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iii

‘Indulge your passion for knowledge,’ says nature, ‘but seek
knowledge of things that are human and directly relevant to
action and society. As for abstruse thought and profound
researches, I prohibit them, and if you engage in them I will
severely punish you by the brooding melancholy they bring,
by the endless uncertainty in which they involve you, and by
the cold reception your announced discoveries will meet with
when you publish them. Be a philosopher, but amidst all your
philosophy be still a man.’

David Hume, An Enquiry Concerning
Human Understanding, 1748.
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Abstract

Designing local controllers for networked systems is challenging, because
in these systems each local controller can often access only part of the over-
all information on system parameters and sensor measurements. Traditional
control design cannot be easily applied due to the unconventional informa-
tion patterns, communication network imperfections, and design procedure
complexities. How to control large-scale systems is of immediate societal im-
portance as they appear in many emerging applications, such as intelligent
transportation systems, smart grids, and energy-efficient buildings. In this
thesis, we make three contributions to the problem of designing networked
controller under information asymmetries and limitations.

In the first contribution, we investigate how to design local controllers to
optimize a cost function using only partial knowledge of the model governing
the system. Specifically, we derive some fundamental limitations in the closed-
loop performance when the design of each controller only relies on local plant
model information. Results are characterized in the structure of the networked
system as well as in the available model information. Both deterministic and
stochastic formulations are considered for the closed-loop performance and
the available information. In the second contribution of the thesis, we study
decision making in transportation systems using heterogeneous routing and
congestion games. It is shown that a desirable global behavior can emerge
from simple local strategies used by the drivers to choose departure times and
routes. Finally, the third contribution is a novel stochastic sensor scheduling
policy for ad-hoc networked systems, where a varying number of control loops
are active at any given time. It is shown that the policy provides stochastic
guarantees for the network resources dynamically allocated to each loop.
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CHAPTER 1

Introduction

“Thoughts without content are void; intuitions without conceptions,
blind.”

Immanuel Kant, The Critique of Pure Reason1, 1781.

Recent developments in control engineering, embedded computing, and com-
munication networks have enabled many complex systems, such as aircraft

and satellite formations [1, 2], intelligent transportation infrastructures [3, 4], and
flexible structures [5, 6]. A common feature of these large-scale control systems
is that they are composed of several subsystems coupled through their dynamics,
decision-making process, or performance objectives. When regulating these sys-
tems, it is often necessary to adopt a distributed architecture, in which the decision
maker (e.g., controller, network manager, social planner) is composed of several
interconnected units. Each local decision maker can only access a subset of the
global information (e.g., sensor measurements, model parameters) and actuate on
a subset of the inputs, perhaps in its vicinity. This distributed architecture is
typically imposed because otherwise the central decision maker with full access to
information might become very complex and not possible to implement, or because
different subsystems may belong to competing entities that wish to retain a level
of autonomy. Therefore, in this thesis, we try to mathematically formulate the ef-
fects of such information asymmetry and limitation in some control and estimation
problems for complex networked systems.

The thesis consists of three parts. In the first part, we focus on decentralized
control design under limited plant model information. We remove a common, but
often implicit, assumption in the control literature, namely, that control design is
performed in a centralized fashion with full knowledge of the plant model (even if

1Kritik der reinen Vernunft, translated by John M. D. Meiklejohn, 2011.
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4 CHAPTER 1. INTRODUCTION

the controller is decentralized and has access only to a subset of the state). For these
problems, we are interested in understanding how to optimize a social cost function
using only partial knowledge of the model governing the system (in addition to the
partial knowledge of the system state measurements). In the second part, we study
decision making in road traffic using heterogeneous routing and congestion games.
Specifically, we model the drivers’ decision-making process for selecting departure
time and route. Also in this case, the decision makers do not have access to the full
information (e.g., the preferences of other players) when making their decisions. A
desirable global behavior still can be achieved under certain conditions. Finally, in
the third part, we propose a stochastic scheduling policy with the ability to balance
the sensor sampling and transmission rates in ad-hoc networked control systems.

In the following chapters, we present motivating applications, review the exist-
ing literature, and discuss the contributions of the appended papers. Specifically, in
the remainder of this chapter, we discuss the challenges that we face when control-
ling large-scale systems under asymmetric information regimes. In Section 1.1, we
discuss power networks and transportation systems as two motivating applications.
In Section 1.2, we present the main questions that we address in this thesis. In
Section 1.3, we mathematically formulate several illustrating examples, which we
use in Chapter 3 as well as in the attached papers, to demonstrate the developed
results. Finally, in Section 1.4, we outline the thesis.

1.1 Motivating Applications

We start by presenting two motivating applications to illustrate the challenges we
face in optimal control and estimation of shared infrastructures in power networks
and transportation systems.

1.1.1 Power Networks
Consider the Baltic sea region electricity transmission grid portrayed in Figure 1.1.
Most of the power is generated in a few large power generators and transmitted
through the network to the consumers. The power network consists of tens-of-
thousands of components (generators, transmission lines, converters, etc) connected
together. These components have local interactions with each other through the
grid and through a supporting communication network, which results in a struc-
tured networked control system.

For a power transmission grid, one of the design goals is to optimally regulate
voltage, active and reactive power, and frequency in the face of variable demand,
stochastic generation (mainly due to renewable energy sources), and faults. Sensors
(e.g., phasor measurement units) measure voltages, phase angles, and frequencies
among other variables and transmit these measurements over a communication net-
work to the control stations. Due to the complexity of the grid (and because of the
communication limitations), all sensor information is not used in every controller in
the system. Therefore, the local controllers do not use full state measurements, but
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Figure 1.1: Electricity transmission grid in the Baltic sea region. Picture provided
courtesy of Nordregio http://www.nordregio.se/, Designer: P.G. Lindblom.



6 CHAPTER 1. INTRODUCTION

only a subset of the overall state. This constraint brings challenges in the design
of stabilizing and optimal controllers.

Let us consider the overall problem of controlling power networks in a bit more
detail. Power networks are highly complex time-varying dynamical systems, which
are hard to model in detail for several reasons. First, these systems are social-
technical systems meaning that they are composed of a technical layer (electrical
and mechanical components and their interconnections) and a social layer working
together [7]. The social layer consists of the end users, who put physical constraints
on the technical layer, and the human operators, who change the structure of the
technical layer and manage the production levels to control the power flow. At
the control design, the behavior of the social layer is partially unknown (although
to some extent predictable by the historical data and the regulations). Second,
several companies produce varying levels of power based on the prices and the pub-
lic demand. As a consequence, a varying set of generators (thermal, wind, hydro,
etc) at each time instant provide the power needed across the network. These
companies might be unwilling to share their information about their own produc-
tion capacities and local network as it might compromise the company’s financial
benefits by giving tactical advantages to other companies in the energy generation
market. Third, power networks consist of many nonlinear components, although
it is common to design linear controllers with acceptable closed-loop performance
based on linearized models. These controllers are functions of the linearized model
and, in turn, functions of their operating points. Finally, safety constraints must
be satisfied at all time instances to protect the electrical equipments and end users
from harm due to faulty conditions or other hazardous situations. Therefore, safety
switches automatically connect or disconnect electrical components or transmission
lines (to meet these safety requirements). The switches change the topology of the
network and the transmission lines impedances.

Due to the complexities mentioned above and because power networks are imple-
mented over a vast geographical area (even across multiple countries), it is difficult,
if not impossible, to gather all the model information (e.g., entire network topology,
line impedances, and operating conditions) at one place. Even if one could gather
all the information, the controller based on that information necessarily needs to
be very complex. This motivates our interest in designing local controllers based
on only local model information.

1.1.2 Transportation Systems

Consider the Swedish road network in Figure 1.2. According to Statistics Sweden2,
in December 31, 2006, there were 4 202 463 passenger cars registered in Sweden,
which is 461 vehicles per 1000 inhabitants [9]. In addition, there were 479 794

2Statistics Sweden is an administrative agency aimed at supplying customers with statistics
for decision making and research. For more information, visit their webpage http://www.scb.se/.
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Figure 5: Element importance, 12 hour closure duration. Left: Single links. Right: 12.5 ×

12.5 km2 cells. The percentages indicate the share of elements in each category.

bound trips will dominate over through trips, and the importance of a cell will
mainly be determined by the travel demand generated within the cell itself. In other
words, the impacts will be largest where the most people are localized. Therefore,
as noted in Paper V, location patterns rather than network structure or travel pat-
terns play the most significant role for the importance of large cells. As for single
links, the longer the closure duration, the larger influence unsatisfied demand has
relative to through trips that suffer delays.

Figure 5 shows the importance of every link in the Swedish road network model
to the left and every 12.5 × 12.5 km2 cell in the grids covering the study area
to the right, assuming a 12-hour closure in both cases. The left map shows that
many important links can be found around the two main urban areas Stockholm
and Gothenburg on the east and west coasts, respectively. These links are mainly
important because of the large number of travellers using them (since we do not

Figure 1.2: Road network in Sweden. Each road is color-coded according to its
importance (a measure which is closely related to the number of vehicles using it).
The figure is provided courtesy of Erik Jenelius; see [8] for more information.
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Figure 1.3: Heavy-duty vehicles can form platoons to reduce the air drag co-
efficient and thereby improve their fuel efficiency. Picture provided courtesy of
Scania http://www.scania.com/.

registered lorries3 and 13 363 buses [9]. The Swedish road network together with
mainly these millions of vehicles form a large complex dynamic system with severe
resource constraints and almost no centralized control.

Traffic congestion creates many problems, such as increased transportation de-
lays and fuel consumption, air pollution, and dampened economic growth in heav-
ily congested areas [10–12]. A recent study [12] shows that the transportation
has contributed to approximately 15% of the total man-made carbon-dioxide since
preindustrial era and suggests that it will be responsible for roughly 16% of the
carbon-emission over the next century. In addition to these environmental and eco-
nomical issues, there are also a high number of injuries and deaths associated with
the use of motor vehicles. Transport Analysis4 details that during 2012, a total of
16 458 road traffic accidents involving personal injury (including fatal, severe, and
slight injury) were reported by the Swedish police. They caused the death of 285
individuals [13].

To circumvent some of the problems with traffic congestion, the local govern-
ments in some urban areas introduced congestion taxes. For instance, Stockholm

3Petroleum tankers, trucks, vans, tractors, and other means of carrying goods (e.g., special
tankers for transporting dairy products, water, and chemicals).

4Transport Analysis is a government agency in Sweden with the aim of providing decision
makers with relevant policy advice and statistics in transportation. For more information, visit
their webpage http://www.trafa.se/en/.

http://www.trafa.se/en/
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implemented a congestion taxing system in August, 2007 after a seven-month trial
period in 2006. A survey of the influence of the congestion taxes over the trial
period can be found in [14], which shows significant improvements in travel times
as well as favorable economic and environmental effects. Behavioral aspects and
other influences of the Stockholm congestion taxing system is discussed in [15–18].

Intelligent transportation solutions, such as vehicle-to-vehicle communication,
dynamic toll administration, and commercial fleet management [10, 19], can be
employed for reducing the fuel consumption in conjunction with improving the road
safety. One way to improve the fuel efficiency is vehicle platooning (see Figure 1.3),
as vehicles experience a reduced air drag when they travel in platoons [20–24].
Heavy-duty vehicles can significantly improve their fuel efficiency by platooning.
In [20], the authors report 4.7%-7.7% reduction in the fuel consumption (depending
on the distance between the vehicles among other factors) when two identical trucks
platoon close together at 70 km/h. In addition to improving the fuel efficiency,
platooning is suggested to reduce the road fatalities by around 10% [25, 26].

The problem of coordinating heavy-duty vehicle platoons can be decomposed
into three main layers [27]. At the top layer, we have transport planning and route
optimization to determine the vehicle routes and their timing along the route. At
the middle layer, we have road planning and road segment optimization, which de-
cides for instance about the platoon velocity. At the lowest layer, we have platoon
coordination in which decisions are made on merging with other platoons, splitting
platoons, and changing the order of the vehicles in a platoon. This layer also han-
dles real-time inter-vehicle control and vehicle cruise control in which the vehicles
communicate state measurements and other information to regulate the distance
between vehicles. Optimizing these layers to achieve decreased fuel consumption
and increased safety is a challenging task. Let us discuss this challenge in some
detail for two specific platooning layers.

First, we focus on the transport planning and the route optimization. Consider
a future scenario when all heavy-duty vehicles are equipped with platooning equip-
ments. The number of vehicles that need to be coordinated is then enormous and,
typically, they are geographically scattered across large areas. Therefore, gathering
all the required information at one place is a time-consuming and complex task.
Even assuming that this information can be gathered in a single place, a global
decision-maker might become extremely complex to implement and execute. In
addition, heavy-duty vehicles often belong to competing entities. These entities
may wish not to share their private information with a central decision maker due
to privacy constraints enforced by their clients or because of the fact that the re-
leased information might give a competitive advantage to other companies. Hence,
it would be interesting to study if a desirable behavior, such as using the road at
the same time or choosing the same path among alternative routes, can emerge
from simple local strategies, such as appropriate monetary (e.g., taxing or subsidy)
policies.

Second, let us consider the real-time inter-vehicle control of the layered platoon
architecture. The control design might be constrained by that each vehicle should
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only rely on the parameters of its own vehicle due to several reasons. For instance,
it might be the case that the controller of each vehicle should be fixed. Arguably,
safety constraints might be a motive for this as time-varying controllers may result
in behaviors harder to predict. Furthermore, the local controller of each vehicle
cannot be designed based on the model information of all possible vehicles it may
cooperate with in future traffic scenarios. Finally, the vehicle parameters (e.g., its
mass) might not be available to other trucks because these vehicles may belong to
other competing entities. In this case, it is interesting to see if the fleet owners still
can guarantee a reasonable bound on the closed-loop performance of the platoon
in terms of reduced fuel consumption.

1.2 Challenges

As illustrated by the motivating applications, it is often the case that when regulat-
ing a large-scale system composed of several interconnected subsystems, one needs
to adopt a decentralized control architecture. In addition, when designing each lo-
cal controller, we may not have access to the full model information. For instance,
it might be desirable that each local controller is a function of only local parame-
ters, so that it does not need to be modified if the model parameters of a particular
system (that is not in its vicinity) change over time, or due to privacy constraints
or other reasons, as discussed previously. This way, we can ensure simple control
systems tuning and maintenance, if we are still able to guarantee good closed-loop
performance. Hence, it is important to consider decentralized control design under
limited model information. One question could be to study how far the best control
design with limited model information is from the optimal control design with full
model information in terms of the closed-loop performance. This can potentially
shed some light on inherent limitations caused by the lack global model information.
Another important question could be to study if it is possible to reduce the gap
between the best control design with limited model information and the one with
full model information through constructing more complex5 control laws. For in-
stance, when dealing with linear time-invariant systems, the optimal control design
strategy with full model information and full state feedback is static; however, this
observation may not extend when migrating to limited model information regime.
In that case, we need to characterize the “simplest” control design strategy that one
should construct to achieve a reasonable performance. We can also study whether
it is possible to capture the value of information; i.e., the level of improvement in
the closed-loop performance caused by moving from a given information regime to
a richer one. Using this notion of value of information, we can understand what
parts of the model information are more important when designing a local controller
and, hence, we must acquire even at a high cost. This is highly relevant because

5We measure complexity in control laws in the sense that nonlinear control laws are more
complex than their linear but dynamic counterparts which, in turn, are more complex than static
controllers.
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we typically have a finite budget (in terms of time, money, or computational re-
sources) in the control design procedure. In all the above mentioned problems, we
can consider two different approaches for handling the unknown parts of the model.
We can either consider the worst-case possible combination of the parameters or
use statistical data (where applicable and, more importantly, available) to remedy
the average behavior of the closed-loop system.

Another challenge that we consider in this thesis is strategic decision making
by drivers in transportation networks. In these systems, the drivers compete over
a common resource (i.e., the road network). The choice of route, departure time,
and speed of each driver affects some of the other drivers in the network. We model
the drivers’ decision making using game theory since they wish to optimize their
own costs rather than contributing the social welfare (e.g., the total time wasted
in traffic). In our model, we explicitly account for the heterogeneity of the drivers
and their vehicles. An interesting questions is to understand whether desirable
properties, such as the existence of an equilibrium in which no one can improve her
cost by unilaterally changing her decision, can be guaranteed. We can also study
how difficult it is to find such an equilibrium. For instance, we can investigate
the convergence properties of various decentralized learning dynamics. Another
interesting question could be to study if it is possible to encourage the drivers to
take socially responsible decisions through appropriate monetary (i.e., taxing or
subsidy) policies. Finally, we can also use these setups to better understand the
incentives of cooperative driving scenarios, such as heavy-duty vehicle platooning,
in transportation networks.

The third challenge we consider is optimal resource allocation for control and es-
timation of large-scale networked systems. When transmitting sensor measurements
in a networked system, such as the power grid, we need to assign time intervals in
which each sender transmits its measurement across the shared communication net-
work (e.g., wireless communication network, Internet) to its designated estimation
unit. Noting that there are potentially a huge number of sensors employed, we need
to efficiently coordinate these sensors to avoid packet collisions and dropouts while
maintaining an acceptable sampling rate. Furthermore, communication resources
in large networks almost always are varying over time due to the needs from the
individual users and physical communication constraints. In many practical net-
worked systems, a varying number of control loops may be active at any given
time. Therefore, a very interesting problem could be to design a scheduling policy
for ad-hoc networked systems so that it adapts itself to the number of active control
loops and their closed-loop performance requirements.

1.3 Illustrative Examples

In this section, we briefly introduce a few numerical examples to demonstrate the
main problems considered in the thesis. We revisit these examples in the subsequent
chapters and the attached papers to illustrate the developed results.
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1.3.1 Power Grid Regulation
Let us consider the power network composed of two generators shown in Figure 1.4
from [28, pp. 64–65], see also [29]. We can model this power network as

δ̇1(t) = ω1(t),

ω̇1(t) = 1
M1

[
(P1(t) + w1(t))− ξ−1

12 sin(δ1(t)− δ2(t))− ξ−1
1 sin(δ1(t))−D1ω1(t)

]
,

and

δ̇2(t) = ω2(t),

ω̇2(t) = 1
M2

[
(P2(t) + w2(t))− ξ−1

12 sin(δ2(t)− δ1(t))− ξ−1
2 sin(δ2(t))−D2ω2(t)

]
,

where δi(t), ωi(t), Pi(t), and wi(t) are the phase angle of the terminal voltage,
the rotation frequency, the input mechanical power, and the exogenous input of
generator i, respectively. We assume that P1(t) = P 0

1 + M1v1(t) and P2(t) =
P 0

2 +M2v2(t), where v1(t) and v2(t) are the continuous-time control inputs of this
system, and P 0

1 and P 0
2 are constant references. Now, we can find the equilibrium

point (δ∗1 , δ∗2) of the system and linearize it around this equilibrium. Furthermore,
let us discretize the linearized system by applying Euler’s constant step scheme
with sampling time ∆T , which results in

x(k + 1) = Ax(k) +Bu(k) +Hw(k),

where

x(k) =


∆δ1(k)
∆ω1(k)
∆δ2(k)
∆ω2(k)

, u(k) =
[
u1(k)
u2(k)

]
, w(k) =

[
w1(k)
w2(k)

]
,

A=


1 ∆T 0 0

−∆T (ξ−1
12 cos(δ∗1−δ

∗
2 )+ξ−1

1 cos(δ∗1 ))
M1

1−∆TD1
M1

∆T cos(δ∗1−δ
∗
2 )

ξ12M1
0

0 0 1 ∆T
∆T cos(δ∗2−δ

∗
1 )

ξ12M2
0 −∆T (ξ−1

12 cos(δ∗2−δ
∗
1 )+ξ−1

2 cos(δ∗2 ))
M2

1−∆TD2
M2

,
and

B=


0 0
1 0
0 0
0 1

, H=


0 0

1/M1 0
0 0
0 1/M2

.
Here, ∆δ1(k), ∆δ2(k), ∆ω1(k), and ∆ω2(k) denote the deviation of δ1(t), δ2(t),
ω1(t), and ω2(t) from their equilibrium points at time instances t = k∆T . Addi-
tionally, let the actuators be equipped with a zero order hold unit which corresponds



1.3. ILLUSTRATIVE EXAMPLES 13

G2G1

Infinite Bus

jξ12

jξ1 jξ2

1∠δ1 1∠δ2

1∠0

Figure 1.4: Schematic diagram of the power network.

to vi(t) = ui(k) for all k∆T ≤ t < (k + 1)∆T . Finally, we use the notation wi(k)
to capture the equivalent influence of wi(t) over k∆T ≤ t < (k + 1)∆T .

Alternatively, we can consider DC power generators such as solar farms and
batteries. Suppose these sources are connected to AC transmission lines through
DC/AC converters that are equipped with a droop-controller [30, 31]. Let us assume
that both power generators in Figure 1.4 are DC power generators equipped with
droop-controlled converters. We can then model this power network as

δ̇1(t) = 1
D1

[
(P1(t) + w1(t))− ξ−1

12 sin(δ1(t)− δ2(t))− ξ−1
1 sin(δ1(t))−D1ω1(t)

]
,

δ̇2(t) = 1
D2

[
(P2(t) + w2(t))− ξ−1

12 sin(δ2(t)− δ1(t))− ξ−1
2 sin(δ2(t))−D2ω2(t)

]
,

where δi(t), 1/Di > 0, and Pi(t) are respectively the phase angle of the terminal
voltage of converter i, its converter droop-slope, and its input power. Now, we
can find the equilibrium point of this nonlinear system and linearize it around this
equilibrium, which results in

x(k + 1) = Ax(k) +Bu(k) +Hw(k),

where

x(k) =
[

∆δ1(k)
∆δ2(k)

]
, u(k) =

[
u1(k)
u2(k)

]
, w(k) =

[
w1(k)
w2(k)

]
,

A =

 −∆T (ξ−1
12 cos(δ∗1−δ

∗
2 )+ξ−1

1 cos(δ∗1 ))
D1

∆T cos(δ∗1−δ
∗
2 )

ξ12D1

∆T cos(δ∗2−δ
∗
1 )

ξ12D2

−∆T (ξ−1
12 cos(δ∗2 +δ∗1 )−ξ−1

2 cos(δ∗2 ))
D2

,
and

B =
[

1 0
0 1

]
, H =

[
1/D1 0

0 1/D2

]
.
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We are interested in the optimal control of this power network. Whenever
we restrict our considerations to linear time-invariant controllers, the closed-loop
performance measure is given by

J = ‖Tyw(z)‖22,

where Tyw(z) denotes the closed-loop transfer function from the exogenous input
w(k) to output vector y(k) = [x(k)> u(k)>]> in which z is the symbol for the one
time-step forward shift operator. Through minimizing such a cost function, we
guarantee that the frequency of the generators stays close to its nominal value (e.g,
50 Hz in Sweden) without wasting too much energy. For the design of nonlinear
controllers, we consider the cost function

J = lim
T→∞

1
T

T−1∑
k=0

x(k)>x(k) + u(k)>u(k).

This cost function is equal to the H2-norm of the closed-loop transfer function for
linear time-invariant systems excited by exogenous inputs that are elements of a
sequence of independently and identically distributed Gaussian random variables
with zero mean and unit covariance.

Let us assume that the impedance of the lines that connect each generator to the
infinite bus in Figure 1.4 varies over time. We define αi, i = 1, 2, as the deviation
of the admittance ξ−1

i from its nominal value. Notice that αi only appears in
the model of subsystem i. When designing the control laws, we assume that the
information regarding the value of parameter αi is only available in the design of
the controller for subsystem i. One motivation for this can be that the generators
are physically far apart from each other.

1.3.2 Heating, Ventilation, and Air Conditioning Systems

Let us consider the problem of regulating the temperature in N rooms on the
2nd floor of the Electrical Engineering building at KTH (see Figure 1.5). Let us, for
the sake of simplicity, assume that each room can be heated by a single actuator.
The corridors and stairways are supposed to have the ambient temperature x̄a
which may be assumed to be constant. Let us denote the average temperature
of room i by x̄i. By applying Euler’s constant step discretization scheme to the
continuous-time model (both in time and space), we obtain the following difference
equation

x̄i(k + 1) =
∑
j 6=i

αij(x̄j(k)− x̄i(k)) + βi(x̄a − x̄i(k)) + ui(k), (1.1)

where βi and αij are constants representing the average heat loss rates of room i to
the ambient and to room j, respectively. The goal is to regulate the temperature
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Figure 1.5: The architecture plan of the 2nd floor of Electrical Engineering building
at KTH. Provided courtesy of Akademiska Hus http://www.akademiskahus.se/.

Figure 1.6: Regulating the distance between three trucks.

of each room at a prescribed value by minimizing the performance criterion

J =
∞∑
k=0

N∑
i=1

(x̄i(k)− ri)2 + (ui(k)− u∗i )2, (1.2)

where ri, for each i, is the reference temperature of room i, and u∗i , for each i, is
the steady-state control signal of room i.

The characteristics of each room (such as opening doors and windows, place of
furniture, etc) influence its model parameters {βi} ∪ {αij | j 6= i}. Sometimes it
could be desirable to let the controller of each room not depend on the parameters
of other rooms. Another interesting problem here could be to propose a scheduling
policy for the sensors in each room to communicate their measurements to the
neighboring rooms as well as to a central estimation unit. Certainly, this scheduling
policy should be able to adapt itself to the number of control loops that are active
at any given time because not all the rooms are occupied with people at all times.

1.3.3 Heavy-Duty Vehicle Platooning

Consider a physical example where three trucks are following each other closely in
a platoon (see Figure 1.6). Each truck can be modeled as a continuous-time linear
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system described by[
ẋi(t)
v̇i(t)

]
=
[

0 1
0 −%i/mi

] [
xi(t)
vi(t)

]
+
[

0
bi/mi

]
ui(t) +

[
wi1(t)
wi2(t)

]
,

where vi(t), xi(t), and ui(t) denote the velocity, the position, and the control input
(i.e., the acceleration) of truck i, respectively. In addition, wi1(t) and wi2(t) are
the exogenous inputs to truck i (i.e., the effect of wind, road quality, friction, etc).
Finally, %i is the viscous drag coefficient of vehicle i and bi is its power conversion
quality coefficient. These parameters are all scaled by the maximum allowable mass
of each vehicle. Let us define dij(t) as the distance between vehicles i and j (see
Figure 1.6). Now, we can model the whole platoon as

ẋ(t) = A(α)x(t) +B(α)u(t) + w(t),

where

x(t) =


v1(t)
d12(t)
v2(t)
d23(t)
v3(t)

, u(t) =

 u1(t)
u2(t)
u3(t)

, w(t) =


w12(t)

w11(t)− w21(t)
w22(t)

w21(t)− w31(t)
w32(t)

,
and

A(α)=


−%1/m1 0 0 0 0

1 0 −1 0 0
0 0 −%2/m2 0 0
0 0 1 0 −1
0 0 0 0 −%3/m3

, B(α)=


b1/m1 0 0

0 0 0
0 b2/m2 0
0 0 0
0 0 b3/m3

.

In this example, we assume α = [m1 m2 m3]> ∈ R3 is the vector of parameters
with mi denoting the mass of vehicle i (scaled by its maximum allowable mass).
We define the state of each subsystem as

x1(t) =
[
v1(t)
d12(t)

]
, x2(t) = v2(t), x3(t) =

[
d23(t)
v3(t)

]
.

For safety reasons, we want to ensure that the exogenous inputs do not significantly
influence the distances between the vehicles. However, we would like to guarantee
this fact using as little control action as possible. We capture this goal by minimiz-
ing the H∞-norm of the closed-loop transfer function from the exogenous inputs
w(t) to

z(t) =
[
d12(t) d23(t) u1(t) u2(t) u3(t)

]>
.

Therefore,
J = ‖Tzw(s)‖∞,
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Figure 1.7: The dashed black curve shows the segment of northbound E4 highway
between Lilla Essingen and Fredhällstunneln in Stockholm.

where Tzw(s) denotes the closed-loop transfer function from w(t) to z(t) in which s
is the symbol for the Laplace transform variable. For practical reasons, it could be
desirable to let the controller of each vehicle not depend on the model parameters
of the other vehicles. It is interesting to understand what limitations such privacy
constraint put on the achievable closed-loop performance of the overall platoon.

1.3.4 Decision Making in Transportation Systems
In this subsection, we model the traffic flow at various time intervals of the day on
the segment of northbound E4 highway between Lilla Essingen and Fredhällstunneln
in Stockholm (see Figure 1.7) using an atomic congestion game. Let us divide the
time window of interest into R ∈ N non-overlapping intervals and denote each
interval by ri for 1 ≤ i ≤ R. The set of all these intervals is denoted by R =
{r1, r2, . . . , rR}. Here, we assume there are two types of agents, namely, cars and
trucks. Let z = {zi}Ni=1 and x = {xi}Mi=1 denote the actions of N cars and M
trucks that are participating in the congestion game. Now, we describe the utilities
of these players.

Car i, 1 ≤ i ≤ N , maximizes its utility given by

Ui(zi, z−i, x) = ξc
i (zi, T c

i ) + vzi(z, x) + pc
i (z, x),
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where the mapping ξc
i : R × R → R describes the penalty for deviating from the

preferred time interval for using the road denoted by T c
i ∈ R (e.g., due to being

late for work or delivering goods), vzi(z, x) is the average velocity of the traffic flow
at time interval zi, and pc

i (z, x) is a potential congestion tax for using the road
on a specific time interval. The choice of the penalty mappings ξc

i , 1 ≤ i ≤ N ,
can capture various models of cars. For instance, we can use ξc

i (zi, T c
i ) = αc

i |zi −
T c
i |, with flexibility parameter αc

i < 0, to describe the case where the driver of
car i is penalized symmetrically by deviating from its preferred time interval T c

i .
Following [32–34], we assume that the average velocity at time interval r ∈ R is an
affine function of the total number of vehicles (both cars and trucks) that are using
the road at that time interval

nr(z, x) =
N∑
`=1

1{z`=r} +
M∑
`=1

1{x`=r}.

We use real traffic data from sensors on this stretch of highway to extract reasonable
parameters for modeling the average velocity at any time interval as a function of
the total number of vehicles that are using the road at that time interval. The
measurements are extracted during October 1–15, 2012. Figure 1.8 shows the
average velocity of the flow as a function of the number of vehicles. As we can
see, for up to 1000 vehicles, a linear relationship vr(z, x) = anr(z, x) + b with
a = −0.0110 and b = 84.9696 describes the data well. However, for higher numbers
of vehicles, it fails to capture the behavior of around 20% of the data (shown by
the red dots in Figure 1.8). Some of these outlier measurements can be caused
by traffic accidents, sudden weather changes during the day, or temporary road
constructions.

In the congestion game, truck j, 1 ≤ j ≤M , maximizes its utility given by

Vj(xj , x−j , z) = ξt
j(xj , T t

j ) + vxj (z, x) + pt
i(z, x) + βvxj (z, x)mxj (x),

where, similar to the utilities of the cars, ξt
j(xj , T t

j ) is the penalty for deviating
from its preferred time T t

j for using the road, vxj (z, x) is the average velocity of
the traffic flow, and pt

i(z, x) is a potential congestion tax for using the road at time
interval xj . Trucks have an extra term βvxj (z, x)mxj (x) in their utility because of
their benefit in using the road at the same time as the other trucks in which mxj (x)
denotes the number of trucks that are using the road at time interval xj ∈ R. The
increased utility can be justified by the fact that whenever there are many trucks
on the road at the same time interval, they can potentially collaborate to form
platoons and thereby increase the fuel efficiency. Note that this extra utility is a
function of the average velocity of the flow since trucks cannot save a significant
amount of fuel through platooning at low velocities [20, 27].

It is interesting to find the equilibria of this strategic game. In particular, we
study decentralized learning dynamics that do not use the knowledge of the utilities
of other vehicles.
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Figure 1.8: Average velocity of the traffic flow as a function of the number of
vehicles that are entering the segment of northbound E4 highway between Lilla
Essingen and Fredhällstunneln for 15 min time intervals.
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Figure 1.9: An example of a networked system with water tanks composed of
decoupled scalar subsystems.

1.3.5 Water Tank Regulation
Consider a networked system composed of L decoupled water tanks illustrated in
Figure 1.9, where each tank is linearized about its stationary water level h` as

dz`(t) = −a`
a′`

√
g

2h`
z`(t)dt+ dw`(t); z`(0) = z0

` . (1.3)

The exogenous inputs {w`(t)}t∈R≥0 , 1 ≤ ` ≤ L, are statistically independent Wiener
processes with zero mean. They represent input flow fluctuations and other distur-
bances. In this model, a′` is the cross-section of water tank `, a` is the cross-section
of its outlet hole, and g is the acceleration of gravity. Furthermore, z`(t) ∈ R
denotes the deviation of the tank’s water level from its stationary point.

It is interesting to develop an optimal scheduling policy to sample the water
levels in these tanks and transmit these measurements to their respective estimation
units over a shared communication medium. Certainly, it is preferable to construct
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a scheduling policy to deal with ad-hoc networked systems since a varying number
of water tanks may be utilized at any given time. In addition, since these water
tanks may work around slowly-varying stationary levels, their linearized models
change over time. Therefore, the designer may want to only rely on local model
information for designing the controller to avoid redesigning the whole controller
whenever a single parameter changes in the system.

1.4 Thesis Outline

This thesis is a compilation thesis. In the remainder of this chapter, we discuss the
organization of the chapters and the papers.

First, we present the introductory material. Specifically, Chapter 2 gives a re-
view of the pre-existing literature on cooperative and competitive decision making
with limited information. We particularly focus on networked control systems and
strategic decision making in transportation systems. In Chapter 3, we discuss the
contributions of the thesis in control design with limited model information, strate-
gic decision making in transportation networks, and stochastic sensor scheduling
with application to networked control systems. We present the conclusions and
possible directions for future research in Chapter 4.

Part 1: Control Design with Limited Model Information

The first part of the thesis consists of six papers on optimal control design with
limited plant model information. In what follows, we briefly discuss these papers.

Paper 1: Optimal Structured Static State-Feedback Control Design
with Limited Model Information for Fully-Actuated Systems

In this paper, we introduce the family of limited model information control design
methods, which construct controllers by accessing the plant’s model in a constrained
way, according to a given design graph. We investigate the closed-loop performance
achievable by such control design methods for fully-actuated discrete-time linear
time-invariant systems, under a separable quadratic cost. We restrict our study to
control design methods which produce structured static state feedback controllers,
where each subcontroller can at least access the state measurements of those sub-
systems that affect its corresponding subsystem. We compute the optimal control
design strategy (in terms of the competitive ratio and domination metrics) when
the control designer has access to the local model information and the global inter-
connection structure of the plant-to-be-controlled. Finally, we study the trade-off
between the amount of model information exploited by a control design method and
the best closed-loop performance (in terms of the competitive ratio) of controllers
it can produce. This paper is published as:
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F. Farokhi, C. Langbort, K. H. Johansson, “Optimal Structured Static State-
Feedback Control Design with Limited Model Information for Fully-Actuated
Systems,” Automatica, vol. 49, no. 2, pp. 326–337, 2013.

A preliminary version of the paper was presented as:

F. Farokhi, C. Langbort, K. H. Johansson, “Control Design with Limited
Model Information,” in Proceedings of the American Control Conference,
pp. 4697–4704, 2011.

Paper 2: Dynamic Control Design Based on Limited Model Information

The design of optimal H2 dynamic controllers for interconnected linear systems
under limited plant model information is considered in this paper. An explicit
minimizer of the competitive ratio is found. It is shown that this control design
strategy is not dominated by any other strategy with the same amount of model
information. The result applies to a wide class of system interconnections, controller
structures, and design information. This paper was presented as:

F. Farokhi, K. H. Johansson, “Dynamic Control Design Based on Limited
Model Information,” in Proceedings of the 49th Annual Allerton Conference
on Communication, Control, and Computing, pp. 1576–1583, 2011.

Paper 3: Decentralized Disturbance Accommodation with Limited
Plant Model Information

The optimal control design for disturbance accommodation with limited model in-
formation is considered in this paper. As it is shown in Papers 1 and 2, when it
comes to designing optimal centralized or partially structured decentralized state-
feedback controllers with limited model information, the best control design strat-
egy (in terms of competitive ratio and domination) is static. This is true even
though the optimal partially structured decentralized state-feedback controller with
full model information is dynamic. In this paper, we show that, in contrast, the
best limited model information control design strategy for the disturbance accom-
modation problem gives a dynamic controller. We find an explicit minimizer of the
competitive ratio and we show that it is undominated. This optimal controller can
be separated into a static feedback law and a dynamic disturbance observer. This
paper was published as:

F. Farokhi, C. Langbort, K. H. Johansson, “Decentralized Disturbance Ac-
commodation with Limited Plant Model Information,” SIAM Journal on
Control and Optimization, vol. 51, no. 2, pp. 1543–1573, 2013.

An early version of this paper was presented as:
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F. Farokhi, C. Langbort, K. H. Johansson, “Optimal Disturbance-Accommo-
dation with Limited Model Information,” in Proceedings of the American Con-
trol Conference, pp. 4757–4764, 2012.

Paper 4: Optimal Control Design under Structured Model Information
Limitation Using Adaptive Algorithms
In this paper, we show that with an adaptive networked controller with limited plant
model information, it is indeed possible to achieve a competitive ratio equal to one.
Therefore, by migrating from the set of linear control laws studied in Papers 1-3 to
the set of nonlinear control laws, we can drastically reduce the competitive ratio.
The plant model considered in the paper belongs to a compact set of stochastic lin-
ear time-invariant systems and the closed loop performance measure is the ergodic
mean of a quadratic function of the state and control input. This paper is under
review for journal publication as:

F. Farokhi, K. H. Johansson, “Optimal Control Design under Structured
Model Information Limitation Using Adaptive Algorithms,” Submitted.

Paper 5: Optimal H∞ Control Design under Model Information
Limitations and State Measurement Constraints
In this paper, we present a numerical algorithm for constructing control design
strategies that rely on limited model information and partial state measurements.
The algorithm is based on successive local minimizations and maximizations (us-
ing the subgradients) of the H∞–norm of the closed-loop transfer function with
respect to the controller gains and the system parameters. This paper was recently
presented as:

F. Farokhi, H. Sandberg, K. H. Johansson, “Optimal H∞ Control Design
under Model Information Limitations and State Measurement Constraints,”
in Proceedings of the 52nd IEEE Conference on Decision and Control, pp.
6218–6225, 2013.

Paper 6: Optimal Control Design under Limited Model Information for
Discrete-Time Linear Systems with Stochastically-Varying Parameters
Here, we design optimal state-feedback controllers for interconnected discrete-time
linear systems with stochastically-varying parameters. The design of each controller
relies only on exact local plant model information and statistical beliefs about the
model of the rest of the system. Therefore, as opposed to Papers 1-4, in this
formulation, we may use statistical beliefs about the model of other systems. For
quadratic cost functions, we show that the optimal controller is a linear function of
the state measurements. Furthermore, we study the value of model information in
optimal control design using the performance degradation ratio (a concept related
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to that of competitive ratio) which is defined as the supremum (over all possible
initial conditions) of the ratio of the cost of the optimal controller with limited
model information scaled by the cost of the optimal controller with full model
information. This paper is submitted for journal publication as:

F. Farokhi, K. H. Johansson, “Optimal Control Design under Limited Model
Information for Discrete-Time Linear Systems with Stochastically-Varying
Parameters,” Submitted.

A preliminary version of this paper was presented as:

F. Farokhi, K. H. Johansson, “Limited Model Information Control Design for
Linear Discrete-Time Systems with Stochastic Parameters,” in Proceedings of
the 51st IEEE Conference on Decision and Control, pp. 855–861, 2012.

Part 2: Strategic Decision Making in Transportation Systems

The second part of the thesis consists of two papers on strategic decision making in
transportation systems. In what follows, we present a brief recapitulation of these
papers.

Paper 7: When Do Potential Functions Exist in Heterogeneous Routing
Games?

We study a heterogeneous routing game in which vehicles might belong to more than
one type. The type determines the cost of traveling along an edge as a function
of the flow of various types of vehicles over that edge. We extend the available
results to present necessary and sufficient conditions for the existence of a potential
function. We characterize a set of tolls that guarantee the existence of a potential
function when only two types of users are participating in the game. We present
an upper bound for the price of anarchy (i.e., the worst-case ratio of the social cost
calculated for a Nash equilibrium over the social cost for a socially optimal flow)
for the case in which only two types of players are participating in a game with
affine edge cost functions. This paper is a technical report:

F. Farokhi, W. Krichene, A. M. Bayen, and K. H. Johansson, “When Do Po-
tential Functions Exist in Heterogeneous Routing Games?,” Technical Report
TRITA-EE 2014:009, 2014.

A preliminary version of this paper was presented as:

F. Farokhi, W. Krichene, A. M. Bayen, and K. H. Johansson, “A Heteroge-
neous Routing Game,” in Proceedings of the Annual Allerton Conference on
Communication, Control, and Computing, pp. 448–455, 2013.
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Paper 8: A Study of Truck Platooning Incentives Using a Congestion
Game
Another aspect of transportation systems in the time at which vehicles decide to
use the transportation network. In this paper, we introduce an atomic congestion
game with two types of agents, cars and trucks, to model the traffic flow on a
road over various time intervals of the day. Cars maximize their utility by finding
a trade-off between the time they choose to use the road, the average velocity of
the flow at that time, and the dynamic congestion tax that they pay for using the
road. In addition to these terms, the trucks have an incentive for using the road at
the same time as their peers because they have platooning capabilities, which allow
them to save fuel. The dynamics and equilibria of this game-theoretic model for the
interaction between car traffic and truck platooning incentives are investigated. We
use traffic data from Stockholm to validate parts of the modeling assumptions and
extract reasonable parameters for the simulations. We use joint strategy fictitious
play and average strategy fictitious play to learn a pure strategy Nash equilibrium
of this game. We perform a comprehensive simulation study to understand the
influence of various factors, such as the drivers’ value of time and the percentage
of the trucks that are equipped with platooning devices, on the properties of the
Nash equilibrium. This paper is submitted for journal publication as:

F. Farokhi, K. H. Johansson, “A Study of Truck Platooning Incentives Using
a Congestion Game,” Submitted.

Preliminary versions of this result may be found in:

F. Farokhi, K. H. Johansson, “A Game-Theoretic Framework for Studying
Truck Platooning Incentives,” in Proceedings of the 16th International IEEE
Annual Conference on Intelligent Transportation Systems, pp. 1253–1260,
2013.

F. Farokhi, K. H. Johansson, “Investigating the Interaction Between Traf-
fic Flow and Vehicle Platooning Using a Congestion Game,” Accepted for
Presentation at the 19th World Congress of the International Federation of
Automatic Control (IFAC), 2014.

The first conference paper focuses on motivating the modeling assumptions and to
extract appropriate simulation parameters using real traffic data from Stockholm
while the second conference paper studies the problem from a theoretical perspec-
tive to show the existence of a pure strategy Nash equilibrium and to prove the
convergence of the learning algorithms.

Part 3: Stochastic Sensor Scheduling
The last part of the thesis consists of one paper on stochastic sensor scheduling
with application to networked control and estimation.
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Paper 9: Stochastic Sensor Scheduling for Networked Control Systems

Here, we model sensor measurement and transmission instances using jumps be-
tween states of a continuous-time Markov chain. We introduce a cost function for
this Markov chain as the summation of terms depending on the average sampling
frequencies of the subsystems and the effort needed for changing the parameters
of the underlying Markov chain. By minimizing this cost function, we extract an
optimal scheduling policy to fairly allocate the network resources among the con-
trol loops. We study the statistical properties of this scheduling policy in order to
compute upper bounds for the closed-loop performance of the networked system,
where several decoupled scalar subsystems are connected to their corresponding
estimator or controller through a shared communication medium. This paper is
recently published as:

F. Farokhi, K. H. Johansson, “Stochastic Sensor Scheduling for Networked
Control Systems,” IEEE Transactions on Automatic Control, 2014. To Ap-
pear.

A preliminary version of this paper was presented in a conference as:

F. Farokhi, K. H. Johansson, “Stochastic Sensor Scheduling with Application
to Networked Control,” in Proceedings of the American Control Conference,
pp. 2325–2332, 2013.

Other Publications

The following articles were published during the course of my studies; however,
they are not included in the thesis.

F. Farokhi, A. M. H. Teixeira, C. Langbort, “Gaussian Cheap Talk Game
with Quadratic Cost Functions: When Herding Between Strategic Senders is
a Virtue,” Accepted for Presentation at the American Control Conference,
2014.

T. Tanaka, F. Farokhi and C. Langbort, “Faithful Implementations of Dis-
tributed Algorithms and Control Laws,” Submitted.

T. Tanaka, F. Farokhi and C. Langbort, “A Faithful Distributed Implementa-
tion of Dual Decomposition and Average Consensus Algorithms,” in Proceed-
ings of the 52nd IEEE Conference on Decision and Control, pp. 2985–2990,
2013.

F. Farokhi, H. Sandberg, K. H. Johansson, “Complexity reduction for param-
eter-dependent linear systems,” in Proceedings of the American Control Con-
ference, pp. 2618–2624, 2013.
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F. Farokhi, A. Shirazinia, K. H. Johansson, “Networked Estimation Using
Sparsifying Basis Prediction,” in Proceedings of the 4th IFAC Workshop on
Distributed Estimation and Control in Networked Systems, pp. 174–181, 2013.

F. Farokhi, I. Shames, and K. H. Johansson, “Distributed MPC Via Dual
Decomposition and Alternating Direction Method of Multipliers,” in J. M.
Maestre and R. R. Negenborn, (Eds.), Distributed Distributed Model Pre-
dictive Control Made Easy, Intelligent Systems, Control and Automation:
Science and Engineering, 69, Springer, 2013.

M. Larsson, J. Lindberg, J. Lycke, K. Hansson, A. Khakulov, E. Ringh, F.
Svensson, I. Tjernberg, A. Alam, J. Araujo, F. Farokhi, E. Ghadimi, A.
Teixeira, D. V. Dimarogonas, and K. H. Johansson, “Towards an Indoor
Testbed for Mobile Networked Control Systems,” in Proceedings of the 1st
Workshop on Research, Development, and Education on Unmanned Aerial
Systems, pp. 51–60, 2011.

F. Farokhi, H. Sandberg, “A Robust Control-Design Method Using Bode’s
Ideal Transfer Function,” in Proceedings of the Mediterranean Conference on
Control and Automation, pp. 712–717, 2011.

Contribution by the Author
The order of the authors’ names reflect the work load of the paper where the first
author has the most important contributions. In all the listed publications, all the
authors were actively involved in developing the results and in writing the final
paper.



CHAPTER 2

Background

“Knowledge is of two kinds. We know a subject ourselves, or we know
where we can find information on it.”

Samuel Johnson1(1709–1784)

In this thesis, we focus on the effects of information asymmetries and limitations
in decision making. To discuss decision making with limited information, one

must first define and quantify information2. The theory of knowledge dates back
to Greek philosophers, such as Plato and Aristotle [35, 36]. However, it was not
until much later that Descartes, Berkeley, and Hume, among many other prominent
philosophers, started to formally study the problem [37–39]. Later, the term epis-
temology was coined by Ferrier to describe a branch of philosophy concerned with
knowledge [40]. There are also many mathematical approaches for modeling infor-
mation or knowledge [41]. The idea of quantifying information has attracted much
attention to the point of creating the field of “information theory” in mathematics,
communication theory, and signal processing [42, 43].

A common approach to model the information available to an agent (e.g., human
beings in a market) is to partition the space of all the possible scenarios (i.e., state
space) and, upon realization of one state, the agent can only know that an element
of the partition, to which the realized state belongs, has occurred [44–47]. In
this framework, an agent has more (detailed) information if her partition becomes
finer. The agents can also form beliefs (i.e., probability distributions on the state
space) and update these beliefs based on their observations [41, 48]. In information
theory, the uncertainty in capturing a random variable can be quantified using
the concept of entropy [43]. Another approach is to use semantics to model the
information available to each agent [49, 50]. Using these definitions, several studies

1Quoted in “Life of Samuel Johnson” by James Boswell, 1791.
2Different academic disciplines use different terminologies to refer to what we call information

in this thesis. For instance, economists and philosophers use the term knowledge instead. In this
chapter, we will use these two terms interchangeably when reviewing results from the literature.

27
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have developed results in decision making with limited information. In the rest of
this chapter, we discuss some of them.

Specifically, in Section 2.1, we review decision making with limited informa-
tion in both cooperative and competitive settings. In Section 2.2, we focus on
networked control and estimation as an application of cooperative decision mak-
ing with limited information. In Section 2.3, we review parts of the literature on
routing and congestion games as applications of competitive decision making with
limited information.

2.1 Decision Making with Limited Information

The problem of decision making with incomplete information and the value of
information is a well-studied problem in economics3 and computer science [53–
57]. For instance, in [54], Arrow studied the degradation in economic decisions
caused by the lack of information and communication between both competing
and cooperating agents. He also gave an estimate of the value of information in
a network using this degradation factor. In [55, 56], the value of information in
distributed algorithmic decision making was studied. The value of information was
captured using the competitive ratio [58, 59], which was defined based on the so-
called regret ratio in economics [53]. We can study distributed decision making in
both cooperative or competitive settings, that is, the agents that are involved in
determining a decision may have aligned performance criteria or conflicting ones.
We review these two settings in the remainder of this section.

2.1.1 Cooperative Decision Making

Cooperative decision making with limited information arises naturally in many
scenarios where agents must make decisions in a system in which they influence each
others through dynamics or performance criteria; however, due to several reasons,
such as communication constraints or memory limitations, they cannot share all
their information or process all the available information. Examples of this problem
can be found in optimal coordination of multi-agent systems and decentralized
control of interconnected systems [60–66]. A key feature of cooperative decision
making is that although the agents have different information regarding the system,
the cost function that they are trying to optimize is the same.

First, it might be case that the agents prefer to calculate the outcome in a
distributed fashion to improve the robustness of the overall system because if they

3Arguably, economic decision making with limited information is historically as old as the
classic economics literature itself. In 1776, Adam Smith, a prominent philosopher and the pioneer
of political economy, discussed competitive markets as means to dynamically solve large-scale
resource allocation problems with only local information about demand and production levels [51].
There is much controversy regarding effectiveness, practicality, and stability of the considered
economic system [52]; however, one certainly cannot argue with Smith’s genius in recognizing the
issues present because of the lack of global information in the system.
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designate a node a priori to make such decisions and transmit all their information
to that node, there is a chance that the designated node might fail (e.g., due to a
hardware malfunction) or get hijacked (by malicious agents to change the collective
decision of the group). Another reason could also be that each agent does not have
the necessary computation capabilities to solve the problem on its own and, hence,
they require to collaborate in order to solve the problem. These reasons motivate a
large body of studies in distributed consensus-seeking, synchronization, and forma-
tion acquisition [60, 61, 67, 68]. These studies started with [69] in which Reynolds
examined bird flocks to understand how local decision rules may result in complex
global behaviors. Later, in [70], a dynamical model was introduced to study the
coordination of particles and it was observed that if the agents update their heading
to be equal to the average of their neighbors, all of them eventually move in the
same direction. A theoretical proof for this observation was later presented in [66].
Following these studies, several authors proposed synchronization and consensus-
seeking algorithms using both discrete-time and continuous-time models [60, 71, 72].
An extension of these results to time-varying communication links as well as asyn-
chronous communications was presented in [61, 73–76]. These results had appli-
cations in vehicle formation [77, 78], attitude alignment [79, 80], rendezvous op-
erations [81], synchronization of oscillators [82, 83], and flocking [71, 84], among
many other problems. For a comprehensive survey of the applications of consen-
sus algorithms, see [85]. As mentioned earlier, the lack of necessary computational
resources can also be a motivation for decision making with limited information.
The lack of computational resources in decision making has inspired the research
in distributed computation and optimization [86–89]. For instance, decomposition
algorithms for large-scale programming were introduced in [90–92]. Later, dual
decomposition was introduced and explored as a powerful method for solving large-
scale optimization problems [93, 94]. Recently, the idea of alternating direction
method of multipliers (based on earlier studies in [95, 96]) was revived and applied
in distributed optimization [88]. A survey of various decomposition methods can
be found in [88, 89, 97, 98].

Another reason for decision making with limited information might be privacy
constraints. This reason has motivated studies in distributed optimization with
privacy constraints [99–102]. For instance, the authors in [101] studied the stan-
dard linear programming problem when each agent just knows a subset of the
coefficients that appear in the constraints. They motivated this problem using dis-
tributed decision making in network management (see also [103, 104]), distributed
task assignment problem, and organization theory. The problem was generalized
to dynamic cases (i.e., multistage optimization problems) in [105, 106]. Since these
studies are the origin of the definitions of competitive ratio and domination for
decentralized control design with limited plant model information in this thesis, we
review them in detail in Subsection 2.2.4.

In addition to the above mentioned reasons, constraints in communication in-
frastructure may also force the agents to only rely on information that they can
measure directly. Decentralized control design is mainly motivated by such com-
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munication restrictions [62–64, 107]. We review the available results in distributed
and decentralized control in Subsection 2.2.3.

2.1.2 Competitive Decision Making

Competitive decision making, opposed to the cooperative one studied in the previ-
ous subsection, appears when agents belong to competing entities. Examples can
be found in economic and financial systems, such as inventory management, supply
chains, and competitive markets [108–111]. An important ingredient of these results
is game theory. Game theory has a rich history dating back to 1713 when de Mont-
mort introduced an example of mixed strategy using Waldegrave’s problem4 in
probability [112]. Much later, in 1838, Cournot considered a duopoly problem and
presented a solution concept for it [113]. In this study, an equilibrium concept was
introduced that is closely related to the Nash equilibrium (i.e., a set of decisions for
which no agent can improve her cost/utility by unilaterally changing her decision).
However, game theory, as we know it today, did not exist until it was formalized
in 1928 with the celebrated result of von Neumann [114] and his subsequent book
with Morgenstern in 1944 [115]. The concept of mixed strategy Nash equilibrium
for zero-sum games was introduced in [115]. This notion was generalized to arbi-
trary games with a finite number of players by Nash himself [116]. Many studies
also considered the existence of an equilibrium [116, 117]. In setups with many
decision makers, the idea of common knowledge (an event that everyone knows
about, everyone knows that everyone knows about it, and so on) was introduced
and formally characterized (see [48, 50, 118, 119]) to better understand decision
making in a distributed setup5. The introduced studies typically focused on games
with complete information, that is, all the players’ payoff functions and parameters
were common knowledge. In 1967, Harsanyi introduced the notion of games with
incomplete information (i.e., Bayesian games) and formulated the Bayesian Nash
equilibrium in a series of papers [120–122]. For more information about games with
complete and incomplete information, see [123].

4Waldegrave’s problem was originally discussed in a letter from Pierre Rémond de Montmort
to Nicolas Bernoulli on April 10, 1711 (see [112, p. 318-320] with its translation provided courtesy
of http://cerebro.xu.edu/math/Sources/) and was called “Probléme de la Poule” (or Problem
of Pool) as

“... This same Geometer [Mr. Waldegrave] who is a Gentleman of much intellect,
has proposed to me lately & has resolved a quite pleasing Problem which is here.
Pierre, Paul & Jacques play a pool at Trictrac or at Piquet. After one has deduced
whom will play it is found that Pierre and Paul begin. We demand, 1◦. what is
the advantage of Jacques. 2◦. How great are the odds that Pierre or Paul will win
rather than Jacques. 3◦. How many games must the pool naturally endure. [sic]”

5For instance, the knowledge that green traffic light means that the drivers may pass through
the intersection should be common knowledge between the drivers in a society otherwise they
cannot make any decision in a distributed manner regarding how to pass an intersection [50].
Common knowledge is a prerequisite for achieving agreement in any setup.
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It is known that Nash equilibria in strategic6 games are typically not socially
optimal [124]. To quantify this inefficiency, the notion of price of anarchy (i.e.,
the worst-case ratio of the social cost function calculated for a Nash equilibrium
over the social cost function calculated for a socially optimal decision) was first
introduced in [125, 126]. Later, this criterion was utilized in various games [127–
131]. In parallel, the theory of competitive analysis of distributed algorithms was
used to compare the cost of a distributed on-line algorithm to the cost of an optimal
distributed algorithm [132]. The authors of [133, 134] discussed a setting in which
several agents jointly solve a coordination game and studied the value of information
in these games. Many related measures, such as price of stability, information,
cooperation, and fairness, were later introduced and studied [127, 135, 136].

Motivated by the above mentioned results, we know that agents (that are em-
ployed to make a decision in a distributed manner) do not blindly follow instruc-
tions to optimize a social cost function. Therefore, we need to incentivize them
using appropriate monetary schemes to follow the intended algorithms. Mechanism
design theory7 is concerned with how to create and enforce a socially preferable
decision in the presence of strategic agents [137–140]. A direct revelation mecha-
nism design problem considers how the leader can design a decision-making process,
possibly with a side payment mechanism, so that followers are incentivised to tell
the truth. A central positive result about this problem is the celebrated Vickrey–
Clarke–Groves (VCG) mechanisms (in which the tax imposed on an agent is equal
to its marginal contribution to the rest of the society) to encourage truthful re-
ports [140–143]. However, there are also several negative results in mechanism
design theory. For instance, a leader can only implement trivial decision rules (in
an appropriate sense) without introducing monetary policies [140]. Furthermore,
generally, there does not exist any mechanism except the VCG mechanisms in or-
der to make truth-telling a dominant strategy [144]. VCG mechanisms require the
computation of optimal social decisions in the central node (based on the reported
information by the agents). A recent study in [145] proposed a framework for dis-
tributed implementation of VCG mechanisms; however, these results may not be
easily used in any context since, in general, VCG mechanisms combined with an
approximated solution can destroy incentive compatibility (i.e., cannot guarantee
that truth-telling is a dominant strategy) [146]. Generalization of mechanism design
to dynamic situations may be found in [147, 148].

A natural question in game theory is whether it is possible to propose dynamics
to actually determine an equilibrium (e.g., Nash equilibrium, correlated equilib-
rium, etc). For instance, in 1951, Brown introduced the idea of fictitious play for
learning Nash equilibria in which each player plays its best response to the empiri-
cal frequency of the observed actions [149]. In [150], it was shown that if fictitious

6Sometimes, the term strategic is employed to emphasize the fact that the agents are strate-
gically optimizing their own cost or utility (which are conflicting with each other).

7Mechanism design is sometimes referred to, albeit informally, as reverse game theory since in
mechanism design, one typically wants to design a game (based on reverse engineering) that has
an equilibrium with appropriate properties.
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Figure 2.1: Illustrative example of a networked control system.

play converges to any distribution, those probabilities correspond to an equilib-
rium of the game; however, the fictitious play may not converge in general [151].
Stronger convergence results for fictitious play exits in the case of zero-sum two-
player games [152] and potential games (i.e, the games for which there exists a
potential function, such that its variation when only one agent changes her action
is equal to the variation of the utility of the corresponding agent) [153]. Other vari-
ants of fictitious play were subsequently proposed and studied [32, 154]. There exist
many other learning algorithms in game theory such as Nash dynamics [155, 156],
reinforcement learning [157], no regret learning [158, 159], and trial and error learn-
ing [160].

2.2 Networked Control and Estimation

According to [65], a networked control system is “a spatially distributed system
in which sensors, actuators, and controllers are connected to each other through a
band-limited digital communication network”. Figure 2.1 illustrates an example of a
networked control system which is composed of several controllers Ci and systems Pi
connected to each other through a communication network. The network topology
defines how sensors communicate with controllers and how controllers send their
commands to the corresponding actuators.

Networked control systems have several characteristics. First, these systems are
typically distributed geographically over a vast area (as the power grid application
in Subsection 1.1.1). It is natural to assume that a given subsystem can only in-
fluence a subset of neighboring subsystems (due to the geographical constraints).
Therefore, the geographical profile of the system and its underlying physical char-
acteristics dictate the interconnection pattern between subsystems. In many situa-
tions, the interconnections of the subsystems are fixed (and given) in advance. This
property of large-scale control systems has attracted a lot of attention and many
have studied the generic properties of structured systems. We take a deeper look
into structured systems in Subsection 2.2.1.
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Second, any communication medium brings limitations such as band-limited
channels, sampling, quantization, variable delays, and packet drop-outs. A realis-
tic communication network has band-limited channels, that is, it can only relay a
limited amount of data per unit of time. Therefore, it might not make sense to as-
sume that each subcontroller has access to the full state measurements of the plant.
Note that even if each channel has high bandwidth, the point-to-point capacity of
a large multi-hop network can still be very limited [161]. We first review some
results in scheduling algorithms for communication networks in Subsection 2.2.2.
The absence of full state information gives rise to several challenges in designing
stabilizing and optimal controllers which we discuss in Subsection 2.2.3.

Finally, in large-scale dynamical systems, it may be extremely difficult to iden-
tify all system parameters and update them globally. One can only hope that the
designer knows the local parameter variations and update the corresponding sub-
controller based on them. This fact motivates optimal control design with limited
model information. We briefly review the related literature in Subsection 2.2.4.

2.2.1 Generic Properties of Structured Systems

The study of structured systems dates back almost four decades [162–166]. In [162],
the author first introduced the definition that a pair of matrices (A,B) is struc-
turally controllable if there exists a controllable pair of matrices (A′, B′) with the
same structure as (A,B). A structurally controllable system can be shown to
be controllable for almost all parameter combinations, except for a measure-zero
set that might occur when the system parameters satisfy certain equality con-
straints [162–164]. Thus, structural controllability helps the designer to overcome
the inherently incomplete knowledge of the system parameters. There exist graph-
theoretic conditions for verifying structured controllability [162]. A set of algebraic
conditions has been presented in [163, 165] to check structured controllability. It
is interesting to note that, as structured controllability gives controllability of a
continuum of linearized systems, the aforementioned results may also provide a
sufficient condition for controllability of many nonlinear systems [167–169].

Many classical control results have been generalized to structured systems. For
instance, the problem of input–output decoupling of structured systems was dis-
cussed in [170–172]. The problem of disturbance rejection and disturbance de-
coupling was addressed initially in [173–175]. Decentralized control of structured
systems was considered in [176–179]. For instance, the authors of [176] presented
necessary and sufficient conditions for controllability under a decentralized infor-
mation structure. In [177], the authors studied geometric properties of structured
systems using graph-theoretic tools. They also obtained graph-theoretic conditions
to determine stabilizability of structured interconnected systems via decentralized
feedback control. Decentralized stabilization and pole placement of structured sys-
tem were discussed in [180]. Parts of these results were generalized to descriptor
systems in [181]. More related studies can be found in a recent survey of structured
systems and their generic properties [182]. There has also been some work on fault
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detection and isolation for structured systems. For instance, in [183], the authors
provided necessary and sufficient graph-theoretic conditions under which the fault
detection and isolation problem has a solution. Later, the sensor location problem
for fault diagnosis in structured systems was discussed in [184]. Recently, a nec-
essary and sufficient graph-theoretic condition for the existence of vulnerabilities
that are inherent to the power network interconnection structures was developed
in [185].

2.2.2 Scheduling Algorithms

In many practical scenarios, several agents are competing or collaborating on a
shared medium to provide or to receive services, such as on power grids, economic
markets, or communication networks. This problem has attracted much atten-
tion from various research communities, such as computer sciences, economics,
and industrial and communication engineering [186–189]. For instance, in net-
worked control systems, communication resources need to be efficiently shared
between multiple control loops in order to guarantee a good closed-loop perfor-
mance under communication constraints; e.g., bit-rate constraints [190–193] and
packet loss [194–197]. The authors of [189] proposed a scheduler to allocate time
slots between several users over a long horizon. In that scheduler, the designer
must first manually assign shares (of a communication medium or processing unit)
that an individual user should receive. Then, each user achieves its pre-assigned
share by means of probabilistic or deterministic algorithms [189, 198]. The au-
thors in [186, 199] proved that implementing the task with the earliest deadline
achieves the optimum latency in case of both synchronous and asynchronous job
arrivals. In [200], a scheduling policy based on static priority assignment to the
tasks was introduced. Many studies in the communication literature have also
considered the problem of developing protocols in order to avoid the interference
between several information sources when using a common communication medium.
Examples of such protocols are both time-division and frequency-division multiple
access [201, 202]. As a continuation of these studies, several authors have focused
on proposing distributed algorithms for solving resource allocation problems (i.e.,
determining time shares for communication in time-division multiple access pro-
tocols or bandwidth assignment in frequency-division multiple access) [203–207].
There have been studies in stochastic sensor scheduling algorithms. For instance,
in [208], the authors developed a stochastic sensor scheduling policy using discrete-
time Markov chains.

2.2.3 Distributed and Decentralized Control Design

Band-limited channels in a networked control system force us to design distributed
and decentralized controllers as subcontrollers in the overall system that may ac-
cess only a strict subset of the state measurements. Distributed and decentralized
control and estimation in large-scale and networked systems is a well-studied prob-
lem [64, 209–211].
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There is a huge body of literature on stabilizing decentralized systems. For in-
stance, the authors of [63, 212–214] showed that the absence of so-called fixed modes
is a necessary and sufficient condition for stabilizability of a linear time-invariant
dynamical system with a time-invariant decentralized controller. Later, this result
was extended to show that a time-varying controller might be able to eliminate
the fixed modes that are not structurally fixed modes and, as a result, a linear
time-invariant dynamical system could be stabilized with a decentralized controller
even when fixed modes are present [215, 216]. Fixed modes may also be eliminated
with vibrational control or sampling techniques [217–219]. It was also shown that
if a fixed mode cannot be eliminated by a decentralized periodically time-varying
controller, then it cannot be eliminated by any decentralized controller [220, 221].

There are contributions in multi-agent systems related to distributed control,
such as a Nyquist-like condition for stability of a formation using the individual
plant transfer function and the Laplacian of the graph describing the network topol-
ogy [77]. This work was generalized to the stability of multi-input multi-output dy-
namical systems with arbitrary dynamical interconnection between the subsystems
with fixed interaction topology [222]. The coordination of a group of autonomous
agents when the graph topology changes over time was considered in [61, 66]. These
works were generalized to a framework for stability analysis of interconnected sys-
tems where the topology can potentially be time-varying [78]. The authors of [223]
presented an algorithm for designing controllers that preserve the stability of the
closed-loop system under any interconnection and communication typology.

There has been a great effort in designing optimal distributed and decentral-
ized controllers. Witsenhausen showed that, in general, a linear controller is not
optimal for a quadratic performance criterion with a linear time-invariant system
subject to Gaussian noise under the distributed information constraint and that
the cost function is not necessarily convex in the controller variables [224]. The
authors of [225, 226] established that the discrete-time version of the Witsenhausen
counter-example is NP-complete. There have been some efforts also to identify the
cases in which a linear solution is optimal. For instance, Witsenhausen identified
some cases where the resulting optimal controllers are linear [227]. The authors
of [228] showed that under a partially nested information pattern the optimal con-
troller is a linear controller. It was shown in [229] that the optimal controller
is linear if each subcontroller has access to all the previously implemented con-
trol values and observations made by any other subsystem in the system before
the current time and its own observations including the current time. There were
some studies under the spatial invariance assumption [62, 230]. Some other control
structures were shown to result in optimal linear controllers [231, 232]. In [233],
the author presented a solution to the optimal decentralized state-feedback control
design problem for partially nested information structure. Recently, it was shown
that under quadratic invariance and internal quadratic invariance information pat-
terns, one can formulate structured H∞- and H2-optimal control design as convex
optimization problems [234–237]. This formulation resulted in an explicit solution
for the problem of designing decentralized H2-optimal controllers for a special class



36 CHAPTER 2. BACKGROUND

of systems [238–242]. Also using partially ordered sets, the authors of [243–245] in-
troduced an explicit solution to the decentralized state-feedback H2-optimal control
design problem for some classes of plant interconnection and information structure.
The problem of designing optimal distributed controllers was recently approached
using team decision theory in [246, 247]. That work was further generalized to solve
the stochastic linear quadratic control problem under power constraints [248]. In
that work, the output-feedback problem was also considered. Later, the team deci-
sion theory was used to develop optimal distributed H∞-optimal controllers when
each subsystems has access to the state measurements and control signals of those
subsystems that can affect it [249].

There have been studies on designing optimal controllers for positive systems
with more general structures. For instance, the authors of [250, 251] gave a neces-
sary and sufficient condition for existence of a diagonal Lyapunov function for pos-
itive systems. They also showed that, in this case, the H∞-optimal control design
problem can be written as a convex optimization problem (and, therefore, it is com-
putationally tractable). Later, the author of [252] proved that H∞- and `1-norms
of transfer functions are equal for single-input single-output positive discrete-time
linear time-invariant systems. It was also shown that the problem of designing
an optimal controller for these systems can be written as a convex optimization
problem under some conditions on the controller structure.

There have been studies on sub-optimal distributed and decentralized control
design because, as it was mentioned earlier, the problem of synthesizing optimal
controllers for arbitrary information patterns is computationally expensive. The
authors of [253] considered the problem of designing sub-optimal static and fixed-
order dynamic structured compensators. Some approaches were based on gradient
descent, Newton, and quasi-Newton algorithms [254–259]. A set of sufficient lin-
ear matrix inequalities for finding distributed controllers was presented in [260].
In [261], the authors presented an algorithm for designing a near-optimal decen-
tralized controller that replicates the behavior of the optimal centralized controller.
The problem of near-optimal decentralized output regulation of hierarchical sys-
tems subject to disturbances was studied in [262]. In [263, 264], the problem of
designing an optimal decentralized state-feedback controller was solved on a finite-
horizon using dynamic programming. In those papers, the authors provided both a
computationally intensive optimal solution and a sub-optimal solution that is more
computationally tractable. A receding horizon approach to develop a sub-optimal
controller was considered in [265, 266]. A recent result was introduced in [267] us-
ing decomposition methods in distributed optimization accompanied with a special
stopping criteria to synthesize a sub-optimal controller with closed-loop perfor-
mance guarantees.

2.2.4 Limited Model Information Control Design

The problem of designing controllers using uncertain plant model information is a
classical topic in control theory [268–273]. In robust control design, the goal is to
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design a controller such that some level of performance of the controlled system
is guaranteed irrespective of changes in the plant dynamics within a predefined
bound around a given nominal global model. This is different from designing an
optimal controller without a global model since in optimal control design with
limited model information, subsystems do not have any prior information about
the other subsystems’ model (i.e., there are no nominal models for the subsystems
in the design procedure) and there are no, a priori known, bounds on the model
uncertainties. In addition, in control design with limited model information, the
uncertainty sets are different from the perspective of each designer since the design
of each local controller is done based on different parts of the model information.

There have been some interesting approaches for tackling the limited model
information control design problem, although they are not specifically tailored for
it. For instance, references [274–277] introduced methods for designing sub-optimal
decentralized controllers without a global dynamical model of the system. In these
papers, the authors assume that the plant consists of an interconnection of weakly
coupled subsystems. They designed an optimal controller for each subsystem using
only the corresponding local model and connect the obtained subcontrollers to con-
struct a global controller. They showed that, when the coupling is negligible, this
latter controller is satisfactory in terms of closed-loop stability and performance.
However, as coupling strength increases, even closed-loop stability guarantees are
lost. The motivation behind their studies was to design fully-decentralized near-
optimal controllers for large-scale dynamical systems and to avoid numerical com-
plications, stemming from the high dimension of the system, by splitting the original
problem into several smaller ones. The idea of “decentralized design” for systems
that may be decomposed into several weakly coupled subsystems was further in-
vestigated in [278, 279]. Other approaches, such as [4, 266], are based on receding
horizon control and use decomposition methods to solve each step’s optimization
problem in a decentralized manner with only limited information exchange between
subsystems.

The problem of designing an optimal controller with limited model information,
in the setup that we are considering in this thesis, was first approached in [105, 106].
In these papers, the authors introduced control design strategies as mappings from
the set of plants of interest to the set of eligible controllers. They investigated the
quality of the controllers that these control design strategies construct. This quality
was measured by a quadratic closed-loop performance criterion. They introduced
the competitive ratio as a performance metric and the domination as a partial or-
der on the set of limited model information control design strategies to study the
intrinsic limitations of limited model information control design strategies. Previ-
ously, there were no other metrics specifically proposed for control design strategies.
The authors defined the competitive ratio as the worst case ratio of the cost of a
control design strategy to the cost of the optimal control design with full model
information. They worked with communication-less control design strategies as an
extreme family of limited model information control design strategies that only rely
on each subsystem model for designing the corresponding subcontroller. They used
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the term communication-less to illustrate the fact that different parts of these con-
trol design strategies do not exchange model information (and, equivalently, do not
communicate) with each other. The subsystems were assumed to be scalar. Under
these assumptions, it was proven that, when dealing with continuous-time linear
time-invariant dynamical systems, the competitive ratio of any control design strat-
egy is always unbounded. Thus, they focused on discrete-time linear time-invariant
systems and found an explicit minimizer of the competitive ratio over the set of
limited model information control design strategies. Since this minimizer might
not be unique, they also proved that it is undominated, that is, there is no other
control design method that acts always better while having the same worst-case
ratio. This undominated minimizer of the competitive ratio was shown to be the
deadbeat control design strategy. Towards the end, they briefly studied the amount
of information needed to find a control design strategy with a lower competitive
ratio than the deadbeat control design strategy or to dominate it.

2.3 Congestion and Routing Games

A problem that has attracted much attention is modeling the traffic flow in trans-
portation systems and communication networks using congestion games or routing
games [280–286]. Rosenthal [283] presented a noncooperative game in which a finite
number of players compete for the use of a finite set of resources with application to
transport networks. He showed that a class of these games admit at least one pure
strategy Nash equilibrium. However, later, in [287], Rosenthal showed that this
result may not be generalized to arbitrary weighted multicommodity congestion
games. When cost functions (e.g., latency) of each road are affine in the number
of vehicles that use it, an equilibrium certainly exists [288]. Later, the authors
of [153] showed that atomic congestion games are indeed potential games under
some conditions and, hence, one can find a Nash equilibrium by minimizing the
potential function. A class of congestion games that are not in general potential
games were studied in [289]. For a survey of these (and related) results, see [290].
Most of these studies modeled the route selection using an atomic congestion game;
however, recently, the authors of [32] utilized a congestion game for modeling the
time when drivers use a road.

In the context of transportation networks, routing games were originally studied
in [286]. This study also formulated the definition of an equilibrium in routing
games. Researchers in different academic communities use different names for the
equilibrium such as user-optimizing flow [291, 292], Wardrop equilibrium [292–
294], Wardrop first principle [293], and Nash equilibrium [131, 295]. The term
Wardrop equilibrium is common in transportation literature due to the pioneering
work of [286] as well as the fact that the term pure strategy Nash equilibrium is
primarily utilized in the context of games with finitely many players [294]. It is vital
to note that the definition of Nash equilibrium in [131, 295] is indeed different from
that of [294], which shows that by increasing the number of users (in a game with
finitely many players), the Nash equilibrium converges to the Wardrop equilibrium
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under appropriate assumptions. Later, in [296], it was shown that under some mild
conditions, the routing game admits a potential function and the minimizers of
this potential function are the equilibria of the routing game which guarantees the
existence of an equilibrium for these games.

2.3.1 Inefficiency of the Equilibrium

Considering that the Nash equilibria are not efficient in general, we can use the
price of anarchy as a measure to determine the degradation caused in the social
cost function due to the selfish nature of the agents. The price of anarchy of atomic
congestion games with linear latency functions was studied in [297]. This problem
was also studied for routing games. For instance, in [130] and [298], an upper
bound and a lower bound for the price of anarchy was presented, respectively.
The lower bound was called the Pigou bound due to an example presented by
Pigou, an influential scientists in welfare economics, in [299]. Later, in [298, 300],
it was shown that the Pigou bound is tight, i.e., it can be achieved by a special
class of routing games. Due to this inherent inefficiency of the Nash equilibrium,
there have been several studies in reducing the inefficiency by imposing tolls on
the roads in the transportation network [296, 299, 301, 302] and rerouting a fixed
percentage of the flow [303–305]. For instance, in [299], Pigou suggested marginal
congestion taxes (i.e., taxes corresponding to the increase in cost of the flow on
a road caused by adding one user to that road) in order to guarantee that the
socially optimal solution becomes a Nash equilibrium and, hence, eliminating the
inefficiency of the equilibrium. This result is very useful when we can impose tolls
on all the edges of the network rather than only a subset of them. Later, in [302],
it was shown that, when we can only impose tolls on a strict subset of the roads
in the network, the problem of computing optimal tolls is NP-hard even for only
two commodities and linear latency functions. However, in the same study, the
authors presented a polynomial-time algorithm for finding optimal tolls in a single-
commodity routing game with linear latency functions over a parallel link network.
As mentioned earlier, another approach to reduce the inefficiency is to reroute a
fixed percentage of the flow. This approach is known as Stackelberg routing since
the problem can be formulated as a Stackelberg game (i.e., a game in which the
leader announces her strategy as a function of the actions of the followers in advance
and the followers react to it). For instance, in [305], it was proven that computing
the optimal Stackelberg strategy is NP-hard for a class of routing games; however, a
simple algorithm for achieving a reasonable suboptimal strategy was proposed. For
parallel networks and a special category of cost functions, the optimal Stackelberg
strategy can be computed efficiently [306].

2.3.2 Heterogeneous Routing Games

An important category of routing and congestion games are heterogeneous games,
as many factors may result in different cost functions for different classes of drivers.
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For instance, in a transportation network, if we include the fuel consumption of
the vehicles in the cost functions, two vehicles (of different types) may experience
different costs for using a road even if their travel times are equal. For example,
this phenomenon can be caused by the fact that heavy-duty vehicles experience an
increased efficiency when a higher number of heavy-duty vehicles are present on the
same road (because of a higher possibility of platooning and, therefore, a higher
fuel efficiency [20]), while such an increased efficiency may not be true for cars.
Drivers may have different sensitivities to the latency under different circumstances
or depending on their personality and background. In addition, due to economic
advantages, heavy-duty vehicles might be more sensitive to latency in comparison
to cars (because they need to deliver their goods at specific times). Finally, the
drivers generally react differently to road tolls, e.g., based on the reason of the trip
or their socioeconomic background [307].

Heterogeneous routing games have been studied extensively over the past start-
ing with the pioneering works in [291, 308]. In these studies, a routing game with
multi-class users was introduced and the definition of equilibrium was given. Fur-
thermore, in [291], the author introduced a sufficient condition for transforming the
problem of finding an equilibrium to that of an optimization problem (equivalent
to the existence of a potential function [153, 287]). The sufficient condition holds if
over each edge, the users of any two types influence each other equally, i.e., the in-
creased cost of a user of the first type due to addition of one more user of the second
type is equal to the increased cost of a user of the second type due to addition of
one more user of the first type [291]. This condition was considered later in [307] in
which it was also noted that satisfaction of this symmetry condition may depend on
the units (e.g., time or money) adopted for representing the cost functions when the
users’ types are determined by their value of time (i.e., a scalar factor that balances
the relationship between the latency and the imposed tolls). This result is of special
interest since the equilibrium does not change by using different units for the cost
functions (if the latency only depends on the sum of the flows of various types over
the edge, not the individual flows, and the value of time appears linearly in the cost
functions) [309]. Necessary and sufficient conditions for the existence of potential
functions in games with finite number of players were recently investigated in [310];
however, these results were not generalized to games with a continuum of players
as in heterogeneous routing games. The authors of [292] studied the existence of an
equilibrium in heterogeneous routing games even if such a symmetry condition does
not hold. In contrast to these articles that assumed a finite set of types to which
the users may belong, a wealth of studies also considered the case in which the users
may belong to a continuum of types [311, 312]. The problem of finding tolls for
general heterogeneous routing games as well as the case in which the types of users
is determined by their value of time have been considered extensively [313–318].
For instance, in [313], the problem of determining tolls on each edge or path for
heterogeneous routing games was studied. Guarantees were provided for the so-
cially optimal solution (also referred to as system-optimizing flow [291]) to be an
equilibrium of the game. However, in that article, the users were assumed to be
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equally sensitive to the imposed tolls. The problem of finding optimal tolls for
routing game in which the users’ value of time belong to a continuum was studied
in [314].





CHAPTER 3

Contributions

“Science is facts, just as houses are made of stones ... But a pile of
stones is not a house and a collection of facts is not necessarily science.”

Jules Henri Poincaré, Science and Hypothesis1, 1903

Contributions of the thesis can be categorized in three parts: Decentralized
control design with limited model information, strategic decision making in

heterogeneous transportation networks, and stochastic sensor scheduling with ap-
plication to networked systems. In Section 3.1, a brief recapitulation of our results
in designing decentralized control laws using limited model information is presented.
In Section 3.2, we review our contributions in strategic decision making in trans-
portation systems. Finally, in Section 3.3, we discuss our results in stochastic sensor
scheduling using continuous-time Markov chains.

3.1 Control Design with Limited Model Information

In this section, we discuss our contributions in decentralized control design with
limited model information. First, in Subsections 3.1.1 and 3.1.2, we revisit two
numerical examples introduced in Chapter 1. Then, in Subsection 3.1.3, we outline
the contributions.

3.1.1 Numerical Example: Power Grid Regulation
In this subsection, we revisit the example presented in Subsection 1.3.1, specifically,
when controlling DC power generators. At first, we are interested in static control

1La science et l’hypothése. Translation of the quote provided in “What constitutes a theoretical
contribution?” by David A. Whetten.
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laws of the form
u(k) = Kx(k),

where K ∈ K with K denoting the set of admissible controllers. Let us construct
full state feedback controllers and, hence, set K = R2×2. Now, define control
design strategies as mappings Γ : A → K where A denotes the set of all plausible
parameters2. Let us define the deadbeat control design strategy Γ∆(α) = −A,
where the dependency to parameters α appears in matrix A. Clearly, Γ∆ is a
control design with limited model information, because design of control i only
relies on αi (due to the structure of matrix A). The results of Papers 1 and 2 show
that

J(Γ∆(α)) ≤ 2J(K∗(α)), ∀α ∈ A,

where K∗(α) ∈ K is the optimal control design with full model information, that
is, for any given α ∈ A, J(K∗(α)) ≤ J(K) for all K ∈ K. Recalling from Subsec-
tion 1.3.1, the cost function J(·) is the H2-norm of the closed-loop transfer function.
Therefore, the deadbeat control design strategy, which uses only local model infor-
mation, is never worse than twice the optimal controller. However, if we relax the
set of admissible controllers K to also contain adaptive control laws, the results of
Paper 4 shows that there exists Γ such that

J(Γ(α)) = J(K∗(α)), ∀α ∈ A,

for all α ∈ A except a measure-zero set. Again recalling from Subsection 1.3.1, it is
easy to see that the closed-loop system is no longer linear when using a nonlinear
(adaptive) control law and, hence, we utilize the ergodic mean of a quadratic func-
tion of the state and control input as the cost function J(·) (which coincides with
the H2-norm of the closed-loop transfer function when using linear control laws).
This control design strategy follows naturally from generalization of [319] to a set-
ting in which each controller separately uses a maximum-likelihood estimator with
regularization term to estimate the global model of the system and, then, applies
the optimal control law designed using that estimate.

3.1.2 Numerical Example: Heavy-Duty Vehicle Platooning
In this subsection, we revisit the example presented in Subsection 1.3.3. Let us fix
%i = 0.1 and bi = 1 for all i = 1, 2, 3. We assume that

A = {α ∈ R3 |αi ∈ [0.5, 1.0] for all i = 1, 2, 3}.

We are interested in static control laws of the form

ui(k) = Kiiyi(k), ∀i = 1, 2, 3,
2Notice that this definition is slightly different from those of Papers 1 and 2 since in this

example only some of the parameters can vary and the rest are fixed. However, irrespective of
this difference, the following portion of the results holds.
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Figure 3.1: The design graphs utilized in the vehicle platooning.

where

y1(t)=

 v1(t)
d12(t)
v2(t)

, y2(t)=


v1(t)
d12(t)
v2(t)
d23(t)
v3(t)

, y3(t)=

 v2(t)
d23(t)
v3(t)

.
Notice that the choice of these particular observation vectors is convenient as the
vehicles can measure them directly (using velocity and distance sensors mounted
on the front and the back of the vehicles) and they do not need to relay these
measurements to each other through a communication medium. Let us again denote
the set of admissible controllers by K.

Let a directed graph GC = (VC , EC) with vertex set VC = {1, 2, 3} and edge
set EC ⊆ VC × VC be given, which we refer to as the design graph. An edge
(i, j) ∈ EC indicates that the parameter of truck i, i.e., its mass in this example, is
available in the design of the controller for truck j. We can define a control design
strategy as a mapping Γ : A → K and use the the notation C to denote the set of
all such mappings that satisfy the pattern of information availability by GC . Fix
basis functions η1(α) = 1, η2(α) = m1, η3(α) = m2

1, η4(α) = m2, η5(α) = m2
2,

η6(α) = m3, and η7(α) = m2
3. Now, define the set C((η`)7

`=1) as the intersection of
the set C and the set of all mappings constructed by linear combinations of basis
functions (η`)7

`=1. Our objective is to find the optimal control design strategy Γ
through solving

min
Γ∈C((η`)7

`=1)
max
α∈A

‖Tzw (s; Γ, α)‖∞ ,

where Tzw(s; Γ, α) denotes the closed-loop transfer function from the exogenous
input w(t) to the performance measurement vector z(t) for α ∈ A. Since solving
this problem is difficult in general, we settle for a local solution. We discuss the
definition of a local solution and the method for constructing one at length in
Paper 5. For now, let us demonstrate the achievable closed-loop performance under
various plant model information availability regimes.
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We start with the case where each local controller only relies on the mass of its
own vehicle. This model information availability corresponds to the design graph
GC in Figure 3.1. For this case, we get the performance

max
α∈A

∥∥Tzw (s; Γlocal, α
)∥∥
∞ = 4.7905,

where Γlocal is the suboptimal control design strategy under this model information
availability. In the next step, we let the neighboring vehicles communicate their
mass to each other. This model information availability corresponds to the design
graph G′C in Figure 3.1. For this information regime, we get

max
α∈A

∥∥Tzw (s; Γlimited, α
)∥∥
∞ = 3.5533,

where Γlimited is the suboptimal control design strategy under this model informa-
tion availability. Clearly, we get 25% improvement in comparison to Γlocal. Finally,
we consider the case where each local controller has access to all the model pa-
rameters (i.e., the mass of all other vehicles). This model information availability
corresponds to the design graph G′′C in Figure 3.1. We get

max
α∈A

∥∥Tzw (s; Γfull, α
)∥∥
∞ = 3.3596,

where Γfull the suboptimal control design strategy under this model information
availability. It is interesting to note that with access to full model information, we
only improve the closed-loop performance by another 5% in comparison to Γlimited.
This might be caused by the fact that the first and the third vehicles are not directly
interacting.

3.1.3 Contributions
The results presented in Papers 1-6 of this thesis considerably extend the contri-
butions of [105, 106]. Extensions are made by considering several different perfor-
mance measures and notions of model information. The detailed descriptions of
these results are as follows.

In Paper 1, we consider limited model information control design for interconnec-
tions of fully-actuated discrete-time linear time-invariant subsystems (of arbitrary
order) with a separable quadratic cost function. We investigate the best closed-loop
performance achievable by structured static state-feedback controllers constructed
using limited model information design strategies. We show that the result depends
crucially on the subsystems interconnection pattern and state measurement avail-
ability (i.e., the plant graph and the control graph). We extend the fact proven
in [105] that the deadbeat strategy is the best limited model information control
design method when there is no sink in the plant graph (i.e., a subsystem that
cannot affect any other subsystem) and each subcontroller has access to at least
the state measurements of those subsystems that affect it. However, the deadbeat
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control design strategy is dominated when there is a subsystem that could not affect
any other subsystem. We find a better, undominated, limited model information
control design method, which, although having the same competitive ratio as the
deadbeat control design strategy, can achieve a better closed-loop performance in
average. We also characterize the amount of model information needed to achieve
a better competitive ratio than the deadbeat control design strategy.

In Paper 2, we generalize these results to structured dynamic state-feedback
controllers when the closed-loop performance criterion is the H2-norm of the closed-
loop transfer function. Surprisingly, the optimal control design strategy (in the
sense of competitive ratio) with limited model information is a static one. This
is the case even though the optimal decentralized state-feedback controller with
full model information is dynamic itself [239, 240]. We also partially remove the
assumption that all the subsystems are fully-actuated and generalize the result for a
class of under-actuated systems where the sinks in the plant graph are not required
to be fully-actuated.

Later, in Paper 3, we also discuss the design of dynamic controllers for dis-
turbance accommodation. This problem is of special interest because of the fact
that the best limited model information control design is a dynamic control de-
sign strategy contrary to all previous results in Papers 1-2 where the best limited
model information control design strategy was a static one. Interestingly, this dy-
namic control design strategy can be divided into two parts; a static part which
was previously introduced in Papers 1-2 and an observer for canceling the distur-
bances. For constant disturbances, it is shown that this structure corresponds to
proportional-integral control.

Following the observation that we cannot decrease the competitive ratio by mi-
grating from the set of static control laws into dynamic ones, we embark upon
designing a special class of nonlinear control laws using limited model information
in Paper 4. Specifically, we show that with an adaptive networked controller with
limited plant model information, it is indeed possible to achieve a competitive ratio
equal to one. To do so, we prove that an adaptive controller exists (constructed
by extending the control law introduced in [319]) that asymptotically achieves the
closed-loop performance of the optimal centralized controller with full model infor-
mation. However, in this paper, we consider plants that belong to a compact set of
stochastic linear time-invariant systems and the closed loop performance measure is
defined to be the ergodic mean of a quadratic function of the state and the control
input.

Noticing that not much has been done in optimal control design under limited
model information for continuous-time systems and the fact that we have not also
presented a systematic approach for constructing optimal control design strategies
for general plant model availability in our earlier results, we propose a numerical
method for characterizing control design strategies under arbitrary model infor-
mation limitations and state measurement constraints for parameter-dependent
continuous-time systems in Paper 5. The algorithm is based on successive lo-
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cal minimizations and maximizations using the subgradients of H∞-norm3 of the
closed-loop transfer function with respect to the controller gains and the system
parameters.

Up to now, the model information of other subsystems were assumed to be com-
pletely unknown which typically results in conservative controllers because it forces
the designer to study the worst-case behavior of the control design methods. How-
ever, one can sometimes use historical data to construct a probabilistic model for the
rest of the subsystems. Therefore, in Paper 6, we design optimal state-feedback con-
trollers for interconnected discrete-time linear systems with stochastically-varying
parameters and assume that a statistical model is available for the parameters of
the other subsystems. Specifically, we assume that the design of each controller
relies only on exact local plant model information and statistical beliefs about the
model of the rest of the system. Interestingly, for both finite- and infinite-horizon
quadratic cost functions, the optimal controller is shown to be linear in the state.
In order to study the value of model information, we also introduce performance
degradation ratio (a concept closely related to that of the competitive ratio), which
is defined as the supremum (over all possible initial conditions) of the ratio of the
cost of the optimal controller with limited model information to the cost of the
optimal controller with full model information. Moreover, we calculate an upper
bound for it when all the subsystems are fully-actuated.

3.2 Strategic Decision Making in Transportation Systems

In this section, we discuss the problem of decision making in transportation systems.
Specifically, in Subsection 3.2.1, we revisit a numerical example from Chapter 1.
The contributions are subsequently discussed in Subsection 3.2.2.

3.2.1 Numerical Example: Decision Making in Transportation Systems
Let us revisit the example presented in Subsection 1.3.4. Consider the segment
of the highway illustrated in Figure 1.7 from 7:00am to 9:00am on a daily basis.
Assume that N = 10000 cars and M = 100 trucks are using the northbound lanes.
We divide the time horizon into eight equal non-overlapping intervals. Hence, we
fix the action set as R = {1, . . . , 8}, where each number represents an interval of
15min. Let T c

i , 1 ≤ i ≤ N , be randomly chosen from the set R using the discrete
distribution

P{T c
i = n} =

 1/6, n = 2, 4,
1/4, n = 3,
1/12, otherwise.

Let us also use a similar probability distribution to extract T t
j , 1 ≤ j ≤M . Hence,

we consider the case where the drivers statistically prefer to use the road at time
3The choice of H∞-norm is not crucial and one can construct a similar algorithm when using

H2-norm of the closed-loop transfer function as the performance measure. In such case, we can
use the results of [255, 320] for constructing the gradient of the performance measure.
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Figure 3.2: Number of the vehicles and the average velocity of the traffic flow in
each time interval for the case where the drivers neglect the congestion in their
decision making (blue) and for the learned pure strategy Nash equilibrium (red).
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Figure 3.3: Number of the trucks in each time interval for the case where the
drivers neglect the congestion in their decision making (blue) and for the learned
pure strategy Nash equilibrium (red).

interval r = 3 which corresponds to 7:30am to 7:45am. Let αc
i , 1 ≤ i ≤ N , and

αt
j , 1 ≤ j ≤ M , be randomly generated following a uniform distribution within

the interval [−7.5,−2.5]. Now, to ensure the congestion game admits a potential
function, we ask car 1 ≤ i ≤ N and truck 1 ≤ j ≤M to pay congestion taxes

pc
i (z, x) = aβmzi(x)(mzi(x) + 1)/2, (3.1a)
pc
j(z, x) = 0, (3.1b)
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for using the road at time interval zi ∈ R and xj ∈ R, respectively. Recalling
from Subsection 1.3.4, mr(x) denotes number of trucks that are using time interval
r ∈ R.

Figure 3.2 shows number of the vehicles in each time interval and the corre-
sponding average velocity in that time interval. The blue color denotes the case
where the drivers do not consider the congestion in their decision making; i.e., they
commute at their best convenience, zi = T c

i for all 1 ≤ i ≤ N and xj = T t
j for all

1 ≤ j ≤ M . The red color denotes the case where the drivers implement a pure
strategy Nash equilibrium. As we can see in this figure, the proposed congestion
game reduces the average commuting time (increases the average velocity). Fig-
ure 3.3 illustrates number of the trucks that are using the road on various time
intervals. In contrast to the case where the drivers do not consider the congestion
in their decision making, at the Nash equilibrium, thirty two trucks use the time
interval 7:15am to 7:30am while most of them avoid using 7:30am to 7:45am be-
cause it is highly congested (and they would not save much fuel if they commuted
at this time).

3.2.2 Contributions

The contributions of this part are presented in two papers. The detailed descriptions
of these results are as follows.

In Paper 7, we study the routing problem in heterogeneous transportation sys-
tems. Specifically, we formulate a general heterogeneous routing game in which the
vehicles might belong to more than one type. The type determines the cost of trav-
eling along an edge as a function of the flow of all types of vehicles over that edge.
This setup has applications in studying the platooning incentives in route selection
by heavy-duty vehicles. We extend available results by presenting necessary and
sufficient conditions for the existence of a potential function for these games when
only two types of vehicles are participating. Under these conditions, we can pose
the problem of finding a Nash equilibrium for the heterogeneous routing game as an
optimization problem. We characterize a set of tolls that guarantee the existence
of a potential function. We present an upper bound for the price of anarchy for the
case in which only two types of players are participating in a heterogeneous routing
game with affine edge cost functions.

Later, in Paper 8, we study the time at which the drivers decide to the use the
road to study heavy-duty vehicle platooning incentives. We introduce an atomic
congestion game with two types of agents, cars and trucks, to model the traffic
flow on a road over various time intervals of the day. Cars maximize their utility
by finding a trade-off between the time they choose to use the road, the average
velocity of the flow at that time, and the dynamic congestion tax that they pay for
using the road. In addition to these terms, the trucks have an incentive for using
the road at the same time as their peers because they have platooning capabilities,
which allow them to save fuel. We investigate if a desirable behavior can emerge
from simple local strategies such as congestion taxes or subsidies. Specifically, we



3.3. STOCHASTIC SENSOR SCHEDULING 51

I

S1

S2

S3

SL

Figure 3.4: Flow diagram of the continuous-time Markov chain used for modeling
the proposed stochastic scheduling policy.

propose taxing mechanisms for which the underlying congestion game is a potential
game and, then, use joint strategy fictitious play and average strategy fictitious play
to learn a pure strategy Nash equilibrium.

3.3 Stochastic Sensor Scheduling

Finally, we discuss our contributions in stochastic sensor scheduling with application
to networked control and estimation. We revisit the numerical example on water
tank regulation and discuss our contributions in stochastic sensor scheduling in
Subsections 3.3.1 and 3.3.2, respectively.

3.3.1 Numerical Example: Water Tank Regulation
Here, we revisit the numerical example introduced in Subsection 1.3.5. Let us
consider a networked system that can admit up to L = 70 identical subsystems
described by (1.3) with γ` = 0.3 and σ` = 1.0 for 1 ≤ ` ≤ 70. Let us assume that
for t ∈ [0, 5), only 30 subsystems are active, for t ∈ [5, 10), all 70 subsystems are
active, and finally, for t ∈ [10, 15], only 10 subsystems are active. Estimator ` (of
active subsystems) receives state measurements {y`i}∞i=0 at time instances {T `i }∞i=0,
such that

y`i = z`(T `i ) + n`i ; ∀i ∈ Z≥0, (3.2)

where {n`i}∞i=0 denotes the measurement noise sequence, which is composed of in-
dependently and identically distributed Gaussian random variables with zero mean
and standard deviation η` = 0.3. Let each subsystem adopt a simple estimator of
the form

d
dt ẑ`(t) = −γ`ẑ`(t); ẑ`(T `i ) = y`i , (3.3)

for t ∈ [T `i , T `i+1). Define the estimation error e`(t) = z`(t)− ẑ`(t).
We use time instances of the jumps between states of this continuous-time

Markov chain to model the sampling instances, i.e., whenever there is a jump
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Figure 3.5: Estimation error E{e2
`(t)} for 1000 Monte Carlo simulations over an ad-

hoc networked system with the stochastic scheduling policy (left) and the periodic
scheduling policy (right).

from an idle state in the Markov chain to a state that represents a subsystem in
the networked system, we sample that particular subsystem and transmit its state
measurement across the shared communication network to the corresponding sub-
controller. Figure 3.4 illustrates the flow diagram of the proposed Markov chain.
Every time that a jump from the idle node I to node S`, 1 ≤ ` ≤ L, occurs in
this continuous-time Markov chain, we sample subsystem ` and send its state mea-
surement to estimator `. The idle state I helps to tune the sampling rates of the
subsystems independently. We introduce a cost function that is a combination of
the average sampling frequencies of the subsystems (i.e., the average frequency of
the jumps between the idle state and the rest of the states in the Markov chain)
and the effort needed for changing the scheduling policy (i.e., changing the under-
lying Markov chain parameters). In Paper 9, we find an explicit minimizer of the
cost function and develop the optimal scheduling policy accordingly. To capture
the changes in the networked system, when some of the subsystems are inactive,
we simply remove their corresponding nodes from the Markov chain flow diagram
in Figure 3.4 and set their corresponding terms in the cost function to be equal to
zero.

Figures 3.5 (left) and (right) illustrate the estimation error variance E{e2
`(t)}

for 1000 Monte Carlo simulations when using the optimal scheduling policy and the
periodic scheduling policy, respectively. Since we have to fix the sampling instances
in advance for the periodic scheduling policy, we must determine the sampling
periods according to the worst-case scenario (i.e., when the networked system is
composed of 70 subsystems). Therefore, when using the periodic sampling, the
networked system is not using its true potential for t ∈ [0, 5) and t ∈ [10, 15]. The
proposed stochastic scheduling policy adapts to the demand of the system. For
instance, as shown in Figure 3.5 (left), when subsystems 31 and 32 become active
for t ∈ [5, 10), the overall sampling frequencies of the subsystems decreases (and,
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in turn, the estimation error variance increases), but when they become inactive
again for t ∈ [10, 15], the average sampling frequencies increase (and, in turn, the
estimation error variance decreases). Hence, this example illustrates the dynamic
benefits of our proposed stochastic scheduling approach.

3.3.2 Contributions
The contributions of this part are presented in Paper 9. In this study, we introduce
a stochastic sensor scheduling policy with application to networked control and esti-
mation. In the presented scheduling algorithm, we model sensor measurement and
transmission instances using jumps between states of a continuous-time Markov
chain. We introduce a cost function for this Markov chain which is the summation
of terms depending on the average sampling frequencies of the subsystems and the
effort needed for changing the parameters of the underlying Markov chain. By min-
imizing this cost function (through extending the results of [321]), we extract an
optimal scheduling policy to fairly allocate the communication network resources
among the control loops. We study the statistical properties of this scheduling
policy in order to compute upper bounds for the closed-loop performance of the
networked system, where several decoupled subsystems are connected to their cor-
responding estimator or controller through a shared communication medium. The
proposed optimal scheduling policy works particularly well for ad-hoc sensor net-
works.





CHAPTER 4

Conclusions and Future Work

“Now this is not the end. It is not even the beginning of the end. But
it is, perhaps, the end of the beginning.”

Sir Winston Churchill, Speech1 in November 1942

In this chapter, we present a brief conclusion and some directions for future re-
search.

4.1 Summary

As described in the previous chapter, Papers 1-6 of this thesis focus on the design
of networked control systems under limited plant model information. Specifically,
in Paper 1, we presented a framework to study static control design under lim-
ited model information, and investigated the connection between the quality of
controllers produced by a design method and the amount of plant model informa-
tion available to it. This was done for a set of discrete-time linear time-invariant
plants under a separable quadratic performance measure with structured static
state-feedback controllers. We showed that the best performance achievable by a
limited model information control design method crucially depends on the structure
of the plant graph and thereby giving the designer access to this graph, even with-
out a detailed model of all plant subsystems, results in superior design, in the sense
of domination. In Paper 2, we considered optimal H2 dynamic control design for
interconnected linear systems under limited plant model information. We found an
explicit undominated minimizer of the competitive ratio for a large class of system
interconnections, controller structure, and design information. It was also shown

1Quoted in page 149 of “Oxford Dictionary of Quotations by Subject” by Susan Ratcliffe,
Oxford University Press, 2010.
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when it comes to designing optimal centralized or partially structured decentralized
state-feedback controllers with limited model information, the best control design
strategy (in terms of competitive ratio) is a static one. This is true even though the
optimal structured decentralized state-feedback controller with full model informa-
tion is dynamic. We were also able to relax the assumption that all the subsystems
are fully-actuated for sinks in the plant graph. In Paper 3, we studied the design
of optimal disturbance accommodation controllers with limited model information.
We adapted the notion of limited model information control design strategies to
handle disturbance accommodation to study the cases where the best limited model
information control design is a dynamic control design strategy. We found an ex-
plicit minimizer of the competitive ratio and we showed that it is undominated.
We split this optimal control design strategy into a static part for regulating the
state of the systems and a deadbeat observer for canceling the disturbance effect.
As a generalization of earlier mentioned results, in Paper 4, we searched over the
set of control design strategies that construct adaptive controllers. We found a
minimizer of the competitive ratio both in average and supremum senses. We used
an adaptive control law to achieve a competitive ratio equal to one, that is, this
adaptive controller asymptotically achieves closed-loop performance equal to the
optimal centralized controller with full model information. We presented a numer-
ical approach for calculating optimal decentralized control design strategies under
various model information availability regimes in Paper 5. Specifically, we focused
on continuous-time linear parameter-dependent systems and defined the control de-
sign strategies as mappings from the set of parameters to the set of control laws.
Then, we expanded these mappings using some basis functions and proposed a
numerical optimization method based on consecutive local minimizations and max-
imizations of the H∞–norm of the closed-loop transfer function with respect to
the control design strategy gains and the system parameters. Finally, in Paper 6,
we presented a statistical framework for the study of control design under limited
model information. We found the best performance achievable by a limited model
information control design method and studied the value of information in con-
trol design using the performance degradation ratio for discrete-time systems with
stochastically-varying parameters.

In Papers 7 and 8, we studied heterogeneous transportation networks. Specifi-
cally, in Paper 7, we considered a heterogeneous routing game in which the players
may belong to more than one type. The type of each player determines the cost
of using an edge as a function of the flow of all types over that edge. We proved
that this heterogeneous routing game admits at least one Nash equilibrium. Ad-
ditionally, for the case where only two types of vehicles are participating in the
heterogeneous routing game, we gave a necessary and sufficient condition for the
existence of a potential function for the introduced routing game, which indeed
implies that we can transform the problem of finding a Nash equilibrium into an
optimization problem. We also developed tolls to guarantee the existence of a po-
tential function and studied the price of anarchy. Later, in Paper 8, we introduced
a model for traffic flow on a specific road at various time intervals per day using
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an atomic congestion game with two types of agents (namely, cars and trucks).
Cars only optimize their trade-off between using the road at the time they prefer,
the average velocity of the traffic flow, and the congestion tax they are paying.
However, trucks benefit from using the road at the same time as the other trucks.
We motivated this extra utility using an increased possibility of platooning with
the other trucks and, as a result, saving fuel. We used congestion data from Stock-
holm to validate the affine relationship between the average velocity of commuting
and the number of the vehicles that are using the road at that time. We devised
appropriate tax or subsidy policies to create a potential game. Then, we used the
joint strategy fictitious play and the average strategy fictitious play to learn a pure
strategy Nash equilibrium of this game.

Finally, in Paper 9, we used a continuous-time Markov chain to schedule mea-
surement and transmission time instances in a sensor network. As applications of
this stochastic scheduling policy, we studied networked estimation and control of
large-scale system that are composed of several decoupled scalar stochastic subsys-
tems. We studied the statistical properties of this scheduling policy to compute
bounds on the closed-loop performance of the networked system.

4.2 Future Work

There are several directions to further expand the work presented in the thesis. We
list some of these directions below.

In the adaptive control law presented in Paper 4, all the subcontrollers required
having access to the full state measurement and the implemented control inputs
of other subsystems. An interesting direction for future research could be to use a
decentralized adaptive controller in which each subcontroller may only rely on local
state measurements (perhaps not even the implemented control inputs of other
subsystems). In this scenario, one might be able to use the adaptive control law
presented in [322] to construct input-output models for the rest of the subsystems
and then using that model to calculate a control law with a reasonable closed-loop
performance.

There is also much more to be done in numerical methods for finding an optimal
control design strategy. For instance, the results of Paper 5 only guarantee recov-
ering a local solution if the algorithm converges (which might not happen because
saddle point solutions may not exists). It would be interesting to propose numeri-
cal algorithms that give guarantees on the global performance of the control design
strategy. In addition, in Paper 5, we used a finite basis for expanding the control
design strategies to convert the underlying infinite-dimensional optimization prob-
lem to a finite-dimensional one. As a viable direction for future work, we can focus
on finding the best basis functions for expanding the control design strategies. We
can also study the rate at which the closed-loop performance improves with in-
creasing number of basis functions. Furthermore, because of the general pattern of
the state-measurement availability, we could only search for a suboptimal control
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law which introduces conservativeness in the results (unless we restrict ourselves to
information patters that result in a convex optimization problem, and assume that
the order of the optimal controller is finite and, more importantly, known). Hence,
it is interesting to find a bound on the suboptimality of the calculated control laws.

A general extension in the presented framework for control design using limited
plant model information could be to let designers communicate with each other and
to explore the question of characterizing an appropriate way of signaling between the
designers without revealing all the parameters, for instance by finding the minimum
amount of information needed for designing the optimal controller (e.g., see [323–
325] for such bounds on distributed computation). However, the communication
opens a door to many malicious behaviors by the designers (if they only wish to
strategically optimize their own cost and not the social welfare function). In this
case, it would be interesting to study the possibility of imposing taxes or subsidies
to incentivize the agents to communicating truthfully. We may also use the idea of
contract-based design (see [326] for an application of the idea in control of hybrid
systems) to let the designers of various controllers negotiate acceptable input-output
behaviors under which they can bound the closed-loop performance of the system.

In Paper 7, we only considered static routing games. Due to the time-varying
nature of the traffic in transportation systems, it would be of great interest to
extend the model to account for the time in which the drivers decide to use the
road in addition to the path that they select. This can be done by combining the
model in Paper 7 with the one presented in Paper 8. Another interesting extension
of the results in both Papers 7 and 8 could be to consider games with more than
two types or even a continuum of types.

Finally, in Paper 9, we presented upper bounds for the estimation error and
the closed-loop performance of decoupled systems. Future research can focus on
modeling the whole systems in conjunction with the optimal scheduling algorithm
as a Markov jump linear system. Then, hopefully, we can present upper bounds
for quality of the estimation or the control when dealing with coupled subsystems.
Another direction for future research could be to focus on combining the estimation
and control results for achieving a reasonable closed-loop performance when dealing
with observable and controllable subsystems of arbitrary dimension.
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Optimal Structured Static State-Feedback Control
Design with Limited Model Information for

Fully-Actuated Systems

Farhad Farokhi, Cédric Langbort, and Karl H. Johansson

Abstract–We introduce the family of limited model information control design meth-
ods, which construct controllers by accessing the plant’s model in a constrained way,
according to a given design graph. We investigate the closed-loop performance achievable
by such control design methods for fully-actuated discrete-time linear time-invariant sys-
tems, under a separable quadratic cost. We restrict our study to control design methods
which produce structured static state feedback controllers, where each subcontroller can
at least access the state measurements of those subsystems that affect its corresponding
subsystem. We compute the optimal control design strategy (in terms of the competitive
ratio and domination metrics) when the control designer has access to the local model in-
formation and the global interconnection structure of the plant-to-be-controlled. Finally,
we study the trade-off between the amount of model information exploited by a control
design method and the best closed-loop performance (in terms of the competitive ratio)
of controllers it can produce.

© 2012 Elsevier Ltd. Reprinted, with permission, from Automatica, Vol. 49, No. 2,
Pages 326–337, February 2013.
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1 Introduction

Many modern control systems, such as aircraft and satellite formation [1, 2], auto-
mated highways and other shared infrastructure [3, 4], flexible structures [5], and
supply chains [6, 7], consist of a large number of subsystems coupled through their
performance goals or system dynamics. When regulating this kind of plant, it is of-
ten advantageous to adopt a distributed control architecture, in which the controller
itself is composed of interconnected subcontrollers, each of which accesses a strict
subset of the plant’s output. Several control synthesis methods have been proposed
over the past decades that result in distributed controllers of this form, with vari-
ous types of closed-loop stability and performance guarantees (e.g., [8–16]). Most
recently, the tools presented in [17] and [18] revealed how to exploit the specific
interconnection of classes of plants (the so-called quadratically invariant systems)
to formulate convex optimization problems for the design of structured H∞- and
H2- optimal controllers. A common thread in this part of the literature is the as-
sumption that, even though the controller is structured, its design can be performed
in a centralized fashion, with full knowledge of the plant model. However, in some
applications (described in more detail in the next paragraph), this assumption is
not always warranted, as the design of each subcontroller may need to be carried
out by a different control designer, with no access to the global model of the plant,
although its interconnection structure and the common closed-loop cost function
to be minimized are public knowledge. This class of problems, which we refer to as
“limited model information control design problems”, is the main object of interest
in the present paper.

Limited model information control design occurs naturally in contexts where
the subsystems belong to different entities, which may consider their model infor-
mation private and may thus be reluctant to share it with others. In this case,
the designers may have to resort to “communication-less” strategies in which sub-
controller Ki depends solely on the description of subsystem i’s model. This case
is well illustrated by supply chains, where the economic incentives of competing
companies might limit the exchange of model information (such as, inventory vol-
ume, transportation efficiency, raw material sources, and decision process) inside
a layer of the chain (see [7, 19–21] for a detailed review of modeling and control
of supply chains). Another reason for using communication-less strategies in more
general design situations, even when the circulation of plant information is not re-
stricted a priori, is that the resulting subcontroller Ki does not need to be modified
if the characteristics of a particular subsystem, which is not directly connected to
subsystem i, vary. For instance, consider a chemical plant in the process industry,
with thousands of local controllers. In such a large-scale system, the tuning of
each local controller should not require model parameters from other parts of the
system so as to simplify maintenance and limit controller complexity. Note that
engineers often implement these large-scale systems as a whole using commercially
available pre-designed modules. These modules are designed, in advance, with no
prior knowledge of their possible use or future operating condition. This lack of
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availability of the complete model of the plant, at the time of the design, constrains
the designer to only use its own model parameters in each module’s control design.

Control design based on uncertain plant model information is a classic topic
in the robust control literature [22–25]. However, designing an optimal controller
without a global model is different from a robust control problem. In optimal
control design with limited model information, subsystems do not have any prior
information about the other subsystems’ model; i.e., there is no nominal model
for the design procedure and there is no bound on the model uncertainties. There
have been some interesting approaches for tackling this problem. For instance,
references [26–29] introduced methods for designing sub-optimal decentralized con-
trollers without a global dynamical model of the system. In these papers, the
authors assume that the large-scale system to be controlled consists of an inter-
connection of weakly coupled subsystems. They design an optimal controller for
each subsystem using only the corresponding local model, and connect the obtained
subcontrollers to construct a global controller. They show that, when coupling is
negligible, this latter controller is satisfactory in terms of closed-loop stability and
performance. However, as coupling strength increases, even closed-loop stability
guarantees are lost. Other approaches such as [4, 6] are based on receding horizon
control and use decomposition methods to solve each step’s optimization problem
in a decentralized manner with only limited information exchange between subsys-
tems. What is missing from the literature, however, is a rigorous characterization
of the best closed-loop performance that can be attained through limited model in-
formation design and, a study of the trade off between the closed-loop performance
and the amount of exchanged information. We tackle this question in the present
paper for a particular class of systems (namely, the set of fully-actuated discrete-
time linear time-invariant dynamical systems) and a particular class of control laws
(namely, the set of structured linear static state feedback controllers where each
subcontroller can at least access the state measurements of those subsystems that
affect its corresponding subsystem).

In this paper, we study the properties of limited model information control
design methods. We investigate the relationship between the amount of plant in-
formation available to the designers, the nature of the plant interconnection graph,
and the quality (measured by the closed-loop control goal) of controllers that can
be constructed using their knowledge. To do so, we look at limited model informa-
tion and communication-less control design methods as belonging to a special class
of maps between the plant and controller sets, and make use of the competitive
ratio and domination metrics introduced in [30] to characterize their intrinsic limi-
tations. To the best of our knowledge, there are no other metrics specifically tuned
to control design methods. We address much more general classes of subsystems
and of limitations on the model information available to the designer than is done
in [30]. Specifically, we consider limited model information structured static state-
feedback control design for interconnections of fully-actuated (i.e., with invertible
B-matrix) discrete-time linear time-invariant subsystems with quadratic separable
(i.e., with block diagonal Q- and R-matrices) cost function. Our choice of such a
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cost function is motivated by our interest in applications such as power grids [31–34]
and [4, Chs. 5,10], supply chains [6, 7], and water level control [4, Ch. 18], which
have been shown to be well-modeled by dynamically-coupled but cost-decoupled
interconnected systems. We show in the last section of the paper that the assump-
tion on the B-matrix can be partially removed for the sinks (i.e., subsystems that
cannot affect any other subsystem) in the plant graph.

We investigate the best closed-loop performance achievable by structured static
state feedback controllers constructed by limited model information design strate-
gies. We show that the result depends crucially on the plant graph and the control
graph. In the case where the plant graph contains no sink and the control graph
is a supergraph of the plant graph, we extend the fact proven in [30] that the
deadbeat strategy is the best communication-less control design method. However,
the deadbeat control design strategy is dominated when the plant graph has sinks,
and we exhibit a better, undominated, communication-less control design method,
which, although having the same competitive ratio as the deadbeat control design
strategy, takes advantage of the knowledge of the sinks’ location to achieve a better
closed-loop performance in average. We characterize the amount of model informa-
tion needed to achieve better competitive ratio than the deadbeat control design
strategy. This amount of information is expressed in terms of properties of the
design graph; a directed graph which indicates the dependency of each subsystem’s
controller on different parts of the global dynamical model.

This paper is organized as follows. After formulating the problem of inter-
est and defining the performance metrics in Section 2, we characterize the best
communication-less control design method according to both competitive ratio and
domination metrics in Section 3. In Section 4, we show that achieving a strictly bet-
ter competitive ratio than these control design methods requires a complete design
graph when the plant graph is itself complete. Finally, we end with a discussion on
extensions in Section 5 and the conclusions in Section 6.

1.1 Notation

Sets will be denoted by calligraphic letters, such as P and A. If A is a subset of
M then Ac is the complement of A inM, i.e.,M\A.

Matrices are denoted by capital roman letters such as A. Aj will denote the jth

row of A. Aij denotes a sub-matrix of matrix A, the dimension and the position of
which will be defined in the text. The entry in the ith row and the jth column of
the matrix A is aij .

Let Sn++ (Sn+) be the set of symmetric positive definite (positive semidefinite)
matrices in Rn×n. A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive
definite (positive semidefinite) and A > (≥)B means that A−B > (≥)0.

λ(Y ) and λ̄(Y ) denote the smallest and the largest eigenvalues of the matrix Y ,
respectively. Similarly, σ(Y ) and σ̄(Y ) denote the smallest and the largest singular
values of the matrix Y , respectively. Vector ei denotes the column-vector with all
entries zero except the ith entry, which is equal to one.
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All graphs considered in this paper are directed, possibly with self-loops, with
vertex set {1, ..., q} for some positive integer q. If G = ({1, ..., q}, E) is a directed
graph, we say that i is a sink if there does not exist j 6= i such that (i, j) ∈ E. A
loop of length t in G is a set of distinct vertices {i1, ..., it} such that (it, i1) ∈ E
and (ip, ip+1) ∈ E for all 1 ≤ p ≤ t − 1. We will sometimes refer to this loop as
(i1 → i2 → · · · → it → i1). The adjacency matrix S of graph G is the q × q matrix
whose entries satisfy

sij =
{

1 if (j, i) ∈ E
0 otherwise.

Since the set of vertices is fixed here, a subgraph of G is a graph whose edge set
is a subset of the edge set of G and a supergraph of G is a graph of which G is a
subgraph. We use the notation G′ ⊇ G to indicate that G′ is a supergraph of G.

2 Control Design with Limited Model Information

In this section, we introduce the system model and the problem under consideration,
but first, we present a simple illustrative example.

2.1 Illustrative Example
Consider a discrete-time linear time-invariant dynamical system composed of three
subsystems represented in state-space form as x1(k + 1)

x2(k + 1)
x3(k + 1)

=

 a11 a12 0
a21 a22 a23
0 a32 a33

 x1(k)
x2(k)
x3(k)

+

 b11u1(k)
b22u2(k)
b33u3(k)

 ,
where, for each subsystem i, xi(k) ∈ R is the state and ui(k) ∈ R is the con-
trol signal. This system, which is illustrated in Figure 1, is a simple networked
control system. Networked control systems have several important characteristics.
First, they are often distributed geographically. Therefore, it is natural to assume
that a given subsystem can only influence its neighboring subsystems. We capture
this fact using a directed graph called the plant graph like the one presented in
Figure 2(a) for this example. This star graph corresponds to applications like un-
manned aerial vehicles formation, platoon of vehicles, and composite formations of
power systems [35, 36].

Second, any communication medium that we use to transmit the sensor measure-
ments and actuation signals in networked control systems brings some limitations.
For instance, every communication network has band-limited channels. Therefore,
when designing subcontrollers, it might not make sense to assume that it can in-
stantaneously access full state measurements of the plant. The state measurement
availability in this example is u1(k)

u2(k)
u3(k)

 =

 k11 k12 0
k21 k22 k23
0 k32 k33

 x1(k)
x2(k)
x3(k)

 .
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We use a control graph to characterize the controller structure. Control graph
GK in Figure 2(b) represents the state-measurement availability in this example.
It corresponds to the case where neighboring subsystems transmit their state-
measurements to each other, which is common for unmanned aerial vehicles forma-
tion, autonomous ground vehicles platoons, and biological system of particles [1, 2,
37, 38].

Finally, in large-scale dynamical systems, it might be extremely difficult (if
not impossible) to identify all system parameters and update them globally. One
can only hope that the designer has access to the local parameter variations and
update the corresponding subcontroller based on them. Therefore, it makes sense
to assume that each local controller only has access to model information from its
corresponding subsystem; i.e., designer of subcontroller i uses only {ai1, ai2, ai3} in
the design procedure

[ki1 ki2 ki3] = Γi ([ai1 ai2 ai3], bii) ,

where Γi : R3 × R → R3 is the control design map. Note that assuming subcon-
troller i has access to the state-measurements of those subsystems that can affect
subsystem i, it can identify parameters {ai1, ai2, ai3}. However, identifying pa-
rameters {a1i, a2i, a3i} might not be possible since subcontroller i may not have
access to the state-measurements of all the subsystems that it can influence. The
block-diagram in Figure 1 does not specify Γ. We will use a directed graph called
the design graph to capture structural properties of Γ. Figure 2(c′) represents the
plant model information availability in this example. This totally disconnected
graph corresponds to applications such as supply chain management [7, 21] or ve-
hicle platooning [39, 40], where subsystems potentially belong to different entities
and privacy concerns might restrict plant model information circulation. In the rest
of this section, we formalize the above notions for more general design problems.

2.2 Plant Model
Let a graph GP = ({1, ..., q}, EP) be given, with adjacency matrix SP ∈ {0, 1}q×q.
We define the following set of matrices associated with SP :

A(SP) = {A ∈ Rn×n | Aij = 0 ∈ Rni×nj for all
1 ≤ i, j ≤ q such that (sP)ij = 0},

(1)

where for each 1 ≤ i ≤ q, integer number ni is the dimension of subsystem i.
Implicit in these definitions is the fact that

∑q
i=1 ni = n. Also, for a given scalar

ε > 0, we let

B(ε) = {B ∈ Rn×n | σ(B) ≥ ε, Bij = 0 ∈ Rni×nj for all 1 ≤ i 6= j ≤ q}. (2)

The set B(ε) defined in (2) is made of invertible block-diagonal square matrices
since σ(B) ≥ ε > 0 for each matrix B ∈ B(ε) ⊆ Rn×n. With these definitions, we
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can introduce the set P of plants of interest as the space of all discrete-time linear
time-invariant dynamical systems of the form

x(k + 1) = Ax(k) +Bu(k) ; x(0) = x0, (3)

with A ∈ A(SP), B ∈ B(ε), and x0 ∈ Rn. Clearly P is isomorph to A(SP)×B(ε)×
Rn and, slightly abusing notation, we will thus identify a plant P ∈ P with the
corresponding triple (A,B, x0).

A plant P ∈ P can be thought of as the interconnection of q subsystems, with
the structure of the interconnection specified by the graph GP (i.e., subsystem j’s
output feeds into subsystem i only if (j, i) ∈ EP). As a consequence, we refer to
GP as the “plant graph”. We will denote the ordered set of state indices pertaining
to subsystem i as Ii; i.e., Ii := (1 +

∑i−1
j=1 nj , . . . , ni +

∑i−1
j=1 nj). For subsystem i,

state vector and input vector are defined as

xi =
[
x`1 · · · x`ni

]T
, ui =

[
u`1 · · · u`ni

]T
where the ordered set of indices (`1, . . . , `ni) ≡ Ii, and its dynamics is specified by

xi(k + 1) =
q∑
j=1

Aijxj(k) +Biiui(k).

According to the specific structure of B(ε) given in (2), each subsystem is fully-
actuated, with as many input as states, and controllable in one time-step. Possible
generalization of the results to a (restricted) family of under-actuated systems is
discussed in Section 5.

Figure 2(a) shows an example of a plant graph GP . Each node represents a
subsystem of the system. For instance, the second subsystem in this example may
affect the first subsystem and the third subsystem; i.e., sub-matrices A12 and A32
can be nonzero. The self-loop for the second subsystem shows that A22 may be non-
zero. The plant graph GP in Figure 2(a) does not contain any sink. In contrast,
the first subsystem of the plant graph G′P in Figure 2(a′) is a sink. The control
graph GK is introduced in the next subsection.

2.3 Controller Model
Let a control graph GK be given, with adjacency matrix SK. The control laws of
interest in this paper are linear static state-feedback control laws of the form

u(k) = Kx(k),

where

K ∈ K(SK) = {K ∈ Rn×n|Kij = 0 ∈ Rni×nj for
all 1 ≤ i, j ≤ q such that (sK)ij = 0}.

(4)
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Figure 1: Physical interconnection between different subsystems and controllers
corresponding to GP and GK in Figures 2(a) and 2(b), respectively.
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Figure 2: GP and G′P are examples of plant graphs, GK and G′K are examples of
control graphs, and GC and G′C are examples of design graphs.

In particular, when GK is a complete graph, K(SK) = Rn×n, while, if GK is to-
tally disconnected with self-loops, K(SK) represents the set of fully-decentralized
controllers. When adjacency matrix SK is not relevant or can be deduced from
context, we refer to the set of controllers as K.

An example of a control graphGK is given in Figure 2(b). Each node represents a
subsystem-controller pair of the overall system. For instance, Figure 2(b) shows that
the first subsystem’s controller can use state measurements of the second subsystem
besides its own state measurements. Figure 2(b′) shows a complete graph, which
indicates that each subsystem has access to full state measurements of all other
subsystems; i.e., K(SK) = Rn×n.

2.4 Linear State Feedback Control Design Methods

A control design method Γ is a map from the set of plants P to the set of controllers
K. Just like plants and controllers, a control design method can exhibit structure
which, in turn, can be captured by a design graph. Let a control design method Γ
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be partitioned according to subsystems dimensions as

Γ =

 Γ11 · · · Γ1q
...

. . .
...

Γq1 · · · Γqq

 (5)

and a graph GC = ({1, ..., q}, EC) be given, with adjacency matrix SC . Each block
Γij represents a map A(SP) × B(ε) → Rni×nj . Control design method Γ can be
further partitioned in the form

Γ =

 γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn

 ,
where each γij is a map A(SP)×B(ε)→ R. We say that Γ has structure GC if, for
all i, the map [Γi1 · · · Γiq] is only a function of

{[Aj1 · · · Ajq] , Bjj | (sC)ij 6= 0} . (6)

In words, a control design method has structure GC if and only if, for all i, the
subcontroller of subsystem i is constructed with knowledge of the plant model
of only those subsystems j such that (j, i) ∈ EC . The set of all control design
methods with structure GC will be denoted by C. In the particular case where GC
is the totally disconnected graph with self-loops (meaning that every node in the
graph has a self-loop; i.e, SC = Iq), we say that a control design method in C is
“communication-less”, so as to capture the fact that subsystem i’s subcontroller is
constructed with no information coming from (and, hence, no communication with)
any other subsystem j, j 6= i. Therefore, the design graph indicates knowledge (or
lack thereof) of entire block rows in the aggregate system matrix. When GC is not
a complete graph, we refer to Γ ∈ C as being “a limited model information control
design method”.

Note that C can be considered as a subset of the set of functions from A(SP)×
B(ε) to K(SK), since a design method with structure GC is not a function of initial
state x0. Hence, when Γ ∈ C we will write Γ(A,B) instead of Γ(P ) for plant
P = (A,B, x0) ∈ P.

An example of a design graph GC is given in Figure 2(c). Each node repre-
sents a subsystem-controller pair of the overall system. For instance, GC shows
that the third subsystem’s model is available to the designer of the second sub-
system’s controller but not the first subsystem’s model. Figure 2(c′) shows a fully
disconnected design graph with self-loops G′C . A local designer in this case can
only rely on the model of its corresponding subsystem; i.e., the design strategy is
communication-less.



98 PAPER 1. OPTIMAL STRUCTURED STATIC STATE-FEEDBACK ...

2.5 Performance Metrics
The goal of this paper is to investigate the influence of the plant and design graph
on the properties of controllers constructed by limited model information control
design methods. To this end, we will use two performance metrics for control design
methods. These performance metrics are adapted from the notions of competitive
ratio and domination introduced in [30], so as to take plant, controller, and control
design structures into account. Following the approach in [30], we start by asso-
ciating a closed-loop performance criterion to each plant P = (A,B, x0) ∈ P and
controller K ∈ K. As explained in the introduction, we are particularly interested
in dynamically-coupled but cost-decoupled systems in this paper, hence, we use a
cost of the form

JP (K) =
∞∑
k=1

x(k)TQx(k) +
∞∑
k=0

u(k)TRu(k), (7)

where Q ∈ Sn++ and R ∈ Sn++ are block diagonal matrices, with each diagonal block
entry belonging to Sni++. Note that the summation in the first term on the right-
hand side of (7) starts from k = 1. This is without loss of generality as the removed
term x(0)TQx(0) is not a function of the controller. We make the following two
standing assumptions:

Assumption 1.1 Q = R = I.

This is without loss of generality because the change of variables (x̄, ū) =
(Q1/2x,R1/2u) transforms the performance criterion and state space representa-
tion into

JP (K) =
∞∑
k=1

x̄(k)T x̄(k) +
∞∑
k=0

ū(k)T ū(k), (8)

and

x̄(k + 1) = Q1/2AQ−1/2x̄(k) +Q1/2BR−1/2ū(k)
= Āx̄(k) + B̄ū(k),

respectively, without affecting the plant, control, or design graph (due to the block
diagonal structure of Q and R).

Assumption 1.2 The set of matrices B(ε) is replaced with the set of diagonal
matrices with diagonal entries greater than or equal to ε.

This assumption is without loss of generality. Indeed, consider a plant P =
(A,B, x0) ∈ P. Every sub-system’s Bii matrix has a singular value decompo-
sition Bii = UiiΣiiV Tii with Σii ≥ εIni×ni . Combining these singular value de-
compositions together results in a singular value decomposition for matrix B =
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UΣV T where U = diag(U11, U22, · · · , Uqq), Σ = diag(Σ11,Σ22, · · · ,Σqq), and V =
diag(V11, V22, · · · , Vqq). Defining x̄(k) = UTx(k) and ū(k) = V Tu(k) results in

x̄(k + 1) = UTAUx̄(k) + UTBV ū(k),

where UTBV is diagonal. Because of the block diagonal structure of matrices U
and V , the change of variables (A,B, x0) 7→ (UTAU,UTBV,UTx0) does not affect
the plant, control, or design graph. In addition, the cost function becomes

JP (K) =
∞∑
k=1

x̄(k)TUTUx̄(k) +
∞∑
k=0

ū(k)TV TV ū(k)

=
∞∑
k=1

x̄(k)T x̄(k) +
∞∑
k=0

ū(k)T ū(k),

which is of the form (8), because both U and V are unitary matrices. We are now
ready to define the performance metrics of interest in this paper.

Definition 1.1 (Competitive Ratio) Let a plant graph GP , control graph GK and
constant ε > 0 be given. Assume that, for every plant P ∈ P, there exists an
optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio of a control design method Γ is defined as

rP(Γ) = sup
P=(A,B,x0)∈P

JP (Γ(A,B))
JP (K∗(P )) ,

with the convention that “ 0
0” equals one.

Note that the mapping K∗ : P → K∗(P ) is not itself required to lie in the set C, as
every component of the optimal controller may depend on all entries of the model
matrices A and B.

Definition 1.2 (Domination) A control design method Γ is said to dominate an-
other control design method Γ′ if

JP (Γ(A,B)) ≤ JP (Γ′(A,B)), ∀ P = (A,B, x0) ∈ P, (9)

with strict inequality holding for at least one plant in P. When Γ′ ∈ C and no
control design method Γ ∈ C exists that satisfies (9), we say that Γ′ is undominated
in C for plants in P.
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2.6 Problem Formulation
With the definitions of the previous subsections in hand, we can reformulate the
main question of this paper regarding the connection between closed-loop perfor-
mance, plant structure, and limited model information control design as follows.
For a given plant graph, control graph, and design graph, we would like to determine

arg min
Γ∈C

rP(Γ). (10)

Since several design methods may achieve this minimum, we are interested in de-
termining which ones of these strategies are undominated.

In [30], this problem was solved in the case when GP and GK are complete
graphs, GC is a totally disconnected graph with self-loops (i.e., SC = Iq), and B(ε)
is replaced with singleton {In}. In this paper, we investigate the role of more general
plant and design graphs. We also extend the results in [30] for scalar subsystems
to subsystems of arbitrary order ni ≥ 1, 1 ≤ i ≤ q.

3 Plant Graph Influence on Achievable Performance

In this section, we study the relationship between the plant graph and the achievable
closed-loop performance in terms of the competitive ratio and domination.

Definition 1.3 The deadbeat control design method Γ∆ : A(SP) × B(ε) → K is
defined as

Γ∆(A,B) = −B−1A, for all P = (A,B, x0) ∈ P.

This control design method is communication-less; i.e., the control design for the
subsystem i is a function of the model of subsystem i only, because subsystem i’s
controller gain

[
Γ∆
i1(A,B) · · · Γ∆

iq(A,B)
]
equals to B−1

ii [Ai1 · · · Aiq]. The name
“deadbeat” comes from the fact that the closed-loop system obtained by applying
controller Γ∆(A,B) to plant P = (A,B, x0) reaches the origin in just one time-
step [41].

Remark 1.1 Note that for the case where the control graph GK is a complete
graph; i.e., K = Rn×n, there exists a controller K∗(P ) satisfying the assumptions
of Definition 1.1 for all P ∈ P, namely, the optimal linear quadratic regulator which
is independent of the initial condition of the plant. For incomplete control graphs,
the optimal control design strategy K∗(P ) (if exists) might become a function of
the initial condition [42]. Hence, we will use K∗(A,B) instead of K∗(P ) when
the control graph GK is a complete graph for each plant P = (A,B, x0) ∈ P to
emphasize this fact.

From Definition 1.1, the notation K∗(P ) is reserved for the optimal control
design strategy for any given control graph GK. In contrast, when GK is not the
complete graph, we will refer to the optimal unstructured controller as K∗C(A,B).
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Lemma 1.1 Let the control graph GK be a complete graph. The cost of the optimal
control design strategy K∗ is lower-bounded by

JP (K∗(A,B)) ≥
(

σ2(B)
σ2(B) + 1

)
JP (Γ∆(A,B)),

for all plants P = (A,B, x0) ∈ P.

Proof: See [43, p.73–74].

Theorem 1.2 Let the plant graph GP contain no isolated node and GK ⊇ GP .
Then the competitive ratio of the deadbeat control design method Γ∆ is

rP(Γ∆) = 1 + 1/ε2.

Proof: Irrespective of the control graph GK and for all plants P ∈ P, it is true
that JP (K∗C(A,B)) ≤ JP (K∗(P )). Therefore, we get

JP (Γ∆(A,B))
JP (K∗(P )) ≤ JP (Γ∆(A,B))

JP (K∗C(A,B)) .
(11)

Now, using Lemma 1.1, we know that

JP (Γ∆(A,B))
JP (K∗C(A,B)) ≤ 1 + 1

σ2(B) ,
(12)

for all P = (A,B, x0) ∈ P. Combining (12) and (11) results in

rP(Γ∆) = sup
P∈P

JP (Γ∆(A,B))
JP (K∗(P )) ≤ 1 + 1

ε2
.

To show that this upper bound is attained, let us pick i1 ∈ Ii and j1 ∈ Ij where
1 ≤ i 6= j ≤ q and (sP)ij 6= 0 (such indices i and j exist because plant graph GP
has no isolated node by assumption). Consider the system A = ei1e

T
j1

and B = εI.
The unique positive definite solution of the discrete algebraic Riccati equation

ATXA−ATXB(I +BTXB)−1BTXA = X − I, (13)

is X = I + [1/(1 + ε2)]ej1e
T
j1
. Consequently, the centralized controller K∗C(A,B) =

−ε/(1 + ε2)ei1eTj1
belongs to the set K(SK) because GK ⊇ GP . Thus, we get

J(A,B,ej1 )(K∗(A,B, ej1)) ≤ J(A,B,ej1 )(K∗C(A,B)) (14)

since K∗(P ) has a lower cost than any other controller in K(SK). On the other
hand, it is evident that

J(A,B,ej1 )(K∗C(A,B)) ≤ J(A,B,ej1 )(K∗(A,B, ej1)) (15)
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because the centralized controller has access to more state measurements. Us-
ing (14) and (15) simultaneously results in

J(A,B,ej1 )(K∗(A,B, ej1)) = J(A,B,ej1 )(K∗C(A,B))
= 1/(1 + ε2).

On the other hand Γ∆(A,B) = −[1/ε]ei1eTj1
and J(A,B,ej1 )(Γ∆(A,B)) = 1/ε2.

Therefore, rP(Γ∆) = 1 + 1/ε2.

Remark 1.2 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a) and the control graph G′K in Figure 2(b′). Theo-
rem 1.2 shows that, if we apply the deadbeat control design strategy to this particular
problem, the performance of the deadbeat control design strategy, at most, can be
1 + 1/ε2 times the cost of the optimal control design strategy K∗. For instance,
when B = {I} as in [30], we have 1 + 1/ε2 = 2 since in this case ε = 1. Therefore,
the deadbeat control design strategy is never worse than twice the optimal controller
in this case.

Remark 1.3 There is no loss of generality in assuming that there is no isolated
node in the plant graph GP , since it is always possible to design a controller for an
isolated subsystem without any model information about the other subsystems and
without impacting cost (7). In particular, this implies that there are q ≥ 2 vertices
in the graph because for q = 1 the only subsystem that exists is an isolated node in
the plant graph.

Remark 1.4 For implementation of the deadbeat control design strategy in each
node, we only need the state measurements of the neighbors of that node. For the
implementation of the optimal control design strategy K∗ when the control graph has
many more links than the plant graph, the controller gain K∗(P ) is not necessarily
a sparse matrix.

With this characterization of Γ∆ in hand, we are now ready to tackle prob-
lem (10).

3.1 First case: plant graph GP with no sink

In this subsection, we show that the deadbeat control method Γ∆ is undominated
by communication-less control design methods for plants in P, when GP contains
no sink. We also show that Γ∆ exhibits the smallest possible competitive ratio
among such control design methods. First, we state the following two lemmas.

Lemma 1.3 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . A control design
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method Γ ∈ C has bounded competitive ratio only if the following implication holds
for all 1 ≤ i ≤ q and all j:

a`j = 0 for all ` ∈ Ii ⇒ γ`j(A,B) = 0 for all ` ∈ Ii,

where Ii is the set of indices related to subsystem i; i.e., Ii = (1+
∑i−1
z=1 nz, . . . , ni+∑i−1

z=1 nz).

Proof: See [43, p.75] or [44].

Lemma 1.4 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . Assume the plant
graph GP has at least one loop. Then,

rP(Γ) ≥ 1 + 1/ε2 (16)

for all limited model information control design method Γ in C.

Proof: See [43, p.75–77].

Using these two lemmas, we are ready to state and prove one of the main
theorems in this paper and, as a result, find the solution to problem (10) when the
plant graph GP contains no sink.

Theorem 1.5 Let the plant graph GP contain no isolated node and no sink, the
design graph GC be a totally disconnected graph with self-loops, and GK ⊇ GP .
Then the competitive ratio of any control design strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2.

Proof: From Lemma 1.4.23 in [45], we know that a directed graph with no sink
must have at least one loop. Hence GP must contain a loop. The result then follows
from Lemma 1.4.

Remark 1.5 Theorem 1.5 shows that rP(Γ) ≥ rP(Γ∆) for any control design strat-
egy Γ ∈ C, and as a result the deadbeat control design method Γ∆ becomes a mini-
mizer of the competitive ratio function rP over the set of communication-less design
methods.

We now turn our attention to domination properties of the deadbeat control
design strategy.

Lemma 1.6 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . The deadbeat control
design strategy Γ∆ is undominated, if there is no sink in the plant graph GP .
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Proof: See [43, p.77–79].

The following theorem shows that the deadbeat control design strategy is un-
dominated by communication-less design methods if and only if the plant graph
GP has no sink. It thus provides a good trade-off between worst-case and average
performance.

Theorem 1.7 Let the plant graph GP contain no isolated node, the design graph
GC be a totally disconnected graph with self-loops, and GK ⊇ GP . Then the deadbeat
control design method Γ∆ is undominated in C for plants in P if and only if the
plant graph GP has no sink.

Proof: Proof of the “if” part of the theorem, is given by Lemma 1.6.
For ease of notation in this proof, we use [Γ]i = [Γi1 · · · Γiq] and [A]i =

[Ai1 · · · Aiq].
In order to prove the “only if” part of the theorem, we need to show that if the

plant graph has a sink (i.e., if there exists j such that (sP)ij = 0 for every i 6= j),
then there exists a control design method Γ which dominates the deadbeat control
design method. We exhibit such a strategy.

Without loss of generality, we can assume that (sP)iq = 0 for all i 6= q, in which
case every matrix A in A(SP) has the structure

A =


A11 · · · A1,q−1 0
...

. . .
...

...
Aq−1,1 · · · Aq−1,q−1 0
Aq1 · · · Aq,q−1 Aqq

 .
Define x̄0 = [ x1(0) · · · xq−1(0) ]T , and let control design strategy Γ be defined
by 

−B−1
11 A11 · · · −B−1

11 A1,q−1 0
...

. . .
...

...
−B−1

q−1,q−1Aq−1,1 · · · −B−1
q−1,q−1Aq−1,q−1 0

Kq1(A,B) · · · Kq,q−1(A,B) Kqq(A,B)


for all P = (A,B, x0) ∈ P, with

K̄(A,B) : =
[
Kq1(A,B) · · · Kq,q−1(A,B) Kqq(A,B)

]
= −(I +BTqqXqqBqq)−1BTqqXqq[A]q,

where Xqq is the unique positive definite solution to the discrete algebraic Riccati
equation

ATqqXqqBqq(I+BTqqXqqBqq)−1BTqqXqqAqq

−ATqqXqqAqq +Xqq − I = 0.
(17)
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In words, control design strategy Γ applies the deadbeat strategy to subsystems 1
to q − 1 while, on subsystem q, it uses the same subcontroller as in the optimal
controller for the plant

x̂(k + 1) = Âx̂(k) + B̂û(k), (18)

with cost function

J
(2)
(A,B,x0)(K̄) =

∞∑
k=1

x̂(k)TQx̂(k) +
∞∑
k=0

û(k)T û(k),

where Q = diag(0, . . . , 0, Inq×nq ), the matrix Â is defined as [Â]q = [A]q and [Â]z =
0 for all z 6= q, and furthermore, the matrix B̂ is defined as B̂ = diag(0, . . . , 0, Bqq).
Note that Γ is indeed communication-less since K̄(A,B) defined above can be com-
puted with the sole knowledge of the qth lower block of A and B. Because of the
structure of matrices in A(SP) and this characterization of Γ, we have

J(A,B,x0)(Γ(A,B)) = J
(1)
(A,B,x0) + J

(2)
(A,B,x0)(K̄(A,B)),

where J (1)
(A,B,x0) = x̄T0 Ā

T B̄−T B̄−1Āx̄0, with

Ā =

 A11 · · · A1,q−1
...

. . .
...

Aq−1,1 · · · Aq−1,q−1

 ,
and B̄ = diag(B11, . . . , Bq−1,q−1) and J (2)

(A,B,x0)(K̄(A,B)) is the closed-loop cost for
system (18). Since K̄(A,B) is the optimal controller for this cost, J (2)

(A,B,x0)(K̄(A,B))
= xT0 Â

TWÂx0, where

W = diag(0, . . . , 0, Xqq −XqqBqq(I +BTqqXqqBqq)−1BTqqXqq).

Using part 2 of Subsection 3.5.2 in [46], we have the matrix inversion identity

X −XY (I + ZXY )−1ZX = (X−1 + Y Z)−1,

which results in

Wqq = Xqq −XqqBqq(I +BTqqXqqBqq)−1BTqqXqq

= (X−1
qq +BqqB

T
qq)−1

< B−Tqq B
−1
qq .

Note that X−1
qq exists because Xqq ≥ I which follows from the discrete algebraic

Riccati equation in (17). This inequality implies that

ÂTWÂ < ÂT (B̂†)T B̂†Â
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where B̂† = diag(0, . . . , 0, B−1
qq ). Thus

J(A,B,x0)(Γ(A,B)) = J
(1)
(A,B,x0) + J

(2)
(A,B,x0)(K̄(A,B))

< J(A,B,x0)(Γ∆(A,B)),

for all P = (A,B, x0) ∈ P such that the qth lower block of A is not zero, oth-
erwise J(A,B,x0)(Γ(A,B)) = J(A,B,x0)(Γ∆(A,B)). Thus, control design method Γ
dominates the deadbeat control design method Γ∆.

Remark 1.6 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a), the control graph G′K in Figure 2(b′), and the design
graph G′C in Figure 2(c′). Theorems 1.5 and 1.7 show that the deadbeat control
design strategy Γ∆ is the best control design strategy that one can propose based
on the local model of subsystems and the plant graph, because the deadbeat control
design strategy is the minimizer of the competitive ratio and it is undominated.

Remark 1.7 It should be noted that, the proof of the “only if” part of the Theo-
rem 1.7 is constructive. We use this construction to build a control design strategy
for the plant graphs with sinks in next subsection.

3.2 Second case: plant graph GP with at least one sink

In this section, we consider the case where plant graph GP has c ≥ 1 sinks. Ac-
cordingly, its adjacency matrix SP is of the form

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (19)

where

(SP)11 =

 (sP)11 · · · (sP)1,q−c
...

. . .
...

(sP)q−c,1 · · · (sP)q−c,q−c

 ,

(SP)21 =

 (sP)q−c+1,1 · · · (sP)q−c+1,q−c
...

. . .
...

(sP)q,1 · · · (sP)q,q−c

 ,
and

(SP)22 =

 (sP)q−c+1,q−c+1 · · · 0
...

. . .
...

0 · · · (sP)qq

 ,
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where we assume, without loss of generality, that the vertices are numbered such
that the sinks are labeled q− c+ 1, . . . , q. With this notation, let us now introduce
the control design method ΓΘ defined by

ΓΘ(A,B) = −diag(B−1
11 , . . . , B

−1
q−c,q−c,Wq−c+1(A,B), . . . ,Wq(A,B))A (20)

for all (A,B) ∈ A(SP)× B(ε), where

Wi(A,B) = (I +BTiiXiiBii)−1BTiiXii (21)

for all q − c + 1 ≤ i ≤ q and Xii is the unique positive definite solution of the
discrete algebraic Riccati equation

ATiiXiiBii(I +BTiiXiiBii)−1BTiiXiiAii −ATiiXiiAii +Xii − I = 0. (22)

The control design method ΓΘ applies the deadbeat strategy to every subsystem
that is not a sink and, for every sink, applies the same optimal control law as if
the node were decoupled from the rest of the graph. We will show that when the
plant graph contains sinks, ΓΘ has, in worst case, the same competitive ratio as the
deadbeat strategy. Unlike the deadbeat strategy, it has the additional property of
being undominated by communication-less methods for plants in P when the plant
graph GP has sinks.

Lemma 1.8 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . Let Γ be a control
design strategy in C. Suppose that there exist i and j 6= i such that (sP)ij 6= 0 and
that node i is not a sink. The competitive ratio of Γ is bounded only if

Aij +BiiΓij(A,B) = 0, for all P = (A,B, x0) ∈ P.

Proof: See [43, p.79–80].

Remark 1.8 Lemma 1.8 shows that a necessary condition for a bounded competi-
tive ratio is to decouple the nodes that are not sinks from the rest of the network.

Now, we are ready to compute the competitive ratio of the newly defined control
design strategy ΓΘ. This is done at first for the case where the control graph GK
is a complete graph.

Theorem 1.9 Let the plant graph GP contain no isolated node and at least one
sink, and the control graph GK be a complete graph. Then the competitive ratio of
the communication-less design method ΓΘ introduced in (20) is

rP(ΓΘ) =
{

1, if (SP)11 = 0 and (SP)22 = 0,
1 + 1/ε2, otherwise.
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Proof: Based on Theorem 1.2 we know that, for every plant P = (A,B, x0) ∈ P

J(A,B,x0)(K∗(A,B)) ≥ ε2

1 + ε2
xT0 A

TB−TB−1Ax0, (23)

In addition, proceeding as in the proof of the “only if” part of the Theorem 1.7, we
know that

J(A,B,x0)(Γ∆(A,B)) ≥ J(A,B,x0)(ΓΘ(A,B)). (24)

Plugging equation (24) into equation (23) results in

J(A,B,x0)(ΓΘ(A,B))
J(A,B,x0)(K∗(A,B)) ≤ 1 + 1

ε2
, ∀P = (A,B, x0) ∈ P.

As a result, rP(ΓΘ) ≤ 1 + 1/ε2. To show that this upper-bound is tight, we now
exhibit plants for which it is attained. We use a different construction depending
on matrices (SP)11 and (SP)22. If (SP)11 6= 0, two situations can occur.
Case 1: (SP)11 6= 0 and it is not diagonal. There exist 1 ≤ i 6= j ≤ q − c such that
(sP)ij 6= 0. In this case, choose indices i1 ∈ Ii and j1 ∈ Ij and define A = ei1e

T
j1

and B = εI. Then, for x0 = ej1 , we find that

J(A,B,x0)(ΓΘ(A,B))
J(A,B,x0)(K∗(A,B)) = 1/ε2

1/(1 + ε2) = 1 + 1
ε2

because the control design ΓΘ acts like the deadbeat control design method on this
plant.
Case 2: (SP)11 6= 0 and it is diagonal. There exists 1 ≤ i ≤ q − c such that
(sP)ii 6= 0. Pick an index i1 ∈ Ii. In that case, consider A(r) = rei1e

T
i1

and
B = εI. For x0 = ei1 , the optimal cost is

J(A(r),B,x0)(K∗(A(r), B)) =
√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2ε2 ,

which results in
lim
r→0

J(A,B,x0)(ΓΘ(A,B))
J(A,B,x0)(K∗(A,B)) = 1 + 1

ε2
.

Now suppose that (SP)11 = 0. Again, two different situations can occur.
Case 3: (SP)11 = 0 and (SP)22 6= 0. There exists q − c + 1 ≤ i ≤ q such that
(sP)ii 6= 0. From the assumption that the plant graph contains no isolated node,
we know that there must exist 1 ≤ j ≤ q− c such that (sP)ij 6= 0. Accordingly, let
us pick i1 ∈ Ii and j1 ∈ Ij and consider the 2-parameter family of matrices A(r, s)
in A(SP) with all entries equal to zero except ai1i1 , which is equal to r, and ai1j1 ,
which is equal to s. Let B = εI. For any initial condition x0, the corresponding
closed-loop performance is

J(A(r,s),B,x0)(ΓΘ(A(r, s), B)) = βΘx
T
0 a(r, s)a(r, s)Tx0,
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where we have let a(r, s) = A(r, s)Ti1 and βΘ is

βΘ =
√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2ε2r2 .

Besides, the optimal closed-loop performance can be computed as

J(A(r,s),B,x0)(K∗(A(r, s), B)) = βK∗x
T
0 a(r, s)a(r, s)Tx0,

where βK∗ is

βK∗ =
ε2s2 + r2(1 + ε2)− (ε2 + 1)2 +√c+c−

2ε2(ε2 + 1)(s2 + r2) ,

c± = (ε2s2 + (r2 ± 2r)(ε2 + 1) + (ε2 + 1)2).
Then,

rP(ΓΘ) ≥ lim
r→∞, sr→∞

J(A(r,s),B,x0)(ΓΘ(A(r, s), B))
J(A(r,s),B,x0)(K∗(A(r, s), B))

= 1 + 1
ε2

Case 4: (SP)11 = 0 and (SP)22 = 0. Then, every matrix A ∈ A(SP) has the form[
0 0
∗ 0

]
and, in particular, is nilpotent of degree 2; i.e., A2 = 0. In this case,

the Riccati equation yielding the optimal control gain K∗(A,B) can be readily
solved, and we find that K∗(A,B) = −(I + BTB)−1BTA for all (A,B). As a
result, K∗(A,B) = ΓΘ(A,B) for all plant P = (A,B, x0) ∈ P (since Wi(A,B) =
(I + BTiiBii)−1BTii for all q − c + 1 ≤ i ≤ q), which implies that the competitive
ratio of ΓΘ against plants in P is equal to one.

In Theorem 1.9, the control graph GK is assumed to be a complete graph. We
needed this assumption to calculate the cost of the optimal control design strategy
K∗(P ) when (SP)11 = 0 and (SP)22 6= 0 which is not an easy task when the control
graph GK is incomplete. However, more can be said if (SP)11 6= 0.

Corollary 1.10 Let the plant graph GP contain no isolated node and at least one
sink and GK ⊇ GP . Then

rP(ΓΘ) =
{

1, if (SP)11 = 0 and (SP)22 = 0,
1 + 1/ε2, if (SP)11 6= 0.

Proof: According to Theorem 1.9, for (SP)11 6= 0, we get

rP(ΓΘ) = sup
P∈P

J(A,B,x0)(ΓΘ(A,B))
J(A,B,x0)(K∗(P ))

≤ sup
P∈P

J(A,B,x0)(ΓΘ(A,B))
J(A,B,x0)(K∗C(A,B)) = 1 + 1

ε2
.
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Case 1: (SP)11 6= 0 and it is not diagonal. For the special plant introduced in Case 1
in the proof of Theorem 1.9, we have J(A,B,ej1 )(K∗C(A,B))=J(A,B,ej1 )(K∗(A,B,ej1))
since A = ei1e

T
j1

is a nilpotent matrix. The rest of the proof is similar to Case 1 in
the proof of Theorem 1.9.
Case 2: (SP)11 6= 0 and it is diagonal. Note that, for the special plant introduced
Case 2 in the proof of Theorem 1.9, we have

K∗C(A,B) = −
√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2εr2 A

which shows K∗C(A,B) ∈ K(SK) and similar to the proof of Theorem 1.2, we get
J(A,B,ei1 )(K∗C(A,B)) = J(A,B,ei1 )(K∗(A,B, ei1)). The rest of the proof is similar
to Case 2 in the proof of Theorem 1.9.
Case 3: (SP)11 = 0 and (SP)22 = 0. Then, every A ∈ A(SP) is nilpotent matrix
which results in JP (K∗(P )) = JP (K∗C(A,B)). The rest of the proof is similar to
Case 4 in the proof of Theorem 1.9.

Now that we have computed the competitive ratio of the control design strategy
ΓΘ in the presence of sinks, we present a theorem to show that the competitive ratio
of any other communication-less control design strategy is lower-bounded by the
competitive ratio of ΓΘ when the control graph GK is a complete graph. Therefore,
the control design strategy ΓΘ is a minimizer of the competitive ratio over the set
of limited model information control design strategies.

Theorem 1.11 Let the plant graph GP contain no isolated node and at least one
sink, the control graph GK be a complete graph, and the design graph GC be a totally
disconnected graph with self-loops. Then the competitive ratio of any control design
strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2,

if either (SP)11 is not diagonal or (SP)22 6= 0.

Proof: Case 1: (SP)11 6= 0 and it is not diagonal. Then, there exist 1 ≤ i, j ≤ q−c
and i 6= j such that (sP)ij 6= 0. Choose indices i1 ∈ Ii and j1 ∈ Ij and consider
the matrix A defined by A = ei1e

T
j1

and B = εI. From Lemma 1.8, we know that
a communication-less method Γ has a bounded competitive ratio only if Γ(A,B) =
−B−1A (because node i is a part of (SP)11 and it is not a sink). Therefore

rP(Γ) ≥
J(A,B,ej1 )(Γ(A,B))
J(A,B,ej1 )(K∗(A,B)) = 1 + 1

ε2

for any such method.
Case 2: (SP)22 6= 0. There thus exists q − c + 1 ≤ i ≤ q such that (sP)ii 6= 0.
Note that, there exists 1 ≤ j ≤ q− c such that (sP)ij 6= 0, since there is no isolated
node in the plant graph. Choose indices i1 ∈ Ii and j1 ∈ Ij . Consider A defined
as A = rei1e

T
j1

+ sei1e
T
i1

and B = εI. As indicated in the proof of Theorem 1.9,
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control design strategy ΓΘ yields the globally optimal controller with limited model
information for plants in this family. Hence, we know that rP(Γ) ≥ 1 + 1/ε2 for
every communication-less strategy Γ.

In Theorem 1.11, we assume the control graph GK is a complete graph. In the
next corollary, we generalize this result to the case where GK is a supergraph of
GP when (SP)11 is not diagonal.

Corollary 1.12 Let the plant graph GP contain no isolated node and at least one
sink, the design graph GC be a totally disconnected graph with self-loops, and GK ⊇
GP . Then the competitive ratio of any control design strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2,

if (SP)11 is not diagonal.

Proof: Considering that for the nilpotent matrix A = ei1e
T
j1
, we get J(A,B,ej1 )

(K∗(A,B, ej1)) = J(A,B,ej1 )(K∗C(A,B)), the rest of the proof is similar to Case 1
in the proof of Theorem 1.11.

Remark 1.9 Combining Theorems 1.9 and 1.11 implies that if either (SP)11 is not
diagonal or (SP)22 6= 0, control design method ΓΘ exhibits the same competitive
ratio as the deadbeat control strategy, which is the smallest ratio achievable by a
communication-less control method. Therefore, it is a solution to problem (10).
Furthermore, if (SP)11 and (SP)22 are both zero, then ΓΘ is equal to K∗, which
shows that ΓΘ is a solution to problem (10), in this case too.

Remark 1.10 The case where (SP)11 is diagonal and (SP)22 = 0 is still open.

The next theorem shows that ΓΘ is a more desirable control design method than
the deadbeat control design strategy when the plant graph GP has sinks, since it
is then undominated by communication-less design methods.

Theorem 1.13 Let the plant graph GP contain no isolated node and at least one
sink, the design graph GC be a totally disconnected graph with self-loops, and GK ⊇
GP . The control design method ΓΘ is undominated by any control design method
Γ ∈ C.

Proof: See [43, p.80–82].

Remark 1.11 Consider the limited model information design problem given by
the plant graph G′P in Figure 2(a′), the control graph G′K in Figure 2(b′), and the
design graph G′C in Figure 2(c′). Theorems 1.9, 1.11, and 1.13 together show that,
the control design strategy ΓΘ is the best control design strategy that one can propose
based on the local model information and the plant graph, because the control design
strategy ΓΘ is a minimizer of the competitive ratio and it is undominated.
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Remark 1.12 For general weight matrices Q and R appearing in the performance
cost, the competitive ratio of both the deadbeat control design strategy Γ∆ and the
control design strategy ΓΘ is 1 + σ̄(R)/(σ(Q)ε2). In particular, the competitive
ratio has a limit equal to one as σ̄(R)/σ(Q) goes to zero. We thus recover the well-
known observation (e.g., [47]) that, for discrete-time linear time-invariant systems,
the optimal linear quadratic regulator approaches the deadbeat controller in the limit
of “cheap control”.

4 Design Graph Influence on Achievable Performance

In the previous section, we have shown that communicat-ion-less control design
methods (i.e., GC is totally disconnected with self-loops) have intrinsic performance
limitations, and we have characterized minimal elements for both the competitive
ratio and domination metrics. A natural question is “given plant graph GP , which
design graph GC is necessary to ensure the existence of Γ ∈ C with better compet-
itive ratio than Γ∆ and ΓΘ ?”. We tackle this question in this section.

Theorem 1.14 Let the plant graph GP and the design graph GC be given and
GK ⊇ GP . If one of the following conditions is satisfied then rP(Γ) ≥ 1 + 1/ε2 for
all Γ ∈ C:

(a) GP contains the path k → i→ j with distinct nodes i, j, and k while (j, i) /∈
EC.

(b) There exist i 6= j such that ni ≥ 2 and (i, j) ∈ EP while (j, i) /∈ EC.

Proof: We prove the case when condition (a) holds. The proof for condition (b)
is similar.

Let i, j, and k be three distinct nodes such that (sP)ik 6= 0 and (sP)ji 6= 0
(i.e., the path k → i→ j is contained in the plant graph GP). Let us pick i1 ∈ Ii,
j1 ∈ Ij and k1 ∈ Ik and consider the 2-parameter family of matrices A(r, s) in
A(SP) with all entries equal to zero except ai1k1 , which is equal to r, and aj1i1 ,
which is equal to s. Let B = εI and let Γ ∈ C be a limited model information with
design graph GC . For x0 = ek1 , we have

J(A(r,s),B,ek1 )(Γ(A(r, s), B)) ≥ (r + εγi1k1(A,B))2[γ2
j1i1(A,B)+(s+ εγj1i1(A,B))2]

where γi1k1 cannot be a function of s because (j, i) /∈ EC . Note that, irrespective
of the choice of γj1i1(A,B), we have

J(A(r,s),B,ek1 )(Γ(A(r, s), B)) ≥ (r + εγi1k1(A,B))2s2

1 + ε2
.

The cost of the deadbeat control design on this plant satisfies

J(A(r,s),B,ek1 )(Γ∆(A(r, s), B)) = r2/ε2,
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and thus

rP(Γ) = sup
P∈P

JP (Γ(A,B))
JP (K∗(P ))

= sup
P∈P

[
JP (Γ(A,B))
JP (Γ∆(A,B))

JP (Γ∆(A,B))
JP (K∗(P ))

]
≥ sup
P∈P

JP (Γ(A,B))
JP (Γ∆(A,B)) ,

≥ lim
s→∞

ε2(r + εγi1k1(A,B))2s2

(1 + ε2)r2 .

(25)

This shows that rP(Γ) is unbounded unless r + εγi1k1(A(r, s), B) = 0 for all r, s.
Now consider the 1-parameter family of matrices Ā(r) with all entries equal to zero
except ai1k1 , which is equal to r. Because of (j, i) /∈ EC , we know that Γz(Ā(r), B) =
Γz(A(r, s), B) for all z ∈ Ii. Thus

J(Ā(r),B,ek1 )(Γ(Ā(r), B)) ≥ r2/ε2.

On the other hand, similar to the proof of Theorem 1.2, we can compute the optimal
controller for systems in this 1−parameter family and find

J(Ā(r),B,ek1 )(K∗(Ā(r), B, ek1)) = J(Ā(r),B,ek1 )(K∗C(Ā(r), B))

= r2/(1 + ε2),

As a result, we get

rP(Γ) ≥ r2/ε2

r2/(1 + ε2) = 1 + 1
ε2
,

which concludes the proof for this case.

Remark 1.13 Consider the limited model information design problem given by
the plant graph GP in Figure 2(a), the control graph G′K in Figure 2(b′), and the
design graph GC in Figure 2(c). Theorem 1.14 shows that, because the plant graph
GP contains the path 3→ 2→ 1 but the design graph GC does not contain 1→ 2,
the competitive ratio of any control design strategy Γ ∈ C would be greater than or
equal to 1 + 1/ε2.

Corollary 1.15 Let both the plant graph GP and the control graph GK be complete
graphs. If the design graph GC is not equal to GP , then rP(Γ) ≥ 1 + 1/ε2 for all
Γ ∈ C.

Proof: The proof is a direct application of Theorem 1.14 with condition (a) fulfilled.

Remark 1.14 Corollary 1.15 shows that, when GP is a complete graph, achieving
a better competitive ratio than the deadbeat design strategy requires each subsystem
to have full knowledge of the plant model when constructing each subcontroller.
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5 Extensions to Under-Actuated Sinks

In the previous sections, we gave an explicit solution to the problem in (10) under
the assumption that all the subsystems are fully-actuated; i.e., all the matrices
B ∈ B(ε) are square invertible matrices. Note that this assumption stems from
the fact that the subsystems that are not sinks in the plant graph are required to
decouple themselves from the rest of the plant to avoid influencing highly sensitive
(and potentially hard to control) subsystems in order to keep the competitive ratio
finite (see Lemma 1.8). Therefore, we assume these subsystems are fully-actuated to
easily decouple them from the rest of the system. As a future direction for improve-
ment, one can try to replace this assumption with other conditions (e.g., geometric
conditions) to ensure that the subsystems can decouple themselves. From the same
argument, it should be expected that the assumption of a square invertible B-matrix
is dispensable for sink nodes. In this section, we briefly discuss an extension of our
results to the slightly more general, but still restricted, class of plants whose sinks
are under-actuated.

Consider the limited model information control design problem given with the
plant graph GP , the control graph GK, and the design graph GC given in Figure 3.
The state space representation of the system is given as[

x1(k + 1)
x2(k + 1)

]
= A

[
x1(k)
x2(k)

]
+B

[
u1(k)
u2(k)

]
,

where

A =
[
A11 0
A21 A22

]
, B =

[
B11 0
0 B22

]
,

with x1(k) ∈ Rn1 , x2(k) ∈ Rn2 , u1(k) ∈ Rn1 , and u2(k) ∈ Rm2 for some given
integers n1 ≥ 1, n2 > m2 ≥ 1. Thus, for the second subsystem the matrix B22 ∈
Rn2×m2 is a non-square matrix, and as a result the second subsystem is an under-
actuated subsystem. Let us assume that the matrices A21, A22, B22 satisfy the
“matching condition”; i.e., the pair (A22, B22) is controllable and span(A21) ⊆
span(B22) [48]. Besides, assume that for all matrices B, we have σ(B) ≥ ε for some
ε > 0. For this case, we have

ΓΘ(A,B) = −diag(B−1
11 ,W2(A22, B22))A,

where W2(A22, B22) is defined in (21). Note that we do not require the matrix B22
to be square invertible. Under some additional conditions and following a similar
approach as above, it can be shown that the control design strategy ΓΘ becomes
an undominated minimizer of the competitive ratio over the set of limited model
information control design strategies. This result can be generalized to cases with
higher number of subsystems as long as the sinks in the plant graph GP are the
only under-actuated subsystems [49].
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Figure 3: Plant graphGP , control graphGK, and design graphGC used to illustrate
an extension to under-actuated systems.

6 Conclusion

We presented a framework for the study of control design under limited model infor-
mation, and investigated the connection between the quality of controllers produced
by a design method and the amount of plant model information available to it. We
showed that the best performance achievable by a limited model information con-
trol design method crucially depends on the structure of the plant graph and, thus,
that giving the designer access to this graph, even without a detailed model of all
plant subsystems, results in superior design, in the sense of domination. Possible
future work will focus on extending the present framework to dynamic controllers
and/or where disturbances are present.
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Dynamic Control Design Based on Limited Model
Information
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Abstract–The design of optimal H2 dynamic controllers for interconnected linear sys-
tems using limited plant model information is considered. Control design strategies based
on various degrees of model information are compared using the competitive ratio as a
performance metric, that is, the worst case control performance for a given design strategy
normalized with the optimal control performance based on full model information. An
explicit minimizer of the competitive ratio is found. It is shown that this control design
strategy is not dominated by any other strategy with the same amount of model infor-
mation. The result applies to a class of system interconnections and design information
characterized through given plant, control, and design graphs.
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1 Introduction

Many large-scale physical systems are composed of several smaller interconnected
units. For these interconnected systems, it seems natural to employ local controllers
which observe local states and control local inputs. The problem of designing
such subcontrollers is usually addressed in the decentralized and distributed control
literature [1–3]. Lately, there has been some efforts in formulating the problem
of designing optimal decentralized controllers as a convex optimization problem
for some specific classes of subsystem interconnection [4–8]. At the heart of all
these decentralized and distributed control problems is the assumption that the
control design is done with complete knowledge of the plant model. This is however
not always possible in large-scale systems. It might be the case that (a) different
subsystems belong to different individuals and they might be unwilling to share
their model information since they may consider these information private, (b) the
design of each subcontroller is done by a different designer with no access to the
global plant model since in the time of design the complete model information is
not available, or (c) the designer is interested in designing each subcontroller using
only local model information, so that the resulting subcontrollers do not need to be
modified if the model parameters of a particular subsystem change over time. We
call this special class of control design problems limited model information control
design problems [9, 10]. In these problems, we assume that only some part of the
plant model information is available to each subcontroller designer, but that the
system interconnection structure and the common closed-loop cost function to be
minimized are global knowledge.

The main contribution of this paper is to study the influence of the subsystem
interconnection, the controller structure, and the amount of model information
available to each subdesign on the closed-loop performance that a limited model
information control design method can produce. We compare the control design
methods using a performance metric called the competitive ratio, that is, the worst
case control performance for a given design strategy normalized with the optimal
control performance based on full model information. We find an explicit minimizer
of the competitive ratio for a wide range of problems. Since this minimizer might
not be unique, we show that it is also undominated, that is, there is no other control
design method that acts always better while having the same worst-case ratio.

This paper is organized as follows. We formulate the problem of interest in
Section 2. We define a control design strategy and find its competitive ratio in
Section 3. In Section 4, we study the influence of interconnection pattern between
different subsystems on the best limited model information control design method.
We further study the achievable performance of limited model information design
strategies when the controllers that they can produce are structured in Section 5.
The trade-off between the amount of plant information available to different parts of
a control design strategy and the quality of controllers it can produce is considered
in Section 6. Finally, we give the discussions on extensions in Section 7 and end
with the conclusions in Section 8.
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1.1 Notation
The sets of integer numbers, natural numbers, real numbers, and complex numbers
are denoted respectively by Z, N, R, and C. The boundary of the unit circle in C
is shown by T. The space of Lebesgue measurable functions that are bounded on T
is presented by L∞ and RL∞ is the set of real proper rational transfer functions in
L∞. Additionally, all other sets are denoted by calligraphic letters such as P and
A.

Matrices are denoted by capital roman letters such as A. The entry in the ith

row and the jth column of matrix A is aij . Aj will denote the jth row of A. Aij
denotes a submatrix of matrix A, the dimension and the position of which will be
defined in the text.

A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive definite
(positive semidefinite) and A > (≥)B means A− B > (≥)0. Let Sn++ (Sn+) be the
set of symmetric positive definite (positive semidefinite) matrices in Rn×n.

All graphs considered in this paper are directed with vertex set {1, . . . , q} for a
given q ∈ N. All self-loops are present in the graphs that we consider in this paper,
that is, (i, i) ∈ E for all 1 ≤ i ≤ q. We say that a vertex i is a sink if there does not
exist j 6= i such that (i, j) ∈ E. The adjacency matrix S ∈ {0, 1}q×q of graph G is
a matrix whose entry sij = 1 if (j, i) ∈ E and sij = 0 otherwise for all 1 ≤ i, j ≤ q.
In this paper, since the set of vertices is fixed for all the graphs, a subgraph of a
graph G is a graph whose edge set is a subset of the edge set of G and a supergraph
of a graph G is a graph of which G is a subgraph. We use the notation G′ ⊇ G to
indicate that G′ is a supergraph of G.

σ(Y ) and σ̄(Y ) denote the smallest and the largest singular values of the matrix
Y , respectively. Vector ei denotes the column vector with all entries zero except
the ith entry which is equal to one. The function δ : Z→ {0, 1} is the unit-impulse
function which is equal to one at origin and zero anywhere else.

2 Problem Formulation

2.1 Plant Model
Let a plant graph GP with adjacency matrix SP be given. Based on the adjacency
matrix SP , we define the following set of matrices

A(SP) = {Ā ∈ Rn×n | Āij = 0 ∈ Rni×nj for all 1 ≤ i, j ≤ q such that (sP)ij = 0},

where for each 1 ≤ i ≤ q, ni ∈ N is the order of subsystem i and consequently∑q
i=1 ni = n. Besides, we define

B(ε) = {B̄ ∈ Rn×n | σ(B̄) ≥ ε, B̄ij = 0 ∈ Rni×nj for all 1 ≤ i 6= j ≤ q},

for some given scalar ε > 0 and

H = {H̄ ∈ Rn×n | det(H̄) 6= 0, H̄ij = 0 ∈ Rni×nj for all 1 ≤ i 6= j ≤ q}.
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Figure 1: GP and G′P are examples of plant graphs, GK and G′K are examples of
control graphs, and GC and G′C are examples of design graphs.

Now we can introduce the set P of plants of interest as the space of all discrete-time
linear time-invariant systems

x(k + 1) = Ax(k) +Bu(k) +Hw(k) ; x(0) = 0, (1)

with A ∈ A(SP), B ∈ B(ε), and H ∈ H. With slightly abusing notation, we
show a plant P ∈ P with triple (A,B,H) since the set P is clearly isomorph
to A(SP) × B(ε) × H. We will denote the ordered set of state indices related to
subsystem i with Ii, that is, Ii := (1 +

∑i−1
j=1 nj , . . . , ni +

∑i−1
j=1 nj). For subsystem

i, state xi ∈ Rni , control input ui ∈ Rni , and exogenous input wi ∈ Rni are defined
as

xi =

 x`1
...

x`ni

 , ui =

 u`1
...

u`ni

 , wi =

 w`1
...

w`ni


where the ordered set of indices (`1, . . . , `ni) ≡ Ii, and its dynamic is specified by

xi(k + 1) =
q∑
j=1

Aijxj(k) +Biiui(k) +Hiiwi(k).

An example of a plant graph GP is given in Figure 1(a). For instance, the plant
graph GP shows that the second subsystem can affect the first and the third sub-
systems, that is, A12 and A32 can be nonzero. The first system is also a sink in
the plant graph GP . An example of a plant graph G′P without sink is given in
Figure 1(a′).

2.2 Controller
Let a control graph GK with adjacency matrix SK be given. In this paper, we
are interested in dynamic discrete-time linear time-invariant state feedback control



2. PROBLEM FORMULATION 125

laws of the form

xK(k + 1) = AKxK(k) +BKx(k) ; xK(0) = 0,

u(k) = CKxK(k) +DKx(k),
which can also be represented as the transfer function

K ,

[
AK BK
CK DK

]
= CK(zI −AK)−1BK +DK ,

where z is the symbol for one time-step forward shift operator. The controller K
must belong to

K(SK) = {K̄ ∈ (RL∞)n×n|K̄ij = 0 ∈ (RL∞)ni×nj

for all 1 ≤ i, j ≤ q such that (sK)ij = 0}.

We refer to the set of controllers as K when adjacency matrix SK can be deduced
from the context or it is not relevant.

Figure 1(b) shows an example of an incomplete control graph GK that charac-
terizes a set of structured controllers. For instance, using control graph GK, we
know that the third subsystem only has access to state measurements of the second
subsystem beside its own state measurements, that is, K31 = 0 while K32 and K33
can be nonzero.

2.3 Control Design Methods
A control design method Γ is a map from the set of plants P to the set of con-
trollers K. Let a control design method Γ be partitioned according to subsystems
dimensions like

Γ =

 Γ11 · · · Γ1q
...

. . .
...

Γq1 · · · Γqq

 (2)

and a design graph GC with adjacency matrix SC be given. Each element Γij is a
mapping A(SP)×B(ε)×B → (RL∞)ni×nj . We say that Γ has structure GC if, for
all 1 ≤ i ≤ q, the subsystem i subcontroller is constructed with the knowledge of
those subsystems 1 ≤ j ≤ q plant model such that (j, i) ∈ EC , that is, the mapping
[ Γi1 · · · Γiq ] is only a function of {[ Aj1 · · · Ajq ] , Bjj , Hjj | (sC)ij 6= 0} . The set
of all these limited model information control design methods with structure GC is
denoted by C.

Figure 1(c) shows an example of a design graph GC . For instance, using this
design graph GC , we realize that the third subsystem model is available to the
designer of the second subsystem controller but not the first subsystem model.
Figure 1(c′) illustrates an example of a fully disconnected design graph G′C with
self-loops only which shows that the controller of all subsystems are constructed
using only their own model information.
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2.4 Performance Metric

The considered performance metrics is a modified version of the performance met-
rics originally defined in [9, 10]. Let us start with introducing the closed-loop
performance measure.

To each plant P = (A,B,H) ∈ P and controller K ∈ K, we associate a perfor-
mance measure which is the H2 norm of the transfer function between the exogenous
input w(k) and the output

y(k) =
[
CT 0

]T
x(k) +

[
0 DT

]T
u(k),

where the matrices C ∈ Rn×n and D ∈ Rn×n are block diagonal full-rank matri-
ces with each diagonal block entry belonging to Rni×ni . Figure 2 illustrates the
feedback system with the given controller K and the overall-plant

P̂ =

 A H B

Ĉ 0 D̂
I 0 0


where Ĉ =

[
CT 0

]T and D̂ =
[

0 DT
]T . Using the notation F(P̂ ,K) for the

closed-loop transfer function from w(k) to y(k), the performance measure can be
written as

JP (K) = ‖F(P̂ ,K)‖2. (3)

We make the following standing assumption:

Assumption 2.1 C = D = I.

This is without loss of generality because the change of variables (x̄, ū) =
(Cx,Du) transforms the output of the system and its state space representation
into

y(k) =
[
I 0

]T
x̄(k) +

[
0 I

]T
ū(k),

and

x̄(k + 1) = CAC−1x̄(k) + CBD−1ū(k).

This is done without changing the plant, control, or design graphs because of the
block diagonal structure of matrices C and D.

Definition 2.1 (Competitive Ratio) Let a plant graph GP , a control graph GK,
and a constant ε > 0 be given. Let us assume that, for each plant P ∈ P, there
exists an optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.
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Figure 2: The feedback system with the given controller K and the overall-plant P̂ .

The competitive ratio of a control design method Γ is defined as

rP(Γ) = sup
P=(A,B,H)∈P

JP (Γ(P ))
JP (K∗(P )) ,

with the convention that “ 0
0” equals one.

Definition 2.2 (Domination) A control design method Γ′ is said to dominate an-
other control design method Γ if

JP (Γ′(P )) ≤ JP (Γ(P )), ∀ P = (A,B,H) ∈ P, (4)

with strict inequality holding for at least one plant in P. When Γ ∈ C and no control
design method Γ′ ∈ C exists that satisfies (4), we say that Γ is undominated in C.

2.5 Mathematical Problem Formulation
Now we can formulate the primary question concerning the connection between
closed-loop performance and limited model information control design strategies.
For a given plant graph GP , control graph GK, and design graph GC , we want to
solve

arg min
Γ∈C

rP(Γ). (5)

Since the solution to this problem might not be unique, we are interested in finding
a minimizer that is also undominated. These solutions are the best worst-case
designs with limited model information.

3 Preliminary Results

In order to give the main results of the paper, we need to define a control design
strategy and find its competitive ratio.

Definition 2.3 Let a plant graph GP and a constant ε > 0 be given. The control
design method ΓΘ is defined as

ΓΘ(P ) = −diag(W1(P ), . . . ,Wq(P ))A, (6)
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for all plants P = (A,B,H) ∈ A(SP)× B(ε)×H, where

Wi(P ) =
{

(I +BTiiXiiBii)−1BTiiXii, if i is a sink,
B−1
ii , otherwise,

and for each sink i the matrix Xii is the unique positive definite solution of the
discrete algebraic Riccati equation

ATiiXiiAii −ATiiXiiBii(I +BTiiXiiBii)−1BTiiXiiAii −Xii + I = 0.

The control design method ΓΘ applies the so-called deadbeat strategy [10] to
every subsystem that is not a sink (thus those closed-loop subsystems reach origin
in just one time-step [11]) and, for every sink, applies the same optimal control law
as if the node were decoupled from the rest of the graph.

Lemma 2.1 The competitive ratio of the control design method ΓΘ defined in (6)
is rP(ΓΘ) =

√
1 + 1/ε2 if one of the following conditions is satisfied:

(a) the plant graph GP contains no isolated node and the control graph GK is a
complete graph;

(b) the acyclic plant graph GP contains no isolated node and GK ⊇ GP .

Proof: Let K∗C(P ) denotes the optimal static full-state feedback (centralized)
controller for each plant P ∈ P. According to the proof of the “only if” part of
Theorem 3.6 in [10], we have

Z ≤ ATB−TB−1A+ I, (7)

for all plants P = (A,B,H) ∈ P, where Z is the unique positive definite solution
of discrete algebraic Lyapunov equation

(A+BΓΘ(P ))TZ(A+BΓΘ(P ))− Z + I + ΓΘ(P )TΓΘ(P ) = 0. (8)

Thus, the cost of the control design strategy ΓΘ for each plant P = (A,B,H) is
upper-bounded as

JP (ΓΘ(P ))2 = tr
(
HTZH

)
≤ tr

(
HT

(
ATB−TB−1A+ I

)
H
)
.

(9)

where tr(·) denotes the trace of a matrix. According to Theorem 3.2 in [10], it is
evident that

ATB−TB−1A ≤
(
1 + 1/ε2

)
(X − I),

and equivalently

tr(HTATB−TB−1AH) ≤
(
1 + 1/ε2

)
tr(HT (X − I)H), (10)
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where X is the unique positive definite solution of discrete algebraic Riccati equa-
tion

ATXA−ATXB(I +BTXB)−1BTXA = X − I. (11)

Putting (10) in (9), we get

JP (ΓΘ(P ))2 ≤
(
1 + 1/ε2

)
tr(HTXH)

=
(
1 + 1/ε2

)
JP (K∗C(P ))2.

Clearly, because JP (K∗C(P )) ≤ JP (K∗(P )), irrespective of the control graph GK,
we have

JP (ΓΘ(P ))2 ≤
(
1 + 1/ε2

)
JP (K∗(P ))2,

and as a result

rP(ΓΘ) = sup
P=(A,B,H)∈P

JP (ΓΘ(P ))
JP (K∗(P )) ≤

√
1 + 1/ε2.

To show that this upper-bound is tight, we should exhibit plants for which it is
attained.

Part a: Condition (a) is satisfied. Since there is no isolated node in the plant
graph, we can pick indices 1 ≤ i 6= j ≤ q such that (sP)ij 6= 0. The rest of the
proof is given in two different cases.

Case a.1: Node i is not a sink. Pick indices i1 ∈ Ii and j1 ∈ Ij . Let A(s) =
sei1e

T
j1
, B = εI, and H = I. We get

rP(ΓΘ) ≥ lim
s→∞

√
s2/ε2 + n

s2/(1 + ε2) + n
=
√

1 + 1/ε2,

since the unique positive definite solution of discrete algebraic Riccati equation
in (11) isX = I+[s2/(1+ε2)]ej1e

T
j1
, and as a result JP (K∗(P )) =

√
s2/(1 + ε2) + n.

Case a.2: Node i is a sink. We know (sP)ii 6= 0 since all the self-loops are
present. Pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) = rei1e

T
i1

+ sei1e
T
j1
, B = εI, and

H = I. According to Theorem 3.8 in [10], we get

JP (ΓΘ(P )) =
√
βΘ(s2 + r2) + n,

where
βΘ =

√
r4 + 2r2ε2 − 2ar2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2ε2r2 .

Again, using Theorem 3.8 in [10], the optimal closed-loop performance is

JP (K∗(P )) =
√
βK∗(s2 + r2) + n,
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where βK∗ is

βK∗ =
ε2s2 + r2(1 + ε2)− (ε2 + 1)2 +√c+c−

2ε2(ε2 + 1)(s2 + r2) ,

c± = ε2s2 + (r2 ± 2r)(ε2 + 1) + (ε2 + 1)2.

Then, we get

rP(ΓΘ) ≥ lim
r→∞, sr→∞

JP (ΓΘ(P ))
JP (K∗(P )) =

√
1 + 1/ε2.

Part b: Condition (b) is satisfied. Any acyclic directed graph has at least one
sink. Let i denote a sink in plant graph GP . Since there is no isolated node in
the plant graph, there exists an index j 6= i such that (sP)ij 6= 0. Pick i1 ∈ Ii
and j1 ∈ Ij . Let A(r, s) = rei1e

T
i1

+ sei1e
T
j1
, B = εI, and H = I. According to

Lemma 4.1 in [12], we get

JP (K∗P(P )) =
√
βK∗s2 + βΘr2 + n,

where K∗P(P ) is the optimal controller when GK is equal to GP . This results in

rP(ΓΘ) ≥ lim
r→∞, sr→∞

JP (ΓΘ(P ))
JP (K∗(P ))

≥ lim
r→∞, sr→∞

JP (ΓΘ(P ))
JP (K∗P(P )) =

√
1 + 1/ε2

since clearly JP (K∗(P )) ≤ JP (K∗P(P )).

Lemma 2.1 shows that, if we apply the control design strategy ΓΘ to a particular
plant, the performance of the closed-loop system, at most, can be

√
1 + 1/ε2 times

the cost of the optimal control design strategy K∗.
There is no loss of generality in assuming that the plant graph GP contains

no isolated node since it is always possible to design an optimal controller for an
isolated subsystem without any model information about the other subsystems and
without affecting them. In particular, this implies that there are q ≥ 2 vertices in
the plant graph.

4 Plant Graph Influence on Achievable Performance

In this section, we study the achievable closed-loop performance, in terms of the
competitive ratio and the domination, for different plant interconnection pattern.
The next theorem shows that the control design strategy ΓΘ is an undominated
minimizer of the competitive ratio for all given plant graphs GP when the control
graph GK is a complete graph and the design graph GC is fully disconnected.
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Figure 3: State transition of the closed-loop system and its controller as a function
of time for the exogenous input w(k) = δ(k)ej1 .

Theorem 2.2 Let the plant graph GP contain no isolated node, the control graph
GK be a complete graph, and the design graph GC be a totally disconnected graph.
Then, the competitive ratio of any control design strategy Γ ∈ C satisfies rP(Γ) ≥
rP(ΓΘ). Furthermore, the control design strategy ΓΘ is undominated by set of
limited model information control design strategies with design graph GC.

Proof: We use the following notation

Γ(P ) =
[
AΓ(P ) BΓ(P )
CΓ(P ) DΓ(P )

]
,

to work with different parts of the state-space representation of a control design
strategy Γ. The entries AΓ(P ), BΓ(P ), CΓ(P ), and DΓ(P ) are matrices with ap-
propriate dimension for each plant P = (A,B,H) ∈ P. The matrices AΓ(P ) and
CΓ(P ) are block diagonal matrices since different subcontrollers should not share
state variables (each controller should be implemented in a decentralized fashion).
This realization is not necessarily a minimal realization.

Consider indices 1 ≤ i 6= j ≤ q such that (sP)ij 6= 0 (this is always possible
since there is no isolated node in the plant graph). The rest of the proof is given
in two different cases.

Case 1: Node i is not a sink. Therefore, there exists an index ` 6= i such
that (sP)`i 6= 0. Pick indices `1 ∈ I`, i1 ∈ Ii and j1 ∈ Ij and define A(r, s) =
sei1e

T
j1

+ re`1e
T
i1

and B = εI. Let Hjj = rI and Htt = I for all t 6= j. Using the
exogenous impulse input w(k) = δ(k)ej1 and the time-steps given in Figure 3, we
get

JP (Γ(P ))2 ≥ u`1(2)2 + x`1(3)2

= u`1(2)2 +
(
r2(s+ ε(dΓ)i1j1(s)) + εu`1(2)

)2
≥ r4(s+ ε(dΓ)i1j1(s))2/(ε2 + 1),

because, irrespective of the choice of u`1(2), the function u`1(2)2+(r2(s+ε(dΓ)i1j1(s))
+ εu`1(2))2 is lower-bounded by r4(s+ ε(dΓ)i1j1(s))2/(ε2 + 1). It is worth mention-
ing that (dΓ)i1j1(s) is only a function of the scalar s and it is independent of the
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scalar r, since r is in model parameters of subsystems `, j 6= i and the design graph
is fully disconnected. On the other hand

JP (Γ∆(P )) =
√

tr (HT ((1/ε2)ATA+ I)H)

=
√

(s2r2 + r2)/ε2 + n− nj + njr2,

where Γ∆ is the deadbeat control design strategy and it is defined as Γ∆(P ) =
−B−1A [10]. Therefore

rP(Γ) = sup
P∈P

JP (Γ(P ))
JP (K∗(P ))

= sup
P∈P

[
JP (Γ(P ))
JP (Γ∆(P ))

JP (Γ∆(P ))
JP (K∗(P ))

]
≥ sup
P∈P

JP (Γ(P ))
JP (Γ∆(P ))

≥ lim
r→∞

√
r4(s+ ε(dΓ)i1j1(s))2/(ε2 + 1)

(s2r2 + r2)/ε2 + n− nj + njr2 .

(12)

since JP (Γ∆(P )) ≥ JP (K∗(P )) for all plants P ∈ P. The competitive ratio rP(Γ)
is bounded only if s + ε(dΓ)i1j1(s) = 0. Therefore, there is no loss of generality in
assuming that (dΓ)i1j1(s) = −s/ε because otherwise the rP(Γ) is infinity and the
inequality rP(Γ) ≥ rP(ΓΘ) is trivially satisfied. Now, let us redefine A(s) = sei1e

T
j1
,

H = I and B = εI. Since the parameters of the subsystem i is not changed,
we have (dΓ)i1j1(s) = −s/ε. Therefore, for the same impulse exogenous input
w(k) = δ(k)ej1 , we have

JP (Γ(P ))2 ≥ ui1(1)2 = (dΓ)i1j1(s)2 = s2/ε2,

and

rP(Γ) ≥ lim
s→∞

√
s2/ε2

s2/(1 + ε2) + n
=
√

1 + 1/ε2, (13)

since similar to Case a.1 in the proof of Lemma 2.1, we have JP (K∗(P )) =√
s2/(1 + ε2) + n.
Case 2: Node i is a sink. We have (sP)ii 6= 0 since all the self-loops are present.

Let us pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) = rei1e
T
i1

+ sei1e
T
j1
, B = εI, and

H = I. According to the proof of the “only if” part of Theorem 3.6 in [10], for
this particular family of plants, ΓΘ(P ) is the globally optimal H2 state-feedback
controller. Now using Case a.2 in the proof of Lemma 2.1, it is easy to see that
rP(Γ) ≥

√
1 + 1/ε2.

To prove that the control design strategy ΓΘ is undominated by set of lim-
ited model information control design strategies Γ ∈ C, we construct plants P =
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(A,B,H) ∈ P that satisfy JP (Γ(P )) > JP (ΓΘ(P )) for any control design method
Γ ∈ C \ {ΓΘ}. The detailed proof of this part is given in [12].

As an example, consider the limited model information design problem given
by the plant graph G′P in Figure 1(a′), the control graph G′K in Figure 1(b′), and
the design graph G′C in Figure 1(c′). Theorem 2.2 shows that the control design
strategy ΓΘ is the best control design strategy that one can propose based on the
local model of subsystems since it is an undominated minimizer of the competitive
ratio.

5 Control Graph Influence on Achievable Performance

In this section, we study the structured controllers and their influence on the achiev-
able closed-loop performance of the limited model information control design strate-
gies. Note that finding the optimal control design strategy K∗(P ) is numerically
intractable for general plant and control graphs. We use the results in [6, 7] which
give an explicit solution to the problem of designing optimal decentralized controller
for some special classes of subsystems interconnection and controller structures.
Therefore, we assume that the plant graph GP is an acyclic directed graph and the
control graph GK is a supergraph of the plant graph GP . Note that the control
design strategy ΓΘ is still applicable in this scenario.

Theorem 2.3 Let the acyclic plant graph GP contain no isolated node, the design
graph GC be a totally disconnected graph, and GK ⊇ GP . Then, the competitive
ratio of any control design strategy Γ ∈ C satisfies rP(Γ) ≥ rP(ΓΘ). Furthermore,
the control design strategy ΓΘ is undominated by set of limited model information
control design strategies with design graph GC.

Proof: Any acyclic directed graph has at least one sink. Let i denote a sink
in plant graph GP . Since there is no isolated node in the plant graph, there exists
an index j 6= i such that (sP)ij 6= 0. Pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) =
rei1e

T
i1

+ sei1e
T
j1
, B = εI, and H = I. According to the proof of the “only if” part

of Theorem 3.6 in [10], for this particular family of plants, ΓΘ(P ) is the globally
optimal H2 state-feedback controller. Now using Part b of the proof of Lemma 2.1,
it is easy to see that rP(Γ) ≥

√
1 + 1/ε2.

The detailed proof of the part that control design strategy ΓΘ is undominated
is given in [12].

For instance, consider the limited model information design problem given by
the plant graph GP in Figure 1(a), the control graph GK in Figure 1(b), and the
design graph G′C in Figure 1(c′). Theorem 2.3 illustrates that the control design
strategy ΓΘ is again the best control design strategy that one can propose based
on the local model of subsystems, because it is an undominated minimizer of the
competitive ratio.
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6 Design Graph Influence on Achievable Performance

In this section, we try to determine the amount of the model information that
we need in each subsystem to be able to setup a control design strategy Γ with a
smaller competitive ratio than the control design strategy ΓΘ.

Theorem 2.4 Let the plant graph GP and the design graph GC be given and GK ⊇
GP . If the plant graph GP contains the path j → i → ` with distinct vertices i, j,
and ` while (`, i) /∈ EC, then rP(Γ) ≥ rP(ΓΘ) for all Γ ∈ C.

Proof: Because of the path j → i → ` with distinct vertices i, j, and k, we
have (sP)ij 6= 0 and (sP)`i 6= 0. Pick indices `1 ∈ I`, i1 ∈ Ii and j1 ∈ Ij and
define A(r, s) = sei1e

T
j1

+ re`1e
T
i1
, B = εI, and H = I. Similar to the proof of

Theorem 2.2, using the exogenous impulse input w(k) = δ(k)ej1 and the time-steps
given in Figure 3, we get

JP (Γ(P ))2 ≥ r2(s+ ε(dΓ)i1j1(s))2/(ε2 + 1),

Again, it should be noted that (dΓ)i1j1(s) is only a function of the scalar s, and
it is independent of the scalar r because r has appeared in model matrices of the
subsystem ` 6= i, and (`, i) /∈ EC . We claim that for the competitive ratio to be
bounded there should exist a positive constant θ ∈ R independent of scalars s
such that |s + ε(dΓ)i1j1(s)| ≤ θ. Assume this claim is not true, thus, there exist a
sequence of scalars {sz}∞z=1 ⊂ R such that

lim
z→∞

|sz + ε(dΓ)i1j1(sz)| = +∞.

Clearly, using (12) we get

rP(Γ) ≥ lim
z→∞, rsz→∞

√
r2|sz + ε(dΓ)i1j1(sz)|2/(ε2 + 1)

(s2
z + r2)/ε2 + n

= +∞.

since JP (Γ∆(P )) =
√

(s2
z + r2)/ε2 + n. Now, lets redefine A(s) = sei1e

T
j1
. Since

the model parameters of the subsystem i is not changed, and its controller is not
a function of the model parameters of subsystem `, the design entry (dΓ)i1j1(s)
stays the same. Therefore, |s + ε(dΓ)i1j1(s)| ≤ θ for all s ∈ R, and as a result, for
large enough |s|, we get |(dΓ)i1j1(s)| ≥ (|s| − θ)/ε. Therefore, using the exogenous
impulse input w(k) = δ(k)ej1 , we get

JP (Γ(P ))2 ≥ ui1(1)2 = (dΓ)i1j1(s)2 ≥ (|s| − θ)2/ε2,

and

rP(Γ) ≥ lim
s→∞

√
(|s| − θ)2/ε2

s2/(1 + ε2) + n
=
√

1 + 1/ε2.
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For this special plant, we know K∗C(P ) = −ε/(1 + ε2)A belongs to the set K(SK)
since the control graph GK ⊇ GP , and consequently JP (K∗(P )) ≤ JP (K∗C(P ))
because K∗(P ) has a lower cost than any other controller is K(SK). On the other
hand, clearly, for any plant JP (K∗C(P )) ≤ JP (K∗(P )). Therefore, for this special
plant

JP (K∗(P )) = JP (K∗C(P )) =
√
s2/(1 + ε2) + n.

This concludes the proof.

Consider the limited model information design problem given by the plant graph
G′P in Figure 1(a′), the control graph G′K in Figure 1(b′), and the design graph GC
in Figure 1(c). Note that there is a path 3→ 2→ 1 in the plant graph GP but the
edge 1 → 2 is not present in the design graph GC . Therefore, using Theorem 2.4,
it is easy see that rP(Γ) ≥ rP(ΓΘ) for any Γ ∈ C.

7 Extensions

In this section, we relax the assumption that all the subsystems are required to
be fully-actuated, that is, B ∈ B(ε) is square invertible. To do so, we assume that
plant graph GP is an acyclic directed graph with c ≥ 1 sinks since any acyclic graph
has at least one sink. Accordingly, its adjacency matrix SP is of the form

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (14)

where

(SP)11 =

 (sP)11 · · · (sP)1,q−c
...

. . .
...

(sP)q−c,1 · · · (sP)q−c,q−c

 ,

(SP)21 =

 (sP)q−c+1,1 · · · (sP)q−c+1,q−c
...

. . .
...

(sP)q,1 · · · (sP)q,q−c

 ,
and (SP)22 = diag((sP)q−c+1,q−c+1, . . . , (sP)qq), where we assume, without loss
of generality, that the vertices are numbered such that the sinks are labeled q −
c + 1, . . . , q. We define the set P ′ of plants of interest as the set of all triples
(A,B,H) ∈ A(SP)× B′(ε)×H where

B′(ε) = {B̄ ∈ Rn×m | σ(B̄) ≥ ε, B̄ij = 0 ∈ Rni×mj for all 1 ≤ i 6= j ≤ q}.

Each mi ∈ N is the number of control inputs in subsystem i, and consequently∑q
i=1mi = m. Let relax mi ≤ ni for all q − c + 1 ≤ i ≤ q but force mi = ni

otherwise. In addition, all matrices A and B must satisfy

(a) (Aii, Bii) is controllable,
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(b) span(Aij) ⊆ span(Bii) for all j 6= i or equivalently there should exist a matrix
Wi ∈ Rmi×(n−ni) such that [Ai1 · · · Ai,i−1 Ai,i+1 · · · Aiq] = BiiWi,

for all q − c+ 1 ≤ i ≤ q. For this new set of plants, the control design strategy ΓΘ

is still applicable since it does not require Bii to be invertible for q− c+ 1 ≤ i ≤ q.
Now we are ready to solve the problem (5) for this set of underactuated plants P ′.

Theorem 2.5 Let the acyclic plant graph GP contain no isolated node, the control
graph GK be equal to the plant graph GP , and the design graph GC be a totally
disconnected graph. Then, the competitive ratio of any control design strategy Γ ∈ C
satisfies rP(Γ) ≥ rP(ΓΘ) =

√
1 + 1/ε2 if (SP)11 is not diagonal. Furthermore,

the control design strategy ΓΘ is undominated by set of limited model information
control design strategies with design graph GC.

Proof: Similar to (14), we can write any A ∈ A(SP) as

A =
[
Ã11 0
Ã21 Ã22

]
,

where

Ã11 =

 A11 · · · A1,q−c
...

. . .
...

Aq−c,1 · · · Aq−c,q−c

 ,

Ã21 =

 Aq−c+1,1 · · · Aq−c+1,q−c
...

. . .
...

Aq1 · · · Aq,q−c

 ,
and Ã22 = diag(Aq−c+1,q−c+1, . . . , Aqq). Clearly, if we apply deadbeat to all sub-
systems that are not sinks, the other subsystems (i.e., sinks) become decoupled (see
Theorem 3.6 in [10]), and as a result

JP (ΓΘ(P ))2 = J (1)(Ã11, B̃11, H̃11) + J (2)(Ã21, Ã22, B̃22, H̃22)

where H = diag(H̃11, H̃22), B = diag(B̃11, B̃22), J (1)(Ã11, B̃11, H̃11) is the cost of
applying deadbeat control design to the nodes that are not sinks, and
J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of applying the same optimal control law as
if the sinks were decoupled from the rest of the graph. Thus, we get

J (1)(Ã11, B̃11, H̃11) = tr(H̃T
11Ã

T
11B̃

−T
11 B̃−1

11 Ã11H̃11)

and

J (2)(Ã21, Ã22, B̃22,H̃22) ≤ tr(H̃T
22Y H̃22) + tr(H̃T

11Ã
T
21B̃

†T
22 B̃

†
22Ã21H̃11) (15)

where B̃†22 = (BT22B22)−1BT22. The inequality in (15) is true since
J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of the optimal control law as if the sinks were
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decoupled from the rest of the graph (see Theorem 3.6 in [10]), and it certainly has
a lower cost than any other controller particularly

K2 = −[B̃†22Ã21 (I + B̃T22Y B̃22)−1B̃T22Y Ã22],

where Y is the unique positive definite solution of discrete algebraic Riccati equation

ÃT22Y Ã22 − ÃT22Y B̃22(I + B̃T22Y B̃22)−1B̃T22Y Ã22 − Y + I = 0.

Note that since Ã22 is block diagonal, the positive definite matrix Y is also block
diagonal, and each block is only a function the corresponding subsystem. Thus, we
get

JP (ΓΘ(P ))2 ≤ tr(H̃T
22Y H̃22) + tr(H̃T

11(ÃT11B̃
−T
11 B̃−1

11 Ã11 + ÃT21B̃
†T
22 B̃

†
22Ã21)H̃11).

(16)

The optimal closed-loop performance is JP (K∗(P ))2 = tr(HTUH) where U =
[In×n 0]V [In×n 0]T and V is the unique positive definite solution of discrete alge-
braic Lyapunov equation[

A+BD∗(P ) BC∗(P )
B∗(P ) A∗(P )

]T
V

[
A+BD∗(P ) BC∗(P )

B∗(P ) A∗(P )

]
− V

+
[
I 0
0 0

]
+
[
D∗(P )TD∗(P ) D∗(P )TC∗(P )
C∗(P )TD∗(P ) C∗(P )TC∗(P )

]
= 0

(17)

with A∗(P ), B∗(P ), C∗(P ), and D∗(P ) as the state-space realization matrices of
the optimal control design strategy K∗(P ) for a given plant P ∈ P ′. Clearly, we
have

JP (K∗(P ))2 =
n∑
t=1

eTt H
TUHet =

n∑
t=1

∞∑
k=0

y(t)(k)T y(t)(k),

where for each t the vector y(t)(k) is the output of the system to the exogenous
impulse input w(t)(k) = δ(k)et. This is true because for each t the summa-
tion

∑∞
k=0 y

(t)(k)T y(t)(k) gives the diagonal element eTt HTUHet. For any P =
(A,B,H) ∈ P ′, we know that HTUH ≥ HTXH since centralized controller has
the least performance cost over all other controllers either dynamic or static. Thus,
for each t ∈ N =

⋃q−c
z=1 Iz, we get eTt HTUHet ≥ eTt HTXHet which shows∑
t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥
∑
t∈N

eTt (HTXH)et.

According to [13], we have X ≥ AT (I + BBT )−1A + I for any P ∈ P ′, and
consequently∑

t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
11(ÃT11(I + B̃11B̃

T
11)−1Ã11

+ ÃT21(I + B̃22B̃
T
22)−1Ã21)H̃11).



138 PAPER 2. DYNAMIC CONTROL DESIGN BASED ON ...

On the other hand, for each t ∈ S =
⋃q
z=q−c+1 Iz, we know there exists a sink

i such that t ∈ Ii. For each w(t)(k), we get xj = 0 for any j 6= i (since i is a
sink in GP). The other subsystems cannot use state-measurements of subsystem i
because GK is equal to GP (and consequently i is a sink in GK). Therefore, at best
case scenario, the cost of controlling subsystem i is equal to the cost of optimal
controller designed locally (independent of other subsystems). Thus, we get∑

t∈S

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
22Y H̃22).

Therefore, we get

JP (K∗(P ))2 ≥ tr(H̃T
11(ÃT11(I + B̃11B̃

T
11)−1Ã11

+ ÃT21(I + B̃22B̃
T
22)−1Ã21)H̃11) + tr(H̃T

22Y H̃22).
(18)

Now, lets define the set

M = {β̄ ∈ R | β̄JP (K∗(P ))− JP (ΓΘ(P )) ≥ 0 ∀P ∈ P ′}.

Using the inequalities in (16) and in (18), it is evident if

tr
(
H̃T

11(ÃT11
[
β2(I + B̃11B̃

T
11)−1 − B̃−T11 B̃−1

11
]
Ã11

+ÃT21

[
β2(I + B̃22B̃

T
22)−1 − B̃†T22 B̃

†
22

]
Ã21)H̃11

)
≥ 0.

(19)

for some β ∈ R, then β would belong toM. Thus, {β̄ ∈ R | β̄ ≥
√

1 + 1/ε2} ⊆ M.
This shows that rP(ΓΘ) ≤

√
1 + 1/ε2. Now if (SP)11 is not diagonal, with the

same argument as in the proof of Case 1 in Theorem 2.3, we get rP(Γ) ≥ rP(ΓΘ) =√
1 + 1/ε2 for any Γ ∈ C. This can be done because there are at least two fully-

actuated subsystems and we can forget about the underactuated subsystems.
The proof of the part that the control design strategy ΓΘ is undominated is

similar to the one given in [12] for fully-actuated subsystems.

8 Conclusions

We considered optimal H2 dynamic control design for interconnected linear systems
under limited plant model information. We introduced control design strategies as
functions from the set of plants to the set of structured dynamic controller and com-
pared these control design strategies using the competitive ratio as a performance
metric. For a large class of system interconnections, controller structure, and design
information, we found an explicit undominated minimizer of the competitive ratio.
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PAPER 3

Decentralized Disturbance Accommodation with
Limited Plant Model Information

Farhad Farokhi, Cédric Langbort, and Karl H. Johansson

Abstract–The design of optimal disturbance accommodation and servomechanism
controllers with limited plant model information is studied in this paper. We consider
discrete-time linear time-invariant systems that are fully actuated, and composed of scalar
subsystems, each of which is controlled separately, and influenced by a scalar disturbance.
Each disturbance is assumed to be generated by a system with known dynamics and
unknown initial conditions. We restrict ourselves to control design methods that produce
structured dynamic state feedback controllers where each subcontroller, at least, has access
to the state-measurements of those subsystems that can affect its corresponding subsystem.
The performance of such control design methods are compared using a metric called the
competitive ratio which is the worst-case ratio of the cost of a given control design strategy
to the cost of the optimal control design with full model information. We find an explicit
minimizer of the competitive ratio and show that it is undominated, that is, there is no
other control design strategy that performs better for all possible plants while having the
same worst-case ratio. This optimal controller can be separated into a static feedback law
and a dynamic disturbance observer. For step disturbances, it is shown that this structure
corresponds to proportional-integral control.

© 2013 Society for Industrial and Applied Mathematics (SIAM). Reprinted, with
permission, from SIAM Journal on Control and Optimization, Vol. 51, No. 2,
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1 Introduction

Advances in networked control systems have created new opportunities and chal-
lenges in controlling large-scale systems composed of several interacting subsys-
tems. An example of a networked control system is shown in Figure 1. For such
networked systems, many researchers have considered the problem of decentralized
or distributed stabilization or optimal control as well as the effect of communica-
tion channel limitations on closed-loop performance [1–14]. However, at the heart
of all these control methods lies the (sometimes implicit) assumption that the de-
signer has access to the global plant model information when designing a local
controller. In contrast, the broad goal of this paper, which continues our work
started in [15–18], is to consider distributed control design problems where the full
plant model is not globally available. In the next subsection, we discuss why such
a situation might be at hand.

1.1 Motivation

There are several reasons why global plant model information may not be avail-
able in practice, and why a control designer may be constrained to compute local
controllers for a large-scale systems in a distributed manner with access to only a
limited or partial model of the plant. For example, (i) the designer wants the pa-
rameters of each local controller to only depend on local model information, so that
the controllers do not need to be modified if the model parameters of a particular
subsystem, which is not directly connected to them, change, (ii) the design of each
local controller is done by a designer with no access to the global model of plant
since at the time of design the complete plant model information is not available
or might change later in the design process, or (iii) different subsystems belong to
different individuals who refuse to share their model information since they consider
it private. These situations are very common in practice. For instance, a chemi-
cal plant in process industry can have thousands of proportional-integral-derivative
controllers. These processes well illustrate Case (i), as the tuning of each local
controller does not typically involve model information from other control loops in
order to simplify the maintenance and limit the controller complexity. Case (ii) is
typical for cooperative driving such as vehicle platooning, where each vehicle has
its own local (cruise) controller which cannot be designed based on model informa-
tion of all possible vehicles that it may cooperate with in future traffic scenarios.
Case (iii) can be illustrated by the control of the power grid, where economic incen-
tives might limit the exchange of network model information across regional bor-
ders. Motivated by these important applications, we have started investigating the
concept of limited model information control design for large-scale systems [15–18].
We briefly survey these studies in the next subsection.
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Figure 1: Illustrative example of a networked control system where Pi denotes
the subsystems to be controlled and Ci denotes the controllers. The interactions
between the subsystems and the controllers as well as the external disturbances and
references are indicated by arrows.

1.2 Previous Studies

Recently, limitations of linear quadratic design under limited model information
for a class of interconnected linear time-invariant dynamical system composed of
scalar subsystems was studied in [15]. The authors introduced the competitive ratio
as a metric for comparing control design strategies (i.e., mappings from the set of
plants of interest to the set of applicable controllers) with various degrees of access
to model information. The competitive ratio was simply defined as the worst-case
ratio of the cost of a given control design strategy to the cost of the optimal control
design with full model information. Showing that there is no control design strategy
with a bounded competitive ratio when relying on local model information for
continuous-time system, they justly concentrated on discrete-time systems. Then,
they proved that the static deadbeat control design strategy attains the minimum
competitive ratio among all strategies that only use local model information when
designing a local controller. To distinguish between multiple possible minimizers
of the competitive ratio, they introduced domination as a partial order on the set
of limited model information control design strategies. They proved that the static
deadbeat control design strategy is undominated, that is, there is no other control
design strategy in the set of all limited model information design strategies with a
better closed-loop performance for all possible plants while maintaining the same
worst-case ratio.

This result was later extended to structured discrete-time fully-actuated lin-
ear time-invariant dynamical systems when the plant graph (i.e., directed graph
that captures the interconnection pattern between different subsystems) contains
no sink [16, 17]. In these studies, the set of applicable controllers was considered
to be the set of structured static state feedback controllers. The structure of the
controllers was captured using a control graph (i.e., directed graph that illustrates
the state-measurement availability in subcontrollers) which was assumed to be a
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supergraph of the plant graph. In [16, 17], it was shown that the static deadbeat
control design strategy is an undominated minimizer of the competitive ratio when
the plant graph contains no sink. However, the design could be improved when the
plant graph contains a sink. The choice of static controllers in these studies was
justified, at first, by being the simplest case to explore [15–17], and then, maybe
more surprisingly, by the recently proven fact that the best (in the sense of com-
petitive ratio and domination) state-feedback structured H2-controller for a plant
with lower triangular information pattern that can be designed with limited model
information is in fact static [18]. This is true even though the best such controller
constructed with access to full model information is of course dynamic [9, 10]. In
this paper, we study the problem of limited model information control design for op-
timal disturbance accommodation and servomechanism, and show that, contrary to
the situations mentioned above, the best limited model information design method
gives dynamic controllers. Optimal disturbance accommodation is a meaningful
model for problems such as step disturbance rejection or step reference tracking,
and has been well-studied in the literature [19–24], but with no attention being
paid to the model information limitations in the design procedure.

1.3 Main Contributions

In this paper, specifically, we consider limited model information control design
for interconnection of scalar discrete-time linear time-invariant subsystems being
affected by scalar decoupled disturbances with a quadratic separable performance
criterion. In each subsystem, the disturbance model is assumed to be known while
its initial condition is unknown [24]. The motivation for such a cost function is
given in the servomechanism and disturbance accommodation literature [19–24],
and also stems from our interest in dynamically-coupled but cost-decoupled plants
and their applications in supply chains and shared infrastructure [25, 26]. The
assumptions on scalar subsystems and scalar disturbances are introduced to make
the proofs shorter. Since we want each subsystem to be directly controllable (so
that designing subcontrollers based on only local model information is possible), we
assume that the overall system is fully-actuated (i.e., the same number of inputs
as the state dimension). The results of this paper can be generalized to fully-
actuated subsystems of arbitrary order. However, the generalization to under-
actuated subsystems is non-trivial as explained in more detail in Remark 3.1. Note
that we can also see this new model as a generalization of the problem formulation
in [16–18] to under-actuated subsystems, since each subsystems can be considered
as an aggregation of the original subsystem with its corresponding disturbance
dynamics, however, only one of the states is in this case directly controlled and
observed.

Our study in this paper starts with the case where each subcontroller is de-
signed with the corresponding subsystem’s information only. We prove that the
so-called dynamic deadbeat control design strategy is an undominated minimizer
of the competitive ratio when the plant graph contains no sink and the control
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graph is a supergraph of the plant graph. The fact that the dynamic deadbeat con-
trol design strategy is a minimizer of the competitive ratio is proved in Theorem 3.8
and the fact that it is undominated is proved in (the if part of) Theorem 3.9. For
any fixed plant, the controller constructed by the dynamic deadbeat control design
strategy can be separated into a static feedback law and a dynamic disturbance
observer. For step disturbances, it is shown that this structure corresponds to a
proportional-integral controller. However, the dynamic deadbeat control design
strategy is dominated when the plant graph contains sinks. This is proved in (the
only if part of) Theorem 3.9. We present an undominated limited model infor-
mation control design method that takes advantage of the knowledge of the sinks’
location to achieve a better closed-loop performance. We prove that this newly de-
fined control design strategy is an undominated minimizer of the competitive ratio
in Theorems 3.11 and 3.12. In Theorem 3.10, we further show that this control
design strategy has the same competitive ratio as the dynamic deadbeat control
design strategy. Later, in Theorem 3.13, we characterize the amount of model in-
formation needed to achieve a better competitive ratio than the dynamic deadbeat
control design strategy. The amount of information is captured using the design
graph (i.e., directed graph which indicates the dependency of each subcontroller on
different parts of the global dynamical model). It turns out that, to achieve a better
competitive ratio than the dynamic deadbeat control design strategy, each subsys-
tem’s controller should, at least, have access to the model of all those subsystems
that can affect it.

1.4 Paper Outline

This paper is organized as follows. We formulate the problem and define the per-
formance metric in Section 2. In Section 3, we introduce two specific control design
strategies and study their properties. We characterize the best limited model in-
formation control design method as a function of the subsystems interconnection
pattern in Section 4. In Section 5, we study the influence of the amount of the
information available to each subsystem on the quality of the controllers that they
can produce. We discuss special cases of step disturbance rejection, step refer-
ence tracking, and proportional-integral control in Section 6. Finally, we end with
conclusions in Section 7.

1.5 Notation

The set of real numbers and complex numbers are denoted by R and C, respectively.
All other sets are denoted by calligraphic letters, such as P and A. Particularly,
the letter R denotes the set of proper real rational functions.

Matrices are denoted by capital roman letters such as A. Aj will denote the jth

row of A. Aij denotes a submatrix of matrix A, the dimension and the position of
which will be defined in the text. The entry in the ith row and the jth column of
the matrix A is aij .
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Let Sn++ (Sn+) be the set of symmetric positive definite (positive semidefinite)
matrices in Rn×n. A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive
definite (positive semidefinite) and A > (≥)B means that A−B > (≥)0.

σ(Y ) and σ(Y ) denote the smallest and the largest singular values of the matrix
Y , respectively. Vector ei denotes the column-vector with all entries zero except
the ith entry, which is equal to one.

All graphs considered in this paper are directed, possibly with self-loops, with
vertex set {1, ..., q} for some positive integer q. If G = ({1, ..., q}, E) is a directed
graph, we say that i is a sink if there does not exist j 6= i such that (i, j) ∈ E. The
adjacency matrix S ∈ {0, 1}q×q of graph G is a matrix whose entries are defined as
sij = 1 if (j, i) ∈ E and sij = 0 otherwise. Since the set of vertices is fixed for all
considered graphs, a subgraph of a graph G is a graph whose edge set is a subset
of the edge set of G and a supergraph of a graph G is a graph of which G is a
subgraph. We use the notation G′ ⊇ G to indicate that G′ is a supergraph of G.

2 Mathematical Formulation

2.1 Plant Model
We are interested in discrete-time linear time-invariant dynamical systems described
by

x(k + 1) = Ax(k) +B(u(k) + w(k)) ; x(0) = x0, (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rn is the control input, w(k) ∈ Rn
is the disturbance vector and A ∈ Rn×n and B ∈ Rn×n are appropriate model
matrices. Furthermore, we assume that the dynamic disturbance can be modeled
as

w(k + 1) = Dw(k) ; w(0) = w0, (2)

where w0 ∈ Rn is unknown to the controller (and the control designer). Let a
plant graph GP with adjacency matrix SP be given. We define the following set of
matrices

A(SP) = {Ā ∈ Rn×n | āij = 0 for all 1 ≤ i, j ≤ n such that (sP)ij = 0}.

Also, let us define

B(ε) = {B̄ ∈ Rn×n | σ(B̄) ≥ ε, b̄ij = 0 for all 1 ≤ i 6= j ≤ n}, (3)

for some given scalar ε > 0 and

D = {D̄ ∈ Rn×n | d̄ij = 0 for all 1 ≤ i 6= j ≤ n}.

Now, we can introduce the set of plants of interest P as the set of all discrete-time
linear time-invariant systems (1)–(2) with A ∈ A(SP), B ∈ B(ε), D ∈ D, x0 ∈ Rn
and w0 ∈ Rn. With a slight abuse of notation, we will henceforth identify a plant
P ∈ P with its corresponding tuple (A,B,D, x0, w0).
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The variables xi ∈ R, ui ∈ R, and wi ∈ R are the state, input, and disturbance
of scalar subsystem i whose dynamics are given by

xi(k + 1) =
n∑
j=1

aijxj(k) + bii(ui(k) + wi(k)),

wi(k + 1) = diiwi(k).

We call GP the plant graph since it illustrates the interconnection structure between
different subsystems, that is, subsystem j can affect subsystem i only if (j, i) ∈ EP .
Note that we assume that the global system is fully-actuated; i.e., all the matrices
B ∈ B(ε) are square invertible matrices. This assumption is motivated by the fact
that we need all subsystems to be directly controllable. Moreover, we make the
standing assumption that the plant graph GP contain no isolated node. There is no
loss of generality in assuming that there is no isolated node in the plant graph GP ,
since it is always possible to design a controller for an isolated subsystem without
any model information about the other subsystems and without influencing the
overall system performance. Note that, in particular, this implies that there are
q ≥ 2 vertices in the graph because for q = 1 the only subsystem that exists is an
isolated node in the plant graph.

Remark 3.1 In this paper, we consider plants that are composed of scalar subsys-
tems. Although this situation is admittedly restrictive, scalar subsystems can span
a moderately rich family of physical or engineered systems (see [27–31] and refer-
ences therein). In addition, the techniques and results presented here can be gen-
eralized to fully-actuated subsystems of arbitrary order. As will become clear later
in Lemma 3.7, when dealing with fully-actuated subsystems, the designer should
decouple the subsystems that are not a sink in the plant graph from the rest of
the system. This can be intuitively justified since these subsystems should avoid
affecting sensitive parts of the plant to achieve a bounded competitive ratio.

Remark 3.2 The special assumptions on the system and the disturbance in (1)–(2)
enable us to estimate the initial condition of the disturbance using

wi(0) = 1
bii

xi(1)− biiui(0)−
n∑
j=1

aijxj(0)

 , (4)

which is called the deadbeat observer, since it recovers the initial-condition in just
one time-step. Now that, for each 1 ≤ i ≤ n, subsystem i has access to wi(0), it
can easily cancel the effect of the disturbance by subtracting the terms dkiiw(0) from
its planned actuation input at each time step k. However, note that the problem
of designing an optimal disturbance accommodation controller is a joint observer-
controller design problem because one can always recover wi(0) using (4) irrespective
of the value of ui(0), but by applying an erroneous ui(0), the competitive ratio would
become infinite. In next section, through Lemma 3.7, we prove that given the control
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Figure 2: GP and G′P are examples of plant graphs, GK and G′K are examples of
control graphs, and GC and G′C are examples of design graphs.

action u(0) = −B−1(A+D)x(0), the deadbeat observer introduced in (4) is the best
control design strategy (in terms of competitive ratio and domination).

Remark 3.3 Because B ∈ B(ε) is an invertible matrix, we can always rewrite the
system dynamics so as u(k) and w(k) affect the system through the same matrix B
as in (1). Note that even if B is not invertible, as long as the designer aims at
stabilizing the origin (i.e., limk→∞ x(k) = 0), it is no restriction to assume that
u(k) and w(k) influence the system through the same B-matrix. It easily follows
from considering the system

x(k + 1) = Ax(k) +Bu(k) + Ew(k) ; x(0) = x0.

To achieve limk→∞ x(k) = 0, it has to hold that limk→∞Bu(k)+Ew(k) = 0. When
limk→∞ w(k) 6= 0, this condition is satisfied if, and only if, there exists a matrix M
such that E = BM [23]. Defining w̄(k) = Mw(k), we get

x(k + 1) = Ax(k) +Bu(k) +Bw̄(k) ; x(0) = x0.

Because we do not restrict D in (2) to be stable, we thus have to make the assump-
tion that E ∈ image(B) as described above.

Figure 2(a) shows an example of a plant graph GP . Each node represents
a subsystem of the system. For instance, the second subsystem in this example
affects the first subsystem and the third subsystem, that is, submatrices A12 and
A32 can be nonzero. Note that the first subsystem in Figure 2(a) represents a sink
of GP . The plant graph G′P in Figure 2(a′) has no sink.
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2.2 Controller Model
The control laws of interest in this paper are discrete-time linear time-invariant
dynamic state-feedback control laws of the form

xK(k + 1) = AKxK(k) +BKx(k) ; xK(0) = 0, (5)
u(k) = CKxK(k) +DKx(k). (6)

Each controller can also be represented by a transfer function

K ,

[
AK BK
CK DK

]
= CK(zI −AK)−1BK +DK ,

where z is the symbol for the one time-step forward shift operator. Let a control
graph GK with adjacency matrix SK be given. Each controller K belongs to

K(SK) = {K ∈ Rn×n | kij = 0 for all 1 ≤ i, j ≤ n such that (sK)ij = 0}.

When the adjacency matrix SK is not relevant or can be deduced from context, we
refer to the set of controllers as K. Since it makes sense for each subcontroller to
use at least its corresponding subsystem state-measurements, we make the standing
assumption that in each design graph GK, all the self-loops are present.

An example of a control graph GK is given in Figure 2(b). Each node represents
a subsystem–controller pair of the overall system. For instance, GK shows that
the first subcontroller can use state measurements of the second subsystem beside
its corresponding subsystem state-measurements. Figure 2(b′) shows a complete
control graph G′K. This control graph indicates that each subcontroller has access
to full state measurements of all subsystems, that is, K(SK) = Rn×n.

2.3 Control Design Methods
A control design method Γ is a map from the set of plants P to the set of controllers
K. Any control design method Γ has the form

Γ =

 γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn

 , (7)

where each entry γij represents a map A(SP)× B(ε)×D → R.
Let a design graph GC with adjacency matrix SC be given. We say that Γ

has structure GC , if for all i, subcontroller i is computed with knowledge of the
plant model of only those subsystems j such that (j, i) ∈ EC . Equivalently, Γ
has structure GC , if for all i, the map Γi = [γi1 · · · γin] is only a function of
{[aj1 · · · ajn], bjj , djj | (sC)ij 6= 0}. When GC is not a complete graph, we refer
to Γ ∈ C as being a “limited model information control design method”. Since
it makes sense for the designer of each subcontroller to have access to at least its
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corresponding subsystem model parameters, we make the standing assumption that
in each design graph GC , all the self-loops are present.

The set of all control design strategies with structure GC will be denoted by
C, which is considered as a subset of all maps from A(SP) × B(ε) × D to K(SK)
because a design method with structure GC is not a function of the initial state x0
or the initial disturbance w0. We use the notation Γ(A,B,D) instead of Γ(P ) for
each plant P = (A,B,D, x0, w0) ∈ P to emphasize this fact.

To simplify the notation, we assume that any control design strategy Γ has a
state-space realization of the form

Γ(A,B,D) =
[
AΓ(A,B,D) BΓ(A,B,D)
CΓ(A,B,D) DΓ(A,B,D)

]
,

where AΓ(A,B,D), BΓ(A,B,D), CΓ(A,B,D), and DΓ(A,B,D) are matrices of
appropriate dimension for each plant P = (A,B,D, x0, w0) ∈ P. The matrices
AΓ(A,B,D) and CΓ(A,B,D) are block diagonal matrices since subcontrollers do
not share state variables. This realization is not necessarily minimal.

An example of a design graph GC is given in Figure 2(c). Each node represents
a subsystem–controller pair of the overall system. For instance, GC shows that
the second subsystem’s model is available to the designer of the first subsystem’s
controller but not the third and the forth subsystems’ model. Figure 2(c′) shows a
fully disconnected design graph G′C . A local designer in this case can only rely on
the model of its corresponding subsystem.

2.4 Performance Metric
The goal of this paper is to investigate the influence of the plant graph on the prop-
erties of controllers derived from limited model information control design meth-
ods. We use two performance metrics to compare different control design methods,
which are adapted from the notions of competitive ratio and domination recently
introduced in [15–18]. Let us start with introducing the closed-loop performance
criterion.

To each plant P = (A,B,D, x0, w0) ∈ P and controller K ∈ K, we associate the
performance criterion

JP (K) =
∞∑
k=0

[
x(k)TQx(k) + (u(k) + w(k))TR(u(k) + w(k))

]
, (8)

where Q ∈ Sn++ and R ∈ Sn++ are diagonal matrices. We make the following
standing assumption:

Assumption 3.1 Q = R = I.

This is without loss of generality because the change of variables (x̄, ū, w̄) =
(Q1/2x,R1/2u,R1/2w) transforms the closed-loop performance measure and state-
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space representation into

JP (K) =
∞∑
k=0

[
x̄(k)T x̄(k) + (ū(k) + w̄(k))T (ū(k) + w̄(k))

]
, (9)

and

x̄(k + 1) = Q1/2AQ−1/2x̄(k) +Q1/2BR−1/2(ū(k) + w̄(k))
= Āx̄(k) + B̄(ū(k) + w̄(k)),

without affecting the plant, control, or design graphs, due toQ and R being diagonal
matrices.

Definition 3.1 (Competitive Ratio) Let a plant graph GP , a control graph GK,
and a constant ε > 0 be given. Assume that, for every plant P ∈ P, there exists an
optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio of a control design method Γ is defined as

rP(Γ) = sup
P=(A,B,D,x0,w0)∈P

JP (Γ(A,B,D))
JP (K∗(P )) ,

with the convention that “ 0
0” equals one.

Note that the optimal control design strategy (with full plant model information)
K∗ does not necessarily belong to the set C.

Definition 3.2 (Domination) A control design method Γ is said to dominate an-
other control design method Γ′ if

JP (Γ(A,B,D)) ≤ JP (Γ′(A,B,D)), ∀ P = (A,B,D, x0, w0) ∈ P, (10)

with strict inequality holding for at least one plant in P. When Γ′ ∈ C and no control
design method Γ ∈ C exists that satisfies (10), we say that Γ′ is undominated in C
for plants in P.

In the remainder of this paper, we determine optimal control design strategies

Γ∗ ∈ arg min
Γ∈C

rP(Γ), (11)

for a given plant, control, and design graph. Since several design methods may
achieve this minimum, we are interested in determining which ones of these strate-
gies are undominated.
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3 Preliminary Results

Before stating the main results of the paper, we introduce two specific control design
strategies and study their properties.

3.1 Optimal Centralized Control Design Strategy
The problem of designing optimal constant input-disturbance accommodation con-
trol for linear time-invariant continuous-time systems was solved earlier in [21, 23].
To the best of our knowledge, this was not the case for arbitrary dynamic distur-
bance accommodation when dealing with linear time-invariant discrete-time sys-
tems. As we need it later, we start by developing the optimal centralized (i.e,
GK is a complete graph) disturbance accommodation controller K∗(P ) for a given
plant P ∈ P. First, let us define the auxiliary variables ξ(k) = u(k) + w(k) and
ū(k) = u(k + 1)−Du(k). It then follows that

ξ(k + 1) = u(k + 1) + w(k + 1)
= u(k + 1) +Dw(k)
= Du(k) +Dw(k) + ū(k)
= Dξ(k) + ū(k). (12)

Augmenting the state-transition in (12) with the state-space representation of the
system in (1) results in[

x(k + 1)
ξ(k + 1)

]
=
[
A B
0 D

] [
x(k)
ξ(k)

]
+
[

0
I

]
ū(k). (13)

Besides, we can write the performance measure in (9) as

JP (K) =
∞∑
k=0

[
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
. (14)

To guarantee the existence and uniqueness of the optimal controller K∗(P ), we
need the following lemma.

Lemma 3.1 The pair (Ã, B̃), with

Ã =
[
A B
0 D

]
, B̃ =

[
0
I

]
, (15)

is controllable for any given P = (A,B,D, x0, w0) ∈ P.

Proof: The pair (Ã, B̃) is controllable if and only if

[
Ã− λI B̃

]
=
[
A− λI B 0

0 D − λI I

]
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is full-rank for all λ ∈ C. This condition is always satisfied since all matrices
B ∈ B(ε) are full-rank matrices.

Now the problem of minimizing the cost function in (14) subject to plant dy-
namics in (13) becomes a state-feedback linear quadratic optimal control with a
unique solution of the form

ū(k) = G1x(k) +G2ξ(k),

where G1 ∈ Rn×n and G2 ∈ Rn×n satisfy[
G1 G2

]
= −(B̃TXB̃)−1B̃TXÃ (16)

and X is the unique positive-definite solution of the discrete algebraic Riccati equa-
tion

ÃTXB̃(B̃TXB̃)−1B̃TXÃ− ÃTXÃ+X − I = 0. (17)

Therefore, we have

u(k + 1) = Du(k) + ū(k)
= Du(k) +G1x(k) +G2ξ(k). (18)

Using the identity ξ(k) = B−1(x(k + 1)−Ax(k)) in (18), we get

u(k + 1) = Du(k) +G1x(k) +G2ξ(k)
= Du(k) +G1x(k) +G2B

−1(x(k + 1)−Ax(k))
= Du(k) + (G1 −G2B

−1A)x(k) +G2B
−1x(k + 1). (19)

Putting a control signal of the form u(k) = xK(k) +DKx(k) in (19), we get

xK(k + 1) = DxK(k) + (DDK +G1 −G2B
−1A)x(k) + (G2B

−1 −DK)x(k + 1).

Now, we enforce the condition G2B
−1−DK = 0, as xK(k+1) can only be a function

of x(k) and xK(k), see (5). Therefore, the optimal controller K∗(P ) becomes

xK(k + 1) = DxK(k) + [G1 +DG2B
−1 −G2B

−1A]x(k),
u(k) = xK(k) +G2B

−1x(k),

with xK(0) = 0.

Lemma 3.2 Let the control graph GK be a complete graph. Then, the cost of the
optimal controller K∗(P ) for each plant P ∈ P is lower-bounded as

JP (K∗(P )) ≥
[

x0
Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)
−(W +B−2)D W +B−2

] [
x0
Bw0

]
,

where
W = AT (I +B2)−1A+ I.
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Proof: Define

J̄P (K, ρ) =
∞∑
k=0

([
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
+ ρū(k)T ū(k)

)
,

and
K̄∗ρ(P ) = arg min

K∈K
J̄P (K, ρ).

Using Lemma 3.1, we know that K̄∗ρ(P ) exists and is unique. We can find
J̄P (K̄∗ρ(P ), ρ) using X(ρ) as the unique positive definite solution of the discrete
algebraic Riccati equation

ÃTX(ρ)B̃(ρI + B̃TX(ρ)B̃)−1B̃TX(ρ)Ã− ÃTX(ρ)Ã+X(ρ)− I = 0. (20)

According to [32], the positive-definite matrix X(ρ) is lower-bounded by

X(ρ)− I ≥ ÃT
(
X̄(ρ)−1 + ρ−1B̃B̃T

)−1
Ã

= ÃT
(
X̄(ρ)− X̄(ρ)B̃

(
ρI + B̃T X̄(ρ)B̃

)−1
B̃T X̄(ρ)

)
Ã,

where

X̄(ρ) = ÃT
(
I + ρ−1B̃B̃T

)−1
Ã =

[
ATA+ I ATB
BA B2 +D2 ρ

ρ+1 + I

]
.

Basic algebraic calculations show that

lim
ρ→0

[
X̄(ρ)− X̄(ρ)B̃

(
ρI + B̃T X̄(ρ)B̃

)−1
B̃T X̄(ρ)

]
=
[
AT (I +B2)−1A+ I 0

0 0

]
.

According to [33], we know that

lim
ρ→0+

J̄P (K̄∗ρ(P ), ρ) = JP (K∗(P )),

and as a result

X = lim
ρ→0

X(ρ) ≥
[
A B
0 D

]T [
AT (I +B2)−1A+ I 0

0 0

] [
A B
0 D

]
+ I. (21)

where X is the unique positive-definite solution of the discrete algebraic Riccati
equation in (17) and consequently

JP (K∗(P )) =
[

x0
ξ(0)

]T [
X11 X12
XT

12 X22

] [
x0
ξ(0)

]
with X being partitioned as

X =
[
X11 X12
XT

12 X22

]
.
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We know that

ξ(0) = u(0) + w0 = G2B
−1x0 + w0 = −(X−1

22 X
T
12 +DB−1)x0 + w0.

Thus, the cost of the optimal control design JP (K∗(P )) becomes[
x0

−(X−1
22 X

T
12 +DB−1)x0 + w0

]T[
X11 X12
XT

12 X22

][
x0

−(X−1
22 X

T
12 +DB−1)x0 + w0

]
=
[
x0
w0

]T [
X11 −X12X

−1
22 X

T
12 +B−1DX22DB

−1 −B−1DX22
−X22DB

−1 X22

] [
x0
w0

]
=
[
x0
w0

]T [
B−1(X22 +DX22D − I)B−1 −B−1DX22

−X22DB
−1 X22

] [
x0
w0

]
(22)

The second equality is true because of the following equation extracted from the
discrete algebraic Riccati equation in (17)

X22 = I +BX11B −BX12X
−1
22 X

T
12B,

which is equivalent to

X11 −X12X
−1
22 X

T
12 = B−1(X22 − I)B−1. (23)

Using (21), it is evident that

X22 ≥ B[AT (I +B2)−1A+ I]B + I = BWB + I,

and as a result, the inner-matrix in (22) is lower-bounded by[
B−1(X22 +DX22D − I)B−1 −B−1DX22

−X22DB
−1 X22

]
=
[
B−1(X22 − I)B−1 0

0 0

]
+
[
B−1DX22DB

−1 −B−1DX22
−X22DB

−1 X22

]
=
[
B−1(X22 − I)B−1 0

0 0

]
+
[
−B−1D

I

]
X22

[
−B−1D

I

]T
≥
[
B−1(BWB)B−1 0

0 0

]
+
[
−B−1D

I

]
(BWB + I)

[
−B−1D

I

]T
=
[
W +DWD +D2B−2 −D(WB +B−1)
−(BW +B−1)D BWB + I

]
Finally, we get

JP (K∗(P )) ≥
[
x0
w0

]T [
W +DWD +D2B−2 −D(WB +B−1)
−(BW +B−1)D BWB + I

] [
x0
w0

]
=
[

x0
Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)
−(W +B−2)D W +B−2

] [
x0
Bw0

]
.

This statement concludes the proof.
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3.2 Deadbeat Control Design Strategy
In this subsection, we introduce the deadbeat control design strategy and calculate
its competitive ratio.

Definition 3.3 Let a plant graph GP and a control graph GK be given such that
GK ⊇ GP . The deadbeat control design strategy Γ∆ : A(SP) × B(ε) × D → K is
defined as

Γ∆(A,B,D) ,
[
D −B−1D2

I −B−1(A+D)

]
.

Remark 3.4 It should be noted that using the deadbeat control design strategy, the
closed-loop system reaches the origin in just two time-steps irrespective of the value
of the initial state x0 and the initial disturbance w0. Additionally, the deadbeat
control design strategy is a limited model information control design method since

Γ∆
i (A,B,D) = −(z − dii)−1b−1

ii d
2
iie

T
i − b−1

ii (Ai +Di),

for each 1 ≤ i ≤ n, that is, subcontroller i uses only the plant model information of
subsystem i, (Ai, Bi, Di). Finally, when using the deadbeat control design strategy,
aij + bii(dΓ)ij(A,B,D) = 0, 1 ≤ i, j ≤ n, which, as shown later in Lemma 3.7, is
a property that must necessarily be satisfied by nodes that are not a sink to obtain
a finite competitive ratio.

The closed-loop system with deadbeat control design strategy is shown in Fig-
ure 3(a). This feedback loop can be rearranged as the one in Figure 3(b) which
has two separate components. One component is a static deadbeat control design
strategy for regulating the state of the plant and the other one is a deadbeat ob-
server for canceling the disturbance. This structure is further discussed in Section 6,
where it is shown that it corresponds to proportional-integral control in some cases.
First, we need to calculate an expression for the cost of the deadbeat control design
strategy.

Lemma 3.3 The cost of the deadbeat control design strategy Γ∆ for each plant
P = (A,B,D, x0, w0) ∈ P is

JP (Γ∆(A,B,D)) =
[

x0
Bw0

]T [
Q11 Q12
QT12 Q22

] [
x0
Bw0

]
,

where

Q11 =I +D2(I +B−2) +ATB−2A+DATB−2AD +ATB−2D +DB−2A,
(24)

Q12 =−D −ATB−2 −DB−2 −DATB−2A, (25)
Q22 =ATB−2A+B−2 + I. (26)
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Figure 3: The closed-loop system with (a) the deadbeat controller corresponding
to Γ∆, and (b) rearranging this controller as a static deadbeat controller and a
deadbeat observer.

Proof: First, it should be noted that the state of the closed-loop system with
Γ∆(A,B,D) in feedback reaches the origin in two time-steps. Now, using the
system state transition, one can calculate the deadbeat control design strategy cost
as

JP (Γ∆(A,B,D)) =xT0 x0 + (u(0) + w0)T (u(0) + w0)
+ x(1)Tx(1) + (u(1) + w(1))T (u(1) + w(1)),

where x(1) = −Dx0 + Bw0, u(0) = −B−1(A + D)x0, and u(1) = −B−1(A +
D)x(1)−B−1D2x0. The rest of the proof is a trivial simplification.

We need the following lemma in order to calculate the competitive ratio of the
deadbeat control design strategy Γ∆ when the control graph GK is a supergraph
of the plant graph GP . As the notation K∗(P ) is reserved for the optimal control
design strategy for a given control graph GK, from now on, we will use K∗C to
denote the centralized optimal control design strategy (i.e., the optimal control
design strategy with access to full-state measurement).

Lemma 3.4 Let GK ⊇ GP , and P = (A,B,D, x0, w0) ∈ P be a plant with A being
a nilpotent matrix of degree two. Then, JP (K∗(P )) = JP (K∗C(P )).

Proof: When matrix A is nilpotent, the unique positive-definite solution of the
discrete algebraic Riccati equation (17) is

X =
[
ATA+ I ATB
BA BAT (I +B2)−1AB + I +B2

]
.

Consequently, the optimal centralized controller gains in (16) are

G1 = 0, G2 = −(I +B2)−1BAB −D,

and as a result, the optimal centralized controller K∗C(P ) is

K∗C(P ) =
[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]
= (zI −D)−1D(I +B2)−1B−1A−B−1D2 − (I +B2)−1BA−B−1D.



158 PAPER 3. DECENTRALIZED DISTURBANCE ACCOMMODATION ...

Thus, K∗C(P ) ∈ K(SK) because the control graph GK is a supergraph of the plant
graph GP . Now, considering that K∗(P ) is the global optimal decentralized con-
troller, it has a lower cost than any other decentralized controller K ∈ K(SK),
specially K∗C(P ) ∈ K(SK) for this particular plant. Hence,

JP (K∗(P )) ≤ JP (K∗C(P )). (27)

On the other hand, it is evident that

JP (K∗C(P )) ≤ JP (K∗(P )). (28)

This concludes the proof.

Remark 3.5 Finding the optimal structured controller is intractable in general,
even when the global model is known. In this paper, we concentrate on the cases
where the control graph GK is a supergraph of the plant graph GP , because it is
relatively easier to solve the optimal control design problem under limited model
information in this case. In addition, although, in this paper, we may not be able to
find the optimal structured controller K∗(P ) for a particular plant in some of the
cases, we can still compute the competitive ratio rP . Thus, in a sense, this makes
the competitive ratio a quite powerful tool.

Next, we derive the competitive ratio of the deadbeat control design method.

Theorem 3.5 Let GK ⊇ GP . Then, the competitive ratio of the deadbeat control
design method Γ∆ is equal to

rP(Γ∆) = 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Proof: First, let us define the set of all real numbers that are greater than or
equal to the competitive ratio of the deadbeat control design strategy

M =
{
β ∈ R

∣∣∣∣ JP (Γ∆(A,B,D))
JP (K∗(P )) ≤ β ∀P ∈ P

}
.

It is evident that
JP (K∗C(P )) ≤ JP (K∗(P ))

for each plant P ∈ P irrespective of the control graph GK, and as a result

JP (Γ∆(A,B,D))
JP (K∗(P )) ≤ JP (Γ∆(A,B,D))

JP (K∗C(P )) . (29)

Using (29) and Lemmas 3.3 and 3.2, β belongs to the setM if[
x0
Bw0

]T [
Q11 Q12
QT12 Q22

] [
x0
Bw0

]
[

x0
Bw0

]T [
W +DWD +D2B−2 −D(W +B−2)
−(W +B−2)D W +B−2

] [
x0
Bw0

] ≤ β, (30)
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for all A ∈ A(SP), B ∈ B(ε), D ∈ D, x0 ∈ Rn, and w0 ∈ Rn where Q11, Q12, and
Q22 are matrices defined in (24)–(26). The condition (30) is satisfied, if and only
if, for all A ∈ A(SP), B ∈ B(ε), and D ∈ D, we have[

β(W +DWD +D2B−2)−Q11 −βD(W +B−2)−Q12
−β(W +B−2)D −QT12 β(W +B−2)−Q22

]
≥ 0.

Using Schur complement [34], β belongs to the setM if

Z =β(W +B−2)−Q22

=β(AT (I +B2)−1A+ I +B−2)−ATB−2A−B−2 − I (31)
=AT (β(I +B2)−1 −B−2)A+ (β − 1)(B−2 + I) ≥ 0,

and

−
[
−βD(W +B−2)−Q12

] [
β(W +B−2)−Q22

]−1 [−β(W +B−2)D −QT12
]

+ β(W +DWD +D2B−2)−Q11 ≥ 0, (32)

for all A ∈ A(SP), B ∈ B(ε), and D ∈ D. We can do the simplification

−βD(W +B−2)−Q12 = −βD(AT (I +B2)−1A+ I +B−2)
− (−D −ATB−2 −DB−2 −DATB−2A)

= −(β − 1)D(I +B−2) +ATB−2

−DAT (β(I +B2)−1 −B−2)A
= −DZ +ATB−2,

and as a result, the condition (32) is equivalent to

β(W+DWD+D2B−2)−Q11−[−DZ+ATB−2]Z−1[−ZD+B−2A] ≥ 0, (33)

where Z is defined in (31). Furthermore, we can simplify β(W +DWD+D2B−2)−
Q11 as

AT (β(I +B2)−1 −B−2)A+ (β − 1)[I +D2B−2 +D2]
+DAT (β(I +B2)−1 −B−2)AD −ATB−2D −DB−2A,

which helps us to expand condition (33) to

AT
(
β(I +B2)−1 −B−2)A+ (β − 1)

(
I +D2B−2 +D2)

+DAT
(
β(I +B2)−1 −B−2)AD −ATB−2D −DB−2A

−D
(
AT
(
β(I +B2)−1 −B−2)A+ (β − 1)(B−2 + I)

)
D

+ATB−2D +DB−2A−ATB−2Z−1B−2A ≥ 0. (34)
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Hence, it follows from (34) that (33) can be simplified as

AT
(
β(I +B2)−1 −B−2)A−ATB−2Z−1B−2A ≥ 0. (35)

The condition (31) is satisfied, for all plants P ∈ P, if β ≥ 1 + 1/ε2, since in this
case β(I +B2)−1−B−2 ≥ 0 (recall that any matrix B is diagonal and its diagonal
elements are lower-bounded by ε). Furthermore, for all β ≥ 1 + 1/ε2, it is easy to
see that Z ≥ (β−1)(B−2 + I). As a result, it can be shown that the condition (35)
is satisfied if

AT
(
β(I +B2)−1 −B−2 − (β − 1)−1B−2(B−2 + I)−1B−2)A+ (β − 1)I ≥ 0. (36)

Now, the condition (36) is satisfied if

β(I +B2)−1 −B−2 − (β − 1)−1B−2(B−2 + I)−1B−2 ≥ 0. (37)

Noting that the matrix B = diag(b11, . . . , bnn), one can rewrite (37) as

β

1 + b2ii
− 1
b2ii
− 1
β − 1

1
b2ii(1 + b2ii)

≥ 0. (38)

for all bii ≥ ε. Retracing our steps backward, it easy to see that the set{
β | β ≥ 1 + 1

ε2
and (38) satisfied

}
=
{
β ≥ 2ε2 + 1 +

√
4ε2 + 1

2ε2

}
⊆M.

Therefore, we get

rP(Γ∆) = sup
P∈P

JP (Γ∆(A,B,D))
JP (K∗(P )) ≤ 2ε2 + 1 +

√
4ε2 + 1

2ε2 . (39)

Now, we have to show that this upper bound can be achieved by a family of
plants. Consider a one-parameter family of matrices {A(r)} defined as A(r) = reje

T
i

for each r ∈ R. It is always possible to find indices i and j such that i 6= j and
(sP)ji 6= 0, because of the assumption that there be no isolated node in the plant
graph. Let B = εI and D = I. For each r ∈ R, the matrix A(r) is a nilpotent
matrix of degree two, that is, A(r)2 = 0. Thus, using Lemma 3.4, we get

JP (K∗C(P )) = JP (K∗(P ))

for this special plant. The solution to the discrete algebraic Riccati equation in (17)
is

X =
[
A(r)TA(r) + I εA(r)T

εA(r) ε2/(1 + ε2)A(r)TA(r) + (ε2 + 1)I

]
.

Thus, if we assume that

x0 = (ε2 + 1)(
√

4ε2 + 1 + 1)
2εr ei, (40)
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and
w0 = (ε2 + 1)(

√
4ε2 + 1 + 1)

2ε2r ei − ej , (41)

the cost of the optimal control design strategy is

JP (K∗(P )) = (ε2 + 1)
√

4ε2 + 1 + 5ε2 + 4ε4 + 1
2ε2

+ (2ε2 +
√

4ε2 + 1 + 1)
√

4ε2 + 1
2ε2r2 , (42)

and the cost of the deadbeat control design strategy is

JP (Γ∆(A,B,D)) = (ε2 + 1)(3ε2
√

4ε2 + 1 + 5ε2 + 4ε4 +
√

4ε2 + 1 + 1)
2ε4

+ (ε2 + 1)(ε2
√

4ε2 + 1 + ε4
√

4ε2 + 1 + ε2 + 3ε4 + 2ε6)
2ε4r2 . (43)

This results in

lim
r→∞

JP (Γ∆(A,B,D))
JP (K∗(P )) = 2ε2 + 1 +

√
4ε2 + 1

2ε2 . (44)

Equation (39) together with (44) conclude the proof.

Remark 3.6 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a) and the control graph GK in Figure 2(b). Theo-
rem 3.5 shows that, if we apply the deadbeat control design strategy to this particular
problem, the performance of the deadbeat control design strategy, at most, can be
(2ε2 + 1 +

√
4ε2 + 1)/(2ε2) times the cost of the optimal control design strategy K∗.

In fact, Theorem 3.5 states that this relationship between the performance of the
deadbeat control design and the optimal control design with full model information
holds for a rather general class of systems. For the case that B = {I}, the relation-
ship is given by (3 +

√
5)/2 ≈ 2.62, so the deadbeat control design strategy is never

worse than two or three times the optimal.

Remark 3.7 We only proved the results for the case where there is a uniform lower
bound on the entries of matrices B ∈ B(ε). A theorem similar to Theorem 3.5 can
still be proved when we have a nonuniform lower bound on the diagonal entries of
the matrices B ∈ B in (3). Let us in that case define the set of matrices

B′({εi}ni=1) = {B̄ ∈ Rn×n | B̄ ≥ diag(ε1, . . . , εn), b̄ij = 0 for all 1 ≤ i 6= j ≤ n},

for given {εi}ni=1, such that εi > 0, for all 1 ≤ i ≤ n. In the proof of Theorem 3.5,
we can then use that {

β ≥
2ε2∗ + 1 +

√
4ε2∗ + 1

2ε2∗

}
⊆M,
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where ε∗ = min1≤i≤n εi, based on the fact that inequality (37) should be satisfied
for each diagonal entry bii ≥ εi. Using the definition of the set M in the proof of
Theorem 3.5, we get

rP(Γ∆) ≤
2ε2∗ + 1 +

√
4ε2∗ + 1

2ε2∗
.

The rest of the results in this paper can be similarly generalized to a non-uniform
lower bound on the entries of the matrices B ∈ B′({εi}ni=1).

Remark 3.8 In the proof of Theorem 3.5, we use a special family of plants to
achieve the competitive ratio of the deadbeat control design strategy. In this family
of plants, only a single entry of the A-matrix approaches infinity while the other
entries are zero. As this specific entry goes to infinity, its corresponding subsystem
becomes tightly coupled to another subsystem. Note that the overall system is con-
trollable because σ(B) ≥ ε. This special family of plants plays an important role in
determining a lower bound for the competitive ratio of control design strategies for
various design graphs also in later proofs of this paper.

With this characterization of Γ∆ in hand, we are now ready to tackle prob-
lem (11).

4 Plant Graph Influence on Achievable Performance

In this section, we study the relationship between the plant graph and the achievable
closed-loop performance in terms of the competitive ratio as a performance metric
and the domination as a partial order on the set of limited model information
control design strategies. To this end, we first state and prove two lemmas which
will simplify further developments.

Lemma 3.6 Fix real numbers a ∈ R and b ∈ R. For any x ∈ R, we have x2 + (a+
bx)2 ≥ a2/(1 + b2).

Proof: Consider the function x 7→ x2 + (a + bx)2. Since this function is both
continuously differentiable and strictly convex, we can find its unique minimizer as
x̄ = −ab/(1 + b2) by setting its derivative to zero. As a result, we get

x2 + (a+ bx)2 ≥ x̄2 + (a+ bx̄)2 = a2/(1 + b2).

This concludes the proof.

Lemma 3.7 Let the design graph GC be a totally disconnected graph, and GK ⊇
GP . Furthermore, assume that node i is not a sink in the plant graph GP . Then,
the competitive ratio of a control design strategy Γ ∈ C is bounded only if aij +
bii(dΓ)ij(A,B,D) = 0 for all j 6= i and all matrices A ∈ A(SP), B ∈ B(ε), and
D ∈ D.
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Proof: The proof is by contrapositive. Let us assume that there exist matrices
Ā ∈ A(SP), B ∈ B(ε), D ∈ D, and indices i and j such that i 6= j and āij +
bii(dΓ)ij(Ā, B,D) 6= 0. Let 1 ≤ ` ≤ n be an index such that ` 6= i and (sP)`i 6= 0
(such an index always exists because node i is not a sink in the plant graph GP).
Define matrix A such that Ai = Āi, A` = reTi , and At = 0 for all t 6= i, `. Because
the design graph is a totally disconnected graph, we know that Γi(Ā, B,D) =
Γi(A,B,D). Using the structure of the cost function in (9) and plant dynamics
in (1), the cost of this control design strategy for w0 = ej and x0 = 0 is lower-
bounded by

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ (u`(2) + w`(2))2 + x`(3)2

= (u`(2) + w`(2))2 + (rxi(2) + b``[u`(2) + w`(2)])2
.

Based on Lemma 3.6 and the fact that xi(2) = (aij+bii(dΓ)ij(A,B,D))bjj (see Fig-
ure 4), we get

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ r2xi(2)2/(1 + b2``)
= (aij + bii(dΓ)ij(A,B,D))2b2jjr

2/(1 + b2``).

On the other hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ej)(Γ
∆(A,B,D)) = eTj B

T (ATB−2A+B−2 + I)Bej
= b2jj + 1 + a2

ijb
2
jj/b

2
ii.

Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . This gives

rP(Γ) = sup
P∈P

JP (Γ(A,B,D))
JP (K∗(P ))

= sup
P∈P

[
JP (Γ(A,B,D))
JP (Γ∆(A,B,D))

JP (Γ∆(A,B,D))
JP (K∗(P ))

]
≥ sup
P∈P

JP (Γ(A,B,D))
JP (Γ∆(A,B,D)) (45)

≥
(aij + bii(dΓ)ij(A,B,D))2b2jj/(1 + b2``)

b2jj + 1 + a2
ijb

2
jj/b

2
ii

lim
r→∞

r2 =∞.

This inequality proves the statement by contrapositive as the competitive ratio is
not bounded in this case.

4.1 Plant Graphs without Sinks
First, we assume that there is no sink in the plant graph and try to characterize the
optimal control design strategy in terms of the competitive ratio and domination.
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Figure 4: State evolution of the closed-loop system with any control design strategy
Γ when x0 = 0.

Theorem 3.8 Let the plant graph GP contain no sink, the design graph GC be
a totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of any
control design strategy Γ ∈ C satisfies

rP(Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Proof: Consider a one-parameter family of matrices {A(r)} defined as A(r) =
reje

T
i for each r ∈ R. It is always possible to find indices i and j such that i 6= j and

(sP)ji 6= 0, because of the assumption that there is no isolated node in the plant
graph. Let B = εI and D = I. Let Γ ∈ C be a control design strategy with design
graph GC . Without loss of generality, we can assume that (dΓ)ji(A,B,D) = −r/ε
since otherwise, using Lemma 3.7, we get that rP(Γ) is infinity, and as a result the
inequality in the theorem statement is trivially satisfied. Thus, for each r ∈ R, the
cost of the control design strategy Γ for x0 in (40) and w0 in (41) is lower-bounded
by

JP (Γ(A,B,D)) ≥ (uj(0) + wj(0))2 + xj(1)2

=
(

(ε2 + 1)(
√

4ε2 + 1 + 1)
2ε2 + 1

)2

+ ε2

= (ε2 + 1)(3ε2
√

4ε2 + 1 + 5ε2 + 4ε4 +
√

4ε2 + 1 + 1)
2ε4 .

On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Consequently, using Lemma 3.4, the cost of the optimal
control design strategy K∗(P ) for x0 in (40) and w0 in (41) is given by (42). This
results in

rP(Γ) ≥ lim
r→∞

JP (Γ(A,B,D))
JP (K∗(P )) = 2ε2 + 1 +

√
4ε2 + 1

2ε2 .

Theorem 3.8 shows that the deadbeat control design method Γ∆ is a minimizer
of the competitive ratio rP as a function over the set of limited model information
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design methods C. The following theorem shows that it is also undominated by
methods of this type, if and only if, the plant graph GP has no sink.

Theorem 3.9 Let the design graph GC be a totally disconnected graph, and GK ⊇
GP . Then, the control design strategy Γ∆ is undominated if and only if there is no
sink in the plant graph GP .

Proof: First, we have to prove the sufficiency part of the theorem. Assume
that there is no sink in the plant graph. For proving this claim, we are going
to prove that for any control design method Γ ∈ C \ {Γ∆}, there exists a plant
P = (A,B,D, x0, w0) ∈ P such that JP (Γ(A,B,D)) > JP (Γ∆(A,B,D)). First,
assume that there exist matrices Ā ∈ A(SP), B ∈ B(ε), and D ∈ D and an
index j such that Āj + bjj(DΓ)j(Ā, B,D) + djje

T
j 6= 0. Without loss of generality,

we can assume that ājj + bjj(dΓ)jj(Ā, B,D) + djj 6= 0, because otherwise, using
Equation (45) in the proof of Lemma 3.7, we know that, if there exists ` 6= j such
that āj`+bjj(dΓ)j`(Ā, B,D) 6= 0, the ratio of the cost of the control design strategy
Γ to the cost of the deadbeat design strategy Γ∆ is unbounded. Therefore, the
control design strategy Γ cannot dominate the deadbeat control design strategy
Γ∆. Pick an index i 6= j such that (sP)ij 6= 0. It is always possible to pick
such index i because there is no sink in the plant graph. Define matrix A such
that Aj = Āj , Ai = reTj , and A` = 0 for all ` 6= i, j. It should be noted that
Γj(A,B,D) = Γj(Ā, B,D) because the design graph is a totally disconnected graph.
We know that r + bii(dΓ)ij(A,B,D) = 0 because otherwise the control design
strategy Γ cannot dominate the deadbeat control design strategy. The cost of this
control design strategy for w = ej and x0 = 0 satisfies

JP (Γ(A,B,D)) ≥ (ui(1) + wi(1))2 + (ui(2) + wi(2))2 + xi(3)2

= r2b2jj/b
2
ii + (ui(2) + wi(2))2 + (xj(2)r + bii[ui(2) + wi(2)])2,

because of the structure of the cost function (9) and the plant dynamics (1). Now,
using Lemma 3.6, we have

JP (Γ(A,B,D)) ≥ r2b2jj/b
2
ii + xj(2)2r2/(1 + b2ii).

As a result

JP (Γ(A,B,D))− JP (Γ∆(A,B,D))
≥ (Ājj + bjj(dΓ)jj(Ā, B,D) + djj)2b2jjr

2/(1 + b2ii)− (b2jj + 1 + a2
jj), (46)

since xj(2) = (Ājj + bjj(dΓ)jj(Ā, B,D) + djj)bjj (see Figure 4) and

J(A,B,D,0,ej)(Γ
∆(A,B,D)) = eTj B

T (ATB−2A+B−2 + I)Bej
= b2jj + 1 + r2b2jj/b

2
ii + a2

jj .

Thus, if we pick r large enough, the difference in (46) becomes positive, which
shows that the control design strategy Γ cannot dominate the deadbeat control
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design strategy Γ∆. Now, assume that there exist matrices Ā ∈ A(SP), B ∈ B(ε),
and D̄ ∈ D and an index j such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jje

T
j = 0 but

Γj(Ā, B, D̄) 6= Γ∆
j (Ā, B, D̄). Define matrix A such that Aj = Āj and A` = 0 for

all ` 6= j and matrix D as djj = d̄jj and d`` = 0 for all ` 6= j. Let x0 = 0. If
there exists an index i 6= j such that γij(Ā, B,D) 6= γ∆

ij (Ā, B,D) pick w0 = ei,
otherwise, pick w0 = ej . For this special case, the state of the closed-loop system
with the controller Γ(A,B,D) is equal to the state of the closed-loop system with
the controller Γ∆(A,B,D) for the first and the second time-steps (see Figure 4
and Figure 5). As a result, the state of the subsystem j reaches zero in two time-
steps. Now, since Γj(Ā, B, D̄) 6= Γ∆

j (Ā, B, D̄), in the next time-step the state of the
subsystem j becomes non-zero again. This results in a performance cost greater
than the performance cost of the control design strategy Γ∆. Thus, the control
design Γ∆ is undominated by the control design method Γ.

Now, we have to prove the necessary part of the theorem. Proving this part
is equivalent to proving that if there exists (a sink) j such that for every i 6= j,
(sP)ij = 0, then there exists a control design strategy Γ which can dominate the
deadbeat control design strategy. Without loss of generality, let j = n; i.e., assume
that (sP)in = 0 for all i 6= n. In this situation, we can rewrite the matrix A as

A =


a11 · · · a1,n−1 0
...

. . .
...

...
an−1,1 · · · an−1,n−1 0
an1 · · · an,n−1 ann

 ,
Define x̄0 = [x1(0) · · · xn−1(0)]T and w̄0 = [w1(0) · · · wn−1(0)]T . Let Γ(A,B,D)
be defined as AΓ(A,B,D) = D, CΓ(A,B,D) = I,

BΓ(A,B,D) =


−d

2
11
b11

· · · 0 0
...

. . .
...

...
0 · · · −d

2
n−1,n−1
bn−1,n−1

0
(bΓ)n1 · · · (bΓ)n,n−1 (bΓ)nn

 ,

DΓ(A,B,D) =


−a11+d11

b11
· · · −a1,n−1

b11
0

...
. . .

...
...

− an−1,1
bn−1,n−1

· · · −an−1,n−1+dn−1,n−1
bn−1,n−1

0
(dΓ)n1 · · · (dΓ)n,n−1 (dΓ)nn

 ,

where B̄Γ = [(bΓ)n1 · · · (bΓ)nn] and D̄Γ = [(dΓ)n1 · · · (dΓ)nn] are tunable gains
for the last subsystem. We denote the cost of applying the deadbeat controller to
subsystems 1, . . . , n − 1 by J (1)

(A,B,D,x̄0,w̄0). This cost is independent of the control
design parameters B̄Γ and D̄Γ, because the last subsystem is a sink and it cannot
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affect the other subsystems. The overall cost of the controller is

J(A,B,x0,w0)(Γ(A,B,D)) = J
(1)
(A,B,D,x̄0,w̄0) + J

(2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ),

where J (2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ) is the cost of the controller designed for the last sub-

system. This cost J (2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ) is independent of the rest of the system’s

model, because the deadbeat (for subsystems 1, . . . , n−1) cancel out all dependen-
cies in matrix A, thus, one can design the optimal controller for the lower part of
the system without the model information of the upper part. Now, we can use the
method mentioned in Subsection 3.1 to design the optimal controller for the lower
part and find the optimal gains

B̄Γ = dnn
bnn

((α+ 1)An −Dn) , D̄Γ = 1
bnn

(αAn −Dn) ,

where

α = 2
b2nn + a2

nn + 1 +
√
a4
nn + 2a2

nnb
2
nn − 2a2

nn + b4nn + 2b2nn + 1
− 1.

Note that this new control design strategy is always applicable since the control
graph GK is supergraph of the plant graph GP . Therefore, there exists a control
design strategy which satisfies

J(A,B,D,x0,w0)(Γ(A,B,D)) ≤ J(A,B,D,x0,w0)(Γ∆(A,B,D)),

for all matrices A ∈ A(SP), B ∈ B(ε), and D ∈ D and all vectors x0 ∈ Rn and
w0 ∈ Rn. Consider the matrix A ∈ A(SP) such that An = reTn and A` = 0 for all
` 6= n. Let B = εI and D = I. For this special system, for all r > 0, we have

J(A,B,D,0,en)(Γ(A,B,D)) =
√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 + ε2 + 1

2
< r2 + ε2 + 1
= J(A,B,D,0,en)(Γ∆(A,B,D)).

Thus, the control design strategy Γ dominates the deadbeat control design strategy
Γ∆.

Remark 3.9 Consider the limited model information design problem given by the
plant graph G′P in Figure 2(a′), the control graph G′K in Figure 2(b′), and the design
graph G′C in Figure 2(c′). Theorems 3.8 and 3.9 show that the deadbeat control
design strategy Γ∆ is the best control design strategy that one can propose based
on local model of the subsystems and the plant graph, because the deadbeat control
design strategy is the minimizer of the competitive ratio and it is undominated.

We use the construction in proof of the “only if” part of Theorem 3.9 to build
a control design strategy for the plant graphs with sinks in the next subsection.
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Figure 5: State evolution of the closed-loop system with deadbeat control design
strategy Γ∆ when x0 = 0.

4.2 Plant Graphs with Sinks
In this section, we study the case where there are c ≥ 1 sinks in the plant graph.
By renumbering the sinks as subsystems number n − c + 1, · · · , n the matrix SP
can be written as

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (47)

where

(SP)11 =

 (sP)11 · · · (sP)1,n−c
...

. . .
...

(sP)n−c,1 · · · (sP)n−c,n−c

 ,

(SP)21 =

 (sP)n−c+1,1 · · · (sP)n−c+1,n−c
...

. . .
...

(sP)n,1 · · · (sP)n,n−c

 ,
and

(SP)22 =

 (sP)n−c+1,n−c+1 · · · 0
...

. . .
...

0 · · · (sP)nn

 .
From now on, without loss of generality, we assume that the structure matrix is
the one defined in (47). The control design method ΓΘ for this type of systems is
defined as

ΓΘ(A,B,D) =
[
D B−1D(F (A,B) + I)A−B−1D2

I B−1(F (A,B)A−D)

]
, ∀P ∈ P, (48)

where
F (A,B) = diag(0, . . . , 0, fn−c+1(A,B), . . . , fn(A,B))

and

fi(A,B) = 2
b2ii + a2

ii + 1 +
√
a4
ii + 2a2

iib
2
ii − 2a2

ii + b4ii + 2b2ii + 1
− 1 (49)
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for all i = n− c+ 1, · · · , n.
The control design strategy ΓΘ applies the deadbeat to every subsystem that

is not a sink and, for every sink, applies the same optimal control law as if the
node was isolated. We will show that when the plant graph contains sinks, the
control design method ΓΘ has, in the worst case, the same competitive ratio as
the deadbeat strategy. However, unlike the deadbeat strategy, it has the additional
property of being undominated by limited model information methods for plants
in P when the plant graph GP has sinks.

Theorem 3.10 Let the plant graph GP contain at least one sink, and GK ⊇ GP .
Then, the competitive ratio of the design method ΓΘ introduced in (48) is

rP(ΓΘ) =
{

2ε2+1+
√

4ε2+1
2ε2 , if (SP)11 6= 0 is not diagonal,

1, if both (SP)11 = 0 and (SP)22 = 0.

Proof: Based on Theorem 3.5, we know that

J(A,B,D,x0,w0)(K∗(P )) ≥ 2ε2

2ε2 + 1 +
√

4ε2 + 1
J(A,B,D,x0,w0)(Γ∆(A,B,D)),

(50)
and by the proof of the “only if” part of Theorem 3.9, we know that

J(A,B,D,x0,w0)(Γ∆(A,B,D)) ≥ J(A,B,D,x0,w0)(ΓΘ(A,B,D)), (51)

for all x0 ∈ Rn and w0 ∈ Rn. Putting (51) into (50) results in

J(A,B,D,x0,w0)(K∗(P )) ≥ 2ε2

2ε2 + 1 +
√

4ε2 + 1
J(A,B,D,x0,w0)(ΓΘ(A,B,D)),

and, therefore, in

J(A,B,D,x0,w0)(ΓΘ(A,B,D))
J(A,B,D,x0,w0)(K∗(P )) ≤ 2ε2 + 1 +

√
4ε2 + 1

2ε2 , ∀P = (A,B, x0, w) ∈ P.

As a result

rP(ΓΘ) = sup
P∈P

J(A,I,x0,w)(ΓΘ(A,B,D))
J(A,I,x0,w)(K∗(P )) ≤ 2ε2 + 1 +

√
4ε2 + 1

2ε2 .

If (SP)11 has an off-diagonal entry, then there exist 1 ≤ i, j ≤ n− c and i 6= j such
that (sP)ij 6= 0. Define A(r) such that A(r) = reje

T
i . In this case, using the proof

of Theorem 3.8, we know

rP(ΓΘ) = 2ε2 + 1 +
√

4ε2 + 1
2ε2 ,

because the control design ΓΘ acts as the deadbeat controller on that part of the
system. Using both these inequalities proves the statement.
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If (SP)11 = 0 and (SP)22 = 0, every matrix A with structure matrix (SP) is a
nilpotent matrix of degree two. Thus, using Lemma 3.4, we get

JP (K∗(P )) = JP (K∗C(P )).

Now, based on the proof of Lemma 3.4, we also know that the optimal controller
gain for this plant model is

K∗C(P ) =
[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]
.

For control design strategy ΓΘ, we will have

ΓΘ(A,B,D) =
[
D B−1D(B(I +B2)−1B − I)A−B−1D2

I B−1(B(I +B2)−1BA−D)

]
=
[
D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]
based on (48). Thus, rP(ΓΘ) = 1.

Theorem 3.11 Let the plant graph GP contain at least one sink, the design graph
GC be a totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of
any control design strategy Γ ∈ C satisfies

rP(Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 ,

if (SP)11 is not diagonal.

Proof: First, suppose that (SP)11 6= 0 and (SP)11 is not a diagonal matrix,
then there exist 1 ≤ i, j ≤ n − c and i 6= j such that (sP)ij 6= 0. Consider the
family of matrices A(r) defined by A(r) = reie

T
j . Based on Lemma 3.7, if we want

to have a bounded competitive ratio, the control design strategy should satisfy
r + bii(dΓ)ij(A(r), B,D) = 0 (because node 1 ≤ i ≤ n − c is not a sink). The rest
of the proof is similar to the proof of Theorem 3.8.

Remark 3.10 Combining Theorem 3.10 and Theorem 3.11 implies that if (SP)11 6=
0 is not diagonal (i.e., the nodes that are not sink can affect each other), control de-
sign method ΓΘ is a minimizer of the competitive ratio over the set of limited model
information control methods and consequently a solution to the problem (11). Fur-
thermore, if (SP)11 and (SP)22 are both zero, then the ΓΘ becomes equal to K∗,
which shows that, ΓΘ is a solution to the problem (11), in this case too. The rest
of the cases are still open here.

The next theorem shows that ΓΘ is a more desirable control design method
than the deadbeat when plant graph GP has sinks, since it is then undominated by
limited model information design methods for plants in P.
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Theorem 3.12 Let the plant graph GP contain at least one sink, the design graph
GC be a totally disconnected graph, and GK ⊇ GP . Then, the control design method
ΓΘ is undominated by all limited model information control design methods.

Proof: Assume that there are c ≥ 1 sink in the plant graph. For prov-
ing this claim, we are going to prove that for any control design method Γ ∈
C\{ΓΘ}, there exits a plant P = (A,B,D, x0, w0) ∈ P such that JP (Γ(A,B,D)) >
JP (ΓΘ(A,B,D)). We will proceed in several steps, which require us to partition
the set of limited model information control design strategies C as follows

C =W2 ∪W1 ∪W0 ∪ {Γ∆},

where

W2 := {Γ ∈ C | ∃j, n− c+ 1 ≤ j ≤ n, such that Γj(A,B,D) 6= ΓΘ
j (A,B,D)},

W1 := {Γ ∈ C \W2 | ∃j, 1 ≤ j ≤ n− c,
and ∃P ∈ P, (DΓ)j(A,B,D) 6= (DΘ

Γ )j(A,B,D)},

and

W0 := {Γ ∈ C \W2 ∪W1 | ∃j, 1 ≤ j ≤ n− c,∃P ∈ P,
such that Γj(A,B,D) 6= ΓΘ

j (A,B,D)}.

First, we prove that the ΓΘ is undominated by control design strategies in W2.
We assume that there exist index n − c + 1 ≤ j ≤ n and matrices Ā ∈ A(SP),
B ∈ B(ε), D̄ ∈ D such that Γj(Ā, B, D̄) 6= ΓΘ

j (Ā, B, D̄). Consider matrices A and
D defined as Aj = Āj and Ai = 0 for all i 6= j and djj = d̄jj and dii = 0. For this
particular matrix A, any x0, and any w0, we know from the proof of the “only if”
part of Theorem 3.9 that ΓΘ(A,B,D, x0, w0) is the globally optimal controller with
limited model information. Hence, every other control design method in C leads
to a controller with greater performance cost than ΓΘ for this particular type of
plants. Therefore, the control design ΓΘ is undominated by control design methods
in W2.

Second, we prove that the control design strategy ΓΘ is undominated by the
control design strategies in W1. Let Γ be a control design strategy in W1 and let
index 1 ≤ j ≤ n − c be such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jje

T
j 6= 0 for some

matrices Ā ∈ A(SP), B ∈ B(ε), and D̄ ∈ D. It is always possible to pick an index
i 6= j such that (sP)ij 6= 0 because node j is not a sink in the plant graph. If
1 ≤ i ≤ n − c, the proof is the same as the proof of the “if” part of Theorem 3.9,
therefore, without any loss of generality, we assume that n− c+ 1 ≤ i ≤ n. Again,
with the same argument as in the proof of the “if” part of Theorem 3.9, without
loss of generality, we can assume that ajj + bjj(dΓ)jj(A,B,D) + djj 6= 0 (because
otherwise the ratio of the cost the control design strategy Γ to the cost of the
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control design strategy ΓΘ becomes infinity). Define matrix A such that Aj = Āj ,
Ai = reTj , and A` = 0 for all ` 6= i, j. Let D ∈ D be such that djj = d̄jj and d` = 0
for all ` 6= j. It should be noted that Γj(A,B,D) = Γj(Ā, B, D̄) because the design
graph is a totally disconnected graph. The cost of this control design strategy for
w0 = ej and x0 = 0 would satisfy

JP (Γ(A,B,D)) ≥ (ui(1) + wi(1))2 + xi(2)2 + (ui(2) + wi(2))2 + xi(3)2

= r2b2jj/(b2ii + 1) + (ui(2) + wi(2))2 + (xj(2)r + bii[ui(2) + wi(2)])2

≥ (r2b2jj + xj(2)2r2)/(1 + b2ii),

This results in

J(A,I,B,D,0,ej)(Γ(A,B,D))− J(A,I,B,D,0,ej)(Γ
Θ(A,B,D))

≥ (ajj + bjj(dΓ)jj(A,B,D) + djj)2b2jjr
2/(1 + b2ii)− κ(Aj , bjj).

where κ(Aj , bjj) is only a function Aj and bjj and represents the part of the cost
of the control design strategy ΓΘ that is related to subsystem j only. If we pick r
large enough, the difference would become positive, which shows that the control
design strategy Γ cannot dominate the control design strategy ΓΘ.

Finally, we prove that the control design strategy ΓΘ is undominated by the
control design strategies inW0. The same argument as in the proof of the “if” part
of Theorem 3.9 holds here too.

Remark 3.11 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a), the control graph G′K in Figure 2(b′), and the design
graph G′C in Figure 2(c′). Theorems 3.10, 3.11, and 3.12 together show that, the
control design strategy ΓΘ is the best control design strategy that one can propose
based on local subsystems’ model and the plant graph, because the control design
strategy ΓΘ is a minimizer of the competitive ratio and it is undominated.

5 Design Graph Influence on Achievable Performance

In the previous section, we approached the optimal control design under limited
model information when GC is a totally disconnected graph. The next step is to
determine the necessary amount of the model information needed in each subcon-
troller to be able to setup a control design strategy with a smaller competitive ratio
than the deadbeat control design strategy. We tackle this question here.

Theorem 3.13 Let the plant graph GP and the design graph GC be given, and
GK ⊇ GP . Assume that the plant graph GP contains the path i → j → ` with
distinct nodes i, j, and ` while (`, j) /∈ EC. Then, we have

rP(Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 .
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Proof: Let i, j, and k be three distinct nodes such that (sP)ji 6= 0 and
(sP)`i 6= 0 (i.e., the path i → j → ` is contained in the plant graph GP). Define
the 2-parameter family of matrices A(r, s) = reje

T
i + se`e

T
j . Let B = εI, D = I,

and Γ ∈ C be a limited model information with design graph GC . The cost of this
control design strategy for w0 = ei and x0 = 0 satisfies

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ (u`(2) + w`(2))2 + x`(3)2

= (u`(2) + w`(2))2 + (sxj(2) + ε[u`(2) + w`(2)])2
,

because of the structure of the cost function in (9) and the system dynamic in (1).
Now, using Lemma 3.6 and the fact that xj(2) = (r + ε(dΓ)ji(r))ε (see Figure 4),
we get

J(A,B,D,0,ej)(Γ(A,B,D)) ≥ s2xj(2)2/(1 + ε2)
= (r + ε(dΓ)ji(r))2ε2s2/(1 + ε2).

Note that (dΓ)ji(r) is only a function of r and not s since (`, j) /∈ EC . On the other
hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ej)(Γ
∆(A,B,D)) = eTi B

T (ATB−2A+B−2 + I)Bei
= ε2 + 1 + r2.

Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . We have

rP(Γ) = sup
P∈P

JP (Γ(A,B,D))
JP (K∗(P ))

= sup
P∈P

[
JP (Γ(A,B,D))
JP (Γ∆(A,B,D))

JP (Γ∆(A,B,D))
JP (K∗(P ))

]
≥ sup
P∈P

JP (Γ(A,B,D))
JP (Γ∆(A,B,D)) (52)

≥ (r + ε(dΓ)ji(r))2ε2/(1 + ε2)
ε2 + 1 + r2 lim

s→∞
s2.

Using (52) it is easy to see that the competitive ratio rP(Γ) is bounded only if
r + ε(dΓ)ji(r) = 0, for all r ∈ R. Therefore, there is no loss of generality in
assuming that (dΓ)ji(r) = −r/ε because otherwise the rP(Γ) is infinity and the
inequality in the statement of the theorem is trivially satisfied. Now, let us fix
s = 0 and use the notation A(r) = reje

T
i . Since the parameters of the subsystem

j is not changed and (`, j) /∈ EC , we have (dΓ)ji(r) = −r/ε. Therefore, for each
r ∈ R, similar to the proof of Theorem 3.8, the cost of the control design strategy
Γ for x0 in (40) and w0 in (41) is lower-bounded by

JP (Γ(A,B,D)) ≥ (ε2 + 1)(3ε2
√

4ε2 + 1 + 5ε2 + 4ε4 +
√

4ε2 + 1 + 1)
2ε4 ,
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On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Similar to the proof of Theorem 3.8, for x0 in (40) and w0
in (41), we get

JP (K∗(P )) = (ε2 + 1)
√

4ε2 + 1 + 5ε2 + 4ε4 + 1
2ε2 + (2ε2 +

√
4ε2 + 1 + 1)

√
4ε2 + 1

2ε2r2 ,

since JP (K∗(P )) = JP (K∗C(P )) according to Lemma 3.4. This results in

rP(Γ) ≥ lim
r→∞

JP (Γ(A,B,D))
JP (K∗(P )) = 2ε2 + 1 +

√
4ε2 + 1

2ε2 .

This finishes the proof.

Remark 3.12 Consider the limited model information design problem given by
the plant graph G′P in Figure 2(a′), the control graph GK in Figure 2(b), and the
design graph GC in Figure 2(c). Theorem 3.13 shows that, because the plant graph
GP contains the path 2→ 1→ 4 but the design graph GC does not contain 4→ 1,
the competitive ratio of any control design strategy Γ ∈ C would be greater than or
equal to rP(Γ∆).

Remark 3.13 Theorem 3.13 shows that, when GP and GK is a complete graph,
achieving a better competitive ratio than the deadbeat design strategy requires each
subsystem to have full knowledge of the plant model when constructing each subcon-
troller.

6 Proportional-Integral Deadbeat Control Design Strategy

In this section, we use some of the results of the paper on familiar control design
problems like step disturbance rejection and step reference tracking.

6.1 Step Disturbance Rejection
For the case of step disturbance rejection, we can model the disturbance as in (2)
with matrix D = I. For each plant P = (A,B, I, x0, w0) ∈ P, the deadbeat
controller design strategy is

Γ∆(A,B, I) ,
[
I −B−1

I −B−1(A+ I)

]
,

This controller can be realized as

u(k) = −B−1Ax(k)−B−1
k∑
i=0

x(i).
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which is a proportional-integral controller. Thus, we call the restricted map-
ping Γ∆

step : A(SP) × B(ε) → K(SK), defined as Γ∆
step(A,B) = Γ∆(A,B, I), the

proportional-integral deadbeat control design strategy. The proportional term reg-
ulates the states of the system and the integral term compensates for the distur-
bance. For instance, in this case, Theorem 3.8 shows that when the plant graph GP
contains no sink and the design graph GC is a totally disconnected graph, the dead-
beat proportional-integral control design strategy is an undominated minimizer of
the competitive ratio. Note that the integral part of this control design strategy is
fully decentralized and the proportional part only needs the neighboring subsystems
state-measurements.

6.2 Step Reference Tracking
Consider the case that we are interested in tracking a step reference signal r ∈ Rn.
We need to define the difference x̄(k) = x(k)− r which gives

x̄(k + 1) = x(k + 1)− r = Ax(k) +Bu(k)− r = Ax̄(k) +Bu(k) +Ar − r.

Now if the subsystems do not want to share the reference points with each other,
we can think of the additional term Ar − r as the constant disturbance vector
w(k) = B−1(Ar − r). Thus, we have

x̄(k + 1) = Ax̄(k) +B(u(k) + w(k)).

The subsystems only need to transmit the relative error between the state-measurements
and reference points. In this case, we can use the cost function

JP (K) =
∞∑
k=0

[x̄(k)T x̄(k) + (u(k) + w(k))T (u(k) + w(k))], (53)

to make sure that the error x̄(k) goes to zero as time tends to infinity. Note that
if we want to have a complete state regulation limk→∞ x̄(k) = 0, the control signal
should have a limit as

lim
k→∞

u(k) = −B−1(Ar − r).

Thus, the second term of the cost function (53) only penalizes the difference of the
control signal and its steady-state value.

7 Conclusions

We considered the design of optimal disturbance rejection and servomechanism dy-
namic controllers under limited plant model information. We provided insight into
the value of model information in control design and studied how local subsystem
interaction, limited state measurements, and limited plant model information influ-
enced the achievable closed-loop performance. To do so, we investigated the rela-
tionship between the closed-loop performance and the control design strategies with
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limited model information using the metric called competitive ratio. We found an
explicit minimizer of the competitive ratio. The optimal controller is dynamic and
composed of a static state feedback law and a dynamic disturbance observer. It was
shown that this special structure corresponds to proportional-integral controllers
when dealing with step disturbances. Possible future work will focus on extending
the present framework to situations where the subsystems and disturbances are
not scalar and extending the set of applicable controllers to include adaptive and
nonlinear controllers to possibly achieve better closed-loop performance.
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PAPER 4

Optimal Control Design under Structured Model
Information Limitation Using Adaptive Algorithms

Farhad Farokhi and Karl H. Johansson

Abstract–Networked control strategies based on limited information about the plant
model usually results in worse closed-loop performance than optimal centralized control
with full plant model information. Recently, this fact has been established by utilizing the
concept of competitive ratio, which is defined as the worst case ratio of the cost of a control
design with limited model information to the cost of the optimal control design with full
model information. In this paper, we show that with an adaptive networked controller
with limited plant model information, it is indeed possible to achieve a competitive ratio
equal to one. We show that an adaptive controller introduced by Campi and Kumar
asymptotically achieves closed-loop performance equal to the optimal centralized controller
with full model information. The plant model considered in the paper belongs to a compact
set of stochastic linear time-invariant systems and the closed loop performance measure
is the ergodic mean of a quadratic function of the state and control input. We illustrate
the applicability of the results numerically on a vehicle platooning problem.
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1 Introduction

Networked control systems are often complex large-scale engineered systems, such
as power grids [1], smart infrastructures [2], intelligent transportation systems [3–5],
or future aerospace systems [6, 7]. These systems consists of several subsystems each
one often having many unknown parameters. It is costly, or even unrealistic, to
accurately identify all these plant model parameters offline. This fact motivates
us to focus on optimal control design under structured parameter uncertainty and
limited plant model information constraints.

There are some recent studies in optimal control design with limited plant model
information [8–14]. The problem was initially addressed in [8] for designing static
centralized controllers for a class of discrete-time linear time-invariant systems com-
posed of scalar subsystem, where control strategies with various degrees of model
information were compared using competitive ratio; i.e., the worst case ratio of
the cost of a control design with limited model information scaled by the cost of
the optimal control design with full model information. The result was generalized
to static decentralized controller for a class of systems composed of fully-actuated
subsystems of arbitrary order in [9, 10]. More recently, the problem of designing
optimal H2 dynamic controllers using limited plant model information was con-
sidered in [11]. It was shown that, when relying on local model information, the
smallest competitive ratio achievable for any control design strategy for distributed
linear time-invariant controllers is strictly greater than one; specifically, equal to
square root of two when the B-matrix was assumed to be the identity matrix.

In this paper, we generalize the set of applicable controllers to include adaptive
controllers. We use the ergodic mean of a quadratic function of the state and
control as a performance measure of the closed-loop system. Choosing this closed-
loop performance measure allows us to use certain adaptive algorithms available in
the literature [15–18]. In particular, we consider an adaptive controller proposed
by Campi and Kumar [15]. We prove that the smallest competitive ratio that a
control design strategy using adaptive controllers can achieve is equal one. This
shows that, although the design of each subcontroller is only relying on local model
information, the closed-loop performance can still be as good as the optimal control
design strategy with full model information.

The rest of the paper is organized as follows. In Section 2, we present the
mathematical problem formulation. In Section 3, we introduce the Campi–Kumar
adaptive controller using only local model information and we show that it achieves
a competitive ration equal to one. We use this adaptive algorithm on a vehicle
platooning problem to demonstrate its performance numerically in Section 4 and
we conclude the paper in Section 5.

1.1 Notation

The sets of natural and real numbers are denoted by N and R, respectively. We
define N0 = N∪ {0}. Additionally, all other sets are denoted by calligraphic letters
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such as P and A. For any given sets X and Y, the notationM(X ,Y) denotes the
set of all mappings from the set X to the set Y. In addition, for any k ∈ N0, we
define Pk(X ) as the set of all subsets of X containing exactly k elements.

Matrices are denoted by capital roman letters such as A. The entry in the ith

row and the jth column of matrix A is aij . Aij denotes a submatrix of matrix A,
the dimension and the position of which will be defined in the text.

A > (≥)0 means symmetric matrix A ∈ Rn×n is positive definite (positive
semidefinite) and A > (≥)B means A − B > (≥)0. Let Sn++ (Sn+) be the set of
symmetric positive definite (positive semidefinite) matrices in Rn×n.

Let matrices A ∈ Rn×n, B ∈ Rn×m, Q ∈ Sn+, and R ∈ Sm++ be given such
that the pair (A,B) is controllable and the pair (A,Q1/2) is observable. We de-
fine P(A,B,Q,R) as the unique positive definite solution of the discrete algebraic
Riccati equation

P = A>PA−A>PB
(
B>PB +R

)−1
B>PA+Q.

In addition, we define

L(A,B,Q,R) = −
(
B>P(A,B,Q,R)B +R

)−1
B>P(A,B,Q,R)A.

When matrices Q and R are not relevant or can be deduced from the text, we use
P(A,B) and L(A,B) instead of P(A,B,Q,R) and L(A,B,Q,R), respectively.

A measurable function f : Z → R is said to be essentially bounded if there
exists a constant c ∈ R such that |f(z)| ≤ c almost everywhere. The greatest lower
bound of these constants is called the essential supremum of f(z), which is denoted
by ess supz∈Z f(z).

All graphs G considered in this paper are directed with vertex set {1, ..., N} for
a given N ∈ N. The adjacency matrix S ∈ {0, 1}N×N of G is a matrix whose entry
sij = 1 if (j, i) ∈ E and sij = 0, otherwise, for all 1 ≤ i, j ≤ N .

Let mappings f, g : Z → R be given. Denote f(k) = O(g(k)) if lim supk→∞
|f(k)/g(k)| <∞. Similarly, f(k) = o(g(k)) if lim supk→∞ |f(k)/g(k)| = 0.

Finally, χ denotes the characteristic function, that is, it returns a value equal
one if its statement is satisfied and a value equal zero otherwise.

2 Problem Formulation

2.1 Plant Model
Consider a discrete-time linear time-invariant dynamical system composed of N
subsystems, such that the state-space representation of subsystems i, 1 ≤ i ≤ N ,
is given by

xi(k + 1) =
N∑
j=1

Aijxj(k) +Biiui(k) + wi(k); xi(0) = 0,
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where xi(k) ∈ Rni , ui(k) ∈ Rmi , and wi(k) ∈ Rni are state, control input, and
exogenous input vectors, respectively. We assume that {wi(k)}∞k=0 are independent
and identically distributed Gaussian random variables with zero means E{wi(k)} =
0 and unit covariances E{wi(k)wi(k)>} = I. In addition, let wi(k) and wj(k) be
statistically independent for all 1 ≤ i 6= j ≤ N . We introduce the augmented
system as

x(k + 1) = Ax(k) +Bu(k) + w(k); x(0) = 0,

where the augmented state, control input, and exogenous input vectors are

x(k)> = [x1(k)> . . . xN (k)>]> ∈ Rn,
u(k)> = [u1(k)> . . . uN (k)>]> ∈ Rm,
w(k)> = [w1(k)> . . . wN (k)>]> ∈ Rn,

with n =
∑N
i=1 ni and m =

∑N
i=1mi. In addition, the augmented model matrices

are
B = diag(B11, . . . , BNN ) ∈ B ⊂ Rn×m,

and

A =

 A11 · · · A1N
...

. . .
...

AN1 · · · ANN

 ∈ A ⊂ Rn×n.

Let a directed plant graph GP with its associated adjacency matrix SP be given.The
plant graph GP captures the interconnection structure of the plants, that is, Aij 6= 0
only if (sP)ij 6= 0. Hence, the set A is structured by the plant graph:

A ⊆ {A ∈ Rn×n | (sP)ij = 0⇒Aij = 0 ∈ Rni×nj

for all i, j such that 1 ≤ i, j ≤ N}.

Note that the set A×B is isomorph to the set of all plants of interest P, say. Hence,
from now on, we present a plant with its pair of corresponding model matrices as
P = (A,B) and denote P = A× B. We make the following assumption on the set
of all plants:

Assumption 4.1 The set A×B is a compact set (with nonzero Lebesgue measure)
and the pair (A,B) is controllable for all (A,B) ∈ A× B (except for possibly a set
with zero Lebesgue measure).

2.2 Adaptive Controller

We consider infinite-dimensional nonlinear time-invariant controllers K with control
law

u(k) = K(Fk), ∀ k ∈ N0,
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where Fk = σ({x(t)}kt=0 ∪ {u(t)}k−1
t=0 ) is the sigma algebra generated by the obser-

vation history. Hence, each controller is a mapping K : En,m → Rm, where

En,m =
∞⋃
k=0

⋃
X∈Pk(Rn)

⋃
U∈Pk−1(Rm)

σ(X ∪ U).

The set of all admissible controllers K can be captured as the set of mappings from
En,m to Rm, or, equivalently, K =M(En,m,Rm).

2.3 Control Design Strategy
A control design strategy Γ is a mapping from the set of plants P = A× B to the
set of admissible controllers K. We can partition Γ using the control input size as

Γ =

 Γ1
...

ΓN

 ,
where, for each 1 ≤ i ≤ N , we have Γi : A × B → M(En,m,Rmi). Let a directed
design graph GC with its associated adjacency matrix SC be given. We say that the
control design strategy Γ satisfies the limited model information constraint enforced
by the design graph GC if, for all 1 ≤ i ≤ N , Γi is only a function of

{[Aj1 . . . AjN ], Bjj | (sC)ij 6= 0}.

The set of all control design strategies that obey the structure given by the design
graph GC is denoted by C.

2.4 Performance Metric
In this paper, we are interested in minimizing the performance criterion

JP (K) = lim sup
T→∞

1
T

T−1∑
k=0

x(k)>Qx(k) + u(k)>Ru(k), (1)

where Q ∈ Sn+ and R ∈ Sn++. We make the following assumption concerning the
performance criterion:

Assumption 4.2 For all A ∈ A, the pair (A,Q1/2) is observable (except for pos-
sibly a set with zero Lebesgue measure).

Note that for linear controllers the performance measure (1) represents the H2-
norm of the closed-loop system from exogenous input w(k) to output

y(k) = Q1/2x(k) +R1/2u(k).
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Definition 4.1 Let a plant graph GP and a design graph GC be given. Assume
that, for every plant P ∈ P, there exists an optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀ K ∈ K.

The average competitive ratio of a control design method Γ is defined as

rave
P (Γ) =

∫
P

JP (Γ(P ))
JP (K∗(P ))f(P ) dP, (2)

where f : P → R is a positive-definite continuous function which shows the relative
importance of plants in P. Without loss of generality, we assume that

∫
P f(P )dP =

1. The supremum competitive ratio of a control design method Γ is defined as

rsup
P (Γ) = ess sup

P∈P

JP (Γ(P ))
JP (K∗(P )) . (3)

The mapping K∗ is not required to lie in the set C, and is obtained by searching
over the set of centralized controllers. Hence, K∗(P ) = L(A,B), for all plants
P = (A,B) ∈ P.

The supremum competitive ratio rsup
P is a modified version of the competitive

ratio considered in [8–14]. Note that using essential supremum in (3), we are
neglecting a subset of plants with zero Lebesgue measure. However, this is not
crucial for practical purposes, because the probability of these plants appearing in
a real situation is slim. As a starting point, let us prove a very interesting property
relating the average and supremum competitive ratios.

Lemma 4.1 For any control design strategy Γ ∈ C, we have 1 ≤ rave
P (Γ) ≤ rsup

P (Γ).

Proof: See Appendix A.

In this paper, we are interested in solving the optimization problem

arg min
Γ∈C

rP(Γ), (4)

where rP is either rave
P or rsup

P . This problem was studied in [11] when the set
of plants is fully-actuated discrete-time linear time-invariant systems and the set
of admissible controllers is finite-dimensional discrete-time linear dynamic time-
invariant systems. It was shown that a modified deadbeat control strategy (which
constructs static controllers) is a minimizer of the competitive ratio. Specifically, it
was proved that the smallest competitive ratio that a control design strategy which
gives decentralized linear time-invariant controllers can achieve is strictly greater
than one when relying on local model information. Note that since the optimal
control design with full model information is unique (due to Assumption 4.2), even
when considering a compact set of plants, the competitive ratio is strictly larger
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than one for limited model information control design strategies. In this paper,
we generalize the formulation of [11] to include adaptive controllers. We prove
in next section that we can achieve a competitive ratio equal to one for adaptive
controllers. Therefore, we can achieve the optimal performance asymptotically,
even if the complete model of the system is not known in advance when designing
the subcontrollers.

3 Main Results

We introduce a specific control design strategy Γ∗, and subsequently, prove that Γ∗
is a minimizer of both the average and supremum competitive ratios rave

P and rsup
P .

For each plant P ∈ P, this control design strategy constructs an adaptive controller
Γ∗(P ) using a modified version of the Campi–Kumar adaptive algorithm [15], see
Algorithm 1. Note that in the Campi–Kumar adaptive algorithm, a central con-
troller estimates the model of the system and control the system. However, in our
modified Campi–Kumar adaptive algorithm in Algorithm 1, each subcontroller es-
timates the model of the system independently and control its corresponding sub-
system separately. Hence, each adaptive subcontroller arrives at different model
estimates.

In Algorithm 1, we use the notation (A(i)(k), B(i)(k)), at each time step k ∈
N0, to denote subsystem i’s estimate of the global system model P = (A,B).
Furthermore, for each 1 ≤ i ≤ N , we use the mapping Ti : Rm×n → Rmi×n defined
as

Ti

 X11 · · · X1N
...

. . .
...

XN1 · · · XNN

 =
[
Xi1 · · · XiN

]
,

where X`j ∈ Rm`×nj for each 1 ≤ `, j ≤ N . Let us also, for all k ∈ N0, introduce
the notation

K(k) =

 T1K
(1)(k)
...

TNK
(N)(k)

 ∈ Rm×n,

where matrices K(i)(k) are defined in Algorithm 1. For each δ > 0, we introduce

Wδ(A,B) := {(Ā, B̄) ∈ A× B | ‖[A+BL(Ā, B̄)]− [Ā+ B̄L(Ā, B̄)]‖ ≥ δ}.

Let us start by presenting a result on the convergence of the global plant model
estimates to the correct value.

Lemma 4.2 Let K = Γ∗(P ) be defined in Algorithm 1 for a given plant P =
(A,B) ∈ P. There exists a set N ⊂ P with zero Lebesgue measure such that, if
P /∈ N , then

lim
k→∞

P(A(i)(k) B(i)(k))
as
≤ P(A,B), (5)
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Algorithm 1 Control design strategy Γ∗(P ).
1: Parameter: {µ(k)}∞k=0 such that limk→∞ µ(k) =∞ but µ(k) = o(log(k)).
2: Initialize (A(i)(0), B(i)(0)) for all i ∈ {1, . . . , N}.
3: for k = 1, 2, . . . do
4: for i = 1, 2, . . . , N do
5: if k = 2, 4, . . . then
6: Update subsystem i estimate as

(A(i)(k), B(i)(k)) = arg min
(Â,B̂)∈A×B

W(Â, B̂,Fk),

subject to Â`j = A`j , B̂`` = B``,

∀j, ` ∈ {1, . . . , N}, (sC)`i 6= 0,
Âzq = 0,∀z, q ∈ {1, . . . , N}, (sP)zq = 0,

where

W(Â,B̂,Fk) = µ(k) tr(P(Â, B̂)) +
k∑
t=1
‖x(t)− Âx(t− 1)− B̂u(t− 1)‖22.

7: else
8: (A(i)(k), B(i)(k))← (A(i)(k − 1), B(i)(k − 1)).
9: end if
10: K(i)(k)← L(A(i)(k) B(i)(k)).
11: ui(k)← TiK

(i)(k)x(k).
12: end for
13: end for

k∑
t=0

χ((A(i)(k), B(i)(k)) ∈ Wδ(A,B)) as= O(µ(k)), (6)

k∑
t=0

χ(‖K(i)(k)− L(A,B)‖ > ρ) as= O(µ(k)), (7)

k∑
t=0

χ(‖K(k)− L(A,B)‖ > ρ) as= O(µ(k)), (8)

for all δ > 0, where x as= y and x
as
≤ y mean P{x = y} = 1 and P{x ≤ y} = 1,

respectively. In addition, we get

lim sup
T→∞

1
T

T−1∑
k=0
‖x(k)‖p + ‖u(k)‖p

as
<∞, ∀ p ≥ 1. (9)

Proof: See Appendix B.
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Note that, according to Lemma 4.2, we know that there exists a set N ⊂ P
with zero Lebesgue measure such that, if P /∈ N , the estimates in the modified
Campi–Kumar adaptive algorithm (Algorithm 1) converge to the correct global
plant model. This fact is a direct consequence of the use of regularized maximum
likelihood estimators in the Campi–Kumar algorithm [19]. We need the following
lemma.

Lemma 4.3 For any matrices X,P, Y ∈ Rn×n, we have

‖X>PX − Y >PY ‖ ≤ ‖P‖‖X − Y ‖(‖X‖+ ‖Y ‖).

Proof: See Appendix C.

Now, we are ready to present the main result of this section.

Theorem 4.4 Let K = Γ∗(P ) be defined in Algorithm 1 for a given plant P =
(A,B) ∈ P. There exists a set N ⊂ P with zero Lebesgue measure such that, if
P /∈ N , then

JP (Γ∗(P )) as= JP (K∗(P )).

Proof: The proof follows the same reasoning as in [15]. According to [20, p.158],
for all 1 ≤ i ≤ N , we get the set of equations in

tr{P(A(i)(k), B(i)(k))}+ x(k)>P(A(i)(k), B(i)(k))x(k)
= x(k)>Qx(k) + u(i)(k)>Ru(i)(k)

+ E{(A(i)(k)x(k) +B(i)(k)u(i)(k) + w(k))>

×P(A(i)(k), B(i)(k))(A(i)(k)x(k) +B(i)(k)u(i)(k) + w(k)) | Fk−1}
= x(k)>Qx(k) + u(i)(k)>Ru(i)(k)

+ E{x(k + 1)>P(A(i)(k), B(i)(k))x(k + 1) | Fk−1}
+ (A(i)(k)x(k) +B(i)(k)u(i)(k))>

×P(A(i)(k), B(i)(k))(A(i)(k)x(k) +B(i)(k)u(i)(k))
− (Ax(k) +Bu(k))>P(A(i)(k), B(i)(k))(Ax(k) +Bu(k)),

(10)

with u(i)(k) = K(i)(k)x(k) and u(k) = K(k)x(k). Averaging both sides of (10) over
time and all subsystems, we get

ζ1(T ) + 1
NT

T−1∑
k=0

N∑
i=1

x(k)>P(A(i)(k), B(i)(k))x(k)

= 1
T

T−1∑
k=0

x(k)>Qx(k) + 1
NT

T−1∑
k=0

N∑
i=1

u(i)(k)>Ru(i)(k)

+ 1
NT

T−1∑
k=0

N∑
i=1

E{x(k + 1)>P(A(i)(k), B(i)(k))x(k + 1) | Fk−1}+ ζ2(T ),

(11)
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where

ζ1(T ) = 1
NT

T−1∑
k=0

N∑
i=1

tr{P(A(i)(k), B(i)(k))},

and ζ2(T ) is given in

ζ2(T ) = 1
NT

T−1∑
k=0

N∑
i=1

[
(A(i)(k)x(k) +B(i)(k)u(i)(k))>

×P(A(i)(k), B(i)(k))(A(i)(k)x(k) +B(i)(k)u(i)(k))

− (Ax(k) +Bu(k))>P(A(i)(k), B(i)(k))(Ax(k) +Bu(k))
]
.

(12)

Subtracting 1
NT

∑T−1
k=0

∑N
i=1 E{x(k+1)>P(A(i)(k+1), B(i)(k+1))x(k+1) | Fk−1},

from both sides of (11) while adding and subtracting 1
T

∑T−1
k=0 u(k)>Ru(k) from

right-hand side of (11), we get

1
T

T−1∑
k=0

[x(k)>Qx(k) + u(k)>Ru(k)] + ζ4(T ) + ζ5(T ) + ζ2(T ) = ζ1(T ) + ζ3(T ),

(13)

where

ζ3(T ) = 1
NT

T−1∑
k=0

N∑
i=1

x(k)>P(A(i)(k), B(i)(k))x(k)

− E{x(k + 1)>P(A(i)(k+ 1), B(i)(k+ 1))x(k + 1) | Fk−1},

ζ4(T ) = 1
NT

T−1∑
k=0

N∑
i=1

u(i)(k)>Ru(i)(k)− u(k)>Ru(k),

and

ζ5(T ) = 1
NT

T−1∑
k=0

N∑
i=1

E{x(k + 1)>[P(A(i)(k), B(i)(k))

−P(A(i)(k + 1), B(i)(k + 1))]x(k + 1) | Fk−1}.

In the rest of the proof, we study the asymptotic behavior of the sequences {ζ`(k)}∞k=0
for all 1 ≤ ` ≤ 5.
• Asymptotic behavior of ζ1(T ): First, note that

lim sup
T→∞

ζ1(T ) = lim sup
T→∞

1
NT

T−1∑
k=0

N∑
i=1

tr{P(A(i)(k), B(i)(k))}

= 1
N

N∑
i=1

lim sup
T→∞

1
T

T−1∑
k=0

tr{P(A(i)(k), B(i)(k))}.
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Using (5) inside the above identity, we get

lim sup
T→∞

ζ1(T )
as
≤ tr{P(A,B)}.

• Asymptotic behavior of ζ3(T ): With a similar strategy as in case (B) in the proof
of Theorem 6 in [15], we can prove that

0 as= lim sup
T→∞

1
T

T−1∑
k=0

[
x(k)>P(A(i)(k), B(i)(k))x(k)

− E{x(k + 1)>P(A(i)(k + 1), B(i)(k + 1))x(k + 1) | Fk−1}
]
.

Hence, lim supT→∞ ζ3(T ) as= 0.
• Asymptotic behavior of ζ4(T ): In this case, we have∣∣∣∣∣ 1

T

T−1∑
k=0

u(i)(k)>Ru(i)(k)− u(k)>Ru(k)

∣∣∣∣∣
≤ 1
T

T−1∑
k=0

∣∣∣u(i)(k)>Ru(i)(k)− u(k)>Ru(k)
∣∣∣

≤ 1
T

T−1∑
k=0
‖K(i)(k)>RK(i)(k)−K(k)>RK(k)‖‖x(k)‖2.

According to Lemma 4.3, we have ‖K(i)(k)>RK(i)(k) − K(k)>RK(k)‖ ≤ ‖R‖ ×
‖K(i)(k) − K(k)‖(‖K(i)(k)‖ + ‖K(k)‖). Considering that L(·, ·) is a continuous
function of its arguments (see [21]) and P is a compact set, we know that ‖K(i)(k)‖
and ‖K(k)‖ are uniformly bounded. Hence, ‖K(i)(k)‖+ ‖K(k)‖ ≤M . Now, using
Cauchy–Schwartz inequality [22], we get∣∣∣∣∣ 1

T

T−1∑
k=0

u(i)(k)>Ru(i)(k)− u(k)>Ru(k)

∣∣∣∣∣
2

≤‖R‖M

(
1
T

T−1∑
k=0
‖K(i)(k)−K(k)‖2

)(
1
T

T−1∑
k=0
‖x(k)‖4

)
.

Let us introduce the notation Ko = L(A,B). Note that, for all ρ > 0, we have

1
T

T−1∑
k=0
‖K(i)(k)−Ko‖2 ≤ ρ2 + 1

T

T−1∑
k=0
‖K(i)(k)−Ko‖2χ(‖K(i)(k)−Ko‖ > ρ).

Again, considering the facts that L(·, ·) is a continuous function of its arguments and
P is a compact set, we know that ‖K(i)(k)−Ko‖ is uniformly bounded. Thus, us-
ing (7) from Theorem 4.2, we can show that lim supT→∞ 1

T

∑T−1
k=0 ‖K(i)(k)−Ko‖

as
≤
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ρ2, for all ρ > 0. Since the choice of ρ was arbitrary, we get lim supT→∞ 1
T

∑T−1
k=0

‖K(i)(k)−Ko‖2 as= 0. With a similar reasoning, we can also prove that lim supT→∞
1
T

∑T−1
k=0 ‖K(k) − Ko‖2 as= 0. Therefore, considering that ‖K(i)(k) − K(k)‖2 ≤

‖K(i)(k)−Ko‖2+‖K(k)−Ko‖2, we have lim supT→∞ 1
T

∑T−1
k=0 ‖K(i)(k)−K(k)‖2 as=

0. Hence, lim supT→∞ ζ4(T ) as= 0 due to the fact that lim supT→∞ ‖x(k)‖4
as
< ∞

according to (9).
• Asymptotic behavior of ζ5(T ): With the same approach as in case (C) in the
proof of Theorem 6 in [15], we can prove lim supT→∞ ζ5(T ) as= 0.
• Asymptotic behavior of ζ2(T ): Let us start with studying the asymptotic behavior
of the sequence {ζ̂(i)

2 (T )}∞T=0 in

ζ̂
(i)
2 (T ) = 1

T

T−1∑
k=0

[
x(k)>(A(i)(k) +B(i)(k)K(i)(k))>

×P(A(i)(k), B(i)(k))(A(i)(k) +B(i)(k)K(i)(k))x(k)

− x(k)>(A+BK(k))>P(A(i)(k), B(i)(k))(A+BK(k))x(k)
]
.

(14)

Using Lemma 4.3, we can upper bound each term as in

x(k)>(A(i)(k)+B(i)(k)K(i)(k))>P(A(i)(k), B(i)(k))(A(i)(k)+B(i)(k)K(i)(k))x(k)
− x(k)>(A+BK(k))>P(A(i)(k), B(i)(k))(A+BK(k))x(k)

≤ ‖x(k)‖
∥∥∥P(A(i)(k), B(i)(k))

∥∥∥∥∥∥[A(i)(k) +B(i)(k)K(i)(k)]− [A+BK(k)]
∥∥∥

×
∥∥∥[A(i)(k) +B(i)(k)K(i)(k)] + [A+BK(k)]

∥∥∥ .
(15)

Considering again that L(·, ·) and P(·, ·) are continuous functions of their arguments
(see [21]) and P is a compact set, we know that∥∥∥P(A(i)(k), B(i)(k))

∥∥∥ ≤M1,∥∥∥[A(i)(k) +B(i)(k)K(i)(k)] + [A+BK(k)]
∥∥∥ ≤M2.

Using Cauchy–Schwartz inequality, we get the inequality in

ζ̂
(i)
2 (T )≤M1M2

1
T

T−1∑
k=0
‖x(k)‖2

∥∥∥[A(i)(k) +B(i)(k)K(i)(k)]− [A+BK(k)]
∥∥∥

≤M1M2

(
1
T

T−1∑
k=0
‖x(k)‖4

)1
2
(

1
T

T−1∑
k=0

∥∥∥[A(i)(k)+B(i)(k)K(i)(k)]− [A+BK(k)]
∥∥∥2
)1

2

.

(16)
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Now, note that∥∥∥[A(i)(k) +B(i)(k)K(i)(k)]− [A+BK(k)]
∥∥∥2

≤
∥∥∥[A(i)(k) +B(i)(k)K(i)(k)]− [A+BK(i)(k)]

∥∥∥2

+ ‖[A+BK(i)(k)]− [A+BKo]‖2 + ‖[A+BKo]− [A+BK(k)]‖2

≤
∥∥∥[A(i)(k) +B(i)(k)K(i)(k)]− [A+BK(i)(k)]

∥∥∥2

+ ‖B‖2
(
‖K(i)(k)−Ko‖2 + ‖K(k)−Ko‖2

)
.

Hence, with similar argument as above, we can prove that lim supT→∞ ζ̂
(i)
2 (T ) as= 0,

and as a result lim supT→∞ ζ2(T ) = lim supT→∞ 1
N

∑N
i=1 ζ̂

(i)
2 (T ) as= 0. Now, we are

ready to prove the statement of this theorem. From the asymptotic behavior of
sequences ζ1(T ) and ζ3(T ), we know that

tr{P(A,B)}
as
≥ lim sup

T→∞
ζ1(T ) + ζ3(T ). (17)

Using identity (13) inside inequality (17) shows that

tr{P(A,B)}
as
≥ lim sup

T→∞
ζ4(T ) + ζ5(T ) + ζ2(T )

+ lim sup
T→∞

1
T

T−1∑
k=0

[x(k)>Qx(k) + u(k)>Ru(k)],

which result in

tr{P(A,B)}
as
≥ lim sup

T→∞

1
T

T−1∑
k=0

[x(k)>Qx(k) + u(k)>Ru(k)].

This inequality finishes the proof.
Now, we are ready to present the solution of problem (4).

Corollary 4.5 For any plant graph GP and design graph GC, we get rave
P (Γ∗) as= 1,

and rsup
P (Γ∗) as= 1.

Proof: The proof is a direct consequence of Theorem 4.4 and Lemma 4.1.
Corollary 4.5 shows that, irrespective of the plant graph GP and design graph

GC , there exists a limited model information control design strategy that can achieve
a competitive ratio equal one. This control design strategy gives adaptive con-
trollers achieving asymptotically the closed-loop performance of optimal control
design strategy with full model information. Note that earlier results stated that
such competitive ratio cannot be achieved by static or linear time-invariant dynamic
controllers [8–14].
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4 Example

As a simple numerical example, let us consider the problem of regulating the dis-
tance between N vehicles in a platoon. We model vehicle i, 1 ≤ i ≤ N , as[
xi(k + 1)
vi(k + 1)

]
=
(
I+∆T

[
0 1
0 −αi/mi

])[
xi(k)
vi(k)

]
+
[

0
∆Tβi/m

]
ūi(k)+

[
w̄i1(k)
w̄i2(k)

]
,

where xi(k) is the vehicle position, vi(k) its velocity, mi the mass, αi the viscous
drag coefficient, βi the power conversion quality coefficient, and ∆T the sampling
time. For each vehicle, stochastic exogenous inputs w̄ij(k) ∈ Rn, j = 1, 2, capture
the effect of wind, road quality, friction, etc. For simplicity of presentation, let
us consider the case of N = 2 vehicles. In addition, assume that ∆T = 1. As
performance objective, the designer wants to minimize the cost function

J = lim sup
T→∞

1
T

T−1∑
k=0

[
qd(x1(k)− x2(k)− d∗)2 +

∑
i=1,2

qv(vi(k)− v∗)2 + r(ūi(k)− ū∗i )2],
to regulate the distance between the trucks with minimum control effort. Note that
ū∗i = αiv

∗/βi is the average control signal. We can write the reduced-order system
using the distance between vehicles and their velocities as state variables in the
form

z(k + 1) = Az(k) +Bu(k) + w(k), z(0) = 0, (18)

where

z(k) = [v1(k)− v∗ , x1(k)− x2(k)− d∗ , v2(k)− v∗]>,
u(k) = [ū1(k)− ū∗1 , ū2(k)− ū∗2]>,
w(k) = [w̄1

2(k) , w̄1
1(k) + w̄2

1(k) , w̄2
2(k)]>,

and

A =

 1− α1/m1 0 0
1 1 −1
0 0 1− α2/m2

 , B =

 β1/m1 0
0 0
0 β2/m2

 .
This model leads to

J = lim sup
T→∞

1
T

T−1∑
k=0

z(k)TQz(k) + u(k)TRu(k), (19)

where Q = diag(qv, qd, qv) and R = diag(r, r). To simplify the presentation, let
Q = I and R = I.

Note that z(0) = 0 in (18) indicates that the vehicles start from desired distance
d∗ of each other and with velocity v∗. However, due to the exogenous inputs w(k),
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the vehicles will drift away from this ideal situation. By minimizing the closed-
loop performance criterion in (19), the designer minimizes this drift using the least
control effort possible.

We define the first subsystem as z1(k) = z1(k) and the second subsystem as
z2(k) = [z2(k) z3(k)]T . Therefore, we get

z1(k + 1) = a11z1(k) + b11u1(k) + w1(k),

and

z2(k + 1) =
[

1
0

]
z1(k) +

[
1 −1
0 a22

]
z2(k) + b22u2(k) +

[
w2(k)
w3(k)

]
,

where (aii, bii) are local parameters of subsystem i. Assume that

A =

A ∈ R3×3
∣∣∣∣ A =

a11 0 0
1 1 −1
0 0 a22

 , a11, a22 ∈ [0, 1]

 ,

B =

B ∈ R3×2
∣∣∣∣ B =

b11 0
0 0
0 b22

 , b11, b22 ∈ [0.5, 1.5]

 .

Note that we can verify Assumptions 4.1 and 4.2 using the observability and con-
trollability of structured system, see [23, 24].

We compare the performance of the introduced adaptive controller with a dead-
beat control design strategy Γ∆ : P → R2×3 for this special family of systems
as

Γ∆(P ) =
[
−a11/b11 0 0

1/b22 1/b22 −(1 + a22)/b22

]
,

for all P = (A,B) ∈ P. Note that Γ∆ is a limited model information control design
strategy, because each local controller i is based on only parameters of subsystem i,
i = 1, 2.

Figure 1 illustrates the running cost of the closed-system with the optimal con-
trol design with full model information K∗(P ) (solid curve), the modified Campi-
Kumar adaptive controller Γ∗(P ) (dashed curve), and the deadbeat control de-
sign strategy Γ∆(P ) (dotted curve). The running costs of the closed-system with
Γ∗(P ) and the optimal control design with full model information K∗(P ) both con-
verge to tr{P(A,B)} (the horizontal line) as time goes to infinity. The cost of
the optimal control design strategy with global model knowledge is always lower
than the cost of the adaptive controllers. The simulation is done for parameters
(a11, b11) = (0.4360, 1.0497) and (a22, b22) = (0.0259, 0.9353). Figure 2 illustrates
the convergence of the individual model parameters (aii, bii), i = 1, 2, for the adap-
tive subcontrollers. Note that only one of the subsystems need to estimate each
parameter (as each one has access to its own model parameters).
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Figure 1: The running cost of the closed-system with different controllers.
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Figure 2: Estimation error of model parameters.

5 Conclusion

In this paper, as a generalization of earlier results in optimal control design with
limited model information, we searched over the set of control design strategies that
construct adaptive controllers. We found a minimizer of the competitive ratio both
in average and supremum senses. We used the Campi–Kumar adaptive algorithm
to setup an adaptive control design strategy that achieves a competitive ratio equal
to one, that is, this adaptive controller asymptotically achieves closed-loop per-
formance equal to the optimal centralized controller with full model information.
We illustrated the applicability of this adaptive controller on a vehicle platooning
problem. As a future work, we suggest studying decentralized adaptive controllers.
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Let us assume, without loss of generality, that rsup
P (Γ) < ∞ since otherwise, the
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function JP (Γ(P ))/JP (K∗(P )) is integrable on P since we assumed rsup
P (Γ) =

ess sup JP (Γ(P ))/JP (K∗(P )) < ∞ (and P is a compact set thanks to Assump-
tion 4.1). Then, using Theorem 2.7.1 in [22], we get

rave
P (Γ) =

∫
P

JP (Γ(P ))
JP (K∗(P ))f(P ) dP ≤

∫
P
rsup
P (Γ)f(P ) dP = rsup

P (Γ).

This completes the proof.

B Proof of Lemma 4.2

Equations (5)–(7) are direct consequences of Theore-ms 2 and 3 in [15]. We start
with proving (8). To do so, let us prove ‖K(k) − L(A,B)‖ > ρ implies that there
exists at least an index i such that ‖TiK

(i)(k) − TiL(A,B)‖ > ρ/
√
N . We can

prove this fact by contradiction. Assume that there does not exists any index i
such that ‖TiK

(i)(k) − TiL(A,B)‖ > ρ/
√
N . Therefore, for all 1 ≤ i ≤ N , we

have ‖TiK
(i)(k) −TiL(A,B)‖ ≤ ρ/

√
N , and as a result, according to Theorem 1

in [25], we get

‖K(k)− L(A,B)‖2 ≤
N∑
i=1
‖TiK

(i)(k)−TiL(A,B)‖2 ≤ ρ2.

This is contradictory to the assumption that ‖K(k) − L(A,B)‖ > ρ. Hence, we
proved the implication. Based on this property, it is easy to see that

k∑
t=0

χ(‖K(k)− L(A,B)‖ > ρ)
k∑
t=0

N∑
i=1

χ(‖TiK
(i)(k)−TiL(A,B)‖>ρ/

√
N). (20)

Now, note that ‖TiK
(i)(k)−TiL(A,B)‖ > ρ/

√
N implies that ‖K(i)(k)−L(A,B)‖

> ρ/
√
N . Thus, we get

k∑
t=0

χ(‖TiK
(i)(k)−TiL(A,B)‖ > ρ/

√
N) ≤

k∑
t=0

χ(‖K(i)(k)− L(A,B)‖ > ρ/
√
N).

(21)

Substituting (21) inside (20), we get

k∑
t=0

χ(‖K(k)− L(A,B)‖ > ρ) ≤
k∑
t=0

N∑
i=1

χ(‖K(i)(k)− L(A,B)‖ > ρ/
√
N).

Now, using (7), we can show that

k∑
t=0

χ(‖K(i)(k)− L(A,B)‖ > ρ/
√
N) as= O(µ(k)),
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for all 1 ≤ i ≤ N . Therefore, we have

k∑
t=0

χ(‖K(k)− L(A,B)‖ > ρ) as= O(µ(k)).

Finally, note that the proof of (9) is a direct result of applying (8) to the proof of
Theorem 5 in [15]. This concludes the proof.

C Proof of Lemma 4.3

First, note that

(X − Y )>P (X + Y ) + (X+Y )>P (X − Y ) = 2(X>PX − Y >PY ).

Hence, we get

2‖(X>PX − Y >PY )‖ = ‖(X − Y )>P (X + Y ) + (X + Y )>P (X − Y )‖
≤ ‖(X − Y )>P (X + Y )‖+ ‖(X + Y )>P (X − Y )‖
≤ 2‖P‖‖X − Y ‖‖X + Y ‖
≤ 2‖P‖‖X − Y ‖(‖X‖+ ‖Y ‖).

This concludes the proof.
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Optimal H∞ Control Design under Model
Information Limitations and State Measurement

Constraints

Farhad Farokhi, Henrik Sandberg, and Karl H. Johansson

Abstract–We present a suboptimal control design algorithm for a family of continuous-
time parameter-dependent linear systems that are composed of interconnected subsystems.
We are interested in designing the controller for each subsystem such that it only utilizes
partial state measurements (characterized by a directed graph called the control graph)
and limited model parameter information (characterized by the design graph). The algo-
rithm is based on successive local minimizations and maximizations (using the subgradi-
ents) of the H∞–norm of the closed-loop transfer function with respect to the controller
gains and the system parameters. We use a vehicle platooning example to illustrate the
applicability of the results.
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1 Introduction

Distributed and decentralized control design problem is a classical topic in the
control literature (e.g., see [1–3]). Most of the available approaches in this field
implicitly assume that the design procedure is done in a centralized fashion using
the complete knowledge of the model parameters. However, this assumption is
not realistic when dealing with large-scale systems due to several reasons. For
instance, the overall system might be assembled from modules that are designed by
separate entities without access to the entire set of model parameters because at
the time of design this information was unavailable. Another reason could be that
we want to keep the system maintenance simple by making it robust to nonlocal
parameter changes; i.e., if a controller is designed knowing only local parameters,
we do not need to redesign it whenever the parameters of a subsystem not in its
immediate neighborhood change. Financial gains, for instance, in the case of power
network control, could also be a motivation for limited access to model knowledge
since competing companies are typically reluctant to share information on their
production with each other. For a more detailed survey of the motivations behind
control design using local model parameter information, see [4, Ch. 1].

Recently, there have been some studies on control design with limited model in-
formation [4–7]. For instance, the authors in [6] introduce control design strategies
as mappings from the set of plants to the set of structured static state-feedback
controllers. They compare the control design strategies using a measure called the
competitive ratio, which is defined to be the worst case ratio (over the set of all pos-
sible plants) of the closed-loop performance of the control design strategy in hand
scaled by the best performance achievable having access to global model parameter
information. Then, they seek a minimizer of the competitive ratio over a family
of control design strategies that use only the parameters of their corresponding
subsystems when designing controllers. Noting that, in those studies, the plants
can vary over an unbounded set, the results are somewhat conservative. Addition-
ally, all the aforementioned studies deal with discrete-time system as it was proved
that the competitive ratio is unbounded when working with continuous-time sys-
tems [5]. Not much have been done in optimal control design under limited model
information for continuous-time systems.

In this paper, contrary to previous studies, we investigate continuous-time sys-
tems with parameters in a compact set. Specifically, we propose a numerical algo-
rithm for calculating suboptimal H∞ control design strategies (i.e., mappings from
the set of parameters to the set of structured static state-feedback controllers) for a
set of parameter-dependent linear continuous-time systems composed of intercon-
nected subsystems. We consider the case where each subsystem has access to a
(possibly strict) subset of the system parameters when designing and implementing
its local controller. Additionally, we assume that each local controller uses par-
tial state measurements to close the feedback loop. To solve the problem, we first
expand the control design strategies in terms of the system parameters (using a
fixed set of basis functions) in such a way that each controller only uses its avail-
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able parameters. Following the approach in [8], we calculate the subgradient of the
H∞–norm of the closed-loop transfer function with respect to the controller gains
and the system parameters. Then, we propose a numerical optimization algorithm
based on successive local minimizations and maximizations of this performance
measure with respect to the controller gains and the system parameters. Designing
parameter-dependent controllers has a very rich history in the control literature,
specially in gain scheduling and supervisory control; e.g., see [9–15]. However, most
of these studies implicitly assume that the overall controller has access to all the
parameters. Contrary to these studies, we assume that local controllers have access
to only subsets of the system parameters.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem formulation. We propose a numerical algorithm for calculating a subop-
timal H∞ control design strategy in Section 3. We illustrate the approach on a
vehicle platooning example in Section 4. Finally, we present the conclusions in
Section 5.

1.1 Notation

Let the sets of integer and real numbers be denoted by Z and R, respectively. Let
Z>(≥)n = {m ∈ Z | m > (≥)n} and R>(≥)x = {y ∈ R | y > (≥)x} for n ∈ Z and
x ∈ R.

We use capital roman letters to denote matrices. The notation A > (≥)0 shows
that the symmetric matrix A is positive (semi-)definite. For any q,m ∈ Z≥1, we
define the notation Bqm = {(Y1, . . . , Yq) |Yi ∈ Rm×m, Yi ≥ 0,

∑q
i=1 tr(Yi) = 1}. We

use Bq whenever the dimension m is irrelevant (or can be deduced from the text).
For any A ∈ Rn×m and B ∈ Rp×q, we use A⊗B ∈ Rnp×mq to denote the Kronecker
product of these matrices.

Let an ordered set of real functions (ξ`)L`=1 be given such that ξ` : Rp → R,
1 ≤ ` ≤ L, are continuous functions with continuous first derivatives. We define
span((ξ`)L`=1) as the set composed of all linear combinations of the functions (ξ`)L`=1;
i.e., for any f ∈ span((ξ`)L`=1), there exists at least one ordered set of real numbers
(x`)L`=1 such that f(α) =

∑L
`=1 x`ξ`(α) for all α ∈ Rp. For any n,m ∈ Z≥1,

span((ξ`)L`=1)n×m denotes the set of all functions A : Rp → Rn×m such that A(α) =∑L
`=1 ξ`(α)A(`) with A(`) ∈ Rn×m for all 1 ≤ ` ≤ L.
We consider directed graphs with vertex set V = {1, . . . , N} for a fixed N ∈ Z≥1.

For a graph G = (V, E), where E denotes its edge set, we define the adjacency matrix
S ∈ {0, 1}N×N such that sij = 1 if (j, i) ∈ E , and sij = 0 otherwise. We define the
set of structured matrices X (S, (ni)Ni=1, (mi)Ni=1) as the set of all matricesX ∈ Rn×m

with n =
∑N
i=1 ni and m =

∑N
i=1mi such that Xij = 0 ∈ Rni×nj whenever sij = 0

for 1 ≤ i, j ≤ N .
For any function f : U → Y, we call U the domain of f and Y the codomain of

f . Additionally, we define its image f(U) as the set of all y ∈ Y such that y = f(x)
for a x ∈ U .
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For any n ∈ Z≥1, In denotes the n × n identity matrix. To simplify the pre-
sentation, we use I whenever the dimension can be inferred from the text. For any
n,m ∈ Z≥1, we define 0n×m as the n ×m zero matrix. Finally, let 1n ∈ Rn be a
vector of ones.

2 Mathematical Problem Formulation

In this section, we introduce the underlying system model, the controller structure,
and the closed-loop performance criterion.

2.1 System Model

Consider a continuous-time linear parameter-dependent system composed of N ∈
Z≥1 subsystems. Let subsystem i, 1 ≤ i ≤ N , be described as

ẋi(t) =
N∑
j=1

[
Aij(αi)xj(t) + (Bw)ij(αi)wi(t) + (Bu)ij(αi)ui(t)

]
, (1)

where xi(t) ∈ Rni is the state vector, wi(t) ∈ Rmw,i is the exogenous input, ui(t) ∈
Rmu,i is the control input, and lastly, αi ∈ Rpi is the parameter vector. Let
us introduce the augmented state, control input, exogenous input, and parameter
vector as

x(t) =
[
x1(t)> · · · xN (t)>

]> ∈ Rn,

w(t) =
[
w1(t)> · · · wN (t)>

]> ∈ Rmw ,

u(t) =
[
u1(t)> · · · uN (t)>

]> ∈ Rmu ,

α(t) =
[
α1(t)> · · · αN (t)>

]> ∈ Rp,

where n =
∑N
i=1 ni, mw =

∑N
i=1mw,i, mu =

∑N
i=1mu,i, and p =

∑N
i=1 pi. This

results in
ẋ(t) = A(α)x(t) +Bw(α)w(t) +Bu(α)u(t).

We use the notation A to denote the set of all eligible parameter vectors α. We
make the following standing assumption concerning the model matrices:

Assumption 5.1 There exists a basis set (ξ`)L`=1 such that A(α) ∈ span((ξ`)L`=1)n×n,
Bw(α) ∈ span((ξ`)L`=1)n×mw , and Bu(α) ∈ span((ξ`)L`=1)n×mu .

Example 5.1 Consider a parameter-dependent system described by

ẋ1(t) = (−2.0+α1)x1(t)+(0.1+0.4 sin(α1))x2(t)+(0.6−0.3 sin(α1))u1(t) + w1(t),
ẋ2(t) = +0.3x1(t)+(−1.0−α2)x2(t)+(1.0+0.1 cos(α2))u2(t) + w2(t),
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where xi(t) ∈ R, ui(t) ∈ R, wi(t) ∈ R, and αi ∈ R are respectively the state, the
control input, the exogenous input, and the parameter of subsystem i = 1, 2. We
define the set of eligible parameters as

A =
{[

α1
α2

]
∈ R2 ∣∣ αi ∈ [−1,+1] for i = 1, 2

}
.

Clearly, this system satisfies Assumption 5.1 with basis functions ξ1(α) = 1, ξ2(α) =
α1, ξ3(α) = sin(α1), ξ4(α) = cos(α2), and ξ5(α) = α2. J

2.2 Measurement Model and Controller

Let a control graph GK with adjacency matrix SK be given. We consider the case
where each subsystem has access to a (potentially parameter-dependent) observa-
tion vector yi(t) ∈ Roy,i that can be described by

yi(t) =
N∑
j=1

[
(Cy)ij(αi)xj(t) + (Dyw)ij(αi)wj(t)

]
.

Now, we can define the augmented observation vector as

y(t) =
[
y1(t)> · · · yN (t)>

]> ∈ Roy ,

where oy =
∑N
i=1 oy,i. Thus,

y(t) = Cy(α)x(t) +Dyw(α)w(t).

We say that the measurement vector y(t) obeys the structure given by the con-
trol graph GK if Cy(A) ∈ X (SK, (oy,i)Ni=1, (ni)Ni=1) and Dyw(A) ∈ X (SK, (oy,i)Ni=1,
(mw,i)Ni=1), where the definition of the structured set X can be found in the notation
subsection. We make the following standing assumption concerning the observation
matrices:

Assumption 5.2 For the same basis set (ξ`)L`=1 as in Assumption 5.1, Cy(α) ∈
span((ξ`)L`=1)oy×n and Dyw(α) ∈ span((ξ`)L`=1)oy×mw .

In this paper, we are interested in linear static state-feedback controllers of the
form

u(k) = Ky(k), (2)

where K ∈ K = X (I, (mu,i)Ni=1, (oy,i)Ni=1). Note that fol-lowing the same reasoning
as in [8, 16], the extension to fixed-order dynamic controllers is trivial (using just
a change of variable).
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P1

GK

P2 P1

GC

P2

Figure 1: The control graph GK and the design graph GC utilized in the recurring
numerical example.

Example 5.1 (Cont’d) Let the control graph GK in Figure 1 represent the state-
measurement availability. Consider the observation vectors

y1(t) =
[
x1(t)
x2(t)

]
∈ R2, y2(t) = x2(t) ∈ R.

Clearly, the augmented observation vector obeys the structure dictated by GK. Fur-
thermore, since the measurement matrices are constant, they obviously satisfy As-
sumption 5.2. Finally, the controller (2) is given by[

u1(k)
u2(k)

]
=
[
K11 0

0 K22

] [
y1(k)
y2(k)

]
,

where K11 ∈ R1×2 and K22 ∈ R. J

2.3 Control Design Strategy
Following [6], we define a control design strategy Γ as a mapping from A to K.
Let a control design strategy Γ : A → K be partitioned following the measurement
vector and the control input dimensions as

Γ =

 Γ11 · · · 0
...

. . .
...

0 · · · ΓNN

 ,
where each block Γii represents a map A → Rmu,i×oy,i . Let a directed graph GC
with adjacency matrix SC be given. We say that the control design strategy Γ has
structure GC if Γii, 1 ≤ i ≤ N , is only a function of {αj | (sC)ij 6= 0}. Let C denote
the set of all control design strategies Γ with structure GC . We make the following
standing assumption:

Assumption 5.3 There exists a basis set (η`′)L
′

`′=1such that Γ∈span((η`′)L
′

`′=1)mu×oy .

Now, we define C((η`′)L
′

`′=1) = C ∩ span((η`′)L
′

`′=1)mu×oy as the set of all control
design strategies over which we optimize the closed-loop performance.
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Example 5.1 (Cont’d) The design graph GC in Figure 1 illustrates the available
plant model information. We use the basis functions η1(α) = 1, η2(α) = α1,
η3(α) = α2

1, and η4(α) = α2 for parameterizing the control design strategies.
Clearly, any Γ ∈ C({η`′}4`′=1) can be expressed in the form

Γ(α) =
4∑

`′=1
G(`′)η`′(α),

with

G(1) =
[
∗ ∗ 0
0 0 ∗

]
, G(2) =

[
∗ ∗ 0
0 0 0

]
,

G(3) =
[
∗ ∗ 0
0 0 0

]
, G(4) =

[
0 0 0
0 0 ∗

]
,

where * denotes the nonzero entries of these matrices. Note that the functions
{η`′}4`′=1 are indeed design choices and we can improve the closed-loop performance
by increasing the number of the basis functions. However, this can only be achieved
at the price of a higher computational time. J

2.4 Performance Metric
Let us introduce the performance measure output vector

z(t) = Czx(t) +Dzww(t) +Dzuu(t) ∈ Roz . (3)

We are interested in finding a control design method Γ that solves the optimization
problem

min
Γ∈C((η`′ )L

′
`′=1)

max
α∈A

‖Tzw (s; Γ, α)‖∞ , (4)

where Tzw(s; Γ, α) denotes the closed-loop transfer function from the exogenous
input w(t) to the performance measurement vector z(t) for α ∈ A. We make the
following assumptions to avoid singularities in the optimal control problem:

Assumption 5.4 D>zuDzu = I and DywD
>
yw = I.

These assumptions are common in the H∞-control design literature [17, p. 288].
However, notice that the conditions in Assumption 5.4 are only sufficient (and
not necessary). For instance, although Dyw = 0 in Example 5.1, as we will see
later, a nontrivial solution indeed exists and the optimal control problem is in fact
well-posed.

To simplify the presentation in what follows, we define the notation

J(Γ, α) = ‖Tzw (s; Γ, α)‖∞ .
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Now, noting that there may exist many local solutions to the optimization prob-
lem (4), it is difficult to find the global solution of this problem. Hence, we define:

Definition 5.1 A pair (Γ∗, α∗) ∈ C((η`′)L
′

`′=1)×A is a saddle point of J :C((η`′)L
′

`′=1)
× α→ R≥0 if there exists a constant ε ∈ R>0 such that

J(Γ∗, α) ≤ J(Γ∗, α∗) ≤ J(Γ, α∗),

for any (Γ, α) ∈ C((η`′)L
′

`′=1)×A where ‖Γ− Γ∗‖ ≤ ε and ‖α− α∗‖ ≤ ε.

Evidently, the global solution of the minimax optimization problem (4) is also
a saddle point of J . However, there might be many more saddle points. In the rest
of this paper, we focus on finding a saddle point (Γ∗, α∗) of J . To make sure that
the set of saddle points is nonempty, we make the following standing assumption:

Assumption 5.5 The set of all eligible parameters A is a compact subset of Rp.
In addition, for any α ∈ A, the pair (A(α), Bu(α)) is stabilizable and the pair
(A(α), Cy(α)) is detectable.

Notice that Assumption 5.5 is only a necessary condition for the existence of a saddle
point solution since we are solving a decentralized control design problem rather
than a centralized one. Therefore, throughout the paper, we are going to assume
that, at least, one such saddle point exists. If we switch the stabilizability and the
detectability conditions with the absence of unstable fixed modes, this assumption
becomes more realistic (but still not sufficient because of the asymmetric parameter
dependencies).

Example 5.1 (Cont’d) In this example, we are interested in minimizing the clo-
sed-loop transfer function from the exogenous inputs to the performance measure-
ment vector with Cz = [I2 02×2]>, Dzu = [02×2 I2]>, and Dzw = 0. Clearly, the
choice of Dzu satisfies Assumption 5.4. It is easy to check that the system satisfies
Assumption 5.5 as well. J

3 Optimization Algorithm

In this section, we develop a numerical algorithm for finding a saddle point (Γ∗, α∗)
of J . We start by calculating subgradients1 ∆Γ ∈ ∂ΓJ(Γ, α) and ∆α ∈ ∂αJ(Γ, α)
for any (Γ, α) ∈ C((η`′)L

′

`′=1)×A.

1We say that a vector g ∈ X is a subgradient of f : X → R at x ∈ X if for all x′ ∈ X ,
f(x′) ≥ f(x) + g>(x′ − x). Let ∂f(x) denote the set of subgradients of f at the point x ∈ X . If f
is convex, then ∂f(x) is nonempty and bounded. We would like refer interested readers to [18, 19]
(and the references therein) for a detailed review of the subgradients and numerical optimization
algorithm using them.
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Lemma 5.1 Let us define the transfer functions in[
Tzw(s; Γ, α) G12(s; Γ, α)
G21(s; Γ, α) •

]
=
[
C ′cl(Γ, α)
Cy′(α)

]
(sI−A′cl(Γ, α))−1[

B′cl(Γ, α) Bu(α)
]

+
[
D′cl(Γ, α) Dzu

Dy′w(α) •

]
,

(5)

with
A′cl(Γ, α) = A(α) +Bu(α)K ′Cy′(α),
B′cl(Γ, α) = Bw(α) +Bu(α)K ′Dy′w(α)
C ′cl(Γ, α) = Cz(α) +Dzu(α)K ′Cy′(α),
D′cl(Γ, α) = Dzw(α) +Dzu(α)K ′Dy′w(α),

where K ′ = [G(1) · · · G(L′)] and

Cy′(α)=

 η1(α)Cy(α)
...

ηL′(α)Cy(α)

, Dy′w(α)=

 η1(α)Dyw(α)
...

ηL′(α)Dyw(α)

.
Furthermore, let ∆Γ =

∑L′

`′=1 ∆G(`′) be such that ∆G(`′) ∈ Rm×oy are defined in

[
∆G(1) · · · ∆G(L′)

]
=‖Tzw (s; Γ, α)‖−1

∞

q∑
ν=1

Re
{
G21(jων ; Γ, α)Tzw(jων ; Γ, α)∗

×QνYνQ∗νG12(jων ; Γ, α)
}>
,

(6)

where ‖Tzw(s; Γ, α)‖∞ is attained at a finite number of frequencies (ω1, . . . , ωq) and
(Y1, . . . , Yq) ∈ Bq. In addition, the columns of Qν , 1 ≤ ν ≤ q, are chosen so as
to form an orthonormal basis for the eigenspace of Tzw(jων ; Γ, α)Tzw(jων ; Γ, α)∗
associated with the leading eigenvalue ‖Tzw(s; Γ, α)‖∞. Then, ∆Γ ∈ ∂ΓJ(Γ, α).

Proof: Due to space constraints, we only present a sketch of the proof here.
First, we prove that the closed-loop system

ẋ(t) = A(α)x(t) +Bw(α)w(t) +Bu(α)u(t),
z(t) = Czx(t) +Dzww(t) +Dzuu(t),
y′(t) = Cy′(α)x(t) +Dy′w(α)w(t),
u(t) = K ′y′(t),

is equivalent to the closed-loop system that we introduced in the previous section.
Then, we can use the method presented in [8] for calculating the subgradients of
the closed-loop performance with respect to the controller gain. Doing so, we find
∆G(`′) ∈ ∂G`′J(Γ, α) for 1 ≤ `′ ≤ L′. Finally, we get

∑L′

`′=1 ∆G(`′)η`′ ∈ ∂ΓJ(Γ, α).
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Lemma 5.2 Let us define the transfer functions in[
Tzw(s; Γ, α) H12(s; Γ, α)
H21(s; Γ, α) •

]
=
[
C ′′cl(Γ, α)
Cy′′

]
(sI−A′′cl(Γ, α))−1[

B′′cl(Γ, α) Bu′′
]

+
[
D′′cl(Γ, α) Dzu′′

Dy′′w •

]
,

(7)
with

A′′cl(Γ, α) = Bu′′K
′′(α)Cy′′ ,

B′′cl(Γ, α) = Bu′′K
′′(α)Dy′′w,

C ′′cl(Γ, α) = Cz +Dzu′′K
′′(α)Cy′′ ,

D′′cl(Γ, α) = Dzw +Dzu′′K
′′(α)Dy′′w,

where

Cy′′ =



A(1)

...
A(L)

1L+1 ⊗



G(1)C
(1)
y

G(1)C
(2)
y

...
G(1)C

(L)
y

...
G(L′)C

(L)
y


0(nL+muL(L+1)L′)×n



,

Dy′′w =



0(nL+muL(L+1)L′)×mw
B

(1)
w

...
B

(L)
w

1L+1 ⊗



G(1)D
(1)
yw

G(1)D
(2)
yw

...
G(1)D

(L)
yw

...
G(L′)D

(L)
yw





,

Dzu′′ =


0(nL+muL2L′)×oz

1LL′ ⊗D>zu
0(nL+muL2L′)×oz

1LL′ ⊗D>zu


>

,
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and
Bu′′ =

[
1>L ⊗ In×n Υ 0n×nLL′ 1>L ⊗ In×n Υ 0n×nLL′

]>
,

with
Υ =

[
1>LL′ ⊗B(1)>

u · · · 1>LL′ ⊗B(L)>
u

]
.

Additionally, we have

K ′′(α) = diag(Ξ(α)⊗ In, Ξ(α)⊗Ψ(α)⊗ Ξ(α)⊗ Imu ,Ψ(α)⊗ Ξ(α)⊗ Imu ,
Ξ(α)⊗ In,Ξ(α)⊗Ψ(α)⊗ Ξ(α)⊗ Imu ,Ψ(α)⊗ Ξ(α)⊗ Imu).

where, for all α ∈ Rp, Ξ(α) = diag(ξ1(α), . . . , ξL(α)) and Ψ(α) = diag(η1(α), . . . ,
ηL′(α)). Furthermore, let ∆α = [∆α1 · · · ∆αp]> be such that the scalars ∆αi ∈ R,
1 ≤ i ≤ p, are calculated using

∆αi = ‖Tzw (s; Γ, α)‖−1
∞

q∑
ν=1

Re
{

tr
[
H21(jων ; Γ, α)Tzw(jων ; Γ, α)∗

×QνYνQ∗νH12(jων ; Γ, α) ∂

∂αi
K ′′(α)

]}
,

(8)

where ‖Tzw(s; Γ, α)‖∞ is attained at a finite number of frequencies (ω1, . . . , ωq) and
(Y1, . . . , Yq) ∈ Bq. In addition, the columns of Qν , 1 ≤ ν ≤ q, form an orthonormal
basis of the eigenspace of Tzw(jων ; Γ, α)Tzw(jων ; Γ, α)∗ associated with the leading
eigenvalue ‖Tzw(s; Γ, α)‖∞. Then, ∆α ∈ ∂αJ(Γ, α).

Proof: The proof follows the same line of reasoning as in the proof of Lemma 5.1.

Algorithm 2 introduces a numerical algorithm for finding a saddle point of J ,
or equivalently, a local solution of the optimization problem in (4).

Theorem 5.3 In Algorithm 2, let {µk}∞k=0 be chosen such that limk→∞
∑k
z=1 µz =

∞ and limk→∞
∑k
z=1 µ

2
z <∞. Assume that there exists C ∈ R such that ‖gk,τ‖2 ≤

C and ‖∆G(`′)(k)‖2 ≤ C for all k, τ ≥ 0 and 1 ≤ `′ ≤ L′. Then, if limk→∞(Γ(k),
α(k)) exists, it is a saddle point of J .

Proof: The proof follows from the convergence properties of subgradient opti-
mization algorithms.

Example 5.1 (Cont’d) Let us initialize Algorithm 2 at α(0) = [0.0 − 0.0]> and

Γ0(α) =
[

+0.0 +0.0 +0.0
+0.0 +0.0 −0.5

]
.
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Algorithm 2 A numerical algorithm for calculating a saddle point (Γ∗, α∗) of J .
Input: {G(`′)(0)}L′`′=0, α(0) , ε, ε ∈ R>0, {µk}∞k=1
Output: Γ∗, α∗
1: k ← 0
2: repeat
3: Γ(k) ←

∑L′

`′=1G
(`′)(k)η`′

4: ᾱ(0)← α(k)
5: τ ← 0
6: repeat
7: ᾱ(τ+1)← PA(ᾱ(τ)+µτgk,τ ) where gk,τ ∈ ∂αJ(Γ(k), α) calculated at ᾱ(τ)

and PA(·) is the projection to A
8: τ ← τ + 1
9: until |J(Γ(k), ᾱ(τ))− J(Γ(k), ᾱ(τ − 1))| ≤ ε
10: α(k + 1)← ᾱ(τ)
11: for `′ = 1, . . . , L′ do
12: G(`′)(k + 1) ← PC(G(`′)(k) − µk∆G(`′)(k)) where ∆G(`′)(k) ∈

∂G`′J(Γ, α(k + 1)) calculated at Γ(k) and PC(·) is the projection to
C((η`′)L

′

`′=1)
13: end for
14: k ← k + 1
15: until |J(Γ(k−1), α(k − 1))− J(Γ(k), α(k))| ≤ ε
16: Γ∗ ←

∑L′

`′=1G
(`′)(k)η`′

17: α∗ ← α(k)
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Figure 2: The initial closed-loop performance ‖Tzw(s; Γ0, α)‖∞ (left) and the opti-
mal closed-loop performance ‖Tzw(s; Γ∗, α)‖∞ (right) as function of the parameters
αi, i = 1, 2.
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Furthermore, we pick ε = ε = 10−3 and µk = 0.1/k for all k ∈ Z≥1. This results
in Γ∗(α) = G(1) +G(2)α1 +G(3)α2

1 +G(4)α2, where

G(1) =
[
−0.1892 −1.008 0.0

0.0 0.0 −7.1070

]
,

G(2) =
[
−0.1892 −1.008 0.0

0.0 0.0 0.0

]
,

G(3) =
[
−0.1892 −1.008 0.0

0.0 0.0 0.0

]
,

G(4) =
[

0.0 0.0 0.0
0.0 0.0 6.6070

]
.

Figure 2 illustrates the closed-loop performance measure ‖Tzw(s; Γ0, α)‖∞ for the
initial control design strategy Γ0 (left) and the suboptimal closed-loop performance
measure ‖Tzw(s; Γ∗, α)‖∞ (right) as a function of the system parameters αi, i =
1, 2. J

Now, we adapt the definition of the competitive ratio (see [5, 6]) to our prob-
lem formulation. Using this measure, we can characterize the value of the model
parameter information in the control design. Assume that for every α ∈ A, there
exists an optimal controller K∗(α) ∈ K such that

J(K∗(α), α) ≤ J(K,α), ∀K ∈ K.

Notice that K∗ : A → K is not necessarily in C or C((η`′)L
′

`′=1) since its entries might
depend on all the parameters in the vector α (and not just some specific subset of
them). Now, we define the competitive ratio of a control design method Γ as

r(Γ) = sup
α∈A

J(Γ(α), α)
J(K∗(α), α) ,

with the convention that “ 0
0” equals one. Let us calculate this ratio for our numer-

ical example.

Example 5.1 (Cont’d) For the definition of the competitive ratio, we need to
calculate K∗(α). To do so, we assume that the control graph GK is a complete
graph. Consider the output vectors

y1(t) = y2(t) =
[
x1(t)
x2(t)

]
∈ R2.

Hence, we are dealing with full state feedback, but it is still a parameter-dependent
control design problem. For any α ∈ A, K∗(α) is a static controller, which can
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be derived from a convex optimization problem [17]. For this setup, let us run
Algorithm 2 with α(0) = [0 0]> and

Γ0(α) =
[

0.0 0.0 0.0 0.0
0.0 0.0 0.0 −0.5

]
.

Then, we get Γ∗(α) = G(1) +G(2)α1 +G(3)α2
1 +G(4)α2, where

G(1) =
[
−0.0624 −0.1023 0.0 0.0

0.0 0.0 −0.3992 −1.1650

]
,

G(2) =
[
−0.0624 −0.1023 0.0 0.0

0.0 0.0 0.0 0.0

]
,

G(3) =
[
−0.0624 −0.1023 0.0 0.0

0.0 0.0 0.0 0.0

]
,

G(4) =
[

0.0 0.0 0.0 0.0
0.0 0.0 0.3992 0.6650

]
.

To calculate the competitive ratio, we grid the set of all eligible parameters A and
calculate K∗ (and its closed-loop performance) for each grid point. This results in

r(Γ∗) = sup
α∈A

J(Γ(α), α)
J(K∗(α), α) = 1.1475.

Hence, the closed-loop performance of Γ∗ can be at most 15% worse than the
performance of the control design strategy with access to the full parameter vector.
We can also infer that, although using gradient descent optimization, Γ∗ is close
to the global solution of the optimization problem (4) since the performance cost
of the global solution must lay somewhere between the performances of Γ∗ and K∗,
which are very close to each other thanks to the relatively small r(Γ∗). The 15%
performance degradation is partly due to using local model information, but it is also
due to the use of the basis functions {η`′}4`′=1 to expand the control design strategies
(since span(η`′)4

`′=1 is not dense in C). To portray this fact quantitatively, let us
assume that the design graph GC is a complete graph and use Algorithm 2 to calculate
a saddle point (Γ•, α•) of J . Doing so, we get

r(Γ•) = 1.1344,

so about 13% of the performance degradation is caused by the choice of the basis
functions {η`′}4`′=1. This amount can be certainly reduced by increasing L′ (i.e.,
adding to the number of basis functions employed to describe the control design
strategies). J
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Figure 3: Regulating the distance between three vehicles in a platoon.
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Figure 5: The design graphs utilized in the vehicle platooning.

4 Application to Vehicle Platooning

Consider a physical example where three heavy-duty vehicles are following each
other closely in a platoon (see Figure 3). We can model this system as

ẋ(t) = A(α)x(t) +B(α)u(t) + w(t),

where
x(t) =

[
v1(t) d12(t) v2(t) d23(t) v3(t)

]> ∈ R5,

is the state vector with vi(t) denoting the velocity of vehicle i and dij(t) denoting
the distance between vehicles i and j (see Figure 3). Additionally, u(t) ∈ R3 is the
control input (i.e., the acceleration of the vehicles), w(t) ∈ R5 is the exogenous input
(i.e., the effect of wind, road quality, friction, etc), and α = [m1 m2 m3]> ∈ R3

is the vector of parameters with mi denoting the mass of vehicle i (scaled by its
maximum allowable mass). We define the state of each subsystem as

x1(t)=
[
v1(t)
d12(t)

]
, x2(t)=v2(t), x3(t)=

[
d23(t)
v3(t)

]
.
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Furthermore, we have

A(α) =


−%1/m1 0 0 0 0

1 0 −1 0 0
0 0 −%2/m2 0 0
0 0 1 0 −1
0 0 0 0 −%3/m3

,
and

B(α) =


b1/m1 0 0

0 0 0
0 b2/m2 0
0 0 0
0 0 b3/m3

,
where %i is the viscous drag coefficient of vehicle i and bi is the power conversion
quality coefficient. These parameters are all scaled by the maximum allowable mass
of each vehicle. Let us fix %i = 0.1 and bi = 1 for all i = 1, 2, 3. We assume that

A = {α ∈ R3 |αi ∈ [0.5, 1.0] for all i = 1, 2, 3}.

Clearly, we can satisfy Assumption 5.1 with the choice of basis functions ξ1(α) = 1,
ξ2(α) = 1/m1, ξ3(α) = 1/m2, and ξ4(α) = 1/m3. Now, we assume that each
vehicle only has access to the state measurements of its neighbors. This pattern is
captured by the control graph GK in Figure 4. Hence, we get

y1(t)=

 v1(t)
d12(t)
v2(t)

, y2(t)=


v1(t)
d12(t)
v2(t)
d23(t)
v3(t)

, y3(t)=

 v2(t)
d23(t)
v3(t)

,
Notice that the choice of these particular observation vectors is convenient as the
vehicles can measure them directly (using velocity and distance sensors mounted
on the front and the back of the vehicles) and they do not need to relay these
measurements to each other through a communication medium. For safety reasons,
we would like to ensure that the exogenous inputs do not significantly influence
the distances between the vehicles. However, we would like to guarantee this fact
using as little control action as possible. We capture this goal by minimizing the
H∞-norm of the closed-loop transfer function from the exogenous inputs w(t) to

z(t) =
[
d12(t) d23(t) u1(t) u2(t) u3(t)

]>
.

Let us use the basis functions η1(α) = 1, η2(α) = m1, η3(α) = m2
1, η4(α) = m2,

η5(α) = m2
2, η6(α) = m3, and η7(α) = m2

3 to expand the control design strategies.
We use Algorithm 2 to compute the optimal control design strategy. Notice that the
open-loop system has two poles on the imaginary axis for all α ∈ A. To eliminate
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this problem, we initialize the algorithm with an stabilizing control design strategy

Γ0(α)=

−3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 15 −5 10 0 0 0 0
0 0 0 0 0 0 0 0 0 10 −5

.
We pick α(0) = [0.5 0.5 0.5]>, ε = 10−2, ε = 10−3, and µk = 1/k for all k ∈ Z≥1.
For comparisons, note that

max
α∈A

∥∥Tzw (s; Γ0, α
)∥∥
∞ = 11.9626.

In the following subsections, we calculate optimal control design strategy under
three different information regimes. Note that the importance of communicating
parameter information for vehicle platooning was also considered in [20], where the
authors designed decentralized linear quadratic controllers.

4.1 Local Model Information Availability
We start with the case where each local controller only relies on the mass of its own
vehicle. This model information availability corresponds to the design graph GC in
Figure 5. For this case, we get the performance

max
α∈A

∥∥Tzw (s; Γlocal, α
)∥∥
∞ = 4.7905,

where Γlocal is the outcome of Algorithm 2 with the described initialization.

4.2 Limited Model Information Availability
Here, we let the neighboring vehicles communicate their mass to each other. This
model information availability corresponds to the design graph G′C in Figure 5. For
this information regime, we get

max
α∈A

∥∥Tzw (s; Γlimited, α
)∥∥
∞ = 3.5533,

where Γlimited is the outcome of Algorithm 2. Clearly, we get a 25% improvement
in comparison to Γlocal.

4.3 Full Model Information Availability
Finally, we consider the case where each local controller has access to all the model
parameters (i.e., the mass of all other vehicles). This model information availability
corresponds to the design graph G′′C in Figure 5. We get

max
α∈A

∥∥Tzw (s; Γfull, α
)∥∥
∞ = 3.3596,

where Γfull is the outcome of Algorithm 2. It is interesting to note that with access
to full model information, we only improve the closed-loop performance by another
5% in comparison to Γlimited. This might be caused by the fact that the first and
the third vehicles are not directly interacting.
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5 Conclusions

In this paper, we studied optimal static control design under limited model in-
formation and partial state measurements for continuous-time linear parameter-
dependent systems. We defined the control design strategies as mappings from the
set of parameters to the set of controllers. Then, we expanded these mappings using
basis functions. We proposed a numerical optimization method based on consec-
utive local minimizations and maximizations of the H∞–norm of the closed-loop
transfer function with respect to the control design strategy gains and the system
parameters. The optimization algorithm relied on using the subgradients of this
closed-loop performance measure. As future work, we will focus on finding the best
basis functions for expanding the control design strategies. We will also study the
rate at which the closed-loop performance improves when increasing the number of
the basis functions.
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PAPER 6

Optimal Control Design under Limited Model
Information for Discrete-Time Linear Systems with

Stochastically-Varying Parameters

Farhad Farokhi and Karl H. Johansson

Abstract–The value of plant model information available in the control design process
is discussed. We design optimal state-feedback controllers for interconnected discrete-time
linear systems with stochastically-varying parameters. The parameters are assumed to be
independently and identically distributed random variables in time. The design of each
controller relies only on (i) exact local plant model information and (ii) statistical beliefs
about the model of the rest of the system. We consider both finite-horizon and infinite-
horizon quadratic cost functions. The optimal state-feedback controller is derived in both
cases. The optimal controller is shown to be linear in the state and to depend on the
model parameters and their statistics in a particular way. Furthermore, we study the
value of model information in optimal control design using the performance degradation
ratio which is defined as the supremum (over all possible initial conditions) of the ratio
of the cost of the optimal controller with limited model information scaled by the cost of
the optimal controller with full model information. An upper bound for the performance
degradation ratio is presented for the case of fully-actuated subsystems. Comparisons are
made between designs based on limited, statistical, and full model information. Through-
out the paper, we use a power network example to illustrate concepts and results.
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1 Introduction

1.1 Motivation

Large-scale systems such as automated highways [1, 2], aircraft and satellite forma-
tions [3, 4], supply chains [5, 6], power grids and other shared infrastructures [7, 8]
are typically composed of several locally controlled subsystems that are connected to
each other either through the physical dynamics, the communication infrastructure,
or the closed-loop performance criterion. The problem of designing these local con-
trollers, widely known as distributed or decentralized control design, is an old and
well-studied problem in the literature [9–15]. Although the controller itself is highly
structured for these large-scale systems, it is commonly assumed that the complete
model of the system is available and the design is done in a centralized fashion using
the global plant model information. However, this assumption is usually not easily
satisfied in practice. For instance, this might be because the design of each local
controller is done by a separate designer with no access to the global plant model
because the full plant model information is not available at the time of design or it
might change later. Recently, this concern has become more important as engineers
implement large-scale systems using off-the-shelf components which are designed in
advance with limited prior knowledge of their future operating condition. Another
reason to consider control design based on only local information is to simplify the
tuning and the maintenance of the system. For instance, dependencies between
cyber components in a large system can cause complex interactions influencing the
physical plant, not present without the controller. Privacy concerns could also be
a motivation for designing control actions using only local information. For further
motivations behind optimal control design using local model information, see [16].

As an illustrative physical example, let us consider a power network control
problem with power being generated in generators and distributed throughout the
network via transmission lines (e.g., [17, 18]). It is fairly common to assume that
the power consumption of the loads in such a network can be modeled stochas-
tically with a priori known statistics, such as, mean and variance extracted from
long term observations [19–21]. When the load variations are “small enough”, lo-
cal generators meet these demand variations. These variations shift the generators
operating points, and consequently, change their model parameters. If the loads
are modeled as impedances, they change the system model by changing the trans-
mission line impedances. As power networks are typically implemented over a vast
geographical area, it is inefficient or even impossible to gather all these model in-
formation variations or to identify all the parameters globally. Even if we could
gather all the information and identify the whole system based on them, it might
take very long and by then the information might be outdated (noting that the
model parameters vary stochastically over time). This motivates the interest in
designing local controllers for these systems based on only local model information
and statistical model information of the rest of the system. We revisit this power
network problem in detail for a small example in the paper. A recurring example
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is used to explain the underlying definitions as well as the mathematical results. It
is not difficult to see that similar examples can also be derived for process control,
intelligent transportation, irrigation systems, and other shared infrastructures.

1.2 Related Studies

Optimal control design under limited model information has recently attracted at-
tention. The authors in [22] introduced control design strategies as mappings from
the set of plants of interest to the set of eligible controllers. They studied the
quality of these control design strategies using a performance metric called the
competitive ratio; i.e., the worst case ratio of the closed-loop performance of a
given control design strategy to the closed-loop performance of the optimal control
design with full model information. Clearly, the smaller the competitive ratio is,
the more desirable the control design strategy becomes since it can closely replicate
the performance of the optimal control design strategy with full model information
while only relying on local plant model information. They showed that for discrete-
time systems composed of scalar subsystems, the deadbeat control design strategy
is a minimizer of the competitive ratio. Additionally, the deadbeat control design
strategy is undominated; i.e., there is no other control design strategy that performs
always better while having the same competitive ratio. This work was later gen-
eralized to limited model information control design methods for inter-connected
linear time-invariant systems of arbitrary order in [23]. In that study, the authors
investigated the best closed-loop performance that is achievable by structured static
state-feedback controllers based on limited model information. It was shown that
the result depends on the subsystems interconnection pattern and availability of
state measurements. Whenever there is no subsystem that cannot affect any other
subsystem and each controller has access to at least the state measurements of
its neighbors, the deadbeat strategy is the best limited model information control
design method. However, the deadbeat control design strategy is dominated (i.e.,
there exists another control design strategy that outperforms it while having the
same competitive ratio) when there is a subsystem that cannot affect any other
subsystem. These results were generalized to structured dynamic controllers when
the closed-loop performance criterion is set to be the H2-norm of the closed-loop
transfer function [24]. In this case, the optimal control design strategy with limited
model information is static even though the optimal structured state-feedback con-
troller with full model information is dynamic [25, 26]. Later in [27], the design of
dynamic controllers for optimal disturbance accommodation was discussed. It was
shown that in some cases an observer-based-controller is the optimal architecture
also under limited model information. Finally, in [28], it was shown that using an
adaptive control design strategy, the designer can achieve a competitive ratio equal
to one when the considered plant model belongs to a compact set of linear time-
invariant systems and the closed-loop performance measure is the ergodic mean of
a quadratic function of the state and control input (which is a natural extension of
the H2-norm of the closed-loop system considering that the closed-loop system in
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this case is nonlinear due to the adaptive controller).
In all these studies, the model information of other subsystems are assumed to

be completely unknown which typically results in conservative controllers because it
forces the designer to study the worst-case behavior of the control design methods.
In this paper, we take a new approach by assuming that a statistical model is avail-
able for the parameters of the other subsystems. There have been many studies of
optimal control design for linear discrete-time systems with stochastically-varying
parameters [29–33]. In these papers, the optimal controller is typically calculated
as a function of model parameter statistics. Considering a different problem for-
mulation, in this paper, we assume each controller design is done using the exact
model information of its corresponding subsystem and the other subsystems’ model
statistics.

Note that studying the worst-case behavior of the system using the competitive
ratio is not the only approach for optimal control design under limited model in-
formation. For instance, the authors in [34–36] developed methods for designing
near-optimal controllers using only local model information whenever the coupling
between the subsystems is negligible. However, not even the closed-loop stability
can be guaranteed when the coupling grows. As a different approach, in a re-
cent study [37], the authors used an iterative numerical optimization algorithm to
solve a finite-horizon linear quadratic problem in a distributed way using only lo-
cal model information and communication with neighbors. However, this approach
(and similarly [38, 39]) require many rounds of communication between the sub-
systems to converge to a reasonable neighborhood of the optimal controller. To
the best of our knowledge, there is also no stopping criteria (for terminating the
numerical optimization algorithm) that uses only local information. There have
been some studies in developing stopping criteria but these studies require global
knowledge of the system [40, 41]. Recently, there has been an attempt for design-
ing optimal controllers using only local model information for linear systems with
stochastically-varying parameters [42]. However, that setup is completely different
from the problem that is considered in this paper. First, the authors of [42] consid-
ered the case where the B-matrix was parameterized with stochastic variables but
in our setup the A-matrix is assumed to be stochastic. Additionally, in [42], the
infinite-horizon problem was only considered for the case of two subsystems, while
here we present all the results for arbitrary number of subsystems. In this paper,
we introduce the concept of performance degradation ratio as a measure to study
the value information in optimal control design. Furthermore, the proof techniques
are different since the authors of [42] use a team-theoretic approach to solve the
problem opposed to the approach presented in this paper.

1.3 Main Contribution

The main contribution of this paper is to study the value of plant model information
available in the control design process. To do so, we consider limited model infor-
mation control design for discrete-time linear systems with stochastically-varying
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parameters. First, in Theorem 6.1, we design the optimal finite-horizon controller
based on exact local model information and global model parameter statistics. We
generalize these results to infinite-horizon cost functions in Theorem 6.2 assuming
that the underlying system is mean square stabilizable; i.e., there exists a constant
matrix that can mean square stabilizes the system [29]. However, in Corollary 6.3,
we partially relax the assumptions of Theorem 6.2 to calculate the infinite-horizon
optimal controller whenever the underlying system is mean square stabilizable un-
der limited model information. This new concept is defined through borrowing the
idea of control design strategies from [22, 23]. We define a special class of control
design strategies to construct time-varying control gains for each subsystem. We
say that a system is mean square stabilizable under limited model information if
the intersection of this special class of control design strategies (that use only local
model information) and the set of mean square stabilizing control design strategies
is nonempty; i.e., there exists a control design strategy that uses only local model
information and it can mean square stabilizes the system (see Definition 6.3 for
more details).

Using the closed-loop performance of the optimal controller with limited model
information, we study the effect of lack of full model information on the closed-loop
performance. Specifically, we study the ratio of the cost of the optimal control
design strategy with limited model information scaled by the cost of the optimal
control design strategy with full model information (which is introduced in Theo-
rems 6.4 and 6.5 for finite-horizon and infinite-horizon cost functions, respectively).
We call the supremum of this ratio over the set of all initial conditions, the per-
formance degradation ratio. In Theorem 6.6, we find an upper bound for the
performance degradation ratio assuming the underlying systems are fully-actuated
(i.e., they have the same number of inputs as the state dimension). As a future
direction for research, one might be able to generalize these results to designing
structured state-feedback controllers following the same line of reasoning as in [43].

An early and brief version of the paper was presented as [44]. The current
paper is a considerable extension of [44] as the results have been generalized, a
new literature survey has been included, and a power network example has been
introduced to illustrate concepts and results throughout the paper.

1.4 Paper Outline

The rest of the paper is organized as follows. We start with introducing the system
model in Section 2. In Section 3, we design optimal controller for each subsystem
based on limited model information (i.e., using its own model information and the
statistical belief about the other subsystems). We start by the finite-horizon optimal
control problem and then generalize the results to infinite-horizon cost functions. In
Section 4, we introduce the optimal controller for both finite-horizon and infinite-
horizon cost functions when using the full model information. In Section 5, we
study the value of plant model information in optimal control design using the
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performance degradation ratio. Finally, the conclusions and directions for future
research are presented in Section 6.

1.5 Notation
The sets of integers and reals are denoted by Z and R, respectively. We denote all
other sets with calligraphic letters such as A and X . Specifically, we define Sn++
(Sn+) as the set of all symmetric matrices in Rn×n that are positive definite (positive
semidefinite). Matrices are denoted by capital roman letters such as A. We use the
notation Aij to denote a submatrix of matrix A (its dimension and position will be
defined in the text). The entry in the ith row and the jth column of the matrix A is
denoted aij . We define A > (≥)0 as A ∈ Sn++(Sn+) and A > (≥)B as A−B > (≥)0.
Let A ⊗ B ∈ Rnp×qm denote the Kronecker product between matrices A ∈ Rn×m
and B ∈ Rp×q; i.e.,

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .
For any positive integers n and m, we define the mapping vec : Rn×m → Rnm as
vec(A) = [A>1 A>2 · · ·A>m]> where Ai, 1 ≤ i ≤ m, denotes the ith column of A.
The mapping vec−1 : Rnm → Rn×m is the inverse of vec(·), where the dimension
of the matrix will be clear from the context. It is useful to note that both vec
and vec−1 are linear operators. Finally, for any given positive integers n and m,
we define the discrete Riccati operator R : Rn×n × Sn+ × Rn×m × Sm++ → Sn+ as
R(A,P,B,R) = A>(P − PB(R + B>PB)−1B>P )A for any A ∈ Rn×n, P ∈ Sn+,
B ∈ Rn×m, and R ∈ Sm++.

2 Control Systems with Stochastically-Varying Parameters

Consider a discrete-time linear system with stochastically-varying parameters com-
posed of N subsystems with each subsystem represented in state-space form as

xi(k + 1) =
N∑
j=1

Aij(k)xj(k) +Bii(k)ui(k), (1)

where xi(k) ∈ Rni and ui(k) ∈ Rmi denote subsystem i, 1 ≤ i ≤ N , state vector
and control input, respectively.

Remark 6.1 Linear systems with stochastically-varying parameters have been stud-
ied in many applications including power networks [19, 20], process control [45],
finance [46], and networked control [33, 47]. Various system theoretic properties
and control design methods have been developed for these systems [29–32].

We make the following two standing assumptions:
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Figure 1: Schematic diagram of the power network in Example 6.1.

Assumption 6.1 The submatrices Aij(k), 1 ≤ i, j ≤ N , are independently dis-
tributed random variables in time; i.e., P{Aij(k1) ∈ X |Aij(k2)} = P{Aij(k1) ∈ X}
for any X ⊆ Rni×nj whenever k1 6= k2.

Assumption 6.2 The subsystems are statistically independent of each other; i.e.,
P{Aij(k) ∈ X |Ai′j′(k)} = P{Aij(k) ∈ X} for any X ⊆ Rni×nj and 1 ≤ j, j′ ≤ N
whenever i 6= i′.

We illustrate these properties on a small power network example. We will
frequently revisit this example to demonstrate the developed results as well as their
implications.

Example 6.1 Let us consider the power network composed of two generators shown
in Figure 1 from [48, pp. 64–65], see also [17]. We can model this power network
as

δ̇1(t) = ω1(t),

ω̇1(t) = 1
M1

[
P1(t)− c−1

12 sin(δ1(t)− δ2(t))− c−1
1 sin(δ1(t))−D1ω1(t)

]
,

δ̇2(t) = ω2(t),

ω̇2(t) = 1
M2

[
P2(t)− c−1

12 sin(δ2(t)− δ1(t))− c−1
2 sin(δ2(t))−D2ω2(t)

]
,

where δi(t), ωi(t), and Pi(t) are, respectively, the phase angle of the terminal voltage
of generator i, its rotation frequency, and its input mechanical power. We assume
that P1(t) = 1.6 + v1(t) and P2(t) = 1.2 + v2(t), where v1(t) and v2(t) are the
continuous-time control inputs of this system. The power network parameters can
be found in Table 6.1 (see [17, 48] and references therein for a discussion on these
parameters). Now, we can find the equilibrium point (δ∗1 , δ∗2) of this system and lin-
earize it around this equilibrium. Let us discretize the linearized system by applying
Euler’s constant step scheme with sampling time ∆T = 300 ms, which results in∆δ1(k + 1)
∆ω1(k + 1)
∆δ2(k + 1)
∆ω2(k + 1)

=


1 ∆T 0 0
ξ1 1− ∆TD1

M1

∆T cos(δ∗1−δ
∗
2 )

c12M1
0

0 0 1 ∆T
∆T cos(δ∗2−δ

∗
1 )

c12M2
0 ξ2 1− ∆TD2

M2


∆δ1(k)

∆ω1(k)
∆δ2(k)
∆ω2(k)

+
 0
u1(k)

0
u2(k)

,
with ξ1 =−∆T (c−1

12 cos(δ∗1−δ∗2) + c−1
1 cos(δ∗1))/M1 and ξ2 =−∆T (c−1

12 cos(δ∗2−δ∗1) +
c−1
2 cos(δ∗2))/M2, where ∆δ1(k), ∆δ2(k), ∆ω1(k), and ∆ω2(k) denote the deviation
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of δ1(t), δ2(t), ω1(t), and ω2(t) from their equilibrium points at time instances t =
k∆T . Additionally, let the actuators be equipped with a zero order hold unit which
corresponds to vi(t) = ui(k) for all k∆T ≤ t < (k + 1)∆T . Let us assume that we
have connected impedance loads to each generator locally, such that the parameters
c1 and c2 vary stochastically over time according to the load profiles. Furthermore,
assume that each generator changes its input mechanical power according to these
local load variations (to meet their demand and avoid power shortage). Doing so,
we would not change the equilibrium point (δ∗1 , δ∗2). For this setup, we can model
the system as a discrete-time linear system with stochastically-varying parameters

x(k + 1) = A(k)x(k) +Bu(k),

where

x(k) =


∆δ1(k)
∆ω1(k)
∆δ2(k)
∆ω2(k)

, u(k) =
[
u1(k)
u2(k)

]
, B =


0 0
1 0
0 0
0 1

,
and

A(k) =


1.0000 0.3000 0 0

−45.6923− 6.9297α1(k) 0.9250 29.3953 0
0 0 1.0000 0.3000

23.5163 0 −37.3757− 8.1485α2(k) 0.9400

,
where αi(k), i = 1, 2, denotes the deviation of the admittance c−1

i from its nominal
value in Table 6.1. Let us assume that α1(k) and α2(k) are independently and
identically distributed random variables in time with α1(k) ∼ N (0, 0.1) and α2(k) ∼
N (0, 0.3). Note that in this example, αi(k) is a stochastically-varying parameter
of subsystem i describing the dynamics of the local power consumption. It only
appears in the model of subsystem i; i.e., in {Aij(k)|1 ≤ j ≤ N}. In the rest of the
paper when discussing this example and for designing controller i, we assume that
we only have access to the exact realization of αi(k) in addition to the statistics of
the other subsystem. This is motivated by the fact that the controller of the other
generator might not have access to this model information. B

We define the concatenated system from (1) as

x(k + 1) = A(k)x(k) +B(k)u(k), (2)

where x(k) = [x1(k)> · · · xN (k)>]> ∈ Rn and u(k) = [u1(k)> · · · uN (k)>]> ∈
Rm, with n =

∑N
i=1 ni and m =

∑N
i=1mi. Let x0 = x(0). We also use the

notations Āij(k) = E{Aij(k)}, Ãij(k) = Aij(k) − Āij(k), Ā(k) = E{A(k)}, and
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Table 6.1: Nominal values of power system parameters in Example 6.1.
Parameters Nominal Value (p.u.)

M1 2.6× 10−2

M2 3.2× 10−2

c12 0.40
c1 0.50
c2 0.50
D1 6.4× 10−3

D2 6.4× 10−3

Ã(k) = A(k)− Ā(k). Furthermore, for all 1 ≤ i ≤ N , we introduce the notations

Bi(k) =


0(
∑i−1

j=1
nj)×mi

Bii(k)
0(
∑N

j=i+1
nj)×mi

, Ãi(k) =


0(
∑i−1

j=1
nj)×n1

· · · 0(
∑i−1

j=1
nj)×nN

Ãi1(k) · · · ÃiN (k)
0(
∑N

j=i+1
nj)×n1

· · · 0(
∑N

j=i+1
nj)×nN

.
Now, we are ready to calculate the optimal controller under model information
constraints.

3 Optimal Control Design with Limited Model Information

In this section, we study the finite-horizon and infinite-horizon optimal control
design using exact local model information and statistical beliefs about other sub-
systems. We consider state-feedback control laws ui(k) = Fi(x(0), . . . , x(k)) where
in the design of Fi only limited model information is available about the overall
system (2). We formalize the notion of what model information is available in the
design of controller i, 1 ≤ i ≤ N , through the following definition.

Definition 6.1 The design of controller i, 1 ≤ i ≤ N , has limited model infor-
mation if (a) the exact local realizations {Aij(k) | 1 ≤ j ≤ N, ∀k} are available
together with (b) the first- and the second-order moments of the system parameters
(i.e., E{A(k)} and E{Ã(k)⊗ Ã(k)} for all k).

Remark 6.2 Note that the assumption that the exact realizations {Aij(k) | 1 ≤ j ≤
N} are available to designer of controller i (and not the rest of the submatrices)
is reasonable in the context of interconnected systems where the coupling strengths
are known (stochastically-varying or not) and the uncertainties are arising in each
subsystem independently. For instance, such systems occur naturally when studying
power network control since the power grid, which determines the coupling strengths
between the generators and the consumers, is typically accurately modeled, however,
the loads and the generators are stochastically varying and uncertain. A direction
for future research could be to consider the case where also the coupling strengths
are uncertain.
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3.1 Finite-Horizon Cost Function
In the finite-horizon optimal control design problem, for a fixed T > 0, we minimize
the cost function

JT (x0, {u(k)}T−1
k=0 ) =E

{
x(T )>Q(T )x(T )

+
T−1∑
k=0

(
x(k)>Q(k)x(k) +

N∑
j=1

uj(k)>Rjj(k)uj(k)
)}

,

(3)

subject to the system dynamics in (2) and the model information constraints in
Definition 6.1. In (3), we assume that Q(k) ∈ Sn+ for all 0 ≤ k ≤ T and R(k) =
diag(R11(k), . . . , RNN (k)) ∈ Sm++ for all 0 ≤ k ≤ T − 1. The following theorem
presents the solution of the finite-horizon optimal control problem.

Theorem 6.1 The solution of the finite-horizon optimal control design problem
with limited model information is given by

u(k) =− (R(k) +B(k)>P (k + 1)B(k))−1B(k)>P (k + 1)Ā(k)x(k)

−

 (R11(k) +B1(k)>P (k + 1)B1(k))−1B1(k)>P (k + 1)Ã1(k)
...

(RNN (k) +BN (k)>P (k + 1)BN (k))−1BN (k)>P (k + 1)ÃN (k)

x(k),

(4)

where the sequence of matrices {P (k)}Tk=0 can be calculated using the backward
difference equation

P (k) = Q(k) + R(Ā(k), P (k + 1), B(k), R)

+
N∑
i=1

E
{

R(Ãi(k), P (k + 1), Bi(k), Rii)
}
,

(5)

with the boundary condition P (T ) = Q(T ). Furthermore, inf{u(k)}T−1
k=0

JT (x0, {u(k)}T−1
k=0 ) = x>0 P (0)x0.

Proof: We solve the finite-horizon optimal control problem using dynamic
programming

Vk(x(k)) = inf
u(k)

E
{
x(k)>Q(k)x(k) + u(k)>R(k)u(k)

+ Vk+1(A(k)x(k) +B(k)u(k))
∣∣x(k)

}
,

(6)

where VT (x(T )) = x(T )>Q(T )x(T ). The proof strategy is to (a) show Vk(x(k)) =
x(k)>P (k)x(k) for all k using backward induction, (b) find a lower bound for
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E{x(k)>Q(k)x(k) + u(k)>R(k)u(k) + Vk+1(A(k)x(k) + B(k)u(k))
∣∣x(k)} which is

attained by u(k) in (4), and (c) using optimal controller calculate a recursive equa-
tion for P (k), 0 ≤ k ≤ T , starting from P (T ) = Q(T ). Note that because of
Definition 6.1, in each step of the dynamic programming, the infimum is taken over
the set of all control signals u(k) of the form

 u1(k)
...

uN (k)

 =

 ψ1(A11(k), . . . , A1N (k);x(0), · · · , x(k))
...

ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k))

 , (7)

where ψi : Rni×n1×· · ·×Rni×nN×Rn → Rmi , 1 ≤ i ≤ N , can be any mapping (i.e.,
it is not necessarily a linear mapping, a smooth one, etc). Let us assume, for all k,
that Vk(x(k)) = x(k)>P (k)x(k) where P (k) ∈ Sn+. This is without loss of generality
since VT (x(T )) = x(T )>Q(T )x(T ) is a quadratic function of the state vector x(T )
and using dynamic programming, Vk(x(k)) remains a quadratic function of x(k)
if Vk+1(x(k + 1)) is a quadratic function of x(k + 1) and u(k) is a linear function
of x(k). This can be easily proved using mathematical induction. For the control
input of the form in (7), we define

Ḡ(k) =

 E {ψ1(A11(k), . . . , A1N (k);x(0), · · · , x(k))|x(k)}
...

E {ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k))|x(k)}

− K̄(k)x(k),

and

g̃i(k) =ψi(Ai1(k), . . . , AiN (k);x(0), · · · , x(k))
− E{ψi(Ai1(k), . . . , AiN (k);x(0), · · · , x(k))|x(k)} − K̃i(k)x(k),

where K̄(k) = −(R(k) + B(k)>P (k + 1)B(k))−1B(k)>P (k + 1)Ā(k) and K̃i(k) =
−(Rii(k) +Bi(k)>P (k + 1)Bi(k))−1Bi(k)>P (k + 1)Ãi(k) are the gains in (4). By
definition, we have E{g̃i(k)|x(k)} = 0. Furthermore, let us define the notation

Ci =


0(
∑i−1

j=1
mj)×mi

I
0(
∑N

j=i+1
mj)×mi

 ,
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for all 1 ≤ i ≤ N . Evidently, we have

 ψ1(A11(k), . . . , A1N (k);x(0), · · · , x(k))
...

ψN (AN1(k), . . . , ANN (k);x(0), · · · , x(k))


= Ḡ(k) +

 g̃1(k)
...

g̃N (k)

+ K̄(k)x(k) +

 K̃1(k)x(k)
...

K̃N (k)x(k)


= Ḡ(k) + K̄(k)x(k) +

N∑
i=1

Cig̃i(k) +
N∑
i=1

CiK̃i(k)x(k).

By rearranging the terms, we can easily show that

E{u(k)>R(k)u(k)|x(k)}

=E
{

(K̄(k)x(k) + Ḡ(k))>R(k)(K̄(k)x(k) + Ḡ(k))

+ (K̄(k)x(k) + Ḡ(k))>R(k)
(

N∑
i=1

Ci(g̃i(k) + K̃i(k)x(k))
)

+
(

N∑
i=1

Ci(g̃i(k) + K̃i(k)x(k))
)>

R(k)(K̄(k)x(k) + Ḡ(k))

+
N∑
i=1

N∑
j=1

(g̃i(k) + K̃i(k)x(k))>C>i R(k)Cj(g̃j(k) + K̃j(k)x(k))
∣∣x(k)

}
=(K̄(k)x(k) + Ḡ(k))>R(k)(K̄(k)x(k) + Ḡ(k))

+
N∑
i=1

E
{

(g̃i(k) + K̃i(k)x(k))>Rii(k)(g̃i(k) + K̃i(k)x(k))
∣∣x(k)

}
,

(8)

where the second equality holds due to that E{g̃i(k) + K̃i(k)x(k)|x(k)} = 0 and
C>i RCj = Rij (while recalling that Rij = 0 if i 6= j). Following the same line of
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reasoning, we show that

E
{

(A(k)x(k)+B(k)u(k))>P (k + 1)(A(k)x(k) +B(k)u(k))
∣∣x(k)

}
=E
{(

Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))
)>
P (k + 1)

×
(
Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

)
+
(
Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

)>
P (k + 1)

×

(
N∑
i=1

Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))
)

+
(

N∑
i=1

Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))
)>

P (k + 1)

×
(
Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

)
+

N∑
i=1

N∑
j=1

(
Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))

)>
P (k + 1)

×
(
Ãj(k)x(k) +Bj(k)(g̃j(k) + K̃j(k)x(k))

)∣∣x(k)
}
,

where the equality follows from

A(k)x(k) +B(k)u(k) =Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

+
N∑
i=1

Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k)).

Therefore, we get

E
{

(A(k)x(k) +B(k)u(k))>P (k + 1)(A(k)x(k) +B(k)u(k))
∣∣x(k)

}
=
(
Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

)>
P (k + 1)

×
(
Ā(k)x(k) +B(k)(K̄(k)x(k) + Ḡ(k))

)
+

N∑
i=1

E
{(

Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))
)>
P (k + 1)

×
(
Ãi(k)x(k) +Bi(k)(g̃i(k) + K̃i(k)x(k))

) ∣∣x(k)
}
,

(9)

because random variables Ãi(k)x(k) + Bi(k)(g̃i(k) + K̃i(k)x(k)) and Ãj(k)x(k) +
Bj(k)(g̃j(k) + K̃j(k)x(k)) are independent for i 6= j (see Assumption 6.1 and Defi-
nition 6.1) and E{Ãi(k)x(k)+Bi(k)(g̃i(k)+K̃i(k)x(k))|x(k)} = 0 for all 1 ≤ i ≤ N .
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Now, note that

(
Ā(k)x(k)+B(k)(K̄(k)x(k)+Ḡ(k))

)>
P (k + 1)

(
Ā(k)x(k)+B(k)(K̄(k)x(k)+Ḡ(k))

)
+ (K̄(k)x(k) + Ḡ(k))>R(k)(K̄(k)x(k) + Ḡ(k))

= x(k)>K̄(k)>R(k)K̄(k)x(k)
+ x(k)>(Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))x(k)
+ Ḡ(k)>

(
B(k)>P (k + 1)(Ā(k) +B(k)K̄(k)) +R(k)K̄(k)

)
x(k)

+ x(k)>
(
B(k)>P (k + 1)(Ā(k) +B(k)K̄(k)) +R(k)K̄(k)

)>
Ḡ(k)

+ Ḡ(k)>R(k)Ḡ(k) + Ḡ(k)>B(k)>P (k + 1)B(k)Ḡ(k)
= x(k)>K̄(k)>R(k)K̄(k)x(k)

+ x(k)>(Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))x(k)
+ Ḡ(k)>R(k)Ḡ(k) + Ḡ(k)>B(k)>P (k + 1)B(k)Ḡ(k)

≥ x(k)>K̄(k)>R(k)K̄(k)x(k)
+ x(k)>(Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))x(k),

(10)

where the second equality follows from that B(k)>P (k + 1)(Ā(k) + B(k)K̄(k)) +
R(k)K̄(k) = 0 using the definition of K̄(k) and the inequality holds due to that
Ḡ(k)>(R(k) + B(k)>P (k + 1)B(k))Ḡ(k) ≥ 0 for any Ḡ(k) ∈ Rm since R(k) +
B(k)>P (k+ 1)B(k) is a positive-definite matrix. Similarly, for each 1 ≤ i ≤ N , we
conclude that

E
{

(g̃i(k) + K̃i(k)x(k))>Rii(k)(g̃i(k) + K̃i(k)x(k))

+
(
Ãi(k)x(k)+Bi(k)(g̃i(k)+K̃i(k)x(k))

)>
P (k + 1)

×
(
Ãi(k)x(k)+Bi(k)(g̃i(k)+K̃i(k)x(k))

) ∣∣x(k)
}

= E
{
g̃i(k)>Rii(k)g̃i(k) + x(k)>K̃i(k)>Rii(k)K̃i(k)x(k)

+ g̃i(k)>Bi(k)>P (k + 1)Bi(k)g̃i(k)
+ g̃i(k)>

(
Bi(k)>P (k + 1)(Ãi(k) +Bi(k)K̃i(k)) +Rii(k)K̃i(k)

)
x(k)

+ x(k)>
(
Bi(k)>P (k + 1)(Ãi(k) +Bi(k)K̃i(k)) +Rii(k)K̃i(k)

)>
g̃i(k)

+ x(k)>(Ãi(k) +Bi(k)K̃i(k))>P (k + 1)(Ãi(k) +Bi(k)K̃i(k))x(k)
∣∣x(k)

}
≥ E

{
x(k)>K̃i(k)>Rii(k)K̃i(k)x(k)

+ x(k)>(Ãi(k) +Bi(k)K̃i(k))>P (k + 1)(Ãi(k) +Bi(k)K̃i(k))x(k)
∣∣x(k)

}
.

(11)
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Combining identities (8)–(9) with inequalities (10)–(11) results in

E
{
x(k)>Q(k)x(k) + u(k)>R(k)u(k)

+ (A(k)x(k) +B(k)u(k))>P (k + 1)(A(k)x(k) +B(k)u(k))
∣∣x(k)

}
≥ x(k)>Q(k)x(k) + x(k)>K̄(k)>R(k)K̄(k)x(k)

+ x(k)>(Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))x(k)

+
N∑
i=1

E
{
x(k)>K̃i(k)>Rii(k)K̃i(k)x(k)

∣∣x(k)
}

+
N∑
i=1

E
{
x(k)>(Ãi(k) +Bi(k)K̃i(k))>Bi(k)>P (k + 1)

× (Ãi(k) +Bi(k)K̃i(k))x(k)
∣∣x(k)

}
= E

{
x(k)>Q(k)x(k) + u∗(k)>R(k)u∗(k)

∣∣x(k)
}

+ E
{

(A(k)x(k) +B(k)u∗(k))>P (k + 1)(A(k)x(k) +B(k)u∗(k))
∣∣x(k)

}
,

where

u∗(k) = K̄(k)x(k) +
N∑
i=1

CiK̃i(k)x(k).

This inequality proves that u∗(k) is the solution of (6) since any other controller
results in a larger or equal cost. By substituting this optimal controller inside the
recursion (6), we get the cost function update equation

x(k)>P (k)x(k)
=x(k)>Q(k)x(k) + x(k)>K̄(k)>R(k)K̄(k)x(k)

+ x(k)>(Ā(k) +B(k)K̄(k))>P (k + 1)(Ā(k) +B(k)K̄(k))x(k)

+
N∑
i=1

x(k)>E
{
K̃i(k)>Rii(k)K̃i(k)

}
x(k)

+
N∑
i=1

x(k)>E
{

(Ãi(k) +Bi(k)K̃i(k))>P (k + 1)(Ãi(k) +Bi(k)K̃i(k))
}
x(k),

(12)

By expanding and reordering the terms, we can simplify this equation as

x(k)>P (k)x(k) = x(k)>Q(k)x(k) + x(k)>R(Ā(k), P (k + 1), B(k), R)x(k)

+
N∑
i=1

x(k)>E
{

R(Ãi(k), P (k + 1), Bi(k), Rii)
}
x(k).

(13)

Now, since the equality in (13) is true irrespective of the value of the state vector
x(k), we get the recurrence relation in (5). This concludes the proof.
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Remark 6.3 Theorem 6.1 shows that the optimal controller (4) is a linear state-
feedback controller and that it is composed of two parts. The first part is a function
of only the parameter statistics (i.e., E{A(k)} and E{Ã(k)⊗Ã(k)}) while the second
part is a function of exact local model parameters (i.e., {Aij(k) | 1 ≤ j ≤ N} for
controller i). Note that the optimal controller does not assume any specific probabil-
ity distribution for the model parameters. It is worth mentioning whenever n� 1,
for computing the optimal controller, we need to perform arithmetic operations on
very large matrices (since E{A(k)} ∈ Rn×n and E{Ã(k)⊗ Ã(k)} ∈ Rn2×n2) which
might be numerically difficult (except for special cases where the statistics of the
underlying system follows a specific structure or sparsity pattern).

Remark 6.4 Note that the optimal controller in Theorem 6.1 is not structured in
terms of the state measurement availability, i.e., controller i accesses the full state
measurement x(k). This situation can be motivated for many applications by the
rise of fast communication networks that can guarantee the availability of full state
measurements in moderately large systems. However, in many scenarios, the model
information is simply not available due the fact that each module is being designed
separately for commercial purposes without any specific information about its future
setup (except the average behavior of other components). A viable direction for
future research is to optimize the cost function over the set of structured control
laws.

Remark 6.5 It might seem computationally difficult to calculate E{Ãi(k)>ZÃi(k)}
for each time-step k and any given matrix Z. However, as pointed out in [29], it
suffices to calculate E{Ãi(k)⊗ Ãi(k)} once, and then use the identity

E{Ãi(k)>Z(k)Ãi(k)} = vec−1
(
E
{(
Ãi(k)⊗ Ãi(k)

)> vec (Z(k))
})

= vec−1
(
E
{
Ãi(k)⊗ Ãi(k)

}> vec (Z(k))
)
.

3.2 Infinite-Horizon Cost Function
In this subsection, we use Theorem 6.1 to minimize the infinite-horizon performance
criterion

J∞(x0, {u(k)}∞k=0) = lim
T→∞

JT (x0, {u(k)}T−1
k=0 ),

where Q(k) = Q ∈ Sn++ and R(k) = R ∈ Sm++ for all 0 ≤ k ≤ T − 1 and Q(T ) = 0.
For this case, we make the following standing assumption concerning the system
parameters statistics:

Assumption 6.3 For all time steps k, the stochastic processes generating the
model parameters of the system in (2) satisfy

• Ā(k) = Ā ∈ Rn×n and E{A(k)⊗A(k)} = Σ ∈ Rn2×n2 ;

• B(k) = B ∈ Rn×m.
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These assumptions are in place to make sure that we are dealing with station-
ary parameter processes, as otherwise the infinite-horizon optimal control problem
could lack physical meaning. We borrow the following technical definition and as-
sumption from [29]. We refer interested readers to [29] for numerical methods for
checking this condition.

Definition 6.2 System (2) is called mean square stabilizable if there exists a matrix
L ∈ Rm×n such that the closed-loop system with controller u(k) = Lx(k) is mean
square stable; i.e., limk→+∞ E{x(k)>x(k)} = 0.

With this definition in hand, we are ready to present the solution of the infinite-
horizon optimal control design problem with limited model information.

Theorem 6.2 Suppose (2) satisfies Assumption 6.3 and is mean square stabiliz-
able. The solution of the infinite-horizon optimal control design problem with limited
model information is then given by

u(k) =− (R+B>PB)−1B>PĀx(k)

−

 (R11 +B>1 PB1)−1B>1 PÃ1(k)
...

(RNN +B>NPBN )−1B>NPÃN (k)

x(k),
(14)

where P is the unique positive-definite solution of the modified discrete algebraic
Riccati equation

P = Q+ R(Ā, P,B,R) +
N∑
i=1

E
{

R(Ãi(k), P,Bi, Rii)
}
. (15)

Furthermore, the closed-loop system (2) and (14) is mean square stable and

inf
{u(k)}∞

k=0

J∞(x0, {u(k)}∞k=0) = x>0 Px0.

Proof: Note that the proof of this theorem follows the same line of reasoning as
in [29]. We extend the result of [29] to hold for the Riccati-like backward difference
equation presented in (5). First, let us define the mapping f : Sn+ → Sn+ such that,
for any X ∈ Sn+,

f(X) = Q+ Ā>
(
X −XB(R+B>XB)−1B>X

)
Ā

+
N∑
i=1

E
{
Ã>i

(
X −XBi(Rii +B>i XBi)−1B>i X

)
Ãi
}
.

Using part 2 of Subsection 3.5.2 in [49], we have the matrix inversion identity

X −XW (Z +W>XW )−1W>X = (X−1 +WZ−1W>)−1,



236 PAPER 6. OPTIMAL CONTROL DESIGN UNDER LIMITED ...

for any matrix W and positive-definite matrices X and Z. Therefore, for any
X ∈ Sn++, we have

f(X) =Q+ Ā>(X−1 +BR−1B>)−1Ā

+
N∑
i=1

E
{
Ã>i (X−1 +BiR

−1
ii B

>
i )−1Ãi

}
.

(16)

Note that, if X ≥ Y ≥ 0, then

(X−1 +WZ−1W>)−1 ≥ (Y −1 +WZ−1W>)−1,

for any matrix W and positive-definite matrix Z. Therefore, if X ≥ Y ≥ 0, we get

f(X) ≥ f(Y ) > 0.

For any given T ≥ 0, we define the sequence of matrices {Xi}Ti=0 such that X0 = 0
and Xi+1 = f(Xi). We have

X1 = f(X0) = f(0) = Q > 0 = X0.

Similarly,
X2 = f(X1) ≥ f(X0) = X1 > 0. (17)

The left-most inequality in (17) is true because X1 ≥ X0. We can repeat the same
argument, and show that for all 1 ≤ i ≤ T −1, Xi+1 ≥ Xi > 0. Using Theorem 6.1,
we know that

x>0 XTx0 = inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1
k=0 ).

According to Theorem 5.1 in [29] (using the assumption that the underlying system
is mean square stabilizable), the sequence {Xi}∞i=0 is uniformly upper-bounded; i.e.,
there exists W ∈ Rn×n such that Xi ≤W for all i ≥ 0. Therefore, we get

lim
T→+∞

XT = X ∈ Rn×n (18)

since {Xi}∞i=0 is an increasing and bounded sequence. In addition, we haveX ∈ Sn++
since Xi ∈ Sn++ for all i ≥ 2 and {Xi}∞i=0 is an increasing sequence. Now, we need
to prove that the limit X in (18) is the unique positive definite solution of the
modified discrete algebraic Riccati equation (15). This is done by a contrapositive
argument. Assume that there exists Z ∈ Sn+ such that f(Z) = Z. For this matrix
Z, we have

Z = f(Z) ≥ f(0) = X1

since Z ≥ 0. Similarly, noting that Z ≥ X1, we get

Z = f(Z) ≥ f(X1) = X2.
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Repeating the same argument, we get Z ≥ Xi for all i ≥ 0. Therefore, for each
T > 0, we have the inequality

inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1
k=0 )

= x>0 XTx0

≤ x>0 Zx0

= inf
{u(k)}T−1

k=0

E

{
x(T )>Zx(T )+

T−1∑
k=0

x(k)>Qx(k)+u(k)>Ru(k)
}
.

(19)

Note that the last equality in (19) is a direct consequence of Theorem 6.1 and
the fact that Z = fq(Z) for any positive q ∈ Z. Let us define {u∗(k)}T−1

k=0 =
arg inf{u(k)}T−1

k=0
JT (x0, {u(k)}T−1

k=0 ), and x∗(k) as the state of the system when the
control sequence u∗(k) is applied. Now, we get the inequality

inf
{u(k)}T−1

k=0

E

{
x(T )>Zx(T ) +

T−1∑
k=0

x(k)>Qx(k) + u(k)>Ru(k)
}

≤ E

{
x∗(T )>Zx∗(T ) +

T−1∑
k=0

x∗(k)>Qx∗(k) + u∗(k)>Ru∗(k)
}
,

(20)

since, by definition, {u∗(k)}T−1
k=0 is not the minimizer of this cost function. It

is easy to see that the right-hand side of (20) is equal to JT (x0, {u∗(k)}T−1
k=0 ) +

E
{
x∗(T )>Zx∗(T )

}
. Thus, using (19) and (20), we get

x>0 XTx0 ≤ x>0 Zx0

≤ JT (x0, {u∗(k)}T−1
k=0 ) + E

{
x∗(T )>Zx∗(T )

}
= x>0 XTx0 + E

{
x∗(T )>Zx∗(T )

}
.

(21)

Finally, thanks to the facts that Q > 0 and

lim
T→+∞

E

{
T−1∑
k=0

x∗(k)>Qx∗(k) + u∗(k)>Ru∗(k)
}

= lim
T→+∞

x>0 XTx0 = x>0 Xx0 <∞,

we get that limT→∞ E
{
x∗(T )>x∗(T )

}
= 0. Therefore, we have limT→∞

E
{
x∗(T )>Zx∗(T )

}
= 0. Letting T go to infinity in (21), results in x>0 Xx0 = x>0 Zx0

for all x0 ∈ Rn. Thus, X = Z. This concludes the proof.

Remark 6.6 Note that we can use the procedure introduced in the proof of Theo-
rem 6.2 to numerically compute the unique positive-definite solution of the modified
discrete algebraic Riccati equation in (15); i.e., we can construct a sequence of ma-
trices {Xi}∞i=0, such that Xi+1 = f(Xi) with X0 = 0 where f(·) is defined as in (16).
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Because of (18), it is evident that, for each δ > 0, there exists a positive integer
q(δ) such that Xq(δ) is in the δ-neighborhood of the unique positive-definite solu-
tion of the modified discrete algebraic Riccati equation (15). Hence, the procedure
generates a solution with any desired precision.

Note that Definition 6.2 requires the existence of a fixed feedback gain L that
ensures the closed-loop mean square stability. This might result in conservative
results. In what follows, we relax this assumption to time-varying matrices.

Definition 6.3 System (2) is called mean square stabilizable under limited model
information if there exist mappings Γi : Rni×n1×· · ·×Rni×nN → Rmi×n, 1 ≤ i ≤ N ,
such that the closed-loop system with controller

u(k) =

 Γ1(A11(k), . . . , A1N (k))
...

ΓN (AN1(k), . . . , ANN (k))

x(k),

is mean square stable.

Clearly, if a discrete-time linear system with stochastically-varying parameters
is mean square stabilizable, it is also mean square stabilizable under limited model
information.

Remark 6.7 All fully-actuated systems (i.e., systems where mi = ni for all 1 ≤
i ≤ N) are mean square stabilizable under limited model information because, for
each 1 ≤ i ≤ N , the deadbeat controller

Γi(Ai1(k), . . . , AiN (k)) = −B−1
ii [Ai1(k) · · · AiN (k)],

is based on limited model information and mean square stabilizes the system.

As a price of relaxing this assumption to time-varying matrices, we need to
strengthen Assumption 6.3.

Assumption 6.4 The stochastic processes generating the model parameters of sys-
tem (2) satisfy that

• The probability distribution of the matrices {A(k)}∞k=0 is constant in time;

• B(k) = B ∈ Rn×m for all k ≥ 0.

Note that in Assumption 6.3 we only needed the first and the second moments of
the system parameters to be constant. However, in Assumption 6.4 all the moments
are constant.
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Corollary 6.3 Suppose (2) satisfies Assumption 6.4 and is mean square stabiliz-
able under limited model information. The solution of the infinite-horizon optimal
control design problem with limited model information is then given by (14) where
P is the unique finite positive-definite solution of the modified discrete algebraic
Riccati equation in (15). Furthermore, the closed-loop system (2) and (14) is mean
square stable and inf{u(k)}∞

k=0
J∞(x0, {u(k)}∞k=0) = x>0 Px0.

Proof: The only place in the proof of Theorem 6.2 where we used the assump-
tion that the underlying system is mean square stabilizable, was to show that the
sequence {Xi}∞i=0 is upper bounded; i.e., there exists W ∈ Sn+ such that Xi ≤ W
for all i ≥ 0. We just need to prove this fact considering the assumption that the
system is mean square stabilizable under limited model information. Note that for
any T > 0, we have

inf
{u(k)}T−1

k=0

JT (x0, {u(k)}T−1
k=0 ) = x>0 XTx0

≤ E

{
T−1∑
k=0

x(k)>Qx(k) + ū(k)>Rū(k)
}
,

(22)

where x(k) is the system state when it is initialized at x(0) = x0 and the control
law ū(k) = Γ(k)x(k) is in effect with

Γ(k) =

 Γ1(A11(k), . . . , A1N (k))
...

ΓN (AN1(k), . . . , ANN (k))


that satisfies the condition of Definition 6.3. Note that, at each time step k, Γ(k)
is independent of x(k) because of Assumption 6.1. Therefore, we have

E

{
T−1∑
k=0

x(k)>Qx(k) + ū(k)>Rū(k)
}

= E

{
T−1∑
k=0

x(k)>(Q+ Γ(k)>RΓ(k))x(k)
}

= E

{
T−1∑
k=0

x(k)>(Q+ E{Γ(k)>RΓ(k)})x(k)
}
.

Furthermore, we can see that E{Γ(k)>RΓ(k)} = R̄ ∈ Sn+ due to Assumption 6.4.
Now, let us define the sequence {Wi}∞i=0 such that W0 = Q + R̄ and Wi+1 =
E{(A(i) +BΓ(i))>Wi(A(i) +BΓ(i))} which results in

E

{
T−1∑
k=0

x(k)>Qx(k) + ū(k)>Rū(k)
}

= E

{
T−1∑
k=0

x>0 Wkx0

}
= x>0 E

{
T−1∑
k=0

Wk

}
x0.

Notice that by construction, Wi ≥ 0 for all i. In what follows, we prove that
limT→∞

∑T−1
k=0 Wk = W <∞. Notice that using Assumption 6.4, we have E{(A(i)+

BΓ(i))> ⊗ (A(i) +BΓ(i))>} = Ū for a fixed matrix Ū ∈ Rn2×n2 .
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Claim 1: maxj |λj(Ū)| < 1 where λj(·) denotes the eigenvalues of a matrix.
To prove this claim, construct a sequence {W̄i}∞i=0 such that W̄i+1 = E{(A(i) +

BΓ(i))>W̄i(A(i) + BΓ(i))} and W̄0 can be an arbitrary matrix (note that the dif-
ference between {Wi}∞i=0 and {W̄i}∞i=0 is the initial condition). Now, using an
inductive argument, we prove that W̄k = vec−1(Ūkvec(W̄0)). Firstly,

W̄1 = E
{

(A(1) +BΓ(1))>W̄0(A(1) +BΓ(1))
}

= E
{

vec−1
(

(A(1) +BΓ(1))> ⊗ (A(1) +BΓ(1))>vec(W̄0)
)}

= vec−1
(
E
{

(A(1) +BΓ(1))> ⊗ (A(1) +BΓ(1))>
}

vec(W̄0)
)}

= vec−1(Ūvec(W̄0)).

where the second equality follows from the fact that for any three compatible
matrices A,B,C, we have ABC = vec−1((C> ⊗ A)vec(B)) and the third equal-
ity holds because vec−1 is a linear operator. Now, let us show that W̄k+1 =
vec−1(Ūk+1vec(W̄0)) if W̄k = vec−1(Ūkvec(W̄0)). To do so, notice that

W̄k+1 = E
{

(A(k + 1) +BΓ(k + 1))>W̄k(A(k + 1) +BΓ(k + 1))
}

= E
{

vec−1
(

(A(k + 1) +BΓ(k + 1))> ⊗ (A(k + 1) +BΓ(k + 1))>vec(W̄k)
)}

= vec−1
(
E
{

(A(k + 1) +BΓ(k + 1))> ⊗ (A(k + 1) +BΓ(k + 1))>
}
Ūkvec(W̄0)

)}
= vec−1(Ūk+1vec(W̄0)).

This conclude the induction. Now, notice that limk→∞ x>0 W̄kx0 = limk→∞
E{x(k)>W̄0x(k)} = 0 for any x0 ∈ Rn because Γ(k) satisfies the condition of Defi-
nition 6.3. As a result, limk→∞ W̄k = 0. Therefore, we get limk→∞ Ūkvec(W̄0) = 0
irrespective of the choice of W̄0 which, in turn, implies that limk→∞ Ūk = 0. Using
Theorem 4 [50, p. 14], we get maxj |λj(Ū)| < 1.

Now that we have proved Claim 1, we are ready to show that limT→∞
∑T−1
k=0 Wk =

W < ∞. Recalling the proof of Claim 1 while setting W̄0 = W0 = Q + R̄, we get
that Wk = vec−1(Ūkvec(Q+ R̄)) and as a result

lim
T→∞

T−1∑
k=0

Wk= lim
T→∞

T−1∑
k=0

vec−1(Ūkvec(Q+ R̄))=vec−1

([
lim
T→∞

T−1∑
k=0

Ūk

]
vec(Q+ R̄)

)
.

Now, notice that using Claim 1, limT→∞
∑T−1
k=0 Ū

k = (I − Ū)−1. Let Ū∞ = (I −
Ū)−1 ∈ Rn2×n2 . Hence, we get limT→∞

∑T−1
k=0 Wk = vec−1(Ū∞vec(Q + R̄)) < ∞.

Let us define W = vec−1(Ū∞vec(Q+ R̄)). Using (22), we get

x>0 XTx0 ≤ E

{
T−1∑
k=0

x(k)>Qx(k) + ū(k)>Rū(k)
}

=
T−1∑
k=0

x>0 Wkx0 ≤
∞∑
k=0

x>0 Wkx0

≤ x>0 Wx0.
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This inequality is indeed true irrespective of the initial condition x0 and the time
horizon T . Therefore, Xi ≤W for all i ≥ 0. The rest of the proof is similar to that
of Theorem 6.2.

Example 6.1 (Cont’d) Let us introduce the quadratic cost function

J∞(x0, {u(k)}∞k=0) = E

{ ∞∑
k=0

x(k)>x(k) + u(k)>u(k)
}
.

Following Theorem 6.2, we can easily calculate the optimal controller with limited
model information as

uLMI(k) =
[

42.7701 + 8.0694α1(k) −1.6741 −29.1868 0.1041
−23.2274 0.1757 34.4246 + 6.8698α2(k) −1.7331

]
x(k).

Clearly, the control gain Li ∈ R1×4 of controller ui(k) = Li(k)x(k), i = 1, 2, is a
function of only its corresponding subsystem’s model parameter αi(k). B

An interesting question is what is the value of model information when designing
an optimal controller; i.e., having only access to local model information how much
does the closed-loop performance degrade in comparison to having access to global
model information. To answer this question for the setting considered in this paper,
we need to introduce the optimal control design with full model information.

4 Control Design with Full Model Information
In this section, we consider the case where we have access to the full model informa-
tion when designing each subcontroller. Hence, we make the following definition:

Definition 6.4 The design of controller i, 1 ≤ i ≤ N , has full model information
if (a) the entire model parameters {Aij(k) | 1 ≤ i, j ≤ N, ∀k} are available together
with (b) the first- and the second-order moments of the system parameters (i.e.,
E{A(k)} and E{Ã(k)⊗ Ã(k)} for all k).

We have the following result for the finite-horizon case.
Theorem 6.4 The solution of the finite-horizon optimal control design problem
with full model information is given by

u(k) = −(R+B(k)>P (k + 1)B(k))−1B(k)>P (k + 1)A(k)x(k), (23)

where {P (k)}Tk=0 can be found using the backward difference equation

P (k) = Q(k) + R(Ā(k), P (k + 1), B(k), R) +
N∑
i=1

E
{

R(Ãi(k), P (k + 1), B(k), R)
}
,

(24)

with the boundary condition P (T ) = Q(T ). Furthermore, inf{u(k)}T−1
k=0

JT (x0, {u(k)}T−1
k=0 ) = x>0 P (0)x0.
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Proof: The proof is similar to the proof of Theorem 6.1 and is therefore omitted.
See [51] for the detailed proof.

This result can be extended to the infinite-horizon cost function. However, we
first need to present the following definition.

Definition 6.5 System (2) is called mean square stabilizable under full model in-
formation if there exists a mapping Γ : Rn×n → Rm×n such that the closed-loop
system with controller u(k) = Γ(A(k))x(k) is mean square stable.

Theorem 6.5 Suppose (2) satisfies Assumption 6.3 and is mean square stabilizable
under full model information. The solution of the infinite-horizon optimal control
design problem with full model information is then given by

u(k) = −(R+B>PB)−1B>PA(k)x(k), (25)

where P is the unique finite positive-definite solution of the modified discrete alge-
braic Riccati equation

P = Q+ R(Ā, P,B,R) +
N∑
i=1

E
{

R(Ãi(k), P,B,R)
}
. (26)

Furthermore, this controller mean square stabilizes the system and inf{u(k)}∞
k=0

J∞(x0, {u(k)}∞k=0) = x>0 Px0.

Proof: The proof is similar to the proofs of Theorem 6.2 and Corollary 6.3.

Example 6.1 (Cont’d) Following Theorem 6.5, the optimal control design with
full model information is

uFMI(k)=
[

42.7701+7.9708α1(k) −1.6741 −29.1868−0.1035α2(k) 0.1041
−23.2274−0.1215α1(k) 0.1757 34.4246+6.7725α2(k) −1.7330

]
x(k).

Note that the gain of controller i depends on the global model parameters. B

5 Performance Degradation under Model Information
Limitation

In this section, we study the value of the plant model information using the closed-
loop performance degradation caused by lack of full model information in the control
design procedure. The performance degradation is captured using the ratio of the
closed-loop performance of the optimal controller with limited model information
to the closed-loop performance of the optimal controller with global plant model
information. Let {uLMI(k)}∞k=0 and {uFMI(k)}∞k=0 denote the optimal controller
with limited model information (Theorem 6.2) and the optimal controller with
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full model information (Theorem 6.5), respectively. We define the performance
degradation ratio as

r = sup
x0∈Rn

J∞(x0, {uLMI(k)}∞k=0)
J∞(x0, {uFMI(k)}∞k=0) .

Note that r ≥ 1 since the optimal controller with full model information always
outperforms the optimal controller with limited model information.

Example 6.1 (Cont’d) In this example, we compare the closed-loop performance
of the optimal controllers under different information regimes. We have already
calculated the optimal controller with limited model information as well as the opti-
mal controller with full model information for this numerical example. Now, let us
find the optimal controller using statistical model information based on [29]. Using
Theorem 5.2 from [29], we get

uSMI(k) =
[

41.9043 −1.7873 −29.3969 −0.0121
−23.3180 0.0435 32.7901 −1.8779

]
x(k).

Note how these three control laws depend on the plant model parameters. The control
uSMI(k) has a static gain depending on the statistical information of the A-matrix,
while uFMI(k) and uLMI(k) depend on the actual realizations of the stochastic pa-
rameters. Now, we can explicitly compute the performance degradation ratio

r = sup
x0∈Rn

x>0 P
LMIx0

x>0 P
FMIx0

= 1 + 2.266× 10−4.

This shows that the performance of the optimal controller with limited model infor-
mation is practically the same as the performance of the optimal controller with full
model information. It is interesting to note that with access to (precise) local model
information, one can expect a huge improvement in the closed-loop performance in
comparison to the optimal controller with only statistical model information because

sup
x0∈Rn

x>0 P
SMIx0

x>0 P
LMIx0

= 5.8790.

B

Next we derive an upper bound for the performance degradation ratio r. We
do that for fully-actuated systems.

Assumption 6.5 All subsystems (1) are fully-actuated; i.e., Bii ∈ Rni×ni and
σ(Bii) ≥ ε > 0 for all 1 ≤ i ≤ N , where σ(·) denotes the smallest singular value of
a matrix.
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To simplify the presentation, we also assume that Q = R = I. This is without
loss of generality since the change of variables (x′, u′) = (Q1/2x,R1/2u) transforms
the cost function and state space representation into

J∞(x0, {u′(k)}∞k=0) = lim
T→∞

E

{
T−1∑
k=0

x′(k)>x′(k) + u′(k)>u′(k)
}
,

and

x′(k + 1) = Q1/2A(k)Q−1/2x′(k) +Q1/2BR−1/2u′(k) = A′(k)x′(k) +B′u′(k).

The next theorem presents an upper bound for the performance degradation.

Theorem 6.6 Suppose (2) satisfies Assumptions 6.3 and 6.5 and is mean square
stabilizable under limited model information. The performance degradation ratio is
then upper bounded as r ≤ 1 + 1/ε2 where ε > 0 is defined in Assumption 6.5.

Proof: Using the modified discrete algebraic Riccati equation (26) in Theo-
rem 6.5, the cost of the optimal control design with full model information
J∞(x0, {uFMI(k)}∞k=0) = x>0 P

FMIx0 is equal to

x>0 P
FMIx0 = x>0 Qx0 + x>0 R(Ā, PFMI, B, I)x0

+
N∑
i=1

x>0 E
{

R(Ãi(k), PFMI, B, I)
}
x0.

(27)

In addition, we know that PFMI ≥ Q = I, which (using the proof of Theorem 6.2)
results in

R(Ā, PFMI, B, I) ≥ R(Ā, I, B, I), (28)
R(Ãi(k), PFMI, B, I) ≥ R(Ãi(k), I, B, I). (29)

Substituting (28)–(29) inside (27) gives

x>0 P
FMIx0 ≥x>0 (I + Ā>(I +BB>)−1Ā)x0

+
N∑
i=1

x>0 E
{
Ãi(k)>(I +BB>)−1Ãi(k)

}
x0

=x>0 x0 + x>0 E{A(k)>(I +BB>)−1A(k)}x0,

where the equality follows from the fact that Ãi(k) and Ãj(k) for i 6= j are in-
dependent random variables with zero mean. On the other hand, for a given
x0 ∈ Rn, the cost of the optimal control design with limited model information
J∞(x0, {uLMI(k)}∞k=0) = x>0 P

LMIx0 is upper-bounded by

x>0 P
LMIx0 ≤ E

{+∞∑
k=0

x(k)>x(k) + u(k)>u(k)
}
,
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where u(k) = −B−1A(k)x(k) and x(k) is the state vector of the system when
this control sequence is applied to the system. This is true since the deadbeat
control design strategy u(k) = −B−1A(k)x(k) uses only local model information
for designing each controller [16]. Therefore,

x>0 P
LMIx0 ≤ E

{
x>0 (I +A(k)>B−>B−1A(k))x0

}
.

Let us define the setMr =
{
β̄ ∈ R | r ≤ β̄

}
where r is the performance degradation

ratio. If β ∈ R satisfy βPFMI − PLMI ≥ 0, then β ∈Mr. We have

βPFMI − PLMI ≥ (β − 1)I + E{A(k)>
[
β(I +BB>)−1 −B−>B−1]A(k)}. (30)

Note that if β ≥ 1 + 1/ε2, we get β(I + BiiB
>
ii )−1 − B−>ii B−1

ii ≥ 0 and therefore,
β(I + BB>)−1 − B−>B−1 ≥ 0. As a result, if β ≥ 1 + 1/ε2, the right hand side
of (30) is a positive-semidefinite matrix and, subsequently, βPFMI − PLMI ≥ 0.
Hence, [1 + 1/ε2,+∞) ⊆Mr. This shows that

r = sup
x0∈Rn

x>0 P
LMIx0

x>0 P
FMIx0

≤ 1 + 1
ε2
.

As the power network in Example 6.1 is not fully-actuated, we consider another
power network example to the illustrate the previous result.

Example 6.2 Consider DC power generators, such as solar farms and batteries.
Suppose these sources are connected to AC transmission lines through DC/AC con-
verters that are equipped with a droop-controller [52, 53]. Let us assume that both
power generators in Figure 1 are such DC power generators equipped with droop-
controlled converters. We can then model this power network as

δ̇1(t) = 1
D1

[
P1(t)− c−1

12 sin(δ1(t)− δ2(t))− c−1
1 sin(δ1(t))−D1ω1(t)

]
,

δ̇2(t) = 1
D2

[
P2(t)− c−1

12 sin(δ2(t)− δ1(t))− c−1
2 sin(δ2(t))−D2ω2(t)

]
,

where δi(t), 1/Di > 0, and Pi(t) are respectively the phase angle of the terminal
voltage of converter i, its converter droop-slope, and its input power. The power
network parameters in this example are the same as the ones in Example 6.1, except
D1 = D2 = 1.0. Now, similarly to Example 6.1, we find the equilibrium point of
this nonlinear system, linearize it around this equilibrium, and then, discretize the
system with sampling time ∆T = 300 ms to get[

∆δ1(k + 1)
∆δ2(k + 1)

]
=
[

ζ1
∆T cos(δ∗1−δ

∗
2 )

c12D1
∆T cos(δ∗2−δ

∗
1 )

c12D2
ζ2

] [
∆δ1(k)
∆δ2(k)

]
+
[
u1(k)
u2(k)

]
,
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where ζ1 = 1−∆T (c−1
12 cos(δ∗1−δ∗2)+c−1

1 cos(δ∗1))/D1 and ζ2 = 1−∆T (c−1
12 cos(δ∗2 +

δ∗1) − c−1
2 cos(δ∗2))/D2. Consider the same variation of the local loads as in Exam-

ple 6.1. We get the discrete-time linear with stochastically-varying parameters

x(k + 1) = Ax(k) +Bu(k)

where x(k) = [∆δ1(k) ∆δ2(k)]>, u(k) = [u1(k) u2(k)]>, and

B =
[

1 0
0 1

]
, A(k) =

[
−0.1635− 0.2075α1(k) 0.7486

0.7486 −0.1897− 0.0877α2(k)

]
.

where α1(k) ∼ N (0, 0.1) and α2(k) ∼ N (0, 0.3). The goal is to optimize the perfor-
mance criterion

J = E

{ ∞∑
k=0

x(k)>x(k) + u(k)>u(k)
}
.

Following Theorem 6.5, we can calculate the optimal controller with full model
information as

uFMI(k) =
[

0.1166 + 0.1185α1(k) −0.4334− 0.0027α2(k)
−0.4334− 0.0064α1(k) 0.1317 + 0.0502α2(k)

]
x(k).

Furthermore, using Theorem 6.2, we can calculate the optimal controller with lim-
ited model information as

uLMI(k) =
[

0.1166 + 0.1190α1(k) −0.4334
−0.4334 0.1317 + 0.0504α2(k)

]
x(k).

It is easy to see that

r = sup
x0∈Rn

x>0 P
LMIx0

x>0 P
FMIx0

= 1 + 1.2660× 10−6 ≤ 1 + 1/ε2 = 2,

since ε = 1. In this example, the upper bound computed in Theorem 6.6 is not tight.
B

Remark 6.8 Under Assumption 6.5, when the variances of the plant model pa-
rameters tend to infinity, the optimal controller with limited model information
(introduced in Theorem 6.2) approaches the deadbeat control law. The intuition
behind this result is that when the model information of the other subsystems is
inaccurate, the deadbeat control law (which decouples our subsystem from the rest
of the plant) is the best controller to use. The presented approach balances in a nat-
ural way the use of statistical information about the plant parameters with precise
knowledge of their realizations.
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Example 6.2 (Cont’d) Let us consider the case where variances of the plant
model parameters are very large. Hence, we assume α1(k) ∼ N (0, 1000) and
α2(k) ∼ N (0, 3000). Now, the optimal controller with limited model information is
given by

uLMI(k) =
[

0.1635 + 0.2075α1(k) −0.7485
−0.7485 0.1897 + 0.0877α2(k)

]
x(k),

which is practically equal to the deadbeat control law in Remark 6.7. B

6 Conclusion

We presented a statistical framework for the study of control design under limited
model information. We found the best performance achievable by a limited model
information control design method. We also studied the value of information in
control design using the performance degradation ratio. Possible future work will
focus on generalizing the results to discrete-time Markovian jump linear systems
and to decentralized controllers.
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Abstract–We study a heterogeneous routing game in which vehicles might belong
to more than one type. The type determines the cost of traveling along an edge as a
function of the flow of various types of vehicles over that edge. We relax the assumptions
needed for the existence of a Nash equilibrium in this heterogeneous routing game. We
extend the available results to present necessary and sufficient conditions for the existence
of a potential function. We characterize a set of tolls that guarantee the existence of
a potential function when only two types of users are participating in the game. We
present an upper bound for the price of anarchy (i.e., the worst-case ratio of the social
cost calculated for a Nash equilibrium over the social cost for a socially optimal flow) for
the case in which only two types of players are participating in a game with affine edge
cost functions. A heterogeneous routing game with vehicle platooning incentives is used
as an example throughout the article to clarify the concepts and to validate the results.
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1 Introduction

1.1 Motivation

Routing games are of special interest in transportation networks [1–3] and commu-
nication networks [4–6] because they allow us to study cases in which a desirable
global behavior (e.g., achieving a socially optimal solution) can emerge from simple
local strategies (e.g., imposing tolls on each road based on only local information).
For the purpose of this article, routing games can be decomposed into two cate-
gories. In the first category, namely, homogeneous routing games, drivers or vehicles
are of the same type and, therefore, experience the same cost when using an edge
in the network. Such an assumption is primarily motivated by transportation net-
works for which the drivers only worry about the travel time (and indeed under the
assumption that all the drivers are equally sensitive to latency through considering
their average behavior) or packet routing in communication networks where all the
packets that are using a particular link experience the same delay or reliability.
In the second category, namely, heterogeneous routing games (a.k.a., multi-class
routing games [7, 8]), drivers or vehicles belong to more than one type due to the
following reasons:

- Fuel Consumption: In a transportation network, if we include the fuel con-
sumption of the vehicles in the cost functions, two vehicles (of different types)
may experience different costs for using a road even if their travel times are
equal. For instance, [9] studied this phenomenon in atomic congestion games
in which heavy-duty vehicles experience an increased efficiency when a higher
number of heavy-duty vehicles are present on the same road, because of a
higher possibility of platooning and, therefore, a higher fuel efficiency, while
such an increased efficiency may not be true for cars. For an experimental
study of improvements in the fuel efficiency caused by platooning in heavy-
duty vehicles, see [10].

- Sensitivity to Latency: It is known that drivers on a road have different sen-
sitivities to the latency under different circumstances as well as depending
on their personality and background [11, 12]. In addition, due to economic
advantages, heavy-duty vehicles might be more sensitive to latency in com-
parison to cars (because they need to deliver their goods at specific times).

- Sensitivity to Tolls: Drivers generally react differently to road tolls, e.g., based
on the reason of the trip or their socioeconomic background. For instance,
in 2001, by the request of the Swedish Institute for Transport and Commu-
nications Analysis, the consulting firm Inregia compiled a survey to estimate
the value of time for the drivers in Stockholm [13]. According to that study,
drivers valued their time as 0.98, 3.30, and 0.19 SEK/min for work and school
commuting trips, business trips, and other trips, respectively.
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These examples motivate our interest for studying heterogeneous routing games in
which the drivers or the vehicles might belong to more than one type and their
type determines the cost of traveling along an edge as a function of the flow of all
types of vehicles over that edge.

1.2 Related Work
In the context of transportation networks, routing games were originally studied
in [2]. This study also formulated the definition of Nash equilibrium in routing
games1. Later, [16] showed that under some mild conditions, the routing game
admits a potential function and the minimizers of this potential function are Nash
equilibria of the routing game. This result guarantees the existence of a Nash
equilibrium for the routing game. The problem of bounding the inefficiency of
Nash equilibria has been extensively studied; see [14, 17–21] for a survey of these
results.

Heterogeneous routing games have been studied extensively over the past start-
ing with pioneering works in [7, 8]. In these studies, a routing game with multi-class
users were introduced and the definition of equilibrium was given. Furthermore,
in [8], the author introduced a sufficient condition for transforming the problem of
finding an equilibrium to that of an optimization (i.e., equivalent to the existence
of a potential function [22, 23]). The sufficient condition is that over each edge,
the increased cost of a user of the first type due to addition of one more user of
the second type is equal to the increased cost of a user of the second type due to
addition of one more user of the first type, i.e., the users of the first and the second
type influence each other equally [8]. This condition was considered later in [24] in
which it was also noted that satisfaction of this symmetry condition may depend
on the units (e.g., time or money) adopted for representing the cost functions for
the case in which the users’ types are determined by their value of time (i.e., a
scalar factor that balances the relationship between the latency and the imposed
tolls). This results is of special interest since the equilibrium does not change by
using different units for the cost functions (if the latency only depends on the sum
of the flows of various types over the edge, not the individual flows, and the value of
time appears linearly in the cost functions) [25]. Necessary and sufficient conditions
for the existence of potential functions in games with finite number of players was
recently investigated in [26]; however, these results were not generalized to games
with a continuum of players as in heterogeneous routing games. The authors in [27]
studied the existence of an equilibrium in heterogeneous routing games even if such
a symmetry condition does not hold. In contrast to these articles that assumed a
finite set of types to which the users may belong, a wealth of studies also considered
the case in which the users may belong to a continuum of types [28, 29]. The prob-
lem of finding tolls for general heterogeneous routing games as well as the case in
which types of the users is determined by their value of time have been considered

1 Throughout this article, following the convention of [14, 15], we use the term Nash equilibrium
to refer to this equilibrium. See Remark 7.1 for more information regarding this matter.
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extensively [30–35]. For instance, in [30], the problem of determining tolls on each
edge or path for heterogeneous routing games was studied. Guarantees were pro-
vided for that the socially optimal solution (also referred to as system-optimizing
flow [8]) is indeed an equilibrium of the game. However, in that article, the users
were assumed to be equally sensitive to the imposed tolls. The problem of find-
ing optimal tolls for routing game in which the users’ value of time belongs to a
continuum was studied in [31].

1.3 Contributions of the Article

In this article, we formulate a general heterogeneous routing game in which the
vehicles2 might belong to more than one type. The vehicle’s type determines the
mapping that specifies the cost for using an edge based on the flow of all types of
vehicles over that edge.

We prove that the problem of characterizing the set of Nash equilibria for a het-
erogeneous routing game is equivalent to the problem of determining the set of pure
strategy Nash equilibria in a game with finitely many players (in which each player
represents one of the types in the original heterogeneous routing game). Doing so,
we can employ classic results in game theory and economics literature, specially
regarding the existence of an equilibrium in games and abstract economies [36, 37]
(which is an extension of games to a situation where the actions of other players can
modify the set of feasible actions for a player), to show that under mild conditions,
a heterogeneous routing game admits at least one Nash equilibrium.

Then, we present a necessary condition for the existence of a potential function
for the heterogeneous routing game. We show that this condition is also sufficient
for the case in which only two types of players are participating in the routing
game. In this case, we show, following the potential game literature [22], that the
problem of finding a Nash equilibrium in the heterogeneous routing game can be
posed as an optimization problem (which is numerically tractable if the potential
function is convex). Motivated by the sufficient condition, in the rest of this article,
we focus on heterogeneous routing games in which only two types of users are
participating. Note that in contrast to the results of [8, 24], here, we present a
necessary and sufficient condition for the existence of potential function through
which minimization we can recover an equilibrium. However, the price of providing
this tighter condition is that we can only treat routing games with two distinct
types contrary to the sufficient condition in [8, 24].

If the problem of finding a Nash equilibrium in the heterogeneous routing game
is numerically intractable3, it might be unlikely for the drivers to figure out a Nash
equilibrium in finite time (let alone an efficient one) and utilize it. This might
result in inefficient utilization of the transportation network resources. Therefore,

2We use the terms players, drivers, users, and vehicles interchangeably to denote an infinites-
imal part of the flow that strategically tries to minimize its own cost for using the road.

3In general, the problem of finding a pure strategy Nash equilibrium is not numerically
tractable; e.g., [38–40].
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we present a set of tolling policies for distinguishable types (i.e., a routing game in
which we may impose different tolls for different user types) and indistinguishable
types (i.e., when we cannot impose type-dependent tolls) to guarantee the existence
of a potential function for heterogeneous routing games. The idea of proposing tolls
for indistinguishable types has been previously studied in [41]. However, in that
study, the tolls were introduced to minimize the total travel time and the total travel
cost (as a bi-objective optimization problem). In addition, in [41], the users’ types
corresponded to socio-economic characteristics and, therefore, the cost functions of
various types of users were the latency (which the function of the total flow and
not individual flows of each type) plus the tolls multiplied by the value of time.

Finally, because a Nash equilibrium is typically inefficient (i.e., it does not min-
imize the social cost function4), we study the price of anarchy5 (a measure of the
inefficiency of a Nash equilibrium which can be defined as the worst-case ratio of
the social cost at a Nash equilibrium over the social cost at a socially optimal flow).
We prove that for the case in which a convex potential function exists, the price of
anarchy is bounded from above by two for affine edge cost functions, that is, the
social cost of a Nash equilibrium can be at most twice as much as the cost of a
socially optimal solution.

1.4 Article Organization

The rest of the article is organized as follows. We formulate the heterogeneous rout-
ing game in Section 2. In Section 3, we prove that a Nash equilibrium may indeed
exist in this routing game. We present a set of necessary and sufficient conditions
to guarantee the existence of a potential function in Section 4. In Section 5, a set
of tolling policies is presented to satisfy the aforementioned conditions. We bound
the price of anarchy for affine cost functions in Section 6. A numerical example
motivated by a heterogeneous routing game with platooning incentives is studied in
Section 7. Finally, we conclude the article and present directions for future research
in Section 8.

2 A Heterogeneous Routing Game

2.1 Notation

Let R and Z denote the sets of real and integer numbers, respectively. Furthermore,
define Z≥(≤)a = {n ∈ Z |n ≥ (≤)a} and R≥(≤)a = {x ∈ R |x ≥ (≤)a}. For simplic-
ity of presentation, let N = Z≥1. We use the notation JNK to denote {1, . . . , N}.

4We use a utilitarian social cost function (i.e., summation of the individual cost functions of all
the players) as opposed to a Rawlsian social cost function (i.e., the worst-case cost function of the
players); see [42, p. 413] for more information regarding the difference between these two categories
of social cost functions. We present the definition of the social cost function in Section 6.

5The notion of price of anarchy was first introduced in [43, 44]. Later, it was utilized in various
games including routing games [14, 17, 45–47].
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All other sets are denoted by calligraphic letters. Specifically, Ck consists of all
k-times continuously differentiable functions.

Let X ⊆ Rn be a set such that 0 ∈ X . A mapping f : X → R is called positive
definite if f(x) ≥ 0 for all x ∈ X .

A set-valued mapping f : X ⇒ Y is said to be continuous at x0 ∈ X if for every
y0 ∈ f(x0) and every sequence {xk}k∈N such that limk→∞ xk = x0, there exists a
sequence {yk}k∈N such that yk ∈ f(xk) for all k ∈ N and limk→∞ yk = y0.

We use the notation G = (V, E) to denote a directed graph with vertex set V
and edge set E ⊆ V × V. Each entry (i, j) ∈ E denotes an edge from vertex i ∈ V
to vertex j ∈ V. A directed path of length z from vertex i to vertex j is a set of
edges {(i0, i1), (i1, i2), . . . , (iz−1, iz)} ⊆ E such that i0 = i and iz = j.

2.2 Problem Formulation
We propose an extension of the routing game introduced in [2] to admit more than
one type of players. To be specific, we assume that the type of a player θ belongs
to a finite set Θ.

Let us assume that a directed graph G = (V, E) models the transportation
network and that a set of source–destination pairs {(sk, tk)}Kk=0 for some constant
K ∈ N are given. Each pair (sk, tk) is called a commodity. We use the notation
Pk to denote the set of all admissible paths over the graph G that connect vertex
sk ∈ V (i.e., the source of this commodity) to vertex tk ∈ V (i.e., the destination
of this commodity). Let P = ∪Kk=1Pk. We assume that each commodity k ∈ JKK
needs to transfer a flow equal to (F θk )θ∈Θ ∈ R|Θ|≥0 .

We use the notation fθp ∈ R≥0 to denote the flow of players of type θ ∈ Θ
that use a given path p ∈ P. We use the notation f = (fθp )p∈P,θ∈Θ ∈ R|P|·|Θ|

to denote the aggregate vector of flows6. A flow vector f ∈ R|P|·|Θ| is feasible if∑
p∈Pk f

θ
p = F θk for all k ∈ JKK and θ ∈ Θ. We use the notation F to denote the

set of all feasible flows. To ensure that the set of feasible flows is not an empty
set, we assume that Pk 6= ∅ if F θk 6= 0 for any θ ∈ Θ. Notice that the constraints
associated with each type are independent of the rest. Therefore, the flows of a
specific type can be changed without breaking the feasibility of the flows associated
with the rest of the types.

A vehicle of type θ ∈ Θ that travels along an edge e ∈ E experiences a cost
equal to ˜̀θ

e((φθ
′

e )θ′∈Θ), where for any θ ∈ Θ, φθe denotes the total flow of drivers
of type θ that are using this specific edge, i.e., φθe =

∑
p∈P:e∈p f

θ
p . This cost

can encompass aggregates of the latency, fuel consumption, etc. For notational
convenience, we assume that we can change the order with which the edge flows
φθ
′

e appear as arguments of the cost function ˜̀θ
e((φθ

′

e )θ′∈Θ). A driver of type θ ∈ Θ
from commodity k ∈ JKK that uses path p ∈ Pk (connecting sk to tk) experiences
a total cost of `θp(f) =

∑
e∈p

˜̀θ
e((φθ

′

e )θ′∈Θ).
6Note that there is a one-to-one correspondence between the elements of P × Θ and the set

of integers {1, . . . , |P| · |Θ|}.
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Each player is an infinitesimal part of the flow that tries to minimize its own
cost (i.e., each player is inclined to choose the path that has the least cost). Now,
based on this model, we can define the Nash equilibrium.

Definition 7.1 (Nash Equilibrium in Heterogeneous Routing Games) A
flow vector f = (fθ′p′ )p′∈P,θ′∈Θ is a Nash equilibrium if for all k ∈ JKK and θ ∈ Θ,
fθp > 0 for a path p ∈ Pk implies that `θp(f) ≤ `θp′(f) for all p′ ∈ Pk.

This definition implies that for a commodity k ∈ JKK and type θ ∈ Θ, all paths
with a nonzero flow for vehicles of type θ have equal costs and the rest (i.e., paths
with a zero flow for vehicles of type θ) have larger or equal costs.

Remark 7.1 Note that various articles use different names for the equilibrium
such as, user-optimizing flow [8, 27], Wardrop equilibrium [3, 27, 48], Wardrop
first principle [3], and Nash equilibrium [14, 15]. The term Wardrop equilibrium is
common, specially in transportation literature, due to the pioneering work of [2] as
well as the fact that the term pure strategy Nash equilibrium is primarily utilized
in the context of games with finitely many players [48]. It is vital to note that the
definition of Nash equilibrium in this paper is indeed different from that of [48],
which shows that by increasing the number of users (in a game with finitely many
players), the Nash equilibrium converges to the Wardrop equilibrium under appro-
priate assumptions. Throughout this article, following the convention of [14, 15],
we use the term Nash equilibrium to refer to this equilibrium.

Wemake the following standing assumption regarding the edge latency functions
for all the types.

Assumption 7.1 For all θ ∈ Θ and e ∈ E, the edge cost function ˜̀θ
e satisfies the

following properties:

(i) ˜̀θ
e ∈ C1;

(ii) ˜̀θ
e is positive definite;

(iii)
∫ φθe

0
˜̀θ
e(u, (φθ

′

e )θ′∈Θ\{θ})du is a convex function in φθe for any given (φθ′e )θ′∈Θ\{θ}.

Assumption 7.1 (iii) is equivalent to7:

(iii)’ ˜̀θ
e(φθe, (φθ

′

e )θ′∈Θ\{θ}) is an increasing function of φθe for any given (φθ′e )θ′∈Θ\{θ}.

We start by proving the existence of a Nash equilibrium and, then, study the
computational complexity of finding such an equilibrium. However, before that, we
present an example of a heterogeneous routing game in the next subsection.

7Consult [17] for the proof of the equivalence when |Θ| = 1. The proof in the heterogeneous
case follows the same line of reasoning.
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2.3 Example: Routing Game with Platooning Incentives

Let Θ = {c, t}, where t denotes trucks (or, equivalently, heavy-duty vehicles) and
c denotes cars (or, equivalently, light vehicles). Let the edge cost functions be
characterized as

˜̀c
e(φc

e, φ
t
e) = ξe(φc

e + φt
e),

˜̀t
e(φc

e, φ
t
e) = ξe(φc

e + φt
e) + ζe(φc

e, φ
t
e),

where mappings ξe : R≥0 → R≥0 and ζe : R≥0×R≥0 → R≥0 denote respectively the
latency for using edge e as a function of the total flow of vehicles over that edge and
the fuel consumption of trucks as a function of the flow of each type. These costs
imply that cars only observe the latency ξe(φc

e + φt
e) when using the roads (which

is only a function of the total flow over that edge and not the individual flows of
each type). However, the cost associated with trucks encompasses an additional
term which models their fuel consumption. Following this interpretation, ζe(φc

e, φ
t
e)

is a decreasing function in φt
e since by having a higher flow of trucks over a given

road (i.e., larger φt
e) each truck gets a higher probability for collaboration such as

platooning (and as a result, a higher chance of decreasing its fuel consumption).
Let us give examples of these functions. Based on the traffic data measurements

available from [2, p. 366] (see [9] for a case study on the relationship between the
average velocity and the number of the vehicles on the road in Stockholm), we know
that whenever the traffic on a road is in free-flow mode, we can model the average
velocity of traveling along that road as an affine function of the flow of vehicles over
that edge according to

v̄e(φc
e, φ

t
e) = ae(φc

e + φt
e) + be.

In this model, be ∈ R≥0 and ae ∈ R≤0 for e ∈ E . Therefore, if the length of edge
e ∈ E is equal to Le ∈ R≥0, we can calculate the latency of using that edge as

ξe(φc
e + φt

e) = Le
v̄e(φc

e, φ
t
e)

= Le
ae(φc

e + φt
e) + be

.

Now, in cases where ae(φc
e+φt

e)� be, we can use a linearized8 model for the latency

ξe(φc
e + φt

e) = Le
be
− Leae

b2e
(φc
e + φt

e).

8Notice that such a linearization is certainly not valid for a wide range of traffic flows, however,
it models the latency functions well-enough for small flows. The authors in [49, 50] proposed
a piecewise linear mapping (based on numerical data from the Toronto metropolitan area) for
modeling the latency as a function of the flow of vehicles. This model justifies using a linear
model for small flows (i.e., at the beginning what they call the feasible region), however, it also
points out that a linear approximation is not valid for large flows. For a comprehensive comparison
of different latency mappings (linear as well as nonlinear ones), see [51].
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In addition, using [52], we know that the total fuel consumption of a truck which
is traveling with velocity v̄e for distance Le over a flat road can be modeled by

ζe(φc
e, φ

t
e) = c0Le

η̄engρd

(
1
2ρaAacDv̄

2
e(φc

e, φ
t
e) +mgcr

)
, (1)

where η̄eng is the engine efficiency, ρd is the energy density of diesel fuel, cD is the
air drag coefficient, Aa is the frontal area of the truck, ρa is the air density, m
is the mass of the truck, g is the gravitational acceleration, and cr is the the roll
resistance coefficient. In addition, we have multiplied the fuel consumption by c0
to balance the trade-off between the latency and fuel consumption in the aggregate
cost function of the trucks. Following [10], we know that the air drag coefficient
cD decreases if the trucks are platooning (e.g., two identical trucks can achieve
4.7%–7.7% reduction in the fuel consumption caused by the air drag reduction
when platooning at 70 km/h depending on the distance between them). Let us
model these changes as cD = c′Dγ(φt

e) where γ : R≥0 → [0, 1] is the probability of
forming platoons (which is a function of the flow of trucks φt

e) multiplied by the
improvements in the air drag coefficient upon platooning. Let us define parameters

α = LeρaAac
′
D

2η̄engρd
, β = Lemgcr

η̄engρd
.

Now, again if we linearize (1) around φt
e = 0, we get

ζe(φc
e, φ

t
e) =

(
c0α

d
duγ(u)|u=0b

2
e + 2c0αγ(0)beae

)
φt
e

+ (2c0αγ(0)beae)φc
e +

(
c0β + c0αγ(0)b2e

)
.

Combing all these terms results in

˜̀c
e(φc

e, φ
t
e) = Le

be
+
(
−Leae

b2e

)
φc
e +

(
−Leae

b2e

)
φt
e,

˜̀t
e(φc

e, φ
t
e) = Le

be
+ c0β + c0αγ(0)b2e +

(
−Leae

b2e
+ 2c0αγ(0)beae

)
φc
e

+
(
−Leae

b2e
+ c0α

dγ(0)
du b2e+2c0αγ(0)beae

)
φt
e.

Notice that Assumption 7.1 (i) and (ii) are easily satisfied. However, Assump-
tion 7.1 (iii) is only satisfied if

−Leae
b2e

+ c0α
dγ(0)

du b2e + 2c0αγ(0)beae ≥ 0.

This is indeed true because of the observation that Assumption 7.1 (iii) and (iii)’
are equivalent.
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3 Existence of Nash Equilibrium

In this section, we show that the heterogeneous routing game admits a Nash equi-
librium. Before stating the result, we need to introduce some concepts from [36]
which uses results of [37] to prove that an abstract economy (an extension of a
game) admits an equilibrium under appropriate conditions9.

3.1 Existence of Nash Equilibrium in Games
Let us define an abstract economy10 as follows. Let Xi ⊆ Rn (for some n ∈ N)
denote the action set of player i ∈ JNK in an abstract economy with N players. We
use the notation xi ∈ Xi to denote the action of player i. In contrast to a game,
the feasible set of actions that player i can choose from is a function of actions of
other players x−i = (xj)j 6=i. Let Zi : ×j 6=iXj ⇒ Xi be a set-valued mapping that
determines the set of feasible actions for player i. The utility of player i is governed
by a real-valued function Ui : ×Nj=1Xj → R. In this setup (opposed to the one
presented in [36]), we assume the players are seeking to minimize their utility.

Definition 7.2 (Equilibrium of an Abstract Economy [36]) x∗ is an equi-
librium point of an abstract economy if, for all i ∈ JNK, x∗i ∈ arg minxi∈Zi(x∗−i)
Ui(xi, x∗−i).

For any i ∈ JNK, we say that Zi has a closed graph at x−i ∈ ×j 6=iXj if the
set {(xj)j∈JNK|xi ∈ Zi(x−i)} is a closed set. Now, we can state the result of [36]
regarding the existence of such an equilibrium.

Theorem 7.1 ([36]) If, for each i ∈ JNK, Xi is a compact convex set, Ui(xi, x−i)
is continuous on ×Nj=1Xj and quasi-convex in xi for each x−i ∈ ×j 6=iXj, Zi is a
continuous set-valued mapping that has a closed graph, and Zi(x−i) is a nonempty
convex set for each x−i ∈ ×j 6=iXj, then the abstract economy admits an equilibrium.

Note that when Zi(x−i) = Xi for all x−i ∈ ×j 6=iXj , and all i, we have a game
with finitely many players. Therefore, an abstract economy can be considered as a
generalization of a game.

Definition 7.3 (Pure Strategy Nash Equilibrium in Games with Finitely
Many Players [53]) x∗ is a pure strategy Nash equilibrium if, for all i ∈ JNK,
x∗i ∈ arg minxi∈Xi Ui(xi, x

∗
−i).

Theorem 7.1 results now in the following useful corollary.
9Note that we could alternatively follow the definition and results of [37] in a direct manner,

however, in that case, we need more background material presented which might be distracting
to the audience.

10An abstract economy was originally defined in [36]. It is an extension of a game.
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Corollary 7.2 If, for each i ∈ JNK, Xi is a compact convex set and Ui(xi, x−i)
is continuous on ×Nj=1Xj and quasi-convex in xi for each x−i ∈ ×j 6=iXj, then the
game admits a pure strategy Nash equilibrium.

Proof: The proof follows from utilizing Theorem 7.1 when, for all i ∈ JNK,
Zi(x−i) = Xi for all x−i ∈ ×j 6=iXj .

With this result in hand, we can go ahead and prove the existence of a Nash
equilibrium in the heterogeneous routing game. In the next subsection, we first
prove that the problem of finding a Nash equilibrium for the heterogeneous routing
game is equivalent to the problem of finding a pure strategy Nash equilibrium in
an abstract game11 with finitely many players. Then, we use Corollary 7.2 to show
that this game admits a Nash equilibrium under Assumption 7.1.

3.2 Existence of Nash Equilibrium in Heterogeneous Routing Games
For the sake of simplicity of presentation and without loss of generality (since Θ is
finite), we can assume that Θ = {θ1, . . . , θN} where N = |Θ|. Now, let us define
the abstract game.

Definition 7.4 An abstract game is a game with N players in which player i ∈ JNK
corresponds to type θi ∈ Θ in the heterogeneous routing game. The action of player
i is ai = (fθip′ )p′∈P which belongs to the action set

Ai =
{

(fθip′ )p′∈P ∈ R|P|
∣∣∣ ∑
p′∈Pk

fθip′ = F θik

}
.

Additionally, the utility of player i is defined as

Ui(ai, a−i) =
∑
e∈E

∫ φ
θi
e

0
˜̀θi
e (u, (φθje )θj∈Θ\{θi})du, (2)

where a−i represents the actions of the rest of the players (aj)j∈JNK\{i} and φθie =∑
p∈P:e∈p f

θi
p is the edge flow of type θi for each i ∈ JNK.

The following result establishes an interesting relationship between the intro-
duced abstract game and the underlying heterogeneous routing game.

Lemma 7.3 A flow vector (fθ′p′ )p′∈P,θ′∈Θ is a Nash equilibrium of the heteroge-
neous routing game if and only if ((fθ1

p′ )p′∈P , . . . , (f
θN
p′ )p′∈P) is a pure strategy Nash

equilibrium of the abstract game.
11 We use the term “abstract” to emphasize the fact that the introduced game does not have

any physical intuition and it is simply a mathematical concept defined for proving the results of
this paper. This expression should not be confused with that of an “abstract economy”.
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Proof: Notice that ((fθ1
p′ )p′∈P , . . . , (f

θN
p′ )p′∈P) being a pure strategy Nash

equilibrium (see Definition 7.3) of the abstract game is equivalent to that for all
i ∈ JNK, ai = (fθip′ )p′∈P is the best response of player i to the tuple of actions
a−i = ((fθjp′ )p′∈P)θj∈Θ\{θi} or, equivalently,

ai ∈ arg min
(fθi
p′

)p′∈P

∑
e∈E

∫ φ
θi
e

0
˜̀θi
e (u, (φθje )θj∈Θ\{θi})du,

s.t.
∑

p∈P:e∈p
fθip = φθie , ∀e ∈ E ,∑

p∈Pk

fθip = F θik , ∀k ∈ JKK,

fθip ≥ 0, ∀p ∈ P.

where φθje =
∑
p∈P:e∈p f

θj
p for all j ∈ JNK \ {i}. Notice that due to Assump-

tion 7.1 (iii), this problem is indeed a convex optimization problem. Let us define
the Lagrangian as

Li((φθie′ )e′∈E , (f
θi
p′ )p′∈P)=

∑
e∈E

∫ φ
θi
e

0
˜̀θi
e (u, (φθje )θj∈Θ\{θi})du+

∑
e∈E

vie

 ∑
p∈P:e∈p

fθip − φθie


−

K∑
k=1

wik

∑
p∈Pk

fθip − F
θi
k

−∑
p∈P

λipf
θi
p ,

where (vie)e∈E ∈ R|E|, (wik)k∈JKK ∈ RK , and (λip)p∈P ∈ R|P|≥0 are Lagrange multipli-
ers. Now, using Karush–Kuhn–Tucker theorem [54, p. 244], optimality conditions
are

∂

∂φθie
Li((φθie′ )e′∈E , (f

θi
p′ )p′∈P) = ˜̀θi

e (φθie , (φθje )θj∈Θ\{θi})− v
i
e = 0, ∀e ∈ E , (3)

and

∂

∂fθip
Li((φθie′ )e′∈E , (f

θi
p′ )p′∈P) =

(∑
e∈p

vie

)
− wik − λip = 0, ∀p ∈ Pk,∀k ∈ JKK. (4)

Additionally, the complimentary slackness conditions (for inequality constraints)
result in λipf ip = 0 for all p ∈ P. Hence, for all k and p ∈ Pk, we have

`θip ((fθ
′

p′ )p′∈P,θ′∈Θ) =
∑
e∈p

˜̀θi
e (φθie , (φθje )θj∈Θ\{θi})

=
∑
e∈p

vie by (3)

= wik + λip. by (4)
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Therefore, for any p1, p2 ∈ Pk, if fθip1
, fθip2

> 0, we have λθip1
= λθip2

= 0 (because of
the complimentary slackness conditions), which results in

`θip1
((fθ

′

p′ )p′∈P,θ′∈Θ) = wik

= `θip2
((fθ

′

p′ )p′∈P,θ′∈Θ).

Furthermore, for any p3 ∈ Pk such that fθip3
= 0, we get λθip3

≥ 0 (because of dual
feasibility, i.e., the Lagrange multipliers associated with inequality constraints must
be non-negative), which results in

`θip3
((fθ

′

p′ )p′∈P,θ′∈Θ) = wik + λθip3

≥ wik
= `θip1

((fθ
′

p′ )p′∈P,θ′∈Θ).

This completes the proof.

Theorem 7.4 Under Assumption 7.1, the heterogeneous routing game admits at
least one Nash equilibrium.

Proof: Following the result of Lemma 7.3, proving the statement of this the-
orem is equivalent to showing the fact that the abstract game introduced in Def-
inition 7.4 admits at least one pure strategy Nash equilibrium. First, notice that
for all i ∈ JNK, Ai is a non-empty, convex, and compact subset of the Euclidean
space R|P|. Second, Ui(ai, a−i) is continuous in all its arguments (because it is
defined as an integral of a real-valued measurable function). Finally, because of
Assumption 7.1 (iii), Ui(ai, a−i) is a convex function in ai. Now, it follows from
Corollary 7.2 that the abstract game admits at least one pure strategy Nash equi-
librium.

Remark 7.2 Theorem 7.4 can be seen as an extension of [27]. In that study,
the authors assume that the cost functions are monotone, that is, ˜̀θ

e((φθ
′

e )θ′∈Θ) ≤
˜̀θ
e((φ̄θ

′

e )θ′∈Θ) for all θ ∈ Θ if φθ′e ≤ φ̄θ
′

e if θ′ ∈ Θ; see [27, p. 58]. This condition,
in turn, implies that ˜̀θ

e((φθ
′

e )θ′∈Θ) is a non-decreasing function of all its arguments
which is stronger than Assumption 7.1 (iii)’.

4 Finding a Nash Equilibrium

A family of games that are relatively easy to analyze are potential games. In this
section, we give conditions for when the introduced abstract game is a potential
game.
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Definition 7.5 (Potential Game [22]) The abstract game is a potential game
with potential function V : ×Ni=1Ai → R if for all i ∈ JNK,

V (ai, a−i)− V (āi, a−i) = Ui(ai, a−i)− Ui(āi, a−i),
∀ai, āi ∈ Ai and a−i ∈ ×j∈JNK\{i}Aj .

The next lemma provides a necessary condition for the existence of a potential
function in C2.

Lemma 7.5 If the abstract game admits a potential function V ∈ C2, then∑
e∈p1∩p2

[
∂

∂φθie
˜̀θj
e ((φθ

′

e )θ′∈Θ)− ∂

∂φ
θj
e

˜̀θi
e ((φθ

′

e )θ′∈Θ)
]

= 0,

for all i, j ∈ JNK and p1, p2 ∈ P.

Proof: Since V ((fθ1
p′ )p′∈P , . . . , (f

θN
p′ )p′∈P) is a potential function for the ab-

stract game, it satisfies, for all i ∈ JNK,

V ((fθip′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})− V ((f̄θip′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})

= Ui((fθip′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})− Ui((f̄

θi
p′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi}),

which results in the identity

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)
∂fθip1

= lim
ε→0

V ((fθip′+εδp1p′)p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})−V ((fθi

p′ )p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})

ε

= lim
ε→0

Ui((fθip′+εδp1p′)p′∈P , ((f
θj
p′ )p′∈P)θj∈Θ\{θi})−Ui((f

θi
p′ )p′∈P , ((f

θj
p′ )p′∈P)θj∈Θ\{θi})

ε

=
∂Ui((fθ

′

p′ )p′∈P,θ′∈Θ)
∂fθip1

.

(5)

in which δij denotes the Kronecker index (or delta) defined as δij = 1 if i = j and
δij = 0 otherwise. Hence, we get

∂V ((fθ′p′ )p′∈P,θ′∈Θ)
∂fθip1

= ∂

∂fθip1

∑
e∈E

∫ φ
θi
e

0
˜̀θi
e (u,(φθje )θj∈Θ\{θi})du

=
∑
e∈p1

˜̀θi
e ((φθ

′

e )θ′∈Θ).

Now, because of Clairaut-Schwarz theorem [55, p. 1067], we know that the following
equality must hold since V ∈ C2,

∂2V ((fθ′p′ )p′∈P,θ′∈Θ)
∂fθip1∂f

θj
p2

=
∂2V ((fθ′p′ )p′∈P,θ′∈Θ)

∂f
θj
p2 ∂f

θi
p1

. (6)
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Let us calculate

∂2V ((fθ′p′ )p′∈P,θ′∈Θ)
∂fθip1∂f

θj
p2

= ∂

∂fθip1

[
∂V ((fθ′p′ )p′∈P,θ′∈Θ)

∂f
θj
p2

]

= ∂

∂fθip1

[∑
e∈p2

˜̀θj
e ((φθ

′

e )θ′∈Θ)
]

=
∑

e∈p1∩p2

∂ ˜̀θj
e ((φθ′e )θ′∈Θ)

∂φθie
,

(7)

and, similarly,

∂2V ((fθ′p′ )p′∈P,θ′∈Θ)
∂f

θj
p2 ∂f

θi
p1

=
∑

e∈p1∩p2

∂ ˜̀θi
e ((φθ′e )θ′∈Θ)
∂φ

θj
e

. (8)

Substituting (6) and (7) into (8) results in

∑
e∈p1∩p2

[
∂

∂φ
θj
e

˜̀θi
e ((φθ

′

e )θ′∈Θ)− ∂

∂φθie
˜̀θj
e ((φθ

′

e )θ′∈Θ)
]

= 0,

for all p1, p2 ∈ P and θi, θj ∈ Θ.

Interestingly, we can prove that this condition is also a sufficient condition for
the existence of a potential function (that belongs to C2) whenever two types of
players are participating in the heterogeneous routing game.

Lemma 7.6 Assume that |Θ| = 2. If

∑
e∈p1∩p2

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , φ
θ2
e )− ∂

∂φθ2
e

˜̀θ1
e (φθ1

e , φ
θ2
e )
]

= 0,

for all p1, p2 ∈ P, then

V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)=

∑
e∈E

[ ∫ φ
θ1
e

0
˜̀θ1
e (u1, φ

θ2
e )du1+

∫ φ
θ2
e

0
˜̀θ2
e (φθ1

e , u2)du2

−
∫ φ

θ2
e

0

∫ φ
θ1
e

0

∂

∂u2
˜̀θ1
e (u1, u2)du1du2

]
is a potential function for the abstract game.
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Proof: Notice that for all p ∈ P, we get

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)
∂fθ1

p

= ∂

∂fθ1
p

(∑
e∈E

[∫ φ
θ1
e

0

˜̀θ1
e (u1, φ

θ2
e )du1+

∫ φ
θ2
e

0

˜̀θ2
e (φθ1

e , u2)du2

−
∫ φ

θ2
e

0

∫ φ
θ1
e

0

∂

∂u2
˜̀θ1
e (u1, u2)du1du2

])
=
∑
e∈p

[
˜̀θ1
e (φθ1

e , φ
θ2
e ) +

∫ φ
θ2
e

0

∂

∂φθ1
e

˜̀θ2
e (φθ1

e , u2)du2

−
∫ φ

θ2
e

0

∂

∂u2
˜̀θ1
e (φθ1

e , u2)du2

]
=
∑
e∈p

˜̀θ1
e (φθ1

e , φ
θ2
e )

+
∑
e∈p

∫ φ
θ2
e

0

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , u2)− ∂

∂u2
˜̀θ1
e (φθ1

e , u2)
]

du2. (9)

Now, let us define

Ψ((φθ1
e )e∈E , (φθ2

e )e∈E) =
∑
e∈p

∫ φ
θ2
e

0

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , u)− ∂

∂u
˜̀θ1
e (φθ1

e , u)
]

du.

We have

∂Ψ((φθ1
e )e∈E , (φθ2

e )e∈E)
∂fθ2

p̂

=
∑
e∈p∩p̂

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , φ
θ2
e )− ∂

∂u
˜̀θ1
e (φθ1

e , φ
θ2
e )
]

=0,

for all p̂ ∈ P. Noticing that φθ2
e =

∑
p̂∈P:e∈p̂ f

θ2
p̂ for all e ∈ E , we get

∂Ψ((φθ1
e )e∈E , (φθ2

e )e∈E)
∂φθ2

e

=
∑

p̂∈P:e∈p̂

∂Ψ((φθ1
e )e∈E , (φθ2

e )e∈E)
∂fθ2

p̂

= 0, ∀e ∈ E .

Thus, Ψ((φθ1
e )e∈E , (φθ2

e )e∈E) = Ψ((φθ1
e )e∈E , 0) = 0. Setting Ψ((φθ1

e )e∈E , (φθ2
e )e∈E) =

0 (see definition above) inside (9) results in

∂V ((fθ′p′ )p′∈P,θ′∈Θ)
∂fθ1

p

=
∑
e∈p

˜̀θ1
e (φθ1

e , φ
θ2
e ) =

∂U1((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)

∂fθ1
p

, (10)

where the partial derivatives of U1 can be computed from its definition in (2). Let
(fθ1
p′ )p′∈P and (f̄θ1

p′ )p′∈P be arbitrary points in set of actions A1. Furthermore, let
r : [0, 1] → A1 be a continuously differentiable mapping (i.e., r ∈ C1) such that
r(0) = (f̄θ1

p′ )p′∈P and r(1) = (fθ1
p′ )p′∈P which remains inside A1 ⊆ R|P| for all
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t ∈ (0, 1). We define graph(r) as the collection of all ordered pairs (t, r(t)) for all
t ∈ [0, 1], which denotes a continuous path that connects (fθ1

p′ )p′∈P and (f̄θ1
p′ )p′∈P .

We know that at least one such mapping exists because A1 is a simply connected
set for all i ∈ JNK. Hence, we have∫

graph(r)

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr =

∫ 1

0

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r(t)

]>
∂r(t)
∂t

dt

=
∫ 1

0

[
d
dtV (r(t), a2)

]
dt

= V (r(1), a2)− V (r(0), a2)
= V ((fθ1

p′ )p′∈P , (f
θ2
p′ )p′∈P)−V ((f̄θ1

p′ )p′∈P , (f
θ2
p′ )p′∈P),

where the second to last equality is a direct consequence of the fundamental theorem
of calculus [55, p. 1257]. Note that this equality holds irrespective of the selected
path. Therefore,

V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)− V ((f̄θ1

p′ )p′∈P , (f
θ2
p′ )p′∈P)

=
∫

graph(r)

[
∂V (a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr

=
∫

graph(r)

[
∂U1(a1, a2)

∂a1

∣∣∣∣
a1=r

]>
dr by (10)

= U1((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)− U1((f̄θ1

p′ )p′∈P , (f
θ2
p′ )p′∈P),

Similarly, we can also prove

∂V ((fθ
′

p′ )p′∈P,θ′∈Θ)
∂fθ2

p

= ∂

∂fθ2
p

(∑
e∈E

[∫ φ
θ1
e

0

˜̀θ1
e (u1, φ

θ2
e )du1+

∫ φ
θ2
e

0

˜̀θ2
e (φθ1

e , u2)du2

−
∫ φ

θ2
e

0

∫ φ
θ1
e

0

∂

∂u2
˜̀θ1
e (u1, u2)du1du2

])
=
∑
e∈p

[∫ φ
θ1
e

0

∂

∂φθ2
e

˜̀θ1
e (u1, φ

θ2
e )du1 + ˜̀θ2

e (φθ1
e , φ

θ2
e )

−
∫ φ

θ1
e

0

∂

∂φθ2
e

˜̀θ1
e (u1, φ

θ2
e )du1

]
=
∑
e∈p

˜̀θ2
e (φθ1

e , φ
θ2
e ), (11)

which results in
∂V ((fθ1

p′ )p′∈P , (f
θ2
p′ )p′∈P)

∂fθ2
p

=
∑
e∈p

˜̀θ2
e (φθ1

e , φ
θ2
e ) =

∂U2((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)

∂fθ2
p

,
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and, consequently,

V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)− V ((fθ1

p′ )p′∈P , (f̄
θ2
p′ )p′∈P)

= U2((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P)− U2((fθ1

p′ )p′∈P , (f̄
θ2
p′ )p′∈P).

This concludes the proof.
Now, combing the previous two lemmas results in the main result of this section.

Theorem 7.7 Assume that |Θ| = 2. The abstract game admits a potential function
V ∈ C2 if and only if∑

e∈p1∩p2

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , φ
θ2
e )− ∂

∂φθ2
e

˜̀θ1
e (φθ1

e , φ
θ2
e )
]

= 0,

for all p1, p2 ∈ P.

Proof: The proof easily follows from Lemmas 7.5 and 7.6. Note that the
potential function presented in Lemma 7.6 belongs to C2 due to Assumption 7.1 (i).

Following a basic property of potential games, it is easy to prove the follow-
ing corollary which shows that the process of finding a Nash equilibrium of the
heterogeneous routing game is equivalent to solving an optimization problem.

Corollary 7.8 Assume that |Θ| = 2. Furthermore, let∑
e∈p

[
∂

∂φθ1
e

˜̀θ2
e (φθ1

e , φ
θ2
e )− ∂

∂φθ2
e

˜̀θ1
e (φθ1

e , φ
θ2
e )
]

= 0,

for all p ∈ P. If f = (fθ′p′ )p′∈P,θ′∈Θ is a solution of the optimization problem

min V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P),

s.t.
∑

p∈P:e∈p
fθ1
p = φθ1

e and
∑

p∈P:e∈p
fθ2
p = φθ2

e , ∀e ∈ E ,∑
p∈Pk

fθ1
p = F θ1

k and
∑
p∈Pk

fθ2
p = F θ2

k , ∀k ∈ JKK,

fθ1
p , f

θ2
p ≥ 0, ∀p ∈ P,

where V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P) is defined in Lemma 7.6, then f = (fθp )p∈P,θ∈Θ is a

Nash equilibrium of the heterogeneous routing game.

Proof: The proof is consequence of the fact that a minimizer of the potential
function is a pure strategy Nash equilibrium of a potential game; see [22].

Notice that so far we have proved that a minimizer of the potential function is
a Nash equilibrium but not the other way round. Now, we are ready to prove this
whenever the potential function is convex.
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Corollary 7.9 Let |Θ| = 2 and

∂

∂φθ1
e

˜̀θ2
e (φθ1

e , φ
θ2
e ) = ∂

∂φθ2
e

˜̀θ1
e (φθ1

e , φ
θ2
e ),

for all e ∈ E. Furthermore, assume that the potential function V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P),

defined in Lemma 7.6, is a convex function. Then f = (fθ′p′ )p′∈P,θ′∈Θ is a Nash
equilibrium of the heterogeneous routing game if and only if it is a solution of the
convex optimization problem

min V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P),

s.t.
∑

p∈P:e∈p
fθ1
p = φθ1

e and
∑

p∈P:e∈p
fθ2
p = φθ2

e , ∀e ∈ E ,∑
p∈Pk

fθ1
p = F θ1

k and
∑
p∈Pk

fθ2
p = F θ2

k , ∀k ∈ JKK,

fθ1
p , f

θ2
p ≥ 0, ∀p ∈ P.

Proof: See Appendix A.

Remark 7.3 Note that Corollary 7.9 is proved at the price of a more conser-
vative condition because the conditions in Corollary 7.8 requires the summation
of the differences between the derivatives of the cost functions to be equal to zero
while Corollary 7.9 needs the individual differences to be equal to zero. Notice that
Corollary 7.9 provides the same sufficient condition for characterizing the set of
all equilibria as in [8, 24], but these references handle the general case of |Θ| ≥ 2
(specifically, see Proposition 1 and Theorem 1 in [24]). Therefore, we can see that
the presented condition in Corollary 7.8 is tighter than the results of [8, 24] (since
it is also a necessary condition); however, it is only valid for |Θ| = 2 in contrast.

4.1 Example: Routing Game with Platooning Incentives
Let us examine the implications of Corollary 7.9 in the routing game with platooning
incentives in Subsection 2.3. For the linearized model, we can easily calculate that

∂ ˜̀c
e(φc

e, φ
t
e)

∂φt
e

= −Leae/b2e, (12)

∂ ˜̀t
e(φc

e, φ
t
e)

∂φc
e

= −Leae/b2e + 2c0αγ(0)beae

= −Leae/b2e + 2c0αbeae.
(13)

where the second equality follows from γe(0) = 1, which holds because from the
definition of the mapping γ : R≥0 → [0, 1], we know that in this case (i.e., when
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no trucks are using that edge) the air drag coefficient is equal to its nominal value.
Therefore, the condition of Corollary 7.9 does not hold (unless c0 = 0). Noting that
if the problem of finding a Nash equilibrium in the heterogeneous routing game is
numerically intractable, it might be highly unlikely for the drivers to figure out a
Nash equilibrium in reasonable time (let alone an efficient one) and utilize it, which
might result in wasting parts of the transportation network resources. Therefore,
a natural question that comes to mind is whether it is possible to guarantee the
existence of a potential function for a heterogeneous routing game by imposing
appropriate tolls.

5 Imposing Tolls to Guarantee the Existence of a Potential
Function

5.1 Definition and Results

Let us assume that a vehicle of type θ ∈ Θ must pay a toll τ̃θe ((φθ′e )θ′∈Θ) for
using an edge e ∈ E , where φθe =

∑
p∈P:e∈p f

θ
p . Therefore, a vehicle using path

p ∈ Pk endures a total cost of `θp(f) + τθp (f), where τp(f) is the total amount of
money that the vehicle must pay for using path p and can be calculated as τθp (f) =∑
e∈p τ̃

θ
e ((φθ′e )θ′∈Θ). The definition of a Nash equilibrium is slightly modified to

account for the tolls.

Definition 7.6 (Nash Equilibrium in Heterogeneous Routing Game with
Tolls) A flow vector f = (fθ′p′ )p′∈P,θ′∈Θ is a Nash equilibrium for the routing game
with tolls if, for all k ∈ JKK and θ ∈ Θ, whenever fθp > 0 for some path p ∈ Pk,
then `θp(f) + τθp (f) ≤ `θp′(f) + τθp′(f) for all p′ ∈ Pk.

Before stating the main result of this section, note that we can have both distin-
guishable and indistinguishable types. This characterization is of special interest
when considering the implementation of tolls. For distinguishable types, we can im-
pose individual tolls for each type. However, for indistinguishable types, the tolls
are independent of the type. To give an example, if Θ = {cars, trucks}, we can im-
pose different tolls for each group of vehicles while if Θ = {patient drivers, impatient
drivers}, we cannot. Notice that in the case of indistinguishable types, one might
argue that we cannot measure φθie for each θi ∈ Θ individually (because as we
motivated the type of user may not be identified from physical traits). However,
we can use surveys and historical data to extract the statistics of each type (e.g, to
realize what ratio of the actual flow belongs to each type) but when calculating the
tolls for each user we cannot force that user to participate in a survey. We treat
these two cases separately.
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Proposition 7.10 (Distinguishable Types) Assume that |Θ| = 2. The abstract
game admits the potential function

V ((fθ1
p′ )p′∈P , (f

θ2
p′ )p′∈P) =

∑
e∈E

[ ∫ φ
θ1
e

0
(˜̀θ1
e (u1, φ

θ2
e ) + τ̃θ1

e (u1, φ
θ2
e ))du1

+
∫ φ

θ2
e

0
(˜̀θ2
e (φθ1

e , u2) + τ̃θ2
e (φθ1

e , u2))du2

−
∫ φ

θ2
e

0

∫ φ
θ1
e

0

∂

∂u2
(˜̀θ1
e (u1, u2) + τ̃θ1

e (u1, u2))du1du2

]
if

∂τ̃θ1
e (φθ1

e , φ
θ2
e )

∂φθ2
e

− ∂τ̃θ2
e (φθ1

e , φ
θ2
e )

∂φθ1
e

= ∂ ˜̀θ2
e (φθ1

e , φ
θ2
e )

∂φθ1
e

− ∂ ˜̀θ1
e (φθ1

e , φ
θ2
e )

∂φθ2
e

,

for all e ∈ E.

Proof: See Appendix B.

Proposition 7.11 (Indistinguishable Types) Assume that |Θ| = 2. The ab-
stract game admits the potential function V ∈ C2 in Proposition 7.10 with

τ̃θ1
e (φθ1

e , φ
θ2
e ) = τ̃θ2

e (φθ1
e , φ

θ2
e ) = τ̃e(φθ1

e , φ
θ2
e )

if

∂τ̃e(φθ1
e , φ

θ2
e )

∂φθ2
e

− ∂τ̃e(φθ1
e , φ

θ2
e )

∂φθ1
e

= ∂ ˜̀θ2
e (φθ1

e , φ
θ2
e )

∂φθ1
e

− ∂ ˜̀θ1
e (φθ1

e , φ
θ2
e )

∂φθ2
e

,

for all e ∈ E.

Proof: The proof immediately follows from using Proposition 7.10 with the con-
straint that the tolls may not depend on the type, i.e., τ̃θ1

e (φθ1
e , φ

θ2
e ) = τ̃θ2

e (φθ1
e , φ

θ2
e ) =

τ̃e(φθ1
e , φ

θ2
e ).

In general, we can prove the following corollary concerning the type-independent
tolls.

Corollary 7.12 (Indistingushable Types) Assume that |Θ| = 2. The abstract
game admits a potential function V ∈ C2 if the imposed tolls are of the following
form

τ̃e(φθ1
e , φ

θ2
e ) = ce +

∫ φ
θ2
e

0
fe(q, φθ1

e + φθ2
e − q)dq + ψe(φθ1

e + φθ2
e ),

where ce ∈ R≥0, ψe ∈ C1, and fe(x, y) = ∂ ˜̀θ2
e (y, x)/∂y−∂ ˜̀θ1

e (y, x)/∂x for all e ∈ E.
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Proof: See Appendix C.

Throughout this subsection, we assumed that all the drivers portray similar
sensitivity to the imposed tolls. This is indeed a source of conservatism, specially
when dealing with routing games in which the heterogeneity is caused by the fact
that the drivers react differently to the imposed tolls. Certainly, an avenue for
future research is to develop tolls for a more general setup.

5.2 Example: Routing Game with Platooning Incentives

Let us examine the possibility of finding a set of tolls that satisfies the conditions
of Propositions 7.10 and 7.11 for the heterogeneous routing game introduced in
Subsection 2.3.

• Distinguishable Types-Case 1: Substituting (12) and (13) into the con-
dition of Proposition 7.10 results in

∂τ̃ c
e (φc

e, φ
t
e)

∂φt
e

− ∂τ̃ t
e(φc

e, φ
t
e)

∂φc
e

= 2c0αbeae. (14)

Following simple algebraic calculations, we can check that the tolls τ̃ c
e (φc

e, φ
t
e) =

0 and τ̃ t
e(φc

e, φ
t
e) = (2c0αbeae)φc

e satisfy (14). Noticing that τ̃ t
e(φc

e, φ
t
e) ≤ 0 be-

cause by definition ae ∈ R≤0, these terms can be interpreted as subsidies paid
to the trucks to compensate for the fuel that is wasted due to presence of the
cars on that specific edge.

• Distinguishable Types-Case 2: Another example of appropriate tolls is
τ̃ t
e(φc

e, φ
t
e) = 0 and τ̃ c

e (φc
e, φ

t
e) = (−2c0αbeae)φt

e. Now, we have τ̃ c
e (φc

e, φ
t
e) ≥ 0.

In this case, the cars pay directly for the increased fuel consumption of the
trucks and, therefore, they are inclined to travel along the edges that trucks
do not use.

• Indistinguishable Types: For this case, using Corollary 7.12, it is easy to
see that tolls τ̃e(φc

e, φ
t
e) = (2c0αbeae)φt

e work fine. We use these tolls in the
numerical example developed in Section 7.

6 Price of Anarchy for Affine Cost Functions

In the routing game literature, it is a widely known fact that generally, a Nash equi-
librium is inefficient even when dealing with homogeneous routing games; see [14,
17, 21]. To quantify this inefficiency, many studies have used Price of Anarchy
(PoA) as a metric.
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6.1 Social Cost Function
First, let us define the social cost of a flow vector f = (fθ′p′ )p′∈P,θ′∈Θ as

C(f) ,
∑
p∈P

∑
θ∈Θ

fθp `
θ
p(f)

=
∑
e∈E

∑
θ∈Θ

φθe
˜̀θ
e((φθ

′

e )θ′∈Θ),

where the second equality can be easily obtained by rearranging the terms. Using
this social cost, we can define the optimal flow that we will use later for comparison
with the Nash equilibrium.

Definition 7.7 (Socially Optimal Flow) f ∈ F is a socially optimal flow if
C(f) ≤ C(f̄) for all f̄ ∈ F .

Definition 7.8 (PoA) The price of anarchy is defined as

PoA = sup
fNash∈N

C(fNash)
minf∈F C(f) ,

where N denotes the set of Nash equilibria of the heterogeneous routing game. In
this definition, we follow the convention that “ 0

0 = 1”.

6.2 Bounding the Price of Anarchy for Two Types with Affine Cost
Functions

Here, we present an upper bound for the inefficiency of the Nash equilibrium in
heterogeneous routing games when |Θ| = 2. The edge cost functions are taken to
be affine functions of the form

`θ1
e (φθ1

e , φ
θ2
e ) = αeθ1θ1

φθ1
e + αeθ1θ2

φθ2
e + βeθ1

,

`θ2
e (φθ1

e , φ
θ2
e ) = αeθ2θ1

φθ1
e + αeθ2θ2

φθ2
e + βeθ2

,

where αeθ1θ1
, αeθ1θ2

, αeθ2θ1
, αeθ2θ2

, βeθ1
, βeθ2

∈ R≥0 are parameters of the routing game
for each edge e ∈ E . Notice that the condition αeθ1θ1

, αeθ1θ2
, αeθ2θ1

, αeθ2θ2
∈ R≥0

implies that the cost of using an edge is increasing in each flow separately (i.e.,
when a driver of any type switches to an edge, she cannot decrease the cost of the
users on this new edge) while βeθ1

, βeθ2
∈ R≥0 implies that the starting cost of using

a road is non-negative. This assumption is certainly stronger than Assumption 7.1.
Subsection 2.3 presents a motivating example for affine cost functions.

Theorem 7.13 Let
αeθ2θ1

= αeθ1θ2
(15a)[

αeθ1θ1
αeθ1θ2

αeθ2θ1
αeθ2θ2

]
≥ 0, (15b)

for all e ∈ E. Then, PoA ≤ 2.



278 PAPER 7. WHEN DO POTENTIAL FUNCTIONS EXIST ...

Proof: First, note that if αeθ2θ1
= αeθ1θ2

for all e ∈ E , the condition of Corol-
lary 7.8 is satisfied. Therefore, we can easily calculate the potential function as

V (f) =
∑
e∈E

[
1
2α

e
θ1θ1

(φθ1
e )2+(αeθ1θ2

φθ2
e +βeθ1

)φθ1
e +1

2α
e
θ2θ2

(φθ2
e )2

+ (αeθ2θ1
φθ1
e + βeθ2

)φθ2
e −αeθ1θ2

φθ1
e φ

θ2
e

]
=
∑
e∈E

[
1
2φ

θ1
e `

θ1
e (φθ1

e , φ
θ2
e ) + 1

2β
e
θ1
φθ1
e + 1

2φ
θ2
e `

θ2
e (φθ1

e , φ
θ2
e ) + 1

2β
e
θ2
φθ2
e

]
=1

2C(f) +
∑
e∈E

1
2

[
βeθ1

φθ1
e + βeθ2

φθ2
e

]
,

(16)

Furthermore, following the argument of [54, p. 71], we know that the social cost
function is a convex function if and only if (15b) is satisfied. Notice that (16) shows
that the potential function V is a convex function if the social cost function C is a
convex function (because the summation of a convex function and a linear function
is a convex function). Let us use f̄ and f to denote the Nash equilibrium and the
socially optimal flow, respectively. Now, we can prove inequality

C(f̄) ≤ 2V (f̄) by (16),βeθ1
, βeθ2

≥ 0
≤ 2V (f) by Corollary 7.9

≤ 2
∑
e∈E

(∫ φ
θ1
e

0
˜̀θ1
e (u1, φ

θ2
e )du1+

∫ φ
θ2
e

0
˜̀θ2
e (φθ1

e , u2)du2

−
∫ φ

θ2
e

0

∫ φ
θ1
e

0

∂

∂u
˜̀θ1
e (t, u)dtdu

)
by Definition of V

≤ 2
∑
e∈E

(∫ φ
θ1
e

0
˜̀θ1
e (u1, φ

θ2
e )du1+

∫ φ
θ2
e

0
˜̀θ2
e (φθ1

e , u2)du2

)
by αeθ1θ2

, αeθ2θ1
≥ 0

≤ 2
(∑
e∈E

∫ φ
θ1
e

0

[
˜̀θ1
e (u1, φ

θ2
e ) + u1

∂

∂u1
˜̀θ1
e (u1, φ

θ2
e )
]

du1

+
∑
e∈E

∫ φ
θ2
e

0

[
˜̀θ2
e (φθ1

e , u2) + u2
∂

∂u2
˜̀θ2
e (φθ1

e , u2)
]

du2

)
by αeθ1θ1

, αeθ2θ2
≥ 0

≤ 2
(∑
e∈E

φθ1
e

˜̀θ1
e (φθ1

e , φ
θ2
e ) +

∑
e∈E

φθ2
e

˜̀θ2
e (φθ1

e , φ
θ2
e )
)

= 2C(f). (17)

This completes the proof.

Notice that in many practical situations (such as the one presented in Subsec-
tion 4.1 for routing games with platooning incentives), αeθ2θ1

6= αeθ1θ2
. Therefore,

we may not be able to use Theorem 7.13 to find an upper bound for the PoA.
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Table 7.1: Parameters of the heterogeneous routing game in the numerical example.
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

αaa 1.0 2.0 3.0 1.0 4.0 0.5 1.0 1.0 2.0 1.0 4.0 1.0
αat 0.6 0.4 0.1 0.1 0.5 0.1 0.7 0.1 0.1 0.2 0.1 0.3
αtt 2.0 3.0 1.0 0.8 1.0 1.0 1.5 3.0 1.7 3.0 1.0 1.3
βa 2.0 2.0 4.5 2.0 2.0 4.5 2.0 2.0 4.5 2.0 2.0 4.5
βt 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5

However, as also discussed in Section 5, in some cases, we might be able to manip-
ulate these gains through appropriate tolls to make sure (15a) holds. In addition,
condition (15b) is equivalent to the condition that αeθ1θ1

αeθ2θ2
≥ αeθ2θ1

αeθ1θ2
for all

e ∈ E . This condition intuitively means that cost function of each type of vehicles
is more influenced by the flow of its own type than the flow of the other type. This
condition may not hold in general in transportation networks. In such case, in-
stead of using Corollary 7.9, we may use Corollary 7.8 in the proof of Theorem 7.13
(that is the only place that we use the convexity of the potential function which we
proved using the convexity of the social decision function). However, doing so, we
cannot bound the ratio C(fNash)/minf C(f) for all fNash ∈ N . Therefore, instead
of showing that PoA is bounded from above by two, we can then only show that the
Price of Stability12 is upper bounded by two (because we can show that the ratio
is bounded by two for only one Nash equilibrium and not for all Nash equilibria).

7 Numerical Example

In this section, we present a numerical example motivated by the routing game with
platooning incentives in Subsection 2.3. We use the graph G = (V, E) in Figure 1.
We have three commodities (s1, t1) = (0, 1), (s2, t2) = (2, 3), and (s3, t3) = (7, 8).
The corresponding paths for the commodities are

P1={{e1},{e2, e4, e3},{e2, e7, e5}},
P2={{e10},{e9, e7, e8},{e9, e4, e6}},
P3={{e11, e10, e0},{e11, e9, e7, e8, e0},{e11, e9, e4, e6, e0}}.

The edge cost functions are taken to be affine functions of the form

˜̀c
ei(φ

c
ei , φ

t
ei) = α(i)

cc φ
c
ei + ᾱ

(i)
ct φ

t
ei + β(i)

c ,

˜̀t
ei(φ

c
ei , φ

t
ei) = α

(i)
tc φ

c
ei + ᾱ

(i)
tt φ

t
ei + β

(i)
t ,

where the definitions and the physical intuition of the parameters α(i)
cc , α

(i)
tc , ᾱ

(i)
tt , ᾱ

(i)
ct ,

β
(i)
c , β

(i)
t can be found in Subsection 2.3. Recalling that ᾱ(i)

tc 6= ᾱ
(i)
ct (see Subsec-

12 Price of Stability (PoS), or commonly known as the optimistic Price of Anarchy, is defined
as inffNash∈N C(fNash)/minf∈F C(f); note that we use inf operator instead of sup operator in
this definition in contrast to that of Definition 7.8. See [56] for more explanation regarding the
difference between PoS and PoA.
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Figure 1: Transportation network in the numerical example.

tion 4.1), the condition of Corollary 7.8 is not satisfied. Therefore, we use the tax
τ̃ei(φc

ei , φ
t
ei) = (2c0αbeae)φt

ei which is developed in Subsection 5.2. This results in

˜̀c
ei(φ

c
ei , φ

t
ei) + τ̃ei(φc

ei , φ
t
ei) = α(i)

cc φ
c
ei + α

(i)
ct φ

t
ei + β(i)

c ,

˜̀t
ei(φ

c
ei , φ

t
ei) + τ̃ei(φc

ei , φ
t
ei) = α

(i)
tc φ

c
ei + α

(i)
tt φ

t
ei + β

(i)
t ,

where α(i)
ct = ᾱ

(i)
ct + 2c0αbeae and α

(i)
tt = ᾱ

(i)
tt + 2c0αbeae. In this case, we can

calculate the potential function as

V =
11∑
i=0

[
1
2α

(i)
cc (φc

ei)
2+(α(i)

ct φ
t
ei+β

(i)
c )φc

ei − α
(i)
ct φ

c
eiφ

t
ei

+ 1
2α

(i)
tt (φt

ei)
2 + (α(i)

tc φ
c
ei + β

(i)
t )φt

ei

]
.

Noticing that solving a non-convex quadratic programming problem might be nu-
merically intractable in general, we focus on the case in which the potential function
is a convex function. Following the argument of [54, p. 71], we know that the po-
tential function is a convex function if and only if[

α
(i)
cc

1
2α

(i)
ct

1
2α

(i)
tc α

(i)
tt

]
≥ 0, ∀i = {0, . . . , 11}.

Let us pick the parameters for the routing game according to Table 7.1. Further-
more, we choose (F a

1 , F
b
1 ) = (5, 1), (F a

2 , F
b
2 ) = (3, 3), and (F a

3 , F
b
3 ) = (2, 4). After

solving the optimization problem in Corollary 7.8, we can extract the path flows
and path cost functions shown in Table 7.2 which demonstrate a Nash equilibrium
(see Definition 7.6)13. In addition, we can calculate

C(f)
C(f∗) = 1.0137 ≤ 2 = Upper Bound of the PoA,

13See http://dl.dropbox.com/u/36867745/HeterogeneousRoutingGame.zip for the Python
code to simulate this numerical example.
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Table 7.2: The path flow and path cost function at a Nash equilibrium extracted
by minimizing the potential function.

fc
p f t

p

p ∈ P1

4.97 0.79
0.00 0.00
0.03 0.21

p ∈ P2

1.04 0.06
0.04 0.00
1.92 2.94

p ∈ P3

0.01 0.00
1.10 0.00
0.88 4.00

`cp(f) `tp(f)

p ∈ P1

12.26 8.35
13.18 10.29
12.26 8.35

p ∈ P2

13.92 11.22
13.92 13.98
13.92 11.22

p ∈ P3

28.02 31.73
28.02 34.48
28.02 31.72

where f∗ denotes the socially optimal flow. This shows that the social cost of the
recovered Nash equilibrium is only 1.0137 times the cost of the socially optimal
solutions.

8 Conclusions

In this article, we proposed a heterogeneous routing game in which the players may
belong to more than one type. The type of each player determines the cost of using
an edge as a function of the flow of all types over that edge. We proved that this
heterogeneous routing game admits at least one Nash equilibrium. Additionally, we
gave a necessary and sufficient condition for the existence of a potential function,
which indeed implies that we can transform the problem of finding a Nash equi-
librium into an optimization problem. Finally, we developed tolls to guarantee the
existence of a potential function. Possible future research will focus on generalizing
these results to higher number of types or a continuum of player types.
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A Proof of Corollary 7.9

Let us define the Lagrangian as
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p)p∈P ∈ R|P|≥0 are Lagrange multipliers. Using Karush–Kuhn–Tucker

conditions [54, p. 244], optimality conditions are

∂L

∂φθ1
e

= ˜̀θ1
e (φθ1

e , φ
θ2
e ) +

∫ φ
θ2
e

0

∂ ˜̀θ2
e (φθ1

e , u2)
∂φθ1

e

du2 −
∫ φ

θ2
e

0

∂

∂u
˜̀θ1
e (φθ1

e , u)du− v1
e

= ˜̀θ1
e (φθ1

e , φ
θ2
e )− v1

e +
∫ φ

θ2
e

0

(
∂ ˜̀θ2
e (φθ1

e , u)
∂φθ1

e

−∂
˜̀θ1
e (φθ1

e , u)
∂u

)
du

= ˜̀θ1
e (φθ1

e , φ
θ2
e )− v1

e = 0, ∀e ∈ E , (18a)

∂L

∂φθ2
e

=
∫ φ

θ1
e

0

∂ ˜̀θ1
e (u1, φ

θ2
e )

∂φθ2
e

du1 + ˜̀θ2
e (φθ1

e , φ
θ2
e )−

∫ φ
θ1
e

0

∂

∂φθ2
e

˜̀θ1
e (t, φθ2

e )dt− v2
e

= ˜̀θ2
e (φθ1

e , φ
θ2
e )− v2

e = 0, ∀e ∈ E , (18b)

and
∂

∂fθ1
p

L =
∑
e∈p

v1
e − w1

k − λ1
p = 0, ∀p ∈ P, (19a)

∂

∂fθ2
p

L =
∑
e∈p

v2
e − w2

k − λ2
p = 0, ∀p ∈ P. (19b)

In addition, the complimentary slackness conditions for inequality constraints result
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Thus, if fθip , f
θi
p′ > 0, using complimentary slackness, we get λθip = 0 and λθip′ = 0,

which results in
`θip (f) = `θip′(f) = wik.

Additionally, for all p′′ ∈ Pk, where fθip′′ = 0, we have λθip ≥ 0 (because of dual
feasibility), which results in

`θip′′(f) = wik + λθip′′ ≥ w
i
k = `θip (f).

This is the definition of a Nash equilibrium.

B Proof of Proposition 7.10

Note that introducing the tolls τ̃θe (φθ1
e , φ
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e ) has the same impact on the routing game
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With rearranging the terms in this equality, we can extract the condition in the
statement of the proposition.

C Proof of Corollary 7.12

The proof can be seen as a direct application of the result of [57, Ch. 4] to Proposi-
tion 7.11. However, let us show this fact following simple algebraic manipulations.
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Therefor, we get
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where the second equality directly follows from the definition of the mapping fe :
R≥0×R≥0 → R in the statement of the corollary. Now, we can use Proposition 7.11
to show that a potential function indeed exists.
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A Study of Truck Platooning Incentives Using a
Congestion Game

Farhad Farokhi and Karl H. Johansson

Abstract–We introduce an atomic congestion game with two types of agents, cars
and trucks, to model the traffic flow on a road over various time intervals of the day.
Cars maximize their utility by finding a trade-off between the time they choose to use the
road, the average velocity of the flow at that time, and the dynamic congestion tax that
they pay for using the road. In addition to these terms, the trucks have an incentive for
using the road at the same time as their peers because they have platooning capabilities,
which allow them to save fuel. The dynamics and equilibria of this game-theoretic model
for the interaction between car traffic and truck platooning incentives are investigated.
We use traffic data from Stockholm to validate parts of the modeling assumptions and
extract reasonable parameters for the simulations. We use joint strategy fictitious play and
average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We
perform a comprehensive simulation study to understand the influence of various factors,
such as the drivers’ value of time and the percentage of the trucks that are equipped with
platooning devices, on the properties of the Nash equilibrium.
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1 Introduction

1.1 Motivation

Urban traffic congestion creates many problems, such as increased transportation
delays and fuel consumption, air pollution, and dampened economic growth in
heavily congested areas [1–3]. A recent study [3] shows that the transportation
has contributed to approximately 15% of the total man-made carbon-dioxide since
preindustrial era and suggests that it will be responsible for roughly 16% of the
carbon-emission over the next century. To circumvent part of these issues, the local
governments in some urban areas introduced congestion taxes to manage the traffic
congestion over existing infrastructures. For instance, Stockholm implemented a
congestion taxing system in August, 2007 after a seven-month trial period in 2006.
A survey of the influence of the congestion taxes over the trial period can be found
in [4], which shows significant improvements in travel times as well as favorable
economic and environmental effects. Behavioral aspects and other influences of the
Stockholm congestion taxing system is discussed in [5–8].

In parallel to reducing the congestion, we can employ other means to improve
the fuel efficiency and decrease the carbon emission [1]. One way to improve the fuel
efficiency of vehicles is platooning, as vehicles experience a reduced air drag force
when they travel in platoons [9–13]. Trucks or heavy-duty vehicles can significantly
improve their fuel efficiency by platooning with their peers. In [9], the authors
report 4.7%-7.7% reduction in the fuel consumption (depending on the distance
between the vehicles among other factors) when two identical trucks move close to
each other at 70 km/h. In a futuristic scenario when several trucks are equipped
with platooning devices, they are able to save fuel by cooperating with each other.
However, implementing truck platooning in a large-scale setup is not easy since
a global decision-maker might become complex and the vehicles can belong to
competing entities. In addition, it is interesting to study if a desirable behavior can
emerge from simple local strategies. In this paper, we consider such a case where
the traffic flow can be modeled as a congestion game and the desired behavior
corresponds to an equilibrium of this game.

1.2 Related Studies

Modeling the traffic flow using congestion games or routing games is a well-known
problem [14–22]. Rosenthal [17] presented a noncooperative game in which a finite
number of players compete for using a finite set of resources with application to
modeling transport networks. He showed that a class of these games admit at
least one pure strategy Nash equilibrium (an action profile in which no agent has
an incentive to unilaterally deviate from her action). Later, the authors of [23]
showed that atomic congestion games are indeed potential games (i.e., there exists
a potential function, such that its variation when only one agent changes her action
is equal to the variation of the utility of the corresponding agent) under some
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conditions and, hence, one can find a Nash equilibrium by minimizing the potential
function. For a survey of these and related results, see [24]. Most of these studies
modeled the route selection using an atomic congestion game. Recently, the authors
of [25] utilized a congestion game for modeling instead the time interval in which
drivers decide to use a road.

This setup may be extended to weighted congestion games in which every agent
is associated with a (splittable or unsplittable) demand (not equal and more than
a single unit) that should be routed over the network. In [26], Rosenthal showed
that a Nash equilibrium does not necessarily exist in these games if the agents can
split their demand. The authors of [27–29] constructed counterexamples to show
that a Nash equilibrium does not necessarily exist also for unsplittable demands as
well. However, when cost functions (i.e., latencies) of each road are affine functions,
an equilibrium certainly exists (and may be found in pseudo-polynomial time) [28].
In [27], it was also proved that an equilibrium may exist for a special class of
cost functions (that are only a function of the residual capacity on each edge) on
parallel networks. The largest class of latency functions for which the game admits
an equilibrium were explored in [30]. It was also shown that a weighted congestion
game admits an exact potential function (a weighted potential function) if and only
if the set of costs contains only affine functions (affine or exponential functions) [31].

The studies discussed above mainly consider homogeneous congestion games in
which all the drivers on a road at any given time interval perceive the same cost
function (e.g, the drivers only consider the latency in their decision-making and
they all have the same sensitivity to the latency as well). However, in road traffic
networks, this assumption might not be realistic. For instance, as we will see in this
paper, whenever the drivers include the fuel consumption in their decision making,
trucks and cars potentially have different cost functions even if they observe the
same latency when using the road. To capture this phenomenon, we extend the
model in [25] to an atomic congestion game with two types of agents, namely,
cars and trucks. Notice that the problem of heterogeneous congestion and routing
games have been studied extensively in the past [32–34]. For instance, in [32],
the author formulated a congestion game in which each player has a specific cost
function that depends on the congestion. In that study, it was shown that every
unweighted congestion game with player-specific cost functions admits at least one
equilibrium; however, this results may not be generalized to weighted congestion
games with player-specific cost functions in general. In addition, generally, even
unweighted congestion games with player-specific cost functions do not admit a
potential function. For routing games, in which a continuum of players route an
infinitesimal amount of flow, it was proved that a potential function exists if a
symmetry condition is satisfied for the cost functions (i.e., various classes of agents
bother or delight each other equally) [33, 35]. A class of necessary and sufficient
conditions for the existence of potential functions was presented in [36]. Conditions
for the (essential) uniqueness of the equilibrium in multi-class routing games were
also presented in [37, 38].

Motivated by the fact that the Nash equilibrium is generally inefficient, the
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price of anarchy (i.e., the worst-case ratio of the social welfare function for a Nash
equilibrium over the social welfare function for a socially optimal solution) of atomic
congestion games with linear latency functions was studied in [39]. Several studies
have proposed congestion taxes (also known as tolls) to improve the social cost
function when all the agents are equally sensitive to the proposed taxes [40–43] as
well as when they have different sensitivities [44–47]. For instance, in [47], tolls
were introduced to minimize the total travel time and the total travel cost (as
a bi-objective optimization problem). This setup was generalized in [45] to also
admit entities that own several agents (and wish to optimize the combined utility
of those agents). The idea of maximizing the reserve capacity of the network was
approached in [44]. A scenario in which the network is managed by several decision-
makers (with conflicting objectives) across various regions was discussed in [46]. The
authors of [25, 40, 41] presented congestion taxes so that the underlying congestion
game admits the social welfare as a potential function. This is certainly of interest
because it guarantees that the socially optimal decision is also a Nash equilibrium.
However, in those studies, the authors needed to introduce a congestion tax for all
the agents (and not only a subset of them).

1.3 Contributions
In this paper, we model the traffic flow at non-overlapping intervals of the day using
an atomic1 congestion game with two types of agents. The agents of the first type
are cars as well as trucks that do not have platooning equipments. For the sake of
brevity, we call all these agents cars. They optimize their utility, which is a sum of
the penalty for deviating from their preferred time for using the road, the average
velocity of the traffic flow along the road, and the congestion tax that they pay
for using the road at that time interval. The agents of the second type are trucks
equipped with platooning devices. For the sake of brevity, we call these agents
trucks. In addition to the above mentioned terms, they have an incentive for using
the road with other trucks (due to an increased chance for platooning and, hence,
reducing their fuel consumption).

We model the average velocity of the flow at each time interval as an affine
function of the number of the vehicles that are using the road at that time interval.
We use real traffic data from the northbound E4 highway from Lilla Essingen to
the end of Fredhällstunneln in Stockholm to validate this modeling assumption.

We determine a necessary condition for the existence of a potential function
for the introduced atomic congestion game with two types of agents and use this
condition to prove that in general the congestion game is not a potential game.
Therefore, we devise appropriate congestion taxes (specifically, a congestion taxing
policy for cars and a platooning subsidy for trucks) to guarantee the existence of a
potential function. Based on this result, we prove that the atomic congestion game
admits at least one pure strategy Nash equilibrium under the proposed congestion

1We use the term atomic to emphasize the fact that we are not dealing with a continuum of
players or fractional flows when modeling the traffic flow as a congestion game [48, 49].
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tax–subsidy policy. Equipped with these results, we use joint strategy fictitious
play and average strategy fictitious play to learn a Nash equilibrium. Intuitively,
we interpret the learning algorithm as the way drivers decide on a daily basis to
choose the time interval on which they are using the road by optimizing their utility
given the history of their actions. Iterating over days, the drivers’ decisions (i.e.,
the profile of the learning algorithm) converges almost surely to a pure strategy
Nash equilibrium. Note that the potential games are certainly not the only classes
of games for which variants of the fictitious play (e.g., joint strategy fictitious play)
may converge to an equilibrium. To mention a few example, the authors of [23, 50]
introduced ordinal potential games and weighted potential games as two families
of games for which the fictitious play converges in beliefs to a mixed strategy Nash
equilibrium. For (generalized) ordinal potential games, one may also deduce the
convergence of the joint strategy fictitious play to a pure strategy Nash equilib-
rium with probability one [40]. These families of games are certainly more general
than (exact) potential games. In this paper, as a starting point, we present neces-
sary conditions for the existence of (exact) potential functions as well as imposing
congestion taxes for guaranteeing the existence of such functions. Although con-
servative, this approach perhaps can be justified in the introduced problem due
to the existence of intuitive taxing and subsidy policies (see Subsection 3.2). A
viable direction for future work is to investigate necessary and sufficient conditions
so that a congestion game belongs to the category of ordinal or weighted poten-
tial games. In addition, as also mentioned earlier, congestion taxes were presented
in [25, 40, 41] so that the congestion game admits the social welfare as a potential
function. However, in contrast to the results of this paper, the authors of [40, 41]
introduced a congestion tax for all the agents (and not only a subset of them) to
improve the efficiency and considered homogeneous congestion games (with only
one type of agents).

Finally, using the parameters extracted from the real congestion data, we con-
struct a simulation setup to study the performance of the learning algorithms as well
as the properties of the Nash equilibrium. For instance, we study the robustness
to perturbations of the learning algorithm, e.g., accidents along the road, sudden
weather changes, or temporary road constructions. We also consider the case when
the drivers value their time differently, where the values are motivated by survey
data from Stockholm area [51].

1.4 Paper Organization

The rest of the paper is organized as follows. In Section 2, we formulate the
considered congestion game. We find a necessary condition of the existence of a
potential function in Section 3. In Sections 4 and 5, we respectively introduce the
joint strategy fictitious play and the average strategy fictitious play to learn a Nash
equilibrium of the congestion game. Finally, we present the simulations in Section 6
and conclude the paper in Section 7.



294 PAPER 8. STUDYING TRUCK PLATOONING INCENTIVES USING ...

1.5 Notation
Let R, Z, and N denote the sets of real, integer, and natural numbers, respectively.
Furthermore, let N0 = N ∪ {0}. We define JNK = {1, . . . , N} for any N ∈ N. In
this paper, all other sets are denoted by calligraphic letters such as R. We use |R|
to denote the cardinality of R. Finally, we define the characteristic function 1x=y
(1x≥y) to be equal one whenever x = y (x ≥ y) holds true and to be equal to zero
otherwise.

2 Game-Theoretic Model

We model the traffic flow at certain time intervals of the day on a given road using
an atomic congestion game. The agents in this congestion game are the vehicles
(or, rather the drivers of these vehicles) and their actions are the time intervals
that they choose to use the road at each day. Let us divide the time of the day into
R ∈ N non-overlapping intervals and denote each interval by ri for i ∈ JRK. The set
of all these intervals (i.e., agents’ actions) is denoted by R = {r1, r2, . . . , rR}. We
consider the case where the underlying congestion game is composed of two types
of agents. As specified in the introduction, we name the agents of the first type
cars and the agents of the second type trucks throughout the paper. We assume
N cars and M trucks are playing in this congestion game and denote the actions
of the cars and the trucks by z = {zi}Ni=1 and x = {xi}Mi=1, respectively. Let us
describe the utilities of the cars and the trucks in the following subsections.

2.1 Car Utility
Car i ∈ JNK maximizes its utility given by

Ui(zi, z−i, x) = ξc
i (zi, T c

i ) + vzi(z, x) + pc
i (z, x), (1)

where the mapping ξc
i : R × R → R describes the penalty for deviating from the

preferred time interval for using the road denoted by T c
i ∈ R (e.g., due to being

late for work or delivering goods), vzi(z, x) is the average velocity of the traffic flow
at time interval zi, and pc

i (z, x) is a potential congestion tax for using the road on
a specific time interval.

Following [25, 52, 53], we assume that vr(z, x) (i.e., the average velocity at time
interval r ∈ R) is linearly dependent on the road congestion

nr(z, x) =
N∑
`=1

1{z`=r} +
M∑
`=1

1{x`=r}, (2)

which is the total number of vehicles (both cars and trucks) that are using the road
at r ∈ R. Let us use real traffic data from sensors on the northbound E4 highway
in Stockholm from Lilla Essingen to the end of Fredhällstunneln (see Figure 1) to
validate this assumption. The measurements are extracted during October 1–15,
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Figure 1: The dashed black curve shows the segment of northbound E4 highway
between Lilla Essingen and Fredhällstunneln in Stockholm where we are using to
validate the model and extract reasonable parameters.

2012. Figure 2 illustrates the average velocity of the flow as a function of the
number of vehicles. As we can see, for up to 1000 vehicles, a linear relationship

vr(z, x) = anr(z, x) + b (3)

with a = −0.0110 and b = 84.9696 describes the data well. However, for higher
numbers of the vehicles, it fails to capture the behavior of around 20% of the data
(shown by the red dots in Figure 2). Note that some of these outlier measurements
can be caused by traffic accidents, sudden weather changes during the day, or
temporary road constructions. A viable direction for future work is to introduce
more complex velocity models in which the average velocity of the traffic flow may
depend on the number of vehicles in the neighboring time intervals in addition to
the current one. We may also need to separate the effect of cars and trucks as one
may expect heavier and larger vehicles to contribute more to the traffic congestion.
However, in this paper, we use the simple model presented in (3) and instead focus
on platooning incentives.

The choice of the penalty mappings ξc
i , i ∈ JNK, does not change the theoretical

results presented in the paper, but it can capture various models of the drivers.
For instance, following [25], we can use ξc

i (zi, T c
i ) = αc

i |zi−T c
i |, with scalar αc

i < 0,
to describe the case where the driver of car i is penalized by deviating from the
preferred time interval. With this function, the driver get penalized symmetrically
no matter if she uses the road sooner or later than T c

i . By increasing |αc
i |, she

becomes less flexible. Another penalty function is ξc
i (zi, T c

i ) = αc
i max(zi − T c

i , 0),
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Figure 2: Average velocity of the traffic flow as a function of the number of vehicles
that are entering the segment of northbound E4 highway between Lilla Essingen
and Fredhällstunneln for 15 min time intervals.

which penalizes the driver of car i only for being late. For the simulations in the
paper, we assume that all vehicles use the first penalty mapping.

2.2 Truck Utility
Truck j ∈ JMK maximizes its utility given by

Vj(xj , x−j , z) = ξt
j(xj , T t

j ) + vxj (z, x) + pt
i(z, x) + βvxj (z, x)g(mxj (x)), (4)

where, similar to the utilities of the cars, ξt
j(xj , T t

j ) is the penalty for deviating
from the preferred time T t

j for using the road, vxj (z, x) is the average velocity of
the traffic flow, and pt

i(z, x) is a potential congestion tax for using the road at time
interval xj . Trucks have an extra term βvxj (z, x)g(mxj (x)) in their utility because
of their benefit in using the road at the same time as the other trucks. Here,
g : JMK→ R is a nondecreasing function and mr(x) =

∑M
`=1 1{x`=r} is the number

of trucks that are using the road at time interval r ∈ R. The increased utility can
be justified by the fact that whenever there are many trucks on the road at the
same time interval, they can potentially collaborate to form platoons and thereby
increase the fuel efficiency. It should be noted that this extra utility is a function
of the average velocity of the flow since trucks cannot save a significant amount of
fuel through platooning whenever traveling at low velocities [9, 54]. The function
g : JMK → R describes the dependency of the platooning incentive on the number
of trucks that are using the road at that time interval. Again, the choice of this
function does not change the mathematical results presented in this paper, but it
can help us to capture the relationship between the fuel saving and the number of
the trucks on the road. For instance, g(mxj (x)) = mxj (x) shows that the vehicles
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can even benefit from a low number of trucks but g(mxj (x)) = mxj (x)1mxj (x)≥τ
describes the case where the trucks do not benefit until they reach a critical number
τ ∈ N. For the simulations, we use the first mapping.

Notice that in the utilities Ui in (1) and Vj in (4), we introduced congestion
taxes for cars and trucks. Later, they are used to ensure that the described game is
a potential game. Such a game admits at least one pure strategy Nash equilibrium
and we can use joint strategy fictitious play and average strategy fictitious play to
learn that equilibrium. A viable direction for future research could be to design
taxing policies so as to enforce a socially optimal behavior, such as an optimal
carbon emission profile, using mechanism design theory [55].

2.3 Congestion Game

Now, we are ready to define a congestion game with two types of players using
normal-form representation of strategic games [56, 57].

Definition 8.1 (Car–Truck Congestion Game): A car–truck congestion game
is defined as a tuple G = ((R)N+M

i=1 ; ((Ui)Ni=1, (Vj)Mj=1)), that is, a combination of
N +M players with action space (R)N+M

i=1 and utilities ((Ui)Ni=1, (Vj)Mj=1)).

A pure strategy Nash equilibrium for a car–truck congestion game is a pair
(z, x) ∈ RN ×RM such that

Ui(zi, z−i, x) ≥ Ui(z′i, z−i, x), ∀z′i ∈ R, i ∈ JNK,
Vj(xj , x−j , z) ≥ Vj(x′j , x−j , z), ∀x′j ∈ R, j ∈ JMK.

To prove the existence of a pure strategy Nash equilibrium or to use various learning
algorithms for finding an equilibrium, we focus on a subclass of games, namely, po-
tential games [23]. A car–truck congestion game is a potential game with potential
function Φ : RN ×RM → R if

Φ(x, zi, z−i)− Φ(x, z′i, z−i) = Ui(zi, z−i, x)− Ui(z′i, z−i, x), ∀i ∈ JNK,
Φ(xj , x−j , z)− Φ(x′j , x−j , z) = Vj(xj , x−j , z)− Vj(x′j , x−j , z), ∀j ∈ JMK.

With these definitions in hand, we are ready to present the results of the paper.

3 Existence of Potential Function

Atomic congestion games with one type of agents (corresponding to the case where
M = 0 or N = 0) are known to admit a potential function even without congestion
taxes [23, 25, 43]. In this section, we show that this property does not hold for
car–truck congestion games unless we devise an appropriate taxing scheme.
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3.1 Necessary Condition for the Existence of a Potential Function

Let Φ : RN × RM → R be a given mapping. Define

∆xj→x′jΦ(x, z) = Φ(x, z)− Φ(x′, z)

∆zi→z′iΦ(x, z) = Φ(x, z)− Φ(x, z′),

where x′ = (x′j , x−j) and z′ = (z′i, z−i). Using simple algebra, we can show that
the operators commute, i.e.,

∆zi→z′i∆xj→x′jΦ(x, z) = ∆xj→x′j∆zi→z′iΦ(x, z).

Now, we are ready to prove the following useful result.

Proposition 8.1 A car–truck congestion game admits a potential function only if

∆xi→x′j∆zi→z′iVj(z, x) = ∆zi→z′i∆xi→x′jUi(z, x),

for all i ∈ JNK and j ∈ JMK.

Proof: Let Φ(x, z) be a potential function for the congestion game. Define
x′ = (x′j , x−j) and z′ = (z′i, z−i). Then, it must satisfy

∆xj→x′jVj(x, z) = ∆xj→x′jΦ(x, z), (5)

for all z ∈ RN , x ∈ RM , and x′j ∈ R. Again, when noting that Φ(x, z) is a potential
function, we get

Φ(x, z) = Φ(x, z′) + ∆zi→z′iUi(z, x) (6a)
Φ(x′, z) = Φ(x′, z′) + ∆zi→z′iUi(z, x

′) (6b)

for all z ∈ RN , x ∈ RM , z′i ∈ R, and x′j ∈ R. Substituting (6) into (5) results in

∆xj→x′jVj(x, z)=Φ(x, z)− Φ(x′, z)

=∆xj→x′jΦ(x, z′) + ∆zi→z′iUi(z, x)−∆zi→z′iUi(z, x
′)

=∆xj→x′jΦ(x, z′)+∆zi→z′i∆xi→x′jUi(z, x)

=∆xj→x′jVj(x, z
′)+∆zi→z′i∆xi→x′jUi(z, x),

where the last equality follows from the definition of the potential function. There-
fore, we get the identity in the statement of the theorem.

This shows that it might not be possible to find a potential functions for the
congestion game with two types of players.
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Corollary 8.2 Let pc
i (z, x) = 0 for i ∈ JNK and pt

j(z, x) = 0 for j ∈ JMK. A
car–truck congestion game admits a potential function only if β = 0 or g is equal
to zero everywhere.

Proof: First, by simple algebraic manipulations, we prove the identity in

∆xi→x′j∆zi→z′iVj(z, x)
= ∆xi→x′j∆zi→z′i

(
ξt
j(xj , T t

j ) + vxj (z, x) + βvxj (z, x)g(mxj (x))
)

= ∆xi→x′j∆zi→z′i

(
vxj (z, x) + βvxj (z, x)g(mxj (x))

)
= ∆xi→x′j

(
vxj (z, x)−vxj (z′, x)+βvxj (z, x)g(mxj (x))−βvxj (z′, x)g(mxj (x))

)
= ∆xi→x′j

(
a[1xj=zi − 1xj=z′i ][1− βg(mxj (x))]

)
= a[1xj=zi − 1xj=z′i ][1− βg(mxj (x))]− a[1x′

j
=zi − 1x′

j
=z′

i
][1− βg(mx′

j
(x′))]

= a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i − 1x′

j
=zi ]

− aβ[1xj=zi − 1xj=z′i ]g(mxj (x)) + aβ[1x′
j
=zi − 1x′

j
=z′

i
]g(mx′

j
(x′))

= a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i − 1x′

j
=zi ]

+ aβ[1xj=z′i1x′j=zi − 1xj=zi1x′j=z′i ][1− 1zj=z′i ][g(mxj (x)) + g(mx′
j
(x′))]

(7)

Similarly, we can show that

∆zi→z′i∆xi→x′jUi(z, x) = a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i − 1x′

j
=zi ].

Therefore, following Proposition 8.1, the introduced congestion game admits a po-
tential function only if

β[1xj=z′i1x′j=zi − 1xj=zi1x′j=z′i ][1− 1zj=z′i ][g(mxj (x)) + g(mx′
j
(x′))] = 0

for all x, z and x′j , z′i. This is indeed only possible if β = 0 or if g is equal to zero
everywhere.

Potential games have many desirable attributes. For instance, these games al-
ways admit at least one pure strategy Nash equilibrium. In addition, many learning
algorithms, such as, joint strategy fictitious play, are known to extract a pure strat-
egy Nash equilibrium for potential games. Given these important properties, a
natural question that comes to mind is that whether it is possible to guarantee
the existence of a potential function by imposing appropriate congestion taxes. We
answer this question in the next subsection.

3.2 Imposing Taxes to Guarantee the Existence of a Potential
Function

In this subsection, we propose a taxing and a subsidy policy that guarantee the
existence of a potential function for the car–truck congestion game.



300 PAPER 8. STUDYING TRUCK PLATOONING INCENTIVES USING ...

Theorem 8.3 Let each car i ∈ JNK pay the congestion tax

pc
i (z, x) = aβ

mzi (x)∑
`=1

g(`), (8)

for using the road at time interval zi ∈ R. Then, the car–truck congestion game is
a potential game with the potential function

Φ(x, z) =
N∑
i=1

ξc
i (zi, T c

i ) +
M∑
j=1

ξt
j(xj , T t

j ) +
R∑
r=1

nr(x,z)∑
k=1

(ak + b)

+
R∑
r=1

β(anr(x, z) + b)
mr(x)∑
`=1

g(`)− aβ
R∑
r=1

mr(x)∑
`=1

`−1∑
k=1

g(k).

Furthermore, this game admits at least one pure strategy Nash equilibrium.

Proof: The proof of this lemma follows the same line of reasoning as in the
proof of Proposition 4.1 in [25]. First, we need to define the following notations

Φ1(x, z) =
N∑
i=1

ξc
i (zi, T c

i ) +
M∑
j=1

ξt
j(xj , T t

j ),

Φ2(x, z) =
R∑
r=1

nr(x,z)∑
k=1

(ak + b),

Φ3(x, z) =
R∑
r=1

β(anr(x, z) + b)
mr(x)∑
`=1

g(`),

Φ4(x, z) = −aβ
R∑
r=1

mr(x)∑
`=1

`−1∑
k=1

g(k).

Let us start by analyzing the trucks. If xj = x′j , the result trivially holds. Conse-
quently, we consider the case where xj 6= x′j , which results in

Φ(xj , x−j , z)− Φ(x′j , x−j , z) =
4∑
k=1

Φk(xj , x−j , z)− Φk(x′j , x−j , z).

We continue the proof by considering each term of this summation separately. For
the first term, clearly, we have

Φ1(xj , x−j , z)− Φ1(x′j , x−j , z) = ξt
j(xj , T t

j )− ξt
j(x′j , T t

j ).
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Let us define x′ = (x′j , x−j). For the second term, we have

Φ2(xj , x−j , z)− Φ2(x′j , x−j , z) =
R∑
r=1

nr(x,z)∑
k=1

(ak + b)−
R∑
r=1

nr(x′,z)∑
k=1

(ak + b)

=
nxj (x,z)∑
k=1

(ak + b) +

nx′
j
(x,z)∑
k=1

(ak + b)

−
nxj (x′,z)∑
k=1

(ak + b)−

nx′
j
(x′,z)∑
k=1

(ak + b),

where the second equality holds because of the fact that nr(x, z) = nr(x′, z) for all
r 6= xj , x

′
j . Note that

nxj (x′, z) = nxj (x, z)−1, nx′
j
(x, z) = nx′

j
(x′, z)−1, (9)

and as a result,

Φ2(xj , x−j , z)− Φ2(x′j , x−j , z) = (anxj (z, x) + b)− (anx′
j
(z, x′) + b).

For the third term, we get the identity in

Φ3(xj , x−j , z)− Φ3(x′j , x−j , z)

=
R∑
r=1

β(anr(x, z) + b)
mr(x)∑
`=1

g(`)−
R∑
r=1

β(anr(x′, z) + b)
mr(x′)∑
`=1

g(`)

= β(anxj (x, z) + b)
mxj (x)∑
`=1

g(`) + β(anx′
j
(x, z) + b)

mx′
j
(x)∑

`=1
g(`)

− β(anxj (x′, z) + b)
mxj (x′)∑
`=1

g(`)−β(anx′
j
(x′, z) + b)

mx′
j
(x′)∑

`=1
g(`)

= β(anxj (x, z) + b)g(mxj (x))− β(anx′
j
(x′, z) + b)g(mx′

j
(x′))

+ aβ

mxj (x)−1∑
`=1

g(`)− aβ

mx′
j
(x′)−1∑
`=1

g(`), (10)

where the last equality follows from using (9) and the fact thatmxj (x′) = mxj (x)−1
and mx′

j
(x) = mx′

j
(x′)− 1. Finally, using the same argument as in the case of the

second term and the third term, we get

Φ4(xj , x−j , z)− Φ4(x′j , x−j , z) = −aβ
mxj (x)−1∑

`=1
g(`) + aβ

mx′
j
(x′)−1∑
`=1

g(`).
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Combining all these differences, we get

Φ(xj , x−j , z)− Φ(x′j , x−j , z) =β(anxj (x, z) + b)g(mxj (x))
− β(anx′

j
(x′, z)+b)g(mx′

j
(x′))

+ ξt
j(xj , T t

j )− ξt
j(x′j , T t

j )
+ (anxj (z, x) + b)− (anx′

j
(z, x′) + b)

=Vj(xj , x−j , z)−Vj(x′j , x−j , z).

Now, let us prove this fact for the cars as well. If zi = z′i, the result trivially holds.
Thus, we investigate the case where zi 6= z′i. Similarly, we consider each term of
the summation separately. For the first term, we have

Φ1(x, zi, z−i)− Φ1(x, z′i, z−i) = ξc
i (zi, T c

i )− ξc
i (z′i, T c

i ).

We define the notation z′ = (z′i, z−i). Following a similar reasoning as in the case
of the trucks, for the second and the third terms, we get

Φ2(x, zi, z−i)− Φ2(x, z′i, z−i) = (anzi(z, x) + b)− (anz′
i
(z′, x) + b),

and

Φ3(x, zi, z−i)−Φ3(x, z′i, z−i) = aβ

mzi (x)∑
`=1

g(`)− aβ
mz′

i
(x)∑

`=1
g(`).

For the forth term, we get Φ4(x, zi, z−i)−Φ4(x, z′i, z−i) = 0 since this term is only
a function of x which is not changed. Again, combining all these differences, we get

Φ(x, zi, z−i)− Φ(x, z′i, z−i) = (anzi(z, x) + b)− (anz′
i
(z′, x) + b)

+ ξc
i (zi, T c

i )− ξc
i (z′i, T c

i )

+ aβ

mzi (x)∑
`=1

g(`)− aβ
mz′

i
(x)∑

`=1
g(`)

=Ui(zi, z−i, x)− Ui(z′i, z−i, x).

Finally, note that every potential game admits at least one pure strategy Nash
equilibrium [23].

Remark 8.1 Note the tax pc
i (z, x) grows quadratically with the number of the

trucks that are using the road at that time interval if the mapping g : JMK → R
is an affine function. Therefore, the congestion tax policy pc

i (z, x) in Theorem 8.3
forces the cars to avoid the time intervals that the trucks use to travel together.



3. EXISTENCE OF POTENTIAL FUNCTION 303

Instead of taxing the cars, we can also introduce a platooning subsidy for the
trucks to get a potential game.

Theorem 8.4 Let each truck j ∈ JMK receive the subsidy

pt
j(x, z) = β(v0 − (anxj (z, x) + b))mxj (x), (11)

for a given v0 ∈ R. Then, the car–truck congestion game is a potential game with
the potential function

Ψ(x, z) =
N∑
i=1

ξc
i (zi, T c

i ) +
M∑
j=1

ξt
j(xj , T t

j ) +
R∑
r=1

nr(x,z)∑
k=1

(ak + b) + βv0

R∑
r=1

mr(x)∑
`=1

g(`).

Furthermore, this game admits at least one pure strategy Nash equilibrium.

Proof: Let us start with trucks. Note that with the introduced policy, the
utility of truck j is equal

Vj(xj , x−j , z)=ξt
j(xj , T t

j )+vxj (z, x)+βv0g(mxj (x)).

Let us define x′ = (x′j , x−j). If xj = x′j , the result trivially holds. Therefore,
without loss of generality, we consider the case where xj 6= x′j . In what follows,
we examine each term in the cost function separately. First, we define Ψ1(x, z) =∑N
i=1 ξ

c
i (zi, T c

i ) +
∑M
j=1 ξ

t
j(xj , T t

j ). Now, it is easy to see that

Ψ1(x, z)−Ψ1(x′, z) = ξt
j(xj , T t

j )− ξt
j(x′j , T t

j ).

Second, we define Ψ2(x, z) =
∑R
r=1

∑nr(x,z)
k=1 (ak + b). For this term, we can show

that

Ψ2(x, z)−Ψ2(x′, z)=
R∑
r=1

nr(x,z)∑
k=1

(ak + b)−
R∑
r=1

nr(x′,z)∑
k=1

(ak + b)

=
nxj (x,z)∑
k=1

(ak + b)+

nx′
j
(x,z)∑
k=1

(ak + b)−
nxj (x′,z)∑
k=1

(ak + b)−

nx′
j
(x′,z)∑
k=1

(ak + b),

where the second equality holds because of the fact that nr(x, z) = nr(x′, z) for all
r 6= xj , x

′
j . Noticing that nxj (x′, z) = nxj (x, z) − 1 and nx′

j
(x, z) = nx′

j
(x′, z) − 1,

we know that

Ψ2(x, z)−Ψ2(x′, z) = (anxj (z, x) + b)− (anx′
j
(z, x′) + b).
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Finally, we define Ψ3(x, z) =
∑R
r=1

∑mr(x)
`=1 g(`). In this case, we can show that

Ψ3(x, z)−Ψ3(x′, z) =
R∑
r=1

mr(x)∑
`=1

g(`)−
R∑
r=1

mr(x′)∑
`=1

g(`)

=
mxj (x)∑
`=1

g(`) +

mx′
j
(x)∑

`=1
g(`)−

mxj (x′)∑
`=1

g(`)−

mx′
j
(x′)∑

`=1
g(`)

=g(mxj (x))− g(mx′
j
(x′)).

Therefore, we get

Ψ(x, z)−Ψ(x′, z) =Ψ1(x, z)−Ψ1(x′, z) + Ψ2(x, z)−Ψ2(x′, z)
+ βv0(Ψ3(x, z)−Ψ3(x′, z))

=ξt
j(xj , T t

j )− ξt
j(x′j , T t

j ) + vxj (x, z)− vx′j (x
′, z)

+ βv0(g(mxj (x))− g(mx′
j
(x′)))

=Vj(xj , x−j , z)− Vj(x′j , x−j , z).

The proof for cars follows the same line of reasoning.

Remark 8.2 Note that if v0 is greater than the average velocity of the flow, the
trucks get paid to use the road at the same time as their peers. This way the
government incentivizes the trucks to form platoons. This subsidy is technically
the difference between the amount of the fuel that the trucks would have saved if
they formed a platoon at velocity v0 instead of the actual average velocity of the
traffic flow anr(z, x)+b. Therefore, the trucks would benefit from traveling together
even at low velocities (which is a scenario where the trucks do not increase their
fuel efficiency significantly through platooning). However, if v0 is smaller than
the average velocity of the flow, we reduce the extra utility that the trucks would
receive from traveling together (and technically pt

j(x, z) becomes a tax rather than
a subsidy). Therefore, it becomes less likely for the trucks to stick together. To
emphasize the fact that we are willing to pay the trucks rather than taxing them
(and hence, dealing with the first scenario), we call pt

j(x, z) a subsidy.

4 Joint Strategy Fictitious Play

We start by briefly introducing the learning algorithm and, then, analyzing its
convergence.

4.1 Learning Algorithm



4. JOINT STRATEGY FICTITIOUS PLAY 305

Algorithm 3 Joint strategy fictitious play for learning a Nash equilibrium.
Require: p ∈ (0, 1)
Ensure: (x∗, z∗)
1: for t = 0, 1, . . . do
2: for i = 1, . . . , N do
3: Calculate z′i ∈ arg maxr∈R Ûi(r; t− 1)
4: if Ui(z′i, z−i(t− 1), x(t− 1)) ≤ Ui(zi(t− 1), z−i(t− 1), x(t− 1)) then
5: zi(t)← zi(t− 1)
6: else
7: With probability 1− p, zi(t)← zi(t− 1), otherwise zi(t)← z′i
8: end if
9: for j = 1, . . . ,M do
10: Calculate x′j ∈ arg maxr∈R V̂j(r; t− 1)
11: if Vj(z(t− 1), x′j , x−j(t− 1)) ≤ Vj(z(t− 1), xj(t− 1), x−j(t− 1)) then
12: xj(t)← xj(t− 1)
13: else
14: With probability 1− p, xj(t)← xj(t− 1), otherwise xj(t)← x′j
15: end if
16: end for
17: end for
18: end for

Assume that the agents follow the joint strategy fictitious play algorithm [40].
To do so, the agents calculate an average utility given the history of the actions.
At time step t ∈ N0, car i ∈ JNK computes Ûi(r; t) using the recursive equation

Ûi(r; t) = (1− λt)Ûi(r; t− 1) + λtUi(r, z−i(t), x(t)), (12)

with the initial condition Ûi(r;−1) = ξc
i (r, T c

i ) for all r ∈ R. In (12), λt ∈ (0, 1]
is a forgetting factor which captures the extent that the agents forget the actions
from the past. If λt = 1, the agents are myopic (i.e., only consider the actions from
the previous time step) while if λt = 1/t, the agents value the whole history at the
same level. Following the same approach, truck j ∈ JMK calculates V̂j(r; t) using
the recursive equation

V̂j(r; t) = (1− λt)V̂j(r; t− 1) + λtVj(r, x−j(t), z(t)),

with V̂j(r;−1) = ξt
j(r, T t

j ) for all r ∈ R. Algorithm 3 shows the joint strategy
fictitious play for the car–truck congestion game.

4.2 Convergence Analysis

Noting that with appropriate taxes the introduced congestion game is a potential
game, we can use the result of [40] to conclude the convergence of the learning
algorithm.
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Theorem 8.5 Let the action profile of the agents be generated by the joint strategy
fictitious play in Algorithm 3. Assume that λt = λ ∈ (0, 1) or λt = 1/t for all
t ∈ N. Then, this action profile almost surely converges to a pure strategy Nash
equilibrium of the car–truck congestion game, if either the cars pay the congestion
tax pc

i (z, x) in (8) or the trucks receive the platooning subsidy pt
j(x, z) in (11).

Proof: The proof is a consequence of combining Theorems 2.1 and 3.1 in [40]
with Theorems 8.3 and 8.4.

Note that the joint strategy fictitious play might be restrictive in some aspects.
For instance, all the agents must have access to all the individual decisions taken
by the other agents to calculate the average cost function. In the next section,
we adapt the average strategy fictitious play introduced in [25] as an alternative.
This learning algorithm requires instead a central node to broadcast the congestion
prediction (i.e., an average of all the players actions) for all time intervals per day.

5 Average Strategy Fictitious Play

First, we introduce the average strategy fictitious play and study its convergence
by extending parts of the proofs in [25].

5.1 Learning Algorithm

Before introducing the learning algorithm, we have to make the following standing
assumptions:

Assumption 8.1 The congestion tax policies satisfy

• pc
i (z, x), i ∈ JNK, is only a function of nzi(x, z),mzi(x);

• pt
j(x, z), j ∈ JMK, is only a function of nxj (x, z),mxj (x).

This assumption means that the congestion tax can only be function of the traffic
flow rather than the individual actions of the agents. The congestion taxing policy
that we introduced in the previous section satisfies this assumption. To emphasize
this fact, from now on, we write pc

i (nzi(x, z),mzi(x)) and pt
j(nxj (x, z),mxj (x)) with

some abuse of notation.
Now, we can introduce the average strategy fictitious play. To initialize the

algorithm, we let the agents pick an arbitrary action from the set R at the first
time step. We assume that there exists a central node2 that can observe the traffic

2This central node is assumed to be a not-for-profit organization. Therefore, it is not trying to
optimize its income or loss (i.e., the summation of the received taxes or the distributed subsidies)
and, hence, it would not strategically deviate from the intended algorithm. Certainly, introducing
a mechanism with profitable organizations as a central node can be a viable avenue for future
research (to attract the private sector for implementing this part).
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flow at each time interval. This central node uses the following recursive update
laws to calculate the average number of the cars and trucks in each time interval

n̄c
r(t) = (1− λ)n̄c

r(t− 1) + λ

N∑
`=1

1{z`(t)=r},

n̄t
r(t) = (1− λ)n̄t

r(t− 1) + λ

M∑
`=1

1{x`(t)=r},

with n̄c
r(0) =

∑N
`=1 1{z`(0)=r} and n̄t

r(0) =
∑M
`=1 1{x`(0)=r} for all r ∈ R. The

superscripts c and t show that the aforementioned property is related to the cars
or the trucks, respectively. In these recursive update laws, we should choose the
forgetting factor λ ∈ (0, 1) to capture the extent with which we value the congestion
information from the past. We can think of the numbers n̄c

r(t) and n̄t
r(t) as the

forecasts that the central node (e.g., the department of transportation, the radio
station, etc) announces on a day-to-day basis about the traffic flow for each time
interval of the day. These values have a memory to remember the congestion in
earlier days and get updated based on the actual observation of the traffic flow
every midnight.

Additionally, car i ∈ JNK and truck j ∈ JMK keep track of the average number
of times that they have chosen r ∈ R following the recursive update laws

w̄c
r,i(t) = (1− λ)w̄c

r,i(t− 1) + λ1{zi(t)=r},
w̄t
r,j(t) = (1− λ)w̄t

r,j(t− 1) + λ1{xj(t)=r},

with w̄c
r,i(0) = 1{zi(0)=r} and w̄t

r,j(0) = 1{xj(0)=r} for all r ∈ R. Finally, for all
i ∈ JNK and j ∈ JMK, we define the new “average” cost functions in

Ṽj(r; t) =[a(n̄c
r(t) + n̄t

r(t)− w̄t
r,j(t) + 1) + b]

+ β[a(n̄c
r(t) + n̄t

r(t)− w̄t
r,j(t) + 1) + b]g(n̄t

r(t)− w̄t
r,j(t) + 1)

+ ξt
j(r, T t

j ) + pt
j(n̄c

r(t) + n̄t
r(t)− w̄t

r,j(t) + 1, n̄t
r(t)− w̄t

r,j(t) + 1), (13a)
Ũi(r; t) =ξc

i (r, T c
i ) + [a(n̄c

r(t) + n̄t
r(t)− w̄c

r,i(t) + 1) + b]
+ pc

i (n̄c
r(t) + n̄t

r(t)− w̄c
r,i(t) + 1, n̄t

r(t)). (13b)

Now, if we follow Algorithm 4, we expect to converge to a Nash equilibrium.

5.2 Convergence Analysis
First, we need to prove an intermediate lemma which shows that if Algorithm 4
reaches a Nash equilibrium, it stays there forever.
Lemma 8.6 Let each truck j ∈ JMK receive the subsidy

pt
j(x, z) = β(v0 − (anxj (z, x) + b))mxj (x),

for a given v0 ∈ R. If x(t) and z(t), generated by Algorithm 4, is a pure strategy
Nash equilibrium, and zi(t) ∈ arg maxr∈R Ũi(r; t − 1) for all i ∈ JNK and xj(t) ∈
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Algorithm 4 Average strategy fictitious play for learning a Nash equilibrium.
Require: p ∈ (0, 1)
Ensure: (x∗, z∗)
1: for t = 1, 2, . . . do
2: for i = 1, . . . , N do
3: Calculate z′i ∈ arg maxr∈R Ũi(r; t− 1)
4: if Ui(z′i, z−i(t− 1), x(t− 1)) ≤ Ui(zi(t− 1), z−i(t− 1), x(t− 1)) then
5: zi(t)← zi(t− 1)
6: else
7: With probability 1− p, zi(t)← zi(t− 1), otherwise zi(t)← z′i
8: end if
9: for j = 1, . . . ,M do
10: Calculate x′j ∈ arg maxr∈R Ṽj(r; t− 1)
11: if Vj(z(t− 1), x′j , x−j(t− 1)) ≤ Vj(z(t− 1), xj(t− 1), x−j(t− 1)) then
12: xj(t)← xj(t− 1)
13: else
14: With probability 1− p, xj(t)← xj(t− 1), otherwise xj(t)← x′j
15: end if
16: end for
17: end for
18: end for

arg maxr∈R Ṽj(r; t − 1) for all j ∈ JMK, then x(t′) = x(t) and z(t′) = z(t) for all
t′ ≥ t.

Proof: The proof of this lemma follows the same line of reasoning as in the
proof of Proposition 4.2 in [25]. Here, we only prove the results for the trucks as
the proof for the cars is technically the same. First, note that for all r ∈ R, we get

n̄c
r(t) + n̄t

r(t)− w̄t
r(t)=(1−λ)n̄c

r(t− 1)+λ
N∑
`=1

1{z`(t)=r}

+(1−λ)n̄t
r(t− 1)+λ

M∑
`=1

1{x`(t)=r}

− (1− λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

=(1−λ)(n̄c
r(t− 1)+n̄t

r(t− 1)−w̄t
r(t− 1))

+λ(nr(x(t), z(t))−1{xj(t)=r}), (14a)

n̄t
r(t)− w̄t

r,j(t) = (1− λ)n̄t
r(t− 1) + λ

M∑
`=1

1{x`(t)=r}

− (1− λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

= (1− λ)(n̄t
r(t− 1)− w̄t

r,j(t− 1))
+ λ(mr(x(t))− 1{xj(t)=r}). (14b)
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Now, using these update laws and the proposed subsidy policy in (11), we get

Ṽj(r; t) = ξt
j(r, T t

j ) + a(n̄c
r(t) + n̄t

r(t)− w̄t
r(t) + 1)

+ b+ βv0(n̄t
r(t)− w̄t

r,j(t) + 1)
= ξt

j(r, T t
j ) + a(1− λ)(n̄c

r(t− 1) + n̄t
r(t− 1)− w̄t

r(t− 1))
+a(λ(nr(x(t), z(t))−1{xj(t)=r})+1)
+ b+ βv0(1− λ)(n̄t

r(t− 1)− w̄t
r,j(t− 1))

+ βv0(λ(mr(x(t))− 1{xj(t)=r}) + 1)
= (1− λ)Ṽj(r; t− 1) + λVj(r, x−j(t), z(t)).

Therefore, we can prove that

Ṽj(xj(t);t)=(1−λ)Ṽj(xj(t); t− 1)+λVj(xj(t), x−j(t),z(t))
≥(1−λ)Ṽj(r; t− 1)+λVj(r, x−j(t), z(t))
=Ṽj(r; t)

for any r ∈ R, where the inequality is direct consequence of the fact that the pair
x(t) and z(t) is a pure strategy Nash equilibrium and xj(t) ∈ arg maxr∈R Ṽj(r; t−1)
for all j ∈ JMK. Thus, xj(t) ∈ arg maxr∈R Ṽj(r; t) and as a result, we get xj(t+1) =
xj(t) (following Algorithm 4). Now, using a simple mathematical induction, we can
show xj(t+ k) = xj(t) for all k ∈ N.

Theorem 8.7 Let the action profile of the agents be generated by the average strat-
egy fictitious play in Algorithm 4. Then, this action profile almost surely converges
to a pure strategy Nash equilibrium of the car–truck congestion game, if the trucks
receive the platooning subsidy pt

j(x, z) in (11).

Proof: The proof follows from using Theorem 8.4 and Lemma 8.6 in the proof
of Theorem 4.1 in [25].

6 Numerical Example

Let us assume that N = 10000 cars and M = 100 trucks are using the segment of
the highway illustrated in Figure 1 from 7:00am to 9:00am on a daily basis. We
divide the time horizon into eight equal non-overlapping intervals. Hence, we fix the
action set as R = {1, . . . , 8}, where each number represents an interval of 15min.
Let T c

i , i ∈ JNK, be randomly chosen from the set R using the discrete distribution

P{T c
i = n} =

 1/6, n = 2, 4,
1/4, n = 3,
1/12, otherwise.
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Figure 3: nr(x(t), z(t)), r ∈ R, versus the iteration number for β = 10−3 when
using the joint strategy fictitious play in Algorithm 3 with p = 0.4 and λt = 3×10−2

for all t ∈ N0.
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Figure 4: Number of the vehicles in each time interval for β = 10−3 when using
the joint strategy fictitious play in Algorithm 3 with p = 0.4 and λt = 3× 10−2 for
all t ∈ N0.

Let us also use a similar probability distribution to extract T t
j , j ∈ JMK. Hence, we

consider the case where the drivers statistically prefer to use the road at r = 3 which
corresponds to 7:30am to 7:45am. Let αc

i , i ∈ JNK, and αt
j , j ∈ JMK, be randomly

generated following a uniform distribution within the interval [−7.5,−2.5]. Finally,
let a = −0.0110 and b = 84.9696 as discussed in Section 2.
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Figure 6: Number of the vehicles and the average velocity of the traffic flow in each
time interval for the case where the drivers neglect the congestion in their decision
making (blue) and for the learned pure strategy Nash equilibrium (red).

6.1 Learning Algorithm Performance

In this subsection, we start by simulating the joint strategy fictitious play in Algo-
rithm 3. Let us fix β = 10−3, p = 0.4, and λt = 3 × 10−2 for all t ∈ N0. Figure 3
illustrates the number of the vehicles (both cars and trucks) that are using a spe-
cific time interval to commute nr(x(t), z(t)), r ∈ R, as a function of the iteration
number. As can be seen in this figure, the learning algorithm converges to a pure
strategy Nash equilibrium in this example relatively fast3. Figure 4 shows the evo-

3Recall that there are |R|M+N possible action combinations in a car–truck congestion game.
Therefore, in this example, we have 810100 ' 109100 possible action combinations. To put this
number into perspective, recall that there are around 1080 atoms in the visible universe.
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lution of the traffic distribution. Figure 5 shows the number of trucks mr(x(t)),
r ∈ R, that are using the road on various time intervals. For instance, at the
learned Nash equilibrium, thirty trucks use the time interval 7:45am to 8:00am
while at the same time, most of them avoid using 7:15am to 7:30am because it is
highly congested (and they would not save much fuel if they commute at this time).

6.2 Nash Equilibrium Efficiency

Figure 6 shows the number of the vehicles in each time interval and the correspond-
ing average velocity in that time interval. The blue color denotes the case where
the drivers do not consider the congestion in their decision making; i.e., they com-
mute whenever pleases them, zi = T c

i for all i ∈ JNK and xj = T t
j for all j ∈ JMK.

The red color denotes the case where the drivers implement the pure strategy Nash
equilibrium that they have learned using Algorithm 3. As we can see in this figure,
the proposed congestion game reduces the average commuting time (increases the
average velocity). Following [58], we can define the social cost

S(x, z) = min
r∈R

vr(z, x)

= min
r∈R

anr(x, z) + b

= a(max
r∈R

nr(x, z)) + b,

where the last equality holds because of the fact that a < 0. This social cost is
the worst-case average velocity of the traffic flow4. Another definition of social cost
could be the total fuel consumption or the overall carbon emission. In a utopia,
the government should be able to implement a global solution of the optimization
problem

(x•, z•) ∈ arg max
(z,x)∈RN×RM

S(x, z),

to achieve the lowest congestion at all time intervals. However, this solution can-
not be implemented in a society with strategic (selfish) agents since they have no
incentive for following a socially optimal decision (x•, z•). Note that since a < 0,
we have

(x•, z•) ∈ arg max
(z,x)∈RN×RM

min
r∈R

anr(x, z) + b

∈ arg min
(z,x)∈RN×RM

max
r∈R

nr(x, z),

4This cost function is an example of a Rawlsian social cost function (i.e., the worst-case cost
function of the players). Another possible choice of social cost function is a utilitarian social cost
function (i.e., summation of the individual cost functions of all the players); see [59, p. 413] for
more information regarding the difference between these two categories of social cost functions.
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and as a result, we get

S(x•, z•) = a

⌈
N +M

|R|

⌉
+ b

= 71.0766 km/h.

Therefore, we have
S(x•, z•)
S(x∗, z∗) = 1.1048,

which shows that the acquired pure strategy Nash equilibrium (x∗, z∗) is not ef-
ficient with respect to the introduced welfare function5. However, it is somewhat
better than the case where the drivers do not consider the congestion in their de-
cision making (i.e. they travel whenever pleases them) as

S(x•, z•)
S({T t

j }Mj=1, {T c
i }Ni=1)

= 1.2330.

6.3 Robustness of the Learning Algorithm
Let us now consider the case where on the fiftieth day of learning (i.e., iteration
t = 50) an unexpected behavior (e.g., a traffic accident) significantly decreases the
average velocity of the traffic flow during 7:15am and 8:00am (i.e., for r = 2, 3, 4).
To reflect this matter in the simulations, we assume that on the fiftieth iteration,
the average velocity for r = 2, 3, 4 is given by (anr(x(t), z(t)) + b)/10. Figure 7
illustrates the number of vehicles that are using a specific time interval to commute
nr(x(t), z(t)), r ∈ R, as a function of the iteration numbers. Note that there
is a sudden drop in the number of the vehicles that are using the time intervals
corresponding to r = 2, 3, 4 for a while (around twenty iterations) after the accident.
However, the learning process recovers the Nash equilibrium after another fifty
iterations.

6.4 Effect of the Fuel-Saving Coefficient
In this subsection, we aim at illustrating the effect of the fuel-saving coefficient β on
the behavior of the trucks. We perform all the simulations using the joint strategy
fictitious play introduced in Algorithm 3 with p = 0.4 and λt = 3 × 10−2 for all
t ∈ N0. Figure 8 illustrates the number of trucks for the learned Nash equilibrium
at different time intervals for various choices of the coefficient β. As we expect,
when β = 0, the trucks are reluctant to platoon (but instead stick to the time that
favors them the most). However, as we increase the coefficient β, a higher number
of trucks drive at the same time interval. Note that for β = 4× 10−3, all hundred
trucks use the road during exactly one time interval (i.e, 8:00am to 8:15am).

5It is worth mentioning that if we choose the potential function Φ in Theorem 8.3 as the social
welfare function, the learned Nash equilibrium is indeed efficient since Algorith, 3 results in a
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Figure 8: Number of the trucks in each time interval for various choices of the
coefficient β.

6.5 Drivers Having Different Time Values

In 2001, the consulting firm Inregia in Sweden, by the request of Swedish Institute
for Transport and Communications Analysis, performed a survey to estimate the
value of time for the road users in Stockholm [35, 51]. This study showed that
various groups of people value their time differently. According to the study, drivers
valued time as 0.98, 3.30, and 0.19 SEK/min for work and school commuting trips,
business trips, and other trips, respectively [35, 51]. Let us include this effect in
the introduced congestion game setup. Assume that in the utility of car i ∈ JNK,

local maximizer of this potential function. However, such a choice does not have any practical
implications.
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Figure 9: mr(x(t)), r ∈ R, versus the iteration number for the case where the
drivers value their time differently.

we set the term

pc
i (z, x) = δ−1

i

aβ mzi (x)∑
`=1

g(`)

,
where δi > 0 is the value of time for the driver of car i. For work and school
commuting trips, we scale the value of time to δi = 1.00. Therefore, we get δi =
3.37 and δi = 0.19 for business trips and other trips, respectively. Now, allow
us to randomly distribute the cars into three groups of work and school trips,
business trips, and other trips with probabilities 0.754, 0.036, 0.210, respectively,
as suggested in [35]. Figure 9 shows the number of trucks in each time interval as
a function of the iteration number in this case. Comparing with Figure 5, we can
clearly see that in this example, the difference in the value of time has not changed
the behavior of trucks (certainly in the Nash equilibrium, but the transient response
is different). Figure 10 shows the number of the cars in each time interval for the
case where the drivers value their time differently subtracted by number of the cars
in each time interval for the case where the drivers value their time equally. Clearly,
the cars that value their time the most, or equivalently, the ones that are willing
to pay higher congestion taxes (i.e., δi = 1.00, 3.37), can move to the time interval
where thirty trucks are traveling. However, the cars that do not value their time
much (i.e., δi = 0.19) switch to a less expensive alternative.

6.6 Trucks with and Without Platooning Equipment
Few trucks are currently fitted with platooning equipments. In this subsection,
we try to understand the influence of this matter on the properties of the learned
Nash equilibrium. To illustrate the effect of trucks without platooning equipment,
let us consider two types of trucks where the first type can indeed participate in
platoons and the second type does not have the necessary equipments for doing
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Figure 10: Number of the cars in each time interval for the case where the drivers
value their time differently subtracted by number of the cars in each time interval
for the case where their drivers value the time equally.
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Figure 11: Number of the vehicles in each time interval for the learned pure strategy
Nash equilibrium for various choices of M/(M +N).

so. We count the second type of trucks as ordinary cars since they do not benefit
from traveling at the same time interval as the other trucks. Hence, N shows the
number of ordinary cars together with the trucks without platooning equipment
and M denotes the number of trucks that can potentially participate in forming
the platoons. We fix N + M = 10000. Figure 11 illustrates the number of the
trucks that have platooning equipment in each time interval for various ratios of
M/(M + N). Evidently, the number of the trucks (with platooning equipment)
in most of the time intervals grows linearly with M/(M + N) (as we expect since
there are more trucks). However, some of the intervals, such as, 7:30am to 7:45am
become less favorable (as they are highly congested) and the trucks in these intervals
completely move to their neighboring intervals as M/(M +N) increases.



6. NUMERICAL EXAMPLE 317

0 50 100 150 200 250
500

1000

1500

2000

2500

3000

3500

n
r
(x
(t
),
z
(t
))

Iterations (t)

 

 
7:00am−7:15am
7:15am−7:30am
7:30am−7:45am
7:45am−8:00am
8:00am−8:15am
8:15am−8:30am
8:30am−8:45am
8:45am−9:00am

Figure 12: nr(x(t), z(t)), r ∈ R, versus the iteration number when the congestion
tax is updated with a delay of D = 30 days.

6.7 Announcing Congestion Taxes in Advance
A drawback of the presented formulation is that the congestion taxes are dynamic
and must be calculated (and enforced) instantly based on the number of the vehicles
in each time interval. Although dynamic congestion taxing has been implemented
on several occasions (e.g., San Diego I-15 High-Occupancy Toll Lanes in which
the tolls vary dynamically with the level of congestion [60]), they proved to be
controversial (or, cumbersome to understand for the drivers at the least). Therefore,
one might consider the case in which the tolls for day t+D are announced at the
end of day t for all t ∈ N0 (so that the drivers have time to digest this information
and act accordingly). To simulate such a scenario, we note that the congestion tax
pc
i (t) that car i ∈ JNK must pay for using the road at time interval zi(t) ∈ R on

iteration t ∈ N0 is equal

pc
i (t) =

{
aβ
∑mzi(t)(x(t−D))
`=1 g(`), t > D,

0, otherwise.

Figure 12 illustrates the number of the vehicles for each time interval nr(x(t), z(t)),
r ∈ R, versus the iteration number when the congestion tax is updated with a delay
of D = 30 days. Evidently, there are more oscillations in comparison to Figure 3,
however, the algorithm converges rapidly to a pure strategy Nash equilibrium.

6.8 Average Strategy Fictitious Play
In this subsection, we use the average strategy fictitious play with β = 10−3, λ =
3× 10−2, and p = 0.4. We also implement the platooning subsidy in Theorem 8.4
with v0 = 85. Figure 13 illustrates nr(x(t), z(t)), r ∈ R, versus the iteration
number. The proposed algorithm clearly converges to a Nash equilibrium relatively
fast.



318 PAPER 8. STUDYING TRUCK PLATOONING INCENTIVES USING ...

0 20 40 60 80 100 120 140
500

1000

1500

2000

2500

3000

3500

n
r
(x
(t
),
z
(t
))

Iterations (t)

 

 
7:00am−7:15am
7:15am−7:30am
7:30am−7:45am
7:45am−8:00am
8:00am−8:15am
8:15am−8:30am
8:30am−8:45am
8:45am−9:00am

Figure 13: nr(x(t), z(t)), r ∈ R, versus the iteration number for β = 10−3 and
v0 = 85 when using the average strategy fictitious play in Algorithm 4.

7 Conclusions and Future Work

We introduced a model for traffic flow on a specific road at various time intervals
per day using an atomic congestion game with two types of agents (namely, cars
and trucks). Cars only optimize their trade-off between using the road at the
time they prefer, the average velocity of the traffic flow, and the congestion tax
they are paying. However, trucks benefit from using the road at the same time as
the other trucks. We motivated this extra utility using an increased possibility of
platooning with the other trucks and as a result, saving fuel. We used congestion
data from Stockholm to validate the linear relationship between the average velocity
of commuting and the number of the vehicles that are using the road at that time.
We devised appropriate tax or subsidy policies to create a potential game. Then,
we used the joint strategy fictitious play and the average strategy fictitious play to
learn a pure strategy Nash equilibrium of this game. We conducted a comprehensive
simulation study to analyze the effect of different factors on the properties of the
learned Nash equilibrium. As a future work, we can consider using mechanism
design tools to enforce a socially optimal solution, such as, an optimal carbon
emission profile, through appropriate congestion tax policy. Finally, in this paper,
we did not consider the routing aspects of the problem. It would be of great interest
in future research to combine the departure-time selection and the route selection
problems in the context of understanding the platooning incentives.
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Stochastic Sensor Scheduling for Networked Control
Systems
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Abstract–Optimal sensor scheduling with applications to networked estimation and
control systems is considered. We model sensor measurement and transmission instances
using jumps between states of a continuous-time Markov chain. We introduce a cost
function for this Markov chain as the summation of terms depending on the average
sampling frequencies of the subsystems and the effort needed for changing the parameters
of the underlying Markov chain. By minimizing this cost function through extending
Brockett’s recent approach to optimal control of Markov chains, we extract an optimal
scheduling policy to fairly allocate the network resources among the control loops. We
study the statistical properties of this scheduling policy in order to compute upper bounds
for the closed-loop performance of the networked system, where several decoupled scalar
subsystems are connected to their corresponding estimator or controller through a shared
communication medium. We generalize the estimation results to observable subsystems
of arbitrary order. Finally, we illustrate the developed results numerically on a networked
system composed of several decoupled water tanks.
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1 Introduction

1.1 Motivation

Emerging large-scale control applications in smart infrastructures [1], intelligent
transportation systems [2], aerospace systems [3], and power grids [4], are typically
implemented over a shared communication medium. Figure 1 illustrates an exam-
ple of such a networked system, where L decoupled subsystems are connected to
their subcontrollers over a wireless communication network. A set of sensors in
each subsystem sample its state and transmit the measurements over the wireless
network to the corresponding subcontroller. Then, the subcontroller calculates an
actuation signal (based on the transmitted observation history) and directly applies
it to the subsystem. Unfortunately, traditional digital control theory mostly results
in conservative networked controllers because the available methods often assume
that the sampling is done periodically with a fixed rate [5, 6]. When utilizing these
periodic sampling methods, the network manager should allocate communication
instances (according to the fixed sampling rates) to each control loop considering
the worst-case possible scenario, that is, the maximum number of active control
loops. In a large control system with thousands of control loops, fixed scheduling
of communication instances imposes major constraints because network resources
are allocated even if a particular control loop is not active at the moment. This
restriction is more evident in ad-hoc networked control systems where many control
loops may join or leave the network or switch between active and inactive states.
Therefore, we need a scheduling method to set the sampling rates of the individual
control loops adaptively according to their requirements and the overall network re-
sources. We address this problem in this paper by introducing an optimal stochastic
sensor scheduling scheme.

1.2 Related Studies

In networked control systems, communication resources need to be efficiently shared
between multiple control loops in order to guarantee a good closed-loop perfor-
mance. Despite that communication resources in large networks almost always are
varying over time due to the need from the individual users and physical com-
munication constraints, the early networked control system literature focused on
situations with fixed communication constraints; e.g., bit-rate constraints [7–10]
and packet loss [11–14]. Only recently, some studies have targeted the problem of
integrated resource allocation and feedback control; e.g., [15–20].

The problem of sharing a common communication medium or processing unit
between several users is a well-known problem in computer science, wireless commu-
nication, and networked control [21–24]. For instance, the authors in [25] proposed
a scheduler to allocate time slots between several users over a long horizon. In
that scheduler, the designer must first manually assign shares (of a communication
medium or processing unit) that an individual user should receive. Then, each
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user achieves its pre-assigned share by means of probabilistic or deterministic al-
gorithms [25, 26]. The authors in [27, 28] proved that implementing the task with
the earliest deadline achieves the optimum latency in case of both synchronous and
asynchronous job arrivals. In [29], a scheduling policy based on static priority as-
signment to the tasks was introduced. Many studies in communication literature
have also considered the problem of developing protocols in order to avoid the inter-
ference between several information sources when using a common communication
medium. Examples of such protocols are both time-division and frequency-division
multiple access [30, 31]. Contrary to all these studies, in this paper, we auto-
matically determine the communication instances (and, equivalently, the sampling
rates) of the subsystems in a networked system based on the number of active con-
trol loops at any given moment. We use a continuous-time Markov chain to model
the optimal scheduling policy.

Markov chains are very convenient tools in control and communication [32,
33]. Markov jump linear systems with underlying parameters switching according
to a given Markov chain has been studied in the control literature [34–37]. The
problem of controlled Markov chains has always been actively pursued [38–41]. In
a recent study by Brockett [42], an explicit solution to the problem of optimal
control of observable continuous-time Markov chains for a class of quadratic cost
functions was presented. In that paper, the underlying continuous-time Markov
chain was described using the so-called unit vector representation [42, 43]. Then,
the finite horizon problem and its generalization to infinite horizon cost functions
were considered. We extend that result to derive the optimal scheduling policy in
this paper.

In the study [44], the authors developed a stochastic sensor scheduling pol-
icy using Markov chains. Contrary to this paper, they considered a discrete-time
Markov chain to get a numerically tractable algorithm for optimal sensor schedul-
ing. The algorithm in [44] uses one of the sensors at each time step while here, the
continuous-time Markov chain can rest in one of its states to avoid sampling any
of the sensors. Furthermore, the cost function in [44] was not written explicitly in
terms of the Markov chain parameters, but instead it was based on the networked
system performance when using a Markov chain for sampling the sensors. How-
ever, our proposed scheduling policy results in a separation between designing the
Markov chain parameters and networked system, which enables us to describe the
cost function needed for deriving our optimal sensor scheduling policy only in terms
of the Markov chain parameters.

1.3 Main Contributions

The objective of the paper is to find a dynamic scheduling policy to fairly allo-
cate the network resources between the subsystems in a networked system such as
the one in Figure 1. Specifically, we employ a continuous-time Markov chain for
scheduling the sensor measurement and transmission instances. We use time in-
stances of the jumps between states of this continuous-time Markov chain to model
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Figure 2: Flow diagram of the continuous-time Markov chain used for modeling
the proposed stochastic scheduling policy.

the sampling instances; i.e., whenever there is a jump from an idle state in the
Markov chain to a state that represent a subsystem in the networked system, we
sample that particular subsystem and transmit its state measurement across the
shared communication network to the corresponding subcontroller. Figure 2 illus-
trates the flow diagram of the proposed Markov chain. Every time that a jump
from the idle node I to node S`, 1 ≤ ` ≤ L, occurs in this continuous-time Markov
chain, we sample subsystem ` and send its state measurement to subcontroller `.
The idle state I helps to tune the sampling rates of the subsystems independently.
As an approximation of the wireless communication network, we assume that the
sampling and communication are instantaneous; i.e., the sampling and transmis-
sion delays are negligible in comparison to the subsystems response time. We still
want to limit the amount of communication per time unit to reduce the energy
consumption and network resources.

We mathematically model the described continuous-time Markov chain using
unit vector representation [42, 43]. We introduce a cost function that is a combi-
nation of the average sampling frequencies of the subsystems (i.e., the average fre-
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quency of the jumps between the idle state and the rest of the states in the Markov
chain) and the effort needed for changing the scheduling policy (i.e., changing the
underlying Markov chain parameters). We expand the results presented in [42] to
minimize the cost function over both finite and infinite horizons. Doing so, we find
an explicit minimizer of the cost function and develop the optimal scheduling policy
accordingly. This policy fairly allocates sampling instances among the sensors in
the networked system. The proposed optimal scheduling policy works particularly
well for ad-hoc sensor networks since we can easily accommodate for the changes
in the network configuration by adding an extra state to the Markov chain (and,
in turn, by adding an extra term to the cost function) whenever a new sensor be-
comes active and by removing a state from the Markov chain (and, in turn, by
removing the corresponding term from the cost function) whenever a sensor be-
comes inactive. The idea of dynamic peer participation (or churn) in peer-to-peer
networks have been extensively studied in the communication literature [45, 46].
However, not much attention has been paid to this problem for networked control
and estimation.

Later, we focus on networked estimation as an application of the proposed
stochastic sensor scheduling policy. We start by studying a networked system com-
posed of several scalar subsystems and calculate an explicit upper bound for the
estimation error variance as a function of the statistics of the measurement noise
and the scheduling policy. The statistics of the scheduling policy are implicitly
dependent on the cost function. Hence, we can achieve the required level of perfor-
mance by finely tuning the cost function design parameters. We generalize these
estimation results to higher-order subsystems when noisy state measurements of the
subsystems are available. In the case where noisy output measurements of the sub-
systems are available, we derive an estimator based on the discrete-time Kalman
filter and calculate an upper bound for the variance of its error given a specific
sequence of sampling instances. Lastly, we consider networked control as an ap-
plication of the proposed sensor scheduling policy. We assume that the networked
control system is composed of scalar subsystems that are in feedback interconnec-
tion with impulsive controllers (i.e., controllers that ideally reset the state of the
system whenever a new measurement arrives). We find an upper bound for the
closed-loop performance of the subsystems as a function of the statistics of the
measurement noise and the scheduling policy. We generalize this result to pulse
and exponential controllers.

1.4 Paper Outline

The rest of the paper is organized as follows. In Section 2, we introduce the opti-
mal stochastic scheduling policy and calculate its statistics. We apply the proposed
stochastic scheduling policy to networked estimation and control systems in Sec-
tions 3 and 4, respectively. In Section 5, we illustrate the developed results numer-
ically on a networked system composed of several decoupled water tanks. Finally,
we present the conclusions and directions for future research in Section 6.
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1.5 Notation
The sets of integer and real numbers are denoted by Z and R, respectively. We use
O and E to denote the sets of odd and even numbers. For any n ∈ Z and x ∈ R,
we define Z>(≥)n = {m ∈ Z | m > (≥)n} and R>(≥)x = {y ∈ R | y > (≥)x},
respectively. We use calligraphic letters, such as A and X , to denote any other set.

We use capital roman letters, such as A and C, to denote matrices. For any
matrix A, aij denotes its entry in the i-th row and the j-th column.

Vector ei denotes a column vector (where its size will be defined in the text)
with all entries equal zero except its i-th entry which is equal to one. For any vector
x ∈ Rn, we define the entry-wise operator x.2 = [x2

1 · · · x2
n]>.

2 Stochastic Sensor Scheduling

In this section, we develop an optimal stochastic scheduling policy for networked
systems, where several sensors are connected to the corresponding controllers or
estimators over a shared communication medium. Let us start by modeling the
stochastic scheduling policy using continuous-time Markov chains.

2.1 Sensor Scheduling Using Continuous-Time Markov Chains
We employ continuous-time Markov chains to model the sampling instances of the
subsystems. To be specific, every time that a jump from the idle node I to node S`,
1 ≤ ` ≤ L, occurs in the continuous-time Markov chain described by the schematic
flow diagram in Figure 2, we sample subsystem `. We use unit vector representation
to mathematically model this continuous-time Markov chain [42, 43].

We define the set X = {e1, e2, . . . , en} ⊂ Rn where n = L + 1. The Markov
chain state x(t) ∈ Rn takes value from X , which is the reason behind naming this
representation as the unit vector representation. We associate nodes S1, S2, . . . ,
SL, and I in the Markov chain flow diagram with unit vectors e1, e2, . . . , eL, and
en, respectively. Following the same approach as in [43], we can model the Markov
chain in Figure 2 by the Itô differential equation

dx(t) =
L∑
`=1

(
G′`nx(t) dN ′`n(t) +G′n`x(t) dN ′n`(t)

)
, (1)

where {N ′n`(t)}t∈R≥0 and {N ′`n(t)}t∈R≥0 , 1 ≤ ` ≤ L, are Poisson counter processes1

with rates λn`(t) and λ`n(t), respectively. These Poisson counters determine the
1Recall that a Poisson counter N(t) is a stochastic process with independent and station-

ary increments that starts from zero N(0) = 0. Additionally, P{N(t + ∆t) − N(t) = k} =
(
∫ t+∆t
t

λ(t)dt)k exp(
∫ t+∆t
t

λ(t)dt)/k! for any t,∆t ∈ R≥0 and k ∈ Z≥0. In the limit, when re-
placing ∆t with dt and ∆N(t) = N(t+∆t)−N(t) with dN(t), we get P{dN(t) = 0} = 1−λ(t)dt,
P{dN(t) = 1} = λ(t)dt, and P{dN(t) = k} = 0 for k ∈ Z≥2. For a detailed discussion on Poisson
counters, see [43, 47].
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rates of jump from S` to I, and vice versa. In addition, we have G′`n = (e`− en)e>n
and G′n` = (en − e`)e>` , 1 ≤ ` ≤ L. Let us define m = 2L. Now, we can rearrange
the Itô differential equation in (1) as

dx(t) =
m∑
i=1

Gix(t) dNi(t), (2)

where {Ni(t)}t∈R≥0 , 1 ≤ i ≤ m, is a Poisson counter process with rate denoted as

µi(t) =
{
λn,b(i−1)/2c+1(t), i ∈ O,
λb(i−1)/2c+1,n(t), i ∈ E, (3)

and

Gi =
{

G′n,b(i−1)/2c+1, i ∈ O,
G′b(i−1)/2c+1,n, i ∈ E. (4)

The Poisson counters {Ni(t)}t∈R≥0 , 1 ≤ i ≤ m, determine the rates of jump between
the states of the Markov chain in (2). Now, noting that this Markov chain models
the sampling instances {T `i }∞i=0, 1 ≤ ` ≤ L, using the jumps that occur in its state
x(t), we can control the average sampling frequencies of the sensors through the
rates µi(t), 1 ≤ i ≤ m. Similar to [42], we assume that we can control the rates as

µi(t) = µi,0 +
m∑
j=1

αijuj(t), (5)

and thereby control the average sampling frequencies2. In (5), αij ∈ R, 1 ≤ i, j ≤
m, are constant parameters that determine the sensitivity of Poisson counters’
jump rates with respect to control inputs uj for 1 ≤ j ≤ m. Control signals uj(t),
1 ≤ j ≤ m, are chosen in order to minimize the cost function

J= lim
T→∞

E
{

1
T

∫ T

0

L∑
`=1

ξ` e
>
n x(t) dN2`(t)+u(t)>u(t) dt

}
, (6)

where ξ` ∈ R≥0, 1 ≤ ` ≤ L, are design parameters. Note that the cost function (6)
consists of two types of terms: 1

T

∫ T
0 e>n x(t)dN2`(t) denotes the average frequency

of the jumps from I to S` in the Markov chain (i.e., the average sampling frequency
of sensor `) and 1

T

∫ T
0 u(t)>u(t)dt penalizes the control effort in regulating this

frequency. If the latter term is removed, the problem would become ill-posed as
the optimal rates µi(t) then is zero and E{dNi(t)} = 0. Consequently, the average
sampling frequencies of the sensors vanish.

2Notice that the number of control inputs in (5) does not have to be the same as the number
of Poisson counters for the proofs in Subsection 2.2 to hold. However, we decided to follow the
convention of [42] because we use these results in Sections 3 and 4 to optimally schedule sensors
in a networked system in which we can control all the rates (µi(t))mi=1 directly.
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Considering the identity E{dN2`(t)} = (µ2`,0 +
∑m
j=1 α2`,juj(t))dt, we can

rewrite the cost function in (6) as

J= lim
T→∞

E
{

1
T

∫ T

0
c>x(t)+u(t)>Sx(t)+u(t)>u(t) dt

}
, (7)

where c = en
∑L
`=1 ξ`µ2`,0 and S ∈ Rm×n is a matrix whose entries are defined

as sji =
∑L
`=1 ξ`α2`,j if i = n and sji = 0 otherwise. In the rest of this paper,

we use the notation Si, 1 ≤ i ≤ m, to denote i-th row of matrix S. In the next
subsection, we find a policy that minimizes (7) with respect to the rate control
law (5) and subject to the Markov chain dynamics (2). Doing so, we develop an
optimal scheduling policy which fairly allocates the network resources (i.e., the
sampling instances) between the devices in a sensor network.

2.2 Optimal Sensor Scheduling

We start by minimizing the finite horizon version of the cost function in (6). The
proof of the following theorem is a slight generalization of Brockett’s result in [42]
but follows the same line of reasoning3.

Theorem 9.1 Consider a continuous-time Markov chain evolving on X =
{e1, . . . , en} ⊂ Rn, generated by (2). Let us define matrices A =

∑m
i=1 µi,0Gi

and Bi =
∑m
j=1 αjiGj, where for all 1 ≤ i, j ≤ m, Gi and αij are introduced in (4)

and (5), respectively. Assume that, for given T ∈ R>0 and c : [0, T ] → Rn, the
differential equation

k̇(t) = −c(t)−A>k(t) + 1
4

m∑
i=1

(S>i +B>i k(t)).2; k(T ) = kf , (8)

has a solution on [0, T ] such that, for each (t, x) ∈ [0, T ] × X , the operator A −∑m
i=1

1
2 (k(t)>Bi + Si)xBi is an infinitesimal generator. Then, the control law

ui(t, x) = −1
2
(
k(t)>Bi + Si

)
x(t), 1 ≤ i ≤ m, (9)

minimizes

J = E
{

1
T

∫ T

0
c(t)>x(t) + u(t)>Sx(t)+u(t)>u(t)dt+ 1

T
k>f x(T )

}
.

Furthermore, J = 1
T k(0)>E {x(0)}.

3The statement makes use of the concept of infinitesimal generators. See [48, pp. 124] for
definition and discussion.
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Proof: See Appendix A.

Notice that for some parameter settings of the cost function, the operator A−∑m
i=1

1
2 (k(t)>Bi+Si)xBi may not be an infinitesimal generator. A future avenue of

research could be to characterize these cases and to present conditions for avoiding
them.

Based on Theorem 9.1, we are able to solve the following infinite-horizon version
of the optimal scheduling policy. In the infinite-horizon case, we need to assume
that the parameters of the Markov chain and the cost function are time invariant.

Corollary 9.2 Consider a continuous-time Markov chain evolving on X =
{e1, . . . , en} ⊂ Rn, generated by (2). Let us define matrices A =

∑m
i=1 µi,0Gi

and Bi =
∑m
j=1 αjiGj, where for all 1 ≤ i, j ≤ m, Gi and αij are introduced in (4)

and (5), respectively. Assume that, for a given c ∈ Rn, the nonlinear equation[
A> −1
1> 0

] [
k0
%

]
− 1

4

[ ∑m
i=1(S>i +B>i k0).2

0

]
=
[
−c
0

]
, (10)

has a solution (k0, %) ∈ Rn × R such that, for all x ∈ X , the operator A −∑m
i=1

1
2 (k>0 Bi + Si)xBi is an infinitesimal generator. Then, the control law

ui(t, x) = −1
2(k>0 Bi + Si)x(t), 1 ≤ i ≤ m, (11)

minimizes

J = lim
T→∞

E

{
1
T

∫ T

0
c>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
.

Furthermore, we have J = %.

Proof: See Appendix B.

Corollary 9.2 introduces an optimal scheduling policy to fairly allocate mea-
surement transmissions among sensors according to the cost function in (6). By
changing the design parameters ξ`, 1 ≤ ` ≤ L, we can tune the average sampling
frequencies of the subsystems according to their performance requirements. In ad-
dition, by adding an extra term to the cost function whenever a new subsystem is
introduced or by removing a term whenever a subsystem is detached, we can easily
accommodate for dynamic changes in an ad-hoc network. In the remainder of this
section, we analyze the asymptotic properties of the optimal scheduling policy in
Corollary 9.2.

2.3 Average Sampling Frequencies
In this subsection, we study the relationship between the Markov chain parameters
and the effective sampling frequencies of the subsystems. Recalling from the prob-
lem formulation, {T `i }∞i=0 denotes the sequence of time instances that the state of
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the Markov chain in (1) jumps from the idle node I to S` and hence, subsystem `
is sampled. Mathematically, we define these time instances as

T `0 = inf{t ≥ 0 | ∃ ε > 0 : x(t− ε) = en ∧ x(t) = e`},

and
T `i+1 = inf{t ≥ T `i | ∃ ε > 0 : x(t− ε) = en ∧ x(t) = e`},

for all i ∈ Z≥0. Furthermore, we define the sequence of random variables {∆`
i}∞i=0

such that ∆`
i = T `i+1 − T `i for all i ∈ Z≥0. These random variables denote the

time interval between any two successive sampling instances of sensor `. We make
the assumption that the first and second samples happen within finite time almost
surely:

Assumption 9.1 P{T `0 <∞} = 1 and P{T `1 <∞} = 1.

This assumption is not restrictive. Note that it is trivially satisfied if the number
of subsystems is finite, the Markov chain is irreducible, and the rates of Poisson
processes are finite and uniformly bounded away from zero. Let us present the
following simple lemma.

Lemma 9.3 {∆`
i}∞i=0 are identically and independently distributed random vari-

ables.

Proof: See [49].
Lemma 9.3 implies that E{∆`

i} is not a function of i (and, therefore, it en-
sures several of the expressions, that are presented later, are indeed well-defined).
Now, we are ready to state state our main result concerning the average sampling
frequency of the sensors denoted by

f` = lim
T→∞

E

{
1
T

∫ T

0
e>n x(t) dN2`(t)

}
, 1 ≤ ` ≤ L.

Theorem 9.4 Let the sequence of sampling instances {T `i }∞i=0 satisfy Assump-
tion 9.1. Define p(t) = E{x(t)} using

ṗ(t)=
(
A− 1

2

m∑
i=1

BiΛ(k>0 Bi + Si)
)
p(t), p(0) = E {x(0)}, (12)

where
Λ(k>0 Bi + Si) = diag((k>0 Bi + Si)e1, . . . , (k>0 Bi + Si)en).

If limt→∞ p(t) exists, the average sampling frequency of sensor ` is equal to

f` = 1
E{∆`

i}

=

µ2`,0 −
1
2

m∑
j=1

α2`,j(k>0 Bj + Sj)en

 e>n lim
t→∞

p(t).
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Proof: See Appendix C.
Theorem 9.4 allows us to calculate the average sampling frequencies of the

subsystems. We use these average sampling frequencies to bound the closed-loop
performance of the networked system when the proposed optimal scheduling policy
is implemented.

3 Applications to Networked Estimation

In this section, we study networked estimation based on the proposed stochastic
scheduling policy. Let us start by presenting the system model and the estimator.
As a starting point, we introduce a networked system that is composed of scalar
decoupled subsystems. In Subsections 3.3 and 3.4, we generalize some of the results
to decoupled higher-order subsystems.

3.1 System Model and Estimator
Consider the networked system illustrated in Figure 1, where subsystem `, 1 ≤ ` ≤
L, is a scalar stochastic system described by

dz`(t) = −γ`z`(t) dt+ σ` dw`(t); z`(0) = 0, (13)

with given model parameters γ`, σ` ∈ R≥0. Note that all subsystems are stable. The
stochastic processes {w`(t)}t∈R≥0 , 1 ≤ ` ≤ L, are statistically independent Wiener
processes with zero mean. Estimator ` receives state measurements {y`i}∞i=0 at time
instances {T `i }∞i=0, such that

y`i = z`(T `i ) + n`i ; ∀i ∈ Z≥0, (14)

where {n`i}∞i=0 denotes measurement noise sequence, which is composed of indepen-
dently and identically distributed Gaussian random variables with zero mean and
specified standard deviation η`. Let each subsystem adopt a simple estimator of
the form

d
dt ẑ`(t) = −γ`ẑ`(t); ẑ`(T `i ) = y`i , (15)

for t ∈ [T `i , T `i+1). We define the estimation error e`(t) = z`(t) − ẑ`(t). Estima-
tor ` only has access to the state measurements of subsystem ` at specific time
instances {T `i }∞i=0 but is supposed to reconstruct the signal at any time t ∈ R≥0.
Notice that this estimator is not optimal. In Subsection 3.4, we will consider esti-
mators based on Kalman filtering instead.

3.2 Performance Analysis: Scalar Subsystems
In this subsection, we present an upper bound for the performance of the intro-
duced networked estimator. The following theorem presents upper bounds for the
estimation error variance for the cases where the measurement noise is small or
large, respectively.
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Theorem 9.5 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (13) and
let the sequence of sampling instances {T `i }∞i=0 satisfy Assumption 9.1. Then, if
η` ≤

√
1/(2γ`)σ`, the estimation error variance is bounded by

E{e2
`(t)} ≤ η2

` e
−2γ`/f` + σ2

`

2γ`

(
1− e−2γ`/f`

)
, (16)

otherwise, if η` >
√

1/(2γ`)σ`,

E{e2
`(t)} ≤ η2

` + σ2
`

2γ`

(
1− e−2γ`/f`

)
. (17)

Proof: See Appendix D.

Note that the upper bound (16) is tighter than (17) when the equality η` =√
1/(2γ`)σ` holds. In the next two subsections, we generalize these results to

higher-order subsystems.

3.3 Performance Analysis: Higher-Order Subsystems with Noisy State
Measurement

Let us assume that subsystem `, 1 ≤ ` ≤ L, is described by

dz`(t) = A`z`(t)dt+H`dw`(t); z`(0) = 0, (18)

where z`(t) ∈ Rd` is its state with d` ∈ Z≥1 and A` is its model matrix satisfying
λ(A` +A>` ) < 0 where λ(·) denotes the largest eigenvalue of a matrix. In addition,
{w`(t)}t∈R≥0 , 1 ≤ ` ≤ L, is a tuple of statistically independent Wiener processes
with zero mean. Estimator ` receives noisy state-measurements {y`i}∞i=0 at time
instances {T `i }∞i=0, such that

y`i = z`(T `i ) + n`i ; ∀i ∈ Z≥0, (19)

where {n`i}∞i=0 denotes the measurement noise and is composed of independently
and identically distributed Gaussian random variables with E{n`i} = 0 and E{n`in`>i } =
R`. We define the estimation error as e`(t) = z`(t) − ẑ`(t), where for all t ∈
[T `i , T `i+1), the state estimate ẑ`(t) is derived by

d
dt ẑ`(t) = A`ẑ`(t); ẑ`(T `i ) = y`i .

The next theorem presents an upper bound for the variance of this estimation
error. For scalar subsystems, the introduced upper bound in (20) is equivalent to
the upper bound in (17).
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Theorem 9.6 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (18) and
let the sequence of sampling instances {T `i }∞i=0 satisfy Assumption 9.1. Then, the
estimation error variance is bounded by

E{‖e`(t)‖2} ≤ tr(R`) + tr(H>H)
|λ(A` +A>` )|

(
1− eλ(A`+A>` )/f`

)
. (20)

Proof: See Appendix E.

It is possible to refine the upper bound (20) for the case where tr(R`) ≤
1/(|λ(A` + A>` )|) tr(H>H), following a similar argument as in the proof of Theo-
rem 9.5.

3.4 Performance Analysis: Higher-Order Subsystems with Noisy
Output Measurement

In this subsection, we assume that estimator `, 1 ≤ ` ≤ L, receives noisy output
measurements {y`i}∞i=0 at time instances {T `i }∞i=0, such that

y`i = C`z`(T `i ) + n`i ; ∀i ∈ Z≥0, (21)

where C` ∈ Rp`×d` (for a given output vector dimension p` ∈ Z≥1 such that p` ≤ d`)
and the measurement noise {n`i}∞i=0 is a sequence of independently and identi-
cally distributed Gaussian random variables with E{n`i} = 0 and E{n`in`>i } = R`.
For any sequence of sampling instances {T `i }∞i=0, we can discretize the stochastic
continuous-time system in (18) as

z`[i+ 1] = F`[i]z`[i] +G`[i]w`[i],

where z`[i] = z(T `i ), F`[i] = eA(T `i+1−T
`
i ), and the sequence {G`[i]}∞i=0 is chosen such

that

G`[i]G`[i]> =
∫ T `i+1−T

`
i

0
eAτHH>eA

>τdτ, ∀i ∈ Z≥0.

In addition, {w`[i]}∞i=0 is a sequence of independently and identically distributed
Gaussian random variables with zero mean and unity variance. It is evident that
y`[i] = C`z`[i] + n`i . We run a discrete-time Kalman filter over these output mea-
surements to calculate the state estimates {ẑ`[i]}∞i=0 with error covariance matrix
P`[i] = E{(z`[i] − ẑ`[i])(z`[i] − ẑ`[i])>}. For inter-sample times t ∈ [T `i , T `i+1), we
use a simple prediction filter

d
dt ẑ`(t) = A`ẑ`(t); ẑ`(T `i ) = ẑ`[i]. (22)

Let us define the estimation error as e`(t) = z`(t)− ẑ`(t). The next theorem present
an upper bound for the estimation error variance.
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Theorem 9.7 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (18). Then,
the estimator given by (22) is an optimal mean square error estimator and for any
fixed sequence of sampling instances {T `i }∞i=0, the estimation error is upper-bounded
by

E{‖e`(t)‖2 |∆`
i} ≤ trace(P`[i]) + tr(H>H)

|λ(A` +A>` )|

(
1− eλ(A`+A>` )∆`

i

)
. (23)

Proof: See Appendix F.
Note that the upper bound (23) is conditioned on the sampling intervals. Unfor-

tunately, it is difficult to calculate E{trace(P`[i])} as a function of average sampling
frequencies, which makes it hard to eliminate the conditional expectation. How-
ever, for the case where p` = n`, the upper bound (20) would also hold for the
estimator in (22). This is indeed true because (22) is an optimal mean square error
estimator.

4 Applications to Networked Control

In this section, we study networked control as an application of the proposed
stochastic scheduling policy. Let us start by presenting the system model and
the control law. We first present the results for impulsive controllers in Subsec-
tion 4.2. However, in Subsections 4.3 and 4.4, we generalize these results to pulse
and exponential controllers.

4.1 System Model and Controller
Consider the stochastic control system

dz`(t) = (−γ`z`(t) + v`(t)) dt+ σ` dw`(t); z`(0) = z0
` , (24)

where z`(t) ∈ R and v`(t) ∈ R, 1 ≤ ` ≤ L, are the state and control input of
subsystem `. We assume that each subsystem is in feedback interconnection with
a subcontroller governed by the control law

v`(t) = −
∞∑
i=0

y`if(t− T `i ), (25)

where y`i = z(T `i ) + ni for all i ∈ Z≥0 and f : R → R ∪ {±∞} is chosen appropri-
ately to yield a causal controller (i.e., f(t) = 0 for all t < 0). For instance, using
f(·) = δ(·), where δ(·) is the impulse function (see [50, p. 1]), results in an impulsive
controller, which simply resets the state of its corresponding subsystem to a neigh-
borhood of the origin characterized by the amplitude of the measurement noise
whenever a new measurement is received. Without loss of generality, we assume
that z0

` = 0 because the influence of the initial condition is only visible until the
first sampling instance T `0 , which is guaranteed to happen in a finite time thanks
to Assumption 9.1.
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4.2 Performance Analysis: Impulsive Controllers
In this subsection, we present an upper bound for the closed-loop performance of
subsystems described in (24) and controlled by an impulsive controller. In this case,
for all t ∈ [T `i , T `i+1), the closed-loop subsystem ` is governed by

dz`(t) = −γ`z`(t) dt+ σ` dw`(t); z`(T `i ) = −n`i .

The next theorem presents an upper bound for the performance of this closed-
loop system which corresponds to the estimation error upper bound presented in
Theorem 9.5.

Theorem 9.8 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (24) and
let the sequence of sampling instances {T `i }∞i=0 satisfy Assumption 9.1. Then, if
η` ≤

√
1/(2γ`)σ`, the closed-loop performance of subsystem ` is bounded by

E
{
z2
` (t)

}
≤ η2

` e
−2γ`/f` + σ2

`

2γ`

(
1− e−2γ`/f`

)
. (26)

otherwise,

E
{
z2
` (t)

}
≤ η2

` + σ2
`

2γ`

(
1− e−2γ`/f`

)
. (27)

Proof: Similar to the proof of Theorem 9.5. See [49] for details.
Note that the closed-loop performance, measured as the variance of the plant

state, is upper bounded by the plant and measurement noise variance. In the next
two subsections, we generalize this result to pulse and exponential controllers.

4.3 Performance Analysis: Pulse Controllers
In this subsection, we use a narrow pulse function to approximate the behavior of
the impulse function. Let us pick a constant ρ ∈ R>0. For t ∈ [T `i , T `i+1), we use
the control law

v`(t)=
{
−y`iγ`e−γ`ρ/(1− e−γ`ρ), T `i ≤ t ≤ T `i + ρ,
0, T `i + ρ < t ≤ T `i+1,

(28)

whenever T `i + ρ ≤ T `i+1, and

v`(t) = −y`iγ`e−γ`ρ/(1− e−γ`ρ), T `i ≤ t ≤ T `i+1,

otherwise. This controller converges to the impulsive controller as ρ tends to zero.

Theorem 9.9 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (24) and
let the sequence of sampling instances {T `i }∞i=0 satisfy Assumption 9.1. Then, the
closed-loop performance of subsystem ` is bounded by

E
{
z2
` (t)

}
≤
[
η2
` + σ2

`

2γ`

(
1− e−2γ`/f`

)] 1
1− P{∆`

i < ρ}
. (29)
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Proof: See Appendix G.
Note that if ρ tends to zero in (29), we would recover the same upper bound as

in the case of the impulsive controller (27). This is true since limρ→0 P{∆`
i < ρ} = 0

assuming that the probability distribution of hitting-times of the underlying Markov
chain is atom-less at the origin, which is a reasonable assumption when the Poisson
jump rates are finite.

4.4 Performance Analysis: Exponential Controllers
In this subsection, we use an exponential function to approximate the impulse
function. Let us pick a constant θ ∈ R>0 \ {γ`}. For all t ∈ [T `i , T `i+1), we use the
control law

v`(t) = (γ` − θ)y`ie−θ(t−T
`
i ). (30)

This controller converges to the impulsive controller as θ goes to infinity.

Theorem 9.10 Assume that subsystem `, 1 ≤ ` ≤ L, is described by (24) and
let the sequence of sampling instances {T `i }∞i=0 satisfy Assumption 9.1. Then, the
closed-loop performance of subsystem ` is bounded by

E
{
z2
` (t)

}
≤
[
η2
` + σ2

`

2γ`

(
1− e−2γ`/f`

)] 1
1− E{e−2θ∆`

i}
. (31)

Proof: See Appendix H.
Note that if θ goes to infinity, we would recover the same upper bound as in

the case of the impulsive controller since limθ→+∞ E{e−2θ∆`
i} = 0 assuming that

the probability distribution of hitting-times of the Markov chain is atom-less at the
origin. Exponential shape of the control signal is common in biological systems
such as in neurological control system [51].

5 Numerical Example

In this section, we demonstrate the developed results on a networked system com-
posed of L decoupled water tanks illustrated in Figure 3 (left), where each tank is
linearized about its stationary water level h` as

dz`(t) = −a`
a′`

√
g

2h`
z`(t)dt+ dw`(t); z`(0) = z0

` .

In this model, a′` is the cross-section of water tank `, a` is the cross-section of
its outlet hole, and g is the acceleration of gravity. Furthermore, z`(t) and v`(t)
denote the deviation of the tank’s water level from its stationary point and the
control input, respectively. Let the initial condition z0

` = 0 as we assume that the
tank’s water level start at its stationary level. However, due to factors such as input
flow fluctuations, the water level drifts away from zero. In the next subsection, we
start by numerically demonstrating the estimation results for L = 2 water tanks.
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. . .

Tank 1 Tank 2 Tank L
Tank 1:T

Tank 1:B

Tank 2:T

Tank 2:B

Figure 3: An example of a networked system composed of decoupled scalar sub-
systems (left) and multivariable subsystems (right).

Table 9.1: Example of average sampling frequencies.

ξ1 ξ2 f1 f2

0.1 0.1 0.8040 0.8040
0.5 0.1 0.6577 0.8279
1.0 0.1 0.4656 0.8559
2.0 0.1 0.0451 0.9045

5.1 Estimation: Scalar Subsystem

Let us fix the parameters a′1 = a′2 = 1.00 m2, a1 = 0.20 m2, a2 = 0.10 m2, g =
9.80 m/s2, h1 = 0.40 m, and h2 = 0.54 m. For these physical parameters, the water
tanks can be described by (13) with γ1 = 0.7, γ2 = 0.3, and σ1 = σ2 = 1.0. We
sample these subsystems using the Markov chain in (2) with m = 2L = 4. We
assume that µi(t) = µi,0 + ui(t) for all 1 ≤ i ≤ 4, where µ2`,0 = 1 and µ2`−1,0 = 10
for ` = 1, 2. We are interested in finding ui(t), 1 ≤ i ≤ 4, in order to minimize the
cost function

J = lim
T→∞

E
{

1
T

∫ T

0

(
0.5e>3 x(t)dN2 + 0.1e>3 x(t)dN4 + u(t)>u(t)

)
dt
}
.

Using Corollary 9.2, we get
u1(t, x)
u2(t, x)
u3(t, x)
u4(t, x)

 =


−0.0228 0 0

0 0 −0.2272
0 −0.0228 0
0 0 −0.0272

x(t).

Figure 4 (upper-left) illustrates an example of the continuous-time Markov chain
state x(t) and the sampling instances {T `i }∞i=0 of subsystems ` = 1, 2. Using (42),
we get the average sampling frequencies f1 = 0.66 and f2 = 0.83. Figure 4 (upper-
right) shows the sampling instances when using a periodic scheduling policy with
the same sampling frequencies as the average sampling frequencies of the optimal
scheduling policy. Note that the optimal scheduling policy allocates the sampling
instances according to the jumps between the states of the Markov chain.
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Figure 4: An example of the state of the continuous-time Markov chain used in the
optimal scheduling policy and its corresponding sampling instances for both subsys-
tems (upper-left). Sampling instances for both subsystems when using a periodic
scheduling policy (upper-right). Estimation error E{e2

`(t)} for 1000 Monte Carlo
simulations when using the optimal sampling policy (lower-left) and the periodic
sampling policy (lower-right).

We can tune the average sampling frequencies of the subsystems by changing
the design parameters ξ`, 1 ≤ ` ≤ L. Table 9.1 illustrates the average sampling
frequencies of the subsystems versus different choices of the design parameters ξ`,
1 ≤ ` ≤ L. It is evident that when increasing (decreasing) ξ` for a given `, the
average sampling frequency of subsystem ` decreases (increases).

Let us assume that estimator ` has access to state measurements of subsystem `
according to (14) with measurement noise variance η` = 0.3 for ` = 1, 2. Fig-
ure 4 (lower-left) illustrates the estimation error variance E{e2

`(t)} for 1000 Monte
Carlo simulations when using the optimal scheduling policy. The horizontal lines
represent the theoretical upper bounds derived in Theorem 9.5; i.e., E{e2

1(t)} ≤ 0.64
and E{e2

2(t)} ≤ 0.90. Note that the approximations of the estimation error vari-
ances would eventually converge to the exact expectation value as the number of
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Figure 5: Estimation error E{‖e`(t)‖2} for 1000 Monte Carlo simulations and its
comparison to the theoretical results when d` = 2 for ` = 1, 2.

simulations goes to infinity, and that the theoretical bounds are relatively close. Fig-
ure 4 (lower-right) illustrates the estimation error variance E{e2

`(t)} for 1000 Monte
Carlo simulations when using the periodic scheduling policy that is portrayed in
Figure 4 (upper-right). Note that the saw-tooth behavior is due to the fact that
the sampling instances are fixed in advance and they are identical for each Monte
Carlo simulation.

5.2 Estimation: Higher-Order Subsystems with Noisy State
Measurement

Let us focus on a networked system composed of only two subsystems where each
subsystem is a serial interconnection of two water tanks. Figure 3 (right) illustrates
such a networked system. In this case, subsystem ` can be described by (18) with

A`=
[
−(a`,T/a′`,T)

√
g/(2h`,T) 0

+(a`,T/a′`,T)
√
g/(2h`,T) −(a`,B/a′`,B)

√
g/(2h`,B)

]
,

where the parameters marked with T and B belong to the top and the bottom
tanks, respectively. Let us fix parameters a′1,T = a′1,B = a′2,T = a′2,B = 1.00 m2,
a1,T = a1,B = 0.20 m2, a2,T = a2,B = 0.10 m2, h1,T = h1,B = 0.40 m, and h2,T =
h2,B = 0.54 m.

Let us assume that estimator ` has access to the noisy state measurements
of subsystem ` (with noise variance E{n`in`>i } = 0.09I2×2) at sampling instances
{T `i }∞i=0 enforced by the optimal scheduling policy described in Subsection 5.1. Fig-
ure 5 shows the estimation error variance E{‖e`(t)‖2}. The horizontal lines in this
figure show the theoretical bounds calculated in Theorem 9.6; i.e., E{‖e1(t)‖2} ≤
2.05 and E{‖e2(t)‖2} ≤ 2.21. In comparison with the scalar case in Figure 4 (lower-
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Figure 6: Estimation error E{‖e`(t)‖2} for 1000 Monte Carlo simulations when
using Kalman-filter based estimator.

left), note that the bounds in Figure 5 are less tight. The reason for this is that
the dimension of the subsystems are now twice the previous case.

5.3 Estimation: Higher-Order Subsystems with Noisy Output
Measurement

In this subsection, we use output measurements y`i = [0 1]z`(T `i ) + n`i for all
i ∈ Z≥0, where E{(n`i)2} = 0.09 for ` = 1, 2. We use the Kalman filter based
scheme introduced in Subsection 3.4 for estimating the state of each subsystem.
Figure 6 illustrates the estimation error variance E{‖e`(t)‖2}. As mentioned earlier,
it is difficult to calculate E{trace(P`[i])} as a function of the average sampling
frequencies and hence, we do not have any theoretical results for comparison. Note
that the upper bound presented in Theorem 9.7 is only valid for a fixed sequence
of sampling instances. This problem can be an interesting direction for future
research.

5.4 Estimation: Ad-hoc Sensor Network

As discussed earlier, an advantage of using the introduced optimal scheduling policy
is that we can accommodate for changes in ad-hoc networked systems. To portray
this property, let us consider a networked system that can admit up to L = 70 iden-
tical subsystems described by (13) with γ` = 0.3 and σ` = 1.0 for 1 ≤ ` ≤ 70. When
all the subsystems are active, we sample them using the Markov chain in (2) with
m = 2L = 140. We assume that µi(t) = µi,0 + ui(t) for 1 ≤ i ≤ 140, where
µ2`,0 = 10 and µ2`−1,0 = 50 for 1 ≤ ` ≤ 70. In this case, we are also interested in



5. NUMERICAL EXAMPLE 347

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

E
{ e2 �

(t
)}

 

 
Subsystems 1,2
Subsystems 11,12
Subsystems 31,32

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

E
{ e2 �

(t
)}

 

 
Subsystems 1,2
Subsystems 11,12
Subsystems 31,32

Figure 7: Estimation error E{e2
`(t)} for 1000 Monte Carlo simulations over an

ad-hoc networked system with the optimal sampling policy (left) and the periodic
sampling policy (right).

calculating an optimal scheduling policy that minimizes

J = lim
T→∞

E

{
1
T

∫ T

0

70∑
`=1

0.1e>71x(t)dN2` + u(t)>u(t)dt
}
. (32)

However, when some of the subsystems are inactive, we simply remove their cor-
responding nodes from the Markov chain flow diagram in Figure 2 and set their
corresponding terms in (32) equal to zero. Let us assume that for t ∈ [0, 5), only
30 subsystems are active, for t ∈ [5, 10), all 70 subsystems are active, and finally, for
t ∈ [10, 15], only 10 subsystems are active. Figure 7 (left) and (right) illustrate the
estimation error variance E{e2

`(t)} for 1000 Monte Carlo simulations when using the
optimal scheduling policy and the periodic scheduling policy, respectively. Since in
the periodic scheduling policy, we have to fix the sampling instances in advance,
we must determine the sampling periods according to the worst-case scenario (i.e.,
when the networked system is composed of 70 subsystems). Therefore, when us-
ing the periodic sampling, the networked system is not using its true potential for
t ∈ [0, 5) and t ∈ [10, 15], but the estimation error is fluctuating substantially over
the whole time range. The proposed optimal scheduling policy adapts to the de-
mand of the system, see Figure 7 (right). For instance, as shown in Figure 7 (left),
when subsystems 31 and 32 become active for t ∈ [5, 10), the overall sampling fre-
quencies of the subsystems decreases (and, in turn, the estimation error variance
increases), but when they become inactive again for t ∈ [10, 15], the average sam-
pling frequencies increase (and, in turn, the estimation error variance decreases).
Hence, this example illustrates the dynamic benefits of our proposed stochastic
scheduling approach.
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Figure 8: An example of state and control of the closed-loop subsystems when
using the impulsive controller (left) and the exponential controller with θ = 10
(right).

5.5 Controller: Decoupled Scalar Subsystems
In this subsection, we briefly illustrate the networked control results for L = 2
subsystems. Let the subsystems be described by (24) with γ1 = 0.7, γ2 = 0.3, and
σ1 = σ2 = 1.0. Let us assume that controller ` has access to state measurements
of subsystem ` according to (14) with measurement noise variance η` = 0.3 for
` = 1, 2. We use the optimal scheduling policy derived in Subsection 5.1 for assign-
ing sampling instances. Figure 8 (left) and (right) illustrate an example of the state
and the control signal for both subsystems when using the impulsive and exponen-
tial controllers (with θ = 10), respectively. Note that in Figure 8 (left), the control
signal of the impulsive controller only portrays the energy that is injected to the
subsystem (i.e., the integral of the impulse function) and not its exact value. Fig-
ure 9 (left) and (right) show the closed-loop performance E{z2

` (t)} when using the
impulsive and exponential controllers, respectively. The horizontal lines illustrate
the theoretical upper bounds derived in Theorem 9.8. Note that the exponential
controller gives a worse performance than the impulse controller. This is normal as
we design the exponentials only as an approximation of the impulse train.

5.6 Controller: Coupled Scalar Subsystems
Consider a networked system composed of L = 70 interconnected subsystems, where
subsystem `, 1 ≤ ` ≤ 70, can be described by

d
dtz`(t) =0.1(zmod(`−1,L)(t)− z`(t)) + 0.1(zmod(`+1,L)(t)− z`(t))

+ v`(t) + w`(t); z`(0) = 0,

with notation mod(i, j) = i − bi/jcj for any i ∈ Z and j ∈ Z>0. In this model,
z`(t), v`(t), and w`(t) respectively denote the state, the control input, and the ex-
ogenous input. Each subsystem transmits its state measurement over the wireless



5. NUMERICAL EXAMPLE 349

0 2 4 6 8 10
0

0.5

1

1.5

Time (sec)

E
{ z2 �

(t
)}

 

 

Subsystem 1
Subsystem 2

0 2 4 6 8 10
0

0.5

1

1.5

Time (sec)

E
{ z2 �

(t
)}

 

 

Subsystem 1
Subsystem 2

Figure 9: Closed-loop performance measure E{z2
` (t)} for 1000 Monte Carlo sim-

ulations when using the impulsive controller (left) and the exponential controller
(right).

network at instances {T `i }∞i=0 to its subcontroller. Hence, at any time t ∈ R≥0, sub-
controller ` has access to the state measurements z`(T `M`

t
) where recalling from the

earlier definitionsM `
t = max

{
i ≥ 1 |T `i ≤ t

}
. Each subcontroller simply implement

the following decentralized proportional-integral control law

v`(t) = −1.2z`(T `M`
t
)− 0.3

∫ t

0
z`(T `M`

τ
)dτ.

We sample the subsystems using the Markov chain in (2) with m = 2L = 140. We
assume that µi(t) = µi,0 + ui(t) for 1 ≤ i ≤ 140, where µ2`,0 = 10 and µ2`−1,0 = 70
for 1 ≤ ` ≤ 70. Let us consider the following disturbance rejection scenario. We
assume that w`(t) ≡ 0 for ` 6= 4, 26, w4(t) = step(t), and w26(t) = −0.4 step(t−15),
where step : R→ {0, 1} is the heaviside step function (i.e., step(t) = 1 for t ∈ R≥0
and step(t) = 0, otherwise). Let us denote t ∈ [0, 15) and t ∈ [15, 30] as the first
phase and the second phase, respectively. During each phase, we find the infinite
horizon optimal scheduling policy which minimizes

J = lim
T→∞

E

{
1
T

∫ T

0

70∑
`=1

ξ` e
>
71x(t)dN2` + u(t)>u(t)dt

}
.

We fix ξ` = 10 for ` = 4 over the first phase and for ` = 26 over the second phase.
In addition, we fix ξ` = 20 for ` = 3, 5 over the first phase and for ` = 25, 27
over the second phase. Finally, we set ξ` = 30 for the rest of the subsystems.
This way, we can ensure that we more frequently sample the subsystems that are
most recently disturbed by a nonzero exogenous input signal (and the ones that are
directly interacting with them). Figure 10 (left) and (right) illustrate an example
of the system state and control input when using the described optimal scheduling
policy and the periodic scheduling policy, respectively. For the periodic scheduling
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Figure 10: An example of state and control signal using the optimal sampling
policy (left) and the periodic sampling policy (right).

policy, we have fixed the sampling frequencies according to the worst-case scenario
(i.e., the average frequencies of the optimal scheduling policy when ξ` = 10 for all
1 ≤ ` ≤ 70 corresponding to the case where all the subsystems are disturbed). As
we expect, for this particular example, the closed-loop performance is better with
the optimal scheduling policy than with the periodic scheduling policy. This is
indeed the case because the optimal scheduling policy adapts the sampling rates of
the subsystems according to their performance requirements.

6 Conclusions

In this paper, we used a continuous-time Markov chain to optimally schedule the
measurement and transmission time instances in a sensor network. As applications
of this optimal scheduling policy, we studied networked estimation and control of
large-scale system that are composed of several decoupled scalar stochastic subsys-
tems. We studied the statistical properties of this scheduling policy to compute
bounds on the closed-loop performance of the networked system. Extensions of the
estimation results to observable subsystems of arbitrary dimension were also pre-
sented. As a future work, we could focus on obtaining better performance bounds
for estimation and control in networked system as well as combining the estima-
tion and control results for achieving a reasonable closed-loop performance when
dealing with observable and controllable subsystems of arbitrary dimension. An
interesting extension is also to consider zero-order hold and other control function
for higher-order subsystems.
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A Proof of Theorem 9.1

We follow a similar reasoning as in [42] to calculate the optimal Poisson rates. By
adding and subtracting the term k(t)>E {x(t)}

∣∣T
0 from the right hand-side of the

scaled cost function TJ − k>f E {x(T )}, we get

TJ − k>f E {x(T )} = E

{∫ T

0
c(t)>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
= − k(t)>E {x(t)}

∣∣T
0 + k(t)>E {x(t)}

∣∣T
0

+ E

{∫ T

0
c(t)>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
.

(33)

http://arxiv.org/pdf/1209.5180v3.pdf
http://arxiv.org/pdf/1209.5180v3.pdf
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Using the identity

k(t)>E {x(t)}
∣∣T
0 = E

{∫ T

0
d〈k(t), x(t)〉

}
inside (33), we get

TJ − k>f E {x(T )} =− k(t)>E {x(t)}
∣∣T
0 + E

{∫ T

0
d〈k(t), x(t)〉

}

+ E

{∫ T

0
c(t)>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
.

(34)

Using Itô’s Lemma [48, p. 49], we know that

d〈k(t), x(t)〉 = 〈k̇(t), x(t)〉dt+
m∑
i=1
〈k(t), Gix(t) dNi(t)〉,

which transforms (34) into

TJ − k>f E {x(T )} =− k(t)>E {x(t)}
∣∣T
0

+ E

{∫ T

0
〈k̇(t), x(t)〉dt+

m∑
i=1
〈k(t), Gix(t) dNi(t)〉

}

+ E

{∫ T

0
c(t)>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}
.

Taking expectation over x(t) and the Poisson processes {Ni(t)}t∈R≥0 , 1 ≤ i ≤ m,
we get

TJ − k>f E {x(T )} =− k(t)>E {x(t)}
∣∣T
0 +

∫ T

0
〈k̇(t) + c(t) +A>k(t), p(t)〉dt

+E

{∫ T

0
u(t)>u(t)+

m∑
i=1

ui(t)(Six(t)+〈k(t), Bix(t)〉)dt
}
,

(35)

where, for 1 ≤ i ≤ m, Si is i-th row of matrix S and p(t) = E{x(t)}. We can
rewrite (35) as

TJ − k>f E{x(T )} =
∫ T

0
〈k̇(t) + c(t) +A>k(t)− 1

4

m∑
i=1

(S>i +B>i k(t)).2, p(t)〉dt

− k(t)>E {x(t)}
∣∣T
0

+ E

{∫ T

0

m∑
i=1

∥∥∥∥ui(t) + 1
2(k(t)>Bi + Si)x(t)

∥∥∥∥2
dt
}
,

(36)
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using completion of squares. As there exists a well-defined solution to the differen-
tial equation (8), the first integral in (36) vanishes. Hence, the optimal control law
is given by (9) since this control law minimizes the last term of (36). Consequently,
equation (36) gives

TJ = k>f E {x(T )} − k(t)>E {x(t)}
∣∣T
0 = k(0)>E {x(0)} .

This completes the proof.

B Proof of Corollary 9.2

Since x(t) ∈ X is bounded (because ‖x(t)‖2 ≡ 1 for t ∈ R≥0), we get the identity
in

lim
T→∞

E

{
1
T

∫ T

0
c>x(t) + u(t)>Sx(t) + u(t)>u(t)dt

}

= lim
T→∞

E

{
1
T

∫ T

0
c>x(t) + u(t)>Sx(t) + u(t)>u(t)dt+ 1

T
k>0 x(T )

}
.

(37)

According to Theorem 9.1, in order to minimize (37) for any fixed T ∈ R>0, we
have

k̇(t) = −c(t)−A>k(t) + 1
4

m∑
i=1

(S>i +B>i k(t)).2, (38)

with the final condition k(T ) = k0. Defining q(t) = k(T − t)− k0 − %1t, we get

q̇(t) = − k̇(T − t)− %1

= A>k(T − t) + c− 1
4

m∑
i=1

(S>i +B>i k(T − t)).2 − %1

= A>(q(t) + k0 + %1t) + c− %1

− 1
4

m∑
i=1

(S>i +B>i (q(t) + k0 + %1t)).2.

Note that A>1 = 0 and B>i 1 = 0, 1 ≤ i ≤ m, as A and Bi are infinitesimal
generators. Hence,

q̇(t) = A>(q(t) + k0) + c− %1− 1
4

m∑
i=1

(S>i +B>i (q(t) + k0)).2

= A>q(t)− 1
4

m∑
i=1

(S>i +B>i (q(t) + k0)).2 + 1
4

m∑
i=1

(S>i +B>i k0).2.
(39)

Notice that q∗ = 0 is an equilibrium of (39), so q(t) = 0 for all t ∈ [0, T ] since
q(0) = k(T ) − k0 = 0. Therefore, we get k(t) = k0 + %1(T − t), which results in
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1
2 (k(t)>Bi + Si) = 1

2 (k>0 Bi + Si), since 1>Bi = 0, 1 ≤ i ≤ m. As a result, when T
goes to infinity, the controller which minimizes (37) is given by (11). Furthermore,
we have

J = lim
T→∞

1
T
k(0)>E{x(0)}

= lim
T→∞

1
T

(
k0 + %1(T − 0)

)>E{x(0)}

= %1>E{x(0)}
= %.

Finally, notice that the condition 1T k0 = 0 in the second row of (10) reduces the
number of solutions k0 that satisfy the nonlinear equation in the first row of (10).
Removing this condition, k0 + ϑ1 for any ϑ ∈ R is a solution. Notice that all these
parallel solutions result in the same control law because ((k0 + ϑ1)>Bi + Si) =
(k>0 Bi + Si) following the fact that 1>Bi = 0 for all 1 ≤ i ≤ N .

C Proof of Theorem 9.4

Before stating the proof of Theorem 9.4, we need to state the following useful
lemma.

Lemma 9.11 Let the sequence of sampling instances {T `i }∞i=0 satisfy Assump-
tion 9.1. Then,

lim
t→∞

M `
t

t

as= 1
E{∆`

i}
, (40)

where M `
t = max

{
i ≥ 1 | T `i ≤ t

}
counts the number of jumps prior to any given

time t ∈ R≥0 and x as= y means that P{x = y} = 1.

Proof: See [49].

Now, we are ready state the proof of Theorem 9.4. The proof of equality f` =
1/E{∆`

i} directly follows from applying Lemma 9.11 in conjunction with thatM `
T =∫ T

0 e>n x(t)dN2`(t). Now, we can compute p(t) using

ṗ(t) = Ap(t) + E

{
m∑
i=1

ui(t, x(t))Bix(t)
}
, p(0) = E {x(0)} (41)
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Substituting (11) inside (41), we get

ṗ(t) = Ap(t)− 1
2E
{

m∑
i=1

(k>0 Bi + Si)x(t)Bix(t)
}

= Ap(t)− 1
2E


m∑
i=1

(k>0 Bi + Si)

 x1(t)
...

xn(t)

Bi
 x1(t)

...
xn(t)




= Ap(t)− 1
2E


m∑
i=1

Bi

 x1(t)
∑n
j=1(k>0 Bi + Si)ejxj(t)

...
xn(t)

∑n
j=1(k>0 Bi + Si)ejxj(t)


 .

Note that xζ(t)
∑n
j=1(k>0 Bi +Si)ejxj(t) = (k>0 Bi +Si)eζxζ(t) for 1 ≤ ζ ≤ n, since

x(t) ∈ X is a unit vector in Rn. Therefore, we get (12). Now, noticing that p(t)
converges exponentially to a nonzero steady-state value as time goes to infinity
(because otherwise limt→∞ p(t) does not exist), we can expand the expression for
the average sampling frequencies of the sensors as

f` = lim
T→∞

E

 1
T

∫ T

0
e>n x(t)

µ2`,0 +
m∑
j=1

α2`,juj

 dt


= lim
T→∞

E

 1
T

∫ T

0
e>n x(t)

µ2`,0 −
1
2

m∑
j=1

α2`,j(k>0 Bj + Sj)x(t)

 dt


= lim
T→∞

1
T

∫ T

0
e>n p(t)

µ2`,0 −
1
2

m∑
j=1

α2`,j(k>0 Bj + Sj)en

dt

=

µ2`,0 −
1
2

m∑
j=1

α2`,j(k>0 Bj + Sj)en

 e>n lim
t→∞

p(t),

(42)

where the third equality follows again from the fact that x(t) ∈ X is a unit vector.

D Proof of Theorem 9.5

Prior to proving this theorem, we should state the following simple lemma.

Lemma 9.12 Let the function g : R≥0 → R be defined as g(t) = c1e
−2γt + c2

2γ (1−
e−2γt) with given scalars c1, c2 ∈ R and γ ∈ R>0 such that 2γc1 ≤ c2. Then,
(a) g is a non-decreasing function on its domain;
(b) g is a concave function on its domain.
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Proof: See [49].
Now, we can prove Theorem 9.5. Using Itô’s Lemma [48, p. 49], for all t ∈

[T `i , T `i+1), we get

de`(t) =
(
− d

dt ẑ`(t)− γ`e`(t)− γ`ẑ`(t)
)

dt+ σ`dw`(t)

= −γ`e`(t)dt+ σ`dw`(t),

with the initial condition e`(T `i ) = −n`i . First, let us consider the case where
η` ≤

√
1/(2γ`)σ`. Again, using Itô’s Lemma, we get

d(e2
`(t)) = (−2γ` e2

`(t) + σ2
` )dt+ 2e`(t)σ`dw`(t),

and as a result
d
dtE{e

2
`(t) |∆`

i} = −2γ` E{e2
`(t) |∆`

i}+ σ2
` ,

where E{e2
`(T `i ) |∆`

i} = η2
` . Hence, for all t ∈ [T `i , T `i+1), we have

E{e2
`(t) |∆`

i} = η2
` e
−2γ`(t−T `i ) + σ2

`

2γ`

(
1− e−2γ`(t−T `i )

)
.

Now, using Lemma 9.12 (a), it is easy to see that

E{e2
`(t) |∆`

i} ≤ η2
` e
−2γ`∆`

i + σ2
`

2γ`

(
1− e−2γ`∆`

i

)
.

Note that

E{e2
`(t)} = E{E{e2

`(t) |∆`
i}}

≤ E
{
η2
` e
−2γ`∆`

i + σ2
`

2γ`

(
1− e−2γ`∆`

i

)}
.

(43)

By using Lemma 9.12 (b) along with Jensen’s Inequality [48, p. 320], we can trans-
form (43) into (16). For the case where η` >

√
1/(2γ`)σ`, we can similarly derive

the upper bound

E{e2
`(t) |∆`

i} ≤ η2
` + σ2

`

2γ`

(
1− e−2γ`∆`

i

)
,

which results in (17), again using Jensen’s Inequality.

E Proof of Theorem 9.6

Using Itô’s Lemma, for all t ∈ [T `i , T `i+1), we get

d‖e`(t)‖2 = e`(t)>(A` +A>` )e`(t)dt+ tr(H>H)dt
+ e`(t)>Hdw`(t) + dw`(t)>H>e`(t),
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and as a result

d
dtE{‖e`(t)‖

2 |∆`
i} = tr(H>H) + E{e`(t)>(A` +A>` )e`(t) |∆`

i}

≤ tr(H>H) + λ(A` +A>` )E{‖e`(t)‖2 |∆`
i},

with the initial condition E{‖e`(T `i )‖2} = tr(R`). Now, using the Comparison
Lemma [52, p.102], we get

E{‖e`(t)‖2 |∆`
i} ≤ tr(R`)eλ(A`+A>` )t + tr(H>H)

|λ(A` +A>` )|

(
1− eλ(A`+A>` )t

)
,

for t ∈ [T `i , T `i+1). Using Lemma 9.12 (presented in Appendix D) and Jensen’s
Inequality, we get (20).

F Proof of Theorem 9.7

First, note that for t ∈ [T `i , T `i+1), the estimator

d
dt ẑ`(t) = A`ẑ`(t); ẑ`(T `i ) = {z`(T `i ) | y`1, . . . , y`i},

is an optimal mean square error estimator. This is in fact true since the estimator `
has not received any new information over [T `i , t] and it should simply predict
the state using the best available estimation {z`(T `i ) | y`1, . . . , y`i}. Now, recalling
from [53], we know that {z`(T `i ) | y`1, . . . , y`i} = {z`[i] | y`1, . . . , y`i} = ẑ`[i]. This
completes the first part of the proof. For the rest, note that following a similar
reasoning as in the proof of Theorem 9.6, for all t ∈ [T `i , T `i+1), we get

d
dtE{‖e`(t)‖

2 | ∆`
i} ≤ tr(H>H) + λ(A` +A>` )E{‖e`(t)‖2 |∆`

i},

with the initial condition

E{‖e`(T `i )‖2} = E{(z`[i]− ẑ`[i])>(z`[i]− ẑ`[i])} = trace(P`[i]),

which results in (23) again using the Comparison Lemma.

G Proof of Theorem 9.9

To simplify the calculations, we introduce the change of variable z′`(t) = z`(t)+ζ`(t)
for all t ∈ [T `i , T `i+1), where

ζ`(t) =

n`i e−γ`ρ

1−e−γ`ρ

(
1− e−γ`(t−T `i )

)
− z`(T `i ) e

−γ`(t−T`
i

)−e−γ`ρ
1−e−γ`ρ , t ∈ [T `i , T `i + ρ),

n`ie
−γ`(t−T `i ), t ∈ [T `i + ρ, T `i+1).
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Now, using Itô’s Lemma [48, p. 49], we get

dz′`(t) = −γ`z′`(t)dt+ σ`dw`(t); z′`(T `i ) = 0.

Hence, for all t ∈ [T `i , T `i+1), we get

E
{
z2
` (t) |∆`

i

}
= E

{
z′2` (t) + ζ2

` (t) |∆`
i

}
≤ σ2

`

2γ`

(
1− e−2γ`∆`

i

)
+ ζ2

` (t),

where the first equality is due to the fact that E{ζ`(t)z′`(t)} = 0 because the random
process {w`(t)}t∈(T `

i
,T `
i+1) is independent of ζ`(t) and E{z′`(t)} = 0. As a result

E
{
z2
` (t)

}
≤E

{
σ2
`

2γ`

(
1− e−2γ`∆`

i

)}
+ η2

` + E{z2
` (T `i )}P{∆`

i < ρ}. (44)

Using Lemma 9.12 (b), presented in Appendix D, and Jensen’s Inequality, we can
simplify (44) as

E
{
z2
` (t)

}
≤ σ2

`

2γ`

(
1− e−2γ`/f`

)
+ η2

` + E{z2
` (T `i )}P{∆`

i < ρ}. (45)

Note that by evaluating (45) as t goes to T `i+1, we can extract a difference equations
for the closed-loop performance (i.e., an algebraic equation that relates E{z2

` (T `i+1)}
to E{z2

` (T `i )} for all i). By solving this difference equation and substituting the
solution into (45), we get

E
{
z2
` (t)

}
≤

i∑
k=0

[
σ2
`

2γ`

(
1− e−2γ`/f`

)
+ η2

`

] (
P{∆`

i < ρ}
)k
,

for all t ∈ [T `i , T `i+1), and as a result

E
{
z2
` (t)

}
≤
∞∑
k=0

[
σ2
`

2γ`

(
1− e−2γ`/f`

)
+ η2

`

] (
P{∆`

i < ρ}
)k

=
[
σ2
`

2γ`

(
1− e−2γ`/f`

)
+ η2

`

]
1

1− P{∆`
i < ρ}

.

This concludes the proof.

H Proof of Theorem 9.10

Using the same argument as in the proof of Theorem 9.9, we obtain

E
{
z2
` (t) |∆`

i

}
≤η2

` + σ2
`

2γ`

(
1− e−2γ`∆`

i

)
+ E{z2

` (T `i )}e−2θ∆`
i ,
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for all t ∈ [T `i , T `i+1), and as a result

E
{
z2
` (t)

}
≤η2

` + E
{
σ2
`

2γ`

(
1− e−2γ`∆`

i

)}
+ E{z2

` (T `i )}E{e−2θ∆`
i}.

Similar to the proof of Theorem 9.9, we can simplify this expression into (31) using
Lemma 9.12 (b), presented in Appendix D, and Jensen’s Inequality.
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