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Abstract

Wireless networks in industrial process control enable new system architectures and
designs. However, wireless control systems can be severely affected by the imperfec-
tions of the communication links. This thesis proposes new methods to handle such
imperfections by adding additional components in the control loop, or by adapting
sampling intervals and control actions.

First, the predictive outage compensator is proposed. It is a filter which is im-
plemented at the receiver side of networked control systems. There it generates
predicted samples when data are lost, based on past data. The implementation
complexity of the predictive outage compensator is analyzed. Simulation and ex-
perimental results show that it can considerably improve the closed-loop control
performance under communication losses.

The thesis continues with presenting an algorithm for controlling multiple pro-
cesses on a shared communication network, using adaptive sampling intervals. The
methodology is based on model predictive control, where the controller jointly de-
cides the optimal control signal to be applied as well as the optimal time to wait
before taking the next sample. The approach guarantees conflict-free network trans-
missions for all controlled processes. Simulation results show that the presented con-
trol law reduces the required amount of communication, while maintaining control
performance.

The third contribution of the thesis is an event-triggered model predictive con-
troller for use over a wireless link. The controller uses open-loop optimal control,
re-computed and communicated only when the system behavior deviates enough
from a prediction. Simulations underline the methods ability to significantly reduce
computation and communication effort, while guaranteeing a desired level of system
performance.

The thesis is concluded by an experimental validation of wireless control for a
physical lab process. A hybrid model predictive controller is used, connected to the
physical system through a wireless medium. The results reflect the advantages and
challenges in wireless control.
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Chapter 1

Introduction

Wireless communication technology is becoming an integral part of our
everyday lives. It is present in most areas of society and the informa-
tion exchanged over these networks is immense. The communication is

made seamlessly over different technologies and platforms. For example, we use our
smartphones to interact and exchange information with each other over both cellu-
lar and wireless local area networks, without really caring about which technology
we use when. We just expect it to work. The low cost and high flexibility provided
by wireless devices has led to that wireless appliances and systems are being used
more and more.

In recent years the benefit of using wireless technology in large-scale industrial
control systems, such as in process industry, utility infrastructure and transporta-
tion networks has become evident (Samad et al., 2007; Samad and Annaswamy,
2011). This has resulted in a fast growing interest in wireless automation systems
tailored for these purposes, there are even a number of commercially available prod-
ucts from companies as Abb, Emerson and Honeywell. When fully in place, the
great potential in wireless automation systems suggests that in the future, moni-
toring and control will represent a large portion of all traffic over wireless networks.
This is indicated by the visions of cyber-physical systems and internet-of-things.
However, the available technology still has some shortcomings that need to be
handled to enable the full migration to these wireless automation systems. This
thesis discusses some of these issues and suggests methods to adapt existing control
strategies to work better in a wireless setting.

In this chapter, we first give an introduction to wireless control in process indus-
try and some of the current issues. We then proceed to give motivating examples
for the contributions of the thesis. After this, the problem formulation is given. The
chapter is concluded with the thesis outline and contributions, as well as a list of
notation and abbreviations.
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2 Introduction

1.1 Wireless Control in Process Industry

Advances in wireless radio and sensor technologies have enabled the engineering
of networked sensing and control systems, which are now being tested and eval-
uated in industry for automation and process control (Neumann, 2007). Recent
standardization efforts for wireless automation include the Wirelesshart (Hart

Communication Foundation, 2007) and the Isa100 (International Society of Au-
tomation, 2009) communication protocols, tailored for process control. Although
wired communication networks have been commonly and successfully used in dis-
tributed process control systems since the 1970’s (Samad et al., 2007), there are
several benefits of introducing wireless networking in industrial control applications,
as described next.

Reduced Implementation Cost

The introduction of wireless links in process control systems has the potential to
reduce costs considerably. The most obvious effect is that wireless links lead to
reduced wiring of the control system, which constitutes a substantial part of the
cost in installing an automation system (Samad et al., 2007; Åkerberg et al., 2011).
This is due both to the high price of cables as well as the cost for installing and
maintaining the cabled infrastructure. As connectors and wires are prone to fail-
ure due to wear and tear, they lead to many faults in industrial control systems
(Mhaskar et al., 2013). Wireless devices consequently have a potential to reduce the
down-time for these systems. Installing the hardware for a wireless infrastructure is
limited to some routers, repeaters and gateways. This leads to faster deployments,
which further reduces both down-time and installation cost.

Improved Sensing and Actuation

The increased flexibility induced by using wireless instead of wired infrastructure,
enables the use of more flexible automation and control structures. With wireless
links there are fewer physical design limitations, in turn simplifying installation
of additional sensors and actuators. This enables automation of non-stationary
machinery and installation of new automation infrastructure, or reconfiguration
of existing infrastructure, to a low marginal cost. Thanks to this, new and better
designs can be exploited in system development and operation.

1.2 Challenges

The use of wireless technology in feedback control loops raises new challenges.
The network medium introduces uncertainties such as packet loss, transmission
delay, et cetera. The impact of these uncertainties on the closed-loop control system
depends on many system aspects. It has become evident that new communication
protocols and control strategies are needed for wireless control systems (Antsaklis
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and Baillieul, 2007). As the available radio spectrum is limited, care also has to
be taken to use it efficiently. The problems faced may be addressed from different
angles, under different paradigms, and by using different tools.

A natural approach is to focus on the wireless medium itself and develop bet-
ter radio hardware and new communication standards. Together with information
coding, this could significantly reduce the uncertainties introduced, so that they
become transparent to the control loop. Another way is to add extra logic in the
control circuit, to make it robust against imperfections in the network. This al-
lows the use of the network at hand and whatever controller and control structure
one has. An important benefit of this is modularity, making it possible to improve
different parts of the automation system independently. Yet another approach is
to adapt the controllers, so that they are better suited to be used over wireless
networks. For example, controllers can be adapted to only transmit data over the
network when new information is available and worthwhile sending. Another exam-
ple is controllers which plan the time of their executions, so that it is guaranteed
that both the feedback measurement as well as the actuation command can be sent
over the network without conflict. This leads to a more restrictive utilization of the
network. A restrictively used network in turn allows the use of the same wireless
network to control several processes, while still guaranteeing reliable transmission
of data and satisfactory control performance.

1.3 Motivating Examples

We now give motivating examples for the problems addressed in the thesis. The
first example gives an intuitive explanation to the problem of losing data packets in
the communication, and the importance of how these losses are distributed in time.
In the second example, we show that there is significant performance to be gained
by adding additional logic in the feedback loop, to compensate for these losses. The
third example illustrates the possibilities available to reduce the communication
in wireless control systems, by using sparse control updates. Finally, in the fourth
example, it is shown how communication can be reduced using feedback control
with adaptive sampling intervals.

Compensating for Unreliable Communication

When a system is controlled over a wireless network the imperfections in the network
may cause data packets sent between the sensors, controllers, and actuators to be
lost. When this happens, the feedback loop is broken and additional logic needs to
compensate for the lost information. Compensating for lost packets can, depending
on how and when the losses occur, be a hard or relatively easy problem to handle.
How the distribution of the packet loss affects the control system performance is
illustrated in Example 1.1.



4 Introduction

P

C

Compensator

y(k)

u(k)

uc(k)

Figure 1.1: A networked control system subject to packet loss.

Example 1.1
Consider the networked control system in Figure 1.1 and let the switch represent

that packets between controller and process can be lost. The process P is given by

P (s) =
1

s2

and the controller C is given by as sampled version of

C(s) =
20s2 + 12s+ 1

s2 + 2s
,

sampled with Ts = 0.1 s. If a packet is lost, i.e., the switch is open, we use the packet
loss compensation policy to apply the last known control signal to the process. This
additional logic is contained in the Compensator block. To illustrate how different
loss distributions affect the performance of the system, we simulate it using two
different loss profiles, both with 20% average packet loss over time.
Studying the results in Figure 1.2 we see that for short and sparse losses the method
to hold the last known value works well. Instead, looking at Figure 1.3, it becomes
evident that when losses are grouped into longer connected periods a more advanced
compensation scheme is needed.

Example 1.1 shows that the distribution of the communication loss is an im-
portant parameter when it comes to assessing how losses affect the control system
performance. The example also highlights that depending on the packet loss profile,
different kinds of actions needs to be taken to reduce the impact of the losses on
the system behavior. If the system is subject to sparse and short bursts of losses it
is probably valid to assume that conditions stay the same during the loss period. If
the losses instead come in longer bursts, we have to use a more elaborate method or
device to overcome them. One such method is the predictive outage compensator,
presented in Chapter 3 and illustrated in Example 1.2.
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Figure 1.2: System output behavior with losses (blue) compared to the output of the
system without losses (black) under disturbance d (red): 20 % packet loss, distributed
in short and sparse periods (grey area). Performance using a hold compensator.
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Figure 1.3: System output behavior with losses (blue) compared to the output of
the system without losses (black) under disturbance d (red): 20 % packet loss in a
connected period (grey area). Performance using a hold compensator.
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Figure 1.4: System output behavior with losses (blue) compared to the system output
without losses (black) under disturbance d (red): 20 % packet loss in a connected period
(grey area). Performance using a predictive outage compensator.

Example 1.2
Let us again consider the networked control system presented in Example 1.1.

Consider the same process and controller but replace the device holding the last
known signal in the Compensator block with the predictive outage compensator,
presented in Chapter 3. Simulating the system under communication outage, as in
Example 1.1, we then get the behavior in Figure 1.4. A comparison with the results
in Figure 1.3, shows that it is possible to significantly improve system performance
under outage by adding a well-designed compensation device in the control loop.

Communication-Aware Control

Wired control systems used today within process industry typically uses classical
time-triggered sampled-data control where measurements are taken, control actions
are computed, and then actuated at equidistantly spaced time intervals. Algorithms
and methods for sampled-data control emerged when digital computers were intro-
duced in control systems, forcing the development of new theory able to utilize their
potential. In the development of this theory care then had to be taken to handle the
computers’ computational capacity, finite numerical accuracy and implementation
constraints, see, e.g., (Åström and Wittenmark, 1997).
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Network

C

P SA

Figure 1.5: The actuator A and sensor S communicate with the controller C over a
wireless network to control the process P .

In the migration to wireless control systems, this now classical time-triggered
sampled-data control theory needs to be developed further to fully make use of
the wireless technology. In wireless communication the network utilization becomes
a limiting factor. If several nodes are connected to the same network they must
share the medium in a fair manner. Therefore, the available bandwidth is limited
and it becomes important to use it effectively and only transmit when needed. We
illustrate the potential communication savings in Example 1.3.

Example 1.3
We study the wireless control system in Figure 1.5 where the servo process

P

⎧⎪⎨
⎪⎩
[
ẋ1(t)

ẋ2(t)

]
=

[
−1 0

1 0

][
x1(t)

x2(t)

]
+

[
1

0

]
u(t)

y(t) = x2(t),

(1.1)

corresponding to

P (s) =
1

s(s+ 1)
,

is to be controlled from one set-point to another. The process is controlled by the
controller C, which receives sensor measurements and transmits control commands
over the network. Realizing the controller C using a classical pi-controller

C(s) = K

(
1 +

1

TIs

)
, K = 0.62, TI = 105,

sampled every Ts = 1 s, we obtain the system response shown in Figure 1.6. This
strategy requires 62 transmissions over the network, 31 from the sensor to the con-
troller and 31 from the controller to the actuator. If the process instead is controlled
using off-line optimal control, where a trade-off between control performance and
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Figure 1.6: The process controlled using time-equidistant sampling and control. System
output is shown in blue with sampling instances encircled in black.

the need for sampling is made, we get the results in Figure 1.7. As seen we get
almost the same system performance. However, this strategy only requires a total
of 8 transmissions, a reduction in communication by 87%.

Example 1.3 shows that there is great potential in developing new control al-
gorithms better suited for wireless control, by finding feedback control laws which
adapts sampling intervals and control actions to the available network resources.
Such methods are developed in Chapter 4 and Chapter 5. We illustrate the perfor-
mance they may exhibit in Example 1.4.

Example 1.4
Consider the setup presented in Example 1.3, where the process is controlled using
off-line optimal sampling intervals and controls. Here we consider the same system,
but with y(t) = [x1(t), x2(t)]

T in (1.1), and use on-line optimal sampling and
control based on state-feedback measurements. We do this by using the controller
proposed in Chapter 4, which decides what to actuate and when to take the next
sample, based on measurements of the states. Simulating the system using this
controller we get the response shown in Figure 1.8. Note that only a few samples
are needed to get a good performance. A comparison with the result in Figure 1.7
shows that it is possible to approximate the off-line optimal sampling and control
sequence, by on-line optimal sampling and control.
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Figure 1.7: The process controlled using an adaptively sampled off-line optimal con-
troller. System output is shown in blue with sampling instances encircled in black.
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Figure 1.8: The process controlled using an adaptively sampled state-feedback con-
troller. System output is shown in blue with additional state in green and sampling
instances encircled in black.
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Network

P1 PN

C1 CN

A1 S1 AN SN

Figure 1.9: Sensors S and actuators A communicate with the controllers C over a
wireless network to control the processes P .

1.4 Problem Formulation

The thesis discusses wireless networked control in process industry, and how to
adapt existing control strategies to work better when feedback measurements and
actuation commands are sent over a wireless communication link. Consider the net-
worked control system shown in Figure 1.9, where processes and controllers com-
municate over a shared wireless network. The thesis addresses two problems faced
when controlling such a system. First, it is considered how to introduce compen-
sators in the control loop to overcome losses in the communication, without having
to change the involved controllers or the control structure. Second, communication-
aware control algorithms taking the communication into account are derived.

The first problem considered is how to compensate for subsequent losses of pack-
ets, so called outages, in the control loop. This problem is addressed in Chapter 3
where we consider how to compensate for such outages in networked control sys-
tems by placing devices at the receiver sides of the network, without requiring any
modifications to the existing control design. We call these devices predictive outage
compensators. The predictive outage compensators are designed to overcome losses
in the network by suggesting replacement commands in the event of an outage.

The second problem is on how to make controllers communication-aware. This
problem can be formulated as how to find a controller which jointly decides what
control signal to apply, as well as when the next measurement needs to be taken.
It should by this a priori adapt the time between measurements in order to only
communicate as often as needed. Chapter 4 shows how such a controller can con-
trol several processes sharing a common communication network, and still enable
collision-free transmissions. Another variation of the communication-aware control
problem, is that of finding a control strategy which approximates the performance
and behavior of classical time-triggered model predictive control, but only uses the
network to transmit samples and control commands when absolutely needed. This
is studied in Chapter 5, where it is considered how processes can be controlled
using sequences of open-loop optimal control commands, updated only when the
measured process behavior differs significantly from the predicted behavior.
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1.5 Outline and Contributions

We now give a summary of the remainder of the thesis, presenting the outline
and content. For the chapters containing novel contributions by the author, the
publications upon which the chapter is based are also stated.

Chapter 2: Background

In this chapter we give some background to the topics discussed in the thesis and
discuss how it relates to existing research.

Chapter 3: Predictive Outage Compensation

A method to compensate for unpredictable interruptions in the communication
by introducing a predictive outage compensator (poc) is proposed. The poc is a
filter to be implemented in the receiver at the actuator and controller sides of a
networked control system, without having to modify the implemented controller.
If the receiver node does not receive data, the poc suggests an open-loop input
to replace the missing data based on a history of past transmissions. We show
how to design, tune and implement a poc. Theoretical bounds, simulation and
experimental results show that a poc can considerably improve the closed-loop
control performance under communication outages. We also show that it is possible
to achieve good performance with a low-order implementation based on Hankel-
norm approximation. Trade-offs between achievable performance, outage length and
poc order are discussed. The results are illustrated via simulations and experiments
on a wirelessly controlled two-tank process.

The chapter is based on the following publications:

• E. Henriksson, H. Sandberg, and K. H. Johansson. Predictive outage com-
pensation for networked control systems. Journal of Process Control, 2013b.
Under Review

• E. Henriksson, H. Sandberg, and K. H. Johansson. Reduced-order predictive
outage compensators for networked systems. In Proceedings of IEEE Confer-
ence on Decision and Control, Shanghai, P.R. China, 2009

• E. Henriksson, H. Sandberg, and K. H. Johansson. Predictive compensation
for communication outages in networked control systems. In Proceedings of
IEEE Conference on Decision and Control, Cancun, Mexico, 2008

The experiments have previously been reported in the following master theses su-
pervised by the author:

• J. Wallander. Implementation of a wireless control system: network routing
and unreliable communication link compensation. Master’s thesis, School
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of Electrical Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden, 2012

• I. Cornell. Implementation of a collection tree routing protocol and a predic-
tive outage compensator. Master’s thesis, School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden, 2012

Chapter 4: Self-Triggered Model Predictive Control

The chapter presents an algorithm for controlling multiple linear time-invariant
processes on a shared communication network, by using adaptive sampling inter-
vals. At every sampling instant the controller not only computes the new control
command, but also decides the time interval to the next sample. The approach
relies on model predictive control, where the cost function depends on the control
performance as well as the cost for sampling. The latter is introduced in order to
generate an adaptive sampling scheme for the overall system. The chapter presents
a method for synthesizing such a predictive controller and gives explicit sufficient
conditions for when it is stabilizing. Further, explicit conditions are given that guar-
antee conflict-free transmissions on the network. It is shown that the optimization
problem can be solved off-line and that the controller can be implemented as a
lookup table of state-feedback gains.

The chapter is based on the following publications:

• E. Henriksson, D. E. Quevedo, H. Sandberg, and K. H. Johansson. Multiple-
loop self-triggered model predictive control for network scheduling and con-
trol. IEEE Transactions on Control Systems Technology, 2013a. Under Re-
view

• E. Henriksson, D. E. Quevedo, H. Sandberg, and K. H. Johansson. Self-
triggered model predictive control for network scheduling and control. In
Proceedings of IFAC International Symposium on Advanced Control of Chem-
ical Processes, Singapore, 2012

Chapter 5: Event-Triggered Model Predictive Control

An approach to event-triggered model predictive control for discrete-time linear
systems subject to input and state constraints as well as exogenous disturbances is
proposed. Stability properties are derived by evaluating the difference between the
event-triggered implementation and the conventional time-triggered scheme. It is
shown that the event-triggered implementation, in stationarity, is able to keep the
state in an explicitly computable set given by a disturbance bound and the event
threshold. Simulation results underline the effectiveness of the proposed scheme in
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terms of reducing the communication and computational effort while guaranteeing
a desired performance.

The chapter is based on the following publication:

• D. Lehmann, E. Henriksson, and K. H. Johansson. Event-triggered model
predictive control of discrete-time linear systems subject to disturbances. In
Proceedings of European Control Conference, Zurich, Switzerland, 2013

Chapter 6: Model Predictive Control based on
Wireless Sensor Feedback

The design and experimental validation of a control system with both wireless
sensor and actuator links is presented. The control system is designed for, and the
experiments are performed on, a laboratory process which consists of a transport
belt where moving parts equipped with wireless sensors are heated by four infrared
lamps. The process is actuated by moving the transport belt and by switching the
heating lamps on or off. The switching property gives interesting hybrid dynamics
in the process, which are handled using a hybrid model predictive control.

The chapter is based on the following publications:

• A. Bemporad, S. Di Cairano, E. Henriksson, and K. H. Johansson. Hybrid
model predictive control based on wireless sensor feedback: an experimental
study. International Journal of Robust and Nonlinear Control, 20(2):209–225,
2010a

• A. Bemporad, S. Di Cairano, E. Henriksson, and K. H. Johansson. Hybrid
model predictive control based on wireless sensor feedback: an experimental
study. In Proceedings of IEEE Conference on Decision and Control, New
Orleans, LA, USA, 2007

• E. Henriksson. Hybrid model predictive control based on wireless sensor feed-
back. Master’s thesis, School of Electrical Engineering, KTH Royal Institute
of Technology, Stockholm, Sweden, 2007

Chapter 7: Conclusions

The thesis is concluded with a brief summary and discussion of the main results.
Following that we discuss interesting problems for future research efforts within the
area.

Contributions by the Author

The scientific contribution of the thesis is mainly the author’s own work. The re-
sults presented in Chapter 3 have been derived in cooperation with the author’s
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supervisors. The results presented in Chapter 4 have been derived in coopera-
tion with D. E. Quevedo and the author’s supervisors. The results presented in
Chapter 5 is joint work between D. Lehmann and the author, under the supervi-
sion of K. H. Johansson. The results presented in Chapter 6 are mainly the re-
sults of the authors master’s thesis together with additional experiments made by
S. Di Cairano.
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1.6 Notation and Abbreviations

A selection of notation and abbreviations is presented below.

Notation

R Set of real numbers.
R+ Set of non-negative real numbers, R+ = { r | 0 ≤ r, r ∈ R }.
Rn Set of real-valued column-vectors with n elements.
N Set of natural numbers, N = {0, 1, 2, 3, . . . }.
N+ Set of positive natural numbers, N+ = {1, 2, 3, . . . }.
Z Set of integers, Z = { . . . , −2, −1, 0, 1, 2, . . . }.
x̂(k|�) Estimate of x(k) based on measurements up until time �.
q Forward shift operator: qu(k) = u(k + 1).
Ex Expected value of x.
λ(A) Set of eigenvalues of the matrix A.
0 < Q The matrix Q is positive definite: 0 < vTQv, ∀ v ∈ Rn

0 ≤ Q The matrix Q is positive semi-definite: 0 ≤ vTQv, ∀ v ∈ Rn

|v| |v| =
√
vT v, v ∈ Rn.

‖v‖Q ‖v‖Q =
√
vTQv, v ∈ Rn.

‖x‖2 ‖x‖2 =
√∑∞

i=−∞ |x(i)|2, x(i) ∈ Rn.

�2 Hilbert space of all x such that ‖x‖2 < ∞.
‖H‖ If H is a system: ‖H‖ = supu�=0

‖Hu‖2

‖u‖2
.

If H is a matrix: ‖H‖ = supu�=0
|Hu|
|u| .

ΓH Hankel-operator of the system H .
σi(H) ith Hankel singular value of H , sorted in decreasing order.

Abbreviations

aak Adamjan-Arov-Krein
daq Data Acquisition
pid Proportional-Integral-Derivative
poc Predictive Outage Compensator
prr Packet Reception Rate
mimo Multiple-Input Multiple-Output
mld Mixed Logical Dynamical
mpc Model Predictive Control





Chapter 2

Background

This chapter gives a short background to wireless networked control systems
by presenting related work. First an introduction to the area is given, then
wireless networks for control are briefly discussed together with their impact

on control performance and possible remedies. Then control laws utilizing adaptive
inter sampling times are discussed. The chapter is concluded with a discussion on
communication-aware control.

2.1 Wireless Networked Control Systems

A wireless networked control system is a control system in which actuators, sensors
and controllers are connected through and communicate over a wireless network, as
illustrated in Figure 2.1. The interest in these systems is increasing as the introduc-
tion of a wireless medium in the control loop enables new system architectures and
designs (Samad et al., 2007; Samad and Annaswamy, 2011). However, several prob-
lems arise when feedback control measurements are sent over a wireless medium
(Willig et al., 2002; Åkerberg et al., 2011; Agrawal et al., 2014).

The wireless network is typically a shared resource where control loops commu-
nicating over it may have to co-exist with other applications, such as monitoring

Wireless Network

C1 CN

A1 ANS1 SN

Figure 2.1: Wireless networked control system with actuators A, sensors S and con-
trollers C interfaced through the wireless network.
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and supervisory systems. This puts requirements on the network as well as the
control algorithms, in order to guarantee stability and performance of the overall
control system. The need for interaction between control and communication in the
design of wireless networked systems was raised in (Kumar, 2001) and has since
been very active research area (Bushnell, 2001; Antsaklis and Baillieul, 2004, 2007;
Bemporad et al., 2010b).

2.2 Wireless Networks for Control

When information is sent over a wireless channel it is subject to a wide range
of imperfections of the network. They are due to variations in radio conditions,
because of moving objects, interference, et cetera. Typical scenarios in industrial
control settings are reported in (Willig et al., 2002; Agrawal et al., 2014). These
imperfections can cause packets sent over the network to be delayed or lost.

The traditional way to compensate for disturbances and variations in the com-
munication channel is to apply various feedback schemes on suitable layers in the
communication stack, see textbooks (Tse and Viswanath, 2005; Goldsmith, 2005;
Karl and Willig, 2005; Molisch, 2010). Examples of such compensation schemes
include power control, e.g., (Chiang et al., 2008), automatic repeat request, e.g.,
(Molisch, 2010), forward error correcting codes, e.g., (MacWilliams and Sloane,
2003), et cetera. This thesis instead considers how compensation can be made on
the application layer, by adapting the control loop. In the networked control sys-
tems literature there is an extensive collection of results to overcome the unreliable
nature of the network (Bushnell, 2001; Antsaklis and Baillieul, 2004, 2007; Bem-
porad et al., 2010b). Many results concerning communication packet losses make
assumptions on distributions (Sinopoli et al., 2004; Hespanha et al., 2007; Schenato
et al., 2007; Gupta and Martins, 2008) or rate limitations (Nair et al., 2007). These
models are often hard to validate in practice (Willig et al., 2002). Work to analyze
stability of networked control systems under network imperfections has been given
much attention, see, e.g., (Heemels et al., 2010; Antunes et al., 2010, 2011, 2012c;
Donkers et al., 2012).

Designing protocols suitable for control is another natural way to compensate
for unreliable networks as it aims at improving the communication quality instead
of compensating for poor communication performance (Al-Karaki and Kamal, 2004;
Bachir et al., 2010). Protocol design suitable for control over wireless networks is
a large research field of its own and will therefore not be treated further in this
thesis. For further reading on protocol design and networking the reader is referred
to the book (Karl and Willig, 2005) and papers (Akyildiz and Kasimoglu, 2004;
Rozell and Johnson, 2007; Willig, 2008; Ploennigs et al., 2010).
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2.3 Compensating for Unreliable Communication

The wireless network medium gives rise to problems due to the unreliability and
losses in the communication link. If these artifacts of the network are not properly
compensated for, they can have a large impact on the system performance. The ap-
proaches to overcome the unreliable nature of the network can be coarsely grouped
into two categories: cross-layer methods that explicitly take the network properties
into account in the control algorithm and methods that make assumptions about
the network but does not utilize any cross-layer signaling. The latter methods en-
able the use of slightly modified control design methods present in the literature. In
(Ling and Lemmon, 2003) the optimal compensation for dropped feedback measure-
ments is posed as a constrained regulator problem. Issues regarding stabilization of
systems using smart actuators for a given drop probability are given in (Gupta and
Martins, 2008). In (Sinopoli et al., 2004) Kalman filtering under independent and
Bernoulli distributed losses is considered, showing how loss probability and system
dynamics relate to the expected estimation error covariance. Further, in (Schenato
et al., 2007) it is shown that for systems under independent and Bernoulli dis-
tributed losses the separation principle hold, provided that successful transmissions
are acknowledged. The optimal controller is derived as a linear function of the states
and bounds are given on the maximum tolerable loss probability.

The approach taken in Chapter 3 is to add a predictive outage compensator at
the receiver side of the network to compensate for the losses therein. An advantage
of this approach is that no modifications needs to be made to the existing control
structure, facilitating the modular design of networked control systems proposed
in (Årzén et al., 2007). Common methods to compensate for packet loss are to
hold the last known value or apply an a priori decided constant. A comparison
between the two is given in (Schenato, 2009). For work on more advanced compen-
sation schemes, see, e.g., (Gommans et al., 2013). Predictive methods to overcome
problems with packet loss have been extensively used in various networked control
settings, e.g., (Bemporad, 1998; Quevedo et al., 2008; Scattolini, 2009; Schutter
and Scattolini, 2011). In the context of industrial process control, (Heidarinejad
et al., 2011) proposes a distributed predictive controller subject to packet losses in
the communication. The approach is based on a stabilizing controller which com-
municates with and coordinates several sub-controllers for increased performance.
Packet losses are mitigated by adapting the control actions. In (Liu et al., 2012)
the moving horizon estimation problem is investigated under Bernoulli distributed
packet losses. In (Kazempour and Ghaisari, 2013) it is proposed to use sensor to
sensor communication to overcome random packet losses.
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2.4 Adaptive Sampling Strategies

The development of control strategies for wireless automation has become a large
area of research in which, up until recently, most efforts have been made under the
assumption of periodic communication (Antsaklis and Baillieul, 2007). However, the
idea of adaptive sampling is receiving increased attention. The efforts within this
area may coarsely be divided into the two paradigms of event- and self-triggered
control. In event-triggered control, e.g., (Årzén, 1999; Åström and Bernhardsson,
1999, 2002; Tabuada and Wang, 2006; Tabuada, 2007; Heemels et al., 2008; Wang
and Lemmon, 2008, 2011a; Mazo Jr. and Tabuada, 2008, 2009, 2011; Lunze and
Lehmann, 2010; Heemels et al., 2013), the sensor continuously monitors the pro-
cess state and generates a sample when the state violates some predefined condition.
Self-triggered control, e.g., (Velasco et al., 2003; Lemmon et al., 2007; Wang and
Lemmon, 2009; Anta and Tabuada, 2008, 2009a,b, 2010a; Mazo Jr. and Tabuada,
2008; Mazo Jr. et al., 2009, 2010), uses a model of the system to predict when a
new sample needs to be taken in order to fulfill some pre-defined event-condition. A
possible advantage of event- over self-triggered control is that the continuous moni-
toring of the state guarantees that a sample is drawn as soon as the event-condition
is violated, thus resulting in an appropriate control action. The self-triggered con-
troller instead operates in open-loop between samples. This could potentially be
a problem as disturbances to the process between samples cannot be attenuated.
This problem may however be avoided by good choices of the inter sampling times.
The possible advantage of self- over event-triggered control is that the transmission
time of sensor packets is known a priori and hence we may schedule them, enabling
sensors and transmitters to be put to sleep in-between samples and thereby save
energy. A control algorithm using self-triggered control is presented in Chapter 4
and an algorithm using event-triggered control is presented in Chapter 5.

2.5 Co-Design of Communication and Control

The research area of joint design of control and communication is currently very
active (Hespanha et al., 2007). A view of the convergence of control and communi-
cation is given in (Graham and Kumar, 2003) and in (Liu and Goldsmith, 2004) a
framework for integrated communication and control design is given. In the context
of event-triggered control, (Molin and Hirche, 2009) propose a joint optimization
of control and communication, solved using dynamic programming, placing a com-
munication scheduler in the sensor. In (Antunes et al., 2012a,b; Heemels et al.,
2013) the control law and event-condition are co-designed to match performance of
periodic control using a lower communication rate, in (Heemels and Donkers, 2013)
this is extended to decentralized systems.

The use of predictive control in this setting is also gaining popularity (Casavola
et al., 2006; Tang and de Silva, 2006; Liu et al., 2006; Zhao et al., 2008; Quevedo
and Nešić, 2012). In (Quevedo et al., 2003), predictive methods and vector quan-
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tization are used to reduce the controller to actuator communication in multiple
input systems. In (Lješnjanin et al., 2014) model predictive control (mpc) is used
to design multiple actuator link scheduling and control signals. The idea of using
mpc under event-based sampling, as proposed in Chapter 5, is also under devel-
opment (Muñoz de la Peña and Christofides, 2008; Varutti et al., 2009, 2010; Sijs
et al., 2010; Eqtami et al., 2011; Bernardini and Bemporad, 2012), as well as mpc

under asynchronous measurements (Liu et al., 2010). In, (Muñoz de la Peña and
Christofides, 2008; Varutti et al., 2009, 2010; Eqtami et al., 2011) continuous-time
nonlinear systems affected by exogenous disturbances (Varutti et al., 2010; Eqtami
et al., 2011) or network delays (Muñoz de la Peña and Christofides, 2008; Varutti
et al., 2009) are considered. In these papers the feasibility and convergence of the
mpc has been proven by means of a Lyapunov based analysis. The focus of (Sijs
et al., 2010) lies in combining an event-triggered state estimator and mpc. It has
been shown that the resulting mpc closed-loop system is input-to-state stable with
respect to the estimation error.

The problem of joint design of a self-triggering rule and the appropriate control
signal using mpc, as addressed in Chapter 4, has been less studied than its event-
triggered counterpart. In (Barradas Berglind et al., 2012) an approach relying on
an exhaustive search which utilizes sub-optimal solutions giving the control policy
and a corresponding self-triggering policy is presented. In (Eqtami et al., 2013) it is
suggested that a portion of the open-loop trajectory produced by the mpc should
be applied to the process. The time between re-optimizations is then decided via a
self-triggering approach.

The concept of minimum-attention control from the seminal work (Brockett,
1997) is also gaining popularity in the networked control systems community (Anta
and Tabuada, 2010b; Donkers et al., 2011; Wang and Lemmon, 2011b). Here the aim
is to design control laws which maximize time between control actions while guar-
anteeing certain performance. Likewise has the concept of anytime control gained
attention (Greco et al., 2011; Quevedo and Gupta, 2013), here it is suggested that
control tasks are executed when computation and communication resources are
available.





Chapter 3

Predictive Outage Compensation

The problem considered in this chapter is how to compensate for commu-
nication outages in networked control systems by placing devices at the
receiver sides of the network. We call these devices predictive outage com-

pensators (pocs), see Figure 3.1. The pocs are designed to compensate for losses in
the network, during which sensor data do not reach the controller node or control
commands do not reach the actuator. The poc does this by suggesting replacement
commands in the event of an outage. The introduction of the poc does not require
any modifications to the existing control design.

The general idea is to monitor the received signal and use a signal model to
extrapolate the signal, in the event of a communication outage. The poc listens
to the received signal. If the signal is received, the poc passes it forward and up-
dates its own internal states using the received data. In the case that no signal is
received, the poc uses its internal model to extrapolate the signal based on pre-
viously received data. The proposed poc is a generalization of the communication
outage compensation algorithms used today, such as holding the last known value

Network

POC

POC P

C

u(k) yp(k)

uc(k) y(k)

Figure 3.1: Illustration of the poc placement to compensate for communication out-
ages in networked control systems.
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or applying constant outputs, and is related to a generalized hold function, e.g.,
(Sun et al., 1993). Obviously, a poc has a limitation on how efficient it can be
for long periods of outages. An important result of the chapter is to build tools to
understand how these limitations affect the applicability to real systems.

The main contribution of the chapter is to show that a poc can be based on an
optimal outage prediction, under certain assumptions. Theoretical bounds on the
prediction errors are derived. An optimal poc can in general be of high order, so a
method to derive a low-order implementation based on Hankel-norm approximation
is presented. Trade-offs between achievable performance, outage length, and poc

order are discussed. Simulations and experiments, performed on a two-tank process
controlled over a wireless network, show that both the optimal poc and its reduced-
order counterpart can considerably improve the closed-loop control performance
under communication outages.

The rest of the chapter is outlined as follows. Section 3.1 details the poc and
its operation. In Section 3.2 a stochastically optimal method to synthesize the poc

is given, together with prediction error bounds. Section 3.3 contains methods to
reduce the complexity of the poc, by means of optimal model-order reduction. Ex-
amples on how to synthesize the proposed poc, as well as a simulation study of
its performance is given in Section 3.4. The pocs’ practical applicability is demon-
strated by an experimental implementation and evaluation given in Section 3.5.
Finally, the chapter is summarized in Section 3.6.

3.1 Predictive Outage Compensation

The problem we consider is controlling a linear process P over a communication
network with sporadic outages as in Figure 3.1. The process P is given by

P
{
xp(k + 1) = Apxp(k) +Buu(k) +Bdd(k)

yp(k) = Cpxp(k) + v(k),

where d(k) is an unknown disturbance and v(k) is measurement noise. The system
is controlled by the controller C

C

⎧⎪⎨
⎪⎩

xc(k + 1) = Acxc(k) +Bce(k)

uc(k) = Ccxc(k) +Dce(k)

e(k) = r(k)− y(k).

where r(k) is the user defined reference on the process output. When there is no
communication outage, the applied control is u(k) = uc(k) and the observation is
y(k) = yp(k). When the communication from the controller to the process is lost
and we have an outage, a replacement control command u(k) = û(k) is applied by
the poc on the process side. If the outage instead happens in the communication
from the process to the controller, a replacement observation y(k) = ŷ(k) is applied
by the poc on the controller side.
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+
-

(A,K,C)

poc

ε(k)

z(k)

ẑ(k|·)

Figure 3.2: At an outage the poc generates predictions of the lost signal.

3.1.1 POC

The poc on the actuator side should choose û(k) such that Δu(k) = uc(k)− û(k) is
as small as possible, and the poc on the controller side should choose ŷ(k) such that
Δy(k) = yp(k)− ŷ(k) is as small as possible. As these two problems are similar, we
will from now on consider the transmitted signal, i.e., yp(k) or uc(k), to be contained
in the signal z(k) together with the reference signal r(k), e.g. z(k) = [uT

c (k) r
T (k)]T ,

with the corresponding estimate denoted by ẑ(k).
Let the poc take the state-space form

x̂(k + 1) = Ax̂(k) +Kε(k)

ẑ(k|k − 1) = Cx̂(k),
(3.1)

where ε(k) = z(k) − ẑ(k|k − 1) = z(k) − Cx̂(k) is the one-step-ahead prediction
error of the poc, and ẑ(k|k − 1) is the predicted value of z(k) given measurements
up to k − 1. The matrices (A,K,C) are design parameters, how they should be
chosen is discussed further in Section 3.2. A standing assumption in the chapter, is
that A−KC is a Schur matrix so that (3.1) is an asymptotically stable system.

The operation of the poc is illustrated in Figure 3.2 where the network is repre-
sented by the switch. When the transmitted signal z(k) is received, the prediction
error ε(k) = z(k)− ẑ(k|k − 1) is used to update the poc according to (3.1). When
communication is lost, say at time k′, we set ε(k) = 0 and compute the predicted
signal for k > k′ as

x̂(k + 1|k′) = Ax̂(k|k′)
ẑ(k|k′) = Cx̂(k|k′).

3.1.2 Problem Formulation

The proposed poc framework suggest a freedom to choose the realization (A,K,C),
as long as A − KC is a Schur matrix. As illustrated by Figure 3.3, there are sig-
nificant improvements to be made by using a well-designed poc compared to a
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more naive approach. Good design choices are those making Δz(k) = z(k) − ẑ(k)
small. In this chapter, we show how to choose a poc to minimize E|Δz(k)|2. As the
optimal poc may be of high order, we develop methods to reduce its model order,
while at the same time taking its performance into account. This may be important
if the poc is to be implemented in embedded systems linked to the controller or
actuator.

3.2 Synthesis

Let us now consider a stochastic method on how to find optimal (A,K,C) in (3.1) for
multiple-input multiple-output (mimo) systems affected by stochastic disturbances
and measurement noise. To characterize the optimal (A,K,C), let us assume that
d(k) is colored noise given by

xd(k + 1) = Adxd(k) +Bww(k)

d(k) = Cdxd(k) +Dww(k),
(3.2)

r(k) is colored noise given by

xρ(k + 1) = Aρxρ(k) +Bρρ(k)

r(k) = Cρxρ(k) +Dρρ(k),
(3.3)

and that the driving signals w(k) and ρ(k), as well as the measurement noise v(k),
are white Gaussian stochastic processes with

E

⎡
⎢⎣w(k)v(k)

ρ(k)

⎤
⎥⎦ = 0, E

⎡
⎢⎣w(k)v(k)

ρ(k)

⎤
⎥⎦
⎡
⎢⎣w(l)v(l)

ρ(l)

⎤
⎥⎦
T

=

⎡
⎢⎣ Rw Rwv Rwρ

RT
wv Rv Rvρ

RT
wρ RT

vρ Rρ

⎤
⎥⎦ δkl.

When there is no outage, the entire closed-loop system evolves as⎡
⎢⎢⎢⎣

xp(k + 1)

xc(k + 1)

xd(k + 1)

xρ(k + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ap −BuDcCp BuCc BdCd BuDcCρ

−BcCp Ac 0 BcCρ

0 0 Ad 0

0 0 0 Aρ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Acl

⎡
⎢⎢⎢⎣

xp(k)

xc(k)

xd(k)

xρ(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(k)

+

⎡
⎢⎢⎢⎣

BdDw −BuDc BuDcDρ

0 −Bc BcDρ

Bw 0 0

0 0 Bρ

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
N

⎡
⎢⎣ w(k)

v(k)

ρ(k)

⎤
⎥⎦

(3.4a)
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(a) Holding last known control signal value during outage.
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(b) Extrapolating control signal using a well-designed poc.

Figure 3.3: Illustration of poc and hold behavior (blue) with nominal behavior (black)
under disturbance d (red), reference r (green) and outage (grey area).
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⎡
⎢⎣ y(k)

u(k)

r(k)

⎤
⎥⎦

︸ ︷︷ ︸
z(k)

=

⎡
⎢⎣ Cp 0 0 0

−DcCp Cc 0 DcCρ

0 0 0 Cρ

⎤
⎥⎦

︸ ︷︷ ︸
Ccl

⎡
⎢⎢⎢⎣

xp(k)

xc(k)

xd(k)

xρ(k)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎣ v(k)

−Dcv(k) +DcDρρ(k)

Dρρ(k)

⎤
⎥⎦

︸ ︷︷ ︸
n(k)

.

(3.4b)

The steady-state optimal estimator of the state x(k) in (3.4) using measurements
z(k) is the Kalman filter:

x̂(k + 1|k) = Aclx̂(k|k − 1) +Kcl

[
z(k)− Cclx̂(k|k − 1)

]
, (3.5)

where

Kcl =
(
AclPCT

cl +NR12

)(
CclPCT

cl +R2

)−1

P = AclPAT
cl +NR1N

T

− (AclPCT
cl +NR12

)(
CclPCT

cl +R2

)−1(
AclPCT

cl +NR12

)T
,

(3.6)

with

R1 = E

⎡
⎢⎣ w(k)

v(k)

ρ(k)

⎤
⎥⎦
⎡
⎢⎣ w(k)

v(k)

ρ(k)

⎤
⎥⎦
T

=

⎡
⎢⎣ Rw Rwv Rwρ

RT
wv Rv Rvρ

RT
wρ RT

vρ Rρ

⎤
⎥⎦ ,

R2 = E
[
n(k)

] [
n(k)

]T
= Rn

and

R12 = E

⎡
⎢⎣ w(k)

v(k)

ρ(k)

⎤
⎥⎦ [ n(k)

]T
=

⎡
⎢⎣ Rwn

Rvn

Rρn

⎤
⎥⎦ ,

see (Anderson and Moore, 2005). The optimal one-step-ahead prediction of z(k)
is ẑ(k|k − 1) = Cclx̂(k|k − 1). Note that the Kalman filter (3.5) has the structure
of the poc (3.1), and that optimal predictions of z(k) based on measurements up
until k′ � k are generated by

x̂(k + 1|k′) = Aclx̂(k|k′)
ẑ(k|k′) = Cclx̂(k|k′),

where the prediction x̂(k′+1|k′) is given by (3.5). We summarize this derivation in
the following proposition.
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Proposition 3.2.1. The poc minimizing E|Δz(k)|2 is given by (3.1) with

A = Acl, K = Kcl, C = Ccl.

Remark 3.2.2. Note that we consider the problem over an infinite time horizon.
This is a good assumption if the communication outages are infrequent and not
too short. If the outages are frequent, this assumption is not valid and the optimal
filter gain Kcl should be time varying, cf., (Anderson and Moore, 2005).

It is easy to characterize the statistics of the prediction error Δz(k) of the poc

synthesized using this method. The Kalman filter gives unbiased estimates, and
thus EΔz(k) = 0 for all k > k′. To compute the variance E|Δz(k)|2, we need the
covariance of the state estimation error. Assuming that the Kalman filter has been
in operation for a long time before the outage at k′, the covariance of Δx(k) is
given by the solution to the Riccati equation in (3.6):

EΔx(k)Δx(k)T = P,

where Δx(k) = x(k) − x̂(k|k − 1). The variance of the one-step-ahead prediction
error is E|ε(k)|2 = CclPCT

cl + R2. When an outage occurs, the covariance of the
state estimation and prediction error evolve for k > k′ as

P (k + 1) = AP (k)AT +NR1N
T , P (k′) = P,

E|Δz(k)|2 = CclP (k)CT
cl +R2.

How much effect this prediction error has on the process depends on its dynamics.
If P is an unstable process, even a small error Δz(k) can harm the process since it
is in open-loop during outage.

3.3 Complexity Analysis and Reduction

The optimal poc is given by a filter of order equal to the sum of the process order,
the controller order, the disturbance model order and the reference model order,
as shown in previous section. In practice it is often desirable to have a low-order
poc, so that it can be implemented through embedded software in the actuator or
controller, cf., Figure 3.1. It is thus important to know if there exists a poc of low
order with similar performance as the optimal one. Here, model order reduction
using the Hankel-norm is shown to be a suitable mathematical tool.

Let �2 denote the Hilbert space of square-summable signals, i.e., signals u with
finite norm ‖u‖2 :=

√∑∞
i=−∞ |u(i)|2. Then let us represent the poc by a linear

operator ẑ = Hε on �2, realized by

H

{
x̂(k + 1) = Ax̂(k) +Kε(k),

ẑ(k|k − 1) = Cx̂(k), x̂(k) ∈ Rn,
(3.7)
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where ε(k) = z(k) − ẑ(k|k − 1). Let us denote a reduced-order poc by a linear
operator ẑr = Hrεr on �2, with order r < n, realized by

Hr

{
x̂r(k + 1) = Arx̂r(k) +Krεr(k),

ẑr(k|k − 1) = Crx̂r(k), x̂r(k) ∈ Rr,
(3.8)

where εr(k) = z(k)− ẑr(k|k − 1).

3.3.1 Hankel-norm Approximation

Assume that an outage occurs at k′ = 0 and that it has a nontrivial duration � > 0.
The reduced-order poc should produce an outage prediction ẑr(k|k′) that is close
to ẑ(k|k′). Since the predictions only will be applied to the system from k′ to k′+ �,
we are only interested in making the difference small for k′ < k ≤ k′+�. Introducing
the time-projection operator P+ as

P+z = P+(. . . , z(2), z(1), z(0), z(−1), z(−2), . . .)

= (. . . , z(2), z(1), 0, 0, 0, . . .),

we formalize this requirement using the operator notation in (3.7) and (3.8) as
making

‖P+ẑ − P+ẑr‖2 = ‖P+Hε− P+Hrεr‖2 (3.9)

small.
Recall that when the poc is in feedback, i.e., there is no outage, the prediction

error is given by ε = z − ẑ = z −Hε which, re-arranged, becomes ε = (I +H)−1z.
To get a closed-form expression for ε we introduce another time-projection operator
P− as

P−ε = P−(. . . , ε(2), ε(1), ε(0), ε(−1), ε(−2), . . .)

= (. . . , 0, 0, ε(0), ε(−1), ε(−2), . . .),

which we can use to write ε = P−(I +H)−1z. Since the same argument holds for
the reduced-order poc we can now write (3.9) as

‖P+Hε− P+Hrεr‖2 = ‖P+HP−(I +H)−1z − P+HrP−(I +Hr)
−1z‖2. (3.10)

We note that the operator P+HP− is the Hankel-operator ΓH of H (Zhou et al.,
1996), i.e., the past-input to future-output restriction of the map of H , which is
illustrated in Figure 3.4.

Since we want to make (3.10) small for any input sequence z(k), we consider

sup
z �=0

‖ΓH(I +H)−1z − ΓHr (I +Hr)
−1z‖2

‖z‖2 = ‖ΓH(I +H)−1 − ΓHr (I +Hr)
−1 ‖,
(3.11)
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(d) The projected output P+ẑ of the system
H when driven by the control signal P−ε, i.e.,
P+ẑ = P+HP−ε = ΓHε.

Figure 3.4: Illustration of the input-output map of the Hankel-operator ΓH .

where ‖ · ‖ is the induced �2-norm.
Model-order reduction (Obinata and Anderson, 2001) cannot be immediately

applied to (3.11) since the operators ΓH and ΓHr are weighted by (I +H)−1 and
(I +Hr)

−1, respectively. Instead, we note that the following upper bound holds:

‖ΓH(I +H)−1 − ΓHr(I +Hr)
−1‖

= ‖ΓH(I +Hr)
−1 − ΓHr (I +Hr)

−1 + ΓH(I +H)−1 − ΓH(I +Hr)
−1‖

≤ ‖(ΓH − ΓHr)(I +Hr)
−1‖+ ‖ΓH

(
(I +H)−1 − (I +Hr)

−1
)‖. (3.12)

We proceed by minimizing the first term of this bound. It turns out, that it is
possible to use that solution to bound also the second term, and thus to bound
the error criterion (3.11). Note that the rank of the Hankel-operator is equal to the
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McMillan degree of the corresponding system, i.e., rank ΓH = n if (A,K,C) is a
minimal realization. To make the first term of the upper bound (3.12) small, we
propose to solve the problem

min
rankΓHr≤r

sup
‖εr‖2≤1

‖(ΓH − ΓHr )εr‖2 =: γ1(r),

where εr = (I +Hr)
−1z. This can be solved using the aak-lemma (Adamjan et al.,

1971; Glover, 1984). In particular, it is well-known that

γ1(r) = σr+1(H),

where σi(H), i = 1, . . . , n, are the Hankel singular values of the linear operator H ,
sorted in decreasing order. The Hankel singular values can be used to determine
a suitable approximation order r. Methods for computing a state-space realization
(Ar,Kr, Cr) of the optimal H∗

r are available, see (Glover, 1984; Gu, 2005).
Assume now that we choose an optimal Hankel-norm approximation H∗

r of H
as the reduced-order poc. What can we then say about the size of the second term
of the bound (3.12)? We have that

(I +H)−1 − (I +Hr)
−1 = (I +H)−1(Hr −H)(I +Hr)

−1,

and as has been shown in (Glover, 1984; Gu, 2005), there is an optimal Hankel-norm
approximation H∗

r such that

‖H∗
r −H‖ ≤

n∑
i=r+1

σi(H).

An upper estimate of the second term in (3.12) is therefore∥∥ΓH

(
(I +H)−1 − (I +Hr)

−1
)
z
∥∥
2
= ‖ΓH(I +H)−1(Hr −H)εr‖2 ≤ γ2(r)‖εr‖2,

where

γ2(r) = σ1(H) ‖(I +H)−1‖
n∑

i=r+1

σi(H).

Here we have used that the induced norm of ΓH is equal to σ1(H).
We summarize the above derivations in the following proposition.

Proposition 3.3.1. Suppose the poc H in (3.7) is stable and choose the reduced-
order poc Hr in (3.8) to be the optimal Hankel-norm approximation H∗

r of H.
Then during an outage the difference between ẑ and ẑr is bounded by

‖P+(ẑ − ẑr)‖2 = ‖ΓHε− ΓH∗
r
εr‖2 ≤ γ(r)‖εr‖2,

for any input z ∈ �2 where

γ(r) = γ1(r) + γ2(r) = σr+1(H) + σ1(H)‖(I +H)−1‖
n∑

i=r+1

σi(H).
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Remark 3.3.2. Proposition 3.3.1 shows that if σi(H), i = r + 1, . . . , n, are small,
then H∗

r is guaranteed to work well as a reduced-order poc. The bound can be
used as follows: A user of the reduced-order poc can compute ‖εr‖2, since this is
the energy of the one-step ahead prediction error and reference deviations, which
are fed into H∗

r . If ‖εr‖2 is small, it means that the prediction is accurate. If then
an outage occurs, we can be certain that the outage predictions ẑr do not deviate
from the full-order prediction ẑ more than γ(r)‖εr‖2.
Remark 3.3.3. One restriction in Proposition 3.3.1 is that H must be stable,
which would not be the case if the poc has been derived using the optimal, method
with unstable modes in the disturbance model (3.2) or in the reference model (3.3).
The unstable case can be handled by making a stable – anti-stable decomposition
of H = Hs +Hu, and then approximate the stable part Hs as above. The unstable
term Hu can then be added to the approximation H∗

s,r.

Remark 3.3.4. A poc holding the last received signal as a one-step-ahead predic-
tion is in fact a reduced-order Hr realized by

Ar = 1, Kr =
[
1 0

]
, Cr = 1.

3.3.2 Time-Weighted Hankel-norm Approximation

In the above analysis, we try to make ‖P+(ẑ− ẑr)‖2 small, i.e., we try to make the
total energy of the reduction error during an outage small. Since the outages are
assumed to be of finite but unknown length, we are mostly interested in keeping
the error small during the first part of the outage. To achieve this we may add
an exponential decay weight, λk, 0 < λ ≤ 1, in the minimization criterion. We
minimize ‖P+(ẑ

λ − ẑλr )‖2 where ẑλ(k) = λkẑ(k) and ẑλr (k) = λk ẑr(k). In order to
do this we must find the operator Hλ and input signal ελ generating ẑλ = Hλελ

from

H

{
x̂(k + 1) = Ax̂(k) +Kε(k)

ẑ(k|k − 1) = Cx̂(k).

We do this by defining the new states x̂λ(k) = λkx̂(k), the new input ελ(k) = λkε(k)
and inserting them into H . This gives us

Hλ

{
x̂λ(k + 1) = λAx̂λ(k) + λKελ(k)

ẑλ(k) = Cx̂λ(k).

We may now find Hλ
r making ‖P+(ẑ

λ − ẑλr )‖2 = ‖P+(H
λP−ελ − Hλ

r P−ελr )‖2
small, as suggested in Proposition 3.3.1. This gives us the reduced-order system

Hλ
r

{
x̂λ
r (k + 1) = Aλ

r x̂
λ
r (k) +Kλ

r ε
λ
r (k)

ẑλr (k) = Cr x̂
λ
r (k).
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or equivalently

Hr

⎧⎨
⎩ x̂r(k + 1) =

1

λ
Aλ

r x̂r(k) +
1

λ
Kλ

r εr(k)

ẑr(k) = Crx̂r(k).

Remark 3.3.5. Clearly the choice of λ will affect the performance of the reduced-
order system. One could think of several ways of choosing λ but a simple heuristic
is to choose λ = e−1/kmax , so the weight is equal to e−1 after kmax steps into the
outage.

Remark 3.3.6. The choice of λ may affect the stability. If λ is chosen small enough,
Hλ is asymptotically stable independent of the poles of H . Even though Hλ

r is stable
if Hλ is stable, Hr may be open-loop unstable if λ is chosen too small.

3.4 Simulation Evaluation

To illustrate the poc we perform a simulation study where the poc is part of a
process control setup. It is shown how to construct a poc using the methodology
developed in Section 3.2 and how to derive a reduced-order implementation using
the method presented in Section 3.3. The poc is simulated on a scenario, comparing
it with nominal closed-loop behavior and the method to compensate for outages by
holding the last received signal.

3.4.1 Simulation Setup

The process to be controlled is the tank process depicted in Figure 3.5, consisting
of two identical tanks connected in series. The control objective is to keep the level
x2 in the lowest tank around a reference trajectory despite load disturbances d
entering the system. The manipulated variable is the voltage u to the pump.

The process corresponds to the real system considered in the next section. The
individual tanks are modelled using mass balance and Bernoulli’s law. The tanks
have cross sectional area A = 15.5 cm2, outlet hole area a = 0.13 cm2 and the
gravitational acceleration is g = 9.8m/s2. A scaled linearized process model around
the equilibrium x0

i = 10.7 cm and u0 = 5.9V is given by[
ẋ1

ẋ2

]
=

1

τ

[
−1 0

1 −1

] [
x1

x2

]
+

[
Ks

0

]
umax

100

(
u− d

)

y =
[
0 100/hmax

] [ x1

x2

]
+ v

where τ = A
a

√
2x0

i /g = 18.1 s, Ks = 0.24 cm/Vs, hmax = 30 cm and umax = 15V.
The process is sampled with period Ts = 1 s and controlled with the discrete-time
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Figure 3.5: The controlled tank process P .

pid-controller C given by

C(z) = KP +KI
1

z − 1
+KD

z − 1

Tf(z − 1) + 1
,

KP = 1.33, KI = 0.04, KD = 4.58, Tf = 12.26.

The closed-loop system has the nominal performance shown in Figure 3.6. At
time t = 50 s a step is made in the reference from r = 0 to r = 15. At time
t = 250 s a step disturbance d = 20 occurs, simulating opening the drainage valve
in the upper tank. The controller is efficient both in tracking the reference, as well
as attenuating the disturbance. The question is then how the system behaves if
communication between the controller and the actuator is lost.

A common way to compensate for outages is to use a hold function, i.e., using
the last known value of the control signal uc(k) as the one-step-ahead prediction.
Simulating the system using this predictor under the same scenario as above, with
the addition of two communication outages between the controller and actuator,
one between t = 55 s and t = 100 s and one between t = 270 s and t = 350 s, we get
the response shown in Figure 3.7. The tracking is in this case poor, compared to
the nominal closed-loop behavior.
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Figure 3.6: Nominal closed-loop behavior (black) under disturbance d (red) and refer-
ence r (green).
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Figure 3.7: Comparison of hold behavior (blue) with nominal behavior (black) under
disturbance d (red), reference r (green) and outage (grey area).
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3.4.2 Optimal POC

To synthesize an optimal poc, we need stochastic disturbance and reference models
that describe d and r well enough. For the current scenario, the disturbance model

xd(k + 1) = xd(k) + w(k)

d(k) = xd(k)

Ew(k)2 = 14.9

(3.13)

and reference model
xρ(k + 1) = xρ(k) + ρ(k)

r(k) = xρ(k)

Eρ(k)2 = 1.

(3.14)

are used. We may now combine the models for the process, controller, disturbance
and reference as in (3.4), getting a closed-loop system with McMillan degree n =
np + nc + nd + nρ = 6. The corresponding optimal poc H when the poc is placed
in the actuator is given by (3.5) with

Ccl =

[
−DcCp Cc 0 DcCρ

0 0 0 Cρ

]
, R1 =

⎡
⎢⎣ Rw 0 0

0 Rv 0

0 0 Rρ

⎤
⎥⎦ ,

R2 = F

[
Rv 0

0 Rρ

]
FT , R12 =

⎡
⎢⎣ 0 0

Rv 0

0 Rρ

⎤
⎥⎦F, F =

[
−Dc DcDρ

0 Dρ

]
,

Rw = 14.1, Rv = 4.4, Rρ = 1.

Simulating the system with the poc H one get the behavior shown in Fig-
ure 3.8(a). At time t = 0 s the optimal poc is initialized to the same state as the
true system and the prediction is perfect. When the reference changes, the system
states start to diverge, as a result so does the estimation error. Effectively what
now happens is that the filter in the poc starts to estimate the reference r via
the internal model. When the outage occurs, the estimate has clearly almost fully
converged as the prediction is close to perfect. When the disturbance acts on the
system, the poc has to estimate that as well. Then when communication between
the controller and actuator is lost, the poc starts to evolve in open-loop, predicting
control signals. If the state estimate has converged before the outage the predic-
tion will be perfect, as long as the disturbance does not change under the outage.
However, if the estimate has not fully converged, as is the case in this example, the
prediction starts to diverge. Still, one can observe that the prediction error is small,
resulting in a small deviation in the output compared to the nominal case.
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(a) Optimal poc.
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(b) Reduced-order poc with r = 2.

Figure 3.8: Comparison of poc behavior (blue) with nominal behavior (black) under
disturbance d (red), reference r (green) and outage (grey area).
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Figure 3.9: Hankel singular values of the stable modes of the poc.

3.4.3 Hankel-norm Approximation

It is desirable to have a poc of low order and therefore a reduced-order approxi-
mation of the optimal poc H is desired. First it is observed that the disturbance
model (3.13) as well as the reference model (3.14) contains integrations, so H is
not asymptotically stable. To handle this a stable – anti-stable decomposition of
H is made as H = Hs +Hu and reduction is made on the stable part Hs only, see
Remark 3.3.3. To determine a proper reduction order r, the singular values of Hs,
shown in Figure 3.9, are studied. There is a significant drop between σ2(Hs) and
σ3(Hs), indicating that a good choice of the reduction order r is to choose r = 2.
Performing optimal Hankel-norm approximation on Hs of order r one gets H∗

s,r and
the reduced-order poc as H∗

r = H∗
s,r + Hu of order r + 2 since Hu contains the

integrator states from the disturbance model and the reference model.
Evaluating the reduced-order poc on the same simulation scenario as before,

one get the result in Figure 3.8(b). The states associated with the reference model
accommodate the errors due to the model reduction. When communication is lost
the first time, the predicted control signal diverges slightly from the nominal value.
When communication is lost the second time, the prediction error is as expected
larger than for the optimal poc, which is due both to the model approximation error
and that the estimator has not fully converged when the outage occurs. However,
the output tracking performance for the reduced-order poc is almost identical to
the optimal poc.
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Figure 3.10: The controlled tank process P from Quanser.

3.5 Experimental Evaluation

In this section, we study the practical applicability of the poc via experimental
evaluations. The physical process is shown in Figure 3.10 and schematically de-
scribed in Figure 3.5. The pressure sensors measuring the tank levels are wired to
a wireless device which converts the measurements into tank levels and transmits
them to the remote controller. The controller then computes the appropriate con-
trol action and in turn transmits it to the wireless actuator. The receiver in the
actuator converts this command into an actual voltage applied to the pump.
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3.5.1 Experimental Setup

For the experiments we, as in Section 3.4, place the poc between the controller and
actuator. To control the process we use the controller

xc(k + 1) =

[
1 0

0 0.75

]
xc(k) +

[
1

−0.25

]
e(k)

u(k) =
[
0.03 0.26

]
xc(k) + 1.65 · e(k)

e(k) = r(k)− y(k).

The poc is then synthesized based on this controller, in the way described in Sec-
tion 3.4.2, using the same models for process, reference and disturbance.

The scenario for the experiments is as follows:

• At t = 0 s the experiments starts with r = 40.

• At t = 100 s there is a step change in the reference to r = 53.

• At t = 230 s a drainage valve in the upper tank is opened, allowing water to
flow directly into the reservoir, thus causing a disturbance.

• At t = 280 s the drainage valve is closed.

• At t = 500 s the experiment is ended.

Running the above scenario on our process without any outage we get the re-
sponse shown in Figure 3.11. To examine how the system performs under outage we
study two different outage scenarios, one during the reference step and one during
the disturbance step. For both these cases we compare the behavior of our proposed
poc and a hold compensator.

3.5.2 Results

In our first two experiments we study the effect of an outage during the reference
step. The outage occurs at t = 105 s, i.e., very short after the reference change, and
lasts for 100 s. The result is shown in Figure 3.12. It is evident that the optimal
poc is superior to the hold function, as it is able to predict the lost signal for a
substantial outage.

For our second two experiments, we study the effect of an outage during a step
disturbance. Here the outage occurs at t = 250 s and lasts for 100 s. The result
of these experiments are shown in Figure 3.13. As seen the performance of the
hold function and the optimal poc is very similar. This is due to several factors.
First of all, the outage occurs shortly after the disturbance starts to act on the
system, resulting in that the poc estimate has not yet converged. This explains the
initial prediction error by the poc. Secondly the disturbance changes during the
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Figure 3.11: Nominal closed-loop behavior (black) under disturbance d (red) and
reference r (green).

outage. This is an intrinsic problem for any predictive compensation algorithm, as
this change is not visible to the predictor which operates in open-loop during the
outage. Hence, the poc will continue to extrapolate the control signal assuming
that the disturbance has not changed.

3.6 Summary

We presented a new methodology to compensate for communication losses in net-
worked control systems. The proposed poc was shown to give significantly improved
performance compared to previously used compensation schemes. In particular, we
derived a method to synthesize a poc for mimo systems affected by stochastic dis-
turbances and noise. Prediction error bounds were presented. Methods were also
developed to reduce the complexity of a poc by means of Hankel-norm approxi-
mation. A priori approximation error bounds for this reduction methods were pre-
sented. Finally, pocs were demonstrated on a simulated tank system as well as in
real experiments.
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(a) Optimal poc.

0 50 100 150 200 250 300 350 400 450 500
30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500
30

40

50

60

70

t

t

y(t)

u(t)

(b) Hold.

Figure 3.12: Comparison of poc and hold behavior (blue) with nominal behavior
(black) under disturbance d (red), reference r (green) and outage (grey area).
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Figure 3.13: Comparison of poc and hold behavior (blue) with nominal behavior
(black) under disturbance d (red), reference r (green) and outage (grey area).



Chapter 4

Self-Triggered Model Predictive Control

Consider the networked control system in Figure 4.1, which shows how the
sensors and the controller are connected through a wireless network. The
wireless network is controlled by a Network Manager which allocates medium

access to the sensors and triggers their transmissions. This setup is motivated by
current industry standards, e.g., the Wirelesshart protocol (Hart Communica-
tion Foundation, 2007), which utilizes this structure for wireless control in process
industry. Here the triggering is in turn generated by the controller which, in addi-
tion to computing the appropriate control action, dynamically determines the time
of the next sample by a self-triggering approach. In doing so, the controller gives
varying attention to the different loops depending on their state, while trying to
communicate few samples. To achieve this, the controller must, for every loop, trade
control performance against inter sampling time and give a quantitative measure
of the resulting performance. The main contribution of the chapter is to show that
a self-triggering controller can be derived using a receding horizon control formu-
lation where the predicted cost is used to jointly determine what control signal
to be applied as well as the time of the next sampling instant. Using this model
predictive control (mpc) formulation it is possible to guarantee a minimum and a
maximum time between samples. Initially a single-loop system is considered. This
is later extended to the multiple-loop case, which can be analyzed with additional
constraints on the communication pattern.

The outline of the chapter is as follows. In Section 4.1 the self-triggered network
scheduling and control problem is defined and formulated as a receding horizon
control problem. Section 4.2 presents the open-loop optimal control problem for
the single-loop case, to be solved by the receding horizon controller, together with
its optimal solution. Section 4.3 presents the single-loop receding horizon control
algorithm in further detail and gives conditions for when it is stabilizing. The re-
sults are then extended to the multiple-loop case in Section 4.4, where conditions
for stability and conflict-free transmissions are given. The proposed method is ex-
plained and evaluated on simulated examples in Section 4.5. The results are then
summarized in Section 4.6.

45
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NetworkNetwork
Manager

C

P1 S1A1

Ps SsAs

Figure 4.1: Actuators A and processes P are wired to the controller C while the sensors
S communicate over a wireless network, which in turn is coordinated by the Network
Manager.

4.1 Problem Formulation

We consider the problem of controlling s ≥ 1 processes P1 through Ps over a
shared communication network as in Figure 4.1. The processes are controlled by
the controller C which computes the appropriate control action and schedule for
each process. Each process P� is given by a linear time-invariant system

x�(k + 1) = A�x�(k) +B�u�(k),

x�(k) ∈ Rn� , u�(k) ∈ Rm� .
(4.1)

The controller works in the following way: When sensor S� at time k = k� transmits
a sample x�(k�) to the controller C, it computes the control signal u�(k�) and sends it
to the actuator A�. The actuator in turn will apply this control signal to the process
until it receives a new value from the controller. Jointly with deciding u�(k�) the
controller also decides how many discrete time steps, say I�(k�), it will wait before
it needs to change the control signal the next time. This value I�(k�) is sent to the
Network Manager which will schedule the sensor S� to send a new sample at time
k = k� + I�(k�). To guarantee conflict-free transmissions on the network, no two
sensors are allowed to transmit at the same time. Hence, when deciding the time to
wait I�(k�), the controller must make sure that no other sensor Sq, q 	= �, already
is scheduled for transmission at time k = k� + I�(k�).

We propose that the controller C should be implemented as a receding horizon
controller which for an individual loop � at every sampling instant k = k� solves an
open-loop optimal control problem. It does so by minimizing the infinite-horizon
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quadratic cost function
∞∑
l=0

(
‖x�(k� + l)‖2Q�

+ ‖u�(k� + l)‖2R�

)

subject to the user defined weights Q� and R�, while taking system dynamics,
control performance, inter sample time and overall network schedulability into con-
sideration.

4.2 Open-Loop Optimal Control

For pedagogical ease we will in this section study the case when we control a single
process on the network allowing us to drop the loop-index �. The process we control
has dynamics

x(k + 1) = Ax(k) +Bu(k), x(k) ∈ Rn, u(k) ∈ Rm (4.2)

and the open-loop cost function we propose the controller to minimize at every
sampling instant is

J(x(k), i,U) = α

i
+

∞∑
l=0

(
‖x(k + l)‖2Q + ‖u(k + l)‖2R

)
, (4.3)

where α ∈ R+, Q and R are design variables. Further, 0 < Q and 0 < R are
symmetric matrices of appropriate dimensions. We optimize this cost over the con-
straint that the control sequence U = {u(k), u(k+1), . . .} should follow the specific
shape illustrated in Figure 4.2, for some fixed period p ∈ N+. That is, the number
of discrete time units i = I(k) to wait before taking the next sample x(k+i), as well
as the levels in the control sequence U are free variables over which we optimize.
Note that neither the state nor the control values have a constrained magnitude.

The shape of the control trajectory U is motivated by the following idea. We
will use a slight modification of regular receding horizon control where we at time
instant k sample the system and use this sample x(k) to compute the predicted,
with respect to the constraints, optimal control trajectory U . We will then apply
this sequence from time k until time instant k + i when we will take a new sample
x(k + i) and redo the optimization. By this method we get a joint optimization of
the control signal to be applied as well as the time to the next sampling instant. By
the choice of constraints on the shape of U we will get the shape of the predicted
control signal to coincide with the one we will actually apply, up until time k + i.
The reason for letting the system be controlled by a control signal with period p
after this is that we hope for the receding horizon algorithm to converge to this rate.
In Section 4.3 we will later provide methods for choosing p so that this happens.
The reason for wanting convergence to a down-sampled control is that we want the
system to be sampled at a slow rate when it has reached steady state, at the same
time as we want it to be sampled faster during the transients.
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x(k) x(k + i) x(k + i+ p) x(k + i+ 2 · p)

u(k)

u(k + i)

u(k + i+ p)

u(k + i+ 2 · p)

. . .

. . .

Figure 4.2: The prediction horizon. Here typical signal predictions are shown with
I(k) = 3 and p = 5.

Mathematically we may formulate the cost (4.3) including the constraints as

J(x(k), i,U(i)) = α

i
+

i−1∑
l=0

(
‖x(k + l)‖2Q + ‖u(k)‖2R

)

+

∞∑
r=0

(
p−1∑
l=0

(
‖x(k + i+ r · p+ l)‖2Q + ‖u(k + i+ r · p)‖2R

))
(4.4)

where U(i) = {u(k), u(k+ i), u(k+ i+ η · p), . . .}, η ∈ N+, are the decision variables
over which we optimize. The term α/i reflects the cost of sampling. We use this cost
to weight the cost of sampling against the classical quadratic control performance
cost. For a given x(k), choosing a large α will force i to be larger and hence give
longer inter sampling times. By the construction of the cost we may first choose Q
and R to get the desired control performance and then tune α to get the desired
sampling behavior. One could imagine a more general cost of sampling, here however
we found α/i sufficient.

4.2.1 Cost Function Minimization

Having defined the open-loop cost (4.4) we proceed by computing its optimal value.
We start by noticing that, even though we have a joint optimization problem, we
may state it as

minimize
i

(
minimize

U(i)
J(x(k), i,U(i))

)
. (4.5)
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We will use this separation and start by solving the inner problem, that of mini-
mizing J(x(k), i,U(i)) for a given value of i. In order to derive the solution, and for
future reference, we need to define some variables.

Definition 4.2.1. We define notation for the lifted model as

A(i) = Ai, B(i) =

i−1∑
q=0

AqB.

and notation for the generalized weighting matrices associated to (4.4) as

Q(i) = Q(i−1) +A(i−1)TQA(i−1)

R(i) = R(i−1) +B(i−1)TQB(i−1) +R

N (i) = N (i−1) +A(i−1)TQB(i−1)

where Q(1) = Q, R(1) = R and N (1) = 0.

Using Definition 4.2.1 it is straightforward to show the following lemma.

Lemma 4.2.2. It holds that

i−1∑
l=0

(
‖x(k + l)‖2Q + ‖u(k)‖2R

)
= x(k)TQ(i)x(k) + u(k)TR(i)u(k) + 2x(k)TN (i)u(k)

and x(k + i) = A(i)x(k) +B(i)u(k).

Lemma 4.2.3. Assume that 0 < Q, 0 < R and that the pair (A(p), B(p)) is con-
trollable. Then

min
U(i)

∞∑
r=0

(
p−1∑
l=0

(
‖x(k + i+ r · p+ l)‖2Q + ‖u(k + i+ r · p)‖2R

))
= ‖x(k + i)‖2P (p)

where
P (p) = Q(p) +A(p)TP (p)A(p) − (A(p)TP (p)B(p) +N (p)

)
L(p)

L(p) =
(
R(p) +B(p)TP (p)B(p)

)−1(
A(p)TP (p)B(p) +N (p)

)T (4.6)

and the minimizing control signal characterizing U(i) is given by

u(k + i+ r · p) = −L(p)x(k + i+ r · p).
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Proof. Following Lemma 4.2.2 the problem is equivalent to

min
U(i)

∞∑
r=0

(
x(k + i+ r · p)TQ(p)x(k + i+ r · p)

+ u(k + i+ r · p)TR(p)u(k + i+ r · p)

+ 2x(k + i+ r · p)TN (p)u(k + i + r · p)
)

with

x(k + i+ (r + 1) · p) = A(p)x(k + i+ r · p) +B(p)u(k + i+ r · p).
This problem has the known optimal solution, see e.g. (Bertsekas, 1995), ‖x(k +
i)‖2

P (p) . Where P (p) is given by the Riccati equation (4.6), which has a solution
provided that 0 < R(p), implied by 0 < R, and 0 < Q(p), implied by 0 < Q, and
that the pair (A(p), B(p)) is controllable. Exactly what is stated in the lemma.

Using the above results we may formulate the main result of this section as
follows.

Theorem 4.2.4. Assume that 0 < Q, 0 < R and that the pair (A(p), B(p)) is
controllable. Then

min
U(i)

J(x(k), i,U(i)) = α

i
+ ‖x(k)‖2P (i) (4.7)

where
P (i) = Q(i) +A(i)TP (p)A(i) − (A(i)TP (p)B(i) +N (i)

)
L(i)

L(i) =
(
R(i) +B(i)TP (p)B(i)

)−1(
A(i)TP (p)B(i) +N (i)

)T (4.8)

and P (p) is given by Lemma 4.2.3. Denoting the vector of all ones in Rn as 1n, the
minimizing control signal sequence is given by

U∗ = {−L(i)x(k)1T
i ,−L(p)x(k + i+ r · p)1T

p , . . .}, r ∈ N

where also L(p) is given by Lemma 4.2.3.

Proof. From the theorem we have that 0 < Q, 0 < R and that the pair (A(p), B(p))
is controllable. Thus we may use Lemma 4.2.3 to express the cost (4.4) as

J(x(k), i,U(i)) = α

i
+ ‖x(k + i)‖2P (p) +

i−1∑
l=0

(
‖x(k + l)‖2Q + ‖u(k)‖2R

)
.

Now applying Lemma 4.2.2 we get

J(x(k), i,U(i)) = α

i
+ ‖x(k + i)‖2P (p)

+ x(k)TQ(i)x(k) + u(k)TR(i)u(k) + 2x(k)TN (i)u(k)
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with x(k + i) = A(i)x(k) + B(i)u(k). Minimizing J(x(k), i,U(i)) now becomes a
finite horizon optimal control problem with one prediction step into the future.
This problem has the well defined solution (4.7), see e.g., (Bertsekas, 1995), given
by iterating the Riccati equation (4.8).

Now, getting back to the original problem (4.5). Provided that the assumptions
of Theorem 4.2.4 hold, we may apply it giving that

minimize
i,U(i)

J(x(k), i,U(i)) = minimize
i

{α
i
+ ‖x(k)‖2P (i)

}
.

Unfortunately the authors are not aware of any method to solve this problem in
general. If however i is restricted to a known finite set I0 ⊂ N+ we may find
the optimal value within this set for a given value of x(k) by simply evaluating
α
i + ‖x(k)‖2

P (i) ∀i ∈ I0 and by this obtaining the i which gives the lowest value of
the cost. This procedure gives the optimum of (4.5). Note that the computational
complexity of finding the optimum is not necessarily high, as we may compute P (i)

∀i ∈ I0 off-line prior to execution.

4.3 Single-Loop Self-Triggered MPC

We have defined the open-loop cost which we propose the receding horizon controller
to minimize at every sampling instant when controlling the single process (4.2)
over the network. Further we have calculated its optimal value as a function of
the time interval i to wait until the next sample and the corresponding minimizing
control signal to be applied. Now we continue with formulating the receding horizon
implementation in further detail.

We will assume that 0 < Q, 0 < R and that the down-sampled pair (A(p), B(p))
is controllable. Let us also assume that the finite and non-empty set I0 ⊂ N+ is
given and let γ = maxI0. From this we may use Theorem 4.2.4 to compute the
pairs (P (i), L(i)) ∀i ∈ I0 and formulate our proposed single-loop receding horizon
control algorithm as in Algorithm 4.1.

Remark 4.3.1. Note that the control signal value is sent to the actuator at the
same time as the controller requests the scheduling of the next sample by the sensor.

Remark 4.3.2. The proposed algorithm guarantees a minimum and a maximum
inter sampling time. The minimum time is 1 time step in the time scale of the
underlying process (4.2) and the maximum inter sampling time is γ time steps.
This implies that there is some minimum attention to every loop independent of
the predicted evolution of the process.

Remark 4.3.3. Even though we are working in uniformly sampled discrete-time
the state is not sampled at every time instant k. Instead the set of samples of the
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Algorithm 4.1 Single-Loop Self-Triggered MPC

1. At time k = k′ the sample x(k′) is transmitted by the sensor to the controller.

2. Using x(k′) the controller computes

I(k′) = arg min
i∈I0

α

i
+ ‖x(k′)‖2P (i) ,

u(k′) = −L(I(k′))x(k′).

3. a) The controller sends u(k′) to the actuator which applies u(k) = u(k′) to
(4.2) until k = k′ + I(k′).

b) The network manager is requested to schedule the sensor to transmit a
new sample at time k = k′ + I(k′).

state actually taken is given by the set D, which assuming that the first sample is
taken at k = 0, is given by

D = {x(0), x(I(0)), x(I(I(0))), . . .} . (4.9)

4.3.1 Stability

Having established and detailed our single-loop receding horizon control law we
continue with giving conditions for when it is stabilizing. Letting λ(A) denote the
set of eigenvalues to A and N+ = N \ {0} we first state the following controllability
conditions.

Lemma 4.3.4. The system (A(i), B(i)) is controllable if and only if the pair (A,B)
is controllable and A has no eigenvalue λ ∈ λ(A) such that λ 	= 1 and λi = 1.

Proof. The proof is based on adaptation of Lemma 3.4.1 and Theorem 4 in (Sontag,
1998) to the problem of down-sampling. Let R(·) be the reachability matrix. For
controllability we require

R
(
A(i), B(i)

)
=
[ i−1∑
q=0

AqB, . . . , A(n−1)i
i−1∑
q=0

AqB
]

=
( i−1∑

q=0

Aq
)[

B, . . . , A(n−1)iB
]
=
( i−1∑

q=0

Aq
)
R
(
Ai, B

)

to have full rank, i.e., for both
∑i−1

q=0 A
q and R

(
Ai, B

)
to have full rank.

We start by showing the former. According to the Spectral Mapping Theorem
the eigenvalues of f(A) =

∑i−1
q=0 A

q will be f(λ) with λ ∈ λ(A). For f(A) to have
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full rank we require f(λ) 	= 0, ∀λ ∈ λ(A). Since

f(1) = i, f(λ) =

i−1∑
q=0

λq =
λi − 1

λ− 1
, λ 	= 1

this is fulfilled if and only if λi 	= 1 ∀λ ∈ λ(A) such that λ 	= 1, precisely what is
stated in the lemma.

Moving on, assume that R
(
Ai, B

)
does not have full rank. Which according to

the Hautus Lemma in (Sontag, 1998) is equivalent to that [λiI − Ai, B] is rank
deficient, implying ∃ v 	= 0 such that for some λ we have vT [λiI − Ai, B] = 0
implying vTλi − vTAi = 0 and vTB = 0. Thus for R

(
Ai, B

)
to be rank deficient

there must exist a left eigenvector vT to Ai such that vTB = 0. Now let eT be
a left eigenvector to A which, since eTAi = eTλi, also is a left eigenvector to Ai.
Thus for R

(
Ai, B

)
to be rank deficient there must ∃ e such that eTB = 0. Since

R
(
A,B

)
has full rank, by the statement in the lemma, we have that for any (non

zero) left eigenvector eT it holds that eT [λiI −Ai, B] 	= 0 implying eTB 	= 0 which
contradicts the assumption that R

(
Ai, B

)
is rank deficient.

Using the above, and our previous results, we may now give conditions for when
the proposed receding horizon control algorithm is stabilizing.

Theorem 4.3.5. Assume 0 < Q, 0 < R and that (A,B) is controllable. If we
choose i ∈ I0 ⊂ N+ and p = p∗ given by

p∗ = max{i|i ∈ I0, ∀λ ∈ λ(A) λi 	= 1 if λ 	= 1} (4.10)

and apply Algorithm 4.1, then

α

γ
≤ lim

k→∞
min
i∈I0

(
α

i
+ ‖x(k)‖2P (i)

)
≤ α

ε

(
1

p∗
− (1 − ε)

1

γ

)
,

where ε is the largest value in the interval (0, 1] which ∀i ∈ I0 fulfills

(
A(i) −B(i)L(i)

)T
P (p∗)(A(i) −B(i)L(i)

) ≤ (1− ε)P (i).

Proof. By assumption (A,B) is controllable. Together with the choice of p∗ this, via
Lemma 4.3.4, implies that (A(p∗), B(p∗)) is controllable. Further let x̂(k′|k) denote
an estimate of x(k′), given all available measurements up until time k. Defining

‖x̂(k|k)‖2S(i) �
i−1∑
l=0

(
‖x̂(k + l|k)‖2Q + ‖û(k|k)‖2R

)
(4.11)

we may, since by assumption 0 < Q and 0 < R, use Lemma 4.2.3 and Theorem 4.2.4
to express Vk, the optimal value of the cost (4.4) at the current sampling instant
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k, as
Vk � min

i∈I0,û(k|k)
J(x(k), i, û(k|k))

=min
i∈I0

α

i
+ ‖x̂(k + i|k)‖2P (p∗) + ‖x̂(k|k)‖2S(i)

=min
i∈I0

α

i
+ ‖x̂(k|k)‖2P (i) .

(4.12)

We will use Vk as a Lyapunov-like function. Assume that Vk+i is the optimal cost
at the next sampling instant k+ i. Again using Theorem 4.2.4 we may express it as

Vk+i � min
j∈I0,û(k+i|k+i)

J(x(k + i), j, û(k + i|k + i))

≤ min
û(k+i|k+i)

J(x(k + i), j = p∗, û(k + i|k + i))

=
α

p∗
+ ‖x̂(k + i|k + i)‖2P (p∗) =

α

p∗
+ ‖x̂(k + i|k)‖2P (p∗) .

(4.13)

Where the inequality comes from the fact that choosing j = p∗ is sub-optimal.
Taking the difference we get

Vk+i − Vk ≤ α

p∗
− α

i
− ‖x̂(k|k)‖2S(i)

which in general is not decreasing. However we may use the following idea to bound
this difference: Assume that there ∃ ε ∈ (0, 1] and β ∈ R+ such that we may write

Vk+i − Vk ≤ −εVk + β.

As this should hold for all sampling instances D given in (4.9), we have that at l
sampling instances into the future, which happens at let’s say time k + l′, we have
that

Vk+l′ ≤ (1− ε)l · Vk + β ·
l−i∑
r=0

(1− ε)l.

Since ε ∈ (0, 1] this is equivalent to

Vk+l′ ≤ (1− ε)l · Vk + β · 1− (1 − ε)l

1− (1− ε)
,

which as l → ∞ gives us an upper bound on the cost function, Vk+l′ ≤ β/ε.
Applying this idea on our setup we should fulfill

α

p∗
− α

i
− ‖x̂(k|k)‖S(i) ≤ −ε

α

i
− ε‖x̂(k + i|k)‖2P (p∗) − ε‖x̂(k|k)‖2S(i) + β.

Choosing β = α/p∗ − (1 − ε)α/γ we have fulfillment if

ε
(
‖x̂(k + i|k)‖2P (p∗) + ‖x̂(k|k)‖2S(i)

)
≤ ‖x̂(k|k)‖2S(i) . (4.14)
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Clearly there ∃ε ∈ (0, 1] such that the above relation is fulfilled if 0 < ‖x̂(k|k)‖2
S(i) .

If ‖x̂(k|k)‖2
S(i) = 0 we must, following the definition (4.11) and the assumption

0 < Q, have that x̂(k|k) = 0 and x̂(k + i|k) = 0 and hence the relation is fulfilled
also in this case. Using the final step in (4.12) we may express (4.14) in easily
computable quantities giving the condition

‖x̂(k + i|k)‖2P (p∗) ≤ (1− ε)‖x̂(k|k)‖2P (i) .

As this should hold ∀x and ∀i ∈ I0 we must fulfill(
A(i) −B(i)L(i)

)T
P (p∗)(A(i) −B(i)L(i)

) ≤ (1− ε)P (i)

which is stated in the theorem. Summing up we have

Vk+l′ ≤ α

ε

(
1

p∗
− (1 − ε)

1

γ

)
which is minimized by maximizing ε. From the definition of the cost (4.3) we may
also conclude that α/γ ≤ Vk+l′ . With

Vk+l′ = min
i∈I0

(
α

i
+ ‖x̂(k + l′|k + l′)‖2P (i)

)
,

we may conclude that

α

γ
≤ lim

k→∞
min
i∈I0

(
α

i
+ ‖x̂(k|k)‖2P (i)

)
≤ α

ε

(
1

p∗
− (1− ε)

1

γ

)
.

Remark 4.3.6. The bound given in Theorem 4.3.5 scales linearly with the choice
of α.

Assumption 4.3.7. Assume that �λ ∈ λ(A) except possibly λ = 1 such that |λ| = 1
and the complex argument ∠λ = 2π

γ · n for some n ∈ N+.

Lemma 4.3.8. Let Assumption 4.3.7 hold, then p∗ = γ.

Proof. From (4.10) it is clear that p∗ = γ if �λ ∈ λ(A) except λ = 1 such that
λγ = 1. In polar coordinates we have that λ = |λ| exp(j · ∠λ) implying λγ =
|λ|γ exp(j · γ · ∠λ) = 1 may only be fulfilled if |λ| = 1 and ∠λ = 2π

γ · n for some
n ∈ N+, which contradicts Assumption 4.3.7.

Corollary 4.3.9. Assume 0 < Q, 0 < R and that (A,B) is controllable. Further
assume that either Assumption 4.3.7 holds or α = 0. If we choose i ∈ I0 ⊂ N+ and
p = p∗ given by (4.10) and apply Algorithm 4.1, then

lim
k→∞

x(k) = 0.
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Proof. From Theorem 4.3.5 we have that as k → ∞
α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2P (i)

)
≤ α

ε

(
1

p∗
− (1− ε)

1

γ

)
which as p∗ = γ, given by Lemma 4.3.8, simplifies to

α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2P (i)

)
≤ α

γ

independent of ε. Implying that as k → ∞ we have that i = γ and ‖x(k)‖2
P (i) = 0,

since 0 < P (i) provided 0 < Q this implies x(k) = 0 independent of α. In the case
α = 0 the bound from Theorem 4.3.5 simplifies to that as k → ∞,

0 ≤ min
i∈I0

‖x(k)‖2P (i) ≤ 0

and hence for the optimal i we have ‖x(k)‖2
P (i) = 0 implying x(k) = 0 as above.

From the above results we may note the following.

Remark 4.3.10. If the assumptions of Theorem 4.3.5 hold, Corollary 4.3.9 will
hold except in the extremely rare case that the underlying system (A,B) becomes
uncontrollable under down-sampling by a factor γ, see Lemma 4.3.4. If it does not
hold one may use Lemma 4.3.8 to re-design I0 giving a new value on γ which
recovers the case p∗ = γ, so that it will hold.

4.4 Multiple-Loop Self-Triggered MPC

Having detailed the controller for the single-loop case and given conditions for when
it is stabilizing we now continue with extending to the multiple-loop case when we
control multiple loops on the network, as described in Figure 4.1. The idea is that the
controller C now will run s such single-loop controllers described in Algorithm 4.1 in
parallel, one for each process P�, � ∈ L = {1, 2, . . . , s}, controlled over the network.
To guarantee conflict-free communication on the network the controller C will, at
the same time, centrally coordinate the transmissions of the different loops.

4.4.1 Open-Loop Optimal Control

We start by extending the results in Section 4.2 to the multiple-loop case. The cost
function we propose the controller to minimize at every sampling instant for loop �
is then

J�(x�(k), i,U�(i)) =
α�

i
+

i−1∑
l=0

(
‖x�(k + l)‖2Q�

+ ‖u�(k)‖2R�

)

+

∞∑
r=0

(
p�−1∑
l=0

(
‖x�(k + i+ r · p� + l)‖2Q�

+ ‖u�(k + i+ r · p�)‖2R�

))
,
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derived in the same way as (4.4) now with α� ∈ R+, 0 < Q� 0 < R� and period
p� ∈ N+ specific for the control of process P� given by (4.1). From this we can state
the following.

Definition 4.4.1. We define the notation in the multiple-loop case following Defi-
nition 4.2.1. For a matrix E�, e.g., A� and Q�, we denote

(
E�

)(i) by E
(i)
� .

Theorem 4.4.2. Assume that 0 < Q�, 0 < R� and that the pair (A
(p)
� , B

(p)
� ) is

controllable. Then

min
U�(i)

J�(x�(k), i,U�(i)) =
α�

i
+ ‖x�(k)‖2P (i)

�

,

where
P

(i)
� = Q

(i)
� +A

(i)
�

T
P

(p�)
� A

(i)
� − (A(i)

�

T
P

(p�)
� B

(i)
� +N

(i)
�

)
L
(i)
� ,

L
(i)
� =

(
R

(i)
� +B

(i)
�

T
P

(p�)
� B

(i)
�

)−1(
A

(i)
�

T
P

(p�)
� B

(i)
� +N

(i)
�

)T
,

and

P
(p�)
� = Q

(p�)
� +A

(p�)
�

T
P

(p�)
� A

(p�)
� − (A(p�)

�

T
P

(p�)
� B

(p�)
� +N

(p�)
�

)
L
(p�)
� ,

L
(p�)
� =

(
R

(p�)
� +B

(p�)
�

T
P

(p�)
� B

(p�)
�

)−1(
A

(p�)
�

T
P

(p�)
� B

(p�)
� +N

(p�)
�

)T
.

Denoting the vector of all ones in Rn as 1n, the minimizing control signal sequence
is given by

U∗
� = {−L

(i)
� x�(k)1

T
i ,−L

(p�)
� x�(k + i + r · p�)1T

p�
, . . .}, r ∈ N.

Proof. Application of Theorem 4.2.4 on the individual loops.

4.4.2 Receding Horizon Control Law

To formulate our multiple-loop receding horizon control law we will re-use the
results in Section 4.3 and apply them on a per loop basis.

For each process P� with dynamics given in (4.1) let the weights α� ∈ R+,
0 < Q� 0 < R� and period p� ∈ N+ specific to the process be defined. If we further
define the finite set I0

� ⊂ N+ for loop � we may apply Theorem 4.4.2 to compute
the pairs (P

(i)
� , L

(i)
� ) ∀ i ∈ I0

� . Provided of course that the pair (A
(p�)
� , A

(p�)
� ) is

controllable.
As discussed in Section 4.1 the controller must when choosing i take into consid-

eration what transmission times other loops have reserved as well as overall network
schedulability. Hence at time k = k� loop � is restricted to choose i ∈ I�(k�) ⊆ I0

�

where I�(k�) contains the feasible values of i which gives collisions-free scheduling
of the network. How I�(k�) should be constructed when multiple loops are present
on the network is discussed further later in this section.
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We may now continue with formulating our control law for controlling multiple
processes over the network as in Algorithm 4.2, to be executed whenever a sample
is received by the controller.

Algorithm 4.2 Multiple-Loop Self-Triggered MPC

1. At time k = k� the sample x�(k�) of process P� is transmitted by the sensor
S� to the controller C.

2. The controller C constructs I�(k�).
3. Using x�(k�) the controller C computes

I�(k�) = arg min
i∈I�(k�)

α�

i
+ ‖x�(k�)‖2P (i)

�

,

u�(k�) = −L
(I(k�))
� x�(k�).

4. a) The controller C sends u�(k�) to the actuator A� which applies u�(k) =
u�(k�) to (4.1) until k = k� + I�(k�).

b) The Network Manager is requested to schedule the sensor S� to transmit
a new sample at time k = k� + I�(k�).

When the controller is initialized at time k = 0 it is assumed that the controller
has knowledge of the state x�(0) for all processes P� controlled over the network.
It will then execute Algorithm 4.2 entering at step 2, in the order of increasing
loop-index �.

4.4.3 Schedulability

What remains to be detailed in the multiple-loop receding horizon control law is a
mechanism for loop � to choose I�(k�) to achieve collision-free scheduling. We now
continue with giving conditions for when this holds.

First we note that when using Theorem 4.4.2 we make the implicit assumption
that it is possible to apply the corresponding optimal control signal sequence U∗

� .
For this to be possible we must be able to measure the state x�(k) at the future
time instances

S�(k�) = {k� + I�(k�), k� + I�(k�) + p�, k� + I�(k�) + 2 · p�, . . . }. (4.15)

Hence this sampling pattern must be reserved for use by sensor S�. We state the
following to give conditions for when this is possible.

Lemma 4.4.3. Let loop � choose its set I�(k�) of feasible times to wait until the
next sample to be

I�(k�) = {i ∈ I0
� |i 	= knext

q − k� + n · pq −m · p�, m, n ∈ N, q ∈ L \ {�}}
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where knext
q is the next transmission time of sensor Sq. Then it is possible to reserve

the needed sampling pattern S�(k�) in (4.15) at time k = k�.

Proof. When loop q was last sampled at time kq < k� it was optimized over Iq(kq)
and found the optimal feasible time until the next sample Iq(kq). The loop then
reserved the infinite sequence

Sq(kq) = {kq + Iq(kq), kq + Iq(k) + pq, kq + Iq(kq) + 2 · pq, . . . }.

When loop � now should choose I�(k�) it must be able to reserve (4.15). To ensure
that this is true, it must choose I�(k�) so that S�(k�) ∩ Sq(kq) = ∅, ∀ q ∈ L \ {�}.
This holds if we have that

k� + I�(k�) +m · p� 	= kq + Iq(kq) + n · pq,
∀m,n ∈ N, ∀ q ∈ L \ {�}.

Simplifying the above condition we get conditions on the feasible values of I�(k�)

I�(k�) 	=
(
kq + Iq(kq)

)
− k� + n · pq −m · p�,

∀m,n ∈ N, ∀ q ∈ L \ {�}.

Noticing that
(
kq + Iq(kq)

)
is the next transmission of loop q we denote it knext

q ,
giving the statement in the lemma.

Constructing I�(k�) as above we are not guaranteed that I�(k�) 	= ∅. To guar-
antee this we make the following assumption.

Assumption 4.4.4. Assume that for every loop � on the network I0
� = I0 and

p� = p. Further assume that L ⊆ I0 and maxL ≤ p.

Theorem 4.4.5. Let Assumption 4.4.4 hold. If every loop � chooses

I�(k�) = {i ∈ I0|i 	= knext
q − k� + r · p, r ∈ Z, q ∈ L \ {�}},

all transmissions on the network will be conflict-free and it will always be possible
to reserve the needed sampling pattern S�(k�) in (4.15).

Proof. Assuming p� = p and I0
� = I0 for all loops Lemma 4.4.3 gives I�(k�) as

stated in the theorem. Since by assumption L ⊆ I0 we know that

I�(k�) ⊇ {i ∈ L|i 	= knext
q − k� + r · p, r ∈ Z, q ∈ L \ {�}}.

Further, since maxL ≤ p we know that the set

{i ∈ L|i = knext
q − k� + r · p, r ∈ Z}
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contains at most one element for a given loop q. Thus,

{i ∈ L|i 	= knext
q − k� + r · p, r ∈ Z, q ∈ L \ {�}}

contains at least one element as q ∈ L \ {�} ⊂ L. Hence I�(k�) always contains at
least one element ∀ k�, and thus there always exists a feasible time to wait.

Remark 4.4.6. The result in Lemma 4.4.3 requires the reservation of an infinite
sequence. This is no longer required in Theorem 4.4.5 as all loops cooperate when
choosing the set of feasible times to wait. In fact loop � only needs to know the
current time k�, the period p and the times when the other loops will transmit next
knext
q ∀ q ∈ L \ {�} in order to find I�(k�).

Remark 4.4.7. If Assumption 4.4.4 holds and every loop on the network chooses
I�(k�) according to Theorem 4.4.5, then it is guaranteed that at time k� we can
reserve (4.15) and that no other loop can make conflicting reservations. Hence at
time k� + I�(k�) the sequence

S�(k� + I�(k�)) = { k� + I�(k�) + p, k� + I�(k�) + 2 · p, k� + I�(k�) + 3 · p, . . . }
is guaranteed to be available. Thus p ∈ I�(k� + I�(k�)).

4.4.4 Stability

We continue with giving conditions for when the multiple-loop receding horizon con-
trol law described in Algorithm 4.2 is stabilizing. Extending the theory developed
Section 4.3 to the multiple-loop case we may state the following.

Theorem 4.4.8. Assume 0 < Q�, 0 < R� and that (A�, B�) is controllable. Further
let Assumption 4.4.4 hold. If we then choose i ∈ I�(k) ⊆ I0 ⊂ N+, with I�(k) chosen
as in Theorem 4.4.5, and p = p∗ given by

p∗ = max{i|i ∈ I0, ∀ � ∀λ ∈ λ(A�) λ
i 	= 1 if λ 	= 1}, (4.16)

and apply Algorithm 4.2, then as k → ∞
α�

γ
≤ min

i∈I�(k)

(
α�

i
+ ‖x�(k)‖2P (i)

�

)
≤ α�

ε�

(
1

p∗
− (1− ε�)

1

γ

)
,

where γ = maxI0 and ε� is the largest value in the interval (0, 1] which ∀i ∈ I0

fulfills (
A

(i)
� −B

(i)
� L

(i)
�

)T
P

(p∗)
�

(
A

(i)
� −B

(i)
� L

(i)
�

) ≤ (1− ε�)P
(i)
� .

Proof. Direct application of Theorem 4.3.5 on each loop. The corresponding proof
carries through as the choice of I�(k) together with the remaining assumptions
guarantees that we may apply Theorem 4.4.2 on the feasible values of i in every
step, thus the expression for Vk in (4.12) always exists. The critical step is that the
upper bound on Vk+i in (4.13) must exist, i.e., the choice j = p∗ must be feasible.
This is also guaranteed by the choice of I�(k), see Remark 4.4.7.
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Corollary 4.4.9. Assume 0 < Q�, 0 < R� and that (A�, B�) is controllable. Fur-
ther, let Assumption 4.4.4 hold. In addition, let I0 be chosen so that the resulting
γ = maxI0 guarantees that Assumption 4.3.7 holds for every loop � or alternatively
let α� = 0 for every loop �. If we then choose i ∈ I�(k) ⊆ I0 ⊂ N+, with I�(k)
chosen as in Theorem 4.4.5, and p = p∗ given by (4.16) and apply Algorithm 4.2 it
holds that

lim
k→∞

x�(k) = 0.

Proof. The proof follows from the results in Theorem 4.4.8 analogous to the proof
of Corollary 4.3.9.

4.5 Simulation Results

To illustrate the proposed theory we now continue with giving simulations. First we
show how the control law works when one single loop is controlled over the network
and focus on the loop specific mechanisms of the controller. Secondly we illustrate
how the controller works when several loops are present on the network and focus
on how the controller allocates network access to different loops.

4.5.1 Single-Loop

Let us exemplify and discuss how the controller handles the control performance
versus communication rate trade-off in an individual loop. We do this by studying
the case with a single system on the network. The system we study is the single
integrator system which we discretize using sample and hold with sampling time
Ts = 1 s giving us x(k+1) = Ax(k)+Bu(k) with (A,B) = (1, 1). Since we want the
resulting self-triggered mpc described in Algorithm 4.1 to be stabilizing we need to
make sure that our design fulfills the conditions of Theorem 4.3.5. If we further want
it to be asymptotically stabilizing, we in addition need it to fulfill the conditions of
Corollary 4.3.9.

The design procedure is then as follows: First we note that the system (A,B)
is controllable. The next step is to decide the weights 0 < Q and 0 < R in the
quadratic cost function (4.3). This is done in the same way as in classical lin-
ear quadratic control, see e.g., (Maciejowski, 2002). Here we for simplicity choose
Q = 1 and R = 1. We note that the system only has the eigenvalue λ = 1, fulfilling
Assumption 4.3.7, so that (4.10) in Theorem 4.3.5 gives p∗ = maxI0. Hence Corol-
lary 4.3.9, and thus Theorem 4.3.5, will hold for every choice of I0. This means that
we may choose the elements in I0, i.e., the possible down-sampling rates, freely. A
natural way to choose them is to decide on a maximum allowed down-sampling rate
and then choose I0 to contain all rates from 1 up to this number. Let’s say that
we here want the system to be sampled at least every 5 · Ts s, then a good choice is
I0 = {1, 2, 3, 4, 5}, giving p∗ = max I0 = 5.

Now having guaranteed that the conditions of Theorem 4.3.5 and Corollary 4.3.9
hold we have also guaranteed that the conditions of Theorem 4.2.4 are fulfilled.
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i A(i) B(i) Q(i) R(i) N (i) L(i) P (i) V (i)(x)

1 1 1 1 1 0 0.70 1.70 α/1 + P (1) · x2

2 1 2 2 3 1 0.46 1.73 α/2 + P (2) · x2

3 1 3 3 8 3 0.35 1.89 α/3 + P (3) · x2

4 1 4 4 18 6 0.28 2.08 α/4 + P (4) · x2

5=p∗ 1 5 5 35 10 0.23 2.30 α/5 + P (5) · x2

Table 4.3: The pre-computed control laws with related cost functions and intermediate
variables.

Hence we may use it to compute the state-feedback gains and cost function matrices
that are used in Algorithm 4.1. The results from these computations are shown in
Table 4.3, together with some of the intermediate variables from Definition 4.2.1.

We see that the cost functions are quadratic functions in the state x where
the coefficients P (i) are functions of Q and R. We also see that the cost to sam-
ple α/i enters linearly and as we change it we will change the offset level of
the curves and thereby their values related to each other. However it will not
affect the state-feedback gains. A graphical illustration of the cost functions in
Table 4.3, for the choice α = 0.2, is shown in Figure 4.4 together with the curve
I(k) = argminI0 V (i)(x(k)), i.e., the index of the cost function which has the low-
est value for a given state x(k). This is the partitioning of the state space that the
self-triggered mpc controller will use to choose which of the state-feedback gains to
apply and how long to wait before sampling again.

Applying our self-triggered mpc described in Algorithm 4.1 using the results in
Table 4.3 to our integrator system when initialized in x(0) = 2 we get the response
shown in Figure 4.5. Note here that the system will converge to the fixed sampling
rate p∗ as the state converges. It may now appear as it is sufficient to use periodic
control and sample the system every p∗ · Ts s to get good control performance. To
compare the performance of this periodic sampling strategy with the self-triggered
strategy above we apply the control which minimizes the same cost function (4.3) as
above with the exception that the system now may only be sampled every p∗ · Ts s.
This is in fact the same as using the receding horizon control above while restricting
the controller to choose i = p∗ every time. The resulting simulations are shown
in Figure 4.6(a). As seen, there is a large degradation of the performance in the
transient while the stationary behavior is almost the same. By this we can conclude
that it is not sufficient to sample the system every p∗ · Ts s if we want to achieve
the same transient performance as with the self-triggered sampling.
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Figure 4.4: The cost functions V (i)(x(k)) (dashed) together with the partitioning of
the state space and the time to wait I(k) = argminI0 V (i)(x(k)) (solid).

In the initial transient response the self-triggered mpc controller sampled after
one time instant. This indicates that there is performance to gain by sampling
every time instant. To investigate this we apply the control which minimizes the
same cost function (4.3), now with the exception that the system may be sampled
every Ts s, i.e., classical unconstrained linear quadratic control. Now simulating the
system we get the response shown in Figure 4.6(b). As expected we get slightly
better transient performance in this case compared to our self-triggered sampling
scheme, it is however comparable. Note, however, that this improvement comes at
the cost of a drastically increased communication need, which may not be suitable
for systems where multiple loops share the same wireless medium.

From the above, we may conclude that our self-triggered mpc combines the low
communication rate in stationarity of the slow periodic controller with the quick
transient response of the fast periodic sampling. In fact we may, using our method,
recover the transient behavior of fast periodic sampling at the communication cost
of one extra sample compared to slow periodic sampling. The reason for this is that
the fast sampling rate only is needed in the transient while we in stationarity can
obtain sufficient performance with a lower rate.



64 Self-Triggered Model Predictive Control

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

t

t

x(t)

u(t)

Figure 4.5: System response of the integrator system when minimizing the cost by
using the proposed single-loop self-triggered mpc. System response is shown in blue
with sampling instances encircled in black.

4.5.2 Multiple-Loop

We now continue with performing a simulation study where we control two sys-
tems over the same network. We will keep the integrator system from Section 4.5.1
now denoting it process P1 with dynamics x1(k + 1) = A1x1(k) + B1u1(k) with
(A1, B1) = (1, 1) as before. In addition we will the control process P2 which is a
double integrator system which we discretize using sample and hold with sampling
time Ts = 1 s giving(

x1
2(k + 1)

x2
2(k + 1)

)
︸ ︷︷ ︸

x2(k+1)

=

(
1 0

1 1

)
︸ ︷︷ ︸

A2

(
x1
2(k)

x2
2(k)

)
︸ ︷︷ ︸

x2(k)

+

(
1

0.5

)
︸ ︷︷ ︸

B2

u2(k).

We wish to control these processes using our proposed multiple-loop self-triggered
mpc described in Algorithm 4.2. As we wish to stabilize these systems we start
by checking the conditions of Theorem 4.4.8 and Corollary 4.4.9. First we may
easily verify that both the pairs (A1, B1) and (A2, B2) are controllable. To use the
stability results we need Assumption 4.4.4 to hold, implying that we must choose
p1 = p2 = p, I0

1 = I0
2 = I0 and choose I0 such that {1, 2} ∈ I0 and 2 ≤ p.

For reasons of performance we wish to guarantee that the systems are sampled at
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(a) System response of the integrator system when minimizing the cost
by sampling every 5 seconds.

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

t

t

x(t)

u(t)

(b) System response of the integrator system when minimizing the cost
by sampling every second.

Figure 4.6: Comparing control performance for different periodic sampling policies.
System response is shown in blue with sampling instances encircled in black.



66 Self-Triggered Model Predictive Control

least every 5 · Ts s and therefore choose I0
1 = I0

2 = I0 = {1, 2, 3, 4, 5} fulfilling
the requirement above. We also note that λ(A1) = {1} and λ(A2) = {1, 1} and
that hence both system fulfill Assumption 4.3.7 for this choice of I0, implying that
(4.16) in Theorem 4.4.8 gives p∗ = max I0 = 5. Thus choosing p = p∗ as stated
in Theorem 4.4.8 results in that Assumption 4.4.4 holds. What now remains to be
decided are the weights α�, Q� and R�.

For the integrator process P1 we keep the same tuning as in Section 4.5.1 with
Q1 = R1 = 1. Having decided Q1, R1, I0 and p∗ we use Theorem 4.4.2 to compute
the needed state-feedback gains and cost function matrices (P

(i)
1 , L

(i)
1 ) ∀ i ∈ I0

needed by Algorithm 4.2. We also keep α1 = 0.2 as it gave a good communication
versus performance trade-off. For the double integrator process P2 the weights are
chosen to be Q2 = I as we consider both states equally important and R2 = 1

10 to
favor control performance and allow for larger control signals. Having decided Q2,
R2, I0 and p∗ we may use Theorem 4.4.2 to compute the needed state-feedback
gains and cost function matrices (P (i)

2 , L
(i)
2 ) ∀ i ∈ I0 needed by Algorithm 4.2. The

sampling cost is chosen to be α2 = 1, as this gives a good trade-off between control
performance and the number of samples.

We have now fulfilled all the assumptions of both Theorem 4.4.8 and Corol-
lary 4.4.9. Hence applying Algorithm 4.2 choosing I�(k�) according to Theorem 4.4.5
will asymptotically stabilize both process P1 and P2. Controlling P1 and P2 using
our multiple-loop self-triggered mpc described in Algorithm 4.2 with the above de-
signed tuning we get the result shown in Figure 4.7. As expected, the behavior
of the controller illustrated in Section 4.5.1 carries through also to the case when
we have multiple loops on the network. In fact comparing Figure 4.5 showing how
the controller handles process P1 when controlling it by itself on the network and
Figure 4.7(a) which shows how P1 is handled in the multiple-loop case we see that
they are the same. Further we see that, as expected, in stationarity the two loops
controlling process P1 and P2 both converge to the sampling rate p∗.

As mentioned previously the controller uses the mechanism in Theorem 4.4.5
to choose the set of feasible times to wait until the next sample. In Figure 4.8 we
can see how the resulting sets I�(k�) look in detail. At time k = 0 loop 1 gets to
run Algorithm 4.2 first. As sensor S2 is not scheduled for any transmissions yet
I1(0) = I0 from which the controller chooses I1(0) = 1. Then loop 2 gets to run
Algorithm 4.2 at time k = 0. As sensor S1 now is scheduled for transmission at
time k = 0 + I1(0) = 1, Theorem 4.4.5 gives I2(0) = I0 \ {1}. From which the
controller chooses I2(0) = 2. The process is then repeated every time a sample is
transmitted to the controller, giving the result in Figure 4.8. As seen both the set
I�(·) and the optimal time to wait I�(·) converges to some fixed value as the state
of the corresponding process P� converges to zero.
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(b) System response for process P2

Figure 4.7: The processes P1 and P2 controlled and scheduled on the same network
using the proposed multiple-loop self-triggered mpc. System response is shown in blue
and green with sampling instances encircled in black.
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Figure 4.8: The sets I�(·) of feasible times to wait until the next sample for loop 1
and loop 2 (starred). The optimal time to wait I�(·) is highlighted in red.

4.6 Summary

We have studied joint design of control and adaptive scheduling of multiple loops,
and have presented a method which at every sampling instant computes the optimal
control signal to be applied as well as the optimal time to wait before taking the next
sample. It is shown that this control law may be realized using mpc and computed
explicitly. The controller is also shown to be stabilizing under mild assumptions.
Simulation results show that the use of the presented control law may help reducing
the required amount of communication without almost any loss of performance
compared to fast periodic sampling.

In the multiple-loop case we have also presented an algorithm for guaranteeing
conflict-free transmissions. It is shown that under mild assumptions there always
exists a feasible schedule for the network. In addition both the multiple-loop self-
triggered mpc and the corresponding scheduling algorithm scales linearly in the
number of loops.

Further it is worth noticing that the developed framework is not limited to just
varying the time to the next sample i as in Figure 4.2. One could imagine opti-
mizing over several of the initial inter sample times before reverting into sampling
with period p. An interesting topic for future research is to further investigate the
complexity and possible performance increase for such an extended formulation.



Chapter 5

Event-Triggered Model Predictive Control

This chapter presents an approach to event-triggered model predictive con-
trol (mpc) for discrete-time linear systems subject to input and state con-
straints as well as exogenous disturbances. Stability properties are derived

by evaluating the difference between the event-triggered implementation and the
conventional time-triggered scheme. It is shown that the event-triggered implemen-
tation, in stationarity, is able to keep the state in an explicitly computable set given
by a disturbance bound and the event threshold. Simulation results underline the
effectiveness of the proposed scheme in terms of reducing the communication and
computational effort while guaranteeing a desired performance.

The outline of the chapter is as follows. In Section 5.1 the event-triggered con-
trol problem is stated and formulated as a receding horizon control problem. In
Section 5.2 the corresponding open-loop optimal control problem is defined and
solved. Section 5.3 describes the operation of the event-triggered mpc in further
detail, and provides analysis of the event mechanism. Section 5.4 states the corre-
sponding time-triggered mpc studied for comparison. Stability results for the two
compared mpc schemes are given in Section 5.5. In Section 5.6 simulation results
are presented. Finally, the chapter is summarized in Section 5.7.

5.1 Problem Formulation

We consider the problem of controlling the process P given by the linear time-
invariant system

x(k + 1) = Ax(k) +Bu(k) + Ed(k),

x(k) ∈ Rn, u(k) ∈ Rm, d(k) ∈ Rr,
(5.1)

where d(k) is an unknown disturbance, over a communication network as in Fig-
ure 5.1. The process is controlled by the event-triggered controller C. The controller
works in the following way: When an event is triggered in the sensor S at time
k� = k, the sensor transmits the sample x(k�) to the controller C. This sample is
used by the controller to, together with an internal model of the process, compute

69
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Network

C

P SA

U(k�)

u(k) x(k)

X̂ (k�)x(k�)

d(k)

Figure 5.1: The event-triggered control loop.

an open-loop control sequence

U(k�) = {û(k�|k�), û(k� + 1|k�), . . . , û(k� +N − 1|k�)}

of predicted future appropriate control actions. The controller simultaneously also
computes the corresponding sequence of the predicted values of the states

X̂ (k�) = {x̂(k�|k�), x̂(k� + 1|k�), . . . , x̂(k� +N |k�)}.

The control sequence U(k�) is then sent to the actuator A, which will use it as a
play-out buffer and apply the control signal u(k) = û(k|k�) to the process. The
sequence of predicted states X̂ (k�) is sent to the sensor which will monitor the
process state x(k) and compute the prediction error |x(k) − x̂(k|k�)| at every time
instant k. Whenever this value exceeds some predefined threshold, or if the sequence
of predictions runs empty, the sensor will generate an event, and transmit the
state x(k�+1) to the controller. The controller will then compute and send updated
trajectories U(k�+1) and X̂ (k�+1) to the actuator and sensor respectively.

Using this control mechanism the network is only utilized for transmission of
information at event times k�. In addition the control law only needs to be re-
evaluated at these event times. This saves communication bandwidth as well as
computational effort. Provided that the control law is well-designed, so that events
are only rarely generated, this gives a sparser communication pattern than tradi-
tional control algorithms, which communicate at every time instant k. We propose
that the controller C should be implemented as a receding horizon controller that
solves a finite-horizon open-loop optimal control problem at every sampling instant
k�.
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5.2 Open-Loop Optimal Control

The open-loop optimal control problem we propose for the controller to solve at
every sampling instant k� is

minimize
U(k�)

J
(
x(k�),U(k�)

)
(5.2)

with

J
(
x(k�),U(k�)

)
= ‖x̂(k� +N |k�)‖2QN

+

N−1∑
l=0

(
‖x̂(k� + l|k�)‖2Q + ‖û(k� + l|k�)‖2R

)
,

(5.3)

where the weighting matrices QN , Q and R as well as the horizon length N ∈ N+

are design variables. Further 0 ≤ QN , 0 ≤ Q and 0 < R are symmetric matrices of
appropriate dimensions. While solving (5.2) over

U(k�) = {û(k�|k�), û(k� + 1|k�), . . . , û(k� +N − 1|k�)}, (5.4)

the controller must satisfy the process model

x̂(k� + l+ 1|k�) = Ax̂(k� + l|k�) +Bû(k� + l|k�),
x̂(k�|k�) = x(k�),

(5.5)

and the constraints
x ∈ X ⊆ Rn, u ∈ U ⊆ Rm. (5.6)

Assumption 5.2.1. The disturbance d(k) belongs to D, where D ⊂ Rr is a com-
pact set. Further, the optimization problem (5.2)–(5.6) is feasible at every sampling
instant k�.

Remark 5.2.2. If X, U and D are compact and convex polyhedra, the set of
initial conditions X0 ⊆ X, such that (5.2)–(5.6) is feasible for all x(k�) ∈ X0, is
computable. Further, X0 is a compact convex polyhedron. Conditions for feasibil-
ity at every sampling instant can be derived. See (Kerrigan, 2000; Kerrigan and
Maciejowski, 2001) for details.

Remark 5.2.3. If D is compact and X = Rn, then the set of feasible initial
conditions is X0 = Rn. Further, the optimization problem (5.2)–(5.6) is feasible at
every sampling instant k� (Kerrigan, 2000; Kerrigan and Maciejowski, 2001).

Let Assumption 5.2.1 hold. Then the optimal solution,

U∗(k�) = arg min
U(k�)

J
(
x(k�),U(k�)

)
,

exists and we may characterize it by the non-linear operator G as

G
(
x̂(k� + l|k�)

)
� û∗(k� + l|k�), l ∈ {0, 1, . . . , N − 1}.
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Definition 5.2.4. The constraints are said to be inactive if x̂(k+l|k) and û(k+l|k)
belong to the interior of their constraint sets, i.e.,

x̂(k + l|k) ∈ int(X), G
(
x̂(k + l|k)) ∈ int(U), l ∈ {0, 1, . . . , N − 1}.

We may now characterize the solution of our open-loop optimization problem.

Lemma 5.2.5. Let the constraints be inactive. Then it holds that

G
(
x̂(k + l|k)) = Klx̂(k + l|k), l ∈ {0, 1, . . . , N − 1}.

where
Pl = ATPl+1A+Q +ATPl+1BKl, PN = QN

Kl = −(BTPl+1B +R)−1BTPl+1A.

Proof. See (Bertsekas, 1995).

Lemma 5.2.6. Let the constraints be inactive. Further let QN satisfy the Riccati
Equation

QN = ATQNA+Q−ATQNB(BTQNB +R)−1BTQNA.

Then it holds that

G
(
x̂(k + l|k)) = Kx̂(k + l|k), l ∈ {0, 1, . . . , N − 1}

where
K = −(BTQNB +R)−1BTQN .

Further it holds that A+BK is Schur.

Proof. See (Bertsekas, 1995).

5.3 Event-Triggered MPC

Information is sent over the feedback link only if the event condition, which is
discussed next, is satisfied. The time instants at which this happens are denoted by
k�, where � ∈ N is the event counter. In the following it is assumed that the first
event � = 0 occurs at time k0 = 0.

An event is generated at time k�+1 whenever either the difference between the
process state x(k) and the state x̂(k|k�) predicted by the mpc exceeds a certain
threshold, or the prediction horizon N has expired, i.e., when

|x(k) − x̂(k|k�)| ≥ ē or k ≥ k� +N, (5.7)

where ē ≥ 0 is the threshold parameter chosen by design.
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From this we may formulate our event-triggered mpc controller as in Algo-
rithm 5.1. The memory variable klatest is the time instant when the latest event
occurred.

Algorithm 5.1 Event-Triggered MPC
k := 0
while k < ∞ do

if |x(k)− x̂(k|klatest)| ≥ ē or k ≥ klatest +N or k = 0 then
1. The sample x(k) of process P is transmitted by the sensor S to the

controller C.

2. Using x(k) the controller C computes

U∗(k) = argmin
U(k)

J
(
x(k),U(k))

and the resulting predicted state trajectory X̂ (k).

3. The time instant of the latest event klatest is assigned the value of the
current time, i.e., klatest := k.

4. a) The controller C sends U∗(klatest) to the actuator A which applies
u(k) = û∗(k|klatest) = û∗(k|k) to the process P given by (5.1).

b) The controller C sends X̂ (klatest) to the actuator A which now
uses these predictions to check the event condition.

else
The actuator A applies u(k) = û∗(k|klatest), contained in the latest received
U∗(klatest), to the process P given by (5.1).

end if
k := k + 1

end while

Introducing a change of variable k = k�+ l with l ∈ {0, 1, . . . , N} the prediction
error between two event times is given by

e(l, k�) = x(k� + l)− x̂(k� + l|k�). (5.8)

Letting dmax be the worst disturbance over all times,

dmax = max
d∈D

|d|,

we may bound the error according to the following theorem.

Theorem 5.3.1. The prediction error e(l, k�) in (5.8) is bounded as

|e(l, k�)| ≤ emax, ∀k�, l ∈ {0, 1, . . . , N}
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where
emax = ‖A‖ē+ ‖E‖dmax.

Proof. The evolution of the prediction error is given by

e(l + 1, k�) = x(k� + l + 1)− x̂(k� + l + 1|k�)
= Ax(k� + l) +Bu(k� + l) + Ed(k� + l)−Ax̂(k� + l|k�)− Bu(k� + l)

= Ae(l, k�) + Ed(k� + l),

with e(0, k�) = 0 according to (5.5) and (5.8).
Consider a given time instant k′ = k� + l′ such that no event is generated, i.e.,

|e(l′, k�)| < ē. There always exists such a k′ as l′ = 0 is allowed. Now assume that
d(k� + l′) is such that the error at the next time instant |e(l′ + 1, k�)| ≥ ē, so that
an event is generated. Then largest value this error could take is

max
d(k�+l′)

|e(l′ + 1, k�)| = max
d(k�+l′)

|Ae(l′, k�) + Ed(k� + l′)|

≤ max
d(k�+l′)

|Ae(l′, k�)|+ max
d(k�+l′)

|Ed(k� + l′)|

≤ ‖A‖ē+ ‖E‖dmax = emax.

5.4 Time-Triggered MPC

For comparison with our proposed event-triggered mpc we also study the behavior
of classical time-triggered mpc, whose operation is described in Figure 5.2. As seen
in the figure, the state is here communicated every time instant k. Letting the time-
triggered mpc solve the same open-loop optimal control problem as our proposed
event-triggered mpc gives Algorithm 5.2.

Algorithm 5.2 Time-Triggered MPC
k := 0
while k < ∞ do

1. The sample x(k) of process P is transmitted by the sensor S to the
controller CT .

2. Using x(k) the controller CT computes

U∗(k) = argmin
U(k)

J
(
x(k),U(k)).

3. The controller CT sends û∗(k|k) to the actuator A which applies u(k) =
û∗(k|k) to the process P given by (5.1).

4. k := k + 1
end while
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Figure 5.2: The time-triggered control loop.

5.5 Stability Analysis

We continue with studying the stability of both the time-triggered mpc and our
proposed event-triggered mpc. It turns out that we may use the results from the
time-triggered mpc to characterize our event-triggered scheme.

5.5.1 Time-Triggered MPC

Theorem 5.5.1. Let Assumption 5.2.1 hold. Further let there exist K such that

1. limk→∞
∣∣G(x̂(k|k))−Kx̂(k|k)∣∣ = 0

2. A+BK is Schur.

Then, applying Algorithm 5.2 stabilizes the closed-loop system. Further it holds that

lim
k→∞

|x(k)| ≤ rt(dmax),

where

rt(dmax) =

∞∑
i=0

∥∥∥(A+BK
)i
E
∥∥∥ dmax. (5.9)

Proof. According to Assumption 5.2.1 the problem is feasible and the controller is
able to keep the system within its specified constraints. With u(k) = G

(
x̂(k|k))

and x̂(k|k) = x(k) at each sampling instant k, the closed-loop system is given by

x(k + 1) = Ax(k) + BG
(
x̂(k|k))+ Ed(k)

= Ax(k) + BKx̂(k|k) + Ed(k) +B
(
G
(
x̂(k|k))−Kx̂(k|k)

)
=
(
A+BK

)
x(k) + Ed(k) +B

(
G
(
x̂(k|k))−Kx̂(k|k)

)
.
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As k → ∞, the state x(k) is given by

lim
k→∞

|x(k)| = lim
k→∞

∣∣∣∣∣∣Ākx0 +

k−1∑
j=0

Āk−1−jEd(j) +

k−1∑
j=0

Āk−1−jBΔ(j, j)

∣∣∣∣∣∣
where Ā = A + BK and Δ(j, j) = G

(
x̂(j|j)) − Kx̂(j|j). By assumption we have

that limk→∞
∥∥Āk

∥∥ = 0 and limk→∞ |Δ(k, k)| = 0. Using this we have

lim
k→∞

|x(k)| ≤ lim
k→∞

k−1∑
j=0

∣∣Āk−1−jEd(j)
∣∣ ≤ lim

k→∞

k−1∑
j=0

∥∥Āk−1−jE
∥∥ dmax.

With the change of variables i = k − 1− j, this gives

lim
k→∞

|x(k)| ≤
∞∑
i=0

∥∥ĀiE
∥∥ dmax,

as stated in the theorem.

Remark 5.5.2. If Algorithm 5.2 is able to drive the system into a region where
the constraints are inactive, Lemma 5.2.5 implies that the first requirement on K in
Theorem 5.5.1 is guaranteed to hold, with K = K0. However, it does not guarantee
that A + BK is Schur. This property may be inferred by restricting QN to fulfill
certain properties, cf., Lemma 5.2.6.

Remark 5.5.3. For robust mpc the reader is referred to (Rossiter et al., 1998;
Chisci et al., 2001; Marruedo et al., 2002; Mayne et al., 2005; Kim et al., 2006;
Trodden and Richards, 2006; Limon et al., 2010), where the convergence analysis
is primarily carried out by showing that a Lyapunov function decreases over time
despite the influence of unknown disturbances.

5.5.2 Event-Triggered MPC

Theorem 5.5.4. Let Assumption 5.2.1 hold. Further let there exist K such that

1. limk→∞
∣∣G(x̂(k|k�))−Kx̂(k|k�)

∣∣ = 0

2. A+BK is Schur.

Then, applying Algorithm 5.1 stabilizes the closed-loop system. Further it holds that

lim
k→∞

|x(k)| ≤ re(dmax, ē),

where

re(dmax, ē) =

∞∑
i=0

∥∥∥(A+BK
)i
E
∥∥∥ dmax +

∞∑
i=0

∥∥∥(A+BK
)i
BK

∥∥∥ emax

= rt(dmax) + rδ(dmax, ē).
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Proof. According to Assumption 5.2.1 the problem is feasible and the controller is
able to keep the system within its specified constraints. The closed-loop system is
given by

x(k + 1) = Ax(k) +BG
(
x̂(k|k�)

)
+ Ed(k)

= Ax(k) +BKx̂(k|k�) + Ed(k) +B
(
G
(
x̂(k|k�)

)−Kx̂(k|k�)
)
.

Using the change of variables k = k� + l and the prediction error (5.8), this may be
written as

x(k + 1) =
(
A+BK

)
x(k) + Ed(k) +B

(
G
(
x̂(k|k�)

)−Kx̂(k|k�)
)
−BKe(l, k�).

As k → ∞, the state x(k) is given by

lim
k→∞

|x(k)| = lim
k→∞

∣∣∣∣∣∣Ākx0 +

k−1∑
j=0

Āk−1−jEd(j)

+

k−1∑
j=0

Āk−1−jBΔ(j, k�)−
k−1∑
j=0

Āk−1−jBKe(j − k�, k�)

∣∣∣∣∣∣
where Ā = A+BK and Δ(j, k�) = G

(
x̂(j|k�)

)−Kx̂(j|k�). By assumption we have
that limk→∞

∥∥Āk
∥∥ = 0 and limk→∞ |Δ(j, k�)| = 0. Using this we have

lim
k→∞

|x(k)| ≤ lim
k→∞

k−1∑
j=0

∣∣Āk−1−jEd(j)
∣∣+ lim

k→∞

k−1∑
j=0

∣∣Āk−1−jBKe(j − k�, k�)
∣∣ .

By using Theorem 5.3.1, this can be bounded by

lim
k→∞

|x(k)| ≤ lim
k→∞

k−1∑
j=0

∥∥Āk−1−jE
∥∥ dmax + lim

k→∞

k−1∑
j=0

∥∥Āk−1−jBK
∥∥ emax.

With the change of variables i = k − 1− j, this gives

lim
k→∞

|x(k)| ≤
∞∑
i=0

∥∥ĀiE
∥∥ dmax +

∞∑
i=0

∥∥ĀiBK
∥∥ emax,

as stated in the theorem.

Remark 5.5.5. If Algorithm 5.1 is able to drive the system into a region where the
constraints are inactive, Lemma 5.2.6 gives a method to choose QN which results
in a K fulfilling the requirements in Theorem 5.5.4.
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Remark 5.5.6. Theorem 5.5.4 shows how the event-triggered mpc approximates
the time-triggered implementation through the parameter emax depending on the
event threshold ē and the maximal disturbance dmax. By increasing ē the event
condition (5.7) is trigged less often leading to a lower communication rate, however
the bound rδ(dmax, ē) is increased. By lowering ē the event condition is trigged
more often leading to a higher communication rate, resulting in a lowering of the
bound rδ(dmax, ē).

Corollary 5.5.7. Let the assumptions of Theorem 5.5.4 hold. Further let

|Ed(k)| ≥ ē, ∀k.
Then, applying Algorithm 5.1 stabilizes the closed-loop system. Further it holds that

lim
k→∞

|x(k)| ≤ rt(dmax)

where rt(dmax) is given by (5.9) in Theorem 5.5.1.

Proof. Assume that an event has been generated at time k� and hence x̂(k�|k�) =
x(k�). A new event is detected at the next time instant k� + 1 if

|e(1, k�)| = |x(k� + 1)− x̂(k� + 1|k�)| = |Ed(k�)| ≥ ē

holds. If d(k�) satisfies this condition for all k� ∈ N, an event is generated at each
time instant k. Therefore, the event-triggered implementation in this case applies
u(k) = G

(
x̂(k|k)) to the process (5.1), just as the time-triggered mpc does. Thus

recovering the same bound on x(k).

Remark 5.5.8. The result in Corollary 5.5.7 shows that making the event thresh-
old small enough with respect to the disturbance d(k) results in that the event-
triggered mpc recovers the performance and behavior of the time-triggered mpc.
It follows from the proof that the event-triggered mpc in this case gives the same
controls as the time-triggered mpc.

Remark 5.5.9. Methods to analyze the feasibility and convergence properties of
event-triggered mpc subject to exogenous disturbances can be found in (Eqtami
et al., 2011; Bernardini and Bemporad, 2012).

5.5.3 Relations to Model-Based Event-Triggered Control

Without constraints, the optimal control problem (5.2)–(5.6) is equivalent to a
state-feedback controller which can be explicitly determined, see Lemma 5.2.5.

By incorporating the mpc component on the actuator node this method shows
some interesting relations to existing event-triggered control schemes denoted model-
based event-triggered control, see (Lunze and Lehmann, 2010; Garcia and Antsaklis,
2011) for the continuous-time case and (Grüne et al., 2010) for the discrete-time
scenario. In fact, when considering no constraints the input provided by the mpc

is the same as the input provided by a time-triggered state-feedback loop when the
controller matrix K has been obtained from the optimal control problem (5.2)–(5.6).
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5.6 Simulation Evaluation

To illustrate the proposed theory we proceed with a simulation study. We study
the control of the process

x(k + 1) =

(
1 −0.5

0.5 0

)
x(k) +

(
0.5

0

)
u(k) +

(
0.25

0

)
d(k), x(0) = x0

subject to the constraints

−2 ≤ u ≤ 2, −10 ≤ xi ≤ 10, i = 1, 2.

The prediction horizon is chosen to be N = 10 with the weights

Q =

(
1 0

0 1

)
, R = 0.1.

From this we may use Lemma 5.2.6 to compute a suitable final state weight QN

and corresponding state-feedback gain K resulting in

QN =

(
1.554 −0.151

−0.151 1.080

)
, K =

(
1.513 −0.795

)
.

The event threshold for the event-triggered implementation is set to ē = 0.5. Con-
sidering these parameters the assumptions in Theorem 5.5.1 and Theorem 5.5.4 are
satisfied.

5.6.1 Process subject to Small Disturbances

First we study the case when the system is subject to a small disturbance

d(k) =

{
0, for 0 ≤ k ≤ 20,

0.5, for k > 20.

The resulting behavior for the time-triggered mpc is given in Figure 5.3(a) and
for the event-triggered mpc in Figure 5.3(b). For k ≤ 20 the disturbance is zero
and, hence, the state-trajectory xet(k) of the event-triggered scheme and the state-
trajectory xtt(k) of the time-triggered scheme coincide as the state predicted by
the event-triggered mpc and the state measured by the time-triggered mpc are the
same. The two events generated in the event-triggered scenario during this period,
at k1 = 10 and k2 = 20, are due to that the prediction horizon of the event-triggered
mpc expires. At k = 20, the magnitude of the disturbance changes and the following
events are caused by the deviation of the predicted state versus the measured state.
As seen in Figure 5.4 this occurs every sixth time step.
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(a) Time-triggered mpc.
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(b) Event-triggered mpc.

Figure 5.3: Behavior of event-triggered and time-triggered mpc for a small disturbance.
States (blue and green), disturbance (red) and event times (black).
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Figure 5.4: The prediction error |x(k)− x̂(k|k�)| (black), the event threshold ē (blue)
and the prediction error bound emax (red).

As seen in Figure 5.4 and expected from Theorem 5.5.4 we, for large k, have that
the upper bound on |xet(k)|, corresponding to the event-triggered mpc, is larger
than the upper bound on |xtt(k)|, corresponding to the time-triggered mpc. Here
one should keep in mind that the event-triggered algorithm only uses 17% of the
communication and computational resources compared to the time-triggered mpc,
as it only communicates every sixth time instant.

5.6.2 Process subject to Large Disturbances

We continue our study with the case where the system is subject to a large distur-
bance

d(k) = 2.5, ∀ k ⇒ |Ed(k)| = 0.625 ≥ ē, ∀ k.
The resulting behavior when controlling the process using time-triggered mpc is
given in Figure 5.5(a), and the behavior using event-triggered mpc is given in
Figure 5.5(b). As expected from Corollary 5.5.7 they give the same performance,
as the event-triggered mpc communicates and re-computes the control law every
time instant k.
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Figure 5.5: Behavior of event-triggered and time-triggered mpc for a large disturbance.
States (blue and green), disturbance (red) and event times (black).



5.7. Summary 83

5.7 Summary

The chapter investigated the stationary behavior of event-triggered mpc and eval-
uated the difference to a conventional time-triggered implementation. It was shown
how the event-triggered approach is affected by the event condition as well as the
disturbance magnitude. The analytical results were illustrated by simulations.





Chapter 6

Model Predictive Control based on
Wireless Sensor Feedback

Here the design and experimental validation of a control system with both
wireless sensor and actuator links is presented. The control system is de-
signed for, and the experiments are performed on, a laboratory process

built at the University of Siena, Italy. The process, shown in Figure 6.1, consists of
a transport belt where moving parts equipped with wireless sensors are heated by
four infrared lamps.

Figure 6.1: The controlled laboratory process.
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The studied process is motivated by heating processes in the plastic and printing
industry, where one wants to move parts over a transport belt and at the same time
have them follow a specific temperature profile.

The process is actuated by moving the transport belt and by switching the
heating lamps on or off. This switching property introduces interesting hybrid dy-
namics in the process, which we will handle using hybrid model predictive control
(mpc), introduced in (Bemporad and Morari, 1999). The reason for using hybrid
mpc is that it explicitly takes the hybrid nature of the system into account as well
as handles physical constraints on states and inputs.

Since mpc is computationally intensive, the amount of computational power
required can not be assumed to be available close to the process. Instead a wireless
control structure will support the de-localization of the mpc to a remote computer
able to handle the computations. Both the measurements from the process to the
mpc and the control signals from the mpc to the process will be transmitted over
wireless links. For this, a particular control systems architecture will be used.

The chapter is outlined as follows. First the process is described in further detail
and a model is developed to be used for the mpc design. After that, the control
system architecture is presented, together with the control design. Following that,
the details regarding the physical implementation are presented. The chapter is
then concluded by simulations and results from experiments on the physical control
system.

6.1 Process Description and Modelling

We start by describing the laboratory process, and derive a control and estimation
oriented hybrid dynamical model of the same.

6.1.1 Physical Process

The main components of the process, whose schematics are shown in Figure 6.2,
are the belt actuated by a motor equipped with an angular encoder, four heating
lamps placed over the belt and a mote placed on the belt, emulating the part to
be heat treated. The heating lamps are placed in a row and two on–off switches
are available to actuate them. The first switch controls lamps 1 and 3, the second
switch, lamps 2 and 4. The lamps are grouped to reduce the complexity of the
model and of the control algorithm. The mote is a temperature sensor equipped
with a radio device able to transmit its temperature reading.

To derive a dynamic model of the process, experiments where performed which
showed that the system is governed by the differential equations

Ṫ1 = −α
(
T1 − Tss(p, u1, u2)

)
,

Ṫ2 = −β
(
T2 − T1),

ṗ = γ(uc),

(6.1)
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Figure 6.2: Schematics of the process.

where T1 ∈ R is interpreted as the sensor casing temperature, T2 ∈ R is interpreted
as the sensor temperature and p ∈ R is the position of the mote on the belt.
The control inputs are uc ∈ R, u1, u2 ∈ {0, 1}, affecting the system through the
static nonlinearity Tss : R3 → R. The parameters α, β > 0 are physical constants,
identified from the experimental data. The continuous signal vc = γ(uc) corresponds
to the mote velocity, which is obtained through a static nonlinear mapping γ(·) of
the control command. As regards the discrete input signals, u1 = 0 when the lamps
1 and 3 are off and u1 = 1 when they are on. The signal u2 governs the lamps 2
and 4 in the same way. Tss(p, u1, u2) is the steady-state temperature of the sensor
casing at position p with the lamps switches as (u1, u2) and is given by

Tss(p, u1, u2) = f1(p)u1 + f2(p)u2 + Tamb, (6.2)

where Tamb ∈ R is the ambient temperature and fi(p) : R → R, i ∈ {1, 2} describe
the increase in steady-state temperature at position p obtained by turning on the
ith switch.

6.1.2 Hybrid Model

In order to use hybrid mpc, as described in (Bemporad and Morari, 1999), we need
to approximate the continuous-time model (6.1) and the nonlinearity Tss in (6.2)
by a piecewise affine hybrid model. To do this we introduce an auxiliary variable χ
to model a piecewise affine approximation of (Tss−Tamb). First we partition R into
� intervals {I1, I2, . . . , I�} and approximate fi, i = 1, 2 in (6.2), by the functions

χi(p(t)) =

{
Ki

jp(t) + hi
j if ui = 1, p ∈ Ij , j = 1, . . . , �

0 otherwise,

i = 1, 2,

χ(p(t)) =χ1(p(t)) + χ2(p(t)).

(6.3)

The notation χ(p(t)) is used to highlight that χ depends on the position p, which
changes in time. For simplicity of notation we will from now on use the notation



88 Model Predictive Control based on Wireless Sensor Feedback

0  0.3 0.6 0.9 1.2 1.5
 0

 4

 8

12

16

20

24

28

32
T
s
s
−
T
a
m

b
[°C

]

p [m]

Figure 6.3: Measured Tss − Tamb (solid) and its piecewise affine approximation
(dashed).

χ(t) instead. The effect of Tamb will be introduced later as a measured disturbance.
The nonlinear function (Tss −Tamb) and its approximation is shown in Figure 6.3.

The continuous-time model is sampled with period Ts = 250ms giving the
following discrete-time system

x(k + 1) =

⎛
⎜⎝ a11 0 0

a21 a22 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
Φ

x(k) +

⎛
⎜⎝ b11 0

b21 0

0 b32

⎞
⎟⎠

︸ ︷︷ ︸
Γ

(
χ(k)

vc(k)

)
,

y(k) =

(
0 1 0

0 0 1

)
︸ ︷︷ ︸

C

x(k),

where x = (T1, T2, p)
T , χ(k) is a sampled version of (6.3) and the belt velocity

vc = γ(uc) is used as system input.
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Figure 6.4: The wireless control architecture.

6.2 Control System Architecture

To be able to place the mpc computations in a computer located away from the
process we use the control system architecture shown in Figure 6.4. The solid boxes
are the functional blocks while the dashed boxes show the physical platforms on
which they are implemented. Next we describe the architecture further.

6.2.1 Control System

The architecture described in Figure 6.4 is called the reference governor approach,
see (Bemporad et al., 1997; Gilbert and Kolmanovsky, 1999), and has previously
been studied in the context of unreliable network links in (Bemporad, 1998). As
seen, this is a cascade type of control architecture where the process is actuated by a
local controller at the process. The local controller in turn receives its reference from
the remotely executed hybrid mpc which computes the optimal input commands,
based on the estimated system states received from the observer. These optimal
commands are then sent over a wireless channel to the local controller.

By this the computational power required to solve the optimization problem
of finding the optimal inputs for the desired performance is moved away from the
process to a powerful computer located at a base station. The local controller is
computationally light and embedded in, or placed close to, the actuator where it
performs low level control tasks.

6.2.2 Wireless Networks

Also shown in Figure 6.4 are the two networks used to support the de-localization
of the remote mpc from the process site. Measurements are sent from the process
to the observer over a wireless sensor network implemented on the network stan-
dard ieee 802.15.4, while the commands from the mpc to the local controller are
communicated over wlan implemented on ieee 802.11g.
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We model these networks by switches turning communication on or off, so that
data sent over the network is either received or lost. Following the notation in
Figure 6.4 and letting ε denote void or ”no data” we get

û(k) =

{
u(k) Command from controller received
ε Command from controller lost

ŷ(k) =

{
y(k) Command from sensor received
ε Command from sensor lost

where u(k) and y(k) are the outputs from the mpc and process respectively and
û(k) and ŷ(k) are the control command respectively the sensor value received after
transmission.

6.2.3 Compensating for Packet Losses

To overcome packet losses in the wireless transmission, the system implements two
different methods. If a command from the mpc to the local controller is lost, the
local controller applies a hold mechanism giving û(k) = û(k − 1). In the case that
a sensor packet is lost the observer, see Section 6.3.3, will evolve in open-loop to
predict the states of the system, much similar to the behavior of the poc described
in Chapter 3.

6.3 Control System Design

We now move on to synthesize the different parts of the control system and the
involved controllers. We also describe the hybrid mpc algorithm.

6.3.1 The Local Controller

The local controller is divided into two parts. The first is a signal conversion which
generates the motor commands ûc(k) from the commanded belt velocity v̂c(k) by
performing the inversion ûc(k) = γ−1

(
v̂c(k)

)
. The second part of the controller is a

feedback component in the belt motor servo which rejects disturbances caused by
varying mass on the belt and variable friction.

6.3.2 The Hybrid MPC

To apply hybrid mpc as we want, the hybrid model developed in Section 6.1.1 needs
to be extended by two additional states. The first one is the ambient temperature
Tamb in (6.2), which is assumed constant. The second additional state is the ”input
memory” state xu, used to weight the acceleration of the belt in the cost. The
dynamics of xu are defined by xu(k + 1) = vc(k). The acceleration at time k for
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a given input vc(k) can then be computed by backward Euler approximation as(
vc(k)− xu(k)

)
/Ts. The extended system model becomes

x(k + 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 0 0 1 0

a21 a22 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ x(k) +

⎛
⎜⎜⎜⎜⎜⎜⎝

b11χ(k)

b11χ(k)

b32vc(k)

0

vc(k)

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

y(k) =

(
0 1 0 0 0

0 0 1 0 0

)
x(k),

(6.4)

where x = (T1, T2, p, Tamb, xu)
T .

In order to apply hybrid mpc, the system model in (6.4) must be formulated as
a mixed logical dynamical (mld) system as described in (Bemporad and Morari,
1999). How this conversion can be made is detailed further in Section 6.4.3. Con-
verting (6.4) one get a mld system as

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k),

y(k) = Cx(k),

E2δ(k) + E3z(k) � E1u(k) + E4x(k) + E5,

(6.5)

where u = (vc, u1, u2)
T ∈ R × {0, 1}2 is the input vector and z(k) ∈ R22 and

δ(k) ∈ {0, 1}10 are continuous and binary auxiliary variables, respectively. The
auxiliary variables describe the piecewise affine dynamics given by (6.3).

Using this mld model we can now formulate the hybrid mpc based on the
following optimization problem, solved at each time step k,

min J({u(k + n), δ(k + n|k), z(k + n|k)}N−1
0 , x(k)) �

qρρ
2 +

N−1∑
n=0

(
qz

(
1

Ts

)2 (
vc(k + n)− xu(k + n|k)

)2
+ qvcvc(k + n)2 + ‖y(k + n|k)− yr‖Qy

)
(6.6)

subject to (6.5) and⎛
⎜⎝ 20

20

0

⎞
⎟⎠ �

⎛
⎜⎝ T1(k + n|k)

T2(k + n|k)
p(k + n|k)

⎞
⎟⎠ �

⎛
⎜⎝ 50

50

1.2

⎞
⎟⎠ , n = 1, . . . , N

−0.1 � vc(k + n|k) � 0.1, n = 0, . . . , N − 1

u1(k + n|k), u2(k + n|k) ∈ {0, 1}, n = 0, . . . , N − 1,
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where distances are expressed in m, velocities in m/s and temperatures in ◦C.
The tuning parameters of the hybrid mpc (6.6) are chosen as

N = 4, qρ = 103, qvc = 2, qz = 1, Qy =

(
0.01 0

0 0.6

)

according to the following rationales: We want to track the position and the tem-
perature reference and at the same time keep the state in a predefined “safe” set,
that excludes high and low temperatures and excessive velocities. The acceleration
and velocity of the belt should be low in order to reduce power consumption and
avoid violent dynamics that cause wear.

The reference on the belt velocity vc is set to 0, favoring light actuation of
the belt. The output reference profile yr ∈ R2 defines the desired behavior of the
system. The length of the horizon N affects the performance of the controller. A
longer horizon gives a smoother behavior and a shorter one gives a more aggressive
controller. A longer horizon also gives a more complex optimization problem, hence
the prediction horizon N is chosen by trading off between the performance and the
available computational power.

The hybrid mpc executes the following operations at each time step k:

1. The system output ŷ(k) is measured and the state estimate x̂(k) is computed;

2. The optimal control problem (6.6) is solved with x(k|k) = x̂(k);

3. The first optimal input u∗(k) is applied to the system as the current control
u(k).

6.3.3 Observer

Since only the belt position p and the sensor temperature T2 are measurable we
need an observer to estimate the system states. To observe the states we use a
reduced order nonlinear Luenberger observer for simplicity. It is given by

x̂(k + 1|k + 1) = Φx̂(k|k) + ξ(k) +K
[
ŷ(k + 1)− C

(
Φx̂(k|k) + ξ(k)

)]
,

ξ(k) =

⎛
⎜⎝ b11χ(k|k)

b21χ(k|k)
Tsvc(k)

⎞
⎟⎠ , K =

⎛
⎜⎝ k11 k12

1 0

0 1

⎞
⎟⎠ ,

(6.7)

where k11 = 5, k22 = 0.
If the packet at time k is lost, the estimation evolves in open-loop so that (6.7)

becomes x̂(k+1|k+1) = Φx̂(k|k)+ ξ(k). This is much like the behavior of the poc

in Chapter 3 which also updates its internal states if the measurement is received
and evolves in open-loop if it is lost.
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6.4 Implementation

As mentioned earlier, Figure 6.4 shows the control system architecture and present
both the functional blocks and the physical platforms which implement them. This
section describes the implementation of the system infrastructure further. First the
hardware platforms are presented and after that we present the software running
on them. Finally the controller implementation is discussed.

6.4.1 Hardware Architecture

The hardware architecture of the system is shown in Figure 6.5. The mpc and the
observer runs in the Host pc, which is a 1.2GHz Pentium laptop, equipped with
an integrated ieee 802.11g wlan card. The local controller runs in the Target pc,
which is a Pentium 133MHz. To enable communication with the Host pc, the Tar-
get pc is connected via ethernet lan to a wlan router. To interface the Target pc

with the process, a data acquisition (daq) board from National Instruments is used.
The process belt is moved using a belt roller with an encapsulated servo motor. An
angular encoder on the belt measures the velocity. The lamps are controlled using
two relays, one for each pair of lamps, to turn on and off their supply currents. The
encoder and all the actuators are connected to the Target pc through the daq-
board. The motes moving on the belt are Tmote Sky wireless sensors from Moteiv
(Moteiv Corporation, 2007) equipped with temperature sensors, a low-power 8MHz
16-bit microprocessor and a ieee 802.15.4 radio transceiver. The mote placed on the
belt measures its own temperature and communicates it to another mote connected
to the usb-port of the Host pc.
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Figure 6.6: The software architecture.

6.4.2 Software Architecture

The software architecture of the system is shown in Figure 6.6. The control appli-
cation consists of a distributed implementation over four platforms: Two of these
are implemented on Tmote Sky motes and two are implemented on pcs.

The Host pc runs Microsoft Windows xp. On top of this, it runs matlab 7.1,
and the hybrid toolbox v1.1.0 (Bemporad, 2003) for running the mpc. The
underlying optimization software used in the execution of the mpc is cplex 9.0
(Ilog, Inc., 2004). Concurrently to the mpc, the Host pc runs a Virtual com

software, which reads the usb-port of the Host pc Tmote and abstracts it as a
virtual rs-232 com-port. This virtual com port is in turn read by a Java application
which presents the data in a suitable matlab format. We simply denote the software
abstraction of the Host pc as Host.

The Target pc runs xPC-Target real-time kernel (The MathWorks Inc., 2000),
with an application developed in simulink and compiled with Real-Time Work-
shop. The xPC-Target toolbox provides a transparent way to use a standard pc,
in our case the Target pc, as a micro-controller. It also provides a hardware abstrac-
tion for tcp/ip communication with the Host as well as an abstraction towards the
daq-board. The full software abstraction of the Target pc from the wlan router
to the daq-board is referred to as the Target.

Both the Tmote Sky mote on the belt and the Tmote Sky mote connected to
the Host pc are running TinyOS with custom applications. The Tmote on the belt
is running a sensor application software, which samples the onboard temperature
sensor and sends the data to the Host pc Tmote. The Host pc Tmote runs a
receiver application software which listens to these packets and forwards them to
the usb-port on the Host.

6.4.3 Controller Implementation

The hybrid mpc is implemented on the Host within the hybrid toolbox for mat-

lab. The system model (6.4) is written in hysdel (Torrisi and Bemporad, 2004)
and automatically converted by the associated compiler into the mld system (6.5).
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The optimal control problem (6.6) is formulated using the hybrid toolbox and
included into a simulink model as an S-function. The resulting optimization prob-
lem consists of 141 optimization variables, 93 continuous and 48 binary, and 585
mixed-integer linear inequalities. The average time required to solve the optimiza-
tion problem using the optimization software cplex is 17ms, with a worst-case
computation time of about 125ms. After the control command has been computed,
it is sent to the Target via the wireless tcp/ip link.

From a functional point of view, the Target and the motor electronics implement
the local controller. The Target pc computes the required motor input voltage to
track the belt velocity commands received from the remote controller. To compen-
sate for packet losses in the Host to Target link it also implements a hold function,
which holds the last known commands and applies them if no new commands are
received. Further, it integrates the encoder signal to generate the position mea-
surements sent to the Host. The feedback component of the local controller is a
servo-controller implemented in the motor electronics.

6.5 Experimental Results

In this section we present experimental results of the process with the hybrid mpc

designed in Section 6.3.2. The experiments aim at evaluating the performance of the
control architecture and the impact of the wireless communication on the system
behavior.

First we analyze the behavior with respect to data losses in the communication
link between the mpc and the local controller, denoted the forward channel, where
the input commands are sent over the wlan network. Then we look at data losses
in the sensor to mpc link, denoted the backward or feedback channel, where the
measurements are sent over the wireless sensor network.

6.5.1 Losses in the MPC to Local Controller Communication
Link

For the forward link case, we use a constant reference yr = [35, 0.7]T for the
temperature and position respectively. Since the wlan network used is very reliable,
data losses are introduced on purpose by discarding packets according to a data-
loss profile obtained from a sensor network. In this way we are able to evaluate the
effects of using a less reliable network than the wlan.

Figure 6.7 and Figure 6.8 show the results when the system is simulated as
described above. The deviation from the behavior without losses that occurs around
t = 150 s is due to a massive packet drop burst. The position is not affected by
the drops since the input uc is in steady state, i.e., constant. Hence the backup
control command is equal to the control action of the system without losses, since
the policy is to hold the last known value if the present is lost. Performing the
same experiment on the true system with the same packet loss profile one gets the
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results in Figure 6.9 and Figure 6.10. Besides the effect of the packet loss, errors
are now introduced by external noise and modelling imperfections. In particular,
the input behavior is more aggressive due to the piecewise affine approximation of
(6.2). As a consequence the controller keeps switching the lamps on and off and the
temperature chatters around the equilibrium in a limit cycle. However, the results
are still close to the behavior without losses.
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Figure 6.7: Simulations with losses in the forward channel: Simulated behavior with
losses (solid) and simulated behavior without losses (dashed).
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Figure 6.8: Simulations with losses in the forward channel: Simulated behavior with
losses (solid) and simulated behavior without losses (dashed).
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Figure 6.9: Experiments with losses in the forward channel: Experimental behavior
with losses (solid) and simulated behavior without losses (dashed).
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Figure 6.10: Experiments with losses in the forward channel: Experimental behavior
with losses (solid) and simulated behavior without losses (dashed).
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6.5.2 Losses in the Sensor to MPC Communication Link

Now let us consider the case where losses occur in the feedback channel between
the sensor and the mpc. In these experiments, the temperature reference is a square
wave with maximum 42 ◦C, minimum 38 ◦C and frequency 3mHz. The position ref-
erence is also a square wave with maximum 0.9m, minimum 0.5m and frequency
10mHz. The initial position is 0m and the initial temperature is the ambient tem-
perature.

To induce packet loss, an extra sensor node is used to disturb the communication
of the sensor on the belt by sending large amounts of data into the network. Even
though the base station is able to discard the data sent by this extra sensor, the
extra traffic and processing required will cause packet loss. If a measurement is
lost, the process state estimate is updated by letting the state observer evolve in
open-loop, as described in Section 6.3.

Two experiments are performed, one with low packet loss and one with high
packet loss. In the low loss case the packet loss is induced as described above. In
the high packet loss case the sensor antenna is also covered with aluminium foil,
disrupting the radio signals, to increase the number of lost packets.

Low Loss Scenario

We first study the low loss scenario. Figure 6.11 shows the output as perceived by the
mpc. That is, it shows the measurement from the sensor if it is received, otherwise
it shows the prediction from the observer. The control signal computed by the mpc

and sent to the local controller is shown in Figure 6.12. As seen the temperature
reference tracking is quite good with small oscillations around the set-point. These
are due to the discrete nature of the lamp switching. The tracking of the position
reference is even better. The reason for this is that the position measurements are
sent through the more reliable wlan network. In fact, no measurements are lost in
this link during the experiment.

The sensor network communications performance is shown in Figure 6.13. Here
the temperature measurements received from the sensor are shown together with
the packet reception rate (prr). The prr(t) is computed as the ratio between
the number of received and the number of sent packets during the time interval
[t − 15 s, t + 15 s]. Here the network is shown to be relatively reliable with only
7.9% of total number of measurements lost.



102 Model Predictive Control based on Wireless Sensor Feedback

0 200 400 600 800 1000
30

35

40

45
T
1

[◦
C

]

t [s]

(a) Temperature: In case the measurement is lost the predicted value is shown.

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

p
[m

]

t [s]

(b) Position.

Figure 6.11: Experiments with losses in the feedback channel, low loss case: Temper-
ature and position (solid) and corresponding references (dashed) as perceived by the
mpc.
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Figure 6.12: Experiments with losses in the feedback channel, low loss case: Commands
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Figure 6.13: Experiments with losses in the feedback channel, low loss case: Measure-
ments received from the network.
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High Loss Scenario

We now move on to the high loss scenario. Similarly as in the low loss scenario
Figure 6.14 shows the output as perceived by the mpc. The control signal computed
by the mpc and sent to the local controller is shown in Figure 6.15.

Figure 6.16 shows the sensor network communications performance. As seen,
the packet reception rate is much lower than before with 62.8% of the temperature
measurements lost. This affects the temperature reference tracking as it appears
from Figure 6.14. In particular, the abrupt changes in the temperature value seen
by the controller reveal long bursts of missing data causing the state estimate to
diverge. As a consequence, when a measurement is finally received there is a jump
in the estimate.
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Figure 6.14: Experiments with losses in the feedback channel, high loss case: Temper-
ature and position (solid) and corresponding references (dashed) as perceived by the
mpc.
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Figure 6.15: Experiments with losses in the feedback channel, high loss case: Com-
mands issued by the mpc.
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Figure 6.16: Experiments with losses in the feedback channel, high loss case: Mea-
surements received from the network.
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6.6 Summary

This chapter has presented a hybrid mpc design for a physical process and an
experimental demonstration of remote control of the same, over wireless networks. It
was shown that data packets dropped in both forward and feedback communication
links can be handled with good results using standard hybrid mpc techniques.





Chapter 7

Conclusions

This final chapter concludes the thesis with a brief summary of the main
results, followed by some observations and interesting problems for future
research.

7.1 Summary

The thesis addressed wireless networked control systems in process industry and
how existing control structures and paradigms could be adapted to work better
when feedback measurements and actuation commands are sent over a wireless
network, subject to packet losses and communication constraints.

In Chapter 3 the predictive outage compensator (poc) was introduced. Sim-
ulation and experimental results, performed on a wirelessly controlled two-tank
process, showed that the introduction of a poc significantly could improve perfor-
mance under outage, compared to previously used compensation schemes. Methods
were derived to synthesize a poc and corresponding theoretical performance bounds
were computed. It was also shown that it is possible to achieve good performance
with a low-order implementation based on Hankel-norm approximation. Trade-offs
between achievable performance, outage length, and poc order were discussed.

In Chapter 4 a self-triggered model predictive control (mpc) algorithm was pro-
posed and studied. It proved useful for controlling multiple processes on a shared
communication network, using jointly optimal control signals and adaptive sam-
pling intervals. The proposed control law was computed explicitly and shown to
be stabilizing. It was also shown that, under mild assumptions, it was possible to
schedule all processes on the network using the proposed mpc. Simulation results
showed that the use of the presented control law may help reduce the amount
of communication, without almost any loss of performance compared to periodic
sampling.

In Chapter 5 an event-triggered mpc was presented in which the process was
controlled using open-loop optimal control sequences, updated at event times. Sta-
bility properties under input and state constraints as well as exogenous disturbances
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were derived. The performance versus communication trade-off for the proposed
mpc was evaluated in comparison with classical time-triggered mpc. Simulation
results underlined the effectiveness of the proposed scheme in terms of reducing the
communication and computational effort while guaranteeing a desired performance.

In Chapter 6 the implementation of a hybrid mpc design for control over wireless
networks was presented. It was shown that the setup is easy to tune and that the
use of hybrid mpc has several advantages. The most obvious advantage is that it
offers the possibility to handle hybrid dynamics in the system such as on–off inputs,
as well as enforce constraints on states and inputs in an explicit way. One drawback
is that hybrid mpc can be computationally intensive.

7.2 Future Work

Looking into the future, the methods and ideas presented in the thesis have the
potential to be developed and refined further. Below we list some observations and
possible topics for future research.

The poc in Chapter 3 estimates the full state of the closed-loop system. An
interesting topic for future work is to find alternative methods of using this esti-
mate. One could use a separate open-loop controller in outage, for instance. Another
problem of both practical and theoretical importance is how to generate controls
to minimize the bump in the control signal after a communication outage. These
bumps are due to integral-windup in the controller and it is of interest to inves-
tigate possible anti-windup and bumpless transfer strategies for networked control
systems. Also other implementations of the poc are possible, such as optimization
based methods or adaptive techniques.

In the self-triggered mpc developed in Chapter 4 an important idea is the intro-
duction of a cost for sampling. It would be of interest to investigate more functions
describing the cost for sampling and how they would affect the behavior of the con-
troller. Another important part of the control design is constraining the shape of
the control signal trajectory. In the current setup, only the first sample step is left
open to optimize over, while the remaining are kept at a fixed down-sampling rate.
One could imagine optimizing over several of the initial inter sample times before
reverting into a fixed down-sampling rate. An interesting topic for future research
is to further investigate the complexity and possible performance increase for such
an extended formulation. The approach also allows extensions to particular shapes
of the control commands, such as fixed-size pulses or quantized controls.

In the event-triggered mpc presented in Chapter 5, it would be of interest to
investigate how one could introduce a disturbance observer and use the estimated
disturbance when solving the open-loop optimal control problem. By such integral
action the controller should be able to achieve better performance in the presence of
disturbances. However, since the samples are only taken intermittently as decided
by the previous optimization, care needs to be taken when designing this observer
to avoid wind-up phenomena.
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