
Doctoral Thesis in Electrical Engineering

Safe Autonomy under Uncertainty:
Computation, Control,
and Application
YULONG GAO

Stockholm, Sweden 2020

Yulong gao
Safe Autonom

y under U
ncertainty: Com

putation, Control, and Application
K

TH
 2020

Safe Autonomy under Uncertainty:
Computation, Control, and
Application
YULONG GAO

Doctoral Thesis in Electrical Engineering
KTH Royal Institute of Technology
Stockholm, Sweden 2020

Academic Dissertation which, with due permission of the KTH Royal Institue of Technology
and the Nanyang Technological University, is submied for public defence for
the Degree of Doctor of Philosophy on Friday the 4th of December 2020, at 09:00 a.m.
in F3, Lindstedtsvägen 26, KTH Campus, Stockholm.

© Yulong Gao

ISBN 978-91-7873-691-1
TRITA-EECS-AVL-2020:58

Printed by: Universitetsservice US-AB, Sweden 2020

Abstract
Safety is a primary requirement for many autonomous systems, such as

automated vehicles and mobile robots. An open problem is how to assure

safety, in the sense of avoiding unsafe subsets of the state space, for uncertain

systems under complex tasks. In this thesis, we solve this problem for cer-

tain system classes and uncertainty descriptions by developing computational

tools, designing veri�cation and control synthesis algorithms, and evaluating

them on two applications.

As our �rst contribution, we consider how to compute probabilistic con-

trolled invariant sets, which are sets the controller is able to keep the system

state within with a certain probability. By using stochastic backward reach-

ability, we design algorithms to compute these sets. We prove that the algo-

rithms are computationally tractable and converge in a �nite number of itera-

tions. We further consider how to compute invariant covers, which are covers

of sets that can be enforced to be invariant by a �nite number of control inputs

despite disturbances. A necessary and su�cient condition on the existence of

an invariant cover is derived. Based on this result, an e�cient computational

algorithm is designed.

The second contribution is to develop algorithms for model checking and

control synthesis. We consider discrete-time uncertain systems under linear

temporal logic (LTL) speci�cations. We propose the new notion of tempo-

ral logic trees (TLT) and show how to construct TLT from LTL formulae via

reachability analysis for both autonomous and controlled transition systems.

We prove approximation relations between TLT and LTL formulae. Two suf-

�cient conditions are given to verify whether a transition system satis�es an

LTL formula. An online control synthesis algorithm, under which a set of fea-

sible control inputs can be generated at each time step, is designed, and it is

proven to be recursively feasible.

As our third contribution, we study two important vehicular applications

on shared-autonomy systems, which are systems with a mix of human and au-

tomated decisions. For the �rst application, we consider a car parking problem,

where a remote human operator is guided to drive a vehicle to an empty park-

ing spot. An automated controller is designed to guarantee safety and mission

completion despite unpredictable human actions. For the second application,

we consider a car overtaking problem, where an automated vehicle overtakes a

human-driven vehicle with uncertain motion. We design a risk-aware optimal

overtaking algorithm with guaranteed levels of safety.

Sammanfa�ning
Säkerhet är ett primärt krav för många autonoma system, såsom automa-

tiserade fordon och robotar. En öppen frågeställning är hur man kan säker-

ställa säkerhet, det vill säga undvika farliga delmängder av tillståndsrummet,

för osäkra system under komplexa speci�kationer. I denna avhandling löser

vi detta problem för vissa klasser av system och osäkerhetsformaliseringar

genom att utveckla beräkningsverktyg, utforma veri�erings- och styrsyntes-

algoritmer och utvärderar dem i två tillämpningar.

Som första bidrag studerar vi hur man beräknar probabilistiskt styrda in-

varianta mängder, vilka är mängder regulatorn kan hålla systemtillståndet

inom med en viss sannolikhet. Genom att använda stokastisk bakåtriktad upp-

nåelighet utformar vi algoritmer för att beräkna dessa mängder. Vi bevisar att

dessa algoritmer är beräkningsmässigt hanterbara och konvergerar inom ett

�nit antal iterationer. Vi studerar också hur man beräknar invarianta övertäck-

ningar, som är övertäckningar av mängder vilka kan tvingas vara invarianta

med ett �nit antal styrinsignaler trots störningar. Vi härleder ett nödvändigt

och tillräckligt villkor för existensen av en invariant övertäckning. Med detta

existensvillkor designas en e�ektiv beräkningsalgoritm.

Vårt andra bidrag utvecklar algoritmer för modellkontroll och styrsyntes.

Vi betraktar osäkra system i diskret tid under speci�kationer givna via

linjär tidslogik (LTL). Vi introducerar ett nytt begrepp vid namn tempo-

rala logiska träd (TLT) och visar hur man konstruerar TLT från en LTL-

formel via uppnåelighets-analys för både autonoma system och kontrollerade

övergångssystem. Vi visar approximationsförhållanden mellan TLT- och LTL-

formler. Två tillräckliga villkor ges för att veri�era om ett övergångssystem

uppfyller en LTL-formel. En online-styrsyntesalgoritm är utvecklad, under

vilken en uppsättning möjliga styrsignaler kan genereras vid varje tidssteg,

och vi visar att den är rekursivt görbar.

Som tredje bidrag studerar vi två viktiga fordonstillämpningar inom de-

lade autonoma system, system med en mix av mänskliga och automatiserade

beslut. I den första tillämpningen studerar vi ett bilparkeringsproblem, där en

avlägsen mänsklig operatör guidas för att köra ett fordon till en tom parker-

ingsplats. En automatiserad regulator designas för att garantera säkerhet och

uppdragets slutförande trots oförutsägbara mänskliga handlingar. I den andra

tillämpningen studerar vi ett omkörningsproblem där ett automatiserat for-

don kör om ett mänskligt fordon med osäker framtida körning. Vi designar en

riskmedveten optimal omkörningsalgoritm med garanterade säkerhetsnivåer.

Acknowledgments
The time to pursue a PhD is destined to be an extraordinary stage of my

life, which is full of good memories and unforgettable experiences. It is a jour-

ney with many companions without whose constant help and guidance this

thesis could not have been possible.

First, I would like to express my deepest gratitude to my supervisors, Prof

Karl Henrik Johansson and Prof Lihua Xie, for o�ering me a unique opportu-

nity to work at the NTU-KTH Joint PhD Programme. I learn from Kalle per-

sistent enthusiasm in research and open-mindedness to new questions. Kalle

always guides me to pay attention to details, as well as encourages me to aim

at the big picture. I learn from Prof Xie extensive domain knowledge and deep

insight in new areas. Prof Xie always gives me timely and valuable feedback.

I could not have wished for better supervisors. I hope to be able to help others

in the future as they have helped me.

I am grateful to my master supervisor Prof Yuanqing Xia for guiding me

into the �eld of systems and control. My warmest thanks to Prof Alessan-

dro Abate for being the opponent of my licentiate defense and o�ering me an

opportunity to learn formal methods at Department of Computer Science at

University of Oxford. I am very impressed by many interesting and fruitful

discussions in Oxford. I owe special thanks to Prof Mark Cannon, the collabo-

ration with whom makes my visit to Oxford more rewarding. I want to extend

my thanks to Prof John Baras for the inspiring discussion. Many thanks to

Prof Henrik Sandberg for being the advance reviewer of both my licentiate

and doctoral theses.

I also would like to thank Prof Frank Allgöwer from University of Stuttgart

for being the opponent, and Dr. Thao Dang from Verimag, Prof Melanie

Zeilinger from ETH, and Prof Rong Su from NTU for acting as the committee

members. Many thanks to Prof Jonas Mårtensson for chairing the defence, and

Prof Henrik Sandberg and Prof Jana Tumova for willing to be the substitutes.

Sincere thanks to Prof Dimos V. Dimarogonas, Prof Ling Shi, Frank J. Jiang,

Matin Jafarian, Pian Yu, Li Dai, Mirco Giacobbe, Xiaoqiang Ren, and Shuang

Wu for the great collaborations. Special appreciations to Miel Sharf, Amr Alan-

war, Sebin Gracy, Frank J. Jiang, and Ting Bai for proof reading this thesis,

and Elis Stefansson for translating the abstract into Swedish. Speci�cally, to

Frank, thank you for bringing the concept of AVTCT to me and inspiring me

a lot from the chat with you; to Miel, thank you for pointing out and helping

me correct a mistake in one work.

viii

Many thanks to all my colleagues (current and former) at the NetCon

group as well as the division of DCS for creating a friendly environment and

an active working atmosphere, and for their continuous support for every-

thing that I need. I would, however, like to give my heartfelt thanks to Xin-

lei Yi, Jieqiang Wei, Takuya Iwaki, Junfeng Wu, Robert Mattila, and Ehsan

Nekouei for their insightful discussions and assistance, and give my special

thanks to Wei Chen for encouraging me at the beginning of my PhD study.

Also thanks to Othmane Mazhar, Rong Du, and Manne Held for their kind as-

sistance when working in the same o�ce. I am grateful to Yufeng Yue, Liang

Xu, Chule Yang, Yushen Long, Haoyuan Zhang, Mingxing Wen, and Kun Cao

from NTU for their warm welcome and host when I was there, and to Weida

Zhang, Yongchao Huang, Andrea Peru�o, Hosein Hasanbeig, Xiaoxuan Lu,

and Shuhao Yan from Oxford for their help and discussion during my visit. I

also want to thank the administrators (current and former) Gerd Franzon, Sil-

via Cardenas Svensson, Hanna Holmqvist, Anneli Ström, Felicia Gustafsson,

Tord Christer Magnusson, and Karin Karlsson Eklund at KTH, and Chua-Goh

Wei Jiuan and Goh-Fong Lai Peng from NTU, for their assistance and support.

Finally, I wish to dedicate this thesis to my family. To my parents and

sister, thank you for always being there and for the unconditional support

throughout my life and studies. A special thanks full of love goes to my wife

Pian, thank you for the happiness that you have brought to me, which has

made my life colorful, and being my greatest supporter.

Yulong Gao

Stockholm, Sweden

November, 2020

Contents

Abstract iii

Sammanfattning v

Acknowledgments vii

Notation xi

1 Introduction 1
1.1 Motivation . 2

1.2 Illustrative Examples . 3

1.3 Challenges . 7

1.4 Related Work . 11

1.5 Problem Formulation . 14

1.6 Thesis Outline and Contributions 17

2 Mathematical Background 23
2.1 System Models . 23

2.2 Reachability Analysis . 30

2.3 Temporal Logic . 35

2.4 Dynamic Programming . 36

3 Computation of Probabilistic Controlled Invariant Sets 39
3.1 Introduction . 40

3.2 Finite-horizon Probabilistic Controlled Invariant Sets 42

3.3 In�nite-horizon Probabilistic Controlled Invariant Sets 54

3.4 Examples . 62

3.5 Summary . 68

ix

x Contents

4 Computation of Invariant Covers 69
4.1 Introduction . 70

4.2 Problem Formulation . 71

4.3 Existence Conditions . 73

4.4 Cardinality Bounds . 83

4.5 Computational Algorithm . 87

4.6 Examples . 90

4.7 Summary . 98

5 Veri�cation and Control based on Temporal Logic Trees 99
5.1 Introduction . 100

5.2 Temporal Logic Trees . 104

5.3 Model Checking . 111

5.4 Control Synthesis . 113

5.5 Numerical Evaluations . 120

5.6 Summary . 128

6 Car Parking Application 135
6.1 Introduction . 136

6.2 Problem Formulation . 138

6.3 Guiding Controller . 139

6.4 Experiments . 144

6.5 Summary . 149

7 Car Overtaking Application 151
7.1 Introduction . 152

7.2 Preliminaries . 155

7.3 Problem Formulation . 157

7.4 Risk-Aware Reachability Analysis 159

7.5 Risk-Aware Optimal Overtaking 165

7.6 Numerical Evaluations . 171

7.7 Summary . 180

8 Conclusions and Future Research 181
8.1 Conclusions . 181

8.2 Future Research Directions . 183

Notation
Real Analysis
Rn real Euclidean space of dimension n
N set of nonnegative integers

N≥q set {r ∈ N | r ≥ q}
N≤q set {r ∈ N | r ≤ q}
N[q,s] set {r ∈ N | q ≤ r ≤ s}
Br(x) Euclidean ball with centre x and radius r
‖ · ‖ Euclidean norm for vectors

conv(X) convex hull of X
X⊕ Y Minkowski sum {x+ y | x ∈ X, y ∈ Y}
X	 Y Pontryagin di�erence {x | x+ y ∈ X, ∀y ∈ Y}
X \ Y set di�erence {x | x ∈ X, x /∈ Y}
|X| cardinality of set X
B(X) Borel space of set X
cl(X) closure of set X
1X(·) indicator function of set X
Linear Algebra
I identity matrix

1 matrix or vector of ones

0 matrix or vector of zeros

[A]i ith row of matrix A ∈ Rr×n
[A]ij (i, j)-th element of matrix A ∈ Rr×n
Others
Given a polytope P = {x ∈ Rn : V x ≤ v}
vert(P) vertices of P
vertk(P) set {x ∈ vert(P) : [V]kx < [v]k}
xk+i|k a prediction of x with i steps ahead from time k

E expectation

Pr probability

xi

Chapter 1

Introduction
Safety is a primary requirement for many autonomous systems: mobile robots

in the warehouse should perform actions for avoiding obstacles, and auto-

mated vehicles on the roads have to be safe for human passengers. Ensuring

design correctness and safety has signi�cant implications for the deployment

of autonomous systems. However, this is challenging due to inevitable uncer-

tainties and task complexity.

Uncertainties are present in most control systems. For example, plants are

usually corrupted by external disturbances and accompanied by model errors.

These uncertainties make it di�cult to predict and reason about system behav-

iors. On the other hand, there is an increasing need for more complex control

objectives, such as constrained spatial and temporal tasks, to be achieved by

autonomous systems. These complex tasks pose new challenges in both com-

putation and control design. At this background, an open question is

How to assure safety for uncertain systems under complex tasks?

In this thesis, safety is in the sense of avoiding unsafe subsets of the state

space. We answer the above question for certain system classes and uncer-

tainty descriptions by developing computational tools, designing veri�cation

and control synthesis algorithms, and evaluating them on two applications.

The outline of this chapter is as follows. Section 1.1 provides the motiva-

tions. Section 1.2 gives several illustrative examples. Sections 1.3 highlights

the main challenges in safe and shared autonomy. Section 1.4 brie�y reviews

related work. Section 1.5 formalizes the problems that will be studied. Sec-

tion 1.6 gives the outline and contributions of the thesis.

1

2 Introduction

1.1 Motivation

The development in automation technology over the past few decades has

changed the way we live as individuals and as a society. There is an increasing

number of machines and systems capable of performing tasks, even within un-

structured environments. Robotic vacuum cleaners clean our houses; drones

are used for photography and search and rescue missions; and self-driving cars

are being tested. We usually call such systems autonomous systems, which can

be de�ned as systems capable of make decisions and performing actions by

themselves, without explicit human control [1]. It is believed that autonomous

systems have the potential to a�ect every part of life, business, industry, and

education [2].

The need for autonomous systems is driven by various business cases but

also areas where autonomy promises to do things that could not be done be-

fore. For example, autonomous systems has made the space and deep sea ex-

ploration possible. As shown in Figure 1.1, Curiosity Rover, an autonomous

exploration vehicle, has been delivered to Mars studying the climate and ge-

ology. Autonomous underwater vehicles are becoming important to study the

ocean, see Figure 1.2. A variety of sensors a�xed to the vehicle can map the

sea�oor or analyze properties of the water.

Autonomous systems are expected to improve safety and energy e�-

ciency. Comparing with human-driven vehicles, it is estimated that self-

driving cars can achieve up to 80% reduction of road crashes and 60% reduction

of carbon dioxide [3]. They could also o�er new mobility options to millions of

elderly or disabled people. An increasing number of corporations, e.g., Uber,

Tesla, and Google, and traditional car manufacturers, e.g., Volvo, Ford, and

General Motors, are investing in self-driving car technology. The market is

estimated to be worth 54 billion and is expected to increase tenfold in the

next 5–7 years [3].

The introduction of autonomous systems o�ers bene�ts to many applica-

tions where humans are present today but also in future operations. Shared-

autonomy systems are systems that can mix human and automated deci-

sions in a systematic way. Using shared control, teleoperated assistive robots

promise to help people with disabilities eat independently, without relying on

caregivers [4], [5]. In the mixed tra�c with automated and human-driven cars,

automated cars can be used to control the tra�c �ow and improve tra�c ef-

�ciency [6]–[9]. The interaction between automated cars and human-driven

Illustrative Examples 3

Figure 1.1: Mars Curiosity Rover helps to determine whether Mars could ever

have supported life and study the planet’s climate and geology. Source: https:

//mars.nasa.gov/msl/home/

cars is a research topic that has gained a lot of attentions recently [10]–[12].

Nowadays, technological advances and cost reductions in computing,

sensing, and communication are bringing autonomous systems closer to re-

ality. The powerful computing capabilities of microcomputers and the cloud

are important for processing data in real time and making quick decisions.

The increasing availability of cheap sensors, such as cameras and radars, and

new technologies for sensor fusion make the operation of systems feasible in

unknown environments. The expansion of 5G and other communication net-

works is o�ering more opportunities for autonomous systems to cooperate

with each other. In addition, arti�cial intelligence, machine learning, and edge

computing are also accelerating the advancement of autonomous systems.

1.2 Illustrative Examples

In this section, three examples are provided to motivate the problems consid-

ered in this thesis.

Air Tra�ic Management System

With long-term increasing number of commercial air travels, an advanced and

e�cient air tra�c management system is needed for mitigating air congestion

https://mars.nasa.gov/msl/home/
https://mars.nasa.gov/msl/home/

4 Introduction

Figure 1.2: Autonomous underwater vehicles map the sea�oor

and analyze water properties. Source: https://transmitter.ieee.org/

auvs-how-autonomous-underwater-vehicles-protect-oceans-and-divers/

Figure 1.3: Illustration of an automated air tra�c management sys-

tem supported by satellite communication. Source: https://www.esa.int/

Applications/Telecommunications_Integrated_Applications/ESA_launches_

new_programme_for_air_tra�c_management_via_satellite

https://transmitter.ieee.org/auvs-how-autonomous-underwater-vehicles-protect-oceans-and-divers/
https://transmitter.ieee.org/auvs-how-autonomous-underwater-vehicles-protect-oceans-and-divers/
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESA_launches_new_programme_for_air_traffic_management_via_satellite
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESA_launches_new_programme_for_air_traffic_management_via_satellite
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESA_launches_new_programme_for_air_traffic_management_via_satellite

Illustrative Examples 5

and improving air safety, see Figure 1.3. In the past decades, NASA has been

being active in developing such a new, highly-automated, and safe air tra�c

management system. An important problem for air tra�c management is to

resolve potential con�icts between aircrafts in the presence of uncertainties,

including sensing noises and environmental disturbances.

In [13], [14], an air tra�c management system is modeled as a stochastic

hybrid control system. To ensure safety, the problem is formulated as mini-

mizing the probability that the system states reach unsafe regions. Stochastic

reachability can be used for solving this problem [15]. In this thesis, we con-

sider stochastic invariance. We introduce the notion of probabilistic controlled

invariance sets (PCISs), within which the controller is able to keep the system

state with a certain probability. The computation problem of PCIS is investi-

gated in Chapter 3.

Automated Driving

Automated vehicles are expected to move in complex and dynamic tra�c en-

vironments. Since it is impossible to enumerate all possible tra�c scenarios,

expressing the task speci�cations in an e�cient way is important. It has been

shown in [16]–[18] that formal language, e.g., linear temporal logic (LTL) or

signal temporal logic (STL) formulae, is expressive enough for de�ning spec-

i�cations of automated vehicles. Thereby, formal veri�cation and control can

become crucial for the design of automated vehicles. Automaton-based ap-

proaches have been demonstrated on Alice, an autonomous vehicle developed

by the California Institute of Technology for the 2007 DARPA Urban Chal-

lenge [16]. Similar techniques have been applied to the autonomous cars de-

veloped by nuTonomy [19], see Figure 1.4. Chapter 5 proposes a new approach

for formal veri�cation and control of discrete-time uncertain systems under

LTL speci�cations. The application to automated driving even in uncertain

and unstructured tra�c environments is investigated.

Automated vehicles should perform safe actions even when human-driven

vehicles are present. Let us consider a car overtaking scenario as shown in Fig-

ure 1.5, where an automated vehicle V1 tries to overtake a human-driven vehi-

cle V2. Due to the inherent uncertainties of human decisions, V2 may move at a

non-constant velocity. This poses some challenges for prediction and control.

Chapter 7 investigates this problem and develops a risk-aware solution to the

car overtaking problem even though the overtaken vehicle is with uncertain

motion.

6 Introduction

Figure 1.4: nuTonomy’s robo-taxi tested in Singapore. Source: https://www.

campus.sg/singapore-is-testing-worlds-�rst-robo-taxis/

d

d

Obstacle region

Obstacle region

O1

O2

V1 V2

Overtaking trajectory

Figure 1.5: A car overtaking scenario where an automated vehicle V1 tries to

overtake a human-driven vehicle V2.

Teleoperation

Teleoperation refers to operating a system at a distance over a communica-

tion network. It has been widely used for a variety of applications such as

telesurgery and mining. The autonomous trucking startup Einride proposed

a hybrid control solution that combines automated control technology and

teleoperation such that remote human operators can take over as needed. Fig-

ure 1.6 shows how human operators are able to control multiple autonomous

trucks from a single remote drive station.

Another teleoperation scenario is a remote car parking, see Figure 1.7,

human operator can monitor the real-time parking environment and remotely

perform parking maneuvers. The problem is how to ensure that the human

operator safely drive the vehicle to the empty parking spot P1 or P2. Chapter 6

investigates this remote parking scenario and develops a guiding controller to

address the problem.

https://www.campus.sg/singapore-is-testing-worlds-first-robo-taxis/
https://www.campus.sg/singapore-is-testing-worlds-first-robo-taxis/

Challenges 7

Figure 1.6: Teleoperation of trucks by Einride where human operators are able

to control multiple autonomous trucks from a single remote drive station [20].

1.3 Challenges

In the past decades, researchers and engineers have paid signi�cant attention

to safety of autonomous systems. Still, in recent years, we have seen fatal ac-

cidents caused by self-driving vehicles [21], and many remaining challenges

exist [22].

Autonomous systems often need to interact or cooperate with human op-

erators. Shared-autonomy systems are systems with a mix of human and auto-

mated decisions. Unpredictable behaviors of humans pose many uncertainties

for the design, which makes the safe control of shared-autonomy systems a

challenging problem.

In the following, we will detail some of the main challenges in safe auton-

omy and shared autonomy.

1.3.1 Challenges in Safe Autonomy

Existing approaches fail to provide provable guarantees of safety for uncertain

systems under complex tasks. The approaches in the industrial �eld to ensure

safety are often based on large-scale simulations and �eld tests. In addition to

their huge �nancial cost, these approaches are fragile since there will always

exist untested scenarios [23]. Although robust control approaches have been

developed in the literature for simple safe tasks, e.g., collision-free in a well-

8 Introduction

O3 O4

O1 O2

P1

P2

Figure 1.7: A parking situation where a remote human operator would like to

drive a vehicle to a narrow parking space P1 or a broad parking space P2.

de�ned environment [24], how to formally deal with uncertainties for complex

tasks is still a challenging problem.

Let us take automated driving as an example. Automated vehicles should

be able to move without colliding with obstacles, such as other moving vehi-

cles or pedestrians. To reason about such scenarios, it is natural to introduce

safe regions, which are sets where the safety requirements are satis�ed. A �rst

essential question is how to compute safe regions despite environmental un-

certainties. Automated vehicles are expected to perform desired driving tasks

in the safe regions. These tasks can be complex combinations of di�erent driv-

ing maneuvers. It is of great interest to automate the control synthesis for such

tasks.

Let us next discuss particular challenges on computing safe sets and syn-

thesizing controllers.

Computational Challenges

Computing safe sets for autonomous systems is usually challenging or even in-

tractable. In the literature, invariant sets are often used to act as safe sets [25].

Invariant sets are sets where the system is able to stay under some admis-

sible control input. The problem of computing safe regions can be formu-

lated as computing invariant sets, which are closely related to reachable sets.

If uncertainties are bounded, robust controlled invariant sets address the in-

Challenges 9

variance under any realization of the disturbance. The computation of robust

controlled invariant sets has been studied in [26]–[28]. If the uncertainties are

with known probability distributions instead, it is natural to de�ne sets where

the state can be kept with a required probability. In Chapter 3, we formally

de�ne such sets as PCISs. The main challenges in computing PCISs are the

computational tractability and convergence of the algorithms.

In some scenarios, the system is remotely controlled for staying in a safe

set through a wireless communication network [29]–[31]. Limited network

recourses pose a set of essential questions. How much information exchange

is needed to enforce invariance? How can we design a coder-controller pair to

ensure invariance of a given set for an uncertain system with �nite data-rate

communication? The �rst question is conceptually answered by the notion

of invariance feedback entropy [32]–[34]. The second question has not been

explored in the literature. In Chapter 4, we propose an answer to this ques-

tion by addressing the existence and computation of an invariant cover. The

invariant covers are covers of sets that can be enforced to be invariant by a

�nite number of control inputs despite disturbances. Note that the invariant

cover acts as the basis of the invariance feedback entropy.

Control Challenges

Automated control synthesis under complex tasks is a hard problem. Formal

languages can encode safety requirements into speci�cations more complex

than invariance. For example, an LTL formula is expressive enough to cap-

ture complex combinations of Boolean and temporal statements. LTL formulae

have recently been used in robotics and automated driving [35].

Formal methods are used for model checking and control synthesis [36].

Model checking is to automatically verify whether the behavior of the sys-

tem satis�es a given speci�cation. Control synthesis is to automatically de-

sign controllers so that the behavior of the system provably satis�es a given

speci�cation. Formal veri�cation and control have shown great promise for

safe autonomy in the past decade [37]. However, model checking and con-

trol synthesis are at the same time challenging when considering dynamical

systems a�ected by uncertainties, and in particular uncertain in�nite systems

under complex, temporal logic speci�cations. The main reasons are that: the

traditional automaton-based methods rely on the abstraction to �nite systems,

which is restrictive due to heavy computation and lack of generality; it is dif-

�cult to reason about uncertainties propagating along in�nite trajectories. In

10 Introduction

C

H

P
uk

uHk

xk

xk

xk

(a)

C

H

P
uk

uHk

xk

zk

xk

(b)

Figure 1.8: Block diagram of shared-autonomy systems where the human ac-

tions are used proactively (a) or reactively (b).

Chapter 5, we propose a new tool, temporal logic trees (TLT), and develop

TLT-based approaches to model checking and control synthesis problems to

tackle these challenges, particularly for discrete-time uncertain systems under

LTL speci�cations.

1.3.2 Challenges in Shared Autonomy

In this subsection we discuss the challenges for two kinds of shared-autonomy

systems based on whether the human actions are integrated into the con-

trol systems proactively or reactively, i.e., if the control command is based

on knowledge of the human decisions or not.

Proactive Human Actions

Let us consider the remote parking example in Figure 1.7. In this example, the

human operator is given the priority to make decisions for performing the

parking task while the on-board controller of the vehicle is able to mix hu-

man’s actions for ensuring safety. Such a system can be illustrated by the block

diagram in Figure 1.8(a). This block diagram represents shared-autonomy sys-

tems where the human actions are used proactively. The human operator H
makes decisions based on the state xk and perform actions uHk . These actions

are not directly implemented onto the plant P (e.g., the vehicle in Figure 1.7),

but are intervened by the controller C (e.g., the on-board controller of the vehi-

cle). The controller C can check if the human decisions are safe and �lter them

Related Work 11

whenever needed. This control system architecture makes it possible to han-

dle unpredictable human decisions. However, a challenging problem is how

to integrate the automated controller with the human decision making for

achieving complex tasks as well as ensuring safety [38], [39]. In Chapter 6, we

propose such a guiding controller solution for the remote car parking problem.

Reactive Human Actions

Di�erent from the remote parking example, the car overtaking scenario in

Figure 1.5 exempli�es another kind of shared-autonomy systems. The human

driver performs actions on the vehicle V2, which has a direct in�uence on the

automated vehicle V1. Note that the human actions can not be intervened by

the controller of V1. We illustrate this system through the block diagram in

Figure 1.8(b), which represents a shared-autonomy system where the human

actions are used reactively. The plant P refers to the automated vehicle V1

in Figure 1.5 and the controller C refers to the controller of V1. The informa-

tion available to the human operator is denoted by zk, which is di�erent from

the information available in Figure 1.8(a). For such kind of shared-autonomy

systems, it is natural to treat the human behaviors as uncertainties when de-

signing the controller. If the human is able to do anything possible, the safe

operation space of the automated vehicle will become very small. A challeng-

ing problem is thus how to model the human behavior such that the system

can complete the desired task as well as perform safe actions for the human.

In Chapter 7, we study the car overtaking problem in the presence of uncer-

tain motion of the human-driven vehicle and propose a risk-aware overtaking

algorithm.

1.4 Related Work

This section will brie�y review the related work on safe and shared autonomy.

1.4.1 Safe Autonomy

There are numerous examples that ensure safety for machines through auto-

matic control. An early example goes back to the steam engine invented by

James Watt in 1776, which uses the centrifugal governor to guarantee the en-

gine moving at a nearly constant and safe speed [40]. During World War II,

the bang-bang control was successfully applied to the automatic �ight control

12 Introduction

systems of aircrafts [41]. Nowadays, advanced driver assistance systems are

making automobiles much safer than before [42]. There is a large amount of

literature on safe autonomy. We restrict our attention to literature on reacha-

bility and invariance, and literature on formal veri�cation and control.

Reachability and Invariance

Reachability and invariance are fundamental notions in systems and control.

Reachability is coupled to controllability, while invariance is a property closely

related to system stability. There is a rich body of research in these two top-

ics. Seminal papers include [43], [44] on reachability and [28], [45], [46] on

invariance. Representative textbooks on set-valued control are [47], [48].

Robust approaches have been developed for performing reachability anal-

ysis for systems with bounded uncertainties [44], [49]. These results are es-

sential for computing robust (controlled) invariant sets [45], [50]. For systems

with random uncertainties, stochastic approaches guarantee the reachability

with a given probability [15], [51]. Some recent results are devoted to stochas-

tic invariance [52], [53].

Reachability and set invariance are often used to give formal safety guar-

antees for autonomous systems [25], [54]–[58]. For example, a method based

on discrepancy functions is developed in [54] for computing a bounded reach-

able set around a simulation trajectory; in [25], safety of robots is explicitly

expressed in the form of set invariance; performing reachability analysis is

used for safety assessment of autonomous cars in [56]. Furthermore, there

are a lot of approaches for computing reachable sets or invariant sets in the

literature [27], [59], [60]. In addition, many software packages or toolboxes

have been developed for e�ciently computing reachable sets or invariant

sets, e.g., the multi-parametric toolbox [61], the Hamilton-Jacobi toolbox [62],

C2E2 [54], SReachTools [63], and JuliaReach [64].

Formal Veri�cation and Control

Model checking and control synthesis are two fundamental problems. For �-

nite transition systems, a typical approach is to use automata theory [36]. In

order to adapt automaton-based methods to in�nite systems, abstraction is a

central step. A lot of recent results, e.g., [65]–[67], are devoted to equivalence

or inclusion relation between the abstract �nite system and the original in�-

nite system. For more discussion of formal veri�cation and control, we refer

to the textbooks [35], [68], [69].

Related Work 13

LTL formulae are useful to de�ne complex speci�cations for autonomous

systems. The applications of control synthesis under LTL speci�cations

include automated driving [16], single-robot control in dynamic environ-

ments [70], multi-robot control [71], and transportation control [72]. The con-

trol of stochastic systems under LTL is considered in [73] and further applied

to multi-robot coordination in [74]. Control synthesis for dynamical systems

has been extended also to other speci�cations like STL [75], and probabilistic

computational tree logic [76].

1.4.2 Shared Autonomy

Shared control is rooted at the idea of combining human and machine intel-

ligence. Early examples include Ray Goertz’s leader-follower manipulator in

1949 [77] and Marvin Minsky’s call for telepresence in 1980 [78]. Due to the

rapid development in robotics, shared autonomy has become an active re-

search topic in the past decade. An intuitive design for shared autonomy is

to switch the control authority between a human and an automatic controller.

This idea has been used in [39], [79], [80]. One drawback of authority switch-

ing is the decrease in human’s satisfaction [81]. To overcome this, a policy-

blending formulation for shared control is provided in [38] by integrating the

prediction of user intent and the arbitration with the user input. In this work

and some other recent work on shared control [82], inverse reinforcement

learning [83] is used to learn reward functions from the human behaviors.

In [84], a deep reinforcement learning is used to design a model-free shared

autonomy framework.

Shared control has shown great promise in driver-automation coopera-

tion. For example, a lane keeping assist system is designed by using shared

control in [85]. Two survey papers on application of shared control to au-

tomated vehicles refer to [86], [87]. In addition, modeling and prediction of

human driver behavior are crucial to enable safe and e�cient automated driv-

ing as well as leverage on the shared control. A broad, up-to-date review of

the state of the art on this topic is provided in [88].

14 Introduction

1.5 Problem Formulation

This section formulates the problems to be addressed in this thesis. Let us

consider a discrete-time uncertain control system

xk+1 = f(xk, uk, wk), (1.1)

where xk ∈ S is the state, uk ∈ U the control input, wk ∈W the uncertainty,

and f : S × U ×W → S the system model. In Chapter 2, we will explicitly

detail the models considered in this thesis.

Computation of Probabilistic Controlled Invariant Sets

An invariant set is a set where the state can stay and a controlled invariant

set is a set where the state can be enforced to stay by a controller. In Chap-

ter 3, we consider the control system (1.1) with stochastic uncertainty wk. For

such a stochastic control system, a PCIS is a set within which the controller

is able to keep the state with a certain probability. Formally, we say that a

set Q ⊂ S is an ε-PCIS if for any x0 ∈ Q, there exists a feedback controller

µ = (µ1, µ2, . . .) such that the generated trajectory p = x0x1 . . . can be kept

into Q with probability at least ε, where 0 ≤ ε ≤ 1 is a prescribed num-

ber. See Figure 1.9 for an illustration. The following question is on computing

an ε-PCIS:

Q1 Given a state set Q and a parameter 0 ≤ ε ≤ 1, how to compute a set

Q̃ ⊆ Q that is invariant with probability ε?

This question is essential for computing safe region for stochastic systems and

is answered in Chapter 3.

Computation of Invariant Cover

A cover of a set is a collection of sets whose union includes this set as a subset.

In Chapter 4, we consider the control system (1.1), but the uncertainty set W
is bounded. Given a set Q ⊆ S, a pair (A, G) is an invariant cover of (1.1) and

the set Q if

(i) A is a cover of Q and |A| is �nite,

(ii) G is a map from A to U, and for all Xic ∈ A, f(Xic, G(Xic),W) ⊆ Q,

Problem Formulation 15

x0

x1

µ0(x0)

µ1(x1) µk(xk)

xk
xk+1· · · · · ·

Q

S

Figure 1.9: Illustration of an ε-PCIS, where µ = (µ1, µ2, . . .) is the feedback

controller.

where f(Xic, u,W) = {z | z = f(x, u, w), x ∈ Xic, w ∈ W}. That is, each

state set Xic
from the �nite cover A can be driven to the set Q by means of

a single control input G(Xic). An illustration of an invariant cover is shown

in Figure 1.10, where the cover of Q is A = {Xic
i }5i=1. De�ne a map G from

A to U as G(Xic
i) = ui ∈ U. If for all i, f(Xic

i , ui,W) ⊆ Q, then (A, G) is

an invariant cover of the set Q. In Chapter 4, we investigate the existence and

computation of an invariant cover and answer this question:

Q2 Given a state set Q, provide a necessary and su�cient condition such

that there exists an invariant cover (A, G) for the system and Q. If an

invariant cover exists, how to design an algorithm to compute an in-

variant cover (A, G)?

Answering questions Q2 provides a way of designing a coder-controller pair

that can enforce the system state staying within a safe region through a �nite

data-rate network.

Verification and Control Synthesis

In Chapter 5, we consider the uncertain control system (1.1) under LTL spec-

i�cations. We answer the following questions:

16 Introduction

S

Xic
1

Xic
2

Xic
3

Xic
4

Xic
5

Q

Figure 1.10: Illustration of an invariant cover for the setQ. Here, the cover ofQ
is A = {Xic

i }5i=1, i.e., Q ⊆ ∪5
i=1Xic

i . Note that the sets Xic
i are not necessarily

disjoint.

Q3 Given an LTL formula ϕ and a given feedback controller µ = µ0µ1 . . .,
how to verify if all the trajectories p = x0x1 . . ., where xk+1 =
f(xk, µk(xk), wk), wk ∈W, satisfy ϕ?

Q4 Given an LTL formula ϕ, how to automatically synthesize a feedback

controller µ = µ0µ1 . . . such that all the resulting trajectories p =
x0x1 . . ., where xk+1 = f(xk, µk(xk), wk), wk ∈W, satisfy ϕ?

These questions are essential for extending the applications of temporal logic

control to dynamic and uncertain environment.

Car Parking Application

In Chapter 6, we consider a car parking problem, as shown in Figure 1.7, where

a remote human operator intends to drive a vehicle to an empty parking spot

in a parking lot. The question considered is

Q5 Given a set of LTL-speci�ed parking tasks {ϕi}, how to design a guiding

controller that is able to (i) infer the human intent on which task ϕi to

be completed, (ii) mitigate unpredictable human actions, and (iii) safely

park the car to an empty parking spot?

Thesis Outline and Contributions 17

The answer to this question provides new insights for the design of safe tele-

operation for connected vehicles.

Car Overtaking Application

In Chapter 7, we consider the car overtaking problem where an automated

vehicle tries to overtake a human-driven vehicle, as shown in Figure 1.5. The

question to be addressed is

Q6 How to design an algorithm such that the overtaking can be performed

safely in the case of overtaken vehicle performing uncertain motion?

Answering question Q6 is helpful to understand and model the human behav-

iors during the overtaking.

1.6 Thesis Outline and Contributions

In this section, we outline the contents of the thesis and the contributions.

Chapter 2: Mathematical Background

In Chapter 2, we provide mathematical background, including system model-

ing, reachability analysis, and dynamic program.

Chapter 3: Computation of Probabilistic Controlled Invariant
Sets

This chapter investigates stochastic invariance for control systems through

PCISs. As a natural complement to robust controlled invariant sets, we pro-

pose �nite- and in�nite-horizon PCISs, and explore their relation to robust

controlled invariant sets. We design iterative algorithms to compute the PCIS

within a given set. For systems with discrete spaces, the computations of

the �nite- and in�nite-horizon PCISs at each iteration are based on linear

programming and mixed integer linear programming, respectively. The algo-

rithms are computationally tractable and terminate in a �nite number of steps.

For systems with continuous spaces, we show how to discretize the spaces

and prove the convergence of the approximation when computing the �nite-

horizon PCISs. In addition, it is shown that an in�nite-horizon PCIS can be

computed by the stochastic backward reachable set from the robust controlled

18 Introduction

invariant set contained in it. These PCIS algorithms are applicable to practi-

cal control systems. Simulations are given to illustrate the e�ectiveness of the

theoretical results for motion planning.

This chapter is based on the following publication.

• Y. Gao, K. H. Johansson, and L. Xie, “Computing probabilistic controlled

invariant sets,” IEEE Transaction on Automatic Control. To appear.

Chapter 4: Computation of Invariant Covers

This chapter investigates some fundamental problems concerning existence

and computation of an invariant cover for uncertain discrete-time linear con-

trol systems subject to state and control constraints. We develop necessary and

su�cient conditions on the existence of an invariant cover for a polytopic set

of states. The conditions can be checked by solving a set of linear programs,

one for each extreme point of the state set. Based on these conditions, we give

upper and lower bounds on the minimal cardinality of the invariant cover, and

design an iterative algorithm with �nite-time convergence to compute an in-

variant cover. We further show in two examples how to use an invariant cover

in the design of a coder–controller pair that ensures invariance of a given set

for a networked control system with a �nite data-rate communication.

This chapter is based on the following publication.

• Y. Gao, M. Cannon, L. Xie, and K. H. Johansson, “Invariant cover: exis-

tence, cardinality bounds, and computation,” Automatica. Submitted.

Chapter 5: Verification and Control based on Temporal Logic
Trees

In this chapter, we propose algorithms for performing model checking and

control synthesis for discrete-time uncertain systems under LTL speci�ca-

tions. We construct TLT from LTL formulae via reachability analysis. In con-

trast to automaton-based methods, the construction of the TLT is abstraction-

free for in�nite systems, that is, we do not construct discrete abstractions of

the in�nite systems. Moreover, for a given transition system and an LTL for-

mula, we prove that there exist both a universal TLT and an existential TLT

via minimal and maximal reachability analysis, respectively. We show that

the universal TLT is an underapproximation for the LTL formula and the ex-

istential TLT is an overapproximation. We provide su�cient conditions and

Thesis Outline and Contributions 19

necessary conditions to verify whether a transition system satis�es an LTL for-

mula by using the TLT approximations. As a major contribution of this work,

for a controlled transition system and an LTL formula, we prove that a con-

trolled TLT can be constructed from the LTL formula via control-dependent

reachability analysis. Based on the controlled TLT, we design an online con-

trol synthesis algorithm, under which a set of feasible control inputs can be

generated at each time step. We also prove that this algorithm is recursively

feasible. We illustrate the proposed methods for both �nite and in�nite sys-

tems and highlight the generality and online scalability with two simulated

examples.

This chapter is based on the following publication.

• Y. Gao, A. Abate, F. J. Jiang, M. Giacobbe, L. Xie, and K. H. Johansson,

“Temporal logic trees for model checking and control synthesis of un-

certain discrete-time systems,” IEEE Transaction on Automatic Control.
Submitted.

Chapter 6: Car Parking Application

In this chapter, we propose a guiding controller solution to the car parking

problem, where a human operator remotely drives the vehicle to an empty

parking spot. We specify the parking task as a set of LTL formulae. Then, us-

ing the TLT-based approach, we synthesize a set of controllers for assisting the

human operator to complete the mission, while guaranteeing that the system

maintains speci�ed spatial and temporal properties. We assume the human

operator’s exact preference of how to complete the mission is unknown. In-

stead, we use a data-driven approach to infer and update the human operator’s

preference over parking spots in real-time. If, while the human is operating the

vehicle, she provides inputs that violate any of the invariances prescribed by

the LTL formula, our veri�cation-based controller will use its internal belief of

the human operator’s intended objective to guide the operator back on track.

Moreover, we show that as long as the speci�cations are initially feasible, our

controller will stay feasible and can guide the human to park the vehicle in the

empty spot safely despite some unexpected human actions. We demonstrate

the results on the Small Vehicles for Autonomy (SVEA) platform.

This chapter is based on the following publications.

• Y. Gao, F. J. Jiang, X. Ren, L. Xie, and K. H. Johansson, “Reachability-

20 Introduction

based human-in-the-loop control with uncertain speci�cations,” In Pro-
ceedings of IFAC World Congress, 2020.

• F. J. Jiang, Y. Gao, L. Xie, and K. H. Johansson, “Human-centered de-

sign for safe teleoperation of connected vehicles,” In Proceedings of IFAC
Workshop on Cyber-Physical & Human Systems, 2020. To appear.

Chapter 7: Car Overtaking Application

This chapter develops a solution to the car overtaking problem where an au-

tomated vehicle tries to overtake a human-driven vehicle with uncertain mo-

tion. The uncertainty in the predicted motion makes the automated overtak-

ing hard due to feasibility issues. To counteract them, we introduce the weak

assumption that the predicted velocity of the overtaken vehicle respects a su-

permartingale, meaning that its velocity is not increasing in expectation dur-

ing the maneuver. We show that this formulation presents a natural notion of

risk. Based on the martingale assumption, we perform a risk-aware reachabil-

ity analysis by analytically characterizing the predicted collision probability.

Then, we design a risk-aware optimal overtaking algorithm with guaranteed

levels of collision avoidance. Finally, a simulated example illustrates the e�ec-

tiveness of the proposed algorithm.

This chapter is based on the following publications.

• Y. Gao, F. J. Jiang, L. Xie, and K. H. Johansson, “Stochastic modeling

and optimal control for automated overtaking,” In Proceedings of IEEE
Conference on Decision and Control, 2019, 1273-1278.

• Y. Gao, F. J. Jiang, L. Xie, and K. H. Johansson, “Risk-aware optimal con-

trol for automated overtaking with safety guarantee,” IEEE Transactions
on Control Systems Technology. Submitted.

Chapter 8: Conclusions and Future Research

In Chapter 8, we present a summary of the results, and discuss directions for

future research.

Other Contributions Not Included in This Thesis

The following contributions have not been included in the thesis, but were

developed during the author’s Ph.D. studies:

Thesis Outline and Contributions 21

• F. J. Jiang, Y. Gao, L. Xie, and K. H. Johansson, “Ensuring safety for ve-

hicle parking tasks using Hamilton-Jacobi reachability analysis,” In Pro-
ceedings of IEEE Conference on Decision and Control, 2020. To appear.

• Y. Gao, L. Xie, and K. H. Johansson, “Probabilistic characterization of

target set and region of attraction for discrete-time control systems,” In

Proceedings of IEEE International Conference on Control & Automation,

2020.

• Y. Gao, P. Yu, D. V. Dimarogonas, K. H. Johansson, and L. Xie, “Self-

triggered control for constrained systems via reachability analysis,” Au-
tomatica, 2019, 107, 574-581.

• Y. Gao, S. Wu, K. H. Johansson, L. Shi, and L. Xie, “Stochastic optimal

control of dynamic queue systems: a probabilistic perspective,” In Pro-
ceedings of International Conference on Control, Automation, Robotics and
Vision, 2018, 837-842.

• L. Dai, Y. Gao, L. Xie, K. H. Johansson, and Y. Xia “Stochastic self-

triggered model predictive control for linear systems with probabilistic

constraints,” Automatica, 2018, 92, 9-17.

• Y. Gao, M. Jafarian, K. H. Johansson, and L. Xie, “Distributed freeway

ramp metering: optimization on �ow speed,” In Proceedings of IEEE Con-
ference on Decision and Control, 2017, 5654-5659.

Contribution by the Author

The order of authors re�ects their contribution to each paper. The �rst author

has the most important contribution, while the authors K. H. Johansson and

L. Xie have taken the supervisory role. In all the listed publications, all the

authors were actively involved in formulating the problems, developing the

solutions, evaluating the results, and writing the paper.

Chapter 2

Mathematical Background
In this chapter, we provide mathematical preliminaries that are used in the

remaining parts of this thesis.

2.1 System Models

This section introduces three kinds of systems for modeling discrete-time un-

certain autonomous or control systems: transition systems, controlled transi-

tion systems, and stochastic control systems.

2.1.1 Transition System

This subsection will de�ne the transition system.

De�nition 2.1. A transition system TS is a tuple TS = (S,→,S0,AP, L)
consisting of

• a set S of states;

• a transition relation→∈ S× S 1;

• a set S0 ⊆ S of initial states;

• a set AP of atomic propositions;

• a labelling function L : S→ 2AP .
1

Here, the transition relation is not a functional relation, which means that for some state

x, there may exist two di�erent states x′ and x′′ such that x → x′ and x → x′′ hold. For

notational simplicity, we use→∈ S× S, rather than→∈ S× 2S. The same claim holds for the

controlled transition systems in Section 2.1.2.

23

24 Mathematical Background

1

2

3 4

5{r,y}

{r}

{g} {y}

{b}

Figure 2.1: A transition system illustrating a “tra�c light” example. Labels are

shown aside the states. The initial state is denoted by an incoming edge.

De�nition 2.2. A transition system TS is said to be �nite if |S| < ∞ and
|AP| <∞.

De�nition 2.3. For x ∈ S, the set Post(x) of direct successors of x is de�ned
by Post(x) = {x′ ∈ S | x→ x′}.

De�nition 2.4. A transition system TS is said to be deterministic if |S0| = 1
and |Post(x)| = 1, ∀x ∈ S.

De�nition 2.5. (Trajectory 2) For a transition system TS, an in�nite trajectory
p starting from x0 is a sequence of states p = x0x1 . . . xkxk+1 . . . such that
∀k ∈ N, xk+1 ∈ Post(xk).

Denote by Trajs(x0) the set of in�nite trajectories starting from x0. Let

Trajs(TS) = ∪x∈S0Trajs(x). For a trajectory p, the k-th state is denoted by

p[k], i.e., p[k] = xk and the k-th pre�x is denoted by p[..k], i.e., p[..k] =
x0 . . . xk.

Example 2.1. A tra�c light can be red, green, yellow or black (not working).
The tra�c light might stop working at any time. After it has been repaired, it
turns red. Initially, the light is red. An illustration for such a tra�c light is shown
in Figure 2.1. We can model a tra�c light as a �nite transition system TS =
(S,→, S0,AP, L):

• S = {1, 2, 3, 4, 5};
2

Notice that a trajectory p = x0x1 . . . xkxk+1 . . . is di�erent from a trace,
which is the sequence of corresponding sets of atomic propositions, and is denoted by

L(x0)L(x1) . . . L(xk)L(xk+1)

System Models 25

• →= {(1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (3, 5), (4, 5), (5, 1)};

• S0 = {1};

• AP = {r, y, g, b};

• L = {1→ {r}, 2→ {r, y}, 3→ {g}, 4→ {y}, 5→ {b}}.

Remark 2.1. We can rewrite the following discrete-time autonomous system as
an in�nite transition system:

S :

{
xk+1 = f(xk, wk),

yk = g(xk),

where xk ∈ Rnx , wk ∈ Rnw , yk ∈ 2O , f : Rnx × Rnw → Rnx , and g :
Rnx → 2O . Here, O denotes the set of the observations. At each time instant k,
the disturbance wk belongs to a compact setW ⊂ Rnw . Denote by Ini ⊆ Rnx the
set of the initial states. If O is �nite, the system S can be rewritten as an in�nite
transition system TSS = (S,→,S0,AP, L) with

• S = Rnx ;

• ∀x, x′ ∈ S, x → x′ if and only if there exists w ∈ W such that x′ =
f(x,w);

• S0 = Ini;

• AP = O;

• L = g.

2.1.2 Controlled Transition System

In this subsection, we will introduce the notion of controlled transition system.

De�nition 2.6. A controlled transition system CTS is a tuple CTS = (S,U,→
,S0,AP, L) consisting of

• a set S of states;

• a set U of control inputs;

• a transition relation→∈ S× U× S;

26 Mathematical Background

s1 s3

s2 s4

a1

a1
a1

a2

a1

a1
a2

a1

a1

o1

o3

o2o2

Figure 2.2: Graph description of a controlled transition system.

• a set S0 of initial states;

• a set AP of atomic propositions;

• a labelling function L : S→ 2AP .

De�nition 2.7. A controlled transition system CTS is said to be �nite if |S| <
∞, |U| <∞, and |AP| <∞.

De�nition 2.8. For x ∈ S and u ∈ U, the set Post(x, u) of direct successors of
x under u is de�ned by Post(x, u) = {x′ ∈ S | x u−→ x′}.

De�nition 2.9. For x ∈ S, the set U(x) of admissible control inputs at state x
is de�ned by U(x) = {u ∈ U | Post(x, u) 6= ∅}.

De�nition 2.10. (Policy) For a controlled transition system CTS, a policy µ =
µ0µ1 . . . µk . . . is a sequence of maps µk : S → U. Denote byM the set of all
policies.

De�nition 2.11. (Trajectory) For a controlled transition systemCTS, an in�nite
trajectory p starting from x0 under a policyµ = µ0µ1 . . . µk . . . is a sequence of
states p = x0x1 . . . xk . . . such that ∀k ∈ N, xk+1 ∈ Post(xk, µk(xk)). Denote
by Trajs(x0,µ) the set of in�nite trajectories starting from x0 under µ.

Example 2.2. A controlled transition system CTS = (S,U,→,S0,AP, L) is
shown in Figure 2.2, where

System Models 27

• S = {s1, s2, s3, s4};

• U = {a1, a2};

• →= {(s1, a1, s2), (s1, a1, s3), (s2, a1, s2), (s2, a1, s3), (s2, a1, s3),
(s2, a2, s4), (s3, a1, s2), (s3, a2, s3), (s4, a1, s2), (s4, a1, s4)};

• S0 = {s1};

• AP = {o1, o2, o3};

• L = {s1 → {o1}, s2 → {o2}, s3 → {o3}, s4 → {o2}}.

Remark 2.2. We express the following discrete-time uncertain control system
as an in�nite controlled transition system:

CS :

{
xk+1 = f(xk, uk, wk),

yk = g(xk),
(2.1)

where xk ∈ Rnx and uk ∈ Rnu , wk ∈ Rnw , yk ∈ 2O , f : Rnx ×Rnu ×Rnw →
Rnx , and g : Rnx → 2O . Here, O denotes the set of the observations. At each
time instant k, the control input uk is constrained by a compact set UCS ⊂ Rnu
and the disturbancewk belongs to a compact setW ⊂ Rnw . Denote by Ini ⊆ Rnx
the set of the initial states. If the setO is �nite, system CS can be rewritten as an
in�nite controlled transition system, CTSCS = (S,U,→,S0,AP, L) where

• S = Rnx ;

• U = UCS;

• ∀x, x′ ∈ S and ∀u ∈ U, x u−→ x′ if and only if there exists w ∈ W such
that x′ = f(x, u, w);

• S0 = Ini;

• AP = O;

• L = g.

The systems considered in Chapters 4, 6, and 7 are written in the form

of (2.1). Thus, they are some special cases of the controlled transition system

CTS.

28 Mathematical Background

2.1.3 Stochastic Control System

When re�ning the transition relation of CTS to be a stochastic kernel, we can

de�ne a stochastic control system described by a Markov controlled process

SCS = (S,U, T), where

• S is a state space endowed with a Borel σ-algebra B(S);

• U is a compact control space endowed with a Borel σ-algebra B(U);

• T : B(S) × S × U → R is a Borel-measurable stochastic kernel given

S×U, which assigns to each x ∈ S and u ∈ U a probability measure on

the Borel space (S,B(S)): T (·|x, u).

Let us denote byUx the set of the admissible control actions for each x ∈ S.

Assume that Ux is nonempty for each x ∈ S.

Consider a �nite horizon N ∈ N. A policy is said to be a Markov policy if

the control inputs are only dependent on the current state, i.e., uk = µk(xk).

De�nition 2.12. (Markov Policy) A Markov policy µ for system SCS is a se-
quence µ = (µ0, µ1, . . . , µN−1) of universally measurable maps

µk : S→ U, ∀k ∈ N[0,N−1].

Remark 2.3. Given a spaceY, a subsetA in this space is universally measurable
if it is measurable with respect to every complete probability measure on Y that
measures all Borel sets inB(Y). A functionµ : Y→W is universallymeasurable
if µ−1(A) is universally measurable inY for everyA ∈ B(W). As stated in [51],
[89], the condition of universal measurability is weaker than the condition of
Borel measurability for showing the existence of a solution to a stochastic optimal
problem. Roughly speaking, this is because the projections of measurable sets are
analytic sets and analytic sets are universally measurable but not always Borel
measurable [89], [90].

Remark 2.4. For a large class of stochastic optimal control problems, Markov
policies are su�cient to characterize the optimal policy [89]. Furthermore, since
a randomized Markov policy does not increase the largest probability that the
states remain in a set, we focus on deterministic Markov policies in the following.

We denote the set of Markov policies as M. Consider a set Q ∈ B(S).

Given an initial state x0 ∈ S and a Markov policy µ ∈ M, a trajectory is a

System Models 29

sequence of states (x0, x1, . . . , xN). Introduce the probability with which the

state xk will remain within Q for all k ∈ N[0,N]:

pµN,Q(x0) = Pr{∀k ∈ N[0,N], xk ∈ Q}.

Let p∗N,Q(x) = supµ∈M pµN,Q(x), ∀x ∈ Q. We call p∗N,Q(x) the N -step invari-

ance probability at x in the set Q. We will detail how to compute p∗N,Q(x) in

Section 2.4.

Extending the �nite horizon to in�nite horizon, we need to introduce sta-

tionary policies.

De�nition 2.13. (Stationary Policy) A Markov policy µ ∈ M is said to be
stationary if µ = (µ̄, µ̄, . . .) with µ̄ : S→ U universally measurable.

Given an initial state x0 ∈ S and a stationary policy µ ∈ M, a trajectory

is denoted by a sequence of states (x0, x1, . . .). We introduce the probability

with which the state xk will remain within Q for all k ∈ N≥0:

pµ∞,Q(x0) = Pr{∀k ∈ N, xk ∈ Q}.

Denote p∗∞,Q(x0) = supµ∈M pµ∞,Q(x0). We call p∗∞,Q(x) the in�nite-horizon

invariance probability at x in the set Q. We will also detail how to compute

p∗∞,Q(x) in Section 2.4.

Example 2.3. A stochastic control system SCS = (S,U, T) modeled by a �nite
Markov Decision Process is given as follows

• S = {s1, s2, s3, s4, s5, s6, s7};

• U = {a1, a2, a3};

• T (s1|s1, a1) = 0.20, T (s2|s1, a1) = 0.80, T (s2|s1, a2) = 0.90,
T (s3|s1, a2) = 0.10, T (s1|s2, a1) = 0.90, T (s2|s2, a1) = 0.10,
T (s4|s2, a3) = 1.00, T (s4|s3, a2) = 0.49, T (s5|s3, a2) = 0.49,
T (s6|s3, a2) = 0.02, T (s3|s3, a3) = 0.99, T (s6|s3, a3) = 0.01,
T (s3|s4, a1) = 0.50, T (s4|s4, a1) = 0.50, T (s2|s4, a2) = 0.80,
T (s5|s4, a2) = 0.20, T (s3|s5, a1) = 0.90, T (s5|s5, a1) = 0.10,
T (s6|s5, a3) = 1.00, T (s2|s6, a2) = 1.00, T (s5|s6, a3) = 0.80,
T (s7|s6, a3) = 0.20, T (s6|s7, a1) = 0.30, T (s7|s7, a1) = 0.70,
T (s4|s7, a2) = 0.90, T (s5|s7, a2) = 0.10, T (s3|s7, a3) = 1.00.

30 Mathematical Background

2.2 Reachability Analysis

This section provides reachability analysis for transition systems and con-

trolled transition systems, respectively.

2.2.1 Reachability Analysis of Transition Systems

This subsection speci�es the reachability analysis for a transition system TS.

We �rst de�ne the minimal reachable set and the maximal reachable set.

De�nition 2.14. Consider a transition system TS and two sets Ω1,Ω2 ⊆ S.
The k-step minimal reachable set from Ω1 to Ω2 is de�ned as

Rm(Ω1,Ω2, k) =
{
x0 ∈ S | ∀p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xk,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The minimal reachable set from Ω1 to Ω2 is de�ned as

Rm(Ω1,Ω2) =
⋃
k∈N
Rm(Ω1,Ω2, k).

The minimal reachable set can also be considered up to a �nite time:

R̄m(Ω1,Ω2, k) =
⋃
i∈N[0,k]

Rm(Ω1,Ω2, i). An illustration of minimal reach-

able sets is shown in Figure 2.3(a).

Lemma 2.1. For two sets Ω1,Ω2 ⊆ S, de�ne

Qk+1 = {x ∈ Ω1 | Post(x) ⊆ Qk} ∪Qk,

Q0 = Ω2.

Then,Rm(Ω1,Ω2) = limk→∞Qk.

Proof. From De�nition 2.14, it is easy to see that

Qk =
⋃

i∈N[0,k]

Rm(Ω1,Ω2, i).

It follows from the Knaster-Tarski Theorem [91] that limk→∞Qk exists and is

a �xed point to the monotone function F (P) = {x ∈ Ω1 | Post(x) ⊆ P} ∪ P.

Thus, we have thatRm(Ω1,Ω2) = limk→∞Qk.

Reachability Analysis 31

Ω1

R̄m(Ω1,Ω2, 0)

Ω1Ω1 Ω1

Ω2

R̄m(Ω1,Ω2, 1)

R̄m(Ω1,Ω2, k)

R̄m(Ω1,Ω2, k + 1)

· · ·· · ·

01kk + 1

Post(x)

x

Post(x)x

R̄m(Ω1,Ω2, 0)
R̄m(Ω1,Ω2, k − 1)R̄m(Ω1,Ω2, k)

(a)

Ω1

R̄M(Ω1,Ω2, 0)

Ω1Ω1 Ω1

Ω2

R̄M(Ω1,Ω2, 1)

R̄M(Ω1,Ω2, k)

R̄M(Ω1,Ω2, k + 1)

· · ·· · ·

01kk + 1

Post(x)

x

Post(x)x

R̄M(Ω1,Ω2, 0)
R̄M(Ω1,Ω2, k − 1)R̄M(Ω1,Ω2, k)

(b)

Ω1

R̄c(Ω1,Ω2, 0)

Ω1Ω1 Ω1

Ω2

R̄c(Ω1,Ω2, 1)

R̄c(Ω1,Ω2, k)

R̄c(Ω1,Ω2, k + 1)

· · ·· · ·

01kk + 1

Post(x, u)

x

Post(x, u)x

R̄c(Ω1,Ω2, 0)
R̄c(Ω1,Ω2, k − 1)R̄c(Ω1,Ω2, k)

∃u

∃u

(c)

Figure 2.3: Illustration of (a) minimal reachable sets, (b) maximal reachable

sets, and (c) controlled reachable sets.

32 Mathematical Background

De�nition 2.15. Consider a transition system TS and two sets Ω1,Ω2 ⊆ S.
The k-step maximal reachable set from Ω1 to Ω2 is de�ned as

RM(Ω1,Ω2, k) =
{
x0 ∈ S | ∃p ∈ Trajs(x0), s.t.,

p[..k] = x0 . . . xN ,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The maximal reachable set from Ω1 to Ω2 is de�ned as

RM(Ω1,Ω2) =
⋃
k∈N
RM(Ω1,Ω2, k).

Similarly, the maximal reachable set can also be considered up to a �nite

time: R̄M(Ω1,Ω2, k) =
⋃
i∈N[0,k]

RM(Ω1,Ω2, i). An illustration of maximal

reachable sets is shown in Figure 2.3(b).

Lemma 2.2. For two sets Ω1,Ω2 ⊆ S, de�ne

Qk+1 = {x ∈ Ω1 | Post(x) ∩Qk 6= ∅} ∪Qk,

Q0 = Ω2.

Then,RM(Ω1,Ω2) = limk→∞Qk.

Proof. Similar to the proof of Lemma 2.1.

We de�ne the robust invariant set and the invariant set in the following.

De�nition 2.16. A set Ωf ⊆ S is said to be a robust invariant set of a transition
system TS if for any x ∈ Ωf , Post(x) ⊆ Ωf .

De�nition 2.17. For a set Ω ⊆ S, a set RI(Ω) ⊆ S is said to be the largest
robust invariant set in S if each robust invariant set Ωf ⊆ Ω satis�es Ωf ⊆
RI(Ω).

An illustration of robust invariant set is shown in Figure 2.4(a).

Lemma 2.3. For a set Ω ⊆ S, de�ne

Qk+1 = {x ∈ Qk | Post(x) ⊆ Qk},
Q0 = Ω.

Then,RI(Ω) = limk→∞Qk.

Reachability Analysis 33

x

RI(Ω)

Ω

Post(x)

(a)

x

I(Ω)

Ω

Post(x)

(b)

x

RCI(Ω)

Ω

Post(x, u)

∃u

(c)

Figure 2.4: Illustration of (a) robust invariant set, (b) invariant set, and (c) ro-

bust controlled invariant set.

34 Mathematical Background

Proof. It follows again from the Knaster-Tarski Theorem [91] that limk→∞Qk

exists and it is a �xed point to the monotone function F (P) = {x ∈ P |
Post(x) ⊆ P} ∩ P. Thus, we have thatRI(Ω) = limk→∞Qk.

De�nition 2.18. A set Ωf ⊆ S is said to be an invariant set of a transition
system TS if for any x ∈ Ωf , Post(x) ∩ Ωf 6= ∅.

De�nition 2.19. For a set Ω ⊆ S, a set I(Ω) ⊆ S is said to be the largest
invariant set in S if each invariant set Ωf ⊆ Ω satis�es Ωf ⊆ I(Ω).

An illustration of invariant set is shown in Figure 2.4(b).

Lemma 2.4. For a set Ω ⊆ S, de�ne

Qk+1 = {x ∈ Qk | Post(x) ∩Qk 6= ∅},
Q0 = Ω.

Then, I(Ω) = limk→∞Qk.

Proof. Similar to the proof of Lemma 2.3.

We can understand the reachable sets and invariant sets de�ned above as

mapsRm : 2S×2S → 2S,RM : 2S×2S → 2S,RI : 2S → 2S, and I : 2S → 2S,

respectively. In Chapter 5, we will refer to them as “reachability operators”.

2.2.2 Reachability Analysis of Controlled Transition System

This subsection will specify the controlled reachability analysis of a controlled

transition system CTS.

De�nition 2.20. Consider a controlled transition system CTS and two sets
Ω1,Ω2 ⊆ S. The k-step controlled reachable set from Ω1 to Ω2 is de�ned as

Rc(Ω1,Ω2, k) =
{
x0 ∈ S | ∃µ ∈M s.t., ∀p ∈ Trajs(x0,µ),

p[..k] = x0 . . . xk,∀i ∈ N[0,k−1], xi ∈ Ω1, xk ∈ Ω2

}
.

The controlled reachable set from Ω1 to Ω2 is de�ned as

Rc(Ω1,Ω2) =
⋃
k∈N
Rc(Ω1,Ω2, k).

Temporal Logic 35

The controlled reachable set can also be considered up to a �nite time:

R̄c(Ω1,Ω2, k) =
⋃
i∈N[0,k]

Rc(Ω1,Ω2, i). An illustration of maximal reachable

sets is shown in Figure 2.3(c).

Lemma 2.5. For two sets Ω1,Ω2 ⊆ S, de�ne

Qk+1 = {x ∈ Ω1 | ∃u ∈ U(x),Post(x, u) ⊆ Qk} ∪Qk,

Q0 = Ω2.

Then,Rc(Ω1,Ω2) = limk→∞Qk.

Proof. Similar to the proof of Lemma 2.1.

De�nition 2.21. A set Ωf ⊆ S is said to be a robust controlled invariant set
(RCIS) of a transition system TS if for any x ∈ Ωf , there exists u ∈ U(x) such
that Post(x, u) ⊆ Ωf .

De�nition 2.22. For a set Ω ⊆ S, a set RCI(Ω) ⊆ S is said to be the largest
RCIS in S if each RCIS Ωf ⊆ Ω satis�es Ωf ⊆ RCI(Ω).

An illustration of RCIS is shown in Figure 2.4(c).

Lemma 2.6. For a set Ω ⊆ S, de�ne

Qk+1 = {x ∈ Qk | ∃u ∈ U(x),Post(x, u) ⊆ Qk},
Q0 = Ω.

Then,RCI(Ω) = limk→∞Qk.

Proof. Similar to the proof of Lemma 2.3.

The de�nitions of controlled reachable sets and RCISs provide us a way to

synthesize the feasible control set, which is detailed in Chapter 5. We treat the

mapsRc : 2S × 2S → 2S andRCI : 2S → 2S as the reachability operators.

2.3 Temporal Logic

An LTL formula is de�ned over a �nite set of atomic propositions AP and

both logic and temporal operators. The syntax of LTL can be described as:

ϕ ::= true | a ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2,

36 Mathematical Background

where© and U denote the “next" and “until" operators, respectively. By using

the negation and conjunction operators, we can de�ne disjunction: ϕ1∨ϕ2 =
¬(¬ϕ1∧¬ϕ2). By employing the until operator, we can de�ne: (1) eventually,

♦ϕ = true ∪ ϕ; (2) always, �ϕ = ¬♦¬ϕ; and (3) weak-until, ϕ1Wϕ2 =
ϕ1Uϕ2 ∨�ϕ1.

De�nition 2.23. (LTL semantics) For an LTL formula ϕ and a trajectory p, the
satisfaction relation p � ϕ is de�ned as

p � a⇔ a ∈ L(x0),

p � ¬a⇔ a /∈ L(x0),

p � ϕ1 ∧ ϕ2 ⇔ p � ϕ1 ∧ p � ϕ2,

p � ϕ1 ∨ ϕ2 ⇔ p � ϕ1 ∨ p � ϕ2,

p �©ϕ⇔ p[1..] � ϕ,

p � ϕ1Uϕ2 ⇔ ∃j ∈ N s.t.

{
p[j..] � ϕ2,

∀i ∈ N[0,j−1],p[i..] � ϕ1,

p � ♦ϕ⇔ ∃j ∈ N, s.t. p[j..] � ϕ,
p � �ϕ⇔ ∀j ∈ N, s.t. p[j..] � ϕ,

p � ϕ1Wϕ2 ⇔


∀j ∈ N,p[j..] � ϕ1, or

∃j ∈ N s.t.

{
p[j..] � ϕ2,

∀i ∈ N[0,j−1],p[i..] � ϕ1,

where a ∈ AP .

De�nition 2.24. Consider a transition system TS and an LTL formula ϕ. The
semantics of the universal form of ϕ, denoted by ∀ϕ, is

x0 � ∀ϕ⇔ ∀p ∈ Trajs(x0),p � ϕ.

The semantics of the existential form of ϕ, denoted by ∃ϕ, is

x0 � ∃ϕ⇔ ∃p ∈ Trajs(x0),p � ϕ.

2.4 Dynamic Programming

This section will show how to use dynamic programming (DP) for computing

the invariance probability de�ned in Section 2.1.3.

Dynamic Programming 37

Consider a stochastic control system SCS = (S,U, T) and a nonempty set

Q ⊆ S. We �rst solve the �nite-horizon optimal control problem:

p∗N,Q(x) = sup
µ∈M

pµN,Q(x),∀x ∈ Q.

Following the DP in [51], de�ne the value function V ∗k,Q : S → [0, 1], k =
0, 1, . . . , N , by the backward recursion:

V ∗k,Q(x) = sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)T (dy|x, u), x ∈ S, (2.2)

with initialization V ∗N,Q(x) = 1, x ∈ Q.

Assumption 2.1. The set

Uk(x, λ) =

{
u ∈ U |

∫
S
V ∗k+1,Q(y)T (dy|x, u) ≥ λ

}
is compact for all x ∈ Q, λ ∈ R, and k ∈ N[0,N−1].

Lemma 2.7. [51] For all x ∈ Q, p∗N,Q(x) = V ∗0,Q(x). If Assumption 2.1 holds,
the optimal Markov policy µ∗Q = (µ∗0,Q, µ

∗
1,Q, . . . , µ

∗
N−1,Q) exists and is given

by

µ∗k,Q(x) = arg sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)T (dy|x, u), x ∈ Q, k ∈ N[0,N−1].

Next we solve the in�nite-horizon optimal control problem:

p∗∞,Q(x) = sup
µ∈M

pµ∞,Q(x),∀x ∈ Q.

De�ne the value function G∗k,Q : S → [0, 1], k ∈ N≥0, through the forward

recursion:

G∗k+1,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗k,Q(y)T (dy|x, u), x ∈ S, (2.3)

initialized with G∗0,Q(x) = 1, x ∈ Q.

Assumption 2.2. There exists a k̄ ≥ 0 such that the set

Uk(x, λ) =

{
u ∈ U |

∫
S
G∗k,Q(y)T (dy|x, u) ≥ λ

}
is compact for all x ∈ Q, λ ∈ R, and k ∈ N≥k̄.

38 Mathematical Background

p∗ N
, Q

s4

s3

s5

N

Figure 2.5: The probability p∗N,Q(x) for x = s3, s4, s5.

Lemma 2.8. [51] Suppose that Assumption 2.2 holds. Then, for all x ∈ Q, the
limit G∗∞,Q(x) exists and satis�es

G∗∞,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)T (dy|x, u)), (2.4)

and p∗∞,Q(x) = G∗∞,Q(x). Furthermore, an optimal stationary policy µ∗Q =
(µ̄∗Q, µ̄

∗
Q, . . .) exists and is given by

µ̄∗Q(x) = arg sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)T (dy|x, u), x ∈ Q.

Example 2.4. Consider the stochastic control system in Example 2.3. Given a set
Q is {s1, s2, s3, s4, s5}, we compute the N -step invariance probability p∗N,Q(·)
with N = 5 and the in�nite-horizon invariance probability p∗∞,Q(·)

p∗5,Q(s1) = 1.0000,

p∗5,Q(s2) = 1.0000,

p∗5,Q(s3) = 0.9665,

p∗5,Q(s4) = 0.9952,

p∗5,Q(s5) = 0.9705,

and



p∗∞,Q(s1) = 1.0000,

p∗∞,Q(s2) = 1.0000,

p∗∞,Q(s3) = 0.9515,

p∗∞,Q(s4) = 0.9903,

p∗∞,Q(s5) = 0.9515.

It is shown in Figure 2.5 that p∗N,Q converges to p∗∞,Q asN →∞ element-wisely.

Chapter 3

Computation of Probabilistic Con-
trolled Invariant Sets
This chapter investigates stochastic invariance for control systems through

probabilistic controlled invariant sets (PCISs). As a natural complement to ro-

bust controlled invariant sets (RCISs), we propose �nite- and in�nite-horizon

PCISs, and explore their relation to RICSs. We design iterative algorithms to

compute the PCIS within a given set. For systems with discrete spaces, the

computations of the �nite- and in�nite-horizon PCISs at each iteration are

based on linear programming (LP) and mixed integer linear programming

(MILP), respectively. The algorithms are computationally tractable and termi-

nate in a �nite number of steps. For systems with continuous spaces, we show

how to discretize these spaces and prove the convergence of the approxima-

tion when computing the �nite-horizon PCISs. In addition, it is shown that

an in�nite-horizon PCIS can be computed by the stochastic backward reach-

able set from the RCIS contained in it. These PCIS algorithms are applicable to

practical control systems. Simulations are given to illustrate the e�ectiveness

of the theoretical results for motion planning.

The remainder of this chapter is organized as follows. Section 3.1 reviews

the related work. Section 3.2 presents the de�nition, properties, and computa-

tion algorithms of �nite-horizon PCISs. Section 3.3 extends the results to the

in�nite-horizon case. Examples in Section 3.4 illustrate the e�ectiveness of our

approach. Section 3.5 concludes this chapter.

39

40 Computation of Probabilistic Controlled Invariant Sets

3.1 Introduction

3.1.1 Motivation and Related Work

Invariance is a fundamental concept in systems and control [43], [46], [47]. A

controlled invariant set captures the region where the states can be maintained

by some admissible control inputs. RCISs are de�ned for control systems with

bounded external disturbances and address the invariance despite any realiza-

tion of the disturbances. In the past decades, there have been lots of research

results on RCISs and their computations [26]–[28]. This chapter studies PCISs,

which is a natural complement to RCISs suitable in many applications. A PCIS

is a set within which the controller is able to keep the system state with a

certain probability. Such sets not only alleviate the inherent conservatism of

RCISs by allowing probabilistic violations but also enlarge the applications of

RCISs by being able to address unbounded disturbances. The study of PCISs is

motivated by safety-critical control [92], stochastic model predictive control

(MPC) [93], [94], reliable control [95], [96], and relevant applications, e.g., air

tra�c management systems [13], [14] and motion planning [97].

When computing RCISs, one essential component in iterative approaches

is to compute the robust backward reachable set, in which each state can be

steered to the current set by an admissible input for all possible uncertain-

ties [26]–[28]. The PCIS computation in this chapter follows the same idea,

but the robust backward reachable set is replaced with the stochastic back-

ward reachable sets which require di�erent mathematical tools. Some chal-

lenges related to such an approach should be highlighted: (i) how to make it

tractable to compute the stochastic backward reachable set, in particular for

systems with continuous spaces; (ii) how to mitigate the conservatism when

characterizing the stochastic backward reachable set subject to the prescribed

probability; (iii) how to guarantee convergence of the iterations.

Controlled invariant sets have recently been extended to stochastic sys-

tems. In [98], a target set, which is similar to the PCIS of this chapter, is

used to de�ne stabilization in probability. In [95], a reliable control set, an-

other similar notion to a PCIS, is used to guarantee the reliability of Markov-

jump linear systems. The reliability is further studied for such systems with

bounded disturbances in [96]. A de�nition of PCIS for nonlinear systems is

provided in [99] by using reachability analysis. It is later applied to portfolio

optimization [100]. Another de�nition of probabilistic invariance originates

from stochastic MPC [101] and captures one-step invariance. In [101], an el-

Introduction 41

lipsoidal approximation is given for linear systems with speci�c uncertainty

structure. Similar invariant sets are used in [102] to construct a convex lifting

function for linear stochastic control systems. A de�nition of a probabilistic

invariant set is proposed in [52], [53] for linear stochastic systems without

control inputs. This de�nition captures the probabilistic inclusion of the state

at each time instant. A recent work [103] explores the correspondence be-

tween probabilistic and robust invariant sets for linear systems. In [52], [53],

polyhedral probabilistic invariant sets are approximated by using Chebyshev’s

inequality for linear systems with Gaussian noise. Recursive satisfaction is

usually computationally intractable for general stochastic control systems.

The results of this chapter build on the above work but make signi�-

cant additions and improvements. (i) All the above references focus on some

speci�c stochastic systems (e.g., linear or one-dimensional a�ne nonlinear

systems) or on some speci�c class of stochastic disturbances (e.g., Gaussian

or state-independent noise). In our model, we consider general Markov con-

trolled processes, which include general system dynamics and stochastic dis-

turbances. (ii) Di�erent from [52], [53], our invariant sets are de�ned based

on trajectory inclusion as in [99] and, particularly, incorporate control inputs

constrained by a compact set. An accompanying question is how to �nd an

admissible control input when verifying or computing a PCIS. (iii) The PCISs

in this chapter are di�erent from the maximal probabilistic safe sets in [51].

Every trajectory in a PCIS is required by our de�nition to admit the same

probability level, which does not hold for the maximal probabilistic safe set.

(vi) The stochastic reachability analysis studied in [51] provides an important

tool for maximizing the probability of staying in a set. Based on this, we com-

pute a PCIS within a set with a prescribed probability level. This extends the

results of [51], [99], [104].

3.1.2 Main Contributions

The objective of this chapter is to provide a novel tool for analyzing invariance

in stochastic control systems. The contributions are summarized as follows.

(C3.1) We propose two novel de�nitions of PCIS: N -step ε-PCIS and in�nite-

horizon ε-PCIS (De�nitions 3.1 and 3.2). AnN -step ε-PCIS is a set within

which the state can stay for N steps with probability ε under some

admissible controller while an in�nite-horizon ε-PCIS is a set within

which the state can stay forever with probability ε under some admissi-

42 Computation of Probabilistic Controlled Invariant Sets

ble controller. These invariant sets are di�erent from the ones proposed

in [52], [101], which address probabilistic set invariance at each time

step. Our de�nitions are applicable for general discrete-time stochastic

control systems. We provide fundamental properties of PCISs and ex-

plore their relation to RCISs. Furthermore, we propose conditions for

the existence of in�nite-horizon ε-PCIS (Theorem 3.3).

(C3.2) We design iterative algorithms to compute the largest �nite- and

in�nite-horizon PCIS within a given set for systems with discrete and

continuous spaces. The PCIS computation is based on the stochastic

backward reachable set. For discrete state and control spaces, it is shown

that at each iteration, the stochastic backward reachable set computa-

tion of an N -step ε-PCIS can be reformulated as an LP (Theorem 3.1

and Corollary 3.1) and an in�nite-horizon ε-PCIS as a computationally

tractable MILP (Theorem 3.4). Furthermore, we prove that these algo-

rithms terminate in a �nite number of steps. For continuous state and

control spaces, we present a discretization procedure. Under weaker as-

sumptions than [105], we prove the convergence of such approxima-

tions for N -step ε-PCISs (Theorem 3.2). The approximations general-

ize the case in [51], which only discretizes the state space for a given

discrete control space. Furthermore, in order to compute an in�nite-

horizon ε-PCIS, we propose an algorithm based on that an in�nite-

horizon PCIS always contains an RCIS.

3.2 Finite-horizon Probabilistic Controlled Invari-
ant Sets

Recall the stochastic control system de�ned in Section 2.1.3. Consider a

stochastic control system SCS = (S,U, T). In this section, we �rst de�ne

�nite-horizon ε-PCIS for the system SCS and provide the properties of this

set. Then, we explore how to compute the �nite-horizon ε-PCIS within a given

set.

De�nition 3.1. (N -step ε-PCIS) Consider a stochastic control system SCS =
(S,U, T). Given a probability level 0 ≤ ε ≤ 1, a set Q ∈ B(S) is an N -step
ε-PCIS for SCS if for any x ∈ Q, there exists at least one Markov policy µ ∈M
such that pµN,Q(x) ≥ ε.

Finite-horizon Probabilistic Controlled Invariant Sets 43

We de�ne the stochastic backward reachable setR∗ε,N (Q) by collecting all

the states x ∈ Q at which the N -step invariance probability p∗N,Q(x) ≥ ε, i.e.,

R∗ε,N (Q) = {x ∈ Q | ∃µ ∈M, pµN,Q(x) ≥ ε}
= {x ∈ Q | sup

µ∈M
pµN,Q(x) ≥ ε}

= {x ∈ Q | V ∗0,Q(x) ≥ ε},

where V ∗0,Q(x) is de�ned in (2.2)

If R∗ε,N (Q) = Q, it yields from Q ∈ B(S) that R∗ε,N (Q) is also Borel-

measurable. IfR∗ε,N (Q) ⊂ Q, the following lemma addresses the measurabil-

ity of the setR∗ε,N (Q).

Lemma 3.1. For any Q ∈ B(S), the set R∗ε,N (Q) ⊆ Q is universally measur-
able.

Proof. De�ne the functions J∗k,Q : S→ R, k ∈ N[0,N], as

J∗k,Q(x) = −V ∗N−k,Q(x),∀x ∈ S.

As shown in [51], the function J∗N,Q is lower-semianalytic for any Q ∈ B(S).

From De�nitions 7.20 and 7.21 in [89], we have that the function J∗N,Q is also

analytically measurable and thus is universally measurable for any Q ∈ B(S).

According to the de�nition of universal measurability, the set J∗,−1
N,Q (B) =

{x ∈ S | J∗k,Q(x) ∈ B} for B ∈ B(R) is universally measurable.

Recall the de�nition of the stochastic backward reachable setR∗ε,N (Q), we

have that

R∗ε,N (Q) = {x ∈ Q | V ∗0,Q(x) ≥ ε}
= {x ∈ Q | −1 ≤ J∗N,Q(x) ≤ −ε}
= J∗,−1

N,Q (Y)

whereY = [−1,−ε] ∈ B(R). Thus, the setR∗ε,N (Q) is universally measurable

for any Q ∈ B(S).

Let us denote by P(S) the set of all probability measures on S. The follow-

ing proposition shows that despite the universal measurability of R∗ε,N (Q),

for any probability measure on S, one can �nd another Borel-measurable set

R̃∗ε,N (Q)) for which the di�erence toR∗ε,N (Q) is measure-zero.

44 Computation of Probabilistic Controlled Invariant Sets

Proposition 3.1. For any Q ∈ B(S) and any p ∈ P(S), there exists a set
R̃∗ε,N (Q) ∈ B(S) with R̃∗ε,N (Q) ⊆ Q such that p(R̃∗ε,N (Q)4R∗ε,N (Q)) = 0.

Proof. It follows from the universal measurability of R∗ε,N (Q) as shown in

Lemma 3.1, the Borel measurability of Q, R∗ε,N (Q) ⊆ Q, and Lemma 7.26 in

[89].

From Lemma 2.7 and the de�nition of R∗ε,N (Q), we can verify whether a

set Q ∈ B(S) is an N -step ε-PCIS or not by checking if eitherR∗ε,N (Q) = Q,

or V ∗0,Q(x) ≥ ε, ∀x ∈ Q, where V ∗0,Q(x) is de�ned in (2.2).

Remark 3.1. The stochastic backward reachable setR∗ε,N (Q) is called the max-
imal probabilistic safe set in [51]. The N -step ε-PCIS Q in De�nition 3.1 re�nes
the maximal probabilistic safe set by requiring that for any initial state x0 ∈ Q,
the N -step invariance probability p∗∞,Q(x0) is no less than ε.

In the following, we show that �nite-horizon PCISs are closed under union.

Proposition 3.2. Consider a collection of sets Qi ∈ B(S), i = 1, . . . , r. If each
Qi is anNi-step εi-PCIS for the same system SCS, then the union

⋃r
i=1 Qi is an

N -step ε-PCIS, where N = miniNi and ε = mini εi.

Proof. The result follows from the following two facts:

(i) for any Q,P ∈ B(S) with Q ⊆ P,

sup
µ∈M

pµN,Q(x) ≤ sup
µ∈M

pµN,P(x),∀N ∈ N and ∀x ∈ Q;

(ii) for any N,N ′ ∈ N with N ≤ N ′,

sup
µ∈M

pµN ′,Q(x) ≤ sup
µ∈M

pµN,Q(x),∀Q ∈ B(S) and ∀x ∈ Q.

The proof is completed.

3.2.1 Finite-horizon ε-PCIS Computation

This subsection will address the following problem.

Problem 3.1. Given a set Q ∈ B(S) and a prescribed probability 0 ≤ ε ≤ 1,
compute an N -step ε-PCIS Q̃ ⊆ Q.

Finite-horizon Probabilistic Controlled Invariant Sets 45

To handle this problem, our basic idea is to iteratively compute stochastic

backward reachable sets until convergence. A general procedure is presented

in the following algorithm.

Algorithm 3.1 N -step ε-PCIS

1: Initialize i = 0 and Pi = Q.

2: Compute V ∗0,Pi(x),∀x ∈ Pi.
3: Compute R∗ε,N (Pi) and construct a Borel-measurable set R̃∗ε,N (Pi) such

that p(R̃∗ε,N (Pi)4R∗ε,N (Pi)) = 0 for some p ∈ P(S);

4: Update Pi+1 = R̃∗ε,N (Pi);

5: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

In Algorithm 3.1, we �rst compute the stochastic backward reachable set

R∗ε,N (Pi) within Pi and then update Pi+1 to be the corresponding Borel-

measurable set R̃∗ε,N (Pi), which is tailored by picking up a p ∈ P(S) such

that p(R̃∗ε,N (Pi) 4 R∗ε,N (Pi)) = 0 (see Proposition 3.1). The following the-

orem shows convergence of Pi. The terminal condition guarantees that the

resulting set by this algorithm is an N -step ε-PCIS Q̃ ⊆ Q.

Theorem 3.1. Let Assumption 2.1 hold. For any Q ∈ B(S), Algorithm 3.1 con-
verges, i.e., limi→∞ Pi exists. If limi→∞ Pi 6= ∅, it is the anN -step ε-PCIS within
Q.

Proof. From Algorithm 3.1 and Lemma 3.1, we have that if the termination

condition does not hold, Pi+1 ⊂ Pi. It follows that the sequence {Pi}i∈N is

nonincreasing. Then,

lim inf
i→∞

Pi =
⋃
i≥1

⋂
j≥i

Pj =
⋂
j≥1

Pj =
⋂
i≥1

⋃
j≥i

Pj = lim sup
i→∞

Pi,

which suggests the existence of limi→∞ Pi. Furthermore, if limi→∞ Pi is

nonempty, we conclude that it is anN -step PCIS within Q based on the �xed-

point theory.

To facilitate the practical implementation of Algorithm 3.1, we need to

address two important properties: the computational tractability of V ∗0,Pi(x),

∀x ∈ Pi, and the �nite-step convergence of Algorithm 3.1. In the following,

46 Computation of Probabilistic Controlled Invariant Sets

we will derive these two properties for discrete and continuous spaces, respec-

tively. It is shown that if the spaces are discrete, the properties are guaranteed

and in particular at each iteration we only need to solve an LP to compute the

exact value of V ∗0,Pi . If the spaces are continuous, we will design a discretiza-

tion algorithm with convergence guarantee, which enables us to preserve the

above two properties.

Discrete state and control spaces

If the state and control spaces are discrete, i.e., they are �nite sets, the stochas-

tic kernel T (y|x, u) denotes the transition probability from state x ∈ S to state

y ∈ S under control action u ∈ Ux, which satis�es that

∑
y∈S T (y|x, u) = 1,

∀x ∈ S and u ∈ Ux.

In this case, according to Theorem 1 of [106], we can exactly compute

V ∗0,Pi(x) via an LP. Moreover, the existence of the optimal Markov policy can

be always guaranteed.

Lemma 3.2. Given any set Pi ⊂ S, the value functions V ∗k,Pi in (2.2) can be
obtained by solving an LP:

min
N∑
k=0

∑
x∈Pi

vk(x) (3.1a)

s.t. ∀x ∈ Pi
vk(x) ≥

∑
y∈Pi

vk+1(y)T (y|x, u),∀u ∈ Ux,∀k ∈ N[0,N−1], (3.1b)

vN (x) ≥ 1, (3.1c)

which gives V ∗k,Pi(x) = v∗k(x), ∀x ∈ Pi and ∀k ∈ N[0,N], where v∗k is the optimal
solution of (3.1). The optimal Markov policy µ∗Pi = (µ∗0,Pi , µ

∗
1,Pi , . . . , µ

∗
N−1,Pi)

is given by µ∗k,Pi(x) = u where u ∈ Ux is such that

v∗k(x) =
∑
y∈Pi

v∗k+1(y)T (y|x, u). (3.2)

Proof. See Theorem 1 in [106] for the proof.

Corollary 3.1. For discrete state and control spaces, Algorithm 3.1 converges in
a �nite number of iterations. Furthermore, at each iteration, the N -step invari-
ance probability V ∗0,Pi(x), ∀x ∈ Pi, can be computed via the LP (3.1) and the
corresponding optimal policy is determined by (3.2).

Finite-horizon Probabilistic Controlled Invariant Sets 47

Proof. The �nite-step convergence of Algorithm 3.1 follows from Theorem 3.1

and the �nite cardinality of Q. The remaining part directly follows from

Lemma 3.2.

Remark 3.2. When implementing Algorithm 3.1 to a system with discrete
spaces, the maximal number of iterations is |Q|. The resulting set is the largest
PCIS within the give set. At each iteration, an LP is solved to compute the value
of V ∗0,Pi(x), ∀x ∈ Pi. The number of the decision values in the LP is at most
|Q|(N + 1) and the number of constraints is at most |Q|(N |U|+ 1). It follows
from [107] that Algorithm 3.1 can be implemented in O(|Q|2(N |U|+ 1)) time.

Continuous state and control action spaces

In order to preserve the computational tractability of V ∗0,Pi and the �nite-step

convergence of Algorithm 3.1, if the state and control spaces are both con-

tinuous, we �rst discretize the spaces with convergence guarantee. Then, we

adapt Algorithm 3.1 to compute an approximateN -step ε-PCIS within a given

set.

Assume that S ⊆ Rnx and U ⊆ Rnu for some nx, nu ∈ N. For simplicity,

we use Euclidean metric for the spaces S and U. For any Q ∈ B(S), we de-

�ne φ(Q) = Leb(Q) where Leb(·) denotes the Lebesgue measure of sets. We

suppose that the stochastic kernel T (·|x, u) admits a density t(y|x, u), which

represents the probability density of y given the current state x and the control

action u.

Now we consider Problem 3.1, where we assume that the given set Q ∈
B(S) is compact, which implies that φ(Q) is bounded. We further suppose that

the density function satis�es the following assumption.

Assumption 3.1. There exists a constant L such that for any x, x′, y, y′ ∈ Q,
and u, u′ ∈ U,

|t(y|x, u)− t(y′|x′, u′)| ≤ L(‖y − y′‖+ ‖x− x′‖+ ‖u− u′‖).

Discretization We discretize the compact set Q ⊂ S into mx pair-wise

disjoint nonempty Borel sets Qi, i ∈ N[1,mx], i.e., Q = ∪mxi=1Qi. We pick a

representative state from each setQi, denoted by qi. Let Q̂ = {qi, i ∈ N[1,mx]},
di = supx,y∈Qi ‖x− y‖, and Dx = maxi∈N[1,mx]

di.

48 Computation of Probabilistic Controlled Invariant Sets

Similarly, the compact control space U is divided into mu pair-wise dis-

joint nonempty Borel sets Ci, i ∈ N[1,mu], i.e., U = ∪mui=1Ci. We pick a repre-

sentative element from the set Ci, denoted by ûi. Let Û = {ûi, i ∈ N[1,mu]},
li = supx,y∈Ci ‖x− y‖, and Du = maxi∈N[1,mu]

li.
Let the grid size be a constant δ ≥ max{Dx, Du}. For each x ∈ Q, de�ne

the set of admissible discrete control actions as

Ûx = {û ∈ Û | ‖u− û‖ ≤ δ for some u ∈ Usx}, (3.3)

where sx is the representative state of Qi to which x belongs, i.e., sx = qi if

x ∈ Qi. Following [105], the following lemma shows that each x ∈ Q has a

nonempty admissible discretized control set.

Lemma 3.3. For each qi ∈ Q̂, the set Ûqi is nonempty and Ûx = Ûqi , ∀x ∈ Qi.

Proof. Since the admissible control set Usx is nonempty, ∀x ∈ Q, there exists

û ∈ Û such that ‖u − û‖ ≤ δ, ∀u ∈ Usx . Hence, by the de�nition of sx, we

have that the set Ûqi is nonempty for each qi ∈ Q̂. Furthermore, from (3.3), it

is easy to obtain that Ûx = Ûqi , ∀x ∈ Qi.

As in [105], let us de�ne the function t̂ : Q×Q× Û→ R

t̂(y|x, û) =

{ t(sy |sx,û)∫
Q t(sz |sx,û)dz

, if

∫
Q t(sz|sx, û)dz ≥ 1,

t(sy|sx, û), otherwise.
(3.4)

From (3.4), we observe that all states y ∈ Qi enjoy the same stochastic ker-

nel. An approximate stochastic control system is given by a triple ŜCSQ =
(Q̂, Û, T̂). Here the transition probability T̂ (qj |qi, û) is de�ned by

T̂ (qj |qi, û) =

∫
Qj
t̂(y|qi, û)dy,

where qi, qj ∈ Q̂ with qi ∈ Qi and qj ∈ Qj , and û ∈ Û.

Approximation of PCISs For the approximate system ŜCSQ, the dis-

cretized version of the (dynamic programming) DP (2.2) is given by
V̂ ∗N,Q(qi) = 1,

V̂ ∗k,Q(qi) = max
û∈Û

(mx∑
j=1

V̂ ∗k+1,Q(qj)T̂ (qj |qi, û)
)
, ∀k ∈ N[0,N−1].

Finite-horizon Probabilistic Controlled Invariant Sets 49

For each x ∈ Qi, V̂
∗
k,Q(x) = V̂ ∗k,Q(qi),∀k ∈ N[0,N]. We de�ne the discretized

optimal Markov policy µ̂∗Q = (µ̂∗0,Q, . . . , µ̂
∗
N−1,Q) as

µ̂∗k,Q(qi) = arg max
û∈Û

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, û)dy,

= arg max
û∈Û

(mx∑
j=1

V̂ ∗k+1,Q(qj)T̂ (qj |qi, û)
)
.

For each x ∈ Qi, µ̂
∗
k,Q(x) = µ̂∗k,Q(qi), ∀k ∈ N[0,N−1].

Remark 3.3. Since the state and control action spaces of the approximated sys-
tem ŜCSQ are �nite, the value of V̂ ∗k,Q can be computed via the LP (3.1) and
the corresponding optimal policy can be determined by (3.2). In addition, all the
states in eachQi share the same approximateN -step invariance probability and
optimal policy as the representative state qi ∈ Qi.

Before showing the error bound on the value function in Lemma 3.6, we

need two auxiliary lemmas. Lemma 3.4 shows that the value functions in (2.2)

are Lipschitz continuous. It is adapted from Theorem 8 in [51]. Lemma 3.5

shows that the di�erence between the approximate density function and the

original density function is bounded.

Lemma 3.4. Under Assumptions 2.1 and 3.1, for any x, x′ ∈ Q, the value func-
tions V ∗k,Q in (2.2) satisfy

|V ∗k,Q(x)− V ∗k,Q(x′)| ≤ φ(Q)L‖x− x′‖,∀k ∈ N[0,N]. (3.5)

Proof. Since V ∗N,Q(x) = 1 for all x ∈ Q, the inequality (3.5) holds for k = N .

When k ∈ N[0,N−1], for any x, x′ ∈ Q, we have

|V ∗k,Q(x)− V ∗k,Q(x′)|

= | sup
u∈U

∫
Q
V ∗k+1,Q(y)t(y|x, u)dy − sup

u∈U

∫
Q
V ∗k+1,Q(y)t(y|x′, u)dy|

≤ sup
u∈U
|
∫
Q
V ∗k+1,Q(y)(t(y|x, u)− t(y|x′, u))|dy

≤ sup
u∈U

∫
Q
|(t(y|x, u)− t(y|x′, u))|dy

≤ φ(Q)L(‖x− x′‖),
which completes the proof.

50 Computation of Probabilistic Controlled Invariant Sets

Lemma 3.5. Under Assumptions 3.1, for all y ∈ Q and qi ∈ Q̂,∫
Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ 2φ(Q)Lδ, ∀û ∈ Û.

Proof. If

∫
Q t(sz|sx, û)dz < 1, it follows from Assumption 3.1 that∫

Q
|t̂(y|qi, û)− t(y|qi, û)|dy ≤ φ(Q)Lδ.

And if

∫
Q t(sz|sx, û)dz ≥ 1, we �rst have

0 ≤
∫
Q
t(sy|qi, û)dy − 1

≤
∫
Q
t(sy|qi, û)dy −

∫
Q
t(y|qi, û)dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)|dy

≤ φ(Q)Lδ.

Furthermore, we have∫
Q
|t̂(y|qi, û)− t(y|qi, û)|dy

=

∫
Q

|t(sy|qi, û)− t(y|qi, û)
∫
Q t(sz|sx, û)dz|∫

Q t(sz|sx, û)dz
dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)

∫
Q
t(sz|sx, û)dz|dy

≤
∫
Q
|t(sy|qi, û)− t(y|qi, û)|dy

+|
∫
Q
t(sz|sx, û)dz − 1|

∫
Q
|t(y|qi, û)|dy

≤ 2φ(Q)Lδ.

This completes the proof.

Finite-horizon Probabilistic Controlled Invariant Sets 51

Lemma 3.6. Under Assumptions 2.1 and 3.1, the functions V ∗k,Q(x) and V̂ ∗k,Q(x)
satisfy that ∀x ∈ Q,

|V ∗k,Q(x)− V̂ ∗k,Q(x)| ≤ τk(Q)δ, (3.6)

where {
τN (Q) = 0,

τk(Q) = 4φ(Q)L+ τk+1(Q), ∀k ∈ N[0,N−1].
(3.7)

Proof. It is easy to check it for k = N since V ∗N,Q(x) = V̂ ∗k,Q(x) = 1, ∀x ∈ Q.

By induction, we assume that |V ∗k+1,Q(x) − V̂ ∗k+1,Q(x)| ≤ τk+1(Q)δ, x ∈ Q.

For any qi ∈ Qi, i ∈ N[1,mx], we de�ne

µ∗k = arg sup
u∈U

∫
Q
V ∗k+1,Q(y)t(y|qi, u)dy

and

µ̂∗k = arg max
û∈Û

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, û)dy.

According to the dicretization procedure of the control space, we can choose

some ν̂k ∈ Û such that ‖µ∗k − ν̂k‖ ≤ δ. Then, we have that

V ∗k,Q(qi)− V̂ ∗k,Q(qi)

=

∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy

≤
∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, ν̂k)dy

≤ |
∫
Q
V ∗k+1,Q(y)t(y|qi, µ∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, ν̂k)dy|

+|
∫
Q
V ∗k+1,Q(y)t(y|qi, ν̂k)dy −

∫
Q
V ∗k+1,Q(y)t̂(y|qi, ν̂k)dy|

+|
∫
Q
V ∗k+1,Q(y)t̂(y|qi, ν̂k)dy −

∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, ν̂k)dy|

≤ φ(Q)Lδ + 2φ(Q)Lδ + τk+1(Q)δ

= (3φ(Q)L+ τk+1(Q))δ,

52 Computation of Probabilistic Controlled Invariant Sets

and

V̂ ∗k,Q(qi)− V ∗k,Q(qi)

≤
∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, µ̂∗k)dy

≤ |
∫
Q
V̂ ∗k+1,Q(y)t̂(y|qi, µ̂∗k)dy −

∫
Q
V̂ ∗k+1,Q(y)t(y|qi, µ̂∗k)dy|

+|
∫
Q
V̂ ∗k+1,Q(y)t(y|qi, µ̂∗k)dy −

∫
Q
V ∗k+1,Q(y)t(y|qi, µ̂∗k)dy|

≤ (2φ(Q)L+ τk+1(Q))δ.

Thus, we have

|V ∗k,Q(qi)− V̂ ∗k,Q(qi)| ≤ (3φ(Q)L+ τk+1(Q))δ.

For any x ∈ Qi, i ∈ N[1,mx], it follows that

|V ∗k,Q(x)− V̂ ∗k,Q(x)| = |V ∗k,Q(x)− V̂ ∗k,Q(qi)|
≤ |V ∗k,Q(x)− V ∗k,Q(qi)|+ |V ∗k,Q(qi)− V̂ ∗k,Q(qi)|
≤ (4φ(Q)L+ τk+1(Q))δ = τk(Q)δ,

which completes the proof of the inequality (3.6).

Remark 3.4. Lemma 3.6 guarantees convergence as the grid size tends to zero
and generalizes the case considered in [51], which only discretizes the state space
for a given �nite control space. To prove Lemma 3.6, we need to show that (i) the
value functions in (2.2) are Lipschitz continuous (Lemma 3.4), which is similar to
Theorem 8 in [51], and (ii) the di�erence between the approximate density func-
tion and the original density function is bounded (Lemma 3.5), which is di�erent
from that in [51].

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold. Consider a compact set Q ∈
B(S) and a corresponding discretized set Q̂ ofQ. If Q̂ is anN -step ε̂-PCIS for the
approximate system ŜCSQ = (Q̂, Û, T̂), and ε̂ ≥ τ0(Q)δ, the setQ is anN -step
ε-PCIS for the system SCS, where ε = ε̂− τ0(Q)δ.

Proof. According to the construction of the discretized system ŜCSQ, we have

that ∀k ∈ N[0,N], ∀i ∈ N[1,mx] and ∀x ∈ Qi, V̂
∗
k,Q(x) = V̂ ∗k,Q(qi). Since Q̂

Finite-horizon Probabilistic Controlled Invariant Sets 53

is an N -step ε̂-PCIS, it follows that ∀x ∈ Q, V̂ ∗0,Q(x) ≥ ε̂. By Lemma 3.6 and

triangle inequality, we have

V ∗0,Q(x) ≥ V̂ ∗0,Q(x)− τ0(Q)δ ≥ ε̂− τ0(Q)δ, ∀x ∈ Q.

Then, when ε̂ ≥ τ0(Q)δ, we conclude that the setQ is anN -step ε-PCIS where

0 ≤ ε = ε̂− τ0(Q)δ.

Remark 3.5. From Theorem 3.2, if 0 ≤ ε < 1, by choosing a suitable grid size
0 < δ ≤ 1−ε

τ0(Q) , the problem of computing an N -step ε-PCIS within Q for SCS
can be transformed into that of computing an approximate N -step ε̂-PCIS with
probability ε̂ ≥ ε+ τ0(Q)δ for ŜCSQ.

Computation algorithm Assume that a probability level 0 ≤ ε < 1 is

given. After discretizing the set Q and the control space U, we modify Algo-

rithm 3.1 to compute an N -step ε-PCIS Q̃ ⊆ Q, as shown in the following.

Algorithm 3.2 Approximate N -step ε-PCIS

1: Choose grid size 0 < δ < 1−ε
τ0(Q) , discretize the sets Q and U, construct an

approximate system ŜCSQ = (Q̂, Û, T̂).

2: Initialize i = 0, Pi = Q, and P̂i = Q̂.

3: Compute V̂ ∗0,Pi(qj), ∀qj ∈ P̂i.
4: Compute τ0(Pi) by (3.7) and ε̂ = ε+ τ0(Pi)δ.

5: Compute the set P̂i+1 = R∗ε̂,N (P̂i) for ŜCSQ and Pi = ∪qj∈P̂iQj

6: If P̂i+1 = P̂i, stop. Else, set i = i+ 1 and go to step 3.

In Algorithm 3.2, we �rst construct an approximate system ŜCSQ =
(Q̂, Û, T̂) with grid size 0 < δ < 1−ε

τ0(Q) . Then, following similar steps as in

Algorithm 3.1, we compute the stochastic backward reachable set iteratively

for the system ŜCSQ. At each iteration, an LP is solved to obtain the N -step

invariance probability. One di�erence is that the stochastic backward reach-

able set is computed with respect to ε̂ = ε+τ0(Pi)δ and the updated set for the

system SCS is the union of the subsets of Q corresponding to the stochastic

backward reachable set. By Theorem 3.2, the resulting set by Algorithm 3.2 is

an N -step ε-PCIS.

54 Computation of Probabilistic Controlled Invariant Sets

Corollary 3.2. Let Assumptions 2.1 and 3.1 hold. For continuous state and con-
trol spaces, Algorithm 3.2 converges in a �nite number of iterations and generates
an N -step ε-PCIS. Furthermore, at each iteration, the N -step invariance proba-
bility V̂ ∗0,Pi(qj), ∀qj ∈ P̂i, can be computed via the LP (3.1) and the corresponding
optimal policy is determined by (3.2).

Proof. By Theorem 3.2 and the Borel measurability of the subsets Qi,∀i ∈
N[1,mx], it follows that the set generated by Algorithm 3.2 is anN -step ε-PCIS.

The remaining part is similar to the proof of Corollary 3.1.

Remark 3.6. When implementing Algorithm 3.2 to a system with continu-
ous spaces, it follows from [107] that Algorithm 3.2 can be implemented in
O(m2

x(Nmu + 1)) time, cf. Remark 3.2.

3.3 Infinite-horizon Probabilistic Controlled Invari-
ant Sets

Now let us extend �nite-horizon ε-PCISs to in�nite-horizon ε-PCISs. In this

section, we de�ne the in�nite-horizon ε-PCIS and explore the conditions of its

existence. Furthermore, we provide algorithms to compute an in�nite-horizon

ε-PCIS within a given set.

De�nition 3.2. (In�nite-horizon PCIS) Consider a stochastic control system
SCS = (S,U, T). Given a con�dence level 0 ≤ ε ≤ 1, a set Q ∈ B(S) is
an in�nite-horizon ε-PCIS for SCS if for any x ∈ Q, there exists at least one
stationary policy µ ∈M such that pµ∞,Q(x) ≥ ε.

We de�ne the stochastic backward reachable set R∗ε,∞(Q) by collecting

all the states x ∈ Q at which the in�nite-horizon invariance probability

p∗∞,Q(x) ≥ ε, i.e.,

R∗ε,∞(Q) = {x ∈ Q | ∃µ ∈M, pµ∞,Q(x) ≥ ε}
= {x ∈ Q | sup

µ∈M
pµ∞,Q(x) ≥ ε}

= {x ∈ Q | G∗∞,Q(x) ≥ ε},

where G∗∞,Q(x) is de�ned by (2.3)–(2.4).

For the in�nite-horizon case, Lemma 3.1 and Proposition 3.1 still hold. That

is, the set R∗ε,∞(Q) is universally measurable and for any p ∈ P(S), there

Infinite-horizon Probabilistic Controlled Invariant Sets 55

exists another Borel-measurable set R̃∗ε,∞(Q) ⊆ Q such that p(R̃∗ε,∞(Q) 4
R∗ε,∞(Q)) = 0.

Under Assumption 2.2, by Lemma 2.8 and the de�nition of R∗ε,∞(Q), we

can verify whether a set Q ∈ B(S) is an in�nite-horizon ε-PCIS or not by

checking if either R∗ε,∞(Q) = Q, or G∗∞,Q(x) ≥ ε, ∀x ∈ Q, where G∗∞,Q(x)
is de�ned by (2.3)–(2.4).

Let us adapt the RCIS in De�nition 2.21 to a stochastic control system

SCS = (S,U, T). We say an RCIS Q ∈ B(S) for SCS is anN -step ε-PCIS with

N = 1 and ε = 1.

Remark 3.7. Another interpretation of RCIS is that a set Q ∈ B(S) is an
RCIS if for any x ∈ Q, there exists at least one control input u ∈ U such that
T (Q|x, u) = 1. It is easy to verify that an RCIS is also an in�nite-horizon ε-PCIS
with ε = 1. It is called an absorbing set in [108] where there is no control input.
In the following, we show that the RCIS plays an important role in the existence
of in�nite-horizon PCIS and provide how to design an algorithm to compute such
PCIS based on RCIS.

Remark 3.8. Note that in�nite-horizon ε-PCISs are also closed under union, as
shown in Proposition 3.2 when N is replaced by∞.

3.3.1 Existence of Infinite-horizon PCIS

Intuitively, the monotone decrease of the value functions G∗k,Q(x) de�ned in

(2.3) may imply that the value of G∗∞,Q(x) is one or zero. However, it is pos-

sible to get 0 < G∗∞,Q(x) < 1 in some cases (see Examples 1 and 2 in Section

3.4). The following theorem provides necessary conditions and su�cient con-

ditions for the existence of an in�nite-horizon ε-PCIS with ε > 0.

Theorem 3.3. Suppose that Assumption 2.2 holds and let 0 < ε ≤ 1 be �xed.
Given a nonempty setQ, let ux be the control input such that (2.4) holds for each
x ∈ Q. The set Q is an in�nite-horizon ε-PCIS

(i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,

T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) +
ρ2

1− ρ ≥ ε, (3.8)

where ρ = supx∈Q\Qf
∫
Q\Qf T (dy|x, ux);

56 Computation of Probabilistic Controlled Invariant Sets

(ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,

T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) ≥ ε. (3.9)

Proof. Only-if-part: Under Assumption 2.2, the fact that the set Q ∈ B(S) is

an in�nite-horizon ε-PCIS is equivalent to G∗∞,Q(x) ≥ ε,∀x ∈ Q. Let θ =
supx∈QG

∗
∞,Q(x). Under Assumption 2.2, G∗∞,Q(x) exists for all x ∈ Q. The

set Q̃f = {x ∈ Q | G∗∞,Q(x) = θ} collects all the states for which the value

of G∗∞,Q is maximal over the set Q. Extending Lemma 3.1 to in�nite-horizon

case, we have that the set Q̃f is universally measurable. By Lemma 7.16 in [89],

we have that for any p ∈ P(S), there exists a Borel-measurable set Qf ⊆ Q
such that p(Qf 4 Q̃f) = 0. Let us specify Qf by choosing a p.

Next we will show that the set Qf is an RCIS. It follows from Assump-

tion 2.2 and Lemma 2.8 that ∀x ∈ Qf ,

G∗∞,Q(x) =

∫
Qf
G∗∞,Q(y)T (dy|x, ux) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, ux)

= G∗∞,Q(x)

∫
Qf
T (dy|x, ux) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, ux) (3.10)

≤ G∗∞,Q(x)T (Qf |x, ux) +G∗∞,Q(x)T (Q \Qf |x, ux) (3.11)

= G∗∞,Q(x)(T (Qf |x, ux) + T (Q \Qf |x, ux)),

where Eq. (3.10) follows fromG∗∞,Q(x) = G∗∞,Q(y),∀x, y ∈ Qf and Eq. (3.11)

follows from thatG∗∞,Q(x) > G∗∞,Q(y),∀x ∈ Qf ,∀y ∈ Q\Qf . Furthermore,

sinceG∗∞,Q(x) ≥ ε > 0,∀x ∈ Q, and 0 ≤ T (Q|x, ux) ≤ 1, the equality in Eq.

(3.11) holds if and only if T (Qf |x, ux) = 1 and thereby T (Q\Qf |x, ux)) = 0.

Based on the recursion in (2.3), we have G∗∞,Q(x) = 1,∀x ∈ Qf . Hence, the

set Qf ⊆ Q is an RCIS.

Next let us prove that ∀x ∈ Q \Qf , Eq.(3.8) holds. That is to prove that

G∗∞,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) +
ρ2

1− ρ. (3.12)

By Theorem 7 in [51], the control input ux is also optimal to the recursion

(2.3). For all k ∈ N, we have ∀x ∈ Qf , G∗k,Q(x) = 1 and ∀x ∈ Q \Qf ,

G∗k+1,Q(x) = T (Qf |x, ux) +

∫
Q\Qf

G∗k,Q(y)T (dy|x, ux).

Infinite-horizon Probabilistic Controlled Invariant Sets 57

Let

ρ = sup
x∈Q\Qf

∫
Q\Qf

T (dy|x, ux).

Note that 0 ≤ ρ < 1. Then, ∀x ∈ Q \Qf , we can follow the induction rule to

prove that

G∗k,Q(x) ≤ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) +
ρ2 − ρk
1− ρ ,

which by taking limitation yields that (3.12) holds.

If-part: The proof for the existence of an RCIS Qf ⊆ Q is the same as

that of the only if part. As shown above, the condition T (Qf |x, ux) = 1 is

equivalent to G∗∞,Q(x) = 1, ∀x ∈ Qf . We can use induction to prove that

∀x ∈ Q \Qf ,

G∗k,Q(x) ≥ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux),

which further implies that

G∗∞,Q(x) ≥ T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux).

One su�cient condition to guarantee G∗∞,Q(x) ≥ ε is (3.9), i.e.,

T (Qf |x, ux) +

∫
Q\Qf

T (Qf |y, uy)T (dy|x, ux) ≥ ε.

The proof is completed.

Remark 3.9. The value of ρ is the largest probability that the next state y re-
mains outside the RCIS Qf from any x ∈ Q \ Qf under the optimal stationary
policy in Lemma 2.8. Note that ρ2

1−ρ is the gap between the necessary condition
and the su�cient condition. In addition, the second item in (3.8)–(3.9) denotes
the probability that the state is steered into the RCIS Qf by two transitions from
x ∈ Q \Qf with an intermediate state y outside Qf .

Corollary 3.3. Suppose that Assumption 2.2 holds and let 0 < ε ≤ 1 be �xed.
A nonempty set Q is an in�nite-horizon ε-PCIS

58 Computation of Probabilistic Controlled Invariant Sets

(i) only if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,

T (Q|x, u) ≥ ε for some u ∈ U;

(ii) if there exists an RCIS Qf ⊆ Q such that ∀x ∈ Q \Qf ,

T (Qf |x, u) + εT (Q \Qf |x, u) ≥ ε for some u ∈ U.

Proof. By Lemma 2.8 and Theorem 3.3, the necessary condition in Corol-

lary 3.3 can be proven by showing that ∀x ∈ Q \ Qf , there exists a u ∈ U
such that

ε ≤ G∗∞,Q(x) =

∫
Qf
G∗∞,Q(y)T (dy|x, u) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, u)

≤ T (Qf |x, u) + T (Q \Qf |x, u) (3.13)

= T (Q|x, u),

where Eq. (3.13) follows from 0 < G∗∞,Q(x) ≤ 1,∀x ∈ Q.

The su�cient condition in Corollary 3.3 can be proven by showing that

∀x ∈ Q \Qf , there exists a u ∈ U

G∗∞,Q(x) =

∫
Qf
G∗∞,Q(y)T (dy|x, u) +

∫
Q\Qf

G∗∞,Q(y)T (dy|x, u)

≥ T (Qf |x, u) + εT (Q \Qf |x, u), (3.14)

where Eq. (3.14) follows from G∗∞,Q(x) ≥ ε > 0,∀x ∈ Q. One su�cient

condition to guarantee G∗∞,Q(x) ≥ ε is

T (Qf |x, u) + εT (Q \Qf |x, u) ≥ ε.
The proof is completed.

Remark 3.10. A nonempty set Q is an in�nite-horizon ε-PCIS if there exists
an RCIS Qf ⊆ Q such that ∀x ∈ Q \ Qf , T (Qf |x, u) ≥ ε for some u ∈ U.
This implication will facilitate the design of an algorithm for an in�nite-horizon
ε-PCIS, see Algorithm 3.4.

Remark 3.11. Considering the similarity between the reliability de�ned in [96]
and the in�nite-horizon invariance probability in this chapter, we can extend the
results on in�nite-horizon PICSs, including the existence condition above and the
computational algorithms in the following, to the reliable control set in [95] to
general stochastic systems.

Infinite-horizon Probabilistic Controlled Invariant Sets 59

3.3.2 Infinite-horizon ε-PCIS Computation

This subsection will address the following problem.

Problem 3.2. Given a set Q ∈ B(S) and a prescribed probability 0 ≤ ε ≤ 1,
compute an in�nite-horizon ε-PCIS Q̃ ⊆ Q.

To handle this problem, the key point is to compute the in�nite-horizon

invariance probability G∗∞,Q. For discrete spaces, it is shown that computa-

tionally tractable MILP can be used to compute the exact value of G∗∞,Q. In

this case, we can compute the largest in�nite-horizon ε-PCIS by computing

iteratively the stochastic backward reachable sets until convergence. For con-

tinuous spaces, it is in general computationally intractable to compute G∗∞,Q
and the discretization method fails to work since the approximation error in

(3.6) increases with the horizon. In this case, we design another computational

algorithm based on the su�cient conditions in Remark 3.10.

Discrete state and control spaces

If the state and control spaces are discrete, we adopt the same assumptions as

in Section 3.2.1. We will �rst show how to compute the exact value of G∗∞,Q
in (2.3)–(2.4) through an MILP. Then, we will adapt Algorithm 3.1 to compute

the largest in�nite-horizon ε-PCIS within a given set.

MILP reformulation Since 0 is a trivial solution of (2.4), we cannot di-

rectly reformulate (2.3)–(2.4) as an LP, which is the traditional way to deal

with in�nite-horizon stochastic optimal control problems [109].

The following lemma provides a computationally tractable MILP reformu-

lation when computing G∗∞,Q

Lemma 3.7. Given any set Q ⊆ S, the value of G∗∞,Q in (2.4) can be obtained
by solving the MILP:

max
g(x),κ(x,u)

∑
x∈Q

g(x) (3.15a)

s.t. ∀x ∈ Q,
g(x) ≥

∑
y∈Q

g(y)T (y|x, u),∀u ∈ Ux, (3.15b)

g(x) ≤
∑
y∈Q

g(y)T (y|x, u) + (1− κ(x, u))∆, ∀u ∈ Ux, (3.15c)

60 Computation of Probabilistic Controlled Invariant Sets

∑
u∈Ux

κ(x, u) ≥ 1, (3.15d)

0 ≤ g(x) ≤ 1, κ(x, u) ∈ {0, 1},∀u ∈ Ux, (3.15e)

where ∆ is a constant greater than one. That is, G∗∞,Q(x) = g∗(x), ∀x ∈ Q,
where g∗ is obtained from the optimal solution (g∗, κ∗) of the MILP (3.15). The
optimal stationary policy is µ̄∗Q(x) = u where u ∈ Ux such that κ∗(x, u) = 1
and κ∗ is the optimal solution of the MILP (3.15).

Proof. From the monotone decrease of the sequence (G∗0,Q, G
∗
1,Q, . . .) and

Lemma 2.8, G∗∞,Q is the maximum �xed point satisfying (2.4). Hence, the

equivalent form of G∗∞,Q can be written as MILP (3.15), where the constraints

(3.15b)–(3.15d) guarantee that there exists u ∈ Ux such that the equality in

(2.4) holds.

Computation algorithm As an adaption of Algorithm 3.1, the following al-

gorithm provides a way to compute the largest in�nite-horizon ε-PCIS within

Q.

Algorithm 3.3 In�nite-horizon ε-PCIS

1: Initialize i = 0 and Pi = Q.

2: Compute G∗∞,Pi(x) for all x ∈ Pi.
3: Compute the set Pi+1 = R∗ε,∞(Pi).

4: If Pi+1 = Pi, stop. Else, set i = i+ 1 and go to step 2.

The di�erence between Algorithms 3.1 and 3.3 is that the value of

G∗∞,Pi(x), instead of V ∗0,Pi(x), ∀x ∈ Pi, is computed by (3.15) (replacing Q
with Pi). Furthermore, the updated set Pi+1 = R∗ε,∞(Pi), which is a stochas-

tic backward reachable set within Pi with respect to in�nite horizon and a

probability level ε. The following theorem provides the convergence of Pi and

shows that the resulting set Q̃ by this algorithm is an in�nite-horizon ε-PCIS.

Theorem 3.4. For discrete state and control spaces, Algorithm 3.3 converges in
a �nite number of iterations and generates the largest in�nite-horizon ε-PCIS
within Q. Furthermore, at each iteration, the in�nite-horizon invariance proba-
bility G∗∞,Pi(x), ∀x ∈ Pi, can be computed via the MILP (3.15).

Infinite-horizon Probabilistic Controlled Invariant Sets 61

Proof. The �nite-step convergence of Algorithm 3.3 follows from the �nite

cardinality of the set Q. Similar to Theorem 3.1, the generated in�nite-

horizon ε-PCIS is the largest one within Q. The MILP reformulation refers

to Lemma 3.7.

Remark 3.12. When implementing Algorithm 3.3 to a system with discrete
spaces, the maximal iteration number is |Q|. An MILP is used to compute the
value of G∗∞,Pi(x), ∀x ∈ Pi, at each iteration. The number of real-valued deci-
sion values is at most |Q|, the number of binary decision values is at most |Q||U|,
and the number of constraints is at most |Q|(2|U| + 3). In general, MILPs are
NP-hard and can be solved by cutting plane algorithm or branch-and-bound al-
gorithm [110]. Some advanced softwares have been developed to solve largeMILPs
e�ciently [111], [112].

Continuous state and control spaces

If the state and control spaces are continuous, it is computationally in-

tractable to compute the exact value of in�nite-horizon invarinace probabil-

ity G∗∞,Q(x). Based on Remark 3.10, this subsection provides another way to

compute an in�nite-horizon ε-PCIS within a given set Q.

Di�erent from Algorithm 3.3, which computes iteratively the stochas-

tic backward reachable sets, the following algorithm generates an in�nite-

horizon ε-PCIS by computing a backward stochastic reachable set from the

RCIS Qf contained in Q.

Algorithm 3.4 In�nite-horizon ε-PCIS

1: Compute the RCIS within Q, denoted by Qf .

2: Compute the stochastic backward reachable set from Qf , i.e.,

Q̃ = {x ∈ Q | ∃u ∈ U,
∫
Qf
T (dy|x, u) ≥ ε}.

The �rst step in Algorithm 3.4 is the computation of RCIS within a given

set, which is a well-studied topic in the literature [26]–[28]. Then, based on

RCIS Qf within Q, the stochastic backward reachable set

Q̃ = {x ∈ Q | ∃u ∈ U,
∫
Qf
T (dy|x, u) ≥ ε}

62 Computation of Probabilistic Controlled Invariant Sets

is an in�nite-horizon ε-PCIS withinQ. In comparison with Algorithms 3.1–3.3,

the iteration is avoided in Algorithm 3.4, which only needs two steps.

Remark 3.13. Note that the resulting set from Algorithm 3.4 is in general not
the largest in�nite-horizon ε-PCIS within the given set Q. It is possible to obtain
a larger in�nite-horizon ε-PCIS if we can reformulate the existence conditions
in Theorem 3.3 and Corollary 3.3 in a recursive form and thereby modify Algo-
rithm 3.4 to be a recursive algorithm.

Remark 3.14. The complexity of Algorithm 3.4 depends on the computation of
the RCIS [26]–[28], [47], and the computation of the backward stochastic reach-
able set. The later can be reformulated as a chance-constrained problem and then
approximately solved. Some results on computation of the backward stochastic
reachable set have been reported in [113]. The �rst example in Section 3.4 will
show how to compute the backward stochastic reachable set.

3.4 Examples

In this section, two examples are provided to illustrate the e�ectiveness of

the proposed theoretical results. The �rst one is concerned with comparison

between PCIS and RCIS. Then we consider an application to motion planning

of a mobile robot in a partitioned space with obstacles.

3.4.1 Example 1: Comparison between PCIS and RCIS

Consider the following example from [114]:

xk+1 = Axk +Buk + wk,

where A =

[
1.6 1.1
−0.7 1.2

]
and B =

[
1
1

]
. The control input is constrained

by |uk| ≤ 0.25. We considerwk to be either non-stochastic or stochastic when

computing RCIS and PCIS, respectively. The region of interest is Q = {x ∈
R2 | ‖x‖∞ ≤ 0.5}. We will compare the largest RCIS and PCIS within Q.

To derive an RCIS for this system, we assume the disturbance belongs to

the compact set W = {w ∈ R2 | ‖w‖∞ ≤ 0.05}. By using the methods

in [28], [43], we obtain the largest RCIS, which is the blue region shown in

Figure 3.1. The gray region is an in�nite-horizon ε-PCIS described in the end

of this example.

Examples 63

Figure 3.1: Computations of the largest RCIS (blue) and an in�nite-horizon

ε-PCIS with ε = 0.80 (gray) by Algorithm 3.4 for Example 1.

When computing a �nite-horzion PCIS, assume that elements of wk are

i.i.d. Gaussian random variables with zero mean and variance σ2 = 1/302
.

This system can be represented as a triple SCS = {X,U, T}:
S = R2,

U = {u ∈ R | |u| ≤ 0.25},
t(xk+1|xk, uk) = ψ(Λ−1(xk+1 −Axk −Buk)),

where ψ(·) is the density function of the standard normal distribution and

Λ = diag{σ, σ}. In this case, since the Lipschitz constant L in Assumption 3.1

is small, we ignore the approximation error τ0 in (3.7). We discretize the con-

tinuous spaces and implement Algorithm 3.2 to compute the N -step ε-PCIS

Q̃. First considerN = 5 and ε = 0.80. Figure 3.2(a) shows the evolution of the

set Pi in Algorithm 3.2. The color indicates the corresponding N -step invari-

ance probability p∗N,Pi(x) and the z-axes the iteration index i. The algorithm

converges in 8 steps. Figure 3.2(b) shows P8, which corresponds to theN -step

ε-PCIS Q̃ forN = 5 and ε = 0.80. Figures 3.3 and 3.4 show theN -step ε-PCISs

for N = 1, 3, ε = 0.80 and N = 5, ε = 0.70, 0.90, respectively. Note that in

all cases the probability density is concentrated in the interior of the sets. Note

also that the numerical results indicate that the sets are nonincreasing in both

N and ε, as expected from the analysis in Section 3.2.

When computing an in�nite-horizon PCIS, we choose the same bound on

64 Computation of Probabilistic Controlled Invariant Sets

Figure 3.2: Computation of N -step ε-PCIS with N = 5 and ε = 0.80 for Ex-

ample 1: (a) The sets Pi and the corresponding N -step invariance probability

in Algorithm 3.2; (b) The N -step ε-PCIS Q̃.

Figure 3.3:N -step ε-PCISs for Example 1 with ε = 0.80 but di�erent values of

N : (a) N = 1; (b) N = 3.

Examples 65

Figure 3.4: N -step ε-PCISs for Example 1 with N = 5 but di�erent values of

ε: (a) ε = 0.70; (b) ε = 0.90.

the disturbance as for the RCIS. The elements of wk are truncated i.i.d. Gaus-

sian random variables with zero mean and variance σ2 = 1/302
. Denote the

largest RCIS computed above by Qf = {x ∈ R2 | Hx ≤ h}, where the

matrix H and the vector h are with appropriate dimensions. As stated in Al-

gorithm 3.4, the one-step stochastic backward reachable set from the RCIS

associated with probability 0.80 is an in�nite-horizon ε-PCIS with ε = 0.80,

i.e.,

Q̃ = {x ∈ Q | ∃u ∈ U,Pr{H(Ax+Bu+ w) ≤ h} ≥ 0.80}.

This set can be represented as

Q̃ = {x ∈ Q | ∃u ∈ U, H(Ax+Bu) + h′ ≤ h},

where h′ is the optimal solution of the chance constrained program

min
∑
j

h′j

s.t. Pr{Hw ≤ h′} = 0.8.

This program can be numerically solved by using the methods in [115], [116].

The resulting in�nite-horizon ε-PCIS with ε = 0.80 is the gray region shown

in Figure 3.1. This region is obviously a superset of the RCIS in blue.

66 Computation of Probabilistic Controlled Invariant Sets

(a) Forward (FR) (b) Backward (BK)

(c) Turn right and forward (TRFR) (d) Turn left and forward (TLFR)

0.10
0.80

0.10 0.15
0.70

0.15

0.95

0.025

0.025

0.95

0.025

0.025

Figure 3.5: Transition probability under actions for Example 2.

3.4.2 Example 2: Motion Planning

The motion planning example in [117] is adapted to seek an in�nite-horizon

PCIS within the workspace for a mobile robot. The state of the robot is

abstracted by its cell coordinate, i.e., (px, py) ∈ {1, 2, 3, 4}2, and its four

possible orientations {E ,W,S,N}. Due to the actuation noise and drift-

ing, the robot motion is stochastic. Here, we restrict the action space to be

{FR,BK,TRFR,TLFR}, under which the possible transitions are shown in

Figure 3.5. Speci�cally, action “FR" means driving forward for 1 unit. As illus-

trated in the �gure, the probability for that is 0.80. The probability of drifting

forward to the left or the right by 1 unit is 0.10. Action “BK" can be similarly

de�ned. Action “TRFR" means turning right π/2 and driving forward for 1
unit, of which the probability is 0.95. The probability of driving forward for

1 unit without turning right is 0.025 and the probability of turning right for

π and driving forward for 1 unit is 0.025. Similarly, we can de�ne the action

“TLFR".

Examples 67

(a)

1

4

2

3

3

4

2

1
2520151050

(b)

Figure 3.6: One simulated trajectory of 30 time steps starting from (3, 1,N)
and ending at (3, 4,S) in Example 2. (a) The state trajectory with indication of

the robot orientation. (b) The trajectory of the position (px, py) evolving over

time.

Consider the partitioned workspace shown in Figure 3.6(a), where the

shadowed cells are occupied by obstacles and the red cell is an absorbing re-

gion, i.e., when the robot enters in this region it will stay there forever. We

construct an MDP with 64 states and 4 actions. The transition relation and

probability can be de�ned based on the above description. We compute the

largest in�nite-horizon ε-PCIS with ε = 0.90 within the safe state space, i.e.,

the remaining of the state space by excluding the states associated with the

obstacles.

By implementing Algorithm 3.3, the computed sets Pi and the correspond-

ing in�nite-horizon invariance probability p∗∞,Pi(x) are shown in Figure 3.7,

of which each sub�gure corresponds to one orientation in {E ,W,S,N}. The

�rst row of Figure 3.7 shows the results after the �rst iteration, where we can

see that the in�nite-horizon invariance probability p∗∞,Pi(x) at x = (4, 2, E)
and x = (4, 2,W) is less than ε = 0.90. Algorithm 3.3 converges in 2 steps

and generates the largest in�nite-horizon ε-PCIS Q̃ with ε = 0.90 shown in

Figure 3.7(e)–3.7(h). This invariant set provides a region where the admissible

action can drive the robot without colliding with the obstacles with probabil-

ity 0.90. By implementing the optimal policy obtained in Lemma 3.7, we run

a state trajectory starting from (3, 1,N) as shown in Fig. 3.6(b). We can see

that this trajectory is collision-free and �nally ends at the absorbing region

(3, 3,S).

68 Computation of Probabilistic Controlled Invariant Sets

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

in
fin

ite
-h

or
iz

on
 in

va
ria

nc
e

pr
ob

ab
ili

ty

Figure 3.7: The setsPi and the corresponding in�nite-horizon invariance prob-

ability in Example 2 when computing the largest in�nite-horizon ε-PCIS with

ε = 0.90 by Algorithm 3.3.

3.5 Summary

We investigated the extension of set invariance in a stochastic sense for control

systems. We proposed �nite- and in�nite-horizon ε-PCISs, and provided some

fundamental properties. We designed iterative algorithms to compute the PCIS

within a given set. For systems with discrete state and control spaces, �nite-

and in�nite-horizon ε-PCISs can be computed by solving an LP and an MILP at

each iteration, respectively. We proved that the iterative algorithms were com-

putationally tractable and can be terminated in a �nite number of steps. For

systems with continuous state and control spaces, we established the approx-

imation of stochastic control systems and proved its convergence when com-

puting �nite-horizon ε-PCIS. In addition, thanks to the su�cient conditions for

the existence of in�nite-horizon ε-PCIS, we can compute an in�nite-horizon

ε-PCIS by the stochastic backward reachable set from the RCIS contained in

it. Numerical examples were given to illustrate the theoretical results.

Chapter 4

Computation of Invariant Covers
Both stochastic invariance and robust invariance can express the safety prop-

erty for control systems. In the previous chapter, we studied the stochastic

invariance. This chapter will revisit the robust invariance for networked con-

trolled systems. We consider some fundamental problems concerning exis-

tence and computation of an invariant cover for uncertain discrete-time lin-

ear control systems subject to state and control constraints. An invariant cover

quanti�es the information needed by a controller to enforce a robust invari-

ance speci�cation. We develop necessary and su�cient conditions on the exis-

tence of an invariant cover for a polytopic set of states. The conditions can be

checked by solving a set of linear programs (LPs), one for each extreme point

of the state set. Based on these conditions, we give upper and lower bounds

on the minimal cardinality of the invariant cover, and design an iterative algo-

rithm with �nite-time convergence to compute an invariant cover. We further

show in two examples how to use an invariant cover in the design of a coder–

controller pair that ensures invariance of a given set for a networked control

system with a �nite data-rate communication.

The remainder of the chapter is organized as follows. Section 4.1 gives

the introduction. The problem statement is given in Section 4.2. Section 4.3

addresses the existence of an invariant cover and Section 4.4 gives bounds on

its minimal cardinality. Section 4.5 provides an algorithm for computing an

invariant cover. The examples in Section 4.6 detail how to use the invariant

cover to design coder–controllers for networked control systems. Section 4.7

concludes the chapter.

69

70 Computation of Invariant Covers

Finite Data Rate Communication Network

Sensor/CoderController
u

[x]

Plant

[x]

x

Figure 4.1: Coder-controller feedback loop, where x is the measured state, [x]
is the encoded state, and u is the control.

4.1 Introduction

In a networked control system a plant is connected with a controller through a

communication network [29]–[31], as shown in Figure 4.1. Networked control

systems are in widespread use in a variety of application areas, for example,

smart buildings [118] and intelligent transportation [119]. Since the data-rate

of a communication channel is usually limited, a central question is how much

information is needed by the controller to enforce a given speci�cation.

Feedback control under limited data-rate has been widely studied [120]–

[122]. One well-known result is that the critical data-rate necessary for sta-

bilization of linear systems depends on the unstable poles of their open-loop

system [123]. In [124], the notion of topological feedback entropy, which is an

extension of topological entropy [125], [126], has been used to quantify the

information necessary for stabilization of nonlinear control systems.

Invariance is one of the most fundamental concepts in systems and con-

trol [46], [47]. In the context of networked control systems, the minimal

data-rate necessary for set invariance under feedback control was studied

in [124], [127]. It was shown in [124] that a �nite topological feedback en-

tropy is necessary to achieve invariance. Later, the notion of invariance en-

tropy was proposed for continuous-time deterministic control systems based

on spanning sets [127]. Equivalence between these two notions was estab-

lished for discrete-time control systems under the assumption of strong in-

variance in [128].

The notion of invariance feedback entropy was �rst proposed in [32] for

generalizing the notion of invariance entropy [127] to uncertain discrete-time

control systems and was further explored in [33], [34]. It was shown in [34]

Problem Formulation 71

that the invariance feedback entropy of a given set of states is �nite if and only

if an invariant cover exists for this set. An invariant cover is a pair consisting

of a �nite cover of the given set and a map from this cover to the control set

(see De�nition 4.1). We remark that the invariant cover plays an important role

in designing a coder–controller which achieves a �nite data-rate and ensures

invariance.

This chapter establishes fundamental results on invariant cover for uncer-

tain discrete-time linear control systems. The main contributions are summa-

rized as follows:

(C4.1) We develop two necessary and su�cient conditions for the existence of

an invariant cover for a given polytopic set (Theorems 4.1 and 4.2). They

suggest a computationally tractable method of determining whether an

invariant cover exists through LPs.

(C4.2) Based on these conditions, we give upper and lower bounds on the min-

imal cardinality of an invariant cover (Theorem 4.3). As a complement

to [34], this upper bound is valid for the invariance feedback entropy

and the minimal data-rate necessary for invariance.

(C4.3) We provide an iterative algorithm to compute an invariant cover (Al-

gorithm 4.1) and prove its �nite-time convergence (Theorem 4.4). The

performance of the algorithm is illustrated in two examples that use an

invariant cover to design a static coder–controller pair for a networked

control system with a �nite data-rate to enforce the invariance of a given

set.

4.2 Problem Formulation

Consider a discrete-time linear system in the form of

xk+1 = Axk +Buk + wk, (4.1)

where xk ∈ X ⊆ Rnx is the state, uk ∈ U ⊂ Rnu the control input and

wk ∈W ⊂ Rnx the disturbance input, andA,B are matrices with appropriate

dimensions. The state and control sets X and U and the disturbance set W are

each assumed to be convex polyhedral sets:

X = {x ∈ Rnx | Fxx ≤ fx},

72 Computation of Invariant Covers

U = {u ∈ Rnu | Fuu ≤ fu},
W = {w ∈ Rnx | Fww ≤ fw},

where Fx, Fu, Fw, and fx, fu, fw are matrices and vectors with appropriate

dimensions. We assume that U and W are compact sets and de�ne Q as a

compact subset of X. We further assume that Q is full-dimensional. If this is

not the case, i.e., if Q lies in an a�ne subspace of Rnx , then we assume that

Q ⊆ S1 × S2 and Q ∩ S1 = {x0} for some x0 ∈ Rnx , and we apply the

following arguments to the subspace S2 and the projection of Q (assumed

full-dimensional) onto S2.

A cover of a setQ is a collection of sets whose union includesQ as a subset.

Next we de�ne an invariant cover of Q ⊆ X, which is a pair consisting of a

�nite cover of Q and a map from this cover to the control set U. Each state set

from the �nite cover can be driven to the set Q by means of a single control

input generated by the map.

De�nition 4.1. [34] A coverA of a nonempty setQ and a functionG : A → U
is an invariant cover (A, G) of the system (4.1) and Q if A is �nite and, for all
Xic ∈ A, AXic ⊕ {BG(Xic)} ⊆ Q	W.

Remark 4.1. In the context of networked control systems, an invariant cover
is used to de�ne the invariance feedback entropy in [34]. Note that an invariant
cover (A, G) immediately provides a static coder–controller: for any x ∈ Q, the
coder transmits one of the sets Xic ∈ A that contains x to the controller and the
controller implements G(Xic) to guarantee invariance (Figure 4.1). It is shown
in [34] that the data-rate of the static coder–controller under the invariant cover
(A, G) is log2 |A| bits per time unit.

Example 4.1. Consider the linear scalar system

xk+1 = 2xk + uk + wk,

with X = R, U = [−1, 1], and W = [−0.4, 0.4]. Let Q = [−0.6, 0.6]. It is
easy to verify that Q is an RCIS. Let Xic

1 = [−0.6,−0.4], Xic
2 = [−0.4,−0.2],

Xic
3 = [−0.2, 0], Xic

4 = [0, 0.2], Xic
5 = [0.2, 0.4], and Xic

6 = [0.4, 0.6]. De�ne
A = {Xic

i }6i=1 and the map G : A → U with G(Xic
1) = 1, G(Xic

2) = 0.6,
G(Xic

3) = 0.2, G(Xic
4) = −0.2, G(Xic

5) = −0.6, and G(Xic
6) = −1. We can

verify that (A, G) is an invariant cover for this system and the set Q. The data-
rate of the static coder–controller de�ned by this invariant cover (A, G) is log2 6
bits per time unit.

Existence Conditions 73

Recall the robust controlled invariant set (RCIS) in De�nition 2.21. An RCIS

is a set that can be made invariant by a state feedback control law under any

admissible disturbance. The computation of such sets is widely studied in the

literature, e.g., [27]. From De�nition 4.1 it is obvious that Q must be an RCIS

in order that there exists an invariant cover (A, G) of the system (4.1) and Q.

In this chapter, we �rstly consider the existence of an invariant cover.

Problem 4.1. Consider the system (4.1) and a set Q. Find necessary and su�-
cient conditions such that there exists an invariant cover (A, G) of the system
(4.1) and the set Q.

From Remark 4.1 it follows that the data-rate of the (static) coder–

controller decreases as the cardinality of the invariant cover decreases. We

de�ne the minimal cardinality of the invariant cover as follows:

|A|∗ = inf |A| s.t. (A, G) is an invariant

cover for (4.1) and Q

If an invariant cover is known to exist, we consider the following problem.

Problem 4.2. If an invariant cover (A, G) exists for the system (4.1) and a set
Q, provide upper and lower bounds on the minimal cardinality of the invariant
cover.

We further consider the computation problem.

Problem 4.3. Design an algorithm to compute an invariant cover (A, G) for
the system (4.1) and a set Q whenever such invariant cover exists.

4.3 Existence Conditions

This section focuses on Problem 4.1. The sets Q and Q 	W are assumed to

have the H-representations

Q = {x ∈ Rnx | Qx ≤ q},
Q	W = {x ∈ Rnx | Px ≤ p},

where q ∈ Rnq , p ∈ Rnp and Q, P are matrices with appropriate dimen-

sions. We assume that the rows of Q are normalized so that ‖[Q]i‖ = 1,

∀i ∈ N[1,nq], and that q > 0 so that the origin lies in the interior of Q. For

74 Computation of Invariant Covers

any full-dimensional Q, this can be ensured by rede�ning the state and dis-

turbance input of (4.1) as xk−x0
and wk−x0 +Ax0

, respectively, for any x0

in the interior of Q.

For x ∈ Q, we say that a control u is feasible for x if it drives x to Q for all

w ∈W. We denote by Γ ⊆ Rnx+nu
the set of all (x, u) such that u is feasible

for x. The set Γ can be written as a compact polytopic set:

Γ =
{

(x, u) ∈ Rnx × Rnu | Qx ≤ q︸ ︷︷ ︸
x∈Q

, Fuu ≤ fu︸ ︷︷ ︸
u∈U

, PAx+ PBu ≤ p︸ ︷︷ ︸
Ax+Bu∈Q	W

}
.

(4.2)

De�ne the map Π : U→ 2R
nx

as

Π(u) = {x ∈ Rnx | (x, u) ∈ Γ}. (4.3)

For convenience we set Π(u) = ∅ if u /∈ U. For given u ∈ U, the set Π(u) has

the property that any state x ∈ Π(u) is steered into Q in a single time-step.

Lemma 4.1. For any given u ∈ U, if Π(u) 6= ∅, then
AΠ(u)⊕ {Bu} ⊆ Q	W.

Proof. If Π(u) 6= ∅, then (4.2)–(4.3) imply that Ax + Bu ⊆ Q 	W for all

x ∈ Π(u), i.e., AΠ(u)⊕ {Bu} ⊆ Q	W.

The following lemma gives a necessary and su�cient condition for the

existence of an invariant cover.

Lemma 4.2. An invariant cover (A, G) of the system (4.1) and the set Q exists
if and only if there exist a �nite numberN ∈ N and a set {ui ∈ U}Ni=1 such that

N⋃
i=1

Π(ui) = Q. (4.4)

Proof. The su�ciency directly follows from De�nition 4.1 and Lemma 4.1. We

prove the necessity as follows. Let (A, G) be an invariant cover for (4.1) and

Q, whereA = {Xic
i }Nic

i=1 and for each Xic
i , there exists uic

i = G(Xic
i) ∈ U such

that AXic
i ⊕Buic

i ⊆ Q	W. Here Nic is the cardinality of A.

From the de�nition of Π(u) in (4.3), it follows that any set Y ⊆ Q such

that AY⊕ {Bu} ⊆ Q	W for some u ∈ U is a subset of Π(u). This implies

that, ∀i ∈ N[1,Nic], Xic
i ⊆ Π(uic

i) ⊆ Q, and since ∪Nic
i=1Xic

i = Q, it follows that

{uic
i }Nic

i=1 satis�es ∪Nic
i=1Π(uic

i) = Q.

Existence Conditions 75

Lemma 4.2 is important to prove the following result.

Theorem 4.1. An invariant cover (A, G) of the system (4.1) and the setQ exists
if and only if for all x ∈ Q, there exists a control input u ∈ U such that

Br(x) ∩Q ⊆ Π(u) for some r > 0.

Proof. We �rst show that the existence of an invariant cover for (4.1) and Q
implies that for all x ∈ Q there exists u ∈ U and r > 0 such that Br(x)∩Q ⊆
Π(u). For given x ∈ Q, u ∈ U and r > 0, let

Θ(u) = {z | PAz + PBu ≤ p},
Pr(x) = {z | PA(z − x) ≤ r1}.

Furthermore, suppose that the rows of PA are normalised with ‖[PA]i‖ = 1,

∀i ∈ N[1,np] (this can be assumed without loss of generality by appropriately

scaling P and p). Then the nx-dimensional ball Br(x) is a subset of Θ(u) if

and only if Pr(x) is a subset of Θ(u) (since the polytopes Θ(u) and Pr(x)
share the same set of face normals and since each face of Pr(x) is contained

in a supporting hyperplane of Br(x)). Moreover, from Π(u) = Θ(u) ∩ Q it

follows that Br(x) ∩Q ⊆ Π(u) if Pr(x) ∩Q ⊆ Π(u). But Pr(x) ∩Q ⊆ Π(u)
requires that{

z | PA(z − x) ≤ r1
Qz ≤ q

}
⊆
{
z | PAz + PBu ≤ p

Qz ≤ q

}
,

and by linear programming duality this is equivalent to the condition that

there exists a matrix S with non-negative elements such that

S

[
PA
Q

]
=

[
PA
Q

]
, (4.5)

S

[
r1 + PAx

q

]
≤
[
p− PBu

q

]
. (4.6)

Replacing q on the left side of (4.6) with Qx + q − Qx and using (4.5), we

re-write (4.6) as [
PAx+ PBu− p

Qx− q

]
≤ S

[
−r1
Qx− q

]
. (4.7)

76 Computation of Invariant Covers

Suppose that an invariant cover exists for (1) and let

ε = max
i∈N[1,np]

max
x∈Q

min
u∈U

[PA]ix+ [PB]iu− [p]i.

Then ε ≤ 0 by Lemma 4.2. If ε < 0, then for all x ∈ Q there necessarily exists

u ∈ U so that S = I and r = −ε > 0 are feasible for (4.5), (4.7) and S ≥ 0.

For the case in which ε = 0, let I be the set of indices i ∈ N[1,np] such that

[PA]ix
∗
i + [PB]iu

∗
i − [p]i = 0 for some x∗i ∈ Q and u∗i ∈ U.

Then for all x ∈ Q there exists u ∈ U so that

[PA]ix+ [PB]iu− [p]i ≤ ε′ for all i ∈ N[1,np] \ I and for some ε′ < 0.

Furthermore, for each i ∈ I , x∗i and u∗i are the solutions of the LPs

x∗i = arg max
x∈Q

[PA]ix, u∗i = arg min
u∈U

[PB]iu,

and it follows from LP duality that there exists an index set Ji ⊆ N[1,nq] and

scalars λj ≥ 0 such that

[PA]i =
∑
j∈Ji

λj [Q]j

and [Q]jx
∗
i − [q]j = 0 for all j ∈ Ji. In this case therefore S =

[
S1 S2
0 I

]
, where

S1 is diagonal and

[S1]ii =

{
0 i ∈ I,
1 i /∈ I

[S2]ij =

{
λj i ∈ I and j ∈ Ji,
0 i /∈ I

satis�es S ≥ 0 and (4.5), and moreover (4.7) holds for all x ∈ Q with r =
−ε′ > 0 and some u ∈ U.

To complete the proof we show that an invariant cover necessarily exists

for (4.1) and Q if, for all x ∈ Q there exists u ∈ U such that Br(x)∩Q ⊆ Π(u)
for some r > 0. In this case it is possible to construct a set {x∗i }Ni=1 for some

�nite N (where N = O(r−nx)) that satis�es:

(i) ∪Ni=1Br(x∗i) ⊇ Q,

(ii) for all i ∈ N[1,N], x
∗
i ∈ Q and Π(u∗i) ⊇ Br(x∗i) ∩Q for some u∗i ∈ U.

Existence Conditions 77

x

u

x

u
0.8

−0.8

0.4

−0.4

0.6

0.4

0.2

−0.6

−0.4

−0.2
−0.2

0.6 1
−1 −0.6

0.2

(a) (b)

Γ
Γ

Figure 4.2: The set Γ for two di�erent RCISs: (a) Q = [−0.6, 0.6]; (b) Q′ =
[−0.4, 0.4].

Therefore an invariant cover exists by Lemma 4.2 and |A|∗ ≤ N .

We note that there is no obvious computationally tractable method of

checking the necessary and su�cient conditions of Lemma 4.2 and Theo-

rem 4.1.

4.3.1 Optimization-based Existence Condition

This subsection provides computationally tractable necessary and su�cient

conditions for the existence of an invariant cover for a given set Q. To avoid

the computational di�culties of checking the conditions of Theorem 4.1 based

onBr(x)∩Q, we consider instead the set X̄ (x, α) de�ned for x ∈ Q,α ∈ [0, 1]
by

X̄ (x, α) =
{
z ∈ Rnx | Q

(
z − (1− α)x

)
≤ αq

}
.

This set can be equivalently expressed as

X̄ (x, α) = {(1− α)x} ⊕ αQ, (4.8)

so we therefore have x ∈ X̄ (x, α) ⊆ Q, for all x ∈ Q and α ∈ [0, 1]. It also

follows from (4.8) that X̄ (x, α) is monotonically non-decreasing with α, i.e.,

X̄ (x, α1) ⊆ X̄ (x, α2), ∀x ∈ Q and 0 ≤ α1 ≤ α2 ≤ 1.

The results of this section rely on the following two lemmas, which are

derived from the convexity and linearity of the conditions de�ning Π(u) and

X̄ (x, α).

78 Computation of Invariant Covers

Lemma 4.3. Let u =
∑N

i=1 λiu
∗
i , where u

∗
i ∈ U, Π(u∗i) 6= ∅ and λi ≥ 0 for all

i ∈ N[1,N] with
∑N

i=1 λi = 1. Then

N⊕
i=1

λiΠ(u∗i) ⊆ Π(u). (4.9)

Proof. The convexity of U implies that u =
∑N

i=1 λiu
∗
i ∈ U, while the con-

vexity of Q and Q 	 W implies that x ∈ Q and Ax + Bu ∈ Q 	 W if

x =
∑N

i=1 λix
∗
i , for any {x∗i }Ni=1 such that x∗i ∈ Π(u∗i), ∀i ∈ N[1,N]. We

therefore have x ∈ Π(u) and hence (4.9) holds.

Lemma 4.4. Let x =
∑N

i=1 λix
∗
i , where x

∗
i ∈ Q and λi ≥ 0 for all i ∈ N[1,N]

with
∑N

i=1 λi = 1, and let αi ∈ [0, 1] for all i ∈ N[1,N]. Then

X̄
(
x, min

i∈N[1,N]

αi
)
⊆

N⊕
i=1

λiX̄ (x∗i , αi) ⊆ X̄
(
x, max

i∈N[1,N]

αi
)
. (4.10)

Proof. Given the assumptions on x∗i , λi and αi, we have

X̄ (x∗i , αi) ⊇ X̄ (x∗i , min
i∈N[1,N]

αi), ∀i ∈ N[1,N],

and hence

N⊕
i=1

λiX̄ (x∗i , αi) ⊇
N⊕
i=1

λiX̄
(
x∗i , min

i∈N[1,N]

αi
)

= {(1− min
i∈N[1,N]

αi)x} ⊕ min
i∈N[1,N]

αiQ

= X̄ (x, min
i∈N[1,N]

αi).

This proves the �rst subset relation in (4.10); the second can be proved using

a similar argument.

We de�ne the critical vertices of Γ as follows.

De�nition 4.2. A vertex (x, u) of Γ is said to be a critical vertex of Γ if

(i) x ∈ vert(Q),

Existence Conditions 79

(ii) X̄ (x, α) ⊆ Π(u) for some α ∈ (0, 1].

The main result of this section (Theorem 4.2) states that an invariant cover

(A, G) exists for the system (4.1) and the setQ if and only if every x ∈ vert(Q)
corresponds to a critical vertex of Γ. We prove this using Lemmas 4.3, 4.4, and

the properties of critical vertices to de�ne for each x ∈ Q a control u such that

X̄ (x, α) ⊆ Π(u) for some α > 0. However, as x approaches the boundary of

Q, x also approaches the boundary of X̄ (x, α). To ensure the existence of

r > 0 such that Br(x)∩Q ⊆ Π(u) for all x ∈ Q and thus ful�l the conditions

of Theorem 4.1, we therefore consider the set X̄ (yσ(x), α). For σ ∈ (0, 1) and

x ∈ Q \ (1− σ)Q, yσ(x) is de�ned as a point in the boundary of Q given by

the solution of an LP

yσ(x) = arg max
y∈Q

min
i/∈Jσ(x)

σ[q]i − [Q]i
(
x− (1− σ)y

)
s.t. [Q]jy = [q]j , ∀j ∈ Jσ(x)

(4.11)

with

Jσ(x) = {j ∈ N[1,nq] | [Q]jx > (1− σ)[q]j}.
For x ∈ (1− σ)Q, we de�ne yσ(x) by

yσ(x) = x. (4.12)

An upper limit on σ is provided by the following result.

Lemma 4.5. Let σ ∈ (0, σ̄], where

σ̄ =
mink∈N[1,nq]

minx∈vertk(Q) [q]k − [Q]kx

maxk∈N[1,nq]
maxx∈Q [q]k − [Q]kx

,

then

(i) yσ(x) exists for all x ∈ Q;

(ii) Br(x) ∩Q ⊆ X̄ (yσ(x), σ) if r = σ2 minj∈N[1,nq]
[q]j .

Proof. To prove the assertion in (i) we show by contradiction that (4.11) has a

solution for all x ∈ Q\(1−σ)Q if σ ≤ σ̄. For σ ∈ (0, 1) and x ∈ Q\(1−σ)Q,

let

Jσ(x) = {j ∈ N[1,nq] : [Q]jx > (1− σ)[q]j},

80 Computation of Invariant Covers

and de�ne σj for each j ∈ N[1,nq]

σj =

{
([q]j − [Q]jx)/[q]j if j ∈ Jσ(x)

σ otherwise

so that σj ∈ [0, σ), ∀j ∈ Jσ(x). Also de�ne Qσ(x) ⊆ σQ as the set

Qσ(x) =
{
x ∈ Rnx | [Q]jx ≤ σj [q]j , ∀j ∈ N[1,nq]

}
,

so that for each j ∈ Jσ(x) we have [Q]jy = [q]j where y = x + z ∈ Q and

z ∈ vert(Qσ(x)).

Suppose that (i) is false and (4.11) is primal infeasible. Then there exists a

pair of indices j1, j2 ∈ Jσ(x) such that the hyperplanes {y | [Q]j1y = [q]j1}
and {y | [Q]j2y = [q]j2} have no point of intersection in Q. But [Q]jiyi = [q]ji
where yi = x+ zi, zi ∈ vert(Qσ(x)), i = 1, 2, and hence

[q]j2 − [Q]j2x = [q]j2 − [Q]j2(y1 − z1)

≥ min
x∈vertj2 (Q)

{
[q]j2 − [Q]j2x

}
+ min
z∈Qσ(x)

[Q]j2z

≥ min
k

min
x∈vertk(Q)

{
[q]j2 − [Q]j2x

}
+ σmin

x∈Q
[Q]j2x,

where the �rst inequality follows from [Q]j2y1 < [q]j2 and z1 ∈ Qσ(x), and

the second inequality from Qσ(x) ⊆ σQ. But [q]j2 − [Q]j2x = σ2[q]j2 <
σ[q]j2 , which implies

σ[q]j2 > min
k

min
x∈vertk(Q)

[q]j2 − [Q]j2x+ σmin
x∈Q

[Q]j2x,

and hence σ must be greater than σ̄. Therefore, if σ ≤ σ̄, then y ∈ Q and

z ∈ vert(Qσ(x)) must exist such that y = x+z and [Q]jy = [q]j ∀j ∈ Jσ(x),

and it follows that (4.11) has a solution for all x ∈ Q \ (1− σ)Q.

To prove the assertion in (ii) we show that Br(x) ∩ Q ⊆ X̄ (yσ(x), σ)
with r = σ2 minj [q]j . First consider the case in which x ∈ (1 − σ)Q. Then

yσ(x) = x so X̄ (yσ(x), σ) = X̄ (x, σ) and Br(x) ⊆ X̄ (x, σ) if and only if

{z | Q(z − x) ≤ r1} ⊆ {z | Q(z − x) ≤ σ(q −Qx)}.

The condition holds whenever r ≤ minj∈N[1,nq]
σ([q]j − [Q]jx) but x ∈

(1 − σ)Q implies q − Qx ≥ σq, and it follows that Br(x) ⊆ X̄ (x, σ) if

r = σ2 minj∈N[1,nq]
[q]j .

Existence Conditions 81

Next we determine r so that Br(x) ∩ Q ⊆ X̄ (yσ(x), σ) for the case that

x ∈ Q \ (1− σ)Q. The de�nition of yσ(x) implies [Q]jyσ(x) = [q]j for all

j ∈ Jσ(x), and since

Br(x)∩Q ⊆
{
z | Q(z−yσ(x)) ≤ min{r1+Q(x−yσ(x)), q−Qyσ(x)}

}
,

we have Br(x) ∩Q ⊆ X̄ (yσ(x), σ) if

r + [Q]j(x− yσ(x)) ≤ σ([q]j − [Q]jyσ(x)) for all j /∈ Jσ(x),

or equivalently if

r ≤ min
j /∈Jσ(x)

σ[q]j − [Q]j
(
x− (1− σ)yσ(x)

)
.

But (4.11) selects yσ(x) so that the right hand side of this expression is min-

imized for some x ∈ vert(Q) (since this implies that yσ(x) = x ∈ vert(Q)),

and we therefore have

min
j /∈Jσ(x)

σ[q]j − [Q]j
(
x− (1− σ)yσ(x)

)
≥ σ min

j /∈Jσ(x)
[q]j − [Q]jx

≥ σ2 min
k

[q]k,

where the �rst inequality is obtained by setting yσ(x) = x and the second

follows from [Q]jx ≤ (1 − σ)[q]j for all j /∈ Jσ(x). Therefore Br(x) ∩ Q ⊆
X̄ (yσ(x), σ) if r = σ2 minj∈N[1,nq]

[q]j .

Theorem 4.2. There exists an invariant cover (A, G) of the system (4.1) and
the set Q if and only if each vertex x of Q corresponds to a critical vertex (x, u)
of Γ.

Proof. Every vertex of Q corresponds to a critical vertex of Γ if and only if for

each x ∈ vert(Q) there existsα ∈ (0, 1] and u ∈ U such that X̄ (x, α) ⊆ Π(u).

From (4.8) it is obvious that α > 0 is necessary for Br(x) ∩Q ⊆ X̄ (x, α) for

some r > 0.

Therefore Br(x) ∩Q ⊆ X̄ (x, α) ⊆ Π(u) for some r > 0 and u ∈ U only

if every vertex of Q corresponds to a critical vertex of Γ, and it follows from

Theorem 4.1 that this is a necessary condition for existence of an invariant

cover.

To prove su�ciency, note that for all x ∈ Q, yσ(x) can be expressed

yσ(x) =
∑N

i=1 λix
∗
i , with {x∗i }Ni=1 = vert(Q), λi ≥ 0 for all i ∈ N[1,N] and

82 Computation of Invariant Covers

∑N
i=1 λi = 1. If every vertex of Q corresponds to a critical vertex of Γ, then

αi ∈ (0, 1] and u∗i ∈ U exist for all i ∈ N[1,N] so that X̄ (x∗i , αi) ⊆ Π(u∗i).

Using Lemmas 4.3 and 4.4 we therefore obtain

X̄
(
yσ(x), min

i∈N[1,N]

αi
)
⊆

N⊕
i=1

λiX̄ (x∗i , αi) ⊆
N⊕
i=1

λiΠ(u∗i) ⊆ Π(u)

where u =
∑N

i=1 λiu
∗
i ∈ U. Furthermore, Lemma 4.5 implies that Br(x) ∩

Q ⊆ X̄ (yσ(x), α) with r = σ2 mink[q]k if σ = min{α, σ̄}. Therefore

mini∈N[1,N]
αi > 0 ensures that r > 0 and hence an invariant cover must

exist by Theorem 4.1.

Theorem 4.2 shows that it can be determined whether or not an invariant

cover exists by checking if each vertex of Q has a corresponding critical vertex

of Γ. This is the basis of the computational procedure described in Section 4.5.

Example 4.2. The set Γ is shown in Figure 4.2 (a) for the system in Exam-
ple 4.1 with Q = [−0.6, 0.6] being an RCIS. It can be seen that the vertices
x = −0.6 and x = 0.6 ofQ correspond respectively to critical vertices (−0.6, 1)
and (0.6,−1) of Γ. In particular, it is easy to verify that α = 1/6 gives
X̄ (−0.6, 1/6) = Π(1) = [−0.6,−0.4] and X̄ (0.6, 1/6) = Π(−1) = [0.4, 0.6].
Theorem 4.2 therefore implies that an invariant cover ofQ exists, whichwas given
in Example 4.1 and is shown in Figure 4.2 (a).

Consider the set Q′ = [−0.4, 0.4], which is also an RCIS. The corresponding
set Γ for Q′ is shown in Figure 4.2 (b). In this case the set Γ is a line segment.
Therefore the vertices of Q′ have no corresponding critical vertex of Γ. In partic-
ular, there is no �nite set of control inputs such that (4.4) holds and thus there
does not exist an invariant cover for this scalar system and the set Q′.

It can be determined whether or not a given vertex of Q corresponds to a

critical vertex of Γ by solving an LP, as we show next. Given the vertices of

Q, this suggests a computationally tractable method for checking whether or

not an invariant cover exists: solve the LP for each vertex x ∈ vert(Q).

Lemma 4.6. Let α∗(x) be the optimal value of the LP

α∗(x) = max
α∈[0,1], S≥0, u

α

s.t. (1− α)PAx+ Sq + PBu ≤ p
Fuu ≤ fu
SQ = αPA

(4.13)

Cardinality Bounds 83

and u∗(x) be the solution set for u. Then (x, u) is a critical vertex of Γ if and
only if α∗(x) > 0, x ∈ vert(Q), and u ∈ u∗(x).

Proof. For given x ∈ Q, (4.13) determines the maximum value of α ∈ [0, 1]
such that X̄ (x, α) ⊆ Π(u) for some u ∈ U. Speci�cally, since X̄ (x, α) ⊆ Q for

all x ∈ Q and α ∈ [0, 1], we have X̄ (x, α) ⊆ Π(u) if and only if there exists

u ∈ U such thatAX̄ (x, α)⊕{Bu} ⊆ Q	W. By LP duality, this set inclusion

condition holds if and only if a non-negative matrix R exists satisfying{
RQ = PA

(1− α)PAx+ αRq + PBu ≤ p.
The variable transformation S = αR results in a set of constraints that are

linear in u, α and S. The problem of maximizing α subject to X̄ (x, α) ⊆ Π(u)
and u ∈ U can therefore be expressed as the LP (4.13).

4.4 Cardinality Bounds

This section develops an approach based on the existence condition of Theo-

rem 4.2 to address Problem 4.2. We derive upper and lower bounds on |A|∗,
the minimal cardinality of an invariant cover (A, G) of the system (4.1) and

the set Q. De�ne

v∗ = max
u∈Φ

vol
(
Π(u)

)
,

where Φ = {u ∈ U | ∃x, (x, u) ∈ Γ} and vol(·) denotes the volume. Let α∗

and ᾱ∗ denote the optimal values

α∗ = min
x∈vert(Q)

max
α∈[0,1], S≥0, u

α

s.t. (1− α)PAx+ Sq + PBu ≤ p
Fuu ≤ fu
SQ = αPA

(4.14)

and

ᾱ∗ = max
α∈[0,1],S≥0,y,u

α

s.t. Qy ≤ (1− α)q

PAy + Sq + PBu ≤ p
Fuu ≤ fu
SQ = αPA.

(4.15)

84 Computation of Invariant Covers

Remark 4.2. In (4.15) ᾱ∗ is the solution of a single LP, whereas α∗ in (4.14) is
computed by solving one LP for each vertex of Q. In particular,

α∗ = min
x∈vert(Q)

α∗(x),

where α∗(x) is given by (4.13).

Before giving the bounds on |A|∗, we need the following lemma.

Lemma 4.7. Let δ ⊆ Q and σ = min{α∗, σ̄}. Then,

(i) x⊕ σδ ⊆ X̄
(
(1− σ)−1x, σ

)
for x ∈ (1− σ)Q;

(ii)
(
{x} ⊕ σ2δ

)
∩Q ⊆ X̄ (yσ(x), σ) for x ∈ Q \ (1− σ)Q,

where yσ(x) is de�ned in (4.11).

Proof. The assertion in (i) directly follows from the de�nition of the set

X̄ (x, σ). For given x ∈ (1− σ)Q, x⊕ σδ ⊆ x⊕ σQ = X̄
(
(1− σ)−1x, σ

)
.

The assertion in (ii) can be demonstrated by showing that

(
{x}⊕σ2Q

)
∩

Q ⊆ X̄
(
yσ(x), σ

)
using an argument similar to the proof of Lemma 4.5, as-

sertion (ii). For σ̂ > 0 we have(
{x}⊕ σ̂Q

)
∩Q =

{
z | [Q]jz ≤ min{[q]j , σ̂[q]j+[Q]jx}, ∀j ∈ N[1,nq]

}
.

Therefore(
{x} ⊕ σ̂Q

)
∩Q ⊆ X̄

(
yσ(x), σ

)
=
{
z | Qz ≤ σq + (1− σ)Qyσ(x)

}
if and only if for all j ∈ N[1,nq],

σ[q]j + (1− σ)[Q]jyσ(x) ≥ min{[q]j , σ̂[q]j + [Q]jx}.

Recall that Jσ(x) = {j ∈ N[1,nq] | [Q]jx > (1− σ)[q]j} and [Q]jyσ(x) = [q]j
for j ∈ Jσ(x), from which it follows that for all j ∈ Jσ(x),

σ[q]j + (1− σ)[Q]jyσ(x) = [q]j ≥ min{[q]j , σ̂[q]j + [Q]jx}.

For j /∈ Jσ(x), σ[q]j − [Q]j
(
x − (1 − σ)yσ(x)

)
is minimized over x ∈ Q \

(1− σ)Q when x = yσ(x), and we therefore have

σ[q]j − [Q]j
(
x− (1− σ)yσ(x)

)
= σ([q]j − [Q]jx) ≥ σ2[q]j

Cardinality Bounds 85

and

σ[q]j + (1− σ)[Q]jyσ(x) ≥ σ2[q]j + [Q]jx

≥ min{[q]j , σ2[q]j + [Q]jx}, ∀j 6∈ Jσ(x).

It follows that

(
{x}⊕σ̂δ

)
∩Q ⊆

(
{x}⊕σ̂Q

)
∩Q ⊆ X̄

(
yσ(x), σ

)
if σ̂ = σ2

.

Theorem 4.3. Let δ = [d1, d1]× · · · × [dnx , dnx] and ∆ = [D1, D1]× · · · ×
[Dnx , Dnx] be inner- and outer-bounding hyperrectangles such that δ ⊆ Q ⊆ ∆,
and let σ = min{α∗, σ̄}. Then |A|∗ satis�es

(a).

⌈
vol(Q)

v∗

⌉
≤ |A|∗ ≤

nx∏
i=1

⌈
Di −Di

(di − di)σ2

⌉
(4.16)

(b). |A|∗ = 1 if and only if ᾱ∗ = 1.

Proof. We �rst consider the statement in (a). The lower bound on |A|∗ in (4.16)

follows directly from the volumetric scaling of the maximal set Π(u) relative

to Q and the de�nition of v∗ as maxu∈Φ vol(Π(u)). To prove the upper bound

on |A|∗ in (4.16), we note that by the proof of Theorem 4.2 and Lemma 4.7,

for all x ∈ Q,

(
{x} ⊕ σ2δ

)
∩ Q ⊆ X̄ (yσ(x), σ) ⊆ Π(u) for some u ∈ U,

where yσ(x) is de�ned in (4.11)–(4.12). The upper bound on |A∗| in (4.16) then

follows from an upper bound on the cardinality of a cover of Q of the form

∪Ni=1

(
{xi}⊕σ2δ

)
, which can be obtained from the ratios of the corresponding

sides of the hyperrectangles ∆ (which contains Q) and σ2δ.

The upper bound on |A|∗ in (4.16) then follows from the ratios of the corre-

sponding sides of the hyperrectangles ∆ (which containsQ) and {(1−α∗)x}⊕
α∗δ (which is contained in X̄ (x, α∗)).

To prove the statement in (b), we note that the value of ᾱ∗ in (4.15) is the

maximum, as x varies overQ, ofα ∈ [0, 1] such that X̄ (x, α) ⊆ Π(u) for some

u ∈ U. This follows from Lemma 4.6, which implies that ᾱ∗ = maxx∈Q α∗(x).

Furthermore from (4.8) we have X̄ (x, α) = Q if and only if α = 1, and it

follows that A = Q (and hence |A|∗ = 1) if and only if ᾱ∗ = 1. In this case

G(Q) is simply equal to u∗, the optimal value of u in (4.14).

Remark 4.3. We note that [34] only provides a lower bound on the invariance
feedback entropy and the minimal data-rate necessary for invariance. As a com-
plement, the upper bound in (4.16) on the minimal cardinality of an invariant
cover also provides a bound on these quantities in the light of Lemma 3 of [34].

86 Computation of Invariant Covers

Note that this upper bound is likely to be loose due to the appearance of σ2 in the
denominator, and this is observed in numerical examples. In addition, the lower
bound in (4.16) is valid for the minimal data-rate achieved over all admissible
static coder-controllers, but di�ers from its lower bound in Theorem 8 of [34].

The lower bound on |A|∗ in (4.16) can be computed in principle by de-

termining vol(Π(u)) over a �nite set of points. Speci�cally, the vertices of

Π(u) are obtained (as functions of u ∈ Φ) as the solutions of a set of right-

hand-side multiparametric linear programs, and they are therefore piecewise

a�ne functions of u with the pieces de�ned by a polyhedral complex, K, of

subsets of Φ [129]. As a result, the volume of Π(u) can be expressed (by trian-

gulating Π(u) into a collection of simplexes [130]) as a sum of non-negative

determinants of matrices whose elements are piecewise a�ne functions of u.

It follows that vol(Π(u)) is piecewise quasi-convex in u and the maximum,

v∗, over u ∈ Φ, is therefore achieved at a vertex of the complex K.

Determining the volume of an arbitrary polytopic set is computation-

ally hard, see, [131]. Since ᾱ∗ in (4.15) is the maximum value of α such that

X̄ (x, α) ⊆ Π(u) for some x ∈ Q and u ∈ U, a convenient approximation is

v∗ ≈ (ᾱ∗)nx vol(Q).

This implies that the lower bound on |A|∗ in (4.16) is approximately equal to

(1/ᾱ∗)nx . We note however that (1/ᾱ∗)nx does not necessarily lower bound

|A|∗ since v∗ ≥ (ᾱ∗)nx vol(Q).

4.4.1 Tightness of Cardinality Bounds

This subsection shows that the bounds on the minimal cardinality are tight

for scalar systems under some mild conditions. Consider a scalar system:

xk+1 = axk + uk + wk,

with X = R, U = [u, ū], and W = [w, w̄]. Let Q = [q, q̄]. Assume that q <
w < w̄ < q̄. Then, we have that vert(Q) = {q, q̄} and Q	W = [q−w, q̄−w̄].
Recall α∗ and ᾱ∗ de�ned in Eqs. (4.14)–(4.15). Since v∗ = (ᾱ∗)nx vol(Q), one

can choose δ = Q = ∆, and σ = α∗ for nx = 1, the bounds in (4.16) become

d 1

ᾱ∗
e ≤ |A|∗ ≤ d 1

α∗
e.

Computational Algorithm 87

Denote by α∗(q) and α∗(q̄) the optimal value of LP (4.13) for the vertices of Q,

respectively. Since the optimal value occurs at a vertex of the feasible region

for the LP, we have α∗ ∈ {α∗(q), α∗(q̄)} and ᾱ∗ ∈ {α∗(q), α∗(q̄)}. Therefore

the bound in (4.16) is tight if and only if α∗(q) = α∗(q̄).

In the case of a symmetric scalar system, we set 0 < −u = ū, 0 < −w =
w̄, and 0 < −q = q̄. Without loss of generality, we assume that a > 0. In this

case, α∗(q) = α∗(q̄) holds. The explicit minimal cardinality of an invariant

cover is then

|A|∗ =

{
d aq̄
q̄−w̄e if (a− 1)q̄ + w̄ + ū ≥ 0

+∞ otherwise.

This can be validated by Example 4.2. Note that, in contrast to [34], the control

limits are taken into account in this analysis.

4.5 Computational Algorithm

This section uses the existence conditions discussed in Section 4.3 to solve

Problem 4.3. Algorithm 4.1 describes a procedure for computing an invariant

cover of system (4.1) and a given polytopic set Q. The algorithm makes use of

the following result, which is proved in [132, Theorem 3].

Lemma 4.8. Let Ȳ be a polytope and let Y0 = {z ∈ Ȳ | Y z ≤ y} be a
nonempty polytopic subset of Ȳ, where y ∈ Rny . For each i ∈ N[1,ny], de�ne
Yi = {z ∈ Ȳ | [Y]iz ≥ [y]i, [Y]jz ≤ [y]j ∀j < i}. Then, {Yi}nyi=1 is a partition
of Ȳ with respect to Y0, i.e.,

(i)
⋃ny
i=0 Yi = Ȳ,

(ii) int(Yi) ∩ int(Y0) = ∅, ∀i,

(iii) int(Yi) ∩ int(Yj) = ∅, ∀i 6= j.

Algorithm 4.1 �rst uses the condition in Theorem 4.2 to check the exis-

tence of an invariant cover (lines 1–9). If no invariant cover exists, the algo-

rithm stops and returns Null. Otherwise, the algorithm continues by repeat-

edly partitioning subsets of Q using Lemma 4.8, with the initial subset Y0

de�ned in terms of a set Π(u) which is constructed using a convex combina-

tion of the vertices of Q. The procedure partition(Ȳ) (lines 13-23) constructs

88 Computation of Invariant Covers

Algorithm 4.1 Invariant Cover Computation

Require: System (4.1), and sets Q, U, and Q	W.

Ensure: An invariant cover (A, G) for (4.1) and Q.

1: {xvi }Ni=1 ← vert(Q);

2: for all i ∈ N[1,N] do
3: Solve (4.13) for α∗(xvi);

4: uvi ← u∗(xvi);

5: end for
6: α∗ ← mini α

∗(xvi);

7: if α∗ = 0 then
8: Stop and return Null;
9: end if

10: σ ← min{α∗, σ̄}
11: A ← ∅;
12: Execute partition(Q);

13: procedure partition(Ȳ)

14: Compute x ∈ vert(Ȳ);

15: Compute yσ(x) using (4.11);

16: Compute {λi}Ni=1 satisfying yσ(x) =
∑N

i=1 λix
v
i ,

∑N
i=1 λi = 1 and

λi ≥ 0, ∀i ∈ N[1,N];

17: u←∑N
i=1 λiu

v
i ;

18: A ← {A,Π(u)} and G(Π(u))← u;

19: Y0 ← Ȳ ∩Π(u);

20: Partition Ȳ \ Y0 into {Yi}nyi=1 using Lemma 4.8;

21: for each nonempty sub-region Yi do
22: Execute partition(Yi);

23: end for
24: end procedure
25: Return: (A, G).

Computational Algorithm 89

a cover of the set Ȳ and stores this cover and the corresponding control in-

puts in (A, G). This process continues until the elements ofA cover the entire

set Q.

A vertex of Ȳ in line 14 can be found by checking whether any vertex of

Q lies in Ȳ and then solving a LP in nx variables if this check fails. The set

{λi}Ni=1 in line 16 can be de�ned uniquely as the minimizing argument of

min
λ1,...,λN

‖
N∑
i=1

λiu
v
i ‖∞

s.t. y =

N∑
i=1

λix
v
i ,

N∑
i=1

λi = 1, λi ≥ 0,∀i ∈ N[1,N]

which requires the solution of an LP in N variables. The main computational

e�ort of Algorithm 4.1 is spent on solving the LPs in lines 14–16.

Theorem 4.4. Algorithm 4.1 �nds an invariant cover (A, G) of the system (4.1)
and the set Q in �nite time, if it exists.

Proof. We demonstrate that Algorithm 4.1 terminates in �nite time whenever

an invariant cover exists for the system (4.1) and set Q by showing that par-

tition(Ȳ) in line 22 can only be invoked a �nite number of times if α∗ > 0.

Since σ is de�ned in line 10 as min{σ̄, α∗}, Lemma 4.5 implies that each pair

(x, u) computed in lines 14 and 17 satis�es Br(x)∩Q ⊆ X̄ (yσ(x), σ) ⊆ Π(u)
with r = σ2 minj [q]j > 0 if α∗ > 0. Therefore Y0 computed in line 18 satis-

�es Br(x)∩ Ȳ = Br(x)∩Q∩ Ȳ ⊆ Π(u)∩ Ȳ = Y0, so that each vertex of Y0

that is not a vertex of Ȳ is necessarily of a distance of at least r from x. Since

x is de�ned as a vertex of Ȳ in line 13, it follows that partition(Ȳ) can be

called only a �nite number of times before A covers Q.

Remark 4.4. In contrast to methods for determining (robust) invariant
sets by iteratively computing (robust) backward reachable sets until conver-
gence (e.g. [27]), Algorithm 4.1 computes an invariant cover by repeatedly parti-
tioning an unexplored region.

Remark 4.5. An advantageous property of the invariant cover computed by
Algorithm 4.1 is that each subset is represented in the form of Π(u) for some
u ∈ U. By the Upper Bound Theorem in [133], the maximum number of vertices
of the polytopes of the family is upper bounded by O((nq + np)

bnx
2
c) since the

90 Computation of Invariant Covers

maximum number of delimiting planes in Π(u) is nq + np. Note that this prop-
erty may signi�cantly reduce the computation of the coder-controller for online
implementation.

4.6 Examples

This section provides two examples to illustrate the proposed algorithm and

explore the dependence of computation time on the system dimension. The

following numerical experiments were coded using Matlab R2018b with the

lrs library [134] and run on a 2.9 GHz Intel Core i7 CPU with 16 GB RAM.

4.6.1 Example 1

Consider system (4.1) with the system parameters (A and B) and set parame-

ters (Fu, fu, Fw, fw, Q, q) de�ned in the following:

A =

[
0.9225 1.0476
1.0476 0.9320

]
, B =

[
1.1518 0
2.4188 0.4991

]

Fu =


1 0
0 1
−1 0

0 −1

 , fu =


1
1
1
1



Fw =


−0.9847 0.1745
−0.4028 −0.9153

0.2153 −0.9766
0.6809 −0.7324
0.4028 0.9153

 , fw =


0.1000
0.1000
0.1000
0.1000
0.1000



Q =



−0.4040 0.9148
0.3521 0.9360
−0.7061 0.7081

0.1622 0.9868
0.7061 −0.7081
−0.1622 −0.9868

 , q =



1.0572
1.0744
1.0704
1.0000
1.0000
1.0000

 .

We �rst check the existence of an invariant cover. By solving the optimization

problem (4.14), we obtain α∗ = 0.2813 > 0, which from Theorem 4.2 implies

the existence of invariant cover.

Examples 91

First, we compare the bounds on the minimal cardinality of the invariant

cover in Theorem 4.3 with that in [34]. The lower bound on |A|∗ obtained

by Theorem 8 of [34] is 1, while the lower bound from Theorem 4.3 is 5. We

can see that the lower bound in our chapter is tighter than that in [34] in this

example. One explanation is that the control set is taken into account when

deriving the bounds in (4.16) by solving the LPs, while the lower bound in

Theorem 8 of [34] is independent of the control set.

By implementing Algorithm 4.1, we compute the invariant cover (A, G)
with cardinality |A| = 5 for the set Q shown in Figure 4.3. We use this in-

variant cover to design a static coder–controller as in [34] and compute the

state trajectory starting from a vertex of Q, see Figure 4.4 (a). The state re-

mains at all times inside the set Q. The corresponding control input trajectory

is shown in Figure 4.4(b). The maximal data-rate needed to guarantee invari-

ance is no greater than log2 5 bits per sampling interval. Note that the system

in this example is open-loop unstable. From Section 1.2.2 of [123], the critical

data-rate necessary for the stabilization of this system without disturbances

is log2 1.9748 bits per sampling interval, where 1.9748 is the unstable eigen-

value of the matrix A. This critical data-rate is lower than log2 5, which is

required for the robust invariance speci�cation considered here.

4.6.2 Example 2

We consider a quadrotor which is controlled by a remote computer via a com-

munication network. Following [135], the quadrotor can be modeled as a 6-

DOF system. For each axis j ∈ {x, y, z}, the dynamics can be expressed as a

2-DOF discrete-time double integrator:

xj,k+1 = Axj,k +Buj,k + wj,k,

where

A =

[
1 τ
0 1

]
, B =

[
τ2/2
τ

]
,

the state xj,k = [pj,k vj,k]
T ∈ R2

consists of the position and velocity, the

control input uj,k ∈ R is the acceleration, wj,k is the external disturbance,

and τ is the sampling period. The velocity and control input are subject to the

constraints: vj,k ∈ [vj,min, vj,max] and uj,k ∈ [uj,minuj,max]. The disturbance

wj,k is bounded according to ‖wj,k‖∞ ≤ w̄j .

92 Computation of Invariant Covers

(a) (b)

(c) (d)

(e)

Figure 4.3: Invariant cover (A, G) used in Example 1: (a) Xinv
1 and G(Xinv

1) =
[0.0461 1]T ; (b) Xinv

2 and G(Xinv
2) = [−0.9317 1]T ; (c) Xinv

3 and G(Xinv
3) =

[0.9485 − 0.0991]T ; (d) Xinv
4 and G(Xinv

4) = [−0.4455 1]T ; (e) Xinv
5 and

G(Xinv
5) = [0.3649 0.6117]T .

Examples 93

(a)

0 10 20 30 40 50 60 70 80 90

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.4: One simulated trajectory for the system in Example 1: (a) state

trajectory xk; (b) control input uk.

94 Computation of Invariant Covers

(a)

(b)

(c)

Figure 4.5: The RCIS Qj and the corresponding invariant cover for each axis j
in Example 2: (a) x axis; (b) y axis; (c) z axis. Here, the elements in the invariant

covers are in di�erent colors.

Examples 95

(a)

0 10 20 30 40 50 60 70 80 90

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.6: One simulated trajectory for the system in Example 2: (a) position

trajectory [pxk pyk pzk]
T

; (b) velocity trajectory [vxk vyk vzk]
T

.

0 10 20 30 40 50 60 70 80 90

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.7: Control input uk in Example 2.

96 Computation of Invariant Covers

The objective is to design a coder–controller with a �nite data-rate such

that the quadrotor keeps moving in a safe region as shown in Figure 4.6(a). We

�rst compute the maximal RCIS Qj with respect to the safe region for each

axis j. By following the results in this chapter, we then compute an invariant

cover through Algorithm 4.1 for each Qj . If the invariant cover exists for each

axis, we can design a coder–controller similar to Example 1.

The constraints are de�ned by the following parameters: vj,min =
−1 ms

−1
, vj,max = 1 ms

−1
, uj,min = −1 ms

−2
, uj,max = 1 ms

−2
, w̄j = 0.2,

and the sampling interval is τ = 0.5 s. The computed RCIS for each axis

is shown in Figure 4.5. The lower bound for each axis from Theorem 4.3 is

|Aj |∗ ≥ 3. Note that the origin is not in the interior of the sets Qj . We need

to transform the system such that the sets Qj contain the origin before us-

ing Algorithm 4.1. We compute an invariant cover (Aj , Gj) for each Qj with

cardinality |Aj | = 5, as shown in Figure 4.5. The corresponding static coder–

controller ensures that the quadrotor position remains in the safe region at all

times and the velocity and acceleration satisfy their constraints. See Figure 4.6

for the position and velocity trajectories and Figure 4.7 for the corresponding

control inputs. Note that the control constraints are satis�ed. The data-rate

needed to enforce the invariance is at most 6 log2 5 ≈ 13.9316 bits/s.

4.6.3 Computation Time and Invariant Cover Cardinality

To investigate how the computation required by Algorithm 4.1 depends on the

state dimension nx and control dimension nu, we consider a range of values

for (nx, nu) and for each case we generate 100 random systems in the form

of (4.1) with linear state and control constraints, and with spectral radii no

greater than 1.3. For each realization we �nd a set Q that admits an invariant

cover and use Algorithm 4.1 to compute an invariant cover. The dependence

of computation time on (nx, nu) is shown in the boxplot of Figure 4.8. As

expected, the computation time increases as the state and control input di-

mensions increase.

Fig. 4.9 compares |A|, the cardinality of A computed by Algorithm 4.1,

with the upper and lower bounds derived in Section 4 on the minimal car-

dinality |A|∗ for the same randomly generated systems. The results shown

(with 1 ≤ |A| ≤ 50) represent 83% of system realizations. Although Algo-

rithm 4.1 is not guaranteed to �nd an invariant cover with minimal cardinality,

|A| (shown by the dashed line in Fig. 4.9) does not exceed the upper bound on

|A|∗ in all cases. Although Algorithm 4.1 is not guaranteed to �nd an invariant

Examples 97

cover with minimal cardinality, |A| does not exceed the upper bound on |A|∗
given by (4.16) in all cases.

Figure 4.8: Computation time of invariant cover with respect to the state di-

mension nx and the control dimension nu.

(a)

Figure 4.9: In red: box plot of the approximate lower bound (1/ᾱ∗)nx on |A|∗.
In blue: the observed distribution of |A|.

98 Computation of Invariant Covers

4.7 Summary

This chapter considered some fundamental problems concerning the invariant

cover for uncertain discrete-time linear control systems. We provided compu-

tationally tractable necessary and su�cient conditions on the existence of an

invariant cover, as well as upper and lower bounds on the minimal cardinality

of the invariant cover. In addition, we gave an algorithm to compute an invari-

ant cover in �nite time, whenever it exists. Numerical examples were given to

illustrate the e�ectiveness of the results.

Chapter 5

Verification and Control based on
Temporal Logic Trees
In the previous two chapters, we developed algorithms to compute probabilis-

tic controlled invariant sets and invariant covers, both of which respect the

invariance property. In this chapter, we study the problems of model check-

ing and control synthesis for more complex speci�cation than invariance. We

consider discrete-time uncertain systems under linear temporal logic (LTL)

speci�cations. We construct temporal logic trees (TLT) from LTL formulae via

reachability analysis. For a given transition system and an LTL formula, we

prove that there exist both a universal TLT and an existential TLT via minimal

and maximal reachability analysis, respectively. We show that the universal

TLT is an underapproximation for the LTL formula and the existential TLT is

an overapproximation. We provide su�cient conditions and necessary condi-

tions to verify whether a transition system satis�es an LTL formula by using

the TLT approximations. As a major contribution of this chapter, for a con-

trolled transition system and an LTL formula, we prove that a controlled TLT

can be constructed from the LTL formula via control-dependent reachability

analysis. Based on the controlled TLT, we design an online control synthesis

algorithm, under which a set of feasible control inputs can be generated at

each time step. We also prove that this algorithm is recursively feasible.

The remainder of this chapter is organized as follows. In Section 5.1, we

provide the background and motivations. In Section 5.2, we introduce TLT

structures and show how to construct a TLT from a given LTL formula. In

Section 5.3, we solve the LTL model checking problem through the constructed

TLT. Section 5.4 solves the LTL control synthesis problem. In Section 5.5, we

illustrate the e�ectiveness of our approaches with two numerical examples. In

Section 5.6, we conclude the chapter.

99

100 Verification and Control based on Temporal Logic Trees

5.1 Introduction

In the recent past the integration of computer science and control theory

has promoted the development of new areas such as embedded systems de-

sign [136], hybrid systems theory [68], and, more recently, cyber-physical

systems [69]. Model checking and control synthesis are two fundamental prob-

lems in formal veri�cation and control. Both problems are of great interest in

disparate and diverse applications, such as robotics, transportation systems,

and safety-critical embedded system design. However, they are challenging

problems when considering dynamical systems a�ected by uncertainty, and

in particular uncertain in�nite (uncountable) systems under complex, tem-

poral logic speci�cations. In this chapter, we provide solutions to the model

checking and formal control synthesis problems, for discrete-time uncertain

systems under linear temporal logic (LTL) speci�cation.

5.1.1 Related Work

In general, LTL formulae are expressive enough to capture many important

properties, e.g., safety (nothing bad will ever happen), liveness (something

good will eventually happen), and more complex combinations of Boolean

and temporal statements [36].

In the area of formal veri�cation, a dynamical process is by and large mod-

eled as a �nite transition system. A typical approach to both model checking

and control synthesis for a �nite transition system and an LTL formula lever-

ages automata theory. It is known that each LTL formula can be transformed

to an equivalent automaton [137]. The model checking problem can be solved

by verifying whether the intersection of the trace set of the transition system

and the set of accepted languages of the automaton expressing the negation

of the LTL formula is empty, or not [36]. The control synthesis problem can be

solved by the following steps: (1) translate the LTL formula into a determinis-

tic automaton; (2) build a “product automaton” between the transition system

and the obtained automaton; (3) transform the product automaton into a game

[138]; (4) solve the game [139]–[141]; and (5) map the solution into a control

strategy.

In recent years, the study of model checking and control synthesis for

dynamical systems with continuous (uncountable) spaces, which extends the

standard setup in formal veri�cation, has attracted signi�cant attention within

the control community. This has enabled the formal control synthesis for in-

Introduction 101

teresting properties, which are more complex than the usual control objectives

such as stability and set invariance. In order to adapt automaton-based meth-

ods to in�nite systems, abstraction plays a central role in both model checking

and control synthesis, which entails: (1) to abstract an in�nite system to a �nite

transition system; (2) to conduct automaton-based model checking or control

synthesis for the �nite transition system; (3) if a solution is found, to map it

back to the in�nite system; otherwise, to re�ne the �nite transition system

and repeat the steps above.

In order to show the correctness of the solution obtained from the ab-

stracted �nite system over the in�nite system, an equivalence or inclusion

relation between the abstracted �nite system and the in�nite system needs to

be established [65]. Relevant notions include (approximate) bisimulations and

simulations. These relations and their variants have been explored for systems

that are incrementally (input-to-state) stable [142], [143], or systems with sim-

ilar properties [66]. Recent work [67] shows that the condition of approximate

simulation can be relaxed to controlled globally asymptotic or practical sta-

bility with respect to a given set for nonlinear systems. We remark that such

condition holds for only a small class of systems in practice.

Based on abstractions, the problem of model checking for in�nite systems

has been studied in [144], [145]. In [144], it is shown that model checking

for discrete-time, controllable, linear systems from LTL formulae is decidable

through an equivalent �nite abstraction. In [145], the authors study the prob-

lem of verifying whether a linear system with additive uncertainty from some

initial states satis�es a fragment of LTL formulae, which can be transformed

to a deterministic Büchi automaton. The key idea is to use a formula-guided

method to construct and re�ne a �nite system abstracted from the linear sys-

tem and guarantee their equivalence. Along the same line, the problem of con-

trol synthesis has also been widely studied for linear systems [146], nonlinear

systems [147], stochastic systems [148], hybrid systems [149], and stochastic

hybrid systems [150]. The applications of control synthesis under LTL spec-

i�cations include single-robot control in dynamic environments [70], multi-

robot control [71], and transportation control [72].

Beyond automata-based methods, alternative attempts have been made

for speci�c model classes. Receding horizon methods are used to design con-

trollers under LTL for deterministic linear systems [73] and uncertain linear

systems [151]. The control of Markov decision processes under LTL is consid-

ered in [73] and further applied to multi-robot coordination in [74]. Control

102 Verification and Control based on Temporal Logic Trees

synthesis for dynamical systems has been extended also to other speci�ca-

tions like signal temporal logic (STL) [75], and probabilistic computational

tree logic [76]. Interested readers may refer to the tutorial paper [152] and the

book [35] for detailed discussions.

5.1.2 Motivations

Although the last two decades have witnessed a great progress on model

checking and control synthesis for in�nite systems from both theoretical and

practical perspectives, there are some inherent restrictions in the dominant

automaton-based methods.

First, abstraction from in�nite systems to �nite systems su�ers from the

curse of dimensionality: abstraction techniques usually partition the state

space, and transitions are constructed via reachability analysis. The computa-

tional complexity increases exponentially with the system dimension. Many

works are dedicated to improving the computational e�ciency by using over-

approximation for (mixed) monotone systems [72], or by exploiting the struc-

ture of the uncertainty [150]. However, another issue with abstraction tech-

niques is that only systems with “good properties” (e.g., incremental stability,

or smooth dynamics) might admit �nite abstractions with guarantees, which

limits their generality.

Second, there are few results for handling general LTL formulae when an

in�nite system comes with uncertainty (e.g., bounded disturbance, or additive

noise). In most contributions on control synthesis of uncertain systems, frag-

ments of LTL formulae (e.g., bounded LTL or co-safe LTL) are usually taken

into account [153], [154]. As mentioned before, the LTL formulae are de�ned

over in�nite trajectories and it is di�cult to control uncertainties propagat-

ing along such trajectories. This restriction results from conservative over-

approximation in the computation of forward reachable sets, which is widely

used for abstraction, and which leads to information loss when used with

automaton-based methods.

Third, current methods usually lack online scalability. In many applica-

tions, full a priori knowledge of a speci�cation cannot be obtained. For exam-

ple, consider an automated vehicle required to move from some initial position

to some destination without colliding into any obstacle (e.g., other vehicles

and pedestrians). Since the trajectories of other vehicles and pedestrians can-

not be accurately predicted, we cannot in advance de�ne a speci�cation that

captures all the possibilities during the navigation process. Thus, o�ine design

Introduction 103

of automaton-based methods is signi�cantly restricted.

Finally, the controller obtained from automaton-based methods usually

only contains a single control policy. In some applications, e.g., human-in-

the-loop control [155], [156], a set of feasible control inputs are needed to

provide more degrees of freedom in the actual implementation. For example,

[155] studies a control problem where humans are given a higher priority than

the automated system in the decision making process. A controller is designed

to provide a set of admissible control inputs with enough degrees of freedom

to allow the human operator to easily complete the task.

5.1.3 Contributions

Motivated by the above, this chapter studies LTL model checking and con-

trol synthesis for discrete-time uncertain systems. There are many results for

reachability analysis on in�nite systems [47], [157] and the computation of

both forward and backward reachable sets has been widely studied [158]–

[160]. The connection between STL and reachability analysis is studied in

[161], which inspires our work. The main contributions of this chapter are

three-fold:

(C5.1) We construct tree structures from LTL formulae via reachability analy-

sis over dynamical models. We denote the tree structure as a TLT. The

connection between TLT and LTL is shown to hold for both uncertain

�nite and in�nite models. The construction of the TLT is abstraction-

free for in�nite systems and admits online implementation, as demon-

strated in Section 5.5. More speci�cally, given a system and an LTL for-

mula, we prove that both a universal TLT and an existential TLT can

be constructed for the LTL formula via minimal and maximal reacha-

bility analysis, respectively (Theorems 5.1 and 5.2). We also show that

the universal TLT is an underapproximation for the LTL formula and

the existential TLT is an overapproximation for the LTL formula. Our

formulation does not restrict the generality of LTL formulae.

(C5.2) We provide a method for model checking of discrete-time dynamical

systems using TLT. We provide su�cient conditions to verify whether

a transition system satis�es an LTL formula by using universal TLT for

under-approximating the satisfaction set, or alternatively using existen-

tial TLT for over-approximating the violation set (Theorem 5.3). Du-

104 Verification and Control based on Temporal Logic Trees

ally, we provide necessary conditions by using existential TLT for over-

approximating the satisfaction set, or alternatively using universal TLT

for under-approximating the violation set (Theorem 5.4).

(C5.3) As a core and novel contribution of this chapter, we detail an approach

for online control synthesis for a controlled transition system to guar-

antee that the controlled system will satisfy the speci�ed LTL formula.

Given a control system and an LTL formula, we construct a controlled

TLT (Theorem 5.5). Based on the obtained TLT, we design an online con-

trol synthesis algorithm, under which a set of feasible control inputs is

generated at each time step (Algorithm 5.3). We prove that this algo-

rithm is recursively feasible (Theorem 5.6). We provide applications to

show the scalability of our methods.

5.2 Temporal Logic Trees

This section will introduce the notion of TLT and establish a satisfaction re-

lation between a trajectory and a TLT. Then, we construct TLT from LTL for-

mulae and discuss the approximation relation between them.

Recall the transition system TS = (S,→, S0,AP, L) de�ned in Sec-

tion 2.1.1 and the LTL formulae de�ned in Section 2.3. Consider a transition

system TS = (S,→,S0,AP, L) and an LTL formula ϕ.

5.2.1 Definitions

De�nition 5.1. A TLT is a tree for which the following statements hold:

• each node is either a set node, a subset of S, or an operator node, from

{∧,∨,©,U,�};

• the root node and the leaf nodes are set nodes;

• if a set node is not a leaf node, its unique child is an operator node;

• the children of any operator node are set nodes.

Next we de�ne the complete path and the minimal Boolean fragment for

a TLT. Minimal Boolean fragments play an important role when simplifying

the TLT for model checking and control synthesis in the following.

Temporal Logic Trees 105

1

2

3 4

5{r,y}

{r}

{g} {y}

{b}

(a)

∨

U

�

{3} {5}

{3, 5}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

(b)

Figure 5.1: (a) A transition system illustrating a tra�c light example. Labels

are shown aside the states. The initial state is denoted by an incoming edge.

(b) A TLT corresponding to an LTL formula ϕ = �♦(g ∨ b) for this system.

Note that ♦ϕ = true ∪ ϕ.

De�nition 5.2. A complete path of a TLT is a sequence of nodes and edges
from the root node to a leaf node. Any subsequence of a complete path is called a
fragment of the complete path.

De�nition 5.3. A minimal Boolean fragment of a complete path is one of the
following fragments:

(i) a fragment from the root node to the �rst Boolean operator node (∧ or ∨)
in the complete path;

(ii) a segment from one Boolean operator node to the next Boolean operator
node in the complete path;

(iii) a fragment from the last Boolean operator node of the complete path to the
leaf node;

106 Verification and Control based on Temporal Logic Trees

Example 5.1. Consider the tra�c light in Example 2.1, as shown in Fig-
ure 5.1(a) and the TLT in Figure 5.1(b), which corresponds to the LTL formula
ϕ = �♦(g ∨ b) (the formal construction of a TLT from an LTL formula will be
detailed in next subsection). We encode one of the complete paths of this TLT in
the form of X0�X1UX2 ∨ X3, where X0 = X1 = {1, 2, 3, 4, 5}, X2 = {3, 5},
andX3 = {3}. For this complete path, the minimal Boolean fragments consist of
X0�X1♦X2∨ and ∨X3, which correspond to cases (i) and (iii) in De�nition 5.3,
respectively.

We now de�ne the satisfaction relation between a given trajectory and a

complete path of a TLT.

De�nition 5.4. Consider a trajectory p = x0x1 . . . xk . . . and encode a com-
plete path of a TLT in the form of X0 �1 X1 �2 . . . �Nf XNf where Nf is
the number of operators in the complete path, Xi ⊆ S for all i ∈ N[0,Nf]and
�i ∈ {∧,∨,©,U,�} for all i ∈ N[1,Nf]. The trajectory p is said to satisfy this
complete path if x0 ∈ X0 and there exists a sequence of time steps k0k1, . . . , kNf
with ki ∈ N for all i ∈ N[0,Nf] and 0 , k0 ≤ k1 ≤ k2 ≤ . . . ≤ kNf such that
for all i ∈ N[0,Nf],

(i) if �i = ∧ or �i = ∨, xki ∈ Xi−1 and xki ∈ Xi;

(ii) if �i =©, xki−1 ∈ Xi−1 and xki ∈ Xi;

(iii) if �i = U, xj ∈ Xi−1, ∀j ≥ N[ki−1,ki−1], and xki ∈ Xi;

(iv) if �i = �, xj ∈ Xi, ∀j ≥ ki.

Consider a k-th pre�x p[..k] = x0x1 . . . xk from p and a fragment from the
complete path in the form of X0 �1 X1 �2 . . . �N ′f XN ′f where N ′f ≤ Nf . The
pre�x p[..k] is said to satisfy this fragment if x0 ∈ X0, xk ∈ XN ′f , and there
exists a sequence of time steps k0k1, . . . , kN ′f with ki ∈ N for all i ∈ N[0,N ′f]

and 0 , k0 ≤ k1 ≤ k2 ≤ . . . ≤ kN ′f ≤ k, such that for all i ∈ N[0,N ′f], (i)–(iii)
holds and furthermore

(iv’) if �i = �, xj ∈ Xi, ∀j ∈ N[ki,k].

De�nition 5.5. A time coding of a TLT is an assignment of each operator node
in the tree to a nonnegative integer.

Temporal Logic Trees 107

De�nition 5.6. Consider a trajectory p = x0x1 . . . xk . . . and a TLT. The tra-
jectory p is said to satisfy the TLT if there exists a time coding such that the
output of Algorithm 5.1 is true.

The time coding indicates when the operators in the TLT are activated

along a given trajectory. Algorithm 5.1 provides a procedure to test if a trajec-

tory satis�es a TLT under a given time coding. The TLT is �rst transformed

into a compressed tree, which is analogous to a binary decision diagram (lines

1–2), through Algorithm 5.2. Then, we check if the trajectory satis�es each

complete path of the TLT under the time coding (lines 3–9). Finally, we back-

track the tree with output true or false. If the output is true, the trajectory

satis�es the TLT; otherwise, the trajectory does not satisfy the TLT under the

given time coding.

Algorithm 5.2 aims to obtain a tree in a compact form. Each minimal

Boolean fragment is encoded according to De�nition 5.3. The notation �i de-

notes the operator node and Nf denotes the number of set nodes in the cor-

responding minimal Boolean fragment. We compress the sets in the minimal

Boolean fragment to be a single set. The simpli�ed tree consists of set nodes

and Boolean operator nodes.

Example 5.2. From De�nition 5.4, we can verify that the trajectory p =
(1234)ω satis�es the complete path given in Example 5.1 by choosing k0 = k1 =
0 and k2 = k3 = 2. It follows from De�nition 5.6 that this trajectory satis�es the
corresponding TLT.

5.2.2 Construction and Approximation of TLT

We de�ne the approximation relations between TLT and LTL formulae as fol-

lows.

De�nition 5.7. A TLT is said to be an under-approximation of an LTL for-
mula ϕ if all the trajectories that satisfy the TLT also satisfy ϕ.

De�nition 5.8. A TLT is said to be an over-approximation of an LTL formulaϕ,
if all the trajectories that satisfy ϕ also satisfy the TLT.

The following two theorems show how to construct TLT via reachabil-

ity analysis for the LTL formulae, and discuss their approximation relations.

Recall the minimal reachability in Section 2.2.1, and more speci�cally, the def-

initions of the reachability operatorsRm
andRI .

108 Verification and Control based on Temporal Logic Trees

Algorithm 5.1 TLT Satisfaction

Input: a trajectory p = x0x1 . . . xk . . ., a TLT and a time coding

Output: true or false;

1: construct a compressed tree via Algorithm 5.2 with input of the TLT;

2: replace all set nodes of the compressed tree with false;

3: for each complete path of the TLT do
4: if p satis�es the complete path under the time coding then
5: set the corresponding leaf node in the compressed tree with true;

6: else
7: set the corresponding leaf node in the compressed tree with false;

8: end if
9: end for

10: backtrack the tree;

11: return the root node of the tree.

Theorem 5.1. For any transition system TS and any LTL formula ϕ,

(i) a TLT can be constructed from the formula ∀ϕ through the reachability
operatorsRm andRI ;

(ii) this TLT is an under-approximation of ϕ.

Proof sketch. See Appendix for a detailed proof in the end of this chapter.

We prove the constructability by the following three steps: (1) we trans-

form the given LTL formula ϕ into an equivalent LTL formula in the weak-

until positive normal form; (2) for each atomic proposition a ∈ AP , we show

that a TLT can be constructed from ∀a (or ∀¬a); (3) we leverage induction to

show the following: given LTL formulae ϕ, ϕ1, and ϕ2 in weak-until positive

normal form, if TLT can be constructed from ∀ϕ, ∀ϕ1, and ∀ϕ2, respectively,

then TLT can also be constructed through reachability operatorsRm
andRI

from the formulae ∀(ϕ1∧ϕ2), ∀(ϕ1∨ϕ2), ∀©ϕ, ∀(ϕ1Uϕ2), and ∀(ϕ1Wϕ2),

respectively.

We follow a similar approach to prove an under-approximation relation

between the constructed TLT and the LTL formula. The under-approximation

occurs due to the conjunction operator and the presence of branching in the

transition system.

Further recall the maximal reachability in Section 2.2.1, and more speci�-

cally, the de�nitions of the reachability operatorsRM
and I .

Temporal Logic Trees 109

Algorithm 5.2 Tree Compression

Input: a tree

Output: a compressed tree

1: for each complete path of the tree do
2: for each minimal Boolean fragment do
3: switch minimal Boolean fragment do
4: case (i) in De�nition 5.3

5: encode the fragment in the form ofY1�1. . .�i. . .YNf�Nf
with �Nf ∈ {∧,∨};

6: replace the fragment with ∪Nfi=1Yi�Nf ;

7: case (ii) in De�nition 5.3

8: encode the fragment in the form of �1Y1 �2 . . . �Nf
YNf�Nf+1 with �1,�Nf+1 ∈ {∧,∨};

9: replace the fragment with �1 ∪Nfi=1 Yi�Nf+1;

10: case (iii) in De�nition 5.3

11: encode the fragment in the form of �1Y1 �2 . . .�Nf YNf
with �1 ∈ {∧,∨};

12: replace the fragment with �1 ∪Nfi=1 Yi;
13: B �i denotes the operator node and Nf denotes the number of set

nodes in the minimal Boolean fragment;
14: end for
15: end for
16: return the updated tree.

110 Verification and Control based on Temporal Logic Trees

Theorem 5.2. For any transition system TS and any LTL formula ϕ,

(i) a TLT can be constructed from the formula ∃ϕ through the reachability
operatorsRM and I ;

(ii) this TLT is an over-approximation of ϕ.

Proof. The proof of the �rst part is similar to that of Theorem 5.1 by replacing

the universal quanti�er ∀ and the reachability operatorsRm
andRI with the

existential quanti�er ∃ and the operators RM
and I , respectively. Also, the

proof of the second part is similar to that of Theorem 5.1 by following the

de�nition of the maximal reachability analysis.

We call the constructed TLT of ∀ϕ the universal TLT of ϕ and the TLT

of ∃ϕ the existential TLT of ϕ. We remark that the constructed TLT is not

unique: this is because an LTL formula can have di�erent equivalent expres-

sions (e.g., normal forms). Despite this, the approximation relations between

an LTL formula and the corresponding TLT still hold.

The following corollary shows that the approximation relation between

TLT and LTL formulae are tight for deterministic transition systems.

Corollary 5.1. For any deterministic transition system TS and any LTL for-
mula ϕ, the universal TLT and the existential TLT of ϕ are identical.

Proof. If the system is deterministic, it follows from Lemmas 2.1–2.2 and Lem-

mas 2.3–2.4 that for any Ω1,Ω2 ⊆ S and Ω ⊆ S, Rm(Ω1,Ω2) = RM(Ω1,Ω2)
and RI(Ω) = I(Ω). Then, by the same construction procedure, we have

that the constructed universal TLT is the same as the constructed existential

TLT.

Remark 5.1. Computation of reachable sets plays a central role in the construc-
tion of the TLT. The computation of reachable sets is not the focus of this chapter.
Interested readers are referred to relevant results [158]–[160] and associated com-
putational tools, e.g., the multi-parametric toolbox [61] and the Hamilton-Jacobi
toolbox [62].

Example 5.3. Consider the tra�c light in Example 2.1 and the LTL formula
ϕ = �♦(g ∨ b) in Example 5.2 again. We follow the proof of Theorem 5.1 to
show the correspondence between ∀ϕ and the TLT in Figure 5.1:

Model Checking 111

(1) the universal TLT of g is a single set node, i.e., {3} and the universal TLT
of b is also a single set node, i.e., {5};

(2) the root node of the universal TLT of g∨ b is the union of {3} and {5}, i.e.,
{3, 5};

(3) the root node of the universal TLT of ♦(g ∨ b) is Rm(S, {3, 5}) =
{1, 2, 3, 4, 5};

(4) the root node of the universal TLT of �♦(g ∨ b) is RI({1, 2, 3, 4, 5}) =
{1, 2, 3, 4, 5}.

We can follow the same steps in the proof of Theorem 5.2 to construct the
existential TLT of ϕ, which is the same as the universal TLT of ϕ for the system
in Example 2.1.

5.3 Model Checking

This section focuses on the model checking problem.

Problem 5.1. Consider a transition system TS and an LTL formula ϕ. Verify
whether TS � ϕ, i.e., ∀x0 ∈ S0, x0 � ∀ϕ.

Thanks to the approximation relations between the TLT and the LTL for-

mulae, we obtain the following lemma.

Lemma 5.1. For any transition system TS and any LTL formula ϕ,

(i) x0 � ∀ϕ if x0 belongs to the root node of the universal TLT of ϕ;

(ii) x0 � ∃ϕ only if x0 belongs to the root node of the existential TLT of ϕ.

Proof. The �rst result directly follows from that the root node of the univer-

sal TLT is an under-approximation of the satisfaction set of ϕ, as shown in

Theorem 5.1. Dually, the second result follows from that the root node of the

universal TLT is an over-approximation of the satisfaction set of ϕ, shown in

Theorem 5.2.

The next theorem provides two su�cient conditions for solving Prob-

lem 5.1.

112 Verification and Control based on Temporal Logic Trees

Theorem 5.3. For a transition system TS and an LTL formula ϕ, TS � ϕ if one
of the following conditions holds:

(i) the initial state set S0 is a subset of the root node of the universal TLT forϕ;

(ii) no initial state from S0 belongs to the root node of the existential TLT
for ¬ϕ.

Proof. Condition (i) directly follows from the �rst result of Lemma 5.1. Let us

next prove condition (ii). It follows that

TS � ϕ⇔ ∀p ∈ Trajs(TS),p � ϕ⇔ ∀p ∈ Trajs(TS),p 2 ¬ϕ.

From the second result of Lemma 5.1, if x0 does not belong to the root node

of the existential TLT of ¬ϕ, we have p 2 ¬ϕ, ∀p ∈ Trajs(x0). Thus, the

condition (ii) is su�cient for verifying TS � ϕ.

Similarly, we derive two necessary conditions for solving the model check-

ing problem.

Theorem 5.4. For a transition system TS and an LTL formula ϕ, TS � ϕ only

if one of the following conditions holds:

(i) the initial state set S0 is a subset of the root node of the existential TLT
for ϕ;

(ii) no initial state from S0 belongs to the root node of the universal TLT for¬ϕ.

Proof. Similar to Theorem 5.3.

Notice that the approximation relations between the TLT and the LTL for-

mula are tight for deterministic transition systems, as shown in Corollary 5.1.

In this case, the model checking problem can be tackled as follows.

Corollary 5.2. For a deterministic transition system TS and an LTL formula
ϕ, TS � ϕ if and only if the initial state set S0 is a subset of the root node of the
universal (or existential) TLT for ϕ.

Proof. Follows from Corollary 5.1.

The conditions in Theorems 5.3–5.4 imply that one can directly do model

checking by using TLT, as shown in the following example.

Control Synthesis 113

Example 5.4. Let us continue to consider the tra�c light and the LTL formula
ϕ = �♦(g ∨ b). Let us verify whether TS � ϕ by using the above method.
Since the unique initial state x0 belongs to the root node of the universal TLT of
ϕ shown in Figure 5.1, it follows from condition (i) in Theorem 5.3 that TS � ϕ.
Next, we show how to use condition (ii) to verify that TS � ϕ.

First of all, we have ¬ϕ = ♦�(¬g∧¬b). Following the proof of Theorem 5.2,
we construct the existential TLT of ¬ϕ:

(1) the existential TLT of ¬g is a single set node, i.e., {1, 2, 4, 5} and the exis-
tential TLT of ¬b is also a single set node, i.e„ {1, 2, 3, 4};

(2) the root node of the existential TLT of ¬g ∧ ¬b is the intersection of
{1, 2, 4, 5} and {1, 2, 3, 4}, i.e., {1, 2, 4};

(3) the root node of the existential TLT of �(¬g ∧ ¬b) is I({2, 3, 4, 5}) = ∅.

As the existential TLT of ¬ϕ is the empty set ∅, this implies that condition (ii) in
Theorem 5.3 holds and thus TS � ϕ.

5.4 Control Synthesis

Recall the controlled transition system de�ned in Section 2.1.2 and the con-

trolled reachability analysis in Section 2.2.2. More speci�cally, recall the de�-

nitions of the reachability operatorsRc
andRCI . Consider a controlled tran-

sition system CTS = (S,U→, S0,AP, L) and an LTL formula ϕ. This section

will �rst show the construction of TLT from an LTL formula for a controlled

transition system and then provide a control synthesis algorithm based the

TLT.

5.4.1 Construction and Approximation of TLT

The next theorem shows how to construct a TLT from an LTL formula for a

controlled transition system and discusses its approximation relation.

Theorem 5.5. For a controlled transition system CTS and any LTL formula ϕ,
the following holds:

(i) a TLT can be constructed from the formula ϕ through the reachability
operatorsRc andRCI ;

114 Verification and Control based on Temporal Logic Trees

(ii) given an initial state x0, if there exists a policy µ such that p satis�es the
constructed TLT, ∀p ∈ Trajs(x0,µ), then p � ϕ, ∀p ∈ Trajs(x0,µ).

Proof. The proof of the �rst part is similar to that of Theorem 5.1 by replacing

the reachability operators Rm(·) and RI(·) with Rc(·) and RCI(·), respec-

tively.

Similar to the under-approximation of the universal TLT in Theorem 5.1,

we can show that the path satisfying the constructed TLT in the �rst part also

satis�es the LTL formula. Then, we can directly prove the second result.

Let us call the constructed TLT of ϕ in Theorem 5.5 the controlled TLT

of ϕ.

Remark 5.2. Checking whether there exists a policy, such that all the resulting
trajectories satisfy the obtained controlled TLT, is in general a hard problem.
A straightforward necessary condition is that x0 belongs to the root node of the
controlled TLT: however, this is neither a necessary nor a su�cient condition
on the existence of a policy such that all the resulting trajectories satisfy the

given LTL formula. A (rather conservative) necessary condition for the latter case
can be obtained by regarding the controlled TS as a non-deterministic transition
system, and then applying Thereom 5.4.

Next we will show how to construct the controlled TLT through an exam-

ple.

Example 5.5. Consider the controlled transition system in Example 2.2, shown
in Figure 5.2(a). For an LTL formula ϕ = ♦�o2, we can follow the steps in
the proof of Theorem 5.5 to construct the controlled TLT of ϕ, as shown in Fig-
ure 5.2(b).

5.4.2 Control Synthesis Algorithm

In this subsection, we solve the following control synthesis problem.

Problem 5.2. Consider a controlled transition system CTS and an LTL formula
ϕ. For an initial state x0 ∈ S0, �nd, whenever existing, a sequence of feedback
control inputs u = u0(x0)u1(x1) . . . uk(xk) . . . such that the resulting trajec-
tory p = x0x1 . . . xk . . . satis�es ϕ.

Control Synthesis 115

s1 s3

s2 s4

a1

a1
a1

a2

a1

a1
a2

a1

a1

o1

o3

o2o2

(a)

�

U

{s2, s4}

{s2, s4}

{s1, s2, s3, s4}

(b)

Figure 5.2: (a) Graph description of a controlled transition system; (b) The

controlled TLT of ϕ = ♦�o2 for the system.

Remark 5.3. Note that the objective of the above problem is not to �nd a policy
µ, but a sequence of control inputs that depend on the measured state. In general,
synthesizing a policy µ such that each trajectory p ∈ Trajs(x0,µ) satis�es ϕ
is computationally intractable for in�nite systems. Instead, here we seek to �nd
online a feasible control input at each time step, in a similar spirit to constrained
control or receding horizon control.

Instead of directly solving Problem 5.2, we consider the following related

task, whose solution is also a solution to Problem 5.2, thanks to Theorem 5.5.

Problem 5.3. Consider a controlled transition system CTS and an LTL formula
ϕ. For an initial state x0 ∈ S0, �nd, whenever existing, a sequence of control
inputs u = u0(x0)u1(x1) . . . uk(xk) . . . such that the resulting trajectory p =
x0x1 . . . xk . . . satis�es the controlled TLT constructed from ϕ.

Algorithm 5.3 provides a solution to Problem 5.3. In particular, Algo-

rithm 5.3 presents an online feedback control synthesis procedure, which con-

sists of three steps: (1) control tree: replace each set node of the TLT with a

corresponding control set candidate (Algorithm 5.4); (2) compressed control

tree: compress the control tree as a new tree whose set nodes are control sets

116 Verification and Control based on Temporal Logic Trees

and whose operator nodes are conjunctions and disjunctions (Algorithm 5.2);

(3) backtrack on the control sets through a bottom-up traversal over the com-

pressed control tree (Algorithm 5.5). If the output of Algorithm 5.5 is NExis,

there does not exist a feasible solution to Problem 5.3. We remark that Algo-

rithm 5.3 is implemented in a similar way to receding horizon control with the

prediction horizon being one.

Algorithm 5.3 Online Feedback Control Synthesis via TLT

Input: an initial state x0 ∈ S0 and the controlled TLT of an LTL formula

ϕ
Output:NExis or (u,p) withu = u0u1 . . . uk . . . andp = x0x1 . . . xk . . .

1: initialize k = 0;

2: construct a control tree via Algorithm 5.4, with inputs p[..k] = x0 . . . xk
and the TLT;

3: construct a compressed tree via Algorithm 5.2, with input the control tree;

4: synthesize a control set Uϕk (xk) via Algorithm 5.5, with input the com-

pressed tree;

5: if Uϕk (xk) = ∅ then
6: stop and return NExis;

7: else
8: choose uk ∈ Uϕk (xk);

9: implement uk and measure xk+1 ∈ Post(xk, uk);

10: update k = k + 1 and go to Step 2;

11: end if

Algorithm 5.4 aims to construct a control tree that enjoys the same tree

structure as the input TLT. The di�erence is that all the set nodes are replaced

with the corresponding control set nodes. The correspondence is established

as follows: (1) whether the initial state x0 belongs to the root node or not (lines

1–3); (2) whether the pre�x p[..k] satisfy the fragment from the root node to

the set node (lines 5–7); (4) whether or not the set node is a leaf node (lines

9–14); (5) which operator the child of the set node is (lines 16–24).

Algorithm 5.5 aims to backtrack a set by using the compressed tree. We

update the parent of each Boolean operator node through a bottom-up traver-

sal.

Note that the construction of a control tree in Algorithm 5.4 is closely

related to the controlled reachability analysis in Section 2.2.2. In lines 12–13,

Control Synthesis 117

the computation of control set follows from the de�nition of robust invariant

set (RCIS). In lines 22–23, the de�nition of one-step controlled reachable set is

used to compute the control set. In lines 24–26, the control set is synthesized

from the de�nition of a controlled reachable set.

The following theorem shows that Algorithm 5.3 is recursively feasible.

This means that initial feasibility implies future feasibility. This is an impor-

tant property, particularly used in receding horizon control.

Theorem 5.6. Consider a controlled transition system CTS, an LTL formula ϕ,
and an initial state x0 ∈ S0. Let x0 and the controlled TLT of ϕ be the inputs of
Algorithm 5.3. If there exists a policy µ such that p satis�es the controlled TLT
of ϕ, ∀p ∈ Trajs(x0,µ), then

(i) the control set Uϕk (xk) (line 8 of Algorithm 5.3) is nonempty for all k ∈ N;

(ii) at each time step k, there exists at least one trajectory pwith pre�x p[..k+
1] = x0 . . . xkxk+1 under some policy such that p satis�es the controlled
TLT of ϕ, ∀uk ∈ Uϕk (xk) and ∀xk+1 ∈ Post(xk, uk).

Proof. The proof follows from the construction of the set Uϕk (xk) in Algo-

rithm 5.4 and the operations in Algorithms 5.2 and 5.5, and the de�nitions of

controlled reachable sets and RCISs. If there exists a policy µ such that p sat-

is�es the controlled TLT of ϕ, ∀p ∈ Trajs(x0,µ), we have that Algorithm 5.3

is feasible at each time step k, which implies that Uϕk (xk) 6= ∅. Furthermore,

from Algorithm 5.4, each element in Uϕk (xk) guarantees the one-step ahead

feasibility for all realizations of xk+1 ∈ Post(xk, uk), which implies the re-

sult (ii).

Theorem 5.6 implies that if there exists a policy such that all the result-

ing trajectories satisfy the controlled TLT built from ϕ, then Algorithm 5.3 is

always feasible at each time step in two senses: (1) the control set Uϕk (xk) is

nonempty; and (2) there always exists a feasible policy such that the trajecto-

ries with the realized pre�x satisfy the controlled TLT.

Remark 5.4. In Algorithm 5.3, the integration of Algorithms 5.2, 5.4, and 5.5
can be interpreted as a feedback control law. This control law is a set-valued
map Sk+1 → 2U at time step k. Given the pre�x p[..k] = x0 . . . xk, this map
collects all the feasible control inputs such that the state can move along the TLT
from p[..k].

118 Verification and Control based on Temporal Logic Trees

Algorithm 5.4 Control Tree

Input: p[..k] = x0 . . . xk and a TLT

Output: a control tree

1: if k = 0 and x0 /∈ the root node of TLT then
2: return ∅
3: else
4: for each set node X of TLT through a bottom-up traversal do
5: if p[..k] does not satisfy the fragment from the root node to X

then
6: B see De�nition 5.4;

7: replace X with ∅;
8: else
9: if X is leaf node then

10: if the parent of X is � then
11: replace X with UX = {u ∈ U | Post(xk, u) ⊆
RCI(X)};

12: else
13: replace X with U;

14: end if
15: else
16: switch the child of X do
17: case ∧ (or ∨)

18: replace X with UX = ∩i∈CHUCH,i (or UX =
∪i∈CHUCH,i)

19: B for each Boolean operator node,CH collects its chil-
dren and UCH,i is the corresponding control set for each child;

20: case©
21: replace X with UX = {u ∈ U | Post(xk, u) ⊆ Y}
22: B Y is the child of©;
23: case U or �
24: replace X with UX = {u ∈ U | Post(xk, u) ⊆ X};
25: end if
26: end if
27: end for
28: return the updated tree as the control tree.

29: end if

Control Synthesis 119

Algorithm 5.5 Set Backtracking

Input: a compressed tree

Output: a set Uϕk
1: for each Boolean operator node of the compressed tree through a bottom-

up traversal do
2: switch Boolean operator do
3: case ∧
4: replace its parent with YP ∪ (∩i∈CHYCH,i);

5: case ∨
6: replace its parent with YP ∪ (∪i∈CHYCH,i);

7: end for
8: B for each Boolean operator node, YP denotes its parent, CH collects its

children, and YCH,i is the corresponding control set for each child;
9: return the root node.

Remark 5.5. Note that to implement Algorithm 5.3, we do not need to �rst
check for the existence of a policy for the controlled TLT. The fact that a non-
empty control set is synthesized by Algorithm 5.3 at each time step is necessary
for the existence of the policy for the controlled TLT. We use the existence of the
policy as a-priori condition for proving the recursive feasibility of Algorithm 5.3
in Theorem 5.5.

Example 5.6. Let us continue to consider the controlled transition system in
Example 2.2 and the LTL formula ϕ = ♦�o2 in Example 5.5. Implementing
Algorithm 5.3, we obtain Table 5.1. We can see that at each time step, we can
synthesize a nonempty feedback control set. One realization is s1

a1−→ s3
a2−→

s3
a1−→ s2

a1−→ s3
a1−→ s2

a2−→ s4
a1−→ s2

a2−→ s4 · · · , of which the trajectory
p = s1s3s3s2s3s2(s4s2)ω satis�es both the controlled TLT and the formula ϕ.

In this example, Algorithm 5.3 is recursively feasible since we can verify that
the condition in Theorem 5.6 holds. That is, there exists a policy such that all
the resulting trajectories satisfy the controlled TLT: a feasible stationary policy
is µ = µ̄µ̄ · · · , where µ̄ : S → U with µ̄(s1) = a1, µ̄(s2) = a2, µ̄(s3) =
a1, and µ̄(s4) = a1. Under this policy, there are two possible trajectories, p =
s1s3(s2s4)ω and p = s1(s2s4)ω , both of which satisfy the controlled TLT and
the LTL formula ϕ.

120 Verification and Control based on Temporal Logic Trees

Table 5.1: Online implementation under Algorithm 5.3

Time k State xk Control set Uϕk (xk) Control input uk
0 s1 {a1} a1

1 s3 {a1, a2} a2

2 s3 {a1, a2} a1

3 s2 {a1, a2} a1

4 s3 {a1, a2} a1

5 s2 {a1, a2} a2

6 s4 {a1} a1

7 s2 {a1, a2} a2
.
.
.

.

.

.

.

.

.

.

.

.

5.5 Numerical Evaluations

5.5.1 Mobile Robot Example

Following the same scenario as in [162], as shown in Figure 5.3, we consider

a mobile robot modeled as a double integrator:

xk+1 =

[
1 0.2
0 1

]
xk +

[
0.1
0.2

]
uk + wk. (5.1)

Di�erent from [162], we choose the smaller sampling time of 0.2 second and

take into account the disturbance wk. The working space is X = {z ∈ R2 |
[−10,−10]T ≤ z ≤ [2, 2]T }, the control constraint set is U = {z ∈ R | −2 ≤
z ≤ 2}, and the disturbance set is W = {z ∈ R2 | [−0.05,−0.05]T ≤
z ≤ [0.05, 0.05]T }. In Figure 5.3(a), the obstacle regions are O1 = {z ∈
R2 | [−10,−10]T ≤ z ≤ [−5,−5]T } and O2 = {z ∈ R2 | [−5,−4]T ≤
z ≤ [2,−3]T }, the target region is T = {z ∈ R2 | [−0.5,−0.5]T ≤ z ≤
[−0.5,−0.5]T }, and two visiting regions are A = {z ∈ R2 | [−6, 1]T ≤ z ≤
[−5, 2]T } and B = {z ∈ R2 | [−5,−3]T ≤ z ≤ [−4,−2]T }.

Recall the system CS (2.1). Let the set of the observations be

O = {a1, a2, a3, a4, a5, a6}

Numerical Evaluations 121

A

B

T

O1

O2

−10 2
−10

2

X

−8 −6 −4 −2 0

−8

−6

−4

−2

0

x
2
k

x1k

Figure 5.3: Scenario of mobile robot example.

and, if x ∈ X, we de�ne the observation function as

g(x) =



{a1, a2}, if x ∈ X ∩O1,

{a1, a3}, if x ∈ X ∩O2,

{a1, a4}, if x ∈ X ∩ A,
{a1, a5}, if x ∈ X ∩ B,
{a1, a6}, if x ∈ X ∩ T
{a1}, otherwise.

(5.2)

As shown in Remark 2.2, we can rewrite the system (5.1) with the obser-

vation function (5.2) as a controlled transition system with the set of atomic

propositions AP = O and the labelling function L = g.

In [162], the speci�cation is to visit the region A or region B, and then

the target region T, while always avoiding obstacles O1 and O2, and staying

inside the working space X. This speci�cation can be expressed as a co-safe

LTL formula ϕ′ = ((a1 ∧ ¬a2 ∧ ¬a3)Ua6) ∧ (¬a6U(a4 ∨ a5)). Here, we ex-

tend the speci�cation to be to visit region A or region B, and then visit and

always stay inside the target region T, while always avoiding obstacles O1 and

O2, and staying inside working space X. Obviously, this speci�cation cannot

be expressed as a co-safe LTL formula, and thus cannot be handled by the

approach in [162]. We instead express this speci�cation as the LTL formula

ϕ = ((a1 ∧ ¬a2 ∧ ¬a3)U�a6) ∧ (¬a6U(a4 ∨ a5)). We will show that our

122 Verification and Control based on Temporal Logic Trees

∧

U

�

T

RCI(T)

∨

A ∪ B

A B

U

Y1

Y0

Y2

Figure 5.4: The controlled TLT for the LTL formula ϕ = ((a1 ∧ ¬a2 ∧
¬a3)U�a6) ∧ (¬a6U(a4 ∨ a5)) in the mobile robot example, where Y1 =
Y1 ∩ Y2, Y1 = Rc(X \ (O1 ∪O2),RCI(T)), and Y2 = Rc(X \ T,A ∪ B).

approach can handle such non-co-safe LTL formula. By computing inner ap-

proximations of the controlled reachable sets, we can construct the controlled

TLT of ϕ and then use Algorithm 5.3 to synthesize controllers online. The

constructed controlled TLT for ϕ is shown in Figure 5.4. Similar to [162], we

choose three di�erent initial states, for each of which the state trajectories and

the control trajectories are shown in Figures 5.5–5.7. We can see that in Fig-

ure 5.5(a), Figure 5.6(a), and Figure 5.7(a), all state trajectories xk satisfy the

required speci�cation ϕ. The black dots are the initial state. In this example,

the target region T is a RCIS. After entering T, the states stay there by using

the controllers that ensure robust invariance. In Figure 5.5(b), Figure 5.6(b),

and Figure 5.7(b)„ the dashed lines denote the control bounds, the cyan re-

gions represent the synthesized control sets Uϕk in Algorithm 5.3, and the blue

lines are the implemented control inputs xk.

5.5.2 Automated Car Example

This example will show how the speci�cation can be updated online by using

our approach. As shown in Figure 5.8, we consider a scenario where an auto-

mated car plans to move to a target set T but with some unknown obstacles

on the road. The sensing region of the car is limited. We use a single integrator

Numerical Evaluations 123

Figure 5.5: One simulated trajectory starting from the initial states [1,−5]T in

the mobile robot example: (a) state xk; (b) control input uk and control set Uϕk .

Figure 5.6: One simulated trajectory starting from the initial states

[−4.5,−2.5]T in the mobile robot example: (a) state xk; (b) control input uk
and control set Uϕk .

124 Verification and Control based on Temporal Logic Trees

Figure 5.7: One simulated trajectory starting from the initial states [0,−2]T in

the mobile robot example: (a) state xk; (b) control input uk and control set Uϕk .

model with a sample period of 1 second to model the dynamics of the car:

xk+1 =

[
1 0
0 1

]
xk +

[
1 0
0 1

]
uk + wk, (5.3)

where xk = [pxk p
y
k]
T

is the position and uk = [vxk v
y
k]T velocity. The working

space is X = {z ∈ R2 | [0,−5]T ≤ z ≤ [150, 5]T }, the control constraint

set is U = {z ∈ R2 | [−2,−0.5]T ≤ z ≤ [2, 0.5]T }, the disturbance set is

W = {z ∈ R2 | [−0.1,−0.1]T ≤ z ≤ [0.1, 0.1]T }, and the target region is

T = {z ∈ R2 | [145,−5]T ≤ z ≤ [150, 0]T }. We assume that X, U, and W
are known a priori to the car and the car should move along the lane with the

right direction unless lane change is necessary. In Figure 5.8, there are two

broken cars in the sets O1 = {z ∈ R2 | [40,−5]T ≤ z ≤ [45, 0]T } and

O2 = {z ∈ R2 | [100,−5]T ≤ z ≤ [105, 0]T }. We assume that O1 and O2 are

unknown to the car at the beginning. As long as the car can sense them, they

are known to the car.

Let the initial state be x0 = [0.5,−2.5]T and the sensing limitation is 15.

At time step k = 0, the set of observations is O = {a1, a2} and if x ∈ X, we

de�ne the observation function as

g(x) =

{
{a1, a2}, if x ∈ X ∩ T,
{a1}, otherwise.

Numerical Evaluations 125

O1 O2 T

0 150

0

−5

5

15

X

50 100
px

py

Figure 5.8: Scenario illustration of automated car example: an automated car

plans to reach a target set T but with some unknown obstacles on the road.

The initial speci�cation can be expressed as an LTL ϕ = a1Ua2. By con-

structing the controlled TLT of ϕ shown in Figure 5.9 and implementing Al-

gorithm 5.3, we obtain one realization as shown in Figure 5.10. We can see

that the car keeps moving straightforward until it senses the obstacle O1 at

[25.5,−2.4]T .

When the car can sense O1, a new observation a3 with a3 6= a1 and a3 6=
a2 is added to the setO, which becomesO = {a1, a2, a3}. If x ∈ X, we update

the observation function as

g(x) =


{a1, a2}, if x ∈ X ∩ T,
{a1, a3}, if x ∈ X ∩O1,

{a1}, otherwise.

To avoid O1, the new speci�cation is changed to be ϕ′ = ϕ∧ (�¬a3). We can

construct the TLT of ϕ′ based on that of ϕ, which is shown in Figure 5.9, and

then continue to implement Algorithm 5.3. We can see that the car changes

lane from [25.5,−2.4]T and quickly merges back after overtaking O1. The

trajectories are shown in Figure 5.10. The vehicle is under the control with

respect to ϕ′ until it can sense O2 at [86.3,−2.5]T .

Similarly, when the car can sense O2, we updateO = {a1, a2, a3, a4} and

the observation function as if x ∈ X,

g(x) =


{a1, a2}, if x ∈ X ∩ T,
{a1, a3}, if x ∈ X ∩O1,

{a1, a4}, if x ∈ X ∩O2,

{a1}, otherwise.

To avoid O2, the new speci�cation is changed to be ϕ′′ = ϕ′∧(�¬a4). We can

construct the TLT of ϕ′′ based on that of ϕ′, which is shown in Figure 5.9, and

then continue to implement Algorithm 5.3. We can see that the car changes

126 Verification and Control based on Temporal Logic Trees

∧

�

X \O1

RCI(X \O1)

T

U

Rc(X,T)

�

RCI(X \O2)

∧

Y1

Y0

X \O2

TLT for ϕ

TLT for ϕ′

TLT for ϕ′′

Figure 5.9: The controlled TLT for the LTL formulae in the automated car

example, where ϕ = a1Ua2, ϕ′ = ϕ ∧ (�¬a3), ϕ′′ = ϕ′ ∧ (�¬a4), Y0 =
Rc(X,T)∩RCI(X\O1), and Y1 = Rc(X,T)∩RCI(X\O1)∩RCI(X\O2).

lane from [86.3,−2.5]T and quickly merges back after overtaking O2. Under

the control with respect to ϕ′′, the car �nally reaches the target set T.

Figure 5.10 (a) shows the state trajectories, from which we can see that the

whole speci�cation is completed. Figures 5.10 (b)–(c) show the corresponding

control inputs, where the dashed lines denote the control bounds. The cyan

regions represent the synthesized control sets and the blue lines are the control

trajectories. Furthermore, we repeat the above process for 100 realizations of

the disturbance trajectories. The state trajectories for such 100 realizations are

shown in Figure 5.11.

We remark that in this example, the control inputs are chosen to push

the state to move down along the TLT as fast as possible. More speci�cally,

if the state xk is the i-step reachable set in the set node Rc(X,T), we can

generate a smaller control set from which the control input can push the state

to the (i − 1)-step reachable set. That is what we can see from Figure 5.10,

where almost all control inputs in the synthesized control sets along x-axis

are positive.

Numerical Evaluations 127

Figure 5.10: One simulated trajectory for 1 realization of disturbance in the

automated car example: (a) position x = [px py]T ; (b) control input of x-axis,

i.e., the velocity vx; (c) control input of y-axis, i.e., the velocity vy .

Figure 5.11: Position trajectories for 100 realizations of disturbance in the au-

tomated car example.

128 Verification and Control based on Temporal Logic Trees

5.6 Summary

In this chapter, we studied LTL model checking and control synthesis for

discrete-time uncertain systems. Quite unlike automaton-based methods, our

solutions build on the connection between LTL formulae and TLT structures

via reachability analysis. For a transition system and an LTL formula, we

proved that the TLT provide an underapproximation (or overapproximation)

for the LTL via minimal (or maximal) reachability analysis. We provided su�-

cient conditions and necessary conditions to the model checking problem. For

a controlled transition system and an LTL formula, we showed that the TLT

is an underapproximation for the LTL formula and thereby proposed an on-

line control synthesis algorithm, under which a set of feasible control inputs is

generated at each time step. We proved that this algorithm is recursively fea-

sible. We also illustrated the e�ectiveness of the proposed methods through

several examples.

Appendix. Proof of Theorem 5.1

The whole proof is divided into two parts: the �rst part shows how to construct

a TLT from the formula ∀ϕ by means of the reachability operators Rm
and

RI , while the second part shows that such TLT is an underapproximation

for ϕ.

Construction: We follow three steps to construct a TLT.

Step 1: rewrite the given LTL in the weak-until positive normal form. From

[36], each LTL formula has an equivalent LTL formula in the weak-until pos-

itive normal form, which can be inductively de�ned as

ϕ ::= true | false | a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ©ϕ
| ϕ1Uϕ2 | ϕ1Wϕ2. (5.4)

Step 2: for each atomic proposition a ∈ AP , construct the TLT with only
a single set node from ∀a or ∀¬a. More speci�cally, the set node for ∀a is

L−1(a) = {x ∈ S | a ∈ L(x)} while the set node for ∀¬a is S \ L−1(a).

In addition, the TLT for ∀true (or ∀false) also has a single set node, which is

S (or ∅).
Step 3: based on Step 2, follow the induction rule to construct the TLT for any

LTL formula in the weak-until positive normal form. More speci�cally, we will

Summary 129

.

...
...

∧

Xϕ1 Xϕ2

=⇒

.

∧

Xϕ1 Xϕ2

Xϕ1 ∩ Xϕ2

...

TLT for ∀ϕ1 TLT for ∀ϕ2

TLT for ∀(ϕ1 ∧ ϕ2)

Figure 5.12: The TLT construction of ∀(ϕ1 ∧ ϕ2). Here, the circles denote

the operator nodes and the rectangles denote the set nodes. Similar for Fig-

ures 5.13–5.16.

show that given the LTL formulae ϕ, ϕ1, and ϕ2 in the weak-until positive

normal form, if the TLT can be constructed from ∀ϕ, ∀ϕ1, and ∀ϕ2, respec-

tively, then the TLT can be thereby constructed from the formulae ∀(ϕ1∧ϕ2),

∀(ϕ1 ∨ ϕ2), ∀© ϕ, ∀(ϕ1Uϕ2), and ∀(ϕ1Wϕ2), respectively.

For ∀(ϕ1 ∧ ϕ2) (or ∀(ϕ1 ∨ ϕ2)), we construct the TLT by connecting the

root nodes of the TLT for ∀ϕ1 and ∀ϕ2 through the operator ∧ (or ∨) and

taking the intersection (or union) of two root nodes, as shown in Figures 5.12-

5.13. For ∀ © ϕ, we denote by Xϕ the root node of the TLT for ∀ϕ and then

construct the TLT by adding a new set nodeRm(S,Xϕ, 1) to be the parent of

Xϕ and connecting them through the operator©, as shown in Figure 5.14.

For ∀(ϕ1Uϕ2), the TLT construction is as follows. Denote by

{(Yϕ1
i ,O

ϕ1
i)}Nϕ1

i=1 all the pairs comprising a leaf node and its corresponding

parent in the TLT of ∀ϕ1, where Nϕ1
is the number of the leaf nodes. Here,

Yϕ1
i is the ith leaf node and Oϕ1

i is its parent. Denote by Xϕ2
the root node

of TLT for ∀ϕ2. We �rst change each leaf node Yϕ1
i to Rm(Yϕ1

i ,Xϕ2) \ Xϕ2
.

We then update the new tree for ∀ϕ1 from the leaf node to the root node

according to the de�nition of the operators. After that, we take Nϕ1
copies

of the TLT of ϕ2. We set the root node of each copy as the child of each new

leaf node, respectively, and connect them trough the operator U. Finally, we

have one more copy of the TLT of ∀ϕ2 and connect this copy and the new

tree trough the disjunction ∨. An illustrative diagram is given in Figure 5.15.

130 Verification and Control based on Temporal Logic Trees

.

...
...

∨

Xϕ1 Xϕ2

=⇒

.

∨

Xϕ1 Xϕ2

Xϕ1 ∪ Xϕ2

...

TLT for ∀ϕ1 TLT for ∀ϕ2

TLT for ∀(ϕ1 ∨ ϕ2)

Figure 5.13: The TLT construction of ∀(ϕ1 ∨ ϕ2).

. . .

...

©

Xϕ

=⇒

. . .

©

Xϕ

R m (Rnx ,Xϕ, 1)

...

TLT for ∀ϕ

TLT for ∀© ϕ

Figure 5.14: The TLT construction of ∀© ϕ.

Summary 131

. . .

. . .

...

...

U

Xϕ1

Xϕ2

=⇒

Yϕ1

j

Oϕ1

j

Yϕ1

i

Oϕ1

i

.

. . .

...

X̂ϕ1

Oϕ1

i

. . .

. . .Rm(Yϕ1

i ,Xϕ2)

U U

. . .

...

Xϕ2

. . .

...

Xϕ2

. . .
Oϕ1

j

Rm(Yϕ1

i ,Xϕ2)

∨

. . .

...

Xϕ2

X̂ϕ1 ∪ Xϕ2

TLT for ∀ϕ1

TLT for ∀ϕ2

TLT for ∀(ϕ1Uϕ2)

Figure 5.15: The TLT construction for ∀(ϕ1Uϕ2).

For the fragment ∀(ϕ1Wϕ2), we �rst recall that ϕ1Wϕ2 = ϕ1Uϕ2∨�ϕ1.

Let ϕ′ = ϕ1Uϕ2 and ϕ′′ = �ϕ1. Denote by Xϕ1
the root node of the TLT

for ∀ϕ1. We �rst construct the TLT of ∀ϕ′ as described above. Second, we

further construct the TLT of ∀ϕ′′ with by adding a new nodeRI(Xϕ1) as the

parent of Xϕ1
and connecting them through �. Then, we construct the TLT

of ∀(ϕ′ ∨ ϕ′′). An illustrative diagram is given in Figure 5.16.

Underapproximation: First, it is very easy to verify that the constructed

TLT above with a single set node L−1(a) (or S \L−1(a) or) for ∀a (or ∀¬a or

S or ∅) is an underapproximation for a ∈ AP (or ¬a or ∀true or ∀false) and

the underapproximation relation in these cases is also tight.

Next we also follow the induction rule to show that the constructed TLT

from ∀ϕ is an underapproximation for ϕ. Consider LTL formulae ϕ, ϕ1, and

ϕ2. We will show that if the constructed TLT of ∀ϕ, ∀ϕ1, and ∀ϕ2 are the un-

derapproximations of ϕ, ϕ1, and ϕ2, respectively, then the TLT constructed

132 Verification and Control based on Temporal Logic Trees

. . .

. . .

...

...

W

Xϕ1

Xϕ2

=⇒

Yϕ1

j

Oϕ1

j

Yϕ1

i

Oϕ1

i

.

∨

. . .

...

Yϕ1

jYϕ1

i

Oϕ1

i

.

Xϕ1

Oϕ1

j

�

RI(Xϕ1)

.... . .

...

X̂ϕ1

Oϕ1

i

. . .

. . .Rm(Yϕ1

i ,Xϕ2)

U U

. . .

...

Xϕ2

. . .

...

Xϕ2

. . .

Oϕ1

j

Rm(Yϕ1

j ,Xϕ2)

. . .

Xϕ2

∨

X̂ϕ1 ∪ Xϕ2

RI(Xϕ1) ∪ X̂ϕ1

TLT for ∀ϕ1

TLT for ∀ϕ2

TLT for ∀(ϕ1Wϕ2)

Figure 5.16: The TLT construction for ∀(ϕ1Wϕ2).

Summary 133

above for the formulae ∀(ϕ1 ∧ ϕ2), ∀(ϕ1 ∨ ϕ2), ∀ © ϕ, ∀(ϕ1Uϕ2), and

∀(ϕ1Wϕ2) are the underapproximations of ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ©ϕ, ϕ1Uϕ2,

and ϕ1Wϕ2, respectively.

According to the set operation (intersection or union) or the de�nition of

one-step minimal reachable set, it is easy to verify that the constructed TLT for

∀(ϕ1∧ϕ2) (or ∀(ϕ1∨ϕ2)) or ∀©ϕ is an underapproximation for ϕ1∧ϕ2 (or

ϕ1 ∨ ϕ2) or©ϕ if the TLT of ∀ϕ1 and ∀ϕ2, and ∀ϕ are underapproximations

ϕ, ϕ1, and ϕ2, respectively.

Let us consider ϕ1Uϕ2. Assume that a trajectory p satis�es the TLT of

∀(ϕ1Uϕ2). Recall the construction of the TLT of ∀(ϕ1Uϕ2) from ∀ϕ1 and ∀ϕ2.

According to the de�nition of minimal reachable set, we have (1) p satis�es

the TLT of ∀ϕ2; or (2) there exists that j ∈ N such that p[j..] satis�es the TLT

of ∀ϕ2 and for all i ∈ N[0,j−1], the trajectory p[i..] satis�es the the TLT of ∀ϕ1.

Under the assumption that the TLT of ∀ϕ1 and ∀ϕ2 are the underapproxima-

tions of ϕ1 and ϕ2, respectively, we have that there exists j ∈ N such that

p[j..] � ϕ2 and for all i ∈ N[0,j−1], p[i..] � ϕ1, which implies that p � ϕ1Uϕ2.

Thus, the TLT of ∀(ϕ1Uϕ2) is an approximation of ϕ1Uϕ2.

Recall that ϕ1Wϕ2 = ϕ1Uϕ2 ∨ �ϕ1. Following the proofs for until op-

erator U and the disjunction ∨ and the de�nition of the robust invariant set,

it yields that the constructed TLT of ∀(ϕ1Wϕ2) is an underapproximation of

ϕ1Wϕ2.

The proof is completed.

Chapter 6

Car Parking Application
In the previous chapter, we proposed the notion of temporal logic trees (TLT)

and developed TLT-based approaches for performing model checking and con-

trol synthesis for uncertain systems. In this chapter, we will show that such

approaches have great potential in shared-autonomy systems where the hu-

man actions are used proactively. Speci�cally, we propose a guiding controller

solution to a car parking problem, where a human operator needs to remotely

drive a vehicle into an empty parking spot. We specify the parking task as a set

of linear temporal logic (LTL) formulae. Then, using the TLT-based approach,

we synthesize a set of controllers for assisting the human operator to complete

the mission, while guaranteeing that the system maintains speci�ed spatial

and temporal properties. We assume the human operator’s exact preference

of how to complete the mission is unknown. Instead, we use a data-driven

approach to infer and update the human operator’s preference over parking

spots in real-time. If, while the human is operating the vehicle, she provides

inputs that violate any of the invariances prescribed by the LTL formula, our

veri�cation-based controller will use its internal belief of the human opera-

tor’s intended objective to guide the operator back on track. Moreover, we

show that as long as the speci�cations are initially feasible, our controller will

stay feasible and can guide the human to park the vehicle in the empty spot

safely despite unpredicted human actions. We demonstrate the results on the

Small Vehicles for Autonomy (SVEA) platform.

The remainder of this chapter is organized as follows. Section 6.1 gives

the background. In Section 6.2, we outline our plant model and provide the

problem statement. In Section 6.3, we formulate the guiding controller. In Sec-

tion 6.4, we illustrate the e�ectiveness of our approach with an experiment. In

Section 6.5, we conclude the chapter.

135

136 Car Parking Application

6.1 Introduction

Vehicle parking is one of the most time-consuming and safety-critical tasks

that drivers perform daily. According to statistics reported in [163], drivers in

the U.S., U.K. and Germany wasted 17, 44, and 41 hours a year, respectively;

in total costing 72.7 billion dollars, 23.3 billion pounds, and 40.4 billion euros

a year. In addition to being an unsustainable (due to wasted fuel) and eco-

nomically wasteful task, vehicle parking is also often a dangerous and strain-

ing task for drivers that involves complex maneuvering into tight spaces with

many chaotic safety constraints. Motivated by these issues, engineers and re-

searchers have recently spent signi�cant e�ort in advancing parking guidance

and management technology.

Vehicle parking-related industries have already made a variety of techno-

logical advances to parking guidance and management systems. For example,

nowadays, many private vehicles have parking assistance systems that are ca-

pable of assisting humans in maneuvering into nearby parking spots. In the

development of better parking management systems, Hikvision, a supplier of

video surveillance products, demonstrated that vision-based guidance meth-

ods can improve parking e�ciency [164]. Furthermore, there are now even

deployments of commercial automated parking products, e.g., Remote Park-

ing Assist from Mercedes [165] and Remote Control Parking from BMW [166].

In the literature, researchers devote most of their e�ort into solving the

problem of generating obstacle-free trajectories for vehicles in tight park-

ing environments. Nonlinear vehicle dynamics and non-convex environments

make this problem di�cult to solve in real time. In [167], authors pro-

pose a hierarchical framework that integrates a Hybrid A
∗

planner with an

optimization-based collision avoidance planner. The Hybrid A
∗

planner pro-

vides a coarse warm-start solution for the collision avoidance planner, speed-

ing up the real-time implementation. A distributed model predictive control

formulation improves parking e�ciency and helps ensure collision avoidance

by taking into account human behavior prediction and vehicle coordination

in [168]. In [169], authors decouple an automated parking problem into a cen-

tralized parking spot allocation and path generation problem, and a decen-

tralized collision avoidance control problem. Although these approaches yield

important results, the formulations are not suitable for checking whether the

parking task is feasible in the �rst place, since checking the feasibility of a

non-convex optimization problem is challenging.

Introduction 137

Additionally, to the extent of the authors’ knowledge, shared autonomy-

based parking receives little attention in the research community, despite the

fact that many of the current parking technologies rely on the presence of

a human supervisor to perform the parking maneuver [165], [166]. The re-

quirement of a human supervisor partially stems from the unpredictable and

chaotic nature of parking lots and other human-driven vehicles. For similar

reasons, many have proposed the use of remote human operators as a layer

of operations management and exception-handling for connected vehicles in

general [170].

6.1.1 Contribution

The main contribution of this chapter is to propose a guiding controller that

supports a remote human operator to safely drive a vehicle to an empty park-

ing spot. The parking task is speci�ed as a set of LTL formula. The TLT-based

approach in Chapter 5 is used to do control set synthesis using reachability

analysis, giving us guarantees that the system will follow the LTL speci�ca-

tions. These control sets tells us what a human operator is allowed and not

allowed to do. Furthermore, we develop a data-driven approach to infer and

update the human operator’s preference over parking spots in real-time. Then,

with the veri�ed control sets, we improve the approach in [171] by allowing

the human to freely make decisions as long as they do not violate invariances

speci�ed by the LTL formula.

6.1.2 Related Work

As shown by [172] and [173], using LTL formula allows us to conveniently

express time-related tasks, e.g., car parking, for automated systems. Further-

more, the work presented in [171] exempli�es the advantage of using tempo-

ral tasks for human-in-the-loop mixed-initiative control. However, with LTL

speci�ed missions, [35], [68], [174], [175] show that synthesizing controls that

guarantee that a speci�cation will be met is nontrivial. [161] details a corre-

spondence between reachable sets and signal temporal logic (STL) that allows

for control synthesis directly from STL speci�cations with guarantees that the

controller will satisfy the invariances given by the STL formula. Inspired from

this, we propose a TLT-based approach for synthesizing control sets from LTL

speci�cations.

138 Car Parking Application

TiPi

X
i ∈ E

i ∈ F

Figure 6.1: Illustration of our parking scenario.

There are several proposals for how to design guiding controllers. In [176],

the authors propose an approach to learn optimal policies via reinforcement

learning while enforcing LTL speci�cations. They utilize a shield, a similar

notion to the guiding controller in our chapter, to monitor the actions from

the learner. The shield is used to correct them only if the chosen action causes

a violation of the speci�cation. We remark that the systems studied in [176]

are �nite-transition systems, whereas in our work we consider discrete-time

dynamical systems, leading to di�erent control synthesis approaches. Another

notable approach is given in [155], which proposes one of the �rst frameworks

where humans are given a higher priority than the automated system in the

decision making process whereas the human’s direct control of the automated

system is “weakened”. The designed controller provides a set of admissible

control inputs with enough degrees of freedom to allow the human operator

to easily complete her task. We take inspiration from this approach for the

design of our guiding controller.

6.2 Problem Formulation

In this section, we formulate the remote car parking problem. Before that, let

us �rst detail the remote parking scenario, as shown in Figure 6.1, where a

remote operator is safely driving a vehicle to some empty parking spot, while

avoiding collision with the walls of the parking lot and the parked vehicles.

Guiding Controller 139

6.2.1 Vehicle Model

For simplicity, the vehicle is modeled as a two-dimensional single-integrator

a�ected by a bounded disturbance. After discretizing the model with a sam-

pling period of δ second, it follows that

xk+1 = Axk +Buk + wk, (6.1)

where xk =
[
pxk, p

y
k

]T
, uk =

[
vxk , v

y
k

]T
, pxk and pyk, vxk and vyk denote the

longitudinal and lateral position and velocity, respectively. The control input

uk is bounded by U ⊂ R2
and the disturbance wk is bounded by W ⊂ R2

.

6.2.2 LTL-Specified Parking Task

To de�ne the parking task, the whole space of the parking lot is denoted by

the set X ⊆ R2
. In the parking lot, each parking spot is either full or empty.

Denote the sets of indices corresponding to full and empty parking spots as

F and E , respectively. As in Figure 6.1, the state set of the parking spot i is

denoted byPi ⊆ R2
. We further introduce the set of states within everyPi that

correspond to an accurate and correct parking job as Ti. In our example, we

de�ne accurate parking as parking in a precise location. Then, we can describe

the parking task as: if there is one or more empty parking spots, then park in

one of them while staying safe.

To specify the parking task using LTL formulae, we denote by [Y] the cor-

responding atomic proposition of the set Y . Then, the parking task described

above for an empty parking spot i can be written as

ϕi =
(
[X] ∧ (∧j∈F¬[Pj])

)
U[Pi]U�[Ti]. (6.2)

Then, we use (6.2) to write the set of speci�ed tasks as {ϕi}i∈E .

The objective of this chapter is to solve the following problem.

Problem 6.1. Given a vehicle and a multi-objective parking task as a set of LTL
speci�cations, design a controller that guides the remote operator to safely park
the vehicle into an empty parking spot.

6.3 Guiding Controller

This section provides a guiding controller solution to the remote parking prob-

lem. Recall that the parking task is given as a set of speci�cations {ϕi}i∈E . We

140 Car Parking Application

{UA
ik}

uH
k

uk

P

H

GC

VS
I

CS

uk

bk

xk

xH
k

Figure 6.2: Guiding control framework. H: human decision-maker; P : plant;

GC: guiding controller; I : inferring; CS : control set synthesis;VS : veri�cation-

based synthesis.

assume that the human’s preference over the speci�cation group is uncertain,

e.g., time-varying or random. In other words, the empty parking spot the hu-

man operator intends to park in is unknown.

Let us illustrate the solution by the block diagram in Figure 6.2, where

the plant P corresponds to the vehicle and is described by the dynamics (6.1).

A human operator (H) is allowed to make decisions and provide inputs to

a veri�cation system corresponding to a guiding controller (GC) that �lters

human decisions for ensuring mission completion and safety. In Figure 6.2,

we distinguish the state xk that is measured by the sensor and transmitted to

the guiding controller with the state xHk that the human operator perceives by

herself. According to the state xHk , the human operatorH can make decisions

and provide inputs uHk to a guiding controller, denoted by GC. This guiding

controller �lters the human’s decision uHk to a veri�ed control command uk
and sends it for implementation at the plant P .

According to Problem 6.1, the main objective of this chapter is to design

the guiding controller GC that consists of three submodules, as shown in Fig-

ure 6.2: (1) a control set synthesis module CS which provides a group of con-

trol sets, i.e., {UAik}i∈E ; (2) an inference module I which updates the auto-

Guiding Controller 141

mated system’s belief bk of which speci�ed objective the human intends to

complete; and (3) a veri�cation-based synthesis module VS which provides a

veri�ed control command uk for satisfying the LTL speci�ed task whenever

the human’s decision does not satisfy the speci�cation.

We do not impose any expectations on how a human actually performs

a decision-making process, but only assume that the human can synthesize a

control input uHk at each time instant k. Next, we will show how to design the

inferring module I and the veri�cation synthesis VS . Using these modules,

we will then outline the algorithm for our guiding controller GC.

6.3.1 Control Set Synthesis CS
Recall that the TLT-based approach in Chapter 5 can online synthesize a fea-

sible control set at each time step for discrete-time uncertain systems under

LTL speci�cations. Such an approach is applicable for the LTL-speci�ed park-

ing task.

Given the LTL formula ϕi in (6.2), we can construct the controlled TLT

of ϕi by using reachability analysis. In detail, we can represent the controlled

TLT of ϕi in the form of complete paths, i.e.,

Y1,iUY2,iURCI(Ti)�Ti (6.3)

where Y1,i = Rc(X \ (∪j∈FPi),Y2,i) and Y2,i = Rc(Pi,RCI(Ti)).

The simple form of the controlled TLT allows us to directly design the

control set, without the series of complex operations used in Algorithms 5.4,

5.2, and 5.5 of Chapter 5. Given the measured state xk, the feasible control set

UAik(xk) for the LTL formula ϕi is synthesized by Algorithm 6.1.

6.3.2 Inference Module I
As mentioned before, we assume that the human’s preference is unknown

for the guiding controller GC. We introduce a speci�cation belief bk, which

is a probability distribution vector over the speci�cation group. Each element

bk(i) quanti�es the preference of the human on the speci�cation ϕi. The in-

ference module I is to update this belief bk in a data-driven manner. If the

decision of the human uHk satis�es the speci�cation ϕi, i.e., uHk ∈ UAik, we

justify that the human’s preference also satis�es this speci�cation at time in-

stant k. We denote by a 0 − 1 vector ok ∈ RNs the observation vector: if

142 Car Parking Application

Algorithm 6.1 Control Set Synthesis

Input: xk and the controlled TLT in (6.3)

Output: a control set UAik(xk)
1: if xk ∈ RCI(Ti) then
2: UAik(xk) = {u ∈ U | {Axk +Bu} ⊕W ⊆ RCI(Ti)};
3: else
4: if xk ∈ Y2,i then
5: UAik(xk) = {u ∈ U | {Axk +Bu} ⊕W ⊆ Y2,i};
6: else
7: if xk ∈ Y1,i then
8: UAik(xk) = {u ∈ U | {Axk +Bu} ⊕W ⊆ Y1,i};
9: else

10: UAik(xk) = ∅;
11: end if
12: end if
13: end if
14: return UAik(xk).

uHk ∈ UAik, ok(i) = 1; otherwise, ok(i) = 0. According to the Bayesian rule,

the speci�cation belief is updated as

bk+1(i) =
ok(i)bk(i)(vol(UAik) + ε)∑Ns
i=1 ok(i)bk(i)(vol(UAik) + ε)

. (6.4)

Here, vol(·) denotes the set volume. We de�ne vol(∅) = −∞ and 0 ×
(−∞) = 0. In addition, ε is a positive constant to avoid the singular case

when vol(UAik) ≤ 0, ∀i. Intuitively, the larger the volume of UAik is, the easier

for the operator to complete the speci�cation ϕi, which in turn means that the

more likely the human chooses ϕi.

6.3.3 Verification-based Synthesis Module VS
After synthesizing the control sets {UAik}Nsi=1 for all the speci�cations, we use a

veri�cation synthesis scheme to �lter the human decision. If the decision of the

human satis�es some speci�cation, the decision will be respected. Otherwise,

it will be corrected based on the speci�cation belief bk and the control sets

{UAik}Nsi=1. Mathematically, the control input uk after veri�cation synthesis is

Guiding Controller 143

derived as

uk =


uHk , if ∃i s.t. uHk ∈ UAik,

argmin
u∈UAik,i=1,...,Ns

‖u−uHk ‖
bk(i) , otherwise, (6.5)

where uHk is the original human decision. In (6.5), the belief bk(i) plays the

role of weighing the distance between uHk and UAik. Larger bk(i)’s increase the

possibility of choosing the projected control input of uHk on the set UAik.

6.3.4 Online Algorithm

Next we develop an online algorithm for the guiding controller GC. Due to

the presence of disturbances wk, we implement the robust guiding controller

in a closed-loop manner. As shown in Algorithm 6.2, at each time instant k,

if all the synthesized control sets UAik(xk) are empty, i.e., all speci�cations are

infeasible, the algorithm outputs Infeasible (lines 7–8). Otherwise, the guiding

controller will mix the decision of the human uHk and the synthesized control

sets UAik to synthesize the control input uk (lines 4, 5, and 10). Meanwhile, the

speci�cation belief bk is updated (line 11).

Algorithm 6.2 Guiding Controller Algorithm

1: Initialization: Set k = 0 and TerInd = 1;

2: while TerInd do
3: Measure xk;

4: Human makes a decision uHk ;

5: Synthesize UAik for each ϕi by Algorithm 6.1;

6: if UAik = ∅, ∀i ∈ N[1,Ns] then
7: TerInd = 0;

8: Output: Infeasible;

9: else
10: Synthesize controller uk by (6.5);

11: Update speci�cation belief bk by (6.4);

12: Implement uk;

13: Update k = k + 1;

14: end if
15: end while

The following theorem shows that Algorithm 6.2 stays feasible.

144 Car Parking Application

−3

−0.8

0.7

1.2

T1

T2

P1

P2

−1.3 −2 −1 2.5

Figure 6.3: A parking situation where a remote human operator would like to

drive a vehicle to a narrow parking space P1 or a broad parking space P2.

Theorem 6.1. If the set E is nonempty and the initial state x0 ∈ Y1,i for some
i ∈ E , then Algorithm 6.2 is feasible for all k ∈ N;

Proof. The result directly follows from the recursive feasibility under the TLT-

based approach (see Theorem 5.6) and the veri�cation-based synthesis (6.5).

6.4 Experiments

In this section, we detail our experimental setup and report experimental re-

sults. We consider the parking scenario shown in Figure 6.3 where there are

two empty parking spots. The human operator would like to drive a vehi-

cle to a narrow parking space P1 or a broad parking space P2. For the ve-

hicle model, let the sampling period be 0.2 second, the control set U =
{u ∈ R2 | [−0.3,−0.3]T ≤ u ≤ [0.3, 0.3]T }, and the disturbance set

W = {w ∈ R2 | [−0.01,−0.01]T ≤ w ≤ [0.01, 0.01]T }. The LTL-speci�ed

parking tasks are

ϕ1 =
(
[X] ∧ (∧j∈F¬[Pj])

)
U[P1]U�[T1],

ϕ2 =
(
[X] ∧ (∧j∈F¬[Pj])

)
U[P2]U�[T2].

Experiments 145

6.4.1 Experimental Setup

The experimental setup consists of three components: the ego vehicle, a hu-

man operator interface, and the parking lot environment, see Figure 6.3.

The ego vehicle is represented by the SVEA platform, which is a small

robotic car platform designed to evaluate automated vehicle-related software

stacks. For our experiment, we equip the SVEA car with an ELP �sh-eye cam-

era to provide a wide-angle view for the human operator and a TP-Link 4G

LTE modem for streaming both the camera data to the human operator and

the control from the human operator back to the SVEA car.

For the human operator interface, we place a human at a teleoperation

desk built to support the management of remotely connected vehicles. A com-

puter at the teleoperation desk is connected to the internet and is running a

WebRTC-based app that handles the data transmission between the teleoper-

ation station and the SVEA car over a peer-to-peer connection. The human

can provide input to the control system with a Logitech G29 steering wheel

and pedals. This interface subsumes the GC block in Figure 6.2. The free park-

ing spots and obstacles are all in the coordinate frame of a Qualisys motion

capture system.

6.4.2 Experimental Results

The human operator is parking the vehicle in parking space P2, corresponding

to speci�cation ϕ2. The video of the experiment is available at https://youtu.

be/WhFNleymOJ8.

We show snapshots of the vehicle’s position in Figure 6.4. Here, we high-

light the position of the vehicle by the red box and show the view of the human

operator in the bottom right corner of each snapshot. The corresponding po-

sition trajectory is shown in Figure 6.5. We can see that during the parking

process, there is no collision between the vehicle and the obstacles.

Figure 6.6 shows the control inputs and the control sets, where the dashed

lines denote the control bounds. Here, ux = vx and uy = vy . The blue lines

are the decisions uHk of the human driver while the black lines are the imple-

mented control inputs uk by using the guiding controller in Figure 6.2. The

red and cyan regions represent the synthesized control sets UA1k and UA2k for

ϕ1 and ϕ2, respectively. We can see that all the control commands uk always

belong to the synthesized control sets while this is not true for the human

decisions.

https://youtu.be/WhFNleymOJ8
https://youtu.be/WhFNleymOJ8

146 Car Parking Application

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Snapshots of the vehicle’s position when a human remotely drives

the vehicle to the parking space P2. We highlight the position of the vehicle

by the red box and show the view of the human operator in the bottom right

corner of each snapshot.

Experiments 147

−3

−0.8

0.7

1.2

T1

T2

P1

P2

−1.3
−2 −1 2.5

Figure 6.5: Position trajectory of the experimental realization in Figure 6.4.

Figure 6.6: Control trajectory by using the guiding controller. The blue lines

are the decisions uHk of the human driver while the black lines are the imple-

mented control inputs uk. The red and cyan regions represent the synthesized

control sets UA1k and UA2k for ϕ1 and ϕ2, respectively.

148 Car Parking Application

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

Figure 6.7: Belief update bk when the human drives the vehicle to the parking

space 2.

Note that at some time instants, the human’s decision cannot satisfy any

speci�cation, thus the input is corrected by the veri�cation-based synthesis

according to the synthesized control sets. After 4.6 seconds (at which pxk is

about 1 m), the synthesized control set for ϕ1 is empty since this speci�cation

becomes infeasible. This can also be observed from Figure 6.7, which shows

the belief update. Note that the beliefs in ϕ1 and ϕ2 oscillate from 1.2 seconds

to 2.6 seconds since the volume of the control sets changes signi�cantly dur-

ing this time interval. After that, the belief in ϕ2 increases since the vehicle

passes the parking space P1 and approaches the parking space P2, which then

becomes more likely.

In this example, we can observe the capabilities of our approach. Even

though the system’s initial belief is neutral, as the human operates the vehi-

cle, the system updates its belief appropriately. The guiding controller works

together with the human operator to complete the parking maneuver.

Summary 149

6.5 Summary

In this chapter, we presented a solution to a remote car parking problem, where

the parking task was speci�ed as a set of LTL formulae. We gave priority to

the human operator’s decision, allowing her to perform actions on the vehicle

over a communication network. The framework made no assumptions about

the operator’s preference. Our system updates a data-driven belief of the op-

erator’s intent. We utilized the TLT-based approach to synthesize the control

sets for LTL formulae. We proved recursive feasibility of the method, showing

that the controller is always feasible and able to guarantee that the human will

not be able to drive the system to an unsafe set. We illustrated the e�ectiveness

of the proposed method by hardware experiments.

Chapter 7

Car Overtaking Application
The previous chapter investigates the shared-autonomy systems where the

human action are used proactively. In this chapter, we consider another kind of

shared-autonomy systems where the human action are used reactively. Specif-

ically, we develop a solution to the overtaking control problem where an au-

tomated vehicle tries to overtake a human-driven vehicle with uncertain mo-

tion. The uncertainty in the predicted motion makes automated overtaking

hard, for example, to guarantee feasibility. We introduce the weak assumption

that the predicted velocity of the overtaken vehicle respects a supermartingale,

meaning that its velocity is not increasing in expectation during the maneu-

ver. We show that this formulation presents a natural notion of risk. Based

on the martingale assumption, we perform a risk-aware reachability analy-

sis by analytically characterizing the predicted collision probability. Then, we

design a risk-aware optimal overtaking algorithm with guaranteed levels of

collision avoidance. Finally, a simulated example illustrates the e�ectiveness

of the proposed algorithm.

This chapter is structured as follows. In Section 7.1, we motivate the ad-

dressed problem. Section 7.2 gives some preliminaries and Section 7.3 formu-

lates the car overtaking problem. Section 7.4 proposes risk-aware reachability

analysis based on martingale theory. In Section 7.5, a risk-aware optimal over-

taking algorithm is presented while Section 7.6 demonstrates the e�cacy of

our algorithm and compares our work with state-of-the-art. Finally, Section 7.7

concludes the chapter.

151

152 Car Overtaking Application

7.1 Introduction

7.1.1 Motivation

Overtaking is a dangerous driving maneuver with both lateral and longitudi-

nal movements. Many researchers believe that by developing an approach for

safe, robust, and e�cient overtaking, we will signi�cantly progress the safety

of automated vehicles [22], [177].

Several existing works propose solutions for performing safe and e�cient

overtaking maneuvers [178]–[182]. However, these solutions all assume that

the vehicle to be overtaken moves at a constant velocity. Under this assump-

tion, overtaking can be formulated as a reference tracking problem or an opti-

mal control problem. Note that these problems do not encounter any feasibility

issues if the velocity of the overtaken vehicle is smaller than the velocity limit

imposed by the tra�c rule and the prediction horizon is chosen appropriately.

Although the constant velocity assumption is a natural choice in many prac-

tical implementations, it is interesting to consider overtaking vehicles that do

not drive at a �xed velocity, especially since human drivers can change their

velocities while being overtaken, depending on how they react to the situa-

tion. In this chapter, we present examples where if the vehicle being overtaken

is changing its velocity, we can improve the overtaking compared to existing

control laws.

7.1.2 Main Contributions

We study the process of overtaking a human-driven vehicle V2 by an auto-

mated vehicle V1, as shown in Figure 7.1. The overtaking maneuver requires

the automated vehicle to laterally move into an empty lane when it is safe to

initiate the maneuver, longitudinally overtake V2, and, �nally, laterally merge

back into the original lane in front of V2. At each stage of the overtaking ma-

neuver, many factors introduce uncertainty, which make the overtaking hard

to perform robustly and safely [183].

The main contribution of this chapter is to develop an algorithm that in-

creases the possibility of a feasible automated overtaking while guaranteeing

the safety of both V1 and V2, even when V2 does not move at a constant ve-

locity. More speci�cally,

(C7.1) We propose a formulation for risk-aware reachability analysis based on

martingale theory. We develop risk-aware reachable sets, which are sub-

Introduction 153

d

d

Obstacle region

Obstacle region

O1

O2

V1 V2

Overtaking trajectory

Figure 7.1: Scenario where automated vehicle V1 is overtaking a human-driven

vehicle V2 on a road with two lanes.

sets of traditional reachable sets. Risk-aware reachable sets are shown

to admit predicted collision probabilities between V1 and V2. We esti-

mate these collision probabilities analytically using the concentration

inequality of martingale theory.

(C7.2) Based on the proposed risk-aware reachability analysis, we design a

risk-aware optimal overtaking algorithm. It is used to solve the over-

taking problem in a receding-horizon manner. We provide su�cient and

necessary conditions for the feasibility of the risk-aware optimal over-

taking problem. In other words, by performing a safety check a step

ahead of the execution of each control command, our algorithm can

guarantee that the overtaking process is collision-free.

7.1.3 Related Work

There is a signi�cant body of work on automated overtaking under the as-

sumption that the vehicle to be overtaken moves at a constant velocity. For

example, model predictive control is used to track a reference overtaking tra-

jectory in [178]–[180]. To handle collision avoidance, the overtaking problem

is formulated as a mixed integer program in [181], [182]. In [184], a constrained

iterative linear quadratic regulator is used to e�ciently solve the overtaking

problem. The recent work [185] does not adopt the constant velocity assump-

tion and considers measurement noises in the overtaking scenario, but no for-

mal safety guarantees are provided.

Reachability analysis is used to give formal safety guarantees for vehicle

control [55], [56]. Robust approaches maintain strict guarantees that despite

the bounded disturbances, the state trajectory can be kept by a feedback con-

154 Car Overtaking Application

troller into a safe state tube with a certain time horizon [44]. In [186]–[188],

the authors formulate approaches for reachability-based automated overtak-

ing for vehicles that overtake static obstacles using the opposing direction’s

lane. In [57], the reachability is incorporated a model predictive controller for

ensuring the safety of an automated vehicle when interacting with a human-

driven vehicle. On the other hand, stochastic approaches guarantee that there

will not be an unsafe trajectory within a certain time horizon for a given prob-

ability [15]. Stochastic reachability approaches can be bene�cial, since they

permit a trade-o� between collision probability and optimality, while avoiding

too conservative decisions. However, the introduction of stochasticity often

introduces the additional challenge of �nding high-�delity stochastic models.

In [189], a Markov chain is used to model the uncertainty of other tra�c par-

ticipants and applied to probabilistic automated overtaking. Markov decision

processes or partially observable Markov decision processes are used to model

the stochasticity of human driving behavior in [190], [191]. Such assumptions

on human driving behaviors are quite strong. Another work [192] proposes

an empirical method for generating approximate stochastic reachable sets for

human-in-the-loop driving systems. However, in many overtaking scenarios,

an automated vehicle will not have the historical data to generate these em-

pirical sets. In our recent work [193], we choose to use martingales to model

the expected behavior of a human driver during overtaking. This assumption

is weaker than the Markovian assumptions above, since less historical data is

needed for the validation of martingale-based model than the identi�cation of

the Markovian models. This chapter generalizes the preliminary conference

results of [193] signi�cantly in that we use a more detailed nonlinear vehi-

cle model, formulate a risk-aware optimal overtaking problem, and propose a

more general solution for solving this problem.

Historically, martingales are often applied to gambling or pricing problems

since they e�ciently model the lack of arbitrage [194]. In [195], the author dis-

cusses the use of martingales in several classical stochastic control problems.

In particular, supermartingales plays an important role in proving the stochas-

tic stability. In addition, martingale theory is also relevant to the risk theory.

A risk-neutral measure is also called a martingale measure [196]. In [197], it

is shown that the multiportfolio time consistency of a dynamic multivariate

risk measure is equivalent to a supermartingale property. Under the super-

martingale assumption, we propose in this chapter risk-aware reachable sets

and develop a risk-aware overtaking algorithm.

Preliminaries 155

7.2 Preliminaries

This section provides some preliminaries that will be used in this chapter.

7.2.1 Martingale Theory

We will use the following de�nition and inequality from martingale theory. A

supermartingale is a stochastic process for which the conditional expectation

of future values given the history information is bounded above by the current

value. A formal de�nition is given as follows.

De�nition 7.1. [198] A discrete-time integrable stochastic process {Xi, i ∈ N}
on a probability space (Ω,F ,Pr), with a �ltration {Fi, i ∈ N} and Fi ⊆ F , is
said to be a supermartingale if E[Xi+1|Xi] ≤ Xi, ∀i ∈ N.

Due to the decreasing property of supermartingales, the following con-

centration inequality holds.

Lemma 7.1. [199] Consider a discrete-time supermartingale {Xi, i ∈ N} with
a �ltration {Fi, i ∈ N} and Fi ⊆ F . If for all i ∈ N≥1, and some positive σi
andM , Var[Xi|Fi−1] ≤ σ2

i and Xi − E[Xi|Xi−1] ≤M , then for all η ≥ 0,

Pr[Xi ≥ X0 + η] ≤ exp
(
− η2

2(
∑i

j=1 σ
2
j +Mη/3)

)
.

7.2.2 Vehicle Collision-free Conditions

Consider a vehicle with state x = [px py θ v]T , where (px, py) is the center

of the rear axis (see Figure 7.2), θ the heading angle, and v the velocity. For a

given state x, the occupancy of the vehicle is

S(x) = R(x)B⊕ p(x),

where B = {z ∈ R2 | Gz ≤ g} is the initial rectangle occupied by the vehicle

when the center of the rear axes is [0; 0] and speci�ed by G ∈ R2×2
and

g ∈ R2
, R(x) = [cos θ sin θ;− sin θ cos θ] the rotation matrix, and p(x) =

[px; py].
Consider an obstacle O ⊆ R2

of the form

O = {z ∈ R2 | Hz ≤ h},

156 Car Overtaking Application

px

py

O

B

S(x)

θ

dist(S(x),O)

Figure 7.2: Notation for obstacle avoidance.

where H ∈ R2×2
and h ∈ R2

are a known matrix and vector, respectively.

De�ne the distance between S(x) and O as

dist(S(x),O) = min
z∈R2
{‖z‖ | (S(x)⊕ z) ∩O 6= ∅}.

The following lemma provides a computationally useful way for checking if

dist(S(x),O) > d for some d > 0.

Lemma 7.2. [200] For any d > 0, dist(S(x),O) > d if and only if there exist
λ ≥ 0 and µ ≥ 0 such that

−gTµ+ (Hp(x)− h)Tλ > d,

GTµ+RT (x)HTλ = 0,

‖HTλ‖ ≤ 1.

The equivalent condition in Lemma 7.2 is derived by using the dual prob-

lem of dist(S(x),O). An important property of this equivalent condition is

that all the decision variables are real numbers. This is di�erent from the

integer-based collision-avoidance formulation in the literature when taking

into account the occupancy of the vehicle. The result of Lemma 7.2 will be

used to reformulate the safety constraints on the overtaking vehicle in this

chapter.

Problem Formulation 157

7.3 Problem Formulation

We consider an overtaking scenario with an automated vehicle V1 and a

human-driven vehicle V2 as illustrated in Figure 7.1. Regard the two regions

outside of the lanes as obstacles O1 and O2 of the form

Oi = {z ∈ R2 | Hiz ≤ hi}, i = 1, 2.

The width of each lane is d. The longitudinal velocity of each vehicle is

bounded vRmin ≤ vx ≤ vRmax.

7.3.1 Automated Vehicle V1

We describe the dynamics of the automated vehicle V1 by using the following

bicycle model:

x1(k + 1) = f(x1(k),u1(k)),

where

x1 =


px1
py1
θ1

v1

 , u1 =

[
ψ1

a1

]
.

The longitudinal and lateral positions (px1 , p
y
1) correspond to the center of the

rear axes, θ1 is the yaw angle with respect to the x-axis, v1 is the velocity with

respect to the rear axes, ψ1 is the steering angle, and a1 is the acceleration.

The update map is

f(x1,u1) =


px1
py1
θ1

v1

+ δ


v1 cos θ1

v1 sin θ1

L−1v1 tanψ1

a1

 ,
where L is the wheel base and δ the sampling period.

There are physical limits on the state and control input:

x1(k) ∈ X1, u1(k) ∈ U1,

X1 =
{
z ∈ R4 | z = [px, py, θ, v]T , 0 ≤ py ≤ 2d, θmin ≤ θ ≤ θmax,

158 Car Overtaking Application

vRmin ≤ v cos θ ≤ vRmax

}
,

U1 =
{
u ∈ R2 | u = [ψ a]T , ψmin ≤ ψ ≤ ψmax, a1,min ≤ a ≤ a1,max

}
.

The occupancy of V1 is

S1(x1(k)) = R(x1(k))B1 ⊕
[
px1(k)
py1(k)

]
,

where B1 = {z ∈ R2 | G1z ≤ g1} is similarly de�ned as in previous section.

7.3.2 Overtaken Vehicle V2

We specify the dynamics of the vehicle V2 we want to overtake by using a

linear model:

x2(k + 1) = A2x2(k) +B2u2(k),

where

x2 =

[
px2
vx2

]
, u2 = ax2 ,

A2 =

[
1 δ
0 1

]
, B2 =

[
0
δ

]
.

In particular, px2 , vx2 , and ax2 are the longitudinal position, velocity, and accel-

eration, respectively. During the overtaking process, we assume that V2 stays

in the same lane and maintains lateral position py2(k) = d/2, ∀k ∈ N.

Vehicle V2 has the state and control input constraints:

x2(k) ∈ X2, u2(k) ∈ U2,

X2 =

{
z ∈ R2

∣∣∣∣ [−∞vRmin

]
≤ z ≤

[
∞
vRmax

]}
,

U2 = {z ∈ R | ax2,min ≤ z ≤ ax2,max}.

The occupancy of V2 is

S2(x2(k)) = B2 ⊕
[
px2(k)
d/2

]
,

where B2 = {z ∈ R2 | G2z ≤ g2}.

Risk-Aware Reachability Analysis 159

7.3.3 Problem

Our objective is to design a sequence of control inputs such that V1 starts

behind V2 and ends in front of V2 by using the following maneuvers: lane-

changing, lane-keeping, and merging. The constraint set U2 is known to the

automated vehicle V1. At each time step k, the automated vehicle V1 can mea-

sure the states x1(k) and x2(k). Throughout the entire process, we maintain

the following safety constraints: collision avoidance between V1 and V2 and

collision avoidance between V1 and Oi, i = 1, 2.

7.4 Risk-Aware Reachability Analysis

The reachable set of a vehicle is a subset of the state space that can be reached

by the vehicle state through control actions. In this section, we introduce the

reachable set and the risk-aware reachable set of vehicle V2 and discuss some

of their properties.

7.4.1 Reachable Set of Vehicle V2

At time step k, px2(k) and vx2 (k) are the longitudinal position and velocity of

V2, respectively.

De�nition 7.2. The reachable set predicted i ∈ N steps ahead at time step k is
given by {

P(k + i+ 1|k) = (A2P(k + i|k)⊕B2U2) ∩ X2,

P(k|k) = {x2(k)}.
(7.1)

Since the dynamics of V2 is linear, the input constraint set U2 is a compact

polyhedron and the state constraint set X2 is a polyhedron, the reachable sets

in De�nition 7.2 are compact polyhedra for all �nite i ∈ N. We show the set

P(k + i|k) in blue in Figure 7.3. Here, the x-axis denotes the position and the

y-axis the velocity. The regions in di�erent color are other reachable sets to be

de�ned in the following. The rectangles below the x-axis are the correspond-

ing occupancies also to be de�ned.

We de�ne the projection of the reachable set on the longitudinal position

as Px(k + i|k) = Proj1P(k + i|k) and the projection of the reachable set on

the longitudinal velocity as Pv(k + i|k) = Proj2P(k + i|k), where Projj(Q)
denotes the projection of the set Q on the jth dimension.

160 Car Overtaking Application

px2,min(k + i|k) px2,max(k + i|k)

v
x 2
,m

in
(k

+
i|k

)
v
x 2
,m

a
x
(k

+
i|k

)
v
x 2
(k
)

v
x 2

px2

P̂(k + i|k)

Pβ(k + i|k)
P(k + i|k)

Ŝ2(k + i|k)

Sβ2 (k + i|k)

η

d

P(k + i|k)

S2(k + i|k)

d

d S2(k + i|k)

d

Figure 7.3: Reachable sets for V2 in the plane and their corresponding occu-

pancy sets. (a) blue: P(k+ i|k) de�ned in (7.1) and S2(k+ i|k) de�ned in (7.2);

(b) green: Pβ(k+ i|k) de�ned in (7.5) and Sβ2 (k+ i|k) de�ned in (7.6); (c) red:

P̂(k + i|k) de�ned in (7.8) and Ŝ2(k + i|k) de�ned in (7.7); and (d) P(k + i|k)
de�ned in (7.9) and S2(k + i|k) de�ned in (7.10). Here, η is de�ned in (7.4).

Risk-Aware Reachability Analysis 161

Note that the set P(k+i|k) is a compact and convex set for all �nite i ∈ N.

Furthermore, the sets Px(k + i|k) and Pv(k + i|k) are closed intervals. For

notational simplicity, let

Px(k + i|k) = [px2,min(k + i|k), px2,max(k + i|k)],

Pv(k + i|k) = [vx2,min(k + i|k), vx2,max(k + i|k)].

These interval boundaries are also shown in Figure 7.3. Denote all possible

occupancies of V2 corresponding to Px(k + i|k) as S2(k + i|k), i.e.,

S2(k + i|k) =
{
z ∈ R2 | z ∈ B2 ⊕ [px1(k); d/2], px2 ∈ Px(k + i|k)

}
. (7.2)

It is a compact rectangle, which we denote as

S2(k + i|k) = {z ∈ R2 | S(k + i|k)z ≤ s(k + i|k)},

where S(k + i|k) and s(k + i|k) are a matrix and vector, respectively, with

appropriate dimensions. The occupancy set S2(k + i|k) is the blue rectangle

below the x-axis in Figure 7.3.

7.4.2 Risk-Aware Reachable Set of Vehicle V2

Let us next introduce the risk-aware reachable sets of V2. Given any state

x2(k) ∈ X2 at time step k, assume that the predicted velocity {vx2 (k + i), i ∈
N} is a stochastic process with a �ltration {B(Pv(k + i|k)), i ∈ N} on

the probability space ([vRmin, v
R
max],B([vRmin, v

R
max]),Pr). Then, the future state

x2(k + i|k), i ≥ 0, is also a stochastic process.

We assume that the predicted velocity vx2 (k+i|k), i ≥ 0, is a supermartin-

gale, according to De�nition 7.1. Consequently, we assume that for any state

x2(k) ∈ X2 at time step k,

∀i ∈ N,

{
x2(k + i|k) ∈ P(k + i|k),

E[vx2 (k + i+ 1|k)|vx2 (k + i|k)] ≤ vx2 (k + i|k).

Remark 7.1. The supermartingale assumption makes it possible to incorporate
uncertain behaviors of human drivers [201]. By assuming that the predicted ve-
locity of the overtaken vehicle V2 respects a supermartingale, we generalize the
common assumption in the literature that V2 moves at a constant velocity.

162 Car Overtaking Application

Let α(k) = {α(k + i|k), i ∈ N}, where 0 ≤ α(k + i|k) ≤ 1, be the risk

coe�cient sequence at time step k. Under the supermartingale assumption,

we de�ne the sets

Yα(k + i|k) = {y ∈ R | Pr[z̃ ≥ vx2 (k) + y] ≤ α(k + i|k),

z̃ ∈ Pv(k + i|k)},

Pαv (k + i|k) = {vx2 (k) + y | (vx2 (k) + y) ∈ Pv(k + i|k),

y ∈ Yα(k + i|k)},

which corresponds to the set of velocity that V2 can reach with probability

less than α(k+ i|k). Next let us consider how to compute the set Pαv (k+ i|k).

Proposition 7.1. The set

Pαv (k + i|k) = [min{vx2 (k) + η, vx2,max(k + i|k)}, vx2,max(k + i|k)], (7.3)

where {
η = Mβ/3 +

√
M2β2/9 + 2iM2β,

M = max{δ|ax2,min|, δax2,max}, β = − ln(α(k + i|k)).
(7.4)

Proof. Construct a �ltration Fi = B(Pv(k+ i|k)). It follows from Popoviciu’s

inequality [202] that the variance of v2(k+i|k), conditioned on v2(k+i−1|k),

is upper bounded by M2
, which implies that we can choose ∀i ≥ 1, σ2

i = M2

in the �rst condition of Lemma 7.1. From the constraint on the longitudinal

acceleration of vehicle V2, i.e.,

|vx2 (k + i|k)− vx2 (k + i− 1|k)| ≤M,

the second condition of Lemma 7.1 also holds. Hence, (7.3) and (7.4) follow

from Lemma 7.1 and setting α(k + i|k) = exp(− η2

2(
∑i
j=1 σ

2
j+Mη/3)

).

Remark 7.2. The parameter η in (7.4) corresponds to the minimal y in the set
Yα(k+ i|k) such that vx2 (k+y) ∈ Pv(k+ i|k). The set Pαv (k+ i|k) is nonempty
for all 0 ≤ α(k + i|k) ≤ 1.

Risk-Aware Reachability Analysis 163

De�ne another sequence β(k) = {β(k+ i|k), i ∈ N}, where β(k+ i|k) =

1− α(k + i|k), ∀i ∈ N. Let Pβv (k + i|k) = cl(Pv(k + i|k) \ Pαv (k + i|k)), i.e.,

Pβv (k + i|k) = [vx2,min(k + i|k),min{vx2 (k) + η, vx2,max(k + i|k)}].

Next we de�ne the risk-aware reachable set.

De�nition 7.3. The risk-aware reachable set for risk coe�cient α(k + i|k) is
de�ned as

Pβ(k + i|k) =
{
z ∈ R2 | z ∈ P(k + i|k), Proj2(z) ∈ Pβv (k + i|k),

β(k + i|k) = 1− α(k + i|k)
}
. (7.5)

Figure 7.3 shows the set Pβ(k + i|k) in green. Note that it is a subset of

the reachable set P(k + i|k). We remark that the set Pβ(k + i|k) depends on

the risk coe�cient α(k + i|k): the smaller risk that is acceptable, the larger

risk-aware reachable set.

The projection of the risk-aware reachable set on the longitudinal position

is denoted by

Pβx(k + i|k) = Proj1(Pβ(k + i|k)).

Denote by Sβ2 (k + i|k) all the possible occupancies of the vehicle V2 corre-

sponding to Pβx(k + i|k), i.e.,

Sβ2 (k + i|k) =
{
z ∈ R2 | z ∈ B2 ⊕ [px2(k); d/2], px2 ∈ Pβx(k + i|k)

}
. (7.6)

The possible occupancy Sβ2 (k + i|k) of V2 is a compact rectangle, which can

be written as

Sβ2 (k + i|k) = {z ∈ R2 | Sβ(k + i|k)z ≤ sβ(k + i|k)},

where Sβ(k+i|k) and sβ(k+i|k) are a matrix and a vector, respectively, with

appropriate dimensions. The occupancy set Sβ2 (k+ i|k) is shown as the green

rectangle below the x-axis in Figure 7.3.

Remark 7.3. Another interpretation of the risk-aware reachable set is that

164 Car Overtaking Application

Pβ(k + i|k) =
{
z ∈ R2 | z ∈ P(k + i|k), z = [z1; z2],

Q = B2 ⊕ [z1; d/2],

Pr(S1(k + i|k) ∩Q 6= ∅) ≤ 1− β(k + i|k)
}
,

which corresponds to the predicted state set that the vehicle V2 can reach such
that the collision probability with the vehicle V1 is no greater than 1−β(k+i|k)
under the supermartingale assumption.

7.4.3 Geometrical Interpretation of Risk-Aware Reachable Sets

This subsection provides some geometrical interpretations of the reachable

sets de�ned above and establishes the relation among them.

First of all, we show that the risk-aware reachable set Pβ(k + i|k) scales

with the coe�cient β(k+i|k) = 1−α(k+i|k). Ifα(k) satis�esα(k+i|k) = 0,

i.e., β(k+i|k) = 1, ∀i ∈ N, the risk-aware reachable sets equal to the reachable

sets, i.e., Pβ(k + i|k) = P(k + i|k) and Pβx(k + i|k) = Px(k + i|k). In this

case, complete safety is guaranteed. If α(k) instead satis�es α(k + i|k) = 1,

i.e., β(k + i|k) = 0, ∀i ∈ N, the parameter η in (7.4) is 0, thereby resulting in

Pαv (k + i|k) = [vx2 (k), vx2,max(k + i|k)],

Pβv (k + i|k) = [vx2,min(k + i|k), vx2 (k)].

We de�ne the reachable sets, the projection on the longitudinal position, and

the occupancy set for α(k + i|k) = 1, ∀i ∈ N, as follows

P̂(k + i|k) =
{
z ∈ R2 | z ∈ P(k + i|k),

Proj2(z) ∈ [vx2,min(k + i|k), vx2 (k)]
}
, (7.7)

P̂x(k + i|k) = Proj1(P̂(k + i|k)),

Ŝ2(k + i|k) =
{
z ∈ R2 | z ∈ B2 ⊕ [px2(k); d/2],

px2 ∈ P̂x(k + i|k)
}
. (7.8)

These sets correspond to the red regions in Figure 7.3. In this case, the auto-

mated overtaking problem is reduced to the scenario where we predict that the

vehicle V2 moves with an average velocity no greater than the current velocity

vx2 (k).

Risk-Aware Optimal Overtaking 165

For comparison with the control under the constant velocity assumption,

we restrict the control set to U2 = [ax2,min, 0], which implies that the predicted

velocity cannot be greater than the measured velocity vx2 (k). Similarly, we

de�ne the reachable sets, the projection on the longitudinal position, and the

occupancy set as follows{
P(k + i+ 1|k) = (A2P(k + i|k)⊕B2U2) ∩ X2,

P(k + i|k) = {x2(k)},
(7.9)

Px(k + i|k) = Proj1(P̄(k + i|k)),

S2(k + i|k) =
{
z ∈ R2 | z ∈ B2 ⊕ [px2(k); d/2],

px2 ∈ P̄x(k + i|k)
}
. (7.10)

The set P(k + i|k) represents the reachable sets when the vehicle V2 moves

with a velocity no greater than the current velocity, vx2 (k), i.e., the acceleration

is no greater than 0. These sets correspond to the yellow regions in Figure 7.3.

For ease of notation, we drop the time dependence of the sets. The relation

among these sets is then given in the following proposition.

Proposition 7.2. The following set inclusion relations hold:

P ⊆ P̂ ⊆ Pβ ⊆ P,
Px ⊆ P̂x ⊆ Pβx ⊆ Px,
S2 ⊆ Ŝ2 ⊆ Sβ2 ⊆ S2.

Proof. Follows from the de�nitions.

Remark 7.4. Even though the risk coe�cient sequence α(k) at time step k is
set to be 1, i.e., the most risky value, it follows from S2 ⊆ Ŝ2 that the risk-aware
overtaking still provides more safety guarantee along the prediction horizon than
control under the constant velocity assumption.

In the next section, we will treat the risk coe�cient sequence α(k) as a

decision variable to design a risk-aware overtaking controller.

7.5 Risk-Aware Optimal Overtaking

In this section, we formulate the risk-aware overtaking problem and then de-

sign a receding-horizon overtaking algorithm. We provide theoretical guaran-

166 Car Overtaking Application

tee of this algorithm and discuss how to approximately solve the risk-aware

overtaking problem to speed up computations.

7.5.1 Risk-Aware Optimal Overtaking

At time step k, the risk-aware overtaking problem can be formulated as

P(x1(k),x2(k)):

min
T∈N,u1,α(k)

max
i∈N[0,T]

α(k + i|k)

s.t. ∀i ∈ N[0,T−1] :

x1(k + i+ 1|k) = f(x1(k + i|k),u1(k + i|k)), (7.11a)

u1(k + i|k) ∈ U1(k + i|k), (7.11b)

∀i ∈ N[0,T] :

β(k + i|k) = 1− α(k + i|k), (7.11c)

x1(k + i|k) ∈ X1(k + i|k), (7.11d)

S1(x1(k + i|k)) ∩Oj = ∅, j = 1, 2, (7.11e)

S1(x1(k + i|k)) ∩ Sβ2 (k + i|k) = ∅, (7.11f)
px1(k + T |k) ≥ px,β2,max(k + T |k),

py1(k + T |k) = d/2,

θ1(k + T |k) = 0,

(7.11g)

where

px,β2,max(k + T |k) = max
z∈Pβx(k+T |k)

z.

The optimization problem aims to minimize the worst-case risk value over

a horizon, subject to a feasible overtaking trajectory. The decision variables are

the risk coe�cient sequence α(k), the overtaking horizon T , and the control

sequence {u1(k + i|k)}T−1
i=0 .

Proposition 7.3. The optimization problem P(x1(k),x2(k)) can be reformu-
lated as P̃(x1(k),x2(k)):

min
T∈N,u1,α(k),
λj ,µj ,j=1,2,3

max
i∈N[0,T]

α(k + i|k)

s.t. (7.11a)−−(7.11d), (7.11g), (7.12), (7.13).

Risk-Aware Optimal Overtaking 167

∀i ∈ N[0,T] :

∀j = 1, 2,
−gT1 µj(k + i|k) + (Hjp(x1(k + i|k))− hj)Tλj(k + i|k) > 0,

GT1 µj(k + i|k) +RT (x1(k + i|k))HT
j λj(k + i|k) = 0,

λj(k + i|k) ≥ 0, µj(k + i|k) ≥ 0, ‖HT
j λj(k + i|k)‖ ≤ 1,

(7.12)


−gT1 µ3(k + i|k) + (Sβ(k + i|k)p(x1(k + i|k))

−sβ(k + i|k))Tλ3(k + i|k) > 0,

GT1 µ3(k + i|k) +RT (x1(k + i|k))Sβ(k + i|k)Tλ3(k + i|k) = 0,

λ3(k + i|k) ≥ 0, µ3(k + i|k) ≥ 0, ‖Sβ(k + i|k)Tλ3(k + i|k)‖ ≤ 1.

(7.13)

Proof. The collision avoidance constraints (7.11e)–(7.11f) are equivalent to

dist(S1(k + i|k),Oj) > 0, j = 1, 2,

dist(S1(k + i|k),Sβ2 (k + i|k)) > 0.

Then, according to Lemma 7.2, we derive the constraints (7.12) and (7.13).

Remark 7.5. The essence of the optimization problem is to trade o� the feasibil-
ity of automated overtaking and the collision risk along the prediction horizon.
In general, the overtaking problem encounters feasibility issues if the reachable
set P(k + i|k) is used to set up potential collision regions. The introduction of
a risk coe�cient sequence α(k) could release a larger overtaking space, which
improves feasibility. The problem P(x1(k),x2(k)) looks for a minimal risk co-
e�cient that makes the overtaking feasible.

Denote the optimal objective function of P̃(x1(k),x2(k)) as α∗(k) and

the corresponding optimal solution as T ∗k , {u∗1(k + i|k), i ∈ N[0,T ∗k−1]}, and

{α∗(k+ i|i), i ∈ N[0,T ∗k]}. Then, α∗(k) represents the minimal worst-case risk

that will be taken along the prediction horizon T ∗k .

168 Car Overtaking Application

7.5.2 Risk-Aware Optimal Overtaking Algorithm

The risk-aware optimal overtaking algorithm is shown in Algorithm 7.1.

Here, TerInd is an indicator to determine whether the while loop (line 2)

terminates or not. When it terminates, there are three possible outputs:

{Successful, Infeasible,Undecidable}.
If the longitudinal position px1(k) of V1 is in front of V2, the lateral position

py1(k) of V1 is d/2, and the heading angle θ1(k) of V1 is 0, then Algorithm 7.1

terminates with an output Successful.
Before the completion of the overtaking process, we solve the optimiza-

tion problem P̃(x1(k),x2(k)) to decide the overtaking control command. The

feasibility of P̃(x1(k),x2(k)) determines the possibility of automated over-

taking. If P̃(x1(k),x2(k)) is infeasible, then whatever risk is imposed on the

predictions, the enlarged overtaking region is still not enough to �nd a se-

quence of feasible control inputs. In this case, Algorithm 7.1 terminates with

an output Infeasible and vehicle V1 should stop the overtaking maneuver.

On the other hand, if P̃(x1(k),x2(k)) is feasible, the resulting solution

will not be directly implemented. As shown in line 13, we use S1(x1(k +
1|k)) ∩ S2(k + 1|k) = ∅ to detect whether the �rst input can ensure safety

at next time step. If S1(x1(k + 1|k)) ∩ S2(k + 1|k) 6= ∅, it implies that there

exist some possible states x2(k+1) in P(k+1|k) such that S1(x1(k+1|k))∩
S2(x1(k + 1)) 6= ∅. In this case, Algorithm 7.1 terminates with an output

Undecidable.

Remark 7.6. Even though the initial optimal objective function α∗(0) is not
zero, i.e., there exists collision risk along the prediction horizon, successful over-
taking without collision is still possible. Intuitively, this is because uncertainty
about future positions of V2 is reduced signi�cantly as time proceeds.

To check the feasibility of P̃(x1(k),x2(k)), we de�ne another optimiza-

tion problem P̂(x1(k),x2(k)):

min
T∈N,u1(k)

T

s.t. (7.11a), (7.11b), (7.11d), (7.11e),

∀i ∈ N[0,T] : S1(x1(k + i|k)) ∩ Ŝ2(k + i|k) = ∅, (7.14)
px1(k + T |k) ≥ px2,max(k + T |k),

py1(k + T |k) = d/2,

θ1(k + T |k) = 0,

(7.15)

Risk-Aware Optimal Overtaking 169

Algorithm 7.1 Risk-Aware Optimal Overtaking Algorithm

1: Initialization: Set k = 0 and TerInd = 1;

2: while TerInd do
3: Measure x1(k) and x2(k);

4: if px1(k) > px2(k) & py1(k) = d/2 & θ1(k) = 0 then
5: TerInd = 0;

6: Output: Successful;
7: else
8: if P̃(x1(k),x2(k)) is infeasible then
9: TerInd = 0;

10: Output: Infeasible;

11: else
12: Solve P̃(x1(k),x2(k));

13: if S1(x1(k + 1|k)) ∩ S2(k + 1|k) = ∅ then
14: Implement u∗1(k|k);

15: k = k + 1;

16: else
17: TerInd = 0;

18: Output: Undecidable;

19: end if
20: end if
21: end if
22: end while

170 Car Overtaking Application

where px2,max(k + T |k) = max P̂x(k + T |k).

Proposition 7.4. (Feasibility) The optimization problem P̃(x1(k),x2(k)) is
feasible if and only if P̂(x1(k),x2(k)) is feasible.

Proof. Su�ciency: Note that the sets P̂(k + i|k), P̂x(k + i|k), and Ŝ2(k + i|k)

are the corresponding sets Pβ(k + i|k), Pβx(k + i|k), and Sβ2 (k + i|k) when

α(k + i|k) = 1 and β(k + i|k) = 1− α(k + i|k) = 0. Thus, the feasibility of

P̂(x1(k),x2(k)) implies the feasibility of P̃(x1(k),x2(k)) whenα(k+i|k) =
1, ∀i ∈ N.

Necessity: It follows from Proposition 7.2 that the satisfaction of the con-

straints (7.11f)–(7.11g) implies the satisfaction of (7.14)–(7.15). Thus, the fea-

sibility of P̃(x1(k),x2(k)) implies the feasibility of P̂(x1(k),x2(k)).

From Proposition 7.4, we have that the feasibility of the min-max prob-

lem, P̃(x1(k),x2(k)), can be checked by the feasibility of the time-optimal

problem P̂(x1(k),x2(k)). This is very useful and enables us to approximately

solve P̃(x1(k),x2(k)).

Under Algorithm 7.1, the overtaking maneuver is in the closed-loop man-

ner. The closed-loop system for V1 is

x1(k + 1) = f(x1(k),u∗1(k|k)),

where u∗1(k|k) is derived by the optimal solution to P̃(x1(k),x2(k)).

Proposition 7.5. (Safety) If Algorithm 7.1 terminates with the output
Successful, the closed-loop overtaking trajectory is collision-free.

Proof. In lines 13–19 of Algorithm 7.1, the collision avoidance between vehi-

cles is guaranteed by S1(x1(k + 1|k)) ∩ S2(k + 1|k) = ∅, i.e., the occupancy

intersection of two vehicles at the next time step is empty. The feasibility of

P̃(x1(k),x2(k)) implies that under the control of u∗1(k|k), there is no colli-

sion between V1 and the obstacles O1 and O2. If the output of Algorithm 7.1 is

Successful, the closed-loop overtaking trajectory is collision-free throughout

the whole overtaking process.

Proposition 7.6. (Successful Overtaking) By implementing Algorithm 7.1, if
the optimal objective function α∗(k) of P̃(x1(k),x2(k)) is 0 at some time step
k, Algorithm 7.1 will terminate with the output Successful.

Numerical Evaluations 171

Proof. If α∗(k) = 0 at some time step k, it follows that there exist a time

horizon Tk and a sequence of control inputs, {u1(k + i|k), i ∈ N[0,Tk−1]},
such that the constraints (7.11f)–(7.11g) are satis�ed with α(k + i|k) = 0,

∀i ∈ N[0,Tk]. At next time step k + 1, with time horizon Tk − 1 and control

inputs {u1(k+ i+ 1|k), i ∈ N[0,Tk−2]}, the constraints (7.11f)–(7.11g) are still

satis�ed with α(k+ 1 + i|k+ 1) = 0, ∀i ∈ N[0,Tk−1]. By induction, it follows

that the optimal solution of the problem P̃(x1(j),x2(j)) is 0 for all j ≥ k.

We conclude that Algorithm 7.1 will terminate with the output Successful at

most Tk steps.

7.5.3 Approximate Solution

In general, it is di�cult to exactly solve the min-max optimization problem,

P̃(x1(k),x2(k)). In this section, we provide an approximate solution, consist-

ing of the following steps:

Step 1: Check whether there exists a time horizon Tk such that the opti-

mization problem, P̂(x1(k),x2(k)), is feasible. If yes, go to Step 2; otherwise,

by Proposition 7.4, P̃(x1(k),x2(k)) is infeasible.

Step 2: For the time horizon Tk, iteratively reduce the value of the elements

in the sequence {α(k + i|k)}Tki=0 from 1, until the problem P̃(x1(k),x2(k))
becomes infeasible. For computational e�ciency, we can construct a sequence

by quantizing the interval [0, 1] into a �nite number of elements and update

α(k+ i|k) from this sequence. Note that this sequence should include 0 and 1.

Step 3: Choose T ∗k = Tk, {u(k+ i|k)}T
∗
k−1
i=0 , {α∗(k+ i|k)}T

∗
k
i=0 from the last

iteration such that P̃(x1(k),x2(k)) is feasible. The optimal objective function

α∗(k) can be approximately obtained by α∗(k) = maxi∈N[0,T∗] α
∗(k + i|k).

7.6 Numerical Evaluations

This section provides simulated case studies to demonstrate the e�ectiveness

of our theoretical results. The following numerical experiments are run on

Matlab R2018b with ICLOCS2 toolbox [203].

7.6.1 Successful and Unsuccessful Overtakings

The parameters used in the simulated example are listed in Table 7.1, where li
and wi denote the length and width of vehicle Vi, respectively. We choose the

172 Car Overtaking Application

Table 7.1: Case study parameters

Lane Vehicle 1 Vehicle 2

vRmin = 0 m/s θmin = −π/18 rad ax2,min = −4 m/s2

vRmax = 15 m/s θmax = π/18 rad ax2,max = 4 m/s2

d = 5 m ax1,min = −4 m/s2 l2 = 4.7 m

δ = 0.2 s ax1,max = 4 m/s2 w2 = 2 m

ψmin = −0.6 rad/s
ψmax = 0.6 rad/s
L = 2.7 m
l1 = 4.7 m, w1 = 2 m

initial state: x1(0) = [0; 1.5; 0; 8] and x2(0) = [20; 3]. To measure safety, we

de�ne the distance between the vehicles as

D(k) = min
z1∈S1(x1(k))
z2∈S2(x2(k))

‖z1 − z2‖.

In the following, we implement Algorithm 7.1 and provide two overtak-

ing scenarios: one results in a Successful output while the other results in an

Infeasible output.

A successful overtaking attempt is shown in Figure 7.4, where V1 �nally

arrives in front of V2 through a set of sequential maneuvers: lane-changing,

lane-keeping, and merging. Figure 7.4(a) shows the position trajectories of

the two vehicles. In Figure 7.4(b)–(c), we show the yaw angle of V1 and the

longitudinal velocities, respectively. Here, the longitudinal velocity of V1 is

v1(k) cos θ1(k). Note that the longitudinal velocity of V2 increases. Both yaw

angle and longitudinal velocities satisfy their corresponding constraints. In

Figure 7.4(d)–(e), we show that the control inputs of the automated vehicle

(steering angle and acceleration) satisfy the control input constraints. Further-

more, Figure 7.4(f) shows that the collision avoidance between two vehicles is

guaranteed. In Figure 7.4(g), the minimal risk coe�cients that are chosen to re-

lease the feasibility are provided. Although the initial risk coe�cients are high

(close to 1), as time proceeds, the uncertainty about the future positions of V2

is reduced and thereby the risk coe�cients decrease signi�cantly (reaching 0
when px1 ≈ 25m). According to Proposition 7.6, Algorithm 7.1 terminates with

output Successful.

Numerical Evaluations 173

(a)

-10 0 10 20 30 40 50 60 70 80

-0.2

-0.1

0

0.1

0.2

(b)

-10 0 10 20 30 40 50 60 70 80

0

5

10

15

(c)

-5 0 5 10 15 20 25 30 35 40
-0.4

-0.2

0

0.2

0.4

(d)

-10 0 10 20 30 40 50 60 70 80
-5

0

5

(e)

-10 0 10 20 30 40 50 60 70 80

0

5

10

15

(f)

-10 0 10 20 30 40 50 60 70 80

0

0.5

1

(g)

Figure 7.4: Successful overtaking: (a) position of two vehicles; (b) yaw angle

θ1 of V1; (c) longitudinal velocities v1 of two vehicles; (d) steering angle ψ1

of V1; (e) acceleration a1 of V1; (f) distance D between two vehicles; (g) risk

coe�cient α∗.

174 Car Overtaking Application

An infeasible overtaking attempt is shown in Figure 7.5. In Figure 7.5(a),

we show the position trajectories of two vehicles. In Figure 7.5(b)–(c), we show

the yaw angle of V1 and longitudinal velocities of two vehicles, respectively.

Both yaw angle and longitudinal velocities satisfy their corresponding con-

straints. Initially, since the problem P̃(x1(k),x2(k)) is feasible, the vehicle V1

performs a lane change. However, due to the signi�cant increase of the longi-

tudinal velocity of V2, the problem P̃(x1(k),x2(k)) becomes infeasible when

the longitudinal position of V1 is about 5m. Then, the vehicle V1 gives up the

overtaking attempt and moves back to the previous lane. In Figure 7.5(d)–(e),

we show that the control inputs of the automated vehicle (steering angle and

acceleration) satisfy the control input constraints. Furthermore, Figure 7.5(f)

shows that the collision avoidance between two vehicles is still guaranteed

even though the overtaking attempt fails. The risk coe�cients are shown in

Figure 7.5(g) where they are set to 0 when vehicle V1 moves back.

7.6.2 Comparison with the Constant Velocity Assumption

We run a Monte Carlo simulation to compare Algorithm 7.1 with receding

horizon control with constant velocity prediction adapted from [180], [182].

We sample 100 realizations of state trajectories for V2 with random inputs

generated by u2(k) = −2 + 6r but still guarantee the constraint satisfaction,

where r is a uniformly sampled random variable in interval [0, 1]. For the 100

realizations, we implement two methods. The simulation results show that

the probability of successful overtaking under Algorithm 7.1 is 93%. This is

much higher than the 27% successful rate under receding horizon control with

constant velocity prediction. One explanation for this is that the risk-aware

optimal overtaking control takes into account the (partial) reachable sets of V2

at each time step and such design exhibits more robustness than the control

with constant velocity prediction. To illustrate, we detail and compare two

realizations.

In the �rst realization, both control methods allowV1 to safely overtakeV2,

as shown in Figures 7.6–7.7. We can see that the state, control, and safety con-

straints are respected in this realization. From Figure 7.6(a) and Figure 7.7(a),

we see that our risk-aware optimal overtaking control achieves shorter over-

taking distance and time (77.61 m and 6.2 s) than the control with constant

velocity prediction, (100.30 m and 9.0 s).

Numerical Evaluations 175

(a)

-5 0 5 10 15 20 25 30 35 40

-0.2

-0.1

0

0.1

0.2

(b)

-5 0 5 10 15 20 25 30 35 40

0

5

10

15

(c)

-5 0 5 10 15 20 25 30 35 40
-0.4

-0.2

0

0.2

0.4

(d)

-5 0 5 10 15 20 25 30 35 40
-5

0

5

(e)

-5 0 5 10 15 20 25 30 35 40

0

5

10

15

(f)

-5 0 5 10 15 20 25 30 35 40

0

0.5

1

(g)

Figure 7.5: Unsuccessful overtaking: (a) position of two vehicles; (b) yaw

angle θ1 of V1; (c) longitudinal velocities v1 of two vehicles; (d) steering angle

ψ1 of V1; (e) acceleration a1 of V1; (f) distance D between two vehicles; (g)

risk coe�cient α∗.

176 Car Overtaking Application

(a)

0 20 40 60 80 100

-0.2

-0.1

0

0.1

0.2

(b)

0 20 40 60 80 100

0

5

10

15

(c)

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

(d)

0 20 40 60 80 100
-5

0

5

(e)

0 20 40 60 80 100

0

5

10

15

(f)

Figure 7.6: Risk-aware optimal overtaking, �rst realization: (a) position of

two vehicles; (b) yaw angle θ1 of V1; (c) longitudinal velocities v1 of two ve-

hicles; (d) steering angle ψ1 of V1; (e) acceleration a1 of V1; (f) distance D
between two vehicles.

Numerical Evaluations 177

(a)

0 20 40 60 80 100

-0.2

-0.1

0

0.1

0.2

(b)

0 20 40 60 80 100

0

5

10

15

(c)

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

(d)

0 20 40 60 80 100
-5

0

5

(e)

0 20 40 60 80 100

0

5

10

15

(f)

Figure 7.7: Receding horizon control with constant velocity prediction,

�rst realization: (a) position of two vehicles; (b) yaw angle θ1 of V1; (c) longitu-

dinal velocities v1 of two vehicles; (d) steering angle ψ1 of V1; (e) acceleration

a1 of V1; (f) distance D between two vehicles.

178 Car Overtaking Application

(a)

0 20 40 60 80 100 120 140 160

-0.2

-0.1

0

0.1

0.2

(b)

0 20 40 60 80 100 120 140 160

0

5

10

15

(c)

0 20 40 60 80 100 120 140 160
-0.4

-0.2

0

0.2

0.4

(d)

0 20 40 60 80 100 120 140 160
-5

0

5

(e)

0 20 40 60 80 100 120 140 160

0

5

10

15

(f)

Figure 7.8: Risk-aware optimal overtaking, second realization: (a) position

of two vehicles; (b) yaw angle θ1 of V1; (c) longitudinal velocities v1 of two

vehicles; (d) steering angle ψ1 of V1; (e) acceleration a1 of V1; (f) distance D
between two vehicles.

Numerical Evaluations 179

(a)

0 20 40 60 80 100 120 140 160

-0.2

-0.1

0

0.1

0.2

(b)

0 20 40 60 80 100 120 140 160

0

5

10

15

(c)

0 20 40 60 80 100 120 140 160
-0.4

-0.2

0

0.2

0.4

(d)

0 20 40 60 80 100 120 140 160
-5

0

5

(e)

0 20 40 60 80 100 120 140 160

0

5

10

15

(f)

Figure 7.9: Receding horizon control with constant velocity prediction,

second realization: (a) position of two vehicles; (b) yaw angle θ1 of V1; (c)

longitudinal velocities v1 of two vehicles; (d) steering angle ψ1 of V1; (e) ac-

celeration a1 of V1; (f) distance D between two vehicles.

180 Car Overtaking Application

For the second realization, the risk-aware optimal overtaking control

achieves successful overtaking as shown in Figure 7.8, while the control with

constant velocity prediction is unable to perform a safe overtaking before the

overtaking becomes infeasible as shown in Figure 7.9. In Figure 7.8, we show

the state and control trajectories, which satisfy the constraints. We can see

that V1 is in front of V2 when V2 is at the x-position with 64.34 m. At the

same position, however, the vehicle V1 is still moving in the other lane under

the control with constant velocity prediction. Even when the velocity of V2

reaches the maximal velocity (at about 102.28 m), which implies that over-

taking becomes infeasible, V1 has no chance to merge back and fails to safely

overtake V2. Finally, V1 gives up overtaking attempt and moves back to the

previous lane, as shown in Figure 7.9(a).

7.7 Summary

In this chapter, we studied the overtaking problem where an automated ve-

hicle tries to overtake a human-driven vehicle. Here, we did assume that the

overtaken vehicle moves at a constant velocity, which might impose feasibility

issues. To increase the possibility of feasible overtaking, we used martingale

theory to perform a risk-aware reachability analysis by analytically charac-

terizing the predicted collision probability. We designed a risk-aware optimal

overtaking algorithm which can ensure collision avoidance during the whole

overtaking process. Finally, we illustrated the e�ectiveness of the proposed al-

gorithm in a simulated case study and compared our approach with the other

approaches that has been suggested in the literature.

Chapter 8

Conclusions and Future Research
In this chapter, we summarize the main results of this thesis and outline pos-

sible directions for future research.

8.1 Conclusions

This thesis studied the problem of assuring safety for uncertain control sys-

tems performing complex tasks. More precisely, for such systems, we devel-

oped computational tools and veri�cation and control synthesis algorithms,

and evaluated these results on two applications.

In Chapter 3, we investigated the extension of set invariance to stochastic

control systems. We proposed �nite- and in�nite-horizon probabilistic con-

trolled invariant sets (PCISs), and provided some of their fundamental proper-

ties. We designed iterative algorithms to compute the PCIS within a given set.

For systems with discrete state and control spaces, it was shown that �nite-

and in�nite-horizon PCISs can be computed by solving an LP and an MILP at

each iteration, respectively. We proved that the iterative algorithms are com-

putationally tractable and can be terminated in a �nite number of steps. For

systems with continuous state and control spaces, we established an approx-

imate algorithm for stochastic control systems and proved its convergence

when computing �nite-horizon PCIS. In addition, thanks to the su�cient con-

ditions for the existence of in�nite-horizon PCIS, we can compute an in�nite-

horizon PCIS by the stochastic backward reachable set from the robust con-

trolled invariant set contained in it.

In Chapter 4, we considered some fundamental problems concerning the

invariant cover for uncertain discrete-time linear control systems. We pro-

vided computationally tractable necessary and su�cient conditions on the

181

182 Conclusions and Future Research

existence of an invariant cover, as well as upper and lower bounds on the

minimal cardinality of the invariant cover. In addition, we gave an algorithm

to compute an invariant cover in �nite time. Numerical examples were given

to illustrate the e�ectiveness of the results.

In Chapter 5, we studied linear temporal logic (LTL) model checking

and control synthesis for discrete-time uncertain systems. Unlike automaton-

based methods, our solutions build on the connection between LTL formulae

and temporal logic trees (TLT) via reachability analysis. For a given transition

system and LTL formula, we proved that the TLT provide an underapproxima-

tion or overapproximation for the LTL via minimal and maximal reachability

analysis, respectively. We provided su�cient conditions and necessary condi-

tions to the model checking problem. For a given controlled transition system

and LTL formula, we showed that the TLT is an underapproximation for the

LTL formula and thereby proposed an online control synthesis algorithm, un-

der which a set of feasible control inputs is generated at each time step. We

proved that this algorithm is recursively feasible. We also illustrated the e�ec-

tiveness of the proposed methods through several examples.

In Chapter 6, we proposed a solution for a remote car parking problem.

The parking task was speci�ed as a set of LTL formulae. The framework made

no assumptions about the operator’s preference. Our system updates a data-

driven belief of the operator’s intent. We utilized the TLT-based approach to

synthesize the control sets for LTL formulae. We proved recursive feasibility

of the method, showing that the controller is always feasible and able to guar-

antee that the human will not be able to drive the system to an unsafe set. We

illustrated the e�ectiveness of the proposed method by hardware experiments.

In Chapter 7, we studied the overtaking problem where an automated ve-

hicle tried to overtake another human-driven vehicle. Here, we did not assume

that the overtaken vehicle moves at a constant velocity, but assumed that the

predicted velocity of the overtaken vehicle respects a supermartingale, mean-

ing that its velocity is not increasing in expectation during the maneuver. We

used martingale theory to perform a risk-aware reachability analysis by ana-

lytically characterizing the predicted collision probability. We designed a risk-

aware optimal overtaking algorithm which can ensure collision avoidance. Fi-

nally, we illustrated the e�ectiveness of the proposed algorithm in a simulated

case study and compared with other approaches in the literature.

Future Research Directions 183

8.2 Future Research Directions

There are several interesting research directions based on the work of this

thesis. Here we discuss three proposals related to invariant cover, reachability

analysis, and mixed human-machine systems.

Invariant Cover for Large-Scale Systems

Distributed control of large-scale systems relies on network communication.

In Chapter 5, we have shown that invariant cover plays an important role for

the design of coder-controller pairs with �nite data-rate guarantees. Although

there are many existing distributed control approaches under data-rate con-

straints [204], [205], quantization for set invariance is rarely taken into ac-

count. It would thus be interesting to extend the invariant cover for such sys-

tems to provide fundamental guarantees on how much information exchange

is needed for a speci�c control invariance objective. Interesting problems not

only concern the relation between the existence of an invariant cover and the

network topology, but would also involve more e�cient computational algo-

rithms.

Real-time Reachability Analysis for Uncertain Systems

Traditional approaches on formal control synthesis, e.g., automaton-based ap-

proaches, cannot be implemented in real-time, in particular, when the envi-

ronment is only partially known or dynamic. The TLT-based approaches in

Chapter 5 are promising to avoid this restriction due to the recursive construc-

tion of the TLT. Since reachability analysis provides a bridge between the TLT

and temporal logic formulae, real-time reachability could be used to extend

our methods to online implementation. In the past few years, computation

of reachable sets in real-time has become possible for certain deterministic

systems [206], [207]. Built on these methods, it would be of great interest to

study real-time reachability also for the classes of uncertain control systems

in Chapter 5.

Scalable Synthesis for Multi-Human-Agent Systems

To deploy the self-driving vehicles in real tra�c, it is important to develop ap-

proaches that allow multiple human and automated decision-makers. It would

184 Conclusions and Future Research

be interesting to extend the results on human modeling and control synthe-

sis in Chapters 6 and 7 to multi-human-agent tra�c scenarios. New vehicle-

to-vehicle and vehicle-to-infrastructure communication technologies enable

many interesting scenarios for future studies. A fundamental question is how

to make safe decisions for complex tasks in a distributed way.

Bibliography

[1] G. A. Bekey, Autonomous Robots: From Biological Inspiration to Imple-
mentation and Control. MIT press, 2005.

[2] “Innovation in autonomous systems”, Royal Academy of Engineering,

Tech. Rep., 2015. [Online]. Available: https : / / www. raeng . org . uk /

publications/reports/innovation-in-autonomous-systems.

[3] A. C. Hernandez, Twenty-�ne astonishing self-driving car statistics for
2020, 2020. [Online]. Available: https://policyadvice.net/car-insurance/

insights/self-driving-car-statistics/.

[4] C. Jacobsson, K. Axelsson, P. O. Osterlind, and A. Norberg, “How peo-

ple with stroke and healthy older people experience the eating pro-

cess.”, Journal of clinical nursing, vol. 9, no. 2, pp. 255–264, 2000.

[5] T. L. Mitzner, J. A. Sanford, and W. A. Rogers, “Closing the capacity-

ability gap: Using technology to support aging with disability”, Inno-
vation in Aging, vol. 2, no. 1, 2018.

[6] C. Wu, “Learning and optimization for mixed autonomy systems–a

mobility context”, PhD thesis, University of California, Berkeley, 2018.

[7] D. A. Lazar, R. Pedarsani, K. Chandrasekher, and D. Sadigh, “Maximiz-

ing road capacity using cars that in�uence people”, in Proceedings of
2018 IEEE Conference on Decision and Control, 2018, pp. 1801–1808.

[8] E. Bıyık, D. A. Lazar, R. Pedarsani, and D. Sadigh, “Altruistic autonomy:

Beating congestion on shared roads”, in Proceedings of International
Workshop on the Algorithmic Foundations of Robotics, 2018, pp. 887–

904.

185

https://www.raeng.org.uk/publications/reports/innovation-in-autonomous-systems
https://www.raeng.org.uk/publications/reports/innovation-in-autonomous-systems
https://policyadvice.net/car-insurance/insights/self-driving-car-statistics/
https://policyadvice.net/car-insurance/insights/self-driving-car-statistics/

186 Bibliography

[9] E. Bıyık, D. A. Lazar, D. Sadigh, and R. Pedarsani, “The green choice:

Learning and in�uencing human decisions on shared roads”, in Pro-
ceedings of 2019 IEEE 58th Conference on Decision and Control (CDC),
2019, pp. 347–354.

[10] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for au-

tonomous cars that leverage e�ects on human actions.”, in Proceedings
of Robotics: Science and Systems, 2016.

[11] S. Nyholm and J. Smids, “Automated cars meet human drivers: Respon-

sible human-robot coordination and the ethics of mixed tra�c”, Ethics
and Information Technology, pp. 1–10, 2018.

[12] I. G. Jin, B. Schürmann, R. M. Murray, and M. Altho�, “Risk-aware

motion planning for automated vehicle among human-driven cars”, in

Proceedings of 2019 American Control Conference (ACC), 2019, pp. 3987–

3993.

[13] J. Hu, M. Prandini, and S. Sastry, “Aircraft con�ict prediction in the

presence of a spatially correlated wind �eld”, IEEE Transactions on In-
telligent Transportation Systems, vol. 6, no. 3, pp. 326–340, 2005.

[14] J. Ding, M. Kamgarpour, S. Summers, A. Abate, J. Lygeros, and C.

Tomlin, “A stochastic games framework for veri�cation and control

of discrete time stochastic hybrid systems”, Automatica, vol. 49, no. 9,

pp. 2665–2674, 2013.

[15] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Automatica proba-

bilistic reachability and safety for controlled discrete time stochastic”,

Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[16] T. Wongpiromsarn and R. M. Murray, “Formal veri�cation of an au-

tonomous vehicle system”, 2008. [Online]. Available: http://www.cds.

caltech.edu/~murray/preprints/wm08-cdc_s.pdf.

[17] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Synthesis of control

protocols for autonomous systems”, Unmanned Systems, vol. 1, no. 01,

pp. 21–39, 2013.

[18] ——, “Receding horizon temporal logic planning”, IEEE Transactions on
Automatic Control, vol. 57, no. 11, pp. 2817–2830, 2012.

[19] J. Bhuiyan, We rode in the self-driving cab that will hit Singapore streets
in 2019, 2016. [Online]. Available: https://www.vox.com/2016/5/17/

11689064/nutonomy-self-driving-car-singapore-test.

http://www.cds.caltech.edu/~murray/preprints/wm08-cdc_s.pdf
http://www.cds.caltech.edu/~murray/preprints/wm08-cdc_s.pdf
https://www.vox.com/2016/5/17/11689064/nutonomy-self-driving-car-singapore-test
https://www.vox.com/2016/5/17/11689064/nutonomy-self-driving-car-singapore-test

Bibliography 187

[20] P. Sawers, Einride demos a single teleoperator taking control of multiple
autonomous trucks, 2020. [Online]. Available: https://venturebeat.com/

2020/04/07/einride-demos-a-single-teleoperator-taking-control-of-

multiple-autonomous-trucks/.

[21] D. Wakabayashi, Self-driving uber car kills pedestrian in Arizona, where
robots roam, 2020. [Online]. Available: https://www.einride.tech/news/

einride-will-hire- its-�rst- remote-autonomous- truck-operator- in-

2020.

[22] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdis-

ciplinary challenge”, IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 1, pp. 90–96, 2017.

[23] P. Koopman and F. Fratrik, “How many operational design domains,

objects, and events?”, in Proceedings of Workshop on Arti�cial Intelli-
gence Safety co-located with the Thirty-Third AAAI Conference on Arti-
�cial Intelligence, 2019.

[24] Y. Mulgaonkar, A. Makineni, L. Guerrero-Bonilla, and V. Kumar, “Ro-

bust aerial robot swarms without collision avoidance”, IEEE Robotics
and Automation Letters, vol. 3, no. 1, pp. 596–603, 2017.

[25] C. Liu, T. Tang, H.-C. Lin, and M. Tomizuka, Designing Robot Behavior
in Human-robot Interactions. CRC Press, 2019.

[26] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “In-

variant approximations of the minimal robust positively invariant set”,

IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410,

2005.

[27] M. Rungger and P. Tabuada, “Computing robust controlled invariant

sets of linear systems”, IEEE Transactions on Automatic Control, vol. 62,

no. 7, pp. 3665–3670, 2017.

[28] E. Gilbert and K. T. Tan, “Linear systems with state and control con-

straints: The theory and practice of maximal admissible sets”, IEEE
Transactions on Automatic Control, vol. 36, no. 9, pp. 1008–1020, 1991.

[29] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked

control systems”, IEEE Control Systems Magazine, vol. 1, no. 21, pp. 84–

99, 2001.

[30] A. Bemporad, M. Heemels, and M. Johansson, Networked Control Sys-
tems. Springer, 2010.

https://venturebeat.com/2020/04/07/einride-demos-a-single-teleoperator-taking-control-of-multiple-autonomous-trucks/
https://venturebeat.com/2020/04/07/einride-demos-a-single-teleoperator-taking-control-of-multiple-autonomous-trucks/
https://venturebeat.com/2020/04/07/einride-demos-a-single-teleoperator-taking-control-of-multiple-autonomous-trucks/
https://www.einride.tech/news/einride-will-hire-its-first-remote-autonomous-truck-operator-in-2020
https://www.einride.tech/news/einride-will-hire-its-first-remote-autonomous-truck-operator-in-2020
https://www.einride.tech/news/einride-will-hire-its-first-remote-autonomous-truck-operator-in-2020

188 Bibliography

[31] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and

S. S. Sastry, “Kalman �ltering with intermittent observations”, IEEE
Transactions on Automatic Control, vol. 9, no. 49, pp. 1453–1464, 2004.

[32] M. Rungger and M. Zamani, “Invariance feedback entropy of nonde-

terministic control systems”, in Proceedings of ACM International Con-
ference on Hybrid Systems: Computation and Control, 2017, pp. 91–100.

[33] ——, “On the invariance feedback entropy of linear perturbed control

systems”, in Proceedings of IEEE 56th Conference on Decision and Con-
trol, 2017, pp. 3998–4003.

[34] M. S. Tomar, M. Rungger, and M. Zamani, Invariance feedback entropy
of uncertain control systems, arXiv:1706.05242, 2017.

[35] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-time
Dynamical Systems. Springer, 2017.

[36] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press, 2008.

[37] C. Fan, “Formal methods for safe autonomy: Data-driven veri�ca-

tion, synthesis, and applications”, PhD thesis, University of Illinois at

Urbana-Champaign, 2019.

[38] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism for

shared control”, The International Journal of Robotics Research, vol. 32,

no. 7, pp. 790–805, 2013.

[39] J. Fu and U. Topcu, “Synthesis of shared autonomy policies with tem-

poral logic speci�cations”, IEEE Transactions on Automation Science
and Engineering, vol. 13, no. 1, pp. 7–17, 2015.

[40] E. Fernández Cara and E. Zuazua Iriondo, “Control theory: History,

mathematical achievements and perspectives”, Boletín de la Sociedad
Española de Matemática Aplicada, 26, 79-140., 2003.

[41] S. Bennett, “A brief history of automatic control”, IEEE Control Systems
Magazine, vol. 16, no. 3, pp. 17–25, 1996.

[42] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of pedes-

trian detection for advanced driver assistance systems”, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7,

pp. 1239–1258, 2009.

Bibliography 189

[43] D. Bertsekas, “In�nite time reachability of state-space regions by us-

ing feedback control”, IEEE Transactions on Automatic Control, vol. 17,

no. 5, pp. 604–613, 1972.

[44] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target

sets and target tubes”, Automatica, vol. 7, no. 2, pp. 233–247, 1971.

[45] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of distur-

bance invariant sets for discrete-time linear systems”, Mathematical
problems in engineering, vol. 4, 1998.

[46] F. Blanchini, “Set invariance in control”, Automatica, vol. 35, no. 11,

pp. 1747–1767, 1999.

[47] F. Blanchini and S. Miani, Set-theoretic Methods in Control. Springer,

2007.

[48] L. M. Bujorianu, Stochastic Reachability Analysis of Hybrid Systems.
Springer, 2012.

[49] B. Ghosh and P. S. Duggirala, “Robust reachable set: Accounting for

uncertainties in linear dynamical systems”, ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 18, no. 5, pp. 1–22, 2019.

[50] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and pre-

dictive control”, PhD thesis, University of Cambridge, 2001.

[51] A. Abate, “Probabilistic reachability for stochastic hybrid systems:

Theory, computations, and applications”, PhD thesis, University of

California, Berkeley, 2007.

[52] E. Kofman, J. A. De Doná, and M. M. Seron, “Probabilistic set invariance

and ultimate boundedness”, Automatica, vol. 48, no. 10, pp. 2670–2676,

2012.

[53] E. Kofman, J. A. De Doná, M. M. Seron, and N. Pizzi, “Continuous-time

probabilistic ultimate bounds and invariant sets: Computation and as-

signment”, Automatica, vol. 71, pp. 98–105, 2016.

[54] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Auto-

matic reachability analysis for nonlinear hybrid models with c2e2”, in

Proceedings of International Conference on Computer Aided Veri�cation,

2016, pp. 531–538.

190 Bibliography

[55] E. Coelingh, L. Jakobsson, H. Lind, and M. Lindman, “Collision warn-

ing with auto brake: A real-life safety perspective”, Innovations for

Safety: Opportunities and Challenges, Tech. Rep., 2007.

[56] M. Altho�, “Reachability analysis and its application to the safety

assessment of autonomous cars”, PhD thesis, Technische Universität

München, 2010.

[57] K. Leung, E. Schmerling, M. Zhang, M. Chen, J. Talbot, J. C. Gerdes, and

M. Pavone, “On infusing reachability-based safety assurance within

planning frameworks for human–robot vehicle interactions”, The In-
ternational Journal of Robotics Research, vol. 39, no. 10-11, pp. 1326–

1345, 2020.

[58] K. Hashimoto and D. V. Dimarogonas, “Synthesizing communication

plans for reachability and safety speci�cations”, IEEE Transactions on
Automatic Control, vol. 65, no. 2, pp. 561–576, 2019.

[59] T. Dang and O. Maler, “Reachability analysis via face lifting”, in Pro-
ceedings of InternationalWorkshop onHybrid Systems: Computation and
Control, 1998, pp. 96–109.

[60] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachabil-

ity analysis of piecewise-linear dynamical systems”, in Proceedings of
International Workshop on Hybrid Systems: Computation and Control,
2000, pp. 20–31.

[61] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-parametric

toolbox 3.0”, in Proceedings of European Control Conference, 2013,

pp. 502–510.

[62] I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi

solvers for analysis of nondeterministic continuous and hybrid sys-

tems”, in Proceedings of ACM International Conference on Hybrid Sys-
tems: Computation and Control, 2005, pp. 480–494.

[63] A. P. Vinod, J. D. Gleason, and M. M. Oishi, “Sreachtools: A matlab

stochastic reachability toolbox”, in Proceedings of the 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control, 2019,

pp. 33–38.

Bibliography 191

[64] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Ju-

liareach: A toolbox for set-based reachability”, in Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation
and Control, 2019, pp. 39–44.

[65] A. Girard and G. J. Pappas, “Approximation metrics for discrete and

continuous systems”, IEEE Transactions on Automatic Control, vol. 5,

no. 52, pp. 782–798, 2007.

[66] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for

nonlinear control systems without stability assumptions”, IEEE Trans-
actions on Automatic Control, vol. 7, no. 57, pp. 1804–1809, 2012.

[67] P. Yu and D. V. Dimarogonas, “Approximately symbolic models for

a class of continuous-time nonlinear systems”, in Proceedings of 58th
IEEE Conference on Decision and Control, 2019, pp. 4349–4354.

[68] P. Tabuada, Veri�cation and Control of Hybrid Systems: A Symbolic Ap-
proach. Springer, 2009.

[69] R. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.

[70] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in

dynamic environments”, The International Journal of Robotics Research,

vol. 12, no. 33, pp. 1593–1607, 2014.

[71] M. Guo, J. Tumová, and D. V. Dimarogonas, “Communication-free

multi-agent control under local temporal tasks and relative-distance

constraints”, IEEE Transactions on Automatic Control, vol. 12, no. 61,

pp. 3948–3962, 2016.

[72] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Tra�c network con-

trol from temporal logic speci�cations”, IEEE Transactions on Control
of Network Systems, vol. 2, no. 3, pp. 162–171, 2016.

[73] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for �nite

deterministic systems”, Automatica, vol. 2, no. 50, pp. 399–408, 2014.

[74] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Hierarchical LTL-

task MDPs for multi-agent coordination through auctioning and learn-

ing”, 2019. [Online]. Available: http://kth.diva-portal.org.

[75] L. Lindemann and D. V. Dimarogonas, “Feedback control strategies for

multi-agent systems under a fragment of signal temporal logic tasks”,

Automatica, vol. 106, pp. 284–293, 2019.

http://kth.diva-portal.org

192 Bibliography

[76] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: veri�cation

of probabilistic real-time systems”, in Proceedings of 23rd International
Conference on Computer Aided Veri�cation, 2011, pp. 585–591.

[77] R. C. Goertz, “Master-slave manipulator”, Tech. Rep., 1949. [Online].

Available: https://www.osti.gov/servlets/purl/1054625.

[78] M. Minsky, “Telepresence: A manifesto”, IEEE Spectrum, 2010.

[79] A. Fagg, M. Rosenstein, R. Platt, and R. Grupen, “Extracting user in-

tent in mixed initiative teleoperator control”, in Proceedings of AIAA
Intelligent Systems Technical Conference, 2004.

[80] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot

manipulator using a vision-based human-robot interface”, IEEE trans-
actions on industrial electronics, vol. 52, no. 5, pp. 1206–1219, 2005.

[81] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cun-

ningham, D. Portee, J. Bricout, Z. Wang, and A. Behal, “How auton-

omy impacts performance and satisfaction: Results from a study with

spinal cord injured subjects using an assistive robot”, IEEE Transac-
tions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
vol. 42, no. 1, pp. 2–14, 2011.

[82] M. Cubuktepe, N. Jansen, M. Alshiekh, and U. Topcu, “Synthesis of

provably correct autonomy protocols for shared control”, IEEE Trans-
actions on Automatic Control, 2020.

[83] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum en-

tropy inverse reinforcement learning”, in Proceedings of AAAI Confer-
ence on Arti�cial Intelligence, 2008, pp. 1433–1438.

[84] S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep re-

inforcement learning”, in Proceedings of Robotics: Science and Systems,
2018.

[85] C. Sentouh, A.-T. Nguyen, M. A. Benloucif, and J.-C. Popieul, “Driver-

automation cooperation oriented approach for shared control of lane

keeping assist systems”, IEEE Transactions on Control Systems Technol-
ogy, vol. 27, no. 5, pp. 1962–1978, 2018.

[86] M. Marcano, S. Díaz, J. Pérez, and E. Irigoyen, “A review of shared

control for automated vehicles: Theory and applications”, IEEE Trans-
actions on Human-Machine Systems, 2020.

https://www.osti.gov/servlets/purl/1054625

Bibliography 193

[87] W. Wang, X. Na, D. Cao, J. Gong, J. Xi, Y. Xing, and F.-Y. Wang,

“Decision-making in driver-automation shared control: A review and

perspectives”, IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 5,

pp. 1289–1307, 2020.

[88] K. Brown, K. Driggs-Campbell, and M. J. Kochenderfer, “Modeling

and prediction of human driver behavior: A survey”, arXiv:2006.08832,

2020.

[89] D. P. Bertsekas and S. Shreve, Stochastic Optimal Control: the Discrete-
time Case. Athena Scienti�c, 2004.

[90] M. B. Stinchcombe and H. White, “Some measurability results for ex-

trema of random functions over random sets”, The Review of Economic
Studies, vol. 59, no. 3, pp. 495–514, 1992.

[91] A. Tarski, “A lattice-theoretical �xpoint theorem and its application”,

Paci�c Journal of Mathematics, no. 5, pp. 285–309, 1955.

[92] I. M. Mitchell, S. Kaynama, M. Chen, and M. Oishi, “Safety preserv-

ing control synthesis for sampled data systems”, Nonlinear Analysis:
Hybrid Systems, vol. 10, pp. 63–82, 2013.

[93] A. Mesbah, “Stochastic model predictive control: An overview and

perspectives for future research”, IEEE Control Systems, vol. 36, no. 6,

pp. 30–44, 2016.

[94] M. Cannon, B. Kouvaritakis, S. Raković, and Q. Cheng, “Stochastic

tubes in model predictive control with probabilistic constraints”, IEEE
Transactions on Automatic Control, vol. 56, no. 1, pp. 194–200, 2011.

[95] M. A. Hernández-Mejías, A. Sala, C. Ariño, and A. Querol, “Reliable

controllable sets for constrained markov-jump linear systems”, In-
ternational Journal of Robust and Nonlinear Control, vol. 10, no. 26,

pp. 2075–2089, 2016.

[96] M. A. Hernández-Mejías and A. Sala, “Reliability and time-to-failure

bounds for discrete-time constrained markov jump linear systems”,

International Journal of Robust and Nonlinear Control, vol. 10, no. 27,

pp. 1773–1791, 2017.

[97] J. Burlet, O. Aycard, and T. Fraichard, “Robust motion planning using

markov decision processes and quadtree decomposition”, in Proceed-
ings of IEEE Conference on Robotics and Automation, 2004, pp. 2820–

2825.

194 Bibliography

[98] S. Battilotti and A. De Santis, “Stabilization in probability of nonlinear

stochastic systems with guaranteed region of attraction and target set”,

IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1585–1599,

2003.

[99] G. Pola, J. Lygeros, and M. D. Di Benedetto, “Invariance in stochas-

tic dynamical control systems”, in Proceedings of the 17th International
symposium on Mathematical Theory of Network and Systems, 2006.

[100] G. Pola and G. Pola, “A stochastic reachability approach to portfolio

construction in �nance industry”, IEEE Transactions on Control Systems
Technology, vol. 20, no. 1, pp. 189–195, 2012.

[101] M. Cannon, B. Kouvaritakis, and X. Wu, “Probabilistic constrained

MPC for multiplicative and additive stochastic uncertainty”, IEEE
Transactions on Automatic Control, vol. 54, no. 7, pp. 1626–1632, 2009.

[102] N. A. Nguyen, “Stochastic output feedback control: Convex lifting ap-

proach”, Automatica, vol. 20, no. 1, pp. 212–220, 2018.

[103] L. Hewing, A. Carron, K. Wabersich, and M. Zeilinger, “On a corre-

spondence between probabilistic and robust invariant sets for linear

systems”, in Proceedings of 2018 European Control Conference, 2018,

pp. 876–881.

[104] S. Amin, A. Abate, M. Prandini, S. Sastry, and J. Lygeros, “Reachabil-

ity analysis for controlled discrete time stochastic hybrid systems”, in

Proceedings of International Workshop on Hybrid Systems: Computation
and Control, 2014, pp. 49–63.

[105] C. S. Chow and J. N. Tsitsiklis, “An optimal one-way multigrid algo-

rithm for discrete-time stochastic control”, IEEE Transactions on Auto-
matic Control, vol. 36, no. 8, pp. 898–914, 1991.

[106] A. Bhattacharya and J. P. Kharoufeh, “Linear programming formula-

tion for non-stationary, �nite-horizon markov decision process mod-

els”, Operations Research Letters, vol. 45, no. 6, pp. 570–574, 2017.

[107] N. Megiddo, “Linear programming in linear time when the dimension

is �xed”, Journal of the ACM, vol. 31, no. 1, pp. 114–127, 1984.

[108] I. Tkachev and Abate, “On in�nite-horizon probabilistic properties and

stochastic bisimulation functions”, in Proceedings of the 50th IEEE Con-
ference on Decision and Control and 2011 European Control Conference,
2011, pp. 526–531.

Bibliography 195

[109] D. Bertsekas, Dynamic Programming and Optimal Control: vol II.
Athena Scienti�c, 2012.

[110] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. Courier Corporation, 1998.

[111] J. T. Linderoth and A. Lodi, “MILP software”, Wiley Encyclopedia of
Operations Research and Management Science, 2010.

[112] P. Bonami, M. Kilinç, and J. Linderoth, “Algorithms and software for

convex mixed integer nonlinear programs”, in Mixed Integer Nonlinear
Programming, J. Lee and S. Ley�er, Eds., Springer, 2012, pp. 1–39.

[113] M. Prandini and J. Hu, “A stochastic approximation method for reach-

ability computations”, in Stochastic Hybrid Systems, H. A. Blom and J.

Lygeros, Eds., 107-139, 2006, pp. 1–39.

[114] B. Kouvaritakis, M. Cannon, S. Raković, and Q. Cheng, “Explicit use

of probabilistic distributions in linear predictive control”, Automatica,

vol. 46, no. 10, pp. 1719–1724, 2010.

[115] M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Constraint-

tightening and stability in stochastic model predictive control”, IEEE
Transactions on Automatic Control, vol. 62, no. 7, pp. 3165–3177, 2017.

[116] A. Prékopa, Stochastic Programming. Springer, 2013.

[117] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under tem-

poral tasks and soft constraints”, IEEE Transactions on Automatic Con-
trol, vol. 63, no. 12, pp. 4051–4066, 2018.

[118] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,

“Occupancy-driven energy management for smart building automa-

tion”, in Proceedings of the 2nd ACM workshop on Embedded Sensing
Systems for Energy-E�ciency in Building, 2010, pp. 1–6.

[119] B. Zhou, J. Cao, X. Zeng, and H. Wu, “Adaptive tra�c light control

in wireless sensor network-based intelligent transportation system”,

in Proceedings of IEEE 72nd Vehicular Technology Conference-Fall, 2010,

pp. 1–5.

[120] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback control

under data rate constraints: An overview”, Proc. of the IEEE, vol. 1,

no. 95, pp. 108–137, 2007.

196 Bibliography

[121] G. N. Nair and R. J. Evans, “Exponential stabilisability of �nite-

dimensional linear systems with limited data rates”, Automatica, vol. 4,

no. 39, pp. 585–593, 2003.

[122] S. Tatikonda and S. Mitter, “Control under communication con-

straints”, IEEE Transactions on Automatic Control, vol. 7, no. 49,

pp. 1056–1068, 2004.

[123] J. Lunze, Control Theory of Digitally Networked Dynamic Systems.
Springer, 2014.

[124] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran, “Topologi-

cal feedback entropy and nonlinear stabilization”, IEEE Transactions
on Automatic Control, vol. 9, no. 49, pp. 1585–1597, 2004.

[125] R. L. Adler, A. G. Konheim, and M. H. McAndrew, “Topological en-

tropy”, Transactions of the American Mathematical Society, vol. 2,

no. 114, pp. 309–319, 1965.

[126] R. Bowen, “Entropy for group endomorphisms and homogeneous

spaces”, Transactions of the American Mathematical Society, no. 153,

401–414, 1971.

[127] C. Kawan, Invariance Entropy for Deterministic Control Systems: An In-
troduction. Springer, 2013.

[128] F. Colonius, C. Kawan, and G. N. Nair, “A note on topological feed-

back entropy and invariance entropy”, Systems & Control Letters, vol. 5,

no. 62, pp. 377–381, 2013.

[129] T. Gal, Postoptimal Analyses, Parametric Programming, and Related Top-
ics (2nd ed.) Berlin: de Gruyter, 1995.

[130] M. Henk, J. Richter-Gebert, and G. M. Ziegler, “Basic properties of con-

vex polytopes”, in Handbook of Discrete and Computational Geometry
(3rd ed.) CRC Press, 2017.

[131] R. Schneider, “Convex bodies: The Brunn–Minkowski Theory: 2nd ex-

panded edition”, in Encyclopedia Math. Appl., v. 151, Cambridge Uni-

versity Press, 2014.

[132] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit

linear quadratic regulator for constrained systems”, Automatica, vol. 1,

no. 38, pp. 3–20, 2002.

Bibliography 197

[133] P. M. Gruber and J. M. Wills, Handbook of Convex Geometry. North

Holland, 1993.

[134] D. Avis, “Lrs: A revised implementation of the reverse search vertex

enumeration algorithm”, in Polytopes - Combinatorics and Computa-
tion, G. Kalai and G. Ziegler, Eds., Birkhauser-Verlag, 2000, pp. 177–

198.

[135] S. Lai, M. Lan, and B. M. Chen, “Model predictive local motion plan-

ning with boundary state constrained primitives”, IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3577–3584, 2019.

[136] K. J. Åström and B. Wittenmark, Computer-controlled Systems: Theory
and Design. Courier Corporation, 2013.

[137] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic”,

in Logics for Concurrency, F. Moller and G. Birtwistle, Eds., Springer,

1996, pp. 238–266.

[138] M. O. Rabin, “Decidability of second-order theories and automata

on in�nite trees”, Transactions of the American Mathematical Society,

no. 141, pp. 1–35, 1969.

[139] E. A. Emerson, “Automata, tableaux, and temporal logics”, in Proceed-
ings of Workshop on Logic of Programs, 1985, pp. 79–88.

[140] N. Piterman and A. Pnueli, “Faster solutions of rabin and streett

games”, in Proceedings of 21st Annual IEEE Symposium on Logic in Com-
puter Science, 2006, pp. 275–284.

[141] F. Horn, “Streett games on �nite graphs”, in Proceedings of 2nd Work-
shop on Games in Design and Veri�cation, 2005.

[142] A. Girard, G. Pola, and G. J. Pappas, “Approximately bisimilar symbolic

models for incrementally stable switched systems”, IEEE Transactions
on Automatic Control, vol. 1, no. 55, pp. 116–126, 2010.

[143] M. Zamani, P. M. Esfahani, R. Majumdar, A. Abate, and J. Lygeros,

“Symbolic control of stochastic systems via approximately bisimilar

�nite abstractions”, IEEE Transactions on Automatic Control, vol. 12,

no. 59, pp. 3135–3150, 2014.

[144] P. Tabuada and G. J. Pappas, “Model checking LTL over controllable

linear systems is decidable”, in Proceedings of ACM International Con-
ference on Hybrid Systems: Computation and Control, 2003, pp. 498–513.

198 Bibliography

[145] B. Yordanov, J. Tumová, I. Černá, J. Barnat, and C. Belta, “Formal anal-

ysis of piecewise a�ne systems through formula guided re�nement”,

Automatica, vol. 1, no. 49, pp. 261–266, 2013.

[146] ——, “Temporal logic control of discrete-time piecewise a�ne sys-

tems”, IEEE Transactions on Automatic Control, vol. 6, no. 57, pp. 1491–

1504, 2012.

[147] P.-J. Meyer and D. V. Dimarogonas, “Hierarchical decomposition of

LTL synthesis problem for nonlinear control systems”, IEEE Transac-
tions on Automatic Control, vol. 11, no. 64, pp. 4676–4683, 2019.

[148] S. Haesaert and S. Soudjani, “Robust dynamic programming for tem-

poral logic control of stochastic systems”, 2018. [Online]. Available:

arXiv:1811.11445.

[149] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed

logical dynamical systems with linear temporal logic speci�cations”,

in Proceedings of 47th IEEE Conference on Decision and Control, 2008,

pp. 2117–2122.

[150] N. Cauchi and A. Abate, “StocHy-automated veri�cation and synthesis

of stochastic processes”, in Proceedings of ACM International Confer-
ence on Hybrid Systems: Computation and Control, 2019, pp. 258–259.

[151] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon

temporal logic planning”, IEEE Transactions on Automatic Control,
vol. 11, no. 57, pp. 2817–2830, 2012.

[152] C. Belta, “Formal synthesis of control strategies for dynamical sys-

tems”, in Proceedings of 55th IEEE Conference on Decision and Control,
2016, pp. 3407–3431.

[153] P. G. Sessa, D. Frick, T. A. Wood, and M. Kamgarpour, “From uncer-

tainty data to robust policies for temporal logic planning”, in Proceed-
ings of ACM International Conference on Hybrid Systems: Computation
and Control, 2018, pp. 157–166.

[154] K. Hashimoto and D. V. Dimarogonas, “Resource-aware networked

control systems under temporal logic speci�cations”, Discrete Event
Dynamic Systems, 2019.

[155] M. Inoue and V. Gupta, “‘Weak’ control for human-in-the-loop sys-

tems”, IEEE Control Systems Letters, vol. 3, no. 2, pp. 440–445, 2018.

arXiv:1811.11445

Bibliography 199

[156] Y. Gao, F. J. Jiang, X. Ren, L. Xie, and K. H. Johansson, “Reachability-

based human-in-the-loop control with uncertain speci�cations”, in

Proceedings of 21st IFAC World Congress, to appear, 2020.

[157] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability spec-

i�cations for hybrid systems”, Automatica, vol. 3, no. 35, pp. 349–370,

1999.

[158] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,

“Decomposition of reachable sets and tubes for a class of nonlinear sys-

tems”, IEEE Transactions on Automatic Control, vol. 11, no. 63, pp. 3675–

3688, 2018.

[159] M. Altho� and B. H. Krogh, “Reachability analysis of nonlinear

di�erential-algebraic systems”, IEEE Transactions on Automatic Con-
trol, vol. 2, no. 59, pp. 371–383, 2014.

[160] I. M. Mitchell, “Scalable calculation of reach sets and tubes for non-

linear systems with terminal integrators: a mixed implicit explicit for-

mulation”, in Proceedings of ACM International Conference on Hybrid
Systems: Computation and Control, 2011, pp. 103–112.

[161] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal tempo-

ral logic meets Hamilton-Jacobi reachability: connections and appli-

cations”, in Proceedings of International Workshop on the Algorithmic
Foundations of Robotics, 2018. [Online]. Available: http://asl.stanford.

edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.

WAFR18.pdf.

[162] E. A. Gol, M. Lazar, and C. Belta, “Language-guided controller synthe-

sis for linear systems”, IEEE Transactions on Automatic Control, vol. 5,

no. 59, pp. 1163 –1176, 2014.

[163] INRIX, “The impact of parking pain in the us, uk and germany”, Tech.

Rep., 2017. [Online]. Available: http : / / www2 . inrix . com / research -

parking-2017.

[164] Hikvision. (2018). Mobile robot solutions: Smart parking industry so-

lutions, [Online]. Available: http : / / en . hikrobotics . com / robot /

robotplaninfo.htm?type=546\&oid=1598.

[165] D. AG. (2020). Innovative parking solutions: Convenient, customer-

oriented and e�cient, [Online]. Available: https://www.daimler.com/

innovation/parking.html.

http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.WAFR18.pdf
http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.WAFR18.pdf
http://asl.stanford.edu/wp-content/papercite-data/pdf/Chen.Tam.Livingston.Pavone.WAFR18.pdf
http://www2.inrix.com/research-parking-2017
http://www2.inrix.com/research-parking-2017
http://en.hikrobotics.com/robot/robotplaninfo.htm?type=546\&oid=1598
http://en.hikrobotics.com/robot/robotplaninfo.htm?type=546\&oid=1598
https://www.daimler.com/innovation/parking.html
https://www.daimler.com/innovation/parking.html

200 Bibliography

[166] B. AG. (2018). Intelligent parking, [Online]. Available: https://www.

bmw. co . uk / bmw - ownership / connecteddrive / driver - assistance /

intelligent-parking\#gref.

[167] X. Zhang, A. Liniger, and F. Borrelli, “Autonomous parking using

optimization-based collision avoidance”, in Proceedings of 57th IEEE
Conference on Decision and Control, 2018, pp. 4327–4332.

[168] Y. Li, K. H. Johansson, and J. Mårtensson, “A hierarchical control sys-

tem for smart parking lots with automated vehicles: Improve e�ciency

by leveraging prediction of human drivers”, in Proceedings of 18th Eu-
ropean Control Conference, 2019, pp. 2675–2681.

[169] X. Shen, X. Zhang, and F. Borrelli, “Autonomous parking of vehicle

�eet in tight environments”, 2019. [Online]. Available: https://arxiv.

org/abs/1910.02349.

[170] Wired. (2020). The war to remotely control self-driving cars heats up,

[Online]. Available: https://www.wired.com/story/designated-driver-

teleoperations-self-driving-cars/.

[171] M. Guo, S. Andersson, and D. Dimarogonas, “Human-in-the-loop

mixed-initiative control under temporal tasks”, in Proceedings of IEEE
International Conference on Robotics and Automation, 2018, pp. 6395–

6400.

[172] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press, 2004.

[173] G. Fainekos, H. Kress-Gazit, and G. Pappas., “Temporal logic motion

planning for mobile robots”, in Proceedings of IEEE International Con-
ference on Robotics and Automation, 2005, pp. 2020–2025.

[174] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time

linear systems”, IEEE Transactions on Automatic Control, vol. 51, no. 12,

pp. 1862–1877, 2006.

[175] M. Kloetzer and C. Belta, “A fully automated framework for control of

linear systems from temporal logic speci�cations”, IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[176] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U.

Topcu, “Safe reinforcement learning via shielding”, in Proceedings of
32rd AAAI Conference on Arti�cial Intelligence, 2018.

https://www.bmw.co.uk/bmw-ownership/connecteddrive/driver-assistance/intelligent-parking\#gref
https://www.bmw.co.uk/bmw-ownership/connecteddrive/driver-assistance/intelligent-parking\#gref
https://www.bmw.co.uk/bmw-ownership/connecteddrive/driver-assistance/intelligent-parking\#gref
https://arxiv.org/abs/1910.02349
https://arxiv.org/abs/1910.02349
https://www.wired.com/story/designated-driver-teleoperations-self-driving-cars/
https://www.wired.com/story/designated-driver-teleoperations-self-driving-cars/

Bibliography 201

[177] S. Dixit, U. Montanaro, S. Fallah, M. Dianati, D. Oxtoby, T. Mizutani,

and A. Mouzakitis, “Trajectory planning for autonomous high-speed

overtaking using mpc with terminal set constraints”, in Proceedings of
21st IEEE International Conference on Intelligent Transportation Systems,
2018, pp. 1061–1068.

[178] S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mccullough,

and A. Mouzakitis, “Trajectory planning and tracking for autonomous

overtaking : State-of-the- art and future prospects trajectory planning

and tracking for autonomous overtaking : State-of-the-art and future

prospects”, Annual Reviews in Control, vol. 45, pp. 76–86, 2018.

[179] N. Murgovski and J. Sjöberg, “Predictive cruise control with au-

tonomous overtaking”, in Proceedings of 54th IEEE Conference on Deci-
sion and Control, 2015, pp. 644–649.

[180] J. Karlsson, N. Murgovski, and J. Sjöberg, “Temporal vs. spatial formu-

lation of autonomous overtaking algorithms”, in Proceedings of 19th
IEEE International Conference on Intelligent Transportation Systems,
2016, pp. 1029–1034.

[181] F. Molinari, N. N. Anh, and L. D. Re, “E�cient mixed integer program-

ming for autonomous overtaking”, in Proceedings of IEEE American
Control Conference, 2017, pp. 2303–2308.

[182] J. Karlsson, N. Murgovski, and J. Sjöberg, “Comparison between

mixed-integer and second order cone programming for autonomous

overtaking”, in Proceedings of IEEE 2018 European Control Conference,
2018, pp. 386–392.

[183] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar, “Highly

automated driving on highways based on legal safety”, IEEE Transac-
tions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 333–347,

2013.

[184] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion

planning with constrained iterative lqr”, IEEE Transactions on Intelli-
gent Vehicles, 2019.

[185] A. Raghavan, J. Wei, J. S. Baras, and K. H. Johansson, “Stochastic

control formulation of the car overtake problem”, IFAC-PapersOnLine,
vol. 51, no. 9, pp. 124–129, 2018.

202 Bibliography

[186] M. Altho� and J. M. Dolan, “Set-based computation of vehicle behav-

iors for the online veri�cation of autonomous vehicles”, in Proceedings
of 21st IEEE International Conference on Intelligent Transportation Sys-
tems, 2011, pp. 1162–1167.

[187] M. Altho�, O. Stursberg, and M. Buss, “Safety assessment of au-

tonomous cars using veri�cation techniques”, in Proceedings of Amer-
ican Control Conference, 2007, pp. 4154–4159.

[188] M. Altho� and J. M. Dolan, “Online veri�cation of automated road

vehicles using reachability analysis”, IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[189] M. Altho�, O. Stursberg, and M. Buss, “Model-based probabilistic colli-

sion detection in autonomous driving”, IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 2, pp. 299–310, 2009.

[190] D. Sadigh, N. Landol�, S. S. Sastry, S. A. Seshia, and A. D. Dragan,

“Planning for cars that coordinate with people: Leveraging e�ects on

human actions for planning and active information gathering over hu-

man internal state”, Autonomous Robots, vol. 42, no. 7, pp. 1405–1426,

2018.

[191] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-

ment learning”, in Proceedings of 21st International Conference on Ma-
chine Learning, 2004, p. 1.

[192] K. Driggs-Campbell, R. Dong, and R. Bajcsy, “Robust, informative

human-in-the-loop predictions via empirical reachable sets”, IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 300–309, 2018.

[193] Y. Gao, F. Jiang, K. H. Johansson, and L. Xie, “Stochastic modeling and

optimal control for automated overtaking”, in Proceedings of 58th IEEE
Conference on Decision and Control, 2019, pp. 1273–1278.

[194] D. Du�e, Dynamic Asset Pricing Theory. Princeton University Press,

2010.

[195] M. H. A. Davis, “Martingale methods in stochastic control”, in Stochas-
tic control theory and stochastic di�erential systems, 1979, pp. 85–117.

[196] R. J. Elliott and D. B. Madan, “A discrete time equivalent martingale

measure”, Mathematical �nance, vol. 8, no. 2, pp. 127–152, 1998.

Bibliography 203

[197] Z. Feinstein and B. Rudlo�, “A supermartingale relation for multivari-

ate risk measures”, Quantitative Finance, vol. 18, no. 12, pp. 1971–1990,

2018.

[198] D. Williams, Probability with Martingales. Cambridge University Press,

1991.

[199] F. Chung and L. Lu, “Concentration inequalities and martingale in-

equalities – a survey”, Internet Mathematics, vol. 3, no. 1, pp. 79–127,

2006.

[200] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision

avoidance”, IEEE Transactions on Control Systems Technology, 2020.

[201] A. Quimby, G. Maycock, C. Palmer, and S. Buttress, “The factors

that in�uence a driver’s choice of speed: a questionnaire study”,

UK:Transport Research Laboratory, Tech. Rep., 1999.

[202] R. Sharma, M. Gupta, and G. Kapoor, “Some better bound on variance

with applications”, Journal of Mathematical Inequalities, vol. 4, no. 3,

pp. 355–363, 2010.

[203] Y. Nie, O. Faqir, and E. C. Kerrigan, “Iclocs2: Solve your optimal con-

trol problems with less pain”, in Proceedings of 6th IFAC Conference on
Nonlinear Model Predictive Control, 2018, pp. 2405–8963.

[204] H. Ishii and B. A. Francis, Limited Data Rate in Control Systems with
Networks. Springer, 2002.

[205] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with lim-

ited communication data rate”, IEEE Transactions onAutomatic Control,
vol. 56, no. 2, pp. 279–292, 2010.

[206] R. E. Allen, A. A. Clark, J. A. Starek, and M. Pavone, “A machine learn-

ing approach for real-time reachability analysis”, in Proceedings of 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 2202–2208.

[207] M. Chen, “High dimensional reachability analysis: Addressing the

curse of dimensionality in formal veri�cation”, PhD thesis, University

of California, Berkeley, 2017.

