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Abstract

Uncertainties and constraints are present in most control systems. For example, robot
motion planning and building climate regulation can be modeled as uncertain constrained
systems. In this thesis, we develop mathematical and computational tools to analyze and
synthesize controllers for such systems.

As our first contribution, we characterize when a set is a probabilistic controlled
invariant set and we develop tools to compute such sets. A probabilistic controlled invariant
set is a set within which the controller is able to keep the system state with a certain
probability. It is a natural complement to the existing notion of robust controlled invariant
sets. We provide iterative algorithms to compute a probabilistic controlled invariant
set within a given set based on stochastic backward reachability. We prove that these
algorithms are computationally tractable and converge in a finite number of iterations. The
computational tools are demonstrated on examples of motion planning, climate regulation,
and model predictive control.

As our second contribution, we address the control design problem for uncertain
constrained systems with aperiodic sensing and actuation. Firstly, we propose a stochastic
self-triggered model predictive control algorithm for linear systems subject to exogenous
disturbances and probabilistic constraints. We prove that probabilistic constraint satis-
faction, recursive feasibility, and closed-loop stability can be guaranteed. The control
algorithm is computationally tractable as we are able to reformulate the problem into
a quadratic program. Secondly, we develop a robust self-triggered control algorithm for
time-varying and uncertain systems with constraints based on reachability analysis. In the
particular case when there is no uncertainty, the design leads to a control system requiring
minimum number of samples over finite time horizon. Furthermore, when the plant is
linear and the constraints are polyhedral, we prove that the previous algorithms can be
reformulated as mixed integer linear programs. The method is applied to a motion planning
problem with temporal constraints.





Sammanfattning

Osäkerheter och begränsningar återfinns i de flesta reglersystem. Exempelvis kan
planering av robotrörelser och reglering av inomhusklimat modelleras som osäkra begränsade
system. I denna avhandling utvecklar vi matematiska och beräkningsmässiga verktyg för
att analysera och syntetisera styrenheter för sådana system.

Som första bidrag karaktäriserar vi när en mängd är en probabilistiskt reglerad
invariant mängd och utvecklar verktyg för att beräkna sådana mängder. En probabilistiskt
reglerad invariant mängd är en mängd inom vilken regulatorn kan hålla tillståndet med
en viss sannolikhet. Det är ett naturligt komplement till det befintliga begreppet robusta
reglerade invarianta mängder. Vi tillhandahåller iterativa algoritmer för att beräkna en
probabilistiskt reglerad invariant mängd inom en given mängd baserat på stokastisk
bakåtriktad uppnåelighet. Vi bevisar att dessa algoritmer är beräkningsmässigt hanterbara
och konvergerar inom ett finit antal iterationer. Beräkningsverktygen demonstreras med
exempel inom rörelseplanering, klimatreglering och modellprediktiv reglering.

Som andra bidrag behandlar vi reglerdesign för osäkra begränsade system med
aperiodisk mätning och aktivering. För det första föreslår vi en stokastisk självutlösande
modellprediktiv reglering algoritm för linjära system som utsätts för exogena störningar
och probabilistiska bivillkor. Vi bevisar att uppfyllande av probabilistiska bivillkor,
rekursiv genomförbarhet och stabilitet för det återkopplade systemet kan garanteras.
Regleralgoritmen är beräkningsmässigt hanterbar då vi kan omformulera problemet som
ett kvadratiskt program. För det andra utvecklar vi en robust självutlösande regler-
algoritm för tidsvarierande och osäkra begränsade system baserad på uppnåelighets-analys.
I specialfallet när det inte finns någon osäkerhet leder konstruktionen till ett reglersystem
som kräver minimalt antal sampel över finit tidshorisont. När systemet är linjärt och
bivillkoren är polyhedriska visar vi också att de tidigare algoritmerna kan omformuleras
som blandade linjära heltalsprogram. Metoden tillämpas på ett rörelseplanerings problem
med temporala bivillkor.
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Chapter 1

Introduction

Uncertainties and constraints are present in most control systems [1–5]. For example,
plants are usually corrupted by external disturbances and accompanied by model errors [6];
the control inputs always have saturated values and the system states are generally
required to stay within certain ranges. Many practical applications, such as robot motion
planning [7], portfolio investment [8], and building climate regulation [9], can be modeled
as uncertain constrained systems. A challenging task is how to stabilize such systems, i.e.,
design a controller which enforces the system state to an invariant region and ensures the
constraint satisfactions.

Since it is often impossible to stabilize uncertain systems exactly to a set-point (e.g.,
an equilibrium), a first question is the characterization of an invariant region. In general,
such a region is called a controlled invariant set [2, 3, 10]. Within this set, the states
can be maintained by some admissible control inputs. Robust controlled invariant sets
(RCISs) are defined for control systems with bounded external disturbances and address
the invariance under any realization of the disturbance [11–13]. If the uncertainties are
with known probability distributions instead, one interesting question is how to compute
a stable region where the state can be kept with a required probability. In this thesis, we
introduce probabilistic controlled invariant sets (PCISs) to deal with such situations.

This thesis also considers how to handle networked control systems [14, 15] with
aperiodic sensing and actuation. These systems are a particular class of uncertain con-
strained systems, where the limited network recourses pose essential problems [16, 17].
We provide mathematical tools to design aperiodic controller which can tradeoff the control
performance and the communication cost.

The remaining of this chapter is organized as follows. Section 1.1 provides the
motivations of this thesis. Section 1.2 gives the mathematical models of the uncertain
constrained systems. Section 1.3 formalizes the problems that will be studied. Section 1.4
reviews some related literature. Section 1.5 gives the outline of the thesis.

1



2 Introduction

1.1 Motivation

In this section, we motivate the importance of studying stochastic invariance and aperiodic
control for uncertain constrained systems through one example and a discussion of other
application areas..

Example

A mobile robot example is shown in Figure 1.1. A mobile robot (gray) moves in a room,
where there are some moving obstacles (blue and green robots) and static obstacles (black
walls), and is controlled by a remote computer via a shared network. The robot encounters
some constraints resulting from the actuation saturation (i.e., control input constraints) and
the closed environment (i.e., state constraints). It is reasonable to assume that the robot
control is exposed to random noises and uncertainties.

Consider the problem of computing a safe region for the robot. A PCIS is a region
within which the controller is able to keep the robot with a certain probability. This
region will depend on the stochastic uncertainty of the motion controller together with
external influences. Chapter 3 investigates a similar scenario and illustrates how to model
the motion of mobile robot and compute the PCIS for motion planning tasks.

Consider next the problem of remotely controlling the robot to fulfill some temporal
tasks. For example, the robot is required to move from its initial position (the black dot)
to the region X1 within the deadline N1 and then move from X1 to X2 within the deadline
N2. Because of the limited communication bandwidth, it is natural to design an aperiodic
controller, which can complete the control task and guarantee the constraint satisfactions
under severe communication restriction. The state and control input trajectories under such
an aperiodic control is shown in Figure 1.2. Chapter 5 describes more details on such
aperiodic control design.

Application areas

Stochastic invariance and aperiodic control are important in many more areas than motion
planning. Here we discuss three such areas:

• Safety-critical control. Safety is vital in many control systems [18–20]. In [21, 22],
an air traffic management system is modeled as a stochastic hybrid control system.
To resolve potential conflicts between aircrafts, an approach is proposed to compute
the minimal probability of reaching unsafe regions [22]. Each aircraft is expected
to stay in the safe region with some prescribed probability level. After computing
the safe region, an aperiodic control protocol between the aircraft and the operation
center can efficiently reduce computation burden and save communication resources
when controlling the aircraft moving in the safe region.

• Stochastic model predictive control (MPC). In MPC, an invariant set is in general
imposed for terminal set to ensure recursive feasibility and stability [4,5]. Stochastic
MPC is used in controlling a stochastic system with probabilistic constraints [23,24].
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(X1,N1)

(X2,N2)

Initial position

Figure 1.1: Motion of a mobile robot.

Stochastic invariance not only guarantees probabilistic constraint satisfactions but
also helps to characterize stochastic stability. Compared with existing methods
based on either RCISs as terminal sets [25] or no terminal sets [26], taking a
stochastic invariant set as terminal set can possibly mitigate the conservatism of
these methods by enlarging the domain of contraction. Furthermore, given a (not
necessarily stochastic) terminal set, an aperiodic implementation of stochastic MPC
can tradeoff the control performance and the communication usage.

• Markov decision processes (MDPs). MDPs are widely used in many control
applications such as motion planning [27]. In [28,29], constraints are imposed on the
state probability density function of an MDP under control. Probabilistic invariance,
as developed in this thesis, can be used for such control systems to characterize
the invariant region in the state space, while aperiodic control provides a more
communication-efficient strategy to keep the system operating in its invariant region.

1.2 Mathematical Modeling

In this section, we provides two mathematical models that will be used in this thesis.
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Figure 1.2: The robot trajectory (a) under aperiodic control input (b).

Uncertain Constrained Control Systems

We consider a discrete-time control system with additive disturbance

xk+1 = f (xk, uk) + wk, (1.1)

where xk ∈ R
nx is the state, uk ∈ R

nu the control input, wk ∈ R
nw the disturbance, and

f : Rnx × Rnu → Rnx . In general, the disturbance wk belongs to a given set W ⊂ Rnx . At
each time instant k, the control input uk is constrained by a compact set U ⊂ Rnu and the
state xk is constrained by a compact set X ⊂ Rnx .

If the set W is compact and the probability distribution of wk is unknown, a robust
controller can be designed by taking into account the worst case. If the disturbance wk

is with a known probability distribution, the system is a stochastic control system and a
controller can be designed by making use of the probabilistic model.
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Stochastic Control Systems

We also consider stochastic control systems described by a triple S = (X,U,T ), where

• X is a state space endowed with a Borel σ-algebra B(X);

• U is a compact control space endowed with a Borel σ-algebra B(U);

• T : X×U→ R is a Borel-measurable stochastic kernel givenX×U, which assigns to
each x ∈ X and u ∈ U a probability measure on the Borel space (X,B(X)): T (·|x, u).

This model is often called a controlled Markov process [30]. It includes a quite large
class of stochastic control systems. We remark that for the system (1.1), if wk, ∀k ∈ N, are
independent and identically distributed (i.i.d.) and are with density function g : Rnx → R,
it can be represented as a triple S = {X,U,T } with

X = Rnx ,

U ⊂ Rnu ,

T (A|x, u) =
∫
A

g(y − f (x, u))dy.

1.3 Problem Formulation

In this thesis, we address two key problems for uncertain constrained systems. The first
one is the problem of computing PCISs while the second one is the problem of designing
self-triggered control schemes.

Problem 1: computation of a PCIS

Consider a stochastic control system described by a triple S = (X,U,T ). We say that a
set Q ⊂ X is an ε-PCIS if for any x0 ∈ Q, there exists control inputs (u0, u1, . . .) such that
the generating trajectory (x0, x1, . . .) can be kept into Q with probability at least ε, where
0 ≤ ε ≤ 1 is a prescribed number. The problem of computing an ε-PCIS is that given a set
Q ⊂ X and a required probability level ε, find a subset Q̃ ⊆ Q such that Q̃ is an ε-PCIS.
An intuitive way to compute an ε-PCIS is to iteratively compute the stochastic backward
reachable set, which for a given set Q ⊂ X, is defined by

X∗ε (Q) = {x0 ∈ Q | ∃uk ∈ U,∀k, Pr{∀k, xk ∈ Q} ≥ ε}. (1.2)

The algorithm below is shown for computing an ε-PCIS.
In Chapter 3, we develop algorithms to compute PCISs by adapting Algorithm 1.1 for

different model classes. We prove that these algorithms are computationally tractable and
converge in a finite number of iterations.
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Algorithm 1.1 Computing an ε-PCIS within Q

1: Initialize i = 0 and Pi = Q.
2: Compute the stochastic backward reachable set of Pi, i.e.,X∗ε (Pi) and set Pi+1 = X∗ε (Pi).
3: Verify whether the resulting set Pi+1 is an ε-PCIS.
4: If yes, stop. Else, set i = i + 1 and go to step 2.

Problem 2: self-triggered control design

A self-triggered control scheme is shown in Figure 1.3. In this scheme, we aim to
jointly design a controller and an aperiodic communication protocol, which can achieve
the control task, guarantee the constraint satisfactions, and efficiently utilize network
resources.

Consider the uncertain constrained control system (1.1). To reduce the amount of
communication, the sensor only measures and transmits the state xki to the controller at
the sampling instants ki ∈ N, i ∈ N, which evolve as

ki+1 = ki + Mi (1.3)

with k0 = 0. The inter-sampling time Mi is determined by a self-triggering mechanism
based on the state xki at the sampling instant ki. An illustration of the difference between
the periodically-triggered control scheme and the self-triggered control scheme is shown
in Figure 1.4. The self-triggered control problem at sampling instant ki can be formulated
as the following multiple objective optimization problem:

min
u,Mi

{
J(xki ,u),−Mi

}
(1.4a)

subject to
ki+1 = ki + Mi, (1.4b)

∀ j ∈ N[ki,ki+1−1] : (1.4c)
u j ∈ U, (1.4d)

∀w j ∈W :

x j+1 = f (x j, u j) + w j,

x j+1 ∈ X,
(1.4e)

where the control sequence u = (u j)
ki+1−1
j=ki

and J(xki ,u) is the cost function. The objective
function of this optimization problem aims to minimize the cost function and maximize the
inter-sampling time. Note that this optimization problem is infinite-dimensional since there
are an infinite number of state constraints (1.4e). We address the computational tractability
of this problem in Chapters 4 and 5.

In Chapter 4, we integrate self-triggered control and stochastic MPC for linear
systems subject to probabilistic constraints. We assume that the optimal control sequence
u∗ = (u∗j)

ki+1−1
j=ki

can be transmitted via a communication network. The multiple objective
optimization problem is solved by a layered framework. The lower layer solves a standard
quadratic program indexed with the inter-sampling time while the upper layer maximizes
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Sensor Plant Actuator

x(ki)

x(ki) u j,Mi

u j,Mi

Self-triggered Control

Figure 1.3: The self-triggered control framework.

the inter-sampling time subject to some constraints on the optimal cost function of the
lower layer.

In Chapter 5, we investigate robust self-triggered control based on reachability analysis
for time-varying and uncertain systems with constraints. We assume that only one control
input and the corresponding inter-sampling time can be transmitted via the network. That
is, all elements in the control sequence u = (u j)

ki+1−1
j=ki

are equal with each other. In order
to provide a geometric insight of self-triggered control, we ignore the cost function and
just seek the maximal inter-sampling time. The optimization problem is reformulated as a
tractable integer program.

1.4 Related Work

Controlled invariant sets

Controlled invariant sets have been widely studied in the literature [2, 3, 10]. For example,
invariant sets are often used to determine the terminal constraints in MPC as they guarantee
recursive feasibility of the MPC problem.

In general, robust invariance is customized for dynamical systems with bounded
uncertainties. There are lots of iterative approaches focusing on the computation of RCISs.
One essential component in these approaches is to compute the robust backward reachable
set, in which each state can be steered to the current set by an admissible input for all
possible uncertainties [11–13].

Controlled invariant sets have recently been extended to stochastic systems. In [31],
the target set used to define the stabilization in probability serves as an embryo of
PCIS. A formal description of PCIS is provided in [32] for nonlinear systems by using
reachability analysis and it is later applied to portfolio optimization [33]. Another definition
of probabilistic invariance originates from stochastic MPC [34] and captures one-step
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0 1 2 i i + 1· · ·

k0 k1 k2 ki ki+1· · ·

time instant

sampling instant

· · ·

0 1 2

k0 k1 ki ki+1· · ·

time instant

sampling instant

· · ·

M0 Mi

i i + 1· · ·

(a)

(b)

Figure 1.4: The periodically-triggered control scheme (a) and the self-triggered control
scheme (b).

ahead invariance. In [34], an ellipsoidal approximation is given for linear systems with
specific uncertainty structure. Similar invariant sets are recently used in [35] to construct a
convex lifting function for linear stochastic control systems. A definition of a probabilistic
invariant set is proposed in [36, 37] for linear stochastic systems without control inputs.
This definition captures the inclusion of the state in probability for each time instant. A
recent work [38] explores the correspondence between probabilistic and robust invariant
sets for linear systems. In [36,37], polyhedral probabilistic invariant sets are approximated
by using Chebyshev’s inequality for linear systems with Gaussian noise. The recursive
satisfaction is usually computationally intractable for general stochastic control systems.

Aperiodic control of constrained systems

Event-triggered and self-triggered control are two specific types of aperiodic control
schemes [39, 40]. Self-triggered control scheme can determine the next update time in
advance based on the information at the current sampling instant while event-triggered
control scheme requires the continuous monitoring of the system states. In addition, self-
triggered control scheme permits the shut-down of the sensors between two updates to
reduce the energy utilization. This thesis focuses on the self-triggered control design.

Some combinations between MPC strategies and event-triggered control have been
provided in [41–44]. In [42], an event-triggered MPC is proposed to reduce both
communication and computational effort for discrete-time linear systems subject to input
and state constraints as well as exogenous disturbances. In [44], the average sampling rate
is explored for robust event-triggered MPC.
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Some developments of self-triggered MPC are available. In [45], the authors presented
a self-triggered model predictive controller for constrained linear time-invariant systems.
As the unconstrained version of [45], a self-triggered linear quadratic regulation (LQR)
scheme was considered in [46] for unconstrained systems with stochastic disturbances.
In [47], an approach similar to [45] was proposed, where the cost function is defined
depending on the length of the inter-sampling time, while in [45] the inter-sampling time
is maximized subject to constraints on the cost function. Besides these works focussing on
linear systems, a self-triggered nonlinear MPC approach for the case of nonlinear systems
was presented in [48], in which a way was proposed to adaptively select sampling time
intervals. It is worth noting that [46] does not address the constrained case, while [45], [47],
and [48] consider the cases with constraints but without the uncertainty.

Further results of the self-triggered MPC have been reported for systems subject to both
constraints and the uncertainty. Based on ideas from robust control-invariant sets, a self-
triggered scheme was devised in [49] for linear systems subject to additive disturbances.
However, it did not provide the analysis of stability and performance. In [50], a robust self-
triggered MPC algorithm was presented for constrained linear systems subject to bounded
additive disturbances, which employed the tube-based MPC methods in [51] to guarantee
robust constraint satisfaction and followed the principles of [45] to obtain an a priori
determination of the next sampling instant. Note that in [50], all constraint parameters
of the optimization problem at each sampling instant depend only on the maximal inter-
sampling time, which has the drawback of leading to a conservative region of attraction
of the MPC scheme. Inspired by a more advanced tube-based MPC method in [52], the
authors of [53] proposed a novel robust self-triggered MPC to alleviate the conservatism
in [50]. Different from the predicted sets in [50] parametrized by a translation only,
an additional scaling factor in the state-space was also introduced in [53] to define the
predicted sets, thereby leading to a larger feasible region of the MPC scheme. A recent
robust self-triggered MPC method was also presented in [54] for the same problem as
in [50, 53]. By combining with the self-triggering mechanism in [53], the focus of [54]
lay in extending the tube-based MPC method in [55] to describe the uncertainty in the
prediction in the self-triggered setup.

Other than MPC, only a few work address the self-triggered control for constrained
systems. For example, the focus of [56–58] is on the design of an event-triggered controller
when the systems are subject to actuator saturation. One recent work [59] provides a
contractive set-based approach to design self-triggered control for linear deterministic
constrained systems.

1.5 Thesis outline and contributions

The rest of the thesis is organized as follows.

Chapter 2: Preliminaries

In Chapter 2, we provide some preliminary results that will be used in this thesis.
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Chapter 3: Probabilistic controlled invariant sets

In Chapter 3, we investigate stochastic invariance for control systems by PCISs. We
propose two definitions: finite- and infinite-horizon PCISs, and explore their relation to
robust control invariant sets. We design iterative algorithms to compute the PCIS within a
given set. For systems with discrete state and control spaces, the computations of the finite-
and infinite-horizon PCISs at each iteration are based on linear programming and mixed
integer linear programming, respectively. The algorithms are computationally tractable and
terminate in a finite number of steps. For systems with continuous state and control spaces,
we show how to discretize the spaces and prove the convergence of the approximation
when computing the finite-horizon PCISs. In addition, it is shown that the infinite-horizon
PCIS can be alternatively computed by the stochastic backward reachable set from the
robust control invariant set contained in it.

The covered material is based on the following contribution.

• Y. Gao, K. H. Johansson, and L. Xie, “On probabilistic controlled invariant set,”
Submitted to IEEE Transaction on Automatic Control.

Chapter 4: Stochastic self-triggered model predictive control

In Chapter 4, we propose a stochastic self-triggered MPC algorithm for linear systems
subject to exogenous disturbances and probabilistic constraints. The main idea behind
the self-triggered framework is that at each sampling instant, an optimization problem is
solved to determine both the next sampling instant and the control inputs to be applied
between the two sampling instants. Although the self-triggered implementation achieves
communication reduction, the control commands are necessarily applied in open-loop until
the next sampling instant. To guarantee probabilistic constraint satisfaction, necessary
and sufficient conditions are derived on the nominal systems by using the information
on the distribution of the disturbances explicitly. Moreover, based on a tailored terminal
set, a multi-step open-loop MPC optimization problem with infinite prediction horizon is
transformed into a tractable quadratic programming problem with guaranteed recursive
feasibility. The closed-loop system is shown to be stable.

The covered material is based on the following contribution.

• L. Dai∗, Y. Gao∗, L. Xie, K. H. Johansson, and Y. Xia, “Stochastic self-triggered
model predictive control for linear systems with probabilistic constraints,” Automat-
ica, vol. 92, pp. 9-17, 2018.

∗: Equal contribution of the authors.

Chapter 5: Robust self-triggered control via reachability analysis

In Chapter 5, we develop a robust self-triggered control algorithm for time-varying and
uncertain systems with constraints based on reachability analysis. The resulting piecewise
constant control inputs achieve communication reduction and guarantee constraint satis-
factions. In the particular case when there is no uncertainty, we propose a control design
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with minimum number of samplings over finite time horizon. Furthermore, when the plant
is linear and the constraints are polyhedral, we prove that the previous algorithms can be
reformulated as computationally tractable mixed integer linear programs.

The covered material is based on the following contribution.

• Y. Gao, P. Yu, D. V. Dimarogonas, K. H. Johansson, and L. Xie, “Robust self-
triggered control for time-varying and uncertain constrained systems via reachability
analysis,” Submitted to Automatica.

Chapter 6: Conclusions and future research

In Chapter 6, we present a summary of the results, and discuss directions for future
research.

Contributions not covered in the thesis

The following publications by the author are not covered in the thesis:

• Y. Gao, S. Wu, K. H. Johansson, L. Shi, and L. Xie, “Stochastic optimal control
of dynamic queue systems: a probabilistic perspective,” in Proceedings of 15th
International Conference on Control, Automation, Robotics and Vision, 2018.

• Y. Gao, M. Jafarian, K. H. Johansson, and L. Xie, “Distributed freeway ramp
metering: optimization on flow speed,” in Proceedings of IEEE Conference on
Decision and Control, 2017.





Chapter 2

Preliminaries

In this chapter, we provide notations and preliminaries that are used in the remaining parts
of this thesis.

2.1 Notation

Let N denote the set of nonnegative integers and R denote the set of real numbers. For
some q, s ∈ N and q < s, let N≥q, N>q, N≤q, N<q, and N[q,s] denote the sets {r ∈ N | r ≥ q},
{r ∈ N | r > q}, {r ∈ N | r ≤ q}, {r ∈ N | r < q}, and {r ∈ N | q ≤ r ≤ s}, respectively. Let I
denote an identity matrix. A matrix or vector of ones or zeors with appropriate dimension
is denoted by 1 and 0, respectively. When ≤, ≥, <, >, and | · | are applied to vectors, they
are interpreted element-wise. Let xk denote the value of variable x at time instant k, xk+i|k a
prediction i steps ahead from time k.

Let Pr denote the probability measure, E the expectation, and Ek the conditional
expectation of a random variable given the state at time k. Given a topological space X,
B(X) denotes the Borel σ-algebra of this space.

For a vector x ∈ Rn, define ‖x‖∞ = maxi |xi|. For W ∈ Rn×n, W � 0 means that W is
symmetric and positive definite. For x ∈ Rn and W � 0, ‖x‖2W , xT Wx. For xi ∈ R

n, i ∈ N,
define

∑b
i=a xi = 0 if a > b.

The Minkowski sum of two sets is denoted by A ⊕ B = {a + b | ∀a ∈ A,∀b ∈ B}. The
Minkowski difference of two sets is denoted by A 	 B = {c | ∀b ∈ B, c + b ∈ A}. For two
sets X and Y, X \ Y = {x | x ∈ X, x < Y}. For a polyhedron P = {x ∈ Rn | Px ≤ p}, define
‖P‖∞ = maxx∈P{‖Px − p‖∞}. For X ⊆ Rn and A ∈ Rn×n, define A−1X = {x ∈ Rn | Ax ∈ X}.
For xl ∈ R

n, l ∈ N, define
∑ j

l=k xl = 0 if k > j. For Xl ⊆ R
n and Al ∈ R

n×n, l ∈ N, define

j⊕
l=k

Xl =

∅, k > j,
Xk ⊕ Xk+1 ⊕ . . .X j, k ≤ j,

j∏
l=k

Al =

I, k > j,
A jA j−1 . . . Ak, k ≤ j.

13
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Given two X and X̃, two indicator functions are, respectively, defined as

1X(x) =

1, x ∈ X,
0, x < X,

and 1X(X̃) =

1, X̃ ⊆ X,
0, X̃ * X.

2.2 Stochastic Optimal Control

Markov Policy

Consider a stochastic control system described by a triple S = (X,U,T ) as in Section 1.2.

Definition 2.1. Given a Polish space Y, a subset A in this space is universally measurable
if it is measurable with respect to every complete probability measure on Y that measures
all Borel sets in B(Y).

Definition 2.2. A function µ : Y → W is universally measurable if µ−1(A) is universally
measurable in Y for every A ∈ B(W).

Let the finite horizon be N. We define a Markov policy as follows.

Definition 2.3. (Markov Policy) A Markov policy µ for system S is a sequence µ =

(µ0, µ1, . . . , µN−1) of universally measurable maps

µk : X→ U,∀k ∈ N[0,N−1].

Remark 2.1. As stated in [60,61], the condition of universal measurability is weaker than
the condition of Borel measurability for showing the existence of a solution to a stochastic
optimal problem. Roughly speaking, this is because the projections of measurable sets
are analytic sets and analytic sets are universally measurable but not always Borel
measurable [61, 62].

When extending the finite horizon to the infinite horizon, we define a stationary policy.

Definition 2.4. (Stationary Policy) A Markov policy µ ∈ M is said to be stationary if
µ = (µ̄, µ̄, . . .) with µ̄ : X→ U universally measurable.

Let M denote the set of Markov policies. In the following, we recall two stochastic
optimal control problems which aim at maximizing the probability of staying one set.

Finite-horizon stochastic optimal control

Consider a Borel set Q ∈ B(X). Given an initial state x0 ∈ X and a Markov policy µ ∈ M,
an execution is a sequence of states (x0, x1, . . . , xN). Introduce the probability with which
the state xk will remain within Q for all k ∈ N[0,N]:

pµN,Q(x0) = Pr{∀k ∈ N[0,N], xk ∈ Q}.

Let p∗N,Q(x) = supµ∈M pµN,Q(x). The next theorem shows that this finite-horizon
stochastic optimal control problem can be solved via a dynamic program (DP).
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Theorem 2.1. [60] Define value functions V∗k,Q : X → [0, 1], k = 0, 1, . . . ,N, in the
backward recursion:

V∗k,Q(x) = sup
u∈U

1Q(x)
∫
Q

V∗k+1,Q(y)T (dy|x, u), x ∈ X, (2.1)

with initialization

V∗N,Q(x) = 1, x ∈ Q. (2.2)

Then, V∗0,Q(x) = p∗N,Q(x), ∀x ∈ Q. The optimal Markov policy µ∗Q = (µ∗0,Q, µ
∗
1,Q, . . . , µ

∗
N−1,Q)

is given by

µ∗k,Q(x) = arg sup
u∈U

1Q(x)
∫
Q

V∗k+1,Q(y)T (dy|x, u), x ∈ Q, k ∈ N[0,N−1].

In particular, one sufficient condition for the existence of µ∗Q is that for all x ∈ Q, λ ∈ R,
and k ∈ N[0,N−1], the set Uk(x, λ) = {u ∈ U |

∫
X

V∗k+1,Q(y)T (dy|x, u) ≥ λ} is compact.

Remark 2.2. Here, V∗k,Q(x) denotes the maximum probability with which starting from an
initial state x ∈ Q, the states remain in Q over the time interval N[k,N].

Infinite-horizon stochastic optimal control

Consider a Borel setQ ∈ B(X). Given an initial state x0 ∈ X and a stationary policy µ ∈ M,
an execution is denoted by a sequence of states (x0, x1, . . .). We introduce the probability
with which the state xk will remain within Q for all k ∈ N:

pµ
∞,Q

(x0) = Pr{∀k ∈ N, xk ∈ Q}.

Let p∗
∞,Q(x0) = supµ∈M pµ

∞,Q
(x0). The next theorem gives a way to solve this infinite-

horizon stochastic optimal control problem.

Theorem 2.2. [60] Define the value function G∗k,Q : X → [0, 1], k ∈ N, in the forward
recursion:

G∗k+1,Q(x) = sup
u∈U

1Q(x)
∫
Q

G∗k,Q(y)T (dy|x, u), x ∈ X, (2.3)

initialized with

G∗0,Q(x) = 1, x ∈ Q. (2.4)

Suppose that there exists a k̄ ≥ 0 such that the setUk(x, λ) = {u ∈ U |
∫
X

G∗k,Q(y)T (dy|x, u) ≥
λ} is compact for all x ∈ Q, λ ∈ R, and k ∈ N≥k̄. Then, the limitation G∗

∞,Q(x) exists and
satisfies

G∗∞,Q(x) = sup
u∈U

1Q(x)
∫
Q

G∗∞,Q(y)T (dy|x, u)), (2.5)
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and G∗
∞,Q(x) = p∗

∞,Q(x) for all x ∈ Q. Furthermore, there exists an optimal stationary
policy µ∗ = (µ̄∗, µ̄∗, . . .) given by

µ̄∗Q(x) = arg sup
u∈U

1Q(x)
∫
Q

G∗∞,Q(y)T (dy|x, u), x ∈ Q.

Remark 2.3. Here, G∗k,Q(x) denotes the maximum probability with which starting from an
initial state x ∈ Q, the states remain in Q over the time interval N[0,k].

2.3 Stochastic MPC

Different from robust MPC, stochastic MPC makes full use of the stochastic characteristics
of the uncertainties to deal with probabilistic constraints, which allows constraint violations
to occur with a prespecified probability level. Probabilistic constraints enable stochastic
MPC to directly trade off the constraint satisfaction and the control performance, and
therefore alleviate the inherent conservatism of robust MPC. In what follows, we introduce
the general formulation of stochastic MPC in more details.

Consider a discrete-time control system of the form

xk+1 = f (xk, uk) + wk, (2.6)

where xk ∈ R
nx and uk ∈ R

nu , wk ∈ R
nx , and f : Rnx×Rnu → Rnx . Assume that wk, k ∈ N, are

independent and identically distributed (i.i.d.) and the elements of wk have zero mean. The
distribution F of wk is assumed to be known and continuous with a compact supportW. At
each time instant k, the state xk of system (2.6) is subject to nc probabilistic constraints

Pr{g`(xk) ≤ 0} ≥ p`, ` ∈ N[1,nc], k ∈ N, (2.7)

where g` : RNx → R, and p` ∈ [0, 1], and the control input uk is constrained by a compact
set U ⊂ Rnu .

Given a finite horizon N, at time instant k, a sequence of predictive control inputs is
defined by uk = (uk|k, uk+1|k, · · · , uk+N−1|k) and the corresponding sequence of predictive
states is defined by xk = (xk|k, xk+1|k, · · · , xk+N |k), where

xk+i+1|k = f (xk+i|k, uk+i|k) + wk+i|k, xk|k = xk, i ∈ N≤N−1.

The objective function is

J(xk,uk) = Ek[
N−1∑
i=0

(‖xk+i|k‖
2
Q + ‖uk+i|k‖

2
R) + ‖xk+N |k‖

2
P] (2.8)

where Q � 0, R � 0, and P � 0 are the weighting matrices.
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Given xk, the stochastic MPC optimization problem can be formulated as

min
uk

J(xk,uk) (2.9a)

subject to
xk|k = xk, (2.9b)
∀i ∈ N[0,N−1] : (2.9c)

xk+i+1|k = f (xk+i|k, uk+i|k) + wk+i|k,

uk+i|k ∈ U,

wk+i|k ∈W,wk+i|k ∼ F,
Pr{g`(xk+i|k ≤ 0 | xk} ≥ p`, ` ∈ N[1,nc],

(2.9d)

xk+N |k ∈ X f , (2.9e)

where X f is the terminal set to be designed. After solving this optimization problem, the
first piece of the sequence of the optimal control inputs u∗k is implemented, i.e., uk = u∗k|k.

Note that the probabilistic constraints restrict the tractability of the above optimization
problem. Here, we summarize three main approaches on handling the probabilistic
constraints in the literature.

(1) Stochastic Tube Approaches. Like tube-based MPC [63], stochastic tube is con-
structed by exploiting the distribution of the uncertainties and is deployed to
guarantee recursive feasibility, closed-loop stability, and probabilistic constraint
satisfaction. In [25], stochastic tube-based MPC is used for linear systems with
additive and bounded disturbances. This stochastic tube is determined by tightening
constraints, which requires large and complex offline computations. To improve
the computational efficiency, the stochastic tube with fixed orientations but scalable
cross sections is investigated in [23].

(2) Affine Parameterization Approaches. In [64], the feedback control input is defined
in terms of an affine function of past disturbances. The decision variables in
the optimization problem become the affine parameters. Thus, the probabilistic
constraints are also parameterized. In [65], the Chebyshev–Cantelli inequality is
used to handle the parameterized probabilistic constraints. The first drawback of
affine parameterization approaches is the difficulty to ensure of the closed-loop
stability. Another one is the conservatism associated with the approximations like
the Chebyshev–Cantelli inequality.

(3) Scenario-based Approaches. Scenario optimization provides an explicit bound on
the number of samples required to obtain a solution to the convex optimization
problem that guarantees constraint satisfaction with a prespecified probability
level [66]. In [67, 68], various scenario-based approaches have been considered for
approximating the probabilistic constraints in MPC. However, the challenges of
scenario-based MPC arise from both the high computation and the guarantees of
recursive feasibility and closed-loop stability.
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2.4 Reachability Analysis

The reachability problem is fundamental in systems and control and is critical for
controllability and tracking problems [69–71]. In the following, we summarize some
results on computing the backward reachable tube for constrained systems.

Consider a discrete-time dynamic system

xk+1 = fk(xk, uk) + wk, (2.10)

where xk ∈ R
nx and uk ∈ R

nu , wk ∈ R
nx , and fk : Rnx × Rnu → Rnx . The control input uk

at time k is constrained by a set Uk ⊂ R
nu . The additive disturbance wk at time instant k

belongs to a compact set Wk ⊂ R
nx . In addition, given a finite time horizon N ∈ N, the

system (2.6) is subject to a target tube, denoted by {(Xk, k), k ∈ N[1,N]}, where Xk ⊆ R
nx .

Definition 2.5. (Reachability) The target tube {(Xk, k), k ∈ N[1,N]} of the system (2.10)
is reachable from the initial state x0 ∈ X0 if there exists a sequence of control inputs
uk ∈ Uk, ∀k ∈ N[0,N−1], such that the state xk ∈ Xk, ∀k ∈ N[1,N], for all possible disturbance
sequences wk ∈Wk, ∀k ∈ N[0,N−1].

Let X∗N = XN . For k ∈ N[0,N−1], the backward reachable set X∗k for the system (2.10) is
recursively computed by:

Pk = {z ∈ Rnx | ∃uk ∈ Uk, fk(z, uk) ⊕Wk ⊆ X
∗
k+1}, (2.11a)

X∗k = Pk ∩ Xk. (2.11b)

Proposition 2.1. [69] The target tube {(X j, j), j ∈ N[k+1,N]} of the system (2.10) is
reachable from xk if and only if xk ∈ Pk. Furthermore, the target tube {(Xk, k), k ∈ N[1,N]}

is reachable from the initial state x0 ∈ X0 if and only if x0 ∈ X
∗
0.

The computation of backward reachable tube for control systems has attracted much
attentions in the past decades. Many existing results focus on sets of pre-specified shapes,
such as polytopes or hyperplanes [72]. In particular, for linear systems with polyhedra
constraints, there are some geometry software packages which can efficiently implement
set operations, such as projection, set difference, piecewise affine maps and their inverse,
Minkowski sums, intersections, etc [73, 74]. Some recent research progresses have been
reported for nonlinear systems. For example, the authors of [71] generalize the reachability
of linear systems to piecewise affine systems with polygonal constraints and prove that the
set can be computed by using polyhedral algebra and computational geometry software.
Recently, a decomposition approach is proposed in [75] to compute the reachable set for a
class of high dimensional nonlinear systems.

In general, reachability analysis leads to a large number of constraints with the increase
of the dimension and horizon. In order to make the computation efficient, there have been a
lot of results on inner approximations of backward reachable sets [76]. Note that according
to Proposition 2.1, the inner approximations are still the sufficient conditions to guarantee
the reachability.



Chapter 3

Probabilistic Controlled Invariant Sets

3.1 Introduction

This chapter investigates stochastic invariance for control systems by PCISs. Our results
build on some existing work but improve them in several aspects. (i) The results in
[32,34,36,37] focus on some specific stochastic systems (e.g., linear or nonlinear systems)
or on some specific stochastic disturbances (e.g., Gaussian noise or state-independent
noise). In our model, general system dynamics and stochastic disturbances are considered.
(ii) Different from [36, 37], the control inputs are incorporated in our invariant sets and
these sets are defined based on the trajectory inclusion as in [32]. This type of definition
allows us to verify and compute a PCIS in an iterative way. Comparisons between our
invariant sets and a possible extension of probabilistic invariant set in [36, 37] to control
systems are provided in Section 3.4. (iii) The stochastic reachability analysis studied in [60]
provides us an important tool for maximizing the probability of staying in a set. Based on
this, one focus of this chapter is on the computation of maximal PCIS within a set with
a prescribed probability level, which is beyond the scope of [32, 60, 77]. In addition, note
that the PCISs in this chapter are different from the maximal probabilistic safe sets in [60]
(see Remark 3.1).

Recall that Algorithm 1.1 in Chapter 1 provides the basic procedures to compute the
PCISs within a given set. However, some remarkable challenges in Algorithm 1.1 should
be highlighted: (i) how to make it tractable to compute the stochastic backward reachable
set, in particular for continuous spaces; (ii) how to mitigate the conservatism when
characterizing the stochastic backward reachable set subject to the prescribed probability;
(iii) how to guarantee the convergence of the iterations. These issues will be addressed in
this chapter. The contributions are summarized as follows.

(1) We propose two novel definitions of PCIS: N-step ε-PCIS and infinite-horizon ε-
PCIS. An N-step ε-PCIS is a set within which the state can stay for N steps
with probability ε under some admissible controller while an infinite-horizon ε-
PCIS is a set within which the state can stay forever with probability ε under
some admissible controller. These invariant sets are different from the existing
ones [34, 36], which address probabilistic set invariance at each time step. Our

19
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definitions are applicable for general discrete-time stochastic control systems. We
provide fundamental properties of PCISs and explore their relation to RCISs.

(2) We design iterative algorithms to compute the largest finite- and infinite-horizon
PCIS within a given set for systems with discrete and continuous spaces. The PCIS
computation is based on the stochastic backward reachable set. For finite state and
control spaces, it is shown that at each iteration, the stochastic backward reachable
set computation of N-step ε-PCIS can be reformulated as a linear program (LP)
and the infinite-horizon ε-PCIS as a computationally tractable mixed-integer linear
program (MILP). Furthermore, we prove that these algorithms terminate in a finite
number of steps. For continuous state and control spaces, we present a discretization
procedure. Under weaker assumptions than [78], we prove the convergence of such
approximations for N-step ε-PCISs. The approximations generalize the case in [60],
which only discretizes the state space for a given finite control space. In addition,
another different method to compute the infinite-horizon ε-PCIS is provided based
on the structure that an infinite-horizon PCIS always contain a RCIS..

The remainder of the chapter is organized as follows. Section 3.2 presents the
definition, properties, computation algorithms of finite-horizon PCISs. Section 3.3 extends
to the infinite-horizon case. In Section 3.4, we analyze the algorithm complexities and
discuss the relation to the existing work. Numerical examples in Section 3.5 illustrate the
effectiveness of our approach. Section 3.6 concludes this chapter. In addition, Section 2.2
provides some preliminaries that will be used in this chapter.

3.2 Finite-horizon PCIS

We consider a stochastic control system described by a triple S = (X,U,T ). We first define
a finite-horizon ε-PCIS for system S and provide some properties of this set. Then, we
explore how to compute the finite-horizon ε-PCIS with a given set in an iterative way.

Definition 3.1. (N-step ε-PCIS) Given a confidence level 0 ≤ ε ≤ 1, a set Q ⊆ X is an
N-step ε-PCIS for system S if for any x ∈ Q, there exists at least one Markov policy µ ∈ M
such that pµN,Q(x) ≥ ε.

According to Theorem 2.1, an N-step ε-PCIS can be verified by checking if p∗N,Q(x) ≥ ε
for every x ∈ Q, as stated by the following proposition.

Proposition 3.1. A set Q ⊂ X is an N-step ε-PCIS for the system S = (X,U,T ) if the
following conditions are satisfied:

(i) V∗0,Q(x) ≥ ε for all x ∈ Q, where V∗0,Q(x) is calculated by the DP (2.1) and (2.2);

(ii) for all x ∈ X, λ ∈ R, and k ∈ N[0,N−1], the set Uk(x, λ) = {u ∈ U |∫
X

V∗k+1,Q(y)T (dy|x, u) ≥ λ} is compact.
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An equivalent way to verify an N-step ε-PCIS is based on the following stochastic
backward reachable set:

X∗ε,N(Q) = {x ∈ Q | ∃µ ∈ M, pµN,Q(x) ≥ ε}

= {x ∈ Q | sup
µ∈M

pµN,Q(x) ≥ ε}

= {x ∈ Q | V∗0,Q(x) ≥ ε}.

Proposition 3.2. A set Q ⊆ X is an N-step ε-PCIS for the system S = (X,U,T ) if and only
if X∗ε,N(Q) = Q.

Proof. Follow from the definition of X∗ε,N(Q). �

Corollary 3.1. The state space X is an N-step ε-PCIS for any finite N ∈ N≥1 and any
0 ≤ ε ≤ 1.

Remark 3.1. The stochastic backward reachable set X∗ε,N(Q) is called the maximal
probabilistic safe set in [60]. The N-step ε-PCIS Q in Definition 3.1 refines the maximal
probabilistic safe set by requiring that for any initial state from Q, the maximal probability
of staying in Q is no less than ε, as in Proposition 3.2.

Properties

In the following, some properties of N-step PCISs are presented.

Property 3.1. Consider two Borel sets Q,P ∈ B(X) for system S with Q ⊆ P. For any x ∈
Q, the following statements hold:

(i) pµN,Q(x) ≤ pµ
Ñ,Q

(x), ∀Ñ ≤ N and ∀µ ∈ M;

(ii) pµN,Q(x) ≤ pµN,P(x), ∀µ ∈ M and ∀N ∈ N;

(iii) supµ∈M pµN,Q(x) ≤ supµ∈M pµN,P(x), ∀N ∈ N.

Proof. The results (i) and (ii) follow from the definition. For (iii), let us denote µ∗1 =

arg supµ∈M pµN,Q(x) and µ∗2 = arg supµ∈M pµN,P(x). Then, we have

sup
µ∈M

pµN,Q(x) = pµ
∗
1

N,Q(x) ≤ pµ
∗
1

N,P(x) ≤ pµ
∗
2

N,P(x) = sup
µ∈M

pµN,P(x).

The proof is completed. �

Property 3.2. If Q ⊆ X is an N-step ε-PCIS for system S, it is also an Ñ-step ε̃-PCIS for
any Ñ ∈ N[0,N] and 0 ≤ ε̃ ≤ ε.

Proof. Follow from the definition of N-step ε-PCIS. �
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Property 3.3. Consider a collection of Borel sets Qi ∈ B(X), i = 1, . . . , r. If each Qi

is an Ni-step εi-PCIS for system S, then the union
⋃r

i=1 Qi is an N-step ε-PCIS, where
N = min{Ni, i = 1, . . . , r} and ε = min{εi, i = 1, . . . , r}.

Proof. It suffices to consider r = 2. For any x ∈ Q1 ∪ Q2, we have that either x ∈ Q1
or x ∈ Q2. From Properties 3.1 and 3.2, we have:

∀x ∈ Q1, sup
µ∈M

pµN,Q1∪Q2
(x) ≥ sup

µ∈M

pµN,Q1
(x) ≥ sup

µ∈M

pµN1,Q1
(x) ≥ ε1 ≥ min{ε1, ε2},

∀x ∈ Q2, sup
µ∈M

pµN,Q1∪Q2
(x) ≥ sup

µ∈M

pµN,Q2
(x) ≥ sup

µ∈M

pµN2,Q2
(x) ≥ ε2 ≥ min{ε1, ε2}.

Then, we complete the proof. �

Remark 3.2. The finite-horizon PCISs are closed under union. In general, they are not
closed under intersection, i.e., the intersection of two PCISs is not necessarily a PCIS. The
reason is that the corresponding control policies of two invariant sets may be different.
This is different from the property of probabilistic invariant sets in [36], which does not
involve control inputs.

Finite-horizon PCIS computation

A general procedure to compute the N-step ε-PCIS within a given setQ ⊂ X is presented by
Algorithm 3.1, which is initialized by setting P0 = Q. Then, we compute V∗0,Pi

(x), ∀x ∈ Pi,
by the DP (2.1) and (2.2). We further update the set Pi+1 = X∗ε,N(Pi), which is a stochastic
backward reachable set within Pi with respect to a finite horizon N and a probability level ε.
According to Propositions 3.1 and 3.2, the algorithm terminates when Pi+1 = Pi.

Algorithm 3.1 N-step ε-PCIS

1: Initialize i = 0 and Pi = Q.
2: Compute V∗0,Pi

(x) for all x ∈ Pi.
3: Compute the set Pi+1 = X∗ε,N(Pi,Pi).
4: If Pi+1 = Pi, stop. Else, set i = i + 1 and go to step 2.

Theorem 3.1. Consider a Borel set Q ∈ B(X). If Algorithm 3.1 converges to a nonempty
set, this set is the maximal N-step PCIS within Q.

Proof. According to the definition of X∗ε,N , we have Pi+1 ⊆ Pi, ∀i ≥ 0. Since Algorithm 3.1
converges to a nonempty set, P∞ = limi→∞ Pi exists and satisfies P∞ = X∗ε,N(P∞). Based on
the fixed-point theory, we conclude that P∞ is the maximal N-step PCIS within Q. �

The computational tractability of Algorithm 3.1 depends on the computation of V∗0,Pi
(x)

in the DP (2.1) and (2.2). When the state space is continuous, it is in general impossible to
compute V∗0,Pi

(x) for each x ∈ Pi. Next, we investigate how to compute or approximately
compute V∗0,Pi

(x) for discrete spaces and continuous spaces, respectively.



3.2. Finite-horizon PCIS 23

Discrete state and control action spaces

If the state and control spaces are both finite sets, denote by Ux the set of the admissible
control actions for each x ∈ X. Assume that Ux is nonempty for each x ∈ X. The stochastic
kernel T (·|x, u) is specified as T (y|x, u), which denotes the transition probability from the
state x ∈ X and the control action u ∈ Ux to the state y ∈ X. For any x ∈ X and u ∈ Ux,∑

y∈X T (y|x, u) = 1.
In this case, according to Theorem 1 of [79], we can exactly compute V∗0,Pi

(x) via an
LP. Moreover, the existence of the optimal Markov policy can be always guaranteed.

Proposition 3.3. Given any set Pi ⊂ X and any positive real number αk(x), ∀x ∈ X and
∀k ∈ N[0,N], the value functions V∗k,Pi

in (2.1)–(2.2) can be obtained by solving an LP:

min
N∑

k=0

∑
x∈Pi

αk(x)vk(x) (3.1a)

subject to ∀x ∈ Pi

∀k ∈ N[0,N−1] :

vk(x) ≥
∑
y∈Pi

vk+1(y)T (y|x, u),∀u ∈ Ux, (3.1b)

vN(x) ≥ 1, (3.1c)
∀k ∈ N[0,N] : vk(x) ∈ R, (3.1d)

which gives V∗k,Pi
(x) = v∗k(x), ∀x ∈ Pi and ∀k ∈ N[0,N].

Proof. Please refer to [79] for the proof. �

Corollary 3.2. The optimal Markov policy µ∗ = (µ∗0, µ
∗
1, . . . , µ

∗
N−1) can be characterized

by the optimal solution to the dual problem of the LP (3.1):

max
∑
x∈Pi

qN(x) (3.2a)

subject to ∀x ∈ Pi∑
u∈Ux

q0(x, u) ≤ α0(x), (3.2b)

∀k ∈ N[1,N−1] :∑
u∈Ux

qk(x, u) −
∑
y∈Pi

∑
u∈Uy

T (x|y, u)qk−1(y, u) ≤ αk(x), (3.2c)

qN(x) −
∑
y∈Pi

∑
u∈Uy

T (x|y, u)qN−1(y, u) ≤ αN(x), (3.2d)

∀k ∈ N[0,N−1] : qk(x, u) ≥ 0,∀u ∈ Ux, (3.2e)
qN(x) ≥ 0. (3.2f)

That is, when q∗k(x, u∗) > 0, µ∗k,Q(x) = u∗ , ∀x ∈ Pi and ∀k ∈ N[0,N−1].
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Theorem 3.2. When the state and control spaces are both finite sets, the N-step ε-PCIS
within a given set Q ⊂ X can be computed by Algorithm 3.1 in a finite number of steps, i.e.,
there exists a finite number i ∈ N such that Pi+1 = Pi. Furthermore, at each iteration,
V∗0,P j

(x), the value of ∀x ∈ P j, j ∈ N[0,i] can be computed via the LP (3.1) and the
corresponding optimal Markov policy can be determined by the LP (3.2).

Proof. From Pi+1 = X∗ε,N(Pi), we have that Pi+1 ⊆ Pi. Since the state and control spaces
are finite, the maximum iteration number to achieve Pi+1 = Pi in Algorithm 3.1 is
the cardinality of the set Q. The remaining directly follows from Proposition 3.3 and
Corollary 3.2. �

Continous state and control action spaces

If the state and control spaces are both continuous, the computation of V∗0,Pi
(x), ∀x ∈ Pi in

Algorithm 3.1 is in general computationally intractable. We first discretize the continuous
space to obtain an approximated stochastic control system with finite state and control
spaces. Then, we can compute the approximation of V∗0,Pi

(x) via an LP of Proposition 3.3.
Assume that X ⊆ Rnx , U ⊂ Rnu , and the set Q ⊂ X is compact. For each x ∈ X, we

denote byUx the nonempty set of admissible control actions. We assume that the stochastic
kernel T (·|x, u) admits a density t(y|x, u), which represents the probability density of y when
the current state is x and the control action taken is u. Given a set Q ⊂ X, we first define
φ(Q) = Leb(Q) where Leb(·) denotes the Lebesgue measure of sets. The compactness of Q
ensures the finiteness of φ(Q).

Assumption 3.1. For any x, x′, y, y′ ∈ Q, and u, u′ ∈ U, there exists a constant L such that
|t(y|x, u) − t(y′|x′, u′)| ≤ L(‖y − y′‖ + ‖x − x′‖ + ‖u − u′‖).

Remark 3.3. Assumption 3.1 is weaker than that in [78], which also discretizes both state
and control spaces.

The following lemma shows that the value functions in (2.1) and (2.2) are Lipschitz
continuous.

Lemma 3.1. Under Assumption 3.1, for any x, x′ ∈ Q, the value functions V∗k in (2.1) and
(2.2) satisfy

|V∗k,Q(x) − V∗k,Q(x′)| ≤ φ(Q)L‖x − x′‖,∀k ∈ N[0,N]. (3.3)

Proof. See Appendix. �

We discretize the compact set Q ⊂ X into Q = ∪
mx
i=1Qi, where Qi,∀N[1,mx] are pair-

wise disjoint nonempty Borel sets, i.e., Qi ∈ B(X) and Qi ∩ Q j = ∅,∀i , j. For each
i ∈ N[1,mx], we pick a representative state from the set Qi, denoted by qi. The set of all
discretized states in the Q is denoted by Q̃ = {qi, i ∈ N[1,mx]}. The diameter of Qi is defined
as di = supx,y∈Qi

‖x − y‖. Then, the grid size of the state space is Dx = maxi∈N[1,mx ] di.
Similarly, the compact control spaceU is devided intoU = ∪

mu
i=1Ci, whereCi, i ∈ N[1,mu],

are pair-wise disjoint nonempty Borel sets, i.e., Ci ∈ B(U) and Ci ∩ C j = ∅,∀i , j. For
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each i ∈ N[1,mu], we pick a representative control input from the set Ci, denoted by ũi. The
set of all discretized control actions is denoted by Ũ = {ũi, i ∈ N[1,mu]}. The diameter of Ci is
defined as li = supx,y∈Ci

‖x−y‖. Then, the grid size of the control space is Du = maxi∈N[1,mu ] li.

Assumption 3.2. There exists a constant δ such that Dx ≤ δ and Du ≤ δ.

For each x ∈ Q, there exists only one Qi such that x ∈ Qi. For notational convenience,
we denote by sx the representative state of Qi to which x belongs, i.e., sx = qi if x ∈ Qi.
For each x ∈ Q, the set of admissible discrete control actions is defined by

Ũx = {ũ ∈ Ũ | ‖u − ũ‖ ≤ η for some u ∈ Usx }. (3.4)

Lemma 3.2. [78] If Du ≤ η, then the set Ũqi is nonempty for each qi ∈ Q̃. Furthermore,
the set Ũx is nonempty for each x ∈ Q and Ũx = Ũy = Ũqi , ∀x, y ∈ Qi.

Proof. For each x ∈ Q, the admissible control set Usx is nonempty. For any u ∈ Usx , if
Du ≤ η, there exists ũ ∈ Ũ such that ‖u − ũ‖ ≤ η. Hence, by the definition of sx, we have
that the set Ũqi is nonempty for each qi ∈ Q̃. Furthermore, from (3.4), it is easy to obtain
that the set Ũx is nonempty for each x ∈ Q and Ũx = Ũy = Ũqi , ∀x, y ∈ Qi. �

Remark 3.4. From Lemma 3.2, we have that each discretized state space Qi corresponds
to one nonempty admissible discretized control space.

As in [78], let us define the function t̃ : Q × Ũ→ R

t̃(y|sx, ũ) =


t(sy |sx,ũ)∫
Q

t(sz |sx,ũ)dz
, if

∫
Q

t(sz|sx, ũ)dz ≥ 1,

t(sy|sx, ũ), otherwise.
(3.5)

From (3.5), we observe that all states y ∈ Qi enjoy the same stochastic kernel. Since our
focus is on solving the stochastic optimal control problem which involves the compact
set Q ⊂ X, the approximation of the stochastic control system with continuous spaces
is only taken with respect to Q. The new stochastic control system is given by a triple
S̃Q = (Q̃, Ũ, T̃ ). Here, Q̃ and Ũ are the set of all discretized states in Q and the set of all
discretized control actions in U, respectively. And the transition probability T̃ (q j|qi, ũ) is
defined by

T̃ (q j|qi, ũ) =

∫
Q j

t̃(y|qi, ũ)dy,

where qi ∈ Qi, q j ∈ Q j, and ũ ∈ Ũ, ∀i, j ∈ N[1,mx].

Lemma 3.3. [78] Under Assumptions 3.1 and 3.2, for all y ∈ Q, sx ∈ Q̃ and ũ ∈ Ũ,∫
Q

|t̃(y|qi, ũ) − t(y|qi, ũ)|dy ≤ 2φ(Q)Lδ.

Proof. See Appendix. �
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The discretized version of the DP (2.1)–(2.2) is given by

V̂∗N,Q(qi) = 1, if qi ∈ Q̃,

V̂∗N,Q(x) = V̂∗N,Q(qi), if x ∈ Qi,

∀k ∈ N[0,N−1] :

V̂∗k,Q(qi) = max
ũ∈Ũ

(
mx∑
j=1

V̂∗k+1,Q(q j)T̃ (q j|qi, ũ), if qi ∈ Q̃,

V̂∗k,Q(x) = V̂∗k,Q(qi), if x ∈ Qi.

(3.6)

We define the discretized optimal Markov policy µ̂∗ = (µ̂∗0, . . . , µ̂
∗
N−1), µ̂∗k : Q → Ũ, ∀k ∈

Q[0,N−1], as follows:µ̂
∗
k,Q(qi) = arg max

ũ∈Ũ

∫
Q

V̂∗k+1,Q(y)t̃(y|qi, ũ)dy, if qi ∈ Q̃,

µ̂∗k,Q(x) = µ̂∗k,Q(qi), if x ∈ Qi,

and further defineV µ̂∗

k,Q(x) =
∫
Q

V µ̂∗

k+1,Q(y)t(y|x, µ̂∗k)dy, if k ∈ N[0,N−1],

V µ̂∗

N,Q(x) = 1, if x ∈ Q.

Since the approximated system S̃Q = (Q̃, Ũ, T̃ ) is with finite state and control action
spaces, the value of V̂∗k,Q can be computed via the LP (3.1) and the corresponding optimal
policy can be determined by (3.2).

Theorem 3.3. Under Assumptions 3.1 and 3.2, for any x ∈ Q, the functions V∗k,Q(x),

V̂∗k,Q(x), and V µ̂∗

k,Q(x) satisfy

|V∗k,Q(x) − V̂∗k,Q(x)| ≤ τkδ, (3.7)

|V∗k,Q(x) − V µ̂∗

k,Q(x)| ≤ ρkδ, (3.8)

where τk = 4φ(Q)L + τk+1, k ∈ N[0,N−1], with initialization τN = 0, and ρk = τk + τk+1 +

3φ(Q)L + ρk+1, k ∈ N[0,N−1], with initialization ρN = 0.

Proof. See Appendix. �

Remark 3.5. Theorem 3.3 guarantees the convergence as the grid size trends to 0 when
computing the finite-horizon PCIS and generalizes the case in [60], which only discretizes
the state space for a given finite control space.

Corollary 3.3. Consider a set Q ⊆ X and a discretized set Q̃ of Q. If Q̃ is a N-step ε-PCIS
for the discretized stochastic system S̃Q = (Q̃, Ũ, T̃ ), and ε ≥ τ0δ, the set Q is a N-step
ε̃-PCIS for system S, where ε̃ = ε − τ0δ.
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Proof. According to the construction of the discretized system S̃Q, we have that ∀k ∈
N[0,N], ∀i ∈ N[1,mx] and ∀x ∈ Qi, V̂∗k,Q(x) = V̂∗k,Q(qi). Since Q̃ is a N-step ε-PCIS, it follows
that ∀x ∈ Q, V̂∗0 (x) ≥ ε. By (3.7) and triangular inequality, we have

V∗0,Q(x) ≥ V̂∗0,Q(x) − τ0δ ≥ ε − τ0δ,∀x ∈ Q.

Then, when ε ≥ τ0δ, we conclude that the set Q is a N-step ε̃-PCIS where ε̃ = ε − τ0δ. �

Theorem 3.4. When the state and control spaces are both continuous sets, an approxi-
mate N-step ε-PCIS within a given set Q ⊂ X can be computed by Algorithm 3.2 in a
finite number of steps, i.e., there exists a finite number i ∈ N such that Pi+1 = Pi. At each
iteration j, the value of V̂∗0,P j

(qk), ∀ j ∈ N[0,i], can be computed via the LP (3.1) and the
corresponding optimal policy can be determined by (3.2).

Proof. The proof is similar to that of Theorem 3.2. �

Algorithm 3.2 Approximate of N-step ε-PCIS

1: Discretize the sets Q and U to reformulate S̃Q = (Q̃, Ũ, T̃ ).
2: Initialize i = 0, Pi = Q, and P̃i = Q̃.
3: Compute V̂∗0,Pi

(q j), ∀q j ∈ P̃i.
4: Compute the set P̃i+1 = X∗ε,N(P̃i) for S̃ and Pi = ∪q j∈P̃i

Q j

5: If P̃i+1 = P̃i, stop. Else, set i = i + 1 and go to step 3.

3.3 Extension to Infinite-horizon PCIS

Now let us extend the finite-horizon ε-PCIS to the infinite-horizon ε-PCIS. In this section,
we define the infinite-horizon ε-PCIS and explore its structure. Furthermore, we provide
algorithms to compute the infinite-horizon ε-PCIS within a given set.

Definition 3.2. (Infinite-horizon PCIS) Given a confidence level 0 ≤ ε ≤ 1, a set Q ⊆ X is
an infinite-horizon ε-PCIS for system S if for any x ∈ Q, there exists at least one stationary
policy µ ∈ M such that pµ

∞,Q
(x) ≥ ε.

Remark 3.6. If ε = 1, an infinite-horizon ε-PCIS becomes a RCIS or just a controlled
invariant set, which has been widely studied.

According to Theorem 2.2, an infinite-horizon ε-PCIS can be verified by checking if
p∗
∞,Q(x) ≥ ε for every x ∈ Q, as stated by the following proposition.

Proposition 3.4. A set Q ⊂ X is an infinite-horizon ε-PCIS for system S = (X,U,T ) if the
following conditions are satisfied:

(i) G∗
∞,Q(x) ≥ ε for all x ∈ Q, where G∗∞(x) is calculated by (2.3)–(2.5);
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(ii) there exists a k̄ ≥ 0 such that the set Uk(x, λ) = {u ∈ U |
∫
X

G∗k,Q(y)T (dy|x, u) ≥ λ} is
compact for all x ∈ Q, λ ∈ R, and k ∈ N≥k̄.

An equivalent way to verify an infinite horizon ε-PCIS is based on the following
stochastic backward reachable set:

X∗ε,∞(Q) = {x ∈ Q | ∃µ ∈ M, pµ
∞,Q

(x) ≥ ε}

= {x ∈ Q | sup
µ∈M

pµ
∞,Q

(x) ≥ ε}

= {x ∈ Q | G∗∞,Q(x) ≥ ε}.

Proposition 3.5. A set Q ⊆ X is an infinite-horizon ε-PCIS for system S if and only if
X∗ε,∞(Q) = Q.

Proof. Follow from the definition of X∗ε,∞(Q). �

Corollary 3.4. The state space X is an infinite-horizon ε-PCIS for any 0 ≤ ε ≤ 1.

Note that the infinite-horizon ε-PCISs also enjoy Properties 3.1–3.3 by replacing N
with∞. For more details, please refer to Properties 3.1–3.3.

Intuitively, the monotone decreasing of G∗
∞,Q(x) may imply that the value of G∗

∞,Q(x) is
1 or 0. However, it is possible to get 0 < G∗

∞,Q(x) < 1 in some cases (see Examples 1 and
2 in Section 3.5). In the following, the underlying structure of an infinite-horizon ε-PCIS
with positive probability is explored.

Theorem 3.5. Given 0 < ε ≤ 1, a nonempty set Q ∈ B(X) is an infinite-horizon ε-PCIS
for system S if and only if there exists a Borel set Q f ∈ B(X) with Q f ⊆ Q for which

(i)∀x ∈ Q f , there exists u ∈ U such that T (X \ Q|x, u) = 0;

(ii) ∀x ∈ Q \ Q f , there exists u ∈ U such that T (Q f |x, u) ≥ ε.

Proof. The sufficiency is easy to check according the definition of infinite-horizon PCIS.
Let us prove the necessity by first assuming that the nonexistence of such set Q f . That is,
∀x ∈ Q and ∀u ∈ U, the transition probability from x toX\Q is positive, i.e., T (X\Q|x, u) >
0. In this case, the value function defined in (2.3)–(2.4) is strictly decreasing, which implies
that G∗

∞,Q(x) = 0, ∀x ∈ Q. This contradicts the definition of infinite-horizon PCIS since
0 < ε ≤ 1. The proof is completed. �

Remark 3.7. The essence of the set Q f in Theorem 3.5 is a RCIS despite the stochastic
transition. One interpretation is that an infinite-horizon ε-PCIS with 0 < ε ≤ 1 consists of
two parts: one part is a RCIS and another part admits some transition to the RICS with
expected positive probability.
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Direct way to compute infinite-horizon PCISs

As an adaption of Algorithm 3.1, Algorithm 3.3 is a direct way to compute the infinite-
horizon ε-PCIS within Q. The difference with Algorithm 3.1 is that the value of G∗

∞,Pi
(x),

instead of V∗0,Pi
(x), ∀x ∈ Pi, is computed by (2.3)–(2.5). Furthermore, the updated set Pi+1 =

X∗ε,∞(Pi), which is a stochastic backward reachable set within Pi with respect to infinite
horizon and a probability level ε. According to Propositions 3.4 and 3.5, the algorithm
terminates when Pi+1 = Pi.

Theorem 3.6. Consider a set Q ⊂ X. If Q contains a nonempty RCIS, Algorithm 3.3
converges to a nonempty set. Moreover, this set is the maximal infinite-horizon PCIS
within Q.

Proof. A RCIS is a special infinite-horizon PCIS with probability 1. If Q contains a RCIS,
this RCIS is a fixed-point of X∗ε,∞. Thus, Algorithm 3.3 converges to a nonempty set.
Furthermore, by the similar proof of Proposition 3.1, the convergent set via Algorithm
3.3 is the maximal infinite-horizon ε-PCIS within Q. �

Algorithm 3.3 Infinite-horizon ε-PCIS

1: Initialize i = 0 and Pi = Q.
2: Compute G∗

∞,Pi
(x) for all x ∈ Pi.

3: Compute the set Pi+1 = X∗ε,∞(Pi).
4: If Pi+1 = Pi, stop. Else, set i = i + 1 and go to step 2.

The computational tractability of Algorithm 3 is dependent on the computation of
G∗
∞,Pi

(x). In general, it is nontrivial to compute the exact value of G∗
∞,Pi

(x) even when
state and control action spaces are finite. Next we focus on the computation of G∗

∞,Pi
(x) for

finite spaces when implementing Algorithm 3.3.
When the state and control action spaces are finite, we adopt the same assumptions

as in Section 3.2. In the second step of Algorithm 3.3, we need to compute G∗
∞,Pi

(x). As
shown in (2.3)–(2.5) (replacing Q with Pi), G∗

∞,Pi
(x) is the limitation of G∗k,Pi

as k → ∞.
For notational convenience, we use G∗k,Pi

to denote the vector form of G∗k,Pi
(x), x ∈ Pi.

And the optimization problems maxu∈Ux

∑
y∈Pi

G∗k,Pi
(y)T (y|x, u), x ∈ Pi are rewritten as

maxµ∈M T µG∗k,Pi
. The following lemma provides the uniqueness of G∗

∞,Pi
.

Lemma 3.4. The sequence (G∗0,Pi
,G∗1,Pi

, . . .) converges to a unique fixed point satisfying
(2.5).

Proof. By contradiction, assume that the sequence (G∗0,Pi
,G∗1,Pi

, . . .) could converge to two
different fixed points satisfying (2.5), denoted by G1,∗

∞,Pi
and G2,∗

∞,Pi
. Then, we have

0 < ‖G1,∗
∞,Pi
−G2,∗

∞,Pi
‖ ≤ ‖max

µ∈M
T µG1,∗

∞,Pi
−max

µ∈M
T µG2,∗

∞,Pi
‖

≤ max
µ∈M
‖T µ(G1,∗

∞,Pi
−G2,∗

∞,Pi
)‖
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≤ ‖G1,∗
∞,Pi
−G2,∗

∞,Pi
‖. (3.9)

In (3.9), the equality holds if and only if for each x ∈ Pi, there exists u ∈ Ux such that∑
y∈Pi

T (y|x, u) = 1. In this case, it is easy to check that G∗
∞,Pi

(x) = G∗0,Pi
(x) = 1 for each

x ∈ Pi so G∗
∞,Pi

is unique. For other cases, we have a contradiction. Hence, the sequence
(G∗0,Pi

,G∗1,Pi
, . . .) converges to a unique fixed point satisfying (2.5). �

Corollary 3.5. The convergence point G∗
∞,Pi

of the sequence (G∗0,Pi
,G∗1,Pi

, . . .) is the
maximum fixed point satisfying (2.5).

Proof. The monotone decrease of the sequence (G∗0,Pi
,G∗1,Pi

, . . .) and the unique conver-
gence point imply that G∗

∞,Pi
is the maximum fixed point satisfying (2.5). �

In the following, we compute the maximum fixed point satisfying (2.5) by solving a
computationally tractable MILP.

Proposition 3.6. Given any set Pi ⊆ X and any positive real number β(x), ∀x ∈ Pi, the
function G∗∞ in (2.5) can be obtained by solving the MILP:

max
g(x),κ(x,u)

∑
x∈Pi

β(x)g(x) (3.10a)

subject to ∀x ∈ Pi,

g(x) ≥
∑
y∈Pi

g(y)T (y|x, u),∀u ∈ Ux, (3.10b)

g(x) ≤
∑
y∈Pi

g(y)T (y|x, u) + (1 − κ(x, u))∆,∀u ∈ Ux, (3.10c)∑
u∈Ux

κ(x, u) ≥ 1, (3.10d)

0 ≤ g(x) ≤ 1, κ(x, u) ∈ {0, 1},∀u ∈ Ux, (3.10e)

where κ(x, u) is a 0-1 variable and ∆ is a constant greater than 1. That is, G∗
∞,Pi

(x) = g∗(x),
∀x ∈ Pi.

Proof. From Lemma 3.4 and Corollary 3.5, G∗
∞,Pi

is the maximum fixed point satisfying
(2.5). Hence, the equivalent form of G∗

∞,Pi
can be written as MILP (3.10), where the

constraints (3.10b)–(3.10d) guarantee that there exists u ∈ Ux such that the equality in
(2.5) holds. �

Corollary 3.6. For each x ∈ Q, the optimal stationary policy is µ̄∗Pi
(x) = u∗ such that

κ∗(x, u∗) = 1 and u∗ ∈ Ux, where κ∗ is the optimal solution of the MILP (3.10).

Remark 3.8. Since 0 is a trivial solution of (2.5), we cannot directly reformulate (2.3)–
(2.5) as an LP, which is the traditional way to deal with infinite-horizon stochastic optimal
control problem [80].
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Theorem 3.7. When the state and control spaces are both finite sets, the infinite-horizon
ε-PCIS within a given set Q ⊂ X can be computed by Algorithm 3.3 in a finite number of
steps, i.e., there exists a finite number i ∈ N such that Pi+1 = Pi. At each iteration j, the
value of G∗

∞,P j
(x), ∀ j ∈ N[0,i], can be computed via the MILP (3.10) and the corresponding

optimal policy can be determined by Corollary 3.6.

Proof. The proof is similar to that of Theorem 3.2. �

Indirect way to compute infinite-horizon PCIS

Based on Theorem 3.5, this subsection provides an indirect way to compute the infinite-
horizon ε-PCIS within a given set Q. Different from Algorithm 3.3, which at each iteration
requires the computation of G∗

∞,Pi
(x), ∀x ∈ Pi, Algorithm 3.4 generates an the infinite-

horizon ε-PCIS by computing a backward stochastic reachable set from the RCIS Q f

contained in Q.
The first step in Algorithm 3.4 is the computation of RCIS within a given set, which

is a well-studied topic in the literature [11–13]. Then, based on RCIS Q f within Q, the
stochastic backward reachable set

P = {x ∈ Q | ∃u ∈ U,
∫
Q f

T (dy|x, u) ≥ ε} (3.11)

is an infinite-horizon ε-PCIS within Q. Furthermore, if the RCIS Q f is the maximal RCIS
within Q, the resulting P is the maximal infinite-horizon ε-PCIS within Q. We remark that
Algorithm 3.4 is applicable with both discrete and continuous spaces (see Examples 1 and
2).

Algorithm 3.4 Infinite-horizon ε-PCIS

1: Compute the RCIS within Q, denoted by Q f .
2: Compute the stochastic backward reachable set from Q f , i.e., P = {x ∈ Q | ∃u ∈
U,

∫
Q f

T (dy|x, u) ≥ ε}.

3.4 Discussion

Computational complexity

The computational complexities of Algorithms 1-4 are discussed in the following.

• When implementing Algorithm 3.1 to a system with finite spaces, the maximal
iteration number is |Q|. At each iteration, an LP is solved to compute the value of
V∗0,Pi

(x), ∀x ∈ Pi. The number of the decision values in the LP is at most |Q|(N + 1)
and the number of the constraints is at most |Q|(N|U| + 1). It is well known that the
interior-point methods can be used to solve the LP in polynomial time [81].



32 Probabilistic Controlled Invariant Sets

• When implementing Algorithm 3.2 to a system with continuous spaces, the maximal
iteration number is mx, i.e., the number of discretized subsets of Q. Similar to
Algorithm 1, an LP is solved at each iteration to compute the approximated value
V̂∗0,Pi

(q j), ∀q j ∈ P̃i. The number of the decision values in the LP is at most mx(N + 1)
and the number of the constraints is at most mx(Nmu + 1)|.

• When implementing Algorithm 3.3 to a system with finite spaces, the maximal
iteration number is |Q|. An MILP is used to compute the value of G∗

∞,Pi
(x), ∀x ∈ Pi,

at each iteration. The number of the continuous decision values is at most |Q|,
the number of the binary decision values is at most |Q||U|, and the number of the
constraints is at most |Q|(2|U| + 3). Some advanced softwares have been developed
to solve large MILPs efficiently [82, 83].

• The complexity of Algorithm 3.4 depends on the computation of the RCIS, which
is a classic topic in the literature [2, 11–13], and the computation of the backward
stochastic reachable set, for which some results have been reported in [84]. Example
2 in Section 3.5 will show how to compute the backward stochastic reachable set for
continuous spaces.

Comparison with [36]

By extending the definition of probabilistic invariant sets in [36], one can give another
definition of infinite-horizon PCISs (Definition 3.3) than Definition 3.2.

Definition 3.3. Given a confidence level 0 ≤ ε ≤ 1, a set Q ⊆ X is an infinite-horizon ε-
PCIS for system S if for any x0 ∈ Q, there exists at least one sequence of Markov policies
µ = (µ0, µ1, . . .) such that Pr{xk ∈ Q} ≥ ε, ∀k ∈ N.

Then, we can find that Definition 3.2 is sufficient for Definition 3.3 since Pr{∀k ∈
N, xk ∈ Q} ≥ ε implies Pr{xk ∈ Q} ≥ ε, ∀k ∈ N. One interpretation is that Definitions 3.2
and 3.1 capture the trajectory inclusion while Definition 3.3 captures the state inclusion at
each time step.

Although Definition 3.2 seems stronger than Definition 3.3, it is easier to verify and
compute the PCISs in Definitions 3.2 than that in Definition 3.3. This is because given
x0 ∈ Q, it is very difficult to find a sequence of Markov policies µ = (µ0, µ1, . . .) such
that Pr{xk ∈ Q} for k ≥ 1. Moreover, for safety-critical control problem, the trajectory
inclusion with probability provides much “safer” insight than the state inclusion with the
same probability.

3.5 Examples

In this section, three examples are provided to illustrate the effectiveness of the proposed
theoretical results. The first one involves the robot motion in a partitioned space with
obstacles. The second one is concerned with comparison between PCIS and RCIS. The
third one focuses on a temperature control system.
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Figure 3.1: The workspace with obstacles (shadow) and ‘absorbing’ region (red).

Example 1 (motion planning)

The motion planning example in [85] is adapted to seek an infinite-horizon PCIS within
the workspace. Consider a partitioned workspace 8m × 8m shown in Figure 3.1, where the
shadowed cells are occupied by obstacles and the red cell is an ‘absorbing’ region, i.e., as
long as the mobile robot enters in this region it will stay there forever.

Following [85], the dynamics of the mobile robot is modeled by
ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = ω.

The robot state is abstracted by the cell coordinate where it belongs to, i.e., (x, y) ∈
{1, 3, 5, 7}2, and its four possible orientations {E,W, S ,N}. Due to the actuation noise
and drifting, the robot motion is stochastic. Here, we restrict the action space to be
{FR, BK,TRFR,T LFR}, under which the possible transitions are shown in Figure 3.2.
Specifically, action “FR” means driving forward for 2m. The probability of reaching
2m forward is 0.80 and the probability of drifting to the left or the right by 2m is 0.1,
respectively. Action “BW” can be defined similarly to “FR”. Action “TRFR” means
turning right for π/2 and driving forward for 2m, of which the probability is 0.95. The
probability of driving forward for 2m without turning right is 0.025 and the probability of
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(a) FR (b) BK

(c) TRFR (d) TLFR

0.10
0.80

0.10 0.15
0.85

0.15

0.95
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0.025

0.95

0.025

0.025

Figure 3.2: Transition probability under different actions.

turning right for π and driving forward for 2m is 0.025. Similarly, we can define the action
“T LFR”.

Then, we construct an MDP with 64 states and 4 actions. The transition relation and
probability can be defined based on the above description. We aim to compute the infinite-
horizon 0.9-PCIS within the safe state space, i.e., the remaining of the state space by
excluding the states associated with the obstacles. By implementing Algorithm 3.3, the
iterative sets and the corresponding probability p∗

∞,Pi
(x) are shown in Figure 3.3, of which

each subfigure corresponds to one orientation in {E,W, S ,N}. The resulting infinite-horizon
0.9-PCIS provides a region where the admissible action can drive the robot moving without
colliding with the obstacles with respect to probability 0.90.

Example 2 (MPC)

Consider the same model as in [25],

xk+1 = Axk + Buk + wk
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(a) E and iteration: i = 1 (b) W and iteration: i = 1

(c) S and iteration: i = 1 (d) N and iteration: i = 1

(e) E and iteration: i = 2 (f) W and iteration: i = 2

(g) S and iteration: i = 2 (h) N and iteration: i = 2

Figure 3.3: The iterative sets and the corresponding probability p∗
∞,Pi

(x) for different
orientations.



36 Probabilistic Controlled Invariant Sets

where A =

 1.6 1.1
−0.7 1.2

 and B =

 1
1

. The control input is constrained by |uk | ≤ 0.25.

The region of interest is Q = {x ∈ R2 | ‖x‖∞ ≤ 0.5}. We will compare the maximal RCIS
and our PCIS within Q.

When computing a finite-horzion PCIS, assume that elements of wk are i.i.d. Gaussian
random variables with zero mean and variance σ2 = 1

302 . This system can be represented
as a triple S = {X,U,T }:

X = R2,

U = {u ∈ R | |u| ≤ 0.1},
t(xk+1|xk, uk) = ψ(Λ−1(xk+1 − Axk − Buk)),

where ψ(·) is the density function of the standard normal distribution and Λ =

 σ 0
0 σ

.
We discretize the continuous spaces and implement Algorithm 3.2 to compute the 5-step
0.80-PCIS withinQ. The iterative sets and the corresponding probability p∗5,Pi

(x) are shown
in Figure 3.4. The convergent set and the corresponding probability p∗5,Pi

(x) are shown in
subfigure (h) of Figure 3.4.

To derive a RCIS for this system, we assume the disturbance belongs to the compact
setW = {w ∈ R2 | ‖w‖∞ ≤ 0.05}. By using the methods in [10, 13], we obtain the maximal
RCIS, which is the blue region shown in Figure 3.5.

When computing an infinite-horizon PCIS, we choose the same bound on the distur-
bance as RCIS. Assume that elements of wk are truncated i.i.d. Gaussian random variables
with zero mean and variance σ2 = 1

302 . This system can be represented as a triple in a
similar way. Denote the obtained maximal RCIS by Q f = {x ∈ R2 | Hx ≤ h} where the
matrix H and the vector h are with appropriate dimensions. As stated in Algorithm 3.4, the
infinite-horizon 0.80-PCIS within Q is a stochastic backward reachable set from the RCIS
associated with probability 0.80, i.e.,

P = {x ∈ Q | ∃u ∈ U, Pr{H(Ax + Bu + w) ≤ h} ≥ 0.80}.

The set P can be further approximated by

P = {x ∈ Q | ∃u ∈ U,H(Ax + Bu) + h′ ≤ h}

where h′ is the solution of a chance constrained program

h′ = min
∑

j

h′j

subject to Pr{Hw ≤ h′} = 0.8.

This chance program can be numerically solved by using the methods in [86, 87]. Then,
the resulting infinite-horizon 0.80-PCIS within Q is the gray region shown in Figure 3.5.
Note that the maximal RCIS and the infinite-horizon 0.80-PCIS are smaller than the 5-step
0.80-PCIS even though the disturbance is unbounded for finite-horizon case. One future
work is to provide a convex approximation of finite-horizon PCIS.
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(a) iteration: i = 1 (b) iteration: i = 2

(c) iteration: i = 3 (d) iteration: i = 4

(e) iteration: i = 5 (f) iteration: i = 6

(g) iteration: i = 7 (h) iteration: i = 8

Figure 3.4: The iterative sets and the corresponding probability p∗5,Pi
(x)
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Figure 3.5: The maximal RCIS (blue) and the infinite-horizon 0.8-PCIS (gray).

Example 3 (temperature regulation)

This example involves the temperature regulation of a room. The discrete-time temperature
dynamics can be modeled using a resistance-capacitance circuit analogy [88]:

xk+1 = (1 −
∆t
RC

)︸     ︷︷     ︸
A

xk +
∆t
C︸︷︷︸
B

uk +
∆t
RC︸︷︷︸

C

yk + wk,

where xk is the temperature of the room, uk is the heating and cooling power input to
the space, yk is the temperature of outside air, and wk is the external disturbance load
generated by occupants, direct sunlight, and electrical devices. Here, ∆t is the sampling
time, R describes the thermal resistance of walls and windows isolating the room from the
outside environment, and the parameter C represents the thermal capacitance of the room.
The disturbance wk is state-dependent and admits a density function f : R→ R:

f (wk) =

ψ( wk
σ1

), if xk ≤ x̄,
ψ( wk

σ2
), if xk ≥ x̄,

where x̄ is a constant. The control input is constrained by |uk | ≤ ū where ū is a positive
constant. This system can be represented as a triple S = {X,U,T }:

X = R,

U = {u ∈ R | |u| ≤ ū},
t(xk+1|xk, uk) = f (xk+1 − Axk − Buk −Cyk).
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Figure 3.6: The iterative sets and the corresponding probability p∗5,Pi
(x) for temperature

control system.

Choose the parameters A = 0.8, B = 1, C = 0.2, yk = 6, σ1 =
√

0.7, σ1 =
√

0.3,
x̄ = 16, and ū = 3. Provided a set Q = {x ∈ R | 15 ≤ x ≤ 25}, we discretize the
continuous spaces and implement Algorithm 3.2 to compute the 5-step 0.90-PCIS within
Q. The iterative sets and the corresponding probability p∗5,Pi

are shown in Figure 3.6. After
7 iterations, the resulting set converges to P7 = {x ∈ R | 16.01 ≤ x ≤ 25.00}, which is
the approximated 5-step PCIS probability 0.90 within Q. This implies that the temperature
of the room can stay between 16◦C and 25◦C for 5 steps with probability 0.90. Below
16◦C, the temperature cannot retain with the desired probability due to the limitation of
the control input.

3.6 Conclusion

We investigated the extension of set invariance in a stochastic sense for control systems. We
proposed two definitions for PCISs: finite- and infinite-horizon PCISs, and provided their
fundamental properties. We designed iterative algorithms to compute the PCIS within a
given set. For systems with discrete state and control spaces, the finite- and infinite-horizon
PCISs could be computed by solving an LP and an MILP at each iteration, respectively.
We proved that the iterative algorithms were computationally tractable and could terminate
in a finite number of steps. For systems with continuous state and control spaces, we
established the approximation of stochastic control systems and proved its convergence
when computing finite-horizon PCIS. In addition, thanks to the structure of the infinite-
horizon PCIS, it could be also be computed by the stochastic backward reachable set
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from the RCIS contained in it. Numerical examples were given to illustrate the theoretical
results.

Appendix

Proof of Lemma 3.1: Since V∗N,Q(x) = 1 for all x ∈ Q, the inequality (3.3) holds for k = N.
When k ∈ N[0,N−1], for any x, x′ ∈ Q, we have

|V∗k,Q(x) − V∗k,Q(x′)|

= | sup
u∈U

∫
Q

V∗k+1,Q(y)t(y|x, u)dy − sup
u∈U

∫
Q

V∗k+1,Q(y)t(y|x′, u)dy|

≤ sup
u∈U
|

∫
Q

V∗k+1,Q(y)(t(y|x, u) − t(y|x′, u))|dy

≤ sup
u∈U

∫
Q

|(t(y|x, u) − t(y|x′, u))|dy

≤ φ(Q)L(‖x − x′‖),

which completes the proof.
Proof of Lemma 3.3: If

∫
Q

t(sz|sx, ũ)dz < 1, it follows from Assumptions Assump-
tions 3.1 and 3.2 that ∫

Q

|t̃(y|qi, ũ) − t(y|qi, ũ)|dy ≤ φ(Q)Lδ.

And if
∫
Q

t(sz|sx, ũ)dz ≥ 1, we first have

0 ≤
∫
Q

t(sy|qi, ũ)dy − 1

≤

∫
Q

t(sy|qi, ũ)dy −
∫
Q

t(y|qi, ũ)dy

≤

∫
Q

|t(sy|qi, ũ) − t(y|qi, ũ)|dy

≤ φ(Q)Lδ.

Furthermore, we have∫
Q

|t̃(y|qi, ũ) − t(y|qi, ũ)|dy

=

∫
Q

|t(sy|qi, ũ) − t(y|qi, ũ)
∫
Q

t(sz|sx, ũ)dz|∫
Q

t(sz|sx, ũ)dz
dy

≤

∫
Q

|t(sy|qi, ũ) − t(y|qi, ũ)
∫
Q

t(sz|sx, ũ)dz|dy
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≤

∫
Q

|t(sy|qi, ũ) − t(y|qi, ũ)|dy + |

∫
Q

t(sz|sx, ũ)dz − 1|
∫
Q

|t(y|qi, ũ)|dy

≤ 2φ(Q)Lδ.

This completes the proof.
Proof of Theorem 3.3: First of all, let us prove the inequality (3.7). It is easy to check

it for k = N since V∗N,Q(x) = V̂∗k,Q(x) = 1,∀x ∈ Q. By induction, we assume that

|V∗k+1,Q(x) − V̂∗k+1,Q(x)| ≤ τk+1δ, x ∈ Q.

For any qi ∈ Qi, i ∈ N[1,mx], we define

µ∗k = arg sup
u∈U

∫
Q

V∗k+1,Q(y)t(y|x, u)dy,

µ̂∗k = arg max
ũ∈Ũ

∫
Q

V̂∗k+1,Q(y)t̃(y|qi, ũ)dy.

According to the dicretization procedure of the control space and Assumption 3.2, we can
choose some ν̃k ∈ Ũ such that ‖µ∗k − ν̃k‖ ≤ δ. Then, we have that

V∗k,Q(qi) − V̂∗k,Q(qi)

=

∫
Q

V∗k+1,Q(y)t(y|x, µ∗k)dy −
∫
Q

V̂∗k+1,Q(y)t̃(y|qi, µ̂
∗
k)dy

≤

∫
Q

V∗k+1,Q(y)t(y|x, µ∗k)dy −
∫
Q

V̂∗k+1,Q(y)t̃(y|qi, ν̃k)dy

≤ |

∫
Q

V∗k+1,Q(y)t(y|x, µ∗k)dy −
∫
Q

V∗k+1,Q(y)t(y|x, ν̃k)dy| +

|

∫
Q

V∗k+1,Q(y)t(y|x, ν̃k)dy −
∫
Q

V∗k+1,Q(y)t̃(y|x, ν̃k)dy| +

|

∫
Q

V∗k+1,Q(y)t̃(y|x, ν̃k)dy −
∫
Q

V̂∗k+1,Q(y)t̃(y|x, ν̃k)dy|

≤ φ(Q)Lδ + 2φ(Q)Lδ + τk+1δ

= (3φ(Q)L + τk+1)δ,

and

V̂∗k,Q(qi) − V∗k,Q(qi)

≤

∫
Q

V̂∗k+1,Q(y)t̃(y|x, µ∗k)dy −
∫
Q

V∗k+1,Q(y)t(y|qi, µ
∗
k)dy

≤ |

∫
Q

V̂∗k+1,Q(y)t̃(y|x, µ∗k)dy −
∫
Q

V̂∗k+1,Q(y)t(y|x, µ∗k)dy| +

|

∫
Q

V̂∗k+1,Q(y)t(y|x, µ∗k)dy −
∫
Q

V∗k+1,Q(y)t(y|qi, µ
∗
k)dy|
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≤ (2φ(Q)L + τk+1)δ.

Thus, we have

|V∗k,Q(qi) − V̂∗k,Q(qi)| ≤ (3φ(Q)L + τk+1)δ.

For any x ∈ Qi, i ∈ N[1,mx], it follows that

|V∗k,Q(x) − V̂∗k,Q(x)|

= |V∗k,Q(x) − V̂∗k,Q(qi)|

≤ |V∗k,Q(x) − V∗k,Q(qi)| + |V∗k,Q(qi) − V̂∗k,Q(qi)|
≤ (4φ(Q)L + τk+1)δ = τkδ,

which completes the proof of the inequality (3.7).
Now let us move to prove the inequality (3.8). It is trivial to check it for k = N since

V∗N,Q(x) = V µ̂∗

N,Q(x) = 1,∀x ∈ Q. By induction, we assume that |V∗k+1,Q(x) − V µ̂∗

k+1,Q(x)| ≤
ρk+1δ, x ∈ Q. For any x ∈ Qi, i ∈ N[1,mx],

|V∗k,Q(x) − V µ̂∗

k,Q(x)|

≤ |V∗k,Q(x) − V̂∗k,Q(x)| + |V̂∗k,Q(x) − V µ̂∗

k,Q(x)|

≤ τkδ + |V̂∗k,Q(qi) − V µ̂∗

k,Q(x)|.

Furthermore, we have that

|V̂∗k,Q(qi) − V µ̂∗

k,Q(x)|

≤ |

∫
Q

V̂∗k+1,Q(y)t̃(y|qi, µ̂
∗
k)dy −

∫
Q

V µ̂∗

k+1,Q(y)t(y|x, µ̂∗k)dy|

≤ |

∫
Q

V̂∗k+1,Q(y)t̃(y|qi, µ̂
∗
k)dy −

∫
Q

V∗k+1,Q(y)t̃(y|qi, µ̂
∗
k)dy| +

|

∫
Q

V∗k+1,Q(y)t̃(y|qi, µ̂
∗
k)dy −

∫
Q

V∗k+1,Q(y)t(y|qi, µ̂
∗
k)dy| +

|

∫
Q

V∗k+1,Q(y)t(y|qi, µ̂
∗
k)dy −

∫
Q

V∗k+1,Q(y)t(y|x, µ̂∗k)dy| +

|

∫
Q

V∗k+1,Q(y)t(y|x, µ̂∗k)dy −
∫
Q

V µ̂∗

k+1,Q(y)t(y|x, µ̂∗k)dy|

≤ (τk+1 + 3φ(Q)L + ρk+1)δ.

Then, it follows that

|V∗k,Q(x) − V µ̂∗

k,Q(x)| ≤ (τk + τk+1 + 3φ(Q)L + ρk+1)δ = ρkδ.

The proof is completed.



Chapter 4

Stochastic Self-triggered Model
Predictive Control

4.1 Introduction

This chapter considers a self-triggered implementation of stochastic MPC for linear
systems with stochastic disturbances. As mentioned in Chapter 2, one main feature of
stochastic MPC is the presence of probabilistic constraints, which require the constraints
to be satisfied with given probability thresholds. Such constraints can mitigate the
conservativeness introduced by hard constraints of robust MPC. Stochastic MPC has found
applications in diverse fields, e.g., building climate control [9, 89] or chemical processes
[90]. One remarkable challenge is how to characterize the ‘propagation’ of uncertainties
during two sampling instants and formulate a computationally tractable optimization
problem for determining sampling instants and control design.

The stochastic self-triggered MPC algorithm of this chapter extends considerably the
literature, as detailed below. The idea employed in [54] is extended to the case of infinite
prediction horizon, where the prediction horizon is divided into three parts and feedback is
applied only after a designed inter-sampling time. To achieve a better trade-off between
performance and communication, as in [53], the inter-sampling time is maximized at
each instant while guaranteeing that the associated cost is not much higher than the cost
when sampling at every time instant. Under this self-triggering mechanism, deterministic
constraints on the nominal system are derived based on the knowledge of the probability
distribution of the disturbances. Following the ideas of tube-based MPC [25], we construct
stochastic tubes as tight as possible by explicitly using the distributions of the disturbances.
Since a crucial assumption of feedback at every time step in [25] is not satisfied in the self-
triggered setting (which allows open-loop operations between sampling instants), some
appropriate and non-trivial modifications are needed: (i) by considering the multi-step
open-loop operation between control updates, three predicted controllers are defined for
different phases of the prediction horizon, making it more complex than [25] to evaluate the
effect of the uncertainty on predictions and construct equivalent deterministic constraints;
(ii) the inter-sampling time as an optimizing variable is included in the cost function

43
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and a tuning parameter is introduced to provide a trade-off between performance and
communication; (iii) an improved terminal set, which is adapted to different inter-sampling
times, is designed to make the constraints recursively feasible.

The main contributions are summarized in the following.

(1) Our joint design of the self-triggering mechanism and the stochastic MPC effectively
reduces the amount of communication, while guaranteeing control performance with
specific level of trade-off.

(2) The MPC optimization problem is transformed into a tractable quadratic program-
ming problem by using information on the disturbance distribution.

(3) For the self-triggering mechanism, the probability of constraint violation can be tight
to the specified limit.

(4) Both recursive feasibility and closed-loop stability are guaranteed. To illustrate the
effectiveness of the algorithm, numerical experiments are carried out to compare
the proposed stochastic self-triggered MPC with a periodically-triggered stochastic
MPC, robust self-triggered MPC, and LQR.

The remainder of this chapter is structured as follows. Problem formulation is set
up in Section 4.2. In Section 4.3, a multi-step open-loop MPC optimization problem is
formulated incorporating probabilistic constraints and specific terminal sets. In Section 4.4,
a stochastic self-triggered MPC algorithm is developed and main results are established.
Section 4.5 presents numerical simulations and Section 4.6 concludes.

4.2 Problem Statement

Consider a discrete-time linear time-invariant system described by

xk+1 = Axk + Buk + wk, k ∈ N, (4.1)

where xk ∈ R
nx is the state, uk ∈ R

nu is the control input, w(k) ∈ Rnw is the stochastic
disturbance, and (A, B) is a stabilizable pair. Note that nw = nx. We assume that {w0,w1, . . .}
is independent and identically distributed (i.i.d.) for all k ∈ N and that the elements of wk

have zero mean. The distribution Fi of the ith element of wk is assumed to be known
and continuous with a bounded support [−σi, σi], σi > 0, and correspondingly we have
wk ∈ W , {w | |w| ≤ σ}, σ = [σ1 σ2 . . . σnw ]T . Moreover, system (4.1) is subject to nc

probabilistic constraints given by

Pr{gT
` xk ≤ h`} ≥ p`, ` ∈ N[1,nc], k ∈ N,

where g` ∈ Rnx , h` ∈ R, and p` ∈ [0, 1]. In the sequel, we will focus on one probabilistic
constraint

Pr{gT xk ≤ h} ≥ p, k ∈ N, (4.2)
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as the other constraints can be treated in a similar way.
In a periodically-triggered MPC scheme, the predictive control input at time k can be

designed as

uk+i|k = Kxk+i|k + ck+i|k, i ∈ N, (4.3)

where K ∈ Rnu×nx is chosen offline such that the matrix Φ , A + BK is Schur stable and
for a prediction horizon N ∈ N≥1, perturbations ck+i|k ∈ R

nu for i ∈ N≤N−1 are optimization
variables and ck+i|k = 0 for i ∈ N≥N . At each time instant k, uk = Kxk + ck|k is applied to the
system.

To reduce the amount of communication, in the self-triggered scheme, the states xk

are only measured and transmitted to the controller at the sampling instants k j ∈ N,
j ∈ N, which evolve as k j+1 = k j + M j with k0 = 0. The inter-sampling time M j ∈

N[1,N−1] is determined by a self-triggering mechanism based on the state at the sampling
instant k j. In the self-triggered scheme, at the time instants between k j and k j+1, the
shutdown of the sensor and the uncertain xk j+i resulting from the stochastic disturbance
wk j ,wk j+1, . . . ,wk j+i−1 make the system operate in an open-loop fashion. As a result, the
predictive control sequence in (4.3) is not applicable and we redefine the predictive control
sequence in the self-triggered setup as

uk j+i|k j = Kzk j+i|k j + ck j+i|k j , i ∈ N≤M j−1, (4.4)
uk j+i|k j = Kxk j+i|k j + ck j+i|k j , i ∈ N[M j,N−1], (4.5)
uk j+i|k j = Kxk j+i|k j , i ∈ N≥N , (4.6)

where the nominal trajectory zk j+i|k j = E[xk j+i|k j ] evolves as

zk j+i+1|k j = Φzk j+i|k j + Bck j+i|k j , i ∈ N,

with the initial condition zk j |k j = xk j . The predictive controller (4.4) is designed with
respect to nominal state predictions for prediction time instants k j + i, i ∈ N≤M j−1, and
(4.5) is designed with respect to disturbed state predictions for i ∈ N[M j,N−1]. After the
Nth prediction time, the predictive controller (4.6) is given by the state feedback law
without perturbations. Note that the number of decision variables is also a finite N. At each
sampling instant k j, after solving an MPC optimization problem parameterized by xk j , the
first M j control inputs, i.e., uk j |k j , uk j+1|k j , . . . , uk j+M j−1|k j , are transmitted to the actuator and
are applied until the next sampling instant k j+1.

The goal is to design a perturbation sequence ck j = [cT
k j |k j

cT
k j+1|k j

. . . cT
k j+N−1|k j

]T ∈

Rnu×N and to maximize the sampling interval M j at each sampling instant k j, such that
a low frequency of control updates and communication is achieved, while stabilizing a
bounded set containing the origin and guaranteeing constraint satisfaction with a specified
probability.

4.3 Optimization Problem Formulation

In this section, we formulate the problem described in Section 4.2 to a computationally
tractable MPC optimization problem with a fixed inter-sampling time M ∈ N[1,N−1]. To
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PM
o (ck j ) :

min
ck j

JM(ck j ) ,
1
α

M−1∑
i=0

Ek j [‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss] +

∞∑
i=M

Ek j [‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss] (4.7)

subject to
zk j |k j = xk j (4.8a)

∀i ∈ N≤M−2 : zk j+i+1|k j = Azk j+i|k j + Buk j+i|k j (4.8b)
∀i ∈ N : xk j+i+1|k j = Axk j+i|k j + Buk j+i|k j + wk j+i (4.8c)
∀i ∈ N≤M−1 : uk j+i|k j = Kzk j+i|k j + ck j+i|k j (4.8d)
∀i ∈ N[M,N−1] : uk j+i|k j = Kxk j+i|k j + ck j+i|k j (4.8e)
∀i ∈ N≥N : uk j+i|k j = Kxk j+i|k j (4.8f)

∀i ∈ N≥1 : Pr{gT xk j+i|k j ≤ h} ≥ p (4.8g)

achieve this, following the idea of [25], we construct a stochastic tube as tight as possible
by making explicit use of the distributions defining the disturbances. Since the control
input (4.4)-(4.6) in this chapter is different from the control input (4.3) used in [25], some
appropriate modifications are needed with respect to the definition of cost function, the
handling of probabilistic constraints, and the construction of terminal sets.

Given a state xk j of system (4.1) and a fixed M ∈ N[1,N−1], define the prototype MPC
optimization problem PM

o (ck j ) on the decision variable ck j . See (4.7) and (4.8). Therein,
Q = QT � 0 and R = RT � 0 are the weighting matrices and the scalar α ≥ 1 is a
tuning parameter. The positive parameter `ss , limi→∞ Ek j [‖xk j+i|k j‖

2
Q + ‖uk j+i|k j‖

2
R] can be

determined offline, see for example [34].

Remark 4.1. Based on the inter-sampling time M, the cost function in (4.7) is divided into
two parts similar to [53] and [54]. The main differences are the choices of the predictive
horizon and the definition of the stage cost. In [53] and [54], the cost function consists of
finite-horizon costs and a terminal cost which are defined by the nominal system. Due to
the presence of stochastic disturbances, we define the cost function in expectation, which
indicates the average performance of the system.

Remark 4.2. Using the probabilistic distribution of w and extending the proof of Theorem
2 in [34], the infinite-horizon cost function in (4.7) can be written as a quadratic form of
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the decision variable ck j

JM(ck j ) = cT
k j

Pccck j + cT
k j

Pcxxk j + fk j (x) + fk j (w),

where Pcc � 0, Pcc and Pcx are constant matrices, and fk j (x) and fk j (w) are determined,
respectively, by the state xk j and the distribution of disturbances regardless of the choice
of ck j .

Note that although the infinite-horizon cost function in (4.7) can be expressed as a
quadratic function, solving optimization problem PM

o (ck j ) online is still unrealistic due to
the presence of an infinite number of probabilistic constraints.

Probabilistic constraint handling strategy

To render the optimization problem PM
o (ck j ) computationally feasible, we will convert the

probabilistic constraints (4.8g) to deterministic ones, such that the observed probability of
constraint satisfaction is the same as the specified value and the derived constraints are
recursively feasible for the closed-loop system.

Under the assumption that the first M inputs in the sequence are applied to the system in
an open-loop fashion, Lemma 4.1 gives the equivalent form of the probabilistic constraints
(4.8g).

Lemma 4.1. For any M ∈ N[1,N−1] and any sampling instant k j, j ∈ N, probabilistic
constraints Pr{gT xk j+i|k j ≤ h} ≥ p for i ∈ N≥1 hold if and only if ck j satisfies

gT Φixk j + gT Hick j ≤ h − γM
i , i ∈ N≥1, (4.9)

where Hi , [Φi−1B . . . B 0 . . . 0] and γM
i is defined as the minimum value such that

Pr{gT Ai−1wk j |k j + . . . + gT wk j+i−1|k j ≤ γ
M
i } = p, i ∈ N[1,M],

Pr
{
gT Φi−M

M−1∑̀
=0

A`wk j+`|k j +
i−M−1∑̀

=0
gT Φ`wk j+i−1−`|k j ≤ γ

M
i

}
= p, i ∈ N≥M+1.

(4.10)

Proof. From (4.1) and (4.4), it follows that for i ∈ N[1,M]

xk j+i|k j = Φixk j + Hick j + Ai−1wk j |k j + . . . + wk j+i−1|k j .

Further, from (4.1) and (4.5) for all i ∈ N≥M+1, it holds that

xk j+i|k j = Φixk j + Hick j + Φi−M
M−1∑
`=0

A`wk j+`|k j +

i−M−1∑
`=0

Φ`wk j+i−1−`|k j .

Hence, it follows directly by the definition of γM
i in (4.10) that Pr{gT xk j+i|k j ≤ h} ≥ p for

i ∈ N≥1 is equivalent to the deterministic constraints (4.9). �
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∏
=



γM
1 · · · γM

M γM
M+1 γM

M+2 γM
M+3 · · ·

0 · · · 0 bM
M+1 + ξM

M+1 bM
M+2 + ξM

M+2 bM
M+3 + ξM

M+3 · · ·

0 · · · 0 0 bM
M+2 + dM

M+2 + ξM
M+1 bM

M+3 + dM
M+3 + ξM

M+2 · · ·

0 · · · 0 0 0 bM
M+3 + dM

M+3 + dM
M+2 + ξM

M+1 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .


. (4.13)

The values of γM
i can be calculated using multivariate convolution integrals, or alter-

natively approximated using univariate convolutions with arbitrarily small approximation
error (see [91], Remark 3.2). The computation can be performed offline. By modifying
Lemma 4.1, recursively feasible constraints are derived in Theorem 4.1 ensuring the
satisfaction of the probabilistic constraints (4.2) along closed-loop trajectories.

Theorem 4.1. Given any M ∈ N[1,N−1] and system state x(k j) with j ∈ N, let for all
k ∈ N[k j,k j+1−1]  xk+1 = Axk + Buk + wk,

uk = Kzk|k j + ck|k j .
(4.11)

Then the probabilistic constraints (4.2) are satisfied for all k ∈ N[k j+1,k j+1], j ∈ N, for the
closed-loop system (4.11), if ck j satisfies

gT Φixk j + gT Hick j ≤ h − βM
i , i ∈ N≥1, (4.12)

where βM
i is defined as the maximum element of ith column of

∏
(which is defined in (4.13))

with

bM
i , max

w∈W
gT Φi−M

M−1∑
`=0

A`w,

dM
i , max

w∈W
gT Φi−M−1w,

and ξM
i the minimum value such that Pr{

∑i−M−1
`=0 gT Φ`w ≤ ξM

i } = p. Furthermore, if the
constraints in (4.12) are feasible at time k j, it can be guaranteed that there exists at least
one solution ck j+i satisfying (4.12) for M = 1 at all future sampling instants k j+i, i ∈ N≥1.

Proof. By Lemma 4.1 and the definition of βM
i , constraints (4.12) ensure that Pr{gT xk j+i|k j ≤

h} ≥ p, i ∈ N[1,M], are satisfied for any possible realization of the disturbances
wk j ,wk j+1), . . . ,wk j+M−1, which implies that (4.2) is satisfied for all k ∈ N[k j+1,k j+1].

To show recursive feasibility of (4.12), we first consider the prediction of the state at
time k j+1 + i, i ∈ N≥1, based on the information obtained at the next sampling instant k j+1.
By defining T as the shift matrix with ones on the superdiagonal and zeros elsewhere and
constructing the perturbation sequence as c̃k j+1 = T Mck j , it yields that for i ∈ N≥1,

xk j+1+i|k j+1 = Φi+M xk j + Hi+Mck j + Φiek j+M|k j+M + Φi−1wk j+M|k j+M + . . . + wk j+M+i−1|k j+M ,
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where

ek j+M|k j+M = AM−1wk j |k j + . . . + wk j+M−1|k j

has already been realized at time k j+1. To ensure that c̃k j+1 is a feasible solution at time k j+1,
the worst-case bound on ek j+M|k j+M and the probabilistic bound on Φi−1wk j+M|k j+M + . . . +
wk j+M+i−1|k j+M need to be considered explicitly at time k j. Hence, to ensure feasibility at
time k j+1 for M = 1, we must require at time k j

gT Φixk j + gT Hick j ≤ h − (bM
i + ξM

i ), i ∈ N≥M+1.

By the same arguments, it follows that the feasibility of (4.12) at time k j+`, ` ∈ N≥1,
can be ensured, if it holds that

gT Φixk j + gT Hick j ≤ h − (bM
i + dM

i + dM
i−1 + . . . + dM

i−`+2 + ξM
i−`+1), i ∈ N≥M+`. (4.14)

To ensure feasibility at all sampling instants k j, k j+1, . . ., taking the intersection of (4.9)
and (4.14) for all ` ∈ N≥1 and using the fact that γM

1 = ξM
M+1, it yields that

gT Φixk j + gT Hick j ≤ h − βM
i , i ∈ N≥1,

where βM
i is taken as the maximum element of ith column of (4.13). �

Note that the constraint parameters γM
i in (4.9) and βM

i in (4.12) are decided by not only
the length i of the predicted time steps but also the length M of the open-loop steps. By
setting M = 1, the results in Lemma 4.1 and Theorem 4.1 are reduced to the corresponding
results in [25], in which a periodically-triggered scheme is considered.

In the following, two properties of the sequence βM
i , i ∈ N≥1, will be established.

Lemma 4.2. For all M ∈ N[1,N−1], it holds that

βM
i =


γM

i , i ∈ N[1,M],

bM
i +

i∑
`=M+2

dM
` + γM

1 , i ∈ N≥M+1.
(4.15)

Proof. For i ∈ N[1,M], (4.15) holds directly. For i ∈ N≥M+1, by the definition of γM
1 , we

have

Pr{bM
i +

i∑
j=M+2

dM
j + gT w ≤ bM

i +

i∑
j=M+2

dM
j + γM

1 } = p.

Further, from the fact

gT Φi−M
M−1∑
j=0

A jw +

i−M−1∑
j=0

gT Φ jw ≤ bM
i +

i∑
j=M+2

dM
j + gT w,
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it follows that

Pr{gT Φi−M
M−1∑
j=0

A jw +

i−M−1∑
j=0

gT Φ jw ≤ bM
i +

i∑
j=M+2

dM
j + γM

1 } ≥ p.

Hence, according to the definition of γM
i , we have

γM
i ≤ bM

i +

i∑
j=M+2

dM
j + γM

1 . (4.16)

Then, it can be concluded that βM
i is equal to the last non-zero element in the ith column

of (4.13), which gives the second row of (4.15). �

Lemma 4.3. For all M ∈ N[1,N−1] and all i ∈ N≥1, it holds that

βM
i+M = bM

i+M + β1
i . (4.17)

Proof. From Lemma 4.2, β1
i can be rewritten as

β1
i =

i−1∑
`=1

max
w∈W

gT Φ`w + γ1
1, i ∈ N≥M+1.

Then, it follows from (4.15) and the fact that γ1
1 = γM

1 that

βM
i+M = bM

i+M +

i−1∑
`=1

max
w∈W

gT Φ`w + γM
1 = bM

i+M + β1
i , i ∈ N≥1.

We complete the proof. �

Terminal set

To ensure that constraints (4.12) are satisfied over an infinite prediction horizon, a terminal
set is used. First, due to ck j+N+i|k j = 0 for all i ∈ N, the terminal dynamics of the nominal
system can be rewritten as

zk j+N+i+1|k j = Φzk j+N+i|k j , i ∈ N.

Define the constraint set for zk j+N |k j as

{z | gT Φiz ≤ h − βM
N+i, i ∈ N}. (4.18)

Then given some N̂ ∈ N, we split the infinite prediction horizon in (4.18) into two
stages i ∈ N≤M+N̂ and i ∈ N≥M+N̂+1. In the second stage, an upper bound of the sequence
βM

i will be used, which is introduced through the following lemma.
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Lemma 4.4. For all M ∈ N[1,N−1], the sequence βM
i for i ∈ N≥M+1 is upper bounded by

βM
i ≤ β̄

M , b̄M +

v−1∑
`=M+2

dM
` +

ρv

1 − ρ
‖g‖S + γM

1 , (4.19)

with any given v ∈ N≥M+3 and

b̄M , max
i∈N≥M+1,w∈W

gT Φi−M
M−1∑
`=0

A`w.

The scalar ρ and matrix S can be obtained by solving a semidefinite program as in [92].

Proof. The strict stability of Φ and the bounded support of w ensure the existence of the
upper bound on gT Φi−M ∑M−1

`=0 A`w and the conclusion in (4.19) is then obtained by using
similar treatments as in [92]. �

Replace βM
N+i in (4.18) by the bound β̄M over the horizon i ∈ N≥M+N̂+1 and define an

inner approximation of (4.18) as

{z | gT Φiz ≤ h − βM
N+i, i ∈ N≤M+N̂ , gT Φiz ≤ h − β̄M , i ∈ N≥M+N̂+1}. (4.20)

Although the revised set (4.20) only contains a finite number of parameters including
βM

N+i, i ∈ N≤M+N̂ , and β̄M , the number of constraints in (4.20) remains infinite. By utilizing
the results obtained in [13], there exists n∗ ∈ N≥1 such that the infinite number of
constraints in (4.20) can be ensured through the first M + N̂ + n∗ constraints. Therefore, the
terminal set for z(k j + N |k j) is constructed as follows:

XM
f , {z | g

T Φiz ≤ h − βM
N+i, i ∈ N≤M+N̂ , gT Φiz ≤ h − β̄M , i ∈ N[M+N̂+1,M+N̂+n∗]},(4.21)

where the smallest allowable value of n∗ can be computed offline by solving a finite number
of linear programs, see [13] for more details.

Optimization problem

Given a state xk j of system (4.1) and any M ∈ N[1,N−1], with the constraints defined in
(4.12) and the terminal set constructed in (4.21), the constraints imposed on the decision
variable ck j are summarized as follows:

zk j |k j = xk j , (4.22a)
∀i ∈ N≤N−1 : zk j+i+1|k j = Φzk j+i|k j + Bck j+i|k j , (4.22b)
∀i ∈ N≤M−1 : uk j+i|k j = Kzk j+i|k j + ck j+i|k j , (4.22c)

∀i ∈ N[1,N−1] : gT Φixk j + gT Hick j ≤ h − βM
i , (4.22d)

zk j+N |k j ∈ X
M
f . (4.22e)
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Note that there is only a finite number of deterministic constraints in (4.22), which can be
computed for the predictions of the nominal model.

Define the set of all decision variables ck j satisfying (4.22) as

FM(xk j ) , {ck j | (4.22a) − (4.22e) hold},

and the state xk j feasible if FM(xk j ) , ∅.
At the sampling instant k j, for any state xk j and any M ∈ N[1,N−1], an MPC optimization

problem PM(ck j ), which is the deterministic version of PM
o (ck j ), can now be formulated as

V M(k j) , min
ck j∈F

M (xk j )
JM(ck j ),

c∗k j
, arg min

ck j∈F
M (xk j )

JM(ck j ),

where V M(k j) denotes the optimal value function and c∗k j
the corresponding optimal

solution.

Remark 4.3. Clearly constraints (4.22) are all affine functions in the decision variable
ck j and JM(ck j ) is a quadratic cost function, see Remark 4.2. It can be shown that the
optimization problemPM(ck j ) is thus a quadratic programming problem. More importantly,
the computational complexity of the optimization problem is not increased compared with
the periodically-triggered MPC scheme in [25] regarding the number of constraints and
decision variables.

4.4 Stochastic Self-triggered MPC

Using the above MPC optimization problem as a basis, a stochastic self-triggered MPC
algorithm is designed in this section. In the self-triggered setup, the goal at every sampling
instant k j is to decide not only the perturbation sequence ck j but also the next sampling
instant k j+1. To reduce the computation and communication cost, we need to find the largest
M j ∈ N[1,N−1] such that PM j (ck j ) is feasible for some ck j ∈ F

M j (xk j ) while still maintaining
certain performance of the closed-loop system. Following the ideas in [54], for a system
state xk j and any k j ∈ N with j ∈ N, we define the self-triggered MPC problem S(xk j ) as

M∗j , max{M ∈ N[1,Mmax] | F
M(xk j ) , ∅,V

M(k j) ≤ V1(k j)}, (4.23)

c∗k j
, arg min

ck j∈F
M∗j (xk j )

JM∗j (ck j), (4.24)

where Mmax ∈ N[1,N−1] is an a priori maximum of the inter-sampling time and V1(k j) is the
optimal value function at sampling instant k j corresponding to the MPC scheme in which
control updates take place at every time instant.

Remark 4.4. The idea adopted in (4.23) to determine the length of the inter-sampling
time M is similar to [45, 53, 54], in which, by introducing a tuning parameter α in the
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cost function as in (4.7), the optimal value function of the M-step open-loop MPC scheme
is required to be not worse than that of a periodically-triggered MPC scheme. The main
difference is that in [45] the system considered is undisturbed, and in [53, 54] the system
is subject to bounded disturbances and hard constraints. Furthermore, for the robust self-
triggered MPC schemes in [53, 54], the choice of the cost function and the design of the
tightened constraint sets are significantly different from that in (4.23).

Remark 4.5. By employing the triggering mechanism in (4.23), parameter α may be used
to trade off the control performance and the usage of network resources. If α = 1, the
cost function is transformed into the standard infinite-horizon cost function [25]. In this
case, since the first M inputs in the prediction horizon are applied in an open-loop way,
the optimal cost function V M(k j) for M ∈ N>1 is in general larger than the optimal cost
function V1(k j) corresponding to the periodically-triggered MPC scheme. Therefore, from
(4.23), it may lead to a small inter-sampling time M. To reduce the frequency of control
updates, we can increase the value of α to counter the effect of the open-loop control
making it possible to obtain a larger inter-sampling time M, while possibly sacrificing
slightly the control performance.

The resulting stochastic self-triggered MPC algorithm is summarized in Algorithm 4.1.

Algorithm 4.1 Stochastic self-triggered MPC

Offline:
Determine α, Q, R, K, N, N̂, Mmax, and n∗. For any M ∈ [1,Mmax], compute parameters
γM

i , i ∈ N[1,M], bM
M+i, i ∈ N[1,N+N̂], dM

M+i, i ∈ N[2,N+N̂], ξ
M
M+1, and β̄M in (4.22d) and (4.22e).

Online:
1: Initialize k = 0, measure the initial state xk and obtain M∗ and c∗k by solving the

optimization problem S(xk).
2: For all i ∈ N≤M∗−1, apply the input uk+i = Kzk+i|k + c∗k+i|k to the system.
3: Take the next sampling instant as k + M∗ and set k = k + M∗.
4: Measure the current state xk of system (4.1).
5: Solve the optimization problem S(xk) to obtain M∗ and c∗k.
6: Go to step 2.

Compared with the periodically-triggered MPC scheme, in the proposed self-trigged
algorithm, it is necessary to solve at most Mmax quadratic programs at each sampling
instant to obtain the maximum M∗ such that (4.23) holds. However, it is worth noting
that computation of the control inputs and the next update time and communication from
sensors to controller and from controller to actuators only happen at the sampling times
k j, j ∈ N, while the periodically-triggered MPC needs to perform these computations for
all times. Though there is no computation and communication required at the time instants
between two sampling instants, the self-triggered MPC scheme still preserves recursive
feasibility and stability (see Theorem 4.2 and 4.3 below).
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By applying Algorithm 4.1, the resulting closed-loop system isxk+1 = Axk + Buk + wk,

uk = Kzk|k j + c∗k|k j
, k ∈ N[k j,k j+1−1],

(4.25a)

k j+1 = k j + M∗j , (4.25b)

for all j ∈ N and k0 = 0, which has the following properties.

Theorem 4.2. (Recursive feasibility and constraint satisfaction). If optimization problem
S(xk0 ) is feasible at sampling instant k0, then the feasibility of S(xk j ) can be ensured
at every sampling instant k j, j ∈ N, for the closed-loop system (4.25a)–(4.25b) under
Algorithm 4.1. Furthermore, for all k ∈ N, it holds that Pr{gT xk ≤ h} ≥ p.

Proof. Consider any two successive sampling instants k j and k j+1. Let M j and ck j be a
solution of S(xk j ) at sampling instant k j. Define c̃k j+1 = T M j ck j . We will show that M j+1 = 1
and c̃k j+1 are the feasible solution of S(xk j+1 ) at sampling instant k j+1, i.e., ck j+1 ∈ F

1(xk j+1 ).
The constraints (4.22a)–(4.22c) in F1(xk j+1 ) are trivially satisfied. The satisfaction of

(4.22d) in F1(xk j+1 ) by c̃k j+1 is obtained from the proof of Theorem 4.1.
By assumption that ck j ∈ F

M j (xk j ), it follows that zk j+N |k j ∈ X
M j

f . Further, for all i ∈ N,
we have

gT Φizk j+M j+N |k j+M j = gT ΦM j+N+izk j |k j + gT ΦiHM j+Nck j + gT ΦN+i
M j−1∑
`=0

A`w

= gT ΦM j+izk j+N |k j + gT ΦN+i
M j−1∑
`=0

A`w

≤ h − βM j

N+i+M j
+ bM j

N+i+M j

≤ h − β1
N+i,

where the last inequality follows from (4.17). Therefore, we immediately obtain that
zk j+1+N |k j+1 ∈ X

1
f , i.e., constraint (4.22e) in F1(xk j+1 ) is satisfied.

From all of the above, it can be concluded that at sampling instant k j+1, optimization
problem S(xk j+1 ) is feasible and further by induction optimization problems S(xk j ) are
feasible at all sampling instants k j, j ∈ N.

For the closed-loop system (4.25a)–(4.25b) and all k ∈ N, the satisfaction of the
probabilistic constraints (4.2) is guaranteed directly from Theorem 4.1. �

The stability result of the closed-loop system is established in the following theorem.

Theorem 4.3. (Stability). For any realization of the disturbances wk, k ∈ N, the resulting
closed-loop system (4.25a)–(4.25b) under Algorithm 4.1 satisfies the stability condition

lim
kr→∞

1
kr

kr−1∑
k=0

E[‖xk‖
2
Q + ‖uk‖

2
R] ≤ `ss.
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Proof. For any j ∈ N, let M j and ck j be the optimal solution at sampling instant k j and the
corresponding optimal cost function V M j (k j) be a Lyapunov function candidate. Further,
as in the proof of Theorem 4.2, c̃k j+1 = T M j ck j together with M j+1 = 1 is a feasible solution
at sampling instant k j+1. Define Ṽ1(k j+1) as the value function associated with this feasible
solution.

Using the fact that α ≥ 1, it holds for the closed-loop system that

Ek j [Ṽ
1(k j+1)] ≤ V M j (k j) −

1
α

M j−1∑
i=0

Ek j [‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss]

≤ V1(k j) −
1
α

M j−1∑
i=0

Ek j [‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss],

where the second inequality follows from the definition of M j in (4.23).
The optimality of the solution leads to

Ek j [V
1(k j+1)] ≤ V1(k j) −

1
α

M j−1∑
i=0

Ek j [‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss].

Summing the inequality for j ∈ N[0,r−1] and taking expectation on both sides,

r−1∑
j=0

1
α

M j−1∑
i=0

E[‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R − `ss] ≤ E[V1(k0)] − E[V1(kr)].

Since E[V1(k0)] is finite by assumption and E[V1(kr)] is lower bounded for every r ∈ N
due to Remark 4.2, it holds that

lim
r→∞

1
kr

r−1∑
j=0

M j−1∑
i=0

E[‖xk j+i|k j‖
2
Q + ‖uk j+i|k j‖

2
R] ≤ `ss,

which implies

lim
kr→∞

1
kr

kr−1∑
k=0

E[‖xk‖
2
Q + ‖uk‖

2
R] ≤ `ss,

thereby completing the proof. �

4.5 Example

In this section, we will provide some simulation studies to show the effectiveness and the
advantages of the proposed stochastic self-triggered MPC in comparison with periodically-
triggered stochastic MPC (by setting M j = 1), robust self-triggered MPC (by setting p =

1), and the unconstrained LQR control.
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To this end, consider a system as in [23, 86]:

xk+1 =

 1 0.0075
−0.143 0.996

 xk +

 4.798
0.115

 uk + wk, k ∈ N

subject to the probabilistic constraint

Pr{
[

1 0
]

xk ≤ 2} ≥ 0.8.

Elements of the disturbance wk are assumed to be i.i.d. truncated Gaussian random
variables with zero mean, variance 0.042, and bounded by |wi,k | ≤ 0.1 for i = 1, 2. In
the cost function (4.7), the parameters are given by Q = diag{1, 3.5}, R = 0.1, and α = 1.2.
The limit value `ss = 0.37 is precomputed using the method in [34]. The feedback matrix
K in (4.22c) is chosen as the unconstrained LQR gain K = [0.263 −0.329]. The prediction
horizon and horizons in terminal set (4.22e) are N = 8, N̂ = 12, and n∗ = 1. The maximal
open-loop length is Mmax = 8. Furthermore, to obtain βM

i in (4.22d), parameters γM
i ,

i ∈ N[1,M], and ξM
M+1 are calculated according to the approximation method in Remark

3.2 of [91]. For the computation of β̄M in (4.22e), parameters ρ and S in β̄M are calculated
by the method proposed in [92] and the approximation parameter v is chosen to v = 13.

Simulation for the four control schemes are performed with 1000 realizations of the
uncertainty sequence, initial condition [2.5 2.8]T , and a simulation length of Trun = 18
steps. The simulations are implemented in Matlab R2012b with Yalmip and SeDuMi
solver.

Stability and constraint violation: The state trajectories {xk, k = 0, 1, . . .} for 100
realizations of the uncertainty sequence are depicted in Figures 4.1-4.2 with the black
dotted lines being the constraint bounds. The right plots of subfigure (a)–(b) in Figures
4.1-4.2 enlarge the region of constraint bound to show the constraint violation. As it
turns out, with the proposed stochastic self-triggered MPC, the observed probabilities of
constraint violation in the first 5 steps are 19.7%, 20.4%, 19.8%, 20.2%, and 16.3%, while
by periodically-triggered stochastic MPC, the violation rates are 19.8%, 20.1%, 19.9%,
16.8%, and 9% for the same 1000 realizations. Furthermore, as expected, the robust self-
triggered MPC achieves no constraint violations, whereas violation rate is 100% in the first
3 steps under the unconstrained LQR control. The simulation results indicate that by the
proposed stochastic self-triggered MPC, the closed-loop state converges to a neighborhood
of the origin and the constraint violation is tight to the specified violation value 20%.

Average inter-sampling time and performance: To illustrate the decreased communi-
cation achieved by stochastic self-triggered MPC, Figures 4.3-4.4 show, respectively, the
state trajectory and input trajectory under stochastic self-triggered MPC and periodically-
triggered stochastic MPC for 1 realization of the uncertainty sequence. The sampling
instants are highlighted by red solid circles. It can be observed that the number of the
sampling instants is significantly reduced. The associated average number of steps between
sampling instants is compared. For each scheme, the same uncertainty sequences are used
and the average is taken over 1000 realizations and 18 steps. The average inter-sampling
time is M = 2.9 under the self-triggered scheme, which leads to an average reduction in
communication by 65.5% compared to the scheme with updates at every time instant.
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Let us compare the performance measure

Jperf =
1

Trun

Trun−1∑
k=0

{‖xk‖
2
Q + ‖uk‖

2
Q − `ss}.

It is 6.82 for stochastic self-triggered MPC, as compared with 6.75 for periodically-
triggered stochastic MPC. It can be concluded that by the proposed stochastic self-triggered
MPC, communication is decreased without much loss in performance, which can also be
illustrated by Figures 4.3-4.4.

4.6 Conclusion

We proposed a stochastic and self-triggered MPC strategy denoted by stochastic self-
triggered MPC for the stabilization of systems with additive disturbances and probabilistic
constraints. It was shown that the required amount of communication was reduced
while simultaneously guaranteeing a specific performance loss when compared with a
periodically-triggered scheme. By taking the disturbances occurring during the inter-
sampling period into account and making use of their probability distribution, a set of deter-
ministic constraints and the terminal sets were constructed to formulate a computationally
tractable MPC optimization problem. The probabilistic constraints were guaranteed at each
time instant despite the open-loop operation between any two sampling instants. Moreover,
recursive feasibility and stability were proved for the closed-loop system. The results were
compared in simulations with other MPC methods from the literature.
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Figure 4.1: Closed-loop trajectories under stochastic self-triggered MPC and periodically-
triggered stochastic MPC for 100 realizations of the uncertainty sequence.
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Figure 4.2: Closed-loop trajectories under robust self-triggered MPC and LQR for 100
realizations of the uncertainty sequence.
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Figure 4.3: State trajectories and input trajectories under stochastic self-triggered MPC for
1 realization of the uncertainty sequence.
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Figure 4.4: State trajectories and input trajectories under periodically-triggered stochastic
MPC for 1 realization of the uncertainty sequence.





Chapter 5

Robust Self-triggered Control via
Reachability Analysis

5.1 Introduction

As shown in Chapter 4, the incorporation of the self-triggered scheme into MPC does
not immediately preserve the conventional recursive feasibility and closed-loop stability
of MPC. In order to guarantee these two properties, the price of more computational
effort at the sampling instants is paid to satisfy the constraints on the cost function when
maximizing the inter-sampling time.

Different from the above results, this paper aims at proposing a robust self-triggered
control framework for time-varying and uncertain systems with constraints. To the best
of our knowledge, this topic has not been explored up to now and cannot be handled by
the previous mentioned methods, such as self-triggered MPC. The main challenges are:
(1) how to guarantee recursive feasibility in a time-varying setup by self-triggered control;
(2) how to ensure constraint satisfaction for any disturbance realization. In this work, we
make full use of reachability analysis to handle these issues. Although reachability has
been widely studied [69–71], the incorporation of reachability into self-triggered control
is novel. One recent work [93] uses reachability-based self-triggered control to design the
variable sampling period for sampled-data linear systems. However, neither constraints nor
uncertainties are considered in [93].

The use of reachability analysis in this paper provides a geometric interpretation for
the self-triggered control from a set theoretical point of view. Available geometry software
tools facilitate the implementation of our algorithms. Some practical applications of our
algorithm include control of hybrid systems and robot motion planning (see Example 2).
The main contributions are summarized below.

• We propose a novel robust self-triggered control algorithm (Algorithm 1) for
time-varying and uncertain systems with constraints. Constraint satisfactions and
recursive feasibility are shown to be guaranteed based on reachability analysis.
We calculate the maximum inter-sampling time by solving the corresponding

63
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optimization problem (P1
[ki,N](xki )) only once at each sampling instant, which avoids

the repetitive computation required in the self-triggered MPC. In the particular case
when there is no uncertainty, we develop a control method with minimum number
of samplings over a finite time horizon. This is achieved by solving the optimization
problem (P2

[0,N](x0)) only once.

• When the plant is linear and the constraints are polyhedral, we prove that all
the optimization problems (P1

[ki,N](xki ) and P2
[0,N](x0)) can be reformulated as

mixed integer linear programming (MILP) problems, which are, in our cases,
computationally tractable (Theorems 5.1 and 5.2). The numerical comparisons
(Example 1) show that our algorithm achieves a better communication reduction
and faster online computation than the robust self-triggered MPC in [50] without
much loss in performance.

The remainder of the chapter is organized as follows. The problem statement is
given in Section 5.2. Section 5.3 presents the robust self-triggered control algorithm. The
specialization to linear plants with polyhedral constraints is provided in Section 5.4. Two
examples in Section 5.5 illustrate the effectiveness of our approach. Finally, Section 5.6
concludes this chapter.

5.2 Problem Statement

Consider a discrete-time dynamic control system

xk+1 = fk(xk, uk) + wk, (5.1)

where xk ∈ R
nx and uk ∈ R

nu , wk ∈ R
nx , and fk : Rnx × Rnu → Rnx . The control input uk

at time k is constrained by a set Uk ⊂ R
nu . The additive disturbance wk at time instant k

belongs to a compact setWk ⊂ R
nx . The initial state x0 is contained in a given setX0 ⊂ R

nx .
In addition, given a finite time horizon N ∈ N, the system (5.1) is subject to a target tube,
denoted by {(Xk, k), k ∈ N[1,N]}, whereXk ⊆ R

nx , ∀k ∈ N[1,N]. It is assumed that the function
fk and the disturbance setWk are known for all k ∈ N[0,N−1].

Assumption 5.1. The function fk(x, u), ∀k ∈ N[0,N−1], is continuous in x and u, respectively.

Assumption 5.2. The sets Uk, ∀k ∈ N[0,N−1], and Xk, ∀k ∈ N[0,N], are compact.

The objective of this chapter is to develop a self-triggered control algorithm for the
system (5.1), thereby yielding a sequence of piecewise constant control inputs. More
specifically, we aim to determine a sequence of sampling instants {k0, k1, . . . , kT } with
k0 = 0, ki+1 = ki + Mi, and kT = N such that u j = ul, ∀ j, l ∈ N[ki,ki+1−1] and all the
constraints are satisfied at each time instant k ∈ N[0,N]. Here, T + 1 is the total number of
samplings within N time instants, which quantifies the communication consumption, and
Mi denotes the inter-sampling time between ki and ki+1.
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5.3 Self-triggered Control via Reachability Analysis

In this section, we will provide a reachability-based self-triggered control algorithm for the
uncertain constrained system (5.1). Furthermore, a control method with minimum number
of samplings will be designed when the system (5.1) is reduced to be deterministic, i.e.,
Wk = {0}.

• • •

xki

u,Wki+1

X∗ki
X∗ki+1 X∗j X∗j+1 X∗N

• • •

X̃[ki,ki+1]

u,Wki u,W j−1

u,W j

X̃[ki, j]
X̃[ki, j+1]

Figure 5.1: Geometrical interpretation for P3
[ki,N](xki )

Robust self-triggered control

Computation of reachable sets

Let X∗N = XN . For k ∈ N[0,N−1], the backward reachable set X∗k for the system (5.1) is
recursively computed by:

Pk = {z ∈ Rnx | ∃uk ∈ Uk, fk(z, uk) ⊕Wk ⊆ X
∗
k+1}, (5.2a)

X∗k = Pk ∩ Xk. (5.2b)

According to Proposition 2.1,the target tube {(Xk, k), k ∈ N[1,N]} is reachable from the
initial state x0 ∈ X0 if and only if x0 ∈ X

∗
0. Furthermore, according to [71], Assumptions

5.1 and 5.2 make the resulting reachable sets compact. Proposition 2.1 indicates that if the
state x j ∈ X

∗
j , the recursive feasibility and the constraint satisfactions can be guaranteed.

Remark 5.1. There exist some methods to compute the reachable sets for a nonlinear
system (5.1), e.g., [71, 75]. In addition, there are results on the inner approximations of
the reachable sets X∗k, e.g., [94, 95]. Note that these inner approximations are applicable
also for the following algorithms, since they provide constraint satisfaction and recursive
feasibility guarantees.
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Remark 5.2. Given the initial state x0, one can choose the minimal horizon N such that
{(X j, j), j ∈ N[0,N]} is reachable from x0.

Algorithm

Define the self-triggered condition for the system (5.1) as

ki+1 = max{k | ki < k ≤ N such that u j = u ∈ U j,

j ∈ N[ki,k−1], and the target tube
{(X j, j), j ∈ N[ki,N]} of (5.1) is reachable}. (5.3)

Recall that ki+1 = ki + Mi. The following lemma provides the formulation to compute Mi.

Proposition 5.1. Given the state xki ∈ X
∗
ki

, ki ∈ N[0,N−1], the inter-sampling time Mi is
obtained by solving the following optimization problem, denoted by P1

[ki,N](xki ):

max
u

N∑
j=ki+1

r j (5.4a)

subject to

X̃[ki,ki] = {xki }, (5.4b)
∀ j ∈ N[ki,N−1] : X̃[ki, j+1] = f j(X̃[ki, j], u) ⊕W j, (5.4c)
∀ j ∈ N[ki+1,N] :

r j =

1X∗ki+1
(X̃[ki,ki+1])1Uki

(u), j = ki + 1,

r j−11X∗j (X̃[ki, j])1U j−1 (u), j > ki + 1,
(5.4d)

where f j(X, u) = {z ∈ Rnx | z = f (x, u),∀x ∈ X}. That is, Mi =
∑N

j=ki+1 r∗j , where r∗j
corresponds to the optimal solution of P1

[ki,N](xki ).

Proof. The definition of r j characterizes the successive constraint satisfactions from time
ki for all possible disturbances wl ∈Wl,∀l ∈ N[ki, j−1]. Then, the proof directly follows from
Proposition 2.1 and the objective function of P1

[ki,N](xki ). �

The geometric interpretation of the optimization problem P1
[ki,N](xki ), as shown in

Figure 5.1, is to seek a fixed control input u such that starting from time ki, the time
length, during which the state constraints and the control input constraints are satisfied
for all possible disturbances, is maximized.

We denote by u∗ the optimal solution to the optimization problem P1
[ki,N](xki ). The

following Algorithm 5.1 presents the robust self-triggered control for the uncertain
constrained system (5.1).
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Algorithm 5.1 Robust self-triggered control

Offline:
Determine a sequence of backward reachable sets {(X∗j , j), j ∈ N[0,N]} by (5.2).
Online:

1: Initialize i = 0. If x0 ∈ X
∗
0, continue. Else, stop.

2: Sample the state xki , solve P1
[ki,N](xki ) to obtain u∗ and Mi.

3: Set ki+1 = ki + Mi. Implement u j = u∗, ∀ j ∈ N[ki,ki+1−1] to system (5.1) for some
realizations w j ∈W j, j ∈ N[ki,ki+1−1].

4: Set i = i + 1.
5: If ki < N, go to step 2. Else, stop.

Control with minimum number of samplings

This subsection will provide a control method with minimum number of samplings,
denoted by T ∗ + 1, over a given finite horizon for the system (5.1). Without loss of
generality, we assume that N ≥ 2.

Proposition 5.2. The minimum number of samplings T ∗ + 1 is obtained by solving the
following optimization problem, denoted by P2

[0,N](x0),

min
u0,∆ j

N−2∑
j=0

(1 − 1{0}(∆ j)) (5.5a)

subject to

∀ j ∈ N[0,N−1] : x j+1 = f j(x j, u j), (5.5b)

∀ j ∈ N[0,N−1] : u j =

u0, j = 0
u j−1 + ∆ j−1, j ≥ 1,

(5.5c)

∀ j ∈ N[1,N] : x j ∈ X
∗
j , (5.5d)

∀ j ∈ N[0,N−1] : u j ∈ U j. (5.5e)

That is, T ∗ =
∑N−2

j=0 (1−1{0}(∆∗j)), where ∆∗j corresponds to the optimal solution ofP2
[0,N](x0).

Proof. In (5.5c), ∆ j−1 denotes the difference between u j and u j−1. The objective function
of P2

[0,N](x0) aims at maximizing the number of zero (i.e., ∆ j = 0) over the time interval
N[0,N−1]. Thus, the optimal solution generates a sequence of piecewise constant control
inputs with minimum number of switching times. �

Note that Algorithm 5.1 is applicable for deterministic systems. In this case, the
difference is that Algorithm 5.1 cannot guarantee the achievement of minimum number
of samplings for deterministic systems.

Remark 5.3. For uncertain constrained systems, it is difficult to design the control with
minimum number of samplings since at each sampling instant ki, the exact executions of
the future disturbance w j, ∀ j ∈ N[ki,N−1], are unknown.
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5.4 Self-triggered Control for Linear Systems with Polyhedral
Constraints

The development of geometry software allows us to compute the sets X∗k exactly and
efficiently if the system is linear and the constraint sets are polyhedral [96]. This section
will specialize the systems (5.1) to be linear and the constraint sets to be polyhedral. We
can reformulate the optimization problems P1

[ki,N](xki ) and P2
[0,N](x0) to be computationally

tractable MILP problems.
If the model fk is linear, the system (5.1) becomes

xk+1 = Ak xk + Bkuk + wk. (5.6)

Here Ak and Bk are deterministic real matrices with appropriate dimensions at each time
k ∈ N[0,N−1]. The control input sets Uk, k ∈ N[0,N−1], are compact polyhedra. Each set Xk

of the target tube {(Xk, k), k ∈ N[1,N]} is a compact polyhedron. The disturbance sets Wk,
k ∈ N[0,N−1], are compact polyhedra.

Now, the computation of the setsX∗k in (5.2) is given as follows. Note that the following
equations involve only set operations and the corresponding sets can be well-defined even
if the matrix Ak is not invertible. Hence, we do not impose any assumption on Ak.

Lemma 5.1. [69] For the uncertain linear system (5.6) with polyhedral constraints, the
set X∗k in (5.2) evolves as

Qk = X∗k 	Wk, (5.7a)
Pk = A−1

k (Qk+1 ⊕ (−BkUk)), (5.7b)
X∗k = Pk ∩ Xk, X

∗
N = XN . (5.7c)

Remark 5.4. Since the sets Xk, k ∈ N[0,N], are compact, the sets X∗k, k ∈ N[0,N], are also
compact even when the matrices Ak are not invertible.

The polyhedral sets Uk and X∗k are written as

Uk = {z ∈ Rnu | Ekz ≤ ek}, (5.8)
X∗k = {z ∈ Rnx | Fkz ≤ fk}, (5.9)

where Ek and Fk are matrices with appropriate dimensions, and ek and fk are vectors with
appropriate dimensions.

Robust self-triggered control

Before providing the main result, we need some preliminary lemmas.

Lemma 5.2. The set X̃[ki, j], j ∈ N[ki,N], in (5.4c) can be written as

X̃[ki, j] = (G[ki, j]xk + H[ki, j]u) ⊕ Z[ki, j], (5.10)

where G[ki, j] =
∏ j−1

l=ki
Al, H[ki, j] =

∑ j−1
m=ki

∏ j−1
l=m+1 AlBm, Z[ki, j] =

⊕ j−1
m=ki

∏ j−1
l=m+1 AlWm.

Furthermore, the set Z[ki, j] is a closed polyhedron.
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Proof. When j = ki, (5.10) implies that X̃[ki,ki] = {xki }. According to the definition of X̃[ki, j],
j ∈ N[ki+1,N], in (5.4c), by induction, it follows

X̃[ki, j+1] = A jX̃[ki, j] ⊕ B ju ⊕W j

= A j(G[ki, j]xki + H[ki, j]u) ⊕ Z[ki, j]) ⊕ B ju ⊕W j

= (A j

j−1∏
l=ki

Alxki + (A j

j−1∑
m=ki

j−1∏
l=m+1

AlBm + B j)u) ⊕ (A j

j−1⊕
m=ki

j−1∏
l=m+1

AlWm ⊕W j)

= (
j∏

l=ki

Alxki +

j∑
m=ki

j∏
l=m+1

AlBm) ⊕ (
j⊕

m=ki

j∏
l=m+1

AlWm)

= (G[ki, j+1]xki + H[ki, j+1]u) ⊕ Z[ki, j+1].

Since the setsWm are compact polyhedra, we have that the sets Z[ki, j] are closed polyhedra.
�

Lemma 5.3. [2] Given two polyhedra P = {z ∈ Rn | Pz ≤ p} and Q = {z ∈ Rn | Qz ≤ q},
P ⊆ Q holds if and only if there exists a non-negative matrix S such that

S P = Q, (5.11)
S p ≤ q. (5.12)

Assume now that Z[ki, j] = {z ∈ Rn | V[ki, j]z ≤ v[ki, j]}, j ∈ N[ki+1,N], where the matrix
V[ki, j] and vector v[ki, j] can be computed offline according to Z[ki, j] =

⊕ j−1
m=ki

∏ j−1
l=m+1 AlWm.

By Lemma 5.3, we derive the following result.

Lemma 5.4. For the sets X̃[ki, j] and X∗j , X̃[ki, j] ⊆ X
∗
j holds if and only if there exists a

non-negative matrix S [ki, j] such that

S [ki, j]V[ki, j] = F j, (5.13)
S [ki, j](v[ki, j] + V[ki, j](G[ki, j]xki + H[ki, j]u)) ≤ f j. (5.14)

Proof. This directly follows from Lemma 5.2 and Lemma 5.3. �

Since u is the decision variable, the constraints (5.14) are nonlinear. To remedy this, we
can calculate the nonnegative matrices S [ki, j] offline to satisfy (5.13) by solving an LP [97]:

(S [ki, j])l = argmin
aT
{1T a | aT V[ki, j] = (F j)l, a ≥ 0}, (5.15)

where a is a vector with appropriate dimension and (S )l denotes the lth row of the matrix
S .

Remark 5.5. The LP in (5.15) admits a nonnegative matrix solution with minimum infinity
norm, which could lead to a larger feasible region for the optimization problem P1

[ki,N](xki )
than other nonnegative solutions to (5.13).



70 Robust Self-triggered Control via Reachability Analysis

The next theorem shows that the robust self-triggered control for the system (5.6) with
polyhedral constraints can be designed by solving a tractable MILP.

Theorem 5.1. For the uncertain linear system (5.6) with polyhedral constraints, the
optimization problem P1

[ki,N](xki ) can be reformulated as an MILP, denoted by P3
[ki,N](xki ),

max
u,δ j

N∑
j=ki+1

(1 − δ j) (5.16a)

subject to

∀ j ∈ N[ki+1,N] :
S [ki, j](G̃[ki, j]xki + H̃[ki, j]u) ≤ f̃[ki, j] + δ jΓ1, (5.16b)

∀ j ∈ N[ki,N−1] : E ju ≤ e j + δ jΓ1, (5.16c)
∀ j ∈ N[ki+1,N−1] : δ j ≤ δ j+1, (5.16d)
∀ j ∈ N[ki+1,N] : δ j ∈ {0, 1}, (5.16e)

where G̃[ki, j] = V[ki, j]G[ki, j], H̃[ki, j] = V[ki, j]H[ki, j], f̃[ki, j] = f j − S [ki, j]v[ki, j], and Γ is a positive
constant satisfying

Γ > max{ max
j∈N[ki ,N−1]

‖U j‖∞, max
j∈N[ki+1,N]

max
u∈U j
‖S [ki, j](G̃[ki, j]xki + H̃[ki, j]u) − f̃[ki, j]‖∞}. (5.17)

Proof. Recall that ∀ j ∈ N[ki+1,N],

r j =

1X∗ki+1
(X̃[ki,ki+1])1Uki

(u), j = ki + 1,

r j−11X∗j (X̃[ki, j])1U j−1 (u), j > ki + 1.

Let us introduce a sequence of 0-1 variables δ j, j ∈ N[ki+1,N]. Obviously, it follows from
r j = 1 − δ j that 

∀l ∈ N[ki+1, j] :
S [ki,l](G̃[ki,l]xki + H̃[ki,l]u) ≤ f̃[ki,l] + δlΓ1,

∀l ∈ N[ki, j−1] : Elu ≤ el + δlΓ1,

where Γ is a positive number satisfying (5.17). Furthermore, ∀ j ∈ N[ki+1,N−1], r j ≥ r j+1 can
be rewritten as δ j ≤ δ j+1. Then, we get the optimization problem P2

[ki,N](xki ). �

Remark 5.6. Let us discuss the complexity of the MILP (5.16). The only continuous
decision variable is u with dimension nu and the number of binary variables δ j is linear
in the horizon N. The number of constraints at each time instant is determined by the
reachable sets. Considering the special constraint (5.16d) on δ j, it is easy to construct an
enumeration tree and recursively solve a linear program until the problem is infeasible.
Hence, we conclude that the problem (5.16) can be solved in polynomial time. Note that
several software tools have been developed to solve large MILPs in the past few years,
e.g., [82], allowing us to solve our problem online efficiently.
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Remark 5.7. Following similar operations as for the linear case, the previous optimization
problem P1

[ki,N](xki ) can be reformulated as an integer program with a constraint like
(5.16d). The resulting integer program can be iteratively cast as a classic constrained
robust nonlinear control problem.

Remark 5.8. In general, Γ can be arbitrarily chosen to be sufficiently a large positive
constant. The lower bound on Γ defined in (5.17) aims to quantify how large Γ should be,
which can be calculated by solving a linear program (LP) since the sets U j are compact
polyhedra and the norm is `∞−norm.

Control with minimum number of samplings

When the disturbance setWk = {0}, ∀k ∈ N0,N−1, we can also reformulate the optimization
problem P2

[0,N](x0) as a tractable MILP.

Theorem 5.2. For the deterministic linear system (5.6) with polyhedral constraints, the
optimization problem P2

[0,N](x0) can be reformulated as an MILP, denoted by P4
[0,N](x0),

max
u0,∆ j,δ j,c j

J[0,N](x0) =

N−2∑
j=0

(1 − δ j) (5.18a)

subject to

∀ j ∈ N[0,N−1] : x j+1 = A jx j + B ju j, (5.18b)

∀ j ∈ N[0,N−1] : u j =

u0, j = 0
u j−1 + ∆ j−1, j ≥ 1,

(5.18c)

∀ j ∈ N[1,N] : F jx j ≤ f j, (5.18d)
∀ j ∈ N[0,N−1] : E ju j ≤ e j, (5.18e)

∀ j ∈ N[0,N−2] :


∆ j ≤ Γδ j1,
∆ j ≥ −γδ j1,
∆ j ≤ c j + γ(1 − δ j)1,
∆ j ≥ c j − Γ(1 − δ j)1,

(5.18f)

∀ j ∈ N[0,N−2] : −γ1 ≤ c j ≤ Γ1, (5.18g)
∀ j ∈ N[0,N−2] : δ j ∈ {0, 1}, (5.18h)

where γ and Γ are two large positive constants satisfying

γ,Γ > max
j∈N[0,N−2]

max
u∈U j,v∈U j+1

‖u − v‖∞. (5.19)

Proof. By introducing new variables c j ∈ R
nu and 0-1 variables δ j, j ∈ N[k+2,N], we define

∆ j = δ jc j, i.e., ∆ j = 0 if δ j = 0 and ∆ j = c j if δ j = 1. And it follows that

∀ j ∈ N[k+1,N] : ∆ j = δ jc j (5.20)



72 Robust Self-triggered Control via Reachability Analysis

⇔



∆ j ≤ δ jΓ1,
∆ j ≥ δ jγ1,
∆ j ≤ c j + (1 − δ j)γ1,
∆ j ≥ c j − (1 − δ j)Γ1,
−γ1 ≤ c j ≤ Γ1,

(5.21)

where Γ and γ are two positive numbers satisfying (5.19). Then, we get the optimization
problem P4

[0,N](x0). �

Remark 5.9. The statements in Remark 5.8 also apply with γ and Γ in (5.19). In addition,
the optimization problem P4

[0,N](x0) is equivalent to P2
[0,N](x0), while the optimal solution

to P3
[ki,N](xki ) is a suboptimal solution to P1

[ki,N](xki ).

5.5 Examples

This section provides two examples to illustrate the effectiveness of our proposed
algorithms. The following numerical experiments were run in Matlab R2016a with MPT
toolbox [96] on a Dell laptop with Window 7, Intel i7-6600U CPU 2.80GHz and 16.0 GB
RAM.

Example 1

Compare the proposed robust self-triggered algorithm with the robust self-triggered MPC
in [50]. Consider a same linear time-invariant system in [50], where

A =

 1 1
0 1

 , B =

 0.5
0

 .
The constraint sets are X = {z ∈ R2 |

 −20
−8

 ≤ z ≤

 20
8

},U = {z ∈ R | −5 ≤ z ≤

5},W = {z ∈ R2 |

 −0.25
−0.25

 ≤ z ≤

 0.25
0.25

}. The initial state is [10 6]T .

Let Q =

 1 0
0 1

 and R = 0.1 be the weight matrix in the objective function.

By solving the discrete-time algebraic Riccati equation, we obtain the matrix P = 2.0599 0.5916
0.5916 1.4228

 and the corresponding optimal feedback gain K = [−0.6167 − 1.2703].

The control objective is to steer the state to the robust invariant set, denoted by Ω (the red
region in Figure 5.2), which is computed by the method in [51]. The implementation will
stop if the state enters the robust invariant set.
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(a)

(b)

Figure 5.2: State trajectories under Algorithm 5.1 and robust self-triggered MPC [50] for
100 realizations of the uncertainty sequence.
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(a) Algorithm 5.1

(b) Robust self-triggered MPC

Figure 5.3: State and control trajectories under Algorithm 5.1 and robust self-triggered
MPC [50] for 1 realization of the uncertainty sequence. The algorithms terminate when the
state enters the robust invariant set (the red region).
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Figure 5.4: Scenario

For the robust self-triggered control in this paper, the terminal set of the target tube is
Ω. For the robust self-triggered MPC in [50], we choose the maximal inter-sampling time
Mmax = 4. Figure 5.2 depicts the state trajectories under our algorithm and robust self-
triggered MPC for 100 realizations of the uncertainty sequence. And Figure 5.3 shows the
state and control trajectories for 1 realization of the uncertainty sequence. We highlight the
sampling instants by blue solid circles. We compare the two different methods for several
indexes, of which the average is taken over 500 realizations.

• Average inter-sampling time: The average inter-sampling time is M̄ = 1.2045 under
the robust self-triggered MPC of [50] while it is M̄ = 1.3333 under the self-triggered
scheme of this paper. Thus, our control scheme achieves an average communication
reduction by 9.66% more than that of the self-triggered MPC.

• Average online computation time: The average online computation time at each
sampling instant is 0.5758s for the robust self-triggered MPC while it is 0.1964s
for our control method despite the presence of integer variables.

• Average performance: The performance measure is defined by J =
∑Trun

k=0 (‖xk‖
2
Q +

‖uk‖
2
R) where Trun is the time when the state enters the robust invariant set. The

robust self-triggered MPC achieves a slightly better average performance than our
scheme. The performance measure is 591.9191 for MPC while it is 621.4552 for our
scheme.
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(a)

(b)

(c)

Figure 5.5: State trajectories under Algorithm 5.1.
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Figure 5.6: Example 2: control input trajectories under Algorithm 5.1

Example 2

Consider a mobile robot with dynamics (5.6), where

Ak =

 1 0
0 1

 , Bk =

 0.1 0
0 0.1

 , k ∈ N.
The input constraint set is Uk = {z ∈ R2 |

 −0.6
−0.6

 ≤ z ≤

 0.6
0.6

}, k ∈ N. The robot

moves in a closed workspace, as shown in Figure 5.4, in which there are some obstacles
(the black rectangles). The robot should achieve collision avoidance with the obstacles and
the boundaries of the workspace. We set the safe distance as 0.1. In addition, the robot can
exchange the information (the position and the control input) with the control center via a
bandwidth-limited communication network. At each time, the robot can only receive one
control input from the control center. The initial position is [0.15 2]T . The target set 1 is

{z ∈ R2 |

 2.7
2.4

 ≤ z ≤

 2.8
2.5

} and the target set 2 is {z ∈ R2 |

 0.4
0.4

 ≤ z ≤

 0.5
0.5

}. A

sequence of temporal constrained tasks for the mobile robot are
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(a)

(b)

(c)

Figure 5.7: State trajectories by using control with minimum number of samplings.
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Figure 5.8: Example 2: control input trajectories by using control with minimum number
of samplings.

• stage 1: the robot should arrive at the target set 1 before k = 60;

• stage 2: the robot should stay in target set 1 for at least 10 time steps after arrival.

• stage 3: the robot should arrive at the target set 2 before k = 140.

To save the communication recourses, our self-triggered control strategies are imple-
mented. We choose the convex inner approximations of the backward reachable sets (which
are the intersection between the predecessor sets and the safe regions). As mentioned
in Remark 5.1, these approximations still respect the feasibility and the constraint
satisfactions.

In the first case, assume that the disturbance set is Wk = {z ∈ R2 |

 −0.01
−0.01

 ≤ z ≤ 0.01
0.01

}. Subfigures (a)-(b) of Figure 5.5 depict the state trajectories for stage 1 and 3

under Algorithm 5.1. The yellow and lightgreen regions are the sets X∗k. The control input
trajectory is shown in subfigure (c) of Figure 5.5 with the times of control update being 13.
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In the second case, assume thatWk =

 0
0

 , ∀k ∈ N. Subfigures (a)-(b) of Figure 5.7

depict the state trajectories for stage 1 and 3 by using the control with minimum number
of samplings. The yellow and lightgreen regions are the convex approximations of the sets
X∗k. The control input trajectory is shown in subfigure (c) of Figure 5.7 with the times of
control update being 6.

5.6 Conclusion

In this chapter, we proposed a robust self-triggered control algorithm for time-varying un-
certain systems with constraints. By using reachability analysis, the constraint satisfactions
and recursive feasibility were guaranteed. The proposed algorithm provided us a geometric
interpretation for self-triggered control. The problem of control with minimum number
of samplings was investigated for deterministic constrained systems. For linear systems
with polyhedral constraints, the proposed methods were reformulated as computationally
tractable MILP problems. In simulations, the results were compared with robust self-
triggered MPC and applied to the robot motion planning.



Chapter 6

Conclusions and Future Research

In this chapter, we summarize the main results of this thesis and outline possible directions
for future research.

6.1 Conclusions

This thesis studied stochastic invariance and aperiodic control for uncertain constrained
systems. More precisely, we designed the algorithms to compute the PCIS within a given
set for control systems, integrated self-triggered control and stochastic MPC for linear
system with stochastic disturbances, and proposed a robust self-triggered control scheme
for time-varying and uncertain constrained systems.

In Chapter 3, we extended controlled invariant set to stochastic systems. We proposed
two definitions: finite- and infinite-horizon PCISs, and explored their relation to RCISs.
We designed iterative algorithms to compute the PCIS within a given set by taking into
account the issues of computation tractability and iteration convergence. For systems
with discrete state and control spaces, the computations of the finite- and infinite-horizon
PCISs at each iteration are based on linear programming and mixed integer linear
programming, respectively. The algorithms are computationally tractable and terminate
in a finite number of steps. For systems with continuous state and control spaces, we
provided the discretizition procedure and proved the convergence of the approximation
when computing the finite-horizon PCISs. In addition, it was shown that the infinite-
horizon PCIS can be alternatively computed by the stochastic backward reachable set from
the robust control invariant set contained in it.

In Chapter 4, we proposed a stochastic self-triggered MPC algorithm for linear systems
subject to exogenous disturbances and probabilistic constraints. At each sampling instant,
an optimization problem is solved to jointly determine both the next sampling instant and
the control inputs to be applied between the two sampling instants. Although the self-
triggered implementation achieves communication reduction, the control commands are
necessarily applied in open-loop until the next sampling instant. To guarantee probabilistic
constraint satisfaction, we derived a necessary and sufficient condition on the nominal
systems by using the information on the distribution of the disturbances explicitly.

81
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Moreover, based on a tailored terminal set, we transformed a multi-step open-loop
MPC optimization problem with infinite prediction horizon into a tractable quadratic
programming problem. It was further shown that the recursive feasibility and closed-loop
stability are guaranteed.

In Chapter 5, we developed a robust self-triggered control algorithm for time-varying
and uncertain systems with constraints. The algorithm is based on geometric necessary
and sufficient conditions for reachability. The resulting piecewise constant control inputs
achieve communication reduction and guarantee the constraint satisfactions. Particularly,
when the system is deterministic, we proposed a control design with minimum number
of samplings over a finite time horizon. Furthermore, when the plant is linear and the
constraints are polyhedral, the proposed algorithms can be reformulated as computationally
tractable mixed integer linear programming problems.

6.2 Future Research Directions

There are several interesting research directions based on the work of this thesis.

• First, an interesting problem to investigate further is how to incorporate PCISs into
stochastic MPC as terminal sets and how to quantify the resulting conservatism
reduction compared with existing stochastic MPC. When applying PCISs, one
underlying challenge is the guarantee of the conventional recursive feasibility in
MPC.

• A second problem for future study is how to serve as the safety measure for uncertain
safety-critical systems through PCISs. For example, let us consider a human-robot
interaction system. A robust control design by considering all possible human
behaviors may lead to a conservative or even empty workspace for robot. It would
be interesting to use PCISs to trade off the safe level for human and the flexibility
for robot.

• Another problem of interest is how to design reachability-based self-triggered
controller for continuous-time uncertain constrained systems. As shown in this
thesis, reachability analysis is a good tool to guarantee the recursive feasibility and
the constraint satisfaction. Different from the discrete-time case, one challenge is the
exclusion of the Zeno behaviour.
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[9] J. Široký, F. Oldewurtel, J. Cigler, S. Prı́vara, “Experimental analysis of model
predictive control for an energy efficient building heating system,” Applied Energy,
vol. 88, no. 9, pp. 3079-3087, 2011.

[10] D. Bertsekas, “Infinite-time reachability of state-space regions by using feedback
control,” IEEE Transactions on Automatic Control, vol. 17, no. 5, pp. 604-613, 1972.
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[28] M. E. Chamie, Y. Yu, B. Açıkmeşe, “Convex synthesis of randomized policies
for controlled markov chains with density safety upper bound constraints,” In
Proceedings of American Control Conference, 2016, pp. 6290-6295.

[29] N. Demirer, M. E. Chamie, B. Açıkmeşe, “Safe markov chains for on/off density
control with observed transitions,” IEEE Transactions on Automatic Control, vol. 63,
no. 5, pp. 1442-1449, 2018.

[30] A. Arapostathis, V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh, S. I. Marcus,
“Discrete-time controlled Markov processes with average cost criterion: a survey,”
SIAM Journal on Control and Optimization, vol. 31, no. 2, pp. 282-344, 1993.

[31] S. Battilotti, A. De Santis, “Stabilization in probability of nonlinear stochastic
systems with guaranteed region of attraction and target set,” IEEE Transactions on
Automatic Control, vol. 48, no. 9, pp. 1585-1599, 2003.

[32] G. Pola, J. Lygeros, M. D. Di Benedetto, “Invariance in stochastic dynamical control
systems,” In Proceedings of the 17th International symposium on Mathematical
Theory of Network and Systems, 2006.

[33] G. Pola, G. Pola, “A stochastic reachability approach to portfolio construction in
finance industry,” IEEE Transactions on Control Systems Technology, vol. 20, no.
1, pp. 189-195, 2012.

[34] M. Cannon, B. Kouvaritakis, X. Wu, “Probabilistic constrained MPC for
multiplicative and additive stochastic uncertainty,” IEEE Transactions on Automatic
Control, vol. 54, no. 7, pp. 1626-1632, 2009.

[35] N.A. Nguyen, “Stochastic output feedback control: convex lifting approach,”
Automatica, vol. 89, pp. 212-220, 2018.
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[49] M. Kögel, R. Findeisen, “On self-triggered reduced-attention control for constrained
systems,” in Proceedings of IEEE Conference on Decision and Control, 2014, pp.
2795-2801.

[50] F. D. Brunner, W. P. M. H. Heemels, F. Allgöwer, “Robust self-triggered MPC for
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