to what is needed for the unconstrained case. However, if the set X is compact, we
can always fix this problem, as the following lemma shows.

3.4. Distributed Subgradient Method using Consensus Iterations 61

Lemma 3.4.9. Let X be a closed, convex, and compact set such that x ∈ X ⇒
‖x‖ ≤ η. Furthermore, let fi : R

ξ → R be a convex function. Then there exists a
convex function f̌i : R

ξ → R such that for all x ∈ X
ν ∈ R

ξ, ‖ν‖ ≤ τ and ai(x) ∈ ∂fi(x) ⇒ ai(x) + ν ∈ ∂ζ f̌i(x),
with 2ητ ≤ ζ. Furthermore, f̌i(x) = fi(x) when x ∈ X .

Proof. Pick any x ∈ X and let ai(x) ∈ ∂fi(x), then, due to the subgradient inequal-
ity,

fi(z) ≥ fi(x) + (ai(x) + ν)ᵀ(z − x)− ζ, ∀z ∈ X
is equivalent with

0 ≥ νᵀ(z − x)− ζ ≥ νᵀ(z − x)− 2ητ, ∀z ∈ X ,
which holds since νᵀ(z−x) ≤ ‖ν‖‖z−x‖ ≤ 2ητ by assumption. Furthermore, define
f̌i(z) as

f̌i(z) = max {fi(z), �i(z)}
with

�i(z) = max
x,ai,ν

{
fi(x) + (ai(x) + ν)ᵀ(z − x)− ζ ∣∣x ∈ X , ai(x) ∈ ∂fi(x), ‖ν‖ ≤ τ},

where the maximum in the definition of �i is attained since the feasible set is com-
pact (in particular, the subdifferential is compact by Rockafellar (1970, Theorem
23.4)). Since f̌i is the pointwise maximum of a family of convex functions, it is con-
vex. In addition, by construction, we have that fi(z) ≥ �i(z) when z ∈ X , which
implies that f̌i(z) = fi(z) when z ∈ X . Finally, also by construction, for any x ∈ X ,
ai(x) ∈ ∂fi(x), and ν ∈ R

ξ with ‖ν‖ ≤ τ , we have that

f̌i(z) ≥ fi(x) + (ai(x) + ν)ᵀ(z − x)− ζ, ∀z ∈ R
ξ,

which implies that ai(x) + ν ∈ ∂ζ f̌i(x).
Since f̌i(x) = fi(x) when x ∈ X , we can optimize over f̌i in (3.1) instead of over

fi. It is not needed to actually construct f̌i, since it is only used for the convergence
proof. Furthermore, some functions directly fulfill Assumption 3.4.8, which obviate
the need for f̌i in those cases, as shown in the following example.

Example 3.4.1. Consider fi(x) = ψxᵀx, then Assumption 3.4.8 is fulfilled if
τ ≤ 2

√
ζψ (without X necessarily being a compact set). This can be shown as

follows. Since fi is differentiable, we have ai(x) = 2ψx and

fi(w)− (fi(x) + (2ψx+ ν)ᵀ(w − x))
= ψ(wᵀw + xᵀx− 2wᵀx) + νᵀ(x− w) = ψ(w − x)ᵀ(w − x) + νᵀ(x− w)
≥ ψ ‖w − x‖2 − ‖ν‖ ‖w − x‖ ≥ ψ ‖w − x‖2 − τ ‖w − x‖ ≥ −τ2/(4ψ).

62 Novel Distributed Optimization Algorithms

Now let ζ ≥ τ2/(4ψ) to fulfill Assumption 3.4.8 and we have τ ≤ 2
√
ζψ.

In our further developments we need to keep track of the difference x̄(k) −
PX

[
v̄(k−1)], and to this end, we define y(k) and z(k) as

y(k) = PX
[
v̄(k−1)

]
and z(k) = x̄(k) − y(k). (3.27)

Furthermore, we need the following Lemma, which is similar to Lemma 3.4.5.

Lemma 3.4.10. Under Assumptions 3.2.1, 2.3.2, and 3.4.8 and if∥∥v(k−1)
i − v̄(k−1)∥∥ ≤ β

for all i and ν ∈ R
ξ with ‖ν‖ ≤ τ , then

(ai(x(k)
i) + ν) ∈ ∂εfi(y(k))

and
n∑
i=1

(ai(x(k)
i) + ν) ∈ ∂nεfi(y(k))

with ε = β(6ϕ+ 3τ) + ζ.

Proof. The proof relies on the iterates being close to each other. Using the assump-
tions and the non-expansive property of projection on a convex set we can bound
the distance

∥∥z(k)∥∥ as follows

∥∥z(k)∥∥ = 1
n

∥∥∥∥∥
n∑
i=1

(
PX

[
v

(k−1)
i

]
− PX

[
v̄(k−1)

])∥∥∥∥∥ ≤ 1
n

n∑
i=1

∥∥∥v(k−1)
i − v̄(k−1)

∥∥∥ ≤ β.
Using the definition (2.1), the bound on the subgradient in Assumption 3.2.1, the
bound above, and Lemma 3.4.1 we obtain

fi(x(k)
i) ≥ fi(y(k)) + ai(y(k))ᵀ(x(k)

i − y(k)) ≥ fi(y(k))−
∥∥ai(y(k))∥∥∥∥x(k)

i − y(k)
∥∥

≥ fi(y(k))− ϕ(
∥∥x(k)
i − x̄(k)∥∥ +

∥∥z(k)∥∥) ≥ fi(y(k))− ϕ3β,

where we used x(k)
i −y(k) = x(k)

i −x̄(k) +z(k) and ‖v(k)i −v̄(k)‖ ≤ β ⇒
∥∥v(k)i −v(k)j ∥∥ ≤

2β ⇒ ∥∥x(k)
i − x(k)

j

∥∥ ≤ 2β ⇒ ‖x(k)
i − x̄(k)‖ ≤ 2β.

For any y ∈ X , using Assumption 3.4.8 and the previous arguments, we get

fi(y) ≥ fi(x(k)
i) + (ai(x(k)

i) + ν)ᵀ(y − x(k)
i)− ζ

≥ fi(y(k)) + (ai(x(k)
i) + ν)ᵀ(y − x(i)

i)− (3ϕβ + ζ)

= fi(y(k)) + (ai(x(k)
i) + ν)ᵀ(y − y(k) + y(k) − x(k)

i)− (3ϕβ + ζ)

≥ fi(y(k)) + (ai(x(k)
i) + ν)ᵀ(y − y(k))− (β(6ϕ+ 3τ) + ζ).

3.4. Distributed Subgradient Method using Consensus Iterations 63

Using the definition of an ε-subdifferential (2.4), this implies

(ai(x(k)
i) + ν) ∈ ∂(β(6ϕ+3τ)+ζ)fi(y(k)).

Summation of terms yields

f(y) ≥ f(y(k)) +
(n∑
i=1

(ai(x(k)
i) + ν)

)ᵀ
(y − y(k)) − n(β(6ϕ + τ) + ζ).

Based on Definition 2.1.5, this implies
∑n
i=1(ai(x(k)

i)+ν) ∈ ∂n(β(6ϕ+3τ)+ζ)f(y(k)).

We are now ready for the convergence theorem, which is based on the idea of
interpreting (3.19) as an approximate subgradient algorithm.

Theorem 3.4.11. Under Assumptions 3.2.1; 2.3.2; and 3.4.8, with the sequence
{x(k)

1 , ..., x
(k)
n }∞k=0 generated by (3.19) with

θ ≥ log(β)− log(4nξ(β + αϕ))
log(γ) ;

∥∥v(0)
i − v̄(0)

∥∥ ≤ β; and β/α ≤ τ , we have:
If f� = −∞, then

lim inf
k→∞

f(x(k)
i) = −∞, ∀i = 1, ..., n.

If f� > −∞, then

lim inf
k→∞

f(x(k)
i) ≤ f� + αn(ϕ + τ)2/2 + n(β(9ϕ + 3τ) + ζ), ∀i = 1, ..., n.

Proof. From the definition of y(k) we have,

y(k+1) =PX
[

1
n

n∑
i=1
v

(k)
i

]
= PX

⎡⎣ 1
n

n∑
i=1

(n∑
j=1

[W θ]iju(k)
j

)⎤⎦
=PX

[
1
n

n∑
i=1

(
x

(k)
i − αai(x(k)

i)
)]

= PX
[
y(k) + z(k) − α

n

n∑
i=1
ai(x(k)

i)
]

=PX
[
y(k) − α

n

n∑
i=1

(
ai(x(k)

i)− z
(k)

α

)]
.

From Lemma 3.4.3, we know that
∥∥v(k)i − v̄(k)∥∥ ≤ β for all i = 1, .., n and all

k ≥ 0. Furthermore, from Lemma 3.4.10, we know that
∑n
i=1(ai(x(k)

i)− z(k)/α) ∈

64 Novel Distributed Optimization Algorithms

Consensus
Iterations

Figure 3.2: Each agent takes a step in the direction of its own subgradient. The
initial iterates are within a β-ball indicated by the dashed circle. After the update,
the iterates are outside the β-ball. Consensus iterations make sure that the iterates
are within a β-ball.

∂n(β(6ϕ+3τ)+ζ)f(y(k)) for all k ≥ 1, since ‖z(k)/α‖ ≤ β/α ≤ τ by assumption.
In addition, we know that

∥∥∑n
i=1(ai(x(k)

i) − z(k)/α)
∥∥ ≤ n(ϕ + τ). Hence, y(k) is

updated according to an approximate subgradient method and from Nedić (2002,
Proposition 4.1) we have

lim inf
k→∞

f(y(k)) = −∞, if f� = −∞

and

lim inf
k→∞

f(y(k)) ≤ f� +
(
α(n(ϕ+ τ))2)/(2n) + n(β(6ϕ+ 3τ) + ζ), if f� > −∞.

Finally, we have

lim inf
k→∞

f(x(k)
i) ≤ lim inf

k→∞
f(y(k)) + nβ3ϕ

≤ f� + αn(ϕ+ τ)2/2 + n(β(9ϕ+ 3τ) + ζ), ∀i = 1, ..., n, k ≥ 0.

Remark 3.4.12. The assumption β ≤ ατ in Theorem 3.4.11 may seem restrictive,
but it can be fulfilled with a fixed number of consensus negotiations according. The
number of needed consensus iterations is given by Lemma 3.4.3.

Remark 3.4.13. The initial conditions in Theorem 1 and Theorem 2,
∥∥x(0)
i −

x̄(0)
∥∥≤ β and

∥∥v(0)
i − v̄(0)

∥∥ ≤ β, respectively, can be fulfilled with sufficiently many
consensus negotiations before starting the algorithm. Another simple alternative is
to set x(0)

i = x(0)
j ,∀i, j and v(0)

i = v(0)
j ,∀i, j, respectively.

3.5 Numerical Results for MISM and CSM

In this section, we compare the MISM and the CSM. First, we define the objective
function.

3.5. Numerical Results for MISM and CSM 65

Objective Function

We use the following convex function as prototype

fi(x) = (x− x̌i)ᵀQi(x− x̌i)/2,

where Qi is positive semi-definite. We quantize and integrate the gradient ∇fi(x)
to get a convex non-differentiable function. If Qi is diagonal, as well as positive
semi-definite, then the gradient is decoupled. We use the following quantization
function, qi : R→ R,

qi([x]j) = βi(2l + 1)/2, βil ≤ [x]j ≤ βi(l + 1),

where βi > 0 is a fixed constant. We can now define our objective function

f̃i(x) =
n∑
j=1

∫ [x]j

0
[Qi]jj(qi(s)− [x̌i]j)ds. (3.30)

We will now show that each term in the sum is convex, and for this purpose we let
g(x) denote such a term and h(s) denote the integrand, where x and s are scalars.
Pick x, y, α ∈ R such that x < y and 0 < α < 1, and let z = αx+(1−α)y. According
to the definition, the function g(x) is convex if g(αx+(1−α)y) ≤ αg(x)+(1−α)g(y).
Note that∫ z

x

h(s)ds ≤ (1− α)(y − x) max
s∈[x,z]

h(s) and α(y − x) min
s∈[z,y]

h(s) ≤
∫ y
z

h(s)ds,

and since h(s) is monotonically increasing we have∫ z
x
h(s)ds

(1− α)(y − x) ≤
∫ y
z
h(s)ds
α(y − x) .

Using this inequality, we arrive at

αg(x) + (1− α)g(y) = α
∫ x

0
h(s)ds+ (1− α)

∫ y
0
h(s)ds

= α
∫ z

0
h(s)ds+ (1− α)

∫ z
0
h(s)ds− α

∫ z
x

h(s)ds+ (1− α)
∫ y
z

h(s)ds

= g(αx+ (1− α)y)− α
∫ z
x

h(s)ds+ (1− α)
∫ y
z

h(s)ds

≥ g(αx+ (1− α)y),

which establishes that the terms g(x) are convex. Due to its construction, f̃i(x) is
piecewise linear, and it is also convex since it is a sum of convex functions. An
example of f̃(x) is shown in Fig. B.1 on page 177.

66 Novel Distributed Optimization Algorithms

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.3: The topology corresponding to the optimization problem (3.31).

−2
−1

0
1

2

−2
−1

0
1

2
0
5

10
15
20
25
30
35

Figure 3.4: The objective function f(x) =
∑5
i=1 f̃i(x) where the parameters for f̃i

are given in Table B.2 on page 178. Note that the function is convex and non-smooth.

Numerical Results

We consider the following toy problem: a 5-node network with the topology as
illustrated by Fig. 3.3; each node or agent in the network corresponds to an objective
function f̃i which are specified in (3.30) with parameters from Table B.2 on page 178.
The sum of the objective functions f(x) =

∑5
i=1 f̃(x) is illustrated in Fig. 3.4. We

solve the following problem

minimize
x∈R2

∑5
i=1 f̃i(x)

subject to −5 ≤ [x]1 ≤ 5
−5 ≤ [x]2 ≤ 5.

(3.31)

3.5. Numerical Results for MISM and CSM 67

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

f
1

f
2

f
3

f
4

f
5

Figure 3.5: Trajectories of the iterates for each node for the MISM with α = 0.025.
The initial point is (2, 1).

From Fig. 3.4 and the fact that f(x) is convex, it is obvious that the optimal
point will not change if we let X = R

2, and thus we can use an unconstrained
solver for finding the optimal point. We find x� =

(−1.4143 · 10−12 0.5
)ᵀ using

fminsearch in Matlab, which is a Nelder-Mead simplex algorithm (see, e.g., La-
garias et al. (1998)) based solver. It is not guaranteed to be the exact optimizer,
but it is close enough for our purposes here.

First, we run the MISM algorithm with optimal probability transition matrix
according to (2.11), where the numerical values are given in (B.1). We use the
stepsize α = 0.025, which was found to be a good choice by direct experimentation.
The results for each node are shown in Fig. 3.5 and the normalized aggregate node
error,

∑5
i=1 ‖f� − f(x(k)

i)‖/5, are shown in Fig. 3.6. The stochastic nature of the
MISM is very clear from both figures.

Second, we run the CSM algorithm with optimal consensus matrix according to
(2.10), where the numerical values are given in (B.2). We use the stepsize α = 0.025,
which was found to be a good choice by direct experimentation. The results for
each node are shown in Fig. 3.7 and Fig. 3.8. The normalized aggregate node error,∑5
i=1 ‖f� − f(x(k)

i)‖/5, versus subgradient iteration number, for different values
of θ are shown in Fig. 3.9. The same error for different θ versus total number
of iterations (subgradient iterations plus consensus iterations) are shown in Fig.
3.10. In this figure, we see that the consensus iterations slow down the algorithm
extensively. This indicates that several consensus iterations should only be used if a
more accurate solution is desired and the extra convergence time does not matter.

68 Novel Distributed Optimization Algorithms

10 20 30 40 50 60 70 80 90 100

10
0

10
1

Total iterations, k

∑ 5 i=
1
‖f

�
−

f
(x

(k
)

i
)‖

/
5

MISM
CSM

Figure 3.6: Comparison between the MISM with α = 0.025 and the CSM with
α = 0.025 and θ = 1.

3.6 Non-Smooth Center-Free Resource Allocation

We consider the following resource allocation problem

minimize
x

∑n
i=1 fi(xi)

subject to
∑n
i=1 xi = xtot,

(3.32)

with the functions fi : R → R and x =
(
x1 . . . xn

)ᵀ. Let f(x) =
∑n
i=1 fi([x]i),

and denote the optimal value with f� and the optimal set with X � = {x ∈
R
n | f(x) = f�}.

This is a special case of (3.1), with a special structure of the feasible set X
(constant sum). The sum constraint could be decoupled using dual decomposition.
The optimization problem would then decompose into n subproblems and a dual
master program. The drawback with that approach, as Ho et al. (1980) point out,
is that the iterates are only feasible at optimality. In some applications, were the
iterative process has to be stopped before optimality is reached (if it is reached at
all), and feasible iterates are necessary, dual relaxation will not work. Instead we
could use the method proposed by Ho et al. (1980) and further developed by Xiao
and Boyd (2006); see Section 2.6.3. However, this method requires the objective
functions to be strictly convex as well as some other curvature constraints. We will
develop an algorithm where the objective functions in (3.32) do not need to be
differentiable; convexity and some other technical assumptions will be sufficient.

We also note that (3.32) belong to the class of monotropic optimization problems.
This class consists of optimization problems where the objective function is a sum

3.6. Non-Smooth Center-Free Resource Allocation 69

−0.5 0 0.5 1 1.5 2

0.7

0.75

0.8

0.85

0.9

0.95

1

x1

x
2

f
1

f
2

f
3

f
4

f
5

Figure 3.7: Trajectories of the iterates for each node for the CSM with α = 0.025
and θ = 1. Note that the trajectory of f1 and f5 overlap. This is not an error, instead,
it is due to the values of W , see rows 1 and 5 in the matrix in (B.2), and the fact the
initial point is the same for all nodes. The initial point is (2, 1).

of linear functions composed with convex functions of a single variable (e.g., any
quadratic function) subject to linear constraints; see, e.g., Rockafellar (1984).

Before presenting the algorithm, we need to introduce some notation and as-
sumptions. We define the following sets, Bη = {x ∈ R

n | ‖x‖ ≤ η} with η > 0;
X = {x ∈ R

n | ∑ni=1[x]i = xtot}; and X̄ = {x ∈ R
n | ∑ni=1[x]i = 0}. Furthermore,

we define the annulus Aηζ = {x ∈ R
n|x ∈ X � + Bη and x /∈ X � + Bη−ζ}, where

0 < ζ < η. The sets X �, X � + Bη, and Aζη are illustrated in Fig. 3.11. Finally, we
let h(η, ζ) = infx∈Aη

ζ
f(x).

Assumption 3.6.1. i) The function f : R
n → R is convex and lim‖x‖→∞ f(x) =∞

(f is coercive). ii) The subgradients are bounded: sup{‖a‖ |a ∈ ∂f(x), x ∈ X � +
Bη} ≤ ϕ, with ϕ > 0. iii) There exist ε > 0 and η > 0 such that for all x ∈ X �+Bη,
a(x) ∈ ∂f(x), and ‖ν‖ ≤ τ , the following holds a(x) + ν ∈ ∂εf(x). iv) There exists
a ζ > 0 such that h(η, ζ)− f� − ε > 0.

Remark 3.6.2. We have the following comments to Assumption 3.6.1. i) This
assumption ensures that the set X � is nonempty and bounded (Rockafellar, 1970,
Theorem 27.2). iii) This may seem to be a rather restrictive assumption, but it can
be fulfilled for fixed η and arbitrarily small (fixed) ε by choosing τ appropriately;
see Lemma 3.4.9. Furthermore, this is a curvature assumption, and such assumption
is also needed for Ho et al. (1980) and Xiao and Boyd (2006). iv) This assumption
guarantees that it is necessary to optimize: We can only hope to prove convergence
to within ε close to the optimal value, and if this assumption is not fulfilled, we can
achieve the best function value that we can hope for at the border of the feasible

70 Novel Distributed Optimization Algorithms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.7

0.75

0.8

0.85

0.9

0.95

1

x1

x
2

f
1

f
2

f
3

f
4

f
5

Figure 3.8: Trajectories of the iterates for each node for the CSM with α = 0.025
and θ = 11. The initial point is (2, 1).

set, X �+Bη. In this case, the optimization algorithm will tell us that x� ∈ X �+Bη,
which we already know by assumption.

The following lemma, where we establish that the projection on the set X can
be written in different ways, will turn out to be very useful.

Lemma 3.6.3. If x ∈ X and y ∈ R
n then PX [x+y] = x+PX̄ [y] = x+

(
I − 1n1ᵀ

n

n

)
y.

Proof. The first equality holds, since for any x ∈ X

minimize
z

‖x+ y − z‖
subject to

∑n
i=1[z]i = xtot

⇔ minimize
z′

‖y − z′‖
subject to

∑n
i=1[z′]i = 0,

with z� = z′� + x. The second equality follows from the optimality conditions of
constrained optimization, b = PX̄ [y] if and only if (c − b)ᵀ(y − b) ≤ 0, ∀c ∈ X̄
(Bertsekas and Tsitsiklis, 1997, Proposition 3.2), since we have(

c−
(
I − 1n1ᵀ

n

n

)
y

)ᵀ (
y −

(
I − 1n1ᵀ

n

n

)
y

)
= 0,

if c ∈ X̄ .

If we let
U = I − 1n1ᵀ

n

n
,

3.6. Non-Smooth Center-Free Resource Allocation 71

10 20 30 40 50 60 70 80 90 100

10
−1

10
0

10
1

Gradient iteration, k

∑ 5 i=
1
‖f

�
−

f
(x

(k
)

i
)‖

/
5

θ=1
θ=6
θ=11
θ=16

Figure 3.9: Average performance for different number of consensus negotiations. The
x-axis denotes subgradient iterations.

then in view of Lemma 3.6.3, the projected subgradient method for (3.32) can be
written as

x(k+1) = PX [x(k) − αa(x(k))] = x(k) − αUa(x(k)),

if x(k) ∈ X . But instead of using U directly, which requires all nodes to communicate
directly with each other, let us use the following matrix. Define W according to
the Metropolis-Hastings algorithm applied to the random walk on an undirected
graph; see (2.9). The construction of W only requires local topology information.
Let ‖W −1n1ᵀ

n/n‖ = ρ < 1, and we have that limθ→∞W θ = 1n1ᵀ
n/n. Furthermore,

let
V (θ) = I −W θ.

Inspired by Ho et al. (1980) and similar to the algorithm in Section 3.4, we propose
the following combination of subgradients and consensus iteration

x(k+1) = x(k) − αV (θ)a(x(k)), (3.33)

where a(x(k)) ∈ ∂f(x(k)) and α > 0. Note that if we let θ → ∞, then the itera-
tion becomes the standard projected subgradient method, since limθ→∞ V (θ) = U .
Furthermore, also note that if x(0) ∈ X then x(k) ∈ X for all k ≥ 0 due to the con-
struction of αV (θ). We denote this iteration the NCRM, Non-smooth Center-free
Resource allocation Method.

The difference compared to the algorithm in Section 3.4 is that the each node
has the same feasible x(k) at each time step. More specifically, this depends on

72 Novel Distributed Optimization Algorithms

10 20 30 40 50 60 70 80 90 100

10
0

10
1

Gradient and consensus iterations, k

∑ 5 i=
1
‖f

�
−

f
(x

(k
)

i
)‖

/
5

θ=1
θ=6
θ=11
θ=16

Figure 3.10: Performance plots for the CSM with α = 0.025 and different θ. The
x-axis denotes subgradient iterations plus consensus iterations.

X �
X � + Bη

(a) Illustration of the sets
X � and X � + Bη.

Aζη

(b) Illustration of the set
Aζη.

Figure 3.11: Illustration of the sets X �, X � + Bη, and Aζη.

that each node corresponds to one component in x(k) and that the sum of the
components is constant. The difference between our algorithm and Ho et al. (1980)
and Xiao and Boyd (2006) is that our algorithm does not rely on any differentiability
assumptions.

3.6.1 Convergence Analysis

We have the following convergence result.

Theorem 3.6.4. Under Assumption 3.6.1, the iteration (3.33) fulfills

lim
k→∞

dist
X�+Bω(ε,α)

(x(k)) = 0, ω(ε, α) = αϕ+ max
{

dist
X�

(x) |x ∈ X 1
2ϕ

2α+ε

}
, (3.34)

3.6. Non-Smooth Center-Free Resource Allocation 73

where X 1
2ϕ

2α+ε = {x ∈ Rn|f(x) ≤ f� + 1
2ϕ

2α+ ε} if

x(0) ∈ X ∩ (X � +Bη), θ > log(τ)− log(ϕ)
log (ρ) , 0 < α ≤ min

{2(h(η, ζ)− f� − ε)
ϕ2 ,

ζ

ϕ

}
with ζ > 0 such that h(η, ζ)− f� − ε > 0. Furthermore, we have that

lim
(ε,α)↓0

ω(ε, α) = 0. (3.35)

Proof. The proof is divided into three parts. First, we show that the iteration can
be interpreted as an ε-subgradient iteration if x(k) ∈ X ∩ (X � + Bη). Second, we
show that the iterates always stay in this set. Third, we use standard ε-subgradient
method convergence results. Let us start with the first part.

x(k+1) = x(k) − αV (θ)a(x(k)) = x(k) − αUa(x(k))− α(V (θ)− U)a(x(k)) (3.36)
= x(k) − α(V (θ)− U)a(x(k))− PX̄ [αa(x(k))] (3.37)
= PX [x(k) − α(V (θ)− U)a(x(k))− αa(x(k))] (3.38)

= PX
[
x(k) − α

(
a(x(k)) + ν(k)

)]
, (3.39)

where (3.37) and (3.38) follows from Lemma 3.6.3 and that

x(k) − α(V (θ)− U)a(x(k)) ∈ X ,
which follows from x(k) ∈ X and 1ᵀ

n(V (θ)− U) = 0ᵀ
n. By assumption

‖ν(k)‖ = ‖α(V (θ)− U)a(x(k))‖ ≤ ‖V − U‖θϕ ≤ ρθϕ ≤ τ,
which implies that a(x(k)) + ν(k) ∈ ∂εf(x(k)).

Now we proceed with the second part, where we show that the iterates always
stay in the set X ∩ (X � + Bη). If x(k) ∈ X , then

1Tx(k+1) = 1T (x(k) + αV (θ)) = 1Tx(k),

and thus, x(k+1) ∈ X .
If x(k) ∈ (X � + B(η−ζ)) then distX�(x(k)) ≤ η− ζ and ‖x(k+1) − y‖ ≤ ‖x(k+1) −

x(k)‖+ ‖x(k) − y‖ for any y ∈ X �. In particular, we have that

dist
X�

(x(k+1)) ≤ ‖αV (θ)a(x(k))‖+ η − ζ ≤ α‖V ‖ϕ+ η − ζ ≤ αϕ+ η − ζ ≤ η,

since αϕ− ζ ≤ 0 by assumption. Thus, we have that x(k+1) ∈ (X � + Bη).
If x(k) ∈ Aζη, then, using the ε-subgradient inequality, for any y ∈ X �,

‖x(k+1) − y‖2 ≤ ‖x(k) − y‖2 − 2α(f(x(k))− f(y)− ε) + α2ϕ2

≤ ‖x(k) − y‖2 − 2α(h(η, ζ)− f� − ε) + α2ϕ2 ≤ ‖x(k) − y‖2,

74 Novel Distributed Optimization Algorithms

0 1 2 3 4 5 6
0

5

10

15

20

25

x

y

f1
f2

f3
f4
f5

Figure 3.12: The terms in the objective function f(x) =
∑5
i=1 i|xi − i|.

since −2α(h(η, ζ) − f� − ε) + α2ϕ2 ≤ 0 by assumption. We have that x(k+1) ∈
(X �+Bη). Hence, it follows that if x(k) ∈ X ∩(X �+Bη) then x(k+1) ∈ X ∩(X �+Bη).

Third, since x(k) ∈ X ∩ (X � + Bη) for all k ≥ 0 and by Assumption 3.6.1 iii),
we can interpret the iteration as a standard ε-subgradient algorithm. Then Kiwiel
(2004, Theorem 4.1) gives us that

lim
k→∞

dist
X�+Bω(ε,α)

(x(k)) = 0, ω(ε, α) = αϕ+ max
{

dist
X�

(x) |x ∈ X 1
2ϕ

2α+ε

}
, (3.40)

where X 1
2ϕ

2α+ε = {x ∈ Rn|f(x) ≤ f� + 1
2ϕ

2α+ ε}, since ‖x(k+1) − x(k)‖ ≤ αϕ and
‖a(x(k))‖ ≤ ϕ. Finally, Kiwiel (2004, Lemma 2.4) yields

lim
(ε,α)↓0

ω(ε, α) = 0.

Remark 3.6.5. The iterates will converge to a ball around the optimal set X �.
The radius of this ball can be made arbitrarily small by using sufficiently many
consensus iterations θ and using a sufficiently small α.

3.7 Numerical Results for NCRM

We consider the same topology as in the previous section and we wish to solve the
following problem.

minimize
x∈R5

f(x) =
∑5
i=1 i|[x]i − i|

subject to
∑5
i=1[x]i = 10,

(3.41)

3.8. Summary 75

10 20 30 40 50 60 70 80 90 100

10
0

Gradient iterations, k

|f
�
−

f
(x

(k
)
)|/

|f
�
|

θ=1
θ=3
θ=5

Figure 3.13: The performance of the NCRM. The aggregate error versus subgradient
iterations.

where fi([x]i) = i|xi − i|. It is clear that the optimizer of (3.41) is

x� =
(−4 2 3 4 5

)ᵀ
.

We use the weighting matrix W from the previous section to construct V (θ) =
I −W θ. The performance of the optimization algorithm can is illustrated in Fig.
3.13. Furthermore, the deviation from the optimal point x� for each node is shown in
Fig. 3.14. Note that the sum is constant and that the iterates are feasible at all times.
Finally, the performance of the NCRM compensated for the consensus iterations is
shown in Fig. 3.15, i.e., the x-axis represents subgradient iterations plus consensus
iterations. We see that many consensus iterations only seem to make sense if an
accurate solution is necessary and the convergence time is not that important.

3.8 Summary

We have presented three optimization algorithms where there is no need for a central
processing unit to whom each node should communicate its local subgradient.

First, we have proposed a novel randomized incremental subgradient method
that is well suited for decentralized implementation in distributed systems. The
algorithm is a generalization of the RISM and DISM due to Nedić and Bertsekas.
These two algorithms can be recovered by choosing the transition probability matrix
in a special way. The algorithm has been analyzed in detail with a convergence proof
as well as a bound on the expected number of needed iterations to reach an a priori
specified accuracy.

76 Novel Distributed Optimization Algorithms

10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

5

Gradient iterations, k

[x]1
[x]2
[x]3
[x]4
[x]5

Figure 3.14: The performance of the NCRM. The individual error for each node
from the optimal point, x� = (−4 2 3 4 5)ᵀ . The dashed lines represent the optimal
allocation and the solid lines represent the iterates. Note that the iterates are feasible
at all times.

Second, we have described an iterative subgradient-based method for solving
coupled optimization problems in a distributed way given restrictions on the com-
munication topology. In order to allow great flexibility in the information exchange
architecture and distribute calculations, we combined the local subgradient updates
with a consensus process. This means that computing agents can work in parallel
with each other and use localized information exchange. For analysis purposes, we
used results from consensus theory and employed approximate subgradient methods
to study convergence properties of the proposed scheme. A connection is established
between the number of consensus steps and the resulting level of optimality obtained
by the subgradient updates.

Third, we have shown that under some mild technical assumptions, the center
free algorithm introduced by Ho et al. (1980) can be extended to the subgradient
case. Furthermore, the algorithm converges in an ε-sense if α is chosen sufficiently
small and θ is chosen sufficiently large.

3.8. Summary 77

10 20 30 40 50 60 70 80 90 100

10
0

Gradient and consensus iterations, k

∑ 5 i=
1
|f

�
−

f
(x

(k
))
|/
|f

�
|

θ=1
θ=3
θ=5

Figure 3.15: The performance of the NCRM. The aggregate error versus total iter-
ations, i.e., subgradient iterations plus consensus iterations.

Chapter 4

Resource Allocation in Communication
Networks

“Resource allocation is tricky business.”
P. J. Denning, The working set model for program behavior,

ACM Symposium on Operating Systems Principles, 1967.

The performance of communication networks can be increased if the layers
in the network are jointly optimized. In this chapter, we demonstrate and
categorize some of the numerous ways in which decomposition and opti-

mization techniques can be applied to engineer communication protocols, which
jointly optimize the system-wide performance of the communication network. We
derive specific results for two networking technologies. More specifically, we apply
the decomposition techniques and optimization algorithms presented in Chapter 2
and Chapter 3, respectively, to devise cross-layer optimization algorithms for a
frequency-division multiple access network and a spatial reuse time-division multi-
ple access network. We call this Network Utility Maximization (NUM).

The chapter is organized as follows. We start with some general background in
Section 4.1. In Section 4.2, we present two networking problems that will be solved.
Section 4.3 discusses how the choice of the decomposition method can affect protocol
properties and guide architectural considerations. Section 4.4 reviews optimization
flow control for networks with fixed link capacities. In Section 4.5, we present a
flowchart that is aimed to capture the essential steps in posing, decomposing, and
solving network utility maximization problems. In Sections 4.6 and 4.7, we show
how the decomposition principles presented in Section 2.7 can be used to devise
distributed algorithms for two network scenarios. Considerable attention is given to
the design of distributed mechanisms for allocating resources in the physical layer.
Finally, Section 4.8 concludes the chapter with a summary.

79

80 Resource Allocation in Communication Networks

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Node 1

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Node 2

Figure 4.1: Node 1 and node 2 communicate with each other using communication
protocols, which can be conceptualized with the OSI reference model. The OSI ref-
erence model contains seven layers, where higher level layers use the functionality of
lower level layers.

UDP
Application

TCP
IP

Physical and Data Link

Figure 4.2: The current Internet architecture (Kawadia and Kumar, 2005).

4.1 Background

Network functionality is often divided into subsystems, so-called layers. These lay-
ers are logically stacked on top of each other, where the lower layers provide basic
functionality for the higher layers. The higher layers can use the functionality pro-
vided by the lower layers without knowing anything about their inner workings.
Moreover, the layered structure will make the design, and the maintenance of that
design, much simpler. The most well-known protocol model is the OSI reference
model (Zimmermann, 1980), which has seven layers; see Fig. 4.1 for an illustration.
In addition, the structure of the current Internet architecture, which has been ex-
tremely successful, is illustrated in Fig. 4.2. Its predecessor, ARPANET, served as
inspiration for the OSI model (the exact details of who inspired whom are, or at
least were, controversial; see, e.g., Padlipsky (1982)).

In order to meet the increased demand for high-bandwidth network services, it
has become increasingly important to develop network control mechanisms that uti-
lize the full capabilities of all of the layers. However, in many network technologies,
including optical and wireless networks, there is an inherent coupling between the
layers. Adjusting the resource allocation in the physical layer changes the average
link rates, influences the optimal routing, and alters the achievable network utility.
Under such coupling, optimizing only within layers will not be enough to achieve

4.1. Background 81

the optimal network performance, but the congestion control, routing, and physi-
cal layer control mechanisms need to be jointly designed. However, as mentioned
in Chapter 1, there are also pitfalls with cross-layer optimization. Thus, such op-
timization has to be done with great care, to avoid unnecessary complexity. For
example, Bush and Meyer (2002) argues that optimization is harmful since “opti-
mization introduces complexity, and as well as introducing tighter coupling between
components and layers.”

4.1.1 Medium Access Protocols

In standard wired networks, the links correspond to physical cabling between the
nodes and the link capacities are fixed. On the other hand, in a wireless network,
the links are purely logical constructions representing the possibility of reliable
communication between nodes. In many technologies, the link capacity depends on
the amount of resources that is allocated to the link. In addition, the amount of
resources allocated to all other links will also influence the link capacity, since the
radio transmission medium is inherently a broadcast medium.

Due to the broadcast nature of the radio medium, we need a protocol that
controls the access to the medium, such that the medium is used efficiently. There
are many medium access protocols, which reside in the data link layer, and they
can broadly be categorized into conflict-free and contention based (Rom and Sidi,
1990). In a conflict-free protocol, a transmission will not be interfered by another
transmission, and this is typically achieved by dividing either time or frequency into
non-overlapping parts. Furthermore, such channels are said to be orthogonal. It can
also be useful to form hybrids, i.e., to combine time-division and frequency-division,
which is done in the GSM standard (Ahlin and Zander, 1998).

When time is the entity being divided, the nodes are assigned time slots when
they are allowed to transmit one at a time. Thus, when one node is transmitting,
the other nodes wait for their turn. This is called Time-Division Multiple Access
(TDMA), and the time slots form a schedule.

When the frequency spectrum is split into non-overlapping channels, each node
is assigned a different channel. Hence, there will be no interference between simulta-
neous transmissions. This principle is denoted Frequency-Division Multiple Access
(FDMA), and we will discuss it further in Section 4.6.

In these two principles, the capacity of the links can be changed. In TDMA, a
link (or more precisely a node) can be assigned more slots or the slot length can be
increased, which will give the link (node) more capacity. In FDMA, the bandwidth
of the channel assigned to a link can be increased, which will increase the capacity of
the link. It is also possible to improve these conflict-free protocols by using the fact
that interference decrease with distance; nodes that are far apart can be assigned to
transmit in the same time slot or frequency band without interfering with each other.
In the TDMA case, this extension is called Spatial reuse Time-Division Multiple
Access (STDMA), which we will discuss in Section 4.7.

In a contention based protocol, transmissions can interfere with each other,

82 Resource Allocation in Communication Networks

and some conflict resolution algorithm is needed. A common technique is so-called
Carrier Sense Multiple Access (CSMA), where a node that wish to transmit first
listens to the channel to determine if it is idle; if the channel is idle, the node will
start to transmit. We will use CSMA protocols in Chapter 6.

Finally, a more detailed introduction to TDMA, FDMA, and medium access
protocols in general is given in, e.g., Rom and Sidi (1990).

4.1.2 An Optimization Approach

Recently, network utility maximization has emerged as a powerful framework for
studying cross-layer issues; see, e.g., Kelly et al. (1998), Low and Lapsley (1999),
Xiao et al. (2004), Chiang (2005), Lin and Shroff (2005), and Chiang et al. (2007).
Although utility maximization is a mature subject in disciplines such as economics
(e.g., Arrow and Hurwicz (1960)), its application to congestion control in communi-
cation networks is relatively recent; the papers by Kelly et al. (1998) and Low and
Lapsley (1999) are considered to be pioneering. In addition, a related early work
that uses optimization for flow control in communication networks is Golestaani
(1979). The initial efforts in the networking literature focused on understanding
various network control schemes (e.g., TCP/AQM variants) in the wired Internet
as algorithms for solving a performance optimization problem, but it has also been
used to engineer new congestion control schemes, notably TCP FAST (Wei et al.,
2006).

The literature on utility maximization for networks with fixed link capacities
is vast, and it is fair to say that there is now a relatively complete understanding
of both equilibrium properties and of the dynamics of Internet congestion control
(see, e.g., Srikant (2004) for a recent survey).

During the last couple of years, the basic model has been extended to include the
effects of the wireless medium and a number of cross-layer optimal protocols have
been suggested for different wireless technologies; see, e.g., Johansson and Johans-
son (2005), Wang et al. (2005), Chiang (2005), and Lin and Shroff (2005). However,
one may argue that there has been limited innovation in terms of theoretical tools;
almost all protocols have been designed using variations of the dual decomposition
technique employed in the initial work by Low and Lapsley.

In this chapter, we demonstrate how the decomposition techniques presented
in Chapter 2 suggest network architectures and protocols with different properties
in terms of convergence speed, coordination overhead, and time-scales on which
resource-updates should be carried out. Moreover, the techniques allow us to find
distributed solutions to problems where the dual decomposition approach is not
immediately applicable. The core of this chapter was published in Johansson et al.
(2006b), but we note that similar ideas was put forward by D. P. Palomar and M.
Chiang in the same issue (Palomar and Chiang, 2006).

The key contribution is to show how the alternative decomposition techniques
can be applied to design novel distributed protocols for two wireless network tech-
nologies: FDMA networks with orthogonal channels and network-wide resource con-

4.2. Network Utility Maximization 83

1 2 3
c1 c2

s1

s2

Figure 4.3: Example of a network with three nodes, two links, and two data-flows.
The circles illustrate the nodes, the thick lines denote the directed links, and the
dashed lines denote the data-flows.

straints, and wireless networks where the physical layer uses STDMA.

4.2 Network Utility Maximization

We consider a communication network formed by a set of nodes located at fixed
positions. Each node is assumed to have infinite buffering capacity and can transmit,
receive, and relay data to other nodes across communication links. The network
performance then depends on the interplay between end-to-end rate selection in
the transport layer, routing in the network layer, and resource allocation in the
physical layer.

We model the network topology as a graph with χ directed links shared by η
source-destination pairs; see Fig. 4.3 for an example network. To each source, we
associate an increasing and strictly concave function up(sp), which measures the
utility source p has of sending at rate sp, and let u(s) =

∑η
p=1 up(sp) denote the

aggregate utility. We assume that data is routed along fixed paths, represented by a
routing matrix R = [rlp] with entries rlp = 1 if source p uses link l and 0 otherwise.
Moreover, we let cl denote the capacity of link l. The optimal network operation
can be found by solving the following NUM problem

maximize
s,c

u(s)

subject to Rs ≤ c, s ∈ S, c ∈ C,
(4.1)

in the variables s =
(
s1 ... sη

)ᵀ and c =
(
c1 ... cχ

)ᵀ. In words, the problem is
to maximize aggregate utility by jointly choosing s and c, subject to the constraint
that the total traffic across links must be below the offered link capacities (Rs ≤ c)
and restrictions on the admissible end-to-end rates and link capacities (s ∈ S, c ∈ C).
Specifically, the vector of end-to-end rates s must lie in a convex and closed set
S, typically on the form S = {s| smin ≤ s ≤ smax} or S = {s| smin ≤ s}, while the
capacity vector must lie in the convex and closed multi-user capacity region C of the
system. Any pair (s, c) that satisfies the constraints of (4.1) is said to be feasible, and
corresponds to an admissible network operation. We make the following technical
assumptions.

Assumption 4.2.1. i) The network is connected. ii) The utility functions, up(sp),

84 Resource Allocation in Communication Networks

are strictly concave, differentiable, increasing, and limsp→0+ up(sp) = −∞. iii) The
problem is feasible and a strictly interior point exists.

The model (4.1) is rather abstract, as it hides the complexity of optimizing the
capacity vector, e.g., allocating communications resources, such as time slots in a
transmission schedule, transmission rates, powers, and bandwidths. Furthermore,
the class of problems that fit into (4.1) is rather large, and to arrive at specific
results, we will focus on two (still quite broad) particular cases of (4.1). These
problem classes are practically relevant and have an underlying structure that allows
us to go all the way to novel distributed solutions of the utility maximization
problem.

Example 4.2.1 (Networks with Orthogonal Channels and Network-wide Re-
source Constraint). We will now consider an FDMA network, where each link
is assigned a unique frequency band of the available radio spectrum. Thus, we
have a network-wide resource constraint (the available radio spectrum), which
will complicate the optimization problem.

As previously mentioned, the model (4.1) is rather abstract and hides much
of the complexity. In some cases, it is therefore more natural to be explicit about
the resource dependence on the link rates, and use a model from the following
class

maximize
s,ϕ

u(s)

subject to Rs ≤ c(ϕ), smin ≤ s∑χ
l=1 ϕl ≤ ϕtot, 0 ≤ ϕ,

(4.2)

where s and ϕ have to be found to jointly maximize the aggregate utility,
and where the link capacities are assumed to depend on a resource that has
a network-wide constraint (∑χ

l=1
ϕl ≤ ϕtot). This formulation can model a wire-

less or optical network that uses orthogonal channels and supports dynamic
allocation of spectrum between transmitters. The total resource constraint com-
plicates the problem since the resource allocation has to be coordinated across
the whole network. The channel model could, for example, be the Shannon
capacity (we will touch upon this in a bit more detail in Section 4.6.3)

cl(ϕl) = ϕl log
(

1 + βl
ϕl

)
, ϕl > 0.

In Section 4.6, we will demonstrate how the tools presented in Chapter 2
allow us to develop distributed algorithms for solving this NUM problem with
network-wide resource constraints.

4.3. Decomposition and Distributed Protocol Design 85

Example 4.2.2 (Cross-layer Optimized Scheduling in STDMA Wireless Net-
works). In some cases, it is fruitful to keep the abstract formulation of (4.1) but
to restrict the capacity region to have some specific structure. One interesting
example is

maximize
s,c

u(s)

subject to Rs ≤ c, smin ≤ s
c ∈ CSTDMA,

(4.3)

where s and c have to be found to jointly maximize the aggregate utility, and
where CSTDMA is a convex polytope, the convex hull of a finite set of points in
R
χ. This seems to be very similar to the original problem, but the switch to a

convex polytope as the feasible region, instead of only demanding the region to
be convex, will prove to be crucial. This model captures networks that employ
(possibly spatial-reuse) TDMA.

Section 4.7 demonstrates how the tools in Chapter 2 applied to this model
suggest distributed mechanisms for constructing transmission schedules with
multiple time slots.

4.3 Decomposition as Guiding Principle for Distributed
Cross-layer Protocol Design

The approach advocated in this work relies on a mathematical network model that
exposes the key interconnections between the network layers. Based on this model,
we formulate the optimal network operation under user cooperation and cross-layer
coordination as a global network utility maximization problem. To transform the
centralized optimization problem into distributed protocols, we must find efficient
ways for guiding different network elements towards the common goal. Inspira-
tion for such coordination schemes can be found in mathematical decomposition
techniques. Applying decomposition techniques to the global optimization problem
allows us to identify critical information that needs to be communicated between
nodes and across layers, and suggests how network elements should react to this
information in order to attain the global optimum. In many cases, the underlying
structure is such that these optimal rate and resource allocation schemes suggested
by the decomposition schemes reside in separate networking layers. The layers are
only loosely coupled via a set of critical control parameters. It turns out that the
basic analysis suggests that these parameters are the Lagrange multipliers of the
optimization problem.

The idea of decomposition applied to layers is not new, but has appeared in
many papers during the last couple of years. However, the focus has been almost
exclusively on using dual decomposition techniques. As we will see below, there are

86 Resource Allocation in Communication Networks

several complementary techniques that give rise protocols with alternative proper-
ties, or allow us to find distributed algorithms to problems where the dual decom-
position approach is not immediately applicable.

An underlying assumption of this work is that if a solution procedure of de-
composition type has mathematical convergence, then it corresponds to a possible
network architecture. Inspired by Holmberg (1995), we can take a step further and
make a conjecture that a computationally efficient solution method corresponds to
a better way of organizing the networking stack than what a less computationally
efficient method does.

A crucial observation is that the link capacities c (or the resource allocation
ϕ) are complicating variables in the sense that if the link capacities are fixed, (4.1)
is simply an optimization flow control problem, which can be solved using the
techniques in Kelly et al. (1998) and Low and Lapsley (1999). This is the topic of
the next section.

4.4 Optimization Flow Control

Since optimization flow control will be a basic building block in our novel schemes,
this section contains a brief review of the work in Kelly et al. (1998) and Low and
Lapsley (1999). A key assumption is that the optimal bandwidth sharing mechanism
solves the NUM problem

maximize
s

∑η
p=1 up(sp)

subject to Rs ≤ c, s ∈ S,
(4.4)

where the link capacity vector, c, is assumed to be fixed. A distributed solution to
this problem can be derived via dual decomposition. Introducing Lagrange multi-
pliers λ for the coupling constraints and forming the Lagrangian as in (2.28), one
finds that the dual function

d(λ) = max
s∈S

η∑
p=1

{
up(sp)− sp

χ∑
l=1

rlpλl

}
+
χ∑
l=1

λlcl

is separable in end-to-end rates sp, and can be evaluated by letting sources optimize
their rates individually based on the total congestion price along the end-to-end
path, i.e., by letting

sp = arg max
zp∈S
up(zp)− zp

χ∑
l=1

rlpλl, p = 1, ..., η. (4.5)

Moreover, the dual problem can be solved by the projected gradient iteration

λ
(k+1)
l = PΛ

[
λ

(k)
l + α(k)

(
η∑
p=1
rlps

(k)
p − cl

)]
, l = 1, ..., χ,

4.5. How Should NUM Problems be Posed, Decomposed, and Solved? 87

Problem Formulation

Decomposition

Optimization Techniques

Figure 4.4: Overview of the flowchart, showing the three major blocks. The blocks
are further explained in Fig. 4.5, Fig. 4.6, and Fig. 4.8.

where α(k) is the stepsize. Note that links can update their congestion prices based
on local information: if the traffic demand across link l exceeds capacity, the con-
gestion price increases; otherwise it decreases. Convergence of the dual algorithm
has been established in Low and Lapsley (1999). As argued in Low and Lapsley
(1999) and Low (2003), the equilibrium points of a wide range of TCP protocols
can be interpreted in terms of sources maximizing their marginal utilities (utilities
minus resource costs). Furthermore, the link algorithms generate prices to align the
sources’ selfish strategies with the global optimum. Finally, different TCP/AQM
variants are identified with different utility functions and laws for updating the link
prices.

In general, the dynamics of the optimization flow control algorithm can either
be placed in the source rate update, in the link price update, or in both. These
variants are called primal, dual, and primal-dual algorithms, respectively. Note that
this naming convention does not imply anything about the decomposition (if any)
of the optimization problem.

4.5 How Should NUM Problems be Posed, Decomposed,
and Solved?

The answer to that question will of course very much depend on the specifics of the
problem. However, looking at the literature, it is possible to see some patterns. We
have made an effort to categorize some of the existing approaches to solving NUM
problems using the flowchart in Fig. 4.4. The flowchart consists of the following
three blocks:

Problem Formulation The problem formulation is of paramount importance.
The model has to capture all relevant phenomena while still being sufficiently
simple; this is the classic fidelity versus tractability tradeoff. In addition, the
difference between a good problem formulation and a bad one can be the dif-
ference that makes it solvable or not. Specifically, convex and decomposable
optimization problems are desired. There is no simple recipe on how to devise

88 Resource Allocation in Communication Networks

a good model, but we will outline some useful techniques. The details are
visualized in Fig. 4.5.

Decomposition In order to engineer a decentralized algorithm, the optimization
problem has to be split into several subproblems that can be solved in a
distributed way using some coordination scheme. Most often, either a dual
or primal decomposition technique is chosen; see Section 2.7. The details are
shown in Fig. 4.6.

Optimization Techniques The resulting subproblems have to be solved in some
way; numerous methods can of course be used, and we include the most com-
mon methods. The details are illustrated in Fig. 4.8.

To capture all decomposition approaches previously pursued in the literature, the
flowchart would have to be huge, with the effect that it would be practically useless.
Therefore, we are forced to compromise, and the flowchart we present captures, in
our opinion, the most crucial steps and algorithmic approaches in solving NUM
problems. The aim is to find patterns in the existing literature, to make it easier
to get an overview what has been done, and to visualize the inherent steps in the
NUM framework. The initial result can be seen at http://www.networkutilitym
aximization.org/. Since it is web based, it is quite possible for the flowchart to
evolve. However, it should not expand too much, since then the overview will be
lost. We will now go into more details for each of the blocks in Fig. 4.4 and give
examples on how the blocks should be interpreted, although we refer to the website
for full details and numerous examples.

4.5.1 Problem Formulation

As previously mentioned, convex problems can be effectively solved, and therefore,
it is rather natural to look for problem transformations and re-formulations that
result in a problem which is convex in the optimization variables. We will now
describe the most important steps in the problem formulation block; the steps are
visualized in Fig. 4.5.

Change of Variables

One important trick used in the literature is to explore the log-change of variables
from geometric programming. In particular, let us consider the following constraint,
which is a high SINR approximation of the Shannon capacity (see, e.g., Proakis
(2001)),

tl ≤ ϕl log
(

GllPl
σl +

∑
j �=lGljPj

)
,

4.5. How Should NUM Problems be Posed, Decomposed, and Solved? 89

 A Problem
 Formulation

Need Reformulate

Change of Variables

Yes

Change of Constraints

Yes

Alternative Decompositions
 When and where should each functionality be done?

No

Alternative Formulations
 What functionalities and design freedoms to assume?

Choose Direct Variables Specify Objectives Specify Constraints

Figure 4.5: The steps in the problem formulation block from Fig. 4.4.

which is not convex in the variables (tl, P). However, using the change-of-variables
Pl = eP̃l , the constraint becomes (see, e.g., Chiang (2005))

tl ≤ −ϕl log
(
σlG

−1
ll e
−P̃l +

∑
j �=l
G−1
ll Glje

P̃j−P̃l
)

which is convex, since the log-sum-exp function is convex (Boyd and Vandenberghe,
2004).

Combined Variable and Constraint Transformations

In other situations, one might need to perform both constraint transformations and
variable transformations to arrive at convex formulations. As an example, consider
the constraint (the Shannon capacity)

tl ≤ ϕl log
(

1 + GllPl
σl +

∑
j �=lGljPj

)
.

By taking the logarithms of both sides

log(tl) ≤ log
(
ϕl log

(
1 + GllPl
σl +

∑
j �=lGljPj

))
,

the variable transformation tl = et̃l , Pl = eP̃l results in the constraint

t̃l ≤ log
(
ϕl log

(
1 + Glle

P̃l

σl +
∑
j �=lGljeP̃j

))
,

which is convex in the new variables t̃l and P̃ (Papandriopoulos et al., 2006).

90 Resource Allocation in Communication Networks

Alternative Decompositions
 When and where should each functionality be done?

Coupled

Coupled
 Objectives

Yes

Coupled
 Constraints

Yes

Coupled
 Variables

Yes

Introduce
 Auxiliary
 Variables

Yes

More
 Decoupling

 Needed?

No

Yes

Primal
 Penalty

 Function

Yes

Dual
 Decomposition

Yes

No
Primal

 Decomposition

Yes

No

Yes

Alternative Algorithms
 How is each part of the functionalities carried out?

No

Figure 4.6: The steps in the decomposition block from Fig. 4.4.

4.5.2 Decomposition

Decomposition techniques allow us to decompose an optimization problem into
subproblems. As mentioned in Section 2.7, there are basically two types of decom-
position: primal and dual. Usually, primal and dual decomposition give rise to a
master problem and one or several subproblems. The subproblems can then also
be decomposed, resulting in a lower level master problem with its own subprob-
lems; see Fig. 4.7 for an illustration. Thus, we can say that each decomposition
adds another “level” into the optimization problem. Furthermore, each “level” will
typically require at least one tuning parameter, and a multitude of parameters can
make the resulting algorithm very time consuming to tune. Thus, it is wise to avoid
unnecessary decompositions. We will now describe the most important steps in the
decomposition block in Fig. 4.4.

4.5. How Should NUM Problems be Posed, Decomposed, and Solved? 91

Master
Problem

Sub-
problem

Sub-
problem

Master
Problem

Sub-
problem

Sub-
problem

Figure 4.7: The optimization problem is decomposed into three levels: a master
problem and three subproblems, where the middle subproblem is decomposed into
one master problem and two subproblems.

Introduce Auxiliary Variables

To deal with optimization problems with complicated objective functions, such as

minimize
x

∑
i fi(

∑
j xij)

subject to x ∈ X,
it is sometimes useful to introduce auxiliary variables, zi =

∑
j xij , and consider

the equivalent formulation

minimize
zi,x

∑
i fi(zi)

subject to zi =
∑
j xij , x ∈ X.

Combining such re-formulations with the mathematical decomposition techniques
described in Section 2.7 can pave way for efficient distributed solutions.

Primal Penalty Functions

The idea with penalty functions is that a constraint is replaced by a penalty function
(or barrier function). The penalty function becomes infinite when the constraint is
not fulfilled, and the constraint will therefore be enforced. This is a method that
can be used instead of or in combination with primal and dual decomposition.
When penalty functions are used, a sequence of optimization problems typically
has to be solved, where the penalty function is refined at each step, either using a
predefined scheme or an adaptive scheme. More theoretical details can be found in,
e.g., Bertsekas (1999, Section 4.1). For example, penalty functions can be used for
congestion control (Srikant, 2004, Section 3.1): Instead of solving the optimization
problem

maximize
s

∑η
p=1 up(sp)

subject to Rs ≤ c, s ∈ S,

92 Resource Allocation in Communication Networks

we can solve the following approximate version

maximize
s

∑η
p=1 up(sp)−

∑χ
l=1

∫ [Rs]l
0 fl(y)dy

subject to s ∈ S,
where fl are penalty functions which are continuous and non-decreasing such that
limk→∞

∫ k
0 fl(y)dy = ∞. The penalty functions fl should be chosen such that we

get close to the original problem, and an adaptive choice of fl that achieves this is
given in Srikant (2004).

Coupled Constraints

If we have the constraint
∑
iAixi ≤ c, then we can directly apply dual decomposi-

tion. Otherwise, we can introduce auxiliary variables, yi, and we get

Aixi ≤ yi,
∑
i yi ≤ c,

which we can decompose using primal decomposition.

Coupled Variables

A more general version of the coupled constraints problem is the following,∑
iAixi ≤ y, y ∈ Y. (4.6)

In this case, we can either use primal decomposition directly on (4.6), or we can
introduce auxiliary variables, yi,

Aixi ≤ yi,
∑
iyi = y, y ∈ Y,

which we the decompose using dual decomposition.

Primal vs. Dual decomposition

If we have constraints that can be relaxed (e.g., average power constraint or average
capacity constraint), then dual decomposition can be used since the constraint is
only fulfilled for optimal λ.

On the other hand, if the constraints need to be enforced strictly over all time
(e.g., peak power constraint), then primal decomposition can be used, since the
iterates always are feasible.

4.5.3 Optimization Techniques
The decomposition step leads to several subproblems, which need to be solved.
Therefore, we have to go through the optimization block for all subproblems. We
will now describe the most important steps in the optimization block in Fig. 4.4.
The details are illustrated in Fig. 4.8.

4.5. How Should NUM Problems be Posed, Decomposed, and Solved? 93

Alternative Algorithms
 How is each part of the functionalities carried out?

Choose
 Time Scales

Choose
 Dynamics

Choose
 Timing

SingleMultiple

Used Dual
 Decomposition

Syn-
 chronous

Asyn-
 chronous

Primal

No

Dual

Yes

Primal-
 Dual

Yes

Directly Solvable
 or Afford Centralized Algorithm?

Other
 Ascent
 Method

No

Newton

No

(Sub)-
 gradient

No

Cutting
 Plane

No

Other
 Heuristics

No

Fixed
 Point

 Iteration

No

Done

Yes

A Complete
 Solution Algorithm

N subproblems:
 Choose update method

 for each subproblem

Figure 4.8: The details of the steps in the optimization block from Fig. 4.4. This
block has to be applied to all subproblems.

Primal, Dual, and Primal-Dual

If the NUM problem contains a flow control part, it is customary to classify the
flow control algorithm as either, primal, dual, or primal-dual, depending on where
the dynamics are located; see Section 4.4. Note that this naming convention has
nothing to do with primal and dual in its mathematical programming sense, which
makes it a bit confusing.

Time scales

Decomposition typically leads to nested optimization problems, with at least one
inner problem and an outer master problem. Separation of time scales (the inner
problem is solved to optimality) usually enables us to show guaranteed convergence
properties for solution algorithms. Using a more refined analysis, it may be possible

94 Resource Allocation in Communication Networks

to show convergence even without separation of time scales.

Synchronous vs. Asynchronous

The subproblem can either be solved in a synchronous or an asynchronous fashion.
The synchronous case is much simpler to analyze, whereas the asynchronous case is
more general. Maintaining synchronous operations in a large network is demanding,
and most real protocols will run asynchronously. Therefore, it is comforting if the
analysis also guarantees proper operation of the algorithm under asynchronous op-
eration as well. More details on asynchronous algorithms can be found in Bertsekas
and Tsitsiklis (1997).

(Sub)gradient Methods

Subgradient methods, see Chapter 3, can be used to minimize (maximize) non-
differentiable convex (concave) functions. Subgradient methods do not require much
assumptions on the objective function, and they are simple to implement in a
decentralized fashion. To guarantee convergence to an optimal solution, the stepsize
typically needs to be diminishing. However, a diminishing stepsize can be hard to
implement, since it requires synchronization, and the progress will be very slow
after a while. Therefore, a fixed stepsize is often used. Furthermore, in some cases,
more exotic variations, e.g., the incremental subgradient method and its variants
(see Chapter 3), can be used. These variants can be useful when the application
has requirements on the communication pattern of the optimization algorithm, e.g.,
peer-to-peer communication.

If a gradient is available, a constant stepsize may also guarantee convergence to
the optimal objective value under some Lipschitz continuity assumptions. Subgra-
dient and gradient methods are very common in the NUM literature.

Cutting Plane

Cutting plane methods can solve constrained non-differentiable convex optimization
problems. These methods rely on polyhedral approximations of the optimization
problem, which means that the original problem is relaxed to a linear program with
a huge number of constraints (in the general case). Furthermore, the method starts
with a subset of these constraints and add more during its execution (Elhedhli et al.,
2001). Cutting plane methods are typically centralized, but can converge faster than
subgradient methods.

Other Heuristics

For integer programming problems, such as scheduling, some heuristic algorithms
may be used. In many cases, the optimal scheduling solution can only be achieved
in a centralized approach. However, in some cases, distributed and suboptimal al-
gorithms with minimum performance guarantees can be found (e.g., distributed

4.6. Network-wide Resource Constrained Networks 95

weighted maximum matching (Lotker et al., 2007)). Such algorithms are often de-
noted approximation algorithms .

Fixed Point Iteration

Some algorithms can be interpreted as a general iteration converging to a fixed
point with desirable properties. For example, although the distributed power control
problem of Foschini and Miljanic (1993) can be posed and analyzed as a linear
program, it is more naturally viewed as a fixed point iteration.

Newton

Newton’s method is a weighted ascent algorithm: the gradient is multiplied with
the inverse of the Hessian (H−1∇f(x) where H = ∇2f(x)). The method enjoys
rapid convergence, especially for quadratic like objective functions. However, the
objective function needs to be twice differentiable and the Hessian needs to be
inverted (if it is invertible), which typically is costly to compute and hard to make
in a distributed fashion. See, e.g., Bertsekas (1999, Section 1.2) for more details.

Other Ascent Method

It is possible to use a method that increases the objective value at each iteration
without belonging to one of the mentioned classes.

4.6 Networks with Orthogonal Channels and Network-wide
Resource Constraint

As a first application, we consider the design of utility maximizing protocols for
systems with orthogonal channels and a global resource constraint in the physical
layer. Hence, we would like to solve the problem (4.2), which we now present once
more for easy reference

maximize
s,ϕ

u(s)

subject to Rs ≤ c(ϕ), smin ≤ s∑χ
l=1 ϕl ≤ ϕtot, 0 ≤ ϕ.

(4.7)

4.6.1 Optimality Conditions and Decomposition Approaches

The problem formulation (4.7) can be rewritten using the properties of the optimal
point under the following assumptions

Assumption 4.6.1. i) The channel capacities cl(ϕl) are strictly concave, twice
differentiable, increasing, and cl(0) = 0. ii) Each row and column of the routing

96 Resource Allocation in Communication Networks

matrix R contains at least one positive entry. iii) smin > 0. iv) The problem is
strictly feasible, i.e.,

∑χ
l=1

(
c−1
l (

∑η
p=1Rlp(smin + ε))

)
< ϕtot for some ε > 0.

The routing matrix assumption implies that all sources are assumed to be send-
ing and all links are used by at least one source. The assumption on smin and ϕtot
means that ϕtot is large enough to allow all sources to send just above the minimum
sending rate using the links indicated by the routing matrix. The optimal point can
then be characterized as follows.

Lemma 4.6.2. The optimal point, (s�, ϕ�, λ�), to (4.7) under Assumptions 4.2.1
and 4.6.1 is characterized by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
l ϕ
�
l = ϕtot

Rs� = c(ϕ�)
λ�l c
′
l(ϕ�l) = ς�, l = 1, ..., χ

ϕ�l ≥ ϕmin > 0, l = 1, ..., χ
s�p ≥ smin, p = 1, ..., η.

(4.8)

Proof. We will use the KKT conditions (see Section 2.7.1) to characterize the opti-
mal point. The Lagrangian is

L =
η∑
p=1
up(sp) +

χ∑
l=1

λl

(
cl(ϕl)−

η∑
p=1
Rlpsp

)
+

ς
(
ϕtot −

χ∑
l=1

ϕl

)
+
η∑
p=1

(sp − smin)mp +
χ∑
l=1

ϕlnl.

The KKT conditions for the optimal point are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂sp

= u′p(s�p)−
∑χ
l=1 λ

�
lRlp +m�p = 0

∂L
∂ϕl

= λ�l c′l(ϕ�l)− ς� + n�l = 0∑
l ϕ
�
l − ϕtot ≤ 0, (

∑χ
l=1 ϕ

�
l − ϕtot) ς� = 0∑η

p=1Rlps
�
p − cl(ϕ�l) ≤ 0, ς� ≥ 0(∑η

p=1Rlps
�
p − cl(ϕ�l)

)
λ�l = 0, λ�l ≥ 0

s�p ≥ smin, (smin − s�p)m�p = 0
m�p ≥ 0, ϕ�l ≥ 0
ϕ�l nl = 0, n�l ≥ 0.

4.6. Network-wide Resource Constrained Networks 97

Elimination of m�s and n�l yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
l ϕ
�
l − ϕtot ≤ 0, (

∑
l ϕ
�
l − ϕtot) ς� = 0∑η

p=1Rlps
�
p − cl(ϕ�l) ≤ 0, ς� ≥ 0(∑η

p=1Rlps
�
p − cl(ϕ�l)

)
λ�l = 0, λ�l ≥ 0∑χ

l=1 λ
�
lRlp − u′p(s�p) ≥ 0, s�p ≥ smin

ς� − λ�l c′l(ϕ�l) ≥ 0, ϕ�l (ς� − λ�l c′l(ϕ�l)) = 0
(smin − s�p)

(∑χ
l=1 λ

�
lRlp − u′p(s�p)

)
= 0, ϕ�l ≥ 0.

Note that each row in R has positive entries by assumption. Combining this with∑η

p=1
Rlps

�
p − cl(ϕ�l) ≤ 0 and s�p ≥ smin yields ϕ�l > 0 for all l = 1, ..., χ. Simi-

larly, combining the assumption that the columns in R have positive entries with∑χ

l=1
λ�lRlp − u′p(s�p) ≥ 0 and u′p(s�p) > 0 (up is strictly concave and increasing by

assumption), gives that at least one λ�l is positive. Hence, ς� − λ�l c′l(ϕ�l) ≥ 0 and
c′l(ϕ�l) > 0 (cl is strictly concave and increasing by assumption) give that ς� > 0.
Now, ϕ�l > 0 and ϕ�l (ς� − λ�l c′l(ϕ�l)) = 0 imply that λ�l > 0 and ς� = λ�l c′l(ϕ�l)
for all l = 1, ..., χ. Furthermore, ς� > 0 and λ�l > 0 for all l = 1, ..., χ give that∑χ

l=1
ϕ�l = ϕtot and Rs� = c(ϕ�). Finally, since ∑η

p=1
Rlpsp ≥ ∑η

p=1
Rlpsmin, we

have that ϕl ≥ ϕmin = c−1
l (∑η

p=1
Rlpsmin) for all l = 1, ..., χ.

Remark 4.6.3. Thus, in the optimal solution to (4.7), the common resource is
fully utilized, all links are bottlenecks and the marginal link revenues λ�l c′l(ϕ�l) are
equal.

One consequence of this is that it is possible to use an equivalent problem

maximize
x,ϕ

u(s)

subject to Rs ≤ c(ϕ), smin ≤ s ≤ smax∑
l ϕl = ϕtot, ϕmin ≤ ϕ,

(4.9)

which has some special properties that we can exploit. More specifically, when we
decompose (4.9), we will get resource allocation subproblems, which we can solve
with the center-free algorithms from Section 2.6.3. The problems (4.7) and (4.9)
are equivalent in the sense that they share the same optimal solution. The crucial
change is that

∑
l ϕl ≤ ϕtot has been changed to

∑
l ϕl = ϕtot. Moreover, some

bounds have been introduced; the upper bound, smax, on s and the lower bound
ϕmin, on ϕ are technical conditions that do not change the optimal point, but make
the analysis simpler. This simpler problem will be solved using two approaches,
dual and primal decomposition. We also introduce the convex and compact sets
S = {s|smin ≤ s ≤ smax} and Φ = {ϕ|ϕmin ≤ ϕ,

∑
l ϕl = ϕtot}.

98 Resource Allocation in Communication Networks

Dual Approach

Introducing Lagrange multipliers, λl, l = 1, . . . , χ, for the capacity constraints in
(4.9), we form the partial Lagrangian

L(s, ϕ, λ) =
η∑
p=1
up(sp)− λᵀ(Rs− c(ϕ))

and the associated dual function

d(λ) = max
s∈S

{
η∑
p=1
up(sp)− λᵀRs

}
︸ ︷︷ ︸

Network subproblem

+ max
ϕ∈Φ
λᵀc(ϕ).︸ ︷︷ ︸

Resoure allocation
subproblem

(4.10)

Thus, the dual function decomposes into a network subproblem and a resource
allocation subproblem. The network subproblem is identical to the end-to-end rate
allocation problem in optimization flow control (4.5), while distributed solutions
for the resource allocation second subproblem will be developed in Section 4.6.2.
Since the link capacities are assumed to be strictly concave, the partial Lagrangian
is strictly concave in (s, ϕ) and the dual function is differentiable (Bertsekas, 1999,
Proposition 6.1.1) and

∇d(λ) = c(ϕ�(λ))−Rs�(λ).
Similarly to optimization flow control, the dual problem (2.30) can be solved using
the projected (sub)gradient iteration

λ
(k+1)
l = PΛ

[
λ

(k)
l − α(k)(cl(ϕ(k)

l)− [Rs(k)]l)
]
, l = 1, ..., χ, (4.11)

where the stepsizes, α(k), fulfill (2.19) and PΛ[·] denotes projection on the positive
orthant. This update can be carried out locally by links based on their current
excess capacities. The optimization problem (4.9) can be solved with Algorithm 6,
as shown in the following lemma.

Lemma 4.6.4. Under Assumptions 4.2.1 and 4.6.1, Algorithm 6 with stepsizes
fulfilling (2.19), e.g., α(k) = 1/k, converges to the optimal solution to (4.7), i.e.,

lim
k→∞
u(s(k)) = u�.

Proof. The subgradient1 is

∇g(λ) = c(ϕ�(λ))−Rs�(λ),
1The subgradient is unique in this case, and therefore, it is also the gradient.

4.6. Network-wide Resource Constrained Networks 99

Algorithm 6 Dual

1: Let k ← 0, λ(0) ≥ 0.
2: loop
3: Solve the network subproblem using (4.5) for λ(k) to get s(k).
4: Solve the resource allocation subproblem using an algorithm from Sec-

tion 4.6.2 for λ(k) to get ϕ(k).
5: Get λ(k+1) via (4.11).
6: Let k ← k + 1.
7: end loop

where s is in the interval smin ≤ s ≤ c(ϕtot) and ϕ is in the interval ϕmin ≤ ϕ ≤ ϕtot.
This implies that the subgradient is bounded as follows

||∇g(λ)||2 ≤ ||c(ϕtot) +Rc(ϕtot)||2.
Furthermore, we also know that the optimal set is nonempty, since the feasible set
is compact. With the assumptions 4.2.1 and 4.6.1, convergence now follows from
Bertsekas et al. (2003, Proposition 8.2.6).

Note that the optimal resource allocation and source rates can be found in
parallel, but the optimal solutions to both subproblems should be found before
the dual variables are updated. From a practical perspective, even disregarding
potential synchronization issues, this approach has the disadvantage that resource
allocations have to be done at a fast time-scale and that the resource allocation
algorithm (at least in the most basic analysis) has to be executed to optimality
before the dual variables can be updated.

Primal Approach

As an alternative, we apply primal decomposition and re-write (4.9) as

maximize
ϕ

ν(ϕ)

subject to ϕ ∈ Φ,
(4.12)

where we have introduced

ν(ϕ) = max
s∈S
{u(s)|Rs ≤ c(ϕ)} . (4.13)

Note that ν(ϕ) is simply the optimal network utility that can be achieved by opti-
mization flow control under resource allocation ϕ. Consequently, to evaluate ν(ϕ)
we can fix the resource allocation and execute the distributed optimization flow
control from Section 4.4 until convergence.

Before attempting to solve the problem (4.12), we will establish some basic
properties of ν(ϕ).

100 Resource Allocation in Communication Networks

Lemma 4.6.5. Under assumptions 4.2.1 and 4.6.1, ν(ϕ) is concave and a subgra-
dient, a(ϕ), of ν(ϕ) at ϕ is given by

a(ϕ) =
(
λ1c
′
1(ϕ1) · · · λχc′χ(ϕχ)

)
,

where λl are optimal Lagrange multipliers for the capacity constraints in (4.13).

Proof. By strong duality,

ν(ϕ) = min
λ≥0

max
s∈S

η∑
p=1

(up(sp)− spqp) +
χ∑
l=1

λlcl(ϕl) = min
λ≥0
g̃(s(λ)) +

χ∑
l=1

λlcl(ϕl),

with qp =
∑χ
l=1 rlpλl and some function g̃. Thus, since ν(ϕ) is the pointwise infimum

of concave functions, it is concave. Let λ� be the optimal Lagrange multipliers for
a resource allocation vector ϕ. For any other resource allocation ϕ̃, it holds that

ν(ϕ̃) ≤ max
s∈S

{ η∑
p=1
up(sp)− spq�p +

χ∑
l=1

λ�l cl(ϕ̃l)
}
≤ ν(ϕ) +

χ∑
l=1

λ�l c
′
l(ϕl)(ϕ̃l − ϕl),

with q�p =
∑χ
l=1 rlpλ

�
l . This, by the definition of a subgradient, concludes the proof.

Since a subgradient of ν is available, it is natural to use a projected subgradient
algorithm

ϕ(k+1) = PΦ

[
ϕ(k) + α(k)a(ϕ(k))

]
, (4.14)

with diminishing stepsize, α(k), fulfilling (2.19). Here PΦ[·] denotes distributed pro-
jection on the set Φ, i.e., solves the following projection problem

maximize
ϕ

−||ϕ− ϕ0||22 = −∑χ
l=1(ϕl − ϕ0

l)2

subject to ϕ ∈ Φ,
(4.15)

in a distributed fashion. This is a non-trivial problem. However, the projection
problem has a separable concave objective function since −||ϕ−ϕ0||22 = ∑χ

l=1
−(ϕl−

ϕ0
l)2, and the projection problem can be solved using the techniques in Section 4.6.2.

Theorem 4.6.6. Under assumptions 4.2.1 and 4.6.1, Algorithm 7 with stepsizes
according to (2.19), e.g., α(k) = 1/k, converges to the optimal solution to (4.7), i.e.,

lim
k→∞
u(s(k)) = u� and lim

k→∞
ϕ(k) = ϕ�.

4.6. Network-wide Resource Constrained Networks 101

Algorithm 7 Primal

1: Let ϕ(0) > 0 and k ← 0.
2: loop
3: Fix the resource allocation and let the congestion control scheme solve (4.13)

for ϕ(k) to get a subgradient.
4: Get ϕ(k+1) via (4.14) and perform the distributed projection using an algo-

rithm from Section 4.6.2.
5: Let k ← k + 1.
6: end loop

Proof. The subgradient is given by a(ϕ) =
(
λ1c
′
1(ϕ1) · · · λχc′χ(ϕχ)

)
. Since a(ϕ)

is continuous in ϕ, bounded for every ϕ, and ϕ lies in a compact set, the subgra-
dient is bounded by (the finite value) maxϕmin≤ϕ≤ϕtot ||a(ϕ)||2. We also have that
the optimal set is non-empty, since the feasible set is compact. Together with the
assumptions 4.2.1 and 4.6.1, convergence now follows from Bertsekas et al. (2003,
Proposition 8.2.6).

The primal method relies on solving the optimization flow problem on a fast
time-scale and performing incremental resource updates in an ascent direction of the
total network utility on a slower time-scale. The source rate and link price updates
are carried out in a distributed way, similarly to optimization flow control. As we
will show next, the resource update can be performed in a distributed manner that
only relies on communication and resource exchanges between direct neighbors. Put
together, this results in a completely distributed algorithm for the network utility
maximization problem.

4.6.2 Solving the Resource Allocation Subproblem

Two problems remain to be solved: the resource allocation subproblem in the dual
approach (4.10),

maximize
ϕ

∑χ
l=1 λlcl(ϕl)

subject to ϕ ∈ Φ,

and the distributed projection in the primal approach (4.15),

maximize
ϕ

∑χ
l=1−(ϕl − ϕ0

l)2

subject to ϕ ∈ Φ.

102 Resource Allocation in Communication Networks

Both problems are on the form of (2.12), which once again is

maximize
ϕ

∑χ
l=1 fl(ϕl)

subject to
∑χ
l=1 ϕl = ϕtot

ϕl ≥ ϕmin, l = 1, ..., χ.

The properties of the optimal solution to this problem was presented in Section
2.5.1. We present two algorithms that solve (2.12): the weighted gradient approach
and the direct negotiation approach.

Weighted Gradient Approach

The algorithms in Ho et al. (1980) and Xiao and Boyd (2006) solve (2.12) under
the assumptions that fl(·) are concave, twice continuously differentiable, with the
second derivative bounded below and above, ml ≤ f ′′l (ϕl) < 0, with ml known,
as we have seen in Section 2.6.3. The resource updates rely on nearest neighbor
communication only, and can be written in vector form as

ϕ(k+1) = ϕ(k) +W∇f(ϕ(k)). (4.16)

The limitation that links should only be allowed to communicate and exchange
resources with its neighbors turns up as a sparsity constraint onW ; see Section 2.6.3.
A simple way of guaranteeing convergence is to pickW according to the Metropolis-
Hastings scheme; see Section 2.6.3. Note that W can be constructed with only
limited topology information.

The idea that nodes should give away resources to neighbors that have better
use for them is very intuitive, and the idea has been used before. In for example
Antal et al. (1998), a similar scheme, based on heuristics, is suggested to be used
in dynamic synchronous transfer mode optical networks. In this scheme, the nodes
have tokens that give them right to a certain bandwidth. The nodes are suggested to
transfer tokens to a neighbor that have more use of the bandwidth; more precisely,
a token is transferred if the expression |(priority of node i) · (free channels of node
i + 1) − (priority of node i + 1) · (free channels of node i)| decreases by a token
transfer.

Direct Negotiation Approach

As an alternative, the resource allocation problem (2.12) can be solved via direct
negotiation. This scheme requires the network to be ordered in a ring structure (or,
in fact, any other structure providing order). A similar structure is also needed for
determining a starting point that guarantees non-negativity of the iterates of the
weighted gradient method (Ho et al., 1980).

The approach is based on the so-called water-filling method; see, e.g., Boyd and
Vandenberghe (2004, Section 5.5.3). The idea is to use the optimality conditions

4.6. Network-wide Resource Constrained Networks 103

given in Section 2.5.1. More specifically, we use an algorithm that finds ψ� (see
Section 2.5.1). We define the function hl : R→ R as

hl(ψ) =

⎧⎪⎨⎪⎩
ϕtot, if ψ < f ′l (ϕtot)
(f ′l)

−1 (ψ), if f ′l (ϕtot) ≤ ψ < fl(0)
0, if f ′l (0) ≤ ψ.

Note that hl is a continuous function, decreasing in ψ, and that the inverse of f ′l (ϕl)
is well-defined since fl(ϕl) is strictly concave. Also, introduce h(ψ) = ∑χ

l=1
hl(ψ),

which is a sum of decreasing continuous functions, and hence, h is also continuous
and decreasing. Now, the water-filling method finds ψ� such that

h(ψ�) = ϕtot. (4.17)

A lower bound for ψ� is ψ = minl f ′l (ϕtot), and an upper bound is ψ = maxl f ′l (0),
so ψ ≤ ψ� ≤ ψ. Since h(ψ) is continuous and decreasing in ψ, we can use binary
search to find ψ� that fulfills (4.17). Start with setting ψ ← (ψ + ψ)/2. If h(ψ) is
below ϕtot, then set the upper bound to ψ, i.e., ψ ← ψ. But if h(ψ) is above ϕtot
then set the lower bound to ψ, i.e., ψ ← ψ. Repeat until (4.17) is satisfied with
desired accuracy.

The algorithm can be executed in a distributed way: one node takes the lead
and announces the initial value of ψ. The node forwards the current value of ψ and
the sum of claimed resources to the next node in the structure. After a complete
cycle, the total sum of requested resources is available and the search interval for
ψ� can be cut in half as above. The process is repeated until the desired accuracy
is achieved.

4.6.3 Numerical Results
To illustrate the performance of the approaches, we apply the dual and the primal
algorithms to a sample 8-node network, which is connected and was used in Johans-
son and Johansson (2005). The network topology is shown in Fig. 4.10. Furthermore,
the channel capacities are chosen to be the Shannon capacities (see, e.g., Proakis
(2001)) and the resource is channel bandwidth:

cl(ϕl) =
{
ϕl log

(
1 + βl

ϕl

)
, ϕl > 0

0, ϕl = 0.

We have that limϕl→0 cl(ϕl) = 0 and c′′l (ϕl) = −β2
l /(ϕl(ϕl + β)2) < 0 when ϕl > 0.

In addition, c′l(ϕl) = log(1 + βl/ϕl) − βl/(ϕl + βl), which is always positive when
ϕl > 0. To see this, introduce y = 1 + βl/ϕl, and we have that

log (1 + βl/ϕl)− βl/(ϕl + βl) > 0, ϕl > 0⇔ log(y)y − y + 1 > 0, y > 1,

104 Resource Allocation in Communication Networks

 200 m

200 m

Figure 4.9: The node placement of the example network. The filled circles denote
the nodes and the lines indicate the links in the network.

where the last expression is clearly positive for large y. When y = 1, we have that
log(y)y − y + 1 = 0, and from ∂

∂y log(y)y − y + 1 = log(y) > 0, y > 1, we see that
log(y)y − y + 1 > 0 when y > 1. Thus, cl fulfill Assumption 4.6.1.

Furthermore, the utility functions are logarithmic,

up(sp) = log(sp),

so they fulfill Assumption 4.2.1.
Finally, the routing matrix is assumed to be not of full rank, but each row and

column contain at least one positive entry; the rest of Assumption 4.6.1 is fulfilled
by the construction of the example. Thus, both Assumptions 4.2.1 and 4.6.1 are
fulfilled for this example.

Solving the optimization problem with the primal and the dual algorithms yields
the results in Figure 4.10. Both algorithms are converging to the optimal point. The
dual algorithm descends in a smoother fashion, which can be explained by that the
dual function is differentiable. However, the dual algorithm seems to be sensitive to
the starting point and the initial stepsize (this cannot be seen in the current plot):
if either of these is badly adjusted the convergence rate can be significantly reduced.
Moreover, the iterates are only primal feasible in the limit, which is illustrated in
Fig. 4.11. We can see in the figure that the source rates are never feasible, and
at least one link is operating 15 % over available capacity. The primal algorithm
exhibits the typical subgradient method behavior, i.e., the descent is not monotone.
However, this algorithm seems to be more robust with respect to the starting point
and initial stepsize, and the iterates are always primal feasible.

4.7. STDMA Wireless Networks 105

0 50 100 150
10

−2

10
−1

10
0

10
1

Main loop iterations

||ϕ
(k

)
−

ϕ
�
|| 2

Dual Algorithm
Primal Algorithm

Figure 4.10: The norm of the resource allocation minus the optimal resource alloca-
tion versus main loop iterations for the dual and primal algorithms.

4.7 Cross-layer Optimized Scheduling in STDMA Wireless
Networks

Our second application considers network utility maximization of wireless networks
that employ STDMA. As previously mentioned, STDMA is a collision-free access
scheme that allows spatially separated radio terminals to transmit simultaneously
when the interference they incur on each other is not too severe; see, e.g., Grönkvist
(2005). We will consider a particular instance of STDMA networks that offers a sin-
gle communication rate, ctgt, to all links that obey both primary and secondary
interference constraints. The primary interference constraints require that a node
communicates with at most one other node at a time (these constraints are typically
imposed by the underlying technology, e.g., nodes equipped with omnidirectional
antennas and no multi-user detectors). The secondary interference constraints re-
quire that the signal-to-interference and noise ratios at the receivers of active links
exceed a target value

GllPl(
σl +

∑
j �=lGljPj

) ≥ γtgt.

Here, Pl is the transmit power of link l, σl is the thermal noise power at the receiver
of link l, and Glj denotes the effective power gain from the transmitter of link j
to the receiver of link l. We say that a set of links is a feasible transmission group
if there is a power allocation such that all links in the set obey the primary and
secondary interference constraints. Associated to each feasible transmission group

106 Resource Allocation in Communication Networks

0 50 100 150
0

1

2

3

4

5

6

Main loop iterations

m
ax

l[[R
s(

k
)
−

c(
ϕ

(k
))

] l/
c l

(ϕ
(k

)
l

)]

Figure 4.11: The maximum normalized difference between used capacities and avail-
able capacities versus main loop iterations for the dual algorithm. The curve will be
at zero when the source rates are feasible. At least one link is consistently operating
15 % over available capacity.

is a feasible link capacity vector where cl = ctgt for all links l in the group and cl = 0
otherwise. By time-sharing over a large number of time slots, we can achieve any
average link capacity vector in the convex hull of the feasible link capacity vectors.

4.7.1 Decomposition Approaches

It is important to understand that the classical approach of dual decomposition
cannot be used for computing a schedule. The main reason is that the dual function

g(λ) = max
s∈S
{u(s)− λᵀRs}+ max

c∈CSTDMA
{λᵀc}

is linear in cl and will return a single transmission group in each iteration. Since
each transmission group only activates a few links, many links will have zero rates
until the next iteration of the algorithm can be carried out by the system and
a new transmission group activated. If the communication overhead for solving
the scheduling subproblem is negligible, it may be viable to perform the scheduling
computations in each time slot. However, as we will see below, negotiating for trans-
mission rights and adjusting transmission powers may require substantial overhead
in interference-limited systems. It is then more attractive to maintain a transmis-
sion schedule with multiple time slots and update the schedule less frequently. As it
turns out, a distributed algorithm for computing an asymptotically optimal schedule

4.7. STDMA Wireless Networks 107

can be derived either via mean value cross decomposition or primal decomposition
combined with a conditional gradient method.

We will solve the following problem, which is a modified version of (4.3),

maximize
s,c

u(s)

subject to Rs ≤ c, s ∈ S
c ∈ CSTDMA, cmin ≤ c,

(4.18)

where S = {s|smin ≤ s ≤ smax}. For technical reasons2, we add the constraints
s ≤ smax and c ≥ cmin to (4.3). If cmin is chosen sufficiently small, then the modified
problem will have the same optimal solution as the original (4.3). In addition,
simulations indicate that if cmin is small, it can in fact be neglected. We make the
following assumption.

Assumption 4.7.1. i) smin > 0. ii) cmin > 0. iii) Rsmax ≥ c for all c ∈ CSTDMA.
iv) For all c ∈ CSTDMA, c ≥ cmin, there is an s ∈ S such that Rs < c.

These assumptions guarantee that the problem is feasible in s for all feasible c.
Furthermore, they also guarantee that the optimal solution is limited by CSTDMA
and not smax. Finally, they also imply that strong duality holds for the constraint
Rs ≤ c.

Mean Value Cross Decomposition Approach

First, we use a mean value cross decomposition approach to solve the modified
problem (4.18). Recall that the mean value cross decomposition algorithm alternates
between the primal and dual subproblems using the average values of the computed
iterates as inputs; see Section 2.7.3. The primal subproblem

maximize
s

u(s)
subject to Rs ≤ c̄(k), s ∈ S,

(4.19)

with c̄(k) = 1
k

∑k
t=1 c

(k), gives the optimal Lagrange multipliers λ(k) for the capacity
constraints. In addition, the (relevant part of the) dual subproblem

maximize
c

cᵀλ̄(k)

subject to c ∈ CSTDMA, cmin ≤ c,
(4.20)

2With the assumption that up(sp) → −∞ when sp → 0 (to prevent starvation), we have the
implicit condition that sp > 0. This means that the feasible set is not closed and that the primal
function cannot be differentiable on the whole set, CSTDMA (it is not even defined on the whole
set). We need a closed feasible set and we will also need the primal function to be differentiable in
one of our algorithms. Therefore, we require sp ≥ smin > 0, and in order to always have a feasible
solution, we also require cl ≥ cmin > 0 and Rsmin ≤ cmin.

108 Resource Allocation in Communication Networks

Algorithm 8 MVC

1: Let k ← k0 and c̄(k0) > cmin.
2: loop
3: Solve (4.19) for c̄(k−1) to obtain λ(k) and compute λ̄(k).
4: Solve (4.20) for λ̄(k−1) to obtain c(k).
5: Augment the schedule, compute c̄(k), and let k ← k + 1.
6: end loop

with λ̄(k) = 1
k

∑k
t=1 λ

(k), yields c(k). Since the primal subproblem is an instance of
optimization flow control, mean value cross decomposition suggests the following
approach for solving the network utility maximization problem (4.18): based on
an initial schedule, we run the TCP/AQM scheme until convergence (this may
require us to apply the schedule repeatedly). We refer to this phase as the data
transmission phase. Nodes then record the associated equilibrium link prices for
their transmitter queues and maintain their average values in memory. During the
subsequent negotiation phase, which is described in detail in Section 4.7.2, we try to
find the transmission group with largest average price-weighted throughput (solving
(4.20)). We then augment the schedule with the corresponding link capacity vector
(effectively increasing the number of time slots in the schedule by one). If the
time slots are of equal length, the offered link capacities of the resulting schedule
will equal the average of all computed transmission groups. The procedure is then
repeated with the revised schedule. Our algorithm is summarized in Algorithm 8.

Theorem 4.7.2. Under Assumptions 4.2.1 and 4.7.1, and that the scheduling sub-
problem can be solved to optimality, Algorithm 8 converges to the optimal solution
to (4.18), i.e.,

lim
k→∞
u(s̄(k)) = u� and lim

k→∞
dist
C�

(c̄(k)) = 0,

with C� = {c ∈ CSTDMA|cmin ≤ c, maxs∈S{u(s)|Rs ≤ c} = u�}.
Proof. The key idea is to identify the algorithm to be a mean value cross decom-
position algorithm. We do the following identifications (with MVC notation to the
left (where x is replaced with s) and STDMA algorithm notation on the right)

u(s) = u(s) v(c) = 0 A1(s) = Rs B1(c) = −c
b1 = 0 A2(s) = 0 B2(c) = 0 b2 = 0.

The MVC primal subproblem (2.40) is identified with the STDMA primal sub-
problem (4.19). The MVC dual subproblem (2.39) is identified with the STDMA
dual subproblem (4.20). Hence, the STDMA algorithm is an MVC algorithm and
convergence follows from Holmberg and Kiwiel (2006); see Section 2.7.3.

Note that an initial schedule can be constructed by letting k0 = χ and using
a pure TDMA schedule. Our theoretical analysis applies to the case when we aug-
ment the schedule indefinitely, while in practice one would like to use schedules with

4.7. STDMA Wireless Networks 109

limited frame length. Some suggestions for how the basic scheme can be adopted
to this case can be found in Soldati et al. (2008). Although we do not have any the-
oretical results for computing schedules of fixed frame length, simulations reported
in Soldati et al. (2008) indicate that the method can indeed be adopted to this case.

Conditional Gradient Approach

We also use a primal approach, more specifically a conditional gradient approach, to
devise an algorithm for solving the modified problem (4.18). To prove convergence
of the algorithm we need the following additional assumptions.

Assumption 4.7.3. i) All links are bottlenecks. ii) The routing matrix has full row
rank. iii) For any c ∈ CSTDMA with c ≥ cmin, we have that s�(c) > smin in ν(c).

The first assumption can be fulfilled by requiring that all links have at least
one flow using only that link. The second assumption is a bit more restrictive
compared to the assumptions needed for convergence of the MVC approach. But
in the conditional gradient case, we do not need to use the average prices, which
can lead to faster convergence.

We re-write the network utility maximization problem as

maximize
c

ν(c)
subject to c ∈ CSTDMA, cmin ≤ c,

where we define the function ν : R
χ → R as,

ν(c) = max
s∈S

{
u(s) | Rs ≤ c}. (4.21)

For a fixed link capacity vector c, the function ν(c) can be evaluated via the opti-
mization flow control algorithm, i.e., by letting the optimization flow control scheme
converge. As will be shown shortly, under certain assumptions, ν(c) is differentiable
with respect to c with derivative λ (the equilibrium link price vector for the network
flow subproblem). Thus, in order to update the schedule and hence the link capacity
vector c, it is natural to add the transmission group computed by the scheduling
subproblem

maximize
c

cᵀλ(k)

subject to c ∈ CSTDMA, cmin ≤ c
(4.22)

to the schedule. Effectively, this corresponds to a conditional gradient step in the
ascent direction of ν(c); see Section 2.6.2. The augmented schedule is then applied
to the system and the optimization flow control scheme, to evaluate (4.21), is run
until convergence before the procedure is repeated. To describe the algorithm in
detail, let c(k) be the transmission group computed in step k and let c̄(k) denote

110 Resource Allocation in Communication Networks

Algorithm 9 Conditional Gradient

1: Let k ← k0 and c̄(k0) > 0.
2: loop
3: Evaluate ν(c̄(k)) by solving the optimization flow control problem (4.4), and

let λ(k) be the associated equilibrium link prices.
4: Compute a new transmission group c(k+1) by solving the scheduling subprob-

lem (4.23) for λ(k).
5: Augment the schedule with this transmission group and compute the associ-

ated c̄(k+1).
6: Let k ← k + 1.
7: end loop

the average link-rate vector for a schedule consisting of k time-slots of equal length,
i.e.,

c̄(k) = 1
k

k∑
t=1
c(t).

For technical reasons, we added the constraint cmin ≤ c to (4.18), but in this
approach, we only need the constraint cmin ≤ c̄(k), which is less conservative. The
modified scheduling problem is

maximize
c

cᵀλ(k)

subject to c ∈ CSTDMA, cmin ≤ c+(k−1)c̄(k−1)

k ,
(4.23)

where c̄(k−1) is fixed and the maximizer to this optimization problem is c(k) (note
that (c+ (k− 1)c̄(k−1))/k = c̄(k)) . The problem (4.23) is almost the same as in the
section on mean value cross decomposition, and an approximate solution method
is presented in Section 4.7.2. Simulations indicate that the iterates c(k) do not tend
to zero, and in practice, the constraint c̄(k) ≥ cmin seems to be unnecessary and it
can probably be neglected.

Our algorithm is summarized as Algorithm 9. As mentioned before, an initial
schedule can, for example, be constructed by letting k0 = χ and using a pure TDMA
schedule.

This type of decomposition scheme falls into the class of cross decomposition
methods (Holmberg, 1995) or conditional gradient methods (see Section 2.6.2). We
will now proceed to show that it converges, but first, we consider some basic prop-
erties of ν(c) defined in (4.21).

Lemma 4.7.4. Under Assumptions 4.2.1, 4.7.1, 4.7.3, the following holds.

a) The function ν, defined in (4.21), is concave, and a subgradient to ν at c is
given by the optimal Lagrange multiplier, λ�(c), for the capacity constraint,
Rs ≤ c, in the definition of ν.

4.7. STDMA Wireless Networks 111

b) The optimal Lagrange multiplier λ�(c) corresponding to the capacity con-
straint, Rs ≤ c, in the definition of ν, is unique.

c) The function ν(c) is continuously differentiable with ∂
∂cν(c) = λ�(c).

Proof. a) The concavity of ν follows from (Bertsekas et al., 2003, Proposition
6.5.1). Since (4.21) is the primal function of a feasible convex optimization
problem, we have from Proposition 6.5.8 in Bertsekas et al. (2003) that λ�(c)
is an optimal Lagrange multiplier corresponding to the constraint Rs ≤ c in
(4.21) if and only λ�(c) ∈ ∂ν(c).

b) The KKT conditions for the optimization problem (4.21) are necessary and
sufficient, since it is a convex optimization problem with Slater’s constraint
qualification fulfilled. By assumption, we do not need to include the upper
and lower limits on s. The KKT conditions are

u′(s�(c)) = Rᵀλ�(c)
Rs�(c) = c.

The latter expression holds by the assumption that all links are bottlenecks.
The observation that the source rate s�(c) is unique since the objective func-
tions are strictly concave together with the fact that R has full row rank imply
that λ�(c) is unique.

c) Since all subgradients are Lagrange multipliers (from a)), which are unique
for each c (from b)), the subdifferential contains only one element. Thus, ν
is differentiable. To show that the derivative is continuous, we will use the
implicit function theorem; see, e.g., Rudin (1976). For a given c, we get s and
λ by setting F (s, λ, c) = 0 with

F (s, λ, c) =
(
u′(s)−Rᵀλ
Rs− c

)
,

and we have(
∇sF (s, λ, c)
∇λF (s, λ, c)

)
=

(
diag

(
u′′1(s1) ... u′′η(sη)

)
Rᵀ

−R 0

)
︸ ︷︷ ︸

A(c)

,

where A(c) is invertible. To see this, assume there exists
(
xᵀ yᵀ

)ᵀ
= 0 such
that A(c)

(
xᵀ yᵀ

)ᵀ = 0, which implies that

x = −diag
(
u′′1(s1) ... u′′η(sη)

)−1
Rᵀy

112 Resource Allocation in Communication Networks

and
−R diag

(
u′′1(s1) ... u′′η(sη)

)−1
Rᵀy = 0.

Furthermore, we have that

(yᵀR) diag
(
u′′1(s1) ... u′′η(sη)

)−1(Rᵀy) = 0,

which can only be fulfilled with Rᵀy = 0 since diag
(
u′′1(s1) ... u′′η

)
is non-

singular. Since R is assumed to be full row rank, Rᵀy = 0 is impossible with
x
= 0 and y
= 0. Hence, A(c) is invertible. The implicit function theorem
now gives us that

(
sᵀ λᵀ)ᵀ = ϕ(c) and

∇ϕ(c) = −∇cF (s, λ, c) (A(c))−1 =
(

0 I
)

(A(c))−1
.

Since λ is differentiable with respect to c, λ is also continuous with respect to
c.

We are now ready for the main convergence theorem.

Theorem 4.7.5. Let u� be the optimal value of the centralized cross-layer design
problem (4.18). Under Assumptions 4.2.1, 4.7.1, and 4.7.3, and that the scheduling
subproblem can be solved to optimality, Algorithm 9 converges in the sense that

lim
k→∞
ν(c̄(k)) = u�.

Proof. The update rule for c̄(k) can be re-written as

c̄(k+1) = k

k + 1 c̄
(k) + 1

k + 1c
′ = (1− ωk)c̄(k) + ωkc′,

where ωk = 1/(k + 1) and c′ is found as the solution to the congestion-weighted
throughput problem

maximize λT c′

subject to c′ ∈ C
c̄(k) ≥ cmin.

Since λ is a gradient of ν(c̄(k)) at c̄(k), this is a conditional gradient method with
an open loop stepsize rule (Dunn and Harshbarger, 1978), see Section 2.6.2, that
satisfies

ω(k+1) = ωk
ωk + 1 , ω0 = 1.

4.7. STDMA Wireless Networks 113

Since λ� is continuous and the domain is compact (since c̄(k) ∈ C and c̄(k) ≥
cmin), the derivative of ν(c̄(k)) is uniformly continuous. By Theorem 1 in Dunn
and Harshbarger (1978), we have that limk→∞ ν(c̄(k)) = u�. Thus, Algorithm 9
converges to the optimal solution.

As stated before, the lower limit, cmin, on c̄(k) does not seem to be necessary.
We have the following conjecture:

Conjecture 4.7.6. Under Assumptions 4.2.1, 4.7.1, and 4.7.3, and that the sche-
duling subproblem can be solved to optimality, but without the explicit enforcement
of c̄(k)≥ cmin, then Algorithm 9 converges to the optimal solution to (4.18), i.e.,
limk→∞ ν(c̄(k)) = u�.

4.7.2 Solving the Scheduling Subproblem
The final component of a distributed solution to the NUM problem for STDMA
networks is a distributed mechanism for solving the scheduling subproblems (4.20)
and (4.23) in each negotiation phase. We will neglect the constraints c ≥ cmin
and c̄(k) ≥ cmin, and the subproblems are therefore identical except that the MVC
algorithm uses the average link prices and the cross decomposition algorithm uses
the instantaneous link prices.

Although a fully distributed scheme that solves the subproblem to optimality
appears out of reach, a suite of suboptimal schemes have been proposed and inves-
tigated in Soldati et al. (2008). We will outline one of these approaches below.

Since the scheduling subproblems (4.20) and (4.23) are linear in cl, an optimal
solution can always be found at a vertex of the capacity region, i.e., among one
of the feasible transmission groups. We will consider a distributed solution that is
based on two logical steps: first, a candidate transmission group is formed by trying
to maximize the objective function subject to primary interference constraints only;
then, transmitters adjust their powers to allow the most advantageous subset of
candidate links to satisfy the secondary interference constraints. Clearly, some links
may need to drop out of the candidate set during the power negotiation phase, and
the resulting transmission group may be suboptimal.

The candidate group formation is based on the observation that the primary
constraints are satisfied if only one link in each two-hop neighborhood is activated.
In an attempt to maximize the objective of the dual subproblem, the link with the
highest average link price (MVC case) or instantaneous link price (cross decomposi-
tion case) in a two-hop neighborhood will assign itself membership to the candidate
set. To allow links to make this decision, we assume that the transmitters of each
link forwards information about its link price to the receiving node. By collecting
the maximum link prices from its neighbors, each node can decide if one of its own
transmitters should enter the candidate set or remain silent.

Once a link has identified itself as a member of the candidate set, it will start con-
tending for transmission rights. In our approach, links enter the transmission group
one-by-one, adjusting their transmit powers to maximize the number of links in the

114 Resource Allocation in Communication Networks

transmission group. The approach exploits the properties of distributed power con-
trol with active link protection (DPC/ALP) (Bambos et al., 2000). The DPC/ALP
algorithm is an extension of the classical distributed power control algorithms (e.g.,
Foschini and Miljanic (1993)) which maintains the quality of service of operational
links (link protection) while allowing inactive links to gradually power up in order
to try to enter the transmission group. As interference builds up, active links sus-
tain their quality while new ones may be blocked and denied channel access. The
DPC/ALP algorithm exploits local measurements of SINRs at the receivers and
runs iteratively. To describe the algorithm, we introduce A and I as the set of ac-
tive and inactive links, and let γl be the measured SINR on link l. The DPC/ALP
algorithm operates by updating the transmit powers Pl according to

P+
l =

{
δPlγ

tgt/γl if l ∈ A
δPl if l ∈ I, (4.24)

where δ > 1 is a control parameter and P+
l denotes the next iterate of Pl. Links

change status from inactive to active when their measured SINR exceeds the target.
Inactive nodes that consistently fail to observe any SINR improvement enters a
voluntary drop-out phase and go silent (see Bambos et al. (2000) for details).

The negotiation phase is initialized by letting I equal the candidate set and
letting A be empty. Links then execute the DPC/ALP algorithm. To increase the
likelihood of forming a transmission group with high price-weighted throughput, we
let links wait a random time before starting to execute the DPC/ALP algorithm.
The waiting probability is a decreasing function of the link price, so that highly
loaded links will tend to start ramping up transmit powers before lightly loaded
ones (and thus, have increased chances to obtain transmission rights). At the end
of the negotiation phase, A constitutes a feasible transmission group.

4.7.3 Numerical Results
We now demonstrate the typical performance of Algorithm 8 (MVC) and Algo-
rithm 9 (conditional gradient algorithm or cross decomposition algorithm) by ap-
plying them to the hypothetical indoor wireless LAN scenario described in Johans-
son and Xiao (2006). The network topology with 10 nodes and 36 links can be
seen in Fig. 4.12. Figure 4.13 shows the objective value versus schedule length. The
MVC and conditional gradient algorithms start with an initial schedule consisting
of an equal time slot length TDMA schedule. The solid line is the optimal STDMA
performance computed using the off-line approach described in Johansson and Xiao
(2006), the dash dotted line is the MVC algorithm with the subproblem solved to
optimality, and finally, the dashed line is the cross decomposition algorithm with
the subproblem solved to optimality. The performance of the optimal TDMA sched-
ule is not shown in the figure, but the objective value of this scheme is circa 53.
Thus, Algorithm 8 and Algorithm 9 outperform the optimal (variable time slot
length) TDMA schedule, and they tend to the optimal value. Figure 4.14 shows

4.8. Summary 115

 150 m

150 m

Figure 4.12: The node placement of the example network. The filled circles denote
the nodes and the lines indicate the links in the network.

the network utility as a function of the number of iterations for three versions of
the cross decomposition algorithm. The dashed line denotes the cross decomposi-
tion algorithm, where a slot is added at each iteration (the number of time slots
goes towards infinity), i.e., Algorithm 9. The two other lines denote the rolling hori-
zon case: a fixed number time slots is used where the oldest transmission group is
replaced by the most recently generated transmission group. Note that the schedul-
ing subproblem is solved to optimality in all the simulations above. There will be
some performance loss when a suboptimal (heuristic) procedure is used to solve
the scheduling subproblem. However, Soldati et al. (2008) show simulations for a
number of heuristical methods for solving the scheduling subproblem, and the per-
formance loss is not that great. The details on the performance loss as well as more
comparative simulations can be found in Soldati et al. (2008).

4.8 Summary

This chapter has used the decomposition techniques presented in Chapter 2 to
design utility-maximizing mechanisms for two networking technologies.

We have presented a flow chart that can be useful in order to categorize and
visualize previous results in the NUM literature. The flowchart highlights the in-
herent steps in posing, decomposing, and solving NUM optimization problems. In
addition, the flowchart, with examples and a tutorial, is available on-line on the
Internet. This opens up for the possibility of refining the flowchart and adding
relevant results when they appear.

116 Resource Allocation in Communication Networks

0 50 100 150 200 250 300 350
10

20

30

40

50

60

70

80

90

100

Number of transmission groups in schedule

T
ot

al
 u

til
ity

Optimal STDMA solution
Cross decomposition
Mean−value cross decomposition

Figure 4.13: Network utility as a function of schedule length for a number of alterna-
tive schemes. The optimal TDMA schedule (with variable slot length) yields a utility
of circa 53 (not shown in the figure).

0 50 100 150 200 250 300 350
20

30

40

50

60

70

80

90

100

Number of iterations

T
ot

al
 u

til
ity

Rolling horizon with optimal transmission scheduling

Optimal solution
Cross decomposition
Cross decomposition, horizon 2L
Cross decomposition, horizon 3L

Figure 4.14: Network utility as a function of the number of iterations for three
versions of the cross decomposition algorithm are shown. The dashed line denotes the
cross decomposition where a slot is added at each iteration (the number of time slots
grows at the same pace as the number of iterations). The two other lines denote the
rolling horizon case: a fixed number time slots is used where the oldest transmission
group is replaced by the most recently generated transmission group.

4.8. Summary 117

We developed two center-free algorithms that optimally allocate the spectrum
in a FDMA network. The first algorithm is based in dual relaxation and the second
algorithm is based in primal decomposition. The algorithms have different time-
scale properties.

Next, an algorithm to be used to devise a schedule in a STDMA network was
developed. The algorithm is based on premise that the schedule is augmented in-
definitely, and we can show that the algorithm asymptotically reaches the optimum
under certain assumptions. However, an infinite schedule is not practical, and in
practice, the schedule length is fixed. The most natural way of addressing this po-
tential problem is to remove the oldest slot and replace it with a new slot. It turns
out that this heuristic works very well in simulations. Nevertheless, the performance
loss should be quantified and also bounded if possible.

Although the theory for network utility maximization is evolving quickly, much
work remains to be done. This includes developing better tools for analyzing pro-
tocol dynamics to guarantee stable and efficient system behavior, and improved
support for understanding the dependencies that the protocols introduce between
networking layers. On the practical side, complete implementations of the NUM
based protocols should be developed and their performance should be assessed in
network simulators under realistic traffic and radio models.

Chapter 5

Optimal Consensus

“It is perhaps natural that the concept of best or optimal decisions
should emerge as the fundamental approach for formulating decision
problems.”

D. G. Luenberger, Optimization by Vector Space Methods, 1969

The meaning of optimal must of course be carefully defined, especially in a
thesis on optimization. In this chapter, we consider some variations of the
canonical problem of consensus, already touched upon in Section 2.3. First,

in Section 5.1, we consider the rendezvous problem of several dynamical agents, or
subsystems, described by general linear state equations in discrete-time. The novelty
lies in that instead of studying convergence to the barycenter of the initial states,
we devise an algorithm where the agents find the optimal rendezvous point, in the
sense that the agents’ trajectories to the rendezvous point minimize a quadratic cost
function (the exact definition of optimality for this case is given in (5.4)). Second, in
Section 5.2, we study techniques for accelerating linear iterations that converge to
the barycenter of the initial state (the basic algorithm can be found in Section 2.3).
Since rapid convergence of the consensus iterations is crucial for the performance
of some of the algorithms in Chapter 3, this is a significant problem.

The detailed outline of the chapter is as follows. In Section 5.1, we consider the
rendezvous problem of several dynamical agents. We start with some background
material in Section 5.1.1. Then, in Section 5.1.2 we define the specific problem, op-
timal consensus, and in Section 5.1.3, we develop a distributed negotiation scheme
that computes the optimal consensus point. Section 5.1.4 contains numerical exper-
iments that illustrate the developed method. In Section 5.2, we study techniques
for accelerating linear iterations that converge to the barycenter of the initial state.
More specifically, we investigate the benefits of algorithms with an augmented state
vector. Section 5.2.1 outlines related work and Section 5.2.2 introduces the so-called
the shift-register case. Then, in Section 5.2.3, we discuss how the convergence of the
linear iteration can be accelerated by using different off-line optimization schemes.
Next, in Section 5.2.4, we quantify the benefits of these schemes using numerical

119

120 Optimal Consensus

examples. In Section 5.2.5, we provide necessary and sufficient conditions for con-
vergence of a more general case of the linear iterations. Finally, we conclude the
chapter with a summary in Section 5.3.

5.1 Optimal Multi-Agent Consensus

The problem of cooperatively controlling systems composed of a large number of
autonomous agents has attracted substantial attention in the control and robotics
communities. An interesting instantiation is the consensus problem. It consists of
designing distributed control strategies such that the state or output of a group of
agents asymptotically converges to a common value, a consensus point. The agents
are typically modeled by identical first-order linear systems with no state nor input
constraints.

The main contribution of this section is a decentralized negotiation algorithm
that computes the optimal consensus point for a set of agents modeled as linear
control systems. The consensus point is a vector that specifies, for example, the
position and velocity the agents shall converge to. Our approach allows us to in-
corporate constraints on the state and the input, which is not easily done for the
traditional consensus algorithm; see the discussion in Marden et al. (2007). By pri-
mal decomposition and incremental subgradient methods we design a decentralized
negotiation algorithm, in which each agent performs individual planning of its tra-
jectory and exchanges only a small amount of information per iteration with its
neighbors. We show that the cost of reaching the consensus point can be signifi-
cantly reduced, by letting the agents negotiate to find an optimal or near optimal
consensus point, before applying a control signal.

5.1.1 Background

There has been a lot of research activity in this area, and a good starting point for re-
lated work is the recent survey paper Olfati-Saber et al. (2007). In particular, if the
consensus point is a position and fixed a priori1 (contrary to our approach, where
the optimal consensus point is a decision variable) we get a so-called rendezvous
problem. For this type of problem, much work have been focused on establishing
convergence to the fixed consensus point under different communication and visi-
bility conditions; see for example Cortéz et al. (2006) and the references therein.
Furthermore, optimal control formulations have been used in papers that focus on
the convergence of distributed model predictive control (MPC) based strategies to
an a priori fixed equilibrium point. Dunbar and Murray (2006) propose a decen-
tralized scheme where a given desired equilibrium point is asymptotically reached.
The scheme requires coupled subsystems to update and exchange the most recent

1In the consensus literature, the consensus point is typically fixed in the sense that it is
computed from the initial conditions using a simple rule, for example, the consensus point could
be the average of the starting positions of the agents.

5.1. Optimal Multi-Agent Consensus 121

optimal control trajectories prior to each update step. Stability is guaranteed if
each subsystem does not deviate too far from the previous open-loop trajectory. In
Keviczky et al. (2006), the authors propose a strategy where each subsystem solves
a finite time optimal control problem. The solution of the problem requires each
subsystem to know the neighbors’ model, constraints, and state. The strategy also
requires the prior knowledge of an overall system equilibrium. Finally, a related dis-
tributed optimization problem, focused on formation flight, is considered in Raffard
et al. (2004), where the decentralized algorithm is based on dual relaxation. Their
approach differs from ours in that they do not consider the consensus problem and
that they use dual relaxation instead of primal decomposition.

5.1.2 Problem Formulation
Consider n > 1 agents whose dynamics are described by

xi(t+ 1) = Aixi(t) +Biui(t)
zi(t) = Cixi(t) , i = 1, . . . , n , (5.1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×pi , and Ci ∈ R
ξ×ni are observable and controllable.

The vector xi(0) = x0
i ∈ R

ni is the initial condition and zi(t) is the performance
output. We assume that the inputs are constrained according to(

uᵀi (0), uᵀi (1), . . . , uᵀi (τ)
)ᵀ ∈ Ui, i = 1, . . . , n, (5.2)

where τ is a (fixed) time horizon and Ui is a convex set. By using standard techniques
from MPC, the constraint can encode magnitude and rate constraints on ui(t), as
well as restrictions on linear combinations of the agent states (Maciejowski, 2002,
Sec 3.2).

Definition 5.1.1. Let θ lie in a compact, closed, and convex set Θ ⊂ R
ξ. The

agents described by (1) reach consensus2 at time τ if

zi(τ + k) = θ, for all k ≥ 0 and i = 1, . . . , n,

with ui(τ + k) = ui(τ), for all k ≥ 0 and i = 1, . . . , n.

The objective is to find a consensus point θ ∈ Θ and a sequence of inputs(
uᵀi (0), uᵀi (1), . . . , uᵀi (τ)

)ᵀ ∈ Ui, with i = 1, . . . , n, such that consensus is reached
at time τ . The following cost function is associated to the ith system:

Vi(zi(t), ui(t− 1), θ) � (zi(t)− θ)ᵀ
Qi (zi(t)− θ)

+ ui(t− 1)ᵀRiui(t− 1), (5.3)

2By introducing a fixed offset, θ̄i, one for each agent, it is possible to define a consensus
formation relative to a global consensus point θ. The condition of consensus formation is that
zi(τ + k) = θ + θ̄i, for all k ≥ 0 and i = 1, . . . , n.

122 Optimal Consensus

where Qi ∈ R
ξ×ξ and Ri ∈ R

pi×pi are positive definite symmetric matrices that
encode the cost of deviating from the consensus point and the cost of control energy
for agent i. Let us introduce the following vectors:

xi �
(
xᵀi (1), xᵀi (2), . . . , xᵀi (τ + 1)

)ᵀ

ui �
(
uᵀi (0), uᵀi (1), . . . , uᵀi (τ)

)ᵀ
.

Since

xi =

⎛⎜⎜⎜⎜⎝
Ai

A2
i

...
Aτ+1
i

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Ei

x0
i +

⎛⎜⎜⎜⎜⎝
Bi 0 . . . 0
AiBi Bi . . . 0

...
...

. . .
...

AτiBi A
τ−1
i Bi . . . Bi

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Fi

ui ,

we have zi(τ) = Cixi(τ) = Hi(Eix0
i + Fiui) = θ, where Hi �

(
0 . . . Ci 0

)
.

We also introduce Ui � Aτ+1
i − Aτi and Wi �

(
AτiBi A

τ−1
i Bi . . . Bi

) −(
Aτ−1
i Bi A

τ−2
i Bi . . . 0

)
. We now formulate the optimization problem,

minimize
u1,...,un, θ

n∑
i=1

Vi(ui, θ) (5.4a)

subject to Hi(Eix0
i + Fiui) = θ, i = 1, . . . , n (5.4b)

Uix0
i + Wiui = 0, i = 1, . . . , n (5.4c)

ui ∈ Ui, i = 1, . . . , n (5.4d)
θ ∈ Θ, (5.4e)

with the cost function

Vi(ui, θ) �
τ+1∑
t=1
Vi(zi(t), ui(t− 1), θ)

= (Ci(Eix0
i + Fiui)− 1τ+1 ⊗ θ)ᵀQi(Ci(Eix0

i

+ Fiui)− 1τ+1 ⊗ θ) + uᵀ
iRiui,

where3 Qi = Iτ+1 ⊗ Qi, Ri = Iτ+1 ⊗ Ri, and Ci = Iτ+1 ⊗ Ci. Notice that the
constraint (5.4b) guarantees consensus at time τ and (5.4c) guarantees that the con-
sensus point is an equilibrium, i.e., xi(τ) = Aixi(τ)+Biui(τ). The constraint (5.4b)
can potentially lead to infeasibility problems, but such problems can be mitigated by
replacing the constraint with a penalty term in the objective, penalizing deviations

3With 1τ+1 we denote the column vector with τ + 1 ones, with Iτ+1 the τ + 1× τ + 1 identity
matrix, and with ⊗ the Kronecker matrix product.

5.1. Optimal Multi-Agent Consensus 123

from the consensus point at time τ . Note, however, that due to Assumption 5.1.3
infeasibility problems do not arise in our setup.

We make the following standing assumptions, which make the optimization
problem (5.4) convex and feasible, and guarantee that the consensus point is an
equilibrium.

Assumption 5.1.2. The matrices Qi ∈ R
ξ×ξ and Ri ∈ R

pi×pi , i = 1, . . . , n, are
positive definite and symmetric. The set Θ is convex, closed, and compact. The sets
Ui, i = 1, . . . , n, are convex and closed.

Assumption 5.1.3. For all θ ∈ Θ, xi ∈ {y ∈ R
ni |Ciy = θ}, and i = 1, . . . , n, there

exists ui in the relative interior of Ui such that zi(τ) = θ and xi = Aixi +Biui(τ).

The optimization problem (5.4) is interesting for a multi-agent setting if the
computations can be distributed among the agents and the amount of information
that they need to exchange is limited. In the following we develop a negotiation
algorithm to find the optimal consensus point, in which agents exchange only their
current estimates of θ.

5.1.3 Distributed Negotiation

To distribute the computation of the optimal consensus point, we use primal decom-
position in combination with an incremental subgradient method; see Section 2.6.1
and Section 3.3. Let us start with defining νi(θ) as follows

νi(θ) = min
ui

V̂i(ui) (5.5)

subject to Hi(Eix0
i + Fiui) = θ

Uix0
i + Wiui = 0

ui ∈ Ui,

where V̂i(ui) � Vi(ui, θ); we have eliminated the dependence on θ in V̂i(ui) by
using the constraint Hi(Eix0

i + Fiui) = θ. Also note that we can re-write (5.5) as

νi(θ) = min
ui

{
uᵀ
i Ξui + Ψui + r

∣∣Γui = b, ui ∈ Ui
}
,

124 Optimal Consensus

with

Ξ = (CiFi)ᵀQiCiFi + Ri
Ψ = 2(CiEix0

i)ᵀQiCiFi − 2(1τ+1 ⊗ θ)ᵀQiCiFi
r = (CiEix0

i)ᵀQiCiEix0
i + (1τ+1 ⊗ θ)ᵀQi1τ+1 ⊗ θ

Γ =
(

HiFi
Wi

)

b =
(
θ −HiEix0

i

−Uix0
i

)
.

Thus, (5.5) is a quadratic program with linear and convex constraints. Furthermore,
note that the optimization problem (5.4) can be written as

minimize
θ

n∑
i=1
νi(θ) (5.6)

subject to θ ∈ Θ .

We then have the following result.

Lemma 5.1.4. The cost function νi defined in (5.5) is a convex function. A sub-
gradient λi for νi at θ is given by the Lagrange multipliers corresponding to the
constraint Hi(Eix0

i + Fiui) = θ.

Proof. By Lagrangian relaxation we can define

Li(ui, θ, λi) = V̂i(ui)− λᵀ
i (Hi(Eix

0
i + Fiui)− θ) ,

where λi are Lagrange multipliers. We also introduce the dual function

di(λi, θ) = min
ui∈Ũi

{
V̂i(ui)− λᵀ

i (Hi(Eix
0
i + Fiui)− θ)

}
,

where Ũi = {ui ∈ Ui|Uix0
i + Wiui = 0}. Strong duality follows from Lemma 2.7.1,

since

1. the constraint Hi(Eix0
i + Fiui) = θ is linear in ui,

2. Assumption 5.1.3 guarantees that there exists a solution in the relative interior
of Ui to this equation,

3. the function V̂i and the set Ui are convex.

5.1. Optimal Multi-Agent Consensus 125

Hence, νi(θ) = maxλi di(λi, θ). Consider two feasible points, θ

†

and θ‡, and let λ

†

i

be the Lagrange multipliers corresponding to the relaxed constraint for θ

†

, then

νi(θ‡) = max
λi

di(λi, θ‡) ≥ di(λ

†

i , θ

†

) + (λ

†

i)
ᵀ(θ‡ − θ †)

= νi(θ

†

) + (λ

†

i)
ᵀ(θ‡ − θ †).

Hence, by the definition of a subgradient, λ

†

i is a subgradient of νi at θ

†

. Now νi(θ‡)
can be expressed as

νi(θ‡) = max
λi

{
di(λi, θ) + λᵀ

i (θ
‡ − θ)}

= max
λi

{
g(λi) + λᵀ

i θ
‡} ,

where g(λi) = di(λi, θ) − λᵀ
i θ and g(λi) + λᵀ

i θ
‡ is affine in θ‡. Since νi(θ‡) is the

pointwise maximum of a family of convex functions, νi(θ‡) is convex.

The optimal consensus point can be computed in a distributed way using the
incremental subgradient methods from optimization theory; see Section 2.6.1. In
this scheme, an estimate of the optimal consensus point is passed between agents.
Upon receiving an estimate from its neighbor, an agent solves the optimization
problem (5.5) to evaluate its cost of reaching the suggested consensus point and to
compute an associated subgradient (using Lemma 5.1.4). The agent then updates
the consensus estimate via

θ(k+1) = PΘ[θ(k) − αhλi,k] (5.7)

and passes the estimate to the next agent. The algorithm proceeds iteratively. Here
PΘ[·] denotes the Euclidean projection on the set Θ, αh is the stepsize, and λi,k
is a subgradient of νi at θ(k). In addition, pseudocode of the algorithm is given in
Algorithm 10. As we have seen, the difference between the incremental subgradient
method and the vanilla subgradient method is that each agent only computes a
subgradient with respect to its own part of the objective function and not the global
objective function. Furthermore, the convergence of the incremental subgradient
algorithm is guaranteed if the agents can be organized into a cycle graph, which we
formalize in the following assumption.

Assumption 5.1.5. The agents can be organized into a cycle graph and neighboring
nodes in this graph can communicate with each other.

The following lemma guarantees convergence.

Lemma 5.1.6. Under the Assumptions 5.1.2, 5.1.3, and 5.1.5, Algorithm 10 con-
verges to an optimizer of problem (5.4).

126 Optimal Consensus

Algorithm 10 Cyclic Incremental Algorithm.
1: Initialize θ0 and α0. Set k ← 0 and h← 1.
2: loop
3: αh ← α0/h
4: for i = 1 to n do
5: Compute a subgradient, λi,k, for νi(θ(k))
6: θ(k+1) ← PΘ[θ(k) − αhλi,k]
7: k ← k + 1
8: end for
9: h← h+ 1

10: end loop

Proof. The proof follows from Theorem 8.2.6 (p. 480) and Theorem 8.2.13 (p. 496)
in Bertsekas et al. (2003), since the set Θ is convex, closed, and compact (so the
norms of all subgradients have an upper bound and the projection can be carried
out), and the stepsize αh is square summable over h, but not summable over h.

Algorithm 10 can be modified to a randomized version as described in Chapter 3,
which corresponds to that the estimate is sent to a random agent at each update.
Regardless if the deterministic or the randomized version of the algorithm is used,
the convergence behavior is asymptotic, which means that some stopping criteria
need to be used. The simplest and most practical criteria is to negotiate for a fixed
number of iterations. More advanced stopping criteria are of course possible, but
these are outside the scope of this thesis.

5.1.4 Control Strategies and Numerical Examples
In this section we discuss control strategies and possible extensions. The simplest
way to devise a control strategy from the problem formulation is to first execute a
negotiation phase in which Algorithm 10 is run until a sufficiently accurate optimal
consensus point is agreed upon and then, in a motion phase, apply the corresponding
open-loop control to reach it. If there are no disturbances the system will reach the
consensus point at time τ . The main advantage of the proposed strategy is that the
optimal consensus point is computed in a distributed way and only a small amount
of information, the current consensus point estimate, needs to be exchanged at
each step. To make the strategy robust to disturbances, the motion phase can be
performed using closed-loop feedback control with the optimal consensus point as
a set point. The controller could be devised using, for example, MPC techniques.

We explore the performance of the distributed negotiation. The setup is as
follows: three agents with double integrator dynamics and input constraints (|ui| ≤
1) should reach the same coordinates at time τ = 40. The convergence rate of the
consensus point negotiation is shown in Figure 5.1. The iteration can clearly be
seen to converge, and the convergence rate is high in the beginning but slows down

5.2. Faster Linear Iterations for Distributed Averaging 127

20 40 60 80 100 120 140

10
−2

10
−1

10
0

||θ
k
−

θ
�
|| 2

||θ
�
|| 2

k

Agent 1
Agent 2
Agent 3

Figure 5.1: The consensus point estimates for each agent. The estimates are con-
verging to θ�, an optimizer of problem (5.4).

after a while. This behavior is typical for algorithms with diminishing stepsizes. For
comparison, we solve problem (5.4) with θ fixed to the mean of the initial positions
of the three agents, θ̄. The optimal cost is

∑n
i=1 νi(θ�) = 6446 and the cost for

meeting at θ̄ is 6982. The corresponding optimal trajectories and control signals for
agent 2 are shown in Figure 5.2 and Figure 5.3, respectively.

5.2 Faster Linear Iterations for Distributed Averaging

In the remainder of this chapter, we discuss distributed averaging (see also Sec-
tion 2.3), which is a special class of distributed consensus. Distributed averaging
has found diverse applications in areas such as multi-robot coordination, distributed
synchronization and resource allocation in communication networks. In addition, as
we have seen in Chapter 3, consensus iterations can be quite useful in distributed
optimization.

Since the distributed consensus problem has received a large attention from
several diverse research communities (from physics, mathematical programming to
control and communications), it is natural that several different algorithms have
been proposed. Many of these are linear iterations where each agent maintains one
internal consensus state. Other algorithms are nonlinear, or have a larger state di-
mension than the basic iteration. One example of this is when the consensus is used
for distributed quadratic programming where nodes maintain states corresponding
to primal and dual (Lagrange multiplier) iterates. The iteration is then still linear,
but of higher state dimension than the basic distributed averaging algorithm.

The objective of this section is to try to understand the potential benefits of

128 Optimal Consensus

−25 −20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

Agent 1

Agent 2

Agent 3

x

y

Agent 1

Agent 2

Agent 3

Figure 5.2: The trajectories of three agents with double integrator dynamics. The
solid lines correspond to the optimal case, θ�, and the dashed lines correspond to the
mean case, θ̄. The circles are the starting points, the squares are the ending points,
and the arrows show the initial velocities.

linear averaging iterations with extended state dimension. We establish conditions
for convergence and explore how the parameters can be optimized to obtain faster
convergence.

We consider systems of the following type{
x(k+1) = Ax(k) +Bu
y(k+1) = Cx(k+1),

(5.8)

where x(k) is a vector of the nodes’ internal states; y(k) is a vector of the nodes’
outputs; and u is a vector with constant input. Each node i has an initial value, [z]i,
and the asymptotic output for each node should be the mean value of all nodes’
starting values, limk→∞[y]i(k) =

∑n
j=1[z]j/n. Furthermore, the matrices A, B, and

C respect the communication topology of the network, so that the nodes need to
rely on only peer-to-peer communication to execute the iteration, as defined in
Section 2.3. As always in this thesis, the network is composed of n nodes and is
assumed to be connected.

In Section 2.3, we noted that it is possible to use different notions of convergence
rates to quantify how fast the different algorithms approaches the desired output or
fixed point. In this section, we focus on the geometric average convergence factor,

lim
k→∞

(
sup
x�=0

||Akx||2
||x||2

)1/k

= ρ(A).

5.2. Faster Linear Iterations for Distributed Averaging 129

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

u
x
(t

)

t

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

u
y
(t

)

t

Figure 5.3: The control signals for agent 2, where ux(t) and uy(t) correspond to the
acceleration in the x and y directions, respectively. The solid lines correspond to the
optimal case and the dashed lines correspond to the mean case.

5.2.1 Background
As mentioned in Section 2.3, the consensus problem was pioneered by DeGroot
(1974) and a seminal framework was introduced by Tsitsiklis (1984). In addition,
there is a long tradition in Numerical Analysis to devise linear iterations (the con-
sensus algorithm is a special case of this general class) to solve systems of lin-
ear equations; see, e.g., Varga (1962) for an early summary. It is also known that
higher-order methods can accelerate many such linear methods (Young, 1972). Fur-
thermore, consensus iterations can also be used for load balancing multiprocessor
systems (Cybenko, 1989). In the load balancing literature, non-negative doubly
stochastic matrices are most often used, which is restrictive but opens up for sim-
ple analysis using the powerful Perron-Frobenius theory.

Xiao and Boyd (2004) consider the linear iteration

x(k+1) = Ax(k) (5.9)

and provide necessary and sufficient conditions on the matrix A for the iteration to
converge to the average of the initial values. The average is reached if A fulfills

lim
k→∞
Ak = 1

n
1n1ᵀ

n.

For the case of a symmetric A, they also provide a convex optimization problem for-
mulation to find an A that minimizes the spectral radius. However, it is possible to
do better using a slightly modified algorithm: if we allow scaling of the input, then it
is possible to get the spectral radius arbitrarily close to zero (Olshevsky and Tsitsik-
lis, 2006). They let limk→∞Ak = 1nπᵀ, where π is the stationary distribution of an

130 Optimal Consensus

associated Markov chain, and use the initial state [x(0)
new]i = [x(0)]i/([π]in). Hence,

we have that limk→∞Akx(0)
new = 1n

∑n
i=1[x(0)]i[π]i/([π]in) = 1n

∑n
i=1[x(0)]i/n,

which is the desired result. However, when the spectral radius goes to zero, so
does π and we will have numerical difficulties. Olshevsky and Tsitsiklis (2006) also
provide simple and numerically stable algorithms that have good worst case perfor-
mance.

It is also possible to reach similar iterations by a completely different approach.
Namely, if we view the average value as the optimal solution to a least-squares
problem,

minimize
{xi}ni=1

∑n
i=1

1
2 (xi − xi(0))2

xi = xj , ∀(i, j) ∈ E ,
(5.10)

then a distributed optimization algorithm solving this problem will also be a dis-
tributed averaging algorithm. Several optimization algorithms can be used, e.g.,
dual relaxation combined with a subgradient method (Rabbat et al., 2005) or the
alternating direction multiplier method (Schizas et al., 2007). With a carefully posed
optimization problem, both of the methods result in iterations of the same type as
in (5.8). In addition, these alternative formulations can be used to devise iterations
with bolstered resilience to communication noise, as shown in Schizas et al. (2007).
This extension can be useful, since the iteration (5.9) is sensitive to communication
noise due to its eigenvalue at 1 for A. However, the algorithm presented in Schizas
et al. (2007) has the problem that internal values in the nodes grow without bound,
since the desired fixed point is encoded in x(k+1) − x(k). Finally, it is also possible
to use a completely different approach to reach consensus. For example, Barbarossa
and Scutari (2007) obtain a maximum likelihood estimator through local nonlinear
coupling of first order dynamical systems.

5.2.2 General Shift-Register Case

Shift-registers can be used to speed up convergence in the stochastic version of (5.9)
(Cao et al., 2006), and shift-registers are known to speed up several types of other
deterministic iterative methods as well (Young, 1972).

For the consensus iteration case, shift-registers result in iterations of the type⎧⎪⎪⎨⎪⎪⎩
x(k+1) =

(
βA11 (1− β)In
In 0

)
x(k), x(0) =

(
In

In

)
z

y(k+1) =
(
In 0

)
x(k+1),

(5.11)

where β is a constant scalar, A11 is a constant matrix (a matrix coming from
(5.9) can be used). Furthermore, the matrix A11 should respect the communication
topology, and therefore, we require that A11 ∈ W, where W is defined in (2.8) on

5.2. Faster Linear Iterations for Distributed Averaging 131

page 18. The limit (if it exists) has the structure

lim
k→∞

(
βA11 (1− β)In
In 0

)k
=

(
αΔ (1− α)Δ
αΔ (1− α)Δ

)
,

where α is a function of β. If A11 is symmetric, then it is possible, as Gosh et al.
(1996) point out, to use a classical result by Golub and Varga (1961) to compute
the optimal β.

Lemma 5.2.1 (Gosh et al. (1996) and Golub and Varga (1961)). If A11 = Aᵀ
11,

A111n = 1n, and ρ(A11 − 1n1ᵀ
n) = μ < 1, then the geometric average convergence

factor for (5.11) is minimized if

β� = 2
1 +

√
1− μ2

.

The optimal geometric average convergence factor is

ρ

((
β�A11 (1− β�)In
In 0

))
=

√
1−

√
1− μ2

1 +
√

1− μ2
< μ, 0 < μ < 1.

Note that with β�, (5.11) will always asymptotically perform better than (5.9).
It is also possible to find the optimal β for a nonsymmetric A11, but this is more

complicated. The details of this method can be found in Manteuffel (1977) and
Manteuffel (1982), and the two main steps are the following: first, the eigenvalues
of A11 has to be enclosed by an ellipse with special properties. Second, using the
parameters for this ellipse, the optimal β can be found.

The generalized version of (5.11), with m copies of the initial state, is the fol-
lowing {

x(k+1) = Ax(k), x(0) = 1m ⊗ z
y(k+1) =

(
In 1ᵀ

m−1 ⊗ 0
)
x(k+1),

(5.12)

where A ∈ R
mn×mn. To describe this generalized version in terms of (5.8), we

have that B = 1m ⊗ 0 and C =
(
In 1ᵀ

m−1 ⊗ 0n
)
. Furthermore, in order for the

asymptotic output to reach the desired average, A needs to satisfy the limit

lim
k→∞
Ak = 1

n

⎛⎜⎜⎝
1n
...

1n

⎞⎟⎟⎠(
α11ᵀ

n . . . αm1ᵀ
n

)
,

m∑
i=1
αi = 1, (5.13)

since then

lim
k→∞
y(k) = 1

n

m∑
i=1
αi1n1ᵀ

nz = 1
n

1n1ᵀ
nz.

We have the following theorem (similar to Theorem 2 in Xiao and Boyd (2004)).

132 Optimal Consensus

Theorem 5.2.2. The iteration (5.12) satisfies (5.13) if and only if A and α fulfill
the following conditions.

a)
Af = f, f = 1

n

(
1ᵀ
n . . . 1ᵀ

n

)ᵀ
. (5.14)

b)

gᵀ(α)A = gᵀ(α), gᵀ(α) =
(
α11ᵀ

n . . . αm1ᵀ
n

)
,

m∑
i=1
αi = 1. (5.15)

c)
ρ
(
A− fgᵀ(α)

)
< 1, (5.16)

where ρ(·) denotes the spectral radius.

Proof. We start with showing sufficiency of the conditions. If conditions a) and b)
are satisfied, then we have that

(A− fgᵀ(α))k = (A−Afgᵀ(α))k = Ak(I − fgᵀ(α))k

= Ak(I − fgᵀ(α)) = Ak − fgᵀ(α),

where we used Af = f in the first equality, and the third equality is based on
the fact that (I − fgᵀ(α))(I − fgᵀ(α)) = I − 2fgᵀ(α) + fgᵀ(α)fgᵀ(α) = I −
2fgᵀ(α) + fgᵀ(α)(1/n)

∑m
i=1 nαi = I − fgᵀ(α). Now condition c) implies that

limk→∞Ak − fgᵀ(α) = limk→∞(A − fgᵀ(α))k = 0, and sufficiency is established.
We continue with necessity. The limit limk→∞Ak = fgᵀ(α) exists if and only if
there exist an invertible matrix T , a matrix Z with ρ(Z) < 1, and κ ≥ 0, such that

A = T
(
Iκ 0
0 Z

)
T
−1
, (5.17)

where Iκ is the κ-dimensional identity matrix (Meyer and Plemmons, 1977). When
the limit exists, we have

lim
k→∞
Ak = T

(
Iκ 0
0 0

)
T
−1

= fgᵀ(α),

and since rank fgᵀ(α) = 1, we know that rank Iκ = 1 and κ = 1. The limit and
(5.17) also imply that fgᵀ(α)A = Afgᵀ(α) = fgᵀ(α), thus f is a right eigenvector
and g is a left eigenvector, both with eigenvalue 1. Finally, we also have that

ρ(A− fgᵀ(α)) = ρ
(
T

(
0 0
0 Z

)
T
−1

)
< 1.

We conclude that the conditions are both necessary and sufficient.

5.2. Faster Linear Iterations for Distributed Averaging 133

5.2.3 Minimizing the Spectral Radius
As mentioned previously, the spectral radius is crucial for the convergence rate.
Thus, it is of interest to find an A with minimal spectral radius. Optimization of
the spectral radius is very hard in general, but in the case of a symmetric (Hermitian
in the most general case) A, the spectral norm and the spectral radius coincide; the
spectral norm is convex and therefore much easier to work with. The symmetric
case is discussed in Section 2.3.

One potential way to find a minimizing nonsymmetric matrix is to use scalings;
we let A = TÂT−1 with Â = Âᵀ, and the optimization problem will, under some
conditions on T , boil down to a symmetric optimization problem over Â. However, it
is not known which scalings, T , should be used and if the optimal A can be written
as A = TÂT−1. This approach is therefore not so useful. Instead, we can directly
look for a nonsymmetric matrix (for a fixed α in condition b) in Theorem 5.2.2)
that satisfies Theorem 5.2.2 and the sparsity constraints.

For our developments, define the error, x̃(k), as x̃(k) = x(k)−x�, where x� is the
fixed point of the linear iteration (5.12). We have the following iteration for x̃(k),

x̃(k+1) = x(k+1) − x� = Ax(k) − x� = A(x(k) − x�) = Ax̃(k) = (A− fgᵀ(α))x̃(k).

The output should converge to the correct asymptotic output as fast as possible,
and the asymptotic convergence factor, limk→∞

(
sup‖x(0)‖=1

∥∥Cx̃(k)
∥∥)(1/k), fulfills

the following

lim
k→∞

(
sup

‖x(0)‖=1

∥∥∥Cx̃(k)
∥∥∥)(1/k)

= lim
k→∞

∥∥C(A− f(gα))k
∥∥(1/k) ≤ ρ(A− fg(α)

)
.

Thus, if the output error should decay as fast as possible, we can achieve this by
minimizing the spectral radius of (A − fgᵀ(α)), which, as previously mentioned,
unfortunately is a very hard problem. We will, however, try to develop a useful
procedure. To this end, we need the following lemma (see, e.g., Horn and Johnson
(1985, Problem 25, Section 5.6)).

Lemma 5.2.3. If X ∈ R
n×n and ε > 0, then there exists a matrix valued function

S(X, ε) ∈ R
n×n such that

ρ(X) ≤ ∥∥S(X, ε)−1XS(X, ε)
∥∥ ≤ ρ(X) + ε,

where ∥∥S(X, ε)−1XS(X, ε)
∥∥ = max

‖S(X,ε)−1u‖=1

∥∥S(X, ε)−1Xu
∥∥ � ‖X‖S(X,ε)−1 .

Since ρ(x) ≤ |||X||| for all matrix norms |||·|||, we have that inf{‖X‖S |S >
0} = ρ(X). Thus, if we minimize the norm ‖A− fgᵀ(α)‖S , and let S be a decision
variable as well, we can get arbitrarily close to the spectral radius. The following
lemma (see, e.g, Horn and Johnson (1985, Theorem 7.7.6)) will be useful.

134 Optimal Consensus

Lemma 5.2.4 (Schur complement). For U, V,X ∈ R
n×n, the following holds{

U > 0
X > V ᵀU−1V

⇔
(
U V

V ᵀ X

)
> 0.

Note that ‖A− fgᵀ(α)‖S ≤ ψ is equivalent with

(A− fgᵀ(α))ᵀQ(A− fgᵀ(α)) ≤ ψQ
with S nonsingular and Q = SᵀS. From the above discussion and lemmas, we have
that

minimize
A,ψ,S

ψ

subject to ‖A− fgᵀ(α)‖S ≤ ψ
S nonsingular
Af = f, A ∈ W
Agᵀ(α) = gᵀ(α)

is equivalent with

minimize
A,ψ,Q,Υ

ψ (5.18a)

subject to
(

ψQ Q(A−Υ)
(A−Υ)ᵀQ Q

)
≥

(
δI 0
0 δ′I

)
(5.18b)

Υ = A− fgᵀ(α), Qᵀ = Q, Q ≥ δ′I (5.18c)
Af = f, A ∈ W (5.18d)
Agᵀ(α) = gᵀ(α), (5.18e)

for some δ′ > 0 and δ > 0. The constraint (5.18b) is a so-called bilinear matrix
inequality (BMI), which is a nonconvex constraint. If we can solve this type of
problems, then we can find a nonsymmetric A that minimizes ||A− fgᵀ(α)||S , and
thereby also pushing down the spectral radius of (A−fgᵀ(α)), while still satisfying
Theorem 5.2.2 and the sparsity constraints. It is hard to find a globally optimal
solution, but some software packages can generate local solutions, as we will see in
Section 5.2.4.

5.2.4 Numerical Examples
To evaluate the performance of the different linear iterations that achieve dis-
tributed averaging, we consider the simple network in Fig. 5.4. To avoid numerical
difficulties and maintain computational tractability, the network consists of only
7 nodes. We investigate four methods of finding the system matrices, using the
parser YALMIP (Löfberg, 2004), and the solvers SDPT3 (Tutuncu et al., 2003)
and PENBMI (Kocvara and Stingl, 2003).

5.2. Faster Linear Iterations for Distributed Averaging 135

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 5.4: Topology of the random 7-node network.

Symmetric Matrix Algorithm. Dimension n× n.

We use the method described in Section 2.3 in conjunction with YALMIP and
SDPT3 to find the symmetric A that minimizes the spectral norm (which is the
same as the spectral radius in this case).

Nonsymmetric Matrix Algorithm. Dimension n× n.

The method outlined in Section 5.2.3 is used in conjunction with YALMIP and
PENBMI to find a nonsymmetric matrix that is a local minimum of the matrix
norm ||A − 1n1ᵀ

n/n||S , and since we are optimizing over S as well, this norm is
close to the spectral radius, as previously discussed.

Shift-Register Algorithm. Dimension 2n× 2n.

Consider the shift-register example (with a fixed matrix A11 and m copies of the
state) once again. The structure of A is

A =

⎛⎜⎜⎜⎜⎝
β1A11 . . . βm−1I βmI

I 0 . . . 0
...

. . .
...

...
0 . . . I 0

⎞⎟⎟⎟⎟⎠ .

136 Optimal Consensus

With this structure and
∑m
i=1 βi = 1, condition a) in Theorem 5.2.2 is satisfied. To

satisfy condition b) in Theorem 5.2.2, α and β need to satisfy,

αm = α1βm,

αm−1 = α1βm−1 + αm,
αm−2 = α1βm−2 + αm−1,

...
α1 = α1β1 + α2,

in addition with
∑m
i=1 αi = 1. Finally, to satisfy condition c) in Theorem 5.2.2, α,

β, and A need to satisfy
ρ
(
A(β)− fgᵀ(α)

)
< 1.

We use the above conditions with m = 2 (this means we have one shift-register and
one scalar weight to choose, namely β) and use the optimal symmetric A matrix
devised using the method in Section 2.3 as our A11 matrix. The optimal β is given
by Lemma 5.2.1, and we have that β� = 1.1716.

General Shift-Register Algorithm. Dimension 2n× 2n.

Here we use the f and g vectors from the previous section (m = 2 and β = 1.1716)
and search for a general nonsymmetric A using the method in Section 5.2.3, with

A =
(
A11 A12

A21 A22

)
, A11, A12, A21, A22 ∈ W.

It is possible to do a search over β, but it is not really tractable, since the optimiza-
tion with BMI is rather time consuming.

Results

For the communication topology shown in Fig. 5.4, the performance of the four
resulting algorithms are shown in Fig. 5.5. We use the following performance metrics:
for the n× n matrices

performancen×n(k) =
∥∥Ak − 1n1ᵀ

n/n
∥∥

2 , (5.19)

which is the worst case norm of the deviation from the desired vector. For the
2n× 2n matrices, we have

performance2n×2n(k) =

∥∥∥∥∥(In 0
)
Ak

(
In

In

)
− 1n1ᵀ

n/n

∥∥∥∥∥
2

, (5.20)

where we only consider the worst case for the first n elements in the vector, since
this part of the vector constitute the output (C =

(
In 0

)
).

5.2. Faster Linear Iterations for Distributed Averaging 137

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Iterations (k)

P
er

fo
rm

an
ce

Optimal Symmetric, nxn matrix
Nonsymmetric, nxn matrix
Shift−Register, 2nx2n matrix
General Shift−Register, 2nx2n matrix

Figure 5.5: Performance of the four algorithms for a 7 node network.

The general shift-register algorithm has significantly better performance than
the other algorithms. The nonsymmetric matrix algorithm is second best, and the
shift-register algorithms is quite close. The symmetric matrix algorithm has the
worst performance in this example. All four algorithms flattens out, which is not
predicted by the theory. We believe that complete convergence is hindered by nu-
merical problems.

Thus, this example suggests that much can be gained from using the general
shift-register algorithm. However, since this optimization problem is bilinear, it is
computationally intractable for topologies with more than ten nodes. The same is
valid for the nonsymmetric matrix algorithm.

The most computationally viable way to increase the convergence speed is thus
the shift-register algorithm from Section 5.2.4. In Fig. 5.6, we show Monte Carlo
simulations for the shift-register algorithm and the optimal symmetric algorithm.
For each number of nodes, 1000 connected random networks were generated, and
the mean of the performance (using (5.19) and (5.20)) for k = 5, 25, 125 is shown.
The simulations indicate that the shift-register algorithm is better if high accuracy
is desired, while the optimal symmetric algorithm has better initial convergence
speed.

Thus, a performance boost can be achieved by using the simple shift-register
algorithm, with virtually no extra computational burden on the nodes nor on the
off-line algorithm that computes the system matrices.

5.2.5 General Case

We now look at necessary and sufficient conditions for a more general case of (5.8) to
converge to the average of the starting values, while respecting the communication

138 Optimal Consensus

20 40 60 80 100

10
0

Number of Nodes

P
er

fo
rm

an
ce

k = 5

Optimal Symmetric nxn
Shift−Register 2nx2n

20 40 60 80 100

10
−3

10
−2

10
−1

10
0

Number of Nodes

P
er

fo
rm

an
ce

k = 25

Optimal Symmetric nxn
Shift−Register 2nx2n

20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

Number of Nodes

P
er

fo
rm

an
ce

k = 125

Optimal Symmetric nxn
Shift−Register 2nx2n

Figure 5.6: Average performance of the Symmetric Matrix Algorithm and the Shift-
Register Algorithm. For each number of nodes, 1000 random networks were generated
and averaged over. The thick line denotes the average and the thin line denotes the
sum of the average and the computed variance.

constraints between the nodes.
We consider the following system⎧⎪⎨⎪⎩

x(k+1) = Ax(k) +Bz
y(k+1) = Cx(k+1)

x(0) = Ez,
(5.21a)

with the state x(k) ∈ R
nm, the output y(k) ∈ R

n, the starting values z ∈ R
n, and

A =

⎛⎜⎜⎝
A11 . . . A1m

...
. . .

...
Am1 . . . Amm

⎞⎟⎟⎠ , Aij ∈ W, ∀i, j = 1, ...,m, (5.21b)

5.2. Faster Linear Iterations for Distributed Averaging 139

B =
(
Bᵀ

1 . . . Bᵀ
m

)ᵀ
, Bi ∈ R

n×n and diagonal, (5.21c)

C =
(
C1 . . . Cm

)
, Ci ∈ R

n×n and diagonal, (5.21d)

E =
(
Eᵀ

1
... Eᵀ

m

)ᵀ
, Ei ∈ R

n×n and diagonal. (5.21e)

We need the following definition (see, e.g., Ben-Israel and Greville (1974)) to get
an elegant description of the limit of (5.21).

Definition 5.2.5. Given a matrix A ∈ R
n×n, the Drazin pseudoinverse is the

matrix Ad ∈ R
n×n fulfilling

AAd = AdA, Ak+1Ad = Ak, A(Ad)2 = Ad,

for some integer k in the interval 0 ≤ k ≤ n.
The Drazin pseudoinverse Ad always exists (for symmetric A) and it is unique.

We have the following lemma (Ben-Israel and Greville, 1974, Theorem 4, page 164).

Lemma 5.2.6. If A ∈ R
n×n fulfills rankA = rankA2 and A = TJT−1 where J is

a Jordan normal form of A, then

Ad = TJ†T−1,

where J† is the Moore-Penrose pseudoinverse of J .

Note that if A is invertible then A−1 = A† = Ad. The following lemma will be
helpful in the convergence analysis (cf. Meyer and Plemmons (1977)).

Lemma 5.2.7. If A ∈ R
nm×nm can be written on the Jordan normal form A =

TJT−1 with

J =
(
Iκ 0
0 Z

)
with ρ(Z) < 1 and κ ∈ N, 0 ≤ κ ≤ nm. Then x(k) generated by (5.21) fulfills

x(k) = AkEz + kT
(
Iκ 0
0 0

)
T−1Bz + T

(
0 0
0

∑k−1
j=0 Z

j

)
T−1Bz, (5.22)

where

lim
k→∞
T

(
0 0
0

∑k−1
j=0 Z

j

)
T−1 = T

(
0 0
0 (I − Z)−1

)
T−1 = (I −A)d

and

lim
k→∞
Ak = T

(
Iκ 0
0 0

)
T−1 = I − (I −A)(I −A)d.

140 Optimal Consensus

Proof. The equation (5.22) follows directly from (5.21) and the assumptions. Since
ρ(Z) < 1, we have limk→∞

∑k
j=0 Z

j = (Inm−κ − Z)−1 and

T

(
0 0
0 (I − Z)−1

)
T−1 = T

(
0 0
0 (I − Z)

)†
T−1 = T (I − J)†T−1 = (I −A)d,

where the last equality follows from Lemma 5.2.6. Furthermore, since ρ(Z) < 1, we
have limk→∞ Zk = 0 and

I − (I −A)(I −A)d = T
(
I −

(
I −

(
I 0
0 Z

))(
0 0
0 (I − Z)−1

))
T−1

= T
(
Iκ 0
0 0

)
T−1.

We have the following theorem.

Theorem 5.2.8. Consider the system defined by (5.21). The limit limk→∞Ak ex-
ists, the sequence of states, {x(k)}, converges, and the corresponding system output
satisfies limk→∞ y(k) = 1n1ᵀ

nz/n for all z ∈ R
n if and only if the matrices A, B,

C, and E satisfy the following conditions:

a) There exist two matrices, T ∈ R
nm×nm and Z, and an integer, κ, such that

A = T
(
Iκ 0
0 Z

)
T−1, ρ(Z) < 1, 0 ≤ κ ≤ nm. (5.23)

b)
R(B) ⊆ N (A− I)⊥, (5.24)

where R(B) denotes the range of the matrix B and N (A − I)⊥ denotes the
orthogonal complement to the nullspace of the matrix A− I.

c)
C

((
I − (I −A)(I −A)d)E + (I −A)dB

)
= 1n1ᵀ

n/n. (5.25)

Proof. We start with the if part. The condition (5.23) implies that limk→∞Ak
exists (Meyer and Plemmons, 1977).

From Lemma 5.2.7 we have that

x(k) = AkEz + kT
(
Iκ 0
0 0

)
T−1Bz + T

(
0 0
0

∑k−1
j=0 Z

j

)
T−1Bz.

5.3. Summary 141

Note that T
(
Iκ 0
0 0

)
T−1 has the same eigenvectors as A, and we have that Au = u

implies T
(
Iκ 0
0 0

)
T−1u = u and Au = λu with |λ| < 1 implies T

(
Iκ 0
0 0

)
T−1u = 0.

Furthermore, condition (5.24) implies that kT
(
Iκ 0
0 0

)
T−1Bz = 0 for all z, since

(5.24) implies that the columns in B are orthogonal to the κ eigenvectors with
eigenvalue 1 of T

(
Iκ 0
0 0

)
T−1.

Using Lemma 5.2.7 again, we now have

lim
k→∞
x(k) =

((
I − (I −A)(I −A)d)E + (I −A)dB

)
z,

which in combination with condition (5.25) yields

lim
k→∞
y(k) = C

((
I − (I −A)(I −A)d)E + (I −A)dB

)
z = 1n1ᵀ

n/nz, ∀z ∈ R
n.

It is clear that {x(k)} converges and limk→∞ y(k) = 1n1ᵀ
n/nz for all z ∈ R

n.
Let us continue with the only if part. From Meyer and Plemmons (1977) we

know that existence of limk→∞Ak implies (5.23). Existence of limk→∞Ak and
convergence of {x(k)} for all z ∈ R

n implies that ‖T (Iκ 0
0 0

)
T−1B‖ has to be zero,

which implies (5.24). Finally, the output has to fulfill limk→∞ y(k) = 1n1ᵀ
nz/n for

all z ∈ R
n, which in combination with the above discussion implies that

lim
k→∞
y(k) = C

((
I − (I −A)(I −A)d)E + (I −A)dB

)
z = 1n1ᵀ

n/nz, ∀z ∈ R
n,

which, in turn, implies (5.25).

Remark 5.2.9. The conditions in Theorem 5.2.8 are difficult to use in an opti-
mization problem. For example, the Drazin inverse is hard to compute numerically.

Remark 5.2.10. It is possible to find matrices fulfilling the conditions in Theo-
rem 5.2.8. One choice is the matrices from the algorithms in Section 5.2.4. Another
choice is the matrices from a dual relaxation solution algorithm to (5.10).

5.3 Summary

Primal decomposition and incremental subgradient methods provide an interesting
framework to pose distributed consensus problems. It allows us to consider general
linear models for the agents and easily handle convex input constraints and linear
state constraints. The convergence is mathematically guaranteed in the simplest
case when negotiation and motion phases are separated.

Future work includes the extension of the results to strategies with interleaved
negotiation and motion phases and realistic models of the communication network.

Motivated by the many different algorithms that have been proposed for dis-
tributed averaging, we have investigated the convergence of a more general class of
linear averaging iterations. First, we considered linear iterations that allow nodes
to maintain several internal states. We provided necessary and sufficient conditions

142 Optimal Consensus

for convergence, and discussed some possible optimization schemes to improve the
convergence rate.

It turns out that with a single shift-register, we can use a classical result to
compute the optimal weights, giving a computationally inexpensive way to find
a weight matrix A that converges faster (in the asymptotic sense) than the origi-
nal algorithm in Xiao and Boyd (2004). A shift-register algorithm is better if high
accuracy is desired, while the optimal symmetric algorithm has better initial con-
vergence speed. In addition, numerical examples indicate that performance can be
vastly improved if we use a nonsymmetric matrix A. However, this optimization
problem is computationally intractable for larger network topologies.

For a truly distributed system, it is probably not possible to run any opti-
mization problem at all to find a good (or optimal) A matrix, especially since the
complete network topology needs to be known. In this case, the only viable methods
seem to be the heuristic methods presented in Section 2.3, which require only local
topology information. However, if the consensus iteration should be executed sev-
eral times over the same graph, then it can be worthwhile to optimize the weighting
matrix W .

Finally, we looked at necessary and sufficient conditions for the convergence
to consensus of a larger class of linear iterations with an augmented state vector.
These conditions are not amenable for optimization in their present form, but we
are looking into this in our future work.

Chapter 6

Optimization in Wireless Sensor Networks

“While a serial algorithm consists of a single such system, a
distributed algorithm consists of an interconnection of many such
systems, yielding a composite system that can be quite complex to
model, analyze, and implement.”

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, 1997.

In this chapter, we detail how some of the algorithms previously presented can
be implemented in a real networked system. More specifically, we would like to
devise a generic optimization component to be used in WSNs. First, we start

with simulations of the optimization algorithms in the network simulator NS2 (NS2,
2008). Then, we implement the algorithms on Tmote Sky motes (Tmote, 2008).

The optimization algorithms previously presented are rather mathematically
clean and simple, at least in the author’s opinion; still, as we will see, they require
a substantial amount of work to be implemented in practice.

The chapter is organized as follows. We start with some general background
in Section 6.1. In Section 6.2, we present the optimization problem, which should
be solved in a WSN. It turns out that this optimization problem can be solved
in several ways that give rise to different communication patterns, which is dis-
cussed in Section 6.3. Section 6.4 presents, in detail, the algorithms that will be
evaluated. In Section 6.5, we describe how these algorithms were implemented in
NS2. Then, in Section 6.6, we present how the optimization algorithms were imple-
mented on Tmote Sky motes and we also report our experimental results from this
implementation. Finally, we conclude the chapter with summary and discussion in
Section 6.7.

6.1 Background

Several important tasks of WSNs, including estimation, detection, localization, and
resource sharing, can be cast as optimization problems (Boyd and Vandenberghe,

143

144 Optimization in Wireless Sensor Networks

2004). Recently, a large research effort has been devoted to understanding dis-
tributed quadratic programming problems and the properties of the associated dis-
tributed averaging or consensus algorithms, which we have previously discussed in
Section 5.2. However, moving beyond the least-squares framework offers distinctive
advantages in applications (see, e.g., Rabbat and Nowak (2004), Wang (2007), and
Johansson et al. (2008e)) and the development of a generic optimization component
for WSNs could potentially have a very broad applicability.

Bringing state-of-the art optimization solvers to the resource-constrained sensor
networking environment is a grand challenge. Modern high-performance solvers re-
quire significant memory and computations and rely on central access to all problem
data. In contrast, for sensor network applications one would like to find distributed
algorithms which remove the single point of failure of having a central computa-
tional node. The resource-constrained environment demands algorithms with small
computational and memory requirements. It is desirable that the traffic for coordi-
nating nodes is minimal and that the communication can be done in a way that
makes economic use of the wireless medium to reduce energy consumption. Finally,
several emerging applications require that nodes do not reveal “private” information
when coordinating their decisions with the others.

The idea of optimization in WSNs is of course not new and there are many
suggestions on algorithms, such as Rabbat et al. (2005), Wang (2007), and Blatt
et al. (2007). Rabbat et al. (2005) suggest a dual approach that we will come
back to later in this chapter. On the other hand, Blatt et al. (2007) pertain to
differentiable objective functions, which does not fit our purposes since we consider
potentially non-differentiable objective functions, and Wang (2007) focuses on the
fundamentally different approach of particle swarm optimization.

We will continue to focus on algorithms that are of peer-to-peer nature and do
not rely on any networking functionality apart from nearest neighbor communica-
tions, as defined in Section 2.3 on page 17. Furthermore, the algorithms suggest
rather different ways of coordinating nodes: from passing around a “best estimate”
using unicast transmissions to having nodes asynchronously broadcasting their sug-
gestion for the global variables. We implement a selection of promising algorithms in
the network simulator NS2 (NS2, 2008) and perform extensive and detailed packet-
level simulations of algorithm performance in wireless sensor networks equipped
with 802.15.4 radios (see IEEE (2006)), studying convergence rate and algorithm
accuracy. In addition, we implement the same algorithms on the Tmote Sky plat-
form. Finally, we perform experiments on these Tmote Sky motes to assess the
performance of the chosen algorithms.

6.2. Problem Formulation 145

1 2 3
f1(·) f2(·) f3(·)

Figure 6.1: Example setup with three nodes. A line between nodes implies that they
are connected.

6.2 Problem Formulation

We consider a convex optimization problem of the same type as in Chapter 3, i.e.,

minimize
x

∑n
i=1 fi(x)

subject to x ∈ X
(6.1)

where fi : R
ξ → R is a convex cost function associated with node i and x is a global

decision variable that all nodes should agree upon. Note that we can allow the node
to have “private” optimization variables by letting fi(x) � minyi∈Yi hi(x, yi) for
some function hi and set Yi, as long as fi is convex. The feasible set X is assumed
to be nonempty, convex, and closed. Associated to the problem is a communication
topology represented by a graph G with edges E and vertices V. The presence of
an edge (i, j) in G means that node i can communicate (i.e., exchange information)
directly with node j, and an example setup is illustrated in Fig. 6.1. The problem
is to choose an optimization algorithm that can be easily implemented in a WSN,
does not waste energy in the nodes, and does not introduce a lot of communication
overhead.

6.3 A Taxonomy of Solution Approaches

There are many ways of structuring the computations for finding the optimal solu-
tion x�.

The most obvious is a centralized approach where nodes pass information about
fi (if private variables are used, then it may not be possible to find a closed form
expression for fi and the nodes have to pass hi and Yi) to a central node that
solves the convex optimization problem (6.1) using, e.g., the techniques in Boyd and
Vandenberghe (2004), and then distributes the solution to the nodes. This solution
is sensitive to a single point of failure (the central node), requires individual nodes
to reveal their cost functions and constraint sets, and demands potentially complex
information transfer from nodes to the computational unit.

It is often more attractive to use a decentralized approach, where nodes collabo-
rate to find the optimal solution to the decision problem. One way to develop such
approaches is to rely on decomposition techniques from mathematical programming,
as we have done in Section 2 and in Section 4. Many decomposition methods ex-

146 Optimization in Wireless Sensor Networks

1

2

3

4

x
(k)
2

x
(k+1)
3

x
(k+2)
4

x
(k+3)
1

(a)

3

4

1

2
x

(k)
2

x
(k+1)
3

x
(k+2)
4

x
(k+3)
3

(b)

4

1

2

3

x
(k)
1

x
(k)
3

(c)

Figure 6.2: (a) The ring setup, where information is passed around in a logical ring.
(b) The random neighbor setup, where each node unicast information to a random
neighbor. (c) The broadcast setup, where each node broadcast information to their
neighbors. The broadcast setup and the random neighbor setup are both peer-to-peer.

ist and they suggest very different ways of structuring the computations and the
communication required for solving the decision problem.

One class of methods, based on incremental subgradient methods, which we
have discussed in Section 3.3, result in estimate passing solutions: the nodes are
organized in a ring, and the current estimate of the optimal solution is passed from
one node to the other; see Fig. 6.2a. When a node receives the current estimate, it
performs a local update accounting for its own cost functions and constraint, before
passing the modified estimate to the next node. In this approach, nodes do not need
to reveal their private objectives and constraints but the method requires reliable
communications as the messages conveying the current estimate must not be lost.
Other approaches suggest computations based on peer-to-peer communication and
coordination where nodes exchange information only with neighbors; see Fig. 6.2b
and Fig. 6.2c. No private information needs to be exchanged, and no network-wide
signalling needs to be implemented. In Fig. 6.2b, the current estimate is circulated
in the network; when a mote receives the estimate, it updates the estimate according
to its local cost function and passes the estimate to a random neighbor. In Fig. 6.2c,
all motes broadcast their current estimate to their neighbors at each iteration.

For the specific case when the nodes have no internal variables and the cost
functions are quadratic,

fi(x) = 1
2(x− ci)2, i = 1, ..., n,

many special algorithms exist, since the optimal solution is the network-wide aver-
age of the constants ci, which we discussed in detail in Section 5.2. Although the
theory for the quadratic case, i.e., consensus algorithms, is rather well-developed, we

6.3. A Taxonomy of Solution Approaches 147

would like to stress that those algorithms do not, in general, apply to our problem
formulation (6.1).

6.3.1 The Impact of Wireless Communications

In our classification above, communication has been modeled in a very crude and
abstract way. However, for wireless devices, the precise details of the communica-
tion strategy are critical and can have a large influence on message latency and
node energy consumption. In this chapter, we focus on tiny WSN nodes and study
algorithms that make minimal assumptions on the routing layer, and that oper-
ate using the most basic version of contention-based medium access without tight
synchronization of node clocks and communication schedules. Specifically, in our
peer-to-peer optimization algorithms nodes only communicate with their immedi-
ate neighbors and no multihop routing is required or exploited. Within this class of
solutions, energy efficiency can be achieved by reducing the actual time required for
the algorithm to converge. A first-order approximation is simply the classical con-
vergence rate in terms of expected progress per iteration. However, since different
methods dictate different communication patters, the problem is more complex. To
increase efficiency, one can either try to exploit the broadcast nature of the wireless
medium (to avoid repeated unicast transmissions with the same information) or
limit the number of retransmissions due to collisions.

6.3.2 MAC Layer

The wireless communication channel in a WSN is a resource that all nodes share. For
proper operation of the network, it is therefore critical that some efficient channel
allocation scheme is used to control access to this shared resource. Such schemes or
protocols usually reside (logically) in the so-called Medium Access Control (MAC)
layer, and we will now touch upon some of the characteristics of the MAC layer
relevant for our purposes.

The target application is sensor networks, and the dominating standard for such
networks is the IEEE standard 802.15.4 (IEEE, 2006). This protocol has support
for several modes of operation. Since the algorithms we consider are based on peer-
to-peer communication, we will focus on 802.15.4 in peer-to-peer operation. In this
mode of operation, 802.15.4 uses so-called unslotted Carrier Sense Multiple Access
- Collision Avoidance (CSMA-CA); see, e.g., Rom and Sidi (1990, Chapter 4) for
details on CSMA. Unslotted CSMA-CA basically works like this: a node that wishes
to transmit listens to the channel. If the channel appears to be idle, the node
starts to transmit. On the other hand, if the channel is not idle, the node backs
off according to the scheme presented in Fig. 6.3. In the case that two or several
nodes’ transmissions overlap and they are so close to each other that they cause
sufficiently high interference, then the nodes immediately stop transmitting and
wait for a random time before transmitting again.

148 Optimization in Wireless Sensor Networks

Node has

something to

transmit

BE=macMinBE

Delay for random

(2BE -1) unit

backoff periods

Perform CCA

Channel idle?

BE=min(BE+1,macMaxBE)

Success
Y

N

Figure 6.3: Flowchart showing the MAC scheme, with the following abbreviations:
Clear Channel Assessment (CCA) and Backoff Exponent (BE).

Some of the optimization algorithms that we will implement are synchronized in
the sense that they require that all communication activities have been completed in
order to proceed to the next step in the algorithm. Thus, we need reliable communi-
cations, and we can address this by using acknowledgement packets (ACKs). There
is an ACK functionality in 802.15.4, but it is not always suited for our purposes.
More specifically, we will have problems with acknowledging broadcast messages,
since the built-in ACK functionality directly replies with an ACK without any ran-
dom waiting time. The direct reply could lead to many collisions if the broadcast
message is received and acknowledged by several nodes at the same time. To solve
this predicament, we will have some additional functionality at the application layer;
see Section 6.5.1.

6.4 Algorithms

We will now have a detailed look at the algorithms that we will implement. For all
algorithms, we make, as usual in this thesis, the following assumptions.

Assumption 6.4.1. i) The nodes form a connected network. ii) The functions fi
are convex and the set X is convex and closed.

6.4. Algorithms 149

6.4.1 Dual Decomposition Based Algorithms
Dual based methods introduce one “local” copy of x in each node, and update
these estimates so that they converge towards the optimum. Formally, this is done
by introducing multiple copies of the global variables, requiring that these should
be equal, and then relaxing these constraints; see Rabbat et al. (2005).

We re-write the problem as

minimize
(x1,...xn)

∑n
i=1 fi(xi)

subject to xi ∈ X , i = 1, ..., n
xi = xj , (i, j) ∈ E .

(6.2)

If the communication topology is connected, then the formulation (6.2) is equivalent
to (6.1). In general, all these constraints are not necessary: a necessary and suffi-
cient condition for equivalence between the two formulations is that equalities are
introduced for the smallest set of links that keep the nodes connected (cf. Schizas
et al. (2007)). We can re-write the problem into a more compact form

minimize
x

∑n
i=1 fi(xi)

subject to xi ∈ X , i = 1, ..., n
Ax = 0,

(6.3)

where x =
(
x1 . . . xn

)ᵀ, and A ∈ R
|E|×n. Each row in the matrix A corresponds

to a link in G, and the elements of A are defined as (in the literature, this type of
matrix is sometimes denoted the directed incidence matrix)

Ali =

⎧⎪⎨⎪⎩
1, if link l connects node i with node j, i > j
−1, if link l connects node i with node j, i < j

0, otherwise.
(6.4)

We can of course also write the previously mentioned minimum needed number of
equalities in this way.

In this formulation, the computations are complicated by the constraint Ax = 0,
which couples the local estimates of the network-wide decision variables across
nodes. To distribute the computations to the nodes, we apply Lagrange dual de-
composition to the formulation (6.3). Formally, we introduce the Lagrangian

L(λ, x) =
n∑
i=1
fi(xi) + λᵀAx

and the dual function

d(λ) = min
x

L(λ, x)
subject to xi ∈ X , i = 1, ..., n.

(6.5)

150 Optimization in Wireless Sensor Networks

The Lagrange multipliers, λ, can be interpreted as “prices” for disagreeing with
neighbors on the best global variable value, as previously discussed.

We make the following additional assumption.

Assumption 6.4.2. i) Strong duality holds for (6.3). ii) the subgradients a(λ) of
d(λ) are bounded, with ‖a(λ)‖ ≤ ϕ for all values of λ.

The dual function can be written as d(λ) =
∑n
i=1 di(λ) with

di(λ) = min
xi
fi(xi) + xi[Aᵀλ]i

subject to xi ∈ X .
(6.6)

Note that the dual function is separable, i.e., for fixed λ the nodes can individually
decide the optimal values of its local variables xi by evaluating di(λ). When strong
duality holds (which it does by Assumption 6.4.2; also, see Section 2.7.1) the optimal
value of (6.1) is the same as the optimal value of the Lagrange dual problem

maximize
λ

∑n
i=1 di(λ). (6.7)

However, when the cost functions are not strictly convex, there may be problems
recovering the primal optimal x�; see, e.g., Example 2.7.1.

Subgradient Algorithm

The dual function is not differentiable in general, and the simplest way to perform
the maximization in (6.7), is to use a subgradient algorithm. Thus, we need a
subgradient, a, of d at λ. One subgradient is given by

a = Ax�(λ), (6.8)

where x� is the x that minimizes the Lagrangian for the given λ (see, e.g., Bertsekas
et al. (2003, Chapter 8) for details). Now we have all the pieces needed for a de-
centralized algorithm that solves (6.3), and the result can be seen in Algorithm 11.

Under Assumptions 6.4.1 and 6.4.2, and since we are using a fixed stepsize and
the dual function is not necessarily differentiable, we can only guarantee that the
best iteration of Algorithm 11 can be shown to converge to a ball around the optimal
value f�; see Section 2.6.1. There are also convergence results for this algorithm
when there are packet losses and the cost function is quadratic; see Rabbat et al.
(2005).

As we previously pointed out, the dual function is in general non-differentiable
due to the lack of strict convexity. This means that it can be troublesome to find
the optimal x� (see Example 2.7.1) and it also hinders us from using other methods
than those based on subgradients. One remedy is to add a quadratic term to the

6.4. Algorithms 151

Algorithm 11 Dual Based Subgradient Method (DBSM) .

1: Let k ← 0 and λ(0) ← 0.
2: loop
3: Each node i solves

minimize
xi

fi(xi) + xi
(∑

{l|Ali �=0}Aliλ
(k)
l

)
subject to xi ∈ X

to get x(k)
i .

4: Each node i transmits its optimal x(k)
i to its neighbors.

5: Each node i updates the elements of λ(k) that are part of its Lagrangian

λ
(k+1)
l ← λ(k)

l + α
∑
{j|Alj �=0}Aljx

(k)
l , l ∈ {m|Ami
= 0}.

6: k ← k + 1.
7: end loop

Lagrangian, and we form the so-called Augmented Lagrangian

Lc(λ, x) =
n∑
i=1
fi(xi) + λᵀAx− c2 ||Ax||

2
2.

Using the Augmented Lagrangian, we can use the method of multipliers or the
alternating direction multiplier method (Bertsekas and Tsitsiklis, 1997). The most
interesting theoretical property of these algorithms is that they converge for all
constant stepsizes. However, in practice, tuning is still crucial to give acceptable
performance, and we will not investigate these variants in this thesis.

6.4.2 Primal Subgradient Algorithms
The functions fi are in general non-differentiable. Therefore, we have to resort
to using subgradient based algorithms. Let each (convex) component fi have a
subgradient ai(x) at x and we assume that they are bounded.

Assumption 6.4.3. The subgradients ai(x) ∈ ∂fi(x) of fi are bounded, ‖ai(x)‖ ≤
ϕ, for all values of x ∈ X .

The simplest algorithm that uses the primal formulation (6.1) and that is suit-
able for distributed implementation is the incremental subgradient algorithm. The
basic version is based on estimate passing in a logical ring (Rabbat and Nowak,
2004), but it does not fulfill our assumptions of a peer-to-peer algorithm, as we
have previously discussed. We will instead use our novel MISM from Chapter 3,
which is a peer-to-peer algorithm. The algorithm is summarized in pseudocode in
Algorithm 12.

152 Optimization in Wireless Sensor Networks

Algorithm 12 Markov Incremental Subgradient Method (MISM) .
1: Initialize x0 and α. Let k ← 0 and wk ← 1.
2: loop
3: At node wk, compute a subgradient, awk , for fwk(x(k)).
4: x(k+1) ← PX {x(k) − αawk}.
5: Send x(k+1) to a random neighbor, w(k+1), with transition probability accord-

ing to P .
6: k ← k + 1.
7: end loop

Algorithm 13 Linear Iteration Method (LIM) .

1: Initialize x(0)
i ← ci for all i = 1, ..., n. Set k := 0.

2: loop
3: Each node i broadcasts x(k)

i to all of its neighbors.
4: Each node i updates its x according to x(k+1)

i ←Wiix(k)
i +

∑
j∈N (i)Wijx

(k)
j .

5: k ← k + 1.
6: end loop

6.4.3 Linear Iterations for the Quadratic Case
For the special case with quadratic cost functions

fi(x) = 1
2(x− ci)2, i = 1, ..., n, (6.9)

the optimal solution is the average, x� =
∑n
i=1 ci/n, and any of the vast number

of algorithms for distributed averaging can be used. As discussed in Chapter 5, the
simplest algorithms have the following form

x(k+1) =Wx(k),

where W is a weighting matrix. Necessary and sufficient conditions on W to guar-
antee convergence to the average have been given in Section 2.3, where we also
provide simple heuristics that can be used to devise W using only local topology
information. Furthermore, in Section 5.2, we have discussed ways to optimize the
convergence rate of this iteration. The resulting algorithm is summarized in Algo-
rithm 13.

6.5 Simulations

We have concentrated our efforts on evaluating the previously introduced algo-
rithms: DBSM (Algorithm 11), MISM (Algorithm 12), and LIM (Algorithm 13).
There are, as mentioned before, an abundance of algorithms, and we have chosen

6.5. Simulations 153

0 20 40 60 80 100
0

20

40

60

80

100

x

y

Figure 6.4: The topology for one of the random networks with 15 nodes used in
the Monte Carlos simulations. The filled circles denote nodes and a line between two
nodes indicate that they can transmit to each other.

these three due to their interesting properties and their simplicity. We consider the
standard example of least-squares estimation: the nodes should minimize the devi-
ation between the estimate and the measurements in the quadratic sense; see (6.9).

We now proceed with describing the NS2 simulation setup and implementation
details of the algorithms.

6.5.1 NS2 Implementation

NS2 is an event driven network simulator that is widely used in the networking
community. We decided to use it for our simulations, since it provides detailed
and validated descriptions of the MAC layer and networking algorithms, including
an 802.15.4 module and several models for wireless radio propagation. We have
modified the simulation environment, such that the behavior of the nodes at the
application layer is consistent with the optimization algorithms described in this
thesis, giving us the possibility to easily change the key parameters of each algorithm
through high level scripting (using the OTcl interface). We ran our application over
the 802.15.4 module for NS2 (Zheng and Lee, 2006), and the setup is summarized in
Table 6.1. The 802.15.4 module was set to peer-to-peer asynchronous mode, without
any beacon (the beacon, when active, is used to synchronize the network). To model
the wireless channel, we use the two-ray-ground propagation model, which considers
both the direct path and the ground reflection path, without any shadowing or
fading. For further information about the simulations, see Carretti (2008).

154 Optimization in Wireless Sensor Networks

Table 6.1: NS2 simulation setup.

Parameter Setting

Physical and MAC layer 802.15.4
Transmit Power 0.282 W
Antenna Omnidirectional at 1.4 m above the ground
Frequency 2.4 GHz
Propagation Model Two-ray-ground
Queue Droptail FIFO

6.5.2 DBSM
Due to the dual based subgradient algorithm’s resilience to packet losses (Rabbat
et al., 2005), we use unreliable broadcast. This means that each node broadcasts
its estimate to its neighbors but does not wait for ACKs. However, each node will
wait for a specific waiting time to receive estimates from its neighbors. During this
waiting time, each node broadcasts its estimate ζ times to the neighboring nodes,
to increase the probability of successful transmissions. The waiting time and the
number of retransmissions during the waiting time are tunable parameters. Finally,
the DBSM also has a tunable stepsize parameter, α. With a fixed stepsize, complete
convergence is not guaranteed, and we have to be satisfied with convergence to a
ball around the optimal solution; see Section 2.6.1.

6.5.3 MISM
The MISM has two tunable parameters, namely the stepsize α and the transition
probability matrix P (this could be considered to be many parameters). P can
be tuned to increase the exploration rate of the network. However, it is hard to
perform this tuning in a distributed fashion. Therefore, we use the simple scheme
given by (2.9).

6.5.4 LIM
For the linear iteration algorithm, we use reliable broadcast, since it is crucial
that the correct values are used in each iteration. This is due to the fact that
in the nominal case, the average is kept constant over time, and this average is
redistributed over the network to yield a uniform distribution. If some values are
missing, this value will disappear from the average and the algorithm will converge
to the wrong point. This is the same mechanism that makes this type of iteration
sensitive to noise (which we do not consider). The problem comes from the 1-

6.5. Simulations 155

eigenvalue corresponding to the eigenvector with all elements equal to one (this is
the eigenvalue corresponding to consensus).

We implement reliable broadcast by letting each node broadcasts its current
estimate to its neighbors, and then wait for ACKs. If the node does not get an
ACK within a fixed time-out window, it re-broadcasts its estimate again with a list
of nodes from which it did not get any ACKs. The time-out window length is a
tunable parameter and it is reasonable to let it depend on the number of nodes in
the network (whenever this is known).

6.5.5 Performance Metrics

Depending on the precise configuration, most current WSN nodes have higher power
consumption when receiving than when transmitting. For example, the Tmote Sky
mote typically consumes 19.7 mA when receiving, and it consumes 17.4 mA when
the radio is transmitting at maximum power 0 dBm = 1 mW (Tmote, 2008). This
is sometimes neglected in the current literature, where listening is considered to be
practically free or at least very cheap. In general, this may be true; transmitting
can in fact be much more expensive than receiving, but it is usually not the case
in WSNs.

Since the nodes are active all the time, due to the peer-to-peer mode, the relevant
metric for nodes with higher power consumption while receiving than transmitting
is the rate of convergence in terms of time. This is the metric we use in this chapter.
On the other hand, in a setup where transmission is much more expensive than
reception, then the relevant metric could be convergence time in terms of number
of packets sent.

6.5.6 NS2 Simulations

For DBSM, we set the waiting time to 0.1 seconds and the number of retransmis-
sions, ζ, to 3. These parameters were found by direct experimentation. Furthermore,
we set the stepsize α to 0.01, 0.04, and 0.08. For MISM, we set the stepsize α to
0.01 and 0.08. For LIM, we set the time-out window to 1 + n/20 seconds, which is
a value that performed well in simulations.

We imported Matlab generated random network topologies into NS2. The gra-
phs were generated as follows: First, we randomly placed the nodes according to
a uniform distribution on a square surface. Second, each node was assumed to be
connected with all nodes within a radius r, which is a so-called unit disk graph.
The radius r was initially set to be the maximum distance between a pair of nodes,
which implies that the network was fully connected at the start. Finally, the radius
was gradually decreased just until the network ceased to be connected. We then
configured the radio environment in NS2 such that each node had exactly those
neighbors specified by the imported graph.

The random network topologies were used to evaluate typical performance of
the algorithms, and we performed 1000 Monte Carlo simulations for each setup.

156 Optimization in Wireless Sensor Networks

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

E
rr

or

(a)

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

E
rr

or

(b)

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

E
rr

or

(c)

Figure 6.5: These plots show the average of 1000 Monte Carlo simulations of the
individual node error for 10 node random topologies. (a) DBSM, with α = 0.08. (b)
MISM, with α = 0.01 (c) LIM.

6.5. Simulations 157

0 20 40 60 80 100

10
−2

10
−1

10
0

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

α = 0.01
α = 0.04
α = 0.08

(a)

20 40 60 80 100

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

α = 0.01
α = 0.08

(b)

20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

(c)

Figure 6.6: These plots show the average of 1000 Monte Carlo simulations of the
average of the absolute error for all nodes versus time for the 5-node random topology;
see Fig. 6.4 for an example of a typical random network. The thick lines are the
averages and the error bars show the standard deviation1. The optimal x is x� = x̄ =
2.04. (a) DBSM. The algorithm was run with 3 different α values according to the
legend. (b) MISM. The algorithm was run with 2 different α values according to the
legend.(c) LIM.

158 Optimization in Wireless Sensor Networks

0 20 40 60 80 100

10
−1

10
0

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

α = 0.01
α = 0.04
α = 0.08

(a)

20 40 60 80 100

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

α = 0.01
α = 0.08

(b)

20 40 60 80 100

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

(c)

Figure 6.7: These plots show the average of 1000 Monte Carlo simulations of the
average of the absolute error for all nodes versus time for the 15-node random topology;
see Fig. 6.4. The thick lines are the averages and the error bars show the standard
deviation1. The optimal x is x� = x̄ = 1.94. (a) DBSM. The algorithm was run with
3 different α values according to the legend. (b) MISM. The algorithm was run with
2 different α values according to the legend.(c) LIM.

6.5. Simulations 159

20 40 60 80 100

10
−2

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

15 nodes
10 nodes
5 nodes

(a)

20 40 60 80 100

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

15 nodes
10 nodes
5 nodes

(b)

20 40 60 80 100

10
−5

10
−4

10
−3

10
−2

10
−1

Time [s]

1 N

∑ N n
=

1
|θ

n
(t

)
−

θ̄|

15 nodes
10 nodes
5 nodes

(c)

Figure 6.8: These plots show the average of 1000 Monte Carlo simulations of the
average of the absolute error for all nodes versus time for random topologies with
5, 10, and 15 nodes. The thick lines are the averages and the error bars show the
standard deviation1. (a) DBSM. The algorithm was run with α = 0.04. (b) MISM.
The algorithm was run with α = 0.01. (c) LIM.

160 Optimization in Wireless Sensor Networks

We started with 10-node networks with random positions. The number of nodes is
low enough to admit a detailed inspection of the algorithm behavior, but still high
enough in order for the algorithms to have interesting behavior. The individual node
errors are shown in Fig. 6.5. We can see that the MISM has the fastest convergence
to stationarity, but with higher bias than the DBSM (almost no bias). The LIM
should theoretically not have any bias, but convergence is probably hindered by
quantization. Furthermore, the LIM continues to improve after 10 seconds (the
time span 0 - 10 seconds is shown), as can be seen in Fig. 6.8; however, the LIM
does not converge completely.

Then, we simulated 5-node networks with random positions; see Fig. 6.6. The
average absolute errors are shown in Fig. 6.7. Again, we can see that MISM has
the fastest convergence to stationarity but has larger bias than the DBSM and the
LIM. The LIM is the slowest method, but it reaches high accuracy in the end.

Next, we simulated 15-node networks with random positions; see Fig. 6.4. The
average absolute errors are shown in Fig. 6.7. Again, we can see that the MISM has
the fastest convergence to stationarity but has larger bias than the DBSM and the
LIM. This time, the DBSM comes closer to the optimal value than the LIM.

Finally, we compared, as illustrated in Fig. 6.8, the three algorithms on random
networks with 5, 10, and 15 nodes, using the best parameters found (DBSM: α =
0.04. MISM: α = 0.01). The plots indicate that LIM has much slower convergence
when the number of nodes is increased, and that LIM does not seem to scale well
with the number of nodes. DBSM is less affected by the number of nodes, but the
convergence time is slower and the bias is increased when the number of nodes
is increased. MISM is least affected by the number of nodes, and the convergence
behavior is almost the same when the number of nodes is increased. However, the
bias will also increase.

6.6 Implementation on Tmote Sky Motes

In this section, we describe how the algorithms were implemented on the Tmote
Sky motes using the open-source operating system TinyOS 2.0.1 (TinyOS, 2008).
The implementation is basically the same as in the NS2 simulations, but there are
some real world challenges.

6.6.1 Implementation Aspects

We implemented the algorithms on TMote Sky motes with TinyOs 2.0.1. The Tmote
Sky mote is a low power wireless node equipped with a 250 kbps 2.4 GHz IEEE
802.15.4-compliant transceiver; see Tmote (2008) for more details.

1If the error bars are plotted using x̄ ± σ, i.e., average ± standard deviation, then the lower
value, x̄ − σ, may end up below zero. Negative values will ruin the plot due to the log scale. To
get a more visually pleasing plot, the upper value of the error bar is u = x̄ + σ, while the lower
value of the error bar is l = x̄

1+σ
x̄

, and the following holds x̄ =
√
l · u.

6.6. Implementation on Tmote Sky Motes 161

We artificially limit the transmission power to −15 dBm = 31.6 μW to obtain
interesting network topologies in our indoor environment. The resulting graphs are
not fully connected, which are more interesting than fully connected graphs. The
implementation consists of three distinct phases: first, the motes enter a startup
phase with neighbor discovery. Second, the motes execute the chosen algorithm.
Third, the trace of the execution, for each mote, is downloaded via a base station.

Neighbor Discovery

In the first phase, the motes identify neighbors with which it can sustain reliable
communications. This step is necessary in order to know where the packets should
be sent. The hard part is that the algorithms need symmetric graphs, otherwise they
will not function properly. Thus, each mote needs to figure out if the motes that it
can hear also can hear it. However, note that this is a consensus type problem, and
if the links are unreliable, it is in fact impossible to agree with complete accuracy
(Lynch, 1996, Theorem 5.1).

Neighbor discovery is not part of the optimization algorithms per se, and there-
fore, we implemented a crude and simple neighbor discovery algorithm. In this
scheme, each mote broadcasts HELLO packets in a random non-periodic fashion. If
a mote receives a HELLO packet, it sends an ACK indicating that it can hear the
mote that sent the HELLO packet. To diminish the influence of stochastic effects,
we program the motes to discard packets with a low Received Signal Strength Indi-
cator (RSSI) value and a low Link Quality Indicator (LQI) value. The RSSI value
is an indicator of the power of the received signal. If there is no interference from
other devices this can be very useful. However, there can still be many reception er-
rors even with a high RSSI value if the power comes from interfering transmissions.
Therefore, we also require the LQI value to be above a certain threshold, since the
LQI value is a measure of the number of errors of the received symbols defining each
packet. This is not a perfect solution, but it is sufficient for our purposes and we
note that link estimation is inherently tricky (see, e.g., Srinivasan and Levis (2006)
for some experiments and discussion). Furthermore, the motes also keep track of
the ratio between the number of received ACKs and the number of HELLO packets
sent. Finally, if the ratio is above a certain threshold, the corresponding mote is
considered to be a neighbor where packets can be reliably sent.

Algorithm Execution

The algorithms are implemented essentially in the same way as in the NS2 imple-
mentation. The greatest difference is that all data sent between motes in the real
WSN have to be converted to integer values. This will make sure that the software is
portable to other hardware, since the standard on how to store variables in memory
is hardware dependent. In our implementation, we use 4 digits accuracy to transmit
the iterate between the motes and we loose some precision in this process, which
will show up as quantization effects and noise.

162 Optimization in Wireless Sensor Networks

1

2
3

4

Figure 6.9: This is the topology used in the experiments with 4 nodes. The figure
only illustrates the logical topology, i.e., neither the actual distance between the nodes
nor the nodes’ positions can be seen. Each solid line indicates a directed link.

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

Time (s)

∑ 4 i=
1
|f

�
−

f
(x

(k
)

i
)|/

(4
|f

�
|)

LIM
DBSM α = 0.01
DBSM α = 0.1
MISM α = 0.01

Figure 6.10: Convergence results with 4 nodes.

Download Trace

In the download phase, the base station queries each mote. Then, the motes, one
at a time, transmit the trace data at full transmission power (1 mW) to the base
station.

6.6.2 Experimental Results on Tmote Sky Motes
We performed experiments using a 4 mote and a 6 mote configuration. Let us start
with the 4 mote case. The logical topology is shown in Fig. 6.9. The figure only
shows which links the motes used, i.e., there is not a direct correspondence with the
physical location of the motes. The convergence of the three algorithms for different
stepsizes are shown in Fig. 6.10. The MISM has rapid initial convergence, but after

6.6. Implementation on Tmote Sky Motes 163

1

2

3

4

5

6

(a)

1

2

3

4

5

6

(b)

1

2

3

4

6

5

(c)

1

2

3

4

5

6

(d)

1

2

3

4

5

6

(e)

Figure 6.11: These are the topologies used in the experiments with 6 nodes. Due to
the stochastic nature of the wireless channel and the communication protocols, the
neighbor discovery phase, which is run before each execution phase, did not result in
identical topologies. The figure only illustrates the logical topology, i.e., neither the
actual distance between the nodes nor the nodes’ positions can be seen. Each solid
line indicates a directed link. a) LIM. b) DBSM with α = 0.01. c) DBSM with α = 0.1.
d) MISM with α = 0.01. e) MISM with α = 0.1.

5 seconds it seems to fluctuate around a plateau. The MISM was also executed with
α = 0.1, but since its convergence plot bears a very strong resemblance with the
plot for α = 0.01, it is not included in the figure to increase the readability of the
plot. The DBSM converges steadily for both α = 0.1 and α = 0.01, but it has slower
initial convergence behavior compared to the MISM. The LIM performs similarly
to the DBSM in the beginning, but it shows a sudden drop after 15 seconds. In this
scenario, the LIM outperforms the other methods. If a rapid initial convergence is
desired, the MISM could be useful. Also note that we should not expect convergence
to the true optimal point due to quantization effects in the communications.

We also performed experiments using a 6 mote configuration. The logical topol-
ogy is shown in Fig. 6.11. Due to the fact that the neighbor discovery phase is
executed before the execution of each algorithm and the fact that the wireless chan-
nel is stochastic in combination with a simplistic neighbor discovery algorithm, the
topologies are not the same. The figure only shows which links the motes used, i.e.,
there is not a direct correspondence with the physical location of the motes. The

164 Optimization in Wireless Sensor Networks

5 10 15 20 25 30

10
−1

Time (s)

∑ 6 i=
1
|f

�
−

f
(x

(k
)

i
)|/

(6
|f

�
|)

LIM
DBSM α = 0.01
DBSM α = 0.1
MISM α = 0.01
MISM α = 0.1

Figure 6.12: Results with 6 nodes.

convergence of the three algorithms for different stepsizes are shown in Fig. 6.12.
The MISM with α = 0.1 has rapid initial convergence, but after 3 seconds it starts
to fluctuate around a constant level. The MISM with α = 0.01 converges at the
same pace as the DBSM with α = 0.1 and the LIM in the start, but after circa
10 seconds it also levels off. The DBSM with α = 0.1 converges steadily close to
the LIM in the beginning. The DBSM with α = 0.01 is clearly outperformed by
the other algorithms, even though it shows a constant, but slow, convergence rate.
Finally, the LIM’s convergence behavior is very similar to the other methods in
the beginning and it shows a sudden drop at around 10 seconds. The LIM is the
best algorithm also in this experiment if accuracy is the first priority. The MISM
can be useful in applications where only swift initial convergence is needed. In ad-
dition, in Fig. 6.13, we take a detailed look at the individual values of the motes
for the 6 mote experiment. We see that the characteristics of each algorithm are
consistent with the characteristics in the simulations in Fig. 6.5, although the sim-
ulations plots are averages over 1000 Monte Carlo simulations (also note that the
time scale is different). This strengthens our faith in the simulations. Furthermore,
in the MISM, the individual mote values quickly converge to a time varying signal.
The LIM converge quite fast to the true optimum, while the DBSM can be seen to
take a long time before the mote values converge to the same value.

6.6. Implementation on Tmote Sky Motes 165

0 10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

2.5

3

Time (s)

x
(k

)
i

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

(a)

0 10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

2.5

3

Time (s)

x
(k

)
i

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

(b)

0 10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

2.5

3

Time (s)

x
(k

)
i

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

(c)

Figure 6.13: These plots show the individual value for each mote in the 6-node
networks shown in Fig. 6.11. (a) DBSM. The algorithm was run with α = 0.01. (b)
MISM. The algorithm was run with α = 0.01. (c) LIM.

166 Optimization in Wireless Sensor Networks

6.7 Summary

In this chapter, we have considered peer-to-peer algorithms for distributed optimiza-
tion in wireless sensor networks. We have evaluated the performance of three specific
algorithms on network nodes equipped with 802.15.4 compliant radios. While the
linear iteration algorithm is tailored for averaging (least-squares) problems, where
it excels in networks with few nodes, it is not applicable to general optimization
problems. The other two algorithms are complementary and work surprisingly well
in our simulations.

The simulations indicate that broadcast algorithms, where each node needs data
from all of its neighbors to complete one iteration, do not scale with the number
of nodes. One way of mitigating this is to divide the network into clusters and run
the broadcast algorithm within each cluster; see, e.g., Son et al. (2005).

An interesting observation is that it is a design choice to put the stochastic be-
havior of the resulting system (optimization algorithm plus communication mech-
anism) either in the algorithm or in the communication mechanism. If we use a
stochastic algorithm, in which the updates are explicitly stochastic, then we can
use an unreliable communication mechanism with known time delay and number
of required packets. On the other hand, if we use a deterministic algorithm, then
we need a reliable communication mechanism, in which the time delay and number
of packets needed are uncertain.

The algorithms require the graph to be symmetric, which turned out to be a
bit problematic to guarantee with the simplistic neighbor discovery algorithm we
used. Neighbor discovery is an active area of research (see, e.g., Hamida et al. (2006)
and Dutta and Culler (2008)) and the performance could probably be increased if
we use a protocol available in the literature. Furthermore, the problem could be
mitigated with an extension of the simplistic neighbor discovery algorithm, which
should ensure that the resulting graph is symmetric with high probability. Another
potential remedy is to extend the optimization algorithms to handle unsymmetric
graphs as well. We did not have this problem in the NS2 simulations, since we
specified the radio ranges exactly to fit the generated graph.

The real WSN experiments show that the algorithms work rather well also in a
real WSN. However, since most of the algorithms are quite stochastic in their nature,
more experiments need to be conducted in order for us to say something with more
accuracy. It is also interesting that the algorithm choice affects the communication
pattern, which in turn will change the communication topology. That is, links that
are considered reliable under one specific optimization algorithm may be totally
unreliable when another optimization algorithm with a different communication
pattern is used, due to interference.

Future work includes evaluating alternative algorithms, and investigating, in
greater detail, the impact of tuning of the parameters.

Chapter 7

Discussion and Future Work

In this thesis, we have developed three novel optimization algorithms that only
rely on peer-to-peer communication and are suitable to be used in networked sys-
tems. Furthermore, we have designed resource allocation protocols for FDMA and
STDMA communication networks using decomposition techniques. We have also
devised a distributed negotiation scheme for optimal rendezvous points for multi-
agent systems, as well as we have looked into the problem of boosting the conver-
gence of linear iterations for distributed averaging. Finally, we have implemented
and evaluated some of the most promising optimization algorithms on our WSN
testbed.

In this chapter, we summarize and discuss each chapter of the thesis. In addition,
we also outline possible and natural extensions, as well as broader ideas for future
work.

7.1 Chapter 3

In Chapter 3, we have presented three optimization algorithms where there is no
need for a central processing unit to whom each node should communicate its local
subgradient. Two of the algorithms solve a general convex non-smooth optimization
problem with an additive objective function, and the third algorithm solves a non-
smooth separable resource allocation problem with a constant sum constraint.

First, we have proposed a novel randomized incremental subgradient method,
the Markov incremental subgradient method, which is well suited for decentral-
ized implementation in networked systems. The algorithm is a generalization of
the deterministic incremental subgradient method and the randomized incremen-
tal subgradient method due to Nedić and Bertsekas. These two algorithms can be
recovered by choosing the transition probability matrix of the Markov chain in a
special way. The algorithm has been analyzed in detail with a proof of convergence
proof and a bound on the expected number of needed iterations to reach an a priori
specified accuracy.

Second, we have described an iterative subgradient-based method for solving

167

168 Discussion and Future Work

coupled optimization problems in a distributed way given restrictions on the com-
munication topology. In order to allow great flexibility in the information exchange
architecture and distribute calculations, we combined the local subgradient updates
with a consensus process. This means that computing nodes can work in parallel
with each other and use localized information exchange. For analysis purposes, we
used results from consensus theory and employed approximate subgradient methods
to study convergence properties of the proposed scheme. A connection is established
between the number of consensus steps and the resulting level of optimality obtained
by the subgradient updates.

Third, we have shown that under some mild technical assumptions, the center
free algorithm introduced by Ho et al. (1980) can be extended to the subgradient
case. Furthermore, the algorithm converges in an ε-sense if the stepsize is chosen
sufficiently small and the number of consensus iteration per subgradient update is
chosen sufficiently large.

7.1.1 Future Work
Subgradient methods are very applicable due to their simplicity; the drawback is
that they can be slow. It would therefore be interesting to see if some type of higher
order methods could be used, which could potentially lead to faster convergence.

Different choices of the stepsize should be explored, e.g., diminishing stepsizes.
Furthermore, techniques from stochastic optimization (see, e.g., Kushner and Yin
(2003)) could potentially be used. However, for the MISM algorithm, this is already
done to some extent in Ram et al. (2008).

How should the different parameters be tuned? Should we decrease the stepsize
or increase the number of consensus iterations to get closer to optimality? This is a
variant of the interesting trade-off: is it beneficial to communicate more information
per iteration and use a faster converging algorithm? The experience from this thesis
indicate that the choice will very much depend on the specific application and setup,
which is probably not that surprising.

To improve scalability, it is the author’s intuition that the network should be
partitioned into clusters and run some algorithm in each cluster, then have a master
problem on top; see, e.g., Son et al. (2005).

It would be useful to consider asynchronous or partially asynchronous communi-
cations, perhaps using the framework presented in Bertsekas and Tsitsiklis (1997).
As mentioned in Section 3.4, this has already been done to some extent in Nedić and
Ozdaglar (2007b). Furthermore, if the methods are going to be used in embedded
systems in applications, the implementation should be made robust against model
errors, quantization, and packet drops.

7.2 Chapter 4

This chapter has used the well-known decomposition techniques reviewed in Chap-
ter 2 to design utility-maximizing mechanisms for two networking technologies,

7.2. Chapter 4 169

namely frequency-division multiple access and spatial reuse time-division multiple
access.

In addition, we have presented a flow chart that can be useful in order to catego-
rize and visualize previous results in the NUM literature. The flowchart highlights
the inherent steps in posing, decomposing, and solving NUM optimization problems.
Furthermore, the flowchart, with examples and a tutorial, is available on-line on
the Internet. This opens up for the possibility of refining the flowchart and adding
relevant results when they appear.

We have developed two center-free algorithms that optimally allocate the spec-
trum in a FDMA network. The first algorithm is based in dual relaxation and the
second algorithm is based in primal decomposition. The algorithms have different
time-scale properties.

Next, we have developed two algorithms to be used to devise a transmission
schedule for a STDMA network. The algorithms are based on primal decomposition
and on the premise that the schedule is augmented indefinitely. We have shown
that the algorithms asymptotically reach the optimum under certain assumptions.
However, an infinite schedule is not practical, and in practice, the schedule length
is fixed. The most natural way of addressing this potential problem is to remove
the oldest slot and replace it with a new slot. It turns out that this heuristic works
very well in simulations.

7.2.1 Future Work

We need simple tuning rules that are robust. Most, if not all, results in the literature
seem to depend rather critically on the network topology, and as is it now, engineers
implementing these types of algorithms have to rely on trial and error in simulations
and experiments to tune the algorithms.

Implementation experiments would be very interesting to perform; this is al-
ready taking place to some extent; see, e.g., Balucanti et al. (2009) and Warrier
et al. (2008).

The heuristic to use a fixed number of slots in STDMA where the oldest slot is
replaced with a new one works very well in simulations. However, the performance
loss should be quantified and also bounded if possible.

There some recent results that allow us to re-write some nonconvex optimiza-
tion problems into equivalent convex optimization problems. This opens up for
interesting algorithms that can solve hard (at least in their nonconvex formula-
tions) optimization problems without approximations; see, e.g., Papandriopoulos
et al. (2006).

If TCP is used for congestion control, it would be interesting to study the
dynamics of the resource allocation protocols using more accurate models, such as
the novel models presented in Möller (2008) and Jacobsson (2008).

170 Discussion and Future Work

7.3 Chapter 5

Primal decomposition and incremental subgradient methods provide an interesting
framework to pose distributed consensus problems. It has allowed us to consider
general linear models for the agents and easily handle convex input constraints
and linear state constraints. The convergence is mathematically guaranteed in the
simplest case when negotiation and motion phases are separated.

Motivated by the many different algorithms that have been proposed for dis-
tributed averaging, we have investigated the convergence of a more general class
of linear averaging iterations. First, we have considered linear iterations that allow
nodes to maintain several internal states. We have provided necessary and suffi-
cient conditions for convergence, and discussed some possible optimization schemes
to improve the convergence rate.

It is known that a classical result can be used to compute the optimal weights for
the single shift-register case; this provides us with a computationally inexpensive
way to find a weight matrix A that converges faster (in the asymptotic sense) than
the original algorithm in Xiao and Boyd (2004). A shift-register algorithm is better
if high accuracy is desired, while the optimal symmetric algorithm has better initial
convergence speed. In addition, numerical examples indicate that performance can
be vastly improved if we use a nonsymmetric matrix A. However, this optimization
problem is computationally intractable for larger network topologies.

For a truly distributed system, it is probably not possible to run any optimiza-
tion problem at all to find a good (or optimal) A matrix, especially since the com-
plete network topology needs to be known. In this case, the only viable methods are
the heuristic methods presented in Section 2.3, which require only local topology
information.

Finally, we looked at necessary and sufficient conditions for the convergence
to consensus of a larger class of linear iterations with an augmented state vector.
These conditions are not amenable for optimization in their present form.

7.3.1 Future Work

It is possible to use another optimization method instead of the incremental sub-
gradient method in the distributed negotiation scheme. This could potentially lead
to faster convergence and/or guaranteed progress per iteration.

A natural next step is to devise a convergence proof for an interleaved scheme,
where interrupted negotiations are interleaved with application of the resulting
control action in a receding horizon fashion. There have been some work recently
done in this direction, namely: a study on general conditions for convergence of
such schemes in Keviczky and Johansson (2008), and a convergence proof for a
related problem with very special agent dynamics (integrators) in Ferrari-Trecate
et al. (2007).

The consensus problem has received a significant amount of attention and the
area is rather well understood. However, it would be interesting to see if the novel

7.4. Chapter 6 171

general convergence conditions can be used to devise faster linear iterations.

7.4 Chapter 6

In this chapter, we have considered peer-to-peer algorithms for distributed optimiza-
tion in wireless sensor networks. We have evaluated the performance of three specific
algorithms on network nodes equipped with 802.15.4 compliant radios. While the
linear iteration algorithm is tailored for averaging (least-squares) problems, where
it excels in networks with few nodes, it is not applicable to general optimization
problems. The other two algorithms are complementary and work surprisingly well
in our simulations.

The simulations indicate that broadcast algorithms, where each node needs data
from all of its neighbors to complete one iteration, do not scale with the number of
nodes.

An interesting observation is that it is a design choice to put the stochastic be-
havior of the resulting system (optimization algorithm plus communication mech-
anism) either in the algorithm or in the communication mechanism. If we use a
stochastic algorithm, in which the updates are explicitly stochastic, then we can
use an unreliable communication mechanism with known time delay and number
of required packets. On the other hand, if we use a deterministic algorithm, then
we need a reliable communication mechanism, in which the time delay and number
of packets needed are uncertain.

The algorithms require the graph to be symmetric, which turned out to be a
bit problematic to guarantee with the simplistic neighbor discovery algorithm we
used. We did not have this problem in the NS2 simulations, since we specified the
radio ranges exactly to fit the generated graph. The simulations show that the
algorithms work well also in a real WSN. However, since most of the algorithms are
quite stochastic in their nature, more experiments need to be conducted in order for
us to say something with more accuracy. The MISM have rapid initial convergence,
but it will stay quite high all the way and it is fluctuating quite a bit.

Finally, our initial intuition that simple methods are very much needed have
indeed been reinforced by our implementation experiences.

7.4.1 Future Work

The assumption that (i, j) ∈ E implies that system i can communicate with j is
central in many of our problem formulations. Is this the correct abstraction? Our
experiments indicate that the answer is in the negative, since motes that are far
enough from each other to hinder reliable communications, may still be close enough
to interfere with each other.

All of the implemented algorithms contain several parameters not present in the
mathematical development of the optimization algorithms. Still, these parameters
are crucial to the actual performance. How to tune them is a hard and open problem.

172 Discussion and Future Work

The algorithms we have used need to have a symmetric topology, which turned
out to be problematic during our experiments. There are basically two solutions:
either devise better (but still simple) neighbor discovery protocols that make sym-
metric topologies highly probable or change the algorithms to handle nonsymmetric
topologies (directed graphs).

Appendix A

Notation

A.1 Symbols

Vectors are denoted with Latin characters, e.g., x, and are column vectors by default.
There will be some exceptions, such as i, j, k, l,m, n, which are scalars and are
mostly used for indexing. Otherwise, scalars are denoted with Greek characters,
e.g., ε. Also here we have an exception, namely λ, which is sometimes a row vector.
Matrices are denoted with capital letters, e.g., A. Functions will most often be
denoted with Latin characters, e.g., f and g. Sets are denoted with calligraphic
letters, e.g., X . The use of symbols in this thesis follows the table below.

� Definition
N Set of all natural numbers
R Set of all real numbers
R
ξ Set of all real vectors with ξ components

R
ξ×ζ Set of all real ξ × ζ matrices
G The (undirected) graph G = (V, E)
E Set of edges (or links)
V Set of vertices (or nodes or agents)
[x]i The ith element of the vector x
[A]ij The element on row i and column j in the matrix A
Aᵀ Transpose of the matrix A
⊥ Orthogonal complement
R(A) Range of matrix A
N (A) Nullspace of matrix A
A† The Moore-Penrose pseudoinverse of the matrix A
Ad The Drazin pseudoinverse of the matrix A

173

174 Notation

1n Column vector with all n elements equal to one
0n Column vector with all n elements equal to zero
I Identity matrix
Iκ Identity matrix in R

κ×κ

⊗ Kronecker matrix product
∇f(x) Gradient of f at x
∂f(x) The subdifferential, the set of all subgradients of f at x
x > y [x]i > [y]i for all i
x ≥ y [x]i ≥ [y]i for all i
A > B The square matrix A−B is positive definite
A ≥ B The square matrix A−B is positive semi-definite
x̄ Average of the vector x, x̄ �

∑n
i [x]i/n

x� An optimizer of the optimization problem at hand
f� The optimal objective value of the optimization problem at

hand
X � The set of optimizers of the optimization problem at hand,

X � � {x ∈ X |f(x) = x�}
Xε The set of ε optimizers, Xε � {x ∈ X | f(x) ≤ f� + ε}
Bη Ball with radius η, Bη � {x|‖x‖ ≤ η}
x(k) Iteration k of the vector x
L Lagrangian
d The dual function
E[x] Expected value of the random variable x
P{·} Probability of the event {·}
I{·} Indicator function for the event {·}
PX [x] Euclidean projection of x on the closed convex set X ,

PX [x] � arg minz{‖x− z‖ | z ∈ X}
distX [x] Minimum distance from the point x to the set X , distX [x] �

inf{‖x− z‖ | z ∈ X}
|X | The number of elements in the set X
|ε| Absolute value of ε
‖x‖ Euclidean norm, ‖x‖ �

√
xᵀx

‖x‖Q Weighted Euclidean norm, ‖x‖Q �
√

(Qx)ᵀQx, Q > 0
‖A‖ Spectral norm, ‖A‖ � supx�=0 ‖Ax‖ / ‖x‖
‖A‖Q Weighted spectral norm, ‖A‖Q � supx�=0 ‖Ax‖Q / ‖x‖Q ,

Q > 0
ρ(A) Spectral radius, ρ(A) � maxλ{|λ| |Ax = λx}

A.2. Acronyms 175

W W � {W ∈ R
n×n|[W]ij = 0, (i, j) /∈ E and i
= j}

A.2 Acronyms

ACK ACKnowledgment packet
AQM Active Queue Management
BMI Bilinear Matrix Inequality
CSMA-CA Carrier Sense Multiple Access - Collision Avoidance
CSM Consensus Subgradient Algorithm
DISM Deterministic Incremental Subgradient Method
FDMA Frequency-Division Multiple Access
HMC Homogeneous Markov Chain
IEEE Institute of Electrical and Electronics Engineers
KKT Karush-Kuhn-Tucker
LMI Linear Matrix Inequality
LQI Link Quality Indicator
MAC Medium Access Control
MISM Markov Incremental Subgradient Method
MC Markov Chain
NCRM Non-smooth Center-free Resource allocation Method
NUM Network Utility Maximization
OSI Open Systems Interconnection
RISM Randomized Incremental Subgradient Method
RSSI Received Signal Strength Indicator
SDP Semi-Definite Program
SINR Signal to Interference Noise Ratio
STDMA Spatial reuse Time-Division Multiple Access
TCP/IP Transport Control Protocol / Internet Protocol
TDMA Time-Division Multiple Access
WSN Wireless Sensor Network

Appendix B

Numerical Experiments

B.1 Numerical Experiment Details for Chapter 3

The following probability transition matrix was used

P =

⎛⎜⎜⎜⎜⎜⎜⎝
0.44951 0.2632 0 0 0.28729
0.2632 6.5155 · 10−11 0.4736 0 0.2632

0 0.4736 1.9316 · 10−10 0.5264 0
0 0 0.5264 0.4736 0

0.28729 0.2632 0 0 0.44951

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.1)

We have that ρ(P − 1n1ᵀ
n/n) = 0.7846.

−2
−1

0
1

2

−2
−1

0
1

2
0

2

4

6

8

10

Figure B.1: Example of f̃i(x) with the parameters given in Table B.1.

177

178 Numerical Experiments

Table B.1: Parameters for the example function in Fig. B.1.

Param. Value Param. Value Param. Value

Q1

(
2 0
0 2

)
x̂i

(
0
0

)
β1 1

Table B.2: Parameters for the objective function; see Fig. 3.4.

Param. Value Param. Value Param. Value

Q1

(
1.4 0
0 1

)
x̂1

(
−2.1
−2.5

)
β1 1

Q2

(
2 0
0 1

)
x̂2

(
3.5
−2.1

)
β2 1.5

Q3

(
.1 0
0 .2

)
x̂3

(
1.1
−5.1

)
β3 1.5

Q4

(
2.5 0
0 2

)
x̂4

(
−3.5
2.1

)
β4 .5

Q5

(
1 0
0 1.5

)
x̂5

(
2.1
3.1

)
β5 .75

The following consensus matrix was used

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0.33331 0.33333 0 0 0.33336
0.33333 −0.16666 0.5 0 0.33333

0 0.5 −1.4988 · 10−6 0.5 0
0 0 0.5 0.5 0

0.33336 0.33333 0 0 0.33331

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.2)

We have that ρ(W − 1n1ᵀ
n/n) = 0.7638. Thus, it follows that ρ(P − 1n1ᵀ

n/n) >
ρ(W − 1n1ᵀ

n/n), as expected, since the problems of finding W and P are almost
identical, except that the feasible set is smaller for P (non-negativity of the ele-
ments).

Bibliography

L. Ahlin and J. Zander. Principles of Wireless Communications. Studentlitteratur
(1998).

I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci. A survey on
sensor networks. IEEE Communications Magazine, 40(8): 102–114 (2002).

E. Alba and J. M. Troya. A survey of parallel distributed genetic algorithms.
Complexity, 4(4): 31–52 (1999).

C. Antal, J. Molnár, S. Molnár, and G. Szabó. Performance study of distributed
channel allocation techniques for a fast circuit switched network. Computer Com-
munications, 21(17): 1597–1609 (1998).

K. J. Arrow and L. Hurwicz. Decentralization and computation in resource alloca-
tion. In P. W. Pfouts, editor, Essays in Economics and Econometrics, 34–104.
Chapel Hill: University of North Carolina Press (1960).

K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Non-linear Pro-
gramming. Stanford University Press (1958).

L. Balucanti, M. Belleschi, P. Soldati, M. Johansson, and A. Abrardo. An optimal
cross-layer protocol for ds-cdma ad-hoc networks: design and implementation. In
IEEE Infocom (2009). Submitted.

N. Bambos, S. C. Chen, and G. J. Pottie. Channel access algorithms with active link
protection for wireless communication networks with power control. IEEE/ACM
Transactions on Networking, 8(5): 583–597 (2000).

S. Barbarossa and G. Scutari. Decentralized maximum likelihood estimation for sen-
sor networks composed of nonlinearly coupled dynamical systems. IEEE Trans-
actions on Signal Processing, 55: 3456–3470 (2007).

A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and appliations.
John Wiley & Sons (1974).

D. P. Bertsekas. Nonlinear programming. Athena Scientific (1999).

179

180 Bibliography

D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific (2003).

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Athena Scientific (1997).

D. Blatt, A. Hero, and H. Gauchman. A convergent incremental gradient method
with a constant step size. SIAM J. Optim., 18(1): 29–51 (2007).

S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a graph. SIAM
Review, 46: 667–689 (2004).

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press
(2004).

P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues.
Springer-Verlag (1999).

R. Bush and D. Meyer. Some Internet Architectural Guidelines and Philosophy.
RFC 3439 (Informational) (2002). URL http://www.ietf.org/rfc/rfc3439.
txt.

M. Cao, D. A. Spielman, and E. M. Yeh. Accelerated gossip algorithms for dis-
tributed computation. In Allerton Conference (2006).

C. M. Carretti. Comparison of Distributed Optimization Algorithms in Sensor
Networks. Master’s thesis, Royal Institute of Technology (KTH) (2008).

M. Chiang. Balancing transport and physical layers in wireless multihop networks:
jointly optimal congestion control and power control. IEEE Journal on Selected
Areas in Communications, 23(1): 104–116 (2005).

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization
decomposition: A mathematical theory of network architectures. Proceedings of
the IEEE, 95(1): 255–312 (2007).

K. L. Chung. A Course in Probability Theory. Academics Press (1974).

J. Cortéz, S. Martínez, and F. Bullo. Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions. IEEE Transactions on
Automatic Control, 51(8): 1289–1298 (2006).

D. Culler, D. Estrin, and M. Srivastava. Guest editors’ introduction: Overview of
sensor networks. Computer, 37(8): 41–49 (2004).

D. H. Cushing and F. R. H. Jones. Why do fish school? Nature, 218: 918–920
(1968).

Bibliography 181

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Jour-
nal of Parallel and Distributed Computing, 7: 279–301 (1989).

J. M. Danskin. Theory of Max-Min. Springer-Verlag Berlin (1967).

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Associ-
ation, 69(345): 118–121 (1974).

V. Dem’yanov and V. Shomesova. Subdifferentials on functions on sets. Kibernetika,
(1): 23–27 (1980).

R. Diestel. Graph Theory. Springer-Verlag (2005).

W. B. Dunbar and R. M. Murray. Distributed receding horizon control with ap-
plication to multi-vehicle formation stabilization. Automatica, 42(4): 549–558
(2006).

J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop
step size rules. Journal of Mathematical Analysis and Applications, 62: 432–444
(1978).

P. Dutta and D. Culler. Practical asynchronous neighbor discovery and rendezvous
for mobile sensing applications. In Proceedings of ACM SenSys (2008).

S. Elhedhli, J. Goffin, and J. Vial. Nondifferentiable optimization: Cutting plane
methods. In C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of Opti-
mization, volume 4, 40–45. Kluwer Academic Publishers (2001).

Y. M. Ermol’ev. Methods of solution of nonlinear extremal problems. Cybernetics,
2(4): 1–17 (1966).

G. Ferrari-Trecate, L. Galbusera, M. Marciandi, and R. Scattolini. A model predic-
tive control scheme for consensus in multi-agent systems with single-integrator
dynamics and input constraints. In IEEE CDC (2007).

O. E. Flippo and A. H. G. Rinnooy Kan. Decomposition in general mathematical
programming. Mathematical Programming, 60: 361–382 (1993).

G. Foschini and Z. Miljanic. A simple distributed autonomous power control algo-
rithm and its convergence. IEEE Transactions on Vehicular Technology, 42(4):
641–646 (1993).

C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag (2001).

S. J. Golestaani. A unified theory of flow control and routing in data communication
networks. Ph.D. thesis, MIT (1979).

G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overre-
laxation iterative methods, and second order richardson iterative methods. Nu-
merische Matematik, 3: 147–156 (1961).

182 Bibliography

B. Gosh, S. Muthukrishnan, and M. H. Schultz. First and second order diffusive
methods for rapid, coarse, distributed load balancing. In ACM symposium on
Parallel algorithms and architectures (1996).

J. Grönkvist. Interference-Based Scheduling in Spatial Reuse TDMA. Ph.D. thesis,
Royal Insititute of Technology (KTH) (2005).

E. B. Hamida, G. Chelius, and E. Fleury. Neighbor discovery analysis in wireless
sensor networks. In Proceedings of ACM CoNEXT (2006).

W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57: 97–109 (1970).

Y. C. Ho and D. L. Pepyne. Simple explanation of the no-free-lunch theorem and its
implications. Journal of Optimization Theory and Applications, 115(3): 549–570
(2002).

Y. C. Ho, L. Servi, and R. Suri. A class of center-free resource allocation algorithms.
Large Scale Systems, 1: 51–62 (1980).

K. Holmberg. Primal and dual decomposition as organizational design: price and/or
resource directive decomposition. In R. M. Burton and B. Obel, editors, Design
models for hierarchical organizations: computation, information, and decentral-
ization. Kluwer Academic Publishers (1995).

K. Holmberg and K. Kiwiel. Mean value cross decomposition for nonlinear convex
problems. Optimization Methods and Software, 21(3) (2006).

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press
(1985).

T. Ibaraki and N. Katoh. Resource Allocation Problems. Foundations of computing.
MIT Press (1988).

IEEE. IEEE Standard 802.15.4 (2006). URL http://standards.ieee.org/.

K. Jacobsson. Dynamic modeling of Internet congestion control. Ph.D. thesis, Royal
Institute of Technology (KTH) (2008).

B. Johansson, C. Adam, M. Johansson, and R. Stadler. Distributed resource allo-
cation strategies for achieving quality of service. In Proceedings of IEEE CDC,
1990–1995 (2006a).

B. Johansson, C. M. Carretti, and M. Johansson. On distributed optimization using
peer-to-peer communications in wireless sensor networks. In Proceedings of IEEE
SECON (2008a).

B. Johansson and M. Gäfvert. Untripped SUV rollover detection and prevention.
In Proceedings of IEEE CDC (2004).

Bibliography 183

B. Johansson and M. Johansson. Primal and dual approaches to distributed cross-
layer optimization. In 16th IFAC World Congress (2005).

B. Johansson and M. Johansson. Faster linear iterations for distributed averaging.
In IFAC World Congress (2008).

B. Johansson, T. Keviczky, K. H. Johansson, and M. Johansson. Subgradient meth-
ods and consensus algorithms for solving convex optimization problems. In Pro-
ceedings of IEEE CDC (2008b).

B. Johansson, H. Li, J. Huang, M. Chiang, and M. Johansson. Network utility
maximization website (2008c). URL http://www.networkutilitymaximizati
on.org/.

B. Johansson, M. Rabi, and M. Johansson. A simple peer-to-peer algorithm for
distributed optimization in sensor networks. In Proceedings of IEEE CDC (2007).

B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM J. Optim.
(2008d). Submitted.

B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition tech-
niques for distributed cross-layer optimization of data networks. IEEE Journal
on Selected Areas in Communications, 24(8): 1535–1547 (2006b).

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. Distributed
model predictive consensus. In Mathematical Theory of Networks and Systems
(2006c).

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. On decentralized
negotiation of optimal consensus. Automatica, 44: 1175–1179 (2008e).

M. Johansson and L. Xiao. Cross-layer optimization of wireless networks using
nonlinear column generation. Wireless Communications, IEEE Transactions on,
5(2): 435–445 (2006).

V. Kawadia and P. R. Kumar. A cautionary perspective on cross-layer design. IEEE
Wireless Communications Magazine, 12(1): 3–11 (2005).

F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: shadow
prices, proportional fairness and stability. Journal of the Operational Research
Society, 49: 237–252 (1998).

J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand (1960).

T. Keviczky, F. Borrelli, and G. J. Balas. Decentralized receding horizon control
for large scale dynamically decoupled systems. Automatica, 42(12): 2105–2115
(2006).

184 Bibliography

T. Keviczky and K. H. Johansson. A study on distributed model predictive consen-
sus. In IFAC World Congress (2008).

V. M. Kibardin. Decomposition into functions in the minimization problem. Au-
tomation and Remote Control, 40(9): 1311–1323 (1980).

K. C. Kiwiel. Convergence of approximate and incremental subgradient methods
for convex optimization. SIAM J. Optim., 14(3): 807–840 (2004).

M. Kocvara and M. Stingl. PENNON - a code for convex nonlinear and semidefinite
programming. Optimization Methods and Software, 18: 317–333 (2003).

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms
and Applications. Springer (2003).

J. Lagarias, J. Reeds, M. Wright, and P. Wright. Convergence properties of the
nelder-mead simplex method in low dimensions. SIAM Journal of Optimization,
9: 112–147 (1998).

T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic, primal convergence in
dual subgradient schemes for convex programming. Mathematical Programming,
86: 283–312 (1999).

L. S. Lasdon. Optimization Theory for Large Systems. Macmillan (1970).

X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-layer rate
control in multihop wireless networks. In Proceedings of IEEE INFOCOM (2005).

J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference (2004).

Z. Lotker, B. PattShamir, and A. Rosén. Distributed approximate matching. In
ACM PODC (2007).

S. H. Low. A duality model of TCP and Queue Management Algorithms.
IEEE/ACM Trans. on Networking, 4(11): 525–536 (2003).

S. H. Low and D. E. Lapsley. Optimization flow control – I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6): 861–874 (1999).

D. G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons
(1969).

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers (1996).

J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall (2002).

B. Maciel. Development of a Detection System using a Wireless Sensor Network.
Master’s thesis, Royal Institute of Technology (KTH) (2008).

Bibliography 185

T. A. Manteuffel. The tchebychev iteration for nonsymmetric linear systems. Nu-
merische Matematik, 28: 307–317 (1977).

T. A. Manteuffel. Optimal parameters for linear second-degree stationary methods.
SIAM Journal on Numerical Analysis, 19(4): 833–839 (1982).

J. R. Marden, G. Arslan, and J. S. Shamma. Connections between cooperative
control and potential games illustrated on the consensus problem. In European
Control Conference (2007).

J. Markoff. Can’t Find a Parking Spot? Check Smartphone. The New York Times
(2008). URL http://www.nytimes.com/.

N. D. Mermin. What’s wrong with this lagrangean? Physics Today, 41(4): 9–11
(1988).

C. D. Meyer and R. J. Plemmons. Convergent powers of a matrix with applications
to iterative methods for singular linear systems. SIAM Journal on Numerical
Analysis, 14: 699–705 (1977).

N. Möller. Window-based congestion control—Modeling, analysis and design. Ph.D.
thesis, Royal Institute of Technology (KTH) (2008).

A. Nedić. Subgradient Methods for Convex Minimization. Ph.D. thesis, MIT (2002).

A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM J. Optim., 12(1): 109–138 (2001).

A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent opti-
mization. Technical report, MIT (2007a). LIDS technical report 2755.

A. Nedić and A. Ozdaglar. On the rate of convergence of distributed asynchronous
subgradient methods for multi-agent optimization. In Proceedings of IEEE CDC
(2007b).

A. S. Nemirovski and D. B. Judin. Cesari convergence of the gradient method of
approximating saddle points of convex-concave functions. Soviet Math. Dokl.,
19(2): 482–486 (1978).

J. R. Norris. Markov Chains. Cambridge University Press (1998).

NS2. Network simulator website (2008). URL http://www.isi.edu/nsnam/ns/.

B. Obel. A note on mixed procedures for decomposing linear programming problems.
Mathematische Operationsforschung und Statistik, Series Optimization, 9: 537–
544 (1978).

R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1): 215–233 (2007).

186 Bibliography

A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed consensus and
averaging. In Proceedings of IEEE CDC (2006).

M. Padlipsky. Perspective on the ARPANET reference model. RFC 871 (1982).
URL http://www.ietf.org/rfc/rfc871.txt.

D. P. Palomar and M. Chiang. A tutorial on decomposition methods for network
utility maximization. IEEE Journal on Selected Areas in Communications, 24(8):
1439–1451 (2006).

J. Papandriopoulos, S. Dey, and J. S. Evans. Optimal and distributed protocols
for cross-layer design of physical & transport layers in MANETs. IEEE/ACM
Transactions on Networking (2006). Submitted.

M. Patriksson. A survey on the continuous nonlinear resource allocation problem.
European Journal of Operational Research, 185(1): 1–46 (2008).

J. G. Proakis. Digital Communications. McGraw-Hill (2001).

QCN. Quake-Catcher Network website (2008). URL http://qcn.stanford.edu/.

M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Pro-
ceedings of ACM/IEEE IPSN (2004).

M. Rabbat, R. Nowak, and J. Bucklew. Generalized consensus computation in
networked systems with erasure links. In Proceeding of IEEE SPAWC (2005).

R. L. Raffard, C. J. Tomlin, and S. P. Boyd. Distributed optimization for coop-
erative agents: Applications to formation flight. In Proceedings of IEEE CDC
(2004).

S. S. Ram, A. Nedić, and V. Veeravalli. Incremental stochastic subgradient algo-
rithms for convex optimzation (2008). Submitted.

R. T. Rockafellar. Convex Analysis. Princeton Univeristy Press (1970).

R. Rockafellar. Network flows and monotropic optimization. John Wiley & Sons
(1984).

R. Rom and M. Sidi. Multiple Access Protocols: Performance and Analysis.
Springer-Verlag (1990).

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill (1976).

I. Schizas, A. Ribeiro, and B. Giannakis. Consensus-based distributed parameter
estimation in ad hoc wireless sensor networks with noisy links. In Proceedings of
IEEE ICASSP (2007).

SeDuMi. SeDuMi website (2008). URL http://sedumi.mcmaster.ca/.

Bibliography 187

N. Z. Shor. On the structure of algorithms for the numerical solution of optimal
planning and design problems. Ph.D. thesis, Cybernetics Institute (1964).

N. Z. Shor. Minimization methods for non-differentiable functions. Springer-Verlag
(1985).

S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John Wiley &
Sons, New York-Chichester-Brisbane (2005).

P. Soldati, B. Johansson, and M. Johansson. Distributed optimization of end-to-
end rates and radio resources in wimax single-carrier networks. In Proceedings of
IEEE GLOBECOM (2006a).

P. Soldati, B. Johansson, and M. Johansson. Proportionally fair allocation of end-
to-end bandwidth in STDMA wireless networks. In Proceedings of ACM MobiHoc
(2006b).

P. Soldati, B. Johansson, and M. Johansson. Distributed cross-layer coordination of
congestion control and resource allocation in s-TDMA wireless networks. Wireless
Networks, 14: 949–965 (2008).

S.-H. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz. The value of clustering
in distributed estimation for sensor networks. In IEEE Wirelesscom (2005).

A. Speranzon, C. Fischione, B. Johansson, and K. H. Johansson. Adaptive dis-
tributed estimation over wireless sensor networks with packet losses. In Proceed-
ings of IEEE CDC (2007).

R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser (2004).

K. Srinivasan and P. Levis. Rssi is under appreciated. In Proceedings of EmNetS
(2006).

TinyOS. Tinyos website (2008). URL http://www.tinyos.net/.

Tmote. Tmote sky datasheet (2008). URL http://www.sentilla.com/pdf/eol/
tmote-sky-datasheet.pdf.

J. N. Tsitsiklis. Problems in decentralized decision making and computation. Ph.D.
thesis, MIT (1984).

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions on
Automatic Control, 31(9): 803–812 (1986).

R. H. Tutuncu, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming Ser. B, 95: 189–217 (2003).

188 Bibliography

J. van Ast, R. Babǔska, and B. D. Schutter. Particle swarms in optimization and
control. In IFAC World Congress (2008).

T. J. Van Roy. Cross decomposition for mixed integer linear programming. Math-
ematical Programming, 25: 46–63 (1983).

R. Varga. Matrix Iterative Analysis. Prentice-Hall (1962).

B. Wang. Distributed Resource Allocation and Performance Optimization for Video
Communication over Mesh Networks Based on Swarm Intelligence. Ph.D. thesis,
University of Missouri-Columbia (2007).

J. Wang, L. Li, S. H. Low, and J. C. Doyle. Cross-layer optimization in tcp/ip
networks. IEEE/ACM Trans. on Networking, 3(13): 582 – 595 (2005).

A. Warrier, S. Ha, P. Wason, I. Rhee, and J. H. Kim. Diffq: Differential backlog
congestion control for wireless multi-hop networks. In IEEE SECON (2008).

D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast tcp: Motivation, architecture,
algorithms, performance. Networking, IEEE/ACM Transactions on, 14(6): 1246–
1259 (2006).

L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems &
Control Letters, 53(1): 65–78 (2004).

L. Xiao and S. Boyd. Optimal scaling of a gradient method for distributed resource
allocation. J. Opt. Theory and Applications, 129(3): 469–488 (2006). Submitted.

L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and resource allocation
via dual decomposition. IEEE Transactions on Communications, 52(7): 1136–
1144 (2004).

D. M. Young. Second-degree iterative methods for the solution of large linear
systems. Journal of Approximation Theory, 5: 137–148 (1972).

J. Zheng and M. Lee. A comprehensive performance study of IEEE 802.15.4. Sensor
Network Operations, IEEE press, Wiley Interscience, chapter 4: 218–237 (2006).

H. Zimmermann. OSI reference model - the ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 4: 425–432
(1980).

“Författarnas lättnad överträffas nog bara av läsarens när vi nu
förklarar denna lärobok i matematik för avslutad.”

A. Persson and L.-C. Böiers, Analys i en variabel, 1990.

On Distributed Optimization in
Networked Systems

B J Ö R N J O H A N S S O N

Doctoral Thesis in Telecommunication
Stockholm, Sweden 2008

www.kth.se

TRITA-EE 2008:065
ISSN 1653-5146

ISBN 978-91-7415-190-9

BJÖ
RN

 JO
H

A
N

SSO
N

 O
n D

istributed O
ptim

ization in N
etw

orked System
s

KTH
 2008

