
Decentralized Control Design with
Limited Plant Model Information

FARHAD FAROKHI

Licentiate Thesis in Automatic Control
Stockholm, Sweden 2012



Decentralized Control Design with
Limited Plant Model Information

FARHAD FAROKHI

Licentiate Thesis
Stockholm, Sweden 2012



TRITA-EE 2012:003
ISSN 1653-5146
ISBN 978-91-7501-238-4

Automatic Control Laboratory
KTH School of Electrical Engineering

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av teknologie licentiatexamen i Re-
glerteknik fredagen den 24 februari 2012, klockan 10:15 i sal Q2, Kungliga Tekniska
högskolan, Osquldas väg 10, Stockholm.

© Farhad Farokhi, February 2012

Tryck: Universitetsservice US AB



iii

Abstract

Large-scale control systems are often composed of several smaller inter-
connected units. For these systems, it is common to employ local controllers,
which observe and act locally. At the heart of common control design pro-
cedures for distributed systems lies the often implicit assumption that the
designer has access to the global plant model information when designing a
local controller. However, there are several reasons why such plant model
information would not be globally known. One reason could be that the de-
signer wants the parameters of each local controller to only depend on local
model information, so that the controllers are not modified if the model pa-
rameters of a particular subsystem change. It might also be the case that the
design of each local controller is done by individual designers with no access to
the global plant model, for instance, due to the fact that the designers refuse
to share their model information since they consider it private. This class of
problems, which we refer to as limited model information control design, is
the topic of the thesis.

First, we investigate the achievable closed-loop performance of discrete-
time linear time-invariant plants under a separable quadratic cost performance
with structured static state-feedback controllers. To do so, we introduce con-
trol design strategies as mappings, which construct controllers by accessing
the plant model information in a constrained way according to a given design
graph. We compare control design strategies using the competitive ratio as a
performance metric, that is, we compare the worst case control performance
for a given design strategy normalized with the optimal control performance
based on full model information. An explicit minimizer of the competitive
ratio is sought. As this minimizer might not be unique, we further search
for the ones that are undominated, that is, there is no other control design
strategy in the set of limited model information design strategies with a bet-
ter closed-loop performance for all possible plants while maintaining the same
worst-case ratio. We study the trade-off between the amount of model infor-
mation exploited by a control design strategy and the best possible closed-loop
performance. We generalize this setup to structured dynamic state-feedback
controllers for H2-performance. Surprisingly, the optimal control design strat-
egy with limited model information is still a static one. This is the case even
though the optimal decentralized state-feedback controller with full model in-
formation is dynamic. Finally, we discuss the design of dynamic controllers for
disturbance accommodation under limited model information. This problem
is of special interest because the best limited model information control de-
sign in this case is a dynamic control design strategy. The optimal controller
can be separated into a static feedback law and a dynamic disturbance ob-
server. For constant disturbances, it is shown that this structure corresponds
to proportional-integral control.
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Notations

Sets
N The set of natural numbers
Z The set of integer numbers
R The set of real numbers
C The set of complex numbers
T The unit circle in C
L∞ The set of Lebesgue measurable functions bounded

on T
R The set of proper real rational functions
RL∞ The set of proper real rational functions in L∞
Sn

++ (Sn
+) The set of symmetric positive definite (semidefinite)

matrices
A All other sets are denoted by calligraphic letters
Ac The complement of A

Matrices
A Matrices are denoted by capital roman letters
Aj jth row of matrix A
Aij Submatrix i, j of matrix A with dimension and posi-

tion defined in the text
aij Entry i, j of matrix A
A > (≥)0 The real symmetric matrix A is positive definite

(semidefinite)
A > (≥)B A − B > (≥)0
σ(Y ) The smallest singular value of the matrix Y
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σ(Y ) The largest singular value of the matrix Y
λ(Y ) The smallest eigenvalue of the matrix Y

λ(Y ) The largest eigenvalue of the matrix Y

Graphs
G Graphs are denoted by capital roman letters. All

considered graphs are directed
{1, . . . , q} Vertex set of G
E Edge set of G
S The adjacency matrix of G whose entry sij = 1 if

(j, i) ∈ E and sij = 0 otherwise for all 1 ≤ i, j ≤ q
G ⊆ G′ G is a subgraph of G′. The edge set of G is a

subset of the edge set of G′

i → j A link between vertices i, j in a graph G such that
(i, j) ∈ E

sink Vertex i such that there does not exist j �= i with
(i, j) ∈ E

loop A loop of length t in G is a set of distinct vertices
{i1, ..., it} such that i1 → i2 → · · · → it → i1

Others
ei The column vector with all entries zero except the

ith entry which is equal to one
δ : Z → Z The unit-impulse function which is equal to one

at origin and zero anywhere else
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CHAPTER 1

Introduction

Many modern large-scale systems, such as aircraft and satellite formations [1, 2],
automated highways and other shared infrastructures [3, 4], flexible structures [5, 6],
and supply chains [7, 8], consist of several subsystems coupled through their dy-
namics, controllers, or performance objectives. When regulating these systems,
it is often advantageous to adopt a distributed control architecture, in which the
overall controller is composed of interconnected subcontrollers, each of which ac-
cesses a subset of the plant’s state measurements. A common but often implicit
assumption for distributed control system is that the design can be performed in
a centralized fashion, with full knowledge of the plant model. However, this as-
sumption is far from being warranted in practice. Removing this assumption from
the control design procedure generates a new class of problems, namely limited
model information control design problems. For these problems, we are interested
in studying the challenges facing decision-makers (agents) in a dynamical system
who must select some control variables in order to optimize a social function using
only partial knowledge of the model governing the system (in addition to the par-
tial knowledge of the system state). The described problem is closely related to the
classical problem of distributed decision-making using partial information [9–12].
In distributed decision-making using partial information, the aim is to develop algo-
rithms that always produce feasible solutions with reasonable values of the objective
function. This problem appears in many areas ranging from computer science prob-
lems, such as managing a large-scale communication network [12] and distributed
task assignment [12–14], to economical and financial problems, such as inventory
models [15–18] and supply chains [19–23].

The rest of the chapter is organized as follows. We begin by giving a mo-
tivating application for studying control design with limited model information in
Section 1.1. In Section 1.2, we discuss the reasons behind the lack of a global model
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4 CHAPTER 1. INTRODUCTION

information in optimal control design and we present two examples to illustrate the
problem. We describe the underlying mathematical formulation for control design
with limited plant model information in Section 1.3. In Section 1.4, we revisit the
examples introduced in Section 1.2 to illustrate the framework. Finally, we conclude
this chapter by the thesis outline and contributions in Section 1.5.

1.1 Motivating Application

To illustrate and motivate the importance of control design with limited plant model
information, we consider a highly complex large-scale dynamical system, namely,
the Baltic sea region electricity transmission grid portrayed in Figure 1.1. The
power is generated in several large power generators and transmitted through the
network to the power consumers. The power network consists of tens-of-thousands
of components (e.g., generators, transmission lines, conversion stations, etc) con-
nected together. These components have local interactions with each other because
of the grid, which results in a specific system dynamics. In the thesis, we capture
the structured dynamics through a plant graph.

For a power transmission grid, one of the design goals is to optimally regulate
the voltage, active and reactive power, and frequency. To do so, the designer em-
ploys many sensors (e.g., phasor measurement units) to measure voltage, active
or reactive power, and frequency over the network. These units transmit their
measurements over a communication network to the control stations. Due to com-
munication limitations and the large scale and complexity of the grid, all sensor
information cannot instantaneously be available to any controller in the system.
Therefore, the controller cannot use full state measurements of the system, but
only access a subset of the states in each local controller. In this thesis, this prop-
erty is illustrated using a control graph, that is, a directed graph that identify the
communication links between subsystems and subcontrollers. The absence of full
state measurement in a networked control system brings challenges in designing
stabilizing and optimal controllers, which we discuss later.

Power network control systems are highly complex time-varying dynamical sys-
tems, which are very hard to completely model for several reasons. First of all,
these systems are social-technical systems meaning that they are composed of a
technical layer (electrical components and their interconnections) and a social layer
working together [24]. The social layer consists of the end users who put physical
constraints on the technical layer and the human operators who change the struc-
ture of the technical layer and manage the production levels to control the power
flow. In the design procedure, the behavior of the social layer is partially unknown
(although to some extent predictable by the historical data and the regulations).
Second, several different power production companies compete with each other over
the production levels. The network manager regulates the power production com-
panies based on their prices and the public demand. As a consequence, a varying set
of companies with different generator types (e.g., thermal, wind, hydro, etc) provide
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Figure 1.1: Electricity transmission grid in the Baltic sea region (Courtesy of Nor-
dregio http://www.nordregio.se/, Designer: P.G. Lindblom).



6 CHAPTER 1. INTRODUCTION

the power needed across the network. These competing companies are unwilling to
share their (private) information about the network as that might compromise their
financial benefits by giving tactical advantages to other companies in power auc-
tions. Third, power networks are typically made of nonlinear components, although
it is common, to design linear controllers with acceptable closed-loop performance
based on linearized models. These controllers are functions of the linearized subsys-
tems’ model (and, in turn, functions of their operating points). These subsystems
(e.g., generators) change their operating points in response to the power demand
and physical constraints. Finally, safety constraints must be satisfied at all time
instances to protect the electrical equipments and end users from harm in faulty
conditions or other hazardous situations. Therefore, safety switches automatically
connect or disconnect electrical components or transmission lines (to meet these
safety requirements). These switches change the topology of the network and the
transmission lines impedances. Now, noting that these power networks are typically
implemented over a vast geographical area (even across different countries) makes it
extremely difficult (perhaps impossible) to gather all the model information (entire
network topology, line impedances, operating conditions, etc) at one place. Even
if one could gather all these information and implement a new controller based
on them, it might take very long and by then the information might be outdated.
This delay may even lead to instability of the closed-loop system. This motivates
our interest in designing local controllers based on only local model information
of the plant to be controlled. The amount of information that is available in each
local subsystem when designing its controller, in this thesis, is captured using a de-
sign graph, that is, a directed graph which indicates the dependency of each local
controller on different parts of the global plant model.

1.2 Model Information Limitations

When regulating a large-scale system composed of several interconnected subsys-
tems, it makes sense to adopt a distributed or decentralized control architecture, in
which the controller itself is made of interconnected subcontrollers. At the heart of
traditional distributed or decentralized control design problems is the assumption
that the control design is done with the global knowledge of the plant model. How-
ever, this assumption is seldom warranted, for instance, because of the following
three reasons:

• Maintenance: To simplify control systems tuning and maintenance, it is
desirable that each local controller to be only a function of local subsystem
parameters, so that the resulting local controller does not need to be mod-
ified if the model parameters of a particular subsystem change over time.
Otherwise, the designer might be required to reconfigure and tune every sub-
controller any time she observes a change in a local parameter. These local
parameter changes might be due to several reasons, including changing oper-
ating conditions, material fatigue, weather conditions, and scheduled services.
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Figure 1.2: The floor plan of a half block of a student house.

• Availability: The lack of availability of the complete model of the plant, at
the time of the design, restrict the designer to only use local model information
in each subsystem control design. This is because often the design of each
local controller is done by a different designer (possibly in a different company,
organization, or country) with no access to the global plant model at the
time of design, as the complete model information is not available yet, or
to be changed later. This is becoming more and more common as engineers
implement a system as a whole using commercially available pre-designed
modules (off-the-shelf components). These modules are designed, in advance,
with no prior knowledge of their possible use or future operating condition.
Thus, they are required to work with an acceptable performance under almost
any circumstances.

• Privacy: Privacy constraints, caused by financial incentives or security rea-
son, limit the amount of the model information available in each subsystems
when designing its controller. These constraints stem from the fact that, in
large-scale control systems, different subsystems typically belong to different
individuals, and these individuals might be unwilling to share their model
information. Therefore, each subsystem’s controller should be designed only
based on its own model information.

We capture the amount of plant model information available in the design pro-
cess to each subcontroller by a design graph. An edge in the design graph from a
subsystem to a subcontroller represents that the subcontroller can use the model
parameters of that subsystem. Therefore, we deal with a limited model information
control design whenever the underlying design graph is not a complete graph.

The three aforementioned reasons (maintenance, availability, and privacy) con-
tribute to the motivation for studying how the amount of the model information
available in each subsystems influence the control design performance. Let us il-
lustrate the control design problem through two examples: a temperature control
problem in Example 1.1 and a vehicle platooning problem in Example 1.2.

Example 1.1 (Temperature Control): Let us consider the problem of regulating
the temperature in q = 11 rooms on a floor of a half block of a student house, where
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each room can be warmed by a single heater (see Figure 1.2). The corridors and
stairways are supposed to have ambient temperature. Let us denote the average
temperature of room i by x̄i. By applying Euler’s constant step discretization
scheme to the continuous-time model (both in time and space), we obtain the
following difference equation

x̄i(k + 1) =
∑
j �=i

αij(x̄j(k) − x̄i(k)) + βi(x̄a − x̄i(k)) + ui(k), (1.1)

where x̄a is the ambient temperature, which is assumed to be constant, and βi and
αij are constants representing the average heat loss rates of room i to the ambient
and to room j, respectively. The goal is to regulate the temperature of each room
at a prescribed value by minimizing the performance criterion

J =
∞∑

k=0

q∑
i=1

(x̄i(k) − ri)2 + (ui(k) − u∗
i )2, (1.2)

where ri, for each i, is the reference temperature of room i, and u∗
i , for each i, is the

steady-state control signal of room i. Note that, in the case of the infinite horizon
control cost function, the steady-state control signals is nonzero and related to the
reference points [25], as otherwise the performance criterion would become infinity.

The characteristics of each room (such as opening doors and windows, places of
the furniture, the type and the brightness of the wallpapers or paint, thickness of
the walls, etc) affect its model parameters {βi} ∪ {αij | j �= i}. These parameters
may not be available to other rooms’ thermostat due to several reasons including:

• Maintenance: Consider the case that the land-lady wants each subcontroller
to be only a function of the corresponding subsystem parameters to avoid
disturbing other tenants whenever something changes in a single room (due
to opening or closing windows, redecoration, renovation, etc), as these system
parameters would change quite frequently, and the global optimal controller
must be updated every time that a single parameter gets updated (e.g., some-
one opens or closes a window).

• Privacy: It might be the case that these characteristics depend on some pri-
vate information (like the decoration of the room or opening/closing of the
windows) and the tenants might be unwilling to share it with the thermostat
of other rooms (e.g., due to a risk of theft).

Besides, the tenants also want to guarantee some reasonable bounds on the closed-
loop performance of the system because of environmental factors and the constantly
increasing energy prices. Therefore, this problem is a simple illustration of designing
optimal controller with limited model information.
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Figure 1.3: Regulating the distance between two trucks.

Example 1.2 (Vehicle Platooning): As the simplest case for vehicle platooning,
consider the problem of regulating the distance between two trucks illustrated in
Figure 1.3. Applying Euler’s constant step discretization scheme to the continuous-
time model of each truck, one gets[

xi(k + 1)
vi(k + 1)

]
=
(

I + ΔT

[
0 1
0 −αi/mi

])[
xi(k)
vi(k)

]
+
[

0
βi/m

]
ui(k),

where xi(k) is the truck position, vi(k) the velocity, mi the mass, αi the viscous
drag coefficient, βi the power conversion quality coefficient, and ΔT the sampling
time. As a natural choice, the designer wants to minimize the cost function

J =
∞∑

k=0

⎡
⎣qd(x2(k) − x1(k) − d∗)2 +

∑
i=1,2

qv(vi(k) − v∗)2 + r(ui(k) − u∗
i )2

⎤
⎦ ,

to regulate the distance between the trucks with minimum control effort. Note
that u∗

i is a steady-state control signal and it is a function of the reference points
αiv

∗/βi. We can write the reduced-order system using the distance between trucks
and their velocities as state variables

z(k + 1) = Az(k) + Bu(k),

where

z(k) =

⎡
⎣ v2(k) − v∗

x2(k) − x1(k) − d∗

v1(k) − v∗

⎤
⎦ , u(k) =

[
u2(k) − α2v∗/β2
u1(k) − α1v∗/β1

]
,

and

A =

⎡
⎣ 1 − ΔT α2/m2 0 0

ΔT 1 −ΔT
0 0 1 − ΔT α1/m1

⎤
⎦ , B =

⎡
⎣ ΔT β2/m2 0

0 0
0 ΔT β1/m1

⎤
⎦ .

This leads to the simplified performance criterion

J =
∞∑

k=0
z(k)T Qz(k) + u(k)T Ru(k),
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Figure 1.4: GP and G′
P are

examples of plant graphs.

PG PG

1
2

3

1
2

3

Figure 1.5: Example of the
physical interconnection be-
tween different subsystems
and subcontrollers in a net-
worked control system.

 
 
 
 

 
 
 

 
 
 

 

  

 

 

 

  

 
  

  

 

 

     

 

 

 

where Q = diag(qv, qd, qv) and R = diag(r, r). Note that the characteristics of
each truck (e.g., mass, tire quality, break quality, etc) change its model parameters
{mi, αi, βi}. Each vehicle control system designer may want its controller to only
be a function of its truck parameters because:

• Maintenance: It might be the case that each designer wants the controller
to be fixed. The safety constraints might be a motive for this as changing
a truck’s subcontroller (in an uncontrolled environment) may result in an
unpredictable behavior.

• Availability: Each truck’s local controller cannot be designed based on the
model information of all possible vehicles that it may cooperate with in future
traffic scenarios.

• Privacy: The truck parameters (e.g., the truck mass) might not be available
to other trucks. For instance, different trucks might belong to the different
companies and these companies may wish to honor their costumers privacy.

All truck owners want to guarantee some reasonable bounds on the closed-loop
performance of the platoon to reduce the fuel consumption. This problem is hence
a viable candidate for optimal control design with limited model information.

1.3 Problem Formulation

In this section, we mathematically formulate the high-level goals of the thesis. Here,
we give some of the key definitions. We do not go through the assumptions needed
later for validity of the results. These assumptions are highlighted and discussed
individually in Papers 1–3.
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1.3.1 Plant Model
We start by presenting the most essential problem formulation from Paper 1. Then,
we build our way to other cases by sensible extensions of this basic problem.

Let a directed graph GP = ({1, . . . , q}, EP) with adjacency matrix SP be given.
This directed graph, which we refer to as the plant graph, is common in all the
discussed models, and it illustrates the interconnection pattern between subsystems.
Let us define the following set of matrices associated with the adjacency matrix SP :

A(SP ) =
{

Ā ∈ Rn×n | Āij = 0 ∈ Rni×nj

for all 1 ≤ i, j ≤ q such that (sP)ij = 0} ,
(1.3)

where, for each 1 ≤ i ≤ q, integer number ni is the dimension of subsystem i.
Implicit in these definitions is the fact that

∑q
i=1 ni = n. Also, we define

B ⊆ {
B̄ ∈ Rn×n | B̄ij = 0 ∈ Rni×nj for all 1 ≤ i �= j ≤ q

}
. (1.4)

With these definitions, we can introduce the set P of plants of interest as the space
of all discrete-time linear time-invariant dynamical systems of the form

x(k + 1) = Ax(k) + Bu(k) ; x(0) = x0,

with A ∈ A(SP), B ∈ B, and x0 ∈ Rn. Clearly P is isomorph to A(SP ) × B × Rn

and, slightly abusing notation, we will thus identify a plant P ∈ P with the corre-
sponding triple P = (A, B, x0).

Figure 1.4 shows an example of a plant graph GP . Each node represents a
subsystem of the system. For instance, the second subsystem in this example may
affect the first subsystem and the third subsystem; i.e., submatrices A12 and A32
can be nonzero. The self-loop for the second subsystem shows that A22 may be
nonzero. Figure 1.5 illustrates the corresponding physical interconnection between
subsystems of the plant in Figure 1.4 by dotted edges. Note that P1 in Figure 1.5
represents a sink (a node that cannot affect any other node) of GP . The plant
graph G′

P in Figure 1.4 has no sink. As we will see later in Papers 1–3, the sinks
play a significant role in the nature of the solutions that we present.

1.3.2 Controller Model
Let a control graph GK with adjacency matrix SK be given. The control laws of
interest are static linear state-feedback control laws of the form

u(k) = Kx(k),

where

K ∈ K(SK) =
{

K̄ ∈ Rn×n | K̄ij = 0 ∈ Rni×nj

for all 1 ≤ i, j ≤ q such that (sK)ij = 0} .
(1.5)
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Figure 1.6: GK and G′
K are

examples of control graphs.
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An example of a control graph GK is given in Figure 1.6. Each node represents
a subsystem–controller pair of the overall system. For instance, GK shows that the
second subsystem’s controller can use state measurements of the first subsystem
besides its own state measurements. Solid edges in Figure 1.5 correspond to the
edges of the control graph GK. Figure 1.6 shows G′

K which is a complete graph. This
control graph indicates that each subcontroller has access to full state measurements
of all subsystems.

1.3.3 Control Design Method

A control design method Γ is a map from the set of plants P to the set of controllers
K(SK). Just like plants and controllers, a control design method can exhibit struc-
ture which, in turn, can be captured by a directed graph which we call the design
graph as it illustrates the amount of the information available to each subsystem in
control design procedure. Let a control design method Γ be partitioned according
to subsystems dimensions as

Γ =

⎡
⎢⎣

Γ11 · · · Γ1q

...
. . .

...
Γq1 · · · Γqq

⎤
⎥⎦

and the design graph GC = ({1, . . . , q}, EC) with adjacency matrix SC be given.
Each block Γij represents a map A(SP) × B → Rni×nj . We say that a control
design strategy Γ has structure GC if and only if, for all i, the map [Γi1 · · · Γiq] is
only a function of

{[Aj1 · · · Ajq ] , Bjj | (sC)ij �= 0} . (1.6)

The set of all control design methods with structure GC is denoted by C. When GC
is not a complete graph, we refer to Γ ∈ C as being a limited model information
control design method.

An example of a design graph GC is given in Figure 1.7. Each node represents
a subsystem–controller pair of the overall system. For instance, GC shows that
the third subsystem’s model is available to the designer of the second subsystem’s
controller but not the first subsystem’s model. Figure 1.7 shows a fully disconnected
design graph with self-loops in G′

C . A local designer in this case can only rely on
the model of its corresponding subsystem. Note that the conventional networked
control system block diagram in Figure 1.5 does not feature the design graph.
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Figure 1.7: GC and G′

C are
examples of design graphs.

1.3.4 Performance Metric
The goal of this thesis is to investigate the influence of the plant, control, and
design graphs on the quality of controllers constructed by limited model information
control design methods. To each plant P ∈ P and controller K ∈ K, we associate
a closed-loop performance criterion

JP (K) =
∞∑

k=1
x(k)T Qx(k) +

∞∑
k=0

u(k)T Ru(k), (1.7)

where Q, R ∈ Sn
++ are block diagonal matrices, with each diagonal block entry

belonging to Sni
++. The closed-loop performance criterion could be changed later

according to the application in-hand (as we do in Papers 2 and 3). Now, assume
that a plant graph GP and a control graph GK are given. Furthermore, assume
that, for every plant P ∈ P , there exists an optimal controller K∗(P ) ∈ K such
that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.

The mapping K∗ : P → K∗(P ) is not itself required to lie in the set C, as every
component of the optimal controller may depend on all entries of the plant model.
The competitive ratio of a control design method Γ is defined as

rP (Γ) = sup
P ∈P

JP (Γ(P ))
JP (K∗(P ))

,

with the convention that “0
0 ” equals one. Now, we formulate the main question of

this thesis regarding the connection between closed-loop performance, plant struc-
ture, controller structure, and limited model information control design as follows.
For given plant, control, and design graphs, we would like to determine

Γ∗ ∈ arg min
Γ∈C

rP(Γ). (1.8)

Since this minimizer might not be unique, we define a partial order (domination)
on the set C. A control design method Γ is said to dominate another control design
method Γ′ if

JP (Γ(P )) ≤ JP (Γ′(P )), ∀ P ∈ P , (1.9)
with strict inequality holding for at least one plant in P . When Γ′ ∈ C and no
control design method Γ ∈ C exists that dominates Γ′, we say that Γ′ is undominated
in C for plants in P . In the thesis, we are interested in determining the control design
strategies in (1.8) that are undominated.
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1.3.5 Problem Formulation Extensions
In Paper 2, we introduce the set P of plants of interest as the space of all discrete-
time linear time-invariant dynamical systems of the form

x(k + 1) = Ax(k) + Bu(k) + Hw(k) ; x(0) = 0,

where A ∈ A(SP ), B ∈ B, and

H ∈ H ⊆ {
H̄ ∈ Rn×n | H̄ij = 0 ∈ Rni×nj for all 1 ≤ i �= j ≤ q

}
.

Thus, we identify a plant P ∈ P in Paper 2, with the corresponding triple P =
(A, B, H) ∈ A(SP ) × B × H. We generalize the set of control laws of interest to
dynamic linear state-feedback control

K(SK) = {K̄ ∈ (RL∞)n×n | K̄ij = 0 ∈ (RL∞)ni×nj

for all 1 ≤ i, j ≤ q such that (sK)ij = 0}.

We also use the H2-norm of the closed-loop system from the exogenous input w(k)
to the output

y(k) =
[

CT 0
]

x(k) +
[

0 DT
]

u(k)
where C, D ∈ Rn×n are block diagonal matrices, with each diagonal block entry
belonging to Rni×ni .

According to the specific structure of B given in (1.4), each subsystem is fully-
actuated, with as many input as states, and controllable in just one time step.
Possible generalization of the results to a (restricted) family of under-actuated
systems is also discussed in Paper 2.

In Paper 3, we fix ni = mi = 1 for all 1 ≤ i ≤ n in (1.3)–(1.4), and introduce
the set P of plants of interest as the space of all discrete-time linear time-invariant
dynamical systems of the form

x(k + 1) = Ax(k) + B(u(k) + w(k)) ; x(0) = x0,

w(k + 1) = Dw(k) ; w(0) = w0,

with A ∈ A(SP), B ∈ B, x0 ∈ Rn, w0 ∈ Rn, and

D ∈ D =
{

D̄ ∈ Rn×n | d̄ij = 0 ∈ R for all 1 ≤ i �= j ≤ n
}

.

We identify a plant P ∈ P with the corresponding tuple P = (A, B, D, x0, w0) ∈
A(SP) × B × D ×Rn ×Rn. We also generalize the set of control laws of interest to
the set of dynamic linear state-feedback controllers

K(SK) = {K̄ ∈ Rn×n | k̄ij = 0 ∈ R for all 1 ≤ i, j ≤ n such that (sK)ij = 0}.

We associate the closed-loop performance criterion

JP (K) =
∞∑

k=0
x(k)T Qx(k) + (u(k) + w(k))T R(u(k) + w(k)),

where Q, R ∈ Sn
++ are diagonal matrices.
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Figure 1.8: The plant graph GP and design graph GC of the temperature control
system described in Example 1.3.

1.4 Examples Revisited

In this subsection, we revisit the temperature control and the vehicle platooning
examples presented in Section 1.2.

Example 1.3 (Temperature Control, continued): Consider the tempera-
ture control problem introduced in Example 1.1. Augmenting all the average
temperature difference equations in (1.1), and using a simple change of variable
x(k) = x̄(k) − r with r = [r1 · · · rq]T ∈ Rq as the vector of desired temperature,
results in a discrete-time linear time-invariant dynamical system of the form

x(k + 1) = Ax(k) + u(k) + w(k),

where w(k) ∈ Rq is a constant-disturbance vector given by

w(k) = [β1 · · · βq]T x̄a + Ar − r,

and A ∈ Rq×q is a model matrix whose entries are defined as

aij =
{

αij , i �= j,
−βi −∑� �=i αi�, otherwise.

Note that we can consider Ar − r as a part of the disturbance vector whenever
subsystems do not know each other set-points. Now, the performance criterion
in (1.2) can be written as

J =
∞∑

k=0
x(k)T x(k) + (u(k) + w(k))T (u(k) + w(k)).

If two rooms are not adjacent, their temperatures do not affect each other sig-
nificantly, which we can use to generate the corresponding plant graph. In this
particular problem, we have q = 11 rooms/subsystems, and each room’s dynamics
is of dimension one. The plant graph for this family of plants is shown in Fig-
ure 1.8 (left). Let the control graph GK be a supergraph of the plant graph GP ,
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and the design graph GC be the one in Figure 1.8 (right). The design graph GC
shows that each local controller is designed based on a local subsystem model. Now,
one can use the results given in Paper 3 to show that the undominated minimizer of
the competitive ratio is the deadbeat proportional-integral control design strategy
ΓΔ which, for a fixed plant P = (A, B, I, x0, w0), gives the proportional-integral
control law

u(k) = −B−1Ax(k) − B−1
k∑

i=0
x(i).

This is the case as the plant graph GP contains no sink. In the case that the plant
graph contains one or more sinks, one can take advantage of the knowledge of the
location of the sinks to achieve a better closed-loop performance.

Example 1.4 (Vehicle Platooning, continued): Consider the platooning prob-
lem in Example 1.2. Let us define the first subsystem as z1(k) = z1(k) and
z2(k) = [z2(k) z3(k)]T . Unfortunately, the dynamical system introduced in this
example does not satisfy one of the assumptions required in Paper 1 (i.e., B is not
a square invertible matrix). To use the results given in Paper 1, one can use either
(i) the restriction of the platooning problem to velocity regulation, or (ii) the sim-
plified version of the platooning problem under the assumption that the trucks can
be modeled as first-order subsystems with the velocity as the control input. For
instance, assume that we restrict the platooning problem to the velocity regulation.
In this case, we have

Δv(k + 1) = AΔv(k) + BΔu(k)

where
Δv(k) =

[
v1(k) − v∗

v2(k) − v∗

]
, Δu(k) =

[
u1(k) − α1v∗/β1
u2(k) − α1v∗/β1

]
,

with v∗ as the reference velocity, and

A =
[

1 − ΔT α1/m1 0
0 1 − ΔT α2/m2

]
, B =

[
ΔT β1/m1 0

0 ΔT β2/m2

]
.

Furthermore, let us consider the performance measure

J =
∞∑

k=0
Δv(k)T

[
5 −4

−4 5

]
Δv(k) + Δu(k)T Δu(k).

Unfortunately, the performance measure does not obey the assumptions of Paper 1
as it is nonseparable (i.e., Q is not diagonal). To fix this, we use the change of
variable

z(k) = Q1/2Δv(k) =
[

2 −1
−1 2

]
Δv(k),
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which gives

J =
∞∑

k=0
z(k)T z(k) + Δu(k)T Δu(k),

and
z(k + 1) = Āz(k) + B̄Δu(k),

where Ā = Q1/2AQ−1/2 and B̄ = Q1/2B. For any fixed (Ā, B̄), the control law for
the deadbeat control design strategy ΓΔ is

Δu(k) = ΓΔ(Ā, B̄)z(k)

= ΓΔ(Q1/2AQ−1/2, Q1/2B)Q1/2Δv(k)

= −(Q1/2B)−1(Q1/2AQ−1/2)Q1/2Δv(k)
= −B−1AΔv(k).

Therefore, subsystems i control law becomes only a function of its own parameters
{αi, βi, mi} (i.e., local model information), and consequently, ΓΔ ∈ C. Thus, al-
though the assumptions of Paper 1 are not completely fulfilled, the conclusions are
still valid.

1.5 Thesis Outline and Contributions

The rest of this thesis is organized as follows.

Chapter 2: Background
A review of the pre-existing literature on generic properties of structured systems,
distributed and decentralized control design, decision-making (optimization) with
partial information, and limited model information control design is given in this
chapter.

Chapter 3: Conclusions and Future Work
A summary of the results of the thesis and possible directions for future research
are presented in this chapter.

Paper 1: Optimal Control Design with Limited Model Information
In this paper, we introduce the family of limited model information control de-
sign methods, which construct controllers by accessing the plant’s model in a con-
strained way, according to a given design graph. We investigate the achievable
closed-loop performance of discrete-time linear time-invariant plants under a sep-
arable quadratic cost performance measure with structured static state-feedback
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controllers. We find the optimal control design strategy (in terms of the competi-
tive ratio and domination) when the control designer has access to the local model
information and the global interconnection structure of the plant. At last, we study
the trade-off between the amount of model information exploited by a control design
method and the best closed-loop performance (in terms of the competitive ratio) of
controllers it can produce. This paper is under review for journal publication as:

F. Farokhi, C. Langbort, K. H. Johansson, “Optimal Control Design with
Limited Model Information,” 2011. Submitted.

A preliminary version of the paper was presented as:

F. Farokhi, C. Langbort, K. H. Johansson, “Control Design with Limited
Model Information,” in American Control Conference, Proceedings of the,
pp. 4697–4704, 2011.

Paper 2: Dynamic Control Design Based on Limited Model Information
The design of optimal H2 dynamic controllers for interconnected linear systems
under limited plant model information is considered in this paper. An explicit
minimizer of the competitive ratio is found. It is shown that this control design
strategy is not dominated by any other strategy with the same amount of model
information. The result applies to a wide class of system interconnections, controller
structures, and design information. This paper was recently presented as:

F. Farokhi, K. H. Johansson, “Dynamic Control Design Based on Limited
Model Information,” in Communication, Control, and Computing, Proceed-
ings of the 49th Annual Allerton Conference on, pp. 1576–1583, 2011.

Paper 3: Decentralized Disturbance Accommodation with Limited
Plant Model Information
The optimal control design for disturbance accommodation with limited model in-
formation is considered in this paper. As it is shown in Papers 1 and 2, when it
comes to designing optimal centralized or partially structured decentralized state-
feedback controllers with limited model information, the best control design strat-
egy (in terms of competitive ratio and domination) is static. This is true even
though the optimal partially structured decentralized state-feedback controller with
full model information is dynamic. In this paper, we show that, in contrast, the
best limited model information control design strategy for the disturbance accom-
modation problem gives a dynamic controller. We find an explicit minimizer of the
competitive ratio and we show that it is undominated. This optimal controller can
be separated into a static feedback law and a dynamic disturbance observer. For
constant disturbances, it is shown that this structure corresponds to proportional-
integral control. This paper was recently submitted for journal publication as:
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F. Farokhi, C. Langbort, K. H. Johansson, “Decentralized Disturbance
Accommodation with Limited Plant Model Information,” 2011. Submitted.

A preliminary version of this paper was submitted for a conference presentation as:

F. Farokhi, C. Langbort, K. H. Johansson, “Optimal Disturbance-Accommo-
dation with Limited Model Information,” Submitted to the American Control
Conference 2012.





CHAPTER 2

Background

In this chapter, we review the available literature on decentralized and distributed
control and decision-making with partial information. The primary goals of these
reviews are to show the lack of a mathematical framework for studying the opti-
mal control design with limited model information and to present the necessary
background for the main results of the thesis.

According to [26], a networked control system is “a spatially distributed systems
in which sensors, actuators, and controllers are connected to each other through
a band-limited digital communication network”. Figure 2.1 illustrates an example
of a networked control system which is composed of several subcontrollers Ci and
subsystems Pi connected to each other through a communication network, such
as wireless communication network, high-speed connection bus, etc. The network
topology shows how different sensors can communicate with different subcontrollers
and how these subcontrollers relay back their commands to the corresponding ac-
tuators.

Networked control systems have several characteristics. First, these systems
are typically distributed geographically over a vast area like the motivating power
grid application in Chapter 1. It is natural to assume that a given subsystem can
only influence a strict subset of neighboring subsystems (due to the geographical
constraints). Therefore, the geographical profile of the system and its underlying
physical characteristics dictate the interconnection pattern between subsystems.
In many situations, the interconnections of the subsystems are fixed (and given) in
advance. This property of large-scale control system has attracted a lot of atten-
tion through the time and many have studied the generic properties of structured
systems. We take a deeper look into structured systems in Section 2.1.

Second, any communication medium brings limitations, such as band-limited
channels, sampling and quantization issues, variable delays, packet drop-outs, etc.

21
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A realistic communication network has band-limited channels, that is, it can only
relay a limited amount of data per unit of time. Therefore, it might not make
sense to assume in designing each subcontroller that the subcontroller has access to
the full state measurements of the plant. Note that even if each channel has high
bandwidth, the point-to-point capacity of a large multi-hop network can still be very
limited [27]. The absence of full state information gives rise to several challenges
in designing stabilizing and optimal controllers which we discuss in Section 2.2.

Finally, in large-scale dynamical systems, it may be extremely difficult (perhaps
impossible) to identify all system parameters and update them globally. One can
only hope that the designer knows the local parameter variations and update the
corresponding subcontroller based on them. This fact motivates optimal control
design with limited model information. We briefly review the literature on this
problem in Section 2.4.

The rest of the chapter is organized as follows. We begin by introducing the
generic properties of structured systems in Section 2.1. In Section 2.2, we present
an overview of the literature on decentralized and distributed control design. In
Section 2.3, we briefly review decision-making with partial information. We sum-
marize some of the recent attempts in control design with limited model information
in Section 2.4.

2.1 Generic Properties of Structured Systems

The study of structured systems dates back almost four decades [28–32]. In [28],
the author first introduced the definition that a pair of matrices (A, B) is struc-
turally controllable if there exists a controllable pair of matrices (A′, B′) with the
same structure as (A, B). A structurally controllable system can be shown to be
controllable for almost all parameter combinations, except for some cases with zero
measure that might occur when the system parameters satisfy certain equality con-
straints [28–30]. Thus, the structural controllability helps the designer to overcome
the inherently incomplete knowledge of the system parameters. There exist graph
theoretic conditions for verifying structured controllability [28]. A set of algebraic
conditions has been presented in [29, 31] to check structured controllability. It
is interesting to note that, as structured controllability gives controllability of a
continuum of linearized systems, the aforementioned results may also provide a
sufficient condition for controllability of many nonlinear systems [33–35].

Many classical control results were generalized to structured systems. For in-
stance, the problem of input–output decoupling of structured systems has been
discussed in [36–38]. The problem of disturbance rejection and disturbance decou-
pling was addressed initially in [39–41]. Decentralized control of structured systems
was considered in [42–45]. For instance, the authors in [42] presented necessary and
sufficient conditions for controllability under a decentralized information structure.
In [43], the authors studied geometric properties of structured systems using graph-
theoretic tools. They also obtained graph-theoretic conditions used to determine
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Figure 2.1: Illustrative example of a networked control system.

stabilizability of structured interconnected systems via decentralized feedback con-
trol. The decentralized stabilization and pole placement of structured system has
been discussed in [46]. Parts of these results were also generalized to descriptor
systems in [47]. More related studies can be found in a recent survey of structured
systems and their generic properties [48]. There has been also some work in fault
detection and isolation for structured systems. For instance, in [49], the authors
provided necessary and sufficient graph-theoretic conditions under which the fault
detection and isolation problem has a solution. Later, the sensor location problem
for fault diagnosis in structured systems was discussed in [50]. Recently, a necessary
and sufficient graph-theoretic condition for the existence of vulnerabilities that are
inherent to the power network interconnection structure has been developed in [51].

2.2 Distributed and Decentralized Control Design

Band-limited channels in a networked control system force us to design distributed
and decentralized controller as subcontrollers in the overall system might have ac-
cess only to a strict subset of the state measurements. Distributed and decentral-
ized control and estimation in large-scale and networked systems is a well-studied
problem [52–55].

There is a huge body of literature on stabilizing decentralized systems. For
instance, the authors of [56–59] showed that the absence of so-called fixed modes
is a necessary and sufficient condition for stabilizability of a linear time-invariant
dynamical system with a time-invariant decentralized controller. Later, this result
was extended to show that a time-varying controller might be able to eliminate the
fixed modes that are not structurally fixed modes and as a result, a linear time-
invariant dynamical system could be stabilized with a decentralized controller even
when fixed modes are present [60, 61]. Fixed modes can also be eliminated with
vibrational control or sampling techniques [62–64]. It has also been shown that
if a fixed mode cannot be eliminated by a decentralized periodically time-varying
controller, then it cannot be eliminated by any decentralized controller [65, 66].
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There are contributions in multi-agent systems related to distributed control,
such as a Nyquist-like condition for stability of a formation using the individual
plant transfer function and the Laplacian of the graph describing the network
topology [67]. This work has been generalized to the stability of multi-input multi-
output dynamical systems with arbitrary dynamical interconnection between the
subsystems with fixed interaction topology [68]. The coordination of a group of
autonomous agents when the graph topology changes over time has been consid-
ered in [69, 70]. These works were generalized to a framework for stability analysis
of interconnected systems where the topology can potentially be time-varying [71].
The authors in [72] presented an algorithm for designing controllers that preserve
the stability of the closed-loop system under any interconnection and communica-
tion typology. Recently, a simple method for the design of decentralized stabilizing
controllers for large-scale interconnected systems has been proposed in [73].

There has been a great effort in designing optimal distributed and decentral-
ized controller. Witsenhausen showed that a linear controller is not optimal for
a quadratic performance criterion with a linear time-invariant system subject to
Gaussian noise under the distributed information constraint in general and the
cost function is not necessarily convex in the controller variables [74]. The authors
in [75, 76] established that the discrete-time version of the Witsenhausen counter-
example is NP-complete. There has been some effort also to identify the cases
where a linear solution is optimal. For instance, Witsenhausen identified some
cases where the resulting optimal controller were linear [77]. The authors in [78]
showed that under a partially nested information pattern the optimal controller is
a linear controller. It has been shown in [79] that the optimal controller is linear, if
each subcontroller has access to all the previously implemented control values and
observations made by any other subsystem in the system before the current time
and its own observations including the current time. There were some studies un-
der the spatial invariance assumption [80, 81]. Some other control structures were
shown to result in optimal linear controllers [82, 83]. In [84], the author presented
a solution to the optimal decentralized state-feedback control design problem for
partially nested information structure. Recently, it has been shown that under
the quadratic invariance and internal quadratic invariance information patterns,
one can formulate structured H∞- and H2-optimal control design as convex op-
timization problems [85–88]. This formulation results in an explicit solution for
the problem of designing decentralized H2-optimal controllers for a spacial class of
systems [89–91]. The authors in [92–94] also using the partially ordered sets intro-
duced an explicit solution to the decentralized state-feedback H2-optimal control
design problem for some classes of plant interconnection and information structure.
The problem of designing optimal distributed controllers was recently approached
using team decision theory in [95, 96]. This work was further generalized to solve
the stochastic linear quadratic control problem under power constraints [97]. In
this work, the output-feedback problem is also considered. Later, the team deci-
sion theory was used to develop optimal distributed H∞-optimal controllers when
each subsystems has access to the state measurements and control signals of those
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subsystems that can affect it [98].
There has been studies on designing optimal controller for positive systems with

more general structures. For instance, the authors in [99, 100] gave a necessary and
sufficient condition for existence of a diagonal Lyapunov function for positive sys-
tems. They also showed that, in this case, an H∞-optimal control design problem
can be written as a convex optimization problem (and therefore it is computation-
ally tractable). Later, the author in [101] proved that for positive discrete-time
linear time-invariant systems the H∞- and �1-norms are equal to each other. It was
also shown that the problem of designing an optimal controller for these systems
can be written as a convex optimization problem under some conditions on the
controller structure.

There has been studies on sub-optimal distributed and decentralized control
design because, as it was mentioned earlier, the problem of synthesizing these con-
trollers for arbitrary information patterns is NP-complete. The authors in [102]
considered the problem of designing sub-optimal static and fixed-order dynamic
structured compensators. Some approaches were based on gradient descent, New-
ton, and quasi-Newton algorithms [103–108]. A set of sufficient Linear Matrix
Inequalities for finding distributed controllers was presented in [109]. In [110], the
authors presented an algorithm for designing a near-optimal decentralized controller
that replicates the behavior of the optimal centralized controller. The problem of
near-optimal decentralized output regulation of hierarchical systems subject to dis-
turbances has been studied in [111]. In [112, 113], the problem of designing an opti-
mal decentralized state-feedback controller has been solved on a finite-horizon using
dynamic programming. In these papers, the authors provided both a computation-
ally intensive optimal solution and a sub-optimal solution that is computationally
more tractable. A receding horizon approach to develop a sub-optimal controller
was considered in [8, 114]. A recent result was introduced in [115] using decom-
position methods in distributed optimization accompanied with a special stopping
criteria to synthesize a sub-optimal controller with closed-loop performance guar-
antees.

2.3 Decision-Making with Partial Information

The problem of decision-making with incomplete information and the value of in-
formation is a well-studied problem in economics [9, 116]. For instance, in [116],
the author studied the degradation in economic decisions caused by the lack of
information and communication between both competing and cooperating agents.
He also gave an estimate of the value of information in a network using this degra-
dation factors. In [117, 118], the value of information in distributed algorithmic
decision-making has been studied. The value of information was captured using
the competitive ratio [11, 119] which was defined based on the so-called regret ratio
in economics [9]. The authors in [12] studied the standard linear programming prob-
lem when each agent just knows a restricted subset of constraint coefficients. They
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motivated this problem using distributed decision-making in network management
(see also [120, 121]), distributed task assignment problem, and organization theory.
The problem has been generalized to dynamic cases in [122, 123]. These studies are
the origin of the definitions in this thesis on competitive ratio and domination for
decentralized control design with limited plant model information. The theory of
competitive analysis of distributed algorithms was used later to compare the cost
of a distributed on-line algorithm to the cost of an optimal distributed algorithm
to study the performance of online distributed algorithms in [124]. The authors
in [125, 126] discussed a settings where several agents jointly solve a coordination
game and studied the value of information in these games. The linear programming
problem with privacy constraints was later discussed in [127].

2.4 Limited Model Information Control Design

The problem of designing controllers using uncertain plant model information is a
classical topic in control theory [128–133]. In robust control design, the goal is to
design a controller such that some level of performance of the controlled system
is guaranteed irrespective of changes in the plant dynamics within a predefined
bound around a given nominal global model. This is different from designing an
optimal controller without a global model since in optimal control design with
limited model information, subsystems do not have any prior information about
the other subsystems’ model (i.e., there are no nominal model for the subsystems
in the design procedure) and there are no, apriori known, bound on the model
uncertainties.

There has been some interesting approaches for tackling limited model informa-
tion control design problem, although not specifically tailored for it. For instance,
references [134–137] introduced methods for designing sub-optimal decentralized
controllers without a global dynamical model of the system. In these papers, the
authors assume that the plant consists of an interconnection of weakly coupled
subsystems. They design an optimal controller for each subsystem using only the
corresponding local model, and connect the obtained subcontrollers to construct
a global controller. They show that, when the coupling is negligible, this latter
controller is satisfactory in terms of closed-loop stability and performance. How-
ever, as coupling strength increases, even closed-loop stability guarantees are lost.
The motivation behind their studies was to design fully-decentralized near-optimal
controllers for large-scale dynamical systems and to avoid numerical complications,
stemming from the high dimension of the system, by splitting the original problem
into several smaller ones. Other approaches such as [4, 8] are based on receding
horizon control and use decomposition methods to solve each step’s optimization
problem in a decentralized manner with only limited information exchange between
subsystems.

As one can see, what is missing from the literature is a rigorous characterization
of the best closed-loop performance that can be attained through limited model in-



2.4. LIMITED MODEL INFORMATION CONTROL DESIGN 27

formation design and, a study of the trade-off between the closed-loop performance
and the amount of exchanged information. In this thesis, our goal is to introduce
a mathematical framework to try to partially fill this gap and also to study the
described trade-off.

The problem of designing an optimal controller with limited model information,
in the current setup, was first approached in [122, 123]. In these papers, the authors
introduced control design strategies as mappings from the set of plants of interest to
the set of eligible controllers. They investigated the quality of the controllers that
these control design strategies construct. This quality was measured by a quadratic
closed-loop performance criterion. To do so, they introduced competitive ratio as
a performance metric and the domination as a partial order on the set of limited
model information control design strategies, to study the intrinsic limitations of
limited model information control design strategies. Previously, there were no other
metrics specifically proposed for control design strategies. The authors defined the
competitive ratio as the worst case ratio of the cost of a control design strategy
to the cost of the optimal control design with full model information, similar to
Section 1.3. They worked with communication-less control design strategies as an
extreme family of limited model information control design strategies that only
rely on each subsystem model for designing the corresponding subcontroller. They
used the term communication-less to illustrate the fact that different parts of these
control design strategies would not exchange model information (and equivalently
would not communicate) with each other. The subsystems were assumed to be
scalar. Under these assumptions, it was proved that, when dealing with continuous-
time linear time-invariant dynamical systems, the competitive ratio of any control
design strategy is always unbounded. Thus, they focused on discrete-time linear
time-invariant systems and found an explicit minimizer of the competitive ratio
over the set of limited model information control design strategies. Since this
minimizer might not be unique, they also proved that it is undominated, that
is, there is no other control design method that acts always better while having
the same worst-case ratio. This undominated minimizer of the competitive ratio
was the deadbeat control design strategy. Towards the end, they briefly studied
the amount of information needed to find a control design strategy with a lower
competitive ratio than the deadbeat control design strategy or to dominate it.

The results presented in the papers of this thesis considerably extend the contri-
butions of [122, 123], but build on the same framework. We consider limited model
information control design for interconnections of fully-actuated discrete-time lin-
ear time-invariant subsystems (of arbitrary order) with a quadratic separable cost
function [138, 139]. We investigate the best closed-loop performance achievable by
structured static state-feedback controllers constructed by limited model informa-
tion design strategies. We show that the result depends crucially on the subsystems
interconnection pattern and state measurement availability (i.e., the plant graph
and control graph). We extend the fact proven in [122] that the deadbeat strategy is
the best limited model information control design method when there is no subsys-
tem that cannot affect any other subsystem and each subcontroller has access to at
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least the state measurements of those subsystems that affect it. However, the dead-
beat control design strategy is dominated when there is a subsystem that could not
affect any other subsystem. We find a better, undominated, limited model informa-
tion control design method, which, although having the same competitive ratio as
the deadbeat control design strategy, can achieve a better closed-loop performance
in average. We also characterize the amount of model information needed to achieve
a better competitive ratio than the deadbeat control design strategy. In [140], we
generalize these results to structured dynamic state-feedback controllers when the
closed-loop performance criterion is H2-norm of the closed-loop transfer function.
Surprisingly, the optimal control design strategy (in the sense of competitive ratio)
with limited model information is a static one. This is case even though the opti-
mal decentralized state-feedback controller with full model information is dynamic
itself [90, 91]. We also partially remove the assumption that all the subsystems
are fully-actuated and generalize the result for a class of under-actuated systems
where the sinks (in the plant graph) are not required to be fully-actuated. Later,
we also discuss the design of dynamic controllers for disturbance accommodation
in [141, 142]. This problem is of special interest because of the fact that the best
limited model information control design is a dynamic control design strategy con-
trary to all previous results where the best limited model information control design
strategy was a static one. This dynamic control design strategy can be divided into
two parts; a static part which was previously introduced in [138–140] and an ob-
server for canceling the disturbances. For constant disturbances, it is shown that
this structure corresponds to proportional-integral control [142].
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Conclusions and Future Work

In this chapter, we present a short summary of the contributions of the thesis, and
the directions for future work.

In Paper 1, we presented a framework for the study of optimal control de-
sign under limited model information, and investigated the connection between the
quality of controllers produced by a design method and the amount of plant model
information available to it. This is mathematically done for a set of discrete-time
linear time-invariant plants under a separable quadratic performance measure with
structured static state-feedback controllers. We showed that the best performance
achievable by a limited model information control design method crucially depends
on the structure of the plant graph and, thus, that giving the designer access to this
graph, even without a detailed model of all plant subsystems, results in superior
design, in the sense of domination.

In Paper 2, we considered optimal H2 dynamic control design for interconnected
linear systems under limited plant model information. We found an explicit undomi-
nated minimizer of the competitive ratio for a large class of system interconnections,
controller structure, and design information. It was also shown when it comes to
designing optimal centralized or partially structured decentralized state-feedback
controllers with limited model information, the best control design strategy (in
terms of competitive ratio) is a static one. This is true even though the optimal
structured decentralized state-feedback controller with full model information is
dynamic. We were also able to relax the assumption that all the subsystems are
fully-actuated for sinks in the plant graph.

In Paper 3, we studied the design of optimal disturbance accommodation con-
trollers with limited model information. We adapted the notion of limited model
information control design strategies to handle disturbance accommodation to study
the cases where the best limited model information control design is a dynamic con-
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trol design strategy. We found an explicit minimizer of the competitive ratio and
we showed that it is undominated. We split this optimal control design strategy
into a static part for regulating the state of the systems and a deadbeat observer
for canceling the disturbance effect. There are several directions to further expand
the work presented in the thesis. We list some of these directions below.

In most of the current results, we have the assumption that each subsystem is
fully-actuated, with as many inputs as states, and controllable in one time-step;
i.e., all matrices B ∈ B are square invertible. This seems to be the most restrictive
assumption on the results. We are able to relax this assumption for the sinks in the
plant graph, that is, the sinks of the plant graph can be under-actuated. In future,
we can study the possibility of relaxing this assumption for more cases. This can be
done with several approaches. For instance, one approach is to define the compet-
itive ratio based on only a compact set of plants with possibly pre-defined bounds
on the value of the parameters of each subsystem. As some of the issues concerning
the under-actuated subsystems arise when the parameters becomes large enough,
this might help us to relax the assumption that all matrices B are square invert-
ible. Another approach is to focus on under-actuated subsystems that are capable of
decoupling themselves from other subsystems in one time-step. For instance, if sub-
system i, in addition to its current model information, have access to {Aji|j �= i},
it can always hide inside the unobservable subspace of these matrices; i.e., we can
design and implement a subcontroller that makes this unobservable subspace both
an invariant subspace and a reachable subspace within one time-step. Thus, from
other subsystems perspective, such a subsystem would behave like a fully-actuated
subsystem in feedback with the deadbeat control design strategy. Although math-
ematically interesting, unfortunately, as the number of other subsystems increases
the probability that such a subspace is non-trivial is very slim. This is troublesome
as the only controller that can make the origin both an invariant subspace and a
reachable subspace within one time-step is the deadbeat control design strategy
(and it requires B to be a square invertible matrix).

The current results only hold for separable closed-loop performance measures.
It might be interesting to see what sort of assumptions are required to generalize
these results to the case that behavior of the subsystems are linked to each other
through the cost function. In case that the matrix R is block diagonal but not the
matrix Q, similar to the platooning problem in Example 1.4, one might be able
to transform the problem into an optimal control design problem with separable
closed-loop performance measures, and keep the local controllers as a function of
only local parameters. In this case, the results of this thesis might be extended,
but, in general, the solution to his problem might not be that straight-forward. We
can also look at the general problem of designing optimal controller with limited
model information for other closed-loop performance measures like H∞- or �1-norm
of the closed-loop transfer function.

Another extension is to let designers communicate with each other and explore
the question what is a good way of signaling to other subsystems without revealing
all the parameters, for instance, by finding the minimum amount of information
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needed for designing the optimal controller (e.g., see [143–145] for such bounds on
distributed computation).

In some cases, it is beneficial to define an average competitive ratio and to
guarantee the performance of the closed-loop system with a given probability. The
current definition of the competitive ratio using the worst-case behavior might be
restrictive as these extreme cases might not happen in reality. For instance, average
competitive ratio might be useful in studying the effect of packet drop-outs in a
communication network since, in a large-scale system, there are many subsystems
and all these subsystems cannot keep track of all the acknowledgement signals.
The subsystems could model the information flow pattern based on historical data.
Assuming that each subsystem can only gather the acknowledgement signals related
to itself and model the rest of the network as a stochastic process, one might search
for finding the optimal controller under such a limited information regime, and to
guarantee the closed-loop performance with a high-probability (or in average).

Other approaches like using mechanism design, by giving different subsystems
financial incentives for sharing their private information (e.g., [146]) in a selfish
scenario, might be interesting to investigate as well.
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Optimal Control Design with Limited Model
Information

Farhad Farokhi, Cédric Langbort, and Karl H. Johansson

Abstract–We introduce the family of limited model information control design meth-
ods, which construct controllers by accessing the plant’s model in a constrained way,
according to a given design graph. We investigate the achievable closed-loop performance
of discrete-time linear time-invariant plants under a separable quadratic cost performance
measure with structured static state-feedback controllers. We find the optimal control de-
sign strategy (in terms of the competitive ratio and domination metrics) when the control
designer has access to the local model information and the global interconnection structure
of the plant-to-be-controlled. At last, we study the trade-off between the amount of model
information exploited by a control design method and the best closed-loop performance
(in terms of the competitive ratio) of controllers it can produce.
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1 Introduction

Many modern control systems, such as aircraft and satellite formation [2, 3], auto-
mated highways and other shared infrastructure [4, 5], flexible structures [6], and
supply chains [7], consist of a large number of subsystems coupled through their
performance goals or dynamics. When regulating this kind of plant, it is often
advantageous to adopt a distributed control architecture, in which the controller
itself is composed of interconnected subcontrollers, each of which accesses a strict
subset of the plant’s output. Several control synthesis methods have been proposed
over the past decades that result in distributed controllers of this form, with vari-
ous types of closed-loop stability and performance guarantees (e.g., [8–16]). Most
recently, the tools presented in [17] and [18] revealed how to exploit the specific
interconnection of classes of plants (the so-called quadratically invariant systems)
to formulate convex optimization problems for the design of structured H∞- and
H2- optimal controllers. A common thread in this part of the literature is the
assumption that, even though the controller is structured, its design can be per-
formed in a centralized fashion, with full knowledge of the plant model. However,
especially in the case of supply chain and shared infrastructure, this assumption is
not always warranted, as the design of each subcontroller may need to be carried
out by a different control designer, with no access to the global model of the plant,
although its interconnection structure and the common closed-loop cost function
to be minimized are public knowledge. This class of problems, which we refer to as
“limited model information control design problems”, is the main object of interest
in the present paper.

Control design based on uncertain plant model information is a classical topic in
the robust control literature [19–22]. However, designing an optimal controller with-
out a global model is different from a robust control problem. In optimal control
design with limited model information, subsystems do not have any prior informa-
tion about the other subsystems’ model; i.e., there is no nominal model for design
procedure and there is no bound on the model uncertainties. There has been some
interesting approaches for tackling this problem. For instance, references [23–26]
introduced methods for designing sub-optimal decentralized controllers without a
global dynamical model of the system. In these papers, the authors assume that
the large-scale system to be controlled consists of an interconnection of weakly
coupled subsystems. They design an optimal controller for each subsystem using
only the corresponding local model, and connect the obtained subcontrollers to
construct a global controller. They show that, when coupling is negligible, this
latter controller is satisfactory in terms of closed-loop stability and performance.
However, as coupling strength increases, even closed-loop stability guarantees are
lost. Other approaches such as [5, 7] are based on receding horizon control and use
decomposition methods to solve each step’s optimization problem in a decentral-
ized manner with only limited information exchange between subsystems. What
is missing from the literature, however, is a rigorous characterization of the best
closed-loop performance that can be attained through limited model information
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design and, a study of the trade off between the closed-loop performance and the
amount of exchanged information. We tackle this question in the present paper.
We are particularly interested in the same applications as [5, 7], namely supply
chains and shared infrastructure, which have been shown to be well-modeled by
dynamically-coupled but possibly cost-decoupled interconnected systems.

Limited model information control design occurs naturally in this context, since
the subsystems often belong to different entities, which may consider their model
information private and may thus be reluctant to share it with the others. In this
case, the designers may have to resort to “communication-less” strategies in which
subcontroller Ki depends solely on the description of subsystem i’s model. Another
reason for using communication-less strategies in more general design situations,
even when the circulation of plant information is not restricted a priori, is that the
resulting sub-controller Ki does not need to be modified if the characteristics of a
particular subsystem, which is not directly connected to subsystem i, vary.

In this paper, we study the properties of general limited model information con-
trol design methods. We investigate the relationship between the amount of plant
information available to the designers, the nature of the plant interconnection graph,
and the quality (measured by the closed-loop control goal) of controllers that can
be constructed using their knowledge. To do so, we look at limited model informa-
tion and communication-less control design methods as belonging to a special class
of maps between the plant and controller sets, and make use of the competitive
ratio and domination metrics introduced in [27] to characterize their intrinsic limi-
tations. To the best of our knowledge, there are no other metrics specifically tuned
to control design methods. We address much more general classes of subsystems
and of limitations on the model information available to the designer than is done
in [27].

Specifically, we consider limited model information control design for intercon-
nections of fully-actuated (i.e., with invertible B-matrix) discrete-time linear time-
invariant subsystems with quadratic separable cost function. Our choice of such a
cost is motivated by our interest in dynamically-coupled but cost-decoupled plants,
while our assumption on the B-matrix is a technical assumption which, as we show
in the last section of the paper, can be partially removed in some cases. We investi-
gate the best closed-loop performance achievable by structured static state feedback
controllers constructed by limited model information design strategies. We show
that the result depends crucially on the plant graph and the control graph. In the
case where the plant graph contains no sink and the control graph is a supergraph
of the plant graph, we extend the fact proven in [27] that the deadbeat strategy is
the best communication-less control design method. However, the deadbeat con-
trol design strategy is dominated when the plant graph has sinks, and we exhibit a
better, undominated, communication-less control design method, which, although
having the same competitive ratio as the deadbeat control design strategy, takes
advantage of the knowledge of the sinks’ location to achieve a better closed-loop
performance in average. We characterize the amount of model information needed
to achieve better competitive ratio than the deadbeat control design strategy. This
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amount of information is expressed in terms of properties of the design graph; a
directed graph which indicates the dependency of each subsystem’s controller on
different parts of the global dynamical model.

This paper is organized as follows. After formulating the problem of inter-
est and defining the performance metrics in Section 2, we characterize the best
communication-less control design method according to both competitive ratio and
domination metrics in Section 3. In Section 4, we show that achieving a strictly bet-
ter competitive ratio than these control design methods requires a complete design
graph when the plant graph is itself complete. Finally, we end with a discussion on
extensions in Section 5 and the conclusions in Section 6.

1.1 Notation

Sets will be denoted by calligraphic letters, such as P and A. If A is a subset of
M then Ac is the complement of A in M, i.e., M \ A.

Matrices are denoted by capital roman letters such as A. Aj will denote the jth

row of A. Aij denotes a sub-matrix of matrix A, the dimension and the position of
which will be defined in the text. The entry in the ith row and the jth column of
the matrix A is aij .

Let Sn
++ (Sn

+) be the set of symmetric positive definite (positive semidefinite)
matrices in Rn×n. A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive
definite (positive semidefinite) and A > (≥)B means that A − B > (≥)0.

λ(Y ) and λ̄(Y ) denote the smallest and the largest eigenvalues of the matrix Y ,
respectively. Similarly, σ(Y ) and σ̄(Y ) denote the smallest and the largest singular
values of the matrix Y , respectively. Vector ei denotes the column-vector with all
entries zero except the ith entry, which is equal to one.

All graphs considered in this paper are directed, possibly with self-loops, with
vertex set {1, ..., q} for some positive integer q. If G = ({1, ..., q}, E) is a directed
graph, we say that i is a sink if there does not exist j �= i such that (i, j) ∈ E. A
loop of length t in G is a set of distinct vertices {i1, ..., it} such that (it, i1) ∈ E
and (ip, ip+1) ∈ E for all 1 ≤ p ≤ t − 1. We will sometimes refer to this loop as
(i1 → i2 → · · · → it → i1). The adjacency matrix S of graph G is the q × q matrix
whose entries satisfy

sij =
{

1 if (j, i) ∈ E
0 otherwise.

Since the set of vertices is fixed here, a subgraph of G is a graph whose edge set
is a subset of the edge set of G and a supergraph of G is a graph of which G is a
subgraph. We use the notation G′ ⊇ G to indicate that G′ is a supergraph of G.
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2 Control Design with Limited Model Information

2.1 Plant Model
Let a graph GP = ({1, ..., q}, EP) be given, with adjacency matrix SP ∈ {0, 1}q×q.
We define the following set of matrices associated with SP :

A(SP ) = {A ∈ Rn×n|Aij = 0 ∈ Rni×nj for all
1 ≤ i, j ≤ q such that (sP)ij = 0},

(1)

where for each 1 ≤ i ≤ q, integer number ni is the dimension of subsystem i.
Implicit in these definitions is the fact that

∑q
i=1 ni = n. Also, for a given scalar

ε > 0, we let

B(ε) = {B ∈ Rn×n | σ(B) ≥ ε, Bij = 0 ∈ Rni×nj for all 1 ≤ i �= j ≤ q}. (2)

The set B(ε) defined in (2) is made of invertible block-diagonal square matrices
since σ(B) ≥ ε > 0 for each matrix B ∈ B(ε) ⊆ Rn×n. With these definitions, we
can introduce the set P of plants of interest as the space of all discrete-time linear
time-invariant dynamical systems of the form

x(k + 1) = Ax(k) + Bu(k) ; x(0) = x0, (3)

with A ∈ A(SP), B ∈ B(ε), and x0 ∈ Rn. Clearly P is isomorph to A(SP ) × B(ε) ×
Rn and, slightly abusing notation, we will thus identify a plant P ∈ P with the
corresponding triple (A, B, x0).

A plant P ∈ P can be thought of as the interconnection of q subsystems, with
the structure of the interconnection specified by the graph GP (i.e., subsystem j’s
output feeds into subsystem i only if (j, i) ∈ EP). As a consequence, we refer to
GP as the “plant graph”. We will denote the ordered set of state indices pertaining
to subsystem i as Ii, i.e., Ii := (1 +

∑i−1
j=1 nj , . . . , ni +

∑i−1
j=1 nj). For subsystem i,

state vector and input vector are defined as

xi =
[
x�1 · · · x�ni

]T
, ui =

[
u�1 · · · u�ni

]T
where the ordered set of indices (�1, . . . , �ni) ≡ Ii, and its dynamics is specified by

xi(k + 1) =
q∑

j=1
Aijxj(k) + Biiui(k).

According to the specific structure of B(ε) given in (2), each subsystem is fully-
actuated, with as many input as states, and controllable in one time-step. Possible
generalization of the results to a (restricted) family of under-actuated systems is
discussed in Section 5.

Figure 1(a) shows an example of a plant graph GP . Each node represents a
subsystem of the system. For instance, the second subsystem in this example may
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Figure 1: GP and G′
P are examples of plant graphs, GK and G′

K are examples of
control graphs, and GC and G′

C are examples of design graphs.

Figure 2: Physical interconnection between different subsystems and controllers
corresponding to GP and GK in Figures 1(a) and 1(b), respectively.

affect the first subsystem and the third subsystem; i.e., sub-matrices A12 and A32
can be non-zero. The self-loop for the second subsystem shows that A22 may be
non-zero. Figure 2 illustrates the corresponding physical interconnection between
subsystems of the plant in Figure 1(a) by dotted edges. Note that P1 in Figure 2
represents a sink of GP in Figure 1(a). The plant graph G′

P in Figure 1(a′) has no
sink. The control graph GK is introduced in the next subsection.

2.2 Controller Model
Let a control graph GK be given, with adjacency matrix SK. The control laws of
interest in this paper are linear static state-feedback control laws of the form

u(k) = Kx(k),

where

K ∈ K(SK) = {K ∈ Rn×n|Kij = 0 ∈ Rni×nj for
all 1 ≤ i, j ≤ q such that (sK)ij = 0}.

(4)

In particular, when GK is a complete graph, K(SK) = Rn×n, while, if GK is to-
tally disconnected with self-loops, K(SK) represents the set of fully-decentralized
controllers. When adjacency matrix SK is not relevant or can be deduced from
context, we refer to the set of controllers as K.
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An example of a control graph GK is given in Figure 1(b). Each node represents
a subsystem-controller pair of the overall system. For instance, GK shows that the
second subsystem’s controller can use state measurements of the first subsystem
besides its own state measurements. Solid edges in Figure 2 correspond to the edges
of the control graph GK. Figure 1(b′) shows G′

K which is a complete graph. This
control graph indicates that each subsystem has access to full state measurements
of all other subsystems; i.e., K(SK) = Rn×n.

2.3 Control Design Methods
A control design method Γ is a map from the set of plants P to the set of controllers
K. Just like plants and controllers, a control design method can exhibit structure
which, in turn, can be captured by a design graph. Let a control design method Γ
be partitioned according to subsystems dimensions as

Γ =

⎡
⎢⎣

Γ11 · · · Γ1q

...
. . .

...
Γq1 · · · Γqq

⎤
⎥⎦ (5)

and a graph GC = ({1, ..., q}, EC) be given, with adjacency matrix SC . Each block
Γij represents a map A(SP ) × B(ε) → Rni×nj . Control design method Γ can be
further partitioned in the form

Γ =

⎡
⎢⎣

γ11 · · · γ1n

...
. . .

...
γn1 · · · γnn

⎤
⎥⎦ ,

where each γij is a map A(SP ) × B(ε) → R. We say that Γ has structure GC if, for
all i, the map [Γi1 · · · Γiq] is only a function of

{[Aj1 · · · Ajq ] , Bjj | (sC)ij �= 0} . (6)

In words, a control design method has structure GC if and only if, for all i, the
subcontroller of subsystem i is constructed with knowledge of the plant model
of only those subsystems j such that (j, i) ∈ EC . The set of all control design
methods with structure GC will be denoted by C. In the particular case where GC
is the totally disconnected graph with self-loops (meaning that every node in the
graph has a self-loop; i.e, SC = Iq), we say that a control design method in C is
“communication-less”, so as to capture the fact that subsystem i’s subcontroller is
constructed with no information coming from (and, hence, no communication with)
any other subsystem j, j �= i. Therefore, the design graph indicates knowledge (or
lack thereof) of entire block rows in the aggregate system matrix. When GC is not
a complete graph, we refer to Γ ∈ C as being “a limited model information control
design method”.
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Note that C can be considered as a subset of the set of functions from A(SP) ×
B(ε) to K(SK), since a design method with structure GC is not a function of initial
state x0. Hence, when Γ ∈ C we will write Γ(A, B) instead of Γ(P ) for plant
P = (A, B, x0) ∈ P .

An example of a design graph GC is given in Figure 1(c). Each node repre-
sents a subsystem-controller pair of the overall system. For instance, GC shows
that the third subsystem’s model is available to the designer of the second sub-
system’s controller but not the first subsystem’s model. Figure 1(c′) shows a fully
disconnected design graph with self-loops G′

C . A local designer in this case can
only rely on the model of its corresponding subsystem; i.e., the design strategy is
communication-less. Note that Figure 2 does not feature the design graph.

2.4 Performance Metrics
The goal of this paper is to investigate the influence of the plant and design graph
on the properties of controllers constructed by limited model information control
design methods. To this end, we will use two performance metrics for control design
methods. These performance metrics are adapted from the notions of competitive
ratio and domination introduced in [27], so as to take plant, controller, and control
design structures into account. Following the approach in [27], we start by asso-
ciating a closed-loop performance criterion to each plant P = (A, B, x0) ∈ P and
controller K ∈ K. As explained in the introduction, we are particularly interested
in dynamically-coupled but cost-decoupled systems in this paper, hence, we use a
cost of the form

JP (K) =
∞∑

k=1
x(k)T Qx(k) +

∞∑
k=0

u(k)T Ru(k), (7)

where Q ∈ Sn
++ and R ∈ Sn

++ are block diagonal matrices, with each diagonal block
entry belonging to Sni

++. We make the following two standing assumptions:

Assumption 1 Q = R = I.

This is without loss of generality because the change of variables (x̄, ū) =
(Q1/2x, R1/2u) transforms the performance criterion and state space representa-
tion into

JP (K) =
∞∑

k=1
x̄(k)T x̄(k) +

∞∑
k=0

ū(k)T ū(k), (8)

and

x̄(k + 1) = Q
1
2 AQ− 1

2 x̄(k) + Q
1
2 BR− 1

2 ū(k)
= Āx̄(k) + B̄ū(k),

respectively, without affecting the plant, control, or design graph (due to the block
diagonal structure of Q and R).
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Assumption 2 The set of matrices B(ε) is replaced with the set of diagonal ma-
trices with diagonal entries greater than or equal to ε.

This assumption is without loss of generality. Indeed, consider a plant P =
(A, B, x0) ∈ P . Every sub-system’s Bii matrix has a singular value decompo-
sition Bii = UiiΣiiV

T
ii with Σii ≥ εIni×ni . Combining these singular value de-

compositions together results in a singular value decomposition for matrix B =
UΣV T where U = diag(U11, U22, · · · , Uqq), Σ = diag(Σ11, Σ22, · · · , Σqq), and V =
diag(V11, V22, · · · , Vqq). Defining x̄(k) = UT x(k) and ū(k) = V T u(k) results in

x̄(k + 1) = UT AUx̄(k) + UT BV ū(k),

where UT BV is diagonal. Because of the block diagonal structure of matrices U
and V , the change of variables (A, B, x0) �→ (UT AU, UT BV, UT x0) does not affect
the plant, control, or design graph. In addition, the cost function becomes

JP (K) =
∞∑

k=1
x̄(k)T UT Ux̄(k) +

∞∑
k=0

ū(k)T V T V ū(k)

=
∞∑

k=1
x̄(k)T x̄(k) +

∞∑
k=0

ū(k)T ū(k),

which is of the form (8), because both U and V are unitary matrices. We are now
ready to define the performance metrics of interest in this paper.

Definition 1 (Competitive Ratio) Let a plant graph GP , control graph GK and
constant ε > 0 be given. Assume that, for every plant P ∈ P, there exists an
optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio of a control design method Γ is defined as

rP (Γ) = sup
P =(A,B,x0)∈P

JP (Γ(A, B))
JP (K∗(P ))

,

with the convention that “ 0
0 ” equals one.

Note that the mapping K∗ : P → K∗(P ) is not itself required to lie in the set C, as
every component of the optimal controller may depend on all entries of the model
matrices A and B.

Definition 2 (Domination) A control design method Γ is said to dominate another
control design method Γ′ if

JP (Γ(A, B)) ≤ JP (Γ′(A, B)), ∀ P = (A, B, x0) ∈ P , (9)

with strict inequality holding for at least one plant in P. When Γ′ ∈ C and no
control design method Γ ∈ C exists that satisfies (9), we say that Γ′ is undominated
in C for plants in P.
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2.5 Problem Formulation
With the definitions of the previous subsections in hand, we can reformulate the
main question of this paper regarding the connection between closed-loop perfor-
mance, plant structure, and limited model information control design as follows.
For a given plant graph, control graph, and design graph, we would like to determine

arg min
Γ∈C

rP (Γ). (10)

Since several design methods may achieve this minimum, we are interested in de-
termining which ones of these strategies are undominated.

In [27], this problem was solved in the case when GP and GK are complete
graphs, GC is a totally disconnected graph with self-loops (i.e., SC = Iq), and B(ε)
is replaced with singleton {In}. In this paper, we investigate the role of more general
plant and design graphs. We also extend the results in [27] for scalar subsystems
to subsystems of arbitrary order ni ≥ 1, 1 ≤ i ≤ q.

3 Plant Graph Influence on Achievable Performance

In this section, we study the relationship between the plant graph and the achievable
closed-loop performance in terms of the competitive ratio and domination.

Definition 3 The deadbeat control design method ΓΔ : A(SP) × B(ε) → K is
defined as

ΓΔ(A, B) = −B−1A, for all P = (A, B, x0) ∈ P .

This control design method is communication-less; i.e., the control design for the
subsystem i is a function of the model of the subsystem i only, because subsystem
i’s controller gain

[
ΓΔ

i1(A, B) · · · ΓΔ
iq(A, B)

]
equals to B−1

ii [Ai1 · · · Aiq]. The name
“deadbeat” comes from the fact that the closed-loop system obtained by applying
controller ΓΔ(A, B) to plant P = (A, B, x0) reaches the origin in just one time-
step [28].

Remark 1 Note that for the case that the control graph GK is a complete graph;
i.e., K = Rn×n, there exists a controller K∗(P ) satisfying the assumptions of Def-
inition 1 for all P ∈ P, namely, the optimal linear quadratic regulator which is
independent of the initial condition of the plant. For incomplete control graphs, the
optimal control design strategy K∗(P ) (if exists) might become a function of the
initial condition [29]. Hence, we will use K∗(A, B) instead of K∗(P ) when the con-
trol graph GK is a complete graph for each plant P = (A, B, x0) ∈ P to emphasize
this fact.

Form Definition 1, the notation K∗(P ) is reserved for the optimal control design
strategy for any given control graph GK. In the particular case, we use the notation
K∗

C(A, B) to denote the unstructured optimal control design strategy (i.e., GK is a
complete graph).
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Lemma 1 Let the control graph GK be a complete graph. The cost of the optimal
control design strategy K∗ is lower-bounded by

JP (K∗(A, B)) ≥
(

σ2(B)
σ2(B) + 1

)
JP (ΓΔ(A, B)),

for all plants P = (A, B, x0) ∈ P.

Proof: See Appendix A.

Theorem 2 Let the plant graph GP contain no isolated node and GK ⊇ GP . Then
the competitive ratio of the deadbeat control design method ΓΔ is

rP (ΓΔ) = 1 + 1/ε2.

Proof: Irrespective of the control graph GK and for all plants P ∈ P , it is true
that JP (K∗

C(A, B)) ≤ JP (K∗(P )). Therefore, we get

JP (ΓΔ(A, B))
JP (K∗(P ))

≤ JP (ΓΔ(A, B))
JP (K∗

C(A, B))
. (11)

Now, using Lemma 1, we know that

JP (ΓΔ(A, B))
JP (K∗

C(A, B))
≤ 1 + 1

σ2(B)
, (12)

for all P = (A, B, x0) ∈ P . Combining (12) and (11) results in

rP (ΓΔ) = sup
P ∈P

JP (ΓΔ(A, B))
JP (K∗(P ))

≤ 1 + 1
ε2 .

To show that this upper bound is attained, let us pick i1 ∈ Ii and j1 ∈ Ij where
1 ≤ i �= j ≤ q and (sP)ij �= 0 (such indices i and j exist because plant graph GP
has no isolated node by assumption). Consider the system A = ei1 eT

j1 and B = εI.
The unique positive definite solution of the discrete algebraic Riccati equation

AT XA − AT XB(I + BT XB)−1BT XA = X − I, (13)

is X = I + [1/(1 + ε2)]ej1 eT
j1

. Consequently, the centralized controller K∗
C(A, B) =

−ε/(1 + ε2)ei1 eT
j1

belongs to the set K(SK) because GK ⊇ GP . Thus, we get

J(A,B,ej1 )(K∗(A, B, ej1 )) ≤ J(A,B,ej1 )(K∗
C(A, B)) (14)

since K∗(P ) has a lower cost than any other controller in K(SK). On the other
hand, it is evident that

J(A,B,ej1 )(K∗
C(A, B)) ≤ J(A,B,ej1 )(K∗(A, B, ej1 )) (15)



58 PAPER 1. OPTIMAL CONTROL DESIGN WITH ...

because the centralized controller has access to more state measurements. Us-
ing (14) and (15) simultaneously results in

J(A,B,ej1 )(K∗(A, B, ej1 )) = J(A,B,ej1 )(K∗
C(A, B))

= 1/(1 + ε2).

On the other hand ΓΔ(A, B) = −[1/ε]ei1eT
j1

and J(A,B,ej1 )(ΓΔ(A, B)) = 1/ε2.
Therefore, rP (ΓΔ) = 1 + 1/ε2.

Remark 2 Consider the limited model information design problem given by the
plant graph GP in Figure 1(a) and the control graph G′

K in Figure 1(b′). Theo-
rem 2 shows that, if we apply the deadbeat control design strategy to this particular
problem, the performance of the deadbeat control design strategy, at most, can be
1 + 1/ε2 times the cost of the optimal control design strategy K∗.

Remark 3 There is no loss of generality in assuming that there is no isolated
node in the plant graph GP , since it is always possible to design a controller for an
isolated subsystem without any model information about the other subsystems and
without impacting cost (7). In particular, this implies that there are q ≥ 2 vertices
in the graph because for q = 1 the only subsystem that exists is an isolated node in
the plant graph.

Remark 4 For implementation of the deadbeat control design strategy in each
node, we only need the state measurements of the neighbors of that node. For the
implementation of the optimal control design strategy K∗ when the control graph has
many more links than the plant graph, the controller gain K∗(P ) is not necessarily
a sparse matrix.

With this characterization of ΓΔ in hand, we are now ready to tackle prob-
lem (10).

3.1 First case: plant graph GP with no sink
In this subsection, we show that the deadbeat control method ΓΔ is undominated
by communication-less control design methods for plants in P , when GP contains
no sink. We also show that ΓΔ exhibits the smallest possible competitive ratio
among such control design methods.

First, we state the following two lemmas.

Lemma 3 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . A control design
method Γ ∈ C has bounded competitive ratio only if the following implication holds
for all 1 ≤ i ≤ q and all j:

a�j = 0 for all � ∈ Ii ⇒ γ�j(A, B) = 0 for all � ∈ Ii,
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where Ii is the set of indices related to subsystem i; i.e., Ii = (1+
∑i−1

z=1 nz, . . . , ni +∑i−1
z=1 nz).

Proof: See Appendix B.

Lemma 4 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . Assume the plant
graph GP has at least one loop. Then,

rP (Γ) ≥ 1 + 1/ε2 (16)

for all limited model information control design method Γ in C.

Proof: See Appendix C.

Using these two lemmas, we are ready to state and prove one of the main
theorems in this paper and, as a result, find the solution to problem (10) when the
plant graph GP contains no sink.

Theorem 5 Let the plant graph GP contain no isolated node and no sink, the
design graph GC be a totally disconnected graph with self-loops, and GK ⊇ GP .
Then the competitive ratio of any control design strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2.

Proof: From Lemma 1.4.23 in [30], we know that a directed graph with no sink
must have at least one loop. Hence GP must contain a loop. The result then follows
from Lemma 4.

Remark 5 Theorem 5 shows that rP (Γ) ≥ rP(ΓΔ) for any control design strategy
Γ ∈ C, and as a result the deadbeat control design method ΓΔ becomes a minimizer of
the competitive ratio function rP over the set of communication-less design methods.

We now turn our attention to domination properties of the deadbeat control
design strategy.

Lemma 6 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . The deadbeat control
design strategy ΓΔ is undominated, if there is no sink in the plant graph GP .

Proof: See Appendix D.

The following theorem shows that the deadbeat control design strategy is un-
dominated by communication-less design methods if and only if the plant graph
GP has no sink. It thus provides a good trade-off between worst-case and average
performance.
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Theorem 7 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . Then the deadbeat
control design method ΓΔ is undominated in C for plants in P if and only if the
plant graph GP has no sink.

Proof: Proof of the “if” part of the theorem, is given by Lemma 6.
For ease of notation in this proof, we use [Γ]i = [Γi1 · · · Γiq] and [A]i =

[Ai1 · · · Aiq].
In order to prove the “only if” part of the theorem, we need to show that if the

plant graph has a sink (i.e., if there exists j such that (sP )ij = 0 for every i �= j),
then there exists a control design method Γ which dominates the deadbeat control
design method. We exhibit such a strategy.

Without loss of generality, we can assume that (sP)iq = 0 for all i �= q, in which
case every matrix A in A(SP) has the structure

A =

⎡
⎢⎢⎢⎣

A11 · · · A1,q−1 0
...

. . .
...

...
Aq−1,1 · · · Aq−1,q−1 0

Aq1 · · · Aq,q−1 Aqq

⎤
⎥⎥⎥⎦ .

Define x̄0 = [ x1(0) · · · xq−1(0) ]T , and let control design strategy Γ be defined
by ⎡

⎢⎢⎢⎣
−B−1

11 A11 · · · −B−1
11 A1,q−1 0

...
. . .

...
...

−B−1
q−1,q−1Aq−1,1 · · · −B−1

q−1,q−1Aq−1,q−1 0
Kq1(A, B) · · · Kq,q−1(A, B) Kqq(A, B)

⎤
⎥⎥⎥⎦

for all P = (A, B, x0) ∈ P , with

K̄(A, B) : =
[

Kq1(A, B) · · · Kq,q−1(A, B) Kqq(A, B)
]

= −(I + BT
qqXqqBqq)−1BT

qqXqq[A]q,

where Xqq is the unique positive definite solution to the discrete algebraic Riccati
equation

AT
qqXqqBqq(I+BT

qqXqqBqq)−1BT
qqXqqAqq − AT

qqXqqAqq + Xqq − I = 0. (17)

In words, control design strategy Γ applies the deadbeat strategy to subsystems 1
to q − 1 while, on subsystem q, it uses the same sub-controller as in the optimal
controller for the plant

x̂(k + 1) = Âx̂(k) + B̂û(k), (18)
with cost function

J
(2)
(A,B,x0)(K̄) =

∞∑
k=1

x̂(k)T Qx̂(k) +
∞∑

k=0
û(k)T û(k),
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where Q = diag(0, . . . , 0, Inq×nq ), the matrix Â is defined as [Â]q = [A]q and [Â]z =
0 for all z �= q, and furthermore, the matrix B̂ is defined as B̂ = diag(0, . . . , 0, Bqq).
Note that Γ is indeed communication-less since K̄(A, B) defined above can be com-
puted with the sole knowledge of the qth lower block of A and B. Because of the
structure of matrices in A(SP) and this characterization of Γ, we have

J(A,B,x0)(Γ(A, B)) = J
(1)
(A,B,x0) + J

(2)
(A,B,x0)(K̄(A, B)),

where J
(1)
(A,B,x0) = x̄T

0 ĀT B̄−T B̄−1Āx̄0, with

Ā =

⎡
⎢⎣

A11 · · · A1,q−1
...

. . .
...

Aq−1,1 · · · Aq−1,q−1

⎤
⎥⎦ ,

and B̄ = diag(B11, . . . , Bq−1,q−1) and J
(2)
(A,B,x0)(K̄(A, B)) is the closed-loop cost for

system (18). Since K̄(A, B) is the optimal controller for this cost, J
(2)
(A,B,x0)(K̄(A, B)) =

xT
0 ÂT WÂx0, where

W = diag(0, . . . , 0, Xqq − XqqBqq(I + BT
qqXqqBqq)−1BT

qqXqq).

Using part 2 of Subsection 3.5.2 in [31], we have the matrix inversion identity

X − XY (I + ZXY )−1ZX = (X−1 + Y Z)−1,

which results in

Wqq = Xqq − XqqBqq(I + BT
qqXqqBqq)−1BT

qqXqq

= (X−1
qq + BqqBT

qq)−1

< B−T
qq B−1

qq .

Note that X−1
qq exists because Xqq ≥ I which follows from the discrete algebraic

Riccati equation in (17). This inequality implies that

ÂT WÂ < ÂT (B̂†)T B̂†Â

where B̂† = diag(0, . . . , 0, B−1
qq ). Thus

J(A,B,x0)(Γ(A, B)) = J
(1)
(A,B,x0) + J

(2)
(A,B,x0)(K̄(A, B))

< J(A,B,x0)(ΓΔ(A, B)),

for all P = (A, B, x0) ∈ P such that the qth lower block of A is not zero, un-
less the J(A,B,x0)(Γ(A, B)) = J(A,B,x0)(ΓΔ(A, B)). Thus, control design method Γ
dominates the deadbeat control design method ΓΔ.
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Remark 6 Consider the limited model information design problem given by the
plant graph G′

P in Figure 1(a′), the control graph G′
K in Figure 1(b′), and the

design graph G′
C in Figure 1(c′). Theorems 5 and 7 show that the deadbeat control

design strategy ΓΔ is the best control design strategy that one can propose based
on the local model of subsystems and the plant graph, because the deadbeat control
design strategy is the minimizer of the competitive ratio and it is undominated.

Remark 7 It should be noted that, the proof of the “only if” part of the Theorem 7
is constructive. We use this construction to build a control design strategy for the
plant graphs with sinks in next subsection.

3.2 Second case: plant graph GP with at least one sink
In this section, we consider the case where plant graph GP has c ≥ 1 sinks. Ac-
cordingly, its adjacency matrix SP is of the form

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (19)

where

(SP)11 =

⎡
⎢⎣

(sP)11 · · · (sP )1,q−c

...
. . .

...
(sP )q−c,1 · · · (sP)q−c,q−c

⎤
⎥⎦ ,

(SP)21 =

⎡
⎢⎣

(sP )q−c+1,1 · · · (sP)q−c+1,q−c

...
. . .

...
(sP)q,1 · · · (sP)q,q−c

⎤
⎥⎦ ,

and

(SP)22 =

⎡
⎢⎣

(sP )q−c+1,q−c+1 · · · 0
...

. . .
...

0 · · · (sP)qq

⎤
⎥⎦ ,

where we assume, without loss of generality, that the vertices are numbered such
that the sinks are labeled q − c + 1, . . . , q. With this notation, let us now introduce
the control design method ΓΘ defined by

ΓΘ(A, B) = −diag(B−1
11 , . . . , B−1

q−c,q−c, Wq−c+1(A, B), . . . , Wq(A, B))A (20)

for all (A, B) ∈ A(SP ) × B(ε), where

Wi(A, B) = (I + BT
ii XiiBii)−1BT

iiXii (21)

for all q − c + 1 ≤ i ≤ q and Xii is the unique positive definite solution of the
discrete algebraic Riccati equation

AT
iiXiiBii(I + BT

iiXiiBii)−1BT
iiXiiAii − AT

iiXiiAii + Xii − I = 0. (22)
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The control design method ΓΘ applies the deadbeat strategy to every subsystem
that is not a sink and, for every sink, applies the same optimal control law as if
the node were decoupled from the rest of the graph. We will show that when the
plant graph contains sinks, ΓΘ has, in worst case, the same competitive ratio as the
deadbeat strategy. Unlike the deadbeat strategy, it has the additional property of
being undominated by communication-less methods for plants in P when the plant
graph GP has sinks.

Lemma 8 Let the plant graph GP contain no isolated node, the design graph GC
be a totally disconnected graph with self-loops, and GK ⊇ GP . Let Γ be a control
design strategy in C. Suppose that there exist i and j �= i such that (sP)ij �= 0 and
that node i is not a sink. The competitive ratio of Γ is bounded only if

Aij + BiiΓij(A, B) = 0, for all P = (A, B, x0) ∈ P .

Proof: See Appendix E.

Remark 8 Lemma 8 shows that a necessary condition for a bounded competitive
ratio is to decouple the nodes that are not sinks from the rest of the network.

Theorem 9 Let the plant graph GP contain no isolated node and at least one sink,
and the control graph GK be a complete graph. Then the competitive ratio of the
communication-less design method ΓΘ introduced in (20) is

rP (ΓΘ) =
{

1, if (SP)11 = 0 and (SP )22 = 0,
1 + 1/ε2, otherwise.

Proof: Based on Theorem 2 we know that, for every plant P = (A, B, x0) ∈ P

J(A,B,x0)(K∗(A, B)) ≥ ε2

1 + ε2 xT
0 AT B−T B−1Ax0, (23)

In addition, proceeding as in the proof of the “only if” part of the Theorem 7, we
know that

J(A,B,x0)(ΓΔ(A, B)) ≥ J(A,B,x0)(ΓΘ(A, B)). (24)

Plugging equation (24) into equation (23) results in

J(A,B,x0)(ΓΘ(A, B))
J(A,B,x0)(K∗(A, B))

≤ 1 + 1
ε2 for all P = (A, B, x0) ∈ P .

As a result, rP (ΓΘ) ≤ 1 + 1/ε2. To show that this upper-bound is tight, we now
exhibit plants for which it is attained. We use a different construction depending
on matrices (SP)11 and (SP)22. If (SP)11 �= 0, two situations can occur.
Case 1: (SP )11 �= 0 and it is not diagonal. There exist 1 ≤ i �= j ≤ q − c such that
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(sP)ij �= 0. In this case, choose indices i1 ∈ Ii and j1 ∈ Ij and define A = ei1 eT
j1

and B = εI. Then, for x0 = ej1 , we find that

J(A,B,x0)(ΓΘ(A, B))
J(A,B,x0)(K∗(A, B))

= 1/ε2

1/(1 + ε2)
= 1 + 1

ε2

because the control design ΓΘ acts like the deadbeat control design method on this
plant.
Case 2: (SP)11 �= 0 and it is diagonal. There exists 1 ≤ i ≤ q − c such that
(sP)ii �= 0. Pick an index i1 ∈ Ii. In that case, consider A(r) = rei1 eT

i1 and
B = εI. For x0 = ei1 , the optimal cost is

J(A(r),B,x0)(K∗(A(r), B)) =
√

r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1
2ε2 ,

which results in

lim
r→0

J(A,B,x0)(ΓΘ(A, B))
J(A,B,x0)(K∗(A, B))

= 1 + 1
ε2 .

Now suppose that (SP)11 = 0. Again, two different situations can occur.
Case 3: (SP)11 = 0 and (SP)22 �= 0. There exists q − c + 1 ≤ i ≤ q such that
(sP)ii �= 0. From the assumption that the plant graph contains no isolated node,
we know that there must exist 1 ≤ j ≤ q − c such that (sP)ij �= 0. Accordingly, let
us pick i1 ∈ Ii and j1 ∈ Ij and consider the 2-parameter family of matrices A(r, s)
in A(SP ) with all entries equal to zero except ai1i1 , which is equal to r, and ai1j1 ,
which is equal to s. Let B = εI. For any initial condition x0, the corresponding
closed-loop performance is

J(A(r,s),B,x0)(ΓΘ(A(r, s), B)) = βΘxT
0 a(r, s)a(r, s)T x0,

where we have let a(r, s) = A(r, s)T
i1

and βΘ is

βΘ =
√

r4 + 2r2ε2 − 2ar2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1
2ε2r2 .

Besides, the optimal closed-loop performance can be computed as

J(A(r,s),B,x0)(K∗(A(r, s), B)) = βK∗xT
0 a(r, s)a(r, s)T x0,

where βK∗ is

βK∗ =
ε2s2 + r2(1 + ε2) − (ε2 + 1)2 + √

c+c−
2ε2(ε2 + 1)(s2 + r2)

,

c± = (ε2s2 + (r2 ± 2r)(ε2 + 1) + (ε2 + 1)2).



3. PLANT GRAPH INFLUENCE ON ACHIEVABLE PERFORMANCE 65

Then,

rP (ΓΘ) ≥ lim
r→∞, s

r →∞
J(A(r,s),B,x0)(ΓΘ(A(r, s), B))
J(A(r,s),B,x0)(K∗(A(r, s), B))

= 1 + 1
ε2

Case 4: (SP)11 = 0 and (SP)22 = 0. Then, every matrix A ∈ A(SP) has the form[
0 0
∗ 0

]
and, in particular, is nilpotent of degree 2; i.e., A2 = 0. In this case,

the Riccati equation yielding the optimal control gain K∗(A, B) can be readily
solved, and we find that K∗(A, B) = −(I + BT B)−1BT A for all (A, B). As a
result, K∗(A, B) = ΓΘ(A, B) for all plant P = (A, B, x0) ∈ P (since Wi(A, B) =
(I + BT

ii Bii)−1BT
ii for all q − c + 1 ≤ i ≤ q), which implies that the competitive

ratio of ΓΘ against plants in P is equal to one.

In Theorem 9, the control graph GK is assumed to be a complete graph. We
needed this assumption to calculate the cost of the optimal control design strategy
K∗(P ) when (SP)11 = 0 and (SP)22 �= 0 which is not an easy task when the control
graph GK is incomplete. However, more can be said if (SP )11 �= 0.

Corollary 10 Let the plant graph GP contain no isolated node and at least one
sink and GK ⊇ GP . Then

rP(ΓΘ) =
{

1, if (SP)11 = 0 and (SP)22 = 0,
1 + 1/ε2, if (SP)11 �= 0.

Proof: According to Theorem 9, for (SP)11 �= 0, we get

rP (ΓΘ) = sup
P ∈P

J(A,B,x0)(ΓΘ(A, B))
J(A,B,x0)(K∗(P ))

≤ sup
P ∈P

J(A,B,x0)(ΓΘ(A, B))
J(A,B,x0)(K∗

C(A, B))
= 1 +

1
ε2 .

Case 1: (SP )11 �= 0 and it is not diagonal. For the special plant introduced in Case 1
in the proof of Theorem 9, we have J(A,B,ej1 )(K∗

C(A, B)) = J(A,B,ej1 )(K∗(A, B, ej1 ))
since A = ei1 eT

j1 is a nilpotent matrix. The rest of the proof is similar to Case 1 in
the proof of Theorem 9.
Case 2: (SP)11 �= 0 and it is diagonal. Note that, for the special plant introduced
Case 2 in the proof of Theorem 9, we have

K∗
C(A, B) = −

√
r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2εr2 A

which shows K∗
C(A, B) ∈ K(SK) and similar to the proof of Theorem 2, we get

J(A,B,ei1 )(K∗
C(A, B)) = J(A,B,ei1 )(K∗(A, B, ei1 )). The rest of the proof is similar
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to Case 2 in the proof of Theorem 9.
Case 3: (SP)11 = 0 and (SP)22 = 0. Then, every A ∈ A(SP ) is nilpotent matrix
which results in JP (K∗(P )) = JP (K∗

C(A, B)). The rest of the proof is similar to
Case 4 in the proof of Theorem 9.

Theorem 11 Let the plant graph GP contain no isolated node and at least one
sink, the control graph GK be a complete graph, and the design graph GC be a
totally disconnected graph with self-loops. Then the competitive ratio of any control
design strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2,

if either (SP)11 is not diagonal or (SP)22 �= 0.

Proof: Case 1: (SP)11 �= 0 and it is not diagonal. Then, there exist 1 ≤ i, j ≤ q−c
and i �= j such that (sP)ij �= 0. Choose indices i1 ∈ Ii and j1 ∈ Ij and consider
the matrix A defined by A = ei1 eT

j1 and B = εI. From Lemma 8, we know that a
communication-less method Γ has a bounded competitive ratio only if Γ(A, B) =
−B−1A (because node i is a part of (SP)11 and it is not a sink). Therefore

rP (Γ) ≥ J(A,B,ej1 )(Γ(A, B))
J(A,B,ej1 )(K∗(A, B))

= 1 + 1
ε2

for any such method.
Case 2: (SP )22 �= 0. There thus exists q − c + 1 ≤ i ≤ q such that (sP)ii �= 0.
Note that, there exists 1 ≤ j ≤ q − c such that (sP)ij �= 0, since there is no
isolated node in the plant graph. Choose indices i1 ∈ Ii and j1 ∈ Ij . Consider A
defined as A = rei1 eT

j1
+sei1eT

i1
and B = εI. As indicated in the proof of Theorem 9,

control design strategy ΓΘ yields the globally optimal controller with limited model
information for plants in this family. Hence, we know that rP (Γ) ≥ 1 + 1/ε2 for
every communication-less strategy Γ.

In Theorem 11, the control graph GK is assumed to be a complete graph since
we used the proof of Theorem 9 for the case that (SP)22 �= 0.

Corollary 12 Let the plant graph GP contain no isolated node and at least one
sink, the control graph GK be a complete graph, and the design graph GC be a totally
disconnected graph with self-loops. Then the competitive ratio of any control design
strategy Γ ∈ C satisfies

rP(Γ) ≥ 1 + 1/ε2,

if (SP )11 is not diagonal.

Proof: Considering that for the nilpotent matrix A = ei1eT
j1

, we get
J(A,B,ej1 )(K∗(A, B, ej1 )) = J(A,B,ej1 )(K∗

C(A, B)), the rest of the proof is similar
to Case 1 in the proof of Theorem 11.
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Remark 9 Combining Theorems 9 and 11 implies that if either (SP )11 is not di-
agonal or (SP)22 �= 0, control design method ΓΘ exhibits the same competitive
ratio as the deadbeat control strategy, which is the smallest ratio achievable by a
communication-less control method. Therefore, it is a solution to problem (10).
Furthermore, if (SP)11 and (SP )22 are both zero, then ΓΘ is equal to K∗, which
shows that ΓΘ is a solution to problem (10), in this case too.

Remark 10 The case where (SP)11 is diagonal and (SP )22 = 0 is still open.

The next theorem shows that ΓΘ is a more desirable control design method than
the deadbeat control design strategy when the plant graph GP has sinks, since it
is then undominated by communication-less design methods.

Theorem 13 Let the plant graph GP contain no isolated node and at least one sink,
the design graph GC be a totally disconnected graph with self-loops, and GK ⊇ GP .
The control design method ΓΘ is undominated by any control design method Γ ∈ C.

Proof: See Appendix F.

Remark 11 Consider the limited model information design problem given by the
plant graph GP in Figure 1(a), the control graph G′

K in Figure 1(b′), and the design
graph G′

C in Figure 1(c′). Theorems 9, 11, and 13 together show that, the control
design strategy ΓΘ is the best control design strategy that one can propose based on
the local model information and the plant graph, because the control design strategy
ΓΘ is a minimizer of the competitive ratio and it is undominated.

Remark 12 For general weight matrices Q and R appearing in the performance
cost, the competitive ratio of both the deadbeat control design strategy ΓΔ and the
control design strategy ΓΘ is 1 + σ̄(R)/(σ(Q)ε2). In particular, the competitive
ratio has a limit equal to one as σ̄(R)/σ(Q) goes to zero. We thus recover the well-
known observation (e.g., [32]) that, for discrete-time linear time-invariant systems,
the optimal linear quadratic regulator approaches the deadbeat controller in the limit
of “cheap control”.

4 Design Graph Influence on Achievable Performance

In the previous section, we have shown that communicat-ion-less control design
methods (i.e., GC is totally disconnected with self-loops) have intrinsic performance
limitations, and we have characterized minimal elements for both the competitive
ratio and domination metrics. A natural question is “given plant graph GP , which
design graph GC is necessary to ensure the existence of Γ ∈ C with better compet-
itive ratio than ΓΔ and ΓΘ ?”. We tackle this question in this section.
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Theorem 14 Let the plant graph GP and the design graph GC be given and GK ⊇
GP . If one of the following conditions is satisfied then rP(Γ) ≥ 1 + 1/ε2 for all
Γ ∈ C:

1. GP contains the path k → i → j with distinct nodes i, j, and k while (j, i) /∈
EC .

2. There exist i �= j such that ni ≥ 2 and (i, j) ∈ EP while (j, i) /∈ EC.

Proof: We prove the case when condition (1) holds. The proof for condition (2)
is similar.

Let i, j, and k be three distinct nodes such that (sP)ik �= 0 and (sP )ji �= 0
(i.e., the path k → i → j is contained in the plant graph GP). Let us pick i1 ∈ Ii,
j1 ∈ Ij and k1 ∈ Ik and consider the 2-parameter family of matrices A(r, s) in
A(SP) with all entries equal to zero except ai1k1 , which is equal to r, and aj1i1 ,
which is equal to s. Let B = εI and let Γ ∈ C be a limited model information with
design graph GC . For x0 = ek1 , we have

J(A(r,s),B,ek1 )(Γ(A(r, s), B)) ≥ (r + εγi1k1 (A, B))2[γ2
j1i1 + (s + εγj1i1 (A, B))2]

where γi1k1 cannot be a function of s because (j, i) /∈ EC . Note that, irrespective
of the choice of γj1i1 (A, B), we have

J(A(r,s),B,ek1 )(Γ(A(r, s), B)) ≥ (r + εγi1k1 (A, B))2s2

1 + ε2 .

The cost of the deadbeat control design on this plant satisfies

J(A(r,s),B,ek1 )(ΓΔ(A(r, s), B)) = r2/ε2,

and thus

rP(Γ) = sup
P ∈P

JP (Γ(A, B))
JP (K∗(P ))

= sup
P ∈P

[
JP (Γ(A, B))

JP (ΓΔ(A, B))
JP (ΓΔ(A, B))

JP (K∗(P ))

]

≥ sup
P ∈P

JP (Γ(A, B))
JP (ΓΔ(A, B))

,

≥ lim
s→∞

ε2(r + εγi1k1 (A, B))2s2

(1 + ε2)r2 .

(25)

This shows that rP (Γ) is unbounded unless r + εγi1k1(A(r, s), B) = 0 for all r, s.
Now consider the 1-parameter family of matrices Ā(r) with all entries equal to zero
except ai1k1 , which is equal to r. Because of (j, i) /∈ EC , we know that Γz(Ā(r), B) =
Γz(A(r, s), B) for all z ∈ Ii. Thus

J(Ā(r),B,ek1 )(Γ(Ā(r), B)) ≥ r2/ε2.
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On the other hand, similar to the proof of Theorem 2, we can compute the optimal
controller for systems in this 1−parameter family and find

J(Ā(r),B,ek1 )(K
∗(Ā(r), B, ek1 )) = J(Ā(r),B,ek1 )(K

∗
C(Ā(r), B))

= r2/(1 + ε2),

As a result, we get

rP (Γ) ≥ r2/ε2

r2/(1 + ε2)
= 1 + 1

ε2 ,

which concludes the proof for this case.

Remark 13 Consider the limited model information design problem given by the
plant graph GP in Figure 1(a), the control graph G′

K in Figure 1(b′), and the
design graph GC in Figure 1(c). Theorem 14 shows that, because the plant graph
GP contains the path 3 → 2 → 1 but the design graph GC does not contain 1 → 2,
the competitive ratio of any control design strategy Γ ∈ C would be greater than or
equal to 1 + 1/ε2.

Corollary 15 Let both the plant graph GP and the control graph GK be complete
graphs. If the design graph GC is not equal to GP , then rP(Γ) ≥ 1 + 1/ε2 for all
Γ ∈ C.

Proof: The proof is a direct application of Theorem 14 with condition (1) fulfilled.

Remark 14 Corollary 15 shows that, when GP is a complete graph, achieving a
better competitive ratio than the deadbeat design strategy requires each subsystem to
have full knowledge of the plant model when constructing each subcontroller.

5 Extensions to Under-Actuated Subsystems

In the previous sections, we gave an explicit solution to the problem in (10) under
the assumption that all the subsystems are fully-actuated; i.e., all the matrices
B ∈ B(ε) are square invertible matrices. In this section, we briefly discuss an
extension to more general (but still restricted) under-actuated systems.

Consider the limited model information control design problem given with the
plant graph GP , the control graph GK, and the design graph GC given in Figure 3.
The state space representation of the system is given as[

x1(k + 1)
x2(k + 1)

]
= A

[
x1(k)
x2(k)

]
+ B

[
u1(k)
u2(k)

]
,

where
A =

[
A11 0
A21 A22

]
, B =

[
B11 0
0 B22

]
,
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( )a PG ( )b KG ( )c CG

2 12 12 1

Figure 3: Plant graph GP , control graph GK, and design graph GC used to illustrate
an extension to under-actuated systems.

with x1(k) ∈ Rn1 , x2(k) ∈ Rn2 , u1(k) ∈ Rn1 , and u2(k) ∈ Rm2 for some given
integers n1 ≥ 1, n2 > m2 ≥ 1. Thus, for the second subsystem the matrix B22 ∈
Rn2×m2 is a non-square matrix, and as a result the second subsystem is an under-
actuated subsystem. Let us assume that the matrices A21, A22, B22 satisfy the
“matching condition”; i.e., the pair (A22, B22) is controllable and span(A21) ⊆
span(B22) [33]. Besides, assume that for all matrices B, we have σ(B) ≥ ε for some
ε > 0. For this case, we have

ΓΘ(A, B) = − diag(B−1
11 , W2(A22, B22))A,

where W2(A22, B22) is defined in (21). Note that we do not require the matrix B22
to be square invertible. Under some additional conditions and following a similar
approach as above, it can be shown that the control design strategy ΓΘ becomes
an undominated minimizer of the competitive ratio over the set of limited model
information control design strategies. This result can be generalized to cases with
higher number of subsystems as long as the sinks in the plant graph GP are the
only under-actuated subsystems [34].

6 Conclusion

We presented a framework for the study of control design under limited model infor-
mation, and investigated the connection between the quality of controllers produced
by a design method and the amount of plant model information available to it. We
showed that the best performance achievable by a limited model information con-
trol design method crucially depends on the structure of the plant graph and, thus,
that giving the designer access to this graph, even without a detailed model of all
plant subsystems, results in superior design, in the sense of domination. Possible
future work will focus on extending the present framework to dynamic controllers
and/or where disturbances are present.
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A Proof of Lemma 1

For any plant P = (A, B, x0) ∈ P , the optimal controller K∗(P ) exists (because
the plant is controllable since B is invertible by assumption) and can be computed
using the unique positive definite solution to the discrete algebraic Riccati equation

X = AT XA − AT XB(I + BT XB)−1BT XA + I. (26)

The corresponding cost is JP (K∗(A, B)) = xT
0 (X − I)x0. Inserting the product

BB−1 before every matrix A and B−T BT after every matrix AT in (26) results in

X−I = AT B−T BT XBB−1A

− AT B−T BT XB(I + BT XB)−1BT XBB−1A.
(27)

Naming BT XB as Y simplifies (27) into

X − I = AT B−T [Y − Y (I + Y )−1Y ]B−1A. (28)

Note that Y is a positive definite matrix because X is positive definite and B is
full rank. Let us denote the right-hand side of (28) by AT B−T g(Y )B−1A. Then
we can make the following two claims regarding the rational function g(·).
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Claim 1: The function y �→ g(y) = y/(1 + y) is a monotonically increasing
over R+.

Claim 2: Let Y ∈ Sn
++ and D, T be diagonal and unitary matrices, respectively,

such that Y = T T DT . Then g(Y ) = T T diag(g(dii))T , where dii are the diagonal
elements of D (and the eigenvalues of Y ).

Claim 1 is proved by computing the derivative of g over R+, while Claim 2
follows from the fact that all matrices involved in the computation of g(Y ) can be
diagonalized in the same basis. Using these two claims, we find that, for all Y with
eigenvalues denoted by λ1(Y ), . . . , λn(Y )

X − I = AT B−T g(Y )B−1A

= AT B−T T T diag(g(λi(Y )))T B−1A

≥ (g(λ(Y )))AT B−T B−1A,

(29)

where λ(Y ) is a positive number because matrix Y is a positive definite matrix.
Now, according to [35],

λ(X) ≥ λ(AT (I + BBT )−1A + I) ≥ σ2(A)
1 + σ̄2(B)

+ 1. (30)

Using (30) in inequality λ(Y ) ≥ σ2(B)λ(X) gives

λ(Y ) ≥ σ2(B)σ2(A)
1 + σ̄2(B)

+ σ2(B), (31)

and, because of the claim 1 and the inequality in (31), we will have

g(λ(Y )) ≥ σ2(B)[σ2(A) + σ̄2(B) + 1]
1 + σ̄2(B) + σ2(B)[σ2(A) + σ̄2(B) + 1]

≥ σ2(B)
σ2(B) + 1

.

(32)

Combining (29) and (32) results in

X − I ≥ σ2(B)
σ2(B) + 1

AT B−T B−1A,

and, therefore

JP (K∗(A, B)) = xT
0 (X − I)x0

≥
(

σ2(B)
σ2(B) + 1

)
xT

0 (AT B−T B−1A)x0

=
(

σ2(B)
σ2(B) + 1

)
JP (ΓΔ(A, B)).
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B Proof of Lemma 3

Let Γ ∈ C and assume that the implication does not hold, i.e., that there exists
a matrix A and indices i, j with �0 ∈ Ii such that a�j = 0 for all � ∈ Ii but
γ�0j(A, B) �= 0. Consider matrix Ā such that Ā� = A� for all � ∈ Ii and Āz = 0
for all z /∈ Ii. Based on the definition of limited-model-information control design
methods, we know that Γ�(Ā, B) = Γ�(A, B) for all � ∈ Ii and Γz(Ā, B) = 0 for
all z /∈ Ii (because Γz(A, B) = Γz(0, B) for all z /∈ Ii and, as shown in [27], it is
necessary that Γ(0, B) = 0 for a finite competitive ratio). For x = ej, we have

J(Ā,B,ej)(Γ(Ā, B)) ≥
∑
�∈Ii

γ�j(Ā, B)2

=
∑
�∈Ii

γ�j(A, B)2

≥ γ�0j(A, B)2 > 0.

Using (25), we get

rP(Γ) ≥ J(Ā,B,ej)(Γ(Ā, B))
J(Ā,B,ej)(ΓΔ(Ā, B))

= ∞,

since J(Ā,B,ej)(ΓΔ(Ā, B)) = 0. This proves the claim by contrapositive.

C Proof of Lemma 4

Clearly, it is enough to prove inequality (16) for control design methods with a
finite competitive ratio.

Let GP have a loop and Γ ∈ C have finite competitive ratio. Without loss of
generality, let us assume that the nodes of graph GP are numbered such that it
admits the following loop of length �: 1 → 2 → · · · → � → 1. Let us choose indices
i1 ∈ I1, i2 ∈ I2, . . ., i� ∈ I� and consider the one-parameter family of matrices
{A(r)} defined by ai2i1 (r) = r, ai3i2 (r) = r, . . ., ai�i�−1 (r) = r, ai1i�

(r) = r, and
all other entries equal to zero, for all r. Let B = εI. Because of Lemma 3, the
controller gain entries γj2i1 (A(r), B) for all j2 ∈ I2, γj3i2 (A(r), B) for all j3 ∈ I3,
. . ., γj�i�−1 (A(r), B) for all j� ∈ I�, γj1i�

(A(r), B) for all j1 ∈ I1 can be non-zero,
but all other entries of the controller gain Γ(A(r), B) are zero for all r. As a result,
the characteristic polynomial of matrix A(r) + BΓ(A(r), B) can be computed as:

λn−�[λ� − (−1)�(r + εγi2i1 (A(r), B))(r + εγi3i2 (A(r), B))
× · · · ×(r + εγi�i�−1 (A(r), B))(r + εγi1i�

(A(r), B))].

Now, note that because Γ has a bounded competitive ratio against P by assumption,
this polynomial should be stable for all r. (Indeed, Γ can have a finite competitive



76

ratio only if A + BΓ(A, B) is stable for all matrices A, otherwise it would yield an
infinite cost for some plants while the corresponding optimal cost remains bounded
since the pair (A, B) is controllable for all plant in P). As a result, we must have

|(r + εγi2i1 (A(r), B)) · · · (r + εγi1i�
(A(r), B))|

= |r + εγi2i1 (A(r), B)| · · · |r + εγi1i�
(A(r), B)| < 1

(33)

for all r. Let {rz}∞
z=1 be a sequence of real numbers with the property that rz goes

to infinity as z goes to infinity. From (33), we know that there exists an index m̄
such that

∀N, ∃z > N such that |rz + εγim̄⊕1im̄ (A(rz), B)| < 1, (34)

where “⊕” designated addition modulo �; i.e., i ⊕ j = (i + j) − �(i + j)/��� where
�x� = max{y ∈ Z|y ≤ x} for all x ∈ R. Indeed, if this is not the case, it is true that

∀m, ∃Nm such that |rz + εγim⊕1im (A(rz), B)| ≥ 1, ∀z > Nm.

Then, for all z > maxm Nm and all m,

|rz + εγim⊕1im (A(rz), B)| ≥ 1

which contradicts (33). Without loss of generality (since this just amounts to
renumbering the nodes in the plant graph), we assume that m̄ = 1. Using (34), we
can then construct a subsequence {rφ(z)} of {rz} with the property that

|rφ(z) + εγi2i1 (A(rφ(z)), B)| < 1 for all z.

Now introduce the sequence of matrices {Ā(z)}∞
z=1 defined by Āi2i1 (z) = rφ(z) for

all z and every other row equal to zero. For large enough z (and hence, large enough
rφ(z)), we get

J(Ā(z),B,ei1 )(Γ(Ā(z), B)) ≥ γi2i1 (Ā(z), B)2

= γi2i1 (A(rφ(z)), B)2

≥ (|rφ(z)| − 1)2

ε2 ,

and thus
J(Ā(z),B,ei1 )(Γ(Ā(z), B))

J(Ā(z),B,ei1 )(K∗(Ā(z), B, ei1 ))
≥ (|rφ(z)| − 1)2/ε2

r2
φ(z)/(1 + ε2) .

This, in particular, implies that

rP(Γ) ≥ lim
z→∞

J(Ā(z),B,ei1 )(Γ(Ā(z), B))
J(Ā(z),B,ei1 )(K∗(Ā(z), B, ei1))

≥ 1 + 1/ε2.
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Note that Ā(z) is a nilpotent matrix for all z, and thus

J(Ā(z),B,ei1 )(K∗(Ā(z), B, ei1)) = J(Ā(z),B,ei1 )(K∗
C(Ā(z), B))

similar to the proof of Theorem 2, and therefore

J(Ā(z),B,ei1 )(K∗
C(Ā(z), B)) = r2

φ(z)/(1 + ε2)

using the unique positive-definite solution of discrete algebraic Riccati equation
in (13).

D Proof of Lemma 6

We prove that if there is no sink in the plant graph (i.e., according to [30], if
∀j∃k, k �= j, such that (sP)kj �= 0) then the deadbeat control design method is
undominated. For proving this claim, we are going to prove that for any con-
trol design Γ ∈ C\{ ΓΔ}, there exits a plant P = (A, B, x0) ∈ P such that
JP (Γ(A, B)) > JP (ΓΔ(A, B)) = xT

0 [AT B−T B−1A]x0. We will proceed in several
steps, which require us to partition the set of limited model information control
design methods C as follows

C = Lc ∪ W1 ∪ W2 ∪ {ΓΔ},

where

L := {Γ ∈ C|∃Λj : Rnj×n × Rnj×nj → Rnj×nj ,

[Γ(A, B)]j = Λj([A]j , Bjj)[A]j , for all j = 1, · · · , q},

W1 := {Γ ∈ L|∃j, i �= j and Aij ∈ Rni×nj nonzero s.t.
I + BiiΛi([0 · · · 0 Aij 0 · · · 0] , Bii) �= 0},

and

W2 := {Γ ∈ L\W1|∃i ∈ {1, · · · , q}, [A]i ∈ Rni×n, with
appropriate structure such that I + BiiΛi([A]i, Bii) �= 0}.

First, we prove that the deadbeat control design method is undominated by control
design strategies in Lc. Let Γ ∈ Lc and let j be such that ∃j1 ∈ Ij which Γj1 (Ā, B)T

cannot be written as a linear combination of vectors in the set {ĀT
i , ∀i ∈ Ij} for

some matrix Ā and matrix B. Let aT
i = Āi for all i ∈ Ij and consider matrix A such

that the row Ai = aT
i for all i ∈ Ij and Ai = 0 for all i ∈ Ic

j . If Γ(0, B) �= 0, then
Γ cannot dominate ΓΔ (since ΓΔ(0, B) = 0 for all x0) and, thus, there is no loss of
generality in assuming that Γ(0, B) = 0 for all x0, and, in turn that Γi(A, B) = 0
for all i ∈ Ic

j . Let us also denote Γ(A, B) by K and Γi(A, B) = Γi(Ā, B) by KT
i

for all i ∈ Ij . For all x0,

J(A,B,x0)(Γ(A, B)) ≥ xT
0 [KT K + (A + BK)T (A + BK)]x0,
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and

J(A,B,x0)(Γ(A, B)) − J(A,B,x0)(ΓΔ(A, B))
≥ xT

0 [AT (I − B−T B−1)A + AT BK + KT BT A + KT (I + BT B)K]x0.
(35)

We know that null(A) = span{AT
i , ∀i ∈ Ij}⊥ �= {0}, because nj < n. On the other

hand, we know that there exists an j1 ∈ Ij such that Kj1 /∈ span{AT
i , ∀i ∈ Ij}

which shows that

span{AT
i , ∀i ∈ Ij} � span{AT

i ,∀i ∈ Ij} + span{KT
i , ∀i ∈ Ij},

Thus, we can choose an initial condition x0 ∈ null(A) such that Kx0 �= 0. Using
this x0 in (35) results in

J(A,B,x0)(Γ(A, B)) − J(A,B,x0)(ΓΔ(A, B)) ≥ xT
0 [KT (I + BT B)K]x0 > 0. (36)

Therefore, the control design strategies in Lc cannot dominate the deadbeat control
design strategy ΓΔ.

Second, we prove that the deadbeat control design strategy is undominated
by control design methods in W1. Let Γ ∈ W1 and let j be such that (I +
BiiΛi(

[
0 · · · 0 Āij 0 · · · 0

]
, Bii)) �= 0 for some i �= j. It means that there ex-

ists at least i1 ∈ Ii and j1 ∈ Ij such that āi1j1 �= 0 and āi1j1 + bi1i1 γi1j1 (Ā, B) �= 0.
Using the structure matrix, we know that there exits a � �= i such that (sP)�i �=
0. Choose an index �1 ∈ I�. Consider the matrix A defined by [A]i = [Ā]i,
a�1i1 = r and all other entries equal to zero. Then, [Γ(A, B)]i = Λi([A]i, Bii)[A]i,
[Γ(A, B)]� = Λ�([A]�, B��)[A]� (because Γ ∈ L), and [Γ(A, B)]z = 0 for all z �= i, �.
Denote Γ(A, B) by K. We have

J(A,B,x0)(Γ(A, B)) ≥ xT
0 [(A + BK)T KT K(A + BK)

+((A + BK)2)T (A + BK)2]x0.

Using x0 = ej1 results in

J(A,B,ej1 )(Γ(A, B)) − J(A,B,ej1 )(ΓΔ(A, B)) ≥
[k2

�1i1 + (r + b�1�1 k�1i1 )2](ai1j1 + bi1i1 ki1j1 )2 −
∑
z∈Ii

a2
zj1 /b2

zz. (37)

Note that, irrespective of the choice of the controller gain k�1i1 ,

k2
�1i1 + (r + b�1�1k�1i1 )2 ≥ r2/(1 + b2

�1�1 ),

and as a result,

lim
r→+∞[k2

�1i1 + (r + b�1�1 k�1i1 )2](ai1j1 + bi1i1 ki1j1 )2 = ∞,
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because ai1j1 + bi1i1 ki1j1 �= 0. Hence, we can always construct A with appropriate
choice of index � and a scalar r large enough to make the right hand side of the
expression (37) positive. As a result, Γ ∈ W1 cannot dominate ΓΔ.

Third, we prove that the deadbeat control design strategy is undominated by
control design methods in W2. Let Γ ∈ W2 and index i and vector [Ā]i be such
that I + Λi([Ā]i, Bii) �= 0. Thus we know that there exists at least i1 ∈ Ii such
that Āi1 �= 0 and Āi1 + bi1i1 Γi1 (Ā, B) �= 0. Based on the structure matrix we know
that there exits � �= i such that (sP)�i �= 0. Choose an index �1 ∈ I�. Consider the
matrix A defined by [A]i = [Ā]i and a�1i1 = r and all other entries of A equal to zero.
Then [A]i + Bii[Γ(A, B)]i = (I + BiiΛi([A]i, Bii))[A]i and [A]j + Bjj [Γ(A, B)]j = 0
for all j �= i (and, in particular, j = � since Γ does not belong to W1). Again, K
will stand for Γ(A, B). We have

KT K + (A + BK)T KT K(A + BK) − AT B−T B−1A

≥ (Ai1 + bi1i1 Γi1 (A, B))T (Ai1 + bi1i1 Γi1 (A, B))r2/b2
�1�1 −

∑
z∈Ii

AT
z Az/b2

zz,

and hence, since Ai1 + bi1i1 Γi1 (A, B) �= 0, we can choose r large enough to ensure
that this matrix has a strictly positive eigenvalue. Thus, the control design strategy
Γ ∈ W2 cannot dominate ΓΔ.

E Proof of Lemma 8

The proof is by contrapositive. Let Γ be communication-less and assume that
there exist matrices A and B and indices i1 ∈ Ii and j1 ∈ Ij such that ai1j1 +
bi1i1 γi1j1 (A, B) �= 0. Choose an index k1 ∈ Ik. Consider the one-parameter family
of matrices Ā(r) defined by [Ā(r)]i = [A]i, āk1i1 = r, and all other entries of
Ā(r) being equal to zero for all r. We know that [Γ(Ā(r), B)]i = [Γ(A, B)]i and
Γk̄(Ā(r), B) = γk̄i1

(r)eT
i1

for all k̄ ∈ Ik (because of Lemma 3), [Γ(Ā(r), B)]z = 0 for
all z �= i, k. For x0 = ej1 , we have

J(Ā(r),B,ej1 )(Γ(Ā(r), B)) ≥ (ai1j1 + bi1i1 γi1j1 (A, B))2

× [γk1i1 (r)2 + (r + bk1k1γk1i1 (r))2].

The minimum value of function y �→ [y2 + (r + bk1k1 y)2] is r2/(1 + b2
k1k1

). Hence,
irrespective of function γk1i1 ,

J(Ā(r),B,ej1 )(Γ(Ā(r), B)) ≥ (ai1j1 +bi1i1 γi1j1 (A, B))2r2/(1 + b2
k1k1 ).

Note that the term (ai1j1 + bi1i1 γi1j1 (A, B))2 is independent from r because Γ is
communication-less. In addition,

J(Ā(r),B,ej1 )(Γ
Δ(Ā(r), B)) =

∑
z∈Ii

ā2
zj1

b2
zz

=
∑
z∈Ii

a2
zj1

b2
zz
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for all r and, thus, J(Ā(r),B,ej1 )(ΓΔ(Ā(r), B)) is also independent from r. Then,
proceeding as in (25), we deduce that

rP (Γ) ≥ (ai1j1 + bi1i1 γi1j1 (A, B))2

(1 + b2
k1k1

)J(Ā(r),B,ej1 )(ΓΔ(Ā(r), B))
lim

r→∞ r2.

Since (ai1j1 + bi1i1 γi1j1 (A, B)) �= 0 by assumption, we then deduce that Γ has an
unbounded competitive ratio, which proves the lemma by contrapositive.

F Proof of Theorem 13

We prove that for any control design method Γ ∈ C\{ΓΘ}, there exists a plant
P = (A, B, x0) ∈ P such that JP (Γ(A, B)) > JP (ΓΘ(A, B)). Like in the proof
of Theorem 3.6, we partition the set of limited model information control design
methods C as follows

C = Lc ∪ W0 ∪ W1 ∪ W2 ∪ {ΓΘ},

where

L := {Γ ∈ C|∃Λi : Rni×n × Rni×ni → Rni×ni ,

[Γ(A, B)]i = Λi([A]i, Bii)[A]i, for all i = 1, · · · , q},

W0 := {Γ ∈ L, ∃i ∈ {q − c + 1, . . . , q} such that Λi([A]i, Bii) �= Wi([A]i, Bii)},

with Wi defined as in equation (21),

W1 := {Γ ∈ L \ W0|∃i ∈ {1, · · · , q − c}, ∃j �= i and Aij ∈ Rni×nj

nonzero such that I + BiiΛi([0 · · · 0 Aij 0 · · · 0] , Bii) �= 0},

and

W2 := {Γ ∈ L\W0 ∪ W1|∃i ∈ {1, · · · , q − c}, [A]i ∈ Rni×n,

with appropriate structure such that I + BiiΛi([A]i, Bii) �= 0}.

First, we prove that ΓΘ is undominated by control design methods in Lc. Let Γ ∈ Lc

and let i be such that there exists a plant with matrix Ā with the property that
sub-controller [Γ]i([Ā]i, Bii)T does not belong to the linear subspace spanned by the
columns of [Ā]Ti . If 1 ≤ i ≤ q − c then, proceeding as in the proof of Theorem 7, we
can find matrices A, B and initial condition x0 such that JP (Γ(P )) > JP (ΓΔ(P )) =
JP (ΓΘ(P )) for P = (A, B, x0) (with the last equality following from the structure
of matrix A). Hence, without loss of generality, we assume that q − c + 1 ≤ i ≤ q.
Consider matrix A defined as [A]i = [Ā]i and [A]j = 0 for all j �= i. For this
particular matrix A and any B, x0 we know from the proof of the “only if” part of
the Theorem 7 that ΓΘ(A, B, x0) is the globally optimal controller. Hence, every
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other control design method in C leads to a controller with greater performance
criterion than ΓΘ for this particular type of plants. Therefore, the control design
ΓΘ is undominated by control design methods in Lc.

The same reasoning shows that ΓΘ is also undominated by control design meth-
ods in W0.

We now prove that ΓΘ is undominated by control design strategies in W1. Let
Γ ∈ W1 and let 1 ≤ i ≤ q − c be such that (I + BiiΛi([Ā]i, Bii)) �= 0 where
[Ā]i =

[
0 · · · 0 Āij 0 · · · 0

]
for some j �= i. This means that there exists at least

one i1 ∈ Ii and j1 ∈ Ij such that āi1j1 �= 0 and āi1j1 +bi1i1 γi1j1 (A, B) �= 0. Because
subsystem i is not a sink (since 1 ≤ i ≤ q−c), we know that there exists a z �= i such
that (sP)zi �= 0. If 1 ≤ z ≤ q − c we can again proceed as in the proof of Theorem 7
to construct a plant P for which JP (Γ(P )) > JP (ΓΘ(P )). Thus, without loss of
generality, we assume that q − c + 1 ≤ z ≤ q. Choose an index z1 ∈ Iz and consider
the matrix A defined by [A]i = [Ā]i, az1i1 = r and all other entries equal to zero.
Then, [Γ(A, B)]i = Λi([A]i, Bii)[A]i, [Γ(A, B)]z = −bz1z1/(1 + b2

z1z1)[A]z (because
Γ /∈ W0 ∪ Lc), and [Γ(A, B)]t = 0 for all t �= i, z. Denoting Γ(A, B) by K, we see
that

J(A,B,x0)(Γ(A, B)) ≥ xT
0 [(A + BK)T KT K(A + BK)

+((A + BK)2)T (A + BK)2]x0

for all B ∈ B(ε) and x0. Taking x0 = ej1 then results in

J(A,B,ej1 )(Γ(A, B)) − J(A,B,ej1 )(ΓΘ(A, B)) ≥
[k2

z1i1 + (r + bz1z1 kz1i1 )2](ai1j1 + bi1i1 ki1j1 )2 −
∑
t∈Ii

a2
tj1 /b2

tt.
(38)

Note that, irrespective of the choice of the controller gain kz1i1 ,

k2
z1i1 + (r + bz1z1kz1i1 )2 ≥ r2/(1 + b2

z1z1),

and as a result,

lim
r→+∞[k2

z1i1 + (r + bz1z1kz1i1 )2](ai1j1 + bi1i1 ki1j1 )2 = +∞,

because ai1j1 + bi1i1 ki1j1 �= 0. Hence, we can always construct A with appropriate
choice of index z and a scalar r large enough to make the cost difference positive.
As a result, Γ cannot dominate ΓΘ.

Finally, we prove that ΓΘ is undominated by control design methods in W2. Let
Γ ∈ W2 and index 1 ≤ i ≤ q − c and model sub-matrices [Ā]i and Bii such that
I +Λi([Ā]i, Bii) �= 0. Therefore, we know that there exists at least one index i1 ∈ Ii

such that Āi1 �= 0 and Āi1 +bi1i1 Γi1 (Ā, B) �= 0. Based on the fact that node i is not
a sink, we know that there exists z �= i such that (sP)zi �= 0. For the same reasons
as before we again restrict ourselves, without loss of generality, to the case where
q − c + 1 ≤ z ≤ q. Consider the matrix A defined by [A]i = [Ā]i and az1i1 = r and
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all other entries of A equal to zero. Then, [A]i + [Γ(A, B)]i = (I + Λi([A]i, Bii))[A]i
and [Γ(A, B)]z = −bz1z1/(1 + b2

z1z1)[A]z (because Γ /∈ W0 ∪ Lc). Again, K will
stand for Γ(A, B). Then, for all B ∈ B(ε) and x0

J(A,B,x0)(Γ(A, B)) − J(A,B,x0)(ΓΘ(A, B))
≥ xT

0 (Ai1 + bi1i1 Γi1 (A, B))T (Ai1 + bi1i1 Γi1 (A, B))x0×
r2b2

z1z1/(1 + b2
z1z1)2 −

∑
t∈Ii

xT
0 AT

t Atx0/b2
tt,

and hence, since Ai1 + bi1i1 Γi1 (A, B) �= 0, we can choose r large enough to ensure
that this difference is strictly positive for some x0 ∈ Rn since the inner matrix will
have a strictly positive eigenvalue for large values of r. Thus, the control design
strategy Γ ∈ W2 cannot dominate the control design ΓΘ.
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84 PAPER 2. DYNAMIC CONTROL DESIGN BASED ON ...

1 Introduction

Many large-scale physical systems are composed of several smaller interconnected
units. For these interconnected systems, it seems natural to employ local controllers
which observe local states and control local inputs. The problem of designing
such subcontrollers is usually addressed in the decentralized and distributed control
literature [1–3]. Lately, there has been some efforts in formulating the problem
of designing optimal decentralized controllers as a convex optimization problem
for some specific classes of subsystem interconnection [4–8]. At the heart of all
these decentralized and distributed control problems is the assumption that the
control design is done with complete knowledge of the plant model. This is however
not always possible in large-scale systems. It might be the case that (a) different
subsystems belong to different individuals and they might be unwilling to share
their model information since they may consider these information private, (b) the
design of each subcontroller is done by a different designer with no access to the
global plant model since in the time of design the complete model information is
not available, or (c) the designer is interested in designing each subcontroller using
only local model information, so that the resulting subcontrollers do not need to be
modified if the model parameters of a particular subsystem change over time. We
call this special class of control design problems limited model information control
design problems [9, 10]. In these problems, we assume that only some part of the
plant model information is available to each subcontroller designer, but that the
system interconnection structure and the common closed-loop cost function to be
minimized are global knowledge.

The main contribution of this paper is to study the influence of the subsystem
interconnection, the controller structure, and the amount of model information
available to each subdesign on the closed-loop performance that a limited model
information control design method can produce. We compare the control design
methods using a performance metric called the competitive ratio, that is, the worst
case control performance for a given design strategy normalized with the optimal
control performance based on full model information. We find an explicit minimizer
of the competitive ratio for a wide range of problems. Since this minimizer might
not be unique, we show that it is also undominated, that is, there is no other control
design method that acts always better while having the same worst-case ratio.

This paper is organized as follows. We formulate the problem of interest in
Section 2. We define a control design strategy and find its competitive ratio in
Section 3. In Section 4, we study the influence of interconnection pattern between
different subsystems on the best limited model information control design method.
We further study the achievable performance of limited model information design
strategies when the controllers that they can produce are structured in Section 5.
The trade-off between the amount of plant information available to different parts of
a control design strategy and the quality of controllers it can produce is considered
in Section 6. Finally, we give the discussions on extensions in Section 7 and end
with the conclusions in Section 8.
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1.1 Notation
The sets of integer numbers, natural numbers, real numbers, and complex numbers
are denoted respectively by Z, N, R, and C. The boundary of the unit circle in C
is shown by T. The space of Lebesgue measurable functions that are bounded on T
is presented by L∞ and RL∞ is the set of real proper rational transfer functions in
L∞. Additionally, all other sets are denoted by calligraphic letters such as P and
A.

Matrices are denoted by capital roman letters such as A. The entry in the ith

row and the jth column of matrix A is aij . Aj will denote the jth row of A. Aij

denotes a submatrix of matrix A, the dimension and the position of which will be
defined in the text.

A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive definite
(positive semidefinite) and A > (≥)B means A − B > (≥)0. Let Sn

++ (Sn
+) be the

set of symmetric positive definite (positive semidefinite) matrices in Rn×n.
All graphs considered in this paper are directed with vertex set {1, . . . , q} for a

given q ∈ N. All self-loops are present in the graphs that we consider in this paper,
that is, (i, i) ∈ E for all 1 ≤ i ≤ q. We say that a vertex i is a sink if there does not
exist j �= i such that (i, j) ∈ E. The adjacency matrix S ∈ {0, 1}q×q of graph G is
a matrix whose entry sij = 1 if (j, i) ∈ E and sij = 0 otherwise for all 1 ≤ i, j ≤ q.
In this paper, since the set of vertices is fixed for all the graphs, a subgraph of a
graph G is a graph whose edge set is a subset of the edge set of G and a supergraph
of a graph G is a graph of which G is a subgraph. We use the notation G′ ⊇ G to
indicate that G′ is a supergraph of G.

σ(Y ) and σ̄(Y ) denote the smallest and the largest singular values of the matrix
Y , respectively. Vector ei denotes the column vector with all entries zero except
the ith entry which is equal to one. The function δ : Z → {0, 1} is the unit-impulse
function which is equal to one at origin and zero anywhere else.

2 Problem Formulation

2.1 Plant Model
Let a plant graph GP with adjacency matrix SP be given. Based on the adjacency
matrix SP , we define the following set of matrices

A(SP ) = {Ā ∈ Rn×n | Āij = 0 ∈ Rni×nj for all 1 ≤ i, j ≤ q such that (sP)ij = 0},

where for each 1 ≤ i ≤ q, ni ∈ N is the order of subsystem i and consequently∑q
i=1 ni = n. Besides, we define

B(ε) = {B̄ ∈ Rn×n | σ(B̄) ≥ ε, B̄ij = 0 ∈ Rni×nj for all 1 ≤ i �= j ≤ q},

for some given scalar ε > 0 and

H = {H̄ ∈ Rn×n | det(H̄) �= 0, H̄ij = 0 ∈ Rni×nj for all 1 ≤ i �= j ≤ q}.
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Figure 1: GP and G′
P are examples of plant graphs, GK and G′

K are examples of
control graphs, and GC and G′

C are examples of design graphs.

Now we can introduce the set P of plants of interest as the space of all discrete-time
linear time-invariant systems

x(k + 1) = Ax(k) + Bu(k) + Hw(k) ; x(0) = 0, (1)

with A ∈ A(SP), B ∈ B(ε), and H ∈ H. With slightly abusing notation, we
show a plant P ∈ P with triple (A, B, H) since the set P is clearly isomorph
to A(SP ) × B(ε) × H. We will denote the ordered set of state indices related to
subsystem i with Ii, that is, Ii := (1 +

∑i−1
j=1 nj , . . . , ni +

∑i−1
j=1 nj). For subsystem

i, state xi ∈ Rni , control input ui ∈ Rni , and exogenous input wi ∈ Rni are defined
as

xi =

⎡
⎢⎣

x�1
...

x�ni

⎤
⎥⎦ , ui =

⎡
⎢⎣

u�1
...

u�ni

⎤
⎥⎦ , wi =

⎡
⎢⎣

w�1
...

w�ni

⎤
⎥⎦

where the ordered set of indices (�1, . . . , �ni) ≡ Ii, and its dynamic is specified by

xi(k + 1) =
q∑

j=1
Aijxj(k) + Biiui(k) + Hiiwi(k).

An example of a plant graph GP is given in Figure 1(a). For instance, the plant
graph GP shows that the second subsystem can affect the first and the third sub-
systems, that is, A12 and A32 can be nonzero. The first system is also a sink in
the plant graph GP . An example of a plant graph G′

P without sink is given in
Figure 1(a′).

2.2 Controller
Let a control graph GK with adjacency matrix SK be given. In this paper, we
are interested in dynamic discrete-time linear time-invariant state feedback control
laws of the form

xK(k + 1) = AKxK(k) + BKx(k) ; xK(0) = 0,
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u(k) = CKxK(k) + DKx(k),

which can also be represented as the transfer function

K �
[

AK BK

CK DK

]
= CK(zI − AK)−1BK + DK ,

where z is the symbol for one time-step forward shift operator. The controller K
must belong to

K(SK) = {K̄ ∈ (RL∞)n×n|K̄ij = 0 ∈ (RL∞)ni×nj

for all 1 ≤ i, j ≤ q such that (sK)ij = 0}.

We refer to the set of controllers as K when adjacency matrix SK can be deduced
from the context or it is not relevant.

Figure 1(b) shows an example of an incomplete control graph GK that charac-
terizes a set of structured controllers. For instance, using control graph GK, we
know that the third subsystem only has access to state measurements of the second
subsystem beside its own state measurements, that is, K31 = 0 while K32 and K33
can be nonzero.

2.3 Control Design Methods

A control design method Γ is a map from the set of plants P to the set of con-
trollers K. Let a control design method Γ be partitioned according to subsystems
dimensions like

Γ =

⎡
⎢⎣

Γ11 · · · Γ1q

...
. . .

...
Γq1 · · · Γqq

⎤
⎥⎦ (2)

and a design graph GC with adjacency matrix SC be given. Each element Γij is a
mapping A(SP ) × B(ε) × H → (RL∞)ni×nj . We say that Γ has structure GC if, for
all 1 ≤ i ≤ q, the subsystem i subcontroller is constructed with the knowledge of
those subsystems 1 ≤ j ≤ q plant model such that (j, i) ∈ EC , that is, the mapping
[ Γi1 · · · Γiq ] is only a function of {[ Aj1 · · · Ajq ] , Bjj , Hjj | (sC)ij �= 0} . The set
of all these limited model information control design methods with structure GC is
denoted by C.

Figure 1(c) shows an example of a design graph GC . For instance, using this
design graph GC , we realize that the third subsystem model is available to the
designer of the second subsystem controller but not the first subsystem model.
Figure 1(c′) illustrates an example of a fully disconnected design graph G′

C with
self-loops only which shows that the controller of all subsystems are constructed
using only their own model information.
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2.4 Performance Metric

The considered performance metrics is a modified version of the performance met-
rics originally defined in [9, 10]. Let us start with introducing the closed-loop
performance measure.

To each plant P = (A, B, H) ∈ P and controller K ∈ K, we associate a perfor-
mance measure which is the H2 norm of the transfer function between the exogenous
input w(k) and the output

y(k) =
[

CT 0
]T

x(k) +
[

0 DT
]T

u(k),

where the matrices C ∈ Rn×n and D ∈ Rn×n are block diagonal full-rank matri-
ces with each diagonal block entry belonging to Rni×ni . Figure 2 illustrates the
feedback system with the given controller K and the overall-plant

P̂ =

⎡
⎣ A H B

Ĉ 0 D̂
I 0 0

⎤
⎦

where Ĉ =
[

CT 0
]T and D̂ =

[
0 DT

]T . Using the notation F(P̂ , K) for the
closed-loop transfer function from w(k) to y(k), the performance measure can be
written as

JP (K) = ‖F(P̂ , K)‖2. (3)

We make the following standing assumption:

Assumption 3 C = D = I.

This is without loss of generality because the change of variables (x̄, ū) =
(Cx, Du) transforms the output of the system and its state space representation
into

y(k) =
[

I 0
]T

x̄(k) +
[

0 I
]T

ū(k),

and

x̄(k + 1) = CAC−1x̄(k) + CBD−1ū(k).

This is done without changing the plant, control, or design graphs because of the
block diagonal structure of matrices C and D.

Definition 2.1 (Competitive Ratio) Let a plant graph GP , a control graph GK,
and a constant ε > 0 be given. Let us assume that, for each plant P ∈ P, there
exists an optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.
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Figure 2: The feedback system
with the given controller K and
the overall-plant P̂ .

The competitive ratio of a control design method Γ is defined as

rP (Γ) = sup
P =(A,B,H)∈P

JP (Γ(P ))
JP (K∗(P ))

,

with the convention that “ 0
0 ” equals one.

Definition 2.2 (Domination) A control design method Γ′ is said to dominate an-
other control design method Γ if

JP (Γ′(P )) ≤ JP (Γ(P )), ∀ P = (A, B, H) ∈ P , (4)

with strict inequality holding for at least one plant in P. When Γ ∈ C and no control
design method Γ′ ∈ C exists that satisfies (4), we say that Γ is undominated in C.

2.5 Mathematical Problem Formulation
Now we can formulate the primary question concerning the connection between
closed-loop performance and limited model information control design strategies.
For a given plant graph GP , control graph GK, and design graph GC , we want to
solve

arg min
Γ∈C

rP (Γ). (5)

Since the solution to this problem might not be unique, we are interested in finding
a minimizer that is also undominated. These solutions are the best worst-case
designs with limited model information.

3 Preliminary Results

In order to give the main results of the paper, we need to define a control design
strategy and find its competitive ratio.

Definition 2.3 Let a plant graph GP and a constant ε > 0 be given. The control
design method ΓΘ is defined as

ΓΘ(P ) = − diag(W1(P ), . . . , Wq(P ))A, (6)
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for all plants P = (A, B, H) ∈ A(SP) × B(ε) × H, where

Wi(P ) =
{

(I + BT
iiXiiBii)−1BT

iiXii, if i is a sink,
B−1

ii , otherwise,

and for each sink i the matrix Xii is the unique positive definite solution of the
discrete algebraic Riccati equation

AT
iiXiiAii − AT

iiXiiBii(I + BT
iiXiiBii)−1BT

iiXiiAii − Xii + I = 0.

The control design method ΓΘ applies the so-called deadbeat strategy [10] to
every subsystem that is not a sink (thus those closed-loop subsystems reach origin
in just one time-step [11]) and, for every sink, applies the same optimal control law
as if the node were decoupled from the rest of the graph.

Lemma 16 The competitive ratio of the control design method ΓΘ defined in (6)
is rP(ΓΘ) =

√
1 + 1/ε2 if one of the following conditions is satisfied:

(a) the plant graph GP contains no isolated node and the control graph GK is a
complete graph;

(b) the acyclic plant graph GP contains no isolated node and GK ⊇ GP .

Proof: Let K∗
C(P ) denotes the optimal static full-state feedback (centralized)

controller for each plant P ∈ P . According to the proof of the “only if” part of
Theorem 3.6 in [10], we have

Z ≤ AT B−T B−1A + I, (7)

for all plants P = (A, B, H) ∈ P , where Z is the unique positive definite solution
of discrete algebraic Lyapunov equation

(A + BΓΘ(P ))T Z(A+BΓΘ(P )) − Z + I + ΓΘ(P )T ΓΘ(P ) = 0. (8)

Thus, the cost of the control design strategy ΓΘ for each plant P = (A, B, H) is
upper-bounded as

JP (ΓΘ(P ))2 = tr
(
HT ZH

)
≤ tr

(
HT

(
AT B−T B−1A + I

)
H
)

.
(9)

where tr(·) denotes the trace of a matrix. According to Theorem 3.2 in [10], it is
evident that

AT B−T B−1A ≤ (
1 + 1/ε2) (X − I),
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and equivalently

tr(HT AT B−T B−1AH) ≤ (
1 + 1/ε2) tr(HT (X − I)H), (10)

where X is the unique positive definite solution of discrete algebraic Riccati equa-
tion

AT XA − AT XB(I + BT XB)−1BT XA = X − I. (11)

Putting (10) in (9), we get

JP (ΓΘ(P ))2 ≤ (
1 + 1/ε2) tr(HT XH)

=
(
1 + 1/ε2) JP (K∗

C(P ))2.

Clearly, because JP (K∗
C(P )) ≤ JP (K∗(P )), irrespective of the control graph GK,

we have

JP (ΓΘ(P ))2 ≤ (
1 + 1/ε2) JP (K∗(P ))2,

and as a result

rP(ΓΘ) = sup
P =(A,B,H)∈P

JP (ΓΘ(P ))
JP (K∗(P ))

≤
√

1 + 1/ε2.

To show that this upper-bound is tight, we should exhibit plants for which it is
attained.

Part a: Condition (a) is satisfied. Since there is no isolated node in the plant
graph, we can pick indices 1 ≤ i �= j ≤ q such that (sP)ij �= 0. The rest of the
proof is given in two different cases.

Case a.1: Node i is not a sink. Pick indices i1 ∈ Ii and j1 ∈ Ij . Let A(s) =
sei1eT

j1
, B = εI, and H = I. We get

rP (ΓΘ) ≥ lim
s→∞

√
s2/ε2 + n

s2/(1 + ε2) + n
=
√

1 + 1/ε2,

since the unique positive definite solution of discrete algebraic Riccati equation
in (11) is X = I+[s2/(1+ε2)]ej1 eT

j1
, and as a result JP (K∗(P )) =

√
s2/(1 + ε2) + n.

Case a.2: Node i is a sink. We know (sP )ii �= 0 since all the self-loops are
present. Pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) = rei1 eT

i1 + sei1 eT
j1 , B = εI, and

H = I. According to Theorem 3.8 in [10], we get

JP (ΓΘ(P )) =
√

βΘ(s2 + r2) + n,

where
βΘ =

√
r4 + 2r2ε2 − 2ar2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2ε2r2 .
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Again, using Theorem 3.8 in [10], the optimal closed-loop performance is

JP (K∗(P )) =
√

βK∗(s2 + r2) + n,

where βK∗ is

βK∗ =
ε2s2 + r2(1 + ε2) − (ε2 + 1)2 + √

c+c−
2ε2(ε2 + 1)(s2 + r2)

,

c± = ε2s2 + (r2 ± 2r)(ε2 + 1) + (ε2 + 1)2.

Then, we get

rP (ΓΘ) ≥ lim
r→∞, s

r →∞
JP (ΓΘ(P ))
JP (K∗(P )) =

√
1 + 1/ε2.

Part b: Condition (b) is satisfied. Any acyclic directed graph has at least one
sink. Let i denote a sink in plant graph GP . Since there is no isolated node in
the plant graph, there exists an index j �= i such that (sP)ij �= 0. Pick i1 ∈ Ii

and j1 ∈ Ij . Let A(r, s) = rei1 eT
i1 + sei1 eT

j1 , B = εI, and H = I. According to
Lemma 4.1 in [12], we get

JP (K∗
P(P )) =

√
βK∗s2 + βΘr2 + n,

where K∗
P(P ) is the optimal controller when GK is equal to GP . This results in

rP(ΓΘ) ≥ lim
r→∞, s

r →∞
JP (ΓΘ(P ))
JP (K∗(P ))

≥ lim
r→∞, s

r →∞
JP (ΓΘ(P ))
JP (K∗

P(P ))
=
√

1 + 1/ε2

since clearly JP (K∗(P )) ≤ JP (K∗
P(P )).

Lemma 16 shows that, if we apply the control design strategy ΓΘ to a particular
plant, the performance of the closed-loop system, at most, can be

√
1 + 1/ε2 times

the cost of the optimal control design strategy K∗.
There is no loss of generality in assuming that the plant graph GP contains

no isolated node since it is always possible to design an optimal controller for an
isolated subsystem without any model information about the other subsystems and
without affecting them. In particular, this implies that there are q ≥ 2 vertices in
the plant graph.

4 Plant Graph Influence on Achievable Performance

In this section, we study the achievable closed-loop performance, in terms of the
competitive ratio and the domination, for different plant interconnection pattern.
The next theorem shows that the control design strategy ΓΘ is an undominated
minimizer of the competitive ratio for all given plant graphs GP when the control
graph GK is a complete graph and the design graph GC is fully disconnected.
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Figure 3: State transition of the closed-loop system and its controller as a function
of time for the exogenous input w(k) = δ(k)ej1 .

Theorem 17 Let the plant graph GP contain no isolated node, the control graph
GK be a complete graph, and the design graph GC be a totally disconnected graph.
Then, the competitive ratio of any control design strategy Γ ∈ C satisfies rP(Γ) ≥
rP(ΓΘ). Furthermore, the control design strategy ΓΘ is undominated by set of
limited model information control design strategies with design graph GC .

Proof: We use the following notation

Γ(P ) =
[

AΓ(P ) BΓ(P )
CΓ(P ) DΓ(P )

]
,

to work with different parts of the state-space representation of a control design
strategy Γ. The entries AΓ(P ), BΓ(P ), CΓ(P ), and DΓ(P ) are matrices with ap-
propriate dimension for each plant P = (A, B, H) ∈ P . The matrices AΓ(P ) and
CΓ(P ) are block diagonal matrices since different subcontrollers should not share
state variables (each controller should be implemented in a decentralized fashion).
This realization is not necessarily a minimal realization.

Consider indices 1 ≤ i �= j ≤ q such that (sP)ij �= 0 (this is always possible
since there is no isolated node in the plant graph). The rest of the proof is given
in two different cases.

Case 1: Node i is not a sink. Therefore, there exists an index � �= i such
that (sP )�i �= 0. Pick indices �1 ∈ I�, i1 ∈ Ii and j1 ∈ Ij and define A(r, s) =
sei1eT

j1 + re�1 eT
i1 and B = εI. Let Hjj = rI and Htt = I for all t �= j. Using the

exogenous impulse input w(k) = δ(k)ej1 and the time-steps given in Figure 3, we
get

JP (Γ(P ))2 ≥ u�1(2)2 + x�1 (3)2

= u�1(2)2 +
(
r2(s + ε(dΓ)i1j1 (s)) + εu�1(2)

)2

≥ r4(s + ε(dΓ)i1j1 (s))2/(ε2 + 1),

because, irrespective of the choice of u�1(2), the function u�1(2)2+(r2(s+ε(dΓ)i1j1 (s))+
εu�1(2))2 is lower-bounded by r4(s + ε(dΓ)i1j1 (s))2/(ε2 + 1). It is worth mentioning
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that (dΓ)i1j1 (s) is only a function of the scalar s and it is independent of the scalar
r, since r is in model parameters of subsystems �, j �= i and the design graph is
fully disconnected. On the other hand

JP (ΓΔ(P )) =
√

tr (HT ((1/ε2)AT A + I) H)

=
√

(s2r2 + r2)/ε2 + n − nj + njr2,

where ΓΔ is the deadbeat control design strategy and it is defined as ΓΔ(P ) =
−B−1A [10]. Therefore

rP(Γ) = sup
P ∈P

JP (Γ(P ))
JP (K∗(P ))

= sup
P ∈P

[
JP (Γ(P ))

JP (ΓΔ(P ))
JP (ΓΔ(P ))
JP (K∗(P ))

]

≥ sup
P ∈P

JP (Γ(P ))
JP (ΓΔ(P ))

≥ lim
r→∞

√
r4(s + ε(dΓ)i1j1 (s))2/(ε2 + 1)

(s2r2 + r2)/ε2 + n − nj + njr2 .

(12)

since JP (ΓΔ(P )) ≥ JP (K∗(P )) for all plants P ∈ P . The competitive ratio rP(Γ)
is bounded only if s + ε(dΓ)i1j1 (s) = 0. Therefore, there is no loss of generality in
assuming that (dΓ)i1j1 (s) = −s/ε because otherwise the rP (Γ) is infinity and the
inequality rP (Γ) ≥ rP(ΓΘ) is trivially satisfied. Now, let us redefine A(s) = sei1 eT

j1 ,
H = I and B = εI. Since the parameters of the subsystem i is not changed,
we have (dΓ)i1j1 (s) = −s/ε. Therefore, for the same impulse exogenous input
w(k) = δ(k)ej1 , we have

JP (Γ(P ))2 ≥ ui1(1)2 = (dΓ)i1j1 (s)2 = s2/ε2,

and

rP(Γ) ≥ lim
s→∞

√
s2/ε2

s2/(1 + ε2) + n
=
√

1 + 1/ε2, (13)

since similar to Case a.1 in the proof of Lemma 16, we have JP (K∗(P )) =√
s2/(1 + ε2) + n.
Case 2: Node i is a sink. We have (sP)ii �= 0 since all the self-loops are present.

Let us pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) = rei1 eT
i1

+ sei1eT
j1

, B = εI, and
H = I. According to the proof of the “only if” part of Theorem 3.6 in [10], for
this particular family of plants, ΓΘ(P ) is the globally optimal H2 state-feedback
controller. Now using Case a.2 in the proof of Lemma 16, it is easy to see that
rP(Γ) ≥ √

1 + 1/ε2.
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To prove that the control design strategy ΓΘ is undominated by set of lim-
ited model information control design strategies Γ ∈ C, we construct plants P =
(A, B, H) ∈ P that satisfy JP (Γ(P )) > JP (ΓΘ(P )) for any control design method
Γ ∈ C \ {ΓΘ}. The detailed proof of this part is given in [12].

As an example, consider the limited model information design problem given
by the plant graph G′

P in Figure 1(a′), the control graph G′
K in Figure 1(b′), and

the design graph G′
C in Figure 1(c′). Theorem 17 shows that the control design

strategy ΓΘ is the best control design strategy that one can propose based on the
local model of subsystems since it is an undominated minimizer of the competitive
ratio.

5 Control Graph Influence on Achievable Performance

In this section, we study the structured controllers and their influence on the achiev-
able closed-loop performance of the limited model information control design strate-
gies. Note that finding the optimal control design strategy K∗(P ) is numerically
intractable for general plant and control graphs. We use the results in [6, 7] which
give an explicit solution to the problem of designing optimal decentralized controller
for some special classes of subsystems interconnection and controller structures.
Therefore, we assume that the plant graph GP is an acyclic directed graph and the
control graph GK is a supergraph of the plant graph GP . Note that the control
design strategy ΓΘ is still applicable in this scenario.

Theorem 18 Let the acyclic plant graph GP contain no isolated node, the design
graph GC be a totally disconnected graph, and GK ⊇ GP . Then, the competitive
ratio of any control design strategy Γ ∈ C satisfies rP (Γ) ≥ rP (ΓΘ). Furthermore,
the control design strategy ΓΘ is undominated by set of limited model information
control design strategies with design graph GC.

Proof: Any acyclic directed graph has at least one sink. Let i denote a sink
in plant graph GP . Since there is no isolated node in the plant graph, there exists
an index j �= i such that (sP)ij �= 0. Pick i1 ∈ Ii and j1 ∈ Ij . Let A(r, s) =
rei1 eT

i1
+ sei1eT

j1
, B = εI, and H = I. According to the proof of the “only if” part

of Theorem 3.6 in [10], for this particular family of plants, ΓΘ(P ) is the globally
optimal H2 state-feedback controller. Now using Part b of the proof of Lemma 16,
it is easy to see that rP (Γ) ≥ √

1 + 1/ε2.
The detailed proof of the part that control design strategy ΓΘ is undominated

is given in [12].

For instance, consider the limited model information design problem given by
the plant graph GP in Figure 1(a), the control graph GK in Figure 1(b), and the
design graph G′

C in Figure 1(c′). Theorem 18 illustrates that the control design
strategy ΓΘ is again the best control design strategy that one can propose based



96 PAPER 2. DYNAMIC CONTROL DESIGN BASED ON ...

on the local model of subsystems, because it is an undominated minimizer of the
competitive ratio.

6 Design Graph Influence on Achievable Performance

In this section, we try to determine the amount of the model information that
we need in each subsystem to be able to setup a control design strategy Γ with a
smaller competitive ratio than the control design strategy ΓΘ.

Theorem 19 Let the plant graph GP and the design graph GC be given and GK ⊇
GP . If the plant graph GP contains the path j → i → � with distinct vertices i, j,
and � while (�, i) /∈ EC, then rP(Γ) ≥ rP (ΓΘ) for all Γ ∈ C.

Proof: Because of the path j → i → � with distinct vertices i, j, and k, we
have (sP )ij �= 0 and (sP)�i �= 0. Pick indices �1 ∈ I�, i1 ∈ Ii and j1 ∈ Ij and
define A(r, s) = sei1 eT

j1
+ re�1 eT

i1
, B = εI, and H = I. Similar to the proof of

Theorem 17, using the exogenous impulse input w(k) = δ(k)ej1 and the time-steps
given in Figure 3, we get

JP (Γ(P ))2 ≥ r2(s + ε(dΓ)i1j1 (s))2/(ε2 + 1),

Again, it should be noted that (dΓ)i1j1 (s) is only a function of the scalar s, and
it is independent of the scalar r because r has appeared in model matrices of the
subsystem � �= i, and (�, i) /∈ EC . We claim that for the competitive ratio to be
bounded there should exist a positive constant θ ∈ R independent of scalars s
such that |s + ε(dΓ)i1j1 (s)| ≤ θ. Assume this claim is not true, thus, there exist a
sequence of scalars {sz}∞

z=1 ⊂ R such that

lim
z→∞ |sz + ε(dΓ)i1j1 (sz)| = +∞.

Clearly, using (12) we get

rP (Γ) ≥ lim
z→∞, r

sz
→∞

√
r2|sz + ε(dΓ)i1j1 (sz)|2/(ε2 + 1)

(s2
z + r2)/ε2 + n

= +∞.

since JP (ΓΔ(P )) =
√

(s2
z + r2)/ε2 + n. Now, lets redefine A(s) = sei1 eT

j1 . Since
the model parameters of the subsystem i is not changed, and its controller is not
a function of the model parameters of subsystem �, the design entry (dΓ)i1j1 (s)
stays the same. Therefore, |s + ε(dΓ)i1j1 (s)| ≤ θ for all s ∈ R, and as a result, for
large enough |s|, we get |(dΓ)i1j1 (s)| ≥ (|s| − θ)/ε. Therefore, using the exogenous
impulse input w(k) = δ(k)ej1 , we get

JP (Γ(P ))2 ≥ ui1 (1)2 = (dΓ)i1j1 (s)2 ≥ (|s| − θ)2/ε2,
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and

rP(Γ) ≥ lim
s→∞

√
(|s| − θ)2/ε2

s2/(1 + ε2) + n
=
√

1 + 1/ε2.

For this special plant, we know K∗
C(P ) = −ε/(1 + ε2)A belongs to the set K(SK)

since the control graph GK ⊇ GP , and consequently JP (K∗(P )) ≤ JP (K∗
C(P ))

because K∗(P ) has a lower cost than any other controller is K(SK). On the other
hand, clearly, for any plant JP (K∗

C(P )) ≤ JP (K∗(P )). Therefore, for this special
plant

JP (K∗(P )) = JP (K∗
C(P )) =

√
s2/(1 + ε2) + n.

This concludes the proof.

Consider the limited model information design problem given by the plant graph
G′

P in Figure 1(a′), the control graph G′
K in Figure 1(b′), and the design graph GC

in Figure 1(c). Note that there is a path 3 → 2 → 1 in the plant graph GP but the
edge 1 → 2 is not present in the design graph GC . Therefore, using Theorem 19, it
is easy see that rP(Γ) ≥ rP(ΓΘ) for any Γ ∈ C.

7 Extensions

In this section, we relax the assumption that all the subsystems are required to
be fully-actuated, that is, B ∈ B(ε) is square invertible. To do so, we assume that
plant graph GP is an acyclic directed graph with c ≥ 1 sinks since any acyclic graph
has at least one sink. Accordingly, its adjacency matrix SP is of the form

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (14)

where

(SP)11 =

⎡
⎢⎣

(sP)11 · · · (sP )1,q−c

...
. . .

...
(sP )q−c,1 · · · (sP)q−c,q−c

⎤
⎥⎦ ,

(SP)21 =

⎡
⎢⎣

(sP )q−c+1,1 · · · (sP)q−c+1,q−c

...
. . .

...
(sP)q,1 · · · (sP)q,q−c

⎤
⎥⎦ ,

and (SP )22 = diag((sP)q−c+1,q−c+1, . . . , (sP )qq), where we assume, without loss
of generality, that the vertices are numbered such that the sinks are labeled q −
c + 1, . . . , q. We define the set P ′ of plants of interest as the set of all triples
(A, B, H) ∈ A(SP) × B′(ε) × H where

B′(ε) = {B̄ ∈ Rn×m | σ(B̄) ≥ ε, B̄ij = 0 ∈ Rni×mj for all 1 ≤ i �= j ≤ q}.
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Each mi ∈ N is the number of control inputs in subsystem i, and consequently∑q
i=1 mi = m. Let relax mi ≤ ni for all q − c + 1 ≤ i ≤ q but force mi = ni

otherwise. In addition, all matrices A and B must satisfy

(a) (Aii, Bii) is controllable,

(b) span(Aij) ⊆ span(Bii) for all j �= i or equivalently there should exist a matrix
Wi ∈ Rmi×(n−ni) such that [Ai1 · · · Ai,i−1 Ai,i+1 · · · Aiq] = BiiWi,

for all q − c + 1 ≤ i ≤ q. For this new set of plants, the control design strategy ΓΘ

is still applicable since it does not require Bii to be invertible for q − c + 1 ≤ i ≤ q.
Now we are ready to solve the problem (5) for this set of underactuated plants P ′.

Theorem 20 Let the acyclic plant graph GP contain no isolated node, the control
graph GK be equal to the plant graph GP , and the design graph GC be a totally
disconnected graph. Then, the competitive ratio of any control design strategy Γ ∈ C
satisfies rP (Γ) ≥ rP(ΓΘ) =

√
1 + 1/ε2 if (SP )11 is not diagonal. Furthermore,

the control design strategy ΓΘ is undominated by set of limited model information
control design strategies with design graph GC.

Proof: Similar to (14), we can write any A ∈ A(SP ) as

A =
[

Ã11 0
Ã21 Ã22

]
,

where

Ã11 =

⎡
⎢⎣

A11 · · · A1,q−c

...
. . .

...
Aq−c,1 · · · Aq−c,q−c

⎤
⎥⎦ ,

Ã21 =

⎡
⎢⎣

Aq−c+1,1 · · · Aq−c+1,q−c

...
. . .

...
Aq1 · · · Aq,q−c

⎤
⎥⎦ ,

and Ã22 = diag(Aq−c+1,q−c+1, . . . , Aqq). Clearly, if we apply deadbeat to all sub-
systems that are not sinks, the other subsystems (i.e., sinks) become decoupled (see
Theorem 3.6 in [10]), and as a result

JP (ΓΘ(P ))2 = J (1)(Ã11, B̃11, H̃11) + J (2)(Ã21, Ã22, B̃22, H̃22)

where H = diag(H̃11, H̃22), B = diag(B̃11, B̃22), J (1)(Ã11, B̃11, H̃11) is the cost of
applying deadbeat control design to the nodes that are not sinks, and
J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of applying the same optimal control law as
if the sinks were decoupled from the rest of the graph. Thus, we get

J (1)(Ã11, B̃11, H̃11) = tr(H̃T
11ÃT

11B̃−T
11 B̃−1

11 Ã11H̃11)
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and

J (2)(Ã21, Ã22, B̃22,H̃22) ≤ tr(H̃T
22Y H̃22) + tr(H̃T

11ÃT
21B̃†T

22 B̃†
22Ã21H̃11) (15)

where B̃†
22 = (BT

22B22)−1BT
22. The inequality in (15) is true since

J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of the optimal control law as if the sinks were
decoupled from the rest of the graph (see Theorem 3.6 in [10]), and it certainly has
a lower cost than any other controller particularly

K2 = −[B̃†
22Ã21 (I + B̃T

22Y B̃22)−1B̃T
22Y Ã22],

where Y is the unique positive definite solution of discrete algebraic Riccati equation

ÃT
22Y Ã22 − ÃT

22Y B̃22(I + B̃T
22Y B̃22)−1B̃T

22Y Ã22 − Y + I = 0.

Note that since Ã22 is block diagonal, the positive definite matrix Y is also block
diagonal, and each block is only a function the corresponding subsystem. Thus, we
get

JP (ΓΘ(P ))2 ≤ tr(H̃T
22Y H̃22) + tr(H̃T

11(ÃT
11B̃−T

11 B̃−1
11 Ã11 + ÃT

21B̃†T
22 B̃†

22Ã21)H̃11).
(16)

The optimal closed-loop performance is JP (K∗(P ))2 = tr(HT UH) where U =
[In×n 0]V [In×n 0]T and V is the unique positive definite solution of discrete alge-
braic Lyapunov equation[

A + BD∗(P ) BC∗(P )
B∗(P ) A∗(P )

]T

V

[
A + BD∗(P ) BC∗(P )

B∗(P ) A∗(P )

]
− V

+
[

I 0
0 0

]
+
[

D∗(P )T D∗(P ) D∗(P )T C∗(P )
C∗(P )T D∗(P ) C∗(P )T C∗(P )

]
= 0

(17)

with A∗(P ), B∗(P ), C∗(P ), and D∗(P ) as the state-space realization matrices of
the optimal control design strategy K∗(P ) for a given plant P ∈ P ′. Clearly, we
have

JP (K∗(P ))2 =
n∑

t=1
eT

t HT UHet =
n∑

t=1

∞∑
k=0

y(t)(k)T y(t)(k),

where for each t the vector y(t)(k) is the output of the system to the exogenous
impulse input w(t)(k) = δ(k)et. This is true because for each t the summa-
tion

∑∞
k=0 y(t)(k)T y(t)(k) gives the diagonal element eT

t HT UHet. For any P =
(A, B, H) ∈ P ′, we know that HT UH ≥ HT XH since centralized controller has
the least performance cost over all other controllers either dynamic or static. Thus,
for each t ∈ N =

⋃q−c
z=1 Iz , we get eT

t HT UHet ≥ eT
t HT XHet which shows

∑
t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥
∑
t∈N

eT
t (HT XH)et.
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According to [13], we have X ≥ AT (I + BBT )−1A + I for any P ∈ P ′, and
consequently

∑
t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
11(ÃT

11(I + B̃11B̃T
11)−1Ã11

+ ÃT
21(I + B̃22B̃T

22)−1Ã21)H̃11).

On the other hand, for each t ∈ S =
⋃q

z=q−c+1 Iz, we know there exists a sink
i such that t ∈ Ii. For each w(t)(k), we get xj = 0 for any j �= i (since i is a
sink in GP ). The other subsystems cannot use state-measurements of subsystem i
because GK is equal to GP (and consequently i is a sink in GK). Therefore, at best
case scenario, the cost of controlling subsystem i is equal to the cost of optimal
controller designed locally (independent of other subsystems). Thus, we get

∑
t∈S

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
22Y H̃22).

Therefore, we get

JP (K∗(P ))2 ≥ tr(H̃T
11(ÃT

11(I + B̃11B̃T
11)−1Ã11

+ ÃT
21(I + B̃22B̃T

22)−1Ã21)H̃11) + tr(H̃T
22Y H̃22).

(18)

Now, lets define the set

M = {β̄ ∈ R | β̄JP (K∗(P )) − JP (ΓΘ(P )) ≥ 0 ∀P ∈ P ′}.

Using the inequalities in (16) and in (18), it is evident if

tr
(
H̃T

11(ÃT
11
[
β2(I + B̃11B̃T

11)−1 − B̃−T
11 B̃−1

11
]

Ã11

+ÃT
21

[
β2(I + B̃22B̃T

22)−1 − B̃†T
22 B̃†

22

]
Ã21)H̃11

)
≥ 0.

(19)

for some β ∈ R, then β would belong to M. Thus, {β̄ ∈ R | β̄ ≥ √
1 + 1/ε2} ⊆ M.

This shows that rP(ΓΘ) ≤ √
1 + 1/ε2. Now if (SP)11 is not diagonal, with the

same argument as in the proof of Case 1 in Theorem 18, we get rP (Γ) ≥ rP(ΓΘ) =√
1 + 1/ε2 for any Γ ∈ C. This can be done because there are at least two fully-

actuated subsystems and we can forget about the underactuated subsystems.
The proof of the part that the control design strategy ΓΘ is undominated is

similar to the one given in [12] for fully-actuated subsystems.

8 Conclusions

We considered optimal H2 dynamic control design for interconnected linear systems
under limited plant model information. We introduced control design strategies as
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functions from the set of plants to the set of structured dynamic controller and com-
pared these control design strategies using the competitive ratio as a performance
metric. For a large class of system interconnections, controller structure, and design
information, we found an explicit undominated minimizer of the competitive ratio.
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Decentralized Disturbance Accommodation with
Limited Plant Model Information

Farhad Farokhi, Cédric Langbort, and Karl H. Johansson

Abstract–The design of optimal disturbance accommodation and servomechanism
controllers with limited plant model information is considered in this paper. Their closed-
loop performance are compared using a performance metric called competitive ratio which
is the worst-case ratio of the cost of a given control design strategy to the cost of the
optimal control design with full model information. It was recently shown that when it
comes to designing optimal centralized or partially structured decentralized state-feedback
controllers with limited model information, the best control design strategy in terms of
competitive ratio is a static one. This is true even though the optimal structured decen-
tralized state-feedback controller with full model information is dynamic. In this paper,
we show that, in contrast, the best limited model information control design strategy for
the disturbance accommodation problem gives a dynamic controller. We find an explicit
minimizer of the competitive ratio and we show that it is undominated, that is, there is
no other control design strategy that performs better for all possible plants while having
the same worst-case ratio. This optimal controller can be separated into a static feedback
law and a dynamic disturbance observer. For constant disturbances, it is shown that this
structure corresponds to proportional-integral control.
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1 Introduction

Recent advances in networked control systems have created new opportunities and
challenges in controlling large-scale systems composed of several interacting sub-
systems. An example of a networked control system is shown in Figure 1 where
Pi denotes the subsystems to be controlled and Ci denotes the controllers. The
interactions between the subsystems and the controllers as well as the external
disturbances and references are indicated by arrows. For such networked systems,
many researchers have considered the problem of decentralized or distributed stabi-
lization or optimal control as well as the effect of communication channel limitations
on closed-loop performance [2–11]. However, at the heart of all these methods lies
the (sometimes implicit) assumption that the designer has access to the global plant
model information when designing a local controller. This assumption might not be
warranted, however, in some applications of interest [12, 13], in which the designer
is constrained to compute local controllers for a large-scale systems in a distributed
manner with access to only a limited or partial model of the plant. This might be
due to several reasons, for example, (i) the designer wants the parameters of each
local controller to only depend on local model information, so that the controllers
do not need to be modified if the model parameters of a particular subsystem, which
is not directly connected to them, change, (ii) the design of each local controller is
done by a designer with no access to the global model of plant since at the time of
design the complete plant model information is not available or might change later
in the design process, or (iii) different subsystems belong to different individuals
who refuse to share their model information since they consider it private. These
situations are very common in practice. For instance, a chemical plant in process
industry can have thousands of proportional-integral-derivative controllers. These
processes well illustrate Case (i), as the tuning of each local controller does not typ-
ically require model information from other control loops in order to simplify the
maintenance and limit the controller complexity. Case (ii) is typical for coopera-
tive driving such as vehicle platooning, where each vehicle has its own local (cruise)
controller which cannot be designed based on model information of all possible ve-
hicles that it may cooperate with in future traffic scenarios. Case (iii) can be also
illustrated by the control of the power grid, where economic incentives might limit
the exchange of network model information across regional borders. Therefore, we
have started investigating the concept of limited model information control design
for large-scale systems [14–17].

Control design strategies, mappings from the set of plants of interest to the set
of applicable controllers, with various degrees of model information are compared
using the competitive ratio as a performance metric, that is, the worst-case ratio of
the cost of a given control design strategy to the cost of the optimal control design
with full model information. In control design with limited plant model informa-
tion, we search for the “best” control design strategy which attains the minimum
competitive ratio among all limited model information design strategies. As this
minimizer might not be unique, we further want to find an undominated minimizer
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of the competitive ratio, that is, there is no other control design strategy in the set
of all limited model information design strategies with a better closed-loop perfor-
mance for all possible plants while maintaining the same worst-case ratio. Recent
attention has been on limited model information design methods that produce cen-
tralized or decentralized static state-feedback controllers with specific structure.
This was justified, at first, by being the simplest case to explore [14–16], and then,
maybe more surprisingly, by the recently proven fact that the “best” (in the sense
of competitive ratio and domination) state-feedback structured H2- controller for
a plant with lower triangular information pattern that can be designed with lim-
ited model information is also static [17], even though the best such controller
constructed with access to full model information is dynamic [9, 10]. In this pa-
per, we study the problem of limited model information control design for optimal
disturbance accommodation and servomechanism, and show that, contrary to the
situations mentioned above, the “best” limited model information design method
gives dynamic controllers. Optimal disturbance accommodation is a meaningful
model for problems such as constant disturbance rejection or step reference track-
ing, and has been well-studied in the literature [18–22], but with no attention being
paid to the model information limitations in the design procedure.

In this paper, specifically, we consider limited model information control design
for interconnection of scalar discrete-time linear time-invariant subsystems being
affected by scalar decoupled disturbances with a quadratic separable performance
criterion. The choice of such a separable cost function is motivated first by the
servomechanism and disturbance accommodation literature [18–22], and second by
our interest in dynamically-coupled but cost-decoupled plants and their applica-
tions in supply chains and shared infrastructure [12, 13] which has been shown to
be well-modeled in this fashion. The assumptions on scalar subsystems and scalar
disturbances are technical assumptions to make the algebra in the proofs shorter.
Since we want each subsystem to be directly controllable (so that designing sub-
controllers based on only local model information is possible), we assume that the
overall system is fully-actuated.

We start with the case that each subcontroller is only designed with the corre-
sponding subsystem model information. We prove that, in the case where the plant
graph contains no sink and the control graph is a supergraph of the plant graph, the
so-called dynamic deadbeat control design strategy is an undominated minimizer
of the competitive ratio. For any fixed plant, the controller given by the deadbeat
control design strategy can be separated into a static feedback law and a dynamic
disturbance observer. For constant disturbances, it is shown that this structure
corresponds to a proportional-integral controller. However, the deadbeat control
design strategy is dominated when the plant graph has sinks. We present an un-
dominated limited model information control design method that takes advantage
of the knowledge of the sinks’ location to achieve a better closed-loop performance.
We further show that this control design strategy has the same competitive ratio as
the deadbeat control design strategy. Later, we characterize the amount of model
information needed to achieve a better competitive ratio than the deadbeat control
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Figure 1: Illustrative example of a networked control system.

design strategy. The amount of information is captured using the design graph,
that is, a directed graph which indicates the dependency of each subcontroller on
different parts of the global dynamical model. It turns out that, to achieve a bet-
ter competitive ratio than the deadbeat control design strategy, each subsystem’s
controller should, at least, has access to the model of all those subsystems that can
affect it.

This paper is organized as follows. We formulate the problem and define the
performance metric in Section 2. In Section 3, we introduce two specific control de-
sign strategies and study their properties. We characterize the best limited model
information control design method as a function of the subsystems interconnec-
tion pattern in Section 4. In Section 5, we study the influence of the amount of
the information available to each subsystem on the quality of the controllers that
they can produce. We discuss special cases of constant-disturbance rejection, step-
reference tracking, and proportional-integral control in Section 6. Finally, we end
with conclusions in Section 7.

1.1 Notation

The set of real numbers and complex numbers are denoted by R and C, respectively.
All other sets are denoted by calligraphic letters, such as P and A. Particularly,
the letter R denotes the set of proper real rational functions.

Matrices are denoted by capital roman letters such as A. Aj will denote the jth

row of A. Aij denotes a submatrix of matrix A, the dimension and the position of
which will be defined in the text. The entry in the ith row and the jth column of
the matrix A is aij .

Let Sn
++ (Sn

+) be the set of symmetric positive definite (positive semidefinite)
matrices in Rn×n. A > (≥)0 means that the symmetric matrix A ∈ Rn×n is positive
definite (positive semidefinite) and A > (≥)B means that A − B > (≥)0.

σ(Y ) and σ(Y ) denote the smallest and the largest singular values of the matrix
Y , respectively. Vector ei denotes the column-vector with all entries zero except
the ith entry, which is equal to one.
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All graphs considered in this paper are directed, possibly with self-loops, with
vertex set {1, ..., q} for some positive integer q. If G = ({1, ..., q}, E) is a directed
graph, we say that i is a sink if there does not exist j �= i such that (i, j) ∈ E. The
adjacency matrix S ∈ {0, 1}q×q of graph G is a matrix whose entries are defined as
sij = 1 if (j, i) ∈ E and sij = 0 otherwise. Since the set of vertices is fixed for all
considered graphs, a subgraph of a graph G is a graph whose edge set is a subset
of the edge set of G and a supergraph of a graph G is a graph of which G is a
subgraph. We use the notation G′ ⊇ G to indicate that G′ is a supergraph of G.

2 Mathematical Formulation

2.1 Plant Model
We are interested in discrete-time linear time-invariant dynamical systems described
by

x(k + 1) = Ax(k) + B(u(k) + w(k)) ; x(0) = x0, (1)
where x(k) ∈ Rn is the state vector, u(k) ∈ Rn is the control input, w(k) ∈ Rn

is the disturbance vector and A ∈ Rn×n and B ∈ Rn×n are appropriate model
matrices. Furthermore, we assume that the dynamic disturbance can be modeled
as

w(k + 1) = Dw(k) ; w(0) = w0, (2)
where w0 ∈ Rn is unknown to the controller (and the control designer). Let a
plant graph GP with adjacency matrix SP be given. We define the following set of
matrices

A(SP) = {Ā ∈ Rn×n | āij = 0 for all 1 ≤ i, j ≤ n such that (sP )ij = 0}.

Also, let us define

B(ε) = {B̄ ∈ Rn×n | σ(B̄) ≥ ε, b̄ij = 0 for all 1 ≤ i �= j ≤ n},

for some given scalar ε > 0 and

D = {D̄ ∈ Rn×n | d̄ij = 0 for all 1 ≤ i �= j ≤ n}.

Now, we can introduce the set of plants of interest P as the set of all discrete-time
linear time-invariant systems (1)–(2) with A ∈ A(SP ), B ∈ B(ε), D ∈ D, x0 ∈ Rn

and w0 ∈ Rn. With a slight abuse of notation, we will henceforth identify a plant
P ∈ P with its corresponding tuple (A, B, D, x0, w0).

The variables xi ∈ R, ui ∈ R, and wi ∈ R are the state, input, and disturbance
of scalar subsystem i whose dynamics are given by

xi(k + 1) =
n∑

j=1
aijxj(k) + bii(ui(k) + wi(k)),

wi(k + 1) = diiwi(k).
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Figure 2: GP and G′
P are examples of plant graphs, GK and G′

K are examples of
control graphs, and GC and G′

C are examples of design graphs.

We call GP the plant graph since it illustrates the interconnection structure between
different subsystems, that is, subsystem j can affect subsystem i only if (j, i) ∈ EP .
Note that we assume that the global system is fully-actuated; i.e., all the matrices
B ∈ B(ε) are square invertible matrices. This assumption is motivated by the fact
that we need all subsystems to be directly controllable. Moreover, we make the
standing assumption that the plant graph GP contain no isolated node. There is no
loss of generality in assuming that there is no isolated node in the plant graph GP ,
since it is always possible to design a controller for an isolated subsystem without
any model information about the other subsystems and without influencing the
overall system performance. Note that, in particular, this implies that there are
q ≥ 2 vertices in the graph because for q = 1 the only subsystem that exists is an
isolated node in the plant graph.

Figure 2(a) shows an example of a plant graph GP . Each node represents
a subsystem of the system. For instance, the second subsystem in this example
affects the first subsystem and the third subsystem, that is, submatrices A12 and
A32 can be nonzero. Note that the first subsystem in Figure 2(a) represents a sink
of GP . The plant graph G′

P in Figure 2(a′) has no sink.

2.2 Controller Model
The control laws of interest in this paper are discrete-time linear time-invariant
dynamic state-feedback control laws of the form

xK(k + 1) = AKxK(k) + BKx(k) ; xK(0) = 0, (3)
u(k) = CKxK(k) + DKx(k). (4)

Each controller can also be represented by a transfer function

K �
[

AK BK

CK DK

]
= CK(zI − AK)−1BK + DK ,
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where z is the symbol for the one time-step forward shift operator. Let a control
graph GK with adjacency matrix SK be given. Each controller K belongs to

K(SK) = {K ∈ Rn×n | kij = 0 for all 1 ≤ i, j ≤ n such that (sK)ij = 0}.

When the adjacency matrix SK is not relevant or can be deduced from context, we
refer to the set of controllers as K. Since it makes sense for each subcontroller to
use at least its corresponding subsystem state-measurements, we make the standing
assumption that in each design graph GK, all the self-loops are present.

An example of a control graph GK is given in Figure 2(b). Each node represents
a subsystem–controller pair of the overall system. For instance, GK shows that
the first subcontroller can use state measurements of the second subsystem beside
its corresponding subsystem state-measurements. Figure 2(b′) shows a complete
control graph G′

K. This control graph indicates that each subcontroller has access
to full state measurements of all subsystems, that is, K(SK) = Rn×n.

2.3 Control Design Methods
A control design method Γ is a map from the set of plants P to the set of controllers
K. Any control design method Γ has the form

Γ =

⎡
⎢⎣

γ11 · · · γ1n

...
. . .

...
γn1 · · · γnn

⎤
⎥⎦ , (5)

where each entry γij represents a map A(SP ) × B(ε) × D → R.
Let a design graph GC with adjacency matrix SC be given. We say that Γ

has structure GC , if for all i, subcontroller i is computed with knowledge of the
plant model of only those subsystems j such that (j, i) ∈ EC . Equivalently, Γ
has structure GC , if for all i, the map Γi = [γi1 · · · γin] is only a function of
{[aj1 · · · ajn], bjj , djj | (sC)ij �= 0}. When GC is not a complete graph, we refer
to Γ ∈ C as being a “limited model information control design method”. Since
it makes sense for the designer of each subcontroller to have access to at least its
corresponding subsystem model parameters, we make the standing assumption that
in each design graph GC , all the self-loops are present.

The set of all control design strategies with structure GC will be denoted by
C, which is considered as a subset of all maps from A(SP) × B(ε) × D to K(SK)
because a design method with structure GC is not a function of the initial state x0
or the initial disturbance w0. We use the notation Γ(A, B, D) instead of Γ(P ) for
each plant P = (A, B, D, x0, w0) ∈ P to emphasize this fact.

To simplify the notation, we assume that any control design strategy Γ has a
state-space realization of the form

Γ(A, B, D) =
[

AΓ(A, B, D) BΓ(A, B, D)
CΓ(A, B, D) DΓ(A, B, D)

]
,
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where AΓ(A, B, D), BΓ(A, B, D), CΓ(A, B, D), and DΓ(A, B, D) are matrices of
appropriate dimension for each plant P = (A, B, D, x0, w0) ∈ P . The matrices
AΓ(A, B, D) and CΓ(A, B, D) are block diagonal matrices since subcontrollers do
not share state variables. This realization is not necessarily minimal.

An example of a design graph GC is given in Figure 2(c). Each node represents
a subsystem–controller pair of the overall system. For instance, GC shows that
the second subsystem’s model is available to the designer of the first subsystem’s
controller but not the third and the forth subsystems’ model. Figure 2(c′) shows a
fully disconnected design graph G′

C . A local designer in this case can only rely on
the model of its corresponding subsystem.

2.4 Performance Metric
The goal of this paper is to investigate the influence of the plant graph on the prop-
erties of controllers derived from limited model information control design meth-
ods. We use two performance metrics to compare different control design methods,
which are adapted from the notions of competitive ratio and domination recently
introduced in [14–17]. Let us start with introducing the closed-loop performance
criterion.

To each plant P = (A, B, D, x0, w0) ∈ P and controller K ∈ K, we associate the
performance criterion

JP (K) =
∞∑

k=0

[
x(k)T Qx(k) + (u(k) + w(k))T R(u(k) + w(k))

]
, (6)

where Q ∈ Sn
++ and R ∈ Sn

++ are diagonal matrices. We make the following
standing assumption:

Assumption 3.1 Q = R = I.

This is without loss of generality because the change of variables (x̄, ū, w̄) =
(Q1/2x, R1/2u, R1/2w) transforms the closed-loop performance measure and state-
space representation into

JP (K) =
∞∑

k=0

[
x̄(k)T x̄(k) + (ū(k) + w̄(k))T (ū(k) + w̄(k))

]
, (7)

and

x̄(k + 1) = Q1/2AQ−1/2x̄(k) + Q1/2BR−1/2(ū(k) + w̄(k))
= Āx̄(k) + B̄(ū(k) + w̄(k)),

without affecting the plant, control, or design graphs, due to Q and R being diagonal
matrices.
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Definition 3.1 (Competitive Ratio) Let a plant graph GP , a control graph GK,
and a constant ε > 0 be given. Assume that, for every plant P ∈ P, there exists an
optimal controller K∗(P ) ∈ K such that

JP (K∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio of a control design method Γ is defined as

rP (Γ) = sup
P =(A,B,D,x0,w0)∈P

JP (Γ(A, B, D))
JP (K∗(P ))

,

with the convention that “ 0
0 ” equals one.

Note that the optimal control design strategy (with full plant model information)
K∗ does not necessarily belong to the set C.

Definition 3.2 (Domination) A control design method Γ is said to dominate an-
other control design method Γ′ if

JP (Γ(A, B, D)) ≤ JP (Γ′(A, B, D)), ∀ P = (A, B, D, x0, w0) ∈ P , (8)

with strict inequality holding for at least one plant in P. When Γ′ ∈ C and no
control design method Γ ∈ C exists that satisfies (8), we say that Γ′ is undominated
in C for plants in P.

In the remainder of this paper, we determine optimal control design strategies

Γ∗ ∈ arg min
Γ∈C

rP(Γ), (9)

for a given plant, control, and design graph. Since several design methods may
achieve this minimum, we are interested in determining which ones of these strate-
gies are undominated.

3 Preliminary Results

Before stating the main results of the paper, we introduce two specific control design
strategies and study their properties.

3.1 Optimal Centralized Control Design Strategy
The problem of designing optimal constant input-disturbance accommodation con-
trol for linear time-invariant continuous-time systems was solved earlier in [20, 22].
To the best of our knowledge, this was not the case for arbitrary dynamic distur-
bance accommodation when dealing with linear time-invariant discrete-time sys-
tems. As we need it later, we start by developing the optimal centralized (i.e,
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GK is a complete graph) disturbance accommodation controller K∗(P ) for a given
plant P ∈ P . First, let us define the auxiliary variables ξ(k) = u(k) + w(k) and
ū(k) = u(k + 1) − Du(k). It then follows that

ξ(k + 1) = u(k + 1) + w(k + 1)
= u(k + 1) + Dw(k)
= Du(k) + Dw(k) + ū(k)
= Dξ(k) + ū(k). (10)

Augmenting the state-transition in (10) with the state-space representation of the
system in (1) results in[

x(k + 1)
ξ(k + 1)

]
=
[

A B
0 D

] [
x(k)
ξ(k)

]
+
[

0
I

]
ū(k). (11)

Besides, we can write the performance measure in (7) as

JP (K) =
∞∑

k=0

[
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
. (12)

To guarantee the existence and uniqueness of the optimal controller K∗(P ), we
need the following lemma.

Lemma 3.1 The pair (Ã, B̃), with

Ã =
[

A B
0 D

]
, B̃ =

[
0
I

]
, (13)

is controllable for any given P = (A, B, D, x0, w0) ∈ P.

Proof: The pair (Ã, B̃) is controllable if and only if

[
Ã − λI B̃

]
=
[

A − λI B 0
0 D − λI I

]

is full-rank for all λ ∈ C. This condition is always satisfied since all matrices
B ∈ B(ε) are full-rank matrices.

Now the problem of minimizing the cost function in (12) subject to plant dy-
namics in (11) becomes a state-feedback linear quadratic optimal control with a
unique solution of the form

ū(k) = G1x(k) + G2ξ(k),

where G1 ∈ Rn×n and G2 ∈ Rn×n satisfy[
G1 G2

]
= −(B̃T XB̃)−1B̃T XÃ (14)
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and X is the unique positive-definite solution of the discrete algebraic Riccati equa-
tion

ÃT XB̃(B̃T XB̃)−1B̃T XÃ − ÃT XÃ + X − I = 0. (15)

Therefore, we have

u(k + 1) = Du(k) + ū(k)
= Du(k) + G1x(k) + G2ξ(k). (16)

Using the identity ξ(k) = B−1(x(k + 1) − Ax(k)) in (16), we get

u(k + 1) = Du(k) + G1x(k) + G2ξ(k)
= Du(k) + G1x(k) + G2B−1(x(k + 1) − Ax(k))
= Du(k) + (G1 − G2B−1A)x(k) + G2B−1x(k + 1). (17)

Putting a control signal of the form u(k) = xK(k) + DKx(k) in (17), we get

xK(k + 1) = DxK(k) + (DDK + G1 − G2B−1A)x(k) + (G2B−1 − DK)x(k + 1).

Now, we enforce the condition G2B−1−DK = 0, as xK(k+1) can only be a function
of x(k) and xK(k), see (3). Therefore, the optimal controller K∗(P ) becomes

xK(k + 1) = DxK(k) + [G1 + DG2B−1 − G2B−1A]x(k),
u(k) = xK(k) + G2B−1x(k),

with xK(0) = 0.

Lemma 3.2 Let the control graph GK be a complete graph. Then, the cost of the
optimal controller K∗(P ) for each plant P ∈ P is lower-bounded as

JP (K∗(P )) ≥
[

x0
Bw0

]T [
W + DWD + D2B−2 −D(W + B−2)

−(W + B−2)D W + B−2

] [
x0

Bw0

]
,

where
W = AT (I + B2)−1A + I.

Proof: Define

J̄P (K, ρ) =
∞∑

k=0

([
x(k)
ξ(k)

]T [
x(k)
ξ(k)

]
+ ρū(k)T ū(k)

)
,

and
K̄∗

ρ(P ) = arg min
K∈K

J̄P (K, ρ).
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Using Lemma 3.1, we know that K̄∗
ρ(P ) exists and is unique. We can find

J̄P (K̄∗
ρ(P ), ρ) using X(ρ) as the unique positive definite solution of the discrete

algebraic Riccati equation

ÃT X(ρ)B̃(ρI + B̃T X(ρ)B̃)−1B̃T X(ρ)Ã − ÃT X(ρ)Ã + X(ρ) − I = 0. (18)

According to [23], the positive-definite matrix X(ρ) is lower-bounded by

X(ρ) − I ≥ ÃT
(
X̄(ρ)−1 + ρ−1B̃B̃T

)−1
Ã

= ÃT
(

X̄(ρ) − X̄(ρ)B̃
(
ρI + B̃T X̄(ρ)B̃

)−1
B̃T X̄(ρ)

)
Ã,

where

X̄(ρ) = ÃT
(
I + ρ−1B̃B̃T

)−1
Ã =

[
AT A + I AT B

BA B2 + D2 ρ
ρ+1 + I

]
.

Basic algebraic calculations show that

lim
ρ→0

[
X̄(ρ) − X̄(ρ)B̃(ρI + B̃T X̄(ρ)B̃)−1B̃T X̄(ρ)

]
=
[

AT (I + B2)−1A + I 0
0 0

]
.

According to [24], we know that

lim
ρ→0+

J̄P (K̄∗
ρ(P ), ρ) = JP (K∗(P )),

and as a result

X = lim
ρ→0

X(ρ) ≥
[

A B
0 D

]T [
AT (I + B2)−1A + I 0

0 0

] [
A B
0 D

]
+ I. (19)

where X is the unique positive-definite solution of the discrete algebraic Riccati
equation in (15) and consequently

JP (K∗(P )) =
[

x0
ξ(0)

]T [
X11 X12
XT

12 X22

] [
x0

ξ(0)

]

with X being partitioned as

X =
[

X11 X12
XT

12 X22

]
.

We know that

ξ(0) = u(0) + w0 = G2B−1x0 + w0 = −(X−1
22 XT

12 + DB−1)x0 + w0.
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Thus, the cost of the optimal control design JP (K∗(P )) becomes
[

x0
−(X−1

22 XT
12 + DB−1)x0 + w0

]T[
X11 X12
XT

12 X22

][
x0

−(X−1
22 XT

12 + DB−1)x0 + w0

]

=
[

x0
w0

]T [
X11 − X12X−1

22 XT
12 + B−1DX22DB−1 −B−1DX22

−X22DB−1 X22

] [
x0
w0

]

=
[

x0
w0

]T [
B−1(X22 + DX22D − I)B−1 −B−1DX22

−X22DB−1 X22

] [
x0
w0

]
(20)

The second equality is true because of the following equation extracted from the
discrete algebraic Riccati equation in (15)

X22 = I + BX11B − BX12X−1
22 XT

12B,

which is equivalent to

X11 − X12X−1
22 XT

12 = B−1(X22 − I)B−1. (21)

Using (19), it is evident that

X22 ≥ B[AT (I + B2)−1A + I]B + I = BWB + I,

and as a result, the inner-matrix in (20) is lower-bounded by[
B−1(X22 + DX22D − I)B−1 −B−1DX22

−X22DB−1 X22

]

=
[

B−1(X22 − I)B−1 0
0 0

]
+
[

B−1DX22DB−1 −B−1DX22
−X22DB−1 X22

]

=
[

B−1(X22 − I)B−1 0
0 0

]
+
[ −B−1D

I

]
X22

[ −B−1D
I

]T

≥
[

B−1(BWB)B−1 0
0 0

]
+
[ −B−1D

I

]
(BWB + I)

[ −B−1D
I

]T

=
[

W + DWD + D2B−2 −D(WB + B−1)
−(BW + B−1)D BWB + I

]

Finally, we get

JP (K∗(P )) ≥
[

x0
w0

]T [
W + DWD + D2B−2 −D(WB + B−1)

−(BW + B−1)D BWB + I

] [
x0
w0

]

=
[

x0
Bw0

]T [
W + DWD + D2B−2 −D(W + B−2)

−(W + B−2)D W + B−2

] [
x0

Bw0

]
.

This statement concludes the proof.
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3.2 Deadbeat Control Design Strategy
In this subsection, we introduce the deadbeat control design strategy and calculate
its competitive ratio.

Definition 3.3 The deadbeat control design strategy ΓΔ : A(SP) × B(ε) × D → K
is defined as

ΓΔ(A, B, D) �
[

D −B−1D2

I −B−1(A + D)

]
.

It should be noted that using the deadbeat control design strategy, irrespective
of the value of the initial state x0 and the initial disturbance w0, the closed-loop
system reaches the origin in just two time-steps. The closed-loop system with
deadbeat control design strategy is shown in Figure 3(a). This feedback loop can
be rearranged as the one in Figure 3(b) which has two separate components. One
component is a static deadbeat control design strategy for regulating the state of the
plant and the other one is a deadbeat observer for canceling the disturbance. This
structure is further discussed in Section 6, where it is shown that it corresponds to
proportional-integral control in some cases. First, we need to calculate an expression
for the cost of the deadbeat control design strategy.

Lemma 3.3 The cost of the deadbeat control design strategy ΓΔ for each plant
P = (A, B, D, x0, w0) ∈ P is

JP (ΓΔ(A, B, D)) =
[

x0
Bw0

]T [
Q11 Q12
QT

12 Q22

] [
x0

Bw0

]
,

where

Q11 = I + D2(I + B−2) + AT B−2A + DAT B−2AD + AT B−2D + DB−2A, (22)
Q12 = −D − AT B−2 − DB−2 − DAT B−2A, (23)
Q22 = AT B−2A + B−2 + I. (24)

Proof: First, it should be noted that the state of the closed-loop system with
ΓΔ(A, B, D) in feedback reaches the origin in two time-steps. Now, using the
system state transition, one can calculate the deadbeat control design strategy cost
as

JP (ΓΔ(A, B, D)) = xT
0 x0 + (u(0) + w0)T (u(0) + w0)

+ x(1)T x(1) + (u(1) + w(1))T (u(1) + w(1)),

where x(1) = −Dx0 + Bw0, u(0) = −B−1(A + D)x0, and u(1) = −B−1(A +
D)x(1) − B−1D2x0. The rest of the proof is a trivial simplification.

We need the following lemma in order to calculate the competitive ratio of the
deadbeat control design strategy ΓΔ when the control graph GK is a supergraph
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Figure 3: The closed-loop system with (a) the deadbeat control design strategy ΓΔ,
and (b) rearranging this control design strategy as a static deadbeat control design
and a deadbeat observer design.

of the plant graph GP . As the notation K∗(P ) is reserved for the optimal control
design strategy for a given control graph GK, from now on, we will use K∗

C to
denote the centralized optimal control design strategy (i.e., the optimal control
design strategy with access to full-state measurement).

Lemma 3.4 Let GK ⊇ GP , and P = (A, B, D, x0, w0) ∈ P be a plant with A being
a nilpotent matrix of degree two. Then, JP (K∗(P )) = JP (K∗

C(P )).

Proof: When matrix A is nilpotent, the unique positive-definite solution of the
discrete algebraic Riccati equation (15) is

X =
[

AT A + I AT B
BA BAT (I + B2)−1AB + I + B2

]
.

Consequently, the optimal centralized controller gains in (14) are

G1 = 0, G2 = −(I + B2)−1BAB − D,

and as a result, the optimal centralized controller K∗
C(P ) is

K∗
C(P ) =

[
D D(I + B2)−1B−1A − B−1D2

I −(I + B2)−1BA − B−1D

]
= (zI − D)−1D(I + B2)−1B−1A − B−1D2 − (I + B2)−1BA − B−1D.

Thus, K∗
C(P ) ∈ K(SK) because the control graph GK is a supergraph of the plant

graph GP . Now, considering that K∗(P ) is the global optimal decentralized con-
troller, it has a lower cost than any other decentralized controller K ∈ K(SK),
specially K∗

C(P ) ∈ K(SK) for this particular plant. Hence,

JP (K∗(P )) ≤ JP (K∗
C(P )). (25)

On the other hand, it is evident that

JP (K∗
C(P )) ≤ JP (K∗(P )). (26)

This concludes the proof.
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Remark 3.1 Finding the optimal structured controller is intractable in general,
even when the global model is known. In this paper, we concentrate on the cases
where the control graph GK is a supergraph of the plant graph GP , because it is
relatively easier to solve the optimal control design problem under limited model
information in this case. In addition, although, in this paper, we may not be able to
find the optimal structured controller K∗(P ) for a particular plant in some of the
cases, we can still compute the competitive ratio rP . Thus, in a sense, this makes
the competitive ratio a quite powerful tool.

Next, we derive the competitive ratio of the deadbeat control design method.

Theorem 3.5 Let GK ⊇ GP . Then, the competitive ratio of the deadbeat control
design method ΓΔ is equal to

rP (ΓΔ) = 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Proof: First, let us define the set of all real numbers that are greater than or
equal to the competitive ratio of the deadbeat control design strategy

M =
{

β ∈ R
∣∣∣∣ JP (ΓΔ(A, B, D))

JP (K∗(P ))
≤ β ∀P ∈ P

}
.

It is evident that
JP (K∗

C(P )) ≤ JP (K∗(P ))

for each plant P ∈ P irrespective of the control graph GK, and as a result

JP (ΓΔ(A, B, D))
JP (K∗(P ))

≤ JP (ΓΔ(A, B, D))
JP (K∗

C(P ))
. (27)

Using (27) and Lemmas 3.3 and 3.2, β belongs to the set M if

[
x0

Bw0

]T [
Q11 Q12
QT

12 Q22

] [
x0

Bw0

]
[

x0
Bw0

]T [
W + DWD + D2B−2 −D(W + B−2)

−(W + B−2)D W + B−2

] [
x0

Bw0

] ≤ β, (28)

for all A ∈ A(SP), B ∈ B(ε), D ∈ D, x0 ∈ Rn, and w0 ∈ Rn where Q11, Q12, and
Q22 are matrices defined in (22)–(24). The condition (28) is satisfied, if and only
if, for all A ∈ A(SP), B ∈ B(ε), and D ∈ D, we have[

β(W + DWD + D2B−2) − Q11 −βD(W + B−2) − Q12
−β(W + B−2)D − QT

12 β(W + B−2) − Q22

]
≥ 0.
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Using Schur complement [25], β belongs to the set M if

Z = β(W + B−2) − Q22

= β(AT (I + B2)−1A + I + B−2) − AT B−2A − B−2 − I (29)
= AT (β(I + B2)−1 − B−2)A + (β − 1)(B−2 + I) ≥ 0,

and

− [−βD(W + B−2) − Q12
] [

β(W + B−2) − Q22
]−1 [−β(W + B−2)D − QT

12
]

+β(W + DWD + D2B−2) − Q11 ≥ 0, (30)

for all A ∈ A(SP), B ∈ B(ε), and D ∈ D. We can do the simplification

−βD(W + B−2) − Q12 = −βD(AT (I + B2)−1A + I + B−2)
−(−D − AT B−2 − DB−2 − DAT B−2A)

= −(β − 1)D(I + B−2) + AT B−2

−DAT (β(I + B2)−1 − B−2)A
= −DZ + AT B−2,

and as a result, the condition (30) is equivalent to

β(W + DWD + D2B−2) − Q11 − [−DZ + AT B−2]Z−1[−ZD + B−2A] ≥ 0, (31)

where Z is defined in (29). Furthermore, we can simplify β(W +DWD+D2B−2)−
Q11 as

AT (β(I + B2)−1 − B−2)A + (β − 1)[I + D2B−2 + D2]
+DAT (β(I + B2)−1 − B−2)AD − AT B−2D − DB−2A,

which helps us to expand condition (31) to

AT
(
β(I + B2)−1 − B−2)A + (β − 1)

(
I + D2B−2 + D2)

+ DAT
(
β(I + B2)−1 − B−2)AD − AT B−2D − DB−2A

− D
(
AT

(
β(I + B2)−1 − B−2)A + (β − 1)(B−2 + I)

)
D

+ AT B−2D + DB−2A − AT B−2Z−1B−2A ≥ 0.

(32)

Hence, it follows from (32) that (31) can be simplified as

AT
(
β(I + B2)−1 − B−2)A − AT B−2Z−1B−2A ≥ 0. (33)

The condition (29) is satisfied, for all plants P ∈ P , if β ≥ 1 + 1/ε2, since in this
case β(I + B2)−1 − B−2 ≥ 0 (recall that any matrix B is diagonal and its diagonal
elements are lower-bounded by ε). Furthermore, for all β ≥ 1 + 1/ε2, it is easy to
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see that Z ≥ (β − 1)(B−2 + I). As a result, it can be shown that the condition (33)
is satisfied if

AT
(
β(I + B2)−1 − B−2 − (β − 1)−1B−2(B−2 + I)−1B−2)A+(β −1)I ≥ 0. (34)

Now, the condition (34) is satisfied if

β(I + B2)−1 − B−2 − (β − 1)−1B−2(B−2 + I)−1B−2 ≥ 0. (35)

Noting that the matrix B = diag(b11, . . . , bnn), one can rewrite (35) as

β

1 + b2
ii

− 1
b2

ii

− 1
β − 1

1
b2

ii(1 + b2
ii)

≥ 0. (36)

for all bii ≥ ε. Retracing our steps backward, it easy to see that the set

{
β | β ≥ 1 + 1

ε2 and (36) satisfied
}

=

{
β ≥ 2ε2 + 1 +

√
4ε2 + 1

2ε2

}
⊆ M.

Therefore, we get

rP (ΓΔ) = sup
P ∈P

JP (ΓΔ(A, B, D))
JP (K∗(P ))

≤ 2ε2 + 1 +
√

4ε2 + 1
2ε2 . (37)

Now, we have to show that this upper bound can be achieved by a family of
plants. Consider a one-parameter family of matrices {A(r)} defined as A(r) = rejeT

i

for each r ∈ R. It is always possible to find indices i and j such that i �= j and
(sP)ji �= 0, because of the assumption that there be no isolated node in the plant
graph. Let B = εI and D = I. For each r ∈ R, the matrix A(r) is a nilpotent
matrix of degree two, that is, A(r)2 = 0. Thus, using Lemma 3.4, we get

JP (K∗
C(P )) = JP (K∗(P ))

for this special plant. The solution to the discrete algebraic Riccati equation in (15)
is

X =
[

A(r)T A(r) + I εA(r)T

εA(r) ε2/(1 + ε2)A(r)T A(r) + (ε2 + 1)I

]
.

Thus, if we assume that

x0 =
(ε2 + 1)(

√
4ε2 + 1 + 1)

2εr
ei, (38)

and

w0 = (ε2 + 1)(
√

4ε2 + 1 + 1)
2ε2r

ei − ej, (39)
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the cost of the optimal control design strategy is

JP (K∗(P )) = (ε2 + 1)
√

4ε2 + 1 + 5ε2 + 4ε4 + 1
2ε2 (40)

+
(2ε2 +

√
4ε2 + 1 + 1)

√
4ε2 + 1

2ε2r2 ,

and the cost of the deadbeat control design strategy is

JP (ΓΔ(A, B, D)) =
(ε2 + 1)(3ε2√

4ε2 + 1 + 5ε2 + 4ε4 +
√

4ε2 + 1 + 1)
2ε4

+ (ε2 + 1)(ε2√
4ε2 + 1 + ε4√

4ε2 + 1 + ε2 + 3ε4 + 2ε6)
2ε4r2 .

(41)

This results in

lim
r→∞

JP (ΓΔ(A, B, D))
JP (K∗(P ))

= 2ε2 + 1 +
√

4ε2 + 1
2ε2 . (42)

Equation (37) together with (42) conclude the proof.

Remark 3.2 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a) and the control graph GK in Figure 2(b). Theo-
rem 3.5 shows that, if we apply the deadbeat control design strategy to this particular
problem, the performance of the deadbeat control design strategy, at most, can be
(2ε2 + 1 +

√
4ε2 + 1)/(2ε2) times the cost of the optimal control design strategy K∗.

In fact, Theorem 3.5 states that this relationship between the performance of the
deadbeat control design and the optimal control design with full model information
holds for a rather general class of systems. For the case that B = {I}, the relation-
ship is given by (3 +

√
5)/2 ≈ 2.62, so the deadbeat control design strategy is never

worse than two or three times the optimal.

With this characterization of ΓΔ in hand, we are now ready to tackle prob-
lem (9).

4 Plant Graph Influence on Achievable Performance

In this section, we study the relationship between the plant graph and the achievable
closed-loop performance in terms of the competitive ratio as a performance metric
and the domination as a partial order on the set of limited model information
control design strategies. To this end, we first state and prove two lemmas which
will simplify further developments.

Lemma 3.6 Fix real numbers a ∈ R and b ∈ R. For any x ∈ R, we have x2 + (a +
bx)2 ≥ a2/(1 + b2).
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Figure 4: State evolution of the closed-loop system with any control design strategy
Γ when x0 = 0.

Proof: Consider the function x �→ x2 + (a + bx)2. Since this function is both
continuously differentiable and strictly convex, we can find its unique minimizer as
x̄ = −ab/(1 + b2) by setting its derivative to zero. As a result, we get

x2 + (a + bx)2 ≥ x̄2 + (a + bx̄)2 = a2/(1 + b2).

This concludes the proof.

Lemma 3.7 Let the design graph GC be a totally disconnected graph, and GK ⊇
GP . Furthermore, assume that node i is not a sink in the plant graph GP . Then,
the competitive ratio of a control design strategy Γ ∈ C is bounded only if aij +
bii(dΓ)ij(A, B, D) = 0 for all j �= i and all matrices A ∈ A(SP ), B ∈ B(ε), and
D ∈ D.

Proof: The proof is by contrapositive. Let us assume that there exist matrices
Ā ∈ A(SP), B ∈ B(ε), D ∈ D, and indices i and j such that i �= j and āij +
bii(dΓ)ij(Ā, B, D) �= 0. Let 1 ≤ � ≤ n be an index such that � �= i and (sP)�i �= 0
(such an index always exists because node i is not a sink in the plant graph GP).
Define matrix A such that Ai = Āi, A� = reT

i , and At = 0 for all t �= i, �. Because
the design graph is a totally disconnected graph, we know that Γi(Ā, B, D) =
Γi(A, B, D). Using the structure of the cost function in (7) and plant dynamics
in (1), the cost of this control design strategy for w0 = ej and x0 = 0 is lower-
bounded by

J(A,B,D,0,ej)(Γ(A, B, D)) ≥ (u�(2) + w�(2))2 + x�(3)2

= (u�(2) + w�(2))2 + (rxi(2) + b��[u�(2) + w�(2)])2
.

Based on Lemma 3.6 and the fact that xi(2) = (aij +bii(dΓ)ij(A, B, D))bjj (see Fig-
ure 4), we get

J(A,B,D,0,ej)(Γ(A, B, D)) ≥ r2xi(2)2/(1 + b2
��)

= (aij + bii(dΓ)ij(A, B, D))2b2
jjr2/(1 + b2

��).
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On the other hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ej)(ΓΔ(A, B, D)) = eT
j BT (AT B−2A + B−2 + I)Bej

= b2
jj + 1 + a2

ijb2
jj/b2

ii.

Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . This gives

rp(Γ) = sup
P ∈P

JP (Γ(A, B, D))
JP (K∗(P ))

= sup
P ∈P

[
JP (Γ(A, B, D))

JP (ΓΔ(A, B, D))
JP (ΓΔ(A, B, D))

JP (K∗(P ))

]

≥ sup
P ∈P

JP (Γ(A, B, D))
JP (ΓΔ(A, B, D))

(43)

≥ (aij + bii(dΓ)ij(A, B, D))2b2
jj/(1 + b2

��)
b2

jj + 1 + a2
ijb2

jj/b2
ii

lim
r→∞ r2 = ∞.

This inequality proves the statement by contrapositive as the competitive ratio is
not bounded in this case.

4.1 Plant Graphs without Sinks

First, we assume that there is no sink in the plant graph and try to characterize the
optimal control design strategy in terms of the competitive ratio and domination.

Theorem 3.8 Let the plant graph GP contain no sink, the design graph GC be
a totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of any
control design strategy Γ ∈ C satisfies

rP (Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Proof: Consider a one-parameter family of matrices {A(r)} defined as A(r) =
rejeT

i for each r ∈ R. It is always possible to find indices i and j such that i �= j and
(sP)ji �= 0, because of the assumption that there is no isolated node in the plant
graph. Let B = εI and D = I. Let Γ ∈ C be a control design strategy with design
graph GC . Without loss of generality, we can assume that γji(A, B, D) = −r/ε
since otherwise, using Lemma 3.7, we get that rP(Γ) is infinity, and as a result the
inequality in the theorem statement is trivially satisfied. Thus, for each r ∈ R, the
cost of the control design strategy Γ for x0 in (38) and w0 in (39) is lower-bounded
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by

JP (Γ(A, B, D)) ≥ (uj(0) + wj(0))2 + xj(1)2

=

(
(ε2 + 1)(

√
4ε2 + 1 + 1)

2ε2 + 1

)2

+ ε2

= (ε2 + 1)(3ε2√
4ε2 + 1 + 5ε2 + 4ε4 +

√
4ε2 + 1 + 1)

2ε4 .

On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Consequently, using Lemma 3.4, the cost of the optimal
control design strategy K∗(P ) for x0 in (38) and w0 in (39) is given by (40). This
results in

rP (Γ) ≥ lim
r→∞

JP (Γ(A, B, D))
JP (K∗(P )) =

2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Theorem 3.8 shows that the deadbeat control design method ΓΔ is a minimizer
of the competitive ratio rP as a function over the set of limited model information
design methods C. The following theorem shows that it is also undominated by
methods of this type, if and only if, the plant graph GP has no sink.

Theorem 3.9 Let the design graph GC be a totally disconnected graph, and GK ⊇
GP . Then, the control design strategy ΓΔ is undominated if and only if there is no
sink in the plant graph GP .

Proof: First, we have to prove the sufficiency part of the theorem. Assume
that there is no sink in the plant graph. For proving this claim, we are going
to prove that for any control design method Γ ∈ C \ {ΓΔ}, there exists a plant
P = (A, B, D, x0, w0) ∈ P such that JP (Γ(A, B, D)) > JP (ΓΔ(A, B, D)). First,
assume that there exist matrices Ā ∈ A(SP ), B ∈ B(ε), and D ∈ D and an
index j such that Āj + bjj(DΓ)j(Ā, B, D) + djjeT

j �= 0. Without loss of generality,
we can assume that ājj + bjj(dΓ)jj(Ā, B, D) + djj �= 0, because otherwise, using
Equation (43) in the proof of Lemma 3.7, we know that, if there exists � �= j such
that āj� +bjj(dΓ)j�(Ā, B, D) �= 0, the ratio of the cost of the control design strategy
Γ to the cost of the deadbeat design strategy ΓΔ is unbounded. Therefore, the
control design strategy Γ cannot dominate the deadbeat control design strategy
ΓΔ. Pick an index i �= j such that (sP)ij �= 0. It is always possible to pick
such index i because there is no sink in the plant graph. Define matrix A such
that Aj = Āj , Ai = reT

j , and A� = 0 for all � �= i, j. It should be noted that
Γj(A, B, D) = Γj(Ā, B, D) because the design graph is a totally disconnected graph.
We know that r + bii(dΓ)ij(A, B, D) = 0 because otherwise the control design
strategy Γ cannot dominate the deadbeat control design strategy. The cost of this
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control design strategy for w = ej and x0 = 0 satisfies

JP (Γ(A, B, D)) ≥ (ui(1) + wi(1))2 + (ui(2) + wi(2))2 + xi(3)2

= r2b2
jj/b2

ii + (ui(2) + wi(2))2 + (xj(2)r + bii[ui(2) + wi(2)])2,

because of the structure of the cost function (7) and the plant dynamics (1). Now,
using Lemma 3.6, we have

JP (Γ(A, B, D)) ≥ r2b2
jj/b2

ii + xj(2)2r2/(1 + b2
ii).

As a result

JP (Γ(A, B, D)) − JP (ΓΔ(A, B, D)) (44)
≥ (Ājj + bjj(dΓ)jj(Ā, B, D) + djj)2b2

jjr2/(1 + b2
ii) − (b2

jj + 1 + a2
jj),

since xj(2) = (Ājj + bjj(dΓ)jj(Ā, B, D) + djj)bjj (see Figure 4) and

J(A,B,D,0,ej)(ΓΔ(A, B, D)) = eT
j BT (AT B−2A + B−2 + I)Bej

= b2
jj + 1 + r2b2

jj/b2
ii + a2

jj .

Thus, if we pick r large enough, the difference in (44) becomes positive, which
shows that the control design strategy Γ cannot dominate the deadbeat control
design strategy ΓΔ. Now, assume that there exist matrices Ā ∈ A(SP ), B ∈ B(ε),
and D̄ ∈ D and an index j such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jjeT

j = 0 but
Γj(Ā, B, D̄) �= ΓΔ

j (Ā, B, D̄). Define matrix A such that Aj = Āj and A� = 0 for
all � �= j and matrix D as djj = d̄jj and d�� = 0 for all � �= j. Let x0 = 0. If
there exists an index i �= j such that γij(Ā, B, D) �= γΔ

ij (Ā, B, D) pick w0 = ei,
otherwise, pick w0 = ej . For this special case, the state of the closed-loop system
with the controller Γ(A, B, D) is equal to the state of the closed-loop system with
the controller ΓΔ(A, B, D) for the first and the second time-steps (see Figure 4
and Figure 5). As a result, the state of the subsystem j reaches zero in two time-
steps. Now, since Γj(Ā, B, D̄) �= ΓΔ

j (Ā, B, D̄), in the next time-step the state of the
subsystem j becomes non-zero again. This results in a performance cost greater
than the performance cost of the control design strategy ΓΔ. Thus, the control
design ΓΔ is undominated by the control design method Γ.

Now, we have to prove the necessary part of the theorem. Proving this part
is equivalent to proving that if there exists (a sink) j such that for every i �= j,
(sP)ij = 0, then there exists a control design strategy Γ which can dominate the
deadbeat control design strategy. Without loss of generality, let j = n; i.e., assume
that (sP)in = 0 for all i �= n. In this situation, we can rewrite the matrix A as

A =

⎡
⎢⎢⎢⎣

a11 · · · a1,n−1 0
...

. . .
...

...
an−1,1 · · · an−1,n−1 0

an1 · · · an,n−1 ann

⎤
⎥⎥⎥⎦ ,
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Define x̄0 = [x1(0) · · · xn−1(0)]T and w̄0 = [w1(0) · · · wn−1(0)]T . Let Γ(A, B, D)
be defined as AΓ(A, B, D) = D, CΓ(A, B, D) = I,

BΓ(A, B, D) =

⎡
⎢⎢⎢⎢⎣

− d2
11

b11
· · · 0 0

...
. . .

...
...

0 · · · − d2
n−1,n−1

bn−1,n−1
0

(bΓ)n1 · · · (bΓ)n,n−1 (bΓ)nn

⎤
⎥⎥⎥⎥⎦ ,

DΓ(A, B, D) =

⎡
⎢⎢⎢⎢⎣

− a11+d11
b11

· · · − a1,n−1
b11

0
...

. . .
...

...
− an−1,1

bn−1,n−1
· · · − an−1,n−1+dn−1,n−1

bn−1,n−1
0

(dΓ)n1 · · · (dΓ)n,n−1 (dΓ)nn

⎤
⎥⎥⎥⎥⎦ ,

where B̄Γ = [(bΓ)n1 · · · (bΓ)nn] and D̄Γ = [(dΓ)n1 · · · (dΓ)nn] are tunable gains
for the last subsystem. We denote the cost of applying the deadbeat controller to
subsystems 1, . . . , n − 1 by J

(1)
(A,B,D,x̄0,w̄0). This cost is independent of the control

design parameters B̄Γ and D̄Γ, because the last subsystem is a sink and it cannot
affect the other subsystems. The overall cost of the controller is

J(A,B,x0,w0)(Γ(A, B, D)) = J
(1)
(A,B,D,x̄0,w̄0) + J

(2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ),

where J
(2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ) is the cost of the controller designed for the last sub-

system. This cost J
(2)
(A,B,D,x0,w0)(B̄Γ, D̄Γ) is independent of the rest of the system’s

model, because the deadbeat (for subsystems 1, . . . , n − 1) cancel out all dependen-
cies in matrix A, thus, one can design the optimal controller for the lower part of
the system without the model information of the upper part. Now, we can use the
method mentioned in Subsection 3.1 to design the optimal controller for the lower
part and find the optimal gains

B̄Γ = dnn

bnn
((α + 1)An − Dn) , D̄Γ = 1

bnn
(αAn − Dn) ,

where

α = 2
b2

nn + a2
nn + 1 +

√
a4

nn + 2a2
nnb2

nn − 2a2
nn + b4

nn + 2b2
nn + 1

− 1.

Note that this new control design strategy is always applicable since the control
graph GK is supergraph of the plant graph GP . Therefore, there exists a control
design strategy which satisfies

J(A,B,D,x0,w0)(Γ(A, B, D)) ≤ J(A,B,D,x0,w0)(ΓΔ(A, B, D)),
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Figure 5: State evolution of the closed-loop system with deadbeat control design
strategy ΓΔ when x0 = 0.

for all matrices A ∈ A(SP ), B ∈ B(ε), and D ∈ D and all vectors x0 ∈ Rn and
w0 ∈ Rn. Consider the matrix A ∈ A(SP) such that An = reT

n and A� = 0 for all
� �= n. Let B = εI and D = I. For this special system, for all r > 0, we have

J(A,B,D,0,en)(Γ(A, B, D)) =
√

r4 + 2r2ε2 − 2r2 + ε4 + 2ε2 + 1 + r2 + ε2 + 1
2

< r2 + ε2 + 1
= J(A,B,D,0,en)(ΓΔ(A, B, D)).

Thus, the control design strategy Γ dominates the deadbeat control design strategy
ΓΔ.

Remark 3.3 Consider the limited model information design problem given by the
plant graph G′

P in Figure 2(a′), the control graph G′
K in Figure 2(b′), and the design

graph G′
C in Figure 2(c′). Theorems 3.8 and 3.9 show that the deadbeat control

design strategy ΓΔ is the best control design strategy that one can propose based
on local model of the subsystems and the plant graph, because the deadbeat control
design strategy is the minimizer of the competitive ratio and it is undominated.

We use the construction in proof of the “only if” part of Theorem 3.9 to build
a control design strategy for the plant graphs with sinks in the next subsection.

4.2 Plant Graphs with Sinks
In this section, we study the case where there are c ≥ 1 sinks in the plant graph.
By renumbering the sinks as subsystems number n − c + 1, · · · , n the matrix SP
can be written as

SP =
[

(SP)11 0(q−c)×(c)
(SP)21 (SP)22

]
, (45)

where

(SP)11 =

⎡
⎢⎣

(sP)11 · · · (sP )1,n−c

...
. . .

...
(sP)n−c,1 · · · (sP)n−c,n−c

⎤
⎥⎦ ,
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(SP)21 =

⎡
⎢⎣

(sP)n−c+1,1 · · · (sP)n−c+1,n−c

...
. . .

...
(sP )n,1 · · · (sP )n,n−c

⎤
⎥⎦ ,

and

(SP)22 =

⎡
⎢⎣

(sP)n−c+1,n−c+1 · · · 0
...

. . .
...

0 · · · (sP)nn

⎤
⎥⎦ .

From now on, without loss of generality, we assume that the structure matrix is
the one defined in (45). The control design method ΓΘ for this type of systems is
defined as

ΓΘ(A, B, D) =
[

D B−1D(F (A, B) + I)A − B−1D2

I B−1(F (A, B)A − D)

]
, ∀P ∈ P , (46)

where
F (A, B) = diag(0, . . . , 0, fn−c+1(A, B), . . . , fn(A, B))

and

fi(A, B) = 2
b2

ii + a2
ii + 1 +

√
a4

ii + 2a2
iib

2
ii − 2a2

ii + b4
ii + 2b2

ii + 1
− 1 (47)

for all i = n − c + 1, · · · , n.
The control design strategy ΓΘ applies the deadbeat to every subsystem that

is not a sink and, for every sink, applies the same optimal control law as if the
node was isolated. We will show that when the plant graph contains sinks, the
control design method ΓΘ has, in the worst case, the same competitive ratio as
the deadbeat strategy. However, unlike the deadbeat strategy, it has the additional
property of being undominated by limited model information methods for plants
in P when the plant graph GP has sinks.

Theorem 3.10 Let the plant graph GP contain at least one sink, and GK ⊇ GP .
Then, the competitive ratio of the design method ΓΘ introduced in (46) is

rP(ΓΘ) =
{

2ε2+1+
√

4ε2+1
2ε2 , if (SP)11 �= 0 is not diagonal,

1, if both (SP)11 = 0 and (SP)22 = 0.

Proof: Based on Theorem 3.5, we know that

J(A,B,D,x0,w0)(K∗(P )) ≥ 2ε2

2ε2 + 1 +
√

4ε2 + 1
J(A,B,D,x0,w0)(ΓΔ(A, B, D)), (48)

and by the proof of the “only if” part of Theorem 3.9, we know that

J(A,B,D,x0,w0)(ΓΔ(A, B, D)) ≥ J(A,B,D,x0,w0)(ΓΘ(A, B, D)), (49)
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for all x0 ∈ Rn and w0 ∈ Rn. Putting (49) into (48) results in

J(A,B,D,x0,w0)(K∗(P )) ≥ 2ε2

2ε2 + 1 +
√

4ε2 + 1
J(A,B,D,x0,w0)(ΓΘ(A, B, D)),

and, therefore, in

J(A,B,D,x0,w0)(ΓΘ(A, B, D))
J(A,B,D,x0,w0)(K∗(P ))

≤ 2ε2 + 1 +
√

4ε2 + 1
2ε2 , ∀P = (A, B, x0, w) ∈ P .

As a result

rP (ΓΘ) = sup
P ∈P

J(A,I,x0,w)(ΓΘ(A, B, D))
J(A,I,x0,w)(K∗(P ))

≤ 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

If (SP)11 has an off-diagonal entry, then there exist 1 ≤ i, j ≤ n − c and i �= j such
that (sP)ij �= 0. Define A(r) such that A(r) = rejeT

i . In this case, using the proof
of Theorem 3.8, we know

rP(ΓΘ) = 2ε2 + 1 +
√

4ε2 + 1
2ε2 ,

because the control design ΓΘ acts as the deadbeat controller on that part of the
system. Using both these inequalities proves the statement.

If (SP)11 = 0 and (SP)22 = 0, every matrix A with structure matrix (SP) is a
nilpotent matrix of degree two. Thus, using Lemma 3.4, we get

JP (K∗(P )) = JP (K∗
C(P )).

Now, based on the proof of Lemma 3.4, we also know that the optimal controller
gain for this plant model is

K∗
C(P ) =

[
D D(I + B2)−1B−1A − B−1D2

I −(I + B2)−1BA − B−1D

]
.

For control design strategy ΓΘ, we will have

ΓΘ(A, B, D) =
[

D B−1D(B(I + B2)−1B − I)A − B−1D2

I B−1(B(I + B2)−1BA − D)

]

=
[

D D(I + B2)−1B−1A − B−1D2

I −(I + B2)−1BA − B−1D

]

based on (46). Thus, rP(ΓΘ) = 1.
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Theorem 3.11 Let the plant graph GP contain at least one sink, the design graph
GC be a totally disconnected graph, and GK ⊇ GP . Then, the competitive ratio of
any control design strategy Γ ∈ C satisfies

rP (Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 ,

if (SP )11 is not diagonal.

Proof: First, suppose that (SP)11 �= 0 and (SP)11 is not a diagonal matrix,
then there exist 1 ≤ i, j ≤ n − c and i �= j such that (sP )ij �= 0. Consider the
family of matrices A(r) defined by A(r) = reie

T
j . Based on Lemma 3.7, if we want

to have a bounded competitive ratio, the control design strategy should satisfy
r + bii(dΓ)ij(A(r), B, D) = 0 (because node 1 ≤ i ≤ n − c is not a sink). The rest
of the proof is similar to the proof of Theorem 3.8.

Remark 3.4 Combining Theorem 3.10 and Theorem 3.11 implies that if (SP)11 �=
0 is not diagonal (i.e., the nodes that are not sink can affect each other), control
design method ΓΘ is a minimizer of the competitive ratio over the set of limited
model information control methods and consequently a solution to the problem (9).
Furthermore, if (SP)11 and (SP )22 are both zero, then the ΓΘ becomes equal to K∗,
which shows that, ΓΘ is a solution to the problem (9), in this case too. The rest of
the cases are still open here.

The next theorem shows that ΓΘ is a more desirable control design method
than the deadbeat when plant graph GP has sinks, since it is then undominated by
limited model information design methods for plants in P .

Theorem 3.12 Let the plant graph GP contain at least one sink, the design graph
GC be a totally disconnected graph, and GK ⊇ GP . Then, the control design method
ΓΘ is undominated by all limited model information control design methods.

Proof: Assume that there are c ≥ 1 sink in the plant graph. For prov-
ing this claim, we are going to prove that for any control design method Γ ∈
C\{ΓΘ}, there exits a plant P = (A, B, D, x0, w0) ∈ P such that JP (Γ(A, B, D)) >
JP (ΓΘ(A, B, D)). We will proceed in several steps, which require us to partition
the set of limited model information control design strategies C as follows

C = W2 ∪ W1 ∪ W0 ∪ {ΓΔ},

where

W2 := {Γ ∈ C | ∃j, n − c + 1 ≤ j ≤ n, such that Γj(A, B, D) �= ΓΘ
j (A, B, D)},

W1 := {Γ ∈ C \ W2 | ∃j, 1 ≤ j ≤ n − c,

and ∃P ∈ P , (DΓ)j(A, B, D) �= (DΘ
Γ )j(A, B, D)},
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and

W0 := {Γ ∈ C \ W2 ∪ W1 | ∃j, 1 ≤ j ≤ n − c, ∃P ∈ P ,

such that Γj(A, B, D) �= ΓΘ
j (A, B, D)}.

First, we prove that the ΓΘ is undominated by control design strategies in W2.
We assume that there exist index n − c + 1 ≤ j ≤ n and matrices Ā ∈ A(SP),
B ∈ B(ε), D̄ ∈ D such that Γj(Ā, B, D̄) �= ΓΘ

j (Ā, B, D̄). Consider matrices A and
D defined as Aj = Āj and Ai = 0 for all i �= j and djj = d̄jj and dii = 0. For this
particular matrix A, any x0, and any w0, we know from the proof of the “only if”
part of Theorem 3.9 that ΓΘ(A, B, D, x0, w0) is the globally optimal controller with
limited model information. Hence, every other control design method in C leads
to a controller with greater performance cost than ΓΘ for this particular type of
plants. Therefore, the control design ΓΘ is undominated by control design methods
in W2.

Second, we prove that the control design strategy ΓΘ is undominated by the
control design strategies in W1. Let Γ be a control design strategy in W1 and let
index 1 ≤ j ≤ n − c be such that Āj + bjj(DΓ)j(Ā, B, D̄) + d̄jjeT

j �= 0 for some
matrices Ā ∈ A(SP ), B ∈ B(ε), and D̄ ∈ D. It is always possible to pick an index
i �= j such that (sP)ij �= 0 because node j is not a sink in the plant graph. If
1 ≤ i ≤ n − c, the proof is the same as the proof of the “if” part of Theorem 3.9,
therefore, without any loss of generality, we assume that n − c + 1 ≤ i ≤ n. Again,
with the same argument as in the proof of the “if” part of Theorem 3.9, without
loss of generality, we can assume that ajj + bjj(dΓ)jj(A, B, D) + djj �= 0 (because
otherwise the ratio of the cost the control design strategy Γ to the cost of the
control design strategy ΓΘ becomes infinity). Define matrix A such that Aj = Āj ,
Ai = reT

j , and A� = 0 for all � �= i, j. Let D ∈ D be such that djj = d̄jj and d� = 0
for all � �= j. It should be noted that Γj(A, B, D) = Γj(Ā, B, D̄) because the design
graph is a totally disconnected graph. The cost of this control design strategy for
w0 = ej and x0 = 0 would satisfy

JP (Γ(A, B, D)) ≥ (ui(1) + wi(1))2 + xi(2)2 + (ui(2) + wi(2))2 + xi(3)2

= r2b2
jj/(b2

ii + 1) + (ui(2) + wi(2))2 +(xj(2)r + bii[ui(2) + wi(2)])2

≥ (r2b2
jj + xj(2)2r2)/(1 + b2

ii),

This results in

J(A,I,B,D,0,ej)(Γ(A, B, D)) − J(A,I,B,D,0,ej)(ΓΘ(A, B, D))
≥ (ajj + bjj(dΓ)jj(A, B, D) + djj)2b2

jjr2/(1 + b2
ii) − κ(Aj , bjj).

where κ(Aj , bjj) is only a function Aj and bjj and represents the part of the cost
of the control design strategy ΓΘ that is related to subsystem j only. If we pick r
large enough, the difference would become positive, which shows that the control
design strategy Γ cannot dominate the control design strategy ΓΘ.
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Finally, we prove that the control design strategy ΓΘ is undominated by the
control design strategies in W0. The same argument as in the proof of the “if” part
of Theorem 3.9 holds here too.

Remark 3.5 Consider the limited model information design problem given by the
plant graph GP in Figure 2(a), the control graph G′

K in Figure 2(b′), and the design
graph G′

C in Figure 2(c′). Theorems 3.10, 3.11, and 3.12 together show that, the
control design strategy ΓΘ is the best control design strategy that one can propose
based on local subsystems’ model and the plant graph, because the control design
strategy ΓΘ is a minimizer of the competitive ratio and it is undominated.

5 Design Graph Influence on Achievable Performance

In the previous section, we approached the optimal control design under limited
model information when GC is a totally disconnected graph. The next step is to
determine the necessary amount of the model information needed in each subcon-
troller to be able to setup a control design strategy with a smaller competitive ratio
than the deadbeat control design strategy. We tackle this question here.

Theorem 3.13 Let the plant graph GP and the design graph GC be given, and
GK ⊇ GP . Assume that the plant graph GP contains the path i → j → � with
distinct nodes i, j, and � while (�, j) /∈ EC. Then, we have

rP (Γ) ≥ 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

Proof: Let i, j, and k be three distinct nodes such that (sP)ji �= 0 and
(sP)�i �= 0 (i.e., the path i → j → � is contained in the plant graph GP). Define
the 2-parameter family of matrices A(r, s) = rejeT

i + se�e
T
j . Let B = εI, D = I,

and Γ ∈ C be a limited model information with design graph GC . The cost of this
control design strategy for w0 = ei and x0 = 0 satisfies

J(A,B,D,0,ej)(Γ(A, B, D)) ≥ (u�(2) + w�(2))2 + x�(3)2

= (u�(2) + w�(2))2 + (sxj(2) + ε[u�(2) + w�(2)])2
,

because of the structure of the cost function in (7) and the system dynamic in (1).
Now, using Lemma 3.6 and the fact that xj(2) = (r + ε(dΓ)ji(r))ε (see Figure 4),
we get

J(A,B,D,0,ej)(Γ(A, B, D)) ≥ s2xj(2)2/(1 + ε2)
= (r + ε(dΓ)ji(r))2ε2s2/(1 + ε2).
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Note that (dΓ)ji(r) is only a function of r and not s since (�, j) /∈ EC . On the other
hand, the cost of the deadbeat control design strategy is

J(A,B,D,0,ej)(ΓΔ(A, B, D)) = eT
i BT (AT B−2A + B−2 + I)Bei

= ε2 + 1 + r2.

Note that the deadbeat control design strategy is applicable here since the control
graph GK is a supergraph of the plant graph GP . Using (43), we get

rp(Γ) ≥ (r + ε(dΓ)ji(r))2ε2/(1 + ε2)
ε2 + 1 + r2 lim

s→∞ s2.

Using (50) it is easy to see that the competitive ratio rP (Γ) is bounded only if
r + ε(dΓ)ji(r) = 0, for all r ∈ R. Therefore, there is no loss of generality in
assuming that (dΓ)ji(r) = −r/ε because otherwise the rP (Γ) is infinity and the
inequality in the statement of the theorem is trivially satisfied. Now, let us fix
s = 0 and use the notation A(r) = rejeT

i . Since the parameters of the subsystem
j is not changed and (�, j) /∈ EC , we have (dΓ)ji(r) = −r/ε. Therefore, for each
r ∈ R, similar to the proof of Theorem 3.8, the cost of the control design strategy
Γ for x0 in (38) and w0 in (39) is lower-bounded by

JP (Γ(A, B, D)) ≥ (ε2 + 1)(3ε2√
4ε2 + 1 + 5ε2 + 4ε4 +

√
4ε2 + 1 + 1)

2ε4 ,

On the other hand, for each r ∈ R, the matrix A(r) is a nilpotent matrix of degree
two, that is, A(r)2 = 0. Similar to the proof of Theorem 3.8, for x0 in (38) and w0
in (39), we get

JP (K∗(P )) = (ε2 + 1)
√

4ε2 + 1 + 5ε2 + 4ε4 + 1
2ε2 + (2ε2 +

√
4ε2 + 1 + 1)

√
4ε2 + 1

2ε2r2 ,

since JP (K∗(P )) = JP (K∗
C(P )) according to Lemma 3.4. This results in

rP (Γ) ≥ lim
r→∞

JP (Γ(A, B, D))
JP (K∗(P ))

= 2ε2 + 1 +
√

4ε2 + 1
2ε2 .

This finishes the proof.

Remark 3.6 Consider the limited model information design problem given by the
plant graph G′

P in Figure 2(a′), the control graph GK in Figure 2(b), and the design
graph GC in Figure 2(c). Theorem 3.13 shows that, because the plant graph GP
contains the path 2 → 1 → 4 but the design graph GC does not contain 4 → 1, the
competitive ratio of any control design strategy Γ ∈ C would be greater than or equal
to rP (ΓΔ).

Remark 3.7 Theorem 3.13 shows that, when GP and GK is a complete graph,
achieving a better competitive ratio than the deadbeat design strategy requires each
subsystem to have full knowledge of the plant model when constructing each subcon-
troller.



134 PAPER 3. DECENTRALIZED DISTURBANCE ACCOMMODATION ...

6 Proportional-Integral Deadbeat Control Design Strategy

In this section, we use some of the results of the paper on familiar control design
problems like constant-disturbance rejection and step reference-tracking.

6.1 Constant-Disturbance Rejection
For the case of constant-disturbance rejection, we can model the disturbance as
in (2) with matrix D = I. For each plant P = (A, B, I, x0, w0) ∈ P , the deadbeat
controller design strategy is

ΓΔ(A, B, I) �
[

I −B−1

I −B−1(A + I)

]
,

This controller can be realized as

u(k) = −B−1Ax(k) − B−1
k∑

i=0
x(i).

which is a proportional-integral controller. Thus, we call the restricted map-
ping ΓΔ

const : A(SP ) × B(ε) → K(SK), defined as ΓΔ
const(A, B) = ΓΔ(A, B, I), the

proportional-integral deadbeat control design strategy. The proportional term reg-
ulates the states of the system and the integral term compensates for the distur-
bance. For instance, in this case, Theorem 3.8 shows that when the plant graph GP
contains no sink and the design graph GC is a totally disconnected graph, the dead-
beat proportional-integral control design strategy is an undominated minimizer of
the competitive ratio. Note that the integral part of this control design strategy is
fully decentralized and the proportional part only needs the neighboring subsystems
state-measurements.

6.2 Step Reference-Tracking
Consider the case that we are interested in tracking a constant reference signal
r ∈ Rn. We need to define the difference x̄(k) = x(k) − r which gives

x̄(k + 1) = x(k + 1) − r = Ax(k) + Bu(k) − r = Ax̄(k) + Bu(k) + Ar − r.

Now if the subsystems do not want to share the reference points with each other,
we can think of the additional term Ar − r as the constant-disturbance vector
w(k) = B−1(Ar − r). Thus, we have

x̄(k + 1) = Ax̄(k) + B(u(k) + w(k)).

The subsystems only need to transmit the relative error between the state-measurements
and reference points. In this case, we can use the cost function

JP (K) =
∞∑

k=0
[x̄(k)T x̄(k) + (u(k) + w(k))T (u(k) + w(k))], (50)
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to make sure that the error x̄(k) goes to zero as time tends to infinity. Note that
if we want to have a complete state regulation limk→∞ x̄(k) = 0, the control signal
should have a limit as

lim
k→∞

u(k) = −B−1(Ar − r).

Thus, the second term of the cost function (50) only penalizes the difference of the
control signal and its steady-state value.

7 Conclusions

We studied the design of optimal disturbance-rejection and servomechanism dy-
namic controllers under limited plant model information. We investigated the re-
lationship between closed-loop performance and the control design strategies with
limited model information using the performance metric called competitive ratio.
We found an explicit minimizer of the competitive ratio and showed that this mini-
mizer is also undominated. This optimal control design is a dynamic control design
strategy composed of a static part for regulating the state of the system and a
dynamic part for canceling the effect of the disturbance. Possible future work will
focus on extending the present framework to situations where the subsystems and
disturbances are not scalar.
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