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Abstract 
 
 
 
 
 
Several recent studies have examined the possibilities for more intelligent 
control of the vehicle by using knowledge of road slope data. As three-
dimensional navigational road maps are not commercially available today 
the road slope has to be measured. This report focuses on the ability to 
estimate the road slope in a standard Scania truck, without any additional 
sensors. Information from GPS receiver, pressure sensor and torque sensor 
were used. By modelling the trucks movement and applying an extended 
Kalman filter an estimation of the road slope was achieved. The three 
sensors were evaluated to find specific characteristics. Each of them were 
tested through a stability and an absolute accuracy perspective. The results 
showed different sensor characteristics with warring stability and accuracy. 
Additionally a short assessment of the sampling distance was carried out.  
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Notation 
 
 
 
 
 

Symbols 
  
a Acceleration 
A System matrix 
B System input matrix 
Fair Air resistance 
Fdrive Driving resistance 
Fgravity Gravitational force 
Fincline Incline force 
Froll Rolling resistance 
Ftorque Engine torque force 
g Gravitational acceleration 
H Measurement matrix 
I Identity matrix 
K Kalman gain 
m Vehicle mass 
p Barometric pressure 
P Estimate error covariance matrix 
Q Process noise covariance matrix 
r Earth radius 
R Measurement noise covariance matrix 
s Distance 
T System sample time 
u System input 
v Measurement noise 
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V Measurement noise matrix 
w Process noise 
W Process noise matrix 
x State vector 

 x̂  Estimate of state vector 
 x~  Approximate state vector 

y Measurement vector 
 y~  Approximate measurement vector 

z Altitude 
α Road slope angle 
γ Conversion factor from atmospheric pressure to altitude 
ς Conversion factor from radians to percent 
σ Standard deviation 
 

Operators and functions 
 
E Expected value 
f System function 
h Measurement function 
V Variance 
 

Abbreviations 
 
3D Three Dimensional  
ADASIS Advanced Driver Assistance Systems Interface Specification 
ASCII American Standard Code for Information Interchange 
CAN Controller Area Network 
CEP Circular Error Probability 
DGPS Differential GPS 
EKF Extended Kalman Filter 
GNSS Global Navigation Satellite System 
GPRS General Packet Radio Services 
GPS Global Positioning System 
GSM Global System for Mobile telecommunications 
Hz Hertz 
ITS Intelligent Transport Systems 
km Kilometre 
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KTH Royal Institute of Technology (Kungliga Tekniska 
Högskolan) 

MSL Mean Sea Level 
NMEA National Marine Electronics Association 
NVDB National Road Database (Nationell Vägdatabas) 
Pa Pascal 
PC Personal Computer 
SNRA Swedish National Road Administration 
std Standard deviation 
UTC Coordinated Universal Time 
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1 Introduction 
 
 
 
 
 

1.1 Background 
 
In the truck industry fuel consumption is of great importance. Drivers today 
drive on average 150 000 km each year [1] making fuel costs a major 
expense for haulage contractors. When customers invest in new trucks the 
total lifetime cost of the truck plays a very important role with low fuel 
consumption as a vital argument. This is why Scania is putting major 
efforts into making next generation trucks more and more fuel economic. 

Techniques for lowering the overall fuel consumption using knowledge 
of the upcoming road-behaviour are under development. Several ways have 
been proposed in recent studies. In [2] an increase of the controllability of 
the cooling system in heavy vehicles is studied. The cooling system is today 
mechanically driven with a fix ratio to the engine speed resulting in excess 
capacity in most driving cases.  By making the cooling fan and water pump 
electrically driven and control the output to the actual need the energy loss 
is shown to decrease, resulting in potentially lower fuel consumption. For 
optimal control the knowledge of future road condition is needed. [3] also 
discusses the potential of coordinated operation of vehicle auxiliary systems 
to decrease fuel consumption. The air condition and the diesel particle filter 
are studied. In the case of the diesel particle filter prediction of upcoming 
engine work load is required. This is obtained through knowledge of future 
road conditions. It is shown that a considerable decrease in fuel 
consumption can be obtained. In the area of powertrain control [4] proposes 
an adaptable cruise control system for stop and go situations on a congested 
road. Using values for required engine torque, gear and slope of road a 
reduction of the fuel consumption by approximately 3% is achieved. 
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Another proposed way to lower the fuel consumption is to extend the use of 
the conventional cruise control function even further into a predictive cruise 
control [5]. The basic idea is for the truck to climb and descend hills in an 
effective and fuel saving way. This is done by varying the speed around the 
cruise control set speed within a speed band. The system is based on 
elevation road information saved onboard with the combination of a 
predictive algorithm. The results show a diesel fuel saving of up to 3%. 
Similar studies have been done in [6] and [7] with fuel savings of 2% or 
more, depending on the route topography. 

All these proposed fuel saving techniques are dependent on the 
knowledge of how the road ahead will behave, especially the topographical 
character. A technique to derive this information is obviously necessary. 
This project therefore focuses on the accessibility and processing of 
elevation and slope data for roads travelled by heavy trucks. It is to be used 
primarily for applications with cruise control and predictive algorithms. 

Ways to estimate road slope have been proposed in many papers. In [8] 
road slope is measured by GPS. Two methods are explained, the first one 
with a two antenna setup and the other with one antenna. The two antenna 
setup tracks the carrier phase at each antenna giving the angle relative the 
horizon. In the case of the one antenna setup the ratio of vertical to 
horizontal velocity is used to estimate road slope. Results show less 
oscillation caused by vehicle pitch in the velocity based estimation. [9] 
proposes an application of recursive least squares with multiple forgetting 
factors. The estimation relies on a model of the longitudinal vehicle 
dynamics. As for [10] Kalman filtering is used to obtain estimation of 
vehicle mass and road slope. Two sensor configurations are examined, one 
where speed is measured and one where both speed and specific force are 
measured. Results show that both sensor configurations are robust and 
accurate. Parameter estimation using Kalman filter has also been proposed 
by [11] and [12], although only in the horizontal plane for positioning 
purposes. 
 

1.2 Objective and Goal 
 
The objective of this Masters Thesis is to examine the possibility of 
retrieving topographical information about the upcoming road in front of 
the travelling truck. For this purpose two main sources of information are 
considered. One is to extract information from digital three-dimensional 
road maps provided by a third party company. The second one is to 
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automatically record the travelled road the first time the vehicle drives over 
it, making its own three-dimensional map for all of the truck’s later 
journeys along the same route. After investigating which source is the most 
appropriate, the goal is to derive a possible technique that can be used for 
obtaining slope values for the upcoming road travelled by the truck. The 
system would mainly be intended for motorways and roads with higher 
speeds. 
 

1.3 Outline 
 
Chapter 2 discuss different ways for retrieving information about the 
topographical nature of roads. Different possible sources and methods are 
examined leading up to the road slope recording to be the most promising 
method.  

In Chapter 3 the sensors and systems used for the slope estimation is 
described in detail. Each sensors capacity and limits are discussed. The 
experimental measurement collection procedure is also described together 
with a description of the reference road map received. 

The theory behind the slope estimation is described in chapter 4. Here 
modelling and filtering is described together with a simple explanation of 
the relation between road altitude and slope. 

Chapter 5 shows the implementation and the experimental results. A 
sensor evaluation was carried out to state each sensor’s characteristic and to 
determine which sensor is the most reliable. In the end of this chapter a 
discussion about the sampling rate is also done. 

The thesis is summed up in chapter 6 with conclusions, followed by the 
final discussion and possible future work in chapter 7. 
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2 Source of Information 
 
 
 
 
 
As mentioned earlier, two main sources of information are considered for 
obtaining topographical information of a road, three-dimensional road maps 
and updatable road slope recordings of the travelled road. With future 
presumed digital three-dimensional road maps easy access to slope data 
through navigational data discs would be achieved. Drawbacks are the 
presumed high costs for the data and the assumed restriction to big 
motorways from where data is collected. Although more and more roads 
would be included over the years collecting data is a major task. The road 
slope recording would on the other hand mainly benefit from low costs. All 
sensors used for this purpose are already present on the truck and used for 
other tasks, meaning no extra cost for expensive digital maps are necessary. 
Weaknesses to this system are the probable short term lack in accuracy and 
the initial low coverage. 
 

2.1 Three-Dimensional Road Maps 
 
Although three-dimensional road maps are not commercially available 
today work is underway. In 2001 the leading supplier of navigational road 
maps Navteq initiated what later became ADASIS1. This is a forum under 
ERTICO, a multi-sector partnership pursuing the development and 
deployment of Intelligent Transport Systems and Services (ITS), with 
members from all major auto manufacturers and navigation suppliers. Here 
standards about road map attributes and data communication of future 
                                                           
1 Advanced Driver Assistance Systems Interface Specification 
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GPS Sensor 

Pressure Sensor 

Torque Sensor 

Road Slope 

digital road maps are discussed. Possibility to predict the road geometry 
with its related attributes ahead of the vehicle is of main interest.  

But as no three-dimensional road maps are available today information 
on coming digital map standards were needed. A meeting with Daniel Stehn 
and Claes Nyqvist, both working with road navigation issues at Scania, was 
held in order to establish the digital road map situation of today and to 
forward questions to digital road map providers. Unfortunately it proved to 
be very difficult to attain information or test data for future three-
dimensional maps. Instead another possible source of information was 
examined, the upcoming National Road Database (NVDB2). This is a joint 
venture between the Swedish National Road Administration (SNRA), the 
Central Office of the National Land Survey, the Swedish Association of 
Local Authorities, and the forest industry. The aim for this project is to 
establish a nationwide database containing up-to-date, quality-assured 
information on the entire Swedish road network. Here roads are saved with 
information in all three dimensions. But as NVDB is under construction no 
standard for the transfer of road data from the database to the customer was 
yet established. With no real map data to work from focus was turned to the 
road slope recording. 
 

2.2 Road Slope Recording 
 
For the road slope recording available sensors on the truck that could be 
used for recording the topographical image of the road were taken into 
consideration. The aim was to investigate the possibility to estimate the 
road slope with no additional sensors added. Three sensors were chosen. 
Information from GPS receiver, pressure sensor and torque sensor were 

                                                           
2The abbreviation NVDB stands for Nationell Vägdatabas 

Figure 2.1: Sensor scheme. 

Filter 
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used one at the time, shown in Figure 2.1. An estimation of the current road 
slope was to be done through a Kalman filter. As the accuracy from only 
one measurement run is not considered sufficient the measured roads have 
to be able to be updated so that higher accuracy is obtained as the road is 
passed several times.  

2.3 Measurement Acquisition 
 
Measurements were collected over two different types of road, one 
motorway segment and one main road segment. Both segments are roads 
between Södertälje and Strängnäs with the approximate distance of 50 km. 
Measurements were collected by driving a Scania R420 at normal traffic 
rhythm with air-conditioning system in automatic mode while recording 
sensor outputs from the three sensors. Each road type was measured four 
times at four different occasions adding up to a total of eight road 
measurements.  
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3 Sensors and Measurements 
 
 
 
 
 
The outline for the project was to use existing sensors in a Scania truck for 
road slope estimation. The Scania R420 seen in Figure 3.1 was used during 
all measurements. The Scania R420 is a standard truck equipped with the 
option Scania Interactor 500 with built-in GPS receiver. Systems and 
sensors used for this research will be discussed further in this chapter. Also 
the measurement procedure and the reference road used are presented. 

 

Figure 3.1: Scania R420 test vehicle. 
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3.1 GPS Sensor 
 
The GPS receiver is integrated with the Scania Interactor 500 which is a 
fleet management tool. It is a platform including a full-powered PC with a 
10.4 inch colour touch screen monitor. The PC runs on Microsoft Windows 
2000 operating system and integrates software for Microsoft Windows, 
GSM/GPRS telecommunication and GPS capabilities for navigation and 
fleet management services [13]. The integrated GPS receiver is a µ-blox 
TIM GPS Receiver based on the SiRFstarTM II chip3. It is a fully self-
contained receiver module with GPS signal processing from antenna input 
to serial data output [14]. The GPS information was logged and saved with 
GPS Diagnostics v1.054 run on the Interactor 500 platform. The 
information received from the GPS was in the form of NMEA sentence 
strings (see Appendix A). Latitude, longitude, altitude, number of used 
satellites and velocity were recorded with the frequency of 1 Hz. 

The accuracy of a GPS receiver is not a well defined number. Every 
manufacturer has its own way of determining the accuracy mainly 
depending on satellite visibility of the antenna, antenna type, satellite 
constellation and receiver performance. The GPS used in this study, the µ-
blox TIM GPS Receiver, has a horizontal accuracy of 4 meters CEP5 [14]. 
The accuracy in the altitude measurement is reported to be 3-4 times worse 
than the horizontal accuracy leading to a vertical accuracy of somewhere 
between 12-16 meters, stated by the maker. The GPS receiver has a built in 
filter for smoothing measurements, but the receiver still incorporate the 
main GPS problem with areas of low or no satellite coverage. The antenna 
mounted on the cab roof was a Smarteq ANT antenna. It is a multifunction 
antenna including antennas for GPS and dual band mobile phone [15] 
which comes with the Interactor 500 package. Early tests showed big 
differences in altitude measurements from different types of antennas and 
proved to have a larger impact on the accuracy than the quality of the GPS 
receiver itself. 
 
 
 

                                                           
3 Manufactured by SiRF Technology, Inc. 
4 Freeware GPS Diagnostic Program from CommLinx Solutions Pty Ltd. 
5 Circular Error Probability: The radius of a circle, centred at the antennas true position, 

containing 50% of the fixes. 
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3.2 Pressure Sensor 
 
The pressure sensor, or barometer, monitored was a Motorola 
MPXA6115A [16] used for measuring surrounding barometric pressure to 
adjust engine air inlet. The barometric pressure measured by the sensor was 
available over the in-vehicle communications network CAN6. The 
resolution was predefined to 0.05 kPa/bit. At near ground level pressure 
drops 0.1 kPa every 8.4 meters rising vertically and with this conversion 
rate the altitude measurement resolution becomes 4.2 meters/bit. As the 
placing of this sensor is situated behind the dash board in the driver cab it is 
subjected, apart from weather influences, to pressure influences from the 
air-conditioning system. As no indicator of fan speed is available this 
influence is immeasurable. Barometric pressure data was received at 1 Hz. 
 

3.3 Torque sensor  
 
A third signal estimating the road slope was computed from the engine 
torque parameters. The calculation is based on the vehicle mass m and 
driving resistance. The vehicle mass is estimated through Newton's second 
law of motion 
 
 maFtorque =  (4.1) 

 
at certain instances so that the mass estimation becomes independent from 
the slope of the road. The force Ftorque is derived from engine torque and the 
acceleration a is measured through wheel speed sensors. When the mass is 
established the driving resistance Fdrive can be determined through 
 
 maFF torquedrive −=  (4.2) 

 
where road slope now is taken into consideration. Two more forces are 
needed to be able to calculate road slope, incline force and gravitational 
force 

 
 airrolldriveincline FFFF −−=  (4.3) 
 mgFgravity =  (4.4) 
                                                           
6 Controller Area Network 
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where Froll is the rolling resistance derived from vehicle mass and velocity 
and Fair is the air resistance derived from vehicle velocity. The road slope 
can now be calculated as 
 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

gravity

incline

F
F

arctanα , (4.5) 

 
according to Figure 3.2. There is one disadvantage with this way of 
estimating road slope. When wheel brakes are pressed the force of which 
they are acting on the vehicle is unknown. This causes an added unknown 
force to equation (4.3) making estimation of road slope not possible during 
use of wheel brakes. The calculation is then set to outputs a non-valid 
estimate in the form of a 13% positive incline value. Road slope was 
estimated and received at 10 Hz. 
 

3.4 Reference Road Slope 
 
As reference to the road slope estimations a digital topological map was 
specially ordered from the Swedish National Road Administration through 
the National Road Database (NVDB) containing longitude, latitude and 
altitude measurements along the motorway segment.  

α
gravityF

inclineF

α 

Figure 3.2: Calculated road slope estimation. 
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The topographical reference map was received as points addressed with 
longitude, latitude and altitude values. For conversion to road slope the 
central-difference formula was applied as 
 

 
11

11

−+

−+

−
−

≈
kk

kkk

ss
zz

ds
dz

 (5.3) 

 
with 
 

 )arctan(
ds
dzkςα =  (5.4) 

 
where zk is the altitude at point k, sk is the distance up to point k, ς  a 
constant making radians into percent and α is the road slope.  

A 5 km stretch was used as reference road slope. This section was part 
of a newly constructed motorway from where original construction data 
was retrieved. In Figure 3.3 the road slope of this section is shown. 
Difficulties in obtaining data with desired accuracy prevented comparison 
with longer road segments. 

 

Figure 3.3: Road slope derived from NVDB data. 
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4 Theory 
 
 
 
 
 
 

4.1 State Space Modelling 
 
To estimate the road slope angle a model of the truck’s movement is 
needed. The model is derived from the continuous-time case on the form 
 
 ( )uxfx ,=  (4.1) 
 Hxy =  (4.2) 
 
where f is the non-linear system function and H the linear measurement 
function. States are chosen as  
 
 zx =1  (4.3) 
 α=2x  (4.4) 
 
where z equals the road altitude and α is the road slope angle. The 
measurement vector y is 
 

 Hxx
x
x
x

y
y
y
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⎟
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where y1 is the altitude measured by the GPS, y2 the barometric pressure 
from the pressure sensor and y3 the road slope estimated by the torque 
sensor. γ is the conversion rate factor for converting atmospheric pressure to 
altitude. From Figure 4.1 the state x1 can be written as 
 
 21 sin xsx =  (4.6) 
 
where s is distance. The state derivatives then becomes 
 
 21 sin xux =  (4.7) 
 02 =x  (4.8) 
 
where u is the vehicle speed over ground. As variations in the slope x2 are 
small 2x  is set to zero. The non-linear state space form now becomes 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
sin 2xu

x  (4.9) 

 Hxy = . (4.10) 
 
In the time-discrete case equation (4.11) and (4.12) becomes 
 

 
k

kk

xu
Txx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+ 0

sin 2
1  (4.11) 

 kk Hxy =  (4.12) 
where T is the sampling rate.  
 

Figure 4.1: System variables 

x2 

x1 
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4.2 Observer 
 
To estimate the states from measured inputs and outputs an observer 
through a feedback loop can be used [17]. Consider the system 
 
 ( )uxfx ,=  (4.13) 
 Hxy = . (4.14) 
 
From equation (4.16) follows that the estimate ŷ  would be equal to y if the 
estimate of x would be exactly equal to x̂ . Thus making the difference  
 
 xHy ˆ−  (4.15) 
 
a degree of how well x̂  estimates x. Using (4.17) for feedback purpose 
gives the estimation equation 
 
 ( ) ( )xHyKuxfx ˆ,ˆˆ −+=  (4.16) 
 
which is the observer for the system (4.15) – (4.16).  
 

4.3 Kalman Filter 
 
The Kalman Filter [18] [19] [20] is a way to calculate the observer and is 
used to minimise measurement and state errors. In this study an extended 
Kalman Filter (EKF) was used as the state difference equation was non-
linear and for potential sensor fusion purpose. 

4.3.1 Linear Kalman Filter 
The discrete Kalman filter is an estimation method for linear systems in 
state space form. It is an observer that utilises the stochastic behaviour of 
process and measurement noise to estimate the state x from measurements 
y. The system is mathematically formulated on state space form as 
 
 111 −−− ++= kkkk wBuAxx  (4.17) 
 kkk vHxy +=  (4.18) 
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where uk is the known system input and random variables wk and vk 
representing the process and measurement noise. The variables wk and vk 
are zero mean white noise processes with  
 
 [ ]T

kkk wwEQ =   (4.19) 
 [ ]T

kkk vvER =  (4.20) 
 
where Qk denotes the process noise covariance and Rk the measurement 
noise covariance. The aim is to find an equation that calculates the state xk 
as follows 
 
 ( )1|1| ˆˆˆ −− −+= kkkkkkkk xHyKxx . (4.21) 
 
Here the notation 1|ˆ −kkx means the estimate of xk using values up to time k-1, 
yk is the actual measurement and 1|ˆ −kkk xH a measurement prediction. The 
matrix K is chosen to be the gain that minimizes the error in the estimate. K 
is often called the Kalman gain and is usually chosen as  
 
 ( ) 1

1|1|
−

−− += k
T
kkkk

T
kkkk RHPHHPK  

 
k

T
kkkk

T
kkk

RHPH
HP

+
=

−

−

1|

1| . (4.22) 

 
The equations for the Kalman filter algorithm is divided into two parts, time 
update equations and measurement update equations. The time update 
equations projects the current estimate ahead in time and are given by 

 
 111| ˆˆ −−− += kkkkkk uBxAx  (4.23) 

 111| −−− += k
T

kkkk QAPAP  (4.24) 
 

where P is the estimate error covariance matrix. The measurement update 
then adjusts the projected estimate by an actual measurement at that time. 
This is given by 
 
 ( ) 1

1|1|
−

−− += k
T
kkkk

T
kkkk RHPHHPK  (4.25) 
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 ( )1|1| ˆˆˆ −− −+= kkkkkkkk xHyKxx  (4.26) 
 ( ) 1| −−= kkkkk PHKIP . (4.27) 
 
The first equation in the measurement update is to compute the Kalman 
gain Kk. The next equation is to actually measure the process to obtain yk, 
and to then update a state incorporating the measurement. The final 
equation is to update the error covariance estimate. Initial values for the 
state estimate x0 and the error covariance matrix P0 must be set. 

4.3.2 Extended Kalman Filter 
In the above section the general problem of trying to estimate the state of a 
process with a Kalman filter regulated by a linear difference equation was 
addressed. In the case of this thesis the process to be estimated is non-linear 
requiring another approach. Here a Kalman filter that linearizes the 
estimation around the current estimate is useful. This type of Kalman filter 
is referred to as an extended Kalman filter or EKF. In a similar way to a 
Taylor series the partial derivatives of the process and measurement 
functions are used to compute estimates even in the non-linear case. Let’s 
re-examine the system (4.19) and (4.20) in a non-linear case 
 
 ( )111 ,, −−−= kkkk wuxfx  (4.28) 
 ( )kkk vxhy ,=  (4.29) 
 
where the random variables wk and vk again are representing the process and 
measurement noise as in equations (4.19) and (4.20). The functions f and h 
represent non-linear functions. 

To estimate the non-linear process a first order Taylor expansion of 
(4.30) and (4.31) is performed, 

 
 ( ) 111 ˆ~

−−− +−+≈ kkkkkkk wWxxAxx  (4.30) 
 ( ) kkkkkkk vVxxHyy +−+≈ ~~  (4.31) 
 

where xk and yk are the actual state and measurement vectors, kx̂  is an 
estimate of the state at step k, variables wk and vk are representing the 
process and measurement noise and kx~  and ky~  are the approximate state 
and measurement vectors 
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 ( )0,,ˆ~
11 −−= kkk uxfx  (4.32) 

 ( )0,~~
kk xhy = . (4.33) 

 
The matrices are the Jacobian matrices of partial derivatives as 
 

 [ ]
[ ]

[ ]
( )0,,ˆ 11, −−∂

∂
= kk

j

i
jik ux

x
f

A  (4.34) 
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i
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 [ ]
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( )0,~

, k
j

i
jik x

x
h

H
∂

∂
=  (4.36) 

 [ ]
[ ]

[ ]
( )0,~

, k
j

i
jik x

v
h

V
∂

∂
= . (4.37) 

 
The EKF time update equations then becomes 
 
 ( )0,,ˆˆ 111| −−− = kkkk uxfx  (4.38) 

 T
kkk

T
kkkk WQWAPAP 111| −−− +=  (4.37) 

 
with the measurement update equations 
 
 ( ) 1

1|1|
−

−− += T
kkk

T
kkkk

T
kkkk VRVHPHHPK  (4.40) 

 ( )( )0,ˆˆˆ 1|1| −− −+= kkkkkkk xhyKxx  (4.41) 
 ( ) 1| −−= kkkkk PHKIP . (4.42) 
 
The basic operation of the extended Kalman filter is the same as the linear 
discrete Kalman filter. 
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4.4 Altitude and Slope Relations 
 
The relation between altitude and its derivative (slope) is not always easy to 
picture. The basic features are shown in Figure 4.2 picturing a single hill 
where z is the altitude of the road and α is the slope of the road. The hill and 
its slope can be divided into seven main parts.  

1. Start of an incline. This section is typically built as an arced 
segment of second order. This gives the road slope character of a 
constantly rising slope value. 

2. Hill incline. A constant incline gives a constant positive slope value. 
3. End of incline. This section is the opposite of 1 giving a constant 

fall in the road slope value. 
4. Top of the hill. The flat area produces a zero slope value. 
5. Start of a decent. The parabolic curvature with constantly decreasing 

slope gives the same result as 3, but on the negative half of the slope 
graph. 

6. Hill decent. Opposite to 2. With a constant drop in altitude the slope 
value becomes constant and negative. 

7. End of decent. Same as 1 but from negative to zero road slope. 
 

Figure 4.2: Relation between altitude (z) and slope (α). 
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5 Road Slope Estimation Results 
 
 
 
 
 
 

5.1 Model Implementation 
 
As the state equation (4.11) is non-linear the Extended Kalman filter was 
used. In the time-discrete case the model of the road changes can be 
described by the non-linear state equation (4.28) and the linear 
measurement equation (4.18) as 
 
 ( )111 ,, −−−= kkkk wuxfx  (5.1) 
 kkk vHxy +=  (5.2) 
 
with matrix H in (5.2) being a 3×3 identity matrix. Equation (5.1) an be 
described from (4.11) as 
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As the state equation is non-linear, (4.30) is applied to linearize an estimate 
about the equation, giving 
 

 ( ) 111 ˆ~
−−− +−+≈ kkkkkkk wWxxAxx  (5.4) 

 
where kx~ comes from (4.32). Ak and Wk can now be calculated from (4.34) 
and (4.35). 
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The random variables wk and vk in (5.1) and (5.2) are representing the 
process and measurement noise. 
 
 [ ]Tk

z
kk www α=  (5.7) 

 [ ]Tk
p
k

z
kk vvvv α=  (5.8) 

 
The disturbances wk and vk are assumed to be independent zero mean white 
noise processes with normal probability distributions. From (4.19) the noise 
covariance matrix Qk can be calculated as 
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with E representing the expectation and V the variance. A diagonal matrix 
is formed as the disturbances are assumed to be independent, thus having 
no cross-correlation. In this same manner the noise covariance matrix Rk 
can be calculated from (4.20) as 
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The variances in (5.9) and (5.10) are unknown and therefore have to be 
estimated. As (5.10) shows, Rk is the variance of the error in the 
measurements. From the sensor’s resolutions, expected accuracies and 
observations estimated values are initially chosen as 
 
 [ ] 16=z

kvV  (5.11) 
 [ ] 4=p

kvV  (5.12) 
 [ ] 1.0=α

kvV . (5.13) 
 
The process noise covariance matrix Qk is chosen as the design parameter 
matrix. Initially Rk and Qk are set to constant values. There is no exact right 
or wrong way of choosing Qk and Rk. Often good filter performance is 
obtained by tuning the filter parameters Qk and Rk manually. Equations 
(4.38) and (4.39) can now be used for the measurement update to predict 
the state and covariance estimates from previous time step k-1 to current 
time step k. Next the linear measurement update equations (4.25) - (4.27) 
are used to correct the state and covariance estimates with the measurement 
yk. In Figure 5.1 a scheme of the Kalman filter operations are shown. 

The slope values are now a function of time. Slope as a function of 
distance is more desired and is achieved by relating each slope value to a 
distance value from the measured speed at that instant. As the exact same 
path was driven at all measurements distance values will be equal for each 
of the runs. To convert measurements relating to distance instead of time 
and then run the Kalman filter was also performed, but with no significant 
difference. As the original model with Kalman filter over time has the 
velocity as input the distance is taken into consideration. Slope estimation 
was done at 1 Hz sampling rate. 
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Figure 5.1: Kalman filter operations scheme [19]. 

 

5.2 Sensor Evaluation 
 
To determine the characteristics for each of the three sensors a sensor 
evaluation was carried out. Two key features were considered, the standard 
deviation and average for the road slope estimation of each sensor. Both 
features are calculated from the four measurements from each of the two 
road segment. A signal separation and filter tuning was first performed. 

5.2.1 Use of Standard Deviation and Average 
 
Standard deviation 
The standard deviation is used as a measure for the stability of the sensor, 
or how much the sensor readings differ over a number of runs. The standard 
deviation σk is calculated through  
 

1. Project state ahead 
( )0,,ˆˆ 111| −−− = kkkk uxfx  

2. Project error covariance ahead 
T

kkk
T

kkkk WQWAPAP 111| −−− +=

Time update (Prediction) 
1. Compute the Kalman gain 

( ) 1
1|1|

−

−− += k
T
kkkk

T
kkkk RHPHHPK  

2. Update estimate with measurement 
( )1|1| ˆˆˆ −− −+= kkkkkkkk xHyKxx  

3. Update error covariance 
( ) 1| −−= kkkkk PHKIP  

Measurement update (Correction) 

Initial estimates 0x̂ and P0. 
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Here n is the number of runs and q is a n×m matrix containing m number of 
elements in the sample. A smaller standard deviation indicates a more 
stable sensor while a large value indicates a sensor with larger variation 
between runs. 
 
Average 
The average of the four runs is used as a measure of the progressing 
accuracy of the sensor measurements. Here the standard equation for 
average (5.15) is used. This will be compared to the reference topographical 
map received from the NVDB.  

5.2.2 Signal Separation 
To isolate the behaviour and slope estimation from a single sensor the 
measurement noise covariance matrix Rk was manually altered. The 
elements in Rk not corresponding to the sensor of interest were multiplied 
with a large number (1010) making these signals heavily filtered. From 
equation (4.25) a very big Rk gives an almost zero Kk implying no feedback 
in equation (4.26). 

For example when only the GPS measurements were of interest the 
measurement noise covariance matrix Rk was set to  
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giving the Kalman gain 
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This means that only feedback from the first state (GPS) is considered. 

5.2.3 Filter Tuning 
As the road slope angle is of main interest the third state in the state space 
model is considered. Initially the filter was tuned for the signals to achieve 
best match with the reference slope. The fact with the torque sensor 
returning invalid slope estimations when wheel brakes are applied was first 
handled. This was done by giving the element in the measurement noise 
covariance matrix Rk relating to the slope a big value when the slope values 
reached its non-valid indication of +13%. From previous section this 
implies a minimal Kk resulting in a constant slope value. This is illustrated 
in Figure 5.2. 
 

 

Figure 5.2. Constant slope values when wheel brakes are applied. 
 
 
 
 

Invalid Torque slope values 
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In Figures 5.3 – 5.5 the road slope from the well defined section of the 
reference road is compared to the estimated road slope from averaged 
measured values of each sensor. Estimated road slope signals are time 
shifted to agree with the reference curve. An internal pre-filtering of the 
altitude incorporated in the GPS receiver adds to the time shift of the GPS 
curve. The time shifts of the GPS, torque sensor and barometer is 
respectively 12, 10 and 16 seconds. 

From Figure 5.3 and Figure 5.4 both the GPS and torque sensor show 
fairly good matching characteristics while the barometer in Figure 5.5 has 
problems with the dynamics of the road. This is due to a heavier filtration 
caused by the lack in resolution of the sensor. After comparing the figures, 
the GPS estimation (Figure 5.3) appear to show closest match with the 
reference slope leading to the conclusion that the GPS signal is the signal 
closest to real values.  

As the NVDB data was largely unreliable and with the GPS signal 
showing best matching characteristics on the short reliable part the GPS 
signal is from now on used as reference curve. There is no indication to 
suspect large changing accuracies in the GPS signal as the satellite 
coverage was satisfactory along both roads at all times.  

 

 

Figure 5.3: Road slope comparison of GPS and NVDB data. 
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Figure 5.4: Road slope comparison of torque sensor and NVDB data. 

 

Figure 5.5: Road slope comparison of barometer and NVDB data. 

Average Torque slope motorway 



 

 43

 

5.3 Results Motorway Segment 
 

5.3.1 Standard Deviation 
In Figures 5.6 – 5.8 standard deviation for the motorway segment is 
presented for each sensor. From the GPS standard deviation in Figure 5.6 a 
quite evenly distributed deviation is observed. Larger initiating values are 
due to a motorway on ramp section where satellite visibility momentarily 
decreased causing larger uncertainties in the altitude measurements. In 
Figure 5.7 standard deviation for the torque sensor is shown. Irregularities 
in the beginning and end are due to times with applied wheel brakes. These 
are times before and after the motorway. The two smaller maxima at around 
2×104 and 2.8×104 meters are caused by variations in the positioning of 
valleys. This is due to the fact that the slope estimation from the torque 
sensor is affected by the driving situations of the truck and is for that reason 
sometimes inconsistent. The Barometer standard deviation in Figure 5.8 
shows a quite evenly distributed deviation as the GPS, although with larger 
values. To get an easier comparison index the average values of the 
standard deviations are presented in Table 5.1.  

The result in Table 5.1 shows that the torque sensor signal has the 
smallest standard deviation while the barometer has the largest, leading to 
the conclusion that torque sensor is the most stable sensor for motorway 
segments. 
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Figure 5.6: Standard deviation for GPS over motorway segment. 

 

Figure 5.7: Standard deviation for torque sensor over motorway segment. 

Standard deviation Torque motorway 
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Figure 5.8: Standard deviation for barometer over motorway segment. 

 
 GPS Torque sensor Barometer 
Average std [%] 0.23 0.19 0.29 

Table 5.1: Average standard deviation over motorway. 

5.3.2 Average Road Slope 
In Figure 5.9 a part of the average torque sensor road slope showing typical 
characteristics is plotted with the GPS curve as reference. Here a tendency 
can be observed of sometimes showing a negatively biased slope estimation 
value. Differences can be observed around 0.7×104 and 1.2×104 meters. 
Overall a smooth and reliable curve is observed. In Figure 5.10 the 
averaged slope estimation from the barometer is presented over the same 
distance. Here the general result is that the pressure sensor tends to 
underestimate the road slope magnitude. This is due to increased filtration 
relating to the lack of resolution in the sensor. If less filtration is desired the 
number of runs averaged need to be increased. An edginess to the curve can 
also be observed, which would increase if less filtration is applied. The 
overall match with the reference curve is not satisfactory with large 
differences at e.g. around 1.2×104 meters. 

x 104 
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Figure 5.9: Average road slope for torque sensor and GPS over motorway. 

 

Figure 5.10: Average road slope for Barometer and GPS over motorway. 

Average Torque slope motorway 

x 104 

x 104 
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5.4 Results Main Road Segment 
 

5.4.1 Standard Deviation 
In Figure 5.11 – 5.13 the standard deviation for the main road segment is 
presented. Calculations are done in the same way as for the motorway in 
section 5.3.1. A table with the average standard deviations are presented in 
Table 5.2. The order of smallest standard deviation is the same as for the 
motorway segment. The GPS and torque sensor show comparable deviation 
values on the much more diverse main road compared to the motorway 
segment (Table 5.1), while the barometer shows a lower value. The torque 
sensor still has the lowest value. 
 

 

Figure 5.11: Standard deviation for GPS over main road segment. 
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Figure 5.12: Standard deviation for torque sensor over main road segment. 

 

Figure 5.13: Standard deviation for barometer over main road segment. 

Standard deviation Torque main road 

x 104 

x 104 
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 GPS Torque sensor Barometer 
Average std [%] 0.24 0.19 0.26 

Table 5.2: Average standard deviation over main road. 
 

5.4.2 Average Road Slope 
The average road slope for the main road segment is presented in Figure 
5.14 and 5.15. A part of the torque sensor slope estimation showing the 
typical behaviour is plotted with the reference curve in Figure 5.14. Here 
similar results to the motorway segment can be observed. A tendency to 
sometimes show a negatively biased slope estimation value can be seen but 
with even larger deviation than from the motorway segment (see around 
2.2×104 m). Figure 5.15 shows the average barometer slope estimation. 
Also here showing similar results to the motorway segment with the sensor 
tending to underestimate the road slope magnitude. Both sensors show 
difficulties in accurately estimating the road slope for the much more 
diverse and hilly main road. 

 

Figure 5.14: Average road slope for torque sensor and GPS over main 
road. 

Average Torque slope main road 
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Figure 5.15: Average road slope for Barometer and GPS over main road. 

 

5.5 Accuracy in Opposition to Data Quantity 
 
With the GPS signal proposed as the best signal for estimating the road 
slope an assessment of the needed accuracy, or resolution, in the signal is 
carried out. As the signal from the Kalman filter is time variant it is 
transformed to be distance variant. An equally spaced signal is wanted why 
an interpolation is performed. The distance between two following points is 
now the key feature in how large the data quantity becomes. A short 
distance gives high accuracy with a large data quantity while a large 
distance gives less accuracy but with a smaller data quantity. A comparison 
between three different interpolation distances is done. Road slope are 
interpolated with distances of 1, 20 and 100 meters apart.  

In Figure 5.16 a part of the main road section with the biggest deviation 
between the three curves is shown. A short and steep slope is pictured 
through its gradient. Here the difference between 1 and 20 meters is small 
and could be neglected. The difference between the 1 and 100 meters is 
much larger and is from Figure 5.16 a difference of about 0.6 % incline. In 
the case of the motorway segment the maximum difference observed 

x 104 
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between the 1 and 100 meter interpolation distance resulted in 0.05 % 
incline, which can be neglected. This gives the result that for the main road 
a sampling distance of around 20 meters is needed while a distance of 100 
meters is enough for the motorway. 

 

Figure 5.16: GPS road slope estimation on main road with distance 
resolution 1, 20 and 100 meters. 

 

5.6 Summary Sensor Evaluation 
 
From the sensor evaluation the torque sensor looks to be the most stabile 
sensor, although showing a tendency to estimate negatively biased slope 
values. From the average road slope results it also shows that the torque 
sensor works well on the motorway but not satisfactory on the hillier main 
roads. The torque sensor also incorporates the problem with times of non-
valid estimates when the driver applies wheel breaks, although a minor 
problem.  

The barometer on the other hand shows signs to be very unstable. On 
the motorway segment the barometer shows unreliable average values, 
though showing better performance on the main road. The fact that the 

x 104 
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barometer also is affected by sudden weather changes and the air-
conditioning system is most negative.  

The GPS showed equal convincing characteristics on both types of road 
and had the best match with the reference NVDB curve. A fair standard 
deviation and no major drawbacks also speak in favour for the GPS. All 
together the GPS looks to be the most reliable instrument in this study. 

As satellite coverage was good along the measured roads influences 
from low satellite coverage has not been evaluated. Sudden weather 
changes would affect the barometer reading but has not been examined 
further.  

For the sampling distance the analysis shows that around 20 meters is 
needed for the main road while a distance of 100 meters is enough for the 
motorway. 
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6 Conclusions and Future Work 
 
 
 
 
 
 
As information on future three-dimensional road maps was difficult to 
obtain focus was set on road slope recording. The model derived together 
with the extended Kalman filter proved to be a functional tool for road 
slope estimation. An advantage with the Kalman filter is its easy tuning 
capabilities that can be set to meet different desires. The results from the 
sensor evaluation showed that the pressure sensor suffered from its low 
resolution making it difficult to estimate the road slope accurately. With a 
high standard deviation the signal also tends to show values that differ from 
day to day. The torque sensor showed to have problems with the quick 
changing hillier main road while having stable and reliable signals on the 
motorway. The GPS on the other hand showed equal characteristics on both 
types of road with good matching characteristics to the reference curve and 
therefore proved to be the overall most suitable tool for estimating road 
slope angle. Finally a short assessment of the sampling distance is also 
carried out. Results showed that for the main road a sampling distance of 
around 20 meters is needed while a distance of 100 meters is enough for the 
motorway. 

A big issue that came up during the project was the task to find a 
reliable source to obtain a true reference topographical map for the 
measured roads. This turned out to be more difficult than expected. 
Expensive high accuracy GPS equipment was first used in believes that it 
would accurately depict the travelled road. Unfortunately this GPS suffered 
from extensive influences from satellite drop outs. Then a digital 
topological map of the specific road was specially ordered from the 
Swedish National Road Administration (SNRA) in hopes that this source 
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would be more accurate. As discussed in section 3.4 this was sadly not true. 
As the SNRA looked to have some parts of the road network measured with 
high accuracy these parts have to primarily be used for the measuring 
experiments in future works. This way the model and the estimations can be 
properly evaluated.  

As Kalman filtering is applied and several sensors are used for the same 
purpose sensor fusion is a natural step. To investigate if all three sensors 
together could give a more accurate estimation is a desire which from lack 
of time was not examined further. 

A significant task before having a complete system with look-ahead 
possibilities is the navigational part with saving and retrieving of the slope 
information. To be able to look-ahead and predict coming slopes a dynamic 
map database has to be developed with possibility to update, write and read 
from.  
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Appendix A : GPS Data Format 
 
 
 
 
 
 
The specification defining e.g. GPS receiver communication is called 
NMEA, which stands for National Marine Electronics Association. 
Information about position, velocity, heading, time and much more can be 
extracted from the NMEA sentences. The NMEA sentences are presented at 
the receiver in the form of ASCII comma-delimited message strings 
containing different types of information. The first word in the string, called 
a data type, defines the interpretation of the rest of the sentence. Each data 
type would have its own unique interpretation and is defined in the NMEA 
standard. The GPS receiver used in this study outputs six different NMEA 
data types, two of which were read and used. On the next two pages an 
extract from [21] giving an explanation on these two data types is 
presented.  



 

 60

 

A.1 Global Positioning System Fix Data, GGA 
 
Latitude, longitude, number of satellites used and altitude were extracted 
from the GGA message strings. Following is an example GGA message 
string  
 

$GPGGA,163409.348,5916.4824,N,01707.3605,E,1,10,1.2,26.9,M,,,,0000*36 
 

Table A.1 below contains an interpretation of this message. 
 
 
Name Format Example Description 
Message ID string $GPGGA GGA protocol header 
UTC Time hhmmss.sss 163409.348 Current time 
Latitude  ddmm.mmmm 5916.4824 Degrees + minutes 
N/S Indicator  character N N=north or S=south 
Longitude  dddmm.mmmm 01707.3605 Degrees + minutes 
E/W indicator character E E=east or W=west 
Position Fix 
Indicator 

1 digit 1 Range 0 to 3 

Satellites Used  numeric 10 Range 0 to 12 
HDOP  
 

numeric 1.2 Horizontal Dilution of 
Precision 

MSL Altitude  numeric 26.9 Unit in meters 
Units  character M Stands for "meters" 
Geoid Separation  blank  Not used 
Units  blank  Not used 
Age of Differential 
Corrections  

numeric  Blank fields when DGPS 
is not used. Unit in 
seconds 

Diff. Ref. Station 
ID  

numeric 0000  

Checksum hexadecimal *36  

Table A.1: GGA data format 



 

 61

 

A.2 Recommended Minimum Specific GNSS Data, RMC 
 
Speed over ground was extracted from the RMC message strings. 
Following is an example RMC message string  
 

$GPRMC,163409.348,A,5916.4824,N,01707.3605,E,46.97,308.49,061204,,*3E 
 

Table A.2 below contains an interpretation of this message. 
 
 
Name Format Example Description 
Message ID string $GPRMC RMC protocol header 
UTC Time hhmmss.sss 163409.348 Current time 
Status  character A A=data valid or 

V=data invalid 
Latitude  ddmm.mmmm 5916.4824 Degrees + minutes 
N/S Indicator  character N N=north or S=south 
Longitude  dddmm.mmmm 01707.3605 Degrees + minutes 
E/W indicator character E E=east or W=west 
Speed Over 
Ground  

numeric 46.97 knots 

Course Over 
Ground  

numeric 308.49 degrees 

Date  ddmmyy 061204 Current date 

Magnetic Variation  blank  Not used 
Checksum hexadecimal *3E  

Table A.2: RMC data format 

 


