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Abstract

The Transmission Control Protocol (TCP) has successfully governed the
Internet congestion control for two decades. It is by now, however, widely
recognized that TCP has started to reach its limits and that new congestion
control protocols are needed in the near future. This has spurred an intensive
research effort searching for new congestion control designs that meet the
demands of a future Internet scaled up in size, capacity and heterogeneity.
In this thesis we derive network fluid flow models suitable for analysis and
synthesis of window based congestion control protocols such as TCP.

In window based congestion control the transmission rate of a sender is
regulated by: (1) the adjustment of the so called window, which is an upper
bound on the number of packets that are allowed to be sent before receiving
an acknowledgment packet (ACK) from the receiver side, and (2) the rate
of the returning ACKs. From a dynamical perspective, this constitutes a
cascaded control structure with an outer and an inner loop.

The first contribution of this thesis is a novel dynamical characterization
and an analysis of the inner loop, generic to all window based schemes and
formed by the interaction between the, so called, ACK-clocking mechanism
and the network. The model is based on a fundamental integral equation
relating the instantaneous flow rate and the window dynamics. It is verified
in simulations and testbed experiments that the model accurately predicts
dynamical behavior in terms of system stability, previously unknown oscilla-
tory behavior and even fast phenomenon such as traffic burstiness patterns
present in the system. It is demonstrated that this model is more accurate
than many of the existing models in the literature.

In the second contribution we consider the outer loop and present a de-
tailed fluid model of a generic window based congestion control protocol using
queuing delay as congestion notification. The model accounts for the relations
between the actual packets in flight and the window size, the window control,
the estimator dynamics as well as sampling effects that may be present in an
end-to-end congestion control algorithm. The framework facilitates modeling
of a quite large class of protocols.

The third contribution is a closed loop analysis of the recently proposed
congestion control protocol FAST TCP. This contribution also serves as a
demonstration of the developed modeling framework. It is shown and verified
in experiments that the delay configuration is critical to the stability of the
system. A conclusion from the analysis is that the gain of the ACK-clocking
mechanism dramatically increases with the delay heterogeneity for the case
of an equal resource allocation policy. Since this strongly affects the stability
properties of the system, this is alarming for all window based congestion con-
trol protocols striving towards proportional fairness. While these results are
interesting as such, perhaps the most important contribution is the developed
stability analysis technique.
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Chapter 1

Introduction

THE Internet, the worldwide “network of networks”, has revolutionized the
way we communicate. It has in only forty years or so grown exponentially
from non-existing to ubiquitous, connecting more than 1.1 billion users to-

day. In this communication era we have learned to “web browse”, “e-mail”, “chat”,
“file share”, etc., on a daily basis. We have also discovered that the Internet can
be used as an economically efficient communication infrastructure for pre-existing
technologies such as, e.g, telephony and television, digital systems are now converg-
ing. The Internet is nowadays fully integrated with the society in the developed
world, socially as well as economically, and it is hard to estimate its value and our
dependence on it. Imagine the consequences if it crashed?

In 1986 the Internet suffered from a series of, so called, congestion collapses.
Events where throughputs for applications were close to zero, even though network
resources were fully utilized. The response of the Internet research community
was to introduce congestion control—mechanisms where users’ sending rates are
adjusted to match the level of congestion in the network. These algorithms were
developed in an iterative design process based on heuristics, small-scale simulations
and experimentation. In the perspective of the violent evolutional process the
Internet has been subject to since 1986, the achieved performance of these systems
must be considered as extremely successful.

There are, however, indications that this evolutionary design path is reaching
its limits and that new designs are needed in the near future. New wireless links,
e.g., put new demands on the congestion control schemes, which current loss-based
protocols do not meet. Furthermore, today’s deployed algorithms suffer from dif-
ficulties in providing quality of service guarantees in terms of resource allocation
and delay, as well as that the ubiquitous additive-increase-multiplicative-decrease
(AIMD) algorithm that governs the congestion control today does not seem to scale
well to high capacity networks. This is widely recognized and there is an intensive
research effort ongoing, trying to find new congestion control designs suitable for a
future Internet scaled up in size, capacity as well as heterogeneity.
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1. Introduction

1.1 Window based congestion control

In a packet switched network, such as the Internet, packets of data are sharing links
with other traffic. Non-exclusive access to circuits is normative, however to the price
of no user end-to-end capacity guarantees. Data packets are rather delivered on a
“best-effort” basis. Briefly, when an endpoint sender transmits a file to a receiver in
a packet switched network, the data is divided into chunks and packetized together
with the destination address, the packets are then released into the network which
is doing its best to deliver them to their intended destination.

A “best-effort” network does not provide any end-to-end packet delivery reliabil-
ity. In window based congestion control, this is instead assured through feedback.
The receiver at the destination acknowledges successfully received packets by send-
ing an acknowledgment packet (ACK) to the sender. At an ACK arrival the sender
decides what information (packet) that is to be (re-)sent and when.

Window based control algorithms regulate their rates by dynamically adjusting
a window, which is an upper bound on the number of packets they are allowed to
send before receiving an ACK. The time it takes from a packet is sent until it is
acknowledged is called the round trip time (RTT). Since a window w amount of
packets is sent during a RTT period of time τ , the average sending rate x during
such an interval is given by the window size divided by the RTT, x = w/τ. To
be able to accommodate short term fluctuations in traffic load, network routers
operate buffers. When the network gets congested buffers build up implying that
packets may be subject to queuing delay on their route to their destination. Since
the RTT τ consists of the total delay a packet is subject to when traveling through
the network, this means that the sending rate x is not solely set by the sender by
adjusting the window w, it is also dependent on the state of the network through
the RTT τ .

A schematic picture of the control structure for window based congestion control
is given in Figure 1.1. The endpoint protocol is at this level of detail represented by
the three blocks: transmission control, window control, and congestion estimator.
We observe that the feedback mechanism can be divided into two separated loops.
In the outer loop the congestion estimator tries to estimate the level of congestion in
the network. This estimate is used by the window control to adapt the window size
to an appropriate level. The dynamics of the inner loop are given by the so called
ACK-clocking. The transmission of new packets is controlled or “clocked” by the
stream of received ACKs by the transmission control. A new packet is transmitted
for each received ACK, thereby keeping the number of outstanding packets, i.e.,
the window, according to the specification of the window control.

The ACK-clocking mechanism is generic to all window based congestion control
protocols, and subsequently the dynamics of the inner loop in Figure 1.1 are as
well. The basic window based control problem thus consists of designing the dy-
namics of the outer loop in Figure 1.1, i.e., the window control and the congestion
estimator, such that the overall network behavior is desirable. This design problem
has received ample attention in the literature, while the impact and importance of
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Figure 1.1: A schematic picture of window based congestion control.

the ACK-clocking dynamics on this problem largely has remained unrecognized.

1.2 Motivation

The Transmission Control Protocol (TCP) is the predominant transport protocol of
the Internet today carrying more than 80 % of the total traffic volume (Fomenkov et
al., 2004). TCP is window based and to avoid network overload, which ultimately
could cause congestion collapse, one of its primary roles is to adapt the sending rate
based on the amount of congestion in the network. While TCP with great success
has served as congestion controller on the Internet for years, it has started to reach
its limits.

1.2.1 The need for speed

Let us investigate in a little bit more detail how TCP (Jacobson, 1988; Floyd et al.,
2004), scale with high capacity networks.

Consider a standard TCP flow operating at an average speed of a window w
packets per RTT in a steady-state environment. It is well known today that for
standard TCP, the average steady-state packet drop rate q of a flow approximately
is

q =
3

2w2

packets per RTT, see, e.g., (Lakshman and Madhow, 1997; Mathis et al., 1997). Let
us assume a scenario with 1500 byte packets, quite standard on the Internet, and
a 100 ms RTT, which roughly corresponds to the round trip propagation delay of
a transatlantic connection. Achieving 10 Gbit/s of steady-state throughput would

3



1. Introduction

require an average speed of

w =
10 · 109

1, 500 · 8 · 0.100 = 8, 3333

packets per RTT, and subsequently the average packet drop rate needed for full
link utilization is

q =
3

2 · 8, 33332
≈ 2 · 10−10.

This corresponds to at most one congestion event about every 5, 000, 000, 000 pack-
ets, which in time is equivalent to at most one congestion event every 5/3 hours.
An average packet drop rate of at most 2 · 10−10 would correspond to a bit error
rate of at most 2 · 10−14—this is an unrealistic requirement for current networks
(Floyd, 2003).

Evidently we can expect the performance of TCP to drop in future high band-
width networks. The example furthermore highlights TCP’s deficiency in wireless
environments where packet drop (loss) rate typically is much higher than in a wired
network. It is well-known that TCP, designed for a wired Internet, degrades over
wireless links. Consequently, in pace with increased link capacities and as the In-
ternet becomes more heterogeneous in terms of network technologies, the need for
a replacement to TCP becomes more urgent.

1.2.2 The need for accurate models

Mathematical modeling is an useful tool to better understand the mechanisms be-
hind a successful (or unsuccessful) congestion control design. However, the com-
plexity of the Internet at packet level is tremendous, the key to tractable models
is to abstract away irrelevant “details”. Network fluid flow models, where packet
level information is discarded and traffic flows are assumed to be smooth in space
and time, are by now generally accepted as a viable route to analysis and synthesis
of complex network communication systems. Following seminal work by Kelly et
al. (1998), fluid flow modeling has been used in numerous studies on window based
congestion control dynamics, e.g., in (Hollot et al., 2001a; Low et al., 2002b; Wang
et al., 2005; Tan et al., 2006b; Peet and Lall, 2007; Möller, 2008). The validity of
results concerning dynamical properties, however, rely heavily on the accuracy of
the models.

The dynamics of the inner loop

Let us investigate the performance of some known fluid flow models of the dynamics
of the ACK-clocking mechanism (the inner loop in Figure 1.1), often referred to as
“the link” in window based congestion control. Consider the case of two window
based flows with different RTTs sending over a single congested link (this is what
we will call a bottleneck). The link buffer size, or queue, serves as the state of the
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Figure 1.2: ACK-clocking dynamics for two flows sending over a single bottleneck
link. Step response simulation. Basic configuration: Link capacity 150 Mbit/s.
Packet size 1040 byte. Flow 1 propagation delay 10 ms. Flow 2 propagation delay
190 ms. Flow 1 window 210 packets. Flow 2 window 1500 packets. After conver-
gence, at 25 seconds the first flows window is increased step-wise from 210 to 300
packets.

system. The system input, the window sizes, are constant initially (i.e., the outer
control loop in Figure 1.1 is disabled). At 25 s the system is disturbed from the
current equilibrium by a positive step-wise change in one of the window sizes. The
plot in Figure 1.2 shows the response of the queue size for some previous models in
comparison with the “true” queue size from a packet level simulation using NS-2
(ns2), and a model derived in this thesis. The “Integrator link model” appears in,
e.g., (Hollot et al., 2001a; Low et al., 2002a; Baccelli and Hong, 2002; Altman et
al., 2004), the “Static link model” in, e.g., (Wang et al., 2005; Wei et al., 2006),
and the “Joint link model” is taken from (Möller, 2008). We observe that they all
fail to capture the significant oscillation in the queue. This is in contrast to the
“DAE link model”, that will be derived in Chapter 3, which shows almost perfect
agreement with the packet level simulation, even at time scales finer than the RTTs
(sub-RTT time scales).

The consequences for the outer loop

The analysis of the dynamic properties of a window based system based upon any
of the previous models of the inner loop may yield qualitatively different results
than those from the more accurate model. Especially for those versions of TCP
which respond to short time scale dynamics of queue sizes (Brakmo et al., 1994;
Wei et al., 2006; Tan et al., 2006a). In particular, the oscillatory response shown in
Figure 1.2 can cause such an algorithm to make rapid changes in its window size,
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1. Introduction

resulting in increased jitter and reduced utilization. This will be confirmed for the
special case of FAST TCP (Wei et al., 2006) in Chapter 4.

Note that not all algorithms which respond to delay do so at these fast time
scales. Algorithms such as TCP Africa (King et al., 2005) and TCP Illinois (Liu et
al., 2006) operate on the time scale between loss events. However, even loss-based
algorithms are indirectly affected by sub-RTT queuing phenomena. In particular,
the degree of loss synchronization, which has a significant impact on the fairness of
loss-based congestion control, is highly dependent on sub-RTT burstiness of flows.
The more accurate ACK-clocking model developed in this thesis may help to predict
such effects.

1.2.3 Discussion

We have pointed out that the microscopic behavior of the ACK-clocking mechanism,
the fundament of all window based congestion control, may have a significant impact
on the macroscopic performance of TCP. This is also established in the work by
Wei (2007), who furthermore concludes that existing fluid flow models of TCP
congestion control fail to capture important packet level phenomena, and thus
predictions made based on such models may not be very accurate (as illustrated in
Figure 1.2). Encouraged by this observation we will in this work derive fluid flow
models of window based congestion control, with a more solid foundation in the
originating packet level system than available before. In particular we will focus
on protocols using delay as congestion notification, but many of the ideas do also
apply to other types of algorithms. The model of the ACK-clocking, e.g., is valid
for all window based schemes.

The modeling framework used here will be deterministic, and thus, e.g., packet
loss effects are not in the scope of this thesis. While we agree that assuming no loss
does not reflect the reality on the current Internet, we argue that it is of crucial
importance to understand the basic mechanisms to be able to properly characterize
a complex phenomena, such as packet loss due to buffer overflow, in the future.
Considering, delay based congestion control the deterministic assumption is mild.

The price to pay for more accurate models is increased model complexity, and
the use of fluid flow models is often motivated by their tractability. Detailed models,
however, are, e.g., suitable for simulation. In addition, a precise model can be
simplified to match the accuracy needed for the intended application, and is thus
valuable. We believe these claims are substantiated in Chapters 4 and 5.

1.3 The thesis at a glance and contributions

The main contributions of the thesis appear in Chapters 3, 4 and 5 covering con-
gestion control modeling, analysis and validation respectively. In more detail, the
outline of the thesis is as follows.

6



The thesis at a glance and contributions

Chapter 2: Background

In this chapter we provide an introduction to the Internet and the main principles it
relies on. We outline the primary mechanisms that governs the congestion control
and we discuss the control objectives. In particular the Internet congestion control
working horse, the Transmission Control Protocol, is reviewed. An introduction to
recent developments in congestion control modeling is given.

Chapter 3: Congestion control modeling

In this chapter we derive a fluid flow model of a network congestion control system.
The emphasis is on the ACK-clocking mechanism and on window based congestion
control protocols using queuing delay as network congestion notification.

A departure from traditional fluid flow congestion control models is that we go
into sub-RTT detail and distinguish between the actual number of packets in flight,
the flight size, and the desired number of packets in flight, the window size.

The main contribution of the chapter is a detailed model of the ACK-clocking
mechanism, generic to all window based schemes. The model makes use of a fun-
damental integral equation which relates the instantaneous arrival rate at a link
with the endpoint senders’ flight sizes. This is the key in the modeling. Also non-
window based flows are incorporated in the model as cross traffic. We also provide
a description of the relation between the flight size and the window size.

To close the loop a novel fluid model of the dynamics of a general time based
protocol is formulated. The model accounts for the relation between the flight size
and the window size, window control, estimator dynamics as well as sampling effects
that may be present in an endpoint congestion control algorithm. The use of the
model is demonstrated by modeling FAST TCP.

Chapter 4: Analysis

This chapter is devoted to analysis of the models derived in the previous chapter.
First, we analyze the properties of the ACK-clocking mechanism. For a general

network we show that it has a unique equilibrium. For the single bottleneck link case
we are able to prove that the queue size is linearly stable around the unique equi-
librium. We also illustrate that in the case of rational ratios between flows’ RTTs,
the system is not stable in the senders’ rates. The individual rates actually may
oscillate while their sum, and thus the queue, remains constant. The model predic-
tions are verified with packet level validation experiments. This highlights how the
ACK-clocking model captures microscopic phenomenon such as traffic burstiness.
A discussion on some different strategies for how to reduce the complexity of the
ACK-clocking model is also included.

Second, we investigate the quantitative difference between protocol window size
and flight size. We see that for the typical case when the window size is updated
once per RTT, the difference is in the order of a RTT.

Finally, we derive a linear model of multiple FAST TCP flows sending over a
single bottleneck link. The linear model is used as departure point for finding more

7



1. Introduction

tractable simplified models. We use a model, valid for moderately heterogeneously
distributed RTTs, to show that the system is stable for default parameter values.
To do so we use a proof technique less conservative than previous state-of-the art
in this type of work. However, since the model accuracy degenerates as the RTT
heterogeneity increases we seek an alternative model to analyze such scenarios.
After deriving such a model, we show that it is not possible to choose protocol
parameters of FAST TCP such that system is stable in all networks. In particular
it destabilizes when flows’ RTTs are wide apart. The theoretical results are also
confirmed with NS-2 simulations and testbed experiments.

Chapter 5: Experimental results and validation

In this chapter we validate the models derived in Chapter 3.
The chapter opens with a discussion on how to generate experimental data in

closed loop for a window based congestion control system.
A quite extensive validation of the ACK-clocking model derived in Chapter 3 is

presented next. This is done using experimental data from packet level simulations
as well as from a physical testbed. The model is reported to be very accurate.

The dynamics from the window size to the flight size is investigated in simu-
lation experiments. We observe a good fit between our model predictions and the
experiments. For relative small changes in the window size the model error in the
queue size when not accounting for the dynamics seems negligible, it is furthermore
attenuated as the system converges to equilibrium.

We end the chapter with validating the FAST TCP model which the linear
analysis in Chapter 4 is based on. The model fit is reasonable, in particular for
high bandwidth scenarios which FAST TCP is primarily designed for.

Chapter 6: Conclusions and future work

The results of the thesis is summarized in this final chapter. We conclude the thesis
by suggesting possible future extensions to the work presented.

1.4 Publications

Many of the results appearing in this thesis have been presented elsewhere. The
material covered in Chapter 3, 4 and 5 is presented in part in the papers:

Krister Jacobsson, Lachlan L. H. Andrew, Ao Tang, Steven H. Low and
Håkan Hjalmarsson. An improved link model for window flow control and
its application to FAST TCP. IEEE Transactions on Automatic Control,
2008. To appear.

Krister Jacobsson, Lachlan L. H. Andrew, Ao Tang, Karl H. Johansson,
Håkan Hjalmarsson and Steven H. Low. ACK-clocking dynamics: Modelling
the interaction between windows and the network. In Proceedings of the
IEEE Infocom mini-conference 2008, Phoenix, 2008.
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Chapter 2

Background

RESOLUTION: The Federal Networking Council (FNC) agrees that the
following language reflects our definition of the term “Internet”. “Inter-
net” refers to the global information system that - (i) is logically linked
together by a globally unique address space based on the Internet Protocol
(IP) or its subsequent extensions/follow-ons; (ii) is able to support com-
munications using the Transmission Control Protocol/Internet Protocol
(TCP/IP) suite or its subsequent extensions/follow-ons, and/or other
IP-compatible protocols; and (iii) provides, uses or makes accessible,
either publicly or privately, high level services layered on the communi-
cations and related infrastructure described herein.

The Federal Networking Council, October 24, 1995.

JANUARY 1, 1983 was “flag-day” for the transition of the ARPANET host pro-
tocol from the early Network Control Protocol (NCP) to TCP/IP. According
to the resolution above this was the day the Internet was born. Subject to

exponential growth the Internet has since then grown to be the largest dynamical
system ever built by mankind and it has revolutionized the computer and commu-
nication world like nothing before. The objective of the first section of this chapter,
Section 2.1, is to give a brief introduction to the Internet, and the principles it
relies on. After that, in Sections 2.2 and 2.3, we zoom in on the congestion control
mechanisms whose robust and scalable designs clearly have been instrumental to
the Internet revolution. The remainder of the chapter, Sections 2.4 and 2.5, out-
lines recent analytical tools devoted to increase the understanding of these feedback
control algorithms.

2.1 The Internet and IP networking

The Internet is a worldwide system of interconnected computer networks, a network
of networks, linked by copper wires, fiber-optic cables, wireless links etc., that

11



2. Background

communicates using packet switching and the standard Internet Protocol (IP).
The Internet provides the transport infrastructure for a wide range of services

such as, e.g., electronic mail, file sharing, telephony, radio and television as well
as other types of streaming media. It also hosts the World Wide Web (WWW), a
virtual network of interlinked hypertext documents. This “web” of information, not
to be considered synonymous with the Internet, is hand in hand with the Internet
ubiquitous in societies in the developed world today.

Much has been written about the history, the technology, and the usage of the
Internet. The material covered in this very brief discussion on TCP/IP can be
found in, e.g., (Leiner et al., 1997), (Hunt, 1998) and (kc claffy et al., 2007).

2.1.1 The road to TCP/IP

In 1965 MIT researcher Lawrence G. Roberts together with Thomas Merrill con-
nected the TX-2 computer in Cambridge, Massachusetts, to the Q-32 in Santa
Monica, California, using a low speed dial-up telephone line. This was the first
Wide-area computer network (WAN) ever built. The result of the experiment was
the observation that time-shared computers worked well together, but that the cir-
cuit switched telephone network did not meet the demands. They realized that
packet switching was the route to follow.

In a packet switched network packets of data are sharing links with other traffic.
Non-exclusive access to circuits is normative, however to the price of no user end-
to-end capacity guarantees. Data packets are rather delivered on a “best-effort”
basis. Each carrier in the network is doing its best such that packets are reaching
their destination. Packet switching is fundamentally different from public switched
telephone networks that uses circuit switching to allocate an exclusive path with
a predefined capacity across the network for the full duration of the connection.
The resource sharing model of packet switching was chosen since it is the far more
economically efficient way to utilize existing networking resources.

The first published work on packet switching theory appeared in 1961 and was
authored by Leonard Kleinrock at MIT. Breaking the theoretical ground, Klein-
rock’s Network Measurement Center at UCLA in 1969 became one of four network
nodes of the world’s first packet switched network—the ARPANET. More and more
computers were added to the network during the following years. At the same time
as the network grew quickly the effort on completing the early used host-to-host
protocol, the Network Control Protocol (NCP), and other network software contin-
ued. The work on NCP was finally finished in 1972. This was also the year when
electronic mail was introduced.

At this stage the ARPANET started to turn into the Internet by assimilating
other networks like satellite networks and ground-based packet radio networks.
The organic growth was enabled by a meta-level “Internetworking architecture”
allowing connections of individual networks based on different technologies. This
open architecture networking is the key technical idea behind the Internet. The
concept was initially introduced by Robert E. Kahn in 1972 who developed a new
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version of the NCP protocol suitable for an open-architecture network environment.
The NCP protocol was designed for the ARPANET exclusively and relied on it to
provide end-to-end reliability, furthermore it could not address computers in other
networks. Kahn’s refined protocol solving these issues eventually was called the
Transmission Control Protocol/Internet Protocol (TCP/IP).

As the Internet continued to evolve, TCP/IP did as well. From experimental
work on Voice over IP (VoIP) is was realized that while the protocol worked fine
for file transfer and remote login applications, it was less suitable for delay sensitive
applications. Finally, this led to a separation of the protocol into the simple IP re-
sponsible for addressing and forwarding of packets, and TCP which provided flow
control and packet loss recovery. To meet the demands of applications more sensi-
tive to delays than packet loss, the User Datagram Protocol (UDP) was introduced
in 1980 as a means to access the basic service of IP.

After several years of planning January 1, 1983 was the official transition day of
the ARPANET host protocol from NCP to TCP/IP. Soon after that the Internet
was a well established technology used by a large number of researcher and devel-
opers, by now it also becomes more and more popular among other communities.
The dramatic growth of the Internet had just begun, it now started to double its
size every year.

2.1.2 End-to-end principle and protocol layering

The robustness and the adaptivity of the Internet’s architecture has enabled its
explosive growth as well as explosive innovation in edge services and applications.
It uses a design based on an end-to-end model of connectivity, initially discussed
in the paper (Saltzer et al., 1984). The rationale is to strive to put intelligence
and state maintenance at the edges, while keeping the network core simple. The
basic idea of the end-to-end principle is to assign different functions to layers, or
subsystems, of the system. Such layerings are desirable to enhance modularity. As
stated by Saltzer et al. (1984) end-to-end processing tends to increase reliability,
and thus robustness.

In a layered architecture, designers only need to deal with the complexity of a
single layer, which facilitates development of new functionalities/services. In a com-
munication network context, e.g., the network is just a neutral transport medium
and does not have to know what applications are running on it. An application de-
veloper, e.g., can deploy new applications without any permission from the Internet
Service Providers (ISPs) or any extra charge on the normal service fees.

The Open Systems Interconnection Basic Reference Model (OSI model) defines
how functions should be assigned in a generic communication system. The abstrac-
tion specifies seven layers. The model is illustrated to the left in Figure 2.1. The
layers are are from top to bottom: Application layer, Presentation layer, Session
layer, Transport layer, Network layer, Link layer and Physical layer. Each layer pro-
vides services to the layer above, and receives services from the layer below. The
Application layer consists of the application programs that use the network. The
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Application layer

Presentation layer

Session layer

Transport layer

Network layer
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Physical layer

IP layer

Transport layer

Application layer

Network access layer

OSI stack TCP/IP stack

Figure 2.1: Left: The OSI networking stack. Right: The IP networking model.

Presentation layer standardizes data presentation to the applications. The Session
layer manages sessions between applications. The Transport layer provides end-to-
end reliability, error detection as well as correction. The Network layer manages
connections across the network for the layers above. The Data link layer delivers
data across the physical link. The Physical layer defines the physical characteristics
of the network media.

Note that a layer does not define a single protocol, but a function that may be
performed by different protocols. Each layer, thus, may contain several protocols
providing services within the scope of that layer. As an example, a file transfer
protocol and an electronic mail protocol do both provide user services, moreover
both are part of the Application layer.

2.1.3 TCP/IP

The structure of the Internet is defined by the TCP/IP model. The layering is
according to the right picture of Figure 2.1. The three uppermost layers of the OSI
model are lumped into a single layer, the Application layer, in the TCP/IP model.
The IP layer, sometimes called the Internet layer, of the TCP/IP model corresponds
to the Network layer in the OSI model. Furthermore the two lower layers in the
OSI model are represented by the single Network access layer in TCP/IP.

The heart of TCP/IP is the Internet Protocol (IP). IP communicates data across
a packet switched internetwork. An internetwork is a network segment that consists
of two or more smaller network segments, a “network of networks”. Recall that in a
packet switched network, packets of data are sharing links with other traffic. Briefly,
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data from a transport layer protocol is divided into chunks and packetized together
with destination (IP) address. IP then routes the packets through the network
to the final destination. Being a lower layer protocol, IP only provides best effort
packet delivery between nodes in line with the end-to-end principle to keep the core
simple. Thus packets may, e.g., be corrupted, arrive out of order, or even be lost
or dropped/discarded along the route. The main feature of IP is that it can be
used over heterogeneous networks. The physical network could consist of any mix
of, e.g., ethernet, Wi-Fi or cellular networks, providing packet transport between
nodes sharing the same link. The hourglass shape of the TCP/IP networking model
to the right in Figure 2.1 illustrates that IP is used for packet transportation alone
on the Internet, while there are many different network access technologies as well
as numerous transport layer protocols, and even more application protocols.

Next, let us work our way up through the layers from bottom to top.

The Network access layer

The lowest layer in the TCP/IP suite is the Network access layer. The protocols
in this layer provide upper layers with data delivery to other devices on a directly
attached network. The layer defines how to use the network to transmit an IP data-
gram (packet). It converts the IP address into an address that is understandable
for the specific physical network that is used. Each hardware technology demands
its own Network access protocol.

The IP layer

The IP layer is sometimes referred to as the Internet layer and is the layer above the
Network access layer. The Internet Protocol is without doubt the most important
protocol in the IP layer. All protocols in layers above use IP as data delivery
service. By calling the Network access layer, IP ties networks based on different
kinds of physical media together into one which forms the Internet. All incoming
and outgoing data flows through IP, regardless of its final destination.

The IP is the building block of the Internet and it includes the following func-
tions:

• Defining the datagram, i.e., the packet, which is the basic unit of transmission
in the Internet.

• Defining the Internet addressing scheme.
• Moving data between the Network access layer and the Transport layer.
• Routing datagrams to remote hosts.
• Performing fragmentation and re-assembly of datagrams.

IP is reliable in the sense that it accurately delivers data according to the spec-
ified address. However, IP does not check if this data was correctly received. This
end-to-end functionality is left for the layer above.
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The Transport layer

In the TCP/IP protocol stack the Transport layer is responsible for the end-to-end
data transfer, i.e., that the intended information is delivered to the receiver. It is
the first layer that offers reliability.

The by far most used transport layer protocol on the Internet today is TCP,
offering end-to-end error detection and correction. Basically TCP detects corrupted
or lost segments of packets, and resends them until the data is successfully received.

Such end-to-end delivery guarantee may, however, not be suitable for all appli-
cations. Some applications, e.g., Voice over IP (VoIP), are more sensitive to delay
than to dropped packets. Hence best effort protocols are a more appropriate choice
for such cases. The User Datagram Protocol (UDP) is currently the most used best
effort protocol. It is typically used for streaming media, i.e., audio, video, etc., but
also simple query/lookup applications.

The Application layer

The top layer of the TCP/IP stack is the Application layer. It includes all processes
that use the Transport layer to deliver data to the IP layer. There is a wide range
of application protocols. Most of them provide user services, but some of them are
directly behind applications. As the innovation in edge applications continues new
services and protocols are added to this layer. Examples of widely used Application
layer protocols are:

• The Network Terminal Protocol (Telnet), provides text communication for
remote login and communication across the network.

• The File Transfer Protocol (FTP), downloads and uploads files across the
network.

• The Simple Mail Transfer Protocol (SMTP), delivers electronic mail mes-
sages across the network.

• The Hyper Text Transfer Protocol (HTTP), used by the World-Wide-Web
to exchange text, pictures, sounds, and other multi-media information via a
graphical user interface.

Some protocols can only be used if the user has some knowledge about the network
while others may run without the users’ awareness of their existence.

2.2 The Transmission Control Protocol

We have learned that end-to-end reliability in TCP/IP is managed by the Transport
layer. The topic of this section is the Transmission Control Protocol (TCP) which
is the predominant transport protocol of the Internet today carrying more than
80 % of the total traffic volume (Fomenkov et al., 2004). TCP is used by a range
of different applications such as web-traffic (WWW), file transfer (FTP, SSH), and
even streaming media application with “almost real-time” constraints such as, e.g.,
Internet radio.
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Figure 2.2: A sender transfers data to a receiver after establishing a connection
with a three-way handshake. It is also a data flow from the receiver to the sender
since received data is acknowledged.

TCP is a connection-oriented protocol. This means that it establishes an end-
to-end connection between two hosts that are communicating. Assume host A
wants to transfer data to host B, then we will refer to host A as the sender and
host B as the receiver, see Figure 2.2. The connection or flow is defined by the
sender/receiver pair. We will sometimes equivalently use the term source to denote
the sender. The path is the subset of links in the network that is utilized by the
flow. The procedure of setting up a connection in a connection-oriented protocol
involves the exchange of control information, this is referred to as a handshake. A
handshake of TCP takes three exchanged segments (packets) and is thus called a
three-way handshake.

2.2.1 Positive acknowledgment with re-transmission

The packet transfer reliability of TCP is accomplished by a mechanism called Posi-
tive Acknowledgment with Re-transmission (PAR). Shortly, in a system using PAR
the receiver re-sends data according to some rule unless it hears from the receiver
that the data was successfully received. In a connection using PAR the data flow
is bi-directional since the ACKs flow from the receiver to the sender.

In TCP each unit of data, i.e., a packet, contains a checksum such that the
receiver can verify if the received data is correct. If the packet is successfully
received the receiver sends an acknowledgment packet (ACK) back to the sender to
verify this—a positive acknowledgment. If the received data is faulty, the receiver
just discards it. To compensate for damaged or lost packets, the TCP sender re-
transmits each packet that has not been acknowledged after an appropriate time-out
period.

TCP uses data sequence numbering to identify packets, and cumulative ACKs to
inform the sender. In a cumulative ACK strategy, an ACK referring to a particular
point within a data stream implicitly acknowledges all data up to the ACKed
sequence number. This is in contrast to per-packet ACKs which only acknowledges
the packet with the very same sequence number as the ACK itself.

17



2. Background

101 2 3 4 5 6 7 8 9 11 12

Outstanding packets (window size)ACKed packets Unsent packets

{ { {

101 2 3 4 5 6 7 8 9 11 12{{{
Unsent packetsOutstanding packets (window size)ACKed packets

Figure 2.3: The sliding-window mechanism. In this example the number of out-
standing packets, the (send) window size, is set constant to 5 packets. In the top
figure the sender has transmitted 8 packets, whereby 3 has been acknowledged.
In the lower figure one more packet has been acknowledged. Thus the subsequent
packet to be transmitted, packet number 9, is sent and the window “slides” forward
one packet on the data stack.

2.2.2 Flow control

To avoid that the sender transmits data too fast for the receiver to reliably receive
and process it, TCP implements an end-to-end flow control. Such a mechanism
is necessary in a heterogeneous network environment where end terminals have
varying processing capabilities. In, e.g., a scenario of a cell phone downloading
a file from a network server, the server is likely to have much better processing
capacity than the processor in the cell phone and thus would overflow the cell
phone protocol software in the case of no flow control.

The sliding-window

The flow control in TCP is accomplished by a sliding-window mechanism. The
receiver controls the data flow from the sender by telling the sender how much
data it can buffer, this is known as the receive window size. This information
is communicated from the receiver to the sender via the ACKs. The sender can
only send up to this amount of data before waiting for next ACK packet. This is
controlled by that the sender maintains a send window, corresponding to the number
of packets transmitted but not yet acknowledged, that has to be equal or smaller
than the receive window size advertised by the receiver. Figure 2.3 illustrates how
a constant send window size “slides” forward as an ACK is received, thereby the
name sliding-window mechanism.

Since the focus of this work is congestion control, it will throughout the thesis
be assumed that the receive window is larger than the send window. Thus the
receive window can be ignored and the short-hand term window will be used for
the send window.
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2.2.3 Congestion control

While flow control originally was introduced as a means for the receiver to adjust
the sender sending rate, the mechanism does not explicitly consider the state of
the network or addresses how network resources should be distributed among users
(the issue of fairness). To solve this, TCP apply congestion control in the form of
dynamical adjustment of the window size.

Network routers typically have packet queues to hold packets instead of discard-
ing them when the network is busy. However, since a router has limited resources
the size of this queue is limited as well. When the network is congested queues will
start to build up, and thus the delay, and at some point packets must be dropped.
This is, in various ways (depending on the precise TCP algorithm), utilized by the
TCP congestion control.

In TCP the sender updates the window size according to some rule using an esti-
mate of the state of congestion in the network as input. The information about the
network state is carried to the sender by the returning ACKs. The congestion esti-
mation must be performed implicitly by, e.g., detecting lost packets or monitoring
queuing delay, or any other explicit signal correlated with network congestion.

Macroscopically, the difference between various TCP “flavors” is the way esti-
mation is performed and the rule the window size is updated according to. Before
giving an overview of different versions of TCP in Section 2.2.4, let us return to the
sliding-window mechanism since it turns out that, in fact, it is a congestion control
mechanism in itself.

ACK-clocking

The sliding-window mechanism controls the maximum amount of data a TCP
sender can keep inside a network. In contrast to this explicitly controlled data
load, the effective sending rate of a sender is dependent on the dynamics of the
network itself.

Recall that the sliding-window mechanism only transmits a packet at the arrival
of an ACK and when the size of the window allows so, see Figure 2.3 for the case
of a constant window. This implies that the sending rate is auto-regulated, or
“clocked” by the rate of the received ACKs. We will refer to this as ACK-clocking
in the sequel. If a packet experiences congestion it will be delayed due to that queues
are building up, therefore the ACK rate and the sending rate, and consequently the
load on the network is decreased accordingly.

Even though, as we will see in Chapter 4, the ACK-clocking has stabilizing
properties in itself, it does not provide fair and efficient utilization of resources.
Consider, e.g., a sender with constant window size and a bandwidth delay product
less than the capacity. Note that the senders sending rate is less than the capacity
for this case and that the link thus will remain under utilized if no other traffic is
present. This motivates the dynamical adjustment of the window size used in TCP.

We have seen that the sender controls the sending rate as a function of the rate
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Figure 2.4: TCP congestion control in a sender perspective. The TCP sender
transmits data to the TCP receiver located somewhere in the network. The sending
rate adapts on the rate of the received ACKs due to ACK-clocking and the level of
congestion in the network via the window control.

of the returning ACKs and the window size, and that the window size is updated
according to the level of congestion of the network (and that this information is
communicated to the sender by the ACKs). From this it is realized that from a
signal based point of view the congestion control mechanism in TCP constitutes
two feedback loops according to Figure 2.4. It turns out that this perspective will
be useful when modeling the network, see Chapter 3.

2.2.4 TCP overview

In the original TCP specification (RFC 793) window based flow control was speci-
fied as a means for the receiver to regulate the amount of data sent by the sender.
This to prevent data overflow at the receiver side. The specification did not, how-
ever, include dynamic adjustment of the congestion window size in response to
congestion.

Beginning in October 1986 the Internet suffered from a series of congestion
collapses, events where the network operates in a stable but degraded condition
where throughput is several orders of magnitude lower than the capacity (Nagle,
1984). This eventually led to that the congestion avoidance mechanisms that are
now required in TCP implementations were developed in 1988 by Van Jacobson
(Jacobson, 1988; Allman et al., 1999; Floyd, 2000). The resulting implementation
of Jacobson’s work, the TCP Tahoe release of BSD Unix, reacts to lost packets
as a congestion signal fed back from the network to the sender. This is still what
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prevents congestion collapse of today’s Internet.
The research effort on congestion control has been considerable after 1988. How-

ever, the most widely deployed TCPs of today, TCP Reno (Stevens, 1997) and TCP
NewReno (Floyd et al., 2004) (c.f. TCP SACK option (Mathis et al., 1996)), are in
principal similar to their predecessor TCP Tahoe, yet improved versions equipped
with refined congestion control functionality. It is clear that Van Jacobson’s orig-
inal design was extremely well-founded and strongly has contributed to that the
Internet has been able to grow exponentially. However, it is also well known by now
that TCP Reno’s performance degrades as networks scale up in size and capacity
(Hollot et al., 2002; Floyd, 2003; Low et al., 2003). Standard TCP Reno performs
reasonable across a wide variety of network conditions, though it is not optimized
for any. However there are alternative more specific protocol solutions, enhanced
for specialized scenarios. We will here briefly review the standard TCP NewReno
and some of the most well known TCP proposals. They are classified by the type
of congestion feedback on which they rely on.

Loss-based protocols

The rationale of loss-based TCP protocol is that packet loss is an indication of
network congestion. If such an event is detected, the missing data has to be re-
transmitted of course, but also the sending rate should be adjusted to reduce the
load on the network and thus the probability of further packet loss.

Loss-based TCPs probes the network to assess the available bandwidth, tries
to maintain a sending rate that matches this value and if the available bandwidth
is changed adapts accordingly. In broad outlines, this is done by ramping up the
window size, and thus the sending rate, until the network gets congested and queues
build up and eventually saturate which implies that packets are dropped (assuming
a first-in-first-out/drop-tail environment). When this occur the TCP sender backs-
off by decreasing the window to lower its load on the network before ramping up
the rate again to once again probe for the available bandwidth. Loss-based TCPs
strive towards saturating network buffers. The motivation for this is that a link
with a non-zero queue is operating at full capacity and thus the network resource
is efficiently utilized.

Packet loss detection is obviously important in TCP. This is done with the
means of duplicate ACKs. Recall that TCP uses cumulative ACKs, acknowledging
all packets up to its sequence number. If an ACK arriving at the sender has the
same sequence number as a prior received ACK it is said to be duplicate. This is
illustrated in Figure 2.5. When this occurs a packet may have been lost or delayed
and delivered out-of-order; it is also a possibility that the ACK has been duplicated
by the network. In, e.g., TCP NewReno a packet is considered lost if: no ACK
is received for that packet within a certain time-out period; or, if three duplicate
ACKs are received. Such congestion events triggers TCP window control to take
action.
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Figure 2.5: Duplicate ACK illustration. The receiver acknowledges the next ex-
pected packet in the data sequence.

Standard TCP (TCP NewReno) The principal operation of TCP NewReno
involves three main mechanisms: slow start, congestion avoidance and fast retrans-
mit/fast recovery.

At the start-up of a connection the sender starts cautiously with a window size
of just a few packets, it then tries to quickly identify the bottleneck capacity by
increasing the window size exponentially. This is achieved by incrementing the
window with one packet per received ACK, and thus the window is doubled every
RTT. This mode is called slow start, see Figure 2.6.

The system remains in slow start until the window reaches a threshold, the Slow
start threshold, where the system enters congestion avoidance. During congestion
avoidance the window is increased more cautiously with the multiplicative inverse
of the window for each received ACK. This results in that the window increment is
one packet every RTT.

If the sender detects a packet loss by receiving three duplicate ACKs, it retrans-
mits the lost packets, halves the window, and re-enters congestion avoidance. This
is referred to as fast retransmit/fast recovery. This is in contrast to when a loss is
detected through a time-out. In that case, after the packets have been transmit-
ted, the window is re-initialized and and the sender re-enters slow start instead of
congestion avoidance.

Remark that the effective sending rate of the protocol is not determined by the
window size alone. Due to the ACK-clocking mechanism it is proportional to the
window size divided by the round trip time. A senders sending rate is thus affected
by the state of the network through the queuing delay packets (and ACKs) are
subject to along the path, see Section 3.3. This means that a doubled window size
does not corresponds to a doubled sending rate in a congested network.

In steady-state operation under normal conditions, TCP remains in a cycle
alternating between congestion avoidance and fast retransmit/fast recovery. It thus
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Figure 2.6: Idealized TCP Reno/NewReno behavior.

sometimes increases the window additively and sometimes reduces the window with
a multiplicative factor equal to a half. This strategy to dynamically adapt the
window size to the amount of congestion in a network was proposed by Jacobson
(1988) and is called additive-increase-multiplicative-decrease (AIMD). In general
AIMD the window is increased with α packets per RTT until a packet loss is
detected whence the window is decreased a multiplicative factor β. This is achieved
by increasing the window w with 1/w at the arrival of an ACK, and by reducing it
with βw at a loss. In pseudo code, the window update is

Ack : w ← w +
α

w
,

Loss : w ← w− βw.

From the previous discussion it is realized that TCP NewReno applies AIMD with
parameters α = 1 and β = 1/2.

An illustration of the window evolution of TCP NewReno is shown in Figure 2.6.
At the startup the window is increased exponentially using Slow start. It remains
in this state until the window equals the Slow start threshold where it enters Con-
gestion avoidance where the window is increased linearly. While in this mode,
eventually three duplicate ACKs are received due to a lost packet. The window is
then halved and increased linearly again. The next event is an ACK time-out, i.e.,
no ACK is received for a packet within a certain time-out period. The protocol
interprets this as that the network is severely congested and thus remains silent for
a while and then re-starts the bandwidth probing in Slow start. When the window
grows beyond the Slow start threshold the Congestion avoidance mode is entered.
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Note that the Slow start threshold has changed from the initial cycle. At a loss
event it is typically set to half the window size when the loss occurred.

While the AIMD control strategy of TCP NewReno and its predecessors histori-
cally has shown to perform quite well over a wide range of networks it is well known
that its performance degrades over wireless networks, where packet loss may not be
due to congestion, and in networks with large bandwidth-delay products. Another
issue that has received much attention in the networking community is that TCP
NewReno punishes flows with large delays, a larger delay implies a smaller share of
the available bandwidth in steady state.

HighSpeed TCP Already in Chapter 1 an example was presented that showed
that the standard AIMD control strategy used by TCP is not aggressive enough
to be able to fully utilize high speed networks. The rationale of HighSpeed TCP
(Floyd, 2003) is to change the control in such environments but keep the stan-
dard TCP behavior in environments with heavy congestion—this to prevent any
new risks of congestion collapse. This is achieved by adapting the parameters of
the AIMD algorithm to the window state. We say that HighSpeed TCP uses an
AIMD(α(w), β(w)) update strategy.

Using an engine analogy one can view HighSpeed TCP as a turbo charged
version of standard TCP; the higher throughput the protocol is operating with, the
higher the turbo charged boost to the normal performance. For normal conditions
the congestion avoidance function is unaltered, but when the packet loss rate falls
below a threshold value the higher speed congestion avoidance algorithm kicks-
in. For standard TCP the average steady-state rate in packets per RTT, w, as a
function of the packet-loss rate, q, is roughly

w = 1.2/
√
q,

(the classic formula will be derived later in Example 2.4.1). This response function
is plotted as the solid line in Figure 2.7. The default higher-speed response function
proposed by HighSpeed TCP is given by

w = 0.12/q0.835,

designed to achieve a transfer rate of 10 Gbit/s over a path with 100 ms round trip
delay and a packet loss rate of 1 in 10 million packets. It appears as the dashed line
in Figure 2.7. Here we see how HighSpeed TCP preserves the fixed relationship
between the logarithm of the sending rate and the logarithm of the packet loss
rate, but alters the slope of the function. The steeper slope corresponds to that
the protocol departs from the standard AIMD control and increases its congestion
avoidance window increments as the packet loss falls.

Scalable TCP Yet another high-speed TCP proposal is Scalable TCP (Kelly,
2003b). In principle Scalable TCP uses an AIMD(α(w), β) type of window update
mechanism with parameters α = aw and β = b. This results in that the window
is inflated by a constant value a for each received ACK, and at a congestion event
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Figure 2.7: TCP response functions.

the window is reduced by the fraction b. The probing is in this way decoupled
from the RTT interval. This implies that connections with longer network paths
exhibit similar behavior as connections with shorter paths. The response function
of Scalable TCP is

w =
a

bq
.

It is plotted for default protocol parameters a = 0.01 and b = 0.125 as the dashed-
dotted line in Figure 2.7. The linear relationship between the logarithm of the
packet loss rate and the logarithm of the sending rate is preserved. The greater slope
indicates that Scalable TCP uses an even more aggressive multiplicative increase
rule in the congestion window than HighSpeed TCP.

BIC and CUBIC A slightly different approach to window based congestion con-
trol compared to previously described algorithms is taken in CUBIC (Rhee and
Xu, 2005) and its predecessor BIC (Xu et al., 2004). Network congestion control
is in these algorithm viewed as a search problem where the protocol tries to find
the threshold rate triggering packet loss which is the binary (“Lost”/”Not lost”)
feedback provided by the system. BIC uses a binary search technique to set the
target window size to the midpoint between the maximum window size Wmax, the
largest window size where packet loss occur, and the minimum window size Wmin,
the window size where the flow does not see any packet loss. The result is a hybrid
window increment function which is linear initially but slows down as it approaches
the previous point where packet loss occurred.

It has been shown empirically that BIC may be too aggressive compared to
standard TCP, in particular in small RTT environments or low speed situations.
CUBIC tries to solve these issues by inflating the window according to a third-
order polynomial in absolute time, the window function is shown in Figure 2.8.
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Figure 2.8: The window growth function of CUBIC.

The window growth function of CUBIC mimics and is qualitatively the same as
the BIC window growth function, it is however flatter close to Wmax were the
previous packet drop was encountered. This more careful control makes CUBIC
more stable than BIC. Furthermore since the growth function is independent of
the RTT, steady-state throughput is that as well. While CUBIC is a high-speed
version of TCP it is less aggressive at low packet-loss rates compared to Scalable
TCP and HighSpeed TCP. This makes it TCP friendlier under moderate high speed
conditions where standard TCP is still usable.

H-TCP The design objective of H-TCP (Leith and Shorten, 2004) is to improve
bandwidth-delay product scaling, mitigating RTT unfairness as well as decou-
ple throughput efficiency from network buffer provisioning with smallest possible
changes to standard TCP. The guiding rationale is that TCP has proved to be
remarkably effective and robust as network congestion controller and it is therefore
motivated to retain as many of it features as possible.

For good performance in high bandwidth-delay networks the aggressiveness of
the protocol may be increased with larger windows. This, however, implies that
flows with large windows are more aggressive than flows with smaller windows.
As a result flows with small windows have difficulties in maintain their share of
the resources, e.g., in a startup scenario. H-TCP solves this issue by proposing
a timer-based window growth function, where for an initial period the standard
additive increase is preserved, but after the end of this period the window is inflated
according to a second-order polynomial in the time elapsed since the last congestion
event. At a packet loss the window is reduced with a multiplicative factor that is
adapted to the variance of the RTT interval. A typical window evolution epoch
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is shown in Figure 2.9 where the two phases of increase are shown as well. This
strategy retains the fundamental properties of standard TCP (Shorten et al., 2007)
at the same time as having a response function similar to HighSpeed TCP.

Delay-based protocols

The size of the queues in a network is a function of the load on the network. Thus,
in the phase of congestion queues are building up. This correlation is utilized by
delay-based protocols.

Packet loss is a binary congestion signal. Subsequently each packet loss mea-
surement provides a single bit of information—a packet is dropped or not dropped.
This is in contrast to queuing delay measurements which provides multi-bit infor-
mation, the rate of change of a network queue is proportional to the excess rate over
the link. As a consequence, delay-based congestion control can stabilize a network
in a steady-state with a target fairness and high utilization. While a loss-based
protocol strives towards saturating queues and thus operates under heavy conges-
tion, a delay-based approach may operate at a point of small queues, and thus full
utilization, and no packet loss at all. This implies lower steady-state delays which
is beneficial for delay sensitive applications.

The fundamentally different modes of operation dramatically reduces the per-
formance of delayed-based protocols in a mixed environment where it co-exist with
loss-based algorithms. Thus backward compatibility with standard TCP is an is-
sue. Another challenge in a queuing-delay approach to congestion control is the
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estimation of the queuing delay. Round trip time samples are available by timing
of the returning ACKs. These measurements, however, are normally affected by
noise since traffic, and thus queues, is bursty by nature. More crucially, round
trip time samples include the physical propagation delay. This quantity is typically
unknown to the sender in a congested network. Consequently an unbiased queuing
delay estimate may be hard to achieve.

Early proposals of delay-based congestion control are, e.g., (Jain, 1989) and
(Wang and Crowcroft, 1992). Widely known implementations are TCP Vegas
(Brakmo et al., 1994) and the modern high-speed version FAST TCP (Wei et al.,
2006).

TCP Vegas The congestion avoidance design of TCP Vegas exploits the simple
idea that, in a congestion control algorithm applying a sender window, the number
of bytes in transit is proportional to the expected throughput, and therefore, as the
window increases the throughput of the connection should increase as well.

The strategy of TCP Vegas is to adjust the window size to control the amount
of “extra” data the connection has in transit, whereby extra data means the data
that has to be buffered by the network and would not have been sent if the sending
rate exactly matched the available bandwidth.

Let BaseRTT denote a given connection’s propagation delay, i.e., the RTT of
a packet when the network is not congested and queues are empty. TCP Vegas
defines the expected throughput by

Expected =
w

BaseRTT

where w is the size of the sender congestion window.
Next, TCP Vegas calculates the actual achieved sending rate Actual by dividing

the total amount of data transmitted between a packet is sent and the corresponding
ACK is received with the time interval between these two events, i.e., the RTT.

The window is then adjusted depending on the difference between the expected
throughput and the actual sending rate, Diff = Expected−Actual. Two threshold
parameters are defined, α < β, in units of kilobyte/s, and when

• Diff < α, the window is increased linearly during the next RTT;
• Diff > β, the window is decreased linearly during the next RTT;
• α < Diff < β, the window is unchanged.
The simple interpretation of this algorithm is that TCP Vegas adjusts its rate

such that the actual rate remains between α and β KB/s lower than the expected
rate.

A more instructive interpretation may instead be in terms of buffered packets
rather than rates. The total backlog buffered in a path is equal to the window size
minus the bandwidth-delay product, i.e., w − Actual × BaseRTT. Note that this is
exactly what we get if we multiply Diff with the propagation delay BaseRTT. Thus
multiplying the conditional in TCP Vegas control strategy, i.e., Diff < α and so
on, by the propagation delay BaseRTT it is realized that a sender adapts its rate
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to a buffer between αBaseRTT (typically, 1) and βBaseRTT (typically, 3) number of
packets in it its path (Low et al., 2002c).

FAST TCP Using an equation based design approach FAST TCP is developed
to be a high-speed version of TCP Vegas tailored to perform in networks with
high-bandwidth delay product. A key departure from traditional TCP design is
that FAST TCP uses the same window update law independent of the state of the
sender. Under normal operation (i.e., when no packet losses occur) the FAST TCP
algorithm updates the window size, w, once per RTT according to

w← (1− γ)w + γ

(

BaseRTT

RTT
w + α

)

, (2.1)

where BaseRTT is the minimum observed RTT, RTT is the averaged RTT created
by summing an estimate of the propagation delay with a queuing delay estimate
obtained by low-pass filtering the observed queuing delay, and γ ∈ (0, 1] and α > 0
are design parameters. The constant γ scales the convergence speed of the window
control, while the constant α corresponds to the number of packets a flow tries to
keep buffered in the network, cf., the threshold parameters of TCP Vegas.

A key feature of FAST TCP is that it maintains a stable equilibrium. This is
in contrast to, e.g., TCP NewReno which rather oscillates in a steady-state limit
cycle. From the update law (2.1) we get by equating the right-hand and left-hand
side that the FAST TCP equilibrium condition is

γ

(

−w +
BaseRTT

RTT
w + α

)

= γ
(

(−RTT− BaseRTT)
w

RTT
+ α

)

= 0.

Subsequently
w

RTT
=

α

RTT− BaseRTT
(2.2)

must be fulfilled in equilibrium. The left hand side of this expression, the equilib-
rium window divided by the equilibrium round trip time, is simply the sender equi-
librium sending rate. By noting that the difference RTT − BaseRTT corresponds to
the queuing delay it is realized that the equilibrium rate is independent of the propa-
gation delay. Thus, flows sending over the same bottlenecks with the same constant
α achieves the same equilibrium throughput. Multiplying both sides of (2.2) with
the queuing delay (RTT− BaseRTT) we see explicitly that α = w− (w/RTT)BaseRTT

corresponds to the difference between the window size and the bandwidth-delay
product and thus the number of packets backlogged in the path.

The equilibrium condition (2.2) furthermore highlights the importance of accu-
rate knowledge of BaseRTT, i.e., the propagation delay in delay-based protocols. A
positively biased steady-state estimate of the propagation delay yields an underes-
timated equilibrium queuing delay. This implies that a sender suffering from biased
propagation delay estimates will achieve a larger share of the available bandwidth.
This is compensated for by flows with correct knowledge about their propagation
delay which must back-off accordingly.
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Loss-delay based protocols

The objective of loss-delay based congestion control is to adopt the excellent steady-
state throughput properties of protocols using a delay based approach while still
being backward compatible with standard TCPs that are loss-based. This is typi-
cally handled by unifying the two approaches into one congestion control mechanism
with a proactive part reacting on queuing delay and a reactive part probing for the
available bandwidth by creating losses. With such a strategy the protocol aggres-
siveness necessary for efficient utilization of modern high-speed networks can be
implemented while the algorithm still can be graceful around maximum sending
capacity which the network can accommodate.

TCP-Africa The TCP-Africa algorithm (King et al., 2005) is a hybrid protocol
combining the high-speed features of HighSpeed TCP with the ability of sensing
congestion of TCP Vegas. It uses the delay metric used in the TCP Vegas algorithm
to determine if the bottleneck link is congested. In the absence of congestion it uses
the window update rule of HighSpeed TCP which has shown to scale well with high-
speed networks. In the presence of congestion, when the delay begins to increase,
the protocol switches to the more conservative TCP Reno congestion avoidance
rule and increases the window with one packet per RTT. It thus remains slow in
inducing congestion events compared to, e.g., HighSpeed TCP. This implies that
it can remain compatible with standard TCP flows, at the same time as it can be
efficient in utilizing the available bandwidth.

TCP-Africa appears to have improved utilization and resource allocation prop-
erties compared to standard TCP. It is also reported to have a resource allocation
similar to standard TCP Reno that punishes flows with larger RTT.

Compound TCP Consider an application using two flows, one loss-based and
the other delay-based, starting up at the same time over a link with no other
traffic. When the link is underutilized, the queue is empty and the aggregated
throughput, the sum of the two flows’ throughput, is increased as the two flows
increase their sending rate. When the queue finally starts to build up the delay-
based flow gradually decreases its sending rate while the loss-based flow continues
to increase its rate until a packet it lost. Trivially the aggregate throughput during
this period is bounded below by the loss-based flow, furthermore the increase rate
of the aggregated throughput is gradually reduced.

The main idea of Compound TCP (Tan et al., 2006a) is to behave as the ag-
gregate throughput of a loss-based and a delay-based protocol. It incorporates a
scalable delay-based window update component into the standard TCP conges-
tion avoidance algorithm. The window is set to the sum of a window adjusted
by the loss-based part and the window controlled by the delay-based part of the
algorithm. When the network is underutilized the delay-based part increases its
window rapidly, and once the queuing delay is increased it smoothly falls back. As
for TCP-Africa, the delay-based part derives from TCP Vegas. It is, furthermore,
modified to have scalability comparable to HighSpeed TCP. The conventional loss-
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based component remains as in the standard TCP congestion avoidance algorithm
to achieve backward compatibility.

Compound TCP scales well with increased throughput while still being compat-
ible with standard TCP flows at lower speeds. It also improves network resource
allocation with respect to RTT compared to standard TCP.

TCP-Illinois The design of TCP-Illinois (Liu et al., 2006) is based on the belief
that an ideal window function should be concave. Intuitively such a shape achieves
efficient utilization of resources due to aggressive window increase for smaller win-
dow sizes, as well as it avoids heavy congestion due to the more careful increase
as the window increases. This is contrast to loss-based high speed protocols as,
e.g., Scalable TCP, HighSpeed TCP and H-TCP which rather have convex win-
dow functions and thus are most aggressive when they send with their maximum
capacity.

The TCP-Illinois design objective is to achieve a concave window function using
a general AIMD algorithm. This is realized by adapting the α and β AIMD param-
eters to the amount of congestion. The window increment parameter α is therefore
set to be large when far from congestion and smaller as the amount of congestion
increases. For backward compatibility with standard TCP the decrease parameter
β is set small when far from congestion and large when close to congestion. To
estimate the amount of congestion in the network TCP-Illinois uses queuing delay.
Thus loss is used to determine the direction of the window size change, and delay
to adjust the pace of the change.

TCP-Illinois is reported to achieve better throughput than standard TCP in
high-speed networks, to have an improved network resource allocation as well as
being compatible with standard TCP.

Explicit feedback protocols

The design of TCP/IP is based on the end-to-end principle. The rationale is to
strive towards keeping the network core simple while putting intelligence at the
edges. Advantages are, e.g., increased scalability and robustness of the system.
This is, however, achieved to the price of constraints on control performance.

The idea of explicit feedback protocols is to slightly violate the end-to-end prin-
ciple and incorporate more control intelligence in network routers. By explicitly
communicating a measure related to the amount of congestion, routers can more
accurately notify senders how to adjust the sending rate. This is typically done via
fields in the packet header and the returning ACKs. The congestion control design
problem is thus not only to design the sending rate adjustment in the endpoint
protocol, but also to find an appropriate congestion measure and an update law to
be implemented in the routers. The latter control is referred to as Active Queue
Management (AQM), which is the unified name for router techniques that supports
edge control, like standard TCP, in preventing network congestion. AQM is further
discussed in Section 2.3.
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All previously discussed TCPs base their control on implicit congestion informa-
tion (e.g., dropped packets or queuing delay) that must be estimated and interpreted
by the sender. Examples of protocols using explicit multi-bit feedback communi-
cated from the network routers to the endpoints via fields in the packet header
are XCP (Katabi et al., 2002), RCP (Dukkipati and McKeown, 2006), MaxNet
(Suchara et al., 2008) and JetMax (Zhang et al., 2006). Naturally, compared to
standard TCP, the performance of all these protocols are superior in terms of their
intended use. Implementation issues and backward compatibility is rather the main
challenge for this type of protocols.

2.3 Active Queue Management

The control performance that can be achieved from the edges of a network is limited.
To support the endpoint congestion avoidance mechanisms, congestion detection
and control in the routers may be introduced as a complement. Such mechanisms
inside the network are commonly called Active Queue Management.

2.3.1 The need for Active Queue Management

The classical way for managing router queues is to accept incoming packets until a
pre-defined maximum length is reached, and then discard all arriving traffic until the
queue has decreased due to that a packet from the queue has been transmitted. This
queue management algorithm is called drop tail, or tail drop, since the tail of the
sequence of packets are dropped. Drop-tail management has been used by Internet
routers for years, though is has two drawbacks when operating in an environment
with loss-based standard TCP, namely lock-out and full queues (Braden et al.,
1998).

1. Lock-out
In a lock-out situation a single or a few flows are occupying the whole queue
space, thus preventing other connections getting access to the queue. This
phenomenon is often attributed to flow synchronization or other timing ef-
fects.

2. Full queues
The objective of maintaining data buffers for a router is to be able to absorb
bursts of data. This is essential in a packet switched network that allows
transmission of bursty data.
Even though TCP constrains a flow’s average rate via the window size, it
does not control traffic burstiness. In the case of a full, or almost full, queue
an arriving burst will cause multiple packet to be dropped. As a result
multiple flows may back-off synchronously, and ultimately this could cause a
reduction in overall throughput. Since TCP by nature increases its sending
rate until packet drops occur, queues will fill up.

32



Active Queue Management

The rationale is that the result of operating a normally-small queue may
actually be higher throughput as well as lower end-to-end delay. Queue
limits thus should reflect the size of bursts that needs to be absorbed rather
than the steady state queues that it is desirable to maintain.
The problem with the drop-tail queuing discipline in a TCP endpoint envi-
ronment is that it allows for queues to be full or almost full for sustained
periods of time. This is because congestion is signaled to the edges via packet
drop only when the queue is already full.

The lock-out problem can be solved by alternative queuing disciplines: “random
drop on full” where a randomly selected packet from the queue is dropped at the
arrival of a new packet when the queue is full, or “drop front on full” where the
packet at the front of the queue is dropped when the queue is full and a new packet
arrives. These schemes, however, do not solve the full-queue problem.

Since standard TCP reacts on packet loss, the full-queue problem can be solved
by letting routers apply an AQM scheme that drops packets before buffers are full.
Clearly the most effective congestion detection can be performed by the router it-
self. It is only the router that has a unified view of the queuing behavior over
time. By dropping packets at the incipient of congestion this information can be
communicated to the senders which in response can reduce their load on the net-
work at an early state such that queues can be kept small. Thus the capacity to
absorb traffic bursts without dropping packets will be increased. Avoiding queue
overflow and the resulting drop of several packets furthermore prevents global syn-
chronization of flows throttling down their rates simultaneously. Maintaining small
queues also reduces end-to-end delay seen by flows, this is of importance for delay
sensitive traffic such as, e.g., short Web transfers or VoIP. Avoiding full queues and
ensuring that there is buffer space available for incoming packets most of the time
automatically prevents lock-out behavior. Moreover it prevents router bias against
small but highly bursty flows.

Discussion

The traditional approach to the AQM problem is to regard the endpoint algorithms,
typically standard TCP, as the process to be controlled, and the link arrival rates
and queue sizes as measured outputs. The question is then what control signal
that should be chosen and how it should be updated. In the case of standard TCP
the control signal thus is packet drop at packet level (or packet drop probability in
a macroscopic perspective), and the design problem is how these drops should be
generated.

However, considering an environment with delay-based protocols such as TCP
Vegas or FAST TCP and interpreting it in an AQM context, the control signal
would be delay and the AQM is rather the queuing mechanism itself.

In a general setting any control signal reflecting the amount of congestion could
be considered, cf., the explicit feedback protocols discussed in Section 2.2.4. Such
schemes takes a unified approach to network congestion control and designs the
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endpoint protocol rate control and the router mechanism simultaneously.

2.3.2 Overview

We will now review some AQM algorithms proposed to complement the TCP con-
gestion avoidance mechanisms in the endpoints.

TCP friendly AQM algorithms

Already in the early 90s the Random early detection (RED) algorithm (Floyd and
Jacobson, 1993) was introduced as an extension of the drop-tail queue management
to prevent loss-synchronization and to control queue lengths. This seminal work
has been followed by a large number of AQM proposals. Only a few of the most
well-known ones are included here.

RED The idea of RED is that the existence of queues is an early sign of net-
work congestion, but that transient congestion and longer-lived congestion must be
separated. It is only possible to control longer-lived congestion.

While transient congestion is characterized by a temporary increase in the queue,
longer-lived congestion can be observed by an increase in the average queue size.
Consequently RED monitors the average queue length, by filtering the queue size
samples, and drops packets in a randomized fashion with a probability that is set
as an increasing piece-wise linear function of the average queue length. The larger
the average queue is, the more congestion and, thus, the higher probability that a
packet is dropped.

RED is widely deployed in Internet routers today, it is however, rarely enabled
due to that parameters have shown to be hard to tune. One proposed solution to
this is to adapt some of the parameters as well (Feng et al., 1997, 1999), the result
is called Adaptive RED.

SRED The SRED queue management (Ott et al., 1999), or Scalable RED, explores
that a small number of large TCP flows behave differently than a large number of
small TCP flows. The number of flows is estimated, and the probability that a
packet is dropped is computed based on this estimate and the size of the queue.
The flow estimation is accomplished without maintaining a per-flow account and
the steady-state average queue is independent of the number of flows.

DRED and PI The DRED algorithm (Aweya et al., 2001), or Dynamic-RED, tries
to stabilize the average queue length at a given size without any knowledge about
the number of active TCP connections. In principle DRED is identical to RED,
they both adjust the packet drop probability as a function of the averaged queue
size, what differs between them is the specific drop probability function. DRED
takes a control theoretic approach and poses the design of the drop probability
function as a reference tracking control problem. By introducing integral action in
the control loop, the control objective of a load independent steady-state queue is
accomplished for a wide range of load levels.
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A closely related approach as in the design of DRED is taken in (Hollot et al.,
2001b), the algorithm is referred to as PI after its controller structure (proportional-
integral). Also here the deviation from a desirable queue length is suppressed by
integral control. However, the controller in (Hollot et al., 2001b) also incorpo-
rates a proportional part and thus has one more degree of freedom than in DRED.
Furthermore, the parameter tuning is model based.

BLUE A fundamentally different approach, compared to AQM algorithms using
queue length as congestion indication, is taken in BLUE (Feng et al., 2002). In
BLUE packet loss and link idle events are used to control congestion. The packet
drop probability for an enqueued packet is increased if packets are dropped due
to buffer overflow. In the case that the queue is empty or the link is idle the
probability of drop is decreased. In this manner BLUE continuously searches for
an appropriate drop rate.

REM In the REM (Athuraliya et al., 2001), Random exponential marking, queue
management scheme an artificial metric, a “price”, is constructed as a measure of
congestion. The price is constructed from the weighted combination of the mis-
match between the averaged queue length and a reference value, and the difference
between the rate of the incoming traffic and the link capacity.

Packets are dropped randomly, and the packet drop probability function is a
smooth concave function in the price.

Using this strategy REM tries to stabilize the input rate around the link capacity
and the queue around the target independently of the number of flows traversing
the link.

AVQ To be able to operate at a minimal queue size the AVQ (Kunniyur and
Srikant, 2004), the Adaptive Virtual Queue, algorithm maintains a virtual queue
to detect congestion at an early stage. The virtual queue has a (virtual) capacity
that is less than the actual capacity of the link. At the arrival of a packet to the
physical queue, the virtual queue is updated as well to reflect the new arrival. If
the virtual queue overflows at a virtual enqueuing the corresponding real packet in
the real queue is dropped.

The virtual capacity is furthermore adapted such that packets are dropped more
frequently when the link utilization exceeds a target utilization, and less frequently
if link utilization is below the desired value.

An additional feature with AVQ is that instead of a drop-tail policy in the
virtual queue, any other AQM with desirable properties can be used on top.

Explicit congestion notification

An alternative to use packet drops to indicate congestion for an AQM scheme is to
use the Explicit congestion notification (ECN) specified in (Ramakrishnan et al.,
2001). This optional feature requires support at both ends of a connection. When
the ECN option is enabled, a router supporting it may instead of dropping a packet
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mark it by setting bits in the IP header to signal congestion to the endpoints. The
sender is then supposed to take the same action as if a packet drop was detected.

The obvious advantage with using ECN is that the number of dropped packets
in the network is decreased and consequently also the number of packets that has to
be retransmitted. To achieve any significant improvements in terms of user response
time by employing AQM, the results in (Le et al., 2007) indicate that ECN must
be used in parallel.

2.4 A flow level perspective of Internet congestion control

The complexity of the Internet at packet level is tremendous. Thus it is necessary to
abstract away irrelevant “details” when analyzing flow level performance. A packet
level congestion control algorithm imposes specific flow level properties. From a
flow level perspective the objective of congestion control is to achieve:

• Efficient resource utilization. Links should be utilized in as large extent as
possible.

• Fair resource allocation. Sharing of resources should be predictable and
reasonable.

• Low queuing delay. Large delays may hurt delay sensitive applications.
• Low loss rate. Retransmitting packets is inefficient.
• Adaptivity and stability. The system should adapt to network conditions and

have a predictable steady-state operation.

Naturally, the design of a congestion control algorithm can be separated into
two levels: the flow level and the packet level. The flow level design aims to achieve
certain macroscopic design goals listed above, while the packet level design goal is
to implement these flow level goals within the constraints imposed by end-to-end
control.

The AIMD scheme discussed in Section 2.2.4 and used by TCP, e.g., is a packet
level algorithm with specific flow level properties. Let us as an illustration analyze
its steady-state throughput with a simplified example.

Example 2.4.1. Consider a long-lived TCP flow that is operating in steady-state
cycling between incrementing its window with one packet per RTT and halving it
when it detects a packet loss. Assume that queuing delay is negligible compared to
propagation delay. Consequently the RTT, denoted with τ , is assumed constant.
Furthermore assume that the packet loss rate q is 1 packet loss per cycle which
occur when the window size is w packets. This implies that the window size varies
between w/2 and w packets traversing a perfectly periodic sawtooth, see Figure 2.10.
If the receiver delivers an ACK for each received packet, the window is increased
with 1 packet per RTT and thus each cycle must be w/2 RTTs, or τw/2 seconds
The data delivered per cycle is the area under the sawtooth, which is
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Figure 2.10: TCP window evolution under periodic loss.

packets per cycle. Since 1 packet is lost per cycle the loss rate is

q =
8
3

(

2
w

)2

,

and by solving for w we get

w =

√

8
3q
.

The throughput x of the flow is given by the data per cycle divided by the cycle time
interval, therefore

x =
3w2/8
τw/2

=

√

3/2
τ
√
q
≈ 1.2
τ
√
q

(2.3)

packets/s. Early derivations of this famous TCP throughput formula was made by,
e.g., Lakshman and Madhow (1997) and Mathis et al. (1997). It was also used
without motivation in Section 1.2.1 and mentioned in flight in Section 2.2.4.

We observe form the example that the steady-state throughput of a TCP flow
is inversely proportional to its RTT. Thus if two TCP flows are competing about
the resources of a bottleneck link, the flow with the smallest delay will achieve a
larger part of the capacity. A natural question to ask is: is this really fair?

2.4.1 Fairness

Fairness is a central issue in congestion control. It is of great importance to under-
stand how network resources are allocated among flows/users. Fairness is, however,
also a quite ambiguous notion. In a flow perspective, is it fair that each flows achieve
the same steady-state throughput? Or is it reasonable, as for TCP, to punish flows

37



2. Background

with larger delays that are more likely to use more network resources due to its
longer path? The answer is not obvious. So, assume we agree in the former defi-
nition of per flow fairness, that each flow should have the same throughput. Is it
then fair that an application opens up multiple flows to get a larger part of the
network capacity? This is unclear as well.

We will here only consider per flow fairness. Let sender i have rate xi then the
rate vector x is a vector with elements xi. The rate vector is said to be feasible
if each element xi is non-negative and the total rates at links are within capacity
constraints. A rather general definition of fairness that can be found in (Mo and
Walrand, 2000) is:

Definition 2.4.1 ((p, α)-Proportionally Fair). Let p = (p1, . . . , pN ) and α be posi-
tive numbers. A vector of rates x∗ is proportionally fair if it is feasible and for any
other feasible vector x

∑

i

pi
xi − x∗i
x∗i
α ≤ 0.

The definition of (p, α)-proportionally fairness covers and formalizes the most
common notions of fairness: max-min fairness and proportional fairness.

Max-min fairness

A max-min fair resource allocation policy maximizes the minimum sending rates.
A rate vector x is said to be max-min fair if it feasible and if any individual rate xi
cannot be increased without decreasing some other element xj which is smaller or
equal to xi. Formally, the condition of a max-min fair resource allocation is achieved
by setting weights pi to unity and letting α approach infinity in the definition of a
(p, α)-proportional fair allocation. For unequal weights pi the allocation is said to
be weighted max-min fair.

Proportional fairness

A feasible rate vector x∗ is proportionally fair if the aggregate of the proportional
difference with any other feasible rate vector x is non positive, i.e.,

∑

i

xi − x∗i
x∗i

≤ 0.

This corresponds to setting pi = 1 and α = 1 in Definition 2.4.1. For arbitrary
weights pi the resource allocation is called weighted proportionally fair.

2.4.2 Discussion

In a historical perspective, the ubiquitous congestion control protocol TCP NewReno
and its predecessors TCP Reno and TCP Tahoe have been developed in an evolu-
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tionary process based on packet level implementations relying on engineering heuris-
tics. The resulting flow level properties of the protocol, such as fairness, stability,
and the relationship between window size and loss probability in steady-state, were
not understood until later. As new theoretical tools have become available, which
has led to that the understanding of Internet congestion control has increased, the
design process is nowadays reversed. Flow level models and objectives now typ-
ically guides modern packet level implementations. Recent protocols that could
be considered model based to some extent are, e.g., FAST TCP, HighSpeed TCP,
Scalable TCP and TCP Illinois.

2.5 The mathematics of Internet congestion control

While an experimental study may provide empirical evidence that a particular
implementation fulfills its design goals, it does not explicitly reveal why that is the
case. To better understand the mechanisms behind a successful (or unsuccessful)
design, mathematical modeling is an essential tool. The objective of the modeling
is to reveal flow level properties of the packet level system.

In the area of telecommunications, queueing theory (Kleinrock, 1975) has tra-
ditionally been used as a vehicle for analysis and design. In queuing theory the
packet is the essential unit and stochastic models are used to characterize packet
inter-arrival times, which then are used to derive probability distributions of quan-
tities of interest such as queing delay and packet loss. Due to cumbersome mathe-
matics, achievable results using the machinery of queing theory heavily rely on the
abstraction of the arrival process. Typically simplifying assumptions like identi-
cally independent distributed inter-arrival times is needed, e.g., an arrival pattern
according to a Poisson process gives particularly nice results.

Congestion control mechanisms are based on feedback, unfortunately this in-
troduces correlation in time which typically implies awkward mathematics using
the framework of queuing theory. The use of queing theory in Internet congestion
control analyses has thus been limited. However, recently significant progress in
the theoretical understanding of network congestion control has been made follow-
ing seminal work by Kelly et al. (1998) (see also (Kelly, 1999), the surveys (Kelly,
2003a), (Low and Srikant, 2004), (Chiang et al., 2007) and the book (Srikant,
2004)). The key to success is to work at the correct level of aggregation, namely,
fluid flow models ignoring detailed packet level dynamics, and to explicitly model
the network congestion measure signal fed back to senders.

2.5.1 The fluid flow approximation

The flow in a digital communication network is discrete, the commodities (bits
and/or packets) are transferred in a discrete fashion rather than continuously. More
specifically, in a packet switched network, packets are transfered individually in
isolated time epochs. Note that this implies that links are in one of the two states
busy or idle in practice. The discrete nature of communication networks makes
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them inherently hard to model in detail and exact analysis is often intractable. It
is therefore of relevance to choose the correct level of model aggregation, preferably
with the application in mind, to arrive at a model suitable for the type of analysis
desired.

In fluid flow modeling the complex packet level “high frequency information” is
abstracted away. Packet flows, discrete by nature, are approximated as continuous
fluid-like flows and linked by (delay) differential equations.

In queueing theory this involves smoothing of discrete stochastic processes. An
arrival process of customers to a queue, e.g., can be smoothed out by averaging
over many independent copies of its sample-path. The resulting simplified model
can hopefully be used to reveal performance indexes of the originating system. Let
us illustrate this with an example.

Example 2.5.1 (Queue dynamics1). Assume that we have packets arriving to a
queue as a Poisson process with time-varying intensity x(t)/ρ, where x(t) is con-
tinuous and ρ is the packet size. Also assume that the service times are exponen-
tially distributed with parameter ρ/c, independent of the arrival process. This is an
M/M/1 queue with arrival rate x(t)/ρ and service rate c/ρ.

Let N(t) denote the number of packets in the queue at time t. The amount
of queued data is then b(t) = ρN(t). We now fix some t, with b(t) > 0, and
examine the change of the queue size during the interval [t, t + h]. Let Ah be the
number of arriving packets during this interval, then Ah is Poisson distributed with

parameter
∫ t+h

t
x(s)/ρds. Let Sh be the number of departing packets during the

same interval. For small h, we can ignore the possibility that the queue becomes
empty, and approximate Sh as Poisson distributed with parameter hc/ρ.

The change in the queue size is then

b(t+ h)− b(t) = ρ
(

N(t+ h)−N(t)
)

= ρAh − ρSh.
From this expression we can easily compute the expected value, and, since Ah and
Sh are assumed independent, we can also compute the variance:

E[b(t+ h)− b(t)] = ρEAh − ρESh =
∫ t+h

t

x(s)ds− hc,

Var[b(t+ h)− b(t)] = ρ2VarAh + ρ2VarSh = ρ

∫ t+h

t

x(s)ds+ hcρ.

If we keep h fixed, and let ρ→ 0, it follows that

b(t+ h)− b(t)→
∫ t+h

t

x(s)ds− hc

in the L2 sense. If we divide by h and let h→ 0, we find that

db(t)
dt

= x(t)− c.

1This example is taken from (Möller, 2008).
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When b(t) = 0, this equation must be extended with a state constraint,

db(t)
dt

=

{

x(t)− c b(t) > 0,

max(0, x(t)− c) b(t) = 0.

This establishes the usual equation for queuing dynamics as the small packet limit
of an M/M/1 queue.

In network congestion control analysis, the fluid flow assumption is more am-
biguous. In a deterministic setting, fluid flow modeling basically just means ap-
proximating flows of packets as continuous fluids, i.e., smoothing the packet inter-
arrivals like in the above example. The objective of this higher level of aggregation
is mathematically tractable dynamical models with sufficiently good accuracy over
(cruder) time scales of interest for the studied application. The window control
mechanism in TCP, e.g., is updated on per round trip time basis. Thus we can
expect that dynamics on time scales magnitudes finer does not affect the stability
of this mechanism and can therefore be ignored. This supports a modeling ap-
proach based on fluid flow approximation, cf., the discussion in Section 3.1. Note
that the error in the underlying fluid flow approximation diminishes and ultimately
disappears as the number of packets in the (fixed) system approaches infinity (i.e.,
packet size approaches zero and flows become more fluid like). The key in fluid
flow modeling is to identify crucial packet level effects and capture them in the
continuous time model.

There may be several sources of randomness in a network. Examples are: AQM
mechanisms such as RED that drop packets randomly, users connects/disconnects
in a random fashion, randomized scheduling in processors, etc.. Here the fluid flow
approximation not only refers to the spatial continuous flow assumption, but also
involves smoothing over the involved stochastic variables. The prediction accuracy
of such averaged models are not only dependent on the packet density in the sys-
tem but also that the stochastic components are appearing numerously enough.
Typically this means that the number of users must be sufficiently large. Let us
exemplify this by deriving a dynamical model of the average behavior of the AIMD
algorithm TCP is based on.

Example 2.5.2 (AIMD dynamics). Consider the standard AIMD algorithm that
determines the steady-state operation of TCP. Recall that in AIMD the sending
rate is regulated through the window size w which is inflated with 1/w packets per
received ACK and halved when a congestion event is detected.

Consider the window w as state variable and consider the packet loss probability
q as input signal. Let τ denote the round trip time and assume that every packet
is acknowledged. Let us also assume that packets are marked instead of dropped by
the network. This models a network with ECN enabled.

By definition, one full window of packets is transmitted each RTT. Thus the
average sending rate is x(t) = w(t)/τ(t). Ignoring the effect of signaling delays the
sender receives ACKs with this rate as well due to the ACK-clocking. On average a
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fraction (1 − q(t)) of these ACKs are positive, each incrementing the window w(t)
by 1/w(t), implying that the average window increase is at the rate of

x(t)(1− q(t))
w(t)

=
w(t)(1− q(t))
τ(t)w(t)

=
1− q(t)
τ(t)

.

Similarly, the average arrival rate of negative ACKs each halving the window is
x(t)q(t). The window w(t) thus on average decreases with rate

x(t)q(t)w(t)
2

=
q(t)w2(t)

2τ(t)
.

Summing up the window w(t) evolves on average according to

ẇ(t) =
1− q(t)
τ(t)

− q(t)w2(t)
2τ(t)

. (2.4)

From the window update law (2.4) we get that the relation between the equilib-
rium window w and the equilibrium packet loss probability q is

w =

√

2(1− q)
q

.

By substituting the equilibrium relation w = xτ into this expression we have that
the equilibrium rate is given by

x =
1
τ

√

2(1− q)
q

≈ 1.4
τ
√
q

when the packet loss probability q is small. Comparing this with the TCP throughput
formula (2.3) derived in Example 2.4.1. We observe that the two expressions have
the same structure by differs slightly in the constant.

2.5.2 The standard fluid flow congestion control model

We will now review a network fluid flow model introduced by Kelly et al. (1998).
This model has become standard in flow level modeling of Internet congestion
control.

Consider a network consisting of L interconnected links identified with indices
l = 1, . . . , L and with capacities cl. Assume the network is utilized by N flows
defined by a sender that transmits data to a receiver over a fixed path on the
network and which are indexed with n = 1, . . . , N . For model tractability, detailed
packet level information is ignored and rates are modeled as flow quantities. Let R
denote a routing matrix, which represents which flows that utilizes which links. It
is defined by

Rl,n =

{

1 if link l is used by flow n,

0 otherwise.
(2.5)

Before we continue, let us illustrate this with a simple example.
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Link 1

Flow 2

Flow 1

Link 2

Flow 3

Figure 2.11: Simple network configuration.

Example 2.5.3 (Routing matrix). Consider the network configuration displayed
in Figure 2.11. The nth column of the routing matrix gives the path of the nth flow,
and the lth row tells which flows that traverses the lth link. It is realized that the
routing matrix for this network is

R =
(

1 1 0
1 0 1

)

.

Let xn(t) be the rate by which sender n transmits data. In this notation the
total, or aggregate, rate on the lth link is given by

yl(t) =
N
∑

n=1

Rl,nxn(t) (2.6)

if we for simplicity ignore transmission delays. This can be expressed compactly in
vector notation, x = (x1, . . . , xN )T and so on, as

y(t) = Rx(t).

The key in the modeling is to associate a congestion measure pl(t) with each
link l. We will refer to this positive real valued quantity as price. The reason for
this naming convention will be explained in Section 2.5.3. The price may represent
different physical network quantities. The quantity of the price is specified by
the functionality of the protocol that is used. When considering a sender using a
loss-based protocol, e.g., the price corresponds to packet drop probability, while
in a delay-based setting the price represents the queuing delay at the link. A
fundamental assumption of the model is that senders have access to the aggregate
price of all links along their path. This means that the signal

qn(t) =
L
∑

l=1

Rl,npl(t), (2.7)

is available for the nth sender. In vector notation we have for all senders

q(t) = RTp(t).
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As previously the effect of transport delays has been ignored.
To complete the congestion control model we need to specify: how sources adjust

their rates based on the aggregate price they observe, and how links set their prices
based on their aggregate rates. The former is governed by the endpoint congestion
control protocol, like TCP, and the latter by the queue management algorithm at
the link, i.e., the AQM. For the discussion here we will postulate a simple first order
dynamical law

ẋn = Fn(xn, qn) (2.8)

to represent the dynamics of the nth source, and similarly

ṗl = Gl(pl, yl) (2.9)

to model the lth link price update. More general dynamics could of course be
considered.

Example 2.5.4. A delay based congestion control protocol like TCP Vegas or FAST
TCP uses queuing delay as congestion measure. The price pl of a link thus cor-
responds to the queuing delay of that link, and the aggregated price qn a sender
observes corresponds to the sum of all queuing delays at links along its path. In
terms of rates and ignoring static nonlinearities a first-in-first-out (FIFO) sched-
uled link buffer is simply an integrator integrating the excess rate at the link, i.e.,
the difference between the aggregate rate yl and the capacity cl. The dynamics of
the lth link is therefore naturally modeled as

ṗl(t) =
1
cl

(yl(t)− cl) =
1
cl

(

N
∑

n=1

Rl,nxn(t)− cl
)

.

The normalization with the capacity cl is due to that the price is measured in time
rather than buffered packets. To close the loop it remains to specify the rate dynam-
ics of the specific protocol.

The model that explicitly accounts for the feedback in the system is summarized
in Figure 2.12. Since introduced by Kelly et al. (1998) it has been fundamental
for studying equilibrium properties, such as resource allocation, and dynamical
properties such as stability and convergence.

2.5.3 Resource allocation

A central issue in a traffic network is to understand how traffic flows between dif-
ferent sources and destinations distribute themselves over the links of the network.
It turns out that the key to understand how this is accomplished by decentralized
end-to-end control is to pose the network flow control as an optimization problem
where the the objective is to maximize the aggregated sender utility (Kelly et al.,
1998; Low and Lapsley, 1999).
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R

RT
pq

x y

Sender dynamics

Routing

Link dynamics

Routing

Rate Aggregate rate

PriceAggregate price

ẋn = Fn(xn, qn) ṗl = Gl(pl, yl)

Figure 2.12: The fluid flow congestion control model. Each sender adapts its flow
rate dynamically to the amount of congestion in the network. This is represented
by the “Sender dynamics” block in the figure and models the endpoint congestion
control protocol function. Traffic flows are routed through the network and different
flows utilize different links. That is accounted for by the top “Routing” block. The
“Link dynamics” block models that links update the congestion measure, the price,
as a function of the load on the link. Prices are then fed back to senders, i.e., the
lower “Routing” block.

The utility maximization problem

Let us assume that sender n associates a utility Un(xn) with a particular sending
rate xn. In a per flow perspective it is probable that each sender increases its utility
as the sending rate increases. If utilities are additive, it seems reasonable in a net-
work macroscopic perspective to allocate resources such that the aggregate utility
is maximized. Such a resource allocation would thus solve the utility maximization
problem:

max
x≥0

N
∑

n=1

Un(xn),

s.t. Rx ≤ c,

where vector inequalities are element-wise.
The capacity constraints Rx ≤ c and the non-negativity condition x ≥ 0 defines

a convex set with non-empty interior. Thus if the utility functions Un(xn) are
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strictly concave the utility optimization problem is a convex optimization problem
that has a unique optimum and can be solved by Lagrangian methods (Boyd and
Vandenberghe, 2004).

A centralized solution strategy to the utility maximization problem violates the
end-to-end principle. This key idea of the Internet advocates decentralization and
implies that control algorithms at endpoints and links should be based on local
information. Suppose that we would like endpoint senders to solve the utility max-
imization problem in a decentralized fashion. The immediate observation is that
the rates of the sources are coupled in the shared links through the inequality con-
straints. This implies that solving for the optimal rate x∗ would require cooperation
among possibly all sources. Sources thus would have to communicate information
about their sending rates to potentially all endpoints in the network, clearly not in
line with the end-to-end principle.

Let us formulate the dual utility maximization problem under the assumption
that Un(xn) are differentiable and concave functions. Introduce the Lagrangian
function

L(x, p) =
N
∑

n=1

Un(xn)− pT(Rx− c) =
N
∑

n=1

Un(xn)− xRTp+ pTc

=
N
∑

n=1

Un(xn)− xTq + pTc =
N
∑

n=1

(Un(xn)− xnqn) +
L
∑

l=1

clpl,

here p is a vector of Lagrange multipliers and q = RTp its aggregation due to the
routing. The dual problem is given by

min
p≥0

max
x≥0

L(x, p). (2.10)

Convex duality implies that an optimum (p∗, x∗) of this dual problem is exactly
the solution to the primal utility maximization problem.

An equivalent formulation of the dual problem (2.10) is

min
p≥0

N
∑

n=1

Bn(qn) +
L
∑

l=1

plcl (2.11a)

where

Bn(qn) = max
xn≥0

Un(xn)− xnqn. (2.11b)

The function Bn(qn) has a nice economic interpretation. Since Un(xn) is the utility
a source gets when transmitting at rate xn, Bn(qn) can be interpreted as a max-
imization of an individual sender’s profit where qn is the price per unit flow it is
hypothetically charged. In this context an individual pl is interpreted as the price
charged per unit flow by link l.
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Remarkably, the decomposition of the original utility maximization problem into
the sub-problems (2.11a) and (2.11b) allows for a decentralized solution without
communication between endpoints. Clearly, if the aggregate price qn is available to
source n it can solve problem (2.11b) without knowledge about the other sources’
rates. Thus if the link equilibrium prices p∗ can be aligned with the Lagrange
multipliers, the optimum that maximizes the individual profits and computed in
a decentralized fashion by the senders, will also solve the utility maximization
problem due to convex duality. The key to the decentralized implementation is
to use link algorithms that depends on local aggregate rates yl only, and which
guarantees that the equilibrium prices p∗l are indeed Lagrange multipliers. Such an
algorithm to be implemented at links is, e.g., the gradient projection algorithm as
shown by Low and Lapsley (1999).

Congestion control as a decentralized solution to the utility
maximization problem

It turns out that the optimization formulation above provides much insight to the
equilibrium properties of network congestion control. Let us study the equilibrium
of the system (2.5)–(2.9) defined in Section 2.5.2. Under the assumption of the
existence of an equilibrium (p, x), it is characterized by

Fn(xn, qn) = 0, qn =
L
∑

l=1

Rl,npl, xn≥ 0, n= 1, . . . , N,

Gl(pl, yl) = 0, yl =
N
∑

n=1

Rl,nxn, pl ≥ 0, l = 1, . . . , L.

We will assume that the source control equilibrium condition Fn(xn, qn) = 0 satisfy

xn = fn(qn)

where fn(qn) is a positive, strictly monotone decreasing function. Such an as-
sumption is natural in the context of endpoint congestion control, qn represents
congestion in the source’s path and more congestion should imply a smaller equi-
librium rate. By assumption the inverse f−1

n (xn) of the above function exist, i.e.,
we can write qn = f−1

n (xn) in equilibrium. Define the utility function associated
with the sender congestion control Fn(xn, qn) as the integral of this inverse

Un(xn) =
∫

f−1
n (xn)dxn.

This function is strictly concave by assumption since U ′n(xn) = f−1
n (xn). Note that

we have by construction that the equilibrium rate coincides with the solution to
the convex program

max
xn≥0

Un(xn)− xnqn,

47



2. Background

which exactly corresponds to the profit maximization part of the dual utility max-
imization problem.

Let us focus on the link algorithms for a while. Assume that the link control
equilibrium condition Gl(pl, yl) = 0 implies that equilibrium rates and prices fulfills

yl ≤ cl,
pl(yl − cl) = 0.

While the equilibrium capacity constraint yl ≤ cl is more or less fundamental for
any feasible control strategy, the second constraint pl(yl − cl) = 0 means that we
now are restricted to link algorithms that do not charge a price if it is not congested,
i.e., if yl < cl in equilibrium then pl = 0. This is a rather mild assumption.

Summarizing the original equilibrium conditions in vector form with the addi-
tional constraints we have posed on the system we get

x ≥ 0, p ≥ 0,

y ≤ c,
y = Rx, q = RTp,

qn = f−1
n (xn) = U ′n(xn), n = 1, . . . , N,

0 = pT(c− y).

Remarkably this set of constraints is identical to the Karush-Kuhn-Tucker (KKT)
conditions of the utility maximization problem. We know from basic convex op-
timization theory that when strict convexity and strong duality holds the KKT
conditions completely characterize the optimal point. Therefore, under the given
assumptions, the equilibrium of the congestion control system also solves the utility
maximization problem. Thus the congestion control system can indeed be inter-
preted as a decentralized solver to this problem. Moreover, the convexity implies
that the equilibrium rates x are unique.

We remark that for protocols having a limit cycle behavior in steady-state rather
than an equilibrium point, like, e.g., TCP under AIMD, we do not attempt to
impose an equilibrium on the detailed dynamics. For those cases we study the
average behavior of the protocol. Nevertheless, such an “equilibrium” analysis is
useful in understanding the state that is aimed for by the protocol. Illustrations of
this appeared in Example 2.4.1 where the “equilibrium” throughput of TCP was
derived, and in Example 2.5.2 where the mean window dynamics of the AIMD
algorithm was considered.

Utility functions and fairness

We have just seen that under mild assumptions there is a utility function associated
with the dynamical law of an endpoint congestion control protocol, and that the
protocol utility function defines the equilibrium properties. Consequently, it is
convenient to study the fairness properties of a protocol via the utility function.
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There is a nice link between (p, α)-proportional fairness, and thus the common
notions max-min fairness and proportional fairness, and a simple but quite general
family of utility functions which covers several proposed TCP algorithms. It can
be shown (Mo and Walrand, 2000) that a class of congestion control protocols with
utility functions belonging to the following class of concave functions parameterized
by the scalar parameter αn ≥ 0 and the positive weight pn

Un(xn) =

{

pn log xn, αn = 1,

pn(1− αn)−1x1−αn
n , αn 6= 1,

is (pn, αn)-proportionally fair. In particular TCP Vegas, FAST TCP and Scalable
TCP have utility functions corresponding to αn = 1. They are thus (weighted)
proportionally fair. The utility function of HighSpeed TCP is achieved when αn =
1.2 and for TCP Reno αn = 2. Letting αn →∞ corresponds to utility functions of
protocols that are max-min fair.

The presented results on fairness hold when considering a homogeneous environ-
ment where protocols react to the same type of pricing signal. However, if different
protocols based on different pricing share the same network, the equilibrium anal-
ysis using the utility maximization framework may not be applicable. In fact it
might exist several equilibria as shown in (Tang et al., 2007). For such scenarios
the evaluation of fairness becomes formidable.

2.5.4 Dynamics and stability

A predictable steady-state behavior is essential to be able to assess the resource
allocation properties of a congestion control system. In the previous section it was
implicitly assumed that the control laws at the senders and the links were able to
drive the system to a desirable equilibrium—it was assumed that the system was
stable.

Stability is important to ensure that fluctuations due to stochastically varying
cross traffic are damped, and that the network operates in a favorable region of the
state space. Unstable protocols cause small fluctuations in cross traffic to produce
large fluctuations in queue lengths, which reduce throughput and increase jitter,
which interferes with interactive services such as VoIP.

In a real network the number of users is typically not fixed over time, senders
connects and disconnects occasionally. It is desirable that the system adapts to
the new equilibrium, imposed by the changed load conditions, sufficiently fast and
smooth. Understanding the convergence properties of congestion control algorithms
is thus of interest.

Control theory provides a powerful framework for studying dynamical properties
of feedback systems like in Figure 2.12. In the aftermath of Kelly’s fluid flow
formulation, methods of control have successfully been used for analysis of flow
level properties of various congestion control systems. Naturally the theory has
also been adopted for the purpose of design.
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Already in the seminal work by Kelly et al. (1998) and Low and Lapsley (1999)
stability of the basic schemes was pursued using control theory, however under
very idealized settings. Similar work can be found in, e.g., (Kunniyur and Srikant,
2002; Altman et al., 1998; Wen and Arcak, 2004). Results mentioned above have
ignored the effect of network delay which is critical for stability. Local stability
of TCP Reno with RED when accounting for feedback delays has been studied in
(Hollot et al., 2001a; Low et al., 2002b; Tan et al., 2006b). The stability analysis
reveals that these protocols tend to become unstable when the delay increases
and, more surprisingly, when the capacity increases. This has spurred an intensive
research to design protocols that maintain local stability also for networks with
high bandwidth-delay product, see e.g., (Floyd, 2003; Kelly, 2003b; Paganini et
al., 2005). Other examples of work proving local stability when taking delay into
consideration are (Johari and Tan, 2001; Massoulié, 2002; Vinnicombe, 2002).

To be able to achieve global results but still not ignoring delay, the authors in
(Deb and Srikant, 2003; Ying et al., 2006; Mazenc and Niculescu, 2003), uses so
called Lyapunov-Krasovskii and/or Lyapunov-Razumikhin functionals to establish
global convergence. An alternative approach is taken in (Peet and Lall, 2007)
where global stability of a TCP/AQM setting is analyzed via integral-quadratic
constraints (IQC).

Different control methods suitable for network analysis (focusing on stability
issues) are surveyed in (Papachristodoulou et al., 2004).

Results on scalable decentralized stability in networks often exploits special
symmetry structures in the way the systems are interconnected. While such as-
sumptions simplifies the mathematical analysis significantly, Lestas and Vinni-
combe (2007) find that proofs may break down with an arbitrarily small deviation
from protocol symmetry. That is the case for the stability results that appears in
(Kelly et al., 1998; Johari and Tan, 2001; Vinnicombe, 2002; Paganini et al., 2005).
The observation also highlights the importance of using appropriate models. Note
that there may be different dynamic laws with the same equilibrium which are only
distinguished by their dynamical properties. Thus a model that is sufficient for
analyzing resource allocation may be useless in the sense that it gives incorrect
predictions when studying, e.g., stability.

In a recent PhD thesis by Wei (2007) it is pointed out that widely used fluid
flow models of (window based) TCP congestion control ignores packet level effects
that are crucial for the flow level performance. Analytical predictions based on such
models are thus inaccurate which is also confirmed in experiments. It concludes
that the ACK-clocking mechanism has a significant impact on TCP performance.
Concerning this mechanism models with fundamentally different dynamical prop-
erties have been used. In (Altman et al., 2004; Baccelli and Hong, 2002; Hollot et
al., 2001a; Liu et al., 2005; Low et al., 2002a) the link is modeled as an integrator,
integrating the excess rate on the link resulting in smooth dynamics similar to a
first-order filter response. This is contrast to the more recent paper (Wang et al.,
2005) which proposes a static model neglecting all transient behavior. A rather
comprehensive characterization of the ACK-clocking covering the above mentioned
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models as special cases will be given in Chapter 3.

2.5.5 Packet level models

A packet switched network such as the Internet is driven by discrete events as the
arrival and departure of data packets and protocol time-outs. It is thus naturally
modeled as an event-driven system where state transitions occur only at the occur-
rence of asynchronously generated discrete events. To reduce model complexity and
arrive at tractable models to be used for analysis, some simplifying assumptions
typically are essential. Considering queuing theory, e.g., this could be assuming a
mathematical “well-behaving” packet arrival process.

In the introduction of this section it was mentioned that the use of queuing
theory in the presence of feedback many times is formidable. However random-
ness in network arrivals is a natural assumption when modeling entire connections.
Roberts (2001) states that: “Since demand is statistical in nature, performance
must be expressed in terms of probabilities and the appropriate modeling tools de-
rive from the theory of stochastic processes”, and deduces that like in the design of
the telephone network where traffic and queuing theory is fundamental, it should
be well suited in the design and analysis of, e.g., admission control or quality of
service mechanisms on the Internet where feedback is weaker.

The theory of network calculus can be used to derive deterministic bounds on
quantities such as loss and delay from known constraints on traffic and service
guarantees, see the survey and (Firoiu et al., 2002) and the book (Le Boudec and
Thiran, 2001) for a comprehensive treatment. It may sometimes be preferable to
give service bounds with some probability rather than on a deterministic basis.
Examples of such work on “stochastic network calculus” can be found in (Kesidis
and Konstantopoulos, 2000) and (Chang et al., 2001) where different probabilistic
bounds for the same process, a node modeled as a constant rate server, are derived.
Like in queuing theory it seems challenging to account for feedback introduced
by, e.g., TCP in the framework of network calculus. Typically, quality of service
results of networks utilized by TCP relies on simple steady-state throughput or fluid
flow models of the feedback mechanism (Sahu et al., 2000; Yeom and Reddy, 2001).
However, one exception is the work by Baccelli and Hong (2000) who derives a pure
network calculus model of TCP. It is shown that the key features of the protocol
can be modeled as a linear dynamical system in the so called max-plus algebra
which is the theoretical fundament of network calculus.

While a model may be too complex for analysis it can be suitable for simula-
tion. Event driven network simulation where accurate models of packet networks
is implemented in software has shown to be a valuable tool for testing and evalua-
tion. It is also common that data from event driven network simulators is used to
benchmark predictions made by simplified models. While this often is appropriate
one should not forget that the “true” data is generated by a model, and therefore
does not reflect the true system perfectly. In this work we will thus not only rely
on data generated using network simulator but also establish results using a phys-
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ical testbed. Examples of popular network simulators are NS-2, OMNeT++ and
OPNET (ns2; omnet; opnet), of which NS-2 is the simulator that has the strongest
support in academia.

2.5.6 Hybrid models

While fluid flow models use continuous state variables and packet level models
discrete states, hybrid models combine both continuous time dynamics and discrete-
time logic. Hybrid network models reduce model complexity by averaging variables
that are essentially discrete and approximate them as continuous variables, that
could, e.g., correspond to considering the size of a queue that is discrete by nature
as continuous. To capture the expressiveness of the original system, continuous
states, typically linked by differential equations, are combined with discrete events
such as the occurrence of a packet drop and the resulting reaction.

Accurate packet level models are suffering from a large computational burden
in large-scale simulations as well as from limited analytical benefits. Fluid flow
models overcome these problems by neglecting (hopefully) irrelevant packet level
details. Such approximations may sometimes, however, be to coarse. Hybrid models
attempts to fill this gap between packet level and fluid flow models.

Currently there is no accurate fluid flow characterization of loss-based TCP
flows operating in a network with drop-tail queue management, though this setting
reflects the current Internet to a large extent. A framework for hybrid modeling of
traffic flows in communication networks is presented in (Bohacek et al., 2003; Lee et
al., 2007b). While basic dynamics of queues are modeled as continuous processes,
queue overflow and packet drops that characterizes a drop-tail queue are accounted
for by discrete events. The framework is used to model a network with TCP and
UDP flows and the full model is in large-scale validation experiments shown to be
fairly accurate capturing transient phenomena.

Baccelli and Hong (2002) propose a set of fluid evolution equations linked by
discrete events to model the AIMD congestion control mechanism used by TCP in a
drop-tail network environment. The resulting hybrid model is used in a probabilistic
setting to derive steady-state properties such as throughput and fairness presented
in the form of autocorrelation functions. A similar model is derived by Shorten et
al. (2007) who furthermore observes that the model is a positive linear system. This
specific structure is explored when characterizing the ensemble-average throughput
of the studied network.

2.6 Summary

In this chapter we have provided an introduction to the Internet and the main
principles it relies on. We have more thoroughly discussed the Transmission Control
Protocol, TCP, and complementary queue management schemes that governs the
congestion control on the Internet. Some well-known TCP versions and AQM
proposals were also surveyed, and flow level control objectives were discussed. We
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Summary

introduced the network congestion fluid flow model proposed by Kelly et al. (1998)
which has shown to be extremely valuable for the macroscopic understanding of
network congestion control systems. We saw that optimization was a suitable tool
to understand equilibrium properties such as fairness and argued that control theory
is usable for analyzing dynamical properties of the congestion control system. Some
different network models were also briefly outlined.

In the next chapter we will depart from Kelly’s standard model and refine it
to more accurately model an environment with time-based TCP protocols. In
Chapter 4 tools from optimization and control theory will be used for analysis of
the model. Results are then confirmed with packet level simulations and testbed
experiments in Chapter 5.

53





Chapter 3

Congestion control modeling

MATHEMATICAL modeling has proven to be an essential tool in the de-
sign and analysis of a wide range of engineering systems. However, due
to the tremendous complexity of telecommunication systems such as the

Internet, the role of mathematical modeling and feedback control theory in the
transport layer design process has been modest. The cultural distance between
mathematical theory and the desire for simplicity of Internet engineers partially
explains this. But more fundamentally has been that, until recently, control the-
ory have had little to offer this radically decentralized, yet highly coupled feedback
structure of the system.

In this chapter we present a methodology for deriving dynamical models of
packet based networks where congestion control mainly is governed by endpoint
window based algorithms such as TCP. The models are suitable for evaluating
dynamical properties such as, e.g., stability. The emphasis is on systems of win-
dow based schemes that use queuing delay as congestion notification. Many ideas
are, however, generic and also applicable to other types of window and rate based
algorithms.

3.1 Some general remarks on modeling

In modeling and identification of complex systems, it is instrumental to consider
the intended use of the model so that system properties of importance for the
application are modeled with sufficient accuracy and irrelevant “details” are ignored.
For example, a simulation model may have quite different properties as compared
to a model suitable for control design. This is illustrated in the following example.

Example 3.1.1. The system

G◦ =
(s+ 0.05)2

(s+ 1)2(s+ 0.01)(s2 + 0.01s+ 0.012)
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Figure 3.1: Open loop step responses in Example 3.1.1. Dashed line: True system
G◦. Solid line: Model G.

is modeled by

G =
0.5

(s+ 0.4)(s+ 0.01)
.

The open loop step responses of the system and the model are given in the plot in
Figure 3.1. Clearly the model is not suitable for step-response simulation of the open
loop system dynamics. This model, however, allows for a reliable control design.
Designing a controller

C = C(G)

such that the designed closed loop transfer function (the complementary sensitivity
function)

T (G) =
GC(G)

1 +GC(G)

has a bandwidth of 0.4 rad/s and applying this controller to the system yields the
closed loop step response in the plot of Figure 3.2, where also the response predicted
by the model is shown. We see that the agreement is quite good.

In order to understand how the controller based on the apparently “bad” model
could perform so well we need to consider the control objective. The overall objec-
tive of a control design is satisfactory performance of the complementary sensitivity
function (the closed loop system)

T◦(G◦, G) =
G◦C(G)

1 +G◦C(G)
,
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Figure 3.2: Closed loop step responses in Example 3.1.1. Dashed line: True system
G◦. Solid line: Model G.

achieved when the controller C(G) designed on the basis of the model G is applied
to the (unknown) true system G◦. It is thus natural to consider the difference
between the nominal design

T (G) =
GC(G)

1 +GC(G)
,

which has some desirable properties, and the real system T◦(G◦, G). Various norms
of the difference

V (G◦, G) , T (G)− T◦(G◦, G)

can be be used to quantify the performance degradation of the true closed loop
system compared to the nominal design. Let us consider the H∞-norm defined as

‖H(jω)‖∞ = sup
ω
|H(jω)|

for a scalar transfer function H. In this (induced) norm a characterization of good
performance is

‖V (G◦, G)‖∞ ≪ 1. (3.1)

We have that

V (G◦, G) =
G◦C(G)

1 +G◦C(G)
− GC(G)

1 +GC(G)
=

(G◦ −G)C(G)
(1 +GC(G)) (1 +G◦C(G))

=
G◦ −G
G

GC(G)
1 +GC(G)

1
1 +G◦C(G)

= ∆GT (G)S(G◦, G)
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Figure 3.3: Bode diagrams in Example 3.1.1. Dashed line: True system G◦. Solid
line: Model G.

where

S(G◦, G) =
1

1 +G◦C(G)

is the sensitivity function for the true closed loop system, and

∆G =
G◦ −G
G

is the relative model error. Thus (3.1) is equivalent to

‖∆G T (G) S(G◦, G)‖∞ ≪ 1.

Since T (G) typically is approximately unity at low frequencies and rolls off above
the desired closed loop bandwidth and S(G◦, G) exhibit the opposite behavior it
follows that a good relative model fit is only required over a frequency band covering
the intended bandwidth of the closed loop system.

Returning to Example 3.1.1 we see from Figure 3.3, which shows the bode plots
of the true system G◦ and the model G, that the model fit is actually good around
the desired closed loop bandwidth (0.4 rad/s) for the used model.
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Figure 3.4: Control perspective of window based congestion control.

A prerequisite for the above discussion to be valid is that S(G◦, G) is stable
which is guaranteed if ∆G is stable and the closely related robust stability condition

‖∆G T (G)‖∞ < 1,

is satisfied. The reason why a good model fit is not required at all frequencies is
that the closed loop will be insensitive to the model accuracy at low frequencies
since the controller gain typically will be large here (this is the essence of feedback
control) whereas at high frequencies the controller gain will be small also resulting
in low sensitivity to the modeling accuracy.

Packet based network communication systems are highly complex systems ex-
hibiting asynchronous behavior, large number of heterogeneous nodes and non-
linear behavior. The aggregation of traffic flows into fluid flows can be seen as a
way of neglecting high frequency behavior well in line with the discussion above.
However, as outlined above, for the purpose of, e.g., controller design or stability
analysis an appropriate model must also capture the system dynamics around the
desired bandwidth. This will be evident when analyzing FAST TCP in Section 4.4.

3.2 Window based congestion control

In window based congestion control, packet delivery reliability is assured through
feedback. Coarsely, the receiver acknowledges successfully received packets by send-
ing an ackowledgement packet to the sender. At an ACK arrival the sender decides
what information (packet) that is to be (re-)sent and when.

From a dynamical point of view the feedback mechanism can be divided into
two separated loops. A block diagram of the control structure in window based
transmission control is given in Figure 3.4. The endpoint protocol is at this level
of detail represented by the three blocks: transmission control, window control,
and congestion estimator. The congestion estimator tries to estimate the level of
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congestion in the network. This estimate is used by the window control to adapt
the window size to an appropriate level. The transmission control regulates the
actual sending rate based on this quantity and the rates of the received ACKs.

3.2.1 Congestion estimator

The network state information is indirectly carried from the network to the source
(i.e., the sender) by the ACKs. The congestion measure signal must then typically
be retrieved by the receiver. In a loss based protocol it has to be concluded if any
sent packets did not arrive at the receiver, and subsequently have been dropped. In
a delay based scenario, the queuing delay needs to be recreated by subtracting (an
estimate of) the propagation delay from measurements of the round trip time that
is provided by the ACK. For both cases this is done by the congestion estimator,
see Figure 3.4. Here, filtering procedures typically are executed, this to minimize
the effect of, e.g., rapid queue fluctuations due to burstiness of traffic.

Consider a system with a fixed number of delay based, “elephants” sources (long
lived large flows) sending over a nework with first-in-first-out (FIFO) queueing pol-
icy. The network is also utilized by stationary random “mice” traffic (short lived
small flows). For simplicity assume that the system is operating in an equilibrium
such that queues do not saturate (and hence no packets are dropped). In this
“equilibrium” queues are fluctuating around some average value. The fluctuations
are due to the stochastic nature of the “mice” cross traffic and packet level effects
such as burstiness. The average values of the queue sizes are the “true” equilibrium
queing delays that are representative for the amount of congestion in the network.
The window based sources, however, will through the received ACKs sample the
physical queues and thus the noise polluted “true” queing delays. By low-pass fil-
tering the samples a better estimate of the congestion measure is achieved. Optimal
estimation techniques, such as Kalman filtering (Kailath et al., 2000), may also be
applied.

As an alternative to indirect signalling, network congestion information could
be explicitly signalled from the network to the receiver by utilizing bits in the
ACK packet header, cf., Explicit Congestion Notifications (ECN). This, naturally,
facilitates the congestion estimation.

3.2.2 Window control

The dynamics of the inner loop in Figure 3.4, the ACK-clocking, is a congestion
control mechanism with stabilizing properties in itself. However this feedback con-
trol does not provide, e.g., efficient utilization, fairness among flows or responsive
adaption to new network conditions. Thus there is in window based congestion
control an additional outer control loop which adjusts the window size. Macroscop-
ically, it is the design of this window control that distinguishes different TCPs from
each other. The prize of this extra feedback is potential stability problems and the
introduction of measurement errors, the drawbacks of feedback control.
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Figure 3.5: Transmission control, split view.

The window control sets the window size based on the congestion level of the
network. This is not an explicit network metric. However, it is correlated with
measures like packet drops (packet drop probability) or queueing delay which we
focus on here. When the network is congested more packets are buffered which
implies larger queueing delay, more buffered packets means that buffers operates
closer to saturation and concequently packets are dropped more likely. Window
control uses such implicit congestion information as control signal.

Protocols like TCP Tahoe and TCP NewReno, use lost packets as congestion
indication. While, e.g., TCP Vegas and FAST TCP uses queing delay as primary
control signal. Other protocols such as TCP Africa and TCP Illinois use both delay
and loss as congestion measures.

3.2.3 Transmission control

The effective rate that the protocol inputs into the network is controlled by the
transmission control. A split view of the transmission control is given in Figure 3.5.
The transmission of new packets is controlled or “clocked” by the stream of re-
ceived ACKs. A new packet is transmitted for each received ACK, thereby keeping
the number of outstanding packets sent but not yet acknowledged, the flight size,
constant. This function is generic for all window based systems and is governed by
the ACK-clock. The flight size is adjusted by the flight size control. Typically it
is set to match the window size whenever possible. There are, however, physical
constraints and potentially traffic shaping algorithms implemented that may need
to be accounted for. A negative change in the window size, e.g., can not be realized
instantaneously by the flight size control. This would correspond to that packets
(or ACKs) inside the network would disappear. The absolute rate of change of any
negative change in the flight size is, thus, upper bounded by the received acknowl-
edgment rate. This dependence of the flight size by the ACK rate is indicated in
Figure 3.5 through the “ACKs” input. While this fundamental constraint is generic
to all window based protocols, protocol specific traffic shaping could also be present.
Such shaping typically means smoothing out an abrupt change in the window size
over one or a few round trip times to reduce burstiness of the sending rate.
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Figure 3.6: Block diagram of the control loop from the perspective of an individual
window based congestion control protocol.

3.2.4 Network

A network is a set of interconnected links. Since packets needs to travel through
the network they are subject to transport delay. To be able to handle temporary
over utilization of a link, network routers operates buffers. A buffer typically in-
tegrates the link excess rate and simply drops arriving packets when it reaches its
pre-defined point of saturation. A network router may also operate an AQM mech-
anism dropping packets according to an algorithm or communicating congestion
indications to end users by stamping information in packet headers.

Considering delay based protocols only, AQM algorithms will not be discussed
here. Furthermore, we will assume that the congestion controllers are able to op-
erate the network sufficiently far from buffer overflow. Thus it is in the sequel
assumed that no packet drops occur, and buffer sizes are considered as infinite. We
will only model bottleneck links explicitly, any non-bottleneck link is implicitly in-
cluded in the model as propagation delay. Also, we will not model the ACK path in
detail. It is assumed to be uncongested and therefore contributes with propagation
delay only.

3.2.5 Closed loop model

When analyzing the flow level performance for a specific window control design
(including the estimator) it is convenient to close the inner loop in Figure 3.4. The
block diagram shown in Figure 3.6 represents the same system as in Figure 3.4.
The “network” (the real network and the ACK-clocking) is in this perspective rep-
resented by the blocks: forward delay, link dynamics and backward delay. The two
delay blocks represents the propagation delays in a network and the link dynamics
contains the ACK-clocking mechanism (which is the interplay between the proto-
col transmission control and the network). Since window control dynamics often
are updated on a RTT time scale, the difference between the flight size and the
window size typically is negligible when evaluating the flow level performance of

62



ACK-clocking

this loop (they are guaranteed to be equal after one RTT). To emphasize this the
corresponding feedback is dotted in the block diagram.

The view of window based congestion control taken in Figure 3.6 will be adopted
throughout the rest of the thesis. The objective of the remaining part of this chapter
is to guide how to, for each block, derive continuous models suitable for evaluating
dynamical properties such as stability of the window control loop.

3.3 ACK-clocking

In this part we will derive a model of the dynamics between the protocols flight
sizes and the buffer sizes in the network, this is represented by the ACK-clocking
block in Figure 3.6.

The key in the modeling is to consider the instantaneous rate a window based
sender causes in each queue in the network, and relate that quantity to the flight
size.

3.3.1 Preliminaries

A network is modeled as consisting of L links with capacities cl. Traffic consists of
N flows. Let R = (rl,n) be the L×N matrix, with

rl,n =

{

1 if link l is used by flow n,

0 otherwise.
(3.2)

The matrix R is called the routing matrix. Bidirectional links are modeled as two
unidirectional links to account for that traffic flowing in the different directions are
separated. Each link maintains a buffer bl(t), l = 1, . . . , L, measured in units of
time. The variable bl(t) thus corresponds to the amount of data in the buffer nor-
malized with the corresponding link capacity and therefore represents the queuing
delay. In our delay based context each individual link price pl(t), l = 1, . . . , L,
fulfills pl(t) = bl(t). Packets are assumed to be transmitted greedily and in FIFO
order at links, which reflects the reality of the current Internet.

Let fn(t) be the number of packets “in flight” (sent but not acknowledged) at
time t, i.e., the flight size. The instantaneous rate at which traffic from flow n
enters link l is xl,n(t), or xn(t) in the single link case.

The round trip time between the time a packet of flow n enters link l and the
time that the “resulting” packet transmitted in response to the acknowledgment of
that packet enters link l is denoted τl,n(t). It consists of a fixed component dn due
to link propagation delays and a time varying component due to queuing delays.
In the single link case, τn(t) = dn + b(t) where b(t) denotes the queuing delay of
the bottleneck link.

Link l may carry cross traffic xl,c(t) which is not window controlled. Cross
traffic is assumed for simplicity to not use more than one link in the network.
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Figure 3.7: Single source single bottleneck configuration.

3.3.2 The single source single bottleneck case

Consider first the simplest case of a single window flow control source sharing
a single link with non-window cross traffic of known rate. The configuration is
illustrated in Figure 3.7.

In this section, the subscripts will be dropped for clarity, and forward propaga-
tion delay is assumed to be zero without loss of generality.

Instantaneous rate

Let us investigate what is known about the instantaneous rate the sender inputs to
the queue based on knowledge of the flight size. Note that under the assumption
of zero forward propagation delay assumption, this rate is synonymous with the
senders transmission rate.

Consider an arbitrary time t. At this time the source has f(t) packets in flight.
These packets or their corresponding ACKs could either be located in the buffer
or, remember that we are assuming zero forward propagation delay, in propagation
between the link and the receiver, or traveling between the receiver and the source.
If we for a moment assume that f remains fixed it is clear that the source inputs
exactly a flight size f amount of packets into the queue during the interval (t, t +
τ(t)], which is the time it takes for the last packet in the buffer at time t to travel
through the queue, to the receiver and the resulting ACK to reach the source again.
Note that if the last packet in the buffer at time t is not deriving from the window
based source but from the cross traffic, it still holds that the source inputs f packets
into the queue during this interval.

Typically f(t) is time varying and thus it may change during the considered
interval. What actually matters, however, is the flight size at the end of the interval.
Packets transmitted up to time t will be acknowledged by time t+ τ(t). Therefore
the number of packets “in flight” at time t+ τ(t), namely f(t+ τ(t)), will exactly
equal those packets that have been transmitted in the interval (t, t+ τ(t)]. This is
under the zero forward delay assumption also identical to the number of packets that
arrives at the queue during the interval. The instantaneous rate that the window
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Figure 3.8: The input rate of the source into the queue. The sequences xk, xk′ , . . .
which represents averages over an interval (tk, tk + d+ b(tk)], (tk′ , tk′ + d+ b(tk′)],
. . . are known. The instantaneous rate is any x(t) with average rate according to
the sequences.

based source inputs to the link, x(t), is thus such that the integral equation

∫ t+τ(t)

t

x(s)ds = f(t+ τ(t)) (3.3)

is fulfilled. We emphasize that this holds for all times t. We observe that x(t) is any
non-negative function with average value f(t + τ(t)) over the interval (t, t + τ(t)].
Figure 3.8 shows how (3.3) can be interpreted as a sliding window of such averages.

ACK-clocking model

In terms of rates, a link buffer is simply an integrator, integrating the excess rate
at the link (modulus static non-linearities present in the system, cf., non-negative
constraints/drop-tail queues). Thus, having defined the instantaneous rate x(t),
the buffer dynamics is naturally given by

ḃ(t) =
1
c

(x(t) + xc(t)− c) . (3.4)

The normalization with the capacity c is due to that the buffer is measured in
units of time. The whole system is now described by (3.3)–(3.4). This is a delay
Differential Algebraic Equation (DAE) which can be expressed in different ways.

Differentiating (3.3) with respect to t gives

(1 + τ̇(t))x(t+ τ(t))− x(t) = (1 + τ̇(t))ḟ(t+ τ(t)). (3.5)
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Rearranging this expression and shifting the time point according to

t = t̃+ τ(t̃) = t̃+ d+ b(t̃)

gives

x(t) =
x(t− τ(t̃))

1 + τ̇(t− τ(t̃))
+ ḟ(t) =

x(t− τ(t̃))

1 + ḃ(t− τ(t̃))
+ ḟ(t)

=
cx(t− τ(t̃))

x(t− τ(t̃)) + xc(t− τ(t̃)))
+ ḟ(t)

Note that the rate at time t is not determined solely by the window and RTT at
the current time, but depends on the rate one RTT previously as well.

Assume for clarity constant cross traffic xc. If we solve for x(t) in (3.4) and plug
it in to the integral equation (3.3), the dependence on the instantaneous rate can
be eliminated:

f(t+ τ(t)) =
∫ t+τ(t)

t

x(s)ds =
∫ t+τ(t)

t

(

cḃ(s)− (xc − c)
)

ds

= cb(t+ τ(t))− cb(t)− τ(t)(xc − c) = cb(t+ τ(t))− xcb(t)− d(xc − c).

This gives

b(t+ τ(t)) =
xc
c
b(t) +

1
c
f(t+ τ(t)) + d

xc − c
c

, (3.6)

that explicitly states how the queue depends on its state one RTT previously and
the current flight size f(t). Note that this is a pure delay equation since there are
no derivatives involved. It turns out that it is instructive to study this system as a
discrete time system.

The continuous time delay system (3.6) can equivalently be expressed at sample
points tk with the discrete time dynamical system,

bk+1 =
xc
c
bk +

1
c
fk+1 + d

xc − c
c

, (3.7a)

tk+1 = tk + τk = tk + d+ bk, (3.7b)

under the convention bk = b(tk). This is a linear but non-uniformly sampled system
with sample time Tk = d+bk, which can be analyzed by the means of linear systems
theory. The immediate observation is that for the case of no cross traffic, xc = 0,
we have

bk+1 =
1
c
fk+1 − d,

and thus a static update from the flight size f to the buffer b for such a scenario.
By noting that (3.7a) is a first-order linear filter with a pole in xc/c we can also
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Figure 3.9: Validation experiment. Solid line: NS-2 simulation. Dashed black line:
The model (3.3)-(3.4).

conclude from linear systems theory that: the system is stable since 0 ≤ xc/c < 1,
the system will be more transient with increasing amount of cross traffic xc since
the pole then approaches 1, and there will be no oscillations or over-shoot in the
case of a step in the flight size f . Let us illustrate our findings with an example.

Example 3.3.1. Consider a window based source utilizing a single bottleneck link
of capacity c = 40 Mbit/s. The window based source has a round trip propagation
delay of d = 150 ms and its flight size is initially set to a constant size f0 = 750
packets, packet size is set to ρ = 1040 bytes. At time t = 0 s the system is perturbed
from equilibrium by increasing the flight size of the window based source with 75
packets to f(t) = 825 packets. The solid line in Figure 3.9 is the queue size when
this scenario is simulated in NS-2. The dashed black line corresponds to the model
(3.3)-(3.4). We observe an immediate increase in the queue, accurately predicted
by the model.

Now, consider a similar experiment but with bottleneck capacity c = 200 Mbit/s.
In addition, for this case the link is utilized by (UDP) cross traffic with constant rate
xc = 160 Mbit/s. The solid line in Figure 3.10 is the queue size when this scenario
is simulated in NS-2. The dashed black line corresponds to the model (3.3)-(3.4).
For this case we observe a significant transient. This is also accurately predicted by
the model.

Before generalizing the model let us summarize with some key points:

• In terms of rates a queue is just an integrator, this is modeled by (3.4).
• The key is to define the instantaneous rate of which data from the window

based source flows into the queue, see (3.3).
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Figure 3.10: Validation experiment. Solid line: NS-2 simulation. Dashed black
line: The model (3.3)-(3.4).

• To understand the properties of the system and the effect of non-window
based cross traffic, it is instructive to consider the discrete time model (3.7).

Buffer non-negativity constraint

A buffer is non-negative by definition. This needs to be taken into consideration
when the system is operating in a nonlinear regime close to this lower saturation. It
is straightforwardly accounted for by extending the model (3.3) and (3.4) by adding
a non-negativity constraint to (3.4):

ḃ(t) =

{

1
c (x(t) + xc(t)− c) , if b(t) > 0 or x(t) + xc(t)− c > 0,

0 otherwise.

3.3.3 The multiple sources single bottleneck case

When N flows share a single bottleneck link, there are N constraints analogous
to (3.3) expressing the rate xn(t) for each flow. In addition the buffer dynamics
can be expressed similar to (3.4). Without loss of generality, assume zero forward
propagation delay and this leads to the model

ḃ(t)− 1
c

(

N
∑

n=1

xn(t) + xc(t)− c
)

= 0, (3.8a)

∫ t+τn(t)

t

xn(s) ds− fn(t+ τn(t)) = 0, (3.8b)

for n = 1, . . . , N .
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Like for the single link case this DAE model is easily extended to incorporate
present static non-linearities, e.g., the buffer non-negativity constraint.

We will exam how this model performs in Chapter 5.

3.3.4 Accumulated data formulation

It turns out that it sometimes is convenient to express the dynamics in terms of
accumulated data instead of rates, e.g., when solving the equations numerically.
Let yn(t) denote the total amount of data that has arrived to the queue up to time
t and which derives from the nth source. Then by definition

ẏn(t) = xn(t), n = 1, . . . , N.

Similarly, let yc(t) denote the total amount of cross traffic data that has arrived to
the queue up to time t, so

ẏc(t) = xc(t).

Now we can express (3.8a) as

ḃ(t)− 1
c

(

N
∑

n=1

ẏn(t) + ẏc(t)− c
)

= 0.

Integrating both sides, starting at time t = 0, gives

b(t) = b(0) +
1
c

(

N
∑

n=1

(yn(t)− yn(0)) + yc(t)− yc(0)− tc
)

.

Furthermore, from (3.8b) we have, for n = 1, . . . , N ,

∫ t+τn(t)

t

ẏn(s) ds− fn(t+ τn(t)) = yn(t+ τn(t))− yn(t)− fn(t+ τn(t)) = 0.

After shifting time point the dynamics thus is given by

b(t) = b(0) +
1
c

N
∑

n=1

(yn(t)− yn(0)) +
1
c

(yc(t)− yc(0))− t, (3.9a)

yn(t) = yn(t− τn(t̃n)) + fn(t), n = 1, . . . , N. (3.9b)

where t̃n solves t = t̃n + τn(t̃n) = t̃n + dn + b(t̃n). Notice the similar structure of
the recursive update in the accumulated rate in (3.9b) and the queue update in the
single flow case (3.6).
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Figure 3.11: Parking lot topology example with 3 bottleneck links and 4 sources.
Source i is denoted Si and its destination Di. Delays and rates that are shown is
for Path 3 in the point of view of Link 2.

3.3.5 The multiple sources multiple bottlenecks case

We will now consider a general network with multiple bottleneck links utilized by
multiple sources.

Like for the single link case each buffer integrates the excess rate traversing the
link. Recall the definition of the routing matrix R, see (3.2). It is clear that the
multi link analogous to (3.8a) is

clḃl(t) =
N
∑

n=1

rl,nxl,n(t) + xc;l(t)− cl, (3.10a)

for all l = 1, . . . , L. This expression expresses how the rate of change of the buffer
of the lth link is proportional to the total traffic the link carries. It remains to
determine xl,n(t) analogously to (3.3). This case is significantly more complex
since packets experience delays at different instants of time at each link.

Let τl,n(t) be the round trip time from when a packet from source n arrives at
link l to the arrival at link l of the “resulting” packet—the packet sent as a result of
the acknowledgment of the first. We refer to Figure 3.11 for a graphical illustration
of this in a simple “parking lot” topology. Similarly, let τfl,n(t) be the time from
when a packet released from source n reaches link l. Let fl,n(t) represent the flight
size of source n as if the source would be located directly at link l, then it holds
that

fl,n(t+ τfl,n(t)) = fn(t). (3.10b)

The instantaneous rate xl,n(t) then satisfies

∫ t+τl,n(t)

t

xl,n(s)ds = fl,n(t+ τl,n(t)). (3.10c)

It remains to calculate τl,n(t) and τfl,n(t). To do this, it is necessary to keep

track of the order of the links along each source’s path. Let ~bl,n(t) be a column
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vector of the same dimension as the number of links in the nth source’s path, say
Ln. The elements of ~bl,n(t) are the buffer sizes in the path of source n, ordered such
that the first element corresponds to the buffer size of link l, the second element
the buffer size of the link downstream of link l in the nth source’s path, and so on,
and finally the last element corresponds to the link buffer upstream of link l. The
ith element in a vector ~bl,n(t) is denoted ~bl,n,i(t).

The ordered propagation delay ~dl,n can be defined similarly as for the queuing
delays. So ~dl,n,i represents the propagation delay between link l and the link i− 1
hops after l on path n, and where by convention ~dl,n,Ln+1 = dn. Note that ~dl,n,1 =
0, and, if link l is the kth link and link l′ is the k′th link on path n where k′ > k
(link l′ is downstream link l), then ~dl,n,1+k′−k+ ~dl′,n,Ln+1−(k′−k) = dn by definition
of dn.

Denote with m(l, n) the order which link l has on path n. Let τ̂l,n,i(t) be the
delay such that a packet which arrives at link l at time t arrives at the link i − 1
hops after l on path n at time t+ τ̂l,n,i(t). (Strictly, the packet which arrives may
be an acknowledgment or a “resulting” packet. Recall that when a packet arrives
at the receiver an ACK packet is generated, which when received by the source
triggers the transmission of a “resulting” packet.) The total delay, including the
queuing at each link, is then

τ̂l,n,i(t) , ~dl,n,i +
i−1
∑

k=1

~bl,n,k(t+ τ̂l,n,k(t)). (3.10d)

It follows that the interval of integration in (3.10c) is

τl,n(t) = τ̂l,n,Ln+1(t) = dn +
Ln
∑

i=1

~bl,n,i(t+ τ̂l,n,i(t)). (3.10e)

Similarly, the forward delay linking fl,n(t) with fn(t) is

τfl,n(t) = τ̂ℓ(n),n,m(l,n)+1(t), (3.10f)

where ℓ(n) is a “link” located at the source of flow n, introduced to model prop-
agation delay between the source and the first (bottleneck) link included in the
routing.

Summarizing, the model of the ACK-clocking dynamics for a system of N win-
dow based sources utilizing a network of L links is given by (3.10). If necessary
the model is easily extended with non-negativity constraints like for the single flow
single link case, see Section 3.3.2. The accuracy of the model is investigated in
Section 5.2.2.

3.4 Protocol dynamics

It remains to derive fluid models of the lower blocks of Figure 3.6: the window
control, the congestion estimator and the flight size control, all together referred to
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Figure 3.12: Endpoint control structure.

z[k′ + 1] = Z(q̂[k′], z[k′], q̃[k′], w̃[k′])

q̂[k′ + 1] = Q(q̂[k′], z[k′], q̃[k′], w̃[k′])
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Figure 3.13: Split view of the protocol estimator procedure.

as the protocol dynamics. This is the theme of this section.
The structure of the window control mechanism may differ between protocols.

It is thus not possible to present generic models as we did for the ACK-clocking in
Section 3.3. However, the objective is to provide guidelines for how to derive fluid
flow models of the window based source.

A quite general picture of the dynamics of a congestion control protocol is given
in Figure 3.12. The by noise affected congestion measure q̃(t) is carried to the
source with the returning ACKs. An estimate q̂[k] is produced which is used as
input to the the window control. The window size w[k] is used as a reference value
for the flight size and it may also be used by the estimator. The system is typically
event driven, and the different parts of the algorithms typically operate at different
(non-uniform) sampling rates, in Figure 3.12 denoted by h′k′ and hk. The ACK
inter-arrival time and the round trip time are natural choices of sampling times,
but they can of course be chosen arbitrarily. Next, the different parts of the system
are discussed in more detail.

3.4.1 Estimator dynamics

A detailed view of the estimator is given in Figure 3.13. The sampling is typically
event based and a sample of the network congestion state is collected whenever
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an ACK arrives. Note, however, that the absence of arriving ACKs in fact pro-
vides bounds on the minimum queuing delay and thus network state information is
accessible any time. If we, e.g., assume sampling at the arrival of an ACK, the sam-
pling time h′k′ corresponds to the ACK inter-arrival time. A sampler with sampling
instants tk is mathematically described by

g[k] =
∫ ∞

0

δ(s− tk)g(s) ds, k = 0, 1, 2, . . . , (3.11)

where δ(·) is a Dirac impulse. Note that prior to the sampling anti-alias filtering
should occur, this is however often neglected in network congestion control. The
price sample q̃[k′] is driving the estimation algorithm that according to some update
law produces a price estimate q̂[k′] that is fed to the window control algorithm. Let
z be a state vector and let us postulate the following dynamic update law for the
estimator,

z[k′ + 1] = Z(q̂[k′], z[k′], q̃[k′], w̃[k′]),

q̂[k′ + 1] = Q(q̂[k′], z[k′], q̃[k′], w̃[k′]).

The estimator update mechanism may also use internal protocol state information
such as, e.g., the window size w, this has been assumed in Figure 3.13. The window
control typically samples on a round trip time basis. In that case the window size
information needs to be hold and re-sampled at the rate the estimator operates at.
This is done by the ZOH block together with the adjacent sampler in Figure 3.13.
The ZOH block represents a zero-order hold function defined by

g(t) = g(tk), tk ≤ t < tk+1. (3.12)

Other types of hold functions could, of course, also be considered, cf., a first-order
hold (Åström and Wittenmark, 1997).

While protocols operate in a discrete time fashion, we would for analytical pur-
poses like to have continuous time models that fit into the fluid flow modeling frame-
work. We thus seek the continuous functions Z(q̂, z, uq, uw) andQ(q̂, z, uq, uw), such
that the system in Figure 3.14 has the same input output behavior at sampling in-
stants as the original system in Figure 3.13.

As an illustration, consider a simple family of estimators with the following
structure

q̂[k′ + 1] = Q1(q[k′], w[k′])q̂[k′] +Q0(q[k′], w̃[k′]). (3.13)

Based on this structure it seems reasonable to assign

˙̂q(t) = Q(q̂, uq, uw) = Q1(uq, uw)q̂(t) +Q0(uq, uw), (3.14)

where Q0 and Q1 are to be detected so that (3.14) coincides with (3.13) at the
sampling instants. The inputs uq(t) and uw(t) are constant over the sampling
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Figure 3.14: Continuous time equivalent estimator dynamics.

interval tk′ ≤ t < tk′+1, which implies that Q1(uq, uw) and Q0(uq, uw) are as well.
Solving for the state at tk+1 thus gives

q̂(tk′+1) = exp(Q1(uq(tk′), uw(tk′))h′k′)q̂(tk′)

+Q0(uq(tk′), uw(tk′))
∫ h′

k′

0

exp(Q1(uq(tk′), uw(tk′))s)ds, (3.15)

where h′k′ = tk′+1 − tk′ is the sampling interval of the estimator (which typically
corresponds to the ACK inter-arrival time). The unknowns Q1 and Q0 are now
possible to identify from (3.13) and (3.15), we have

Q1(uq, uw) = exp(Q1(uq, uw)h′k′),

Q0(uq, uw) = Q0(uq, uw)
∫ h′

k′

0

exp(Q1(uq, uw)s)ds,

and thus

Q1(uq, uw) =
log(Q1(uq, uw))

h′k′
, (3.16)

Q0(uq, uw) =
Q0(uq, uw) log(Q1(uq, uw))

h′k′ (Q1(uq, uw)− 1)
. (3.17)

Note that the existence and uniqueness of (3.16) and (3.17) is dependent on the
the original discrete update (3.13) and subsequently Q0 and Q1. Consider for
example a stable linear update with a real negative pole, i.e., Q1 is a constant and
−1 < Q∞ < 0. For this case there are many different continuous models that are
equal at sampling instants.
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Figure 3.15: Split view of the window control.

The continuous time model is exact at sampling instants and therefore of similar
complexity as the original discrete system. However, by appropriate simplifications
of the sample interval h′k′ and the zero-order hold functions in the continuous time
model, we can derive models that meets the accuracy the application requires and
which, hopefully, are more tractable.

Consider a linear stability analysis of a protocol around an equilibrium point.
Assume that the network is sampled at every ACK arrival and where the window
control is low-pass. Over one RTT a window amount of ACKs arrives at the
source. The average ACK inter-arrival time, and sample interval, thus equals the
equilibrium round trip time divided with the equilibrium window size. This seems
like a suitable sample interval approximation for the application. The low-pass
property of the window control implies that the model should be quite robust to
the high frequency model errors introduced when ignoring the sample time variance.

3.4.2 Window control

A split view of a generic window update mechanism is given in Figure 3.15. Network
congestion state estimates q̂[k′] are received from the congestion estimator. The
information is then often down sampled to a slower rate hk. This is governed by
the zero-order hold block and the sampler in Figure 3.15, recall (3.11) and (3.12),
and should be proceeded with an anti-aliasing filtering operation. Typically the
window control works on a round trip time basis while the estimator samples and
operates per ACK arrival. The re-sampled congestion estimate q̂[k] is used as input
in the window size update law which we pose as

v[k + 1] = V(w[k], v[k], q̂[k]),

w[k + 1] =W(w[k], v[k], q̂[k]),

with possible internal states collected in the vector v, and subsequently the window
size w[k] is fed to the flight size control.

Like for the estimator case we seek a continuous time equivalent control coun-
terpart to the purely discrete update law in Figure 3.15. In other words we seek
the continuous functions V (w, v, uq̂) and W (w, v, uq̂) such that for identical inputs
the output of the system in Figure 3.16 and the output of the original system in
Figure 3.15 is equivalent at sampling instants. To complete this we need additional
information about the system and we refer to Section 3.4.1 for an illustration of

75



3. Congestion control modeling

ZOH
q̂[k] w[k]uq̂(t) w(t)

hk

v̇ = V (w, v, uq̂)
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Figure 3.16: Continuous time equivalent window control.
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Figure 3.17: Flight size control split view.

how this can be done for a simple system. The final step is then to simplify the
model, i.e., to find suitable approximations of the zero-order hold, the non-uniform
sampling times hk, and the continuous time equivalent window control. This should
be done with the model application in mind such that the accuracy and complexity
of the model obtained matches the intended use.

3.4.3 Flight size control

Neglecting any smooth realization of changes in the window, the flight size control
objective is to track the window size, i.e., to keep the difference between the number
of unacknowledged packets and window size as small as possible. For most scenarios
it seems reasonable to assume that window increments can be followed perfectly.
When the window size is increased with ∆w packets the flight size control just
inputs ∆w packets into the network without waiting for any ACKs. A negative
change in the flight size, however, correspond to receiving an ACK without sending
a new packet. Thus the rate that the flight size can be decreased with cannot
exceed the rate of the returning ACKs. Note that by construction, the flight size is
guaranteed to be equal to the window size within one RTT. The difference between
the window size and the flight size is thus in a sub-RTT time scale.

A model of the flight size control is shown in Figure 3.17. The reference window
size w[k] is received from the window control. It is held constant during the win-
dow control sampling intervals. The held signal is denoted wf (t). Together with
the ACK rate signal it is fed into the rate limiter block. This block models the
constraints on the rate of change of the flight size f(t).

A block diagram of a rate limiter in feedback form is given in Figure 3.18. It
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Figure 3.18: Rate limiter block diagram.
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Figure 3.19: Graph of y = sat(u).

is constructed by closing the loop around a saturation with gain K, sat(u), and
an integrator, 1/s, in cascade. The inputs ymax and ymin represents the upper and
lower bounds on the rate of change. The saturation is described mathematically by

sat(u) =











ymax Ku > ymax,

Ku −ymin ≤ Ku ≤ ymax,

−ymin Ku < −ymin.

Its graph is shown in Figure 3.19. By choosing ymax =∞ and updating ymin(t) =
1/h′k′ , for tk′ ≤ t < tk′+1, the rate of change constraint on f(t) is taken into account
in the model. In theory the gain K should be chosen as large as possible, ideally
K →∞. In practice, however, a large K might introduce numerical problems when
simulating the model.

By modifying ymax, possible non-neglectable constraints on flight size increments
can be modeled. Traffic shaping in terms of smoothing out abrupt window changes
can be incorporated in the model as well, e.g., by filtering wf (t) before feeding it
into the rate limiter.
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ẇ = W (w, v, uq̂)

ZOH

ZOH

uq(t)

q̂[k′]

h′
k′

uw(t)

q̃[k′]

q̂(t)
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Figure 3.20: Network model.

3.5 Model summary

The model derived in the previous sections of this chapter is summarized in Fig-
ure 3.20. Sources’ flight sizes are the input to the “network” which consist of the
ACK-clocking model derived in Section 3.3 and propagation delay. The output from
the “network” is the disturbed queuing delays which sources observe. A source n
samples and creates an estimate of the queuing delay, this procedure is represented
by the Congestion estimator. This was discussed in Section 3.4.1. The window size
is updated in the Window control which uses the queuing delay estimate as input,
see Section 3.4.2. The flight size control tries to equal the flight size, the actual
packets in flight, and the window size variable whenever possible, see Section 3.4.3
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for details. We remark that if the the window control sampling rate hk is a multiple
of the estimator sampling rate h′k′ , the right ZOH block in the window control in
the figure is redundant and should be neglected.

3.6 Modeling FAST TCP

In order to give a concrete illustration of the modeling framework previously de-
veloped in this chapter we will now model the recently proposed time based TCP
sibling FAST TCP (Jin et al., 2004). The obtained model will serve as an illustra-
tion for the model simplification and the analysis techniques developed in Chapter 4
(see Section 4.4).

3.6.1 Introduction to FAST TCP

We will start with describing the algorithm.

Protocol rationale

Designed for large distance high speed data transfers FAST TCP adopts the delay-
based approach of TCP Vegas and uses end-to-end queuing delay as aggregated
price. The algorithm estimates this quantity and tries to stabilize the window size
such that a targeted number of packets are buffered in the network. This strategy
implies that the equilibrium that FAST is able to attain is efficient in the sense
that full utilization of network resources is guaranteed. Furthermore, the design
of FAST TCP is such that the equilibrium rate of a source is independent of the
network propagation delay. This is expressed by the equilibrium constraint

xn qn = αn, n = 1, . . . , N, (3.18)

where αn ∈ Z
+ is a protocol design parameter that corresponds to the number of

packets the source tries to buffer in the network.

Window and estimator update in FAST TCP

Below, the basic features of the FAST TCP algorithm are briefly described. We
will drop the subscript n for ease of notation.

FAST TCP is window based and applies standard ACK-clocking to adjust data
packet transmission. The sending rate of FAST TCP is thus implicitly adjusted via
the congestion window mechanism. Each sender updates its window size in discrete
time according to

w[k + 1] = (1− γ)w[k] + γ
d

d+ q̂[k]
w[k] + γα. (3.19)
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This update is performed once every RTT. The protocol parameter γ adjusts the
gain of the algorithm, α was introduced in (3.18) and the input signal q̂ is an
estimate of the queuing delay along the path.

The observed aggregate queuing delay q̃[k] can be approximated by subtracting
the latency d from the measured RTT. However, this gives a noisy measurement of
the “true” queuing delay that reflects the level of congestion in the network, it is
therefore estimated by the source.

The estimate q̂[k] is formed from queuing delay samples measured at each ac-
knowledgment arrival, w[k] times for the kth update of (3.19). Denote discrete time
at this time scale by k′. With the obvious abuse of notation, we refer to values of
the queuing delay samples at this sampling time as q̃[k′] etc.. The estimator is

q̂[k′ + 1] = (1− σ[k′]) q̂[k′] + σ[k′]q̃[k′], (3.20a)

σ[k′] = min {κ/w[k′], ν} . (3.20b)

This non-linear filter has the characteristic of a low-pass filter, with a dynamic time
constant of τ/κ. In the current implementation the filter parameters are κ = 3 and
ν = 1/4.

3.6.2 Model

The congestion control mechanism of FAST TCP fits into the algorithm structure
defined by Figure 3.12, Figure 3.13, Figure 3.15 and Figure 3.17. In fact, since
there are no internal states in any of the estimator and window update laws, we
can identify W(w[k], q̂[k]) and Q(q̂[k′], w[k′]) as the right hand sides of (3.19) and
(3.20) respectively. Furthermore, since the window is updated per round trip time
and the estimator at every ACK arrival, the window update sampling time hk
corresponds to round trip times, and the estimator sampling time h′k′ represents
ACK inter-arrival times. The two sampling rates are related by

hk =
wn[k]
∑

k′=1

h′k′+k′
k

(3.21)

where k′k =
∑k−1
i=1 wn[k] is the value of k′ just before the start of the kth RTT.

Note that due to wn[k] in (3.21), the relation between the two sampling times is
time varying.

We observe that both (3.19) and (3.20) are special cases of (3.13). It is there-
fore straightforward to derive continuous time equivalent controls W (w, uq̂) and
Q(q̂, uq, uw) (cf., Figure 3.16 and Figure 3.14) by making use of (3.16) and (3.17).

Start with the window control: we have from (3.19) that

w[k + 1] =W1(q̂[k])w[k] +W0
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with

W1(q̂[k]) = 1− γ q̂[k]
d+ q̂[k]

,

W0 = γα;

now (3.16) and (3.17) gives

W1(uq̂) =
log (W1(uq̂))

hk
=

log (1− γξ)
hk

,

W0(uq̂) =
W0 log(W1(uq̂))
hk(W1(uq̂)− 1)

= −α log (1− γξ)
hkξ

,

where ξ = uq̂/(d+ uq̂), which gives the continuous control law

ẇ(t) =
log (1− γξ(t))

hk(t)

(

w(t)− α

ξ(t)

)

. (3.22)

Similarly for the estimation algorithm,

q̂[k′ + 1] = Q1(w[k′])q̂[k′] +Q0(q̃[k′], w[k′])

where

Q1(w[k′]) = 1− σ(w[k′]),

Q0(q̃[k′], w[k′]) = σ(w[k′])q̃[k′];

thus

Q1(uw) =
log (Q1(uw))

h′k′
=

log (1− σ(uw))
h′k′

,

Q0(uq, uw) =
Q0 log(Q1(uw))
h′k′(Q1(uw)− 1)

= −q[k
′] log (1− σ(uw))

h′k′
;

and finally

˙̂q(t) =
log (1− σ(t))

h′k′
(q̂(t)− uq(t)) (3.23)

where σ(t) = min{κ/uw(t), ν}.
We illustrate the equivalence of the continuous time model at sampling instants

with an example.

Example 3.6.1. Consider the FAST TCP window control update mechanism (3.19).
Protocol parameters are set to α = 100 and γ = 0.5. The algorithm inputs, the
queuing delay estimates q̂[k] and the sample intervals hk, are modeled as uniformly
distributed random variables between zero and one, that is q̂[k], hk ∈ U(0, 1). The
circles in Figure 3.21 shows the window size when the discrete window update law
(3.19) is simulated. The solid line corresponds to the window size when the con-
tinuous time equivalent model of Figure 3.16 with (3.22) is simulated. We observe
that the two simulations are more or less equivalent at sampling instants.
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Figure 3.21: Window control simulation. Circles: w[k], discrete window update
(3.19). Solid line: w(t), equivalent continuous time window control (3.22).

3.7 Summary

In this chapter we have shown how to derive deterministic fluid flow models for
window based congestion control protocols using delay as network congestion noti-
fication.

We have seen that the system consists of an inner and an outer loop, where
the inner loop is due to the so called ACK-clocking mechanism and the outer
loop consists of the window control together with estimation procedures and traffic
shaping components. A detailed model of the, to window based protocols, generic
ACK-clocking mechanism was derived and guidelines for finding suitable continuous
time models of the outer loop was provided. Finally we used these guidelines to
model a specific protocol, namely FAST TCP.

3.8 Related work

Following the seminal work by Kelly et al. (1998) there are many studies on network
dynamics. Network fluid flow models, where packet level information is discarded
and traffic flows are assumed to be smooth in space and time appears in, e.g.,
(Hollot et al., 2001a; Johari and Tan, 2001; Low et al., 2002a; Baccelli and Hong,
2002; Altman et al., 2004; Ying et al., 2006), see also the book (Srikant, 2004).

The validity of results concerning dynamical properties rely heavily on the ac-
curacy of the models. Considering window based congestion control, models with
fundamentally different dynamical properties have been used to model the ACK-
clocking dynamics (often referred to as “the link” in the literature). The most
commonly appearing model can be found in, e.g., (Hollot et al., 2001a; Low et al.,
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Figure 3.22: ACK-clocking dynamics for two flows sending over a single bottleneck
link. Step response simulation. Basic configuration: Link capacity c = 150 Mbit/s.
Packet size ρ = 1040 byte. Flow 1 propagation delay d1 = 10 ms. Flow 2 prop-
agation delay d2 = 190 ms. Flow 1 window w1 = 210 packets. Flow 2 window
w2 = 1500 packets. After convergence, at 25 seconds the first flows window is
increased step-wise from 210 to 300 packets.

2002a; Baccelli and Hong, 2002; Altman et al., 2004). Here an “integrator” link
model is used, integrating the approximate excess rate on the link, and sources’
rates are modeled as being equal to the window size divided by the RTT. On the
other hand, in (Wang et al., 2005; Wei et al., 2006) transients are ignored due to
the “self-clocking” effect and a “static” link model is proposed. In (Jacobsson et
al., 2006) a “joint” link model combining the immediate and long term integrating
effect is proposed. This model is slightly refined in (Möller, 2008). The plot in
Figure 3.22 demonstrates the limited accuracy of these models compared to the
ACK-clocking model (3.10) derived in this thesis. We consider the data from the
packet level NS-2 simulation as “true”. We observe a heavy oscillation in the queue
size that all previous model fails to capture. (Note that the “Joint link model” refers
to the model used by Möller (2008) in this case.) For details about the simulation
see Example 5.2.1 in Chapter 5.

The key in the ACK-clock modeling is to express the instantaneous rates flowing
in to the queue in terms of the flight sizes which is done in the integral equation
(3.10c). Variants of this equation appears in the passing in, e.g., (Mo et al., 1999)
and (Eng, 2007) but is not pursued.

The focus of window based congestion control analysis and design is, naturally,
the window control. An early fluid flow model of the window control for the stan-
dard AIMD algorithm used by TCP can be found in (Misra et al., 2000). It is very
similar to the model that was derived in Example 2.5.2. Considering window based
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congestion control protocols using queuing delay as congestion notification, models
for, e.g., TCP Vegas can be found in (Mo et al., 1999; Boutremans and Le Boudec,
2000; Low et al., 2002c). The window update model that the design of FAST TCP
is based on appears in (Wang et al., 2005) and (Wei et al., 2006). A model of the
actual implementation taking sampling effects and estimator dynamics into account
was introduced in (Jacobsson et al., 2008).

Over the last fifteen years or so there has been significant progress in modeling
and identification when the model is to be used for control design. The present
state-of-the art is summarized in (Hjalmarsson, 2005, 2003), see also (Albertos and
Sala Piqueras, 2002). For a comprehensive treatment on system identification in
general, see the book (Ljung, 1999).

For an introduction to sampling and discrete time systems we refer to (Åström
and Wittenmark, 1997).
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Chapter 4

Congestion control analysis

TRACTABLE models allow for mathematical analysis as an efficient route to
reveal properties about the system of interest. In this chapter we will use the
models derived in the previous chapter to study window based congestion

control. We have learned that the window based system is composed of two loops,
recall Figure 3.4. To characterize the properties of the outer loop, the window
control and estimator dynamics, a comprehensive understanding of the properties
of the inner loop, the ACK-clocking mechanism, is essential. In line with this, the
first contribution of this chapter is an equilibrium analysis of the ACK-clocking
mechanism. Based on this we move on to consider the entire system. In order to be
able to guarantee an efficient resource allocation policy of a protocol and that the
network operates in a favorable region of the state space, it is important that the
system equilibrium is unique and, furthermore, that the window control is closed
loop stable. This will be investigated for the recently proposed congestion control
protocol FAST TCP.

4.1 Introduction

Before continuing with the specific analysis let us introduce some tools that will be
useful.

4.1.1 Equilibrium characterization

It was shown in Section 2.5.3 that a quite large class of congestion control algorithms
can be interpreted as a distributed solver to a convex optimization problem. We
saw that this optimization perspective on network congestion control can be used
as a means to establish the uniqueness of the equilibrium of a networked dynamical
system, and, moreover, relate the equilibrium to specific flow level properties of
interest such as fairness.
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In this part we will specify in more detail how to link the equilibrium of a
network with window based congestion control protocols using queuing delay as
congestion signal to the solution of a utility maximization problem.

The network utility maximization problem

We will start with a brief review of the network utility maximization problem
introduced in Section 2.5.3.

Let x̄i be the sending rate of the ith source, i = 1, . . . , N̄ . Furthermore, assume
that sender i associates a utility Ūi(x̄i) with a particular sending rate x̄i, and that
Ūi(x̄i) is a concave function. Let ȳℓ denote the aggregated rate, i.e., the sum of
individual rates, at link ℓ, and c̄ℓ the capacity of that link, ℓ = 1, . . . , L̄. Let R̄ be
the routing matrix and recalling its definition we have ȳ = R̄x̄. The network utility
maximization problem, that maximizes the total utility without violating network
capacity constraints, can in this context be formulated as

max
x̄≥0

N̄
∑

i=1

Ūi(x̄i),

s.t. R̄x̄ ≤ c̄,
where inequalities are element-wise. This is a convex optimization problem for
which strong duality holds since the convex constraint set has a non-empty interior.
Thus, we know from convex optimization (Boyd and Vandenberghe, 2004) that it
exists a global optimal solution to this problem which, furthermore, is characterized
by the Karush-Kuhn-Tucker (KKT) conditions:

x̄ ≥ 0, p̄ ≥ 0, non-negativity constraint;

ȳ ≤ c̄, capacity constraint;

ȳ = R̄x̄, q̄ = R̄Tp̄, aggregation;

q̄i = Ū ′i(x̄i), gradient condition;

0 = p̄T(c̄− ȳ), complementary slackness;

for i = 1, . . . , N̄ . If {Ūi} are strictly concave the optimal rates x̄i are unique. In
addition, assume there exist two different optimal vectors of dual variables p̄ and
p̃, then

R̄T (p̄− p̃) = q̄ − q̄ = 0.

If R̄ has full row rank, then the columns of R̄T are linearly independent and thus
p̄ = p̃. Therefore, if R̄ has full row rank, the dual variables p̄ℓ are unique as well.

“Reverse-engineering”

Consider a network that consists of links that have infinitely large buffers and which
applies FIFO scheduling. The network is utilized by window based sources that uses
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the observed total queuing delay as a measure of the amount of congestion in the
network. Next we will associate the equilibrium of such a system with the solution
to the utility maximization problem previously discussed.

In a FIFO buffering network with infinite queues we know from Section 3.3 that
the dynamics of each buffer is given by

ḃl(t) =

{

1
cl

(

∑N
n=1 rl,nxl,n(t)− cl

)

, if bl(t) > 0 or
∑N
n=1 rl,nxl,n(t)− cl > 0,

0 otherwise,
(4.1)

where the instantaneous queue input rates xl,n(t) are defined in the ACK-clocking
model (3.10). It is assumed that a source n adjust its window size according to the
dynamical law

ẇn(t) = Wn(wn(t), q̂n(t)). (4.2)

Let us assume the existence of an equilibrium point (b, w) characterized by
letting ḃl = 0 and ẇn = 0 in (4.1) and (4.2), and by bl ≥ 0, wn ≥ 0. The non-
negativity constraints are required since buffer sizes and windows are non-negative
by definition. Note that in equilibrium there is no difference between windows
and flight sizes, so wn = fn, and the queue input rates are equal along path n,
i.e., xl,n = xk,n =: xn for all feasible k, l. Furthermore, signaling delays can be
ignored implying that the aggregate equilibrium rate on each link can be expressed
as y = Rx. The aggregated queuing delay along a path is the sum of the equilibrium
queues on the path, therefore q = RTb. Subsequently the equilibrium round trip
times can be written τn = dn + qn, and the rates xn = wn/τn, for all n = 1, . . . , N .
Furthermore assume that sources’ queuing delay estimates are unbiased such that
q̂n = qn holds for all n = 1, . . . , N .

Let us consider the implication of the buffer equilibrium condition ḃl = 0. It is
realized from (4.1) that in equilibrium either

bl = 0 and
N
∑

n=1

rl,nxl,n =
N
∑

n=1

rl,nxn = yl ≤ cl

or

N
∑

n=1

rl,nxl,n =
N
∑

n=1

rl,nxn = yl = cl

holds. The equivalent condition in vector notation is: y ≤ c and bT(c− y) = 0.
Similarly, for the window control, ẇn = 0 and (4.2) gives Wn(wn, qn) = 0.
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In summary, the equilibrium conditions can be written as

x ≥ 0, b ≥ 0,

y ≤ c,
y = Rx, q = RTb,

xn =
wn

dn + qn
, 0 = Wn(wn, qn),

0 = bT(c− y),

Note the similarity between these conditions and the KKT conditions for the net-
work utility maximization problem. We would now like to pose some assumptions on
the window control function Wn(wn, qn), that determines the equilibrium relation
between the window size wn and the queuing delay qn, such that the equilibrium
conditions summarized above coincides with the solution of a utility maximization
problem with routing R, capacities c and strictly concave source utility functions
Un(xn). This would imply the uniqueness of the equilibrium rates x, and if R has
full rank that queuing delays b are unique as well.

First, assume that window control is such that we can solve Wn(wn, qn) = 0
with respect to wn, then we can write

wn = Qn(qn).

This implies that the equilibrium rate is

xn =
wn

dn + qn
=
Qn(qn)
dn + qn

=: Fn(qn).

Under the assumption that Fn(qn) is strictly decreasing its inverse function exists,

qn = fn(xn),

which is also a strictly decreasing function. Let us define the source utility function
as

Un(xn) =
∫

fn(xn)dxn, (4.3)

and note that since fn(xn) is strictly decreasing by assumption Un(xn) is strictly
concave. Now we have by definition and under the given assumptions that the
equilibrium conditions

xn =
wn

dn + qn
, 0 = Wn(wn, qn),

are equivalent to
qn = fn(xn) = U ′n(xn).
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This observation leads to the conclusion that the equilibrium rates x and queuing
delays b are unique and completely characterized of the KKT conditions of a utility
maximization problem defined by the R, c and Un. To guarantee the uniqueness
of the equilibrium windows w we furthermore need to impose that the functions
Qn(qn) are strictly monotone.

Note that we until now for simplicity have assumed that no non-window based
cross traffic is present. This is, however, easily adjusted for by replacing the capacity
c with the available bandwidth c− xc in the equilibrium conditions.

Studying the utility function of a protocol is many times a convenient way to
deduce the uniqueness of the equilibrium. This strategy will be used in Section 4.2.1
in the study of the ACK-clocking mechanism and in Section 4.4.1 in the analysis
of FAST TCP.

4.1.2 Stability

In dealing with the stability of feedback systems, the machinery of control theory
is suitable. Below we will present some standard results that we will use as well as
a lemma that is tailored for our needs.

The H∞ space

Consider the stability of a linear system represented by the rational open loop
transfer function L(s) = P (s)/Q(s). Assuming there are no common roots to the
polynomials P and Q this system is stable if and only if there exist no complex right
half plane poles p of L(s), i.e., all solutions to the characteristic equation Q(p) = 0
satisfies Re p < 0. This condition is trivial to check when Q(s) is of first and second
order, but, naturally, gets more involved as the polynomial order grows.

For the more general case when P (s) and Q(s) are analytic functions (i.e., L(s) is
meromorphic) the issue of stability gets more intricate. The reason is that it for this
case may exist infinitely many zeros and/or poles and possibly accumulation points.
For such systems we will instead of studying the poles explicitly establish stability
by showing that the transfer function is in H∞, the space of functions that are
analytic and bounded in the open right-half complex plane. Transfer functions in
H∞ are input output stable which also implies asymptotic stability. The definition
of H∞ is as follows. Let C

+ be the open right half plane, {z : Re(z) > 0}, and C̄
+

be its closure, {z : Re(z) ≥ 0}.

Definition 4.1.1. A function G : C̄
+ → C

n×m is in H∞ if

(a) G(s) is analytic in C
+;

(b) for almost every real number ω,

lim
σ→0+

G(σ + jω) = G(jω);

(c) sups∈C̄+ σ̄(G(s)) <∞,
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Figure 4.1: Simulation of (4.5) for different values of K.

where σ̄ denotes the largest singular value.

As an illustration of the use of the theory, let us study a concrete example.

Example 4.1.1. Consider the non-rational but analytic transfer function

G(s) =
1

1 +Ke−s
, (4.4)

where K is a strictly positive gain parameter. This correspond to the time domain
system

y(t) +Ky(t− 1) = u(t). (4.5)

At sampling instants it equals the time discrete system

yk +Kyk−1 = uk, (4.6)

known to be asymptotically stable when its poles are located inside the unit circle.
This is the case when |K| < 1. The plots in Figure 4.1 shows simulations of (4.5)
for K = 0.5 (stable), K = 1 (marginally stable), and K = 1.5 (unstable). They
confirm our prediction of when the system becomes unstable. We will now exam the
stability of (4.5) analytically.

Let s = σ + jω when σ ∈ R, ω ∈ R, so that

G(σ + jω) =
1

1 +Ke−σ(cos(ω) + j sin(ω))
. (4.7)

Obviously the imaginary part is zero for ω = ω̄n = nπ, n = ±0, 1, 2, . . . , only, and
it follows that

|G(σ + jωn)| <∞, for all ω 6= ω̄.

Furthermore we have

G(σ + jω̄n) =
1

1 + (−1)nKe−σ
.
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L(s)

−1

Figure 4.2: Closed loop system.

Clearly for even n this expression is bounded since the denominator is bounded below
by 1 for all K > 0. For odd n, however,

lim
ω→ω̄n

|G(σ + jω)| =∞

if

Ke−σ = 1 ⇔ σ = log(K).

We observe that for K ≥ 1 only, we have σ ≥ 0. Thus, for that case, G(s) is not
in H∞ since it is unbounded in the right-half plane which violates condition (c) in
Definition 4.1.1. In summary, we have seen that the system is stable for all positive
K < 1. This is consistent with our preliminary analysis based on linear systems
theory of discrete systems and simulations.

Closed loop stability using the Nyquist criterion

Considering closed loop stability of a system with open loop gain L(s), see Fig-
ure 4.2, an often convenient alternative to explicitly study the location of the poles
of the closed loop transfer function is to apply the Nyquist criterion. Under the
assumption that L(s) is open loop stable the simplified Nyquist criterion presented
below provides necessary and sufficient conditions for closed loop stability.

Theorem 4.1.1 (The simplified Nyquist criterion). Assume that L(s) does not
have any poles in the closed right complex half plane. Then the closed loop system
is asymptotically stable if and only if the contour L(jω), 0 ≤ ω <∞ does not cross
or encircle −1.

Remark that the Nyquist criterion also allows for non-rational transfer functions.
Let us continue the previous example.
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Example 4.1.2 (Example 4.1.1 continued). The poles of G(s), defined by (4.4), is
given by the characteristic equation

1 +Ke−s = 0.

This is also the characteristic equation for a closed loop system with open loop gain
L(s) = Ke−s. The contour of L(jω) = Ke−jω, 0 ≤ ω <∞, i.e., the Nyquist curve,
is a circle centered at the origin with radius K. Obviously it will encircle −1 for
K > 1, touch −1 for K = 1, and not encircle for 0 < K < 1. From the simplified
Nyquist criterion we thus can conclude that the system is stable for 0 < K < 1,
perfectly in line with our previous findings.

Exploring model structure

It turns out that when analyzing the stability of some congestion control algorithms,
such as FAST TCP, the loop gain has the structure of a weighted sum of individually
stable transfer functions which shares a common pole located at the point equal to
the sum of some non-negative weights li,

L(s) =
N
∑

n=1

ln
Ln(s)

s+
∑N
i=1 li

. (4.8)

Depending on the complexity of {Ln(s)} and the number of elements in the sum
it may be a formidable task to analyze the full loop gain L(s) explicitly. However,
the following lemma, which utilizes the Nyquist criterion, gives conditions on each
Ln(s) that is sufficient to guarantee closed loop stability.

Lemma 4.1.2. Denote the half plane under the line that passes −1 + j0 with slope
β/(ωτ̂), where β > 0, by

H(ω) =
{

z | arg(z + 1)− arctan
(

β

ωτ̂

)

∈ (−π, 0)
}

. (4.9)

Let Fn(s), n = 1, . . . , N , be stable transfer functions, and let

0 < −min
θ>0

Re(Fn(jθ)) < 1/γn.

Then a system with open loop gain

L(jω) = β

N
∑

n=1

µn
τn

γnFn(jω)
jω + β/τ̂

(4.10)

where 1/τ̂ ≡ ∑N
n=1 µn/τn, satisfies L(jω) ∈ H(ω) for all ω, and is closed loop

stable for any τn > 0, µn > 0, n = 1, . . . , N .
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Proof. By definition, L(jω) ∈ H(ω) is equivalent to

arg(L(jω) + 1)− arctan
(

β

ωτ̂

)

∈ (−π, 0). (4.11)

Substituting (4.10) and noting that

arg
(

jω +
β

τ̂

)

+ arctan
(

β

ωτ̂

)

= arctan
(

ωτ̂

β

)

+ arctan
(

1
ωτ̂/β

)

=
π

2
,

condition (4.11) can be further rewritten as

arg

(

β
N
∑

n=1

µn
τn
γnFn(jω) + jω +

β

τ̂

)

∈
(

−π
2
,
π

2

)

which is equivalent to

βRe

(

N
∑

n=1

µn
τn
γnFn(jω) + j

ω

β
+

1
τ̂

)

> 0.

Since Re (γnFn(jω)) > −1 by hypothesis, and furthermore 1/τ̂ =
∑N
n=1 µn/τn by

definition, it is established that L(jω) ∈ H(ω) for all ω.
Thus, since

(−∞,−1] ∩
⋃

ω≥0

H(ω) = ∅,

the Nyquist curve for L cannot encircle −1. The stability of Fn(s) implies that
L(jω) is open loop stable, and hence the system is closed loop stable by the Nyquist
criterion.

The construction used for Lemma 4.1.2 is depicted in Figure 4.3 for β = 1, τ1 =
1, τ2 = 5, µ1 = µ2 = 1/2, at ω̃τ̂ = 3, and where Fn(s) is such that L(jω) ∈ H(ω).
It illustrates how we need to consider the full open loop transfer function. The set
H(ω̃) is the set below the line with slope 1/3. While the individual parts F̃n(jω̃)
of the weighted sum in the open loop transfer function L(jω̃) =

∑

n µnF̃n(jω̃), cf.,
(4.10), may not be in this set, the full loop gain L(jω̃) is.

4.2 ACK-clocking

This section analyze the properties of the ACK-clocking mechanism. In particular it
shows the uniqueness of the equilibrium of the general ACK-clocking model (3.10):
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−1 + j0

slope 1/(ω̃τ̂) = 1/3

F̃1(jω)

F̃2(jω)

Figure 4.3: An example of a line of slope 1/(ω̃τ̂) which bounds L(jω̃) at a particular
frequency w̃, denoted by the center cross. Note that the individual terms F̃n(jω̃),
denoted by the individual crosses, are not all below this line, however the weighted
sum is.

for all l = 1, . . . , L,

clḃl(t) =
N
∑

n=1

rl,nxl,n(t) + xc;l(t)− cl,

fl,n(t+ τfl,n(t)) = fn(t), n = 1, . . . , N,
∫ t+τl,n(t)

t

xl,n(s)ds = fl,n(t+ τl,n(t)), n = 1, . . . , N,

τ̂l,n,i(t) = ~dl,n,i +
i−1
∑

k=1

~bl,n,k(t+ τ̂l,n,k(t)), n = 1, . . . , N,

τl,n(t) = dn +
Ln
∑

i=1

~bl,n,i(t+ τ̂l,n,i(t)), n = 1, . . . , N,

τfl,n(t) = τ̂ℓ(n),n,m(l,n)+1(t), n = 1, . . . , N.

To recall details about the model see the derivation of (3.10) given in Section 3.3.5.
It is also, for the single link case, i.e., l = 1 in the model above, proved that the
system is asymptotically stable from flight sizes to queuing delays but that at the
same time, the rates may have sustained oscillations.
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4.2.1 Equilibrium

ACK-clocking can be interpreted as a congestion control algorithm applied at the
source, with queuing delay b as price signal p fed back from the network (i.e., p = b),
and with tuning parameter f (flight size). In this context, we are able to apply
the utility optimization framework to characterize the equilibrium in the following
theorem. Note that the flight size f equals the window size w in equilibrium.

Theorem 4.2.1. For given positive vectors w, d and c, the equilibrium rates x∗ of
the ACK-clocking model (3.10) are unique, and if R is full rank, then the queuing
delays p∗ are also unique.

Proof. A feasible equilibrium point (x∗, p∗) satisfies
∑N
n=1 Rl,nx

∗
n ≤ cl for all l, n

and

x∗n :=
wn

dn + q∗n
,

q∗n =
L
∑

l=1

Rl,np
∗
l ,

p∗l ≥ 0.

The parameters wn, dn, cl are fixed. The equilibrium point can be expressed as

L
∑

l=1

Rl,np
∗
l = q∗n =

wn
x∗n
− dn. (4.12)

Let

Un(x∗n) = wn log(x∗n)− dnx∗n
which is strictly concave. Note that (4.12) is the KKT condition to the convex
program

max
x≥0

N
∑

n=1

Un(xn),

s.t. Rx ≤ c,

with convex feasible set with non-empty interior. Thus there exists a unique opti-
mal solution x∗, see (Boyd and Vandenberghe, 2004), and by (4.12), a unique q∗.
Assume there exist two optimal queuing delay vectors p∗ and p̃∗, then

RT (p∗ − p̃∗) = q∗ − q∗ = 0.

If R has full row rank, then the columns of RT are linearly independent and thus
p∗ = p̃∗. Therefore, if R has full row rank then the equilibrium (x∗, p∗) is unique.
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Linearization

In the next section we will analyze the local stability of the ACK-clocking model
for the single bottleneck link case. As a preparation to this we will now linearize
the single bottleneck ACK-clocking model (3.8), i.e.,

ḃ(t)− 1
c

(

N
∑

n=1

xn(t) + xc(t)− c
)

= 0,

∫ t+τn(t)

t

xn(s) ds− fn(t+ τn(t)) = 0, n = 1, . . . , N,

around the unique equilibrium (b, f, x, xc). Consider small perturbations in vari-
ables around this equilibrium. Recall that τn(t) = dn + b(t) and thus τn = dn + b.
Define

H(z, ż) =

















ḃ(t)− 1
c

(

∑N
n=1 xn(t) + xc(t)− c

)

(1 + ḃ(t))
(

x1(t+ τ1(t))− ḟ1(t+ τ1(t))
)

− x1(t)
(1 + ḃ(t))

(

x2(t+ τ2(t))− ḟ2(t+ τ2(t))
)

− x2(t)
...

(1 + ḃ(t))
(

xN (t+ τN (t))− ḟN (t+ τN (t))
)

− xN (t)

















,

where variables are collected according to

z =
(

b(t) fT(t+ τ(t)) xT(t+ τ(t)) xT(t) xc(t)
)T
,

and where f(t + τ(t)) is a vector with nth element fn(t + τn(t)) and similarly for
x(t+ τ(t)). In this notation

H(z, ż) = 0

is equivalent to (3.8). A linear approximative model valid for small perturbations
δz around an equilibrium point z∗ is obtained by a first order Taylor expansion:

0 = H(z, ż) ≈ ∂H(z∗, 0)
∂z

δz +
∂H(z∗, 0)

∂ż
δż.

Following the convention that time delays in variables’ arguments are modeled
by their equilibrium values (i.e., xn(t+τn(t)) ≈ xn(t+τn)), and hence not considered
in the linearization, yields the linear dynamics

δḃ(t)−
N
∑

n=1

δxn(t)
c
− δxc(t)

c
= 0, (4.13a)

xnδḃ(t)− δḟ(t+ τn) + δxn(t+ τn)− δxn(t) = 0, (4.13b)
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for n = 1, . . . , N . Here δ preceding a variable denote small perturbations. Let
upper-case X(s) denote the Laplace transform of x(t). Applying the Laplace trans-
form to (4.13b) we can solve for the sources’ queue input rates explicitly

∆Xn(s) =
s

e−sτn − 1

(

xne
−sτn∆B(s)−∆Fn(s)

)

.

This expression can be used to eliminate the ∆Xn dependence in the frequency
domain version of (4.13a)

s∆B(s)− 1
c

N
∑

n=1

∆Xn(s)−
1
c

∆Xc(s) = 0.

This gives that the linear ACK-clocking dynamics are described by
(

c+
N
∑

n=1

xn
e−sτn

1− e−sτn

)

∆B(s) =
N
∑

n=1

∆Fn(s)
1− e−sτn +

1
s

∆Xc(s). (4.14)

In the derivation of the single bottleneck link ACK-clocking model (3.8) we assumed
zero forward propagation delay for simplicity. (This was however accounted for in
the general model (3.10).) To model a non-zero forward propagation delay τfn ,
simply multiply ∆Fn(s) by e−sτ

f
n in (4.14).

The simplifying assumption ignoring variability in delay in variable arguments
when linearizing, is standard in this type of work but was unfortunately not further
motivated. However, the linear model is validated in Section 5.2.1 and performs
well in the simulated scenarios. Furthermore, predictions based on the linear model
appears to be accurate, see the analysis section that follows.

4.2.2 Stability

We will now investigate the stability of the ACK-clocking mechanism using the
linear model (4.13) just derived.

Due to the conservation of packet principle of the ACK-clocking mechanism,
i.e., a new packet is not injected into the network until an old packet leaves, the
ACK-clock system is stable in the sense that the queues stay bounded for bounded
flight sizes. This is realized as follows.

If we for simplicity assume no cross traffic, then the total amount of packets in
the network at an instant of time is the sum of the sources’ flight sizes. The packets
that are not in transit between links are located in the queues. Since the flight sizes
are bounded above by assumption, the maximum number of packets in the network
is bounded and thus the number of packets in the queues must be upper bounded
as well.

Let us now investigate the issue of stability in more detail. The following theo-
rem shows the stronger result that the linearized single bottleneck dynamics (4.14)
relating the flight sizes δf to the queue δb are asymptotically stable, ruling out
persistent oscillations in these quantities.
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Theorem 4.2.2. For all 0 < xn ≤ c, τn > 0, n = 1, . . . , N , and

N
∑

n=1

xn ≤ c,

the function Gbf : C̄
+ → C

1×N whose ith element is given by

Gbfi(s) =
1

(1− e−sτi)
(

c+
∑N
n=1 xn

e−sτn
1−e−sτn

) , (4.15)

is stable.

Proof. We know from Definition 4.1.1 that is sufficient to confirm that:
(a) Gbf (s) is analytic in C

+;
(b) for almost every real number ω,

lim
σ→0+

Gbf (σ + jω) = Gbf (jω);

(c) sups∈C̄+ σ̄(Gbf (s)) <∞
where σ̄ denotes the largest singular value.

Conditions (a) and (b) are satisfied if they hold element-wise. Furthermore

sup
s∈C̄+

σ̄(Gbf (s)) = sup
s∈C̄+

√

λ̄(Gbf (s)G∗bf (s)) = sup
s∈C̄+

√

√

√

√

N
∑

i=1

Gbfi(s)Gbfi(s)

≤
N
∑

i=1

sup
s∈C̄+

|Gbfi(s)|.

Thus, condition (c) holds if

inf
s∈C̄+

∣

∣

∣G−1
bfi

(s)
∣

∣

∣ > 0 for all i = 1, . . . , N. (4.16)

It is therefore sufficient to establish (a), (b) and (c) for each transfer function
element Gbfi(s).

Start with the boundedness condition (c). It is sufficient to show that there is no
sequence sl = σl+ jωl ∈ C̄

+ with liml→∞ |1/Gbfi(sl)| = 0. This will be established
by showing that the limit evaluated on any convergent subsequence is greater than
0. Consider a subsequence with σl → σ, ωl → ω.

Case 1, σ =∞:
1/Gbfi(sl)→ c > 0.

Case 2, σ ∈ (0,∞): By the triangle inequality,

|1− e−slτi | ≥
∣

∣1− |e−slτi |
∣

∣→ 1− e−στi > 0. (4.17)
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Furthermore, for σ > 0, we have for an A = esτn , |A| > 1,

(

Re
(

1
A− 1

)

− 1
|A|2 − 1

)2

+
(

Im
(

1
A− 1

))2

−
( |A|
|A|2 − 1

)2

=

∣

∣

∣

∣

1
A− 1

∣

∣

∣

∣

2

− 2Re(1/(A− 1))
|A|2 − 1

− 1
|A|2 − 1

=
|A|2 − 1− (A+ Ā− 2)− |A− 1|2

|A− 1|2 (|A|2 − 1)

=
AĀ− 1−A− Ā+ 2−AĀ+A+ Ā− 1

|A− 1|2 (|A|2 − 1)
= 0.

Thus we can conclude that 1/(eslτn−1) lies on the circle with center 1/(A2
l −1)+j0

and radius Al/(A2
l − 1), where Al = |eslτn |. Thus liml→∞Re(1/(eslτn − 1)) ≥

−1/(eστn + 1), hence

lim
l→∞

Re

(

c+
N
∑

n=1

xn
eslτn − 1

)

≥ c−
N
∑

n=1

xn
eστn + 1

= c−
N
∑

n=1

xn +
N
∑

n=1

xne
τnσ

eτnσ + 1

≥
N
∑

n=1

xn
1 + e−τnσ

≥
N
∑

n=1

xn
2
> 0. (4.18)

Multiplying (4.17) and (4.18) gives liml→∞ |1/Gbfi(sl)| > 0.
Case 3, σ = 0: Note that

Re(1/(ejωlτn − 1)) = −1/2,

so

lim
l→∞

Re

(

c+
N
∑

n=1

xn
e(σl+jωl)τn − 1

)

= c−
N
∑

n=1

xn
2
≥ c− c

2
> 0.

Thus liml→∞ |1/Gbfi(sl)| 6= 0 except possibly when the first factor of (4.15) ap-
proaches zero, i.e., 1− e−slτi → 0, which occurs when ωτi = 2πm, m ∈ Z.

Let

In =

{

1 if mτn/τi ∈ Z,

0 otherwise.

Now

lim
s→j2πm/τi

|1/Gbfi(s)| = lim
s→j2πm/τi

∣

∣

∣

∣

∣

∣

∣

∣

c(1− e−sτi) + xi +
N
∑

n=1
n6=i

xne
−sτn

1− e−sτi
1− e−sτn

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

0 + xi + lim
s→j2πm/τi

N
∑

n=1
n6=i

xne
−sτn

1− e−sτi
1− e−sτn

∣

∣

∣

∣

∣

∣

∣

∣

= xi +
N
∑

n=1
n6=i

xn
τi
τn

In > 0,
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where the case In = 1 in the last step follows by L’Hôpital’s rule. Thus

lim
l→∞

|1/Gbfi(sl)| > 0

for all sequences sl in C̄
+ for which the limit exists, whence (4.16) holds, and thus

(c).
Furthermore, since 1/Gbfi(s) 6= 0, Gbfi(s) is also non-singular in C̄

+, and there-
fore analytic as its components are analytic. (Constants as well as the exponential
function are entire, i.e., analytic in C; also note that sums, differences, and prod-
ucts of analytic functions are analytic; quotients of analytic functions are analytic
except where the denominator equals zero.) This establishes (a). Condition (b)
holds since Gbfi(s) is analytic in C̄

+.

That the system is stable from input to output (input-output stable) does not
guarantee that the system is stable from input to internal states (internally stable).
We will next see that for certain network configurations the queue may actually be
settled in equilibrium at the same time as individual sources’ rates are oscillating.

4.2.3 Uniqueness of rates

The results presented until now hold for any x(t) satisfying (3.8), leaving open the
question of uniqueness. It is possible for the flight sizes not to define unique rates.
This is illustrated in the following example.

Example 4.2.1. Consider a network in which two flows with equal RTTs τ share
a bottleneck link of capacity C, and each has flight size Cτ/2. If the flows alternate
between sending at rate C for time τ/2 and sending at rate 0 for τ/2, and if the
“on” periods of flow 1 coincide exactly with the “off” periods of flow 2, then the
total rate flowing into the bottleneck link is constant C and (3.8) is satisfied. This
is illustrated in the graph in Figure 4.4a. However, (3.8) holds also if both sources
send constantly at rate C/2 as in Figure 4.4b.

Note that (3.8) holds for any scenario similar to that described in Example 4.2.1
but with on-off periods of τ/2k, k ∈ Z

+, and that it thus exist infinitely many
solutions (b, x(t), f) which corresponds to different burstiness patterns.

Now let us consider the case of small perturbations in variables. Note that
sustained oscillations in the rates for constant flight sizes correspond to marginally
stable (single pure imaginary) poles in the transfer function Gxf (s) describing the
dynamics from flight sizes to rates. Let zk be the kth element of the vector z, then
define diag(zk) as a square matrix with the elements of z on the diagonal. Also let
I be a column vector with N elements which all are equal to 1. Taking the Laplace
transform of (4.13) and eliminating ∆B, gives

diag(sesτk)∆F (s) =
(

1
c
xI

T + diag(esτk − 1)
)

∆X(s).
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x1(t) x2(t) x1(t) + x2(t)

t
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C /2
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(a) Case 1.

x1(t) x2(t) x1(t) + x2(t)

t

C

C /2

ττ/2 t

C

C /2

t

C

C /2+ =

ττ/2 ττ/2

(b) Case 2.

Figure 4.4: Illustration of non-uniqueness of rates.

So the relationship between ∆F and ∆X is given by the transfer function matrix

Gxf (s) =
(

1
c
xI

T + diag(esτk − 1)
)−1

diag(sesτk).

The zeros of Gxf (s) are the values of zi at which Gxf (zi) loses rank, see (Skogestad
and Postlethwaite, 2005) for a formal definition. Since Gxf (s) is a square matrix
its zeros are given by the poles of the inverse dynamics

G−1
xf (s) = diag(1/(sesτk))

(

1
c
xI

T + diag(esτk − 1)
)

.

Note that sesτk 6= 0 for s 6= 0 and thus diag(1/(sesτi)) is never singular outside the
origin. This implies that there are no purely imaginary poles of G−1

xf (s) and hence
no purely imaginary zeros of Gxf (s). Therefore we know that we can not have any
pole-zero cancellations on the positive and negative part of the imaginary axis for
Gxf (s). Recall from linear algebra that for matrices A and B,

RankAB ≤ min{RankA,RankB}.

Thus G−1
xf (s) loses rank whenever

1
c
xI

T + diag(esτk − 1)

does. This occurs whenever esτk = esτi = 1 for some i 6= k, i = 1, . . . , N, k =
1, . . . , N , which is the case for any s such that sτi = j2πb and sτk = j2πa holds
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simultaneously for integers a and b. From this we can conclude that Gxf (s) has
poles on the imaginary axis when one flow has a RTT which is a rational multiple
of another flow’s RTT.

Let us study the case of N = 2 flows with equal equilibrium rates x1 = x2 = C/2
and RTTs such that τ1/τ2 = b/a for integers a and b. The linearized rates are given
by

(

∆X1(s)
∆X2(s)

)

= Gxf (s)
(

∆F1(s)
∆F2(s)

)

=





s(2−e−sτ2)
2−e−sτ1−e−sτ2

−se−sτ1

2−e−sτ1−e−sτ2

−se−sτ2

2−e−sτ1−e−sτ2

s(2−e−sτ1)
2−e−sτ1−e−sτ2





(

∆F1(s)
∆F2(s)

)

which we know will oscillate due to the poles in

sk = j2π · k ·min{b/τ1, a/τ2}, k = ±1, 2, . . . ,

on the imaginary axis. Consider the transfer function from the flight sizes to the
total rate ∆Y = ∆X1 + ∆X2 flowing into the link, it is given by

Gyf (s) =
(

1 1
)

Gxf (s) =
(

2s(1−e−sτ2)
2−e−sτ1−e−sτ2

2s(1−e−sτ1)
2−e−sτ1−e−sτ2

)

.

We have by L’Hôpital’s rule the limit

lim
s→sk

Gyf (s) = lim
s→sk

(

2(1−e−sτ2)+2sτ2e
−sτ2

τ1e−sτ1 +τ2e−sτ2

2(1−e−sτ1)+2sτ1e
−sτ1

τ1e−sτ1 +τ2e−sτ2

)

=
(

2τ2sk
τ1+τ2

2τ1sk
τ1+τ2

)

.

From the existence of this limit we can conclude that the purely imaginary sk
are not poles of Gyf (s). This highlights the fact that sustained oscillations in the
individual rates due to the marginally stable poles still maintain a constant rate
flowing into the bottleneck link. It corresponds to that the marginally stable poles
appearing in Gxf (s) are canceled by zeros introduced in the summation of the rates
when creating Gyf (s). Conversely, for any periodic function x1(t) with period τ1/b,
perturbations about the mean with x2(t) = −x1(t) will satisfy (4.13). The example
that follows illustrates this.

Example 4.2.2. Consider two window based flows sharing a bottleneck link with
capacity c = 100 Mbit/s, with 1040 byte packets, and an equilibrium queuing delay
of b = 8.16 ms. First, a scenario with f1 = 650 packets, f2 = 2f1, d1 = 100 ms,
d2 = 208.16 ms is simulated in NS-2. For this case τ2 = 2τ1 = 216.32 ms. This
rational ratio a = 2, b = 1 suggests sustained oscillations at frequencies kb/τ1 ≈
(9.25k) Hz where k ∈ Z

+. The upper left plot in Figure 4.5 shows the single-sided
amplitude spectrum (computed by the FFT) of the sending rate of source 1, sampled
every 5 ms. The spikes in the plot agree with our prediction. The upper right hand
plot of the amplitude spectrum of the queue size lacks such sustained oscillations; it
is stable in line with Theorem 4.2.2. (While the individual sending rates oscillate,
their sum does not, yielding a stable link buffer.)
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Figure 4.5: Single-sided amplitude spectrum for the rate of source 1 (left) and
bottleneck queue (right). Upper plots: a = 2, b = 1. Lower plots: a = 2079, b =
1352.

The two lower plots are for a similar scenario, with instead d2 = 158.16 ms.
Since τ1/τ2 = b/a = 1352/2079, the sustained oscillations will be at kb/τ1 =
(12500k) Hz. Accordingly, the amplitude spectrum up to 50 Hz of the source rate
lacks spikes except at the zero mode. Again the queue is non-oscillatory.

In summary, as it seems window based sources’ rates are unique (and linearly
stable) unless one flow has a RTT which is a rational multiple of another flow’s
RTT.

4.2.4 Model simplifications

Though the ACK-clocking model (3.10) is very accurate, as will be shown in Chap-
ter 5, it may due to its complexity not be tractable for many applications. We will
here provide some naive guidelines for how the model can be simplified for analytical
purposes. In an analysis this should be done to match the accuracy requirements
of the application considered. To keep the discussion as simple as possible we will
focus on the single link case (3.8).

Studying (3.8) we observe that the integration (3.8a) is linear in the states why
the complexity in the model is, mainly, due to the N constraints (3.8b) defining the
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4. Congestion control analysis

rates xn(t). We will, thus, be concerned with approximating the integral equation
(3.8b). Let

Hn(t, z) =
∫ z

t

xn(s)ds− fn(z), (4.19)

where, by (3.8b),

Hn(t, t+ τn(t)) = 0. (4.20)

Intuitively, better approximations of the constraints (3.8b) should improve overall
model accuracy. However, due to the coupling between the constraints (3.8b) and
the integration (3.8a), even though we are able to quantify the accuracy of the
approximation of Hn(t, z), more rigorous analysis than provided here is needed to
quantify the accuracy in the output queuing delay b. The discussion that follows
is, thus, rather informal and results are qualitative. See also the discussion on
approximations based on numerical quadrature techniques in Appendix A.

By Taylor expansion

Under the assumption that xn(t) and fn(t), and subsequently Hn(t, z), are suffi-
ciently smooth and thus analytic, the integral Hn(t, t + τn(t)) can be Taylor ex-
panded around t. For sufficiently small round trip times approximate ODE models
can then be obtained from different orders of truncation of this series expansion.
We have that

0 = Hn(t, t+ τ(t)) = −fn(t) +
∞
∑

k=1

(

dk−1xn(ξ)
dξk−1

∣

∣

∣

∣

ξ=t

− dkfn(ξ)
dξk

∣

∣

∣

∣

ξ=t

)

τkn(t)
k!

.

Hence

0 = Hn(t, t+ τ(t)) = −fn(t) + (xn(t)− ḟn(t))τn(t) +O(τ2
n),

and thus a second order truncation and dividing by τn(t) gives the O(τ) rate ap-
proximation

xn(t) ≈
fn(t)
τn(t)

+ ḟn(t). (4.21)

Similarly, by third and fourth order truncations we have, after variable transforma-
tions ẏn = xn and zn = yn − fn, the models

τn(t)2z̈n(t)
2

+ τn(t)żn(t)− fn(t) ≈ 0 (4.22)

and
τn(t)3...

z n(t)
6

+
τn(t)2z̈n(t)

2
+ τn(t)żn(t)− fn(t) ≈ 0 (4.23)

respectively. The trade-off between model tractability and accuracy now lies in
the complexity in the ODE. Let us compare these simplifications in a simulation
experiment.
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Figure 4.6: Validation experiment. Solid grey line: NS-2 simulation. Dashed black
line: first order rate model (4.21) (same as (4.29)). Dotted black line: second order
rate model (4.22). Solid black line: third order rate model (4.23).

Example 4.2.3. Consider a window based source sharing a single bottleneck link
of capacity c = 200 Mbit/s with (UDP) cross traffic with constant rate xc = 160
Mbit/s. The window based source has a round trip propagation delay of d = 150 ms
and its flight size is initially set to a constant size f0 = 750 packets; packet size is
set to ρ = 1040 bytes. At time t = 0 s the system is perturbed from equilibrium by
increasing the flight size of the window based source with 75 packets to f(t) = 825
packets. The solid grey line in Figure 4.6 is the queue size when this scenario is
simulated in NS-2. The dashed black line corresponds to the model based on the first
order rate model (4.21), the dotted black line to the model based on the second order
rate model (4.22) and the solid black line to the model based on the third order rate
model (4.23).

As expected we observe in this example that the model using the simplest rate
approximation (4.21) is less accurate than the other two which it is compared with.
However, we see that for this particular scenario there is no fundamental difference
between the two higher order approximations (studying the Euclidean length of
the residuals reveal that the highest order approximation actually is slightly more
accurate here).

By Padé approximations

If the objective is to derive approximative models in the form of ODEs, an alter-
native to the previous Taylor expansion procedure may be to study the linearized
model in the Laplace domain (4.14), and apply, for example, suitable orders of Padé
approximations (Baker and Graves-Morris, 1996) to approximate the exponential
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4. Congestion control analysis

function e−sτn originating from to the physical delays in the system. A corre-
sponding nonlinear ODE can then be “reverse engineered” from the linear model
to approximate the original nonlinear delay DAE model. A Padé approximant of a
given order (m,n) is the “best” approximation of a function by a rational function.
The integers m refers to the order of the numerator polynomial and the integer n
to the order of the denominator polynomial.

If we use a (1, 0) Padé approximation, that is e−sτ ≈ 1−sτ , the transfer function
from the flight size of the ith source to the queue (4.15) becomes

Gbfi(s) ≈ G1,0
bfi

(s) =
1/τi

sxc +
∑N
n=1 xn/τn

. (4.24)

Similarly, if we denote the transfer function from the cross traffic xc to buffer size
b with Gbxc(s), see (4.14), we have

Gbxc(s) ≈ G1,0
bxc

(s) =
1

sxc +
∑N
n=1 xn/τn

. (4.25)

Using (4.24) and (4.25) we get

∆B(s) =
N
∑

n=1

Gbfn(s)∆Fn(s) +Gbxc(s)∆Xbxc(s)

≈ 1

sxc +
∑N
n=1 xn/τn

(

N
∑

n=1

∆F (s)
τn

+ ∆Xbxc(s)

)

. (4.26)

Hence, by applying the inverse Laplace transform to (4.26), the approximative
linear time-domain ODE

δḃ(t) = − 1
xc

N
∑

n=1

xn
τn
δb(t) +

1
xc

N
∑

n=1

1
τn
δfn(t) +

1
xc
δxc(t) (4.27)

results.
Let us study a specific nonlinear law with linear dynamics (4.27). It is trivial

to verify that (4.27) is obtained when linearizing the nonlinear ODE

ḃ(t) =
1

xc(t)

(

N
∑

n=1

fn(t)
dn + b(t)

+ xc(t)− c
)

(4.28)

around the equilibrium (b, f, xc). Note that in the case of no cross traffic, that is,
xc = 0, this ODE reduces to an algebraic equation.

Using a (0, 1) Padé approximation, that is, e−sτ ≈ 1/(1 + sτ), gives in the same
manner as for the (1, 0) case the model

ḃ(t) =
1
c

(

N
∑

n=1

(

fn(t)
dn + b(t)

+ ḟn(t)
)

+ xc(t)− c
)

. (4.29)
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Figure 4.7: Validation experiment. Solid grey line: NS-2 simulation. Dotted black
line: (1, 0) model (4.28). Dashed black line: (0, 1) model (4.29). Solid black line:
(1, 1) model (4.30).

A more accurate (1, 1) approximation e−sτ ≈ (1 − sτ/2)/(1 + sτ/2) yields,
according to the same procedure, the more complex model

ḃ(t) =
2

xc(t) + c

(

N
∑

n=1

(

fn(t)
dn + b(t)

+
ḟn(t)

2

)

+ xc(t)− c
)

. (4.30)

We will now compare these models.

Example 4.2.4. The scenario is identical to the one descibed in Example 4.2.3.
The system is simulated in NS-2 and compared with the models based on the different
Padé approximations explictly dicussed. The solid grey line in Figure 4.7 is the
queue size when the system is simulated in NS-2, the dotted black line the model
(4.28) based on the Padé (1, 0) approximation (identical to the model based on
(4.21)), the dashed black line the model (4.29) which corresponds to Padé (0, 1)
approximation, the solid black line is the model (4.30) which is derived using a
Padé (1, 1) approximation.

It is clear from the example that the model based on the more accurate ap-
proximation (1, 1), tracking the average of the queue during the whole transient, is
superior to the more coarse approximations which seem to suffer from more phase
shift. To better capture the stepwise changes in the queue, we need to make even
higher order approximations of the exponential function, and consequently higher
order ODE models.

All of the approximate ODE models previously discussed in this section are
based on small τ approximations. However, τ(t) need not be small, in particular
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4. Congestion control analysis

τ(t) does not approach zero in the fluid limit of many packets. Thus, (3.8) should
be used whenever it results in a tractable problem formulation.

4.3 Relation between flight size and window size

We have discussed in Section 3.4.3 that there may be a mismatch between the
window size and the flight size in the case of an abrubt window reduction. More
specifically, due to that the endpoint control protocol cannot immediately withdraw
packets from the network, the flight size cannot be decreased faster than the arrival
rate of the receiced ACKs. We will here investigate the relation between the flight
size fn and the congestion window wn in more detail. Subscripts n will be dropped
for the ease of notation.

Recall from (3.3) that the flight size f is defined from the equality

∫ t+d+b(t)

t

x(s) ds = f(t+ d+ b(t)), t ≥ 0,

where x is the instantaneous sending rate, b the queuing delay, and d the propaga-
tion delay. Let 0 < t1 < t2 < . . . , be the time instances when an ACK arrives at
the sender. Denote the sequence of consecutive instances a round trip time apart
as 0 < t1 < t2 < . . . , and suppose that t1 = t1, i.e., the first packet was sent at
t = 0. Note that the set of round trip epochs {tℓ} is a subset of the ACK times
{tk}.

Given the congestion window w, the corresponding sending rate x is not uniquely
defined. The congestion window only determines what the average rate over a round
trip time should be. It is common that if w is increased by a certain number of
packets these packets are instantaneously put on the network, while if w is decreased
the packet decrease on the network depends on when the next few ACKs arrive to
the sender. Many other implementations of the congestion window changes are
possible, e.g., smoothing a window increase over a certain time interval. Obviously,
the relation between the actual sending rate and the congestion window depends
on the protocol implementation. Next, we derive some fundamental bounds on the
difference between the congestion window w and the flight size f .

In general, it is hard to obtain a better bound on the point-wise difference
between w and f than

sup
t≥0
|w(t)− f(t)| ≤ sup

t≥0
w(t) = wmax,

where wmax denotes the largest congestion window over a session. Note that the
inequality follows simply from the previous argument: if the congestion window w
is decreased, then the flight size f is not instantaneously decreased but decreases
only as the next ACKs arrive to the sender.
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Let us now consider the L1 norm of the difference between w and f :

‖w − f‖L1
= sup
T>0

1
T

∫ T

0

|w(t)− f(t)|dt.

It is a measure of how close w and f are in average. Let us assume that the
congestion window w is updated only at the round trip times tℓ, ℓ = 1, 2, . . . , so
that w(t) = f(tℓ), tℓ ≤ t < tℓ+1, i.e., w(t) = f(tℓ(t)) where ℓ(t) = ℓ, tℓ ≤ t < tℓ+1.
Note that for t ∈ (tℓ, tℓ+1), it holds by the mean value theorem that f(t) = f(tℓ) +
(t − tℓ)f ′(ξ) for some ξ ∈ (tℓ, tℓ+1) under the assumption that f is differentiable.
Hence, |f(tℓ) − f(t)| ≤ (tℓ+1 − tℓ)|f ′(ξ)|. With f ′max = supℓ=1,2,... |f ′(ξ(ℓ))| and
RTTmax = supℓ=1,2,...(tℓ+1−tℓ), we thus have |f(tℓ)−f(t)| ≤ RTTmaxf

′
max. Then,

‖w − f‖L1
= sup
T>0

1
T

∫ T

0

|f(tℓ(t))− f(t)|dt

≤ sup
T>0

1
T

∫ T

0

RTTmaxf
′
maxdt

≤ RTTmaxf
′
max.

The approximation error between w and f is thus of the order of the round trip
time.

To summarize, we have proven the following theorem.

Theorem 4.3.1. The following relations between the congestion window w and
the flight size f hold: if w(t) is updated at t ∈ {tℓ}ℓ=1,2,..., then w(tℓ) = f(tℓ) and
‖w − f‖L1

≤ RTTmaxf
′
max.

4.4 Stability of FAST TCP

In this this part we will analyze the stability of FAST TCP. We will consider the
case of an arbitrary number of sources and a single bottleneck. The analysis itself
highlights the power of the fluid flow abstraction as well as how important it is that
the models used are tailored for their purpose and that the final result is properly
evaluated.

Before proceeding with the analysis, recall the model associated with the proto-
col and which were derived in Section 3.6. The dynamics of the protocol is modeled
according to Figure 3.20 with window and estimator dynamics given by (3.22) and
(3.23) respectively, i.e.,

ẇ(t) =
log (1− γξ(t))

hk(t)

(

w(t)− α

ξ(t)

)

,

˙̂q(t) =
log (1− σ(t))

h′k′
(q̂(t)− uq(t)) ,

where ξ = uq̂/(d+ uq̂) and σ(t) = min{κ/uw(t), ν}.
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4. Congestion control analysis

4.4.1 System equilibrium

In this part we investigate the uniqueness of the system equilibrium under the
assumption that the routing matrix R has full rank. This is easily done using the
network utility maximization framework introduced in Section 4.1.1.

The equilibrium condition of the FAST TCP window control is given by letting
ẇ = 0 in (3.22), it is

w = Q(q) =
α(d+ q)

q
.

Subsequently, the corresponding equilibrium rate is

x = Fn(q) =
w

d+ q
=
Q(q)
d+ q

=
α

q
.

Since Fn(q) is monotonically decreasing for {q ≥ 0} its inverse exist, and it is
monotonically decreasing as well. This implies, according to the discussion in Sec-
tion 4.1.1, a strictly concave utility function and thus unique rates x, aggregated
queuing delays q and individual queuing delays b in equilibrium. Furthermore since
Q(q) is monotone equilibrium windows w are unique as well.

In particular we have that

q = f(x) =
α

x
.

The FAST TCP utility function is achieved by integrating this expression with
respect to x,

U(x) = α log(x).

From the discussion on the link between protocol utility functions and fairness
properties in Section 2.5.3, it is evident that FAST TCP is (αn, 1)-proportionally
fair.

The dynamical properties around the unique equilibrium (w, q) is investigated
next.

4.4.2 Linear model

Linearized models for the different sub-parts of the system will now be derived.
The final result is an open loop transfer function that subsequently will be used to
evaluate linear stability of the system around the equilibrium point. Without loss
of generality we assume no forward propagation delay.

Protocol

We start with deriving a linear model for the FAST TCP window control and
estimator dynamics. We will be concerned with deriving transfer functions for each
block in Figure 4.8, approximating the protocol part of the system in Figure 3.20
under FAST TCP.
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Figure 4.8: Linear model of the FAST TCP protocol dynamics.

Window control Before proceeding with the actual linearization suitable approx-
imations of the sampling rate must be found. In FAST TCP the window control
mechanism is updated once per received window (once per RTT), see Section 3.6.
Thus, for the window control we will use hk(t) ≈ d+ uq̂(t). Under this approxima-
tion the window dynamics (3.22) becomes

ẇ(t) =
log (1− γuq̂(t)/(d+ uq̂(t)))

d+ uq̂(t)

(

w(t)− α(d+ uq̂(t))
uq̂(t)

)

. (4.31)

If we assume that the propagation delay d is estimated accurately, the system
can be linearized around the equilibrium point (w, q). Note that in equilibrium
q̂ = q̃ = q = uq = uq̂ and w = uw. Furthermore, note that due to the equilibrium
properties of FAST TCP, see (3.18), we have

α

q
=

w

d+ q
=

(c− xc)αn
∑

m αm
.

Linearization of (4.31) around the equilibrium point yields

δẇ(t) =
log (1− γq/τ)

τ

(

δw(t) +
αd

q2
δuq̂(t)

)

.

The corresponding transfer functions from uq̂ to w is

G◦wuq̂ (s) =
αd/q2

ζs− 1

where

ζ =
(

log (1− γq/τ)
τ

)−1

.
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It remains to determine the transfer function from q̂ to uq̂, denoted G◦uq̂ q̂(s), mod-
eling the effect of sampling (3.11),

g[k] =
∫ ∞

0

δ(s− tk)g(s) ds, k = 0, 1, 2, . . . ,

and the zero-order hold (3.12),

g(t) = g(tk), tk ≤ t < tk+1,

in series, see Figure 3.20. Note that in FAST TCP the window control sampling
rate hk is a multiple of the estimator sampling rate h′k′ , see (3.21), and thus only
the zero-order hold operating on per RTT basis is accounted for in the model.

In equilibrium the RTT is constant and thus the window control sample interval
hk(t) is so as well. To be able to analyze the system in the frequency domain we
will assume that the effect of the time-varying sampling is negligible at relevant
frequencies. This assumption is supported by that the dynamics of this phenomenon
is fast and that the rest of the system is of low-pass character. In addition, the
presence of the sampler implies that the system is not time-invariant, even under the
assumption of constant sample intervals (Åström and Wittenmark, 1997). Strictly,
this means that the system dynamics can not be characterized by ordinary transfer
functions. However, we will, supported by the low-pass character of the system,
assume that the aliasing that occur is not severe and that distortion effects are
neglectable. This manifest in the frequency domain as approximating the transfer
function of the sampler (3.11) as unity.

The Laplace transform of the zero-order hold (3.12) with constant sample in-
tervals h is

1− e−sh
sh

. (4.32)

Thus, since hk = d+ q = τ , we have that

G◦uq̂ q̂(s) =
1− e−sτ

sτ
.

In summary, the window control transfer function of a source becomes

G◦wq̂(s) = G◦wuq̂ (s)G
◦
uq̂ q̂

(s) =
αd/q2

ζs− 1
· 1− e−sτ

sτ
, (4.33)

see Figure 4.8.

Estimator dynamics We will now focus on the estimator part of the FAST TCP
protocol. We start with approximating the sample time used by the FAST TCP
estimator algorithm before linearizing the dynamics.

The queuing delay estimator in FAST TCP is updated at every ACK arrival.
An approximation h′k′(t) ≈ (d + uq(t))/uw(t) corresponding to the average ACK
inter-arrival time over a RTT is thus chosen as sample rate approximation.
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Consider the case when window size w(t) and parameters κ and ν satisfies
κ/w(t) ≤ ν. This condition is typically fulfilled under normal parameter values
κ and ν due do large window sizes in high-bandwidth product networks (recall
from Section 3.6 that the default setting is κ = 3 and ν = 1/4 which implies that
the window w(t) only needs to be larger than 12 packets for the condition to be
satisfied). Subsequently, we have from (3.23) that

˙̂q(t) =
uw(t) log (1− κ/uw(t)))

d+ uq(t)
(q̂(t)− uq(t)) . (4.34)

Linearization of (4.34) around the equilibrium (w, q) now gives

δ ˙̂q(t) =
w log (1− κ/w))

τ
(δq̂(t)− δuq(t)) , (4.35)

(note that δ ˙̂q(t) is independent of the feedback δuw(t)). Applying the Laplace
transform to (4.35) gives the transfer function from uq to q̂,

G◦q̂uq (s) = − 1
ηs− 1

, (4.36)

with

η =
(

w log (1− κ/w)
τ

)−1

.

Analogous to the window control case we need to account for the sampler and the
zero-order hold function, i.e., the dynamics from q̃ to uq. We will at this stage also
make the analogous approximation that the estimator sampling time is constant
h′k′ = τ/w and that distortion is neglectable. That it is sampled faster than the
window control, per received ACK instead of per RTT, is just favorable for the
approximation. It is realized from the derivation of the window update transfer
function (4.33), modeling a sampler and a zero-order hold in series also, that the
transfer function from q̃ to uq is

G◦uqq(s) =
1− e−sτ/w
sτ/w

(note the slight abuse of notation in the naming convention of Guqq, we have here
used q instead of q̃).

Summarizing, the transfer function of the estimator dynamics of a source is

G◦q̂q(s) = G◦q̂uq (s)G
◦
uqq(s) = − 1

ηs− 1
· 1− e−sτ/w

sτ/w
, (4.37)

see Figure 4.8.
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Flight size control In the equilibrium analysis we are concerned with small win-
dow changes. We thus assume that the window pacing and and burstiness reduction
algorithms that FAST TCP applies are passive around the operating point. Hence,
the flight size control dynamics is just holding the flight size over a RTT around
the equilibrium and thus consists of a zero-order hold only, cf., Figure 3.17 and
Figure 3.20. The transfer function linking the continuous time window w(t) with
the flight size f(t) thus consists of the Laplace transform of a zero-order hold in
conjunction with a sampler with sampling interval hk = τ , see Figure 3.20. Conse-
quently, the transfer function from the window size w to the flight size f is modeled
as

G◦fw(s) =
1− e−sτ

sτ
, (4.38)

in line with previous approximations.
Combining the window update (4.33), the estimator dynamics (4.37) and the

flight size control (4.38) gives that the protocol transfer function of the nth source
is given by

G◦fnqn(s) = G◦fnwn(s)G◦wnq̂n(s)G◦q̂nqn(s)

= −1− e−sτn
sτn

· αndn/q
2

ζns− 1
· 1− e−sτn

sτn
· 1
ηns− 1

· 1− e−sτn/wn
sτn/wn

,

cf., Figure 4.8. Define the corresponding matrix transfer function accordingly

G◦fq(s) = diag
(

G◦fnqn(s)
)

. (4.39)

Transport delay

Since FAST TCP uses queuing delay as aggregate price signal we have

q̃n(t+ dn + b(t)) = b(t),

where the time delay is due to the backward transport delay, the packets must travel
through the buffer to the receiver and back. Note that this is equal to the round
trip delay since we assumed zero forward propagation delay. Ignoring the time
varying variable arguments, analogously to the linearization of the ACK-clocking
mechanism, the dynamics is linear and thus

δq̃n(t+ τn) = δb(t).

Applying the Laplace transform we get the nth backward delay transfer function

G◦qnb(s) = e−sτ
b
n = e−sτn ,

and accordingly
G◦qb(s) =

(

e−sτ1 e−sτ2 · · · e−sτN
)T
. (4.40)
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δq̃ δf δb

Figure 4.9: Closed loop system, FAST TCP.

Link

That FAST TCP uses queuing delay as congestion indication implies that the “link”
model (describing the dynamics from flight sizes to the buffer) is simply the ACK-
clocking model. Thus, from (4.14) we have

G◦bf (s) =
(

G◦bf1
(s) G◦bf2

(s) · · · G◦bfN (s)
)

, (4.41)

where
Gbfi(s) =

1

(1− e−sτi)
(

c+
∑N
n=1 xn

e−sτn
1−e−sτn

) . (4.42)

Loop gain

The entire closed loop system is given by the the protocol dynamics (4.39), the
transport delay (4.40) and the link model (4.41), see Figure 4.9. The open loop
transfer function when breaking up the loop at the buffer size δb is given by

L◦(s) = −G◦bf (s)G◦fq(s)G◦qb(s) =
N
∑

n=1

L◦,n(s) (4.43)

where

L◦,n(s) =
αndn/q

2(1− e−sτn)2/(sτn)2(1− e−sτn/wn)/(sτn/wn)e−sτn

(ζns− 1)(ηns− 1) (1− e−sτn)
(

c+
∑N
i=1 xi

e−sτi
1−e−sτi

)

if we assume negative feedback, cf., Figure 4.2. Due to the exponential function
and the sums in this expression stability analysis is non-trivial.

4.4.3 Approximating the loop gain

Due to the complexity of the loop gain (4.43) we will use a simplified version of
it in the stability analysis that follows. The validity of the results using this more
tractable approximation will then be investigated.
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FAST TCP is primarily designed to be able to achieve high throughput and
fairness in networks with high bandwidths and large latencies. In such networks
sources keep a large amounts of packet in flight and propagation delays are large
compared to queuing delays, this implies that γnq/τn ≪ 1 and κn/wn ≪ νn < 1
are typical. If we consider such cases only the approximations

log
(

1− γn
q

τn

)

≈ −γn
q

τn
(4.44)

and
log(1− κn

wn
) ≈ − κn

wn
(4.45)

are valid, it follows that

ζn ≈ −
τn

2

γnq
(4.46)

ηn ≈ −
τn
κn
. (4.47)

To further simplify the model we will approximate the exponential functions
that appears in the zero-order holds and the ACK-clocking transfer functions with
Padé approximations of order (1, 1), i.e., the approximation

esh ≈ 1− sh/2
1 + sh/2

. (4.48)

Applying this to a zero-order hold gives

1− e−sh
sh

≈ 1
sh/2 + 1

. (4.49)

By applying (4.46), (4.47) and (4.49) we get an approximation of the protocol
transfer function G◦fq(s) ≈ Gfq(s),

Gfq(s) = diag (Gfnqn(s))

where

Gfnqn(s) = − γndnαn/q

(sτn2 + γnq)(sτn/κn + 1)(sτn/2 + 1)2(sτn/(2wn) + 1)

≈ − γn(τn − b)αn/b
(sτn2 + γnb)(sτn/κn + 1)(sτn/2 + 1)2

.

The last approximation is due to that in the high bandwidth large latency case
studied 2wn ≫ max{2, κn, γnb/τn}. This implies that the zero-order hold dynam-
ics deriving from the estimator is substantially faster than the other parts of the
protocol dynamics, thus, it is negligible in our context.
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Replacing the exponential functions in the model (4.42) by (4.48) yieldsG◦bfi(s) ≈
Gbfi(s) with

Gbfi(s) =
2

c+ xc
· (sτn/2 + 1)/τn
s+ 2/(c+ xc)

∑N
n=1 xn/τn

.

Accordingly G◦bf (s) ≈ Gbf (s) where

Gbf (s) =
(

Gbf1
(s) Gbf2

(s) · · · GbfN (s)
)T

analogous to (4.41).
We are now ready to form the approximative open loop transfer function that

we will use as model in the analysis,

L(s) = −Gbf (s)Gfq(s)G◦qb(s) = λ

N
∑

n=1

µn
τn
Ln(s) (4.50a)

where

Ln(s) =
γn(τn − b)e−sτn

(sτn2 + γnb)(sτn/κn + 1)(sτn/2 + 1) (s+ λ/τ̂)
, (4.50b)

µn =
xn
c

=
αn
cb

=
αn

∑N
i=1 αi

, (4.50c)

1
τ̂

=
N
∑

n=1

µn
τn
, (4.50d)

λ =
2c

c+ xc
. (4.50e)

Note that αn is the number of packets a source tries to queue in the network,
thus the queuing delay b =

∑

n αn/c in equilibrium, and hence the last equality in
(4.50c) follows.

Remark 4.4.1. We will sometimes let b→ 0, it is then assumed that αn → 0 with
αm/αn fixed, such that µn is well defined.

When no cross traffic is present, i.e., xc = 0, we can interpret τ̂ as a weighted
harmonic mean value of the round trip delays τn. In particular, when all flows have
equal αn, giving µn = 1/N , τ̂ is the harmonic mean of τn.

4.4.4 Stability analysis

In the FAST TCP model (4.50b), the case when the queuing delay is b = 0 is
intuitively the least stable, as increasing b reduces the gain and introduces phase
lead, both of which intuitively improve stability. To formalize this, Lemma 4.4.1
and Lemma 4.4.2 will be used to place bounds on the values of the minimum of
Re(Fn(jω)) which is used in Lemma 4.1.2.
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Lemma 4.4.1. Consider a complex half-plane

H = {z : Im((z − z∗)ejβ) ≥ 0}

containing 0. Consider also a function G : R
+ 7→ C with

G(ν) = r(ν)ejθ(ν)

where r ≥ 0 and θ are continuous decreasing real functions, r is unbounded as
ν → 0, and β + θ(0) = Φ with Φ ∈ (0, π) the angle between the edge of the half-
plane and the tail of the spiral G. If

{G(ν) : ν ∈ R
+} ⊂ H

then
{η(ν)ejφ(ν)G(ν) : ν ∈ R

+} ⊂ H
for any

η : R
+ 7→ [0, 1], φ : R

+ 7→ [0, π − Φ).

In particular, if θ(0) = −π/2 then taking β = π/2 gives

min
ν

Re(η(ν)ejφ(ν)G(ν)) ≥ min
ν

Re(G(ν)) (4.51)

for any

η : R
+ 7→ [0, 1], φ : R

+ 7→ [0, π).

Proof. First, consider the tail of the spiral, ν ∈ [0, ν̄] where θ(0) − θ(ν̄) = φ. The
image of the tail (under the rotation and scaling) is entirely in the sector

{z : arg(z) ∈ [θ(0), θ(0) + φ]},

which is entirely in H by the definitions of φ and Φ.
The next step is to show that the image of any point with ν > ν̄ is also within

H. Since H is convex and 0 ∈ H, it suffices to show that for any ν, ηr(ν) ≤ r(ψ)
where θ(ψ) = θ(ν)+φ. (Note that ψ > 0 since ν > ν̄.) But ψ < ν as θ is decreasing,
whence r(ν) ≤ r(ψ) since r is decreasing. The result follows since η ≤ 1.

The special case (4.51) follows when β = π/2, Φ = 0.

Lemma 4.4.2. Define

f(θ) =
6

36 + 13θ2 + θ4

(

−5 cos(θ) + (θ2 − 6)
sin(θ)
θ

)

.

It holds that
min
θ≥0

f(θ, 3) = −11/6. (4.52)
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Figure 4.10: Plot of f(θ).

Proof. First consider when θ ≥
√

6, for this case

f(θ) ≥ 6
36 + 13θ2 + θ4

(

−5− (θ2 − 6)
)

≥ 6(1− θ2)
36 + 13θ2

=
6(49− (36 + 13θ2))

13(36 + 13θ2)
≥ − 6(36 + 13θ2)

13(36 + 13θ2)
= − 6

13
> −11

6
.

Now, when 0 < θ <
√

6,

f(θ) ≥ 6
36 + 13θ2 + θ4

(

−5 + (θ2 − 6)
)

≥ 6(−11)
36 + 13θ2 + θ4

≥ 6(−11)
36

= −11
6
.

Finally, study when θ → 0, knowing that limθ→0 sin(θ)/θ = 1 it is trivial to see
that

lim
θ→0

f(θ) = −11
6
.

A plot of f(θ) is shown in Figure 4.10, we observe that the minimum of f(θ) is
achieved at θ = 0, in line with Lemma 4.4.2.

It is now possible to show that the FAST TCP model (4.50) is stable in single-
bottleneck networks.

Theorem 4.4.3. A system with loop gain L(s) given by (4.50) with κn = 3 is
stable for arbitrary αn > 1, 0 ≤ b < τn, for all n = 1, . . . , N , and arbitrary c > 0,
0 ≤ xc < c, if for all n

0 < γn < 6/11. (4.53)
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Proof. Let

G(θ) =
e−jθ

jθ
· 1 + jθ

(1 + jθ/3)(1 + jθ/2)

and

Gτ,γ(θ) = G(θ)
τ − b

τ + γbτ/(jθ)

so that (4.50) becomes

L(jω) = λ

N
∑

n=1

µn
τn
· γnGτn,γn(ωτn)

jω + λτ̂
.

Further, let

F (θ, κ) =
2κ

(4 + θ2)(κ2 + θ2)

(

−(2 + κ) cos(θ) + (θ2 − 2κ)
sin(θ)
θ

)

.

Noting that Re(G(θ)) = F (θ, 3) = f(θ), Lemma 4.4.2 implies

Gmin ≡ min
θ≥0

Re(G(θ)) ≥ −11
6
.

By Lemma 4.4.1, Gmin ≤ Gmin,n ≡ minθ≥0 Re(Gτn,γn(θ)). Letting Fn(jω) =
Gτn,γn(ωτn), we now have that the system is stable by Lemma 4.1.2 if

1/γn ≥ −Gmin ≥ −Gmin,n = −min
θ≥0

Re(Fn(jθ)) > 0,

and thus the stability condition (4.53).

Theorem 4.4.3 does not require γn or αn to be equal for all flows. Individual
flows may adjust 0 < γn < 6/11 and αn ≥ 1

The numerical solution of minθ F (θ, κ) as a function of κ is plotted in Fig-
ure 4.11, the curve is monotonically increasing. This suggests that the result of
Theorem 4.4.3 holds for all κn ≥ 3. We also observe that the phase loss that oc-
curs when decreasing κ seems bad for stability, this corresponds to smoothing the
queuing delay samples more.

4.4.5 Robustness with respect to network parameters

Let us next examine how the stability result derived in Section 4.4.4 relates to the
stability of the nominal model (4.43).

To investigate the closed-loop stability of the system L◦(s) (4.43) using the
results of Theorem 4.4.3, we will use the robust stability condition briefly introduced
in Section 3.1, see (Zhou et al., 1996).
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Figure 4.11: Numerical solution of minθ F (θ, κ) as a function of the filter parameter
κ ≥ 1.

Robust stability

To be able to apply the robust stability condition L◦ and L must have the same
number of unstable poles. Since for all h > 0

lim
s→0

1− e−sh
sh

= 1, (4.54)

we know that the transfer function of a zero-order hold (4.32) is in H∞ and subse-
quently has no poles in C̄

+. Now Theorem 4.15, and the fact that the poles deriving
from the window update and the queuing delay estimation are stable for all feasible
parameters, gives that L◦,n(s) is stable for all n = 1, . . . , N . We can thus conclude
that L◦(s) is stable. Furthermore, it is trivial to see that L(s) is stable for feasible
parameters.

Let us now define the relative model error

∆L =
L◦ − L
L

, (4.55)

and the complementary sensitivity function

T =
L

1 + L
.

Since L◦ is open loop stable, and L is open and closed loop stable we have according
to the robust stability condition that if

|∆L(jω)T (jω)| =
∣

∣

∣

∣

L◦(jω)− L(jω)
1 + L(jω)

∣

∣

∣

∣

< 1, for all ω ≥ 0, (4.56)

we have that L◦ is closed loop stable as well under the conditions of Theorem 4.4.3.
Note, however, that the converse is not true.
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Protocol Network
α1 = 200 d1 = 100 ms
α2 = 200 d2 = 110 ms
γ1 = 0.5 c = 60096 pkts/s
γ2 = 0.5 xc = 0 pkts/s
κ1 = 3
κ2 = 3

Table 4.1: Basic protocol and network parameter configuration for the robustness
case study.

Two flow case study

We will consider two window based sources sending over a single bottleneck link
and check the condition (4.56) for different network parameters: the capacity c, the
amount of cross traffic xc, and the propagation delay d1 and d2.

The protocol parameters for the two flows are set to α1 = α2 = 200, γ1 = γ2 =
0.5 and κ1 = κ2 = 3. The basic network configuration is d1 = 100 ms, d2 = 110 ms,
60096 pkts/s (corresponding to a capacity of 500 Mbit/s and a packet size of 1040
byte) and no cross traffic, i.e., xc = 0. The parameter setting is summarized in
Table 4.1.

The upper plot in Figure 4.12 shows the magnitude plot of |∆L(jω)T (jω)|
and the lower graph the maximum maxω |∆L(jω)T (jω)| for different capacities c.
Clearly (4.56) is fulfilled. This is the case even that γnb/τn ≪ 1 is not fulfilled. For
small capacities c ≈ 10000 pkts/s we have γnb/τn ≈ 0.485 in this case, implying that
the approximation of the window control time constant (4.46) is coarse. However
due to that the robust stability condition is fulfilled we know it is sufficiently good
and thus valid.

The graphs in Figure 4.13 are similar plots but for different cross traffic load
xc. Once again the robust stability criterion (4.56) is fulfilled, and once again while
we (for large values of xc/c) are violating the condition we based the window time
constant approximation on.

If we instead change the propagation delays while keeping the ratio d2/d1 = 1.1
we get the plots in Figure 4.14. We observe the same behavior as for the previous
two cases.

We have seen this far that the system seems to be robust to changes in parame-
ters c, xc and changes in d1 and d2 with d2/d1 a (small) constant. That robustness
breaks down when round trip times are heterogeneous is illustrated next.

Let us keep d1 = 10 ms while increasing d2. Note that the equilibrium queue
is b = 6.7 ms all the time, and that τ2/τ1 grows linearly with d2. The result is
displayed in Figure 4.15. Obviously for this scenario the robust stability condition
(4.56) is violated as d2/d1 (and thus τ1/τ2) increases. Closed loop stability of L◦
under these circumstances is therefore not guaranteed and it is motivated to study
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Figure 4.12: Robust stability evaluation. Varying the capacity c.

this case in more detail.
Before proceeding with the analysis let us investigate if we can expect L◦ to

be stable under the conditions of Theorem 4.4.3. We will do that by a numerical
example with widely spread RTTs.

Figure 4.16a shows the Nyquist curve of L◦(jω) for the basic configuration but
with d1 = 10 ms and d2 = 100 ms. Since L◦(jω) does not encircle −1 + j0 and
L◦ is open loop stable, the Nyquist criterion states that the closed loop system is
stable. This is in line with our previous findings since according to Figure 4.15
(d2/d1 = 10) the robust stability condition is fulfilled for this scenario.

However, increasing the delay of the second flow to d2 = 200 ms, and thus
according to the plot in Figure 4.15 violating the robust stability condition, gives
the Nyquist curve in Figure 4.16b. We observe that it encircles −1 + j0. Due to
the encirclement and the open loop stability of L◦ we have by the Nyquist criterion
that the closed loop system is unstable.

We now know that the stability properties for L◦ are worse than for the model
L.
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Figure 4.13: Robust stability evaluation. Varying the cross traffic xc.

4.4.6 Stability revisited

To achieve results on stability we had to reduce model complexity and therefore
simplify the original loop gain L◦ given by (4.43). By a series of approximations
we arrived at the the more tractable open loop transfer function L, given by (4.50),
which we based the analysis on. However, when investigating the robustness with
respect to modeling errors of our results in the previous section, we got indications
that this approximation was not sufficiently good in the case of heterogeneously
distributed round trip times. At least we could not confirm stability for the full
model L◦ in the scope of Theorem 4.4.3. In particular, we found a numerical
example with parameters within the stability limits of Theorem 4.4.3 where the
original model L◦ was not closed loop stable. We will now investigate this in more
detail.

Two flows single bottleneck link model under heterogeneous RTTs

Even though we have just seen that the model previously used for stability analysis
is not accurate enough for some parameter settings, we would like to avoid working
directly with the full loop gain L◦ due to model complexity. We will hence strive
towards an alternative model simplification better tailored for our needs.
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Figure 4.14: Robust stability evaluation. Varying the propagation delay, keeping
the ratio d2/d1 = 1.1 constant.

Our focus is the large RTT heterogeneity case, let us thus for analytical purposes
only consider the case b ≪ d1 ≪ d2. For this setting, we have that the time
constant of the window control, which is about τn2/(γnb) by (4.33), is substantially
larger than the time constant of the estimator dynamics, approximately equal to
τn/κn = τn/3 from (4.36). Thus, it is valid to neglect the estimator dynamics in
the analysis. Similarly, the approximative time constants of the zero-order holds
deriving from the sampling in the window mechanism and the flight size, which
is τn/2, are much smaller compared to the window control time constant. It is
therefore motivated to ignore these as well. It was already in the derivation of L
stated that the zero-order hold deriving from the sampling in the estimator can be
ignored when the queuing delay b is small.

Study the linear window mechanism (4.33) in a little bit more detail. When
b≪ dn, which implies τn ≈ dn, we have

G◦wnq̂n(s) ≈ − αndn/b
2

sτn2/(γnb) + 1
≈ − xnτn

sτn2/γn + b
≈ γnxn

sτn
. (4.57)

The last approximation is good for frequencies greater than about a decade larger
than the pole, i.e., ω̂ > 10γnb/τn2. For b ≪ τn the cut-off frequencies of the
expressions in (4.57) are approximately ω̂c ≈ γnxn/τn. Since ω̂c ≫ ω̂ under our
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Figure 4.15: Robust stability evaluation. Varying the relative delay d2/d1.

small queue assumption this should be sufficiently accurate. The approximations
in (4.57) becomes exact in the limit b→ 0, c.f., Remark 4.4.1.

For two flows with equal parameters α we have have equal equilibrium rates
x1 = x2 = c/2 when no cross traffic is present. Furthermore assume for simplicity
equal γ in the FAST window control, i.e., γn = γ in (4.57). Ignoring estimator
and zero-order holds and using the window control approximation (4.57) and the
ACK-clocking (4.40) now yields that the loop gain reduces to

L̂(s) = γ

e−sτ1

sτ1
(1− e−sτ2) +

e−sτ2

sτ2
(1− e−sτ1)

2− e−sτ2 − e−sτ1 . (4.58)

By recalling Theorem 4.2.2, that states that the ACK-clocking is stable, we know
that L̂ does not contain any RHP poles outside the origin. Next we will demonstrate
the accuracy of this approximation.

The Bode plot in Figure 4.17 shows L◦ (solid line), L (dotted line) and L̂ (dashed
line). The parameter configuration is given in Table 4.1 but with d1 = 10 ms,
d2 = 350 ms and α1 = α2 = 2. For this large RTT heterogeneity and small queue
case we see, as expected, that L̂ clearly is a better approximation to L◦ compared
to L, at frequencies relevant for closed loop stability.

If we increase the equilibrium queue size b a factor 100 (by multiplying the α
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Figure 4.16: Nyquist curve of L◦ with parameters according to Table 4.1 except for
delays d1 and d2.

parameters by 100) we get the Bode plots in Figure 4.18. We observe from the
plots that even if the small queue assumption d1 ≫ b is not fulfilled, still L̂ seems
superior to L around the cross over frequency.

Instability due to RTT heterogeneity

Since each individual flow does not have complete knowledge of the network, we
would like to be able to set FAST’s parameters, such as γ, so that it will be stable
in all networks.

It is, however, possible to use the model (4.58) to show that that is impos-
sible. For a given γ, a network carrying two flows with very different RTTs can
be constructed such that FAST is unstable. This is concluded from the following
theorem.

Theorem 4.4.4. Consider the transfer function (4.58),

L̂(s) = γ

e−sτ1

sτ1
(1− e−sτ2) +

e−sτ2

sτ2
(1− e−sτ1)

2− e−sτ2 − e−sτ1 .

For all γ > 0 and τ1 > 0 there exists a τ̃ > 0 such that for all τ2 > τ̃ , L̂(s) is
unstable.

Proof. See Appendix B.

Physically, the cause of instability is the feedback on the time scale τ2 ≫ τ1 in
the ACK-clocking mechanism. In the model (4.58) this appears as arbitrarily large
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Figure 4.17: Bode plot. Propagation delays d1 = 10 ms, d2 = 350 ms. Queuing
delay b = 0.067 ms. Solid line: L◦(jω). Dotted line: L(jω). Dashed line: L̂(jω).

positive gain near s = j2π/(τ1 + τ2), (cf., (B.4) in Appendix B). For stability both
sources should scale down their feedback gain in proportion to the feedback delay.
From (4.57) we get that the gain of the nth flow under the given assumptions is
approximately

γxn
ωτn

,

where ω denotes the frequency in radians per second. Flow 1 thus scales down its
gain in proportion to its own RTT τ1. However, it does not compensate for the
feedback induced by Flow 2 explicitly. It is unclear how such a down scaling should
be done in a decentralized fashion without punishing high RTT flows or explicitly
communicating delay information between sources.

The last step in our stability analysis of FAST TCP is to check if our results
based on mathematical models matches real experiments. The following numerical
results support Theorem 4.4.4. We start with an example using NS-2.

Example 4.4.1 (Instability due to heterogeneous RTTs: NS-2). Consider two
FAST flows with 1040 byte packets sharing a 200 Mbit/s bottleneck, with d1 = 10 ms
and d2 = 303 ms and FAST parameters γ = 0.5 and α = 100 (Wei et al., 2006).
The Nyquist plot of (4.58) in Figure 4.19 encircles −1, indicating instability. NS-2
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Figure 4.18: Bode plot. Propagation delays d1 = 10 ms, d2 = 350 ms. Queuing
delay b = 6.7 ms. Solid line: L◦(jω). Dotted line: L(jω). Dashed line: L̂(jω).

simulations, reported in the three remaining plots, show that there is indeed sus-
tained oscillation at around 1/d2 ≈ 3 Hz. The variation in window size shows
that this is not simply packet level sub-RTT burstiness. For this example FAST’s
multiplicative increase mode was disabled.

Obviously the NS-2 version of FAST TCP matches our predictions. We will
now continue with a real testbed experiment.

Example 4.4.2 (Instability due to heterogeneous RTTs: WAN-in-Lab). Similarly,
consider two FAST flows with 1500 byte packets sharing a 1 Gbit/s bottleneck, with
d1 = 6 ms and d2 = 130 ms and FAST parameters γ = 0.5 and α = 30 packets. The
Nyquist plot of (4.58) for this configuration is shown in Figure 4.20. It encircles
−1 and thus we expect the system to be unstable. The system was implemented in
WAN-in-Lab (Lee et al., 2007a). Figure 4.21 shows that there is again sustained
oscillation of over 50 packets at around 1/d2 ≈ 8 Hz, indicating instability. Fig-
ure 4.21 shows that there is again sustained oscillation at around 1/d2 ≈ 8 Hz.
Since it is difficult to measure the queue size inside a hardware router, the plots
instead show oscillation in the window size of the flow with a 6 ms RTT. The sus-
tained oscillations of over 50 packets illustrates the instability. The windows were
sampled at 20 samples/second.
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Figure 4.19: Instability of FAST due to heterogenous RTTs: d1 = 10 ms, d2 =
303 ms. Top left: Nyquist plot of loop gain (4.58). Top right: Bottleneck queue
size. Lower left: Magnitude spectrum (FFT) of queue size, without DC component.
Lower right: Window size, source 1.

The reason for the two brief metastable periods near 500 and 1000 seconds is not
clear. However, the increase in throughput during those times shows the harmful
effects of even bounded instability, and importance of investigating the stability of
protocols.

The lower two subfigures show closeups of the abatement and onset of stability.
Similar experiments with two flows of 6 ms do not exhibit this oscillation, indicating
that it is indeed due to the heterogeneity.

FAST’s multiplicative increase mode was used only when the measured delay was
less than 0.3 ms.

4.5 Summary

In this chapter we have shown that the ACK-clocking mechanism is linearly stable
around its unique equilibrium. However, in the case of rational ratios between flows’
RTTs the system may not be internally stable in the sense that sources’ rates are
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Figure 4.20: Nyquist curve of (4.58): d1 = 6 ms, d2 = 130 ms, c = 1 Gbit/s, xc = 0,
γ = 0.5 and α = 30 packets.

oscillating while the queue remains constant. Furthermore, we discussed different
strategies how to reduce the complexity of the ACK-clocking model.

The quantitative difference between protocol window and flight size was also
investigated. We found that for the typical case when the window size is updated
once per RTT, the difference was in the order of an RTT.

Finally, a linear model of FAST TCP sending over a single bottleneck link was
derived, simplified and used for analysis. Using this simplified model, valid for
moderately hetergoeneously distributed RTTs, we showed that the system is stable
for default parameter values. We observed, however, that the model accuracy
degenerated as the RTT heterogeneity increased. Thus, using an alternative model
accurate for such scenarios we proved that for any fixed protocol parameters the
system will destabilize for some distributions of RTTs. The theoretical results was
also confirmed with NS-2 simulations and testbed experiments.

4.6 Related work

Window based congestion control, more specifically TCP, is ubiqitous on the Inter-
net today and has been so since introduced in the late 1980s. Throughout the years
a massive amount of research has been spent on trying to understand the static and
dynamical properties of the protocol, see, e.g., (Mathis et al., 1997; Lakshman and
Madhow, 1997; Padhye et al., 1998; Low, 2000; Johari and Tan, 2001). Numerous
new designs and improvements has been proposed, see, e.g., (Mathis et al., 1996;
Ludwig and Katz, 2000; Gerla et al., 2001) and the discussion in Section 2.2.4. In
relation to the huge research effort devoted to TCP (as of April 1, 2008 an ISI
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Figure 4.21: Instability of FAST due to RTT heterogeneity: d1 = 6 ms, d2 = 130 ms.
Upper left: Window size, source 1, w1. Upper right: Total received rate.
Lower left: Oscillation abatement, w1. Lower right: Oscillation onset, w1.

search on “TCP congestion control” gives 839 hits) it is rather suprising how little
work that exists on the dynamics of the ACK-clocking mechanism, the fundament
of all window based congestion control.

In his seminal paper, Jacobson (1988) states that the ACK-clocking should be
stable in the sense that quantities remain bounded: “By ’conservation of packets’ we
mean that for a connection ’in equilibrium’, i.e., running stably with a full window
of data in transit, the packet flow is what a physicist would call ’conservative’:
A new packet isn’t put into the network until an old packet leaves. The physics
of flow predicts that systems with this property should be robust in the face of
congestion.” Then, with the recent congestion collapses in mind, he makes the
observation that the Internet was not robust at all and turn the focus to the design
of the window control algorithm. The focus of the networking community seems
to have remain there since. However, the resource allocation properties of the
ACK-clocking mechanism has been studied in (Massoulié and Roberts, 2002), the
same results also appears in flight in (Wei et al., 2006). Stability of the ACK-
clocking mechanism has been studied, using cruder models than used in this work,
in (Möller et al., 2006; Jacobsson et al., 2006; Möller, 2008). Results are, however,
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qualitatively the same as here.
In (Wei, 2007) it is pointed out that the Internet research community has over-

looked the microscopic behavior of TCP for years and that the ACK-clocking mech-
anism actually has a significant impact on the macroscopic performance of both
loss and delay based TCPs. This is also the topic of the paper (Tang et al., 2008),
which highlights the need for incorporating important microscopic timescale effects
in macroscopic fluid flow models. The bursty pattern of acknowledgments caused
by bursty transmission will cause the transmissions in the next RTT also to be
bursty. This self-perpetuating burstiness is due to the ACK-clocking and has been
verified with simulations and real Internet tests (Jiang and Dovrolis, 2005).

The techniques used to analyze the stability of FAST TCP in Section 4.4 are
significantly different from the techniques in the existing literature on linear stability
of TCP, in two respects. First, the usual approach is to deal with the loop gain
L(s), that appears as a weighted sum of transfer functions Ln(s), is to find a convex
hull that contains all individual Ln(jω) curves and then argue that any convex
combination of them is still contained by the convex hull. See, e.g., (Vinnicombe,
2002; Low et al., 2003; Choe and Low, 2003). However, the proof of Lemma 4.1.2
deals directly with L(jω) instead of Ln(jω). Second, for each ω, a separate region
is found to bound L(jω) away from the interval (−∞,−1]. That is, the half plane
H(ω) defined by (4.9) depends on ω. In existing works, convex regions are typically
used to bound the whole curves and hence are independent of ω. One exception
is (Paganini et al., 2005), where the frequency range is divided into two parts and
different convex regions are used in the two parts. These two features lead to tighter
bounds, which is necessary for the analysis of the problem in Section 4.4. The
method here is somewhat related to the work appearing in (Jönsson et al., 2007),
which also explores the idea of using frequency dependent separating hyperplanes
to assess stability.

Stability of FAST TCP has been studied several times. Using a static link
model, only accounting for the static gain in the ACK-clocking mechanism, it has
been shown theoretically that FAST TCP flows are always stable in the presence
of delays for the case of homogeneous sources and feasible parameters (Choi et
al., 2005; Wang et al., 2004, 2005). Using a refined link model that captures the
RTT hetereogeneity to a larger extent than the static link model it is shown that
the stable parametric region is smaller than specified in (Wei et al., 2006). The
examples in Section 4.4.4 are the first demonstrating instability of FAST TCP,
they appeared in (Tang et al., 2008). That previous experimental work failed
to find unstable configurations is likely due to that it did not explore cases with
sufficient heterogeneity in feedback delays. In addition to the instability examples
discussed above, the paper (Tang et al., 2008) also analyzes and demonstrates in
simulations instability modes of FAST TCP due to RTT synchronization.

For stability analysis of other congestion control schemes we refer to the discus-
sion and the references in Section 2.5.4.

For an introduction to linear systems theory, see (Rugh, 1996). Frequency
domain analysis design methods can be found in (Zhou et al., 1996). Convex

133



4. Congestion control analysis

analysis and optimization is discussed thouroughly in (Boyd and Vandenberghe,
2004) and (Bertsekas et al., 2003).
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Chapter 5

Experimental results and

validation

IN engineering and science mathematical models are widely used as a vehicle
to study physical systems. For reliable predictions, however, it is crucial to
establish the validity of the models. Proper model validation is therefore of great

importance in this type of work. In this chapter the models derived in Chapter 3
and Chapter 4 are validated.

5.1 Experiment design

Validation experiments may be executed in open as well as closed loop. We will
here do both depending on what is most convenient.

5.1.1 Open loop

Validation experiments in open loop are in principal executed as follows. Consider a
system G : u→ y and a (possibly nonlinear) model of the system Ĝ : û→ ŷ, where
system and model inputs are of the same dimension, the same holds for outputs.

Inputs u will naively be chosen as impulses, steps or sinusoids; optimal choices
of inputs are not in the scope of this thesis.

An input u will be applied to the system G, producing an output y. The same
input u will be fed into the model Ĝ, resulting in an output ŷ. The predicted
output ŷ is then simply compared to the true output y by plotting them in the
same diagram.

Example 5.1.1. Consider a system

G(s) =
1

s+ 1
,
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Figure 5.1: Open loop validation example. Step responses. Solid line: True system
G. Dashed line: Model Ĝ1. Dotted line: Model Ĝ2.

modeled with

Ĝ1(s) =
1

s/0.9 + 1
,

and

Ĝ2(s) =
1

s+ 0.9
.

The true system G is subject to a step in the input signal. The output is the
solid line in Figure 5.1. The input signal is collected and used as input signals in
simulations with Ĝ1 and Ĝ2. The outputs of the two simulations corresponds to the
dashed line and dotted line in Figure 5.1 respectively. We observe that Ĝ1 shows
better agreement with G compared to Ĝ2, subsequently the naive conclusion is that
it seems superior.

We remark that a model that may the better choice than another for open loop
simulations, may actually be inferior in, e.g., a control design, cf., Example 3.1.1.
We will here, however, not quantify model accuracy to a higher extent than visual
comparison with the true system.

5.1.2 Closed loop

It is well known that in closed loop identification, for certain types of excitation and
certain methods there is a risk of identifying the inverse of the regulator instead
of the desired dynamics, or a linear combination of this dynamics and the desired
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Figure 5.2: Closed loop system with linear dynamics F and G, and external exci-
tation signals u and v.

dynamics. When producing validation data in closed loop, excitation must thus be
chosen with care to avoid misleading results. We will illustrate this for the closed
loop system in Figure 5.2 with corresponding linear feedback configuration

y = F
(

RT
b z + v

)

, (5.1a)

z = G (Rfy + u) , (5.1b)

when it is excited with excitation signals u and v.

System excitation

Suppose that we are able to collect experimental data y and z. When the system
is excited through u only, we have in the Laplace domain

y =
(

I −FRT
b GRf

)−1 FRT
b Gu, (5.2)

z =
(

I − GRfFRT
b

)−1 Gu. (5.3)

By use of the matrix identity (I +AB)−1A = A(I +BA)−1 it is evident from (5.2)
and (5.3) that

y = FRT
b

(

I − GRfFRT
b

)−1 Gu = FRT
b z.

Clearly, the closed loop data {y, z} from an experiment with excitation only in u
describes the dynamics FRT

b , thus any attempt identifying RfG will fail in this
case.
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Similarly, by exciting the system by means of the external signal v instead we
get

y =
(

I −FRT
b GRf

)−1 Fv,
z =

(

I − GRfFRT
b

)−1 GRfFv;

and furthermore, like for the previous case

z = GRf
(

I −FRT
b GRf

)−1 Fv = GRfy.

Naturally, we observe that RfG is possible to identify in this experiment configu-
ration, in contrast to FRT

b , which is not. This is now illustrated with an example.

Example 5.1.2. Consider a closed loop system according to Figure 5.2 with open
loop transfer functions

F(s) =
1

s+ 1
,

G(s) =
1

s+ 3
,

and, for simplicity, let Rf = Rb = 1.
First, let v be subject to a unit step at time 1 s. The solid lines in the upper

plots of Figure 5.3 correspond to data from a simulation of the system, the left plot
shows y and the right plot z. The dashed line is the simulated output signal, more
specifically ŷ is the output of an open loop simulation of F with z as input signal,
i.e., ŷ = Fz. The dotted line is the simulated output signal ẑ = Gy. We observe
that ẑ agrees with z and thus the data set {y, z} represents the dynamics given by
G as predicted.

Analogously, let u be subject to a unit step at time 1 s. The solid lines in the
lower plots of Figure 5.3 correspond to data from a simulation of this scenario, the
left plot displays y and the right plot z as before. For this case, obviously ŷ and y
coincides whence the data {y, z} corresponds to the dynamics F .

There exist a wide variety of identification methods (Ljung, 1999). However,
to maintain consistent estimates when the system is operating in closed loop it
is essential to chose identification method with care. A well-known method is
the Prediction Error method that estimates model parameters which minimizes
the one-step-ahead output prediction error. To avoid bias when the Prediction
Error Method is used it is necessary that the true dynamics is within the chosen
model structure and also that the true noise dynamics is included in the given noise
description. When the external input also is known, an indirect method such as the
Two-Stage Method (Van den Hof and Schrama, 1995) allows consistent estimation
even without a noise model. All these methods work when there is excitation both
in u and v.
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Figure 5.3: Closed loop identification example. Solid lines: “True” closed loop data
y and z. Dashed lines: Model data ŷ = Fz. Dotted lines: Model data ẑ = Gz.

Excitation in practice

Let us relate what we know about the closed loop configuration given by (5.1) and
Figure 5.2 to a system of window based sources utilizing a network, cf., Figure 5.4.

Let y represent the flight size, z the link price (queuing delay), Rf and Rb
forward and backward propagation delay, F the protocol dynamics (flight, window,
estimator), and finally G the link dynamics. In this context it is realized from the
discussion in the previous section that for a scenario where sources’ flight sizes f
(y) and link prices p (z) are collected and the network delay configuration is known,
it is possible to

• identify sources’ congestion control protocol dynamics by means of external
changes in the input to the links;

• identify the link dynamics by disturbing the price signal seen by the sources.

So, if generation of validation data is the objective, how should external excita-
tions be realized in practice in a network bed or using packet level simulations with,
e.g., NS-2 or similar? As just stated, in the identification of the source dynamics
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Figure 5.4: Block diagram of the control loop from the perspective of an individual
window based congestion control protocol.

the link input should be manipulated externally. This is easily done by sending
suitable cross traffic over the links, e.g., by means of UDP protocols or similar.
Note that when considering disturbances from an equilibrium point, the system
should be excited through changes in the cross traffic.

If we are seeking the link dynamics and thus would like to perturb the prices
fed back to the sources, applying external cross traffic is not suitable. It is more
convenient to directly manipulate the internal price variable in the source algorithm.
However, when it comes to validation experiments of the link dynamics it turns out
it is simple to break the loop and produce data in open loop. Subsequently, this
will be preferred.

5.2 ACK-clocking

In this part we will validate the ACK-clocking model (3.10) that was derived in
Section 3.3. The model is simulated in Simulink, and the simulation output is com-
pared with packet level data achieved using the NS-2 simulator. Some validation
examples using a physical testbed is also provided here. As well as validating the
model, the results comparing all three systems demonstrate that NS-2 is sufficiently
accurate to use as a reference in this type of work. Details about the testbed and
additional testbed experiments are given in Appendix C.

Recapture the window based congestion loop model introduced in Chapter 3
and displayed in Figure 5.4. All validation experiments will be performed in open
loop, i.e., breaking the loop in Figure 5.4 by disabling the window control and only
executing positive changes of the flight size f(t), the latter to decouple the ACK-
clocking from the flight size dynamics. Recall that it is impossible for a congestion
control algorithm to decrease the number of packets in flight faster than the rate
at which ACKs arrive, so step decreases in f(t) are not meaningful.

First, the ACK-clocking model (3.10) will be compared quantitatively with NS-
2 for a single bottleneck link. Subsequent multiple bottleneck experiments follows.
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S2 D2

D1
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xc
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Figure 5.5: Single link configuration. The ith source destination pair is represented
by Si and Di.

The testbed examples concludes this part.

5.2.1 Single link network

The topology for the single link bottleneck experiments is given in Figure 5.5, Si
represents the location of the ith source and Di the destination where the receiver
reside. In the figure the source/destination pairs may be window based as well as
non-window based (and thus corresponds to “cross traffic”). We will for the single
link case focus on the case of two window based sources.

Identical RTTs

A scenario where a system of two window based flows sending over a single bottle-
neck link with capacity 150 Mbit/s is considered. Packet size is ρ = 1040 byte.
Propagation delays are d1 = d2 = 100 ms, and flight sizes are initially set to
f1 = f2 = 990 packets. After convergence, at 25 seconds, f1 is increased step-
wise to 1090 packets.

The solid line in Figure 5.6 shows the bottleneck queue size (in seconds) when
this scenario is simulated in NS-2, we observe an immediate response to the flight
size step in the queue. The dashed line is the DAE model (3.8) which captures this
behavior.

Identical RTTs and cross traffic

For an identical scenario as described above but with capacity c = 750 Mbit/s
and constant cross traffic xc = 600 Mbit/s we get a queue response according to
Figure 5.7. The solid line is the NS-2 simulation output and the dashed line the
DAE model (3.8). The DAE model is very accurate and even captures the burstiness
in the system leading to the step-wise changes in the queue. When cross traffic is
present the transient is significant.
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Figure 5.6: Single bottleneck. Two flows with d1 = d2 = 100 ms. No cross traffic.
Flight size of short RTT flow increases.
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Figure 5.7: Single bottleneck. Two flows with d1 = d2 = 100 ms. Cross traffic of
80% of link capacity present. Flight size of short RTT flow increases.

Heterogeneous RTTs

Consider a system of two window based flows sending over a single bottleneck link
with capacity 150 Mbit/s, with ρ = 1040 byte packets, where the sources’ flight sizes
are kept constant. Propagation delays are d1 = 10 ms and d2 = 190 ms. The flight
sizes are initially f1 = 210 and f2 = 1500 packets respectively. After convergence,
at 25 seconds, f1 is increased step-wise from 210 to 300 packets.

The solid line in Figure 5.8 shows the bottleneck queue size (in seconds) when
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Figure 5.8: Single bottleneck. Two flows with d1 = 10 ms, d2 = 190 ms. No cross
traffic. Flight size of short RTT flow increases.

this scenario is simulated in NS-2, exhibiting significant oscillation in the queue.
The dashed black line shows the continuous time fluid model (3.8), it shows

almost perfect agreement with the packet level simulation, even at sub-RTT time
scales.

Heterogeneous RTTs and cross traffic

Take the previous scenario, but increase the capacity five times to c = 750 Mbit/s
and introduce cross traffic sending over the bottleneck with a constant rate xc =
600 Mbit/s, i.e., the total available bandwidth available for the window based flows
is still 150 Mbit/s. The solid line in Figure 5.9 shows the queue size when this
scenario is simulated in NS-2. The dashed line corresponds to the ACK-clocking
model (3.8). The accuracy of the ACK-clocking model (3.8) is still remarkable. We
also observe that the cross traffic has a smoothing effect on the system.

Linearized model

We have observed that the full ACK-clocking model (3.10) seems to be very accu-
rate. Let us investigate the accuracy of its linear version around the equilibrium.

Two window based flows are sending over a bottleneck link with capacity c =
100 Mbit/s. There is no non-window based cross traffic, so xc = 0. Initially, w1 =
60 packets and w2 = 2000 packets, with packet size ρ = 1040 byte. Furthermore,
d1 = 10 ms and d2 = 200 ms. The system is started in equilibrium, and w1 is
increased by 10 at t = 10 s, and 300 ms later it is decreased back to 60. The solid
line in Figure 5.10 shows the queue size when the system is simulated in NS-2, the
dashed line the linear approximation (4.14). The model performs well, so the linear
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Figure 5.9: Single bottleneck. Two flows with d1 = 10 ms, d2 = 190 ms. Cross
traffic of 80% of link capacity present. Flight size of short RTT flow increases.
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Figure 5.10: Single bottleneck, linearized model. Two flows with delays d1 = 10 ms,
d2 = 200 ms. Short RTT flow has an increased window from 10 s to 10.3 s.

approximation seems valid. In the transfer function version of the linear model,
i.e., the model (4.14), exponential functions due to time-delays appears. When
simulating the transfer function system in Matlab, Padé approximations of order
(17,17) of the exponential functions has been used.
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Figure 5.11: Network configuration validation example. The ith source/destination
pair is denoted with Si and Di.

5.2.2 Multiple link networks

From the previous section it seems clear that the ACK-clocking model is accurate for
the single link case. However, it is still open if the performance of the considerable
more complex multiple link version is as good. In the validation examples that
follow we will investigate this.

The multi-flow multi-link ACK-clocking model (3.10) will here be validated
using NS-2 for a scenario with two flows sending over a network of two bottleneck
links.

Basic configuration

The configuration is according to Figure 5.11. The first flow utilizes both links,
and in the view of this source, the first link is upstream the second link. The
second flow is sending over the second link only. Furthermore, there may exist non-
window based cross traffic sending over the individual links. For all simulations
c1 = 80 Mbit/s, c2 = 200 Mbit/s, d1 = 100 ms, d2 = 200 ms, and packet size
ρ = 1040 byte.

Furthermore, the first source is located at the first link and thus ℓ(1) = 1 (which
models zero forward propagation delay), while the second flow is located at a non-
bottleneck “link” ℓ(2) upstream the second link (modeling forward propagation
delay). The configuration is such that ~d1,1,2 = ~d2,1,2 = 50 ms and ~dℓ(2),2,2 = 50 ms.

The system is perturbed from equilibrium at t = 15 s by a positive step change
in one of the sources’ flight size of magnitude 50 packets. The queue sizes of the
simulated DAE model (simulated in Simulink) is compared with NS-2 data.

Case 1: no cross traffic

No traffic except the two window based sources are present, so xc;1 = xc;2 = 0.
Furthermore f1 = 2100 and f2 = 3900 packets. In Figure 5.12 the system is
perturbed from equilibrium by a step change in the flight size of the first source.
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Figure 5.12: Simulation: No cross traffic, step change in Window 1.

We observe that it is only, in the view of the first source, the upstream queue that is
affected. This is due to that the traffic traveling from Link 1 to Link 2 is saturated
by the capacity of Link 1. This blocking property is captured by the model.

This blocking effect is not observed in Figure 5.13, which shows the result of a
change in the second flight size. In that case, both queues are affected even though
Link 2 is downstream Link 1 from the point of view of the first source. This is
because each source actually is operating in closed loop, and that the ACK rate
of the first source is affected by the change in the queue size of Link 2. Moreover
we observe that the model fit is very good (in a more detailed view it is observed
that the discrepancies are of the magnitude ρ/cl and hence seem to be due to
quantization). The burstiness in the link buffer is captured.

Case 2: cross traffic on Link 1

In this scenario UDP cross traffic is being sent over Link 1 utilizing half the capacity,
i.e., xc;1(t) = c1/2. This time initially f1 = 2100 and f2 = 3900 packets. The plot
in Figure 5.14 displays the queue sizes when the flight size of the first source is
increased.

Figure 5.15 shows the corresponding results when the second source’s flight size
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Figure 5.13: Simulation: No cross traffic, step change in Window 2.

is perturbed. Note that the change of the first source affects the second queue size
for this case since the flow between the links are not saturated anymore on a shorter
time scale.

Case 3: cross traffic on Link 2

In this scenario UDP cross traffic is sending over Link 2 and utilizes half the capac-
ity, i.e., xc;2(t) = c2/2, and initially f1 = 2500 and f2 = 600 packets. Note that in
this case, f2 must be significantly smaller than f1, if that was not the case, Link 1
would cease to be a bottleneck for Flow 1. The plot in Figure 5.16 displays the
queue sizes when the congestion flight size of the first source is increased step-wise.
As in the first simulation case, the second queue is not affected. The explanation is
analogous. The plot in Figure 5.17 corresponds to the case when the second source’s
flight size is increased, by 50 packets as usual. Here both queues are affected by
the flight size perturbation, and the transient is significant for this case.

Case 4: cross traffic on both links

In this scenario, UDP sources are sending over both links independently, each of
them utilizing half the capacity of the link, i.e., xc;1(t) = c1/2 and xc;2(t) = c2/2.
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Figure 5.14: Simulation: Cross traffic on Link 1, step change in Window 1.

We also initially have f1 = 1000 and f2 = 1500 packets. The plot in Figure 5.18 dis-
plays the queue sizes when the flight size of the first source is increased. Figure 5.19
shows when a step is applied to the second source’s flight size.

5.2.3 Testbed results

The foregoing results show that the model provides accurate agreement with NS-2
simulations. However, the question arises whether the model is simply capturing ar-
tifacts introduced by NS-2. This section will demonstrate that the model and NS-2
qualitatively match the results obtained by real networking hardware. The reader is
referred to Appendix C for details about the experiments as well as complementary
multiple link validation experiments.

Single link case

This scenario is analogous to the heterogeneous RTT case in Section 5.2.1, i.e., no
cross traffic and step in the flight size of the first source.

Capacity is set to c = 90 Mbit/s and the propagation delays of the flows are
d1 = 3.2 ms and d2 = 116.8 ms respectively, distributed such that there is no
forward delay. Flight sizes are initially set to f1 = 50 packets and f2 = 550 packets
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Figure 5.15: Simulation: Cross traffic on Link 1, step change in Window 2.

with packet size ρ = 1448 byte. The system is started in equilibrium and at time
t = 25 s the first source’s flight size is increased by 100 to f1 = 150 packets.

The greenish line in Figure 5.20 corresponds to variation in the one way round
trip time when the above scenario (with capacity 100 Mbit/s to compensate for
lower layer packet overhead) is set up and executed in the testbed. The level of the
curve is changed such that it initially matches the equilibrium queue. The pink line
is the queue size when the system is simulated in NS-2. Throughout the simulation
the flight size is sampled and collected. The dashed black line is the queue size
when the DAE model (3.8) is simulated with this time series of the NS-2 flight size
as input. We observe a good match between the real testbed data, the NS-2 data,
and the model.

Multiple link case

Let us consider a case similar to the one explored in Section 5.2.2, i.e., a scenario
with cross traffic on both links utilizing half the capacity on each link. Except for
slightly different parameter values, what differs the two configurations is that we
have here added a single link flow with flight size 5 packets to Link 1 to be able to
measure the delay on this link in the testbed.

Details about the system parameters are given in Section C.6.
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Figure 5.16: Simulation: Cross traffic on Link 2, step change in Window 1.

Figure 5.21 and Figure 5.22 displays when the flight size of the first and second
source is increased respectively. The match between the testbed, NS-2 and the
model is good.

In summary, the model shows very good agreement with the packet level data
derived from both simulations and measurement. It captures sub-RTT effects such
as burstiness besides those more long term behaviors.

5.3 Flight size dynamics

We know from the discussion in Section 3.4.3 that the flight size can not be de-
creased faster than the rate of the received ACKs. This was also the reason for why
only positive flight size changes was studied in the validation of the ACK-clocking
model in Section 5.2. Next, let us investigate how this inherent traffic shaping, the
flight size dynamics, affects the queue size.

The experimental setup is similar to the setup of the ACK-clocking validation
where we studied the queue size response to positive step-wise changes in the flight
size. However, while we previously were considering the flight size as input signal,
we will now apply changes to the window size instead. We do not consider any
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Figure 5.17: Simulation: Cross traffic on Link 2, step change in Window 2.

more advanced traffic shaping than the inherent, therefore only negative changes
in the window is of interest. A positive change in the window size (more or less)
instantaneously results in an equal increase in the flight size.

Consider a single window based flow sending over a bottleneck link, see Fig-
ure 5.5. The link may sometimes also be utilized by non-window based cross traffic.
The propagation delay of the window based flow is set to d = 150 ms distributed
such that there is no forward propagation delay.

Let us study some scenarios where the window size is halved when the system
is in equilibrium. The window size is initially set to w = 500 packets, and packet
size is ρ = 1040 bytes.

The plot in Figure 5.23 shows the queue size for such a scenario with capacity
c = 12.5 Mbit/s and no cross traffic, so xc = 0. The solid line corresponds to the
queue when the system is simulated in NS-2. The dashed line corresponds to a
simulation of the ACK-clocking model (3.8) and where the flight size is assumed
equal to the window size, i.e., neglecting the flight size dynamics. We observe a
mismatch between the two simulations. The model is leading compared to the
NS-2 simulation. The reason is the inherent traffic shaping, which bounds the
rate of change of the flight size. However, modeling this phenomenon with a rate
limiter as described in Section 3.4.3, we get a queue according to the dotted line in
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Figure 5.18: Simulation: Cross traffic on both links, step change in Window 1.

Figure 5.23. Now the match is very good.
Doubling the capacity to c = 25 Mbit/s and introducing cross traffic with con-

stant rate xc = 12.5 Mbit/s, the queue appears as in Figure 5.24. Due to the cross
traffic there is now a brief transient. We see from the dashed line that the mismatch
from not modeling the flight size dynamics is attenuated after some RTTs. We also
observe that at the end of each “stair” in the plot the model is accurate. This is
due to that the flight size track the window size within one RTT.

The attenuation of the model error is even more apparent in the transient case
of Figure 5.25 which corresponds to a simulation with capacity c = 125 Mbit/s and
cross traffic 112.5 Mbit/s.

We have so far observed that drastic changes in the window size may introduce
a model error on the sub-RTT time scale. This is in line with what we know from
Section 4.3. Furthermore, we know from that section that a bound on the error is
proportional to the change of the window size, which is intuitive as well. We thus
expect a small change in the window to give a smaller model error. The plot in
Figure 5.26 corresponds to a scenario with the same configurations as previously
but where the window decrease is just 1% (5 packets instead of 250). We can hardly
differ between the two models for this case. They both show a very good match.

In summary, modeling the flight size control does improve accuracy for certain
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Figure 5.19: Simulation: Cross traffic on both links, step change in Window 2.
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Figure 5.20: Single bottleneck. Two flows with d1 = 3.2 ms, and d2 = 116.8 ms.
Flight size of short RTT flow increases.
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Figure 5.21: Simulation: Cross traffic on both links, step change in Window 1.

scenarios. In particular we have observed that for large violent changes in the
window, modeling the flight size may indeed be important. As it seems when not
including the flight size control in the modeling the model error in the queue size
depends on the relation between the rate of change in the window and the rate of
received ACKs. We have also seen that for small changes in the window size, the
loss in model accuracy seems minor when ignoring the flight size dynamics. This
leads to the conclusion that for protocol simulation it may be wise to model the
flight size dynamics, while for, e.g., linear analysis around an equilibrium it is often
neglectable.

The more or less perfect match between the queue size of the model that models
the flight size and the NS-2 simulation, furthermore, serves as a validation of the
flight size dynamics model that was developed in Section 3.4.3.

5.4 FAST TCP

In the previous sections of this chapter we have focused on verifying the accuracy
of the ACK-clocking model and the flight size control, dynamics which are generic
to all window based congestion control algorithms. In the analysis of FAST TCP
in Section 4.4, the stability of the FAST window update mechanism in closed loop
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Figure 5.22: Simulation: Cross traffic on both links, step change in Window 2.
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Figure 5.23: Flight size dynamics validation. No cross traffic. Window size halved
at t = 25 s.
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Figure 5.24: Flight size dynamics validation. Half capacity used by cross traffic.
Window size halved at t = 25 s.
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Figure 5.25: Flight size dynamics validation. Cross traffic utilizes 90% of link
capacity. Window size halved at t = 25 s.

156



FAST TCP

24.8 25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8
0.1805

0.181

0.1815

0.182

0.1825

0.183

0.1835

Time [sec]

Q
ue

ue
 s

iz
e 

[s
ec

]

 

 
NS−2
DAE
DAE with flight size dynamics

Figure 5.26: Flight size dynamics validation. Cross traffic utilizes 90% of link
capacity. Negative change of 1% in the window size at t = 25 s.

with these more generic parts of the system was studied. The models predicted
unstable scenarios that were confirmed with a packet level simulation as well as a
testbed experiment, cf., Example 4.4.1 and Example 4.4.2.

The satisfying match between theory and practice serves as a validation of the
models used in itself a posteriori. However, for completeness, let us now study the
accuracy of the FAST TCP protocol model in more detail.

5.4.1 Experiment setup

The experimental data used in the model validation is generated with NS-21. The
data is taken from experiments when the protocol is operating in closed loop. NS-2
is here assumed to correspond to the “true” system.

The basic setting is a single FAST TCP source sending over a single bottleneck
link. The multiplicative increase mode of the FAST source is disabled. After
the system has converged it is perturbed from the equilibrium by UDP cross traffic
starting to send over the link with constant rate of half the capacity. After reaching
the new equilibrium the UDP source is turned off.

Time series of the queue size (price) b and the window size w is collected through-
out the experiment. Due to that the external perturbation was applied directly to
the link, we know from the discussion on closed loop validation in Section 5.1.2 that
the data {b, w} describes the protocol dynamics and not the queue dynamics.

1The default NS-2 version of FAST TCP (Cui and Andrew) bas been slightly modified to
match the theoretical specified FAST TCP algorithm described in Section 3.6.
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The collected queuing delay data b is used as an input to the protocol model,
and the predicted output is compared with the true window data w. The data
from the packet level system sometimes slightly disagrees with the theoretical equi-
librium predicted by the model, which predicts that exactly α packets is buffered
in equilibrium. For such cases the model window ouput has been adjusted to be
aligned with the true window size initially before the queue perturbation.

5.4.2 Model validation

The FAST protocol model we want to validate corresponds to the window control
and estimator part of the model summarized in Figure 3.20, with window control
dynamics given by (4.31) and estimator dynamics by (4.34), and where the window
control sampling time is approximated as hk(t) ≈ d + uq̂(t) and the estimator
according to h′k′(t) ≈ (d+ uq(t))/uw(t). We only consider the case where γ = 0.5,
κ = 3 and ν = 1/4, which are default values of the FAST algorithm.

Consider an experiment with bottleneck link capacity c = 100 Mbit/s, source
propagation delay d = 15 ms and FAST protocol parameter α = 200. UDP cross
traffic enters the bottleneck link at time t = 25 s and leaves after one second. The
solid lines in Figure 5.27 displays data from a NS-2 simulation of this scenario, the
upper plot shows the window size and the lower plot the queue size. We see that
the queue size is increased as the load on the link is increased, and that the FAST
source adapts to this by decreasing the window size accordingly. Due to the small
round trip time the converegence is fast (in absolute time).

When the UDP source leaves at t = 26 s the system response is analogous.
The queue is initially decresed due to the lowered link load and the FAST source
increases its window size to compensate for this.

The dashed line in the upper plot shows the window size predicted by the
model. The model fit is overall good, but it appears to be a small error in the static
gain. It is attributed to the mismatch between the theoretical equilibrium and the
equilibrium observed in the packet level experiment.

Increasing the propagation delay to d = 250 ms and letting the UDP source send
between t = 25 s and t = 40 s, we get results according to Figure 5.28. We observe
a slightly more transient system and a much slower response due to the increased
delay. The model performance is satisfying for the first transient. For the transient
at 40 s we observe worse behavior. However, studying the queue size in the lower
plot we see that it empties. We thus explain the degradation in accuracy with
that, even that the multiplicative decrease phase of the protocol has been turned
off during the simulation, protocol dynamics not included in the model is active
during this period.

Figure 5.29 corresponds to a simulation with parameters α = 1000, c = 50 Mbit/s,
d = 5 ms, and where the UDP cross traffic is turned on at t = 25 s and turned of
at t = 28 s. Like before we observe a small error in the static gain.

Increasing the delay to d = 500 ms and turning of the UDP source at 35 s instead
we get the results shown in Figure 5.30. Model performance is quantitatively the

158



Summary

24.5 25 25.5 26 26.5 27
320

330

340

350

360

370

380

390

Time [sec]

W
in

do
w

 s
iz

e 
[p

ac
ke

ts
]

 

 

NS−2
Model

24.5 25 25.5 26 26.5 27
0.01

0.015

0.02

0.025

0.03

Time [sec]

Q
ue

ue
 s

iz
e 

[s
ec

]

 

 
NS−2 (model input)

Figure 5.27: FAST TCP model validation. Experiment parameters: α = 200,
c = 100 Mbit/s, d = 15 ms.

same as for previous examples.
In summary we can conclude from the experiments that for the high bandwidth

case FAST is designed for, the window and estimator model in Figure 3.20, with
window control dynamics given by (4.31) and estimator dynamics by (4.34), and
hk(t) ≈ d+ uq̂(t) and the estimator according to h′k′(t) ≈ (d+ uq(t))/uw(t), seems
quite accurate around equilibrium points. It thus seems suitable to departure from
in a linear analysis.

5.5 Summary

This chapter opened with a discussion on how to generate experimental data in
closed loop for a window based congestion control system. The insight from the
discussion was later on in the chapter used for validating the protocol dynamics
of FAST TCP. Next, an extensive validation of the ACK-clocking model derived
in Chapter 3 was performed. The model was shown to be very accurate using
experimental data from NS-2 as well as a physical testbed. We then investigated
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Figure 5.28: FAST TCP model validation. Experiment parameters: α = 200,
c = 100 Mbit/s, d = 250 ms.

the impact of the inherent traffic shaping present in the ACK-clocking mechanism,
which we refer to as the flight size control dynamics. We observed a good fit between
our model predictions and the experiments. Moreover we saw that for relative small
changes in the window size the model error in the queue size when not taking the
flight size control into consideration seems negligible. Furthermore, the error was
attenuated as the queue converges. At last we validated the simplified continuous
time model of FAST TCP that was used for stability analysis in Chapter 4. We
saw a reasonable fit of the model, especially for high bandwidth scenarios which
FAST TCP is primarily designed for. We observed, however, a slight mismatch in
the static gain. The real system actually did not converge to the exact theoretical
equilibrium.

5.6 Related work

Considering model identification in closed loop, there is an extensive literature on
how to design appropriate excitation and which methods that can be applied, see,
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Figure 5.29: FAST TCP model validation. Experiment parameters: α = 1000,
c = 50 Mbit/s, d = 5 ms.

e.g., (Ljung, 1999; Forssell and Ljung, 1999; Van den Hof and Schrama, 1995).
In parts of this work we used the packet level simulator NS-2 (ns2) to generate

“true” reference data. Alternative simulators are, e.g., OMNeT++ and OPNET
(omnet; opnet). A thoughtful note emphasizing the potential danger on relying to
much on network simulation models is (Floyd, 1999). A discussion on the advan-
tages and pitfalls using simulations in the case of evalutaing TCP can be found in
Allman and Falk (1999).

Evaluation of TCP is also the topic of the paper (Li et al., 2007), which proposes
a series of benchmark tests and compares the performance of five modern high-speed
TCPs of which FAST TCP is one. The experimental setup is based on emulation
using the Dummynet network emulator (Rizzo, 1997).

In terms of level of abstraction, simulators are on top of emulators. Under
the emulation abstraction level comes physical testbeds. Examples of such are the
Grid’5000 network (Bolze et al., 2006) and the WAN-in-Lab facility (Lee et al.,
2007a). The latter was in this thesis used to validate the ACK-clocking model.
The validity of using NS-2 simulations as reference for the type of experiments
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Figure 5.30: FAST TCP model validation. Experiment parameters: α = 1000,
c = 50 Mbit/s, d = 500 ms.

that were executed was confirmed simultaneously. The ultimate testing ground
for transport layer protocols are full production networks as, e.g., the Ultralight
network (Newman et al., 2006). However they are sensitive for testing failure modes
that may disrupt other traffic.
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Chapter 6

Conclusions and future work

TO conclude the thesis we will now summarize the results presented in the
previous chapters and suggest some possible future extensions to this work.
But first let us recapitulate what we have done. In Chapter 3 we developed a

fluid flow model of a network utilized by window based congestion control protocols
using queuing delay as network congestion notification. In particular we derived
a detailed model of the ACK-clocking mechanism. In Chapter 4 we analyzed the
properties of the ACK-clocking mechanism and furthermore the stability of FAST
TCP. Chapter 5 was devoted to validation of the models derived in Chapter 3 and
used for analysis in Chapter 4.

6.1 Conclusions

The main contribution of this thesis is a detailed dynamical characterization of the
ACK-clocking mechanism, generic to all window based congestion control protocols.
The model was derived by viewing the window based system as decomposed into
two cascaded feedback loops, cf., Figure 3.4, where the ACK-clocking mechanism
and the network constitutes the inner loop, which is to be controlled by the window
control in the outer loop.

The key idea in the modeling is to consider the instantaneous rate a window
based sender causes in each queue in the network, in contrast to only explicitly
model the sender sending rate which is customary in previous work. By relating this
rate with the flight size (and, thus, the window implicitly) results in a fundamental
integral equation. The model is very accurate even at sub-RTT time scales. It even
captures traffic burstiness patterns present in the underlying packet level system
and could thus be used for analyzing, e.g., loss synchronization of loss-based TCPs.

For the single bottleneck case, individual rates may oscillate in steady-state,
while the total rate into the link and the queue remain constant. This “self clocking”
phenomena is due to that the throughput of a link is constrained by the capacity.
This implies that the total sum of the rates with which senders’ receive ACKs,
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and thus the sum of the sending rates, must be equal to the bottleneck capacity in
steady-state. Due to similar reasons, a bottleneck link in a multiple link network
has a smoothing effect on the arrival rate of downstream links. Changes in senders’
sending rates may not affect links downstream the first bottleneck in the path.
These “self clocking” and “blocking” effects are indeed captured by the model. We
observe that any feasible equilibrium of the ACK-clocking system is unique if it
exists, and that the queue dynamics is stable for small perturbations around this
equilibrium. It is furthermore realized that the amount of non-window based cross
traffic significantly affects the time constants of the system—the more cross traffic
the slower dynamics.

The ACK-clocking model presented in this work predicts previously unknown
dynamical behavior. As an example, the ACK-clocking mechanism becomes signifi-
cantly oscillatory when flows’ RTTs are wide apart. This is not captured by existing
models that predicts a smooth convergence. To investigate the impact of this on the
macroscopic performance of window based protocols using queuing delay as con-
trol signal, we developed a detailed fluid model of a generic protocol taking, e.g.,
estimator dynamics and sampling effects into account. The framework facilitates
modeling of a quite large class of endpoint algorithms. Modeling FAST TCP using
this framework and analyzing its behavior leads to a new observation—FAST TCP
becomes unstable as the difference between flows’ RTT increase. While this result
is interesting as such, perhaps the most important contribution is the developed
stability analysis technique. It is also demonstrated how the detailed models can
be simplified to meet the accuracy needed for the intended use. Maybe the most in-
triguing conclusion we make from the analysis is that the gain of the ACK-clocking
mechanism dramatically increases with the RTT heterogeneity for the case of an
equal resource allocation policy. Since this strongly affects the stability properties
of the system, this is alarming for all window based congestion control protocols
striving towards proportional fairness. Notice that this caution is in line with what
we observed for the case of FAST TCP.

Many of the theoretical results that appeared in the thesis were verified with
packet level experiments using the NS-2 simulator and the Wan-in-Lab physical
testbed. Apart from the quantification of the accuracy of the models, a very im-
portant observation is that NS-2 to a large extent reflects the behavior of a real
system for the type of examples considered. An issue constantly debated in this
type of work.

6.2 Future work

While we by a more detailed fluid flow modeling approach than customary have
revealed some interesting properties concerning the dynamics of window based con-
gestion control, there are still plenty of work to pursue.

By analyzing FAST TCP we have seen the potential consequences the ACK-
clocking dynamics may have on the outer loop, that is the window control, for
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protocols using delay as congestion notification. The observation that the gain
dramatically increases as the RTT heterogeneity among flows is increased leads us
to conjecture that there is an inherent performance limitation in window based
congestion control striving towards a proportionally fair resource allocation. The
flow rates are coupled to each other through the ACK-clocking mechanism. Thus
each flow is subject to feedback on time scales proportional to the other flows’ RTT.
While it is quite straightforward for a flow to scale down the gain proportional
to its own RTT, like FAST TCP does, it is not obvious how to compensate for
the feedback on the other time scales without communicating the RTTs between
endpoint flows explicitly. Standard TCP solves this issue by implicitly adapting the
gain to other flows’ RTT by a resource allocation inversely proportional to the RTT
(the gain of a flow is proportional to the sending rate). Is it possible to achieve
the same effect by utilizing other implicit information? A future study answering
this question is of interest. In the perspective that the partial objective of many
modern TCP proposals is to avoid RTT biased steady-state rates and the trend that
TCP proposals responds to short time scale dynamics of queue sizes, exposing the
properties of the ACK-clocking for a proportional resource allocation is relevant.

The accuracy in the ACK-clocking model allows for the analysis of sub-RTT
phenomena. This implies that it has the potential to analyze, e.g., loss synchro-
nization which has a significant impact on the fairness of loss-based congestion
control. To be able to do so, however, the model needs to be extended to handle
packet loss. Some initial steps in this direction is taken in (Tang et al., 2008).
Nevertheless, we remark that fluid modeling and analysis of loss-based TCP in a
drop-tail network environment still is an open problem.

While it certainly is of interest to extend the models presented here to handle
more complex scenarios, like, e.g., packet loss, it is also of interest to go in the
other direction and investigate appropriate model simplifications. The multiple
link ACK-clocking model, e.g., is not very tractable to any analysis and reasonable
approximations would be of great value.

In this thesis we have focused on window based congestion control, originally
motivated by the “conservation of packets” principle by Jacobson (1988). Although
this is a sound idea, we have seen that letting senders maintain a window imposes
complex system dynamics that is not well understood. It is desirable that future
designs are not only guided by performance objectives, but also directed by analysis
tractability constraints. An alternative to window based congestion control may be
to further explore algorithms which explicitly controls the transmission rate.
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Appendix A

Quadrature approximations of the

ACK-clocking model

At a first sight numerical quadrature techniques seem suitable when approximating
the integral equation defining the instantaneous rates xn in the ACK-clocking model
(3.8),

ḃ(t)− 1
c

(

N
∑

n=1

xn(t) + xc(t)− c
)

= 0,

∫ t+τn(t)

t

xn(s) ds− fn(t+ τn(t)) = 0, n = 1, . . . , N.

Numerical quadrature is a well developed technology in numerical integration
and numerical solutions to integral equations. Quadrature rules are based on poly-
nomial interpolation. The integrand function is sampled at a number of points, the
polynomial that interpolates the function at those points is determined, and the
integral of the interpolant is then taken as an approximation of the integral of the
original function. Applying such techniques, suitable order of model accuracy can
be chosen without increasing the order of the approximating delay DAE. The delay
DAE will remain first order like the original system while the model complexity is
kept in the more or less complex recursive update of the rate. We will now demon-
strate this, and we will see that we may get non-causal as well as unstable models.
Furthermore, even the simplest rules yields approximative models that are of higher
complexity in comparison with the original system model on accumulated data form
(3.9). The use of approximative models based on this type of approximation thus
seems to be limited.
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A. Quadrature approximations of the ACK-clocking model

A.1 Model approximations

Let us assume small intervals of integration τn and sufficiently smooth rates xn,
and start with some simple one-point quadrature rules. Recall (4.19),

Hn(t, z) =
∫ z

t

xn(s)ds− fn(z),

and (4.20),

Hn(t, t+ τn(t)) = 0.

Applying the right-side rectangle rule to (4.20) gives

0 = Hn(t, t+ τ(t)) = τn(t)xn(t+ τn(t)) +O(τ2
n)− fn(t+ τn(t))

and thus an approximative rate model, with error term O(τ), is

xn(t) ≈
fn(t)

τn(t− τn(t̃))
, (A.1)

where t̃ satisfies t̃+ τn(t̃) = t. A more accurate version of the rectangle rule is the
midpoint rule. Applying this rule instead yields

0 = Hn(t, t+ τ(t)) = τn(t)xn(t+ τn(t)/2) +O(τ3
n)− fn(t+ τn(t)),

and subsequently

xn(t+ τn(t)/2) =
fn(t+ τn(t))

τn(t)
+O(τ2

n). (A.2)

We observe that despite that this model is one order more accurate than (A.1) and
of the same level of complexity, it is still not tractable due to that it is non-causal,
i.e., the rate x(t) at t is a function of future values of the flight size f(t̂), t̂ > t. This
highlights that rules such as the midpoint rule that do not evaluate the endpoint of
the interval will yield non-causal models with limited usage, with x(t) dependent
on a future value of the flight size f , clearly not consistent with physics.

To increase the model accuracy we need to apply more accurate numerical
quadrature that interpolates the function values at several points in the inter-
val. Such simplifications gives the approximate rate xn(t) in terms of recursive
update rules. For example, the trapezoidal rule, which is a two point quadrature
rule interpolating the function values at the two endpoints, gives a recursive rule

xn(t+ τn(t)) ≈
2fn(t+ τn(t))

τn(t)
− xn(t), (A.3)

with error term of order O(τ2
n). An even better O(τ4

n) approximation

xn(t+ τn(t)) ≈
6fn(t+ τn(t))

τn(t)
− 4xn(t+ τn(t)/2)− xn(t) (A.4)
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Stability analysis

is achieved by applying a three-point quadrature rule known as the Simpson’s rule.
If the integration interval, i.e., the round trip time τn(t), is not sufficiently small

and the rates xn(t) are varying significantly within an interval it is often suitable
to subdivide the original interval into subintervals and then apply a lower-order
quadrature rule in each interval.

The approximations based on the rectangle, trapezoidal and Simpson’s rule are
now compared in a validation experiment.

Example A.1.1. The scenario is identical to the one described in Example 4.2.3.
The system is simulated in NS-2 and compared with the models based on the three
quadrature approximations explicitly discussed here.

The solid grey line in Figure A.1 is the queue size when the system is simulated
in NS-2, the solid black line the model based on the rectangle rule rate (A.1), the
dotted black line the model based on the trapezoidal rule rate (A.3), and the dashed
black line the model based on the Simpson’s rule rate (A.4).

In the example we see that the simplest rectangle rule approximation seems
crude compared to the previously investigated models based on Taylor expansion
and Padé approximation, cf., Section 4.2.4. More remarkably we also observe that
the two higher order quadrature approximations seem unstable. In Appendix A.2
this is studied in more detail and it is confirmed that indeed the equilibrium is
unstable for these two cases.

A.2 Stability analysis

A.2.1 Trapezoidal rule

The approximative model based on the rectangle rule rate model for a single source
sending over a single bottleneck is given by (3.4) and (A.3), i.e.,

ḃ(t)− 1
c

(x(t) + xc(t)− c) = 0,

x(t+ τ(t)) + x(t)− 2f(t+ τ(t))
τ(t)

= 0.

We will now investigate if the equilibrium is stable. Recall that τ(t) = d+ b(t) and
assume for simplicity static cross traffic xc. Now linearization under the standard
assumptions stated in Section 4.2.1 yields

δḃ(t)− δx(t)
c

= 0,

δx(t+ τ) + δx(t) +
2x
τ
δb(t)− 2

τ
δf(t+ τ) = 0.
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Figure A.1: Validation experiment. Solid grey line: NS-2 simulation. Solid black
line: rectangle rule rate model (A.1). Dotted black line: trapezoidal rule rate model
(A.3). Dashed black line: Simpson’s rule rate model (A.4).

Taking the Laplace transform gives

∆B(s) =
∆X(s)
cs

,

∆X(s) = − 2xe−τs

τ (1 + e−τs)
∆B(s) +

2
τ (1 + e−τs)

∆F (s),
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and thus the transfer function from the flight window f to the queue b is given by

Gtrabf (s) =
2

cτ (1 + e−τs) s+ 2xe−τs
. (A.5)

Theorem A.2.1. The transfer function Gtrabf (s) defined by (A.5) has poles in the
right hand side complex half plane and is thus unstable.

Proof. First we note that Gtrabf (s) has no zeros and thus we rule out potential pole-
zero cancellations. Rewrite the transfer function as

Gtrabf (s) =
2
cτs
· 1

1 + e−τs (1 + 2x/(cτs))
=

2
cτs
· 1

1 +G0(s)

where

G0(s) = e−τs (1 + 2x/(cτs)) .

We can now study if Gtrabf (s) has poles in the right complex half plane by using the
Nyquist criterion on G0(s). We have

|G0(jω)| =

√

ω2 + (2x/(τc))2

ω
> 1,

argG0(jω) = −τω + arctan(ωτc/(2x))− π/2.

Since argG0(jω) < 0 for all ω > 0 and argG0(jω) → −∞ as ω → ∞ the Nyquist
curve of G0 must encircle −1 + j0. By observing that G0(s) lacks unstable poles
except for a single pole in the origin itself we can conclude that 1/(1 + G0(s)) is
unstable, and thus that Gtrabf (s) is unstable.

A.2.2 Simpson’s rule

The approximate model is for this case given by (3.4) in combination with (A.4),
i.e.,

ḃ(t)− 1
c

(x(t) + xc(t)− c) = 0,

x(t+ τ(t)) + 4x(t+ τ(t)/2) + x(t)− 6f(t+ τ(t))
τ(t)

= 0.

Under the same assumptions as in Section A.2.1 we linearize the model, yielding

δb(t)− δx(t)
c

= 0,

δx(t+ τ) + δ4x(t+ τ/2) + δx(t)− 6
τ
δf(t+ τ) +

6x
τ
δb(t) = 0.
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By the Laplace transform we have

∆B(s) =
1
c

∆X(s),

∆X(s) =
6/τ

1 + 4e−sτ/2 + e−sτ
(

−xe−sτ∆B(s) + ∆F (s)
)

,

and the thus the transfer function from the flight window to the queue is

Gsimbf (s) =
6/τ

c
(

1 + 4e−sτ/2 + e−sτ
)

s+ 6xe−sτ/τ
(A.6)

for this case. Let us now study the stability of this transfer function.
We first note that Gsimbf (s) has no zeros so pole-zero cancellations do not occur.

Now, write the transfer function as

Gsimbf (s) =
6
cτs
· 1

1 + e−sτ
(

1 + 4esτ/2 + 6x/(cτs)
) =

6
cτs
· 1

1 +G0(sτ)

where

G0(s) = e−s
(

1 + 4es/2 + 6x/(cs)
)

.

SinceG0(s) has no unstable poles outside the origin we have by the Nyquist criterion
that Gsimbf (s) has poles in the right complex half plane if and only if the Nyquist
curve of G0(s) encircles −1 + j0. We have

lim
ω→∞

argG0(jω) = lim
ω→∞

{

−ω − π/2 + arctan
(

ω(1 + 4 cos(ω/2)
6x/c− ω sin(ω/2)

)}

→ −∞.

Thus, if |G0(jω)| > 1 for all ω we must encircle −1 + j0. This seems to be the case
according to Figure A.2. We are therefore confident enough to pose the following
conjecture.

Conjecture A.2.2. The transfer function Gsimbf (s) defined by (A.6) has poles in
the right hand side complex half plane and is thus unstable.
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Figure A.2: Analyzing the stability of Simpson’s rule rate model. Upper plot: The
gain ofG0(jω), the different curves corresponds to different (logarithmically spaced)
values of x/c ∈ (0, 1]. Lower plot: The minimum gain of G0(jω) as a function of
the parameter x/c.
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Appendix B

Proof of Theorem 4.4.4

The results appearing in this appendix are taken from Tang et al. (2008).
First, let

λ = τ1/(τ1 + τ2).

Let ω(τ1, λ, β) be the solution to

ωτ2 = 2π − ωτ1 − β,
with ωτ1 ∈ (0, 2π), ωτ2 ∈ (0, 2π) and β ∈ (0, ωτ1). Let

Lλ(β) = L(jω(τ1, λ, β))

= γ

e−jωτ1

jωτ1
(1− ej(ωτ1+β)) +

ejωτ1ejβ(1− e−jωτ1)
j(2π − ωτ1 − β)

2− ejωτ1ejβ − e−jωτ1 (B.1)

where each ω in (B.1) refers to ω(τ1, λ, β).
The proof of the theorem is based on the following lemma.

Lemma B.1. Let ω∗ = 2π/(τ1 + τ2). Then (4.58) satisfies

Im(L(jω∗)) > 0. (B.2)

Let β = (2πλ)3. For 0 < λ < 1/(2π)2, (B.1) satisfies

Im(Lλ(β)) < 0 (B.3)

and for all ω ∈ [ω∗ − β/τ1, ω
∗], (4.58) satisfies

|L(jω)| ≥ γ

411λ2
. (B.4)

For all ω > 0, the general case (4.14), and hence (4.58), satisfies

d

dω
arg(L(jω)) ≤ 0. (B.5)
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Proof. By Lemma 8–11 in Tang et al. (2008).

We are now ready to prove Theorem 4.4.4.

Proof of Theorem 4.4.4. By (B.5) and the Nyquist criterion, (4.58) is unstable if
and only if L(jω) ∈ (−∞,−1) for some ω, since low frequency behavior is as in
Paganini et al. (2005).

Let τ̃ = max(
√

411/γ, (2π)2). For any τ2 > τ̃ , the right hand side of (B.4)
exceeds 1, and (B.2) and (B.3) of Lemma B.1 hold. By (B.2) and (B.3), L(jω)
crosses the real axis for some ω ∈ [ω∗ − β/τ1, ω

∗], and by (B.5), this crossing
must be clockwise and must be a crossing of the negative real axis. By (B.4) of
Lemma B.1, this crossing must be to the left of −1+j0, proving the instability.
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Appendix C

ACK-clocking validation

This appendix consists of additional ACK-clocking validation examples using the
WAN-in-Lab testbed.

C.1 Testbed description

The testbed used for this validation consisted of three Cisco 7609 routers connected
by 2.5 Gbit/s OC48 links, with spools of fiber used to implement delays (the cover
picture of the thesis shows a few of them). Traffic shaping was applied to the OC48
interfaces to obtain the desired link capacities.

Three end-systems were attached to each router by short gigabit Ethernet links.
These systems ran Linux 2.6.23, patched to improve the speed of SACK processing.
The constant window sizes were obtained using a custom kernel module which sets
TCP’s window to a constant value, controllable in real time using a sysctl variable.
Both TCP and UDP traffic was generated using iperf.

The routers used for this experiment do not provide accurate queuing delay mea-
surements. In order to obtain queuing delays, one-way packet delays were measured
by matching packets from traces generated by tcpdump. The end-systems’ clocks
were synchronized by calling ntpdate immediately prior to starting the dump, but
the network time protocol (ntp) daemon was disabled during the experiment to
avoid jumps in the measured delays.

To avoid the need for an absolute time reference when performing quantitative
comparisons with the model, time series obtained from the testbed were manually
aligned so that the initial transient is aligned with the corresponding transient in
the simulation. Similarly, the measured packet delays were offset so that the delay
before the transient matched the simulated queuing delay at that point. Residual
clock skew can be seen in some of the experimental results, in the form of a slight
apparent drift in the queuing delays. As an extension to these experiments precise
synchronization techniques should be employed (Pásztor and Veitch, 2002).

Testbed capacities include about 10% overhead. Thus, a link described as
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c1 c2

S1

S2 D2
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xc;1 xc;2

S3 D3

Figure C.1: Network configuration for the validation example. The ith sender
destination pair is denoted with Si and Di.

200 Mbit/s would be able to carry 180 Mbit/s of iperf traffic. The link capaci-
ties and amount of cross traffic in simulation and analytic results was tuned to 90%
of the testbed values to match the testbed results.

C.2 Network configuration

Recall that queue measurements in the testbed are performed by capturing TCP
packets on end-systems before and after the bottleneck link. In the topology of
Figure 5.11, no TCP traffic terminates at the end of Link 1. To measure the delay
on this link, a single link flow with window 5 packets was added to Link 1. The
configuration is thus as shown in Figure C.1.

Despite its low rate, for some cases, this flow contributes to give qualitatively
different results compared with the two flow case studied in Section 5.2.2.

The physical layer link capacities were set to 80 and 200 Mbit/s, giving transport
layer capacities c1 = 72 Mbit/s, c2 = 180 Mbit/s. Also d1 = 40 ms, d2 = 80 ms, and
packets had a transport layer payload of ρ = 1448 byte. Note that shorter delays
were used in this case because of the limited amount of fiber delay available in the
testbed. The forward delay from each source to the first bottleneck it encountered
is approximately zero.

To enable the main transients to be observed over the jitter, the step change in
window sizes was 200 packets.

The flight size of the third flow is kept constant f3 = 5 packets in all experiments.

C.3 Case 1: no cross traffic

No traffic except the two window based sources are present, so xc;1 = xc;2 =
0. Furthermore f1 = 1600 and f2 = 1200 packets. In Figure C.2 the system is
perturbed from equilibrium by a step change in the flight size of the first source.
We observe that it is only, in the view of the first source, the upstream queue that is
affected. This is due to that the traffic traveling from Link 1 to Link 2 is saturated
by the capacity of Link 1.
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Case 2: cross traffic on Link 1

In Figure C.3, which shows the result of a change in the second flight size, we
observe transients in both queues. Since the ACK rate of the first source is affected
by the change in the queue size of Link 2 both queues are affected, even though
Link 2 is downstream Link 1 from the point of view of the first source. We observe
a good match between all three systems.

The queue response is qualitatively the same as for the two flow case in Sec-
tion 5.2.2.

C.4 Case 2: cross traffic on Link 1

In this scenario UDP cross traffic is being sent over Link 1 utilizing half the capacity,
i.e., xc;1(t) = c1/2. This time initially f1 = 1200 and f2 = 1600 packets. The plot
in Figure C.4 displays the queue sizes when the congestion flight size of the first
source is increased. The match between all systems are good. Note that the “lag”
in the testbed data is due to the low sampling rate.

Figure C.5 shows the corresponding results when the second source’s flight size
is perturbed. Ignoring the “lag”, we see that results are similar for all systems.

For this case as well, the queue response is qualitatively the same as for the two
flow scenario in Section 5.2.2.

C.5 Case 3: cross traffic on Link 2

In this scenario UDP cross traffic is sending over Link 2 and utilizes half the ca-
pacity, i.e., xc;2(t) = c2/2, and initially f1 = 1500 and f2 = 300 packets.

The plot in Figure C.6 displays the queue sizes when the flight size of the first
source is increased step wise. We observe a brief transient in both queues. This
is different from the two flow case in Section 5.2.2 which had a step change in the
first queue and where the second queue remained unaffected. The reason to the
qualitatively different responses is due to the presence of the third flow with a flight
size of 5 packets sharing Link 1 with Flow 1 to allow the delay to be measured.
When Flow 1 increases its flight size, it slightly increases its sending rate on Link 1
at the expense of the measurement flow, causing the slight increase in the queue at
the second link. This effect is not apparent in Figure C.2 because the measurement
flow has a much smaller share of Link 1’s capacity, as seen by the higher link delay
in that case.

The plot in Figure C.7 corresponds to the case when the second source’s flight
size is increased by 200 packets. Here both queues are affected by the flight size
perturbation, and the transient is significant for this case.

The agreement of the curves corresponding to the three systems is very good
in the initial phase. There is however, a bias in the data as the system converges.
The reason to this is likely the mismatch in the layer 4 capacities and cross traffic
between the setups due to the unknown testbed packet overhead (we only know
that is is approximately 10%), which implies slightly different system equilibriums.
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Figure C.2: Simulation: No cross traffic, step change in Window 1.
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Figure C.3: Simulation: No cross traffic, step change in Window 2.
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Figure C.4: Simulation: Cross traffic on Link 1, step change in Window 1.
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Figure C.5: Simulation: Cross traffic on Link 1, step change in Window 2.
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Figure C.6: Simulation: Cross traffic on Link 2, step change in Window 1.
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Figure C.7: Simulation: Cross traffic on Link 2, step change in Window 2.
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Case 4: cross traffic on both links

C.6 Case 4: cross traffic on both links

In this scenario, UDP sources are sending over both links independently, each of
them utilizing half the capacity of the link, i.e., xc;1(t) = c1/2 and xc;2(t) = c2/2.
We also initially have f1 = 700 and f2 = 600 packets.

The plot in Figure 5.21 displays the queue sizes when the flight size of the first
source is increased. Figure 5.22 shows what happens when a step is applied to the
second source’s flight size.

The testbed results agree with the predictions of NS-2 and the ACK-clocking
model. Furthermore, the results are analogous to the case studied in Section 5.2.2.
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