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Abstract

Control systems utilizing wireless sensor and actuator networks can be severely af-
fected by the properties of the communication links. Radio fading and interference
may cause communication losses and outages in situations when the radio envi-
ronment is noisy and low transmission power is desirable. This thesis proposes a
method to compensate for such unpredictable losses of data in the feedback control
loop by introducing a predictive outage compensator (POC). The POC is a filter to
be implemented at the receiver sides of networked control systems where it gener-
ates artificial samples when data are lost. If the receiver node does not receive the
data, the POC suggests a command based on the history of past data. It is shown
how to design, tune and implement a POC. Theoretical bounds and simulation
results show that a POC can improve the closed-loop control performance under
communication losses considerably. We provide a deterministic and a stochastic
method to synthesize POCs. Worst-case performance bounds are given that relate
the closed-loop performance with the complexity of the compensator. We also show
that it is possible to achieve good performance with a low-order implementation
based on Hankel norm approximation. Tradeoffs between achievable performance,
communication loss length, and POC order are discussed. The results are illus-
trated on a simulated example of a multiple-tank process. The thesis is concluded
by an experimental validation of wireless control of a physical lab process. Here
the controller and the physical system are separated geographically and interfaced
through a wireless medium. For the remote control we use a hybrid model predic-
tive controller. The results reflect the difficulties in wireless control as well as they
highlight the flexibility and possibilities one obtains by using wireless instead of a
wired communication medium.
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Chapter 1

Introduction

The introduction of wireless communication technology has led to that we in
today’s society are becoming more and more connected to, and exchange
more and more information with, each other. A large number of interacting

mobile embedded systems influence every day aspect of our lives. Our mobile phones
and personal computers exchange information over cellular and wireless local area
networks. Wireless appliances and systems are being used in offices and homes,
but also more and more in large-scale industrial control systems such as in utility
infrastructures and transportation networks.

In the near future it is believed that these wireless monitoring and control
systems will represent a large portion of all traffic over wireless networks. There are
some important shortcomings of today’s wireless systems that need to be overcome
to enable this second wireless revolution. This thesis discusses one such aspect,
which has to do with the imperfections of wireless communication.

In this chapter we first give an introduction to wireless control in industry and
some of the current issues. We then proceed to give motivating examples for the
use of wireless control in industry as well as for the contribution of the thesis. After
this the problem formulation is given, followed by a section on related work. The
chapter is concluded with the thesis outline and a presentation of a selection of
notation and abbreviations.

1.1 Wireless Control in Industry

Wired communication networks have been commonly used in distributed control
systems since the seventies (Samad et al., 2007). The recent advances in low-power
wireless radio and sensor technologies have enabled the engineering of a new type of
networked sensing and control systems, which are now being tested and evaluated
in industry for automation and process control (socrades, Integrated Project, EU
Sixth Framework Programme).

There are several benefits of introducing wireless networking in industrial control
applications. They can be summarized as follows:

1



2 Introduction

• Cost: Wireless links lead to reduced wiring, which constitutes a substantial
part of the development cost for many industrial plants due to the high price
of copper wires. Wireless technology also has the potential to reduce the
installation cost, since hardware installation for a wireless network is limited
to some routers and gateways.

• Flexibility: With wireless links there are fewer physical design limitations, and
it is easier to move the existing equipment as well as installing new. Thanks
to mobility and fast reconfiguration, new and better designs can be exploited
in system development and operation.

• Reliability: Connectors and wires lead to many faults in industrial control
systems, partly because of cable wear and tear. Wireless devices consequently
have a potential to reducing the downtime for these systems.

The use of wireless technology in feedback control loops raises new challenges.
The network medium introduces uncertainties such as packet loss, transmission de-
lay etc. The impact of these uncertainties on the closed-loop control system depends
on many system aspects. It has become evident that new communication protocols
and control strategies are needed for these wireless control systems (Antsaklis and
Baillieul, 2007).

The communication protocol can have severe impact on the closed-loop control
performance. For example, some communication protocols guarantee the delivery
of a message, but on the other hand give high delay variability. Other protocols
provide a less reliable communication, but ensure better delay characteristics. For
wireless networks, packet losses typically vary heavily with the radio conditions, so
if the environment is changing or the nodes are mobile, the control system needs
to handle varying network conditions. Recent standardization efforts include the
WirelessHART (HART Communication Foundation, 2007) and the ISA100 stan-
dards (International Society of Automation, 2009) wireless network communication
protocols designed for process automation applications.
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1.2 Motivating Examples

To illustrate the use of wireless control and some of the problems that the wireless
network introduces, we give examples. The first is a motivation for the use of wireless
control in industry. The second gives an intuitive explanation to the problem of
loosing data packets in the communication, and the importance of how these losses
are distributed in time. The final example illustrates the impact on the control
system performance when the system is subject to packet losses.

Example 1.1

A motivating scenario for the contribution of this thesis is the control of the
floatation tank process in an mineral processing plant, parts of which are shown
in Figure 1.1, at Boliden in Sweden. This system is being investigated within
the socrades project (socrades, Integrated Project, EU Sixth Framework Pro-
gramme). It consists of four tanks in series and is today controlled using four in-
dividual PI-controllers (Stenlund and Medvedev, 2002). The control objective is
to maintain stable levels in all four flotation tanks as well as compensating for
fluctuations in inflow and for load disturbances. For this process we are interested
in replacing the wired level and flow sensors with wireless sensors. In doing so,
it is desirable not to have to change the overall control structure or not even the
control parameter tuning. We look instead for a solution where some additional
compensation is done at the actuator node, but no other changes are needed in the
closed-loop system.

When a system is controlled over a wireless network the imperfections in this
network will cause data packets sent between the sensors, controllers and actuators
to be lost. When this happens the feedback loop is broken and additional logic
needs to compensate for the lost information. This problem can, depending on how
and when the losses occur, be a hard or relatively easy problem to handle. How the
distribution of the packet loss affects the control system performance is illustrated
in the following example.
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Figure 1.1: Ore crush at the Boliden plant in which the ore is crushed before entering
into the flotation tank process. (Copyright: Boliden)

Example 1.2

Let us say that you are driving your car. While driving you base your decisions
on what you see around you. If you close your eyes you need to drive based on
what you have seen previously and your predictions. Since you are the controller
when driving, keeping your eyes closed is similar to loosing sensor data packets in a
control system. If you close your eyes, it will only take a few seconds before you have
a very limited idea of what is happening around you and after a few more seconds
you would probably stop your car. Still, you have no problem at all with keeping
your eyes closed for several minutes during a normal 1h drive, the total time they
are closed because you are blinking. In fact, you will blink your eyes around 15 times
a minute and the average blink will have a duration of about 200ms, so during a
1h drive you will keep your eyes closed for about 3 minutes (Caffier et al., 2003).
It is clearly much worse to loose all measurements for say 30 s in a row than it is
to loose 6 times as many measurements spread out over one hour. That is, it is not
the total amount of lost data over a time interval that is important, but instead
how long time it was since the last received information.

The example shows that the distribution of the communication loss is an important
parameter when it comes to assessing how losses will affect the control system
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Figure 1.2: Networked Control System controlled under packet loss.

performance. It also highlights that depending on the packet loss profile we will
have to take different kinds of actions to reduce the impact of the losses on the
system behavior. If the system is subject to sparse and short burst of losses we
can probably use the same method as we do when we drive to overcome them, i.e.,
assume that things stay the same during the loss period. If the losses instead come
in longer bursts, like when keeping your eyes close for a few seconds, we have to
use a more elaborate method or device to overcome them.

To illustrate how this reasoning reflect the behavior of a control system under
losses we study the following example where we instead of loosing sensor data as in
Example 1.2 loose data between controller and process.

Example 1.3

Consider the networked control system in Figure 1.2 and let the switch represents
that packets between controller and process can be lost. The process P is given by

P (s) =
1

s2

and the controller C is given by as sampled version of

C(s) =
20s2 + 12s + 1

s2 + 2s

10

s + 100

sampled with Ts = 0.1 s. If a packet is lost, i.e., the switch is open we use the
compensation policy to apply the last known control signal to the process. This
additional logic is contained in the Compensator block. To illustrate how differ-
ent loss distributions affect the performance of this system we simulate it on two
different loss profiles. Both with 20% average packet loss over time. Studying the
results in Figure 1.3(a) we see that for short and sparse losses the method to hold
the last known value works well. Instead looking at Figure 1.3(b) it becomes evi-
dent that when losses are grouped into longer connected period a more advanced
compensation scheme is needed.
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Figure 1.3: Comparison of system output behavior (solid) with the output of the system
without losses (dashed) under disturbance d (solid light) and under 20 % packet loss
(greyed)
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Figure 1.4: Illustration of the POC placement to compensate for outages in a networked
control system.

1.3 Problem Formulation

As seen in Example 1.2 and 1.3 subsequent losses of packets in the network during
which sensor data do not reach the controller node and/or control commands do
not reach the actuator are hard to handle. We denote such periods of subsequent
losses as outages.

The problem considered in this thesis is how to compensate for such outages in
networked control systems by placing devices at the receiver sides of the network.
We call these devices predictive outage compensators (POCs), see Figure 1.4. The
POCs are designed to overcome losses in the network by suggesting replacement
commands in the event of an outage. The introduction of the POC does not require
any modifications to the existing control design and by this it gives the desired
modular properties described in Example 1.1. Obviously, a POC has a limitation
on how efficient it can be for long periods of outages. An important result of the
thesis is to build tools to understand how these limitations affect the applicability
to real systems.

Further, a case study of wireless control for a physical lab process with inter-
esting hybrid dynamics is considered. The process is controlled over both wireless
sensor and actuator links using a remotely placed hybrid model predictive control
(MPC).
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1.4 Contributing Papers

This thesis is based on the following publications:

• Chapters 2–5:

E. Henriksson, H. Sandberg, and K.H. Johansson. Reduced-order predic-
tive outage compensators for networked systems. In Proceedings IEEE
Conference on Decision and Control, Shanghai, P.R. China, December
2009. To Appear.

E. Henriksson, H. Sandberg, and K.H. Johansson. Predictive compensa-
tion for communication outages in networked control systems. In Pro-
ceedings IEEE Conference on Decision and Control, Cancun, Mexico,
December 2008.

• Chapter 6:

A. Bemporad, S. Di Cairano, E. Henriksson, and K.H. Johansson. Hybrid
model predictive control based on wireless sensor feedback: An experi-
mental study. International Journal of Robust and Nonlinear Control,
2009. To Appear.

A. Bemporad, S. Di Cairano, E. Henriksson, and K.H. Johansson. Hybrid
model predictive control based on wireless sensor feedback: An experi-
mental study. In Proceedings IEEE Conference on Decision and Control,
New Orleans, LA, USA, 2007.

E. Henriksson. Hybrid Model Predictive Control based on Wireless Sen-
sor Feedback. Master’s thesis, School of Electrical Engineering, Royal
Institute of Technology (KTH), Stockholm, Sweden, 2007.

The scientific contribution of the thesis is mainly the author’s own work. The
results presented in Chapters 2–5 have been derived in cooperation with the author’s
supervisors. The results presented in Chapter 6 are mainly the results of the authors
master’s thesis together with additional experiments made by S. Di Cairano.
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Figure 1.5: Wireless networked control system with actuator, sensor and control devices
interfaced through the network.

1.5 Related Work

This section gives a short background to wireless networked control. First an intro-
duction to the area is given, then wireless networks are briefly discussed together
with their impact on control performance. The section is concluded with a discus-
sion on how unreliable links can be compensated for.

1.5.1 Wireless Networked Control Systems

A wireless networked control system is a control system in which actuators, sensors
and controllers are connected and communicate over a wireless network, as illus-
trated in Figure 1.5. The use of wireless networks in the control system introduce
a wide range of advantages but also problems which need to be addressed.

Control over wireless networks is a young research area without mature theory
or tools, but with a lot of current activity (Bushnell, 2001; Antsaklis and Baillieul,
2004, 2007). The need for interaction between control and communication in the
design of wireless networks was raised in (Kumar, 2001). Open research problems
in the area of control using wireless sensors networks include choice of architectures
and modular design and implementation (Sinopoli et al., 2003; Årzén et al., 2007).
A cross-layer framework for the joint design of wireless networks and distributed
controllers is attempting (Liu and Goldsmith, 2004), although care needs to be
taken to avoid undesirable interactions (Kawadia and Kumar, 2005).

The problems introduced by the network in control systems can be briefly sum-
marized as follows:

• Delay: Packets in the network are delayed because of transmission delays and
medium access delays. The problem of delay in control system is a well studied
topic with a vast literature, e.g., (Richard, 2003).

• Rate Limitations: When several devices share a common network resource
the rate at which they can transmit data over the network is limited by the
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network capacity. These limitations impose constraints on achievable perfor-
mance. An overview of feedback control under data rate constraints is given
in (Nair et al., 2007).

• Packet Loss: The problem which this thesis focuses on is losses of data packet
in the communication. These losses originate from overflow in communication
buffers and from transmission errors in the physical layer due to shadowing
and fading channels. A survey regarding control over networks subject to loss
is given in (Hespanha et al., 2007).

1.5.2 Wireless Networks for Control

When information is sent over a wireless channel it is subject to a wide range
of imperfections of the network. They are due to variations in radio conditions,
because of moving objects, interference etc. Typical scenarios in industrial control
settings are reported in (Willig et al., 2002). These imperfections can cause packets
to be delayed or lost. It is hard to prevent delays and losses from occurring, and
it is difficult to provide accurate stochastic models for them. Stationary models
commonly used in the literature on networked control can be hard to justify in
practice (Hespanha et al., 2007; Schenato et al., 2007). Further reading on the area of
wireless communications, see the textbooks (Tse and Viswanath, 2005; Goldsmith,
2005).

A commonly used and simple way to model losses in wireless networks is to
assume that packet losses are independent and identically distributed (i.i.d.) ac-
cording to a Bernoulli distribution, so that a packet is successfully transmitted
with probability p and lost with probability 1−p, independent of previous packets.
Another common method to model losses is the Gilbert model (Gilbert, 1960) in
which packets are lost according to a two-state Markov chain, illustrated in Fig-
ure 1.6. The transitions between the states where the packet is lost and where the
packet is received are governed by probabilities p1 and p2 according to Figure 1.6.
If the present packet was received the next will be received with probability p1 and
lost with probability 1 − p2 and similarly if the present packet is lost. How p1 and
p2 are chosen governs how the packet loss is distributed in time. The advantage
of the Gilbert model is that it, in contrast to the Bernoulli model, captures the
fact that packet losses in real systems typically come in bursts (Willig et al., 2002).
The approach taken in this thesis is to assume that all losses occur in the form of
outages without any detailed model of the probability of loss.

Designing protocols suitable for control is a very natural way to compensate for
unreliable networks and their impact on control performance since the approach
aims at solving the problem at the root, i.e., improve the communication quality
instead of compensating for poor communication performance in the control design.
Protocol design suitable for control over wireless networks is a large research field
of its own and will therefore not be treated further. For further reading on protocol
design and networking the reader is referred to the recent survey (Willig, 2008).
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Figure 1.6: The Gilbert model.

1.5.3 Compensating for Unreliable Communication Links

The wireless network medium gives rise to problems due to the unreliability and
losses in the communication link. If these artifacts of the network are not properly
compensated for, they can have a large impact on the system performance. Sev-
eral approaches to overcome the unreliable nature of the network are present in
the literature (Bushnell, 2001; Antsaklis and Baillieul, 2004, 2007). They can be
coarsely grouped into two categories: cross-layer methods that explicitly take the
network properties into account in the control algorithm and methods that make
assumptions about the network but does not utilize any cross-layer signaling. These
latter methods enable the use of slightly modified control design methods present
in the literature. There are recent contributions to the area of joint communication
and control design, a recent survey of the area is given in (Hespanha et al., 2007).
A view of the convergence of control and communication is given in (Graham and
Kumar, 2003) and in (Liu and Goldsmith, 2004) a framework for integrated com-
munication and control design is given. In (Ling and Lemmon, 2003) the optimal
compensation for dropped feedback measurements is posed as a constrained regu-
lator problem. Issues regarding stabilization of systems using smart actuators for a
given drop probability are given in (Gupta and Martins, 2008). In (Sinopoli et al.,
2004) Kalman filtering under i.i.d Bernoulli distributed losses is considered, show-
ing how loss probability and system dynamics relate to the expected estimation
error covariance. Further, in (Schenato et al., 2007) it is shown that for systems
under i.i.d. Bernoulli losses the separation principle hold, provided that successful
transmissions are acknowledged. The optimal lqg controller is derived as a linear
function of the state and bounds are given on the maximum tolerable loss proba-
bility.

The approach taken in this thesis is to add a compensation device at the receiver
side of the network to compensate for the losses therein. An advantage of this
approach is that no modifications needs to be made to the existing control structure
and that the control design can be made without taking the network properties
into account. In doing so we can facilitate the use of a modular design of networked
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control systems as proposed in (Årzén et al., 2007). Two common choices of the
mentioned compensation devices, which are ubiquitous in the literature, are the
hold and zero compensators. In the hold compensator the last received data is
applied when a packet is lost. In the zero compensator an a priori decided constant,
often zero, is used as a prediction of the lost command. A performance comparison
between the two is given in (Schenato, 2009). The main contributions of this thesis
can be interpreted as a formalization and generalization of these methods. Instead
of holding the last command or applying a constant, the POC suggests a command
based on the history of past data. Predictive control has been extensively used in
various networked control settings e.g., (Bemporad, 1998; Quevedo et al., 2008) but
we believe that our study on the complexity and synthesis of the POC is new.

1.6 Outline

The rest of the thesis is outlined as follows. The POC is presented in Chapter 2.
Chapter 3 gives two methods to synthesize a POC. The complexity of a POC is
investigated in Chapter 4, which also presents methods to reduce the complexity
by means of model order reduction. The synthesis methods are then evaluated
through simulations in Chapter 5. Chapter 6 presents a case study of control of a
hybrid process over a wireless medium. Finally, Chapter 7 summarizes the thesis
and presents directions for future research.
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1.7 Notation and Abbreviations

The author has tried to use standard notation in the thesis. A selection of notation
and abbreviations is presented below.

Notation

R Set of real numbers.
N Set of natural numbers, N = {1, 2, 3, . . . }.

x̂(k|ℓ) Estimate of x(k) based on measurement up until time ℓ.
|v| |v| =

√
vT v, v ∈ R

n.
‖v‖1 ‖v‖1 =

∑n
i=1

|vi|, v ∈ R
n.

‖x‖2 ‖x‖2 =
√
∑∞

i=−∞ |x(i)|2.
ℓ2 Hilbert space of all x s.t. ‖x‖2 < ∞.
‖G‖ Induced ℓ2-norm: ‖G‖ = supu6=0

‖Gu‖2

‖u‖2

.

ΓG Hankel operator of the system G.
σi(G) ith Hankel singular value of G.

q Forward shift operator: qu(k) = u(k + 1).
Ex Expected value of x.

Abbreviations

DAQ Data Acquisition
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
LAN Local Area Network
LMI Linear Matrix Inequality
MAC Medium Access Control
MIMO Multiple-Input Multiple-Output
MIP Mixed Integer Program
MLD Mixed Logical Dynamical
MPC Model Predictive Control
POC Predictive Outage Compensator
PRR Packet Reception Rate
SISO Single-Input Single-Output
TCP Transmission Control Protocol
USB Universal Serial Bus
WLAN Wireless Local Area Network
WSN Wireless Sensor Network





Chapter 2

Predictive Outage Compensation

Consider the networked control system in Figure 2.1, which shows how actua-
tors, sensors and controllers are being connected through a wireless network.
Sensors and controllers use a medium access control (MAC) protocol to de-

cide when to transmit sensor and control data over the network. These data are
received by the controllers and actuators. At the input to each such device there is
a predictive outage compensator (POC), which is a filter that can generate artificial
samples during outage. If the MAC and POC are working appropriately, they allow
us to abstract away the details of the network in the control design.

Network

POCMACPOCMAC

POC MAC MACPOC

C1 C2

A1 A2S1 S2

Figure 2.1: Actuator, sensor and control devices are interfaced to the network through
MAC and POC protocols
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Network

POC MAC

CA P S

Figure 2.2: Control setup showing how actuator, process, sensor and controller are
interfaced to the network through MAC and POC protocols

In this chapter we will study the particular control setup shown in Figure 2.2.
The MAC and the network are not studied further in the thesis. Instead the focus
is on how to construct the POC when placed as in Figure 2.2.

The proposed POC is a generalization of the communication outage compen-
sation algorithms used today such as holding the last known value or applying
constant outputs, and is related to a generalized hold function (e.g., (Sun et al.,
1993)). The general idea is to monitor the control signal and use a signal model to
extrapolate the signal in the event of a communication outage. The POC listens to
the control signal sent from the controller. If the signal is received, the POC passes
the control signal forward to the actuator and updates its own internal states using
the received signal. In the case that no control action is received the POC uses
its internal model to extrapolate the control signal based on the signal model and
previously received data.

The chapter is outlined as follows. First the system is described and the con-
sidered problem is detailed. After this the form of the POC is given, followed by
the proposed procedure for commissioning and running it. Finally the chapter is
summarized.

2.1 System Description

The problem we will consider is controlling the linear plant P over a communication
network with sporadic outages. The plant P is given by

P
{

xp(k + 1) = Apxp(k) + Buu(k) + Bdd(k)

y(k) = Cpxp(k) + v(k),
(2.1)

where d(k) and v(k) are process and measurement noise, respectively. When there
is no communication outage, the control u(k) = uc(k) is given by the controller C

C
{

xc(k + 1) = Acxc(k) + Bcy(k)

uc(k) = Ccxc(k).
(2.2)



2.1. System Description 17

+

C

PPOC

y(k)

u(k)

uc(k)

d(k) v(k)

Figure 2.3: The control setup studied where the MAC and Network are abstracted by
a switch turning communication on or off.

When the communication is lost and we have an outage a replacement control
command u(k) = û(k) is applied.

From now on we will use an abstraction of the control setup presented in Fig-
ure 2.2 where the MAC and the network in the communication link are represented
by a switch turning communication on or off, so that the command from the con-
troller is either received or lost. The abstracted setup is shown in Figure 2.3.

When the switch in Figure 2.3 is open, i.e., communication is lost, the POC
will generate the replacement command û(k) and apply it to the process so that
u(k) = û(k) during the outage. The process will then evolve according to

xp,out(k + 1) = Apxp,out(k) + Buû(k) + Bdd(k)

yout(k) = Cpxp,out(k) + v(k).

The effect of the outage on the plant becomes

∆xp(k + 1) = Ap∆xp(k) + B∆u(k), (2.3)

where ∆u(k) = uc(k)− û(k) and ∆xp(k) = xp(k)−xp,out(k). To minimize the effect
of the outage, i.e., make ∆xp(k) small, we would like to make ∆u(k) as small as
possible. Note that d(k) is assumed independent of the outage.

Remark 2.1.1. Keeping ∆u(k) small is an indirect way of keeping ∆xp(k) small.
If one views (2.3) as a system with input ∆u(k) and state ∆xp(k) it becomes
clear that the optimal open loop trajectory of ∆u(k) minimizing ‖∆xp(k)‖2 is not
guaranteed to be small at all. For example if ∆xp(k) = 0 the optimal strategy is to
keep ∆u(k) = 0 but for ∆xp(k) 6= 0, ∆u(k) has a distinct curve shape. Although
for a reasonably well behaved system with stable Ap, a small ∆u(k) should keep
∆xp(k) small. On the other hand, if Ap is unstable ∆xp(k) will start to grow even
for small ∆u(k).
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The reason for working with ∆u(k) is twofold. First of all it is a simpler problem
to make ∆u(k) small than to make ∆xp(k) small. Secondly the problem of making
∆u(k) small can be solved using only local information available at the POC.

Remark 2.1.2. When communication is lost we loose the feedback in the control
system and hence û(k) must be generated by an open-loop controller. Unstable
processes P are therefore inherently difficult to handle regardless of which method
is used to generate û(k).

2.2 Predictive Outage Compensator

Let us now formulate the problem and give the structure of the POC. As mentioned
previously the problem we want to solve is how to choose û(k) in the switching policy

u(k) =

{

uc(k) Command from controller received
û(k) Command from controller lost

(2.4)

such that ∆u(k) = uc(k) − û(k) is made as small as possible.
We assume that the POC takes the state-space form

x̂(k + 1) = Ax̂(k) + Kǫ(k)

û(k|k − 1) = Cx̂(k),
(2.5)

where ǫ(k) = uc(k) − û(k|k − 1) = uc(k) − Cx̂(k) is the one-step-ahead prediction
error of the POC, and û(k|k−1) is the predicted value of uc(k) given measurements
up to k − 1. If uc(k) is lost ǫ(k) can not be computed, instead we assume that the
prediction is correct giving ǫ(k) = 0. The matrices (A,K,C) are design parameters,
how they should be chosen is discussed further in Chapter 3. However, a standing
assumption in the thesis is that A − KC is a Schur matrix so that (2.5) is an
asymptotically stable system.

Connecting back to Figure 2.3, the operation of the POC is illustrated in Fig-
ure 2.4 where the network is represented by the switch as in (2.4). The method for
commissioning the POC is given next.

2.3 Predictive Compensation Procedure

We now consider the procedure used when commissioning the proposed POC. The
work flow is illustrated in Figure 2.5 which shows the different steps in commis-
sioning and running the algorithm. Theses steps will be described in detail next.

2.3.1 Initialization

When first commissioning the POC one needs to make some initial design decisions.
The first is to decide the model order of the POC, i.e., the number of states in
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û(k|·)
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v(k)

y(k)

d(k)

POC

Figure 2.4: The Predictive Outage Compensator.

x̂(k) in (2.5). The needed complexity is set by the desired performance of the
system and what kind of deviations that are tolerable during an outage. For a
given performance criterion the main underlying factors that govern the needed
complexity are the expected outage lengths and how fast the underlying system is.
A limiting factor on the complexity is of course also the available computational
power. In general a lower complexity is possible if higher deviations can be allowed
or if the packet loss pattern is sparse with short periods of loss. Methods to analyze
the needed complexity are treated in Chapter 4. Another decision that needs to be
taken during the initialization phase is the methodology for detecting packet losses.

2.3.2 Compensator Tuning

The next stage is to tune the POC by choosing values for the matrices (A,K,C)
according to the decided model order. How (A,K,C) should be chosen is of course
dependent on the system dynamics and what type of disturbances the system is
subject to. Different methods for finding (A,K,C) for a given system under a given
type of disturbance are treated further in Chapter 3. Chapter 3 also gives bounds
which relate the quality of the tuning and the tolerable outage length.

2.3.3 Control Monitoring

This step is the core part of the predictive outage compensation procedure. The
POC is in this mode when the communication is working and the control signal
uc(k) has been received from the controller. In this mode the POC compares the
received control signal with its own estimate û(k|k−1). The difference between the
true and predicted value is computed as the prediction error signal

ǫ(k) = uc(k) − û(k|k − 1) = uc(k) − Cx̂(k).
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Control

Monitoring

Compensator

Tuning

Control

Generation

Initialization

Outage?
No

Yes

Figure 2.5: Flow diagram describing the POC

The new information in ǫ(k) is then used to update the POCs internal states as

x̂(k + 1) = Ax̂(k) + Kǫ(k)

from which an estimate of the control signal uc(k + 1) can be computed as û(k +
1|k) = Cx̂(k + 1).

2.3.4 Outage Detection

This is the communication monitoring part of the POC where it listens to the
communication channel for the control signal from the controller. If the control
signal uc(k) is received the POC goes into the control monitoring mode and updates
its internal states. If the control signal is not received the POC enters the control
generation mode.

2.3.5 Control Generation

When communication is lost and we no longer receive any control signals we can
not compute ǫ(k) = uc(k) − û(k|k − 1), since uc(k) is not known. Instead when an
outage occurs, say at time k′, we set ǫ(k) = 0 and let the POC switch to “prediction
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mode” and compute the predicted input to the plant for k > k′ as

x̂(k + 1|k′) = Ax̂(k|k′)

û(k|k′) = Cx̂(k|k′).
(2.6)

How large ∆u(k) = uc(k) − û(k|k′) in (2.3) becomes of course depend on how
the realization (A,K,C) is chosen and the realization of the noises d(k) and v(k).
For the methods to synthesize (A,K,C) given in Chapter 3 bounds on ∆u(k) are
given as functions of the closed-loop system dynamics and noise realization.

2.4 Summary

In this chapter we have introduced the POC and the system description. Further
we have introduced a general form of POC in (2.5). Finally the procedure for
commissioning and running the POC has been described.





Chapter 3

Synthesis

Within the proposed predictive outage compensation framework presented
in Chapter 2 we have the freedom to choose the realization of the POC,
namely (A,K,C), arbitrarily. Clearly there will for a given system exist

better and worse choices of this realization. In this chapter we will present two meth-
ods to synthesize a POC: one deterministic and one stochastic. The deterministic
method is convenient for SISO systems affected by a slowly varying deterministic
disturbance and the stochastic method is practical for MIMO systems affected by
stochastic disturbances and measurement noise.

The chapter starts by reintroducing the central notation in Chapter 2. Then we
proceed to present the deterministic synthesis method and the corresponding worst-
case error bound. After this the stochastic synthesis method is presented together
with the corresponding optimal error bound. The chapter is concluded by a short
summary.

3.1 Introduction

For convenience we start by reintroducing the equations from Chapter 2 that govern
the system and the POC.

First, the process P is given by

P
{

xp(k + 1) = Apxp(k) + Buu(k) + Bdd(k)

y(k) = Cpxp(k) + v(k),
(3.1)

where d(k) and v(k) are process and measurement noise, respectively. Due to packet
losses in the controller to process communication the control signal u(k) in P is given
by the switching policy

u(k) =

{

uc(k) Command from controller received
û(k) Command from controller lost

23
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where uc(k) is given by the controller C

C
{

xc(k + 1) = Acxc(k) + Bcy(k)

uc(k) = Ccxc(k).
(3.2)

and û(k) is given by the POC

x̂(k + 1) = Ax̂(k) + Kǫ(k)

û(k|k − 1) = Cx̂(k).
(3.3)

When communication between the controller and the process is working the POC
estimate is updated with ǫ(k) = uc(k) − û(k|k − 1). When communication is lost
we set ǫ(k) = 0 and let the POC evolve in open loop as

x̂(k + 1|k′) = Ax̂(k|k′)

û(k|k′) = Cx̂(k|k′)
(3.4)

where k′ is the time instant of the last known packet.
We now move on to characterizing the deterministic and stochastic synthesis

methods.

3.2 Deterministic Synthesis

Let us proceed by characterizing the deterministic synthesis method to find (A,K,C)
for SISO systems affected by a slowly varying deterministic disturbance. The deriva-
tion is based on transfer functions but the resulting POC can be translated to the
state-space form (3.3) and explicit expressions for (A,K,C) are given.

Following the notation in Section 3.1 we will in the derivation assume that the
control signal in closed loop is generated by the transfer function from d(k) to uc(k)
as

uc(k) = G0(q)d(k) =
E0(q)

F 0(q)
d(k) (3.5)

where q denotes the one step forward shift operator and E0(q) and F 0(q) are
polynomials of degree nE0 and nF0. The effect of the measurement noise is assumed
to be incorporated in the disturbance d(k) so that v(k) ≡ 0.

In reality the transfer function G0(q) can not be assumed to be known, instead
it must be identified. This can be done based on for example conventional system
identification (Ljung and Söderström, 1983) or physical modelling. The identifi-
cation problem is not treated further in the thesis, instead it is assumed that an
estimate G(q) of G0(q) is available. Given the estimate G(q) the control signal
estimate is given by

û(k) = G(q)d̂(k) =
E(q)

F (q)
d̂(k) (3.6)

where E(q) and F (q) are polynomials of degree nE and nF respectively and d̂(k)
can be interpreted as a virtual disturbance, or as our guess of the real d(k).
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3.2.1 Studied Scenario

In the studied scenario it is assumed that the disturbance d(k) is a load disturbance
entering the system at the control signal. The output from the process P, see (3.1),
is then given by

y(k) = P (q)
(

u(k) + d(k)
)

.

The output from the controller C, see (3.2), is given by

uc(k) = −C(q)y(k).

By this we can conclude that when communication is working, i.e., the loop is
closed, we have the system output (3.7)

y(k) =
P (q)

1 + P (q)C(q)
d(k) (3.7)

and the controller signal (3.8)

uc(k) = − P (q)C(q)

1 + P (q)C(q)
d(k) = G0(q)d(k). (3.8)

We see that G0(q) = −T (q), where T (q) is the complementary sensitivity func-
tion for the closed loop system. That is, given a reasonable control design, G0(q)
should be a well-behaved function with lowpass characteristics. By comparing (3.5)
and (3.6) one can see that for a good choice of G(q) and d̂(k) we should be able to
get similar or same behavior of the system output when communication is lost as
when it is functioning.

3.2.2 Compensation Procedure

First we note that the model G(q) may differ from the true system G0(q). It will
turn out that it is useful to define an equivalent disturbance d̂∗(k) as

uc(k) = G(q)d̂∗(k) =
E(q)

F (q)
d̂∗(k), (3.9)

i.e., the value of d̂(k) making û(k) = uc(k). As long as communication is working
the POC in this method uses the inverted model G−1(q) and the received control
signal uc(k) to filter out an estimate of d̂∗(k) as

d̂∗(k) = G−1(q)uc(k) =
F (q)

E(q)
uc(k)

or more precisely shifted as q−nF E(q)d̂∗(k) = q−nF F (q)uc(k). Which after rear-
ranging gives

e0d̂
∗(k + (nE − nF )) =

= uc(k) + . . . + fnF
uc(k − nF ) − e1d̂

∗(k − nF − 1 + nE) − . . . − enE
d̂∗(k − nF )
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where ei and fi are the coefficients of E(q) and F (q) respectively. As seen, what
one can actually estimate is d̂∗(k) shifted back nF −nE which is the relative degree
of the POC.

When an outage occurs an estimate of d̂∗(k) is used to drive the POC filter.
Since we can no longer estimate d̂∗(k) using uc(k) we have to decide on another
method. In this thesis we propose to use the method to hold the last known d̂∗(k)
which we denote by d̄. This is motivated by that if G(q) is close to G0(q) and d(k)

is slowly varying, then d̂∗(k) should also be slowly varying, and that estimating a
slowly varying signal by a constant is reasonable. Another policy is to set d̄ = 0, this
is reasonable if for example d̂∗(k) is zero mean white noise. The POC in prediction
mode is then given by

û(k) =
E(q)

F (q)
d̄ (3.10)

again shifted as q−nF F (q)û(k) = q−nF E(q)d̄, which in the same way as before gives

û(k) =
(

e0 + . . . + enE

)

d̄ − f1û(k − 1) − . . . − fnF
û(k − nF ).

If the true value for uc is known for any time instant in the recursion, the true value
is used instead of the predicted û.

3.2.3 State-Space Realization

In order to describe the POC derived above on the POC state-space form in (3.3)
and compute prediction error bounds, we need to realize (3.5) and (3.6) on state-
space form. To do this we first introduce the signals

p(k) := q1−nF0E0(q)d(k), p̂(k) := q1−nF E(q)d̂(k)

which we use to re-define (3.5) and (3.6) in the following way:

uc(k) =
qnF0−1

F 0(q)
p(k) (3.11)

û(k) =
qnF −1

F (q)
p̂(k) (3.12)

where deg F = nF and deg F 0 = nF0. The signal p(k) can be thought of as a
driving noise signal that contains everything in uc(k + 1) that cannot be explained
by a linear combination of uc(k), . . . , uc(k−nF0 + 1). The signal p̂(k) has a similar
interpretation for û(k).

The system (3.11) can be realized in the state-space form

z(k) = c(F 0)z(k − 1) + Hp(k − 1)

uc(k) = HT z(k),
(3.13)
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where c(F 0) is a companion matrix of the polynomial F 0(q) = qnF0 + f0
1 qnF0−1 +

. . . + f0
nF0

,

c(F 0) =











−f0
1 −f0

2 . . . −f0
nF0

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 0











∈ R
nF0×nF0

and

H =









1

0
...
0









∈ R
nF0 , z(k) =









uc(k)

uc(k − 1)
...

uc(k − nF0 + 1)









∈ R
nF0 .

The model (3.12) can be realized in the same form using a companion matrix
c(F ), as will be seen next. If deg F < deg F 0, we can define the polynomial coeffi-
cients fnF +1 = . . . = fnF0

= 0 so that c(F ) ∈ R
nF0×nF0 , and both models have the

same state dimension.

3.2.4 Computing A, K and C

The deterministically synthesized POC can, using the model (3.12) and the com-
panion matrix c(F ), be written on predictor form as

ẑ(k|k − 1) = c(F )ẑ(k − 1|k − 1) + Hp̂(k − 1|k − 1)

ẑ(k|k) = ẑ(k|k − 1) + Kzǫ(k)

û(k|k − 1) = HT ẑ(k|k − 1)

û(k|k) = HT ẑ(k|k)

(3.14)

where ǫ(k) = uc(k) − û(k|k − 1) and

ẑ(k|k) =









û(k|k)

û(k − 1|k − 1)
...

û(k − nF + 1|k − nF + 1)









.

As mentioned in Section 3.2.2 the true value of the control signal is used in the
prediction recursion provided it is known, i.e., we require û(k|k) = uc(k) provided
the feedback loop is closed. That is we require

û(k|k) = HT ẑ(k|k) = û(k|k − 1) + HT Kzǫ(k)

=
(

1 − HT Kz

)

û(k|k − 1) + HT Kzuc(k) ≡ uc(k)
(3.15)
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which is fulfilled for Kz = H making HT Kz = HT H = 1.
Remaining to be decided is how p̂(k − 1|k − 1) in (3.14) should be chosen. First

we define p̂(k−1|k) as the signal containing all the information in uc(k) that can not
be explained by the linear combination HT c(F )ẑ(k−1|k−1), i.e., by the regression
of past estimates û. That is, in feedback

p̂(k − 1|k) := uc(k) − HT c(F )ẑ(k − 1|k − 1)

Which following the notation in (3.9) means that p̂(k − 1|k) = q−N
F0 E(q)d̂∗(k).

When communication is lost p̂(k− 1|k) is not computable and instead we apply
p̂(k− 1|k− 1), i.e., an estimate of p̂(k− 1|k) given measurements up to k− 1. If we
use the policy to hold the last disturbance estimate as described in Section 3.2.2
the prediction equation is given by

p̂(k − 1|k) = p̂(k − 1|k − 1) + Kpǫ(k)

p̂(k|k) = p̂(k − 1|k).

For this measurement update to comply with the definition of p̂(k−1|k) we require

p̂(k − 1|k) = p̂(k − 1|k − 1) + Kpǫ(k)

= p̂(k − 1|k − 1) + Kpuc(k) − Kpû(k|k − 1)

= p̂(k − 1|k − 1) + Kpuc(k)

− Kp

(

HT c(F )ẑ(k − 1|k − 1) + HT Hp̂(k − 1|k − 1)
)

=
(

1 − Kp

)

p̂(k − 1|k − 1) + Kp

(

uc(k) − HT c(F )ẑ(k − 1|k − 1)
)

≡ uc(k) − HT c(F )ẑ(k − 1|k − 1)

which is fulfilled for Kp = 1.
We summarize the above derivations of ẑ(k|k) and ẑ(k|k) in the deterministic

synthesis method in the following proposition.

Proposition 3.2.1. The POC synthesized using the deterministic method can be
realized on the form (3.3) as

x̂(k + 1) = Ax̂(k) + Kǫ(k)

û(k|k − 1) = Cx̂(k)

where

x̂(k + 1) =

(

ẑ(k|k)

p̂(k|k)

)

, A =

(

c(F ) H

0 1

)

,

K =

(

H

1

)

, C =
(

HT c(F ) 1
)
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Remark 3.2.2. Note that

A − KC =

( (

I − HHT
)

c(F ) 0

−HT c(F ) 0

)

and that
(

I − HHT
)

c(F ) =

(

0 0

I 0

)

making
λi

(

A − KC
)

= 0, ∀i

Hence, in feedback, ẑ(k|k) = z(k) regardless of how F (q) in (3.12) is chosen.

Remark 3.2.3. If instead we choose the alternative policy to set the disturbance
estimate to zero, d̄ = 0, in outage, also described in Section 3.2.2, we get the
following formulation. First we have to re-define p̂(k|k) as the prediction equation
is given by

p̂(k|k) = 0 · ẑ(k − 1|k − 1) + 0 · p̂(k − 1|k − 1) + 0 · ǫ(k) ≡ 0

(A,K,C) in Proposition 3.2.1 are now instead given as

A =

(

c(F ) H

0 0

)

, K =

(

H

0

)

, C =
(

HT c(F ) 1
)

.

We note that this is not a minimal realization. A minimal realization is obtained
by instead choosing (A,K,C) as

A = c(F ), K = H, C = HT c(F ).

3.2.5 Examples of POCs

Let us consider the two most commonly used outage compensation methods and
how they relate to the deterministic synthesis method.

Example 3.1

A common version of outage compensation is to keep applying the last received
control command when no command new is received. That is û(k|k′) = uc(k

′) in
outage, where uc(k

′) is the last known command. We note that this method can be
modelled in the deterministic synthesis framework by

ẑ(k|k) = 1 · ẑ(k − 1|k − 1) + 1 · p̂(k − 1|k − 1) + 1 · ǫ(k)

p̂(k|k) = 0 · ẑ(k − 1|k − 1) + 0 · p̂(k − 1|k − 1) + 0 · ǫ(k) ≡ 0

û(k|k − 1) = 1 · ẑ(k − 1|k − 1) + 1 · p̂(k − 1|k − 1).
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This is a POC designed as described in Remark 3.2.3 here with c(F ) = 1 and
H = 1 giving A = K = C = 1. For future reference we denote this realization as
the hold POC.

Example 3.2

The simplest version of outage compensation is to use an a priori decided constant
command if no new control signal arrives. A common choice of this constant is zero,
giving û(k|k − 1) = 0 during the outage. In the deterministic synthesis framework
this means

ẑ(k|k) = 0 · ẑ(k − 1|k − 1) + 1 · p̂(k − 1|k − 1) + 1 · ǫ(k)

p̂(k|k) = 0 · ẑ(k − 1|k − 1) + 0 · p̂(k − 1|k − 1) + 0 · ǫ(k) ≡ 0

û(k|k − 1) = 0 · ẑ(k − 1|k − 1) + 1 · p̂(k − 1|k − 1),

This is also a POC designed as described in Remark 3.2.3. Here we have c(F ) = 0
and H = 1 giving A = 0, K = 1 and C = 1 · 0 = 0. Since C = 0 the POC input-
output relation is equivalently realized by A = K = C = 0. We will for future
reference denote this realization as the zero POC.

3.3 Worst-Case Prediction Error Bounds

We have now derived the deterministic POC synthesis method and expressed how
the resulting POC is realized on the form (3.3). We will proceed by computing
deterministic worst-case bounds on the prediction error |uc(k)− û(k|k′)| in outage,
where k′ denotes the time at which the last command was received. The section is
concluded with an example illustrating the worst-case bound for a POC synthesized
using the deterministic method and how this bound relate to bounds for the hold
and zero POCs, as a function of the outage length.

In order to bound the error between the ideal input from the nominal model,
uc(k), and the input from the POC, û(k|k′) we are going to use the following lemma.

Lemma 3.3.1. Consider the linear time-invariant input-output model

δ(k) =

k∑

j=k0

γ(k − j)ρ(j), k ≥ k0, (3.16)

with impulse response γ(j). It holds that

|δ(k)| 6





k−k0∑

j=0

|γ(j)|



 max
k06j6k

|ρ(j)|.
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For bounded input over the interval [k0, kf ], the maximum output over the same
interval is bounded by

max
k06k6kf

|δ(k)| 6





kf−k0∑

j=0

|γ(j)|



 max
k06k6kf

|ρ(k)|.

Both bounds are tight, i.e., there is an input ρ(k) that achieves equality.

Proof. The proof is an application of Theorem 27.2 in (Rugh, 1996). Taking the
norm of (3.16), applying the triangle inequality and using the submultiplicative
property of the norm we get

|δ(k)| =

∣
∣
∣
∣
∣
∣

k∑

j=k0

γ(k − j)ρ(j)

∣
∣
∣
∣
∣
∣

6

k∑

j=k0

|γ(k − j)ρ(j)|

6

k∑

j=k0

|γ(k − j)||ρ(j)|, k ≥ k0,

then replacing |ρ(j)| by its maximum and using the fact that this is a constant
value we have

|δ(k)| 6

k∑

j=k0

|γ(k − j)||ρ(j)| 6

k∑

j=k0

(

|γ(k − j)| max
k06j6k

|ρ(j)|
)

=





k∑

j=k0

|γ(k − j)|



 max
k06j6k

|ρ(j)|, k ≥ k0.

Clearly an upper bound on |δ(k)|, k ≥ k0 is an upper bound on maxk06k |δ(k)|.
Hence

max
k06k

|δ(k)| 6





k∑

j=k0

|γ(k − j)|



 max
k06j6k

|ρ(j)|,

If we upper bound k by kf so that k0 6 k 6 kf it holds that

max
k06k6kf

|δ(k)| 6





kf∑

j=k0

|γ(kf − j)|



 max
k06j6kf

|ρ(j)|

=





kf−k0∑

j=0

|γ(j)|



 max
k06k6kf

|ρ(k)|
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To compute the bound we will also need the following assumption.

Assumption 3.3.1. We assume that the outage occurs at time k = 0, without loss
of generality. By this we mean that the feedback is lost, i.e., uc(k) is not known,
for k in the time interval k ∈ [1, kf ]. Further we assume that the system has been
in feedback for k ∈ [−nF 0 + 1, 0] so that uc(k) is known for all k in this interval.

The prediction error can now be computed as described in the following propo-
sition.

Proposition 3.3.2. Under Assumption 3.3.1 and by the property ensured in (3.15)
it holds that ẑ(0|0) = z(0). The signals û(k) = û(k|0) and uc(k) when k ∈ [0, kf ]
are given by

uc(k) = HT c(F 0)kz(0) +

k−1∑

j=0

HT c(F 0)k−j−1Hp(j) (3.17a)

û(k) = HT c(F )kz(0) +

k−1∑

j=0

HT c(F )k−j−1Hp̂(j) (3.17b)

so the error between ideal and actual input in outage mode is given by

uc(k) − û(k) = HT [c(F 0)k − c(F )k]z(0)

+

k−1∑

j=0

HT c(F 0)k−j−1Hp(j) −
k−1∑

j=0

HT c(F )k−j−1Hp̂(j).
(3.18)

In order to derive simple expressions for the error bounds, the following assump-
tions are made. They should be relatively easy to verify for a given system.

Assumption 3.3.3. It is assumed that both (3.11) and (3.12) are exponentially
stable, i.e., there are constants c0 > 0, c > 0, 0 ≤ λ0 ≤ 1, 0 ≤ λ ≤ 1 such that

‖HT c(F 0)k‖1 ≤ c0λ
k
0 , ‖HT c(F )k‖1 ≤ cλk

Where ‖ · ‖1 is the 1-norm of a vector (sum of magnitude of elements). Further-
more, we assume the actual input, the disturbance and the disturbance estimate
are bounded so that

|uc(k)| ≤ ρu, |p(k)| ≤ ρp, ∀k

|p̂(k)| ≤ ρp̂, k ≥ 0

The constants λ and λ0 are measures of how fast the systems are. Using the
error model (3.18) and the assumptions we are going to analyze the error behavior.
A simple example is also given at the end of this section.
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3.3.1 Nominal Deterministically Synthesized POC

Let us denote the deterministically synthesized POC with F (q) = F 0(q) the nominal
deterministically synthesized POC. The full error model (3.18) then reduces to

uc(k) − û(k) =
k−1∑

j=0

HT c(F 0)k−j−1H
(

p(j) − p̂(j)
)

.

From this the worst-case prediction bounds for the nominal deterministically syn-
thesized POC can now be computed by applying the triangle inequality and Lemma 3.3.1
to the error giving

|uc(k) − û(k)| ≤
(

ρp + ρp̂

) k−1∑

j=0

|HT c(F 0)k−j−1H|

≤
(

ρp + ρp̂

)

c0

k−1∑

j=0

λk−j−1

0 =
(

ρp + ρp̂

)

c0

1 − λk
0

1 − λ0

=: Γ0(ρp, ρp̂, k)

The bound Γ0 converges exponentially fast at a rate λ0 to

(

ρp + ρp̂

) c0

1 − λ0

.

3.3.2 General Deterministically Synthesized POC

Now let us compute the worst-case prediction bounds for the general deterministi-
cally synthesized POC,

û(k + 1) = −f1û(k) − . . . − fnF
û(k − nF + 1) + p̂(k),

in order to compute the bound we make the following assumption.

Assumption 3.3.4. Assume there are constants c1 ≥ c′1 and 1 ≥ λ1 ≥ λ′
1 ≥ 0

such that

‖HT [c(F 0)k − c(F )k]‖1 ≤ c1λ
k
1 − c′1(λ

′
1)

k

Conservative choices that work under Assumption 3.3.3 are c1 = c + c0, λ1 =
max{λ, λ0}, and c′1 = 0.

The worst-error bound can now be computed by applying the assumptions, the
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triangle inequality and Lemma 3.3.1 to the full error model (3.18). We now have

|uc(k) − û(k)| ≤ ρu‖HT [c(F 0)k − c(F )k]‖1

+ ρp

k−1∑

j=0

|HT c(F 0)k−j−1H| + ρp̂

k−1∑

j=0

|HT c(F )k−j−1H|

≤ ρu(c1λ
k
1 − c′1(λ

′
1)

k) + ρpc0

k−1∑

j=0

λk−j−1

0 + ρp̂c

k−1∑

j=0

λk−j−1

= ρu(c1λ
k
1 − c′1(λ

′
1)

k) + ρpc0

1 − λk
0

1 − λ0

+ ρp̂c
1 − λk

1 − λ
=: Γ1(ρu, ρp, ρp̂, k)

The bound Γ1 converges exponentially fast at a rate λ1 to

ρpc0

1 − λ0

+
ρp̂c

1 − λ

Remark 3.3.5. To make the worst-case bounds Γ0 and Γ1 small, it is clear that
it is best to use a zero policy for p̂(k), i.e., ρp̂ = 0. It is important to remember
that this is a strict worst-case analysis that assumes that we have no knowledge
whatsoever of p(k). If we have knowledge of how quickly p(k) evolves, then it can
be very beneficial to choose a nonzero p̂(k) to counteract it, as shall be seen in
Chapter 5.

3.3.3 Hold POC

We move on to the hold POC introduced in Example 3.1. First let us recall that
here û(k) = û(k − 1). Hence, if there is an outage at k = 0, we have û(k) = uc(0)
for k ≥ 0. Since uc(0) = HT z(0) the error model (3.18) reduces to

uc(k) − û(k) = HT [c(F 0)k − I]z(0) +
k−1∑

j=0

HT c(F 0)k−j−1Hp(j),

In order to bound the error we make the following assumptions.

Assumption 3.3.6. Assume there are constants c2 ≥ c′2 such that

‖HT [c(F 0)k − I]‖1 ≤ c2 − c′2λ
k
0

Conservative choices for c2, c
′
2 that work under Assumption 3.3.3 are c2 = 1 + c0

and c′2 = 0.
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Applying the assumption, the triangle inequality, and Lemma 3.3.1, we have

|uc(k) − û(k)| ≤ ρu‖HT [c(F 0)k − I]‖1 + ρp

k−1∑

j=0

|HT c(F 0)k−j−1H|,

≤ ρu(c2 − c′2λ
k
0) + ρpc0

k−1∑

j=0

λk−j−1

0

= ρu(c2 − c′2λ
k
0) + ρpc0

1 − λk
0

1 − λ0

=: Γ2(ρu, ρp, k).

which bounds the error. The bound Γ2 converges exponentially fast at a rate λ0. to

ρuc2 +
ρpc0

1 − λ0

.

3.3.4 Zero POC

We continue by computing the worst-case bound for the zero POC, introduced in
Example 3.2, where the input is simply set to zero in outage mode, i.e., û(k) = 0,
k > 0. The error model (3.18) then reduces to

uc(k) − û(k) = HT c(F 0)kz(0) +

k−1∑

j=0

HT c(F 0)k−j−1Hp(j),

for k > 0. Applying the triangle inequality and Lemma 3.3.1, we have

|uc(k) − û(k)| ≤ ρu‖HT c(F 0)k]‖1 + ρp

k−1∑

j=0

|HT c(F 0)k−j−1H|

≤ ρuc0λ
k
0 + ρpc0

k−1∑

j=0

λk−j−1

0

= ρuc0λ
k
0 + ρpc0

1 − λk
0

1 − λ0

=: Γ3(ρu, ρp, k).

which bounds the error. The bound Γ3 converges exponentially fast with rate λ0 to

ρpc0

1 − λ0

.
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3.3.5 Worst-Case Bound Example

We will now illustrate the worst-case bounds using a simple example. As described
in Section 3.2.1 the transfer function from disturbance d(k) to control uc(k) is
given by the negated complementary sensitivity function. Let us assume that the
feedback control system is operating well and designed so that it can be described
by a first-order system (in continuous time)

−ωb/(s + ωb),

with bandwidth ωb. A zero-order-hold sampled realization with sampling period h
is

uc(k + 1) = λ0uc(k) + p(k),

where λ0 = e−ωbh, and p(k) = (e−ωbh − 1)d(k). As POC, let us use

û(k + 1) = λû(k) + p̂(k),

where λ = e−1.3ωbh. This means that we have overestimated the actual bandwidth of
the system with 30% in the POC. The other constants in Assumption 3.3.3 are c0 =
c = 1, and we assume that the signal uc(k) must be smaller than one, ρu = 1, and
that the disturbance d(k) are smaller than 0.1. This means that ρp = 0.1(1−e−ωbh).
Based on the discussion in Remark 3.3.5, we also choose the zero policy for p̂(k),
i.e., ρp̂ = 0. It is also easy to verify that the constants in Assumption 3.3.6 and
3.3.4 can be chosen as c2 = c′2 = 1, c1 = c′1 = 1, λ1 = λ0, and λ′

1 = λ.
We plot the error bounds Γ1, Γ2, and Γ3 as functions of outage time k in

Figure 3.1. In Figure 3.1(a), the feedback control system is slow with ωbh = 0.1
and in Figure 3.1(b) the system is fast with ωbh = 1.0. As can be seen, for the slow
system, upper bound for the general POC is the smallest for all times, whereas
the hold POC bound is smaller than the zero POC for outages shorter than seven
samples. If the bandwidth is increased with a factor 10, then the hold POC bound
is by far largest for all times. The reason is that the system is capable of very fast
changes, and to hold a constant input can quickly push the system in the wrong
direction. Also in the fast case is the general POC gives the smallest bound for all
times, even though the zero POC does quite well also.

The example seems to indicate that a general POC can do much better than
the traditional hold and zero POCs both for slow and fast systems, even though
the model had a parameter error of 30%.
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(a) Low bandwidth, ωbh = 0.1.
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(b) High bandwidth, ωbh = 1.0.

Figure 3.1: The worst-case bounds for systems with different bandwidth.
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3.4 Stochastic Synthesis

Let us now consider a stochastic method on how to find optimal, in a minimum
variance sense, (A,K,C) in (3.3), for MIMO systems affected by stochastic distur-
bances and measurement noise. To characterize the optimal (A,K,C) we need to
know the models of P, in (3.1), and C, in (3.2) and know a stochastic model of the
noise. Even if this is not always the case, it is still interesting to characterize the
optimal solution since it can be used for comparison with other solutions.

Again using the notation in Section 3.1, let us first assume that d(k) is colored
noise given by

xd(k + 1) = Adxd(k) + Bww(k)

d(k) = Cdxd(k) + Dww(k),
(3.19)

and that the measurement noise v(k) is Gaussian and white. Let

E

[

w(k)

v(k)

]

= 0, E

[

w(k)

v(k)

][

w(l)

v(l)

]T

= Rδkl,

be the expected value and covariance of the noises. When there is no outage, the
entire closed-loop system evolves as






xp(k + 1)

xc(k + 1)

xd(k + 1)




 =






Ap BuCc BdCd

BcCp Ac 0

0 0 Ad






︸ ︷︷ ︸

Acl






xp(k)

xc(k)

xd(k)






+






BdDw 0

0 Bc

Bw 0






︸ ︷︷ ︸

N

[

w(k)

v(k)

]

uc(k) =
[

0 Cc 0
]

︸ ︷︷ ︸

Ccl






xp(k)

xc(k)

xd(k)




 .

(3.20)

The optimal estimator of the state in (3.20) using measurements uc(k) is the
Kalman filter

x̂(k + 1|k) = Aclx̂(k|k − 1) + Kcl

[
uc(k) − Cclx̂(k|k − 1)

]
, (3.21)

where

Kcl =
(
AclPCT

cl

)(
CclPCT

cl

)−1

P = AclPAT
cl + NRNT −

(
AclPCT

cl

)(
CclPCT

cl

)−1(
AclPCT

cl

)T
,

(3.22)
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see for example (Anderson and Moore, 2005). The optimal one-step-ahead predic-
tion of uc(k) is û(k|k − 1) = Cclx̂(k|k − 1). Note that the Kalman filter (3.21) has
the structure of the POC (3.3), and that optimal predictions of uc(k) based on
measurements up until k′ 6 k are generated by

x̂(k + 1|k′) = Aclx̂(k|k′)

û(k|k′) = Cclx̂(k|k′),
(3.23)

where the first prediction x̂(k′ +1|k′) is given by (3.21). Also the optimal predictor
(3.23) has the form of a POC in prediction mode (3.4).

Proposition 3.4.1. The POC synthesized using the optimal stochastic method can
be realized on the form (3.3) as

x̂(k + 1) = Ax̂(k) + Kǫ(k)

û(k|k − 1) = Cx̂(k)

where x̂(k) is equal to the state x̂(k + 1|k) of (3.21) and

A = Acl, K = Kcl, C = Ccl

Remark 3.4.2. Note that we consider the problem over an infinite time horizon.
This is a good assumption if the communication outages are infrequent. If the time
horizon is finite, the optimal filter gain Kcl should be time varying, see (Anderson
and Moore, 2005).

Next, we compute the prediction error of a POC synthesized using the optimal
stochastic method. This error serves as a lower bound on the prediction error of
other POCs. We can note that the state dimension of such a POC is large, since it
contains the states for the process, controller and noise model. How to approximate
it is discussed in Chapter 4.

3.5 Optimal Stochastic Prediction Error Bounds

It is easy to characterize the statistics of the prediction error ∆u(k) of the POC
synthesized using the optimal stochastic method. The Kalman filter gives unbiased
estimates and thus E∆u(k) = 0 for all k > k′. To compute the variance E|∆u(k)|2,
we need the covariance of the state estimation error. Assuming that the Kalman
filter has been in operation a long time before the outage at k′, the covariance of
∆x(k) is given by the solution to the Riccati equation in (3.22),

E∆x(k)∆x(k)T = P,

where ∆x(k) = x(k)− x̂(k|k−1) and x(k) is the state vector in (3.20). The variance
of the one-step-ahead prediction error is E|ǫ(k)|2 = CclPCT

cl . When an outage
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occurs, the covariance of the state estimation and prediction error evolve for k > k′

as

P (k + 1) = AP (k)AT + NRNT , P (k′) = P,

E|∆u(k)|2 = CclP (k)CT
cl .

The POC derived using the optimal stochastic method minimizes the variance of
the noise ∆u(k) = uc(k)− û(k). How much effect this prediction error noise has on
the plant depends on its dynamics. If P is an unstable process, even a small error
∆u(k) can harm the process since it is in open loop during outage.

3.6 Summary

In this chapter we have presented two methods to design the POC, one for SISO
systems affected by deterministic disturbances and one for MIMO systems affected
by stochastic disturbances. Further we have shown that the commonly used POCs,
to hold the last value or use a zero output, are special cases.

For the deterministic method upper bounds on the prediction error were pre-
sented together with an example. For the stochastic method optimal prediction
error bounds were given in form of a the covariance for the prediction error.



Chapter 4

Complexity Analysis and Reduction

This chapter gives methods to reduce the complexity of the POC using model
order reduction. The optimal POC, both in the stochastic and in the deter-
ministic setting in Chapter 3, is given by a filter of order equal to the sum of

the process order, the controller order and the disturbance model order. In practice,
it is important to know if there exists a POC of low order with similar performance.
The optimal POC gives the achievable performance under the given structure. In
this chapter, model order reduction using the Hankel norm and switched balanced
truncation are shown to be suitable mathematical tools to find out the answer to
this question on the existence of a suitable low order POC.

The chapter starts by introducing the needed notation. Then the method for re-
duction in the Hankel norm is presented, followed by the method based on switched
balanced truncation. Finally some commonly used crude approximation methods
are given for comparison.

4.1 Reduced-Order POCs

We start by introducing the needed notation. Let us represent the POC by a linear
operator û = Gǫ on ℓ2, where G is realized by

G

{

x̂(k + 1) = Ax̂(k) + Kǫ(k),

û(k|k − 1) = Cx̂(k), x̂(k) ∈ R
n,

(4.1)

where ǫ(k) = uc(k)− û(k|k−1). As has been discussed in Section 3.4, the dimension
n of the state vector x̂(k) can be very large for the optimal POC. This is for example
the case if it is synthesized using the stochastic method since K then is the Kalman
gain of the system and the state x̂ is composed by both the process, controller and
noise model states. It is of interest to investigate how the order of the POC can be
reduced, and to get an understanding of the performance–complexity trade-off. Let
us denote a reduced-order POC by a linear operator ûr = Grǫr on ℓ2, with order

41
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r < n, realized by

Gr

{

x̂r(k + 1) = Arx̂r(k) + Krǫr(k),

ûr(k|k − 1) = Crx̂r(k), x̂r(k) ∈ R
r,

(4.2)

where ǫr(k) = uc(k) − ûr(k|k − 1). Two different methods for generating Gr from
a given G are suggested next.

4.2 Hankel Approximation

We will now establish a method to reduce the complexity of G by Hankel norm ap-
proximation. The use of Hankel norm is motivated and explained, further reduction
error bounds are given.

Assuming, without loss of generality, that the outage occurs at k′ = 0, we would
like the reduced-order POC to produce an outage prediction ûr(k|k′) that is close
to û(k|k′). Since the predictions only will be applied to the system after the outage
at k′ = 0 we are naturally only interested in making the difference small for k > 0.
Introducing the time-projection operator P+ as

P+u = P+(. . . , u(2), u(1), u(0), u(−1), u(−2), . . .)

= (. . . , u(2), u(1), 0, 0, 0, . . .))

we formalize this requirement using the operator notation in (4.1) and (4.2) as
making

‖P+û − P+ûr‖2 = ‖P+Gǫ − P+Grǫr‖2 (4.3)

small.
Recall that when the POC is in feedback, i.e., there is no outage, the prediction

error is given by ǫ = uc − û = uc −Gǫ, which rearranged becomes ǫ = (I + G)−1uc.
During the outage the prediction error can not be computed and instead ǫ = 0 is
used, as described in Section 2.2. To get a closed-form expression for ǫ we introduce
another time-projection operator P− as

P−u = P−(. . . , u(2), u(1), u(0), u(−1), u(−2), . . .)

= (. . . , 0, 0, u(0), u(−1), u(−2), . . .),

which we can use to write ǫ = P−(I + G)−1uc. Since the same argument holds for
the reduced-order POC we can now write (4.3) as

‖P+Gǫ − P+Grǫr‖2 = ‖P+GP−(I + G)−1uc − P+GrP−(I + Gr)
−1uc‖2 (4.4)

We note that the operator P+GP− is exactly the Hankel operator ΓG of G, see
for example (Zhou et al., 1996), the past-input to future-output map of G. The
input-output map of ΓG is given by

û(k|0) =

0∑

i=−∞

CAk−i−1Kǫ(i) = (ΓGǫ)(k), k > 0,
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(c) The output y of the system G when
driven by the control signal P

−
u, i.e.,

y = GP
−

u.
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(d) The projected output P+y of the sys-
tem G when driven by the control signal
P
−

u, i.e., P+y = P+GP
−

u = ΓGu.

Figure 4.1: Illustration of the input-output map of the Hankel operator ΓG of the
system G.

which is illustrated in Figure 4.1
Since we want to make (4.4), a thus (4.3) with ǫ(k) = ǫr(k) = 0 for k > 0, small

for any input sequence uc(k) we want to make the criterion

sup
uc 6=0

‖ΓG(I + G)−1uc − ΓGr
(I + Gr)

−1uc‖2

‖uc‖2

= ‖ΓG(I + G)−1 − ΓGr
(I + Gr)

−1 ‖

(4.5)
small. Here ‖ · ‖ is the induced ℓ2-norm.

Remark 4.2.1. Note that we here try to make ‖P+(û − ûr)‖2 small, i.e., we try
to make the total energy in the reduction error for k > 0 small. Since the outages
are of finite length, we are arguably mostly interested in keeping the error small
during the first part of the outage. An interesting idea to achieve this is to add an
exponential decay weight, alphak, 0 < α ≤ 1 in the minimization criterion and try
to minimize ‖P+(û − ûr)α

k‖2.
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Model order reduction is a well-studied topic, and there are many methods
available, see for example the book (Obinata and Anderson, 2001). The problem
of making (4.5) small does not fit clearly to any of these methods, however, since
the operators ΓG and ΓGr

are weighted differently by (I + G)−1 and (I + Gr)
−1,

respectively. To be able to solve the problem, we note that the following bound
holds:

‖ΓG(I + G)−1 − ΓGr
(I + Gr)

−1 ‖
= ‖ΓG(I + Gr)

−1 − ΓGr
(I + Gr)

−1 + ΓG(I + G)−1 − ΓG(I + Gr)
−1‖

≤ ‖(ΓG − ΓGr
)(I + Gr)

−1‖ + ‖ΓG

(
(I + G)−1 − (I + Gr)

−1
)
‖. (4.6)

We will proceed by minimizing the first term of this upper bound. It turns out that
it is then possible to use that solution to bound the second term, and thus to bound
the error criterion (4.5).

Note that the rank of the Hankel operator is equal to the McMillan degree of
the corresponding system, if (A,K,C) is a minimal realization, i.e., rank ΓG = n.
To make the first term in the upper bound (4.6) small, we therefore propose to
solve the problem

min
rankΓGr≤r

sup
‖ǫr‖2≤1

‖(ΓG − ΓGr
)ǫr‖2 =: γ1(r), (4.7)

where ǫr = (I + Gr)
−1uc. The reason is that the approximation problem (4.7)

can be solved using the AAK-lemma, see (Adamjan et al., 1971; Glover, 1984). In
particular, it is well-known that

γ1(r) = σr+1(G)

where σi(G), i = 1, . . . , n, are the Hankel singular values of the linear operator G,
and methods for computing a state-space realization Ar,Kr, Cr of the optimal G∗

r

are available, see (Glover, 1984; Gu, 2005). The Hankel singular values can be used
to determine a suitable approximation order r.

Assume now we choose an optimal Hankel approximation G∗
r of G as the reduced

POC. What can we then say about the size of the second term in the bound (4.6)?
We have that

(I + G)
(

(I + G)−1 − (I + Gr)
−1
)

(I + Gr) = (I + Gr) − (I + G) = Gr − G

giving
(I + G)−1 − (I + Gr)

−1 = (I + G)−1(Gr − G)(I + Gr)
−1,

and as has been shown in (Glover, 1984; Gu, 2005), that there is an optimal Hankel
approximation G∗

r such that

‖G∗
r − G‖ ≤

n∑

i=r+1

σi(G). (4.8)
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An upper estimate of the second term is therefore
∥
∥
∥ΓG

(

(I + G)−1 − (I + G∗
r)

−1
)

uc

∥
∥
∥

2
= ‖ΓG(I + G)−1(G∗

r − G)ǫr‖2 ≤ γ2(r)‖ǫr‖2

(4.9)
where

γ2(r) = σ1(G) ‖(I + G)−1‖
n∑

i=r+1

σi(G).

Here we have used that the induced norm of ΓG is equal to σ1(G). This bound is
expected to be quite conservative, since we have used the submultiplicative property
of the induced norm and the upper bound (4.8) which is derived using the triangle
inequality. The reason this bound is used is that the author is not aware of any
method to compute a better bound for the induced norm ‖ΓG(I + G)−1(G∗

r −G)‖.
We summarize the above results in the following proposition.

Proposition 4.2.2. Suppose the system (4.2) is chosen as an optimal Hankel ap-
proximation G∗

r of the stable system G in (4.1). Then it holds for any input uc ∈ ℓ2
that

‖P+(û − ûr)‖2 = ‖ΓGǫ − ΓG∗

r
ǫr‖2 ≤ γ(r)‖ǫr‖2,

where

γ(r) = γ1(r) + γ2(r) = σr+1(G) + σ1(G)‖(I + G)−1‖
n∑

i=r+1

σi(G).

Proposition 4.2.2 shows that if σi(G), i = r + 1, . . . , n, are small, then G∗
r is

guaranteed to work well as a reduced-order POC. The bound can be used as follows:
A user of the reduced-order POC can compute ‖ǫr‖2, since this is the energy of the
one-step ahead prediction error which is feeded into G∗

r . If ‖ǫr‖2 is small, it means
that the environment is not very noisy, and the prediction works well. If then an
outage occurs, we can be certain that the outage predictions ûr do not deviate from
the full-order prediction û more than γ(r)‖ǫr‖2, under the same circumstances.

Remark 4.2.3. One restriction in Proposition 4.2.2 is that G must be stable. This
is for example not the case if the POC has been constructed using the optimal
stochastic method with unstable modes in the disturbance model (3.19). The sta-
bility condition can be handled by making a stable/anti-stable decomposition of G,
i.e., G = Gs +Gu, and then approximate the stable part Gs as above. The unstable
term Gu can then be added to the approximation G∗

s,r.

Remark 4.2.4. When G has been synthesized using the optimal stochastic method
as described in Section 3.4, it intuitively makes sense to make the reduction criteria
‖ΓG − ΓGr

‖ small. The reason is that the correction ǫ = (I + G)−1uc that is
applied to ΓG then is an innovation sequence, and is thus white noise. It therefore
contains an equal amount of all frequencies and to make an unweighed criterion
like ‖ΓG − ΓGr

‖ small is natural.
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4.3 Balanced Truncation of Switched Systems

A perhaps more direct approach to obtain a reduced-order POC is to use balanced
truncation of linear time-varying systems, see for example (Lall and Beck, 2003;
Sandberg and Rantzer, 2004). We proceed to explain reduction using switched
balanced truncation and give upper bounds on the reduction error.

A POC G can be modelled by the linear time-varying system

x̂(k + 1) = A(k)x̂(k) + K(k)uc(k)

û(k) = Cx̂(k),
(4.10)

where

A(k) =

{

A − KC, no outage

A, outage

K(k) =

{

K, no outage

0, outage

The interpretations of x̂(k) and û(k) depend on if the system is in outage or not at
time k.

The idea behind switched balanced truncation is to use, assuming they exist,
a generalized controllability Gramian P ∈ R

n×n and a generalized observability
Gramian Q ∈ R

n×n for (4.10) satisfying the Linear Matrix Inequalities (LMIs)

A(k)PA(k)T − P + K(k)K(k)T ≤ 0, ∀k

A(k)T QA(k) − Q + CT C ≤ 0, ∀k
(4.11)

to define generalized Hankel singular values σi =
√

λi(PQ). The Gramians are then
used to compute a balancing coordinate transformation such that both Grami-
ans become diagonal and equal to Σ = diag{σ1, . . . , σn}, see (Moore, 1981). By
truncating the states of the balanced realization of (4.10) that correspond to σi,
i = r + 1, . . . , n, we obtain the reduced-order POC Gr as

x̂r(k + 1) = Ar(k)x̂r(k) + Kr(k)uc(k)

ûr(k) = Crx̂r(k).
(4.12)

Effectively, (4.11) reduces to four LMIs, and can be solved using standard software.
For details of the method see (Lall and Beck, 2003; Sandberg and Rantzer, 2004).

As first shown in (Lall and Beck, 2003) there is a bound on the error ‖û− ûr‖2, as
follows.

Proposition 4.3.1. Suppose (4.11) are feasible and the system (4.12) is chosen as
a truncated balanced realization of (4.10). Then it holds for any input uc ∈ ℓ2 that

‖û − ûr‖2 ≤
(

2
n∑

i=r+1

σi

)

‖uc‖2.
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Remark 4.3.2. Note that the error bound in Proposition 4.3.1 also bound the
difference between û and ûr when there is no outage. The bound in Proposition 4.2.2
bounds the error in outage only. Arguably we are more interested in the magnitude
of the error when outage occurs since it is only then û and ûr are actually applied
to the plant. On the other hand, the bound in Proposition 4.3.1 also holds for
arbitrary numbers of consecutive outages.

Remark 4.3.3. Balanced truncation only works when the LMIs (4.11) are feasible,
whereas the method in Section 4.2 always works. This feasibility problem is the same
as the problem of finding a common Lyapunov function for switched linear systems,
see for example (Liberzon, 2003). To characterize POCs that ensure feasibility is
an interesting topic for future research. A simple necessary condition is again that
G is stable. Unstable G can be dealt with like mentioned in Remark 4.2.3.

4.4 Hold and Zero Approximation

As mentioned previously in Chapter 3 two common ways to implement outage
compensation is a to use a hold or a zero POC. Seen in the light of model order
reduction these two POCs are in fact crude approximations Gr of G, where G could
be any POC. We summarize these observations in the following two remarks.

Remark 4.4.1. The hold POC is the reduced POC Gr obtained by the reduction
method which takes any POC G and approximates it with Gr as

Gr

{

x̂r(k + 1) = 1 · x̂r(k) + 1 · ǫr(k),

ûr(k|k − 1) = 1 · x̂r(k),
(4.13)

with ǫr(k) = uc(k) − ûr(k|k − 1), i.e., the POC realized by Ar = Kr = Cr = 1
giving ûr(k|k − 1) = uc(k

′) where uc(k
′) is the last know control signal.

Remark 4.4.2. The zero POC is the reduced POC Gr obtained by the reduction
method which takes any POC G and approximates it with Gr as

Gr

{

x̂r(k + 1) = 0 · x̂r(k) + 0 · ǫr(k),

ûr(k|k − 1) = 0 · x̂r(k),

}

(4.14)

with ǫr(k) = uc(k) − ûr(k|k − 1), i.e., the POC realized by Ar = Kr = Cr = 0
giving ûr(k|k − 1) = 0.
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4.5 Summary

Two methods to reduce the complexity of the POC were given, one based on Hankel
norm approximation and one based on switched balanced truncation. For both
methods upper bounds on the resulting reduction error were given.

Further it was shown that the two commonly used POC methods to hold the last
value or use a zero output can be seen as crude approximation of a more complex
POC.



Chapter 5

Simulation Evaluation

To illustrate the behavior of the POC designs presented in the thesis, under
realistic scenarios, this chapter presents a simulation study of a level con-
trol system. POCs designed using both the deterministic and the stochastic

method are given for various levels of complexity.
The chapter begins by describing the simulated system and the simulation sce-

nario. Then a POC is derived using the nominal deterministic method and simula-
tions are made comparing it with lower-order approximations. After this we simulate
the POC given by the optimal stochastic method. Finally, the reduction methods
presented in Chapter 4 are applied to the POC given by the optimal stochastic
method and comparative simulations are performed.

5.1 System and Scenario

We start by introducing the system and scenario for the simulation example. As
the simulated process P we consider a tank process consisting of five identical tanks
connected in series as depicted in Figure 5.1.

This system is motivated by a floatation process in an ore concentrator at Boli-
den in Sweden, which is being investigated for wireless control within the socrades

project (socrades, Integrated Project, EU Sixth Framework Programme). The
control objective is to keep the level x5 in the lowest tank around an equilibrium
point despite load disturbances d entering the system. The manipulated variable is
the flow u from the pump.

The individual tanks are modelled using mass balance and Bernoulli’s law.
Assuming that the tanks have cross sectional area A = 1m2, outlet hole area
a = 0.2m2 and that the gravitational acceleration is g = 10m/s2, a linearized
process model around the equilibrium x0

i = 5m and u0 = 2m3/s is given by

49
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Figure 5.1: The controlled tank process P
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(5.1)

where τ = A
a

√
2x0

i

g
= 5 s. The rise time of the water tank process is about 25 s.

The process is controlled by a controller that has been derived using loop-
shaping and is given as

C(s) =
s + ωI

s

( τds + 1

βτds + 1

)5 10ωI

s + 10ωI

(5.2)

with the parametrization ωI = 0.2, β = 0.30 and τd = 8.54. This control design
gives a cross-over frequency ωc = 0.22 rad/s with a phase-margin ϕm = 60o, which
makes the closed-loop system about five times faster than the open-loop system.
The process and controller are sampled with period Ts = 1 s
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The simulation scenario for 0 6 t 6 140 used when simulating the system is the
following:

t = 0 System starts at rest and the disturbance d starts to act on the system.

t = 40 A communication outage occur between controller and actuator so the
POC is activated.

t = 80 Communication is restored so the controller drives the system back into
rest.

Since the deterministic and stochastic methods are designed for different types of
disturbances, the disturbance d will be chosen accordingly. That is, when simulating
the POC derived using the deterministic method a piece-wise constant deterministic
disturbance will be used and when simulating the POC derived using the stochastic
method a stochastic random-walk disturbance will be used.

As a comparison to the POC simulations under the above scenario we will also
show the closed-loop response of the system affected by the same disturbance d,
i.e., show how the system would have reacted to the disturbance if no outage had
occurred. This will be referred to as loss-free behavior and the signal trajectories
of this system are referred to as the loss-free trajectories.

5.2 Simulation Evaluation of Deterministic Synthesis

Let us study the POC synthesized using the deterministic method derived in Sec-
tion 3.2 and simulate it according to the given example and scenario with the
disturbance d realized by

d(t) =







0, t < 20

1, 20 ≤ t < 60

0.5, 60 ≤ t.

We start by simulating the POC and then compare these results with simulations
of the zero and the hold POCs.

5.2.1 Nominal Deterministically Derived POC

The system response with the nominal deterministically derived POC is shown in
Figure 5.2. Recall that this POC is obtained when the internal model of the POC is
chosen as the true system, i.e., following the notation in Section 3.2 G(q) = G0(q).
The predicted trajectory follows the loss-free trajectory during the outage up until
t = 60 when the disturbance changes. This is the best we can do since we can
only follow the loss-free trajectory that was observed prior to the outage. As the
disturbance changes so does the loss-free trajectory. However since communication
is lost the POC can not detect this change of the loss-free trajectory since it can not
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Figure 5.2: Comparison of nominal deterministically synthesized POC behavior (solid
dark) with loss-free behavior (dashed) under disturbance d (solid light) and outage
(greyed)

measure it. When communication is restored the controller can use a small input
correction term to recover the loss-free system behavior. We note that the settling
time for the loss-free system and the system using this POC are almost identical.

5.2.2 Hold POC

The hold POC system response can be seen in Figure 5.3(a). The hold POC ini-
tially, for the first few samples after the outage, manages to keep the system quite
close to the loss-free trajectory. However, after these initial samples the system
trajectory starts growing away from the setpoint. When communication is restored
the controller needs to use a large control signal to recover the loss-free system
behavior.

5.2.3 Zero POC

The response for the system with the zero POC can be seen in Figure 5.3(b). As
seen, when the outage occurs, the system output starts to grow rapidly, taking the
system far away from the desired setpoint. As a consequence of the large pertur-
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bation caused during the outage the controller has to use a large control signal to
recover the loss-free system behavior once communication is restored.

The large magnitude of the control signal for the hold POC and the zero POC,
once communication is restored, is dependent on two factors. The first and most
apparent reason is the fact that the system drifts far away from the setpoint and
therefore a large control effort is needed. The second and more subtle reason is that
there is a large difference between the control signal that the controller is computing
and the one that is actuated. This difference will cause integral windup effects in
the controller which also appear in the transient after communication is restored.

The difference in computed and applied control signal due to lost packets can,
from the controllers perspective, be seen as a form of ”virtual” saturation. As is well
know saturation of the control signal causes windup effects, unless it is compensated
for. Unfortunately, to apply anti-windup techniques the controller needs to know
the shape of the ”virtual” saturation, or more precisely which command was applied.
This means that the controller needs to be acknowledged if the sent packet has been
applied or not. If it was not applied, it needs to know which replacement command
that was issued.

5.3 Simulation Evaluation of Stochastic Synthesis

We now move on to the POC given by the optimal stochastic method derived in
Section 3.4. As with the deterministically derived POC we simulate it on the given
example and under the given scenario. However, here a sampled realization of the
disturbance d is generated by the system

xd(k + 1) = xd(k) + w(k)

d(k) = xd(k)

Ew(k)2 = 0.01

(5.3)

Combining the sampled models for the process (5.1), controller (5.2) and distur-
bance (5.3) following Section 3.4, one get a closed-loop system with McMillan degree
n = np + nc + nd = 5 + 7 + 1 = 13. Deriving the POC G for this system using the
optimal stochastic method, with G given by (3.21), G will have the same degree.
In the following we use R = diag([10−2, 10−4]).

The resulting simulated behavior of the closed-loop system with this POC is
shown in Figure 5.4. At time t = 0 the POC is initialized to have the same state
as the true system and the prediction is perfect. However at the same instant the
disturbance starts acting and the system states start to diverge. As a result, so
does the estimation error. Effectively what now happens is that the Kalman filter
in the POC starts to estimate the variance of the random-walk disturbance d via
the internal model. At t = 40, communication between the controller and actuator
is lost, hence so is the feedback into the predictor, and the POC starts to evolve
in open loop predicting the control signal. If the state estimate in the POC has
converged the prediction will be perfect, as long as the disturbance does not change
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(b) zero POC

Figure 5.3: Comparison of hold and zero POC behavior (solid dark) with loss-free
behavior (dashed) under disturbance d (solid light) and outage (greyed)
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Figure 5.4: Comparison of optimal stochastically synthesized POC behavior (solid)
with loss-free behavior (dashed) under disturbance d (dotted) and outage (greyed)

under the outage. However, if the estimate has not fully converged and there is
noise, as is the case in this example, the prediction will start to diverge. Still, one
can observe that the prediction error is small for the first 15 s resulting in a very
small deviation in the output compared to the loss-free case.

5.4 Simulation Evaluation of Reduced Order POCs

Let us now use the POC G, derived using the optimal stochastic method, presented
in Section 5.3 to illustrate the reduction methods presented in Chapter 4.

5.4.1 Hankel Approximation

We will now go through the method of approximation in the Hankel norm for the
POC G in the given example. We discuss how the approximation order could be
chosen and how unstable modes should be handled. Finally simulation examples
are given for approximations of various orders.

First we observe that the disturbance model (5.3) in G contains an integration
and that G hence is not asymptotically stable. To handle this a stable/anti-stable
decomposition of G is made as G = Gs + Gu and reduction is made on the stable
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Figure 5.5: Hankel singular values of the stable modes in the optimal stochastically
synthesized POC

part Gs only, see Remark 4.2.3. To determine a proper reduction order r the singular
values of Gs, shown in Figure 5.5, are studied. As seen there are significant drops
between σ1(Gs) and σ2(Gs), between σ3(Gs) and σ4(Gs) and between σ5(Gs) and
σ6(Gs), indicating that a good choice of the reduction order r is to choose r in the
set {1, 3, 5}. Performing optimal Hankel norm approximation on Gs of order r one
get G∗

s,r and the reduced POC as G∗
r = G∗

s,r + Gu of order r + 1 since Gu only
contains the integrator state from the disturbance model.

A quantitative bound γ(r) on the reduction is given in Proposition 4.2.2. For the
given example the bounds for the suggested choices of r are presented in Table 5.6
together with the true norm of ‖P+(û− ûr)‖2 and the contribution from the partial
bound γ1(r) in (4.7). As seen, in this example, the bound imposed by γ1(r) is
close to the true value of ‖P+(û − ûr)‖2 whereas the upper bound given by γ(r)
is significantly larger. This is due to the conservative derivations of the component
γ2(r) from (4.9).

Evaluating the reduced POCs with order r = 3 and r = 1 on the same simulation
scenario as for stochastic method case, one gets the results in Figure 5.7(b) and
Figure 5.7(a).

At t = 0 the system starts at rest in the origin and the reduced POCs are ini-
tialized accordingly to xr(0) = 0. As before the disturbance d starts to act on the
system immediately causing it to diverge and the POCs start estimating the states.
The state associated with the disturbance model will now, apart from the distur-
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Table 5.6: Comparison of simulated reduction error norm compared to computed re-
duction error norm bounds for different reduction orders r

r ‖ǫr‖2 γ1(r)‖ǫr‖2 γ(r)‖ǫr‖2 ‖P+(û − ûr)‖2

5 0.32 0.03 0.25 0.02
3 0.29 0.25 2.99 0.26
1 0.35 0.77 11.87 0.39

bance, accommodate the errors due to the model reduction. When communication
is lost at t = 40 the POCs will as before evolve in open loop predicting the control
signal.

Studying the reduced POC of reduction order r = 3 in Figure 5.7(a) and com-
paring it with the optimal stochastically derived POC in Figure 5.4 we see that
its prediction error is larger, although the difference is not significant. In fact, the
output tracking performance for the reduced POC with r = 3 is almost identical
to the optimal stochastically derived POC in Figure 5.4.

If we instead study the reduced POC of reduction order r = 1 in Figure 5.7(b)
we see that the prediction error as expected is larger than for the reduced POC of
reduction order r = 3, this is due both to the model approximation error and the
fact that the estimator has not fully converged when the outage occur.

5.4.2 Hold Approximation

As mentioned previously in Chapter 4 the hold POC can be viewed as a crude
approximation Gr of the POC G with Gr realized as in (4.2) with Ar = Kr = Cr =
1, see Section 4.4. The resulting simulation over the studied scenario from using
this POC is shown in Figure 5.8(a).

The response is similar to the hold POC in the deterministic method scenario.
We see that for the first few samples after the outage the trajectory is kept close
to the loss-free one. But as before, it will after a few samples start to deviate, even
though not as fast as with the zero approximation.

5.4.3 Zero Approximation

As the hold POC the zero POC can be seen as a crude approximation Gr of the
POC G, now with Gr realized by Ar = Kr = Cr = 0 in (4.2), see Section 4.4.
Simulating this POC over the studied scenario results in the behavior shown in
Figure 5.8(b).

As for the zero POC in the deterministic method scenario, the system output
rapidly starts to grow away from the desired value when the outage occurs. The
prediction error during the outage causes the controller to apply a large control
signal when communication is restored, in order to stabilize the system.
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Figure 5.7: Comparison of Hankel reduced POC behavior (solid) with loss-free behavior
(dashed) under disturbance d (dotted) and outage (greyed)
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Figure 5.8: Comparison of hold and zero POC behavior (solid) with loss-free behavior
(dashed) under disturbance d (dotted) and outage (greyed)
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5.4.4 Switched Balanced Truncation

Making the same stable/anti-stable decomposition of G as in Section 5.4.1 one can
use an LMI solver (e.g., (Sturm, 1999)) to try to find the generalized Gramians of
Gs. For the given example there exists a generalized observability Gramian but the
problem of finding a generalized controllability Gramian is not feasible. Hence it is
not possible to perform switched balanced truncation on this example.

5.5 Summary

We have presented simulations of POCs derived using both the nominal determin-
istic and the optimal stochastic synthesis methods. These simulations have then
been compared to simulations of the hold and zero POCs.

The simulations have shown that the performance both in the case of deter-
ministic and stochastic disturbances is significantly improved if one uses a POC
synthesized using the deterministic respectively the stochastic method, instead of
using the commonly used hold or zero POC.

Further we have seen that the complexity reduction methods introduced in the
thesis can be used to reduce a high order POC to a much lower order POC essentially
having the same performance.



Chapter 6

Model Predictive Control based on Wireless

Sensor Feedback

Here we present the design and experimental validation of a control system
with both wireless sensor and actuator links. The control system is designed
for, and the experiments are performed on, a laboratory process built at the

University of Siena, Italy. The process, shown in Figure 6.1, consists of a transport
belt where moving parts equipped with wireless sensors are heated by four infrared
lamps.

Figure 6.1: The laboratory process controlled.
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The studied process is motivated by heating processes in the plastic and printing
industry, where one wants to move parts over a transport belt and at the same time
have them follow a specific temperature profile.

The process is actuated by moving the transport belt and by switching the
heating lamps on or off. This switching property gives interesting hybrid dynamics
in the process, which we will handle using a hybrid model predictive control (MPC)
controller (Bemporad and Morari, 1999). The reason for using the hybrid MPC
algorithm is that it explicitly takes the hybrid nature of the system into account as
well as it handles physical constraints on states and inputs.

Since MPC is computationally intensive the amount of computational power
required can not be assumed to be available close to the process. Instead a wireless
control structure will support the delocalization of the MPC controller to a remote
computer able to handle the computations. Both the measurements from the process
to the MPC controller and the control signals from the MPC controller to the
process will be transmitted over wireless links. In order for this to work a particular
control systems architecture will be used.

The chapter is outlined as follows. First the process is described in further detail
and a model is developed to be used for the MPC design. After that the control
system architecture is presented followed by the control design. Following that the
details regarding the physical implementation are presented. The chapter is then
concluded by simulations and results from experiments on the physical control
system.

6.1 Process Description and Modelling

We start by describing the laboratory process and derive a control and estimation
oriented hybrid dynamical model of it.

6.1.1 Physical Process

The main components of the process, whose schematics are shown in Figure 6.2,
are the belt actuated by a motor equipped with an angular encoder, four heating
lamps placed over the belt and a ”part” placed on the belt. The heating lamps are
placed in a row and two on/off switches are available to actuate them. The first
switch controls lamps 1 and 3, the second switch, lamps 2 and 4. The lamps are
grouped to reduce the complexity of the model and of the control algorithm. The
”part” is a temperature sensor equipped with a radio device able to transmit its
temperature reading. The device is called a mote.

To derive a dynamic model of the process experiments where performed which
showed that the system is governed by the differential equations

Ṫ1 = −α
(
T1 − Tss(p, u1, u2)

)
,

Ṫ2 = −β
(
T2 − T1),

ṗ = γ(uc),

(6.1)
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Figure 6.2: Schematics of the process.

where T1 ∈ R is interpreted as the sensor casing temperature, T2 ∈ R is inter-
preted as the sensor temperature and p ∈ R is the position of the mote on the
belt. The control inputs are uc ∈ R and u1, u2 ∈ {0, 1} and Tss : R

3 → R is a
static nonlinearity. The parameters α, β > 0 are physical constants, identified from
the experimental data. The continuous signal vc = γ(uc) corresponds to the mote
velocity, which is obtained through a static nonlinear mapping γ(·) of the control
command. As regards the discrete input signals, u1 = 0 when the lamps 1 and 3
are off and u1 = 1 when they are on. The signal u2 governs the lamps 2 and 4 in
the same way. Tss(p, u1, u2) is the steady-state temperature of the sensor casing at
position p with the lamps switches as (u1, u2) and is given by

Tss(p, u1, u2) = f1(p)u1 + f2(p)u2 + Tamb, (6.2)

where Tamb ∈ R is the ambient temperature and fi(p) : R → R, i ∈ {1, 2} describe
the increase in steady-state temperature at position p obtained by turning on the
ith switch.

6.1.2 Hybrid Model

In order to use hybrid MPC as described in (Bemporad and Morari, 1999) we need
to approximate the continuous-time model (6.1) and the nonlinearity Tss in (6.2)
by a piecewise affine hybrid model. To do this we introduce an auxiliary variable χ
to model a piecewise affine approximation of (Tss−Tamb). First we partition R into
ℓ intervals {I1, I2, . . . , Iℓ} and approximate fi, i = 1, 2 in (6.2), by the functions

χi(p(t)) =

{

Ki
jp(t) + hi

j if ui = 1, p ∈ Ij , j = 1, . . . , ℓ

0 otherwise,

i = 1, 2,

χ(p(t)) =χ1(p(t)) + χ2(p(t)).

(6.3)

The notation χ(p(t)) is used to highlight that χ depends on the position p, which
changes in time. For simplicity of notation we will from now on use the notation
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Figure 6.3: Tss − Tamb and its piecewise affine approximation.

χ(t) instead. The effect of Tamb will be introduced later as a measured disturbance.
The nonlinear function (Tss −Tamb) and its approximation is shown in Figure 6.3.

The continuous-time model is sampled with period Ts = 250ms giving the
following discrete-time system

x(k + 1) =






a11 0 0

a21 a22 0

0 0 1






︸ ︷︷ ︸

Φ

x(k) +






b11 0

b21 0

0 b32






︸ ︷︷ ︸

Γ

(

χ(k)

vc(k)

)

,

y(k) =

(

0 1 0

0 0 1

)

︸ ︷︷ ︸

C

x(k),

(6.4)

where x = (T1, T2, p)T , χ(k) is a sampled version of (6.3) and the belt velocity
vc = γ(uc) is used as system input.
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r(k)

x̂(k)

Figure 6.4: Wireless control architecture.

6.2 Control System Architecture

To be able to place the MPC controller computations in a computer located away
from the process we use the control system architecture shown in Figure 6.4. The
solid boxes are the functional blocks while the dashed boxes show the physical
platforms on which they are implemented. Next we describe the architecture further.

6.2.1 Control System

The architecture described in Figure 6.4 is called the reference governor approach,
see (Bemporad et al., 1997; Gilbert and Kolmanovsky, 1999), and has previously
been studied in the context of unreliable network links in (Bemporad, 1998). As
seen this is a cascade type of control architecture where the process is actuated by a
local controller at the process. The local controller in turn receives its reference from
the remotely executed hybrid MPC algorithm which computes the optimal input
commands, based on the estimated system states received from the observer. These
optimal commands are then sent over a wireless channel to the local controller.

By this the computational power required to solve the optimization problem
of finding the optimal inputs for the desired performance is moved away from the
process to a powerful computer located at a base station. The local controller is
computationally light and embedded in, or placed close to, the actuator where it
performs low level control tasks.

6.2.2 Wireless Networks

Also shown in Figure 6.4 are the two networks used to support the delocalization of
the remote MPC controller from the process site. Measurements are sent from the
process to the observer over a wireless sensor network (WSN) implemented on the
network standard IEEE 802.15.4, while the commands from the MPC controller to
the local controller are communicated over WLAN implemented on IEEE 802.11g.
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We model these networks by switches turning communication on or off, so that
data sent over the network is either received or lost. Following the notation in
Figure 6.4 and letting ε denote void or ”no data” this means that

û(k) =

{

u(k) Command from controller received
ε Command from controller lost

ŷ(k) =

{

y(k) Command from sensor received
ε Command from sensor lost

where u(k) and y(k) are the outputs from the MPC controller and process respec-
tively and û(k) and ŷ(k) are the control command respectively the sensor value
received after transmission.

6.2.3 Compensating for Packet Losses

To overcome packet losses in the wireless transmission the system implements two
different methods. If a command from the MPC controller to the local controller
is lost the local controller applies a hold mechanism giving û(k) = û(k − 1), this
is in fact a hold POC as described in Example 3.1 in Chapter 3. In the case that
a sensor packet is lost the observer, see Section 6.3.3, will evolve in open loop to
predict the states of the system, much similar to the behavior of the POC described
in Chapter 2.

6.3 Control System Design

We now move on to synthesize the different parts of the control system and the
involved controllers. We also describe the hybrid MPC algorithm.

6.3.1 The Local Controller

The local controller is divided into two parts. The first is a signal conversion which
generates the motor commands ûc(k) from the commanded belt velocity v̂c(k) by
performing the inversion ûc(k) = γ−1

(
v̂c(k)

)
. The second part of the controller is a

feedback component in the belt motor servo which rejects disturbances caused by
varying mass on the belt and variable friction.

6.3.2 The Hybrid MPC Algorithm

To apply hybrid MPC as we want the hybrid model developed in Section 6.1.1 needs
to be extended by two additional states. The first one is the ambient temperature
Tamb in (6.2), which is assumed constant. The second additional state is the “input
memory” state xu, used to constrain the acceleration of the belt. The dynamics of xu

are defined by xu(k +1) = vc(k). The acceleration at time k for a given input vc(k)
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can then be computed by backward Euler approximation as
(
vc(k) − xu(k)

)
/Ts.

By this constraints on the acceleration can be expressed as state constraints. The
extended system model becomes

x(k + 1) =











a11 0 0 1 0

a21 a22 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0











x(k) +











b11χ(k)

b11χ(k)

b32vc(k)

0

vc(k)











,

y(k) =

(

0 1 0 0 0

0 0 1 0 0

)

x(k),

(6.5)

where x = (T1, T2, p, Tamb, xu)T .
In order to apply the hybrid model predictive control algorithm the system

model in (6.5) must be formulated as a mixed logical dynamical (MLD) system as
described in (Bemporad and Morari, 1999). How this conversion can be made is
detailed further in Section 6.4.3. Converting (6.5) one get a MLD system as

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k),

y(k) = Cx(k),

E2δ(k) + E3z(k) 6 E1u(k) + E4x(k) + E5,

(6.6)

where u = (vc, u1, u2)
T ∈ R × {0, 1}2 is the input vector and z(k) ∈ R

22 and
δ(k) ∈ {0, 1}10 are continuous and binary auxiliary variables, respectively. The
auxiliary variables describe the piecewise affine dynamics given by (6.3).

Using this MLD model we can now formulate the hybrid MPC algorithm based
on the following optimization problem, solved at each time step k,

min J({u(n), δ(n|k), z(n|k)}N−1
0 , x(k)) ,

qρρ
2 +

N−1∑

n=0

(

qvc
vc(n)2 + qz

(
1

Ts

)2
(
vc(n) − xu(n|k)

)2
+‖Qy(y(n|k) − yr)‖2

)

subject to (6.6) and





20

20

0




 6






T1(n|k)

T2(n|k)

p(n|k)




 6






50

50

1.2




 , n = 1, . . . , N

−0.1 6 vc(n|k) 6 0.1, n = 0, . . . , N − 1

u1(n|k), u2(n|k) ∈ {0, 1}, n = 0, . . . , N − 1,
(6.7)

where distances are expressed in m, velocities in m/s and temperatures in ◦C.
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The tuning parameters of the hybrid MPC problem (6.7) are chosen as

N = 4, qρ = 103, qvc
= 2, qz = 1, Qy =

(

0.01 0

0 0.6

)

according to the following rationales: We want to track the position and the tem-
perature reference and at the same time keep the state in a predefined “safe” set,
that excludes high and low temperatures and excessive velocities. The acceleration
and velocity of the belt should be low in order to reduce power consumption and
avoid violent dynamics that cause wear.

The reference on the belt velocity vc is set to 0, favoring light actuation of
the belt. The output reference profile yr ∈ R

2 defines the desired behavior of the
system. The length of the horizon N affects the performance of the controller. A
longer horizon gives a smoother behavior and a shorter one gives a more aggressive
controller. A longer horizon also gives a more complex optimization problem, hence
the prediction horizon N is chosen by trading off between the performance and the
available computational power.

The hybrid MPC algorithm executes the following operations at each time step
k:

1. The system output ŷ(k) is measured and the state estimate x̂(k) is computed;

2. The optimal control problem (6.7) is solved with x(0|k) = x̂(k);

3. The first optimal input u∗(0) is applied to the system as the current control
u(k).

6.3.3 Observer

Since only the belt position p and the sensor temperature T2 are measurable we need
an observer to estimate the system states. To observe the states we use a reduced
order nonlinear Luenberger observer since it in this case is a simple solution. It is
given by

x̂(k + 1|k + 1) = Φx̂(k|k) + ξ(k) + K
[
ŷ(k + 1) − C

(
Φx̂(k|k) + ξ(k)

)]
,

ξ(k) =






b11χ(k|k)

b21χ(k|k)

Tsvc(k)




 , K =






k11 k12

1 0

0 1




 ,

(6.8)

where k11 = 5, k22 = 0.
If the packet at time k is lost the estimation evolves in open loop so that (6.8)

becomes x̂(k+1|k+1) = Φx̂(k|k)+ξ(k). This is much like the behavior of the POC
in Chapter 2 which also updates its internal states if the measurement is received
and evolves in open loop if it is lost.
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Figure 6.5: Hardware architecture.

6.4 Implementation

As mentioned earlier Figure 6.4 shows the control system architecture and present
both the functional blocks and the physical platforms which implement them. This
section describes the implementation of the system infrastructure further. First the
hardware platforms are presented and after that we present the software running
on them. Finally the controller implementation is discussed.

6.4.1 Hardware Architecture

The hardware architecture of the system is shown in Figure 6.5. The MPC controller
and the observer runs in the Host PC, which is a 1.2GHz Pentium-M™ laptop,
equipped with an integrated IEEE 802.11g WLAN card. The local controller runs
in the Target PC, which is a Pentium™ 133MHz. To enable communication with
the Host PC, the Target PC is connected via ethernet LAN to a WLAN router.
To interface the Target PC with the process, a National Instrumentsr DAQ-board
is used. The process belt is moved using a belt roller with an encapsulated motor
controlled using a motor servo. An angular encoder on the belt measures the veloc-
ity. The lamps are controlled using two relays, one for each pair of lamps, to turn
on and off their supply currents. The encoder and all the actuators are connected
through the DAQ board. The ”parts” or motes moving on the belt are Tmote Sky™
wireless sensors from Moteivr (Moteiv Corporation, 2007) equipped with temper-
ature sensors, a low-power 8MHz 16 − bit microprocessor and a IEEE 802.15.4
radio transceiver. The mote placed on the belt measures its temperature and com-
municates it to another mote connected to the USB port of the Host PC.
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Figure 6.6: Software architecture

6.4.2 Software Architecture

The software architecture of the system is shown in Figure 6.6. The control appli-
cation consists of a distributed implementation over four platforms: two of these
are implemented on Tmote Sky motes and two are implemented on PCs.

The Host PC runs Microsoft Windows™ XP. On top of this, it runs Mat-

labr 7.1, and the Hybrid Toolbox v1.1.0 (Bemporad, 2003) for running the MPC
algorithm. The underlying optimization software used in the execution of the MPC
is Cplex™ 9.0 (ILOG, Inc., 2004). Concurrently to the MPC algorithm, the Host
PC runs a Virtual COM software, which reads the USB port of the Host PC Tmote
and abstracts it as a virtual RS−232 COM-port. This virtual COM port is in turn
read by a Java application which presents the data in a suitable Matlab format.
We simply denote the software abstraction of the Host PC as Host.

The Target PC runs xPC-Target™ real-time kernel (The MathWorks Inc., 2000),
with an application developed in Simulink and compiled with Real-Time Work-
shop™. The xPC toolbox provides a transparent way to use a standard PC, in our
case the Target PC, as a microcontroller. It also provides a hardware abstraction
for TCP/IP communication with the Host as well as an abstraction towards the
DAQ card. The full software abstraction of the Target PC from the WLAN router
to the DAQ is referred to as the Target.

Both the Tmote Sky mote on the belt and the Tmote Sky mote connected to
the Host PC are running TinyOS with custom applications. The Tmote on the belt
is running a sensor application software, which samples the onboard temperature
sensor and sends the data to the Host PC Tmote. The Host PC Tmote runs a
receiver application software which listens to these packets and forwards them to
the USB port on the Host.

6.4.3 Controller Implementation

The Hybrid MPC algorithm is implemented on the Host within the Hybrid Toolbox
for Matlab. The system model (6.5) is written in HYSDEL (Torrisi and Bemporad,
2004) and automatically converted by the associated compiler into the MLD system
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(6.6). The optimal control problem (6.7) is formulated using the Hybrid Toolbox
and included into a Simulink model as an S-function. The resulting optimization
problem consists of 141 optimization variables, 93 continuous and 48 binary, re-
spectively and 585 mixed-integer linear inequalities. The average time required to
solve the optimization problem using the optimization software Cplex is 17ms,
with a worst-case computation time of about 125ms. After the control command
has been computed, it is sent to the Target via the wireless TCP/IP link.

From a functional point of view, the Target and the motor electronics implement
the local controller. The Target PC computes the required motor input voltage to
track the belt velocity commands received from the remote controller. To compen-
sate for packet losses in the Host to Target link it also implements the hold POC,
which holds the last known commands and applies them if no new commands are
received. Further, it integrates the encoder signal to generate the position mea-
surements sent to the Host. The feedback component of the local controller is a
servo-controller implemented in the motor electronics.

6.5 Experimental Results

In this section we present experimental results of the process with the hybrid MPC
controller designed in Section 6.3.2. The experiments aim at evaluating the perfor-
mance of the control architecture and the impact of the wireless communication on
the system behavior.

First we analyze the behavior with respect to data losses in the communication
link between the MPC controller and the local controller, denoted the forward
channel, where the input commands are sent over the WLAN network. Then we
look at data losses in the sensor to MPC link, denoted the backward or feedback
channel. Where the measurements are sent over the wireless sensor network.

6.5.1 Losses in the MPC Controller to Local Controller

Communication Link

For the forward link case we use a constant reference yr = [35, 0.7]T for the tem-
perature and position respectively. Since the WLAN network used is very reliable,
data losses are introduced on purpose by discarding packets according to a data-
loss profile obtained from a sensor network. In this way we are able to evaluate the
effects of using a less reliable network than the WLAN.

Figure 6.7 and Figure 6.8 show the results when the system is simulated as
described above. The deviation from the behavior without losses that occurs around
t = 150 s is due to a massive packet drop burst. The position is not affected by
the drops since the input uc is in steady state, i.e., constant. Hence the backup
control command is equal to the control action of the system without losses, since
the policy is to hold the last known value if the present is lost. Performing the
same experiment on the true system with the same packet loss profile one gets the
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results in Figure 6.9 and Figure 6.10. Besides the effect of the packet loss, errors
are now introduced by external noise and modelling imperfections. In particular,
the input behavior is more aggressive due to the piecewise affine approximation of
(6.2). As a consequence the controller keeps switching the lamps on and off and the
temperature chatters around the equilibrium in a limit cycle. However, the results
are still close to the behavior without losses.
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Figure 6.7: Simulations with losses in the forward channel: Simulated behavior (solid)
and simulated behavior without losses (dashed)



74 Model Predictive Control based on Wireless Sensor Feedback

  0  50 100 150 200 250

  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100
u

c

t [s]

(a) Belt motor command.

  0  50 100 150 200 250
t [s]

u1 = 1

u1 = 0

u2 = 1

u2 = 0

(b) Lamp commands.
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and simulated behavior without losses (dashed)
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Figure 6.9: Experiments with losses in the forward channel: Experimental behavior
(solid) and simulated behavior without losses (dashed).
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Figure 6.10: Experiments with losses in the forward channel: Experimental behavior
(solid) and simulated behavior without losses (dashed)
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6.5.2 Losses in the Sensor to MPC Controller Communication

Link

Now let us consider the case where losses occur in the feedback channel between the
sensor and the MPC controller. In these experiments, the temperature reference is
a square wave with maximum 42 ◦C, minimum 38 ◦C and frequency 3mHz. The
position reference is also a square wave with maximum 0.9m, minimum 0.5m and
frequency 10mHz. The initial position is 0m and the initial temperature is the
ambient temperature.

To induced packet loss an extra sensor node is used to disturb the communica-
tion of the sensor on the belt by sending large amounts of data into the network.
Even though the base station is able to discard the data sent by this extra sensor,
the extra traffic and processing required will cause packet loss. If a measurement
is lost the process state estimate is updated by letting the state observer evolve in
open loop, as described in Section 6.3.

Two experiments are performed, one with low packet loss and one with high
packet loss. In the low loss case the packet loss is induced as described above. In
the high packet loss case the sensor antenna is also covered with aluminium foil,
disrupting the radio signals, to increase the number of lost packets.

Low Loss Scenario

We first study the low loss scenario. Figure 6.11 shows the output as perceived by the
MPC controller. That is, it shows the measurement from the sensor if it is received,
otherwise it shows the prediction from the observer. The control signal computed
by the MPC controller and sent to the local controller is shown in Figure 6.12.
As seen the temperature reference tracking is quite good with small oscillations
around the setpoint. These are due to the discrete nature of the lamp switching.
The tracking of the position reference is even higher. This is because of that the
position measurements are sent through the more reliable WLAN network, in fact
no measurements are lost in this link during the experiment.

The sensor network communications performance is shown in Figure 6.13. Here
the temperature measurements received from the sensor are shown together with
the packet reception rate (PRR). The PRR(t) is computed as the ratio between
the number of received and the number of sent packets during the time interval
[t − 15 s, t + 15 s]. Here the network is shown to be relatively reliable with only
7.9% of total number of measurements lost.
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Figure 6.11: Experiments with losses in the feedback channel, low loss case: temper-
ature and position (solid) and corresponding references (dashed) as perceived by the
MPC controller.
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Figure 6.12: Experiments with losses in the feedback channel, low loss case: Commands
issued by the MPC controller.
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Figure 6.13: Experiments with losses in the feedback channel, low loss case: Measure-
ments received from the network.
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High Loss Scenario

We now move on to the high loss scenario. Similarly as in the low loss scenario
Figure 6.14 shows the output as perceived by the MPC controller. The control
signal computed by the MPC controller and sent to the local controller is shown in
Figure 6.15.

Figure 6.16 shows the sensor network communications performance. As seen
the packet reception rate is much lower than before with 62.8% of the temperature
measurements lost. This affects the temperature reference tracking as it appears
from Figure 6.14. In particular, the abrupt changes in the temperature value seen
by the controller reveal long bursts of missing data causing the state estimate to
diverge. As a consequence, when a measurement is finally received there is a jump
in the estimate.
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Figure 6.14: Experiments with losses in the feedback channel, high loss case: temper-
ature and position (solid) and corresponding references (dashed) as perceived by the
MPC controller.
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Figure 6.15: Experiments with losses in the feedback channel, high loss case: Com-
mands issued by the MPC controller.
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surement is not received.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t [s]

P
R

R

(b) Packet reception rate PRR(t) computed over a moving, centered window of
30 s.

Figure 6.16: Experiments with losses in the feedback channel, high loss case: Mea-
surements received from the network.
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6.6 Summary

This chapter has presented a hybrid MPC design for a physical process and an
experimental demonstration of remote control of the same, over wireless networks. It
was shown that data packets dropped in both forward and feedback communication
links can be handled with good results using standard hybrid MPC techniques.





Chapter 7

Conclusions

We conclude the thesis with a brief summary of the main results followed
by interesting problems for future research efforts within the area. We
start by summarizing the results and then discuss ideas for future work.

7.1 Summary

We have presented a new methodology for compensating for communication losses
in networked control systems. The proposed Predictive Outage Compensator (POC)
has been shown to give significantly improved performance compared to previously
used compensation schemes.

In particular, we derived two methods to synthesize a POC, one for SISO sys-
tems affected by deterministic disturbances and one for MIMO systems affected by
stochastic disturbances and noise. For both methods prediction error bounds are
presented. Methods have also been developed to reduce the complexity of a POC
by means of Hankel norm approximation and switched balanced truncation. A pri-
ori approximation error bounds for these reduction methods are presented. Finally,
different POCs where demonstrated and compared on a simulated tank system.

Further, the implementation of a hybrid MPC design for control over wireless
networks was presented. We have shown that setup was easy to tune and that the
use of hybrid MPC has several advantages. The most obvious is that it offers the
possibility to handle hybrid dynamics in the system such as on/off inputs, as well
as enforce constraints on states and inputs in an explicit way. One drawback is that
hybrid MPC can be computationally intensive.

7.2 Future Work

We note that the Kalman filter in the optimal stochastically synthesized POC
estimates the full state of the entire closed-loop system. An interesting topic for
future work is to find alternative methods of using this estimate. One could use
a separate open-loop controller in outage, for instance. Another problem of both
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practical and theoretical importance is how to generate controls to minimize the
bump in the control signal after a communication outage. These bumps are due
to integral windup in the controller and it is of interest to investigate possible
anti-windup strategies for networked systems.

It is also interesting to characterize for which POCs it is possible to perform
switched balanced truncation, i.e., for which POCs there exists a generalized con-
trollability Gramian and a generalized observability Gramian. Another problem of
interest is to further investigate the problem of Hankel norm approximation where
a decaying weight, as a function of outage length, is added to the performance
measure as discussed in Remark 4.2.1. This problem gives insight to how the POC
complexity relates to the maximum tolerable outage length. For the proposed hy-
brid MPC architecture it is interesting to implement a more advanced POC on
the actuator side of the system, to see how that could enhance the overall system
performance.

There are several generalizations and extensions of the predictive outage com-
pensation framework that are of interest to explore. The first is to extend the
analysis to handle the case when POCs are simultaneously used within the same
loop, to compensate for losses of both control commands and sensor measurements.
A natural further extension is to study the case when multiple control loops share
the same network, and for this case investigate how the interactions between the
controllers and POCs affect the overall control performance. In the case of MIMO
systems it is interesting to extend the POC theory to, instead of handling losses
of the entire vector of measurements y or control signals u, handle losses in the
individual channels yi and ui.

To avoid introducing computations at the actuator side of the network an al-
ternative POC placement is of interest. One possibility is to place the POC at
the controller and use it to, given past and present control commands, compute a
predicted future trajectory of the control signal. This trajectory can then be sent
to the actuator, which then only needs to play out values from a buffer if no new
command is received. This receding-horizon approach has been investigated for the
case of MPC in (Bemporad, 1998) where the entire predicted open-loop trajectory
is sent to the actuator to be used as a play out buffer.
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