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Abstract

Traffic congestion is a constantly growing problem, with a wide array of
negative effects on the society, from wasted time and productivity to ele-
vated air pollution and reduction of safety. The introduction of connected,
autonomous vehicles enables a new, Lagrangian paradigm for sensing and
controlling the traffic, by directly using connected vehicles inside the traffic
flow, as opposed to the classical, Eulerian paradigm, which relies on station-
ary equipment on the road. By using control methods specifically tailored
to the Lagrangian paradigm, we are able to influence the traffic flow even if
the penetration rate of connected vehicle is low. This allows us to answer
one of the central impending questions of the traffic control using emerging
technologies: How can we influence the overall traffic by using only a small
portion of vehicles that we can control directly?

Traffic phenomena such as moving bottlenecks and stop-and-go waves are
particularly pertinent to Lagrangian traffic control, and therefore need to
be captured in traffic models. In this thesis we introduce the influence of
these phenomena into the cell transmission model, multi-class cell transmis-
sion model, and tandem queueing model. We also propose a transition sys-
tem model based on front tracking, which captures the relevant phenomena,
and show under which conditions it corresponds to the Lighthill-Whitham-
Richards model. Moving bottlenecks are introduced as a moving zone in
which a reduced flux function describes the traffic flow, and their influence on
the surrounding traffic is given by solving the Riemann problems at the flux
function boundaries. Stop-and-go waves are introduced by constraining the
wave speed of rarefaction, resulting in constant stop-and-go wave propagation
speed and discharging flow lower than the road capacity, which is consistent
with the empirical observations.

We use the proposed traffic models to design control laws that address
three problems: platoon merging coordination, congestion reduction, and traf-
fic state reconstruction. We study the case when two trucks are closing the
distance and merging into a platoon on a public road, and propose an optimal
control algorithm which accounts for the mutual influence between the trucks
and the surrounding traffic. The proposed control law minimizes the total
fuel consumption of the trucks, and improves the reliability of platooning.
Then, we consider two forms of the congestion reduction problem: stationary
bottleneck decongestion, and stop-and-go wave dissipation. In both cases,
connected vehicles are used as moving bottlenecks to restrict the traffic flow
enough to let the congestion dissipate. By applying these control laws, the
throughput of the road is increased and the total travel time of all vehicles
is reduced. Finally, we generalize the stop-and-go wave dissipation problem
by dropping the assumption that the full traffic state is known, and instead
propose traffic state reconstruction algorithms which use local measurements
originating from the connected vehicles. We show that the proposed con-
trol laws can also be implemented using the reconstructed traffic state. In
this case, as the number of available connected vehicles increases, the control
performance approaches the full-information control case.
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Sammanfattning

Trafikstockning är ett ständigt växande problem, med ett brett utbud av
negativa effekter på samhället, från bortkastad tid och produktivitet till ökade
mängd luftföroreningar och minskning av säkerhet. Införandet av uppkoppla-
de, autonoma fordon möjliggör ett nytt, Lagrangianskt paradigm för att styra
och mäta trafiken, genom att direkt använda uppkopplade fordon inuti trafik-
flödet, i motsats till det klasiska, Euleriska paradigmet, som är beroende på
stillastående utrustning på vägen. Genom att använda kontrollmetoder som
är anpassad för Lagrangian-paradigmet kan vi påverka trafikflödet även om
marknadsintrång av uppkopplade fordon är låg. Detta gör det möjligt för oss
att besvara en av de centrala överhängande frågorna om trafikkontrollen med
framväxande teknik: Hur kan vi påverka den totala trafiksituationen genom
att direkt kontrollera en liten del av fordonen?

Vissa trafikfenomen som rörliga flaskhalsar och stop-and-go-vågor är sär-
skilt relevanta för Lagrangian trafikstyrning, och måste därför modelleras. I
denna avhandling introducerar vi påverkan av dessa fenomen i cellöverförings-
modellen, flerklasscellöverföringsmodellen, och tandemkömodellen. Vi föreslår
även en övergångssystemmodell baserad på front-tracking-metoden, som be-
skriver relevanta fenomen, och visar under vilka förhållanden den motsvarar
Lighthill-Whitham-Richards-modellen. Rörliga flaskhalsar introduceras som
en rörlig zon där en reducerad flödesfunktion beskriver trafikflödet, och de-
ras inflytande på trafiken beräknas genom att lösa Riemann-problemen vid
flödesfunktioners gränser. Stop-and-go-vågor introduceras genom att begrän-
sa sällsynthetens våghastighet, som resulterar i konstant stop-and-go-vågens
hastighet och utflöde som är lägre än vägkapaciteten, vilket överensstämmer
med de empiriska observationerna.

Vi använder de föreslagna trafikmodellerna för att utforma kontrolllagar
som hanterar tre problem: koordinering av fordonstågsammanfogning, minsk-
ning av trafikstockningar och uppskattning av trafiktillstånd. Vi studerar fal-
let när två lastbilar närmar sig varandra och sammanfogar till en fordonståg
på allmän väg, och föreslår en optimal kontrollalgoritm som tar hänsyn till
interaktionen mellan lastbilarna och den omgivande trafiken. Den föreslagna
kontrolllagen minimerar den totala bränsleförbrukningen för lastbilarna och
förbättrar pålitligheten av fordonstågskörning. Sedan granskar vi två former
av problem med minskning av trafikstockningar: stationär flaskhalsavlastning
och stop-and-go-vågskingring. I båda fallen används uppkopplade fordon som
rörliga flaskhalsar för att begränsa trafikflödet så att trängseln upplösas. Ge-
nom att tillämpa dessa kontrolllagar ökar vägens genomströmning och den
totala restiden för alla fordon minskas. Slutligen, generaliserar vi stop-and-
go-vågskingringsproblem genom att släppa antagandet att hela trafiktillstån-
det är känt, och istället föreslå trafiktillståndsuppskattningsalgoritmer som
använder lokala mätningar från de uppkopplade fordonen. Vi visar att de
föreslagna kontrolllagarna kan även implementeras med hjälp av det upp-
skattade traffiktillståndet. I detta fall, när antalet tillgängliga uppkopplade
fordon ökar, blir kontrollprestationer nästan lika bra som när det fullständiga
traffiktillståndet är känt.
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Chapter 1

Introduction

Introducing new communication, sensing, and control technologies into vehi-
cles and transportation infrastructure offers new possibilities to solve the ever-

growing traffic congestion problem. Even a small share of connected collaborating
autonomous vehicles on the roads can enable the traffic control centres to directly
influence the traffic situation, without the need for building additional road in-
frastructure, or installing traffic control equipment. The omnipresence of mobile
phones, and widespread use of navigation apps is already affecting the traffic flows
in notable ways. With these prerequisites fulfilled, a new approach to traffic control
is becoming available, Lagrangian1 traffic control.

In the Lagrangian traffic control paradigm, we rely on sensing and actuation
executed inside the traffic flows, provided by the participating vehicles themselves,
as opposed to relying on stationary equipment like the classical, Eulerian traffic
control does. This paradigm offers us a way to utilize the resources that become
available over the course of the slow, partial or complete, transition from human-
driven to self-driving vehicles, and is especially important for the intermediate
phase when human and autonomous traffic coexist on the roads. It is therefore
important to understand and model the mutual influence the individual vehicles
and the overall traffic have on each other. This understanding enables us to better
predict how some vehicles of interest, such as heavy-duty vehicles and platoons, as
well as connected and autonomous vehicles, will actually be able to move in traffic,
as well as to develop control strategies that exploit this interdependence. This is
the focus of this thesis.

Naturally, in order to achieve best results, a combination of Eulerian and La-
grangian methods is preferable, using all available resources. However, while nu-
merous Eulerian methods have been proposed and implemented over the years,

1The notion of Lagrangian traffic control is based on the Lagrangian flow specifications from
the classical field theories. In the Lagrangian approach, the flow is described through the motion
of the observer following a flow particle as it moves through space and time. As opposed to this
approach, the Eulerian specification of the flow is based on a stationary observer, describing the
flow through a specific location.

3



4 CHAPTER 1. INTRODUCTION

due to technical and partially legislative limitations, the Lagrangian approach has
not yet seen practical use, except in case of some traffic state estimation based on
trajectories of mobile phones in vehicles. Therefore, the control and traffic state
reconstruction methods proposed in this thesis should not be seen as a replacement
for the classical traffic control, but as an alternative approach which complements
the well-established methods already in use.

The outline of this chapter is as follows. In Section 1.1 we motivate why using
individual vehicles to control the traffic is a promising approach. In Section 1.2 we
formulate the problems this work addresses. Lastly, Section 1.3 gives an overview
of this thesis, its contents and contributions.

1.1 Motivation

Traffic congestion has been a growing problem for at least as long as there have
been cars. Barring exceptional circumstances, the likes of which we have been
experiencing in recent times, its gravity can only be expected to increase in the long
term [1]. The negative effects of traffic congestion are not limited to wasting road
user’s time in traffic jams, leading to decreased reliability, efficiency and quality of
life; additionally, it also poses a safety hazard, since it both stresses and frustrates
the drivers and increases the risk for collisions due to stop-and-go traffic and low
headways. Finally, traffic congestion also leads to an increase in fuel consumption
[2], and as a direct consequence, greenhouse gas emissions, contributing to air and
noise pollution. In the European Union in 2017, transportation accounted for 29.7%
of total CO2 emissions, and about 26.3% of total greenhouse gas emissions, of which
the share of road transportation was around 71.7% [3], as shown in Figure 1.1.
Similar figures are actual in the United States [4], with an even larger share of road
transportation, around 82%. It is clear that if the goal of reducing the greenhouse
gas emissions by 90% by 2050 [5] is to be attained, new, more efficient traffic
management systems that would reduce congestion are a necessary part of the
solution.

The advent of connected and autonomous vehicles (CAVs) promises to change
the way we think of traffic forever. This technology has the potential to greatly
impact virtually all facets of traffic [6], including significantly increasing traffic
safety, reducing congestion and fuel consumption, and increasing the efficiency of
freight transport, to name but a few. A number of major car manufactures promised
to have fully autonomous cars in highway driving scenarios in the early 2020s [7].
These promises have since proven to be overly optimistic, and Level 5 autonomy,
with full driving automation requiring no human input, remains a pipe dream for
the time being. However, major technological advances have been made on Level
3 and 4 autonomy, with partial and conditional automation requiring some human
participation, and we can expect the penetration rate of vehicles equipped with
these technologies to steadily increase in the coming years [8].

However, these beginning phases of the introduction of CAVs into highway traffic



1.1. MOTIVATION 5

(a) CO2 and greenhouse gasses emissions by sector

(b) Emissions from transportation by mode

Figure 1.1: CO2 and greenhouse gasses emissions in the European Union in 2017.
Source: EU transport in figures 2019 [3]

strike a delicate balance between the benefits and detriments that they bring, as it
will take decades for the market penetration rate to become high enough for most of
the benefits to become significant [9]. For example, reservation-based intersection
control mechanisms [10] vastly outperforms conventional traffic light control with
average delays that are two to three hundred times lower—but only in case all
vehicles are autonomous. Including even a small number of human drivers would
lead to a sharp performance deterioration, and traditional traffic lights become a
preferred strategy if the portion of human drivers is significant. Shladover et al.
[11] estimate that we can achieve 90% higher lane capacity if we have an 80%
market penetration rate of cooperative adaptive cruise control (CACC), but with
low market penetration rates around 10%, the increase in capacity drops to only 1%.
While long-term, we may expect significant throughput and capacity increases once
CAVs reach a high market penetration rate [12, 11], the low-to-mid-term effects are
likely to be adverse, due to increased demand and overly conservative autonomous
driving behaviour [13, 14].

Fortunately, the presence of even a small number of directly controllable CAVs
on the road gives us new potentials for traffic sensing and control, with unprece-
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Figure 1.2: Illustration of connected vehicles. Vehicles communicate with each
other (V2V) and with the infrastructure (V2I).

dented level of detail, which we might use to improve the traffic flow and offset their
negative effects. Much before autonomy, we can expect vehicles to start communi-
cating with other vehicles and with the infrastructure (See Figure 1.2) [15]. In some
sense, through ubiquitous mobile phones, vehicles have been indirectly connected
in some way for a long time, and this communication can be used to acquire traffic
measurements [16]. Even today, routing and navigation apps are widely used, and
have started to affect the traffic in various ways [17]. It is not hard to envisage
a further development of this concept, where an app would be used by the traf-
fic authorities to also assign reference speed or other controls to drivers via their
phones, as shown in Figure 1.3, which would execute those commands for potential
monetary compensation. Therefore, in order to successfully deal with the transition
period, we have to answer the following question: How can we improve the overall
traffic by using only a small portion of vehicles that we have direct control over?
This notion of Lagrangian control of the macroscopic traffic conditions by acting
at a microscopic level is the centrepiece of emerging traffic control strategies, and
the focus of this thesis.

Automated heavy-duty vehicle platooning, shown in Figure 1.4, is expected
to enter the traffic at an accelerated pace [18]. Since these vehicles are typically
moving slower than the rest of the traffic, they naturally act as moving bottlenecks.
In the future, we can expect fleet management systems to employ some centralized
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Figure 1.3: A traffic control loop closed via an app. The traffic control centre
uses the trajectories of the participating app-connected vehicles, and uses it to
estimate the traffic situation. Then the control centre issues reference speed to
the drivers through the app. The participating drivers are rewarded monetarily, or
with services.

remote control over vehicles, using vehicle-to-infrastructure (V2I) communication to
enable advanced route planning [19]. Since in addition, these vehicles would send
their status to the fleet management system and receive reference speed profiles
to follow, this makes them an ideal candidate for in-flow traffic actuators. It is
therefore important to understand how controlling these vehicles can affect the
traffic around them, as well as how the traffic conditions could cause these vehicles
to be delayed, thus enabling us to better plan their trajectories.

If the traffic volume exceeds the road capacity, there is little that can be done to
reduce the congestion other than rerouting some of the traffic to other roads [20].
However, if the traffic density is close to the critical density, the variability in the
traffic flow may cause a traffic breakdown to occur at some bottleneck. After the
breakdown, the traffic efficiency is further reduced, making it hard to return to free
flowing traffic, even if the incoming traffic flow is low enough for the bottleneck to
handle. In particular, arrival of large groups of vehicles, such as truck platoons, is
likely to cause congestion at the bottlenecks. It is therefore important to distribute
the arrivals of long platoons of heavy-duty vehicles in time, in order to minimize
the effect that they have on the traffic. Ideally, if the arrival of platoons can be
postponed until the time when the density of the remainder of the traffic is low
enough, or we are able to actively control the traffic flow to ensure that this is the
case, we may avoid causing the traffic breakdown altogether.

It is also possible for the actions of individual drivers to cause congestion to
emerge, even without a stationary bottleneck. For example, an aggressive lane
change can force the driver in front of which the lane changing vehicle cut in to
brake. This breaking in turn forces the driver behind to break harder, and the
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Figure 1.4: Heavy-duty vehicles in a platoon. Source: Scania

disturbance propagates upstream, amplified until the point some car is forced to
come to a full stop, and a so-called phantom traffic jam, or stop-and-go wave, shown
in Figure 1.5, is formed. Individual vehicles can, under some circumstances, also
help prevent or dissipate congestion waves. The notion of “jam-busting” or “jam-
absorbing” driving techniques has been discussed, not only in research [21, 22], but
also in media [23]. These techniques offer guidelines to the drivers, for example to
leave a large gap in front of them and drive at the average speed of the surrounding
traffic. By doing this, the driver is less likely to be forced to break aggressively if
another car cuts in front of them, while also leaving enough space for cars to change
lanes and move towards the exit lane or merge into the mainstream from merging
lanes. Although this strategy focuses on vehicle interaction at a microscopic level,
we may think of extending this approach to a higher layer of control, and devise
macroscopic traffic control methods that use individual directly controlled vehicles.

Finally, the first step to implementing any type of traffic control method is to
know what the situation in traffic is. The more sensors there are on the roads,
the clearer the picture of the traffic state can be. If fixed sensors are not available
to measure the traffic conditions at some location, we need to reconstruct and
estimate the traffic state, based on the available measurements from elsewhere in
the network. It is therefore immensely advantageous to be able to use the connected
vehicles themselves as a type of mobile sensors, travelling inside the traffic flow.
Even just reporting the locations of individual vehicles, like the vast majority of
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Figure 1.5: A phantom traffic jam in effect. Vehicles at a standstill are circled in
red. Source: YouTube, Author:Joe Miroe

GPS-enabled mobile phones that the occupants of the vehicle carry do, can be used
to get a good picture of the overall traffic state, as was shown in [16], and now
widely implemented by Google and other companies. Utilization of more detailed
trajectory data, as well as potentially accessing the measurements of the on-board
sensors of connected vehicles, can only provide a more comprehensive picture of
the traffic conditions, allowing us to first understand the dynamics of the traffic
flow better, and also to propose, design, and implement novel approaches to traffic
control.

1.2 Problem formulation

The focus of this thesis is on modelling and control of connected passenger and
heavy-duty vehicles, both individually and in platoons, as well as the rest of the
traffic around them. Through understanding, modelling and utilizing the interac-
tion between these two types of traffic, we are able to predict the trajectories of some
specific vehicles, and regulate the overall traffic flow through directly controlling a
small subset of connected vehicles. This allows us to better select the speed profiles
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of heavy-duty vehicles catching up on the road to form a platoon, minimizing their
total fuel spent. Furthermore, the influence over the traffic flow that we can ex-
ert allows us to improve the efficiency of road utilization, using Lagrangian traffic
control. We are able to decongest bottlenecks and keep them in free flow, negating
the capacity drop that happens once congestion builds up. Furthermore, we are
able to dissipate stop-and-go waves, harmonizing the traffic flow and increasing the
throughput of the road. In the rest of this section, we will present these problems
in more detail.

1.2.1 Platoon merging coordination problem
Consider the simplest platoon merging problem, illustrated in Figure 1.6. Assume
a potential platooning pair, driving along the common stretch of road, has been
identified by a platooning coordinator at a higher decision layer. These two vehicles
adjust their speeds so that the leader (the vehicle farther ahead, ξ = 1) drives slower
than the follower (ξ = 2), so that they would meet and merge into a platoon at
some point. Their state at time t is given by their positions xξ(t) and their speeds
vξ(t), so we have that x1(t) > x2(t) and v1(t) < v2(t).

Starting at some time t0, we can write the dynamics of the vehicles can thus be
written

ẋ1(t) = v1(t),
ẋ2(t) = v2(t).

The distance between the vehicles is d(t) = x1(t)− x2(t). We say that the vehicles
merge into a platoon at time tm if the distance between them is lower than some
predefined distance dm for the first time,

tm = min {t > t0|d(t) ≤ dm} ,

and the position of the merge as the position of the follower vehicle at the time of
the merge,

xm = x2(tm) = x1(tm)− dm.

In the simplest case, vehicles attempt to drive at some constant desired speeds
u1 and u2 until they have successfully merged into a platoon, and then proceed

x2(t0)
x2(t|t0) x1(t0) x1(t|t0) xm(t0)

Figure 1.6: Platoon merging problem.
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together driving at speed up. However, due to disturbances, the actual vehicle
speed will deviate from the reference values, and we need to compensate. There are
two parts of this problem that we study. Given constant reference speeds, in case
we can predict v1(t), t ≥ t0, and v2(t), t ≥ t0, we may calculate the predicted time
and place where the platoon merging will occur. Conversely, if we can control u1(t)
and u2(t) within some range, we instead want to find the reference vehicle merging
speeds that are optimal with regard to some metric. Both parts are covered in
Chapter 5.

1.2.2 Congestion reduction problem
The ultimate goal of traffic control is minimization of some traffic performance
metric, most often the total time spent (TTS) of all vehicles on the considered road
segment. Denoting by n(t) the total number of vehicles on the segment, including
vehicles queueing at its entrance, at time t, we may write

TTS =
tend∫
t0

n(t)dt,

where t0 is the initial, and tend the final considered time. The number of vehicles
will evolve as

ṅ(t) = qin(t)− qout(t),
where qin(t) is the aggregate inflow, and qout(t) the aggregate outflow from the
segment at time t. Given some initial number of vehicles n(t0), the number of
vehicles at time t is

n(t) = n(t0) +
tend∫
t0

(
qin(t)− qout(t)

)
dt.

If the initial number of vehicles present n(t0) and the arrival of new vehicles qin(t)
cannot be controlled, minimizing TTS is equivalent to maximizing the early outflow
from the road segment:

maximize Jcr
subject to traffic dynamics (1.1)

where Jcr is the cost function for the congestion reduction problem,

Jcr =
tend∫
t0

(t− tend)qout(t)dt, (1.2)

We use whatever form of actuation is available to shape the local traffic flows and
affect the internal traffic state of the considered segment to achieve this.

In particular, in this thesis we will be solving two instances of this problem:
bottleneck decongestion problem and stop-and-go wave dissipation problem.
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uξuξ

xξ

nb(t)
qout
ξ (t) qin

b (t) qout
b (t)

Figure 1.7: Bottleneck decongestion problem. The inflow to the bottleneck qin
b (t)

is regulated so that the bottleneck is kept in free flow by controlling the overtaking
flow of moving bottlenecks qout

ξ (t).

Bottleneck decongestion problem

The most straightforward, and most common, type of congestion reduction prob-
lem is bottleneck decongestion, shown in Figure 1.7. We focus on the stretch of
road upstream of a stationary bottleneck, and the outflow from the road segment
coincides with the outflow of the bottleneck, qout(t) = qout

b (t), which depends on
the bottleneck state:

qout
b (t) =

{
min{qin

b (t), qmax
b }, mb(t) = FF,

qdis
b , mb(t) = CD.

Typically, when the bottleneck is in free flow, mb(t) = FF, its capacity is higher
than when it is congested, mb(t) = CD, due to the capacity drop phenomenon,
qdis
b < qmax

b . Therefore, it is desirable to regulate the traffic flow reaching the
bottleneck to keep the bottleneck in free flow mode.

This can be achieved by controlling the speed uξ(t) and formation, which in turn
determines the maximum overtaking flow qcap

ξ (t), of platoons in order to shape the
flow of vehicles arriving at the bottleneck. The bottleneck decongestion problem
can in this case be written as

minimize
uξ(·)∈[umin,umax]
qcap
ξ

(·)∈[qlo,qhi]

Jcr

subject to controlled vehicles dynamics and constraints
stationary bottleneck mode transitions
traffic dynamics with moving bottlenecks.

In Chapter 6, we tackle this problem, with both stochastic and deterministic sta-
tionary bottleneck mode transitions.

Stop-and-go wave dissipation problem

Another type of congestion reduction problem that we study here is stop-and-go
wave dissipation, as shown in Figure 1.8. A stop-and-go wave consists of a zone
of higher traffic density, with vehicles leaving from its downstream end at some
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(1) (2) (3) (4) (5) (6)xξ

uξuξ

λψ
zψ
qout(t)

Figure 1.8: Congestion wave dissipation problem. The road can be split into six
zones: (1) unaffected oncoming vehicles, (2) congestion upstream of the moving
bottleneck, (3) moving bottleneck zone, (4) “starvation” zone downstream of the
moving bottleneck, (5) traffic jam, and (6) vehicles discharging from the traffic jam.

discharging rate lower than the road capacity, and new vehicles arriving at its
upstream end. The position of the downstream end of the stop-and-go wave is
denoted zψ(t), and it propagates upstream at some constant speed λψ. The width
of this zone of congested traffic shrinks or grows according to the difference of
outflow and inflow.

In order to return the road to free flow, we use some connected vehicles that
we have control over. The position of CAV ξ ∈ Ξ is denoted xξ(t), and its speed
can be controlled within some limits, uξ(t) ∈ [umin, umax]. If the controlled vehicle
is slower than the surrounding traffic, it acts as a moving bottleneck and limits the
traffic flow that can go past it, thus creating a zone of lower traffic density between
it and the traffic jam (“starvation” zone), and also delaying some of the traffic flow
that reaches the traffic jam. By doing this, a congestion is formed upstream of the
moving bottleneck. However, if the vehicle is suitably controlled, this congestion
will be less severe and harmful than the one in the congestion wave.

The stop-and-go wave dissipation problem consists of finding the optimal speeds
for controllable vehicles, so that the stop-and-go waves are dissipated with minimum
interruption to the traffic flow,

minimize
uξ(·)∈[umin,umax]

Jcr

subject to controlled vehicles dynamics and constraints
traffic dynamics with stop-and-go waves and moving bottlenecks.

In Chapter 7, we focus on the simplest case of stop-and-go wave dissipation, with
a single stop-and-go wave and a single controlled moving bottleneck, either available
a priori, or created by accumulating connected vehicles. Then, in Chapter 8, we
generalize this problem to the case when we have multiple stop-and-go waves and
multiple controlled moving bottlenecks.

1.2.3 Traffic state reconstruction and model learning problem
If the full traffic density profile ρ(x, t) is not known, we can attempt to reconstruct it
using local measurements, as shown in the example of real-time traffic state recon-
struction in Figure 1.9. We assume that the connected vehicles ξ can communicate
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xξ1(t) xξ2(t) xξ3(t)

ρ̌ξ1(t) ρ̌ξ2(t) ρ̌ξ3(t)

Figure 1.9: Traffic state reconstruction and model learning problem, showing the
real traffic conditions top and reconstructed traffic state below. The traffic state
estimate ρ̂(x, t) (shown color-coded with brighter colors indicating denser traffic) is
reconstructed according to the local traffic density measurements of each connected
vehicle ρ̌ξ(t), shown in bright green. Other traffic measurements are used for model
learning.

noisy measurements of the local traffic conditions,

ρ̌ξ(t) = ρ(xξ(t), t) + δρξ (t),

where δρξ (t) represents the measurement noise.
Assuming the traffic evolves according to some first-order traffic model, we may

use the past measurements of all available connected vehicles ξ ∈ Ξ over some time
frame [t0 − T, t0] to find the traffic state reconstruction ρ̂(x, t0) which best fits the
traffic model,

minimize
ρ̂(·,t0)

traffic model deviation

subject to ρ̌ξ(t) = ρ̂(xξ(t), t) + δρξ (t), ξ ∈ Ξ, t ∈ [t0 − T, t0],
ρ̂(x, t0 − T ) = ρ̂init(x),

given some initial traffic state estimate at time t0 − T , ρ̂init(x). In particular, we
are interested in finding a traffic state reconstruction update rule that calculates
the current state estimate ρ̂(x, t) based on some past estimate ρ̂(x, t− T ), and the
traffic measurements ρ̌ξ(t), ξ ∈ Ξ in time interval [t− T, t].

Furthermore, if the parameters of the traffic model are not known, we may
use additional traffic measurements, such as the local measurements of the traffic
speed v̌ξ(t), traffic flow q̌ξ(t), or of the flow overtaking the connected vehicle ω̌ξ(t)
to estimate the traffic model of the chosen form. In Chapter 8, both aspects of the
problem are discussed, and methods for state reconstruction and model learning
are proposed. The resulting state and model estimates are used for control. First,
we focus only on traffic state reconstruction, with the traffic model known, and
then on simultaneous traffic state reconstruction and model learning.
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1.3 Thesis outline and contributions

In this section, we provide an overview of the thesis. The thesis consists of four
parts:

• Introductions and Background,

• Modelling,

• Control,

• Conclusions.

This chapter is a component of the first part of the thesis. We describe each
chapter’s content and contribution, and indicate the publications on which they
are based.

Chapter 2 Background

In this chapter, we provide the background for the topics covered in the thesis. We
discuss how the traffic congestion problem is addressed in the literature, and how
the introduction of new technologies can change this. In Section 2.1, we review the
classical traffic control methods, as a part of a wider overview of the techniques and
technologies in the field of intelligent transportation systems (ITS). In particular,
connected and autonomous vehicles are a relatively new technology that is likely
to revolutionize the transportation sector. Next, in Section 2.2 we focus on one
particular piece of the ITS, truck platooning. We specifically focus on the mutual
influence that the platooning heavy-duty vehicles and the surrounding traffic have
on each other, and discuss dynamic real-time platoon coordination. In order to
be able to study these effects in depth, as well as be able to use truck platoons
and other connected vehicles for traffic control, in Section 2.3 we give an overview
of traffic modelling where multiple classes of vehicles can be incorporated. These
different classes can, e.g., account for different vehicle types, such as passenger
cars and trucks, or different levels of autonomy, such as human-driven, cruise-
control-equipped, and autonomous. Then, in Section 2.4, we discuss the emerging
field of Lagrangian traffic sensing and actuation. We give an overview about how
we can use traffic measurements and trajectory data that the connected vehicles
communicate with the infrastructure in order to get a picture of the traffic situation,
as well as use these vehicles to actuate the desired control actions by communicating
commands back to them. Finally, the content of the chapter is briefly summarized
in Section 2.5.
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Part II Modelling

Chapter 3 Basic traffic models

The second part of this thesis consists of different traffic models and their exten-
sions. In this chapter, we start discussing the traffic models which will be used in
the remainder of the thesis. Here we present the basic microscopic and macroscopic
traffic models, that are well-known in the literature, which will be used as the basis
for extensions. We start the chapter by discussing microscopic traffic models, in
Section 3.1, as an introduction, and then transition to macroscopic traffic models.
We introduce the Lighthill-Whitham-Richards (LWR) model in Section 3.2, and
discuss its components, properties, and solutions. Next, the cell transition model
(CTM) is introduced in Section 3.3, as a discrete counterpart of the LWR model.
Then, in Section 3.4 we discuss the tandem queueing model, as an even higher level
of abstraction, disregarding the spatial aspects of traffic. Finally, some prominent
second-order traffic models that fall outside of the scope of this thesis are men-
tioned and outlined in Section 3.5, and the chapter is concluded with a summary
in Section 3.6.

Chapter 4 Traffic model extensions

In this chapter, we present the contributed extensions and modifications to the ba-
sic models given in the previous chapter, as well as introduce novel models. These
extended models will be used to design and test control laws in the third part of
this thesis. We open the chapter by discussing the relevant traffic phenomena in
Section 4.1, which need to be captured in order to be able to study the Lagrangian
traffic control, but are commonly not properly handled in the simpler classical traf-
fic models. Namely, moving bottlenecks, capacity drop, and stop-and-go waves are
discussed. We then first introduce the moving bottlenecks to the LWR model in
Section 4.2.1, and in Section 4.2.2 propose an extension of the CTM that includes
their influence. Next, another extension of the CTM is given in Section 4.3, the
multi-class CTM. In it, the CTM is generalized in order to be able to handle dif-
ferent classes of vehicles (e.g. human-driven and autonomous) differently, as well
as to capture the influence of platoons, moving bottlenecks, capacity drop, and
stop-and-go waves. Then, in Section 4.4, the tandem queueing model is revisited
and extended to allow for moving queues, which will correspond to slow-moving
platoons acting as moving bottlenecks. This model is validated against microscopic
simulations. Finally, the front tracking transition system model (FTTSM) is pre-
sented in Section 4.5, introducing the notion of wave-speed-bounded solutions in
order to model the behaviour of stop-and-go waves, and modelling moving bottle-
necks in a similar way as a zone with different flux function. The contributions of
this chapter are summarized in Section 4.6.

This chapter is based on the author’s work on traffic models in the following
publications:
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• M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st International
Conference on Intelligent Transportation Systems (ITSC), Maui, US, 2018

• M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic in
moving bottleneck framework,” in 18th European Control Conference (ECC),
Napoli, Italy, 2019, pp. 3674–3679

• M. Čičić and K. H. Johansson, “Stop-and-go wave dissipation using accu-
mulated controlled moving bottlenecks in multi-class CTM framework,” in
IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019,
pp. 3146–3151

• M. Čičić, X. Xiong, L. Jin, and K. H. Johansson, “Coordinating vehicle pla-
toons for highway bottleneck decongestion and throughput improvement,”
IEEE Transactions on Intelligent Transportation Systems, 2021, accepted,
also presented at Transportation Research Board 99th Annual Meeting

• M. Čičić, M. Barreau, and K. H. Johansson, “Numerical investigation of traf-
fic state reconstruction and control using connected automated vehicles,” in
IEEE 23rd Intelligent Transportation Systems Conference (ITSC), Rhodes,
Greece, 2020, pp. 1–6

• M. Čičić and K. H. Johansson, “Front tracking transition system model for
traffic state reconstruction and control,” in preparation

Part III Control

Chapter 5: Platoon merging coordination
The third part of this thesis deals with traffic and platooning control, and is opened
by discussing platoon merging coordination. In this chapter, we address the prob-
lem of coordinating the process of vehicles catching up and forming a platoon while
driving on a highway. First, we present the vehicle model in Section 5.1, and con-
sider the reasons why the vehicles might have to deviate from their set reference
speeds. Then, in Section 5.2 we discuss predicting the vehicle trajectories during
the merging phase, and using these predicted trajectories to estimate when and
where the vehicles will merge into a platoon. Here, we use the data obtained from
an experiment to learn the vehicles’ control law and dynamics, and use the informa-
tion about the road grade to achieve better prediction of platoon merging position.
Second, in Section 5.3 we calculate optimal merging speeds for the vehicles at-
tempting to form a platoon in traffic. We consider the mutual influence between
the controlled vehicles and the traffic using CTM augmented with moving bottle-
necks, and calculate energy-optimal merging speed pairs for the vehicles forming a
platoon. The chapter is concluded and its contents summarized in Section 5.4.

This chapter is based on the following publications:
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• M. Čičić, K.-Y. Liang, and K. H. Johansson, “Platoon merging distance pre-
diction using a neural network vehicle speed model,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3720–3725, 2017

• M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic in
moving bottleneck framework,” in 18th European Control Conference (ECC),
Napoli, Italy, 2019, pp. 3674–3679

Chapter 6: Bottleneck decongestion

In this chapter, we study the problem of minimizing the total travel time on a
road segment upstream of a stationary bottleneck. First, the bottleneck decon-
gestion problem is analysed with generic type of switching between the free-flow
and congested mode of the bottleneck in Section 6.1, demonstrating the benefit
of keeping the bottleneck decongested. Next, in Section 6.2 we propose a reactive
control scheme to deal with stochastic traffic breakdown at the stationary bottle-
neck, using created controlled moving bottlenecks to decongest it. Then, in Section
6.3 the simpler, deterministic case is considered, and prediction-base platoon co-
ordination control scheme is designed and analysed. Both control approaches are
tested in simulations, with the FTTSM as the simulation model for the stochastic
traffic breakdown case, and tandem queueing model with moving bottlenecks as
the prediction model, and multi-class CTM as the simulation model for the deter-
ministic traffic breakdown case. Finally, the content of the chapter is summarized
in Section 6.4.

This chapter is based on the control parts of the following publications:

• M. Čičić, I. Mikolášek, and K. H. Johansson, “Front tracking transition sys-
tem model with controlled moving bottlenecks and probabilistic traffic break-
downs,” in The 21rst IFAC World Congress, 2020

• M. Čičić, X. Xiong, L. Jin, and K. H. Johansson, “Coordinating vehicle pla-
toons for highway bottleneck decongestion and throughput improvement,”
IEEE Transactions on Intelligent Transportation Systems, 2021, accepted,
also presented at Transportation Research Board 99th Annual Meeting

Chapter 7: Single stop-and-go wave dissipation

In this chapter, we study the simplest case of stop-and-go wave dissipation using
controlled moving bottlenecks, assuming there is a single stop-and-go wave present,
and that we use a single moving bottleneck. First, in Section 7.1, the stop-and-go
wave problem is discussed in more detail, and its dissipation is first discussed using
general traffic flow control framework, and then using controlled moving bottle-
necks. Then, in Section 7.2, we tackle the simplest case, when there is already
an available controlled moving bottleneck upstream of the stop-and-go wave, and
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the control action consists of setting the reference speed for it such that the stop-
and-go wave is dissipated as soon as possible, without unnecessary delays for the
overall traffic. Finally, in Section 7.3 we generalize this approach to the case when
a controlled moving bottleneck taking up a sufficient number of lanes is not avail-
able a-priori, but instead needs to first be created, by accumulating controllable
connected vehicles at some point, and then used to actuate the traffic flow. Both
control approaches are tested in simulations, using CTM with moving bottlenecks
as the simulation model for the first one, and multi-class CTM as the simulation
model for the second one. We close the chapter by summarizing its contributions
and results in Section 7.4.

This chapter is based on the control parts of the following publications:

• M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st International
Conference on Intelligent Transportation Systems (ITSC), Maui, US, 2018

• M. Čičić and K. H. Johansson, “Stop-and-go wave dissipation using accu-
mulated controlled moving bottlenecks in multi-class CTM framework,” in
IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019,
pp. 3146–3151

Chapter 8: Reconstruction-based multiple stop-and-go wave
dissipation

In this chapter, we generalize the control problem studied in the previous one.
Instead of dissipating a single stop-and-go wave using a single controlled moving
bottleneck, whether a priori available or accumulated, in Section 8.1, we now study
dissipating multiple, randomly arising stop-and-go waves, using multiple, randomly
arriving connected vehicles that can act as controlled moving bottlenecks. Further-
more, we no longer assume that the traffic state is known, but instead rely on the
local traffic measurements collected by the connected vehicles to first estimate and
reconstruct the traffic density profile, and then use this reconstructed traffic state
to calculate control actions for the connected vehicles. First, in Section 8.2, we
present a simple traffic state reconstruction method, using traffic measurements
from a dynamically selected subset of all available connected vehicles. Then, in
Section 8.3, a more complex method is presented, relying on the front tracking
transition system model. In addition to estimating the traffic state, we may also
use these measurements to learn the traffic model, enabling us to design the whole
control loop relying solely on the connected vehicles. Finally, in Section 8.4, we
conclude the chapter.

This chapter is based on the control part of the following publications:

• M. Čičić, M. Barreau, and K. H. Johansson, “Numerical investigation of traf-
fic state reconstruction and control using connected automated vehicles,” in
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IEEE 23rd Intelligent Transportation Systems Conference (ITSC), Rhodes,
Greece, 2020, pp. 1–6

• M. Čičić and K. H. Johansson, “Front tracking transition system model for
traffic state reconstruction and control,” in preparation

Part IV Conclusion

Chapter 9: Summary and future research
Finally, in this chapter we conclude the thesis, summarizing and discussing the
results in Section 9.1, and outline some future and ongoing work in Section 9.2,
indicating some possible directions in which this work can be extended.

Publications
In summary, the majority of this thesis is based on the work presented in the
following publications:

• M. Čičić, K.-Y. Liang, and K. H. Johansson, “Platoon merging distance pre-
diction using a neural network vehicle speed model,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3720–3725, 2017

• M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st International
Conference on Intelligent Transportation Systems (ITSC), Maui, US, 2018

• M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic in
moving bottleneck framework,” in 18th European Control Conference (ECC),
Napoli, Italy, 2019, pp. 3674–3679

• M. Čičić and K. H. Johansson, “Stop-and-go wave dissipation using accu-
mulated controlled moving bottlenecks in multi-class CTM framework,” in
IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019,
pp. 3146–3151

• M. Čičić, I. Mikolášek, and K. H. Johansson, “Front tracking transition sys-
tem model with controlled moving bottlenecks and probabilistic traffic break-
downs,” in The 21rst IFAC World Congress, 2020

• M. Čičić, X. Xiong, L. Jin, and K. H. Johansson, “Coordinating vehicle pla-
toons for highway bottleneck decongestion and throughput improvement,”
IEEE Transactions on Intelligent Transportation Systems, 2021, accepted,
also presented at Transportation Research Board 99th Annual Meeting

• M. Čičić, M. Barreau, and K. H. Johansson, “Numerical investigation of traf-
fic state reconstruction and control using connected automated vehicles,” in
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The order of the author names reflects the workload, where the first author has
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tively involved in formulating the problems, developing the solutions, evaluating
the results, and writing the paper.
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Chapter 2

Background

This chapter provides some background on a number of topics relevant to the
rest of the thesis. Since the thesis deals with control of automated vehicles and

traffic, it falls within the broad scope of intelligent transportation systems (ITS).
Platoons of passenger and heavy-duty vehicles are of particular interest, due to
the extensive effect they have on the rest of the traffic, and the fact that they are
likely one of the first formations of connected vehicles to be controllable from the
infrastructure. In order to be able to do any type of traffic control using these special
connected vehicles, we first need to understand how they interact with the rest of
the traffic, necessitating models for mixed traffic situations. Finally, the central
point of this thesis is exploiting the connected vehicles as Lagrangian sensors and
actuators, providing us with new opportunities for traffic control. These topics are
discussed in this chapter.

2.1 Intelligent transportation systems

The ITS use a wide variety of advanced technologies to improve safety, efficiency
and performance of the transportation system, with reducing traffic congestion as
one of its main goals. Maintaining free flow with high traffic density leads to an
increased throughput, which reduces congestion levels and total travel time of all
vehicles. However, controlling the traffic flow when the demand is close to road
capacity is a very challenging task, since this is a metastable situation, and small
perturbations can cause traffic breakdown and emergence of congestion. Apart from
having a plethora of negative effects, traffic congestion is also known to reduce the
efficiency of the traffic flow, and thus causing more traffic congestion to build up.
Once traffic breakdown happens, the capacity of the part of the road where it arises
will be reduced [37, 38, 39, 40, 41, 42], until the built-up congestion dissipates. This
congestion remains anchored at some bottleneck, or propagates upstream as a stop-
and-go wave, also known as wide moving jam or phantom jam [43, 44, 45, 46, 47, 48],
leading to a significant reduction in throughput. Since vehicles need to decelerate or

23
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(a) Ramp metering signal
Source: Wikimedia, Author:Patriarca12, CC-BY

(b) Variable speed limit signs
Source: geograph.org.uk, Author: David Dixon, CC-BY

Figure 2.1: Traditional traffic control methods.

come to a full stop when entering the stop-and-go wave, and afterwards accelerate
as they leave it, their fuel consumption is increased, while the safety and comfort
are decreased.

Conventionally, the problem of traffic congestion would be tackled either from
the supply side, by increasing the capacity of the road network, adding more lanes
or new links and routes, or from the demand side, by reducing the number of vehi-
cles that use the road network, using various policy approaches such as congestion
pricing [49] and other incentive schemes [50]. The first approach to congestion mit-
igation typically requires costly investment in transportation infrastructure, and it
may produce undesirable side-effects such as induced demand [51, 52], as well as
have a negative impact on the environment. Building new infrastructure is there-
fore a decreasingly attractive solution, and it is desirable to attempt to solve this
problem by other, more cost-efficient, means. The second approach, attempting
to reduce demand by congestion pricing and other similar means, is often contro-
versial and difficult to implement from the political and legislative side, and its
effectiveness largely depends on how the revenue is spent [53].

Apart from excess demand, traffic congestion can also be caused by poor traf-
fic management [54], or conflicts between traditional and new traffic management
methods [55]. Traditional traffic control methods had been successfully used since
the sixties, with constant albeit slow improvements. Ramp metering [56, 57, 58,
59, 60], where traffic flow entering a highway from an on-ramp is regulated in or-
der to keep the mainstream in free flow, is one of the prominent examples. The
control action is either based on local measurements in the area close to the on-
ramp, or is coordinated by some centralized controller in order to regulate multiple
on-ramps in a wider area. Variable speed limits [61, 62, 63, 64] are another traffic
control method, although they have historically been used primarily to improve
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traffic safety through speed harmonization [65, 66]. By regulating the mainstream
traffic flow such that some of the traffic flow is delayed, we are able to improve
the efficiency by e.g. preventing off-ramps blockage, decongesting bottlenecks, or
dissolving stop-and-go waves [67]. Even better results can be achieved by combined
use of these measures [68, 69, 70]. In larger networks, where multiple viable routes
connect some origin-destination pairs, route guidance [71, 72] at bifurcations along
with providing information about queue lengths or travel times can also reduce
congestion and delays.

These control strategies rely on traffic monitoring infrastructure consisting of
inductive loops detectors, cameras, radars, etc. [73], and communicate or enforce
their control actions by use of traffic lights or variable-message signs. When dealing
with stationary, recurrent bottlenecks, such as on-ramps or lane drops, we may know
in advance where the congestion will arise, thus allowing for pre-emptive installation
of the necessary fixed equipment where it is required. However, if a non-recurrent
bottleneck, such as a work zone, traffic incident etc., arises elsewhere, where such
fixed equipment is not available, we will not be able to apply any of these control
strategies to reduce congestion. Indeed, it is possible that the congestion will not
be detected at all, until it propagates to a section of the road that is instrumented
with traffic sensors. Although the cost of installing additional equipment is much
lower than the cost of expanding or building new roads, it is not negligible, and we
cannot expect the required equipment to be available wherever it is needed, thus
limiting the applicability of these methods. While these relatively old traffic control
strategies are still an important part of the broader, newer trend of ITS [74, 75],
the focus has been steadily shifting towards using new technologies, and towards
using the information from the vehicles themselves.

In order to compensate for scarcity of traffic sensors, as well as to improve
the quality of the traffic state estimation, we may employ some filtering technique,
such as the extended Kalman filter [76, 77, 78], using available traffic measurements.
Apart from measurements coming from fixed traffic sensors, such as inductive loops,
mobile sensors play an increasingly important role, using the trajectories and poten-
tial local measurements of connected vehicles as input. While connected vehicles,
in the sense of connected and automated vehicles (CAVs) [79, 80], are still rare
on the roads, even today virtually all vehicles are networked in some way via the
mobile phones of their occupants. The vast amounts of location data collected from
GPS-enabled mobile phones by Google, for example, has proven to be an invaluable
resource [81, 82]. A number of different algorithms for traffic state estimation and
reconstruction using mobile sensor data from connected probe vehicles have been
proposed [83, 16, 84, 85], and their development is currently a very active field of
research.

The proliferation of mobile phones has had another effect on the traffic flow, as
the navigation apps have started to affect the routing decisions that drivers make
in a significant way. Before navigation apps, route guidance could only be dissem-
inated using variable message signs, requiring the installation of this equipment
upstream of important diverges [86, 71]. Dynamic real-time routing indications are
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now widely available to the drivers, via their mobile phones, although the effect of
this availability of information is not necessarily positive for the traffic flow overall
[87, 88, 72].

The effect that the “intelligent” vehicles will have on the traffic is not limited
to their potential to be used as probe vehicles. Vehicles with varying degrees of
autonomy, such as those equipped with adaptive cruise control (ACC) and collab-
orative ACC (CACC) [89], and platooning systems [19], are already partaking in
the traffic flow, albeit still in low numbers. By virtue of being able to drive more
smoothly or with lower headways [11, 32], as well as to stabilize the traffic flow in
their lane [90, 91, 89, 92], these vehicles are able to improve the efficiency of the
traffic.

A specific case of Lagrangian sensing and traffic state reconstruction, as well
as the potential for using these CAVs as Lagrangian actuators for the macroscopic
traffic, will be discussed in more detail in Section 2.4.

2.2 Platoons in traffic

With heavy-duty vehicle platooning [19] progressing persistently towards becoming
a commonplace technology [18], studying and understanding the impact it will have
on the overall traffic is becoming increasingly important. There have been a number
of projects working towards realising truck platooning [93, 94], and this technology
is slowly transitioning from academia to industry. Traditionally, platooning was
primarily regarded as means of reducing the air drag acting on the vehicles [95, 96],
and thus the fuel consumption, as well as having the potential to greatly reduce
the work load on drivers [97]. Apart from these benefits, truck platooning is also
expected have a positive impact on traffic efficiency through reducing the headways
between vehicles [11, 98], alleviating the adverse effect trucks have on the traffic
[99]. There has been much work done on controlling the vehicles inside a platoon
[100, 101, 102, 103], and this technology has already been demonstrated in field
tests [104, 105, 106].

However, insufficient emphasis has been put on understanding how these pla-
toons affect the behaviour of other vehicles on the road; thus the possible drawbacks
of this technology are not yet fully understood [107]. One identified problem per-
tains to the interaction between truck platoons and passenger cars close to on-
and off-ramps, and bottlenecks in general [105, 108]. There is concern that long
platoons might block access to an off-ramp, or from an on-ramp, forcing drivers to
slow down excessively or cut into a platoon, resulting in significant disturbances for
both the platoon and the rest of the traffic. Furthermore, the arrival of platoons
can cause traffic breakdown at a bottleneck, causing reduction of throughput due
to the capacity drop phenomenon. Recently, there have been efforts to address this
problem in microscopic [109] and macroscopic [32] frameworks.

Another important question that needs to be answered is how platoons should
be formed, and how to make decisions on which vehicles should platoon with which
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other vehicles. The simplest solution is the so-called spontaneous platoon forma-
tion [110], where heavy-duty vehicles form platoons if they find themselves in the
vicinity of each other in the course of their trips, but do not otherwise change
their plans in order to facilitate platooning. While this approach does lead to some
fuel savings, compared to the case when no platoons are formed, it is severely lim-
ited by availability of suitable platooning partners. Therefore, some level of active
platooning coordination is needed in order to fully realise the potential benefits.

Most proposed large-scale platooning solutions involve a layered control archi-
tecture [19]. On the higher layer, platooning coordinator plans the transport assign-
ments and optimizes vehicle routes, including identifying and managing potential
platoons. On the middle layer, vehicles receive their routes and generate their
speed profiles, which the lower layer control is tasked to follow. Dynamic planning
strategies have been proposed, with platooning coordinator matching and organiz-
ing vehicles into platoons [111]. Selected vehicles receive jointly fuel-optimal speed
profiles and routes, and by following them, merge into a platoon and drive together
for some time. However, this also means that, since the participating vehicles will
have to deviate from their own optimal speed profiles, attempting to form a platoon
entails higher fuel consumption during the merging phase. The hope is to offset
this effect by fuel savings during the time the vehicles drive in the platoon [112]. If
the platoon merging is delayed due to some unpredicted disturbance [113], or if the
vehicles fail to merge into a platoon, the net energy consumption could be much
higher than expected, potentially leading to more fuel being spent compared to the
case when the vehicles would continue driving at their individual optimal speeds.
It is therefore important to have a good prediction of when the platoon merging
will be completed, so as to be able to calculate predicted energy savings and make
a better informed decision on whether to attempt to form a platoon at all. This
problem was studied in [114] and [115], as well as in [116]. In these papers, the
authors did consider the influence of traffic, but did not study how to compensate
for it.

An alternative to en route platoon formation is platoon formation at hubs [117,
118], where vehicles meet at hubs like freight terminals, parking areas, etc., wait for
potential platooning candidates to arrive, and then continue the trip together as a
platoon. The advantage of this approach is that it causes less disruption to the rest
of the traffic, and can utilize mandatory truck driver rest periods. The downside is
that it requires the vehicles to stop and wait for each other, limiting its flexibility,
although the general framework can be extended to the case of en-route platoon
formation if road segments themselves are considered as “hubs”, and driving slower
considered as “waiting”.

If all of the vehicles in the platoon belong to the same fleet, the fact that the
follower vehicles benefit more from platooning than the leader vehicle is not an
issue. However, in case vehicles from multiple fleets are platooning, the leader
vehicle will typically need to be incentivised in order to accept the deviation to
its plan. Designing market-based systems to facilitate these exchanges and match-
making is an open field of research [119, 120, 121].
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Due to their large size and the existence of fleet management infrastructure,
truck platoons are an ideal candidate for moving bottleneck control. Since they
consist of heavy, slow-moving vehicles, truck platoons will act as moving bottlenecks
with or without external control, and we may use the communication channels
already in place to send centrally computed reference speeds and other control
actions [19]. This way, using platoons as in-flow actuators for controlling the traffic
flow, we are able to mitigate the negative effects trucks have on the traffic, and
even improve the overall traffic situation. Apart from these positive effects on the
traffic, truck platoons may improve the situation for themselves as well, leading
to potentially less delay, smoother speed profiles, as well as increased travel time
reliability. Furthermore, if the trucks are equipped with some sensors that can
measure the overtaking traffic flow, they can act as probe vehicles and provide data
for traffic state estimation. For these reasons, as well as in order to understand the
influence that the surrounding traffic has on the platooning, traffic models which
include the influence of special vehicles acting as moving bottlenecks are required.

2.3 Mixed traffic models

In order to represent, predict, and analyse the dynamics of traffic flow, including
the interactions between some specific vehicles and the rest of the traffic, we need
an appropriate model, that is complex enough to be able to capture all the relevant
phenomena, but tractable enough that it can be used for the chosen purpose [122].
The behaviour of “intelligent” or autonomous vehicles, heavy-duty vehicles and
platoons can significantly differ from the behaviour of human-driven passenger cars,
at least in some specific scenarios, which motivates considering them as different
flows. After the requiem [123] and subsequent resurrection [124] of the second-order
traffic flow models, as the difference between the behaviours of different vehicle
types becomes more pronounced, a specific type of traffic models that deal with
mixed traffic have arisen. For an overview on different types of traffic models, the
reader is referred to [125, 126, 127], and to [128] for a historical perspective.

The idea of treating different types of vehicles separately dates back to the traf-
fic assignment problem [129], with the trucks and passenger vehicles as the most
common choice for different vehicle classes. However, with the autonomous vehi-
cles playing a more and more significant role in the traffic, classifying the vehicles
by their driving behaviour is becoming more common, e.g. dividing the vehicles
into into the human-driven ones and ones enabled with various levels of auton-
omy. Even without considering autonomy, vehicles could be classified using the
heterogeneous driving behaviour of the drivers, potentially explaining some known
phenomena such as the reverse-lambda nature of the fundamental diagrams [130].
Even if all vehicles have the same driving behaviour, we might want to classify
them based on their destination or route, in order to be able to correctly model
their behaviour at off-ramps and diverges without using splitting ratios and similar
statistical parameters.
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The simplest way of incorporating multiple classes of vehicles is by directly
assigning different driving behaviour to individual vehicles, like one can do in mi-
croscopic models [131]. In these models, the traffic evolution is described through
the longitudinal (car-following) and lateral (lane-changing) behaviour of each single
vehicle. This high level of complexity allows microscopic traffic models to replicate
real-life traffic conditions with high fidelity, at the cost of requiring numerous pa-
rameters to be properly calibrated. Car-following (or follow-the-leader) models
describe how drivers follow the preceding vehicle (leader). Some of the most well-
known car-following models are Gazis-Herman-Rothery model [132], Gipps model
[133] and Intelligent Driver Model [134, 135], along with its improved variant [125].
Recently, efforts have been made to model the car-following behavior by using
artificial neural networks [136], specifically aimed at capturing some emergent phe-
nomena such as stop-and-go waves. There exist many commercial traffic simulators
that use microscopic traffic models, e.g. Aimsun [137] and PTV Vissim [138], as
well as open-source traffic simulators such as SUMO [139]. Different car-following
parameters can be assigned to different classes of vehicles [140], for example, by set-
ting different reaction times to human drivers, ACC-enabled and CACC-enabled
vehicles in Improved Intelligent Driver Model, as was done in [91].

Modelling different classes of vehicles in macroscopic traffic models is more chal-
lenging, and there are numerous different approaches to choosing the parameters
that will differ across the classes. In [141] the authors present a generalization
of the Lighthill-Whitham and Richards (LWR) traffic flow model, with different
classes having different free flow speeds, and [142] gives a multi-class gas-kinematic
traffic model. The model from [143] distinguishes between different classes of traffic
by allowing for different reaction times for each (with automated vehicles having
a shorter reaction time than human-driven vehicles), leading to congestion wave
speed that depends on the ratio of automated vehicles in traffic. Conversely, in
[144], different classes of traffic are allowed separate fundamental diagrams, and
traffic flow is allocated between them based on how much space they take on the
road. While in [144] the space the vehicle take was a constant, in [145] a model
is proposed where the personal car equivalent of heavy vehicles is dynamically
depending on the speeds of the vehicles. The model given in [146] captures the
overtaking and creeping behaviour, where small vehicles are able to advance even
though larger vehicles are not moving. Various control laws for multi-class traffic
have been proposed, including VSL [147], boundary control [148], etc. Some other
notable macroscopic multi-class traffic models include those presented in [149] and
[150]. A specific type of multi-class models stems from the interpretation of the
generalized Aw-Rascle-Zhang model [124], or generic second order traffic flow model
[151], where the second conserved quantity is related to the fraction of autonomous
or otherwise specific vehicles, or some other driver attribute [152, 153, 154]. Such
models have been used, for example, in the framework of traffic state estimation
[155].

While multi-class traffic models are appropriate for modelling the interaction of
different vehicle classes, they are often, in their basic form, unable to describe the
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effect individual vehicles, or formations of vehicles such as platoons, can have on
the rest of the traffic. One notable way a single vehicle can affect the overall traffic
is by acting as a moving bottleneck. If a vehicle moves slower than the surrounding
traffic, it affects the traffic flow by limiting the number of vehicles that can pass
it, as witnessed experimentally and empirically [156, 157, 158]. In order to model
this effect, we may impose some additional local constraints on the traffic flow in
the area close to the slow–moving vehicle, or consider the part of the road with the
moving bottleneck to be described by a different flux function. This gives rise to a
class of coupled ODE-PDE models [159, 160, 161, 162, 163], that yield themselves
readily to Lagrangian control of the traffic flow, which will be discussed in the
following section, and the majority of this thesis.

2.4 Lagrangian sensing and actuation

The inflexibility of classical traffic control methods, due to their reliance on station-
ary signalling and messaging equipment can be mitigated by using new technologies.
We may expect to have the possibility to communicate control actions directly to
the vehicles, either through an in-car advisory system in case of human drivers
[164], or as commands to connected automated vehicles [165]. However, the per-
formance of most control algorithms that rely on CAVs suffers from low market
penetration rates, which is the situation that we are likely to have on the roads for
quite some time [9]. For example, in case variable message signs are not available
at the location of interest, we may attempt to actuate variable speed limit controls
by directly communicating it to the vehicles, but in case of low market penetration
rate, this would amount to the case when we have a low compliance rate, signifi-
cantly reducing the effectiveness of the control method [166]. Therefore, there is
an acute need to develop control approaches that can be used in this intermediate
period when CAVs become available, but not yet in large numbers.

Lagrangian approaches seem particularly well suited for this case. As opposed
to the Eulerian traffic control paradigm, where the actuation and sensing happens
at the boundaries of some segments of the road, the Lagrangian paradigm focuses
on what happens inside the traffic flow, centred on some specific vehicles. Notable
examples of Eulerian mainstream traffic control include boundary control of various
types (e.g. explicit state feedback [167], PI control [168] or backstepping [169]), and
variable speed limits [67, 63]. The advantage of Lagrangian traffic control is that,
since the traffic flow is controlled using mobile actuators in form of CAVs, it can be
applied anywhere on the road, including uninstrumented areas away from recurrent
bottlenecks. Even if initially there are no usable CAVs in the area where control
action should be applied, some CAVs could be re-routed and coordinated to first
accumulate in the area of interest, and then actuate the traffic flow. This approach
in particular is exploited in [26] and Section 7.3.

One setting where the Lagrangian approach comes naturally is oscillation damp-
ening, using autonomous vehicles to stabilize the traffic flow. This problem is related
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Figure 2.2: A rolling roadblock on the M40 motorway in England, implemented by
a Highways England Traffic Officer. Source: Wikimedia, author: Chris McKenna CC BY-SA

to platoon string stability [103, 170], where all vehicles in a platoon are considered
to be controlled, with the distinction that only a small subset of vehicles would be
CAVs, and the rest would be human-driven vehicles [171, 172]. A sizeable body
of work has been dedicated to dissipating stop-and-go waves in ring road setting,
demonstrated experimentally in [46]. Stabilization of the flow on a ring road was
studied theoretically in [173, 174, 175], and also demonstrated in experiments [176].
Assuming no overtaking, a reinforcement learning approach to bottleneck deconges-
tion was proposed in [177]. These control laws are strictly speaking not Lagrangian
in the same sense as is considered here, since the rest of the traffic flow is also de-
scribed as individual vehicles instead by a conservation law, but the mechanism of
their actuation is similar to what would be used in macroscopic Lagrangian control.

The idealised setting of ring roads, or a string of vehicles serves to demonstrate
how CAVs can improve the traffic situation in their own lane, assuming there is no
overtaking. However, in real-life applications, stabilizing a single lane of a multi-
lane highway might be insufficient. In this case, we need to consider the effect of the
CAVs, acting as Lagrangian actuators, on the whole traffic flow, in a macroscopic
setting. A form of Lagrangian actuation, the so-called rolling roadblock, or traffic
break [178], shown in Figure 2.2, is already used to restrict the flow of traffic in
some hazardous conditions, though this is typically done for safety, not in order to
increase the efficiency of the traffic flow. In case a less severe traffic control action
is applied, with only some of the lanes blocked by CAVs, this approach can be
called moving bottleneck control, and is one of the most direct types of Lagrangian
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actuation of traffic flow. Similar jam-absorption driving strategies have also been
proposed in the literature [21, 22].

While moving bottlenecks are usually seen as detrimental to traffic efficiency,
the prospect of controlling them for traffic regulation has attracted some attention
lately. If we are able to control the speed of a moving bottleneck, and potentially
its formation, changing how many lanes it obstructs, we are also able to control
and shape the traffic flow that is overtaking it, within some range. This approach
effectively emulates ramp metering or variable speed control, achieving a similar
type of regulation without the need for additional fixed equipment. In [179], the
authors show that a controlled moving bottleneck can reduce fuel consumption of
the vehicles in traffic at a bottleneck. A similar idea was explored in [180], using
a model-predictive control approach, and then in [181], using multiple controlled
moving bottlenecks. An optimal traffic control problem, again minimizing fuel
consumption, was addressed in [182], and a fast algorithm based on an extension
of the semi-analytical solutions to arbitrary Hamilton-Jacobi equations is used in
[162]. This control approach is used throughout this thesis, and in [24, 25, 26, 27,
28, 31, 29].

Apart from actuation, recently there has been a resurgence of interest in the
Lagrangian approach to traffic control for sensing and traffic state estimation and
reconstruction. This approach has its roots in the moving observer method [183,
184], where the traffic flow and speed is calculated based on the trajectories of
some “floating vehicles”, which overtake as many vehicles as it was overtaken by.
These methods have been established for a long time, but did not see broad usage,
due to the need to have vehicles with drivers and observers, and the complexity of
the set-up, driving up the costs. Over time, there have been developments of this
method, using data acquired from taxis and vehicles equipped with GPS receivers
[185, 83]. However, with the proliferation of GPS-equipped mobile phones came
the availability of vast amounts of data that can be used for this purpose [16, 186],
reinvigorating this field of research.

There has been much work done on traffic state estimation over the years [187].
In [188], traffic state estimation was done based on the observed spacing and po-
sition data of probe vehicles. The traffic state of mixed flow of human-driven
vehicles and CAVs was estimated using probe vehicle data and some stationary
sensors in [78]. A combination of stationary sensors and floating car data was used
in [189, 190, 191]. The theoretical treatment of the problem of reconstructing the
traffic state using only traffic data along the trajectories of probe vehicles is given
in [192, 193]. In addition to providing information about the traffic state, these
local measurements may be used to learn the models governing the behaviour of
the background traffic and the influence of the CAVs on it. Additionally, the use of
local data allows us to adapt to any changes in these models, e.g. due to changing
weather conditions [194]. The problem of traffic state reconstruction and model
learning based on the local data acquired from the CAVs is discussed in Chapter 8,
and in [28, 29].
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2.5 Summary

In this chapter we have provided a number of references relevant to the scope of
the thesis. A broad overview of the relevant topics includes traffic congestion and
related phenomena, classical traffic control and other elements of the ITS, heavy-
duty vehicle platooning, traffic models that capture the interaction of different
vehicle classes, and finally, Lagrangian sensing and actuation for traffic control. All
of the mentioned topics are actively being researched, and are likely to garner even
more interest in the future.
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Chapter 3

Basic traffic models

Modelling the traffic flow has been an active area of research for over half a
century. Before discussing the extended traffic models that will be used for

traffic control, in this chapter we present some basic microscopic and macroscopic
traffic models, which will be used as the foundation for these extensions. For a
more in-depth view on traffic models, the reader is referred to [127]. Even though
microscopic traffic models are not used directly, we briefly introduce them to provide
an explanation for the macroscopic traffic modelling. Macroscopic models have
the advantage of being comparatively easy to simulate and analyse, which makes
them suitable for traffic control design. The two most common macroscopic traffic
models, the Lighthill-Whitham-Richards (LWR) model and the cell transmission
model (CTM), are presented. Finally, the tandem queueing model can be seen as
the simplification of the CTM, abstracting away the spatial description of the traffic
state, and instead focusing only on the queue lengths at some bottlenecks.

3.1 Microscopic traffic models

As opposed to macroscopic traffic models, which deal with the aggregate character-
istics of traffic flows, microscopic traffic flow models describe the behaviour of each
individual vehicle separately. The resulting complexity enables these models to cap-
ture practically all traffic phenomena that happen in human-driven, autonomous, or
mixed traffic, but also makes them computationally expensive, and hard to analyse
and calibrate. Regardless, microscopic traffic models have seen wide application
in commercial and open source traffic simulators, such as Aimsun, PTV Vissim,
and SUMO. These traffic simulation engines are widely understood to be a good
representation of the real traffic when properly calibrated.

The motion of the vehicles is split into the longitudinal and lateral compo-
nent. The lateral motion [195], i.e. lane-changing, is arguably more difficult to
model than the longitudinal, car-following motion, since it depends on the inten-
tions and subjective preferences of individual drivers, and is typically governed by
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xi(t) x #»
i (t)

vi(t) v #»
i (t)

vehicle i vehicle #»
i

Figure 3.1: A car-following vehicle pair, with vehicle i as the follower.

some heuristics. Here we focus more on the car-following behaviour, since this as-
pect can be more readily related to the macroscopic traffic behaviour, and assume
that lane-changing happens so that the traffic lanes are efficiently utilized.

3.1.1 Car-following models
Considering a single lane on the road, the longitudinal state equations for vehicle i
can be written as

ẋi(t) = vi(t),
v̇i(t) = ai(t),

with xi(t) as the position of the vehicle, vi(t) its velocity, and and ai(t) its ac-
celeration. We denote the index of the leader vehicle immediately downstream of
vehicle i as #»

i , x #»
i (t) − li > xi(t) for all i, where li is the length of vehicle i. The

driving behaviour of vehicle i typically depends on the motion of its leader vehicle
#»
i , governed by some car-following model.

One of the simplest commonly used car-following models is the Gazis-Herman-
Rothery, or Stimulus-Response model [132], with the acceleration of vehicle i given
by

ai(t) = cvmi (t) v #»
i (t− T )− vi(t− T )

(x #»
i (t− T )− l #»

i − xi(t− T ))p ,

where c, p, m, and T are the model parameters to be calibrated. Although simple
and capable of capturing most of the behaviour of drivers in congestion, this model
does not provide a reasonable representation of drivers’ behaviour in free flow, since
the vehicles will adjust their speed according to the speed of the preceding vehicle
even if it is very far away.

Another widely used car-following model is the so-called Intelligent Driver Model
(IDM) [134, 135], and its modification, the Improved Intelligent Driver Model
(IIDM) [125]. In IIDM, the acceleration is given by

ai(t) = amax

(
1−

(
vi(t)
v∗i (t)

)δ2
−
(
g∗i (t)
gi(t)

)δ1)
,
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where v∗i (t) is the desired maximum velocity of the vehicle, amax the maximum
acceleration, and δ1 and δ2 positive parameters. The gap between vehicle i and
the vehicle ~i that it is following is gi(t) = x #»

i (t)− xi(t) and the desired gap g∗i (t)
is given by

g∗i (t) = gmin
i + max

{
0, vi(t)τi + vi(t)(vi(t)− v #»

i (t))
2
√
amax
i bi

}
,

where τi is the reaction time and bi the desired vehicle deceleration. In order to allow
for smoother deceleration when vi(t) > v∗i (t), the IIDM modifies the acceleration
of the vehicle to

ai(t) = a∗i (t)

1−
(
g∗i (t)
g(t)

)δ1 amax
i

|a∗i (t)|
 ,

where the reference acceleration of vehicle i is given by

a∗i (t) =


amax
i , gi(t) ≤ q∗i (t)

amax
(

1−
(
vi(t)
v∗
i
(t)

)δ2)
, gi(t) > q∗i (t), vi(t) ≤ v∗i (t)

−amax
(

1−
(
v∗i (t)
vi(t)

)δ2)
, gi(t) > q∗i (t), vi(t) > v∗i (t).

Effectively, if gi(t) ≥ g∗i (t), the vehicle accelerates to its desired speed, and if
gi(t) < g∗i (t), the vehicle controls its speed so that the gap is stabilized around
its desired value. Reaction time τi and minimum acceptable gap gmin

i depend on
the characteristics of individual drivers. The vehicle speed equilibrium a(t) = 0 is
achieved in two cases,

• gi(t) > g∗i (t) and vi(t) = v∗i (t), corresponding to free flow, or

• gi(t) = g∗i (t) and vi(t) = v #»
i (t), corresponding to congestion.

In free flow, the inter-vehicular distances are large enough and vehicles can achieve
their desired speeds, regardless of the speed of other vehicles. In congestion, the
speed of each vehicle is determined by the speed of the vehicle in front of it, and col-
lectively, all vehicle speeds will depend on the traffic density. The space that vehicle
i takes on the road, under congested equilibrium conditions, is gmin

i + li + v #»
i τi, and

if all vehicles have the same characteristics, gmin
i = gmin, li = l, τi = τ , and con-

stant desired speed v∗i (t) = V , the equilibrium traffic speed and density are linked
by

ρ = 1
gmin + l + vτ

, v ≤ V.

We denote the jam density (traffic density if v = 0) as P ,

P = 1
gmin + l

,
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and the critical density (traffic density if v = V ) as σ,

σ = 1
gmin + l + V τ

= P

1 + PV τ
.

Consequently, we may write the dependence of the equilibrium speed on the
equilibrium density as

V(ρ) =
{
V, ρ ≤ σ,
1
τ

(
1
ρ −

1
P

)
, ρ > σ,

Defining the equilibrium flow as the product of the equilibrium density and its
corresponding speed Q(ρ) = V(ρ)ρ, the IIDM yields a flow-density relation, also
known as the fundamental diagram,

Q(ρ) =
{
V ρ, ρ ≤ σ,
W (P − ρ), ρ > σ,

defined for ρ ∈ [0, P ], and with W denoting the congestion wave speed

W = V σ

P − σ
= 1
Pτ

.

Note that all of the parameters of the car-following model can also be taken
as different for each vehicle, allowing us to represent a variety of different driv-
ing behaviours. The aggregate traffic parameters that can be derived from these
microscopic traffic models are also used in characterising the macroscopic traffic
models.

3.1.2 Heterogenous car-following
So far, the case when the driving behaviour of all vehicles is homogeneous was
analysed. We now briefly consider the situation when there are multiple different
classes of vehicles with different driving behaviour. For conciseness, we focus on
the case when there are two classes of vehicles, a and b, but the same rationale can
be extended to an arbitrary number of different classes.

First, let each of the classes have a different reaction time, τa and τ b, and the
same free flow speed V . For example, if class a vehicles are automated and class b
vehicles human driven, we can expect to have τa < τ b [91], and the free flow speed
will depend on the speed limit of the road. If the traffic consists solely of vehicles
of one class κ, the critical density and congestion wave speed are

σκ = P

1 + PV τκ
, Wκ = 1

Pτκ
.

Then the aggregate critical density of the mixed traffic is

σ(r) = P

1 + PV (rτa + (1− r)τ b) ,
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where r is the ratio of class a vehicles in the total number of vehicles, i.e. the
critical density will range from σb to σa depending on which vehicle class is more
prevalent.

The case when each vehicle class has a different desired speed, V a and V b,
is much harder to analyse. In the trivial case, when there is a single lane and
no overtaking is allowed, the vehicles with the lower desired speed simply force
the other class of vehicles to match their speed. If there are NL lanes available,
NL > 1, the traffic situation will depend strongly on the lane-changing behaviour of
the vehicles of different classes, and we need to make some assumptions in order to
make the analysis tractable. Note that the critical density σ and other parameters
of the traffic flow assume there is a single lane, thus the critical density of the
road with NL lanes would be NLσ. Let τa = τ b, V a > V b, and assume that in
light traffic, the vehicles of different classes arrange themselves so that the road is
utilized efficiently, i.e. the slow vehicles do not spread to the faster lanes unless the
whole road is congested and therefore do not conflict with the fast vehicles. Then,
in case of light traffic, if ⌈

ρa

σa

⌉
+
⌈
ρb

σb

⌉
≤ NL, (3.1)

where ρa = rρ and ρb = (1 − r)ρ, free flow can be maintained with each class of
vehicles occupying dρκ/σκe lanes, with

va = V a, vb = V b. (3.2)

Conversely, in case of heavy traffic, if

ρ ≥ P

1 + V bPτ
, (3.3)

there will be congestion regardless of the ratio of class a vehicles, and the speed of
both classes of vehicles is

va = vb = 1
τ

(
1
ρ
− 1
P

)
. (3.4)

Between these two regimes, if ρ and r satisfy neither (3.1) nor (3.3), the equilibrium
speeds va and vb will also depend on the lane-changing behaviour and on the ratio
of vehicles of each class. We can expect va and vb to lie somewhere between (3.2)
and (3.4). Note that if the number of lanes NL is large, we can expect this effect
to be less noticeable, since the vehicles of different classes will be able to distribute
the lanes among them more efficiently. However, in case there is a large number of
lanes, other traffic phenomena originating from lane-changing behaviours can arise,
such as forced lane changes in order to position the vehicle in the right lane to exit
the road, etc.
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3.2 Lighthill-Whitham-Richards model

The oldest macroscopic traffic model is the Lighthill-Whitham-Richards (LWR)
model [196, 197]. Although it originated in the 50s, this model, and its numerous
extensions, are still widely used. The model consists of a conservation law, i.e. a
first-order nonlinear partial differential equation

∂tρ(x, t) + ∂xq(x, t) = 0.

The traffic density ρ(x, t) is the conserved quantity, and q(x, t) = ρ(x, t)v(x, t)
represents the traffic flow, with v(x, t) as the traffic speed. In first-order macroscopic
traffic models, such as the LWR model, the traffic flow is directly determined by
the traffic density,

q(x, t) = Q(ρ(x, t)),
or equivalently, the traffic flow is given by the hydrodynamic equation,

q(x, t) = ρ(x, t)v(x, t),

where the traffic speed v(x, t) is a function of the traffic density,

v(x, t) = V(ρ(x, t)).

The LWR model can thus be written

∂tρ(x, t) + ∂xQ(ρ(x, t)) = 0, (3.5)

or equivalently,
∂tρ(x, t) + ∂x (ρ(x, t)v(x, t)) = 0, (3.6)

with v(x, t) = V(ρ(x, t)). The function Q(ρ) is known as the fundamental diagram,
or the traffic flux function.

An alternative approach to solving the LWR model is through using the cumu-
lative vehicle counts, i.e. the number of vehicles that have passed through some
point x until time t, instead of traffic densities as the state of the system. This
cumulative vehicle count is also known as the Moskowitz function M(x, t), and can
be related to the traffic density and traffic flow through

ρ(x, t) = −∂xM(x, t),
q(x, t) = ∂tM(x, t).

(3.7)

Substituting (3.7) into (3.5) yields the Hamilton-Jacobi PDE

∂tM(x, t)−Q(∂xM(x, t)) = 0, (3.8)

where the flux function Q is the Hamiltonian. This alternative formulation of the
LWR has some advantages, since it can make use of well-established numerical
methods for finding the solution to (3.8). Fast Lax-Hopf algoritms for this purpose
have been proposed [198, 199], even including the influence of moving bottlenecks
[162].
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3.2.1 Flux function

Many different forms of the fundamental diagrams are used in the literature [201],
but probably the two most commonly used ones are the Greenshields [202] flux
function and Newell-Daganzo [203, 204] (triangular or trapezoidal) flux function.

In Greenshields fundamental diagram, traffic speed is given by

V(ρ) = V
(

1− ρ

P

)
,

where V denotes the free flow speed, at which the vehicles would be travelling if
the rest of the traffic did not affect them. Using this expression to model average
traffic speed, makes the traffic flow Q(ρ) = ρV(ρ) a parabolic function,

Q(ρ) = V

(
ρ− ρ2

P

)
,

defined for ρ ∈ [0, P ], where P is the maximum, jam traffic density at which
the vehicles are bumper-to-bumper and stop moving. This flux function is shown
in Figure 3.2a. Since this function is once continuously differentiable, (3.5) is a
hyperbolic conservation law. This allows us to use the broad body of literature
that deals with such systems (see, for example [205, 206]). However, while this flux
function is used extensively in theory, it does not reflect the traffic flow on highways
particularly well.

Newell-Daganzo flux function is a piecewise linear function (see Figure 3.2b),
and is given by

Q(ρ) = min (V ρ, qmax,W (P − ρ)) ,

defined for ρ ∈ [0, P ], where W is the backward congestion wave propagation speed
(i.e., the negative slope in congested mode, ρ > σ) and qmax some maximum traffic
flow. We denote by σ the critical density at which V σ = W (P − σ), and take
qmax = V σ, so that

Q(ρ) =
{
V ρ, 0 ≤ ρ ≤ σ,
W (P − ρ), σ < ρ ≤ P,

(3.9)

and the traffic speed dependence on traffic density is

V(ρ) =
{
V, 0 ≤ ρ ≤ σ,
W
(
P
ρ − 1

)
, σ < ρ ≤ P.

Note that Newell-Daganzo flux function is not continuously differentiable, but an
arbitrary smoothed version of it is, so (3.5) will be a limit case of a hyperbolic con-
servation law. Although very simple, this flux function can represent the highway
traffic flow reasonably well, and its parameters can easily be estimated from the
traffic measurements.
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(a) Greenshields

(b) Newell-Daganzo

(c) FD from [200]

(d) Piecewise-linear approximation of the FD from [200]

Figure 3.2: Various flux functions and their corresponding speed-density relations.
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Another commonly used flux function is the one proposed in [200], given through
the traffic speed-density relation

V(ρ) = V exp
(
− 1
m

( ρ
σ

)m)
, (3.10)

with the fundamental diagram thus given by

Q(ρ) = ρV exp
(
− 1
m

( ρ
σ

)m)
, (3.11)

as shown in Figure 3.2c. The additional parameter m can be used to tune the shape
of the fundamental diagram. This fundamental diagram has seen wide use, notably
in the METANET model [207].

The piecewise-linear form of the Newel-Daganzo flux function can be very con-
venient for some numerical solution methods, such as front tracking. More general
piecewise-linear flux functions, with more than one breakpoint, can also be handled
with little increase in complexity. In practice, any smooth flux function can be
arbitrarily closely approximated by a piecewise-linear function, and we may use

Q(ρ) =



V1ρ, 0 ≤ ρ ≤ σ1,

Q(σ1) + V2(ρ− σ1), σ1 < ρ ≤ σ2,...
Q(σi−1) + Vi(ρ− σi−1), σi−1 < ρ ≤ σi,...
Q(σm) + Vm(ρ− σm), σm < ρ ≤ σm+1,

0, ρ > σm+1,

(3.12)

where Q(σi) > 0, i = 1, . . . ,m, and Q(σm)+Vm(σm+1−σm) = 0, as a fundamental
diagram. An example of such fundamental diagram, approximating (3.11) is shown
in Figure 3.2d.

In the remainder of this section, we focus on the simplest case of the LWR
model, with triangular flux function (3.9). The general piecewise-function (3.12)
will be discussed in more detail in Section 4.5, along with the procedure for finding
the solution to (3.5) with (3.12) using front tracking.

3.2.2 Riemann problem
Since the flux function (3.9) is piecewise linear, finding the entropy solution to (3.5)
will include solving Riemann problems at the possible discontinuities in ρ(x, t),
either due to the initial conditions, or arising as shocks. The Riemann problem is a
Cauchy problem (problem of finding a solution to a PDE given initial conditions)
in the particular case when the initial conditions are given as

ρ(x, 0) =
{
ρ−, x < 0,
ρ+, x > 0.

(3.13)
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(a) Free flow to free flow (b) Free flow to congested

(c) Congested to free flow (d) Congested to congested

Figure 3.3: Riemann problem solutions for the four cases of initial conditions. The
solutions for densities ρ(x, t) are shown color-coded, with space on x-axis and time
on y-axis, and on lower figures, we show three snapshots of the solution with space
on x-axis and traffic density on y-axis. The direction in which the wavefronts travel
over time is indicated with an arrow.
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This corresponds to assuming we have a sudden jump in traffic density at x = 0 and
looking at the evolution of traffic density around it. The solution of this problem
will be a self-similar function of the form ρ(x, t) = f(x/t).

If ρ− = ρ+, the initial conditions are not discontinuous, and the solution will
stay constant, ρ(x, t) = ρ− = ρ+. Otherwise, the solution can either be a shock or
a rarefaction wave. A shock is a solution of the form

ρ(x, t) = f(x/t) =
{
ρ−, x/t < λ,

ρ+, x/t > λ,

where λ = Λ(ρ−, ρ+) is the Rankine-Hugoniot transition speed between ρ− and ρ+,

Λ(ρ−, ρ+) = Q(ρ+)−Q(ρ−)
ρ+ − ρ−

.

We call such a moving discontinuity a wave front or simply a front. A rarefaction
wave is a solution of the form

ρ(x, t) = f(x/t) =


ρ−, x/t ≤ a,
r(x/t), a ≤ x/t < b,

ρ+, x/t > b,

where r(x/t) is a monotonic function related to the lower convex envelope of Q if
ρ− < ρ+ or the upper concave envelope of Q if ρ− > ρ+.

In the particular case of Newell-Daganzo flux function (3.9), the solution to
the Riemann problem ((3.5), (3.13)) for ρ− 6= ρ+ will consist of one or two wave
fronts radiating from the discontinuity, depending on the density upstream of the
discontinuity, ρ− and downstream, ρ+. In case we have congested traffic upstream
ρ− > σ, and free flow downstream ρ+ ≤ σ, the solution will be a rarefaction wave,
with two wave fronts,

ρ(x, t) =


ρ−, x < −Wt

σ, −Wt < x < V t,

ρ+, x > V t,

as shown in Figure 3.3c. Otherwise, the solution will be a shock, consisting of one
wavefront,

ρ(x, t) =
{
ρ−, x < Λ(ρ−, ρ+)t,
ρ+, x > Λ(ρ−, ρ+)t,

corresponding to Figure 3.3a, Figure 3.3b or Figure 3.3d, depending on ρ− and ρ+.
We will be using the style of the upper figures to describe the evolution of solutions
in space and time.
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ρi−1 ρi ρi+1Φ−i−1 Φ+
i

qi−1 Φ−i Φ+
i+1qi

roff
i−1 ron

i roff
i

ron
i+1

Figure 3.4: A representation of traffic flows in CTM.

The overall solution to (3.5),(3.9) for general piecewise constant initial condi-
tions

ρ(x, 0) =



ρ0(t), x ≤ X1,

ρ1(t), X1 ≤ x < X2,
...

...
ρi(t), Xi ≤ x < Xi+1,

...
...

ρN (t), XN ≤ x < XN+1,

ρN+1(t), XN+1 ≤ x,

can be acquired by solving a composite Riemann problem, i.e., solving a Cauchy
problem with piecewise constant initial conditions through solving Riemann prob-
lems for all discontinuities in initial conditions Xi, evolving the solutions in time
until some wave fronts originating from these interfaces collide, and then solving the
new Riemann problems that thus appear. This procedure is known as front track-
ing, and since the flux function Q is piecewise-linear, it will yield exact solutions for
all t > 0. In case the flux function is not piecewise-linear, front tracking can still
be applied, but the flux function needs to be approximated with a piecewise-linear
function. A more general approach will be discussed in Section 4.5.

3.3 Cell transmission model

Consider a stretch of highway with length Li, between positions Xi and Xi+1,
Li = Xi+1 −Xi. We can describe the evolution of the number of vehicles inside
this “cell”, ni according to the conservation law

ṅi(t) = qin
i (t)− qout

i (t),

where qin(t) is the flow into the segment and qout(t) the flow from the segment,
dependent on the surrounding traffic conditions. If these cells are connected so
that qout

i (t) = qin
i+1(t), and we follow the update of the numbers of vehicles in each

cell at discrete time instants tT with time step T , t = tTT , we arrive at the original
formulation of the cell transmission model (CTM) [203, 208]. We will instead follow
the traffic density ρi = ni/Li.
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3.3.1 The basic CTM
The evolution of traffic density ρi in cell i is given by

ρi(tT + 1) = ρi(tT ) + T

Li

(
Φ+
i (tT )− Φ−i (tT )

)
, i = 1, . . . N. (3.14)

Here N is the number of cells, and Φ+
i (tT ) and Φ−i (tT ) are the average total flow

during one time step into cell i, and out of cell i, respectively, given by

Φ+
i (tT ) = qi−1(tT ) + ron

i (tT ),
Φ−i (tT ) = qi(tT ) + roff

i (tT ),
(3.15)

where qi is the flow from cell i to cell i+ 1, ron
i (tT ) is the flow entering cell i from

on-ramps, and roff
i (tT ) the flow exiting cell i via off-ramps (see Figure 3.4). We

require T to be short enough so that the Courant-Friedrichs-Lewy condition for
numerical stability is satisfied, V ≤ L/T .

For now, we will assume that all cells are of same length, Li = L and consider
a section that has no on- or off-ramps, ron

i (tT ) = roff
i (tT ) = 0, i = 1, . . . , N . The

CTM then reduces to

ρi(tT + 1) = ρi(tT ) + T

Li

(
qi−1(tT )− qi(tT )

)
, i = 1, . . . N. (3.16)

We can determine qi(tT ) as a minimum between a “demand” (sending) function of
cell i and “supply” (receiving) function of cell i+ 1,

qi(tT ) = min
(
Di(tT ), Si+1(tT )

)
, (3.17)

where

Di(tT ) = min
(
Viρi(tT ), qmax

i

)
, (3.18)

Si(tT ) = min
(
Wi(Pi − ρi(tT )), qmax

i

)
. (3.19)

In order to make the model consistent with the LWR model with Newell-Daganzo
flux function, we set the congestion wave speeds to Wi = Vi

σi
Pi−σi , so that

Viσi = Wi(Pi − σi), and set qmax
i = Viσi.

The simplest way of defining the inflow from the on-ramps is to and prioritize
the mainstream traffic, by setting the inflow from the on-ramps to

ron
i (tT ) = min{φr,i(tT ), Si(tT )− qi−1(tT )},

assuming the traffic that potentially could not enter the road at time step tT does
not queue, and instead heads elsewhere. The desired on-ramp inflow φr,i(tT ) is given
as an external input. The off-ramp traffic flow can be defined using a splitting ratio
of the traffic flow that leaves the road via the off-ramp Ri(tT ),

roff
i (tT ) = Ri(tT )

1−Ri(tT )qi(t
T ),
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in which case the demand of cell i is reduced to

Di(tT ) = min
{

(1−Ri(tT )Viρi(tT ), qmax
i

}
,

We can handle the boundaries of the model by separately defining either the flow
into the first cell q0(tT ) and out of the last cell qN (tT ), or boundary traffic densities
ρ0(t) and ρN+1(tT ).

Although in its original formulation [203] it was conceived as a distinct model,
the CTM has been shown [209] to be equivalent to a Godunov (finite volume)
discretization of the LWR model, assuming all parameters are the same for all cells,
σi = σ, Pi = P , Vi = V , Wi = W . Godunov discretization of (3.5) corresponds to
taking piecewise constant initial conditions for ρ(x, t),

ρ(x, tTT ) =



ρ0(tT ), x ≤ X1,

ρ1(tT ), X1 ≤ x < X2,
...

...
ρi(tT ), Xi ≤ x < Xi+1,

...
...

ρN (tT ), XN ≤ x < XN+1,

ρN+1(tT ), XN+1 ≤ x,

where ρ0(tT ) and ρN+1(tT ) are the boundary conditions, ρ(x, tTT ) = ρ0(tT ), x < X1,
and ρ(x, tTT ) = ρN+1(tT ), x > XN + L, solving the initial values problem for time
up to t = (tT + 1)T . We can then obtain average cell traffic density at the next
time step ρi(tT + 1) by averaging the solution of the PDE ρ(x, (tT + 1)T ) over the
interval corresponding to each cell, (Xi, Xi+1). The reader is referred to [206] for
more details on handling hyperbolic conservation laws.

3.3.2 CTM with a general flux function
While the triangular flux function (3.9) is the standard choice for CTM, it is also
possible to use a generic flux function Q(ρ), with little modification to the model.
This model can be seen as a Godunov discretization of the LWR model. If the flux
function Q(ρ) is concave, the critical density σ is defined as the density for which
the flux function is maximized,

σ = arg max
ρ

Q(ρ).

Then the demand and supply functions can also be written as a function of minimum
and maximum, respectively, of ρ and σ,

Di(tT ) = Qi(min
(
ρi(tT ), σi

)
),

Si(tT ) = Qi(max
(
ρi(tT ), σi

)
),

(3.20)
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where the flux function is possibly different for different cells.
For example, with the flux function (3.11), we may use an approximation for

the demand and supply functions

Di(tT ) =
{
V ρi(tT ) exp

(
− 1
m

(
ρi(tT )
σi

)m)
, ρi(tT ) ≤ σi,

V σi exp(−1), ρi(tT ) > σi,

Si(tT ) =
{
V σi exp(−1), ρi(tT ) ≤ σi,
V ρi(tT ) exp

(
− 1
m

(
ρi(tT )
σi

)m)
, ρi(tT ) > σi.

Note that flux function (3.11), though unimodal, is not concave and has an inflection
point in σ(m+ 1) 1

m , but the resulting Godunov discretization would be the same.

3.4 Tandem queueing model

Queueing models have long been used for modelling traffic, mostly at signalized
intersections [210]. Many different types of queueing models have been proposed
over the years [211], dealing with various scenarios. Tandem fluid queueing model
is another type of models used to capture the behaviour of congested traffic net-
works. This model can be seen as an abstraction of the CTM that focuses on the
queuing behaviour at bottlenecks [32]. Abstracting away the spatial component of
congestion yields a much simpler model, which is still capable of dealing with the
majority of considered problems.

In queueing models, the traffic situation is described by the numbers of vehicles
ni(t) queueing at some bottlenecks i. The evolution of these queue lengths is given
by

ṅi(t) = qin
i (t)− qout

i (t), (3.21)

where qin
i (t) is the traffic flow arriving at the queue, and qout

i (t) the flow discharging
from the queue. The outflow discharging from a queue depends on the queue length,

qout
i (t) =

{
min{qcap

i , qin
i (t)}, ni(t) = 0,

qdis
i , ni(t) > 0,

where qcap
i is the maximum capacity of the bottleneck, and qdis

i ≤ qcap
i is the

discharging flow from the congested bottleneck, which can be equal to the capacity
or lower, due to capacity drop. The inflow to a queue can either be exogenously
determined, or it can correspond to the outflow of another queue that is upstream
of the considered one,

qin
i (t) = qout

#»
i ,i

(t) + qr
i(t), (3.22)

where qr
i(t) represents the net flow from on-ramps and to off-ramps upstream of

queue i. Here the set of all queues immediately upstream of queue i is written #»
i ,
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n1
qout
1

qin
1

Figure 3.5: A single queueing server

and we denote summation over a set of queues by writing that set in the subscript,

qout
#»
i ,i

(t) =
∑
k∈ #»

i

qout
k,i (t),

with qout
k,i (t) representing the flow from queue k to queue i. This way, we can

represent merging flows from multiple queues in #»
i to a single one, i. We also allow

flows to diverge, with the outflow from one queue splitting into inflows to multiple
downstream queues,

qout
i,j (t) = Ri,jq

out
i (t), j ∈ #»

i ,

where #»
i is the set of queues immediately downstream of queue i, and Ri,j are the

splitting ratios that determine the portion of the outflow from queue i that is bound
for queue j, with Ri, #»

i = 1 and qout
i,

#»
i
(t) = qout

i (t).
The model described in the previous subsection assumes that the outflow from

one queue immediately appears as the inflow to the other queue, and that the queue
lengths can grow to an arbitrary value without affecting the behaviour of the rest
of the network, which is, of course, not in line with the physical reality. Instead,
we may explicitly include the delays by replacing qout

#»
i

(t) in (3.22) with

qout
#»
i

(t) =
∑
k∈ #»

i

qout
k (t− θk,i),

where θi,j are the individual delays from queue i to queue j, applied as time shift.
The second important modification is limiting the maximum queue length to some
maximum buffer capacity ni(t) ≤ Ni. Once the queue length reaches this limit
ni(t) = Nj , queue i will not be able to accept any additional inflow, which will
limit the outflow of the queues immediately upstream,

qout
i (t) = min

{
{qf
i(t)} ∪

{
qout
j (t)
Ri,j

∣∣∣∣ j ∈ #»
i , nj = Nj

}}
,

qf
i(t) =

{
min{qcap

i , qin
i (t)}, ni(t) = 0,

qdis
i , ni(t) > 0.

We use qout,N
i (t) in place of qout

i (t) in (3.21). Note that all of the diverging flows

qout,N
i,j (t) = Ri,jq

out,N
i (t), j ∈ #»

i ,
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are now limited by the most severe restriction from queues downstream from queue
i, whether or not the other queues can accept more traffic flow, modelling the
reduction of flow due to the congestion spillback. This gives rise to, e.g., reduction
of total outflow and efficiency when off-ramps are blocked by the congestion on the
mainstream.

3.5 Second-order traffic models

While in this thesis we deal exclusively with first-order macroscopic traffic models,
where the traffic speed is directly determined by the traffic density, for completeness
we give a brief overview of some of the more commonly used second-order models
in this section.

One of the most widely acclaimed macroscopic traffic model is METANET
[200, 207]. Like the CTM, METANET is a model that is discretized in space
and time, and it shares the conservation of traffic density, (3.14) and (3.15), with
qi(tT ) = ρi(tT )vi(tT ), but instead of the traffic speed vi(tT ) being directly deter-
mined by the traffic density vi(tT ) = V(ρi(tT )), it evolves dynamically,

vi(tT + 1) =vi(tT ) + T

τ

(
V(ρi(tT ))− vi(tT )

)
+ T

Li
vi(tT )

(
vi−1(tT )− vi(tT )

)
. . .

. . .−
νT (ρi+1(tT )− ρi(tT )
τLi(ρi(tT ) + χ) − δonT

vi(tT )ron
i (tT )

Li(ρi(tT ) + χ)
where τ , ν, χ, and δon are the parameters of the model. Here, the summands
represent the old traffic speed in cell i, relaxation to the equilibrium speed V(ρi(tT )),
convection of the traffic speed from the upstream cell, anticipation of the denser
traffic in the downstream cell ρi+1(tT ), and the influence of the slower traffic arriving
from the on-ramps, respectively. The equilibrium speed is given by (3.10), where
m and σ are additional model parameters.

Another currently widely used second-order model is the Aw-Rascle-Zhang
(ARZ) model [124, 212], introduced to solve some inconsistencies [123] with the
older second-order models. This model can be seen as an extension of the LWR
model (3.6), with the traffic speed determined by

∂t (v(x, t) + p(ρ(x, t))) + v(x, t)∂x (v(x, t) + p(ρ(x, t))) = V(ρ(x, t))− ρ(x, t)
τ

,

where p(ρ(x, t)) is a smooth and increasing function modelling the traffic “pressure”,

p(ρ(x, t)) = V(0)− V(ρ(x, t)).

A convenient form of the ARZ model is the so-called Generalized ARZ
model [153], where the pressure term is incorporated into the new state
y(x, t) = v(x, t) + p(ρ(x, t)), yielding

∂ty(x, t) + v(x, t)∂xy(x, t) = V(0)− y
τ

,
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where v(x, t) = V(ρ(x, t))− V(0) + y(x, t).
Other types of properties, such as the proportion of CAVs in the traffic, can also

be used in place of y(x, t), resulting in a similar model, with the traffic speed v(x, t)
given as a function of ρ(x, t) and y(x, t). This can be seen as a way of introducing
two classes of vehicles into the traffic model, which will be further discussed in
Section 4.3.

3.6 Summary

There are many models we may use to capture the behaviour of highway traffic.
Microscopic models are easy to understand, since they deal with individual vehicles
and can easily be visualized, but are numerically expensive to simulate. Due to their
relative simplicity, macroscopic traffic models are widely used for traffic control
design. We described the two most well-known macroscopic traffic models, the
CTM and the LWR model. These two models were shown to be equivalent, since
the CTM can be seen as a discretization of LWR. A further simplification of the
CTM, focusing on the queues at the bottlenecks, the tandem queueing model, is
also presented. Finally, we outline some prominent second-order traffic models,
which were not directly used in this thesis, but are presented for completeness.



Chapter 4

Traffic model extensions

While widely used, the basic macroscopic traffic models described in the previ-
ous chapter fail to capture some of the traffic phenomena that are relevant to

Lagrangian traffic control, and the problems that are studied in this thesis. There-
fore, new models, or suitable extensions of the existing ones, are necessary. Namely,
we need the models to be able to capture the influence of

• Platoons and moving bottlenecks,

• Capacity drop and traffic breakdown at stationary bottlenecks, and

• Stop-and-go waves,

while still being tractable and suitable for control design.
In this chapter, we propose model extensions and new models that can capture

the influence of these traffic phenomena, which will be used for control design in
the control part of this thesis. After introducing these phenomena in Section 4.1,
first, in Section 4.2 we introduce moving bottlenecks to the LWR model and to the
CTM. Then, in Section 4.3 we present a multi-class extension of the CTM, which
handles all of the relevant phenomena. Next, in Section 4.4 the tandem queueing
model is extended to be able to model platoons and moving bottlenecks as moving
queueing servers. Finally, in Section 4.5 we propose the front tracking transition
system model (FTTSM).

4.1 Traffic phenomena of interest

Firstly, we need to incorporate the influence of vehicles moving slower than the rest
of the traffic, either alone or driving together with some other vehicles in formation
such as a platoon. A slow-moving vehicle in traffic forces faster moving vehicles to
overtake it, or be held up behind it, restricting the road capacity at the slow-moving
vehicle’s position. We call this slow-moving vehicle or platoon a moving bottleneck.
Broadly speaking, there are two ways moving bottlenecks can be modelled, as shown

55
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Figure 4.1: A platoon of trucks acting as a moving bottleneck and two ways of
representing this phenomenon: either by reducing the capacity of the road, or by
virtually adding vehicles to the road.

in Figure 4.1. The first approach is to consider it a moving traffic flow constraint, i.e.
a reduction of road capacity at the moving bottleneck’s position, and not explicitly
count the slow vehicle acting as a moving bottleneck a part of the overall traffic
density. The second approach is to represent the slow moving vehicles through their
density, and model interactions between vehicles moving at different speeds in some
cell-based model.

Secondly, except for the tandem queueing model, which can exhibit capacity
drop if qdis

i < qcap
i , the discharging flow at a stationary bottleneck in the basic

traffic models is the same as the bottleneck capacity, which is contrary to what
is empirically observed. There exist many different ways of implementing this
phenomenon in cell-based macroscopic traffic models [38], and capacity drop is
commonly implemented by modifying the supply or demand function, so that the
capacity is reduced as the traffic density increases. Modelling capacity drop in
first-order PDE traffic model is much more challenging, and has to be done by ei-
ther creating a temporary zone with a different flux function with reduced capacity,
or by defining appropriate additional constrains on the solutions of the Riemann
problem at the interface between two different flux functions. Furthermore, the
mechanism of traffic breakdown needs to be defined, i.e. how the state of the sta-
tionary bottleneck changes from free flow to congested with capacity drop, and vice
versa. The simpler option is to define this transition deterministically, even though
empirical observations indicate that the transition happens stochastically, based on
the behaviour of individual drivers. Stochastic traffic breakdown is therefore an
important phenomenon that is essential in some applications.

Finally, the traffic phenomenon of stop-and-go waves, also known as wide moving
jams, phantom traffic jams, or traffic waves, needs to be included. These stop-and-
go waves are coupled with the capacity drop phenomenon, and therefore reduce
the capacity of the road, and consequently also its achievable throughput. Even
though in cell-based traffic models, the existence of stop-and-go waves follows from
the capacity drop, additional steps are required in order to model them correctly.
Namely, due to spatial discretization, the downstream boundary of the stop-and-
go waves will not be precisely defined in the traffic model, and therefore needs to
be tracked independently, as an additional state. Furthermore, even if the spatial
discretization is done with very high resolution, requiring a large number of short
cells, the diffusion that is inherent in the model will smooth the traffic density profile
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(a) Exact (b) Long cells (c) Short cells

Figure 4.2: Example of the influence of spatial discretization and diffusion on mod-
elling stop-and-go waves. The exact solution in (a) is given in the front tracking
transition system model.

around the boundary between the stop-and-go wave and the discharging traffic
flow, thus reducing the capacity drop effect. These two effects are demonstrated in
Figure 4.2. Conversely, in first-order PDE traffic models, stop-and-go waves can be
modelled by imposing additional constraints on the wave speed, defining a new type
of weak solution. This approach is further justified by empirical observations that
stop-and-go waves typically propagate upstream with constant velocity. Therefore,
additional steps are needed to properly model the influence of stop-and-go waves
in macroscopic traffic models.

4.2 Moving bottlenecks in LWR and CTM

In this section we first introduce the influence of moving bottlenecks to the LWR
model, through imposing a moving constraint on the traffic flow in the zone of
the moving bottleneck, and discussing the Riemann problems that arise from its
treatment. Since the CTM corresponds to Godunov discretization of the LWR
model [209], we introduce moving bottlenecks to CTM by locally solving a compos-
ite Riemann problem, consisting of the cells adjacent to the one with the moving
bottleneck. Then, using a Godunov-like scheme, we average the resulting solution
after one time step to acquire the traffic flow updates to be used in the model.
Here we consider the simplest, triangular flux function, which allows for a clear
presentation of the results. A more general flux function is discussed in Section 4.5
in the framework of the FTTSM.

4.2.1 Moving bottlenecks in the LWR model

Consider a vehicle (or a platoon of vehicles) in traffic, at position xξ(t), moving at
speed uξ(t) that is lower than the speed of the surrounding traffic V(ρ(t, xξ(t)+)),
and thus acting as a moving bottleneck. We can model this phenomenon by im-
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posing additional constraints on the LWR model. This yields a PDE-ODE strongly
coupled system [159, 161], with the traffic conditions evolution described by a scalar
conservation law with a moving flux constraint, and the motion of the moving bot-
tleneck described by an ordinary differential equation,

∂tρ(x, t) + ∂xQ(ρ(x, t)) = 0,
Q(ρ(xξ(t), t))− ẋξ(t)ρ(xξ(t), t) ≤ qmax

β (ẋξ(t)),
ẋξ(t) = min (uξ(t),V(ρ(xξ(t)+, t))) .

Here xξ(t) is the position of the moving bottleneck, uξ(t) its desired speed and qmax
β

maximum flow past the bottleneck. The maximum flow is obtained by studying
the problem in the reference frame of the moving bottleneck,

qmax
β (ẋξ(t)) = max

0≤ρ≤P
Qξ(ρ)− ẋξ(t)ρ,

as shown in Figure 4.3b.
This formulation is equivalent to using a different flow model in the zone of the

moving bottleneck. Let the flux function in this zone, Qξ(ρ), be of the same form
as (3.9), with different parameters,

Qξ(ρ) =
{
Vξρ, ρ ≤ σξ,
Wξ(Pξ − ρ), ρ > σξ,

where Wξ = WVξ/V , Vξσξ = Wξ(Pξ − σξ). An example of flux functions Q(ρ) and
Qξ(ρ) is shown in Figure 4.3a.

In order to model the capacity reduction in presence of a bottleneck, we intro-
duce a new parameter β ∈ [0, 1] that describes the severity of the bottleneck. The
critical density σ and jam density P are reduced to

σξ = σ(1− β),

(a) Fixed reference frame (b) Moving bottleneck reference frame

Figure 4.3: Flux functions Q(ρ) (solid black) and Qξ(ρ) (red) for Vξ > V in fixed
and moving bottleneck reference frame.
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Pξ = P (1− β).

Since it depends on the behaviour of drivers, the bottleneck severity parameter
β would in general have to be experimentally determined. However, a good ap-
proximation is to take β to be close to the portion of the road that the moving
bottleneck takes. For example, if one of two lanes is blocked, we can set β = 0.5,
or we might choose a somewhat higher value to capture additional “friction” effects
due to induced lane changes.

Furthermore, we allow the free flow speed at the position of the bottle-
neck Vξ to differ from the free flow speed elsewhere, possibly even as a func-
tion of uξ(t). This enables us to model the overtaking behaviour in more de-
tail, with Vξ > V indicating eagerness, and Vξ < V indicating reluctance to over-
take. In order to simplify the solutions of the Riemann problems, we assume that
uξ(t) ≤ Vξ ≤ (V − uξ(t)β)/(1− β). As with β, Vξ depends on driver behaviour, and
would have to be experimentally determined. We make the standing assumption
that Vξ is constant, Vξ > V and uξ(t) ≤ V/β − Vξ(1− β)/β. If we let Vξ depend on
uξ(t), we can use this function Vξ(uξ(t)) to capture any bottleneck diagram [157],
i.e. a curve whose tangents with slope uξ(t) we intersect with Q(ρ) to obtain traffic
densities upstream and downstream of a moving bottleneck.

To model the influence the moving bottleneck has on the surrounding traffic,
we solve two Riemann problems, one for its head (downstream end) and one for its
tail (upstream end). We denote the traffic density upstream of the bottleneck as
ρ− and downstream ρ+, and the traffic density in the bottleneck zone as ρξ.

First, we define the projection functions

rf (ρξ, uξ) = Qξ(ρξ)− uξρξ
V − uξ

, (4.1)

rc(ρξ, uξ) = WP −Qξ(ρξ) + uξρξ
W + uξ

, (4.2)

that return the traffic density of the projection of the point (ρξ, Qξ(ρξ)) with slope
uξ onto the free flow (ρ < σ) and congested (ρ > σ) part of Q(ρ), respectively.
Conversely, the inverse of (4.1) and (4.2) returns projections of the point (ρ,Q(ρ))
with slope uξ onto the free flow and congested part of Qξ(ρ), respectively,

r−1
f (ρ, uξ) = Q(ρ)− uξρ

Vξ − uξ
, (4.3)

r−1
c (ρ, uξ) = WξPξ −Q(ρ) + uξρ

Wξ + uξ
. (4.4)

Effectively, these projections are the intersections between the flux function Q(ρ),
and a line with slope uξ originating from (ρξ, Qξ(ρξ)), in case of (4.1) and (4.2), and
between the flux function Qξ(ρ), and a line with the same slope originating from
(ρ,Q(ρ)), in case of (4.3) and (4.4). It is easy to check that r−1

f,c(rf,c(ρ, uξ), uξ) = ρ
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and rf,c(r−1
f,c(ρ, uξ), uξ) = ρ. Note that for Vξ = V and ρξ ≤ σξ, rf (ρξ, uξ) = ρξ,

regardless of uξ.
The Riemann problems for the moving bottleneck boundaries can be written as

∂tρ+ ∂x (Q±(ρ, x, t)) = 0,

Q±(ρ, x, t) =
{
Q−(ρ), x < uξt,

Q+(ρ), x > uξt,

ρ(x, 0) =
{
ρ−, x < 0,
ρ+, x > 0.

Example solutions to Riemann problems for moving bottleneck head and tail for
all traffic density cases are given in Figure 4.4.

Consider first the Riemann problem for the moving bottleneck head. In this
case, we have Q−(ρ) = Q(ρ), Q+(ρ) = Qξ(ρ), ρ− = ρξ, and the Riemann problem
corresponding to it is

∂tρ+ ∂x (Q+(ρ, uξ, x, t)) = 0,

Q+(ρ, uξ, x, t) =
{
Qξ(ρ), x < uξt,

Q(ρ), x > uξt,

ρ(x, 0) =
{
ρξ, x < 0,
ρ+, x > 0.

We control the movement of the bottleneck, so the transition speed between
the zones with different flux functions has to be equal to its speed uξ. The
Rankine-Hugoniot condition for the discontinuity, uξ(ρ+−ρξ)=Q(ρ+)−Qξ(ρξ), can
only hold for ρ+ = rf (ρξ, uξ) or ρ+ = rc(ρξ, uξ) (equivalently, ρξ = r−1

f (ρ+, uξ) or
ρξ = r−1

c (ρ+, uξ)). In this case, the entropy solution is simply

ρ(x, t) =
{
ρξ, x < uξt,

ρ+, x > uξt.

Otherwise, the entropy solution will, depending on ρξ and ρ+, have one or two
additional wavefronts, moving at Rankine-Hugoniot transition speed

Λ(ρ−, ρ+) = Q(ρ+)−Q(ρ−)
ρ+ − ρ−

,Λξ(ρ−, ρ+) = Qξ(ρ+)−Qξ(ρ−)
ρ+ − ρ−

.

These solutions are:

• If ρξ ≤ σξ and ρ+ < rc(ρξ, uξ),

ρ(x, t) =


ρξ, x < uξt,

rf (ρξ, uξ), uξ < x < Λ(rf (ρξ, uξ), ρ+)t,
ρ+, x > Λ(rf (ρξ, uξ), ρ+)t.
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(a) ρξ ≤ σξ, ρ+ < rc(ρξ, uξ)

(b) ρξ < r−1
f (ρ+, vξ), ρ+ > rc(σξ, vξ)

(c) rf (ρξ, uξ) < ρ+ < rc(ρξ, uξ)

(d) ρ− < rf (σξ, uξ), ρξ ≤ r−1
c (ρ−, uξ)

(e) ρ− > rf (ρξ, uξ), ρξ > σξ

(f) ρ− > rf (ρξ, uξ), ρξ ≤ σξ

Figure 4.4: Solutions for all cases of Riemann problems for moving bottleneck head
(a-c) and tail (d-f). Denser traffic is shown in warmer colours, and the bottleneck
zone is shown hatched.
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• If ρξ < r−1
f (ρ+, vξ) and ρ+ > rc(σξ, vξ),

ρ(x, t) =


ρξ, x < Λξ(ρξ, r−1

c (ρ+, vξ))t,
r−1
c (ρ+, vξ), Λξ(ρξ, r−1

c (ρ+, vξ))t < x < vξt,

ρ+, x > vξt,

where vξ = min(uξ,V(ρ+)). If V(ρ+) < uξ, the speed of both the platoon
head and tail are set to V(ρ+).

• If rf (ρξ, uξ) < ρ+ < rc(ρξ, uξ),

ρ(x, t) =


ρξ, x < Wξt,

σξ, Wξt < x < uξt,

rf (ρξ, uξ), uξt < x < V t,

ρ+, x > V t.

We have a similar situation for the Riemann problem for the moving bottleneck
tail (upstream end). Now, Q−(ρ) = Qξ(ρ), Q+(ρ) = Q(ρ) and ρ+ = ρξ, and the
Riemann problem is

∂tρ+ ∂x (Q−(ρ, x, t)) = 0,

Q−(ρ, uξ, x, t) =
{
Q(ρ), x < uξt,

Qξ(ρ), x > uξt,

ρ(x, 0) =
{
ρ−, x < 0,
ρξ, x > 0.

Again, we have three cases of the entropy solution, depending on ρξ and ρ+:
• If ρ− < rf (σξ, uξ) and ρξ ≤ r−1

c (ρ−, uξ),

ρ(x, t) =


ρ−, x < uξt,

r−1
f (ρ−, uξ), uξ < x < Λ(ρ−, ρξ)t,
ρξ, x > Λ(ρ−, ρξ)t.

• If ρ− > rf (ρξ, uξ) and ρξ > σξ,

ρ(x, t) =


ρ−, x < Λ(ρ−, rc(ρξ, uξ))t,
rc(ρξ, uξ), Λ(ρ−, rc(ρξ, uξ))t < x < uξt,

ρξ, x > uξt.

• If ρ− > rf (ρξ, uξ) and ρξ ≤ σξ,

ρ(x, t) =


ρξ, x < Wt,

rc(σξ, uξ), Wt < x < uξt,

σξ, uξt < x < Vξt,

ρξ, x > Vξt.
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4.2.2 CTM with moving bottlenecks

Having described the effect of the moving bottleneck in the LWR model framework,
we can now apply a similar Godunov-like scheme to calculate the effects of the
moving bottleneck on traffic flows of adjacent cells. If Xi ≤ xξ(tT ) < Xi + L, where
xξ(tT ) is the position of the moving bottleneck at discrete time instant tT , and Xi

is the position of the upstream boundary of cell i, the moving bottleneck is in cell
i and iξ(tT ) = i. For compactness, we will omit writing the time step for all CTM-
related variables wherever the time step is obvious. We may write the resulting
flows as

qi = min(V ρiξ , V σ,W (P − ρiξ+1)) + ∆qξ,i.

Assume the moving bottleneck in cell iξ is the only one in the road stretch con-
sidered. Since it only affects traffic flows through the interfaces of the cell it is
currently in (i.e. from cell iξ − 1 to iξ and from cell iξ to iξ + 1), we have ∆qξ,i = 0
for all i /∈ {iξ−1, iξ}. Therefore the resulting model will be the same as the already
described standard CTM (3.16)–(3.17) for i 6= iξ, i 6= iξ − 1.

In order to correctly describe the behaviour of the moving bottleneck and the
effect it has on the surrounding traffic, we need to augment the cell transmission
model with three additional states: the position of the moving bottleneck xξ(tT ),
the traffic density directly upstream of it ρξ−(tT ) and the traffic density in the
moving bottleneck zone ρξ(tT ). The second and third additional states are neces-
sary in order to properly model the flow of traffic overtaking the bottleneck [161],
effectively splitting the cell i into three parts. We will keep ρi(tT ) as a state and
instead, calculate the traffic density downstream of the bottleneck so that

ρi(tT ) =
(xξ(tT )− lξ −Xiξ)ρξ−(tT ) + lξρξ(tT ) + (Xiξ+1 − xξ(tT ))ρξ+(tT )

L
,

where lξ is the length of the bottleneck in question. If there are multiple bottlenecks
fully or partially in the same cell, splitting the cell and calculating traffic densities
in its different segments is done in a similar way, starting from the cell’s upstream
end and calculating traffic densities towards its downstream end so that they still
average to ρi(tT ).

We obtain ∆qξ,iξ−1(tT ) and ∆qξ,iξ(tT ), as well as updates xξ(tT +1), ρξ−(tT +1)
and ρξ(tT + 1) by solving the composite Riemann problem

∂tρ+ ∂x (Q(ρ, x, t)) = 0,

Q(ρ, x, t) =
{
Q(ρ), x /∈ (χξ(t)− lξ, χξ(t)) ,
Qξ(ρ), x ∈ (χξ(t)− lξ, χξ(t)) ,

χ̇ξ(t) = min (uξ,V(ρ(t, χξ(t)+)) ,

(4.5)
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with initial conditions

ρ(x, 0) =



ρiξ−1, x < Xiξ ,

ρξ−, Xiξ < x < xξ(tT )− lξ,
ρξ, xξ(tT )− lξ < x < xξ(tT ),
ρξ+, xξ(tT ) < x < Xiξ+1,

ρiξ+1, x > Xiξ+1,

χξ(0) = xξ(tT ),

(4.6)

for t up to T . The solution is easily obtained through front tracking, successively
solving Riemann problems as described in the previous section. An example of a
solution is shown in Figure 4.5. The position of the moving bottleneck is updated
as xξ(tT + 1) = χξ(T ).

If there are multiple moving bottlenecks, we either solve (4.5) with initial con-
ditions (4.6) for each one if there is at least one cell between them, or include both
of them in a larger composite Riemann problem. For example, for the situation
shown in Figure 4.6, the initial conditions would be

ρ(x, 0) =



ρiξ−1, x < Xiξ1
,

ρξ−,1, Xiξ1
< x < xξ1 − lξ1 ,

ρξ1 , xξ1 − lξ1 < x < xξ1 ,

ρξ+,1, xξ1 < x < Xiξ1+1,

ρξ−,2, Xiξ1+1 < x < xξ2 − lξ2 ,
ρξ2 , xξ2 − lξ2 < x < xξ2 ,

ρξ+,2, xξ2 < x < Xiξ1+2,

ρiξ+2, x > Xiξ1+2.

In this case, one moving bottleneck is in cell iξ1 and a second one in cell iξ1 + 1 = iξ2 ,
so we need to include cells iξ1−1 through iξ1 +2 into the problem. Here we assumed
that the moving bottlenecks are truck platoons, and that the follower catches up
with the leader and merges into one platoon. If the tail of one and head of another
bottleneck collide, we say that those two bottlenecks have merged, and take their
speed to be the speed of the leader bottleneck.

Formally, we may write the updated traffic model that incorporates moving
bottlenecks as

ρi(tT + 1) = ρi(t) + T

L

(
qi−1(tT )− qi(tT )

)
,

qi(tT ) = min
(
V ρi(tT ), V σ,W (P − ρi+1(tT ))

)
+ ∆qξ,i(tT ),

∆qξ(tT )
xξ(tT + 1)
ρξ−(tT + 1)
ρξ(tT + 1)

 = P
(
ρ(tT ), xξ(tT ), uξ(tT ), ρξ−(tT ), ρξ(tT )

)
,

(4.7)
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Figure 4.5: Front tracking solution example for t ∈ [0, T ] and lξ ≈ 0. Note that the
moving bottleneck slows down when it enters the dense traffic from cell iξ+1.

Figure 4.6: Front solution example of two platoons merging. Note that the follower
platoon slows down when it enters the denser traffic from cell iξ1 + 1, originating
from the leader platoon. The two moving bottlenecks merge into one before t = T .

where by P we encapsulate the procedure of calculating ∆qξ and new values for xξ,
ρξ- and ρξ from the solution of (4.5) with initial conditions (4.6) at t = T .

For ease of presentation, consider the case where there is only one moving bot-
tleneck. Then we may calculate the updates ∆qξ,iξ(tT ) as

∆qξ,iξ(tT ) = 1
T

Xiξ+2∫
Xiξ+1

ρ(x, T )− ρ̃(x, T )dx, (4.8)
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and ∆qξ,iξ−1(tT ) as

∆qξ,iξ−1(tT ) = 1
T

Xiξ∫
Xiξ−1

ρ(x, T )− ρ̃(x, T )dx. (4.9)

Here by ρ̃(x, T ) we denote the solution of the composite Riemann problem with no
moving bottlenecks and for initial conditions

ρ̃(x, 0) =


ρiξ−1, x < Xiξ ,

ρiξ , Xiξ < x < Xiξ+1,

ρiξ+1, x > Xiξ+1.

Since this solution can be expressed explicitly, integrals of ρ̃(x, T ) can easily be
calculated as

1
T

Xiξ+2∫
Xiξ+1

ρ̃(x, T )dx = max
(
Λ(min(ρiξ , σ), ρiξ+1), 0

) (
ρiξ+1 −min(ρiξ , σ)

)
,

1
T

Xiξ∫
Xiξ−1

ρ̃(x, T )dx = min
(
Λ(ρiξ−1,max(ρiξ , σ)), 0

) (
ρiξ−1 −max(ρiξ , σ)

)
.

Finally, the new position of the bottleneck is

xξ(tT + 1) = χξ(T ), (4.10)

and the new traffic density upstream of it

ρξ−(tT + 1) =

χξ(T )−lξ∫
Xiξ(tT+1)

ρ(x, T )dx

χξ(T )− lξ −Xiξ(tT+1)
, (4.11)

and inside the bottleneck zone

ρξ(tT + 1) =

χξ(T )∫
χξ(T )−lξ

ρ(x, T )dx

lξ
. (4.12)

In case we have merging moving bottlenecks, we also need to keep track of their
number and their lengths.

To summarize, the model we propose is an extended version of CTM (3.16)–
(3.17), which can be written as (4.7). Traffic flow updates for cells adjacent to
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the moving bottleneck are calculated according to (4.8) and (4.9). To properly
model the dynamics of the moving bottleneck, we require adding two additional
states (4.10), (4.11) and (4.12), whose updates are obtained from the solution of
the composite Riemann problem. The proposed model is simple and tractable, as
well as consistent with the PDE moving bottleneck traffic models. This approach
also allows extensions to other PDE traffic models and different traffic phenomena,
such as police cars, as well as enables traffic control design using the speed of the
moving bottleneck as control variable and cell traffic densities as measurements.

4.3 Multi-class CTM

Multi-class traffic models are often inspired by the introduction of autonomous and
connected vehicles, but can also provide a useful tool for capturing uncertainties
in the flow model. Introducing two (or more) classes of traffic, for example the
’rabbits’ (fast and aggressive drivers) and the ’slugs’ (slow and timid drivers), or
human-driven and autonomous vehicles, can also be seen as a simple way of defining
a second-order (or higher-order) traffic model, where the conserved quantities would
be the total traffic density and the ratio of vehicles of one class in it. The multi-class
cell transmission model (MCCTM) presented here is a variant of the model used in
[33] and [26], similar to the model introduced in [150], with proportional priority
allocated to all vehicle classes.

We first describe the base multi-class cell transmission model, with homogeneous
road geometry and no specific traffic phenomena, and then proceed to extend it.
We discuss extending the model to cover non-trivial traffic network structures, with
on- and off-ramps, merges, and diverges. Then, we introduce platoons and moving
bottlenecks, followed by capacity drop and stop-and go waves. Finally, we generalize
the multi-class CTM to use a general flux function, and summarize the model.

4.3.1 The base model

Let K be the set of vehicle classes. The traffic density of vehicles of class κ ∈ K in
cell i at time t will be expressed in terms of passenger car equivalents, and denoted
ρκi (tT ). We will denote the aggregate variables over multiple classes in some set by
denoting that set in superscript, e.g. the aggregate traffic density of all classes K
in cell i is denoted

ρKi (tT ) =
∑
κ∈K

ρκi (tT ).

We allow each of the classes to have a distinct reference free flow speed Uκi (tT ) ≤ Vi
in every cell and varying in time, where Vi is the overall maximum vehicle speed for
the cell. In practice, we use Uκi (tT ) to capture some richer behaviour not covered
by the base model, like platoons stop-and-go waves, as well as to apply the control
action to the classes of vehicles we have control over.
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Consider a highway stretch consisting of N cells. Same as in the single-class
case (3.14), the evolution of cell traffic densities for each class is given by

ρκi (tT + 1) = ρκi (tT ) + T

Li

(
Φ+κ
i (tT )− Φ−κi (tT )

)
, (4.13)

where T is the time step, Li the length of cell i, and Φ+κ
i (tT ) and Φ+κ

i (tT ) the flows
into and out of the cell i at time t, respectively. Assuming that the cells are of the
same length, Li = L, and that there are no on- and off-ramps, (4.13) simplifies to

ρκi (tT + 1) = ρκi (tT ) + T

L

(
qκi−1(tT )− qκi (tT )

)
,

where qκi (tT ) is the mainstream traffic flow from cell i to cell i + 1 immediately
downstream, given by

qκi (tT ) = min{Dκ
i (tT ), Sκi (tT )}.

We discuss the case when there are on- and off-ramps in Section 4.3.2.
In contrast with the classical CTM (3.17), in multi-class CTM, the demand

and supply functions of each class, Dκ
i (tT ) and Sκi (tT ), respectively, will now also

depend on vehicles of other classes, since they are sharing the same road. Therefore,
we write these functions in terms of the portion of aggregate demand and supply,
written DKi (tT ) and SKi (tT ), that is allotted to each vehicle class,

Dκ
i (tT ) = dκi (tT )

dKi (tT )
DKi (tT ),

Sκi (tT ) = ρκi (tT )
ρKi (tT )

SKi (tT ). (4.14)

Note that the allocation of aggregate demand and supply is distributed according
to different properties. The supply available to cell i is allocated to vehicles in it,
proportionally with their traffic density ρκi (tT ). Conversely, the demand of cell i is
allocated to vehicles in it, proportionally with dκi (tT ), defined as

dκi (tT ) = min
{
Uκi (tT ), Vi

}
ρκi (tT ), (4.15)

where Uκi (tT ) is the reference free flow speed of class κ vehicles, representing max-
imum demand of each vehicle class if other classes were absent.

Since the desired gap between two vehicles in most car-following models grows
with increase of their speeds, as discussed in Section 3.1, this choice can be seen as
allocating aggregate demand to vehicle classes proportionally with how much space
they take on the road, assuming Uκi (tT ) ≥ Umin, where Umin is such that the desired
gap is significantly larger than vehicle length. For example, if Uai (tT ) = 2U bi (tT ) and
2ρai (tT ) = ρbi (tT ), we have dai (tT ) = dbi (tT ), and half of the lanes will be allocated
to vehicles of class a and b each. Here we assume the lanes can be approximately
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continuously distributed between vehicles driving at different speeds, which will
only be satisfied if the number of lanes is larger than the number of different free
flow speeds Uκi (tT ), since otherwise the slower vehicles will block the faster ones,
as discussed in Subsection 3.1.2.

We write the aggregate demand and supply functions
DKi (tT ) = min

{
dKi (tT ), qmax

i (tT )
}
, (4.16)

SKi (tT ) = min
{
Wi+1(Pi+1 − ρKi+1(tT )), qmax

i+1 (tT )
}
, (4.17)

where qmax
i (tT ) is the capacity of cell i, given by

qmax
i (tT ) =

∑
κ∈K

dκi (tT ) ViPiσiU
κ
i (tT )

(Pi−σi)Uκi (tT )+Viσi

dKi (tT )
,

and cell parameters Vi, Wi, σi and Pi are the free flow speed, congestion wave
speed, critical density and jam density of cell i, respectively. Note that SKi (tT )
does not depend on ρKi (tT ), since it does not represent the supply of cell i, but
instead depends on ρKi+1(tT ), since it represents the supply available to traffic in
cell i.

In further text, when no cell number is indicated, we use the same cell length L
and maximum free flow speed V = Vi, and take W = V σ

P−σ yielding a triangular
fundamental diagram,

Q(ρ) = min {V ρ,W (P − ρ)} . (4.18)
Furthermore, we adopt L = V T , at the limit of the Courant-Friedrichs-Lewy con-
dition. It is easy to verify that in case we only have one class K = {a} and
Uai (tT ) = V , expressions (4.16) and (4.17) simplify to (3.18) and (3.19). The cell
capacity depends on the free flow speeds of each class Uκi (tT ), as well as on the
share of vehicles of each class in the cell, and is lower or equal to the maximum
value qmax

i (tT ) ≤ Viσi. Note that here we assume that the capacity depends only on
the share of each vehicle class, but not their aggregate density, implicitly assuming
that the capacity drop phenomenon is absent. We discuss including capacity drop
into the model in Subsection 4.3.4.

4.3.2 On- and off-ramps, merges, and diverges
Although a large number of phenomena of interest happen in mainstream traffic
flow, where on- and off-ramps are either not present or not relevant, the behaviour
of traffic at merges, diverges, and on- and off-ramps needs to be described if we
want to study any non-trivial network configuration. The simplest extension is to
introduce the flows into cells from on-ramps and out of cells cells to off-ramps by
setting Φ+κ

i (tT ) = qκi−1(tT ) + ron,κ
i (tT ) and Φ−κi (tT ) = qκi (tT ) + roff,κ

i (tT ), yielding

ρκi (tT + 1) = ρκi (tT ) + T

Li

(
qκi−1(tT )− qκi (tT ) + ron,κ

i (tT )− roff,κ
i (tT )

)
,
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where ron,κ
i (tT ) is the inflow and roff,κ

i (tT ) the outflow of each vehicle class from
a potential on-ramp and to a potential off-ramp, respectively. An example of such
traffic flows is given in Figure 4.7.

Unless we assume that all inflow from on-ramps enters the road regardless of
its traffic condition, a part of vehicles entering the road might have to queue if
their entry gets blocked by congestion in the cell where they merge. We model the
evolution of these queues nκr,i(tT ), for on-ramps in cell i, with

nκr,i(tT + 1) = nκr,i(tT ) +
(
φκr,i(tT )− rκi (tT )

)
T,

where φκi (tT ) is the inflow of class κ vehicles arriving at the on-ramp. There are
multiple ways of modelling the actual on-ramp flow ron,κ

i (tT ), ranging from fully
prioritizing the mainstream flow,

ron,κ
i (tT ) = min

{
Dκ

r,i(tT ), Sκr,i(tT )
}
,

Dκ
r,i(tT ) = φκr,i(tT ) +

nκr,i(tT − 1)
T

,

Sκr,i(tT ) =
φκr,i(tT )T + nκr,i(tT − 1)
φKr,i(tT )T + nKr,i(tT − 1)

min
{
SKi (tT )− qKi−1(tT ), qon

r,i
}
,

to fully prioritizing the on-ramp flow,

ron,κ
i (tT ) = φκr,i(tT ) +

nκr,i(tT − 1)
T

.

Here we denote the capacity of the on-ramp in cell i by qon
r,i . A good balance is

to prioritize the mainstream flow, but increase the capacity and critical density of
the cell into which the on-ramps merge, due to the presence of a merging lane.

qai−1(t
T ),qbi−1(t

T ),qci−1(t
T ) qai(t

T ),qbi(t
T ),qci(t

T ) qai+1(t
T ),qbi+1(t

T )

ρai(t
T ),ρbi(t

T ),ρci(t
T ) ρai+1(t

T ),ρbi+1(t
T ),ρci+1(t

T )
rbi(t

T ) sci+1(t
T )

Figure 4.7: An example of three-class traffic flows in two cells. Vehicle classes a, b,
and c are colour-coded. Cell i receives traffic of all three classes from cell i− 1 and
class b vehicles from an on-ramp. Class a and b vehicles are mainstream-bound, and
will leave cell i+ 1 and enter cell i+ 2, whereas class c vehicles are off-ramp-bound
and will leave cell i+ 1 via the off-ramp.
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(1)

(2)

(3)

Figure 4.8: Map of Trafikplats Nyboda with an overlay illustrating an arrangement
of cells, off-ramps, diverges and merges for modelling traffic originating from Es-
singeleden and bound for Södra länken eastwards. The mainstream is shown in
red, with black circles indicating cell boundaries. At (1) there is an off-ramp, at
(2) a portion of the mainstream diverges westwards (shown in blue), and at (3)
the mainstream traffic merges with the traffic from another link (shown in green).
Imagery taken from OpenStreetMap.

This way, queueing will only occur if congestion from some bottleneck downstream
propagates upstream and blocks the on-ramp.

An interesting benefit of using the multi-class CTM is that it gives us a way of
precisely defining flows of off-ramps or diverging links. Instead of assuming that
a fraction of all vehicles leaves the mainstream, we can now distinguish vehicles
with different destinations as members of different classes. Let i be a cell with an
off-ramp where vehicles of classes Kr,i ⊂ K exit the mainstream. We may then
write

roff,κ
i (tT ) =

min
{
dκi (tT ), Sκi+1(tT ), ρκi (tT )

ρ
Kr,i
i

(tT )
qoff
r,i

}
, κ ∈ Kr,i,

0, κ /∈ Kr,i,
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where qoff
r,i is the capacity of the off-ramp. Finally, we also update Dκ

i (tT ) accord-
ingly,

Dκ
i (tT ) =

{
0, κ ∈ Kr,i,

dκi (tT ) min
{

1, q
max
i (tT )
dK
i

(tT )

}
, κ /∈ Kr,i.

While on- and off-ramps act as external sources and sinks of traffic flow, respec-
tively, the case of roads merging or diverging needs to be studied separately. One
such case is shown in Figure 4.8. In case we study a road network, where each link
l has Nl cells, we will instead consider the traffic density of each class κ, cell i, and
link l, separately as ρκi,l(tT ). The system dynamics within links are unchanged, but
the inflow to the first cell and outflow from the last cells need to be redefined. We
define operator #»

` as a map to a set of links immediately downstream of all links in
set `, and operator #»

` as a map to a set of links immediately upstream of all links
in set `. Then, the class κ inflow to the first cell of link l is given as

qκ0,l(tT ) = qκ
N #»
l ,

#»
l
(tT ),

where the aggregate quantity over multiple links in some set is denoted by writing
that set in subscript,

qκ
N #»
l ,

#»
l
(tT ) =

∑
k∈ #»

l

qκNk,k(tT ).

The class κ outflow from the last cell of link l is, conversely, given by modifying
the supply available to vehicles in cell Nl of link l,

SκNl,l(t
T ) =

ρκNl,l(t
T )

ρK
N #»#»
l
,

#»#»
l
(tT )

min
{
W1, #»

l

(
P1, #»

l − ρ
K
1, #»
l
(tT )

)
, qmax

1, #»
l

(tT )
}
,

and we assume the supply is distributed proportionally over all cells and all links
that merge with the same links that link l merges with, i.e. links that are upstream
of the links that are downstream from link l.

4.3.3 Platoons and moving bottlenecks
Considering multiple classes of vehicles moving at different speeds on the road allows
us to separately treat specific formations of vehicles, such as vehicle platoon, by
designating a vehicle class to represent them. However, although it is often driven
by the need to classify automated and human-driven vehicles separately, multi-class
CTM in its basic form is not suitable for modelling the behaviour of platoons if
they move slower than the rest of the traffic. Namely, the traffic density profile
of a platoon will become smoothed and spread to the neighbouring cells, due to
the diffusion present in spatially discretized traffic models when the traffic speed
is lower than the maximum allowed speed per Courant-Friedrichs-Lewy condition.
This way we lose the information about the exact position of the platoon boundaries.
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One way of dealing with this problem is to allow cell interfaces to move [213] and
have these interfaces coincide with the boundaries of the platoons. However, the
information about these boundary position can often be encoded in traffic density
of some classes, as will be described in the remainder of this subsection.

Let there be some number of platoons, denoted by unique identifiers ξ ∈ Ξ
on the road under consideration, and let each platoon ξ have reference speed
uξ(tT ) ∈

[
Umin, Umax], with Umax < V . We denote the position of the platoon

head (downstream end) xξ(tT ), and the platoon length lξ(tT ), so the position of
the platoon tail (upstream end) will be xξ(tT )− lξ(tT ). Here, class a will consist of
platooned vehicles, and class b of the background human-driven traffic. Since vehi-
cle platoons consist of a number of vehicles driving together as a single unit with
constant regulated spacing, their traffic density profile is determined by xξ(tT ),
lξ(tT ), and their reference density ρ∗ξ(tT ),

ρai (tT ) = ρ∗aξ,i(tT ) =


ρ∗ξ(tT )

Xit
ξ
(tT )+1−xξ(t

T )+lξ(tT )

L , i = itξ(tT ),
ρ∗ξ(tT ), itξ(tT ) < i < ihξ (tT ),

ρ∗ξ(tT )
xξ(tT )−X

ih
ξ

(tT )

L , i = ihξ (tT ),

(4.19)

where ihξ (tT ) =
⌈
xξ(tT )/L

⌉
is the number of the cell where the platoon head is,

and itξ(tT ) =
⌈(
xξ(tT )− lξ(tT )

)
/L
⌉
the number of the cell where the platoon tail

is, with operator dxe denoting the ceiling of x. Elsewhere, where there are no
platoons, we expect ρai (tT ) = 0. Note that we require the length of the platoon to
satisfy lξ(tT ) ≥ 2L, so that at least one cell will have ρai (tT ) = ρ∗ξ(tT ). The platoon
position update after T will be

xξ(tT + 1) = xξ(tT ) + min

uξ(tT ),
qK
ih
ξ
(tT )(t

T )

ρK
ih
ξ
(tT )(tT )

T,

and class a traffic densities need to be updated accordingly.
Note that simply setting Uai (tT ) = uξ(tT ) in cells where the platoon is would not

be sufficient, since it would not maintain crisp boundaries of the platoon, as some
vehicles would diffuse to the next cell. For example, for a two cells long platoon
travelling at uξ = V/2, we would have

ρai (0) = ρ∗ξ , ρai+1(0) = ρ∗ξ , ρai+2(0) = 0, ρai+3(0) = 0,

ρai (1) =
ρ∗ξ
2 , ρai+1(1) = ρ∗ξ , ρai+2(1) =

ρ∗ξ
2 , ρai+3(1) = 0,

ρai (2) =
ρ∗ξ
4 , ρai+1(2) =

3ρ∗ξ
4 , ρai+2(2) =

3ρ∗ξ
4 , ρai+3(2) =

ρ∗ξ
4 ,

whereas the correct behaviour would be

ρai (2) = 0, ρai+1(2) = ρp, ρai+2(2) = 0, ρai+3(2) = 0.
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Assuming the other vehicle classes have no influence on the platooned vehicles,
which holds if the road downstream of the platoon is in free flow, we can ensure
that ρai (tT ) adheres to the desired traffic density profile (4.19) by setting Uai (tT ) to

Uai (tT )=



V, i−ξ (tT ) ≤ i < itξ(tT ),

Vmin
{

1,max
{

0,ρ
∗a
ξ,i+1(tT+1)−

V−Ua
i+1(tT )
V ρai+1(tT )

ρa
i
(tT )

}}
, itξ(tT ) ≤ i < ihξ (tT ),

Vmin
{

1, ρ
∗a
ξ,i+1(tT+1)
ρa
i
(tT )

}
, i = ihξ (tT ),

0, ihξ (tT ) < i ≤ i+ξ (tT ),

(4.20)

in the area where the platoon is, denoted by i ∈ {i−ξ (tT ), . . . , i+ξ (tT )}. Since
the reference traffic density profile ρ∗aξ,i(tT ) depends only on the position xξ(tT )
and reference density ρ∗ξ(tT ) of platoon ξ, it is easy to calculate its one step
prediction ρ∗aξ,i(tT + 1). Note that in case ρai (tT ) = ρ∗ξ(tT ), itξ(tT ) < i < ihξ (tT ),
we have Uai (tT ) = uξ(tT ), itξ(tT ) < i < ihξ (tT ). Even if the initial class a density
profile differs from the reference, by applying (4.20) it will converge to (4.19)
as long as uξ(tT ) < V . If a single platoon is present on the road, we have
i−ξ (tT ) = 1, i+ξ (tT ) = N , otherwise i−ξ (tT ) and i+ξ (tT ) are set to the cells at the
halfway point between the platoons, i.e. if platoon ξ2 is upstream of platoon ξ1, we
have i+ξ2(tT ) =

⌈
(xξ2(tT ) + xξ1(tT )− lξ1(tT ))/(2L)

⌉
, i−ξ1(tT ) = i+ξ2(tT ) + 1. If two

platoons come close to each other, ihξ2(tT ) + 1 = itξ1(tT ), we consider the two pla-
toons to have merged into a single one.

A platoon moving at speed slower than the rest of the traffic will act as a moving
bottleneck to the rest of the traffic. Let the remainder of traffic consist of human-
driven vehicles of class b, U bi (tT ) = V , and σi = σ, Pi = P ,Wi = W = V σ/(P − σ),
L = V T . Assume a platoon stretches at least over two cells,

ρaih
ξ
(tT )−2(tT ) = ρaih

ξ
(tT )−1(tT ) = ρ∗ξ(tT ) < σ, (4.21)

and that cell ihξ (tT ) is in free flow, ρa
ih
ξ
(tT )(t

T ) + ρb
ih
ξ
(tT )(t

T ) < σ. Then we will have

qbih
ξ
(tT )−1(tT ) = V ρbih

ξ
(tT )−1(tT ),

ρbih
ξ
(tT )−1(tT + 1) = qbih

ξ
(tT )−2(tT )/V. (4.22)

If the platoon is travelling at constant speed lower than the free flow speed,
uξ(tT ) < V , and the class b inflow at the beginning of the road is constant,
qb0(tT ) = φb, the traffic density profile of both classes in cells ihξ (tT )−1 and ihξ (tT )−2
will reach a stationary state after some time, when

ρbih
ξ
(tT )−2(tT ) = ρbih

ξ
(tT )−1(tT ), (4.23)

qbih
ξ
(tT )−2(tT ) = qbih

ξ
(tT )−1(tT ).
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Figure 4.9: A platoon acting as a moving bottleneck implemented in multi-class
CTM, shown outlined by dashed red lines. As the denser traffic reaches the platoon,
congestion is formed in its wake.

Then, from (4.14) we have

qbih
ξ
(tT)−2(tT) ≤

ρb
ih
ξ
(tT)−2(tT)

ρa
ih
ξ
(tT)−2(tT) + ρb

ih
ξ
(tT)−2(tT)

W
(
P − ρaih

ξ
(tT)−1(tT)− ρbih

ξ
(tT)−1(tT)

)
,

and, substituting (4.21), (4.22), and (4.23), we may write

ρbih
ξ
(tT)−1(tT) ≤

ρb
ih
ξ
(tT)−1(tT)

ρ∗ξ(tT) + ρb
ih
ξ
(tT)−1(tT)

σ

P − σ

(
P − ρ∗ξ(tT)− ρbih

ξ
(tT)−1(tT)

)
,

which simplifies to

ρbih
ξ
(tT )−1(tT ) ≤ σ − ρ∗ξ(tT ),

qbih
ξ
(tT )−1(tT ) ≤ V

(
σ − ρ∗ξ(tT )

)
. (4.24)

Therefore, we confirm that the traffic flow overtaking a platoon with density
ρ∗ξ(tT ) is limited to V

(
σ − ρ∗ξ(tT )

)
, which is consistent with PDE moving bot-

tleneck models with triangular flux function. If φb < V
(
σ − ρ∗ξ(tT )

)
, the class b

traffic will flow by the platoon unimpeded. Otherwise, the platoon acts as a moving
bottleneck, and congestion wild build up in its wake.

The effects of platoons and other vehicles acting as moving bottlenecks can
also be modelled directly, through appropriate choice of Uκi (tT ), without explicitly
tracking the traffic density of this vehicle class. Let ξ now represent the moving
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bottlenecks with speed uξ(tT ), which restricts the flow at its position by scaling the
flux function Q(ρ) down to

Qβξ(t
T )(ρ) = (1− βξ(tT ))Q

(
ρ

1− βξ(tT )

)
,

where βξ(tT ) ∈ [0, 1) indicates the severity of the moving bottleneck, with
βξ(tT ) = 0 corresponding to not obstructing the flow at all, and βξ(tT ) ≈ 1 cor-
responding to fully blocking the road, similarly to how moving bottlenecks were
handled in Section 4.2. The position of the moving bottleneck evolves according to
xξ(tT + 1) = xξ(tT ) + uξ(tT )T , and the cell that contains it is izξ(tT ) =

⌈
xξ(tT )/L

⌉
.

Then the traffic density profile in cells around the moving bottleneck should follow

ρKi (tT ) = ρ∗Kξ,i (tT ) =


ρc
ξ(tT ), i = izξ(tT )− 1,

ρc
ξ(tT )−

Xiz
ξ
(tT )−xξ(t

T )

L (ρc
ξ(tT )− ρd

ξ (tT )), i = izξ(tT ),
ρd
ξ (tT ), i = izξ(tT ) + 1,

where the densities of the congestion in the wake of the moving bottleneck ρc
ξ(tT ),

and of the overtaking flow ρd
ξ (tT ), are

ρc
ξ(tT ) = WP − (V − uξ(tT ))(1− βξ(tT ))σ

W + uξ(tT ) , (4.25)

ρd
ξ (tT ) = (1− βξ(tT ))σ. (4.26)

This can be is achieved by setting the free flow speed for all classes to

Uκi (tT )=


Vmin

{
1, ρ

∗K
ξ,i (t

T+1)
ρK
i

(tT )

}
, i = izξ(tT ),

Vmin
{

1,max
{

0,ρ
∗K
ξ,i (t

T+1)−
V−Uκ

i+1(tT )
V ρKi+1(tT )

ρK
i

(tT )

}}
, izξ(tT )− i ∈ {1, 2}.

(4.27)

One can verify that this has the same effect on the rest of the traffic as a platoon
with reference density ρ∗ξ(tT ) = βξ(tT )σ travelling at the same speed uξ(tT ).

4.3.4 Capacity drop and stop-and-go waves
Out of many ways of modeling capacity drop in first-order traffic models [38], we
chose to capture it as a linear reduction of capacity, as in [214]. We model the
capacity drop phenomenon by modifying the cell capacity qmax

i (tT ) depending on
the traffic density in the cell. Denoting by α the maximum capacity drop ratio
under jam traffic density, we write

qmax
i (tT )=min


∑
κ∈K

dκi (tT )
ViPiσiU

κ
i

(tT )

(Pi−σi)Uκi (tT )+Viσi

dK
i

(tT ) ,Wi
Vi+1σi+1
Viσi

(
Pi−(1−α)σi−αρKi (tT )

). (4.28)
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Substituting ρKi (tT ) = Pi into the second operand of minimum in (4.28), and as-
suming Uκi (tT ) = Vi, we can see that in that case

qmax
i (tT ) = min {Viσi, Vi+1σi+1(1− α)} .

Consider a road with homogeneous free flow speed Vi = V and a stationary
bottleneck in cell i + 1, with a significantly lower critical density σi+1 < σi, cor-
responding to the maximum capacity of qmax

i+1 ≤ V σi+1. Due to the capacity drop
phenomenon, in case of excess demand at the bottleneck, its capacity will be de-
creased once it becomes congested. A congestion of density ρc will be formed in
cell i, with the density of discharging traffic being ρd. The congestion density ρc

can be calculated from Wi (Pi − ρc) = Wi
σi+1
σi

(Pi − (1− α)σi − αρc), so that

ρc = Pi(σi − σi+1) + (1− α)σiσi+1

σi − ασi+1
. (4.29)

We calculate the discharge density from V ρd = Wi (Pi − ρc):

ρd = σiσi+1(1− α)
σi − ασi+1

< σi+1,

and the discharging flow from the congested bottleneck will be lower than the
maximum capacity, V ρd ≤ V σi+1.

If an active bottleneck is by some means removed from the road, the built up
congestion will begin to dissipate, propagating upstream in the process, as a stop-
and-go wave. As was the case with platoons discussed in the previous subsection,
modelling the capacity drop of stop-and-go waves also suffers from diffusion inherent
in spatially discretized traffic models. For example, consider a homogeneous road
where a traffic light between cells i and i+ 1 is blocking the traffic until time t = 0.
Starting with t = 1, the traffic light turns green and the accumulated congestion
will begin dissipating, and the traffic density ρKi (tT ) will evolve with traffic flows
determined by (4.17), where qmax

i (tT ) includes capacity drop (4.28), as

ρKi−1(0)=P, ρKi (0)=P, ρKi+1(0)=0,
ρKi−1(1)=P, ρKi (1)=P−(1−α)σ, ρKi+1(1)=(1−α)σ,

ρKi−1(2)=P−(1−α)σ2

P−σ
, ρKi (2)=P−(1−α)

(
2σ−(1−α)σ2

P−σ

)
,ρKi+1(2)=(1−α)

(
σ+ασ

2

P−σ

)
,

whereas the correct behaviour would be

ρKi−1(2) = P, ρKi (2) = P − 2(1− α)σ, ρKi+1(2) = (1− α)σ.

Essentially, capacity drop in cell i becomes diminished as soon as the wavefront
of the downstream end of the dissipating congestion starts propagating upstream
through the cell. Furthermore, due to diffusion, vehicles in cell i − 1 were able to
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(a) A stop-and-go wave if the diffusion is properly handled

(b) A stop-and-go wave if the diffusion is not properly handled

Figure 4.10: The effect of diffusion on stop-and-go waves.

start moving before the downstream end of dissipating congestion reached them.
A comparison of the correct behaviour of the stop-and-go wave and its premature
dissipation due to diffusion is shown in Figure 4.10.

Therefore, we use a similar technique as the one employed in the previous sub-
section to eliminate the effect of diffusion on stop-and-go waves. Let there be some
number of stop-and-go waves, denoted by unique identifiers ψ ∈ Ψ on the road
under consideration, characterised by their congestion traffic densities ρc

ψ(tT ), and
with positions of their downstream wavefronts zψ(tT ). According to (4.28), the
density of the traffic flow dissipating from this stop-and-go wave is

ρd
ψ(tT ) =

Wiz
ψ

(tT )

Viiz
ψ

(tT )

σiz
ψ

(tT )+1

σiz
ψ

(tT )

(
Piz
ψ

(tT ) − (1− α)σiz
ψ

(tT ) − αρc
ψ(tT )

)
, (4.30)
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where izψ(tT ) =
⌈
zψ(tT )/L

⌉
is the number of the cell where the downstream wave-

front of stop-and-go wave ψ is. The congestion traffic density of stop-and-go waves
is updated every time step to

ρc
ψ(tT + 1) = max

{
ρc
ψ(tT ), ρKiz

ψ
(tT )(tT ), ρKiz

ψ
(tT )−1(tT )

}
.

This stop-and-go wave propagates upstream with speed λψ(tT ) < 0,

zψ(tT + 1) = zψ(tT )λψ(tT )T,

and the traffic density profile in cells around its downstream wavefront should follow

ρKi (tT ) = ρ∗Kψ,i(tT ) =


ρc
ψ(tT ), i = izψ(tT )− 1,

ρc
ψ(tT )−

Xiz
ψ

(tT )−zψ(tT )

L (ρc
ψ(tT )− ρd

ψ(tT )), i = izψ(tT ),
ρd
ψ(tT ), i = izψ(tT ) + 1.

This can be achieved by setting the free flow speed in the vicinity of the stop-and-go
wave for all classes to

Uκi (tT )=


Vimin

{
1, ρ

∗K
ψ,i(t

T+1)
ρK
i

(tT )

}
, i = izψ(tT ),

Vimin
{

1,max
{

0,
ρ∗Kψ,i(t

T+1)−
Vi−U

κ
i+1(tT )
Vi

ρKi+1(tT )
ρK
i

(tT )

}}
, izψ(tT )− i ∈ {1, 2}.

(4.31)

The stop-and-go wavefront propagation speed λψ(tT ) is given by

ρc
ψ(tT ) +

σiz
ψ

(tT )

Piz
ψ

(tT )−σiz
ψ

(tT )

(
Piz
ψ

(tT ) − ρc
ψ(tT )

)
− ρd

ψ(tT ) = ρc
ψ + λψ(tT )

Viz
ψ

(tT )(ρc
ψ

(tT )−ρd
ψ

(tT )) ,

which, substituting (4.30), yields

λψ(tT ) = Vi
(1−α)σiσi+1+Pi(σi−σi+1)−ρc

ψ(tT )(σi−ασi+1)
(1−α)σiσi+1−Piσi+1+ρc

ψ(tT )(Pi−σi+ασi+1) , i = izψ(tT ). (4.32)

In case the road is homogeneous, σ = σiz
ψ

(tT ) = σiz
ψ

(tT )+1, P = Piz
ψ

(tT ) = Piz
ψ

(tT )+1,
V = Viz

ψ
(tT ) = Viz

ψ
(tT )+1, (4.32) simplifies to

λψ(tT ) = −V (1− α)σ
P − (1− α)σ ,

and is independent of ρc
ψ(tT ). Note that substituting (4.29) into (4.32) yields

λψ(tT ) = 0, i.e. if congestion accumulates at a stationary bottleneck, it will not
start propagating upstream as a stop-and-go wave, but instead remains at the bot-
tleneck, as expected.
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New stop-and-go waves are created whenever the outflow of some cell is limited
by the capacity drop,

qKi (tT ) = Wi
Vi+1σi+1

Viσi

(
Pi − (1− α)σi − αρKi (tT )

)
,

and there are no stop-and-go waves already present in cell i. The down-
stream wavefront position of the thus newly created stop-and-go wave is set to
zψ(tT ) = Xi+1, and its congestion traffic density is set to ρc

ψ = ρKi (tT ). Conversely,
a stop-and-go wave is considered to be dissipated once both ρKiz

ψ
(tT ) ≤ σizψ(tT ) and

ρKiz
ψ

(tT )−1(tT ) ≤ σiz
ψ

(tT )−1, and its identifier is then removed from Ψ.

4.3.5 Multi-class CTM with a general flux function
While the triangular fundamental diagram (4.18) is widely used due to its sim-
plicity and ease of calibration, many other fundamental diagram types exist. The
multi-class CTM presented in this section was initially developed with triangular
fundamental diagram in mind, but can be extended to admit an arbitrary flux
function Qi(ρ), with speed-density relation Qi(ρ) = Vi(ρ)ρ. We define the critical
density of aggregate traffic σi as the traffic density for which Qi(ρ) is maximized,

σi = arg max
ρ≥0

Q(ρ), qmax
i = Qi(σi),

and the maximum free flow speed Vi is given as the maximum slope of Qi(ρ),

Vi = max
ρ≥0

Q′(ρ),

which for the vast majority of commonly used flux functions happens at zero,
Vi = Q′(0). For each vehicle class κ, we also define a separate critical density
σκi (tT ) for which min{Qi(ρ), Uκi (tT )ρ} is maximized,

σκi (tT ) = arg max
ρ≥0

min{Q(ρ), Uκi (tT )ρ}, qmax,κ
i (tT ) = Qi(σκi (tT )),

The majority of equations stays the same as defined in the base model in Sub-
section 4.3.1, and the redefined equations are listed in what follows. First, the
maximum demand of each vehicle class if other classes were absent (4.15) is now
given by

dκi (tT ) = min
{
Uκi (tT ),V(ρκ

i
(tT ))

}
ρκi (tT ),

where ρκ
i
(tT ) = min{ρκi (tT ), σκi (tT )}. The aggregate demand function remains

unchanged, but the aggregate supply now becomes

SKi (tT ) = min
{
Qi
(
ρKi+1(tT )

)
, qmax
i+1 (tT )

}
= min

{
Vi
(
ρKi+1(tT )

)
ρKi+1(tT ), qmax

i+1 (tT )
}
,
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where ρKi+1(tT ) = max{ρKi+1(tT ), σi}, and the capacity of cell i is redefined to

qmax
i (tT ) =

∑
κ∈K

dκi (tT )qmax,κ
i (tT )

dKi (tT )
.

We may also generalize the modelling of moving bottlenecks and stop-and-go waves,
by redefining ρc

ξ(tT ), ρd
ξ (tT ), ρc

ψ(tT ), and ρd
ψ(tT ). For modelling moving bottlenecks,

ρc
ξ(tT ) and ρd

ξ (tT ) are given as the maximum and the minimum solution of

Q(ρ) = Qβξ(t
T )(ρτ ) + uξ(tT )(ρ− ρτ ),

respectively, where ρτ is the traffic density at which a line with slope uξ(tT ) is
tangent to the reduced flux function Qβξ(tT )(ρ),

ρτ = arg max
ρ

Qβξ(t
T )(ρ)− uξ(tT )ρ,

instead of by (4.25) and (4.26). For modelling stop-and-go waves, we now need
to specify a wavefront propagation speed λψ(tT ). Then, for ρc

ψ(tT ) such that
Q′(ρc

ψ) < λψ(tT ), ρd
ψ(tT ) is given as the minimum solution of

Q(ρd
ψ(tT )) = Q(ρc

ψ(tT )) + λψ(tT )(ρd
ψ(tT )− ρc

ψ(tT )),

instead of by (4.30), and a stop-and-go wave is considered to be dissipated once
Q′(ρc

ψ(tT )) ≥ λψ(tT ).

4.4 Tandem queueing model with platoons

The base tandem queueing model presented in Section 3.4 can already represent the
capacity drop phenomenon, and is indeed the simplest model that is able to do this.
However, including moving traffic phenomena into the model proves to be much
more difficult. Consider the traffic situation shown in Figure 4.11. The lane drop
at the downstream end of the shown road segment is acting as an obvious stationary
bottleneck, which can be modelled as a queueing server. If the trucks, shown in
grey, would not be moving, they too would represent stationary bottlenecks for the
rest of the traffic, and the whole system could be described as a tandem queue
with some delay and nb(t) corresponding to the lane drop bottleneck, and n1(t)
and n2(t) corresponding to queues at the trucks. However, if the truck platoons are
moving along the road, they will affect the rest of the traffic in a different way, and
the delays between these queues would vary in time. In this section we extend the
tandem queueing model to allow for queues at moving bottlenecks. We then present
a coordinate transform that simplifies the model, eliminating delay between the
queues. Finally, the proposed model is validated against the microscopic simulations
executed in SUMO and multi-class CTM.
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qout
2 qout

1 qout
ξ

n2 n1 nξ
qout
2 qout

1 qout
b

qin
2

Figure 4.11: Queues corresponding to stationary and moving bottlenecks. The
stationary bottleneck corresponds to nb, the downstream platoon to n1 and the
upstream platoon to n2. The overtaking flow of the downstream platoon qout

1 is
limited to one lane of traffic, qcap

1 = V σl, where σl is the critical density of a single
highway lane, and the overtaking flow of the upstream platoon qout

2 is limited to
two lanes of traffic, qcap

2 = V 2σl.

4.4.1 Moving bottlenecks with a single stationary bottleneck

Consider a highway stretch with a single stationary bottleneck at position Xb at
its downstream end. We denote the queue at this bottleneck nb(t). Apart from
this stationary bottleneck, at time t0, there is a number of platoons ξ ∈ Ξ(t0)
potentially acting as moving bottlenecks, moving in the traffic flow, and we
denote their position xξ(t). We may enumerate the truck platoons so that
x1(t0) > x2(t0) > . . . > xΞ(t0), i.e. the platoon that is farther along the road has
a lower index than the ones upstream of it. In this case, assuming the platoons
do not overtake each other, the platoon immediately downstream of platoon ξ is
#»

ξ = ξ − 1, if ξ 6= 1, where platoon ξ = 1 is the first platoon immediately up-
stream of the stationary bottleneck at time t0. Similarly, the platoon immediately
upstream of platoon ξ is #»

ξ = ξ + 1, if ξ 6= Ξ(t0), where platoon ξ = Ξ(t0) is the
upstream-most platoon in Ξ(t0) at time t0. The queues at the platoons will be
denoted nξ(t), and together with nb(t), they constitute the state of the system.

The evolution of the queue at the stationary bottleneck is given by

ṅb(t) = qin
b (t)− qout

b (t),

where the outflow is

qout
b (t) =

{
min{qin

b (t), qcap
b }, nb(t) = 0,

qdis
b , qin

b (t) > nb(t) > 0.

As is standard, due to capacity drop, the discharge rate of the queue at the bottle-
neck qdis

b will be lower than its capacity qcap
b , qdis

b < qcap
b .

Let the free flow speed of the background traffic be V everywhere on the road.
Then the traffic flow originating from position x at time t0 reaches the stationary
bottleneck after (Xb − x)/V , unless it is blocked by some other bottleneck. We
denote by tVξ (t0) the time when traffic flow originating from the position of platoon
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ξ at some time t0 would reach the stationary bottleneck,

tVξ (t0) = t0 + Xb − xξ(t0)
V

. (4.33)

Assuming that the platoons are moving at their individual constant reference speeds
uξ ≤ V , we define the time tuξ (t0), at which they reach the stationary bottleneck

tuξ (t0) = t0 + Xb − xξ(t0)
uξ

. (4.34)

Note that since we assume that xξ(t) = xξ(t0) + (t − t0)uξ(t0), tuξ (t) = tuξ (t0) and
tuξ (t) does not depend on time, so we omit writing (t0) in further text.

We also assume that the platoons do not merge before reaching the stationary
bottleneck, tu1 < tu2 < . . . < tuΞ, which constrains their admissible reference speeds.
Note that the assumption about the constant speed for each platoon is only signifi-
cant until tuξ when that platoon reaches the stationary bottleneck, as it then leaves
the road segment under consideration.

The inflow to the queue at the stationary bottleneck qin
b (t) is given by

qin
b (t) = qub (t) + qVb (t),

and it consists of two parts that travel at different speeds. The first part, qub (t),
models the part of the flow that originates from the arrival of the platooned vehicles,

qub (t) =
{
V σl, tuξ ≤ t ≤ tuξ + lξ

V , ξ ∈ {1, . . . ,Ξ},
0, otherwise,

where lξ is the length of platoon ξ when it is taking a single lane. We assume
that each platoon will approach the bottleneck taking up one lane, thus its density
will be equal to the critical density per lane σl. The second part consists of the
background traffic travelling at free flow speed V ,

qVb (t) =

q
out
1

(
x1(t0)+V t−Xb

V−u1

)
, t < tu1 ,

qout
ξ

(
xξ(t0)+V t−Xb

V−uξ

)
, tuξ−1 ≤ t < tuξ , ξ ∈ {2, . . . ,Ξ},

originating from the discharging flow of the queue at one of the platoons, i.e., the
traffic flow overtaking one of the platoons. If the contribution of platooned vehicles
to the queue at the stationary bottleneck is negligible, we may set qub (t) = 0 and
qin
b (t) = qVb (t).

The evolution of the queue at platoon ξ is given by

ṅξ(t) = V − uξ
V

(
qin
ξ (t)− qout

ξ (t)
)
, 0 ≤ t ≤ tuξ ,
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for ξ = 1, . . . ,Ξ, which is defined until time tuξ , when the platoon reaches the
bottleneck and their queues merge,

nb(tuξ+) = nb(tuξ ) + nξ(tuξ ).

The outflow from a queue at a platoon is defined the same way as with the queue
at the stationary bottleneck,

qout
ξ (t) =

{
min{qin

ξ (t), qcap
ξ (t)}, nξ(t) = 0,

qdis
ξ (t), nξ(t) > 0,

for ξ = 1, . . . ,Ξ, except here we assume qdis
ξ (t) = qcap

ξ (t), and allow qcap
ξ (t) to vary

in time and be used as a control input. The inflow to the platoons is given by

qin
ξ (t) = qout

ξ+1

(
(V − uξ)t− xξ + xξ+1

V − uξ+1

)
,

for ξ = 1, . . . ,Ξ− 1, and the inflow to platoon Ξ is given as an external input.
In case there are on- and off-ramps, their influence can be added to qVb (t) and

qin
ξ (t). Denoting by qr

k(t) the inflow from an on-ramp (if qr
k(t) > 0), or outflow to

an off-ramp (if qr
k(t) < 0), at position Xr

k, k ∈ K, we may write

qVb (t) = q
V \r
b (t) +

∑
k∈Kb(t)

qr
k

(
t− Xb −Xr

k

V

)
, (4.35)

q
V \r
b (t) =

q
out
1

(
x1(t0)+V t−Xb

V−u1

)
, t < tu1 ,

qout
ξ

(
xξ(t0)+V t−Xb

V−uξ

)
, tuξ−1 ≤ t < tuξ , ξ ∈ {2, . . . ,Ξ},

Kb(t) =
{
k ∈ K

∣∣∣∣t /∈ [tVξ (Xr
k − xξ(t0) + uξt0

uξ

)
, tuξ

]
, ξ ∈ {1, . . . ,Ξ}

}
and for the inflow to the queue at platoons,

qin
ξ (t) = q

in\r
ξ (t) +

∑
k∈Kξ(t)

qr
k

(
t− Xr

k − xξ(t)
V

)
,

q
in\r
ξ (t) = qout

ξ+1

(
(V − uξ)t− xξ(t0) + xξ+1(t0)

V − uξ+1

)
,

Kξ(t) =
{
k ∈ K

∣∣∣∣xξ+1

(
t− xξ(t)−Xr

k

V

)
≤ Xr

k

}
.

Here, Kd(t) are sets of indices of all on- and off-ramps with positions Xr
k < Xb

between the bottleneck (in case of Kb(t)) or platoon ξ (in case of Kξ(t)), and the
place where their inflows would originate from. Note that qr

k(t) will depend on the
local traffic conditions around Xr

k at time t. Furthermore, since a portion of the
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queue at the platoon will also leave the road via the off-ramp, we reduce nξ at the
time when the platoon reaches it,

nξ(t+) = nξ(t)− nr,k
ξ (t), xξ(t) = Xr

k,

and the part of the queue nξ(t) that leaves the highway, nr,k
ξ (t), depends on the

length of the queue at the platoon and the ratio of off-ramp-bound vehicles in it.
In order to initialize the model at some time t = t0, we define the initial con-

ditions nb(t0) and nξ(t0), ξ = 1, . . . ,Ξ. We also need to know the past values of
outflows from the platoons qout

ξ (t), and the past flows of any on- and off-ramps
present on the road qr

k(t). We need to know qout
ξ (t) for time t0 − τ0,ξ(t0) ≤ t < t0,

where τ0,ξ(t0) is given by

τ0,ξ(t0) =
{
Xb−xξ(t0)
V−uξ , ξ = 1,

xξ−1(t0)−xξ(t0)
V−uξ , ξ ∈ {2, . . . ,Ξ} ,

and qr
k(t) for time t0 − τ r

0,k(t0) ≤ t < t0, where τ r
0,k(t0) is given by

τ r
0,k(t0) =


Xb−Xr

k

V , x1(t0) > Xr
k,

xξ(t0)−Xr
k

V , xξ+1(t0) ≤ Xr
k < xξ(t0), ξ ∈ {1, . . . ,Ξ− 1} ,

xΞ(t0)−Xr
k

V , Xr
k < xΞ(t0).

In case we want to initialize the model using the traffic density profile at time t0,
ρ(x, t0), we may do so by setting nb(t0) = 0, nξ(t0) = 0, ξ = 1, . . . ,Ξ, and

qout
ξ (t) = V ρ (xξ(t0) + (V − uξ)(t0 − t), t0) , ξ = 1, . . . ,Ξ, (4.36)

with the ramp flows qr
k(t) = 0, t ≤ t0. Note that (4.36) may yield unrealistic values

for overtaking flows, as the flows from the ramps would in reality have played a
role in shaping ρ(x, t0), but this will have no effect on the state of the system for
t > t0.

4.4.2 Coordinate transformation for simplifying delay
It is apparent that the introduction of moving bottlenecks to the tandem queueing
model significantly increases its complexity, even in case their speeds are constant.
However, in this case, the model can be greatly simplified by adopting a coordinate
transformation

τξ = xξ(t0)−Xb − uξt0 + V t

V − uξ
,

t = V − uξ
V

τξ + Xb − xξ(t0) + uξt0
V

,
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Figure 4.12: Illustration of the queueing model with t0 = 0. The dotted lines
represent free flow propagation. Platoon trajectories are shown in blue. As shown
in the figure, at t = t′, inflow to the bottleneck is qin

b (t′) = V ρ(X ′). At t = t′′, inflow
to the bottleneck is qin

b (t′′) = q̃out
1 (t′′), and inflows to the platoons qin

1 (t′′) = q̃out
2 (t′′),

and qin
2 (t′′) = V ρ(t′′). Ramp k will affect qin

2 (t) for Xb−Xr
k

V < t ≤ tu2 , qin
3 (t) while

xu3 (t) ≥ Xr
k and t < tu3 , and qin

b (t) for the rest of time.

for each platoon ξ, which yields

dnξ(t(τξ))
dτξ

= qin
ξ (t(τξ))− qout

ξ (t(τξ)), tVξ (t0) ≤ τξ ≤ tuξ .

An illustration of the derivation of the coordinate-transformed model is given in
Figure 4.12.

Defining the transformed-time platoon queues, and inflows and outflows from
them,

ñξ(τξ) = nξ(t(τξ)),
q̃in
ξ (τξ) = qin

ξ (t(τξ)),
q̃out
ξ (τξ) = qout

ξ (t(τξ)),

we may write

˙̃nξ(t) = q̃in
ξ (t)− q̃out

ξ (t), t ≤ tuξ
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for each ξ = 1, . . . ,Ξ. The inflow to the queue at the stationary bottleneck and at
platoons can now be simplified to

q
V \r
b (t) =

{
q̃out
1 (t) , t < tu1 ,

q̃out
ξ (t) , tuξ−1 ≤ t < tuξ , ξ ∈ {2, . . . ,Ξ},

q̃
in\r
ξ (t) = q̃out

ξ+1(t),

and the outflow from each platoon becomes

q̃out
ξ (t) =

{
min

{
q̃in
ξ (t), q̃cap

ξ (t)
}

ñξ(t) = 0,
q̃cap
ξ (t), ñξ(t) > 0.

On- and off-ramps k ∈ K are included in the same way as when dealing in
absolute time, by adding their influence to qVb (t) and q̃in

ξ (t). Denoting by q̃r
k(t) the

transformed-time ramp flow,

q̃r
k(t) = qr

k

(
t− Xb −Xr

k

V

)
,

we may write

qVb (t) = q
V \r
b (t) +

∑
k∈K̃b(t)

q̃r
k(t),

K̃b(t) =
{
k ∈ K

∣∣∣∣t /∈ [t0 + Xr
k − xξ(t0)
uξ

+ Xb −Xr
k

V
, tuξ

]
, ξ ∈ {1, . . . ,Ξ}

}
and for the inflow to the queue at platoons,

q̃in
ξ (t) = q̃

in\r
ξ (t) +

∑
k∈K̃ξ(t)

q̃r
k(t),

K̃ξ(t) = {k ∈ K |x̃ξ+1(t) ≤ Xr
k } ,

where x̃ξ(t) is the position of platoon ξ at transformed-time t,

x̃ξ(t) = V xξ(t0)− uξXb

V − uξ
+ V uξ
V − uξ

(t− t0).

Again, when a platoon passes an off-ramp, its queue ñξ is reduced,

ñξ(t+) = ñξ(t)− ñr,k
ξ (t), x̃ξ(t) = Xr

k,

as a part of the vehicles leave the road and the queue via the off-ramp.
Initializing the model follows similar rules as in the case when absolute time was

used. In order to initialize the model at absolute time t0, we need initial conditions
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nb(t0) and ñξ(tVξ (t0)), ξ = 1, . . . ,Ξ, in coordinate-transformed time. We need to
know q̃out

ξ (t) for coordinate-transformed time tVξ−1(t0) ≤ t < tV1 (t0), where we define
tV0 (t0) = t0, and q̃r

k(t) for coordinate-transformed time tVξk(t0) ≤ t < t0 + Xb−Xr
k

V ,
where ξk is the number of the first platoon downstream of the ramp k at absolute
time t0, xξ+1(t0) < Xr

k ≤ xξ(t0), or ξk = 0 if Xr
k > x1(t0). If the model is

being initialization based on the traffic density profile at time t0, ρ(x, t0), we set
ñb(t0) = 0, ñξ(tVξ (t0)) = 0, ξ = 1, . . . ,Ξ, and

q̃out
ξ (t) = V ρ (Xb − V (t− t0), t0) , ξ = 1, . . . ,Ξ,

with the ramp flows q̃r
k(t) = 0, t ≤ t0 + Xb−Xr

k

V .

4.4.3 Validation
Finally, we validate the proposed tandem queueing model with moving bottlenecks
against microscopic traffic simulation done in SUMO, and macroscopic simulation
in multi-class CTM, using an appropriate example scenario. We study a 4 km
stretch of road with a lane drop bottleneck at the 3.75 km mark. At the beginning
of simulation, dense traffic enters the road, followed by sparser traffic and two
controllable platoons, initially taking one lane . Once dense traffic reaches the
bottleneck, congestion starts building up. At time t = 144 s, both platoons are
slowed down and commanded to restrict the overtaking flow by taking two lanes.
This causes the congestion at the bottleneck to be dissipated quicker, and the
platoons go back to taking one lane at time t = 216 s, allowing the congestion that
built up behind them to dissipate.

Traffic density profiles in multi-class CTM and in SUMO are shown colour-
coded in Figure 4.13. The bottleneck is indicated by the vertical dashed red line,
and times t = 144 s and t = 216 s by horizontal dashed red lines. In case of the
SUMO simulation, the traffic density is reconstructed according to vehicle trajecto-
ries, and resembles the traffic density expected from the multi-class CTM. Finally,
in Figure 4.14 we show the comparison between the simulated queue length pro-
files, and the queue length prediction made using the proposed queueing prediction
model. The prediction is made at time t = 144 s, using currently available traffic
density data from the multi-class CTM simulation. We can see that the queue
lengths exhibit similar behaviour. The queue at the bottleneck grows at first, and
is then dissipated by the platoons’ control action. The queues at the platoons grow
while they take two lanes, from t = 144 s to t = 216 s, and then decrease once
they return to single lane formation. The first platoon is not able to fully discharge
the congestion that built up behind it, so this congestion gets transferred to the
queue at the bottleneck around t = 230 s. The discrepancies between the three
queue profiles are mostly due to the difference in queue length definitions, using
traffic density thresholds in case of multi-class CTM, and speed thresholds in case
of SUMO, as well as due to stochasticity in lane-changing behaviour in case of the
SUMO simulation.
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Figure 4.13: Traffic density profiles comparison. Warmer colours represent denser
traffic, solid red lines are the trajectories of platoons, and dashed black lines are
the trajectories of individual vehicles in SUMO.

Figure 4.14: Queue lengths comparison. Queue at the stationary bottleneck is
shown in blue, queue at the first platoon in dashed red, and queue at the second
platoon in dotted black.
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4.5 Front tracking transition system model

Due to the complexities of dealing with PDE traffic models, it can be difficult to
find analytic solutions to the Cauchy problem of the LWR model for all but the sim-
plest flux functions. Numerical approaches, such as the Godunov scheme, have been
applied, resulting in approximation errors, and an unfavourable trade-off between
the spatial resolution and the number of states. Efficient Lax-Hopf based grid-free
solution algorithms have been developed to deal with this problem [198, 162], yield-
ing an exact solution, but while they can model the influence of moving bottlenecks
[161], they do not provide a straightforward way of implementing capacity drop or
other similar phenomena. Therefore, in this section, we propose a cell-free modelling
approach that can handle stop-and-go waves, models the influence of moving bot-
tlenecks, can incorporate Lagrangian measurements, and has a structure that yields
itself to on-line model learning, the front tracking transition system model [31, 29].
The model represents a formalization of the front tracking numerical method for
solving conservation laws, given as a transition system. We choose to model the
capacity drop due to stop-and-go waves by limiting the stop-and-go wave propa-
gation speed, which is empirically observed to be approximately constant [44]. To
that end, we define a new type of weak solution, the wave-speed-bounded solution,
which breaks the entropy condition at the stop-and-go wave boundary.

4.5.1 Front tracking solutions of the LWR model with zones of
different flux functions

We are interested in finding the entropy solution to

∂tρ(x, t) + ∂xQ(ρ(x, t), x, t) = 0, (4.37)

with piecewise constant initial traffic density ρ(x, 0),

ρ(x, 0) =


ρ1, x < X1,...
ρi, Xi−1 < x < Xi,...
ρN+1, x > XN ,

(4.38)

and the flux function Q(ρ(x, t), x, t) given by

Q(ρ(x, t), x, t) =


Q1(ρ(x, t)), x < XQ

1 (t),...
Qj(ρ(x, t)), XQ

j−1(t) < x < XQ
j (t),...

QNQ+1(ρ(x, t)), x > XQ
NQ

(t).

(4.39)

Here XQ
j (t) are piecewise linear and continuous functions, ẊQ

j (t) = ΛQj (t), with
piecewise constant ΛQj (t), and XQ

j (t) ≤ XQ
j+1(t). Effectively, the space is divided
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into zones [XQ
j (t), XQ

j+1(t)] where the dynamics of the traffic are described by dif-
ferent flux functions Qj(ρ(x, t)), e.g. zones where the road has different number of
lanes. Each flux function Qj(ρ), j = 1, . . . , NQ, is a piecewise linear continuous
function of the form

Qj(ρ) =



Vj,1ρ, 0 ≤ ρ ≤ σj,1,
Qj(σj,1) + Vj,2(ρ− σj,1), σj,1 < ρ ≤ σj,2,...
Qj(σj,i−1) + Vj,i(ρ− σj,i−1), σj,i−1 < ρ ≤ σj,i,...
Qj(σj,mj ) + Vj,mj (ρ− σj,mj ), σj,mj < ρ ≤ σj,mj+1,

0, ρ > σj,mj+1,

(4.40)

with Qj(σj,mj ) + Vj,mj (σj,mj+1 − σj,mj ) = 0. We denote values of Qj at the
breakpoints qσj,i = Qj(σj,i), the set of breakpoints

ΣQj =
{
σj,1, . . . , σj,mj+1

}
,

and the set of slopes between the breakpoints as

VQj =
{
Vj,1, . . . , Vj,mj

}
.

The minimum and maximum slopes are V min
Qj

= min
{
VQj

}
and V max

Qj
= max

{
VQj

}
,

respectively. Note that the maximum traffic speed vmax
Qj

need not be the same as
the maximum slope, vmax

Qj
= max

i
qσj,i/σj,i ≤ V max

Qj
, although in practice, most flux

functions are concave for ρ ∈ [0, σmax
Qj

], where σmax
Qj

= arg max
ρ

Qj(ρ). The set of all
functions Qj that satisfy these requirements is denoted Q.

Front tracking has long been used as a method for finding entropy solutions to
PDE traffic models [215, 161, 206]. It corresponds to solving a sequence of Rie-
mann problems, to find the entropy solution for piecewise-constant initial conditions
ρ(x, 0), assuming piecewise-linear flux functions. The entropy solution to the LWR
model (4.37), with flux functions (4.39), and initial conditions (4.38) is of the form

ρ(x, t) =


ρ′1, x < X ′1 + λ1t,...
ρ′i, X ′i−1 + λi−1t < x < X ′i + λit,...
ρ′N ′+1, x > X ′N ′ + λN ′t,

(4.41)

with λi−1 ≤ λi wherever X ′i−1 = X ′i. Here λi, i = 1, . . . , N ′ are the transition
speeds, defined by the Rankine-Hugoniot condition

λi =
Q(ρ′i+1)−Q(ρ′i)

ρ′i+1 − ρ′i
.
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The solution consists of zones of constant density separated by fronts X ′i + λit
where we have a discontinuity in the density. This solution holds for t ∈ [0, τ ],
where τ is the minimum time when two fronts collide, X ′i−1 + λi−1τ = X ′i + λiτ ,
with λi−1 > λi. To get the solution after that time, we solve a new composite
Riemann problem for initial conditions ρ(τ, x), and by iterating this step, we can
obtain an exact entropy solution ρ(x, t) to the initial value problem (3.5), (4.38)
for any t. Due to Corollary 2.8 from [206], the front tracking method yields exact
entropy solutions in case when the flux function is continuous and piecewise-linear
and initial conditions piecewise constant, which is the case we consider here.

Since ρ(x, 0) is piecewise constant, we have ∂xQ(ρ(x, t), x, t) = 0 everywhere
except at discontinuities of ρ(x, t), and at discontinuities of Q(ρ(x, t), x, t). There-
fore, the the process of finding (4.41) can be decomposed into finding the solutions
to the Riemann problems at each discontinuity. A Riemann problem, is an initial
value problem of (4.37) with

ρ(x, 0) =
{
ρ−, x < 0,
ρ+, x > 0,

(4.42)

and

Q(ρ, x, t) =
{
Q−(ρ), x < Λt,
Q+(ρ), x > Λt,

(4.43)

where Λ is given as a parameter of the problem. Note that the space coordinate
was shifted so that the discontinuity is at x = 0.

If the discontinuity is only in ρ(x, t), and Q−(ρ) = Q+(ρ), this Riemann prob-
lem corresponds to the basic form of finding the entropy solution to the LWR
model, which is well-known in the literature. In the following, we first discuss this
case, and then extend the results by defining a new type of weak solution, the
wave-speed-bounded solution, for which we impose bounds on the wavefronts that
originate from the discontinuity. Note that this solution can violate the entropy
condition, but it allows us to model some additional traffic phenomena. Finally, we
discuss the solutions at the boundary between two different flux functions, when
Q−(ρ) 6= Q+(ρ).

Entropy solution

When finding the entropy solution to Riemann problems (4.37), (4.42), (4.43),
we need to calculate lower convex envelope or upper concave envelope of the flux
function if ρ− < ρ+ or ρ− > ρ+, respectively. We define these envelopes

Q̃
ρ− ρ+

Q (ρ) =
{

Q̆
ρ− ρ+

Q (ρ), ρ− < ρ+,
“Q

ρ− ρ+
Q (ρ), ρ− > ρ+,

Q̆
ρ− ρ+

Q (ρ)=sup
{
q(ρ) : q(ρ)≤Q(ρ), q convex, ρ∈ [ρ−, ρ+]

}
,
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“Q
ρ− ρ+

Q (ρ)=inf
{
q(ρ) :q(ρ)≥Q(ρ), q concave, ρ∈ [ρ+, ρ−]

}
,

on [ρmin, ρmax], ρmin = min(ρ−, ρ+), ρmax = max(ρ−, ρ+). We follow this notation
in further text, with ˜ signifying ˘ (lower convex envelope) if ρ− < ρ+, or “ (upper
concave envelope) if ρ− > ρ+.

Note that Q̃
ρ− ρ+

Q (ρ) also is a continuous piecewise-linear function on [ρmin, ρmax]
and it can be defined in a similar way as (4.40),

Q̃(ρ) =


Q(ρmin) + Ṽ0(ρ− ρmin), ρmin ≤ ρ ≤ σ̃1,

Q(σ̃1) + Ṽ1(ρ− σ̃1), σ̃1 ≤ ρ ≤ σ̃2,...
Q(σ̃m̃) + Ṽm̃(ρ− σ̃m̃), σ̃m̃ ≤ ρ ≤ ρmax,

omitting superscript ρ− and ρ+ and subscript Q for better readability, and with
Q̃(ρmax) = Q(ρmax). We write the column vector of slopes of such function Ṽ

ρ− ρ+
Q ,

ordered from Ṽ0 to Ṽm̃ for ρ− < ρ+ or from Ṽm̃ to Ṽ0 for ρ− > ρ+. All breakpoints
of Q̃, σ̃i, are also breakpoints of Q, σi, on [ρmin, ρmax], and they can be determined
using efficient convex hull algorithms. Finally, we denote the sorted (ascending if
ρ− < ρ+ and descending if ρ− > ρ+) column vector of elements of Σ̃ρ− ρ+

Q , including
ρ− and ρ+, as Σ̃ρ− ρ+

Q , and its length as m̃
ρ− ρ+

Q . Same as with the envelopes Q̃
ρ− ρ+

Q (ρ),
Σ̃ρ− ρ+
Q will consist of breakpoints of the lower convex or upper concave envelope,

depending on whether ρ− or ρ+ is larger.
The solution to the Riemann problem is then given by

ρ(x, t) =



ρ−, x < e>1 Ṽ t,

e>1 Σ̃, e>1 Ṽ t < x < e>2 Ṽ t,...
e>m̃Σ̃, e>m̃Ṽ t < x < e>m̃−1Ṽ t,

ρ+, x > e>m̃−1Ṽ t,

(4.44)

again omitting superscript and subscript symbols, and with ei as the standard basis
vector of appropriate dimensions with 1 as the i-th element and 0 elsewhere.

Wave-speed-bounded solution

Depending on the shape of the flux function, the entropy solution may contain
solutions that do not reflect the real-world traffic behaviour and phenomena. One
such phenomenon are stop-and-go waves, caused by the difference between decel-
eration when entering congestion, and acceleration when leaving it. We can model
this effect by enforcing bounds on wavefront speed, defining a new type of weak
solution to the Riemann problem.

Let [W̆−, W̆+] and [ “W−, “W+] be the admissible ranges of wavefront speeds for
compression (if ρ− < ρ+) and rarefaction (if ρ− > ρ+), respectively. In case
W̆− ≤ min{VQ} ≥ “W− and W̆+ ≥ max{VQ} ≤ “W+, the entropy solution will never
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violate the wave speed bounds, and it thus coincides with the wave-speed bounded
solution. Otherwise, we define Ṽ− = min Ṽ

ρ− ρ+
Q and Ṽ+ = max Ṽ

ρ− ρ+
Q , and if

Ṽ− < W̃− or Ṽ+ > W̃+, we need to look for a solution that fulfils the wavefront
speed constraints, while minimally violating the entropy condition. The wave-
speed-bounded solution is again given by (4.44), with

Σ̃ρ− ρ+
Q,W=



[
ρ− Σ̃ρ̃W− ρ̃W+

Q

>
ρ+

]>
, Ṽ− < W̃−, Ṽ+ > W̃+[

ρ− Σ̃ρ̃W− ρ+

Q

>]>
, Ṽ− < W̃−, Ṽ+ ≤ W̃+[

Σ̃ρ− ρ̃W+
Q

>
ρ+

]>
, Ṽ− ≥ W̃−, Ṽ+ > W̃+

Σ̃ρ− ρ+
Q , Ṽ− ≥ W̃−, Ṽ+ ≤ W̃+

Ṽ
ρ− ρ+

Q,W=



[
W̃− Ṽ

ρ̃W− ρ̃W+
Q

>
W̃+

]>
, Ṽ− < W̃−, Ṽ+ > W̃+[

W̃− Ṽ
ρ̃W− ρ+

Q

>]>
, Ṽ− < W̃−, Ṽ+ ≤ W̃+[

Ṽ
ρ− ρ̃W+

Q

>
W̃+

]>
, Ṽ− ≥ W̃−, Ṽ+ > W̃+

Ṽ
ρ− ρ+

Q , Ṽ− ≥ W̃−, Ṽ+ ≤ W̃+

where we define the densities

“ρW− =max. ρ s.t.ρ<ρ−,
dQ(ρ)

dρ ≥
“W−,

Q(ρ)−Q(ρ−)
ρ−ρ−

=W̃−,

“ρW+ =min. ρ s.t.ρ>ρ+,
dQ(ρ)

dρ ≤
“W+,

Q(ρ)−Q(ρ+)
ρ−ρ+

=W̃+,

ρ̆W− =min. ρ s.t.ρ>ρ−,
dQ(ρ)

dρ ≥
“W−,

Q(ρ)−Q(ρ−)
ρ−ρ−

=W̃−,

ρ̆W+ =max. ρ s.t.ρ<ρ+,
dQ(ρ)

dρ ≤
“W+,

Q(ρ)−Q(ρ+)
ρ−ρ+

=W̃+.

Note that the resulting solution may be non-monotone in density, since ρ̃W− and
ρ̃W+ might lie outside of [min {ρ−, ρ+} ,max {ρ−, ρ+}], or might be differently ordered
than ρ− and ρ+. The entropy condition will only be violated at the discontinuities
between ρ− and ρ̃W− , and ρ+ and ρ̃W+ . In order to model stop-and-go waves with
capacity drop, it is enough to use “W−.

Flux function boundary solution

Stationary and moving bottlenecks are modelled by using different flux functions
in different regions, and we study the evolution of traffic conditions around a bot-
tleneck by solving a Riemann problem (4.37), (4.42), (4.43), with Q−(ρ) 6= Q+(ρ).
In order to find the weak solution, the propagation speed of the boundary between
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two flux functions Λ needs to be defined first. Then, we find the solution that
maximizes the flow over the boundary between two regions, while satisfying the
Rankine-Hugoniot condition across the boundary, and yielding entropy solutions
inside both regions. The solution with initial conditions (4.42) and flux function
(4.43) can thus be split into two parts, consisting of Riemann problems between ρ−
and ρ′−, and between ρ′+ and ρ+. The solutions to these problems both need to be
constrained to only have discontinuities inside the zones of Q− (x < Λt) and Q+
(x > Λt), respectively. The Rankine-Hugoniot condition at the boundary between
the two flux functions

Q+(ρ′+)−Q−(ρ′−) = Λ
(
ρ′+ − ρ′−

)
,

can be rewritten in terms of the flow over the boundary ω,

ω = Q−(ρ′−)− Λρ′− = Q+(ρ′+)− Λρ′+.

Boundary densities ρ′− and ρ′+ both depend on ρ−, ρ+, Q− and Q+, and are given
as optimizers of the optimization problem

maximize
ρ′−,ρ

′
+

ω

s.t. Q+(ρ′+)−Q−(ρ′−) = Λ(ρ′+ − ρ′−),
Ṽ

ρ− ρ′−
Q−,W

< Λ,
Ṽ

ρ′+ ρ+
Q+,W

> Λ,

(4.45)

so that the flow over the boundary ω is maximized, under specified constraints.
For most simple flux functions used in practice, solving this maximization prob-

lem can be done explicitly. Since optimal ρ′− and ρ′+ will always be such that either
ρ′− ∈ ΣQ− ∪ {ρ−} or ρ′+ ∈ ΣQ+ ∪ {ρ+}, the problem can be solved by forming a
set of all possible pairings of (ρ′−, ρ′+) that satisfy the Rankine-Hugoniot condition,
and then checking the second and third constraint for each of them, in order of de-
scending boundary overtaking flow, so that the first pair to satisfy these constraints
is the optimizer.

Another type of boundary that we consider is the one that arises when we
force the density on one side to be equal to some externally defined value,
ρ(x, t) = F−, x < λt or ρ(x, t) = F+, x > λt. We write F± 6= � for those sides
where the density is forced, and F± = � where it is not forced. In this case, the
dynamics of traffic on the forced side are ignored, and the forced traffic density
instead acts as a boundary condition for the other side, and the solution is given as

minimize
ρ′+

∣∣ρ′+ − F−∣∣
s.t. Q+(ρ′+)−Q+(F−) = λ(ρ′+ − F−),

Ṽ
ρ′+ ρ+

Q+,W
> Λ,
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if F− 6= � and F+ = �, i.e. the density upstream is forced, or
minimize

ρ′−

∣∣ρ′− − F+
∣∣

s.t. Q−(F+)−Q−(ρ′−) = λ(F+ − ρ′−),
Ṽ

ρ− ρ′−
Q−,W

< Λ,

if F− = � and F+ 6= � and the density downstream is forced. Alternatively, we
may define special rules for handling the behaviour at the boundary between two
flux functions, e.g. when a moving bottleneck moves from a zone of one capacity
to a zone of different capacity.

We may also model other traffic phenomena by introducing additional con-
straints in (4.45). For example, capacity drop can be captured through adding
constraint

Q−(ρ′−) ≤ Q+(σΛ−β
+ ) + (Λ− β)(ρ′− − σ

Λ−β
+ ), (4.46)

where β ≥ 0 is the capacity drop slope parameter, and σΛ−β
+ is the point at which

a line with slope Λ− β is tangent to flux function Q+, given as

σΛ−β
+ = arg max

ρ∈ΣQ+

Q+(ρ) + (Λ− β)ρ.

Setting β = 0 corresponds to the case with no capacity drop. Note that if this
constraint is imposed on (4.45), the optimal ρ′− may also be given at the boundary
of the new constraint (4.46), with equality instead of inequality. Parameter β has
no physical meaning, and the severity of capacity drop will depend on the shapes
of Q− and Q+.

Solution example

We will demonstrate the procedure of finding the front tracking solution on an
example with initial conditions ρ(x, 0) = ρ−, x < 0 and ρ(x, 0) = 0, x > 0, and flux
function

Q(ρ, t, x) =
{
Q−(ρ), x < 0 ∨ t > t′,

Q+(ρ), x > 0 ∧ t < t′,

where Q± are parametrized by Σ− =
[
σ−1 σ−2

]>, Σ+ = (Σ−)/2, V± = [V1 V2]>,
and the only restricting wave speed bound is “W− < V2. This setup corresponds to
the situation at a bottleneck removed at time t = t′. The numerical values of all
parameters are given in Table 4.1.

The solution is shown in Figure 4.15. For 0 ≤ t ≤ t′, the solution consists of
the flux function boundary solution,

ρ(x, t) =


ρ−, x < λ1t,

ρc, λ1t < x < 0,
σ+

1 , 0 < x < V1t,

0, V1t < x,
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Figure 4.15: Example solution shown as a traffic density profile (top, traffic density
ρ(x, t) is colour-coded, with warmer colours representing higher density), and on
the flux functions (bottom).

V± Σ− “W− ρ− ρc ρd λ1[
1
−0.5

] [
0.2
0.6

]
−0.4 0.14 0.4 0.1857 −0.1538

Table 4.1: Parameters of the example solution.
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with λ1 = (Q−(ρc) − Q−(ρ−))/(ρc − ρ−). Note that the congestion of density
ρc starts accumulating at the bottleneck, Q+(σ+

1 )−Q−(ρc) = σ+
1 − ρc at t = 0.

Next, at time t′, the bottleneck is removed, Q− becomes the global flux function,
Q(ρ(x, t), x, t) = Q−(ρ(x, t)), t > t′, and the solution is

ρ(x, t) =



ρ−, x < λ1t,

ρc, λ1t < x < “W−(t− t′),
ρd, “W−(t− t′) < x < V1(t− t′),
σ+

1 , V1(t− t′) < x < V1t,

0, V1t < x,

Note that since we have Ṽ
ρc σ+

1
Q−

< “W−, the wave-speed-bounded solution will differ
from the entropy solution. Finally, the congestion is dissipated and the solution for
t > tc is

ρ(x, t) =


ρ−, x < xc + V1(t− tc),
ρd, x < xc + V1(t− tc) < x < V1(t− t′),
ρd, V1(t− t′) < x < V1t,

0, V1t < x.

4.5.2 Model formulation
The described procedure, with continuously changing solution between two com-
posite Riemann problem solving instances and jumps resulting from them, lends
itself to a transition system formulation. We follow the transition system formu-
lation from the hybrid systems literature and given in [216]. The evolution of the
front tracking solution to the scalar conservation is represented by the execution
of the transition system given by the quadruple F = (X ,X 0, U,→). We call this
transition system the front tracking transition system model (FTTSM), and will
define it in this section.

States and initial states

The set of states X = (N, t, z̄, ρ̄, Q̄,W,R) is composed of:

• Number of active fronts: N ∈ N, N ≤ Nmax

• Time: t ∈ R

• Front positions: z̄ ∈ RN
max , zi ≤ zi+1 for i = 1, . . . , N

• Traffic densities: ρ̄ ∈ RN
max+1
≥0

• Flux functions: Q̄ ∈ QNmax+1, where Q is a set of flux functions

• Wavefront speed boundaries: W ∈ R4,



4.5. FRONT TRACKING TRANSITION SYSTEM MODEL 99

ρ1, Q0ρ1, Q0

λ1

ρ2, Q0ρ2, Q0

λ2 = λ−pl

ρ3, Qplρ3, Qpl

λ3 = λ+
pl

ρ4, Q0ρ4, Q0

λ4

ρ5, Q0ρ5, Q0

λ5

ρ6, Q0ρ6, Q0

λ6 = “W− < 0
ρ7, Q0ρ7, Q0

z1 z2 z3 z4 z5 z6

Figure 4.16: An illustration of the state of FTTSM. Flux function Q0 describes the
behaviour of the background traffic, while flux function Qpl describes the traffic
flowing past a truck platoon, ξpl > ξ0. The downstream end of a stop-and-go wave
propagates upstream at speed defined by wavefront speed boundary “W−.

• Set of rules: R.

The four wavefront speed boundaries are written together as a quadruple,
W =

(
W̆−, W̆+, “W−, “W+

)
. Each flux function can be described by a quintuple

q = (V,Σ,Λ±, ξ, F ), consisting of:

• Slopes and breakpoints: (V,Σ) ∈ L

• Boundary speeds: Λ± ∈ R2

• Identifier: ξ ∈ Z

• Forced density: F ∈ R ∪ {�},

where the set of allowed combinations of slopes and breakpoints is

L=
{
V ∈Rm,Σ∈Rm+1

>0 |σ1<. . .<σm+1, . . . q
σ
Q,i ≥ 0, i = 1, . . .m, qσQ,m+1 = 0

}
,

qσQ,i=qσQ,i−1+Vi(σi − σi−1), i=2, . . . ,m+1, qσQ,1 =V1σ1,
(4.47)

without any further constraints on the shape of the flux function. A rule r ∈ R
consists of two parts, the premise r∵ =

(
Q∵
−, Q

∵
+
)
, Q∵
− 6= Q∵

+, and the consequent
r∴ =

(
Q∴,Λ±∴

)
, r = (r∵, r∴). We require the rules to be unequivocal, i.e. no two

rules in R can have the same premise, r∵i = r∵j ⇐⇒ i = j. An illustrations of the
states of FTTSM is shown in Figure 4.16.

We denote the traffic flow given traffic density ρ and thus defined flux function
q as q(ρ) and calculate it as (4.40), with Vi and σi given in V and Σ, respectively.
Boundary speeds Λ± = (λ−, λ+) represent the propagation speed of the upstream
and downstream boundary of the region of q. The identifier ξ serves to differentiate
flux functions, and is unique for each different flux function. We also use it to define
the precedence when determining the propagation speed of the boundary between
regions with different flux functions. Namely, considering a boundary between flux
function qi 6= qi+1, the propagation speed is given by

λi =
{
λ+
i , ξi > ξi+1,

λ−i+1, ξi < ξi+1.
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We define the active fronts and densities

z =
[
z1 . . . zN

]> =
[
IN 0n×Nmax−N

]
z̄

ρ =
[
ρ1 . . . ρN+1

]> =
[
IN+1 0N+1×Nmax−N

]
ρ̄,

to be all the states required to reconstruct the full traffic density profile ρ(x, t) at
some time. Here 0m×n is a matrix of dimension m×n with 0 for all elements. The
maximum number of fronts Nmax can be taken large enough so that the number of
active fronts never exceeds it, but effectively, the dimension of active states will vary
as a part of the model dynamics. Furthermore, only the active fronts and densities,
along with flux functions Q = [Q1 . . . QN+1]> =

[
IN+1 0N+1×Nmax−N

]
Q̄, will

influence the behaviour of the system, so when describing the transitions, we only
define their updates, and the inactive states may take arbitrary values.

The set of initial states X 0 can be the same as the set of all states, but in that
case, we may be forced to take some number of Riemann transitions, described in
the following section, at t = 0. This can be counteracted by imposing additional
conditions on the set of initial states,

(zj+1>zj) ∨ ((zj+1 =zj) ∧ (λj≤λj+1)) , j = 1, . . . , N − 1, (?−)(
ρj 6= ρj+1, Σ̃ρj ρj+1

Qj ,W
= [ρj ρj+1]>

)
, if Qj = Qj+1, j = 1, . . . , N, (?∼)(

ρj = ρ′−, ρj+1 = ρ′+
)
, if Qj 6= Qj+1, j = 1, . . . , N, (? /)

ρj = Fj , if Fj 6= ∅, j = 1, . . . , N + 1, (? !)(
Qj+1 =Q∴,Λ±j+1 =Λ±∴

)
, if (∃r ∈ R)

(
r∵=(Qj , Qj+1)

)
, j = 1, . . . , N, (?R)

where ρ′−(ρj , ρj+1, Qj , Qj+1) and ρ′+(ρj , ρj+1, Qj , Qj+1) are given as the optimizers
from the solution described in Section 4.5.1. These conditions define the admissi-
ble set of states, and are also used to define guards of the transitions, as will be
described in the following subsection.

Given the current state X ∈ X of the transition system, the density function
ρ(x, t) can be reconstructed based on z1, . . . , zN and ρ1, . . . , ρN+1,

ρ(t, x) =


ρ1, x < z1,...
ρi, zi−1 < x < zi,...
ρN+1, x > zN .

Note that we use notation ρ(x, t) for the reconstructed function, and
ρ=[ρ1 . . . ρN+1]>for the vector of traffic densities.

Inputs and transitions

In this subsection, we will describe the various transitions that model the evolution
of the transition system. For each of the transitions, the states that do not change
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will be omitted from the description. The transitions are listed in order of increasing
priority, i.e., we first present the transitions that can only be taken if no other
transition can be taken, and end with transitions which do not depend on the
state of the system, only on exogenous inputs. We use notation ◦ to denote any
transition. Inputs to the system are considered in the transition system framework,
and they describe the passage of time and exogenous transitions.

Passage of time transition τ : The first transition we describe is the passage
of time, which describes the propagation of wavefronts between their interactions,
or until the externally provided goal time tend. This transition is taken if the state
X is in the guard set:

X ∈ Gτ = {X ∈ X |(?−), (?∼), (? /), (? !), (?R) τ ∈ [0, τ∗]} ,

i.e., the state is admissible (conditions (?) hold). Traffic densities ρ, number of
active states n and flux functions Q do not change in these transitions, so those
will be omitted from the description. Only the wavefront positions of active states
(i = 1, . . . , n) are changed. We define this transition by

(t, z) τ−→ (t′, z′)
t′ = t+ τ, z′ = z + Λτ

where Λ =
[
λ1 . . . λN

]>, and the wave speeds λi are given as

λi =


Qi+1(ρi+1)−Qi(ρi)

ρi+1−ρi , ξi = ξi+1,

λ+
i , ξi > ξi+1,

λ−i+1, ξi < ξi+1.

The maximum time shift τ∗ is the minimum of the time for which condition (?−)
is first violated,

τ∗z =min
{
zi+1 − zi
λi − λi+1

∣∣∣∣zi+1≥zi, λi>λi+1, i=1, . . . , N − 1
}

and the time to specified goal time τ∗end = tend − t, τ∗ = max {0,min {τ∗z , τ∗end}}.
Note that if t ≥ tend, X ′ = X.

Front interaction transition −i: A front interaction transition is taken
when two fronts interact (collide) and the state is in guard set

X ∈ G−i =
{
X ∈ X |¬(?−)i, (?−)j , j < i, (?∼), (? /), (? !), (?R)

}
,

where by ¬(?−)i we denote that the j = i-th condition in (?−) is violated. For all
transitions ◦ ∈ {−,∼, /, !,R}, we write X ∈ G◦ if X ∈ G◦i for any i. In this case the
position of wavefronts becomes equal, zi = zi+1 while their distance is decreasing,
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λi > λi+1. The front interaction transition corresponds to deactivating one state,

(N, z, ρ,Q) −i−−→ (N ′, z′, ρ′, Q′)
N ′= N − 1,

z′=
[
z1 . . . zi zi+2 . . . zN

]>
,

ρ′=
[
ρ1 . . . ρi ρi+2 . . . ρN+1

]>
,

Q′=
[
Q1 . . . Qi Qi+2 . . . QN+1

]>
.

If Qi 6= Qi+2, this transition is likely to cause condition (? /) to be violated, and
thus be followed by transition /i. The Total Variation of the traffic density is
nonincreasing through the transition,

T.V.(ρ′)− T.V.(ρ) = |ρi+2 − ρi| − |ρi+1 − ρi| − |ρi+2 − ρi+1| ≤ 0.

Internal Riemann transition ∼i: This transitions results from solutions to
Riemann problem given in Section 4.5.1, and it is taken when the state is in guard
set

X ∈ G∼i =
{
X ∈ X |¬(?∼)i, Qi = Qi+1, (?∼)j , j < i, (? /), (? !), (?R)

}
,

The transition can be described by

(N, z, ρ,Q) ∼i−−→ (N ′, z′, ρ′, Q′)
N ′ = N +m− 2, m = m̃

ρi ρi+1
Qi,W

z′=
[
z1 . . . zi−1 zi1>m−1 zi+1 . . . zN

]>
,

ρ′=
[
ρ1 . . . ρi−1 Σ̃ρi ρi+1

Qi,W

>
ρi+2 . . . ρN+1

]>
,

Q′=
[
Q1 . . . Qi−1 Qi1>m Qi+2 . . . QN+1

]>
.

Depending on ρi and ρi+1, the number of active states can decrease (if ρi = ρi+1),
increase, or stay the same.

Boundary Riemann transition /i: This transition can occur at interfaces
between zones with different flux functions and reflects the flux function boundary
solution from Section 4.5.1. It is taken when the state is in guard set

X ∈ G/i =
{
X ∈ X |¬(? /)i, Qi 6= Qi+1, (? /)j , j < i, (? !), (?R)

}
.

The transition can be described by

(N, z, ρ,Q) /i−→ (N ′, z′, ρ′, Q′)
N ′=N +m− +m+ − 2, m− = m̃

ρi ρ′−
Qi
, m+ = m̃

ρ′+ ρi+1
Qi+1

z′=
[
z1 . . . zi−1 zi1>m−+m+

zi+1 . . . zN
]>
,

ρ′=
[
ρ1 . . . ρi−1 Σ̃ρi ρ′−

Qi
> Σ̃ρ′+ ρi+1

Qi+1
> ρi+2 . . . ρN+1

]>
,

Q′=
[
Q1 . . . Qi−1 Qi1>m− Qi+11>m+

Qi+2 . . . QN+1
]>
,
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where densities ρ′− = ρ′−(ρi, ρi+1, Qi, Qi+1) and ρ′+ = ρ′+(ρi, ρi+1, Qi, Qi+1) are
obtained by solving the optimization problem (4.45), with ρ− = ρi, ρ+ = ρi+1,
Q− = Qi, and Q+ = Qi+1.

State forcing !i: This transition ensures that the density matches the forced
traffic density where Fi 6= ∅; is thus taken when the state is in guard set

X ∈ G!i =
{
X ∈ X |¬(? !)i, (? !)j , j < i, (?R)

}
,

and defined by
(ρ) !i−→ (ρ′)

ρ′i =
{
ρi, Fi = ∅,
Fi, Fi 6= ∅.

Rule-based transition Ri: We take a rule-based transition if the i-th con-
dition (?R) is violated, i.e. when the premise of some rule r ∈ R is satisfied,
(Qi, Qi+1) = r∵, and the consequent is not met, Qi+1 6= Q∴ ∨ Λ±i+1 6= Λ±∴ , and the
state is in guard set

X ∈ GRi =
{
X ∈ X |¬(?R)i, (?R)j , j < i

}
,

The transition can be described by

(N, z, ρ,Q) R(r)i−−−→ (N ′, z′, ρ′, Q′)
N ′ = N + 1,

z′ =
[
z1 . . . zi zi zi+1 . . . zN

]>
,

ρ′ =
[
ρ1 . . . ρi ρi ρi+1 . . . ρN+1

]>
,

Q′ =
[
Q1 . . . Qi Q∴ Qi+1 . . . QN+1

]>
,

Λ±k = Λ±∴ , ξk = ξ∴,

meaning that a zone with flux function Q∴ will be created, followed by potentially
changing the boundary speeds of that flux function everywhere.

For example, consider a road segment described by Q1 for x < 0 and Q2 for
x > 0. Let a moving bottleneck moving at speed um be described by flux function
Qm1 while it is in the Q1 zone, and by Qm2 while it is in the Q2 zone. Then the
traversal of the moving bottleneck over x = 0 may be modelled by rules

r1 = ((Qm1, Q2) , (Qm2, (0, um))) ,
r2 = ((Q1, Qm2) , (Q2, (0, 0))) ,
r3 = ((Q2, Qm2) , (Qm2, (um, um))) ,

where ξm2 > ξm1.
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State insertion ∨(ρ∨, x∨)i: State insertion is an exogenous transition, i.e. it
can be taken for any X ∈ X given the appropriate external input. It consists of
adding two fronts at position x∨ downstream of front i, with zi ≤ x∨ ≤ zi+1,

(N, z, ρ,Q) ∨(x∨)i−−−−→ (N ′, z′, ρ′, Q′)
N ′ = N + 2,

z′ =
[
z1 . . . zi x∨ x∨ zi+1 . . . zN

]>
,

ρ′ =
[
ρ1 . . . ρi ρi+1 ρi+1 ρi+1 . . . ρN+1

]>
,

Q′ =
[
Q1 . . . Qi Qi+1 Qi+1 Qi+1 . . . QN+1

]>
.

It is only necessary to specify i if zi = x∨ or zi+1 = x∨, in order to disambiguate
the ordering of wavefronts.

Flux function transition Q(q, i, j): Finally, flux function transition is an-
other exogenous transition, which covers changes in flux functions in specific areas.
The transition is defined as

(Q) Q(q,i,j)−−−−−→ (Q′)
Q′ =

[
Q1 . . . Qi q . . . q Qj+1 . . . QN

]>
,

with q ∈ Q and j > i. Formally, this change has no immediate effect on any of the
other states, but it is likely to cause (?) to be violated.

Solution example revisited

We revisit the example from Section 4.5.1 in order to demonstrate the use of
the proposed transition system model. The initial state can be described as
X0 =

(
N0, 0, z0, ρ0, Q0,W

)
, with N0 = 1, z0 = 0, ρ0 = [ρ− 0]>, Q0 = [Q− Q+]>,

and the only restricting wave speed bound is “W−. The flux functions
are described as Q± = (V,Σ±,Λ±, ξ±, ∅), where V = [V1 V2]>, Σ− =

[
σ−1 σ−2

]>,
Σ+ =

[
σ+

1 σ+
2
]>, Λ± = (0, 0), and ξ− > ξ+.

Since the condition (? /) is violated, the first transition that is taken is(
N0, z0, ρ0, Q0) /1−→

(
N0′, z0′, ρ0′, Q0′) ,

N0′=3, z0′=03, ρ
0′=
[
ρ− ρ

c σ+
1 0
]>, Q1=

[
Q−1>2 Q+1>2

]>
.

Next, since the state is admissible, we take passage of time transition τ until
τ = t′, to N1 = N0′, z1 = z0′ + Λ0′t′, ρ1 = ρ0′, when the bottleneck Q+ is re-
moved,

(
Q1) Q(Q−,2,4)−−−−−−−→

(
Q1′), Q1′ = Q+14, which now causes the condition (?∼)

to be violated for i = 2, causing transition(
N1′, z1′, ρ1′, Q1′) ∼2−−→

(
N1′′, z1′′, ρ1′′, Q1′′)

N1′′ = 4, z1′′=[λ1t
′ 0 0 V1t

′]>,
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ρ1′′=
[
ρ− ρ

c ρd σ+
1 0
]>
, Q1′′=Q−15.

The state is thus made admissible again, and after another passage of time transition
can be taken with τ = tc−t′, to N2 = N1′′, z2 = z1′′ + Λ1′′(tc − t′), ρ2 = ρ1′′. Since
λ1t

c = “W−(tc − t′), there is a front interaction −1 at tc,(
N2, z2, ρ2, Q2) −1−−→

(
N2′, z2′, ρ2′, Q2′) ,

N2′=3, z2′=[xc V1(tc− t′) V1t
c]>,

ρ2′=
[
ρ− ρ

d σ−1 0
]>
, Q2′=Q−14.

After this transition, we reach a steady state where the only possible transition is
passage of time with arbitrary τ ≥ 0.

4.5.3 Existence, uniqueness and non-Zenoness of the solutions
In this section we study the properties of the solutions to the FTTSM, defined in
this section, and how they correspond to the wave-speed-bounded solutions of the
LWR with piecewise-linear flux functions and piecewise-constant initial conditions.
Throughout this subsection we assume that there are no rules defined for the system.
For the FTTSM, we define Zeno behaviour as the existence of a solution with an
infinite series of transitions that are not passage of time X τ(tend)−−−−→ X ′, with t < tend,
t < t′. The results are stated in the following lemmas and theorems.

Lemma 1. The FTTSM is nonblocking and deterministic.

Proof. All X ∈ X are in exactly one guard set, since guard sets G◦ form a partition
of X . Furthermore, all transitions ◦ ensure that if X ∈ X and X ◦−→ X ′ then
X ′ ∈ X . Therefore there exists a unique solution of the FTTSM for every initial
state X0 ∈ X .

This lemma establishes the basic properties of the FTTSM based directly on the
guard sets of the transitions. Next, we study the behaviour of the FTTSM in zones
where the flux function is homogeneous, and with constant boundary conditions.

Lemma 2. If the state of FTTSM X ∈ G◦i , where transition ◦i is ∼i if X
∼i−−→ X ′

or /i if X
/i−→ X ′, then X ′ /∈ G∼j and X ′ /∈ G/j for j = i, . . . , i+N ′ −N .

Proof. First, consider the case when X ∈ G∼i . Based on the definition of the
transition ∼i, we have that

[ρ′i . . . ρ′i+N ′−N+1]> = Σ̃ρi ρi+1
Qi,W

.

Therefore, for k = 0, . . . , N ′ −N ,

[ρ′i+k ρ′i+k+1]> = Σ̃ρ′i+k ρ′i+k+1
Qi,W

,



106 CHAPTER 4. TRAFFIC MODEL EXTENSIONS

so condition (?∼)i+k holds and X ′ /∈ G∼j , j = i + k. Next, if X ∈ G/i , based on
the definition of the transition /i, we have that

[ρ′i . . . ρ′i+m−−1]> = Σ̃ρi ρ′−
Qi,W

,

[ρ′i+m− . . . ρ′i+N ′−N+1]> = Σ̃ρ′+ ρi+1
Qi+1,W

,

m− = m̃
ρi ρ′−

Qi,W
,

and ρ′± are the solutions to the optimization problem (4.45) for ρ− = ρi, ρ+ = ρi+1,
Q− = Qi, Q+ = Qi+1. Therefore, for k = 0, . . . ,m− − 2,m−, . . . , N ′ −N ,

[ρ′i+k ρ′i+k+1]> = Σ̃ρ′i+k ρ′i+k+1
Q′
i+k,W

,

so condition (?∼)i+k holds and X ′ /∈ G∼j , j = i + k. For i + m− − 1, we have
ρ′i+m−−1 = ρ′−, ρ′i+m− = ρ′+, Q′i+m−−1 = Qi, and Q′i+m− = Qi+1, so since ρ′− and
ρ′+ are the result of transition /i, condition (? /)i+m−−1 holds and X ′ /∈ G/i+m−−1 .

Theorem 1. Let X0 be the initial state of the FTTSM with t = 0. Consider the
zone between two flux function boundaries [z∗−(t), z∗+(t)], described by flux function
Q∗, and assume that for 0 < t < T , T > 0: z∗−(t) < z∗+(t), boundary conditions
ρi∗−(t) and ρi∗+(t)+1 are constant, and conditions (?−)i∗−(t) and (?−)i∗+(t)+1 hold.
Then ρ(x, t′), x ∈ [z∗−(t′), z∗+(t′)], given by X′ with t = t′ is the unique wave-speed-
bounded solution of the corresponding LWR model with initial conditions ρ(x, 0),
x ∈ [z∗−(0), z∗+(0)], given by X0, for 0 < t′ < T , T > 0, and its Total Variation
T.V.(ρ(·, t′)) is nonincreasing in t′.

Proof. First, if the density is forced in the zone of flux function Q∗, F ∗ 6= ∅, this
holds trivially, with ρ(x, t′) = F ∗ on [z∗−(t′), z∗+(t′)] for t′ > 0. Otherwise, after
a finite number of transmissions X0

◦1−→ . . .
◦K−−→ X ′0, the state X ′0 satisfies (?) for

i = i∗−(0), . . . , i∗+(0). Here transitions ◦k are: /i∗−(0), /i∗+(0), and a finite number
of transitions ∼i and −i for i∗−(0) < i < i∗+(0), if the state enters their respective
guard sets during the transitions from X0 to X ′0. Afterwards, due to Lemma 2, while
t < T , the evolution of the state can be described with only transitions τ(tend) and
−i, for which the Total Variation is nonincreasing.

This theorem also holds in case all flux functions Qi are identical, in which
case [z∗−(t), z∗+(t)] corresponds to the entire space, [−∞,∞]. In case the wave-
speed bounds are such that the entropy solution is identical to the wave-speed-
bounded solution, this theorem corresponds to Corollary 2.8 from [206], for constant
boundary conditions and inside a zone where the flux function is homogeneous.
Next, we study the case of an infinitely narrow zone with different flux function,
and show that this situation does not give rise to Zeno behaviour.
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Lemma 3. Let X be the state of the FTTSM with zi− = zi−+1 = . . .= zi+ and no
other wavefront positions equal, where Qi− = QL, Qi = QC for i= i−+1, . . . ,i+,
Qi++1 = QR, QL 6= QC , QC 6= QR, and the density in the zones of QL and
QR is not forced, FL = FR = ∅. Then X ′ ∈ Gτ , where X ◦1−→ . . .

◦K−−→ X ′,
◦k∈{−ik,∼ik, /ik, !ik}, k = 1, . . . ,K with finite K.

Proof. Without loss of generality, assume (?∼)i, (? /)i, and (? !)i, hold for
i /∈ [i−, i+], which could always be achieved in a finite number of transitions. Firstly,
if the density in the zone of QC is forced, after transitions !i, i = i− + 1, . . . , i+
inside the zone, /i− and /i+ at both borders of the zone, and i+ − i− − 1 instances
of transition −i−+1, the resulting state X ′ ∈ Gτ . Otherwise, after up to two transi-
tions /i and up to i+− i−− 1 transitions ∼i, the resulting state is X 0, and it holds
that either λi0− = λi0−+1 = . . . = λi0+ and X 0 ∈ Gτ , satisfying the requirements of
the lemma, or X 0 ∈ G−i for some i0− ≤ i ≤ i0+. We denote im− and im+ based on state
Xm so that Qmim− = QL, Qmi = QC for i = im− +1, . . . , im+ , Qmim+ +1 = QR. If X 0 ∈ G−i
for some i, after k0 front interaction transitions, 1 ≤ k0 ≤ i0+− i0−−1, the resulting
state X 0′ will either satisfy the requirements of the lemma, or X 0′ ∈ G/i0′− ∪ G/i0′+ .
After transition /i0′− or /i0′+ from X 0′ to X 1, the process repeats with km front inter-
action transitions, 1 ≤ k1 ≤ i1+ − i1− − 1, and with im+ < im−1

+ , m = 1, . . . ,M , until
state XM ′ satisfies the requirements of the lemma, with λiM′− ≤ λiM′−

≤ . . . ≤ λiM′+

if λiM′− ≤ λiM′+
, and QM

′

iM
′

−
= QL, QM

′

iM
′

− +1 = QR if λiM′− > λiM′+
(i.e. the zone de-

scribed by flux function QC vanishes), or we have QiM′− = QL, QiM′+
= QC , and

QiM′+ +1 = QR. Finally, if QiM′− = QL, QiM′+
= QC , and QiM′+ +1 = QR, the state

satisfies the requirements of the lemma after up to three series of transitions, where
the first and third series consist of a finite numbers of transitions /ip± or −ip± , and
the second series consists of a finite number of transitions /ip∓ or −ip∓ , i.e. if the first
transition is /iM′− , the second series of transitions will happen at the boundary be-
tween QC and QR, and if the first transition is /iM′+

, the second series of transitions
will happen at the boundary between QL and QC . Therefore, no infinite internal
behaviour of the FTTSM, starting from X and with no states in Gτ can exist, and
after a finite number of transitions, the system reaches state X ′ ∈ Gτ .

Finally, we state the main result of this subsection.
Theorem 2. There exists a unique, non-Zeno solution to the FTTSM, with initial
state X0 and a finite number of exogenous transitions, that defines a unique wave-
speed-bounded solution of the LWR model ρ(x, t), with corresponding piecewise-
linear flux functions, corresponding piecewise-constant initial conditions, with the
exogenous transitions applied in a corresponding way.

Proof. Consider first the case when there are no exogenous transitions and passage
of time transition is taken with an arbitrarily large tend. Firstly, due to Lemma 1,
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the solution to initial conditions X0 from arbitrary t = t0 until arbitrary tend > t0
exists and is unique. Due to Theorem 1, the only way Zeno behaviour can arise in
FTTSM is through interactions with flux function boundaries. Due to Lemma 2,
the transitions at a flux function boundary can only happen once a wavefront
reaches the boundary, and the wavefronts created by the flux function boundary
transition travel away from the boundary. Therefore any kind of periodic behaviour
would require interplay between two flux function boundaries. If the zone between
two flux function boundaries is of non-zero length, the wavefronts originating from
one boundary can only reach the other boundary after non-zero time, so the only
case when Zeno behaviour could arise is if the length of the zone goes to zero.
Therefore, due to Lemma 3, no Zeno behaviour can arise. If exogenous tran-
sitions are forced at times T1, . . . , TNexo , the solution can be split into intervals
[t0, T1), [T1, T2), . . . , [TNexo , tend]. Since the exogenous transitions do not cause the
output of the system to change, we may form ρ(x, t) out of pieces between two
exogenous transitions, with each exogenous transition changing some part of the
LWR model.

Modelling the influence of CAVs

We describe how CAVs acting as sensors and actuators can be modelled in the
FTTSM framework. We may add a CAV with identifier ξ to the model, at position
xξ and moving at speed uξ, by first taking a transition ∨(xξ)i− , which creates two
fronts downstream of front i−, zi− ≤ xξ ≤ zi−+1, followed by taking a transition
Q(qξ, i− + 1, i− + 2), with qξ = (Vξ,Σξ, (uξ, uξ) , ξ, Fξ). The choice of Vξ, Σξ and
Fξ will depend on the role that the CAV has. In order for the CAVs’ behaviour
to be modelled correctly, we need the identifiers corresponding to each CAV to be
greater than the identifier of the flux function describing the background traffic.

We assume that CAVs can act as both traffic sensors and traffic actuators. A
CAV ξ acting as sensors will communicate its local measurements of traffic density
ρ̌ξ, traffic speed v̌ξ, from which we can get q̌ξ = ρ̌ξ v̌ξ. In case the CAV ξ is moving
slower than the surrounding traffic, we may also measure the overtaking flow ω̌ξ. In
general, the values that are directly related to some measurements will be denoted
by caron (ˇ). We model CAV ξ acting as an actuator by setting its reference
speed uξ, which determines its actual speed together with the speed of the traffic
immediately downstream,

λ±ξ = min {uξ, vξ+} ,
vξ+ = Qiξ+(ρiξ+)/ρiξ+ , (4.49)
iξ+ = min i, s.t. zi ≥ xξ, Qi 6= Qξ. (4.50)

A vehicle moving slower than the rest of the traffic will act as a moving bottlenecks,
limiting the overtaking flow, which we may use for actuating traffic control. We
model the effect a CAV acting as a moving bottleneck will have on the rest of the
traffic by using Vξ and Σξ in the shape of a bottleneck diagram.
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4.6 Summary

Moving traffic phenomena, such as moving bottlenecks and stop-and-go waves are
known to be hard to represent in classical traffic models. Since dealing with these
phenomena is a key part of Lagrangian traffic control, in this chapter, we presented
extensions to the basic traffic models, as well as new traffic models that are able
to capture their effects. While not moving, capacity drop is another traffic phe-
nomenon that is included. The influence of moving bottlenecks is introduced to the
LWR model through the addition of a flow constraint, or a zone with a different,
reduced flux function. This approach is repeated in the CTM, exploiting the con-
nection between the two models. Another extension of the CTM is also discussed,
the multi-class CTM. By allowing the free flow speed of different classes to vary in
time in each cell, we are able to describe the traffic phenomena of interest. This
model is then simplified, abstracting away the spatial dimension, and focusing only
on the queue lengths at stationary and moving bottlenecks, in the tandem queueing
model. Finally, another numerical scheme for solving conservation laws is formal-
ized into the FTTSM, and we discussed modelling the effects of stop-and-go waves
through imposing wave speed bounds on the solutions of Riemann problems. These
models will be used in the following chapters for simulation and control design and
implementation.
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Chapter 5

Platoon merging coordination

Truck platooning has many benefits, such as reducing the air drag, and con-
sequently, the fuel consumption. In the most general setting, the problem of

platoon merging coordination may include an arbitrary number of vehicles travel-
ling on a complex road network, with different constraints and objectives for each
vehicle. Here we focus on the simplest case of the problem, considering two trucks
located at different positions on the same road. The vehicle that is further along
the road is called the leader vehicle, and the vehicle upstream of it is called the
follower vehicle. We study the process of closing the distance between the two
vehicles, merging into a platoon en route, by having the follower vehicle drive at
a higher speed than the leader vehicle. During this merging phase, the combined
fuel consumption of the two vehicles is higher than in case they did not attempt
to merge into a platoon, since they have to deviate from their individual optimal
speeds. This increase in fuel consumption is offset by the lower fuel consumption
in the platooning phase, when the two vehicles experience reduced air drag due to
the slipstream effect. Therefore, it is important for the platoon merging process to
be made reliable and predictable, since any unforeseen delay in platoon merging
causes a reduction in fuel savings. In particular, there are two sub-problems that
we consider.

The first sub-problem pertains to predicting the vehicle trajectories during the
merging phase. Here we assume that some control laws are governing the motion
of the vehicles, and apply it to vehicle and environment models in order to predict
when and where platoon merge will occur. We use the data from platoon merging
experiments done on public roads combined with road grade information to learn
the dynamic model of vehicles’ motion, depending on the deviation of vehicles’
speeds from their reference values and road grade at their position. These learned
models are then used to predict the trajectories of the two vehicles during the
merging phase.

The second sub-problem is to design an optimal control law for platoon merging.
The case when only the road grade profile and engine power constraints are consid-
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ered is referred in the literature as the look-ahead vehicle control problem [217, 218]
In contrast to previous work on the look-ahead vehicle control problem, we take sur-
rounding traffic into consideration when calculating energy-optimal catch-up speed
pairs. The influence of the traffic is particularly challenging to account for, since
the traffic conditions between the leader and follower vehicles is affected by both
of their speeds. Moreover, the follower vehicle is likely to be affected by the traffic
conditions once it reaches the congestion left in the wake of the slow moving leader
vehicle.

We first give the model of vehicles used in this chapter in Section 5.1, and briefly
describe the reasons why they deviate from their desired merging speeds. Then, we
deal with the two sub-problems in detail in Sections 5.2 and 5.3.

5.1 Vehicle model and deviations from the nominal speed

The dynamics of vehicle ξ can be expressed as

mξ v̇ξ(t)=Ft,ξ(t)−Fb,ξ(t)−Fa,ξ(vξ(t),dξ(t))−Fr,ξ(γ(xξ(t)))−Fg,ξ(γ(xξ(t))),
ẋξ(t)=vξ(t)

(5.1)

where xξ(t), vξ(t), and mξ are the the vehicle’s longitudinal position, the vehi-
cle speed, and the vehicle mass, respectively. The reader is referred to [219] for
more detailed vehicle models. The vehicle is actuated through controlling the trac-
tion force Ft,ξ(t), and the braking force Fb,ξ(t), either by a human driver or some
form of cruise control. The following resistive forces are considered: roll resistance
Fr,ξ(γ(xξ(t))) and aerodynamic drag Fa,ξ(vξ(t), dξ(t)). The roll resistance acting
on vehicle ξ depends on the road grade at its position,

Fr,ξ(γ(xξ(t))) = −mξgcr cos(γ(xξ(t))),

where cr is the roll resistance coefficient, and g is the gravitational acceleration.
The aerodynamic drag Fa,ξ(vξ(t), dξ(t)) is a major component of the resistive force
acting on a large vehicle, and it depends on the vehicle’s speed vξ(t) and the distance
to its preceding vehicle in a platoon dξ(t). It is given by

Fa,ξ(vξ(t), dξ(t)) = cav
2
ξ (t)φa(dξ(t)),

where ca is a constant that depends on air density and the aerodynamic characteris-
tics of the vehicle, and φa(d) models the reduction in air drag based on the distance
to the preceding vehicle if vehicle ξ is a follower in a platoon. The gravitational
force acting on the vehicle in the opposite direction of its movement is given by

Fg,ξ(γ(xξ)) = mξg sin (γ(xξ)) .

Consider a platoon of np vehicles that drive at constant speed vp, and have a
constant inter-vehicular distance d. Then the resistive force acting on the platoon
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leader and followers is Fa,l(vp) = cav
2
pφl and Fa,f (vp) = cav

2
pφf , respectively, where

φl ≈ 1 is the air drag reduction ratio of the leader vehicle, and φf = φa(d) < 1 is
the air drag reduction of the follower vehicles in a platoon. The total aerodynamic
resistance acting on the whole platoon can be written as Fa,p(vp) = kav

2
pφp, where

φp = φl + (np − 1)φf is the total air drag reduction ratio due to platooning. Here
we consider the case when two vehicles are merging into a platoon, with vehicle
ξ = 1 as the leader, and vehicle ξ = 2 as the follower. Platooning always reduces
the total air drag, i.e., air drag reduction ratio of two vehicles driving alone would
be φ1 = φ2 = 1, φ1 + φ2 = 2, while the total air drag coefficient of the platoon
consisting of those vehicles would be approximately φp ≈ 1.7, assuming the inter-
vehicular distance is 20m [96].

Since the road grade is given as a function of the position, it can be beneficial
to rewrite (5.1) to the form with position as the independent variable and time as
dependent variable. Since vξ > 0, xξ(t) is a bijection and we can write tξ(x) as its
inverse, i.e., the time when vehicle ξ is at the position x. Then (5.1) is uniquely
rewritten as

mξvξ(x)dvξ(x)
dx = Ft,ξ(tξ(x))− Fb,ξ(tξ(x))− Fa,ξ(vξ(x), dξ(x)) . . .

− Fr,ξ(γ(x))− Fg,ξ(γ(x)),
dtξ
dx = 1

vξ(x) .

(5.2)

Consider the simple platoon merging problem as formulated in Section 1.2.1. If
both vehicles would be able to keep their desired speeds, v1(t) = u1 and v2(t) = u2
for 0 ≤ t ≤ tm, their merge time and position would be

tm = x1(0)− x2(0)− dp
u2 − u1

,

xm = x2(0) + u2
x1(0)− x2(0)− dp

u2 − u1
.

(5.3)

However, even if the vehicles’ desired speeds are constant, they will often be forced
to deviate from them. Heavy vehicles will often need to reduce their speed in order
to tackle even small uphill slopes, and they need to brake or coast on downhill
slopes in order to keep speed within safe bounds. A comparison of speed deviation
from the nominal for the two trucks of different weight is shown in Figure 5.1.

The surrounding traffic will also have an effect on the vehicles attempting to
merge into a platoon. Although when traffic is in free flow, trucks typically drive
at a lower speed than the passenger cars, entering congestion might force a truck
to reduce its speed. Since the slow moving leader vehicle will act as a moving
bottleneck, the congestion left in its wake will force the follower vehicle to deviate
from its desired speed.



116 CHAPTER 5. PLATOON MERGING COORDINATION

Figure 5.1: Deviation from the desired speed due to varying road grade for two
trucks with different masses and negative road grade.

5.2 Platoon merging distance prediction based on the road
grade

The first sub-problem considered in this chapter is predicting how long it will take
two trucks to form a platoon while driving on a highway at set cruise speeds,
considering only the influence of varying road grade. In order to model the influence
of road grade on the vehicle speed, we can either use a cruise control model, if
available, or identify the dependence from data. Here, we used the experimental
data from [113] to train a neural network model that we then use to predict the
evolution of vehicle speed. We then integrate the predicted vehicle speed profiles
to calculate a prediction of when and where the platoon merge will occur.

A significant advantage of speed prediction based merge distance prediction
is that it gives us a prediction of the vehicle positions during the whole merging
phase. This means that a disturbance that will change the platoon merge time can
be detected immediately, by comparing the current vehicle positions, acquired from
the GPS system, with their predicted values. When such a disturbance is identified,
the prediction can be recalculated taking into account the updated information.
Additionally, the new information can be used to re-plan desired vehicle speed
profiles in order to compensate for the disturbance.
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The predicted positions of vehicles are

dx̂1(τ |t)
dτ = v̂1(τ |t),

dx̂2(τ |t)
dτ = v̂2(τ |t),

(5.4)

where v̂ξ(τ |t) is the predicted speed of vehicle ξ, and τ > 0 is the relative time
for the prediction calculated at time t, i.e., x̂ξ(τ |t) is a prediction of xξ(t + τ).
The predicted distance between the leader and the follower vehicle can be written
d̂(τ |t) = x̂1(τ |t) − x̂2(τ |t). The predicted platoon merge time and position are
therefore given by

τ̂m(t) = min
{
τ ≥ 0

∣∣∣d̂(τ |t) ≤ dp
}
,

x̂m(t) = x̂2(τ̂m(t)|t).
(5.5)

We define the merge distance as the distance travelled by the follower vehicle until
merging into a platoon,

d̂m(t) = x̂2(τ̂m(t)|t)− x2(t).

5.2.1 Vehicle speed prediction models
We first discuss two simple speed prediction models, and then give the neural
network speed model in more detail. Finally, we describe how the proposed models
were trained from data.

Constant average speed models:

The simplest vehicle speed prediction model assumes that both vehicles travel at
constant speed v̂ξ = v̄ξ. The platoon merge time and distance predictions are given
by

τ̂m(t) = d0(t)− dp
v̂2 − v̂1

,

d̂m(t) = v̂2
d0(t)− dp
v̂2 − v̂1

.

(5.6)

Here the speed of the leader and follower vehicles v̄ξ are given as average speeds
during the merging phase of the simulation runs in the training set.

Road grade moving average speed model:

Better results can be obtained by modelling the vehicle speed deviation from its
nominal value as a piecewise linear function of the moving average of road grade
γ̄(x),

v̂γξ (x) =
{
uξ(1 + kξ,γ+ γ̄(x)), γ̄(x) ≥ 0
uξ(1 + kξ,γ− γ̄(x)), γ̄(x) < 0.

(5.7)
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Figure 5.2: Actual and predicted deviation from the desired speed u using speed
prediction model (5.7) and negative road grade.

where kξ,γ+ and kξ,γ− are parameters that describe the influence of positive and
negative γ̄k, respectively. An example of measured and modelled vehicle speeds are
shown in Figure 5.2. The distance over which the moving average of the road grade
is calculated is determined empirically.

Neural network speed model:

Finally, the neural network vehicle speed prediction model is based on learning the
net propulsive force model and applying it in the dynamic equations (5.1) or (5.2).
Grouping air drag resistance Fa,ξ and roll resistance Fr,ξ with the traction force
Ft,ξ and braking force Fb,ξ into Fp,ξ = Ft,ξ − Fb,ξ − Fa,ξ − Fr,ξ, this net propulsive
force can be treated as the control action of the cruise controller. Then, the speed
dynamics of vehicle ξ, give in (5.1), simplifies to

mξ v̇ξ = Fp,ξ −mξg sin(γ(xξ)).

We assume that Fp,ξ is a function of the deviation from the vehicle reference
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speed, and road grade, Fp,ξ(vξ−uξ, γ(xξ)). The speed prediction can be written as
dv̂ξ(τ |t)

dτ = Fp,ξ (v̂ξ(τ |t)− uξ(t), γ (xξ(τ |t)))
mξ

− g sin (γ (x̂ξ(τ |t))) ,

dx̂ξ(τ |t)
dτ = v̂ξ(τ |t),

with initial conditions x̂ξ(0|t) = xξ(t) and v̂ξ(0|t) = vξ(t). Alternatively, taking
position as the independent variable, we have

dv̂ξ(x|t)
dx = 1

v̂ξ(x|t)

(
Fp,ξ (v̂ξ(x|t)− uξ(t), γ(x))

mξ
− g sin (γ(x))

)
,

dτ̂ξ(x|t)
dx = 1

v̂ξ(x|t)
,

with initial conditions τ̂ξ(xξ(t)|t) = 0, and v̂ξ(0|t) = vξ(t). The function modelling
the propulsive force

Fp,ξ (v̂ξ(x|t)− uξ(t), γ(x))
mξ

= v̂ξ(x|t)
dv̂ξ
dx (x|t) + g sin (γ(x)) (5.8)

can be learned from data. Using this model, we can predict vehicle speeds for the
whole length of the road of interest.

The model is discretized into cells of equal length L, with upstream boundaries
in Xi = X0 + iL. The road cell length L is taken small enough to capture the
dynamics of the system, but large enough so that L > Tvmax, i.e., vehicles do not
pass through cells of length L in less than T . Then, to each Xi along the vehicle
trajectory, for both vehicles ξ, we assign

tξ,i = min {t|xξ(t) > Xi} ,

vξ,i =

tξ,i+1∫
tξ,i

vξ(t)dt

tξ,i+1 − tξ,i
,

where tξ,i is the time vehicle ξ enters cell [Xi, Xi+1], and vξ,i its average speed in
the cell. The road grade γi is also taken as average road grade over the road cell
[Xi, Xi+1].

Discretizing (5.8) by integration and approximating sin(γ) ≈ γ, we have

Fp,ξ (vξ,i−1 − uξ, γi−1)
mξ

=
v2
ξ,i − v2

ξ,i−1

2L + gγi−1, (5.9)

which can be modelled using a feedforward neural network, as will be described in
the following subsection. Once the model for Fp,ξ is available, the discrete prediction
model for vehicle speed becomes

v̂ξ,i+1 = 2L

√
v̂2
ξ,i + Fp,ξ (v̂ξ,i − uξ, γi)

mξ
− gγi, (5.10)
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Figure 5.3: Predicted (v̂) and measured (v) speed for the leader and the follower
vehicle and negative road grade.

and we assume the speed predictions to be piecewise constant on each road segment,

v̂ξ(τ |t) = v̂ξ,i, t̂ξ,i ≤ t+ τ < t̂ξ,i+1, (5.11)

where
t̂ξ,i+1 = t̂ξ,i + L

v̂ξ,i
.

Finally, the vehicle speed prediction is calculated by initializing (5.10) with the
current vehicle speed v̂ξ,iξ(t)(t) = vξ(t), where iξ(t) is the cell the vehicle is in at
time t, Xiξ(t) ≤ xξ(t) < Xiξ(t)+1 and recursing (5.10). We then use (5.11) in (5.4)
to calculate

x̂ξ(τ |t) = v̂ξ,iξ(t)−1τ̂ξ,iξ(t) +
iξ(τ |t)∑
i=iξ(t)

(v̂ξ,i (τ̂ξ,i+1 − τ̂ξ,i)) + v̂ξ,iξ(τ |t)(τ − τ̂ξ,iξ(τ |t)),

where iξ(t) and iξ(τ |t) are given by

Xiξ(t) ≤ xξ(t) < Xiξ(t)+1,



5.2. PLATOON MERGING DISTANCE PREDICTION BASED ON THE
ROAD GRADE 121

Xiξ(τ |t) ≤ xξ(τ |t) < Xiξ(τ |t)+1.

The platoon merge time and position predictions are calculated according to (5.5).
A comparison between the measured speeds and the speed prediction acquired this
way, for a part of a test run, is shown in Figure 5.3.

5.2.2 Speed prediction model training
In the experiments in [113], two HDVs were driving on an 11 km long stretch of
public highway between Stockholm and Södertälje, namely between the Hallunda
and Moraberg interchanges. Two standard Scania tractor trucks were used. The
lead vehicle had a 480 hp engine and its total weight, including its trailer, was
37.5 tonnes. The follower vehicle had a 450 hp engine, had no trailer and weighed
15 tonnes. The road is fairly hilly, with road grades as high as ±5%. The HDVs,
initially apart, attempted to form a two-vehicle platoon by driving with different
desired speed adaptive cruise control (ACC) settings. Three different desired speed
pairs were considered, (u1, u2) = (75, 85), (75, 89) and (80, 89) km/h, where u1 is the
reference speed of the leader vehicle and u2 of the follower. Downhill speed control
was also active, with the offset of 5 km/h, allowing the vehicles to accelerate on
downhill slopes and gain speed up to the set limit. The initial distance between the
vehicles ranged from 400m to 1300m. The part of the experiment data that we used
consist of periodical vehicle speed measurements and calculated distance between
the vehicles, together with the information about road topography. Since we are
primarily interested in the merging phase, we will consider the platoon merging
completed when the distance between the vehicles is less than dp = 80m, ignoring
phenomena such as persistent drivers.

We used the vehicle speed data from the experiments to train the two proposed
vehicle speed prediction models, the neural network approximation model (5.9)–
(5.11) and the simple road grade moving average piecewise linear model (5.7).
Roughly half of the experiment data was used for training and the rest was used
for testing, and only the test runs which resulted in successful platoon formation
were considered. Models for the leader and the follower vehicle speed prediction
were trained independently.

Training the road grade moving average piecewise linear model consists of four
linear regression equations of the form

vξ,i − uξ
uξ

= kξ,γ± γ̄i,

one for uphill (γ+) and one for downhill (γ−) slopes for each vehicle. Here,
road grade is averaged over 400meters and the calculated values of the regres-
sion parameters are k1,γ+ = −1.28, k1,γ− = −1.81 for the leader and k2,γ+ = −0.32,
k2,γ− = −0.73 for the follower vehicle. The speeds of both vehicles are more affected
by downhill slopes than uphill slopes, and this effect is more pronounced on the
leader vehicle, since it is significantly heavier than the follower vehicle. Uphill
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slopes have little effect on the follower vehicle speed, which could also be observed
in experiment data (Figure 5.1).

Several structures of the neural network were tested, and best results were
acquired using a neural network with two hidden layers with five and three nodes
and hyperbolic tangent sigmoid activation functions. This neural network is shown
in Figure 5.4. The output of the neural network is a nonlinear function of its inputs,
yout
ξ (j) = fw,ξ(yin

ξ (j)), parametrized by its weight matrices W (l)
ξ , l = 1, 2, 3, which

are trained using a back-propagation algorithm. The j-th sample input and target
data for both neural networks are

yin
ξ (j) = [vξ,j−1 − uξ γj−1]> ,

yout
ξ (j) =

v2
ξ,j − v2

ξ,j−1

2L + gγj−1.

By adopting this simple model, we assume that the behaviour of the vehicles
only depends on local road topography. This allows us to use this model on any
road segment whose topography is represented in the training data. Since highways
in general follow similar topographic guidelines, most highways should be covered,
except for road segments with long uphill or downhill slopes, which were not present
in the training data. To enable generalization to these road segments, more data
would need to be collected by running more experiments on different roads.

The training data from all three desired speed pair scenarios (u1, u2) was consid-
ered together, excluding data points if the distance between the vehicles is smaller
than 200m, vehicle speed differs from the goal speed by more than 10 km/h or
the distance from the start is less than 200m. These data points are excluded in
order to avoid speed changes that occur during the final platoon merge maneuver
or if the vehicle is forced to brake, as well as to give the follower vehicle enough
time to reach its goal speed. Finally, to reduce computational effort, the trained

vξ,j−1 − uξ

γj−1

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Fp,ξ,j/m

1

1
1

Figure 5.4: Structure of Fp/m neural networks.
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(a) Leader (b) Follower

Figure 5.5: Fp/m as a function of v − vref and γ for the leader and the follower
vehicle.

neural networks are implemented as look-up tables. Values of Fp,ξ/mξ are shown
in Figure 5.5. In general, applied propulsive force will increase with road grade and
vehicle speed deviation. This increase is faster around the origin (vξ ≈ uξ, γ ≈ 0)
and it gets slower for larger speed discrepancies and road grades because the engine
power is limited.

5.2.3 Experimental results
Platoon merge distance prediction based on the two proposed vehicle speed predic-
tion methods is evaluated using the test data set. The comparison is summed up
in Table 5.1 and box plots of relative errors are shown in Figure 5.6. The relative
error is defined as the ratio between the distance prediction error and the actual
platoon merging distance,

erel
m = d̂m(t)− dm(t)

dm(t) .

Also shown are naive estimates according to (5.6), assuming vehicle speed is con-
stant. We can see that the neural network based approach shows consistently better
results, with the smallest root mean square error and standard deviation.

Once the future speed profile is predicted, it is easy to adopt some empirical
criterion for recalculating the platoon merge distance predictions. This enables us
to only recalculate speed profile predictions when the measured speed deviates from
its predicted value due to some disturbances or model mismatch, instead of recal-
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Figure 5.6: Box plots of relative platoon merge distance prediction errors.

Table 5.1: Comparison between the predicted merge distance errors for different
speed prediction models.

Constant v = u Constant v = v̄ Grade mov. avg. Neural network
RMSE STD RMSE STD RMSE STD RMSE STD

(75,85) 1492.65 704.58 1275.65 700.42 814.51 700.49 678.65 579.22
(75,89) 1386.28 948.91 1289.35 952.21 1060.23 956.22 865.83 829.03
(80,89) 1658.93 837.86 1287.53 870.10 975.07 861.52 835.46 786.28
Total 1516.22 855.45 1284.41 851.30 959.11 846.51 800.49 741.33

culating them periodically. The results of applying one such recalculation criterion
for one test run are shown on Figure 5.7. Here, recalculations were done at most
once per 400m, when speed deviations are more than 3 km/h. The speed of the
follower vehicle will be recalculated twice, once at x2 = 600m and another time at
x2 = 1020m. We can see that recalculating the speeds improves the platoon merg-
ing distance prediction, from approximately 393m (4.12% of the current remaining
distance) at the start of the test run to 170m (1.9%) after 600m, and down to 70m
(0.8%) after another 420m.

The neural network model predicts nominal vehicle speeds reasonably well in
nominal conditions (Figure 5.3). However, the vehicles will often deviate from their
nominal behaviour, resulting in larger discrepancies between the predicted and ac-
tual speed and causing outliers in merging distance prediction. Most often, we
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Figure 5.7: Recalculated merge distance predictions. The diagonal dashed black
line shows the platoon merging phase if both vehicles would follow their reference
speeds, and the horizontal dashed black line indicates distance dp. The coloured
dashed lines show the prediction of the distance between the vehicles, calculated
when x2 = 0, x2 = 600 and x2 = 1020.

cannot be sure what caused the deviation. In a number of test runs, the cruise con-
trol goal speeds were set wrong, and a vehicle drove slower or faster than intended.
The nominal downhill speed control offset, set to 5 km/h, was exceeded in some
test runs (clearly visible on Figure 5.3), and in some other test runs, the offset was
reduced to 3 km/h. Apart from these situations, the traffic conditions are the most
likely cause of larger deviations from nominal vehicle behaviour, especially when
the nominal speed of the vehicles was close to the speed limit.

The box plots (Figure 5.6) show that the mean error for all methods is negative,
i.e., all methods on average predict that the platoon will merge sooner than it
actually does. The neural network speed model gives the smallest median and
mean relative errors, −3% and −4%, respectively. In general, the influence of
the surrounding traffic conditions on the trucks is hard to see from truck speed
measurements when the speed of the truck is much lower than the average speed
on the road. In the first test-scenario, the follower vehicle was driving with nominal
speed of 85 km/h, while the speed limit on the road was 100 km/h, and the road
grade was the main cause of its speed deviation. In two other scenarios, the influence
of traffic conditions was much more apparent, resulting in larger root mean square
errors (835.46 and 865.83 versus 678.65).
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5.3 Energy-optimal platoon merging in traffic

The second sub-problem considered in this chapter is calculating energy-optimal
speeds for vehicles attempting to merge to a platoon. These speeds will be given as
reference speeds u1 and u2 that the vehicles will attempt to follow. We will assume
these speeds are constant, unless something in the environment changes from the
time they were calculated. Whereas in the previous section, the focus was solely
on the merging phase, we now also have to take into account the platooning phase,
during which the vehicles drive together and achieve fuel savings through air drag
reduction.

We denote by Xf the end of the common road segment, i.e., the position at
which the platoon will split, with vehicles continuing their separate ways afterwards.
Without loss of generality, we will set dp to zero in this section. Although in
reality, vehicles might have some degree of flexibility with regard to timing, by only
considering one fixed tf , we ensure that the comparison between different pairs of
speeds (u1, u2) is fair. In order to negate the ostensible energy saving by simply
reducing the speed of a vehicle, in turn causing it to be delayed, we assume that
both vehicles need to be at position Xf at some specified time tf . This is trivially
satisfied in case the vehicles did form a platoon, but even if we chose for the vehicles
not to attempt to merge and form a platoon, we can use this assumption while
calculating optimal speeds. While calculating the optimal merging speeds at time
instant t, we will be using the relative coordinate system similar to the one used in
the previous section, and

τf (t) = tf − t,
df (t) = Xf − x2(t).

For readability, we omit writing t wherever this time instant is irrelevant or obvious.
If the calculated speeds are such that the vehicles merge into a platoon very close
to Xf , we will know that is not beneficial to attempt forming a platoon, and the
vehicles can proceed driving according to their own plans.

Another way of dealing with this issue is by including delay into the cost func-
tion. However, this would lead to a more complicated optimization problem and
necessitate ad-hoc combination of two heterogeneous terms. To keep the optimiza-
tion problem consistent and simple, we will therefore use the former approach and
take tf so that it satisfies the most stringent constraints the two vehicles have.

x2(t) x2(τ |t) x1(t) x1(τ |t) xm(t) Xf

Figure 5.8: Platoon merging problem.
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5.3.1 Energy-optimal merging problem
We focus on reducing the total work required to overcome the resistive forces acting
on the vehicles. The three major external forces acting on vehicles are air drag,
rolling resistance and gravity. Since we are generating reference speed profiles, we
assume that road grade is zero. In reality, varying road grade will be handled
by some form of look-ahead control. This assumption allows us to focus solely
on reducing air drag, since the contribution of rolling resistance will be the same
whether or not the vehicles adjust their speeds and attempt to merge into a platoon.

Ideally, the metric that we would like to use to evaluate the optimality of cho-
sen merging speeds would be fuel consumption. However, getting accurate fuel
consumption models can be very difficult, and will depend on the properties of
the vehicles in question. Instead, we focus on reducing the total work required
to overcome the resistive forces acting on the vehicles, which yields more general
results.

Based on the air drag model described in 5.1, the cost function related to this
component of the overall resistive force can therefore be written

J =
τm∫
0

v3
1(τ) + v3

2(τ)dτ + φ

τf∫
τm

v3
p(τ)dτ, (5.12)

where by φ we denote the total air drag reduction ratio of the platoon. In order for
the vehicles to obey the timing and platoon merge constraints, we require that

τm∫
0

v2(τ)− v1(τ)dτ = d0, (5.13a)

τm∫
0

v1(τ)dτ +
τf∫

τm

vp(τ)dτ = df − d0, (5.13b)

τm∫
0

v2(τ)dτ +
τf∫

τm

vp(τ)dτ = df , (5.13c)

umin ≤ v1 ≤ umax, (5.13d)
umin ≤ v2 ≤ umax, (5.13e)
umin ≤ vp ≤ umax. (5.13f)

Here constraint (5.13a) ensures that x1(τm) = x2(τm), constraints (5.13b) and
(5.13c) ensure that x1(τf ) = Xf and x2(τf ) = Xf , and constraints (5.13d), (5.13e)
and (5.13f) give the admissible ranges for speeds v1, v2 and vp.

Assume first that the vehicles were able to follow their desired speeds, vξ(τ) = uξ
and vp(τ) = up. We will denote the platoon merging time, position, and distance
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for this case by τm0 , xm0 , and dm0 , respectively. Then, consistently with the
conditions (5.13a)-(5.13c), τm0 and xm0 are given by (5.3), and the speed of the
merged platoon is

vp(τ) = up = Xf − xm0

τf − τm0

.

Then the cost function (5.12) becomes

J0(u) = (u3
1 + u3

2)τm0 + φ
(Xf − xm0)3

(τf − τm0)2 .

This cost function is parametrized by d0, df , τf and φ, and we seek to minimize it
by choice of u1 and u2.

Denote by u10 = df−d0
τf

and u20 = df
τf

the constant speeds individual vehicles
should keep in order to reach Xf at tf , and assume this is possible without violating
the constraints on minimum and maximum speed. Note that, although possible,
it will never be beneficial for the leader to go faster than u10 ≤ umax nor for
the follower to go slower than u20 ≥ umin. Therefore, we can further tighten the
constraints to umin ≤ u1 ≤ u10 and u20 ≤ u2 ≤ umax. The minimization problem
that we solve to calculate optimal u1 and u2 then becomes

minimize
u1,u2

(u3
1 + u3

2)d0

u2 − u1
+ φ

(df (u2 − u1)− u2d0)3

(u2 − u1)(τf (u2 − u1)− d0)2

subject to umin ≤ u1 ≤ u10

u20 ≤ u2 ≤ umax

(5.14)

This is a convex problem and can easily be solved numerically.
However, since we assumed no interference from traffic and other extraneous

factors that might render it impossible for the follower vehicle to maintain its op-
timal speed, we might see discrepancies in behaviour that will make this solution
suboptimal. In Figure 5.9 we see the calculated optimal merging speeds and the
average traffic speed upstream of the leader vehicle calculated in the moving bot-
tleneck framework. The optimal speeds are given as a function of φ, ranging from 1
(the follower vehicle in a platoon experiences no air drag) to 2 (platooning does not
reduce air drag at all). We can see that even for φ ≈ 1.8, we have u2 > V(rc(σξ, u1))
(u2 greater than the average traffic speed upstream of the leader vehicle), so the
follower vehicle will not be able to maintain its optimal merging speed in face of
congestion caused by the leader, and this discrepancy will cause the actual pla-
toon merge to occur later. Consequently, the energy savings will be lower than
expected and suboptimal, further motivating including the traffic conditions in the
optimization problem.

5.3.2 The influence of traffic
We assume we can split the initial traffic conditions between them into two zones,
ρ(x, 0) ≈ ρf , x < xc and ρ(x, 0) ≈ ρc, x > xc, where xc is the minimal x for which
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Figure 5.9: Optimal merging speeds for leader and follower vehicles and average
traffic speed upstream of the leader vehicle.

V(ρ(xc, 0)) < umax. We calculate ρf and ρc as average values of ρ on [x2, xc] and
[xc, x1] respectively. If V(ρ(x, 0)) ≥ umax for all x ∈ [x2, x1], we set xc = x1 and
ρc = σ.

The follower vehicle can only be slowed down when it enters the zone of density
ρc, or the zone of density rc(σξ, u1), originating from the leader vehicle. In further
text, we denote rf (σξ, u2) as simply rf and rc(σξ, u1) as rc.

The solution to thus described composite Riemann problem for τ ≈ 0 is given
by

ρ(x, t+ τ) =


rf , x < x2 + λrfρf τ,

ρf , x2 + λrfρf τ < x < xc + λρfρcτ,

ρc, χc + λρfρcτ < x < x1 −Wτ,

rc, x1 −Wτ < x,

where λρ−ρ+ = Λ(ρ−, ρ+) is the Rankine-Hugoniot transition speed, and W is the
congestion wave speed, assuming triangular flux function. This solution is valid
until the first front interaction, when either the zone of density ρf disappears,

x2 + λrfρf τ = xc + λρfρcτ (5.15)

or the zone of density ρc disappears,

xc + λρfρcτ = x1 −Wτ. (5.16)
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We denote the solution in τ to (5.15)

τρf (u) = xc − x2

λrfρf − λρfρc
,

and the solution in τ to (5.16)

τρc(u) = x1 − xc
λρfρc +W

.

The times of following front interactions will be delineated by noting the order in
which the zones of particular density vanished. For example, τρcρf denotes the
time at which zone of density ρf vanishes in second front interaction, after zone of
density ρc vanished in first front interaction.

The rest of the front interaction times are given by

τρfrf = τρf
λrfρf − λrfρc
u2 − λrfρc

,

τρfρc =
d0 + τρf (λrfρc − λrfρf )

λrfρc +W
,

τρcρf =
d0 − τρc(λρfrc +W )

λrfρf − λρfrc
,

τρcrc = τρc
λρfrc +W

λρfrc − u1
,

τt1 = τρfrfρc =
d0 + τρfrf (vρc(u2)− u2)

vρc(u2) +W
,

τt2 = τρfρcrf =
d0 − τρfρc(λrfrc +W )

u2 − λrfrc
,

τt3 = τρcρfrf = τρcρf
λrfρf − λrfrc
u2 − λrfrc

,

τρcρfrc =
d0 + τρcρf (λrfrc − λrfρf )

λrfrc − u1

From the standpoint of cost function, there are four cases of traffic we need to
consider based on the ordering of front interactions:

• Case 0: The follower is unaffected by traffic. This case typically happens
in light traffic, when the zone of density ρc vanished first, τρc < τρf , and
the zone of density rc vanishes before the zone of density rf , with either
τρcρfrc < τρcρfrf or τρcrc < τρcρf .
This case was already discussed and corresponds to using J0 as the cost func-
tion.
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• Case 1: The zone of density ρf vanishes first, τρf < τρc , then the zone of
density rf , τρfrf < τρfρc . The follower vehicle first enters the zone of traffic
of density ρc, and then of traffic density rc at time τt1 .

• Case 2: The zone of density ρf vanishes first, τρf < τρc , then the zone of
density ρc, τρfrf > τρfρc . The follower vehicle only enters the zone of traffic
density rc at time τt2 .

• Case 3: The zone of density ρc vanishes first, τρf > τρc , and the zone of
density rf vanishes before the zone of density rc, with τρcρfrc > τρcρfrf and
τρcrc > τρcρf . The follower vehicle only enters the zone of traffic density rc
at time τt3 .

The latter three cases are shown on Figure 5.10. We denote the speed the follower
vehicle maintains in traffic of density ρ, vρ(u2) = min(u2,V(ρ)). Finally, for traffic
cases i = 1, 2, 3, the platoon merge will occur when the fronts corresponding to the
leader and the follower vehicle intersect, at

τmi = d0 − dti + vrc(u2)τti
vrc(u2)− u1

xmi = x1 + u1τmi

where

dt1 = d0 −Wτρfrfρc ,

dt2 = u2τρfρcrf ,

dt3 = u2τρcρfrf ,

are the positions where the follower vehicle enters the traffic zone of density rc.
Under the stated assumptions, the cost function (5.12) can be written as

J(u) =


J0(u), τρf > τρc , (τρcρfrc < τρcρfrf ∨ τρcrc < τρcρf ),
J1(u), τρf < τρc , τρfrf < τρfρc ,

J2(u), τρf < τρc , τρfrf > τρfρc ,

J3(u), τρf > τρc , τρcρfrf < τρcρfrc , τρcρf < τρcrc ,

where

J1(u) = u3
1τm1 + u3

2τρfrf + u3
ρc(τt1 − τρfrf ) + u3

rc(τm1 − τt1) + (Xf − xm1)3

(τf − τm1)2 ,

J2(u) = u3
1τm2 + u3

2τt2 + u3
rc(τm2 − τt2) + (Xf − xm2)3

(τf − τm2)2 ,

J3(u) = u3
1τm3 + u3

2τt3 + u3
rc(τm3 − τt3) + (Xf − xm3)3

(τf − τm3)2 .
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(a) τρf < τρc , τρf rf < τρfρc (b) τρf < τρc ,τρf rf > τρfρc (c) τρf > τρc

Figure 5.10: Front tracking prediction of traffic between the leader (dashed blue)
and the follower (dashed red).

To enforce speed and timing constraints on the vehicles, we add two additional
barrier terms to Ji, corresponding to inequalities

Xf − xmi
τf − τmi

≤ umax
p ,

τmi ≤ τf ,

where up,max is the maximum speed of the merged platoon, which could differ from
umax. These two inequalities ensure that both vehicles will be able to reach position
Xf at time tf .

Finally, the optimization problem we want to solve in order of finding the energy-
optimal merging speeds for two vehicles under constraints imposed by the surround-
ing traffic is

minimize
u1,u2

J(u)

subject to umin ≤ u1 ≤ u10

u20 ≤ u2 ≤ umax

(5.17)

This problem might not be convex, but it is unimodal.
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(a) Control law (2)
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(b) Control law (3)
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(c) Speed profiles under control law (2) (top) and (3) (bottom)

Figure 5.11: Traffic situation (subfigures (a) and (b)) and speed profiles (c) of one
simulation run with no disturbances. Attempting to form a platoon using control
law (2) led to an increase in energy cost by 0.71636%, whereas the control law (3)
achieved energy savings of 0.50955%.
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(a) Control law (2)
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(b) Control law (3)
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(c) Speed profiles under control law (2) (top) and (3) (bottom)

Figure 5.12: Traffic situation (subfigures (a) and (b)) and speed profiles (c) of one
simulation run with follower speed disturbance. Attempting to form a platoon using
control law (2) led to an increase in energy cost by 0.48012%, whereas the control
law (3) achieved energy savings of 0.32183%.
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5.3.3 Simulation results
Finally, we test the derived control laws in simulations. The metric we will be using
is the percentage of energy saved, according to (5.12), compared to the case the
vehicles would drive at a constant speed and arrive at xf at time tf . In total a 100
simulations were executed for each control law and traffic density range.

The simulation scenario in question is as follows:

1. t < t10: The traffic is in free flow, with heterogeneous traffic density. The
leader vehicle enters the road segment at t = t10.

2. t10 ≤ t < t20: The leader vehicle travels at speed v01, at which it would reach
χf at time tf . The follower vehicle enters the road segment at t = t20.

3. t20 ≤ t < tm: The leader and the follower adjust their speeds according to
the specified control law, until they merge into a platoon.

4. t ≥ tm: The newly merged platoon proceeds and adjusts its speed so that it
reaches Xf at time tf .

If the platoon merging fails for any of the control laws, or if the vehicles violate
the timing constraint (not arrive at xf by tf ), the vehicles proceed at their max-
imum speed until the end of the segment, and that simulation run is not counted
in average cost calculations.

The initial background traffic conditions ρi(0) and inflow into the first cell q0(t)
are randomly generated heterogeneous free flow. We used three scenarios with
different traffic density ranges, light traffic [σ/5, σ], medium traffic [σ/3, σ] and
heavy traffic [σ/2, σ], resulting in average traffic density of 0.6σ, 0.66σ and 0.75σ
respectively.

We are comparing three different control laws:

• Control law (1): The optimal reference speeds are calculated by solving
(5.14) once at t = t20, ignoring traffic conditions.

• Control law (2): The optimal reference speeds are calculated by solving
(5.14) periodically during the merging phase, ignoring traffic conditions,

• Control law (3): The optimal reference speeds are calculated by solving
(5.17) periodically during the merging phase, taking traffic conditions into
account.

We also considered the case when some disturbance is acting on the vehicles.
Namely, at a random time instant between 5 and 10 minutes after the merging has
begun, we decrease the speed of the follower vehicle by 20km/h for 10 minutes. This
delays the platoon merge and would result in lower energy savings, so recalculating
optimal speeds is required. Examples of simulation runs without and with follower
speed disturbance are shown in Figure 5.11 and Figure 5.12. Vehicles forming a
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Figure 5.13: Relative energy consumption change with no disturbances.

ρ (1) (2) (3)
Light -2.4642% -2.4741% -2.6547%

Medium -2.0452% -2.0559% -2.3969%
Heavy -1.3909% -1.4183% -2.0220%

platoon are shown in traffic plots by red lines. Dashed black lines represent merging
vehicles’ trajectories if they would not be slowed down by the traffic, and dashed
green lines in traffic plots for control law (2) represent the trajectories that would
be followed if control law (3) was used instead. Crosses mark the position and time
at which the platoon merge occurred.

The average energy savings are shown in Figure 5.13 and Figure 5.14. We can
see that using control laws that take traffic conditions into consideration improves
average energy savings, especially in heavy traffic.

In addition to calculating optimal merging speeds, this approach can also be
used to predict when attempting to form a platoon is not beneficial. In Table 5.2
we see the number of “bad platooning attempts”, i.e. in how many simulation
runs the vehicles failed to reach the goal position in time, or had higher overall
energy cost. If the calculated optimal merging speeds are such that platoon merge
is predicted to occur very close to the end of the common road segment xf , we know
that attempting to form a platoon will not yield fuel savings, and may abandon the
attempt at the start, instead continuing driving at vehicles’ own optimal speeds. We
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Figure 5.14: Relative energy consumption change with a disturbance.

ρ (1) (2) (3)
Light -1.8712% -1.9245% -2.1577%

Medium -1.4860% -1.5536% -1.9228%
Heavy -0.7458% -0.8396% -1.5171%

also see the number of times the algorithm correctly predicted this outcome (true
positive), which could be used to pre-emptively abort the platooning attempt, as
well as the number of times the bad outcome was not predicted (false negative) and
falsely predicted (false positive).

Table 5.2: Bad platooning attempt prediction.

Light Medium Heavy
Total bad attempts 5 15 23
Correctly predicted 5 14 19

Not predicted 0 1 4
Falsely predicted 6 3 1
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5.4 Summary

Optimal platoon formation coordination is a complex problem, even when consid-
ering only a single pair of vehicles attempting to merge and form a platoon. In this
case, the difficulties come from a large number of potential disturbances from the
environment that can disrupt the process.

Selecting correct merging speeds for the vehicles is important because failing to
do so might result in higher fuel consumptions. Even deciding whether the vehicles
should attempt to platoon at all should be influenced by what kind of disturbances
from the environment we might experience.

It is therefore important to have a good prediction model, for the merging ve-
hicle trajectories in the merging process. Using this model, we tested different
merging speed pairs and select the optimal one. Having predicted vehicle trajecto-
ries also enabled us to detect when the vehicles are deviating from the plan, and
take appropriate actions to correct them.

It is clear that traffic conditions can play a significant role in the platoon merging
phase, and that they cannot be ignored if we want to make a good prediction. By
using the moving bottleneck framework, we were able to anticipate the effect the
congestion formed upstream of the leader vehicle will have on the follower vehicle.
This allowed us to calculate energy-optimal merging speeds, as well as to decide
when platooning should be attempted.



Chapter 6

Bottleneck decongestion

Bottlenecks, such as lane drops, work zones, accident sites, or on-ramps, are
often the main reason for congestion build-up and traffic flow disruption. For

this reason, they are one of the main areas where traffic control is applied. Once the
traffic flow arriving at the bottleneck exceeds what the bottleneck can handle in free
flow, traffic breakdown ensues and congestion starts building up. This is mainly
due to the arriving traffic flow being higher than the traffic flow discharging from
the bottleneck. The situation is exacerbated by the capacity drop phenomenon,
which manifests as a reduction in the traffic flow through the bottleneck once traffic
breakdown happens, further reducing the discharging flow from the queue and
representing a loss of efficiency for the traffic system. An additional difficulty in
dealing with this phenomenon is in the fact that the traffic breakdown is known
to happen stochastically. It may arise for an arbitrary value of traffic flow in some
range, depending on the microscopic interactions of the vehicles changing lanes at
their approach to the bottleneck.

Bottleneck decongestion has long been tackled by classical traffic control mea-
sures, such as ramp metering [60], and variable speed limits [62]. However, both
of these control methods require additional fixed equipment to be installed up-
stream of the bottleneck. This limits their flexibility, especially when it comes to
handling non-recurrent bottlenecks, such as work zones, accident sites etc. as it
is not reasonable to assume the required equipment would be available wherever a
bottleneck of that type arises. In this chapter, we propose an alternative approach
to the problem, using platoons acting as controlled moving bottlenecks to restrict
the traffic flow arriving at the bottleneck. By postponing and shaping the inflow
to the bottleneck, we are able to keep it in free flow. This helps us avoid traffic
breakdown and capacity drop, leading to significant reduction of total time spent
of all vehicles.

The chapter starts with a more detailed analysis of the bottleneck decongestion
problem in Section 6.1, which was outlined in Section 1.2.2. We then first tackle
the case when the traffic breakdowns happen stochastically in Section 6.2. This
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is achieved by creating controlled moving bottlenecks at desired points along the
road, and then controlling them to achieve bottleneck decongestion and improve
the throughput. Next, in Section 6.3 we design a more complex control law for the
case when the traffic breakdowns are deterministic. This control law is based on
the tandem queueing model with moving bottlenecks, coordinating the randomly
arriving platoons to achieve a similar goal. Finally, the content of the chapter is
summarized in Section 6.4.

6.1 Bottleneck decongestion problem

As outlined in Subsection 1.2.2, the congestion reduction problem, i.e., minimizing
the total time spent, is equivalent to maximizing the early outflow from the road
segment under consideration. The cost function to be maximized is

Jcr =
tend∫
t0

(t− tend)qout(t)dt. (6.1)

The outflow qout(t) is determined by the traffic dynamics on the road, as well as
by potential applied control actions, which will be designed to influence the traffic
state so that 6.1 is maximized. Typically, the flow of the whole road is constrained
by the most severe bottleneck, in which case we may focus on the stretch of road
upstream of it, and call this problem bottleneck decongestion.

The simplest case of bottleneck decongestion considers a single bottleneck at
the downstream end of the road, when the outflow from the road is equal to the
outflow from the bottleneck, qout(t) = qout

b (t). The queue length at the bottleneck
is denoted nb(t), and it evolves based on the difference between the inflow to the
bottleneck qin

b (t), and outflow from it qout
b (t),

ṅb(t) = qin
b (t)− qout

b (t),

qout
b (t) =

{
min{qin

b (t), qmax
b }, mb(t) = FF,

qdis
b , mb(t) = CD,

(6.2)

where mb represents the current state of the bottleneck, with mb = FF correspond-
ing to the bottleneck in free flow, and mb = CD to the congested bottleneck. We
denote the maximum capacity of the bottleneck qmax

b , and the discharging flow from
the bottleneck if it is congested qdis

b . The outflow from the road therefore depends
directly on the state of the bottleneck. Due to capacity drop, the discharging flow
will be lower than the maximum capacity, qdis

b < qmax
b . Note that such segment can

be used as a building block for a more complex road network, e.g. with multiple
stationary bottlenecks in cascade.

Assuming that the average inflow is below the bottleneck discharging flow
qin
b,avg < qdis

b , the bottleneck queue will be stable. However, the potential variability
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of the inflow can lead to traffic breakdowns and bottleneck becoming congested,
delaying the outflow from the road. Let there be KCD traffic breakdowns during
the considered time frame t0 ≤ t ≤ tend, and let k-th traffic breakdown happen at
time t = tbk ∈ (t0, tend), with mb(tbk) = CD and qin

b (tbk) > qdis
b . After each traffic

breakdown, the bottleneck returns to free flow at time tck for which it holds that

t∫
tb
k

qin
b (t)dt > (t− tbk)qdis

b , t ∈ (tbk, tck),
tck∫
tb
k

qin
b (t)dt = (tck − tbk)qdis

b . (6.3)

Assuming the bottleneck is in free flow mode at t = tend, mb(tend) = FF, the
congestion reduction cost function (6.1), can be written

Jcr =
tbk∫
t0

(t− tend)qin
b (t)dt+

KCD∑
k=1

( t22 − tendt

)∣∣∣∣t
c
k

tb
k

qdis
b +

tbk+1∫
tc
k

(t− tend)qin
b (t)dt

 ,

where we set tbKCD+1 = tend. For each traffic breakdown at the bottleneck, the TTS
is increased by

tck∫
tb
k

(t− tend)
(
qdis
b − qin

b (t)
)

dt > 0,

since t− tend < 0 and
∫ t
tb
k
(qdis

b − qin
b (t))dt < 0, t ∈ (tbk, tck) due to (6.3), compared to

the ideal case when the bottleneck is never congested.
Therefore, if we can by some means control the inflow to the bottleneck qin

b (t),
the general control strategy for minimizing the TTS is the following:

• if the bottleneck is congested – return it to free flow as soon as possible, and

• if the bottleneck is in free flow – keep the flow as high as possible without
causing a traffic breakdown.

This is consistent with the so-called “breakdown minimization principle” [220]. For
this, we need to be able to regulate the traffic flow that reaches the bottleneck
within some range [qlo, qhi]. Additionally, in order to be able to decongest the
bottleneck, we need qlo < qdis

b , and in order to be able to improve the throughput
without causing traffic breakdown, we need qdis

b < qhi ≤ qmax
b .

More specifically, we study bottleneck decongestion using controlled moving
bottlenecks as actuators, with their speed and severity as a control input. We
assume the traffic state can be measured and observed using stationary sensors
or connected vehicles. These moving bottlenecks are formed out of clusters of
connected vehicles, which we will also refer to as platoons. By communicating
with platoon ξ, we may change its reference speed uξ and formation, which in turn
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affects the surrounding traffic and limits the traffic flow that can overtake it qcap
ξ (t).

In general, reducing uξ and setting the platoon formation to take multiple lanes
makes the platoon act as a more severe moving bottleneck. We assume that we can
control the overtaking flow in some range

[
qlo, qhi], e.g. the overtaking flow will be

reduced if the platoon splits and drives side by side, taking multiple lanes, instead
of taking only one lane. The maximum controllable overtaking flow qhi corresponds
to having the platoon take only one lane, leading to minimum moving bottleneck
severity, and the minimum, qlo, to having the platoon take the maximum number
of lanes with maximum moving bottleneck severity. Therefore, we may use the
platoons as controlled moving bottlenecks to control the inflow to the stationary
bottleneck in order to decongest it and keep it in free flow, which increases the
throughput.

While the behaviour of the bottleneck in either state is generally understood,
there are conflicting paradigms about how the transition between them happens. In
the remainder of this chapter, we will discuss the two main cases. We first focus on
stochastic capacity and traffic breakdown, designing a control law that reacts to the
changes in the bottleneck state. Then, we use a deterministic model to pro-actively
coordinate platoons so that traffic breakdowns are avoided.

6.2 Bottleneck decongestion with stochastic traffic
breakdown

In the vast majority of classic deterministic traffic models, it follows from the model
structure that the capacity of a bottleneck qmax

b is constant for a given road geom-
etry. Once traffic flow higher than the bottleneck capacity reaches the bottleneck,
there is a traffic breakdown, and the congestion that is formed begins discharg-
ing from the bottleneck at a lower rate qdis

b < qmax
b , due to the capacity drop

phenomenon [37, 38, 39]. However, a plethora of empirical results points to traf-
fic breakdown happening at the same bottleneck for different traffic conditions
[40, 41, 42], interpreting the bottleneck capacity as a stochastic variable.

In this section, we tackle the bottleneck decongestion problem assuming that
traffic breakdown happens stochastically. The proposed control law reacts to traffic
breakdown, creating controlled moving bottlenecks that regulate the inflow to the
stationary bottleneck in order to decongest it and keep it in free flow. The proposed
reactive control law is then tested in simulation, using FTTSM as the simulation
model.

6.2.1 Stochastic traffic breakdown

A stationary bottleneck will be uncongested for low levels of incoming flow,
qin
b (t) < qdis

b . As the flow increases, the probability of traffic breakdown will start
increasing. The stochastic capacity of a bottleneck is given by specifying the prob-
ability of traffic breakdown within some time interval T , given the demand level q,
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as in [40]. The probability of traffic breakdown is taken to be Weibull-distributed,

FB(T, q) = 1− e−
T
T0

(
q
k0

)−m0

,

where parameters T0, m0 and k0 are positive design parameters obtained from
estimating the stochastic capacity of the bottleneck. Conversely, the time to
breakdown is an exponentially distributed random variable parametrised by q,
Θq ∼ exp(TB(q)−1). We denote by TB(q) the mean time to breakdown, given as a
function of the current traffic demand at the bottleneck,

TB(q) = T0

(
q

k0

)−m0

. (6.4)

Therefore, depending on whether the stationary bottleneck is in free flow, or is
congested, the dynamics of its queue length will follow

ṅb(t) = qin
b (t)− qout

b (t),

qout
b (t) =

{
qin
b (t), m = FF,
qdis
b , m = CD,

initialized at some time t0 with

nb(t0) = 0,
θ(t0) = Θqin

b
,

qold
b (t0) = qin

b (t0),

where the time to breakdown Θqin
b

is either zero, if qin
b > qmax

b , or exponentially
distributed otherwise, Θqin

b
∼ Exp(T−1

B (qin
b (t0))), with TB(q) given by (6.4). The

mode of the bottleneck is determined by m ∈ {FF,CD}.
If the bottleneck is in free flow mode m = FF, and demand at its position

stays qin
b (t) = qold

b longer than the time to breakdown Θq, we say that there has
been a traffic breakdown at the bottleneck, and its mode changes to capacity drop
m = CD. If the demand at the bottleneck changes to qin

b (t) 6= qold
b before the time

to breakdown has elapsed, we generate a new time to breakdown parametrised by
the new demand Θqin

b (t), update qold
b = qin

b (t), and repeat the process. Once the
bottleneck is active andm = CD, we consider it to have been decongested, m = FF,
once its queue has been discharged and its inflow drops below qin

b (t) < qdis
b . Note

that while technically a breakdown can happen for any qin
b (t), it is only neces-

sary to consider the case when qin
b (t) > qdis

b , since otherwise the breakdown would
immediately be resolved.

More formally, we may represent such queueing system as an open hybrid au-
tomaton with random reset map,

BN =
(
M,X , qin

b , f,X0,D, E ,G,R
)
.
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The automaton has two modes, M = {m}, and m ∈M = {FF,CD}, and three
continuous states, X = {nb, θ, q

old
b }, X ∈ X = R3. The input to the system qin

b (t)
is defined as a piecewise constant function of time with non-zero piece lengths, and
the continuous dynamics are represented by

f(FF,X , qin
b ) =

 0
−1
0

 , f(CD,X , qin
b ) =

qin
b − qdis

b
−1
0

 ,
with domains over which each of these vector fields is valid given by

D(FF, qin
b ) =

{
X ∈ X|nb = 0, θ ≥ 0, qold

b = qin
b
}
,

D(CD, qin
b ) = {X ∈ X|nb ≥ 0} .

We initialize the bottleneck in free flow, X0 =
[
0 Θqin

b
qin
b
]>, with Θqin

b
= 0 if

qin
b ≥ qmax

b , or Θqin
b
∼Exp(T−1

B (qin
b )) if qin

b < qmax
b . There are three possible discrete

transitions, E = {(FF,FF), (FF,CD), (CD,FF)}, which can occur when X belongs
to the guards

G(FF,FF, qin
b ) =

{
X ∈ R3|nb = 0, θ ≥ 0, qold

b 6= qin
b
}
,

G(FF,CD, qin
b ) =

{
X ∈ R3|nb = 0, θ ≤ 0

}
,

G(CD,FF, qin
b ) =

{
X ∈ R3|nb = 0, qin

b < qdis
b
}
,

and are characterised by reset maps

R(FF,FF,X , qin
b ) =

[
nb Θqin

b
qin
b
]>
,

R(FF,CD,X , qin
b ) =

[
nb θ qold

b
]>
,

R(CD,FF,X , qin
b ) =

[
nb Θqin

b
qin
b
]>
.

Since Θqin
b

is a random variable (6.4), these reset maps are stochastic.

6.2.2 Reactive bottleneck decongestion control
Assuming we know the traffic state along the road ρ(x, t), and the state of the
bottleneck mb(t) ∈ {FF,CD}, we may design a control law for bottleneck decon-
gestion and throughput improvement. As actuators, we will use controlled moving
bottlenecks. We assume that we are able to create controlled moving bottlenecks
at arbitrary positions on the road xξ, and control how many lanes they take; in real
application, this will depend on availability of suitable infrastructure-controllable
vehicles. Considering a three lane road, we say that a moving bottleneck can either
take two lanes, in which case its effect on the rest of the traffic is described by
flux function Qlo, or one lane, corresponding to flux function Qhi, thus limiting the
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overtaking flow at its position to qlo and qhi, respectively. This way, we are able to
regulate the traffic flow and restrict it when and where it is required.

Since traffic breakdown at the bottleneck happens stochastically, as discussed in
the previous subsection, we propose a control law that reacts to this event. When
a traffic breakdown is detected at some time t = t0, the controller can react by
activating some vehicles on the road to act as controlled moving bottlenecks and
help decongest the bottleneck. The control law needs to determine:

• the number of moving bottlenecks to be created Ξ(t0),

• positions where the moving bottleneck will be created xξ(t0), ξ = 1, . . . ,Ξ(t0),
with Xb > x1(t0) > . . . > xΞ(t0)(t0),

• velocities of the moving bottlenecks uξ(t), t ≥ t0, until xξ(t) = Xb,
ξ = 1, . . . ,Ξ(t0), and

• overtaking flow limits of the moving bottlenecks qcap
ξ (t), t ≥ t0, until

xξ(t) = Xb, ξ = 1, . . . ,Ξ(t0).

If some number controlled moving bottlenecks Ξ(t0−) were already active on the
road at t = t0, with positions xξ(t0), ξ = 1, . . .Ξ(t0−), the control law instead
recalculates their velocities uξ(t) and overtaking flow limits qcap

ξ (t), and determines
the number of new moving bottlenecks to be created Ξ(t0) − Ξ(t0−) and their
positions xξ(t0), ξ = Ξ(t0−) + 1, . . . ,Ξ(t0).

To simplify the control design, we adopt some assumptions and constraints.
First, we assume that all free flow traffic moves at the same constant free flow
speed V . Then, we assume that all moving bottlenecks move at the same speed
uξ < V , and that we can only create controlled moving bottlenecks some minimum
distance dmin away from other moving bottlenecks, xξ(t0) − xξ+1(t0) ≥ dmin, and
the stationary bottleneck Xb − x1(t0) ≥ dmin, unless that moving bottleneck was
already present on the road before time t0. Finally, we assume that the overtaking
flow limits of the moving bottlenecks can take one of two values, qcap

ξ (t) ∈ {qlo, qhi},
with qlo < qdis

b < qhi, i.e. the minimum overtaking flow limit is lower than the
discharging flow from the congested bottleneck, which is lower than the maximum
overtaking flow limit. Furthermore, this control input can be characterised by

qcap
ξ (t) =

{
qlo, t0 ≤ t ≤ tcξ(t0),
qhi, t > tcξ(t0),

and is uniquely determined by the switching time tcξ(t0). Therefore, the set of
control inputs that the simplified control law needs to determine reduces to:

• Number and positions of new moving bottlenecks to be created, Ξ(t0)− Ξ(t0−),
and xξ(t0), ξ = Ξ(t0−) + 1, . . . ,Ξ(t0), and

• Switching times for the overtaking flow limits of all moving bottlenecks tcξ(t),
ξ = 1, . . . ,Ξ(t0).
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Figure 6.1: An illustration of how bottleneck decongestion control is calculated.
The trajectories of the bottlenecks are indicated by dashed lines and the text above
the arrows indicates the intensity of traffic flow past moving and static bottleneck.
Brighter colour indicates higher traffic density. Once a traffic breakdown is detected,
controlled moving bottlenecks are created at desired positions.

An example of control calculation is shown in Figure 6.1.

Controlled moving bottleneck ξ = 1

Since the behaviour of the bottleneck is deterministic while it is in state m =
CD, we may calculate tc1(t0) that ensures that the bottleneck is decongested, thus
maximizing the outflow from the road segment, exactly. The evolution of the
bottleneck queue length in this state is given by

ṅb(t) =
{
V ρ(Xb − V (t− t0), t0)− qdis

b , t < tV1 (t0),
qlo − qdis

b , tV1 (t0) ≤ t < td1(t0),
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where nb(t0) = 0, tV1 (t0) is given by (4.33), tV1 (t0) = t0 + (Xb − x1(t0))/V , and we
denote

tdξ (t0) = tVξ (tcξ(t0)).

This holds from time t = t0 until t = td1(t0) or nb(t) becomes 0. If for some
t ∈ (t0, tV1 (t0)] we have nb(t) ≤ 0,

V

t∫
t0

ρ(Xb − V (τ − t0), t0)dτ =
Xb∫

Xb−V (t−t0)

ρ(x, t0)dx ≤ qdis
b (t− t0),

the queue at the bottleneck will have dissipated before the overtaking flow from
x1(t0) reaches it, and we may set tc1(t0) = t0, qcap

1 (t) = qhi. Otherwise, the queue
at the bottleneck is dissipated at time tcb(t0),

tcb(t0) =
∫Xb
x1(t0) ρ(x, t0)dx− qlotV1 (t0)

qdis
b − qlo . (6.5)

If this happens for tcb(t0) ≤ tu1 , where tu1 = (Xb − x1(t0))/u1 according to (4.34),
the queue at the bottleneck can be dissipated before moving bottleneck 1 reaches
it. We may then set tc1(t0) according to (6.5), with

tcb(t0) ≤ td1(t0),

tcb(t0) ≤ tc1(t0) + Xb − x1(t0)− u1t
c
1(t0) + u1t0

V
,

tc1(t0) ≥ V tcb −Xb + x1(t0)− u1t0
V − u1

. (6.6)

Otherwise, we set tc1(t0) = tu1 .
If there are no controlled moving bottlenecks present on the road at time t0,

and
Xb∫

Xb−dmin

ρ(x, t0)dx ≥ qdis
b
dmin

V
,

then creating controlled moving bottlenecks will make the dissipation of the queue
at the bottleneck faster, and the control law creates at least one moving bottleneck.
Otherwise, no moving bottlenecks will be created at time t0. The first moving
bottleneck can be created at position x1(t0) if it satisfies

Xb − x1(t0) ≥ max

dmin,
u1
∫Xb
x1(t0) ρ(x, t0)dx
qlo − qdis

b

 . (6.7)

Therefore, we can achieve the fastest bottleneck decongestion if we choose tc1(t0)
and x1(t0) according to (6.6) and (6.7) with equality.
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Controlled moving bottlenecks ξ > 1

Once the control action for the first moving bottleneck has been determined, we
may proceed to iteratively determine the control actions for each potential subse-
quent one. Since each moving bottleneck is created so that the stationary bottle-
neck is decongested before the moving bottleneck reaches it, the behaviour of the
traffic downstream of moving bottleneck ξ > 1 is not deterministic. However, if
tVξ (t0) ≥ tdξ−1, and for some t ∈ (tdξ−1(t0),min{tuξ−1, t

V
ξ (t0)}] we have that

xξ−1(t0)∫
xξ−1(t0)−V (t−t0)

ρ(x, t0)dx− qlo (tdξ−1(t0))− tVξ−1(t0)
)
− qhi (t− tdξ−1(t0)

)
≤ 0,

or if tuξ−1 < tVξ (t0) and for some t ∈ (tuξ−1, t
V
ξ (t0)] we have that

xξ−1(t0)∫
xξ−1(t0)−V (t−t0)

ρ(x, t0)dx−qlo(tdξ−1(t0)− tVξ−1(t0)
)
−qhi(tuξ−1 − tdξ−1(t0)

)
−qdis

b
(
t− tuξ−1

)
≤0,

the congestion downstream of moving bottleneck ξ will have cleared by tVξ (t0), and
we may set tcξ(t0) = t0, qcap

ξ (t) = qhi.
Next, if for some t ∈ (tdξ−1(t0), tuξ−1] we have that

nξ−1(tdξ−1(t0))− qhi(t− tdξ−1(t0)) + qlo(t− tVξ (t0)
)
≤ 0, (6.8)

where nξ−1(tdξ−1(t0)) denotes

nξ−1(tdξ−1(t0)) =
xξ−1(t0)∫
xξ(t0)

ρ(x, t0)dx− qlo(tdξ−1(t0)− tVξ−1(t0)
)
,

setting tcξ(t0) to

tcξ(t0) =
V tdξ (t0)−Xb + xξ(t0)− uξt0

V − uξ
, (6.9)

where tdξ (t0) is given by

tdξ (t0) ≥
nξ−1(tdξ−1(t0)) + qhitdξ−1(t0)− qlotVξ (t0)

qhi − qlo ,

ensures that the congestion downstream of moving bottleneck ξ is dissipated. If
condition (6.8) does not hold for any t ∈ (tdξ−1(t0), tuξ−1], the congestion built up
in the wake of moving bottleneck ξ − 1 reaches the stationary bottleneck. This
arrival of dense traffic will cause prompt traffic breakdown with high probability.
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Therefore, in this case we conservatively assume that the traffic breakdown happens
immediately at time tuξ−1, and if for some t ∈ (tuξ−1, t

u
ξ ] we have that

nξ−1(tdξ−1(t0))− qhi(tuξ−1 − tdξ−1(t0)
)

+ qlo(t− tVξ (t0)
)
− qdis

b (t− tuξ−1) ≤ 0,

setting tcξ(t0) according to (6.9), where tdξ (t0) is given by

tdξ (t0) ≥
nξ−1(tdξ−1(t0))− qhi

(
tuξ−1 − tdξ−1(t0)

)
− qdis

b tuξ−1 + qlotVξ (t0)
qdis
b − qlo , (6.10)

ensures that the queue at the bottleneck can be dissipated before moving bottleneck
ξ reaches it. Otherwise, we set tcξ(t0) = tuξ .

Finally, we create a new moving bottleneck ξ if
Xb∫

Xb−V tuξ−1

ρ(x, t0)dx− qlo (tdξ−1(t0)− tVξ−1(t0)
)
− qhi (tuξ−1 − tdξ−1(t0)

)
≥ 0,

at position xξ(t0),

xξ(t0) = min{xξ−1(t0)− dmin, Xb − uξtdξ (t0)},

where tdξ (t0) is determined by (6.10) with equality.

6.2.3 Simulation setup
The proposed control law is tested on a simulated stretch of road upstream of a
stationary bottleneck at position Xb, where we assume that flux function of the
road is triangular. Let Q∆(σs; ρ) be the triangular flux function, scaled so that σs
is its critical density,

Q∆(σs; ρ) =
{
V FFρ, 0 ≤ ρ ≤ σs,
V FF σ0

P 0−σ0

(
P 0 σs

σ0 − ρ
)
, σs < ρ ≤ P 0 σs

σ0 ,

where V FF is the free flow speed, and σ0 and P 0 are the critical and jam density
of the road upstream of the bottleneck, respectively. We use the Front Tracking
Transition System Model (FTTSM), described in 4.5, to capture the evolution
of traffic, the dynamics of the bottleneck, and the influence of controlled moving
bottlenecks.

The model is initialized with

X 0 =
(
N0, t0, z0, ρ0, Q0,W 0,R0)=

(
N0, 0, z0, ρ0, Q0,

(
−V FF, V FF), ∅).

The initial wavefront positions are given iteratively by

z0
N0 = z0

N0−1 = Xb,
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z0
i = z0

i=1 −∆z0
i , i = N0 − 2, N0 − 3, . . . , 1,

∆z0
i ∼ U

(
L

2 ,
3L
2

)
,

i.e. the initial length of the zones between two wavefronts upstream of the bot-
tleneck is uniformly randomly distributed, with L as the average initial condition
density length. The initial traffic densities are given by

ρ0
i ∼ U

(
2σ0 − ρ̄, σ0) , i = 1, . . . , N0 − 2,

ρ0
i = σ0

2 , i = N0 − 1, N0, N0 + 1,

where ρ̄ is the average of traffic density ρ0
i , i = 1, . . . , N0 − 2, and we assume that

V FFσ0/2 < qdis
b . The flux functions are given by

Q0,i =
(
V 0,i,Σ0,i,Λ±,0, ξ0,i, F 0)=

([
V FF σ0

P 0 − σ0V
FF
]>
,
[
σ0 P 0]>, (0, 0), ξ0,i, ∅

)
,

with the identifier ξ0,i = 0 for i = 1, . . . , N0 − 1 and i = N0 + 1, and ξ0,N0 = Ξb,
where Ξb can be taken as an arbitrary number larger than all other ξ that will be
used in the course of the simulation. This flux function will model the state of the
stationary bottleneck at position Xb.

Since the bottleneck is in free flow at time t = 0, it does not limit the traffic
flow and its flux function can thus be taken to be the same as the flux function of
the road upstream of it. However, once traffic breakdown happens, and capacity
drop starts being active, the flux function of the bottleneck is changed to

QCD
iΞb

=
([

V FF σ0

P 0 − σ0V
FF
]>
,
[
σd P d]>, (0, 0),Ξb, ∅

)
,

where iΞb is given by ξi = Ξb, limiting the discharge rate to qdis
b = V FFσd. Once

the congestion at the stationary bottleneck is dissipated and we have ρΞb < σd, the
flux function of the bottleneck is reverted to

QFF
iΞb

=
([

V FF σ0

P 0 − σ0V
FF
]>
,
[
σ0 P 0]>, (0, 0),Ξb, ∅

)
.

We may model the creation of a new moving bottleneck with unique identifier
ξ < Ξb at time t0 and position xξ(t0), moving at speed uξ(t0) and limiting the
traffic flow to qcap

ξ (t0) = V FFσξ(t0), using one state insertion and one flux function
transition.

1. Taking a transition +(σξ(t0), xξ(t0))i− , a zone of density σξ(t0) is added don-
wstream of front i−, zi− ≤ xξ(t0) ≤ xi−+1. Since the newly created zone is
infinitely narrow, it does not violate the conservation of traffic density.
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2. Taking a transition Q(Qξ(t0), i− + 1, i− + 2), where

Qξ(t0) =
([

V FF σ0

P 0 − σ0V
FF
]>
,

[
σξ(t0) P 0σ

ξ(t0)
σ0

]>
, (uξ(t0), uξ(t0)), ξ, ∅

)
,

the flux function at the position of the moving bottleneck is scaled down so
that its capacity is qcap

ξ (t0) = V σξ(t0), and both the upstream and down-
stream ends of the bottleneck will move at speed uξ(t0).

A similar procedure can be applied to create a moving bottleneck of nonzero length.
Note that it is required to ensure that uξ(t0) is always such that

uξ(t)
(
ρ+ − P 0σ

ξ(t)
σ0

)
≥ Q+(ρ+),

where ρ+ and Q+ are the traffic density and flux function immediately downstream
of the moving bottleneck. The speed or capacity of the moving bottleneck ξ can be
changed by changing Λ±iξ and Σiξ .

6.2.4 Simulation results

The simulation results of an example are shown in Figure 6.2, comparing the case
where we apply no control and let the traffic evolve freely, and the case where we
apply bottleneck decongestion control. We consider a stretch of highway, with no
on- and off-ramps and a bottleneck at position XB . The initial density ρ(0, x)
is piecewise constant and randomly generated, with average value ρ̄, resulting in
a varying traffic flow at the position of the bottleneck. The time the first traffic
breakdown happens (in this case at t0 ≈ 0.21) is taken to be the same in both cases,
and the simulations run independently starting with that point.

As can be seen from Figure 6.2b, by delaying the arrival of a part of the traffic,
we are able to maintain free flow at the bottleneck. Control action is recalculated in
order to react to changes at the bottleneck, and new controlled moving bottlenecks
are added when needed. Since in this case the average initial traffic density is larger
than the density at which the traffic flows out of the congested bottleneck, ρ̄ > σd,
once a traffic breakdown happens, it is likely that congestion will persist and grow,
since the average inflow to the queue will be larger than its outflow.

The flow at the position of the bottleneck is shown in Figure 6.3. We can
see that the traffic flow follows the demand until t0, when a traffic breakdown
happens. In the controlled case, we manage to return to the unperturbed state
around t = 0.65, whereas in the uncontrolled case the congestion at the bottleneck
keeps accumulating. A total of nc = 2106 vehicles was served from t = 0.1 to
t = 0.7 in the controlled case, compared to nnc = 1990 vehicles in the uncontrolled
case, corresponding to a queue of nb = 116 vehicles at t = 0.7.
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(a) No control.

(b) With control.
Figure 6.2: A simulation example comparing the evolution of traffic without and
with control. Brighter colour indicates higher traffic density.

6.3 Platoon coordination for deterministic bottleneck
decongestion

A common simplification is to assume that traffic breakdown happens deterministi-
cally once the traffic flow at the bottleneck exceeds some fixed value, although it is
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Figure 6.3: Traffic flow atXB with and without control, compared with the demand.

broadly accepted, and empirically shown, that a breakdown happens stochastically,
with different breakdown probabilities in range of traffic flow levels. Notwithstand-
ing, events such as arrival of a platoon of heavy-duty vehicles at the bottleneck can
make traffic breakdown certain, if the background traffic density is high enough.
The traffic models that are able to capture the capacity drop phenomenon are also
able to represent the traffic system with deterministic traffic breakdown. Namely,

Figure 6.4: Schematic representation of the control system. We use the information
about the current traffic state and state of controllable platoons to calculate the
control actions in order to improve the traffic situation.
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qout
2 qout
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Figure 6.5: An illustration of the road segment under consideration. The stationary
bottleneck corresponds to nb, the downstream platoon to n1 and the upstream
platoon to n2, and the overtaking flows at the platoons are regulated accordingly.
Both the inflow from the on-ramp and the outflow to the off-ramp will factor in the
inflow to the downstream platoon queue.

in this section, we will use two such models:

• multi-class CTM, as a richer and more complex simulation model (described
in Section 4.3), and

• tandem queueing model with moving bottlenecks, as a simplified represen-
tation of the model, used for prediction-based control design, analysis and
implementation (described in Section 4.4).

The control action is calculated according to the simulated traffic state, and then
applied on the more complex simulation model. An outline of the control loop is
shown in Figure 6.4.

We use the proposed prediction-based control to restrict just enough inflow to
the stationary bottleneck so that we first help dissipate the bottleneck queue, by
restricting the flow as much as possible, and then keeping its flow as close as possible
to its capacity. Depending on how directly we can see the influence of individual
control actions on the relevant system states, we may be able to calculate optimal
control in one shot, directly from the state prediction, or we may find the optimal
control iteratively. For ease of demonstration, in this part we focus again on a single
stationary bottleneck, with one on-ramp and one off-ramp upstream of its location
acting as disturbances to the traffic flow, as shown in Figure 6.5.

6.3.1 Control laws
Owing to the simple deterministic model of traffic breakdown, it is now straight-
forward to calculate the control action for bottleneck decongestion. As discussed
in Section 6.1, we can improve the TTS by ensuring

qin
b (t) =

{
qlo, mb(t) = CD,
qhi, mb(t) = FF,
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which we intend to do using platoons acting as controlled moving bottlenecks. The
model of the bottleneck (6.2) is completed with

mb(t) =
{

FF, nb(t) = 0,
CD, nb(t) ≥ 0,

determining the bottleneck mode.
We assume that the current traffic density profile of the simulation model ρ(x, t)

at current time is known and available to the prediction model. We further link
the prediction model by either analytically deriving or estimating from data the
following parameters: free flow speed V (which we assume is constant and could
be given as an averaged value), minimum enforceable platoon speed Umin, station-
ary bottleneck capacity qcap

b , stationary bottleneck discharging flow qdis
b , minimum

enforceable overtaking flow at the moving bottlenecks qlo, maximum enforceable
overtaking flow at the moving bottleneck that is lower than the stationary bottle-
neck capacity qhi, and average splitting ratio at the off-ramps Rk. The general road
geometry, including the stationary bottleneck position Xb and the position of the
on- and off-ramps Xr

k, is also assumed to be known.
We are looking to maximize the outflow from the bottleneck, which in case there

are no off-ramps corresponds to minimizing the TTS. In case there are off-ramps
the total outflow of the mainstream and of the off-ramps needs to be maximized
instead. We first consider the case when there are no on- or off-ramps and then
extend the control to include on- and off-ramps. As control inputs, we use the
moving bottleneck speed uξ(t), which we control by changing the reference speed of
the platooned vehicles, and the moving bottleneck formation, which is controlled by
changing how many lanes the platoon takes and directly related to qcap

ξ (t). By doing
this, we are able to first help dissipate the congestion at the stationary bottleneck
(by restricting the flow as much as possible), and then dissipate the congestion
in the wake of the moving bottleneck (by reducing the moving bottleneck severity
while making sure the stationary bottleneck remains in free flow). The proposed
control laws rely on the prediction model, and will be described in the remainder
of the section.

Ideal actuation

Before discussing platoon actuated control, in order to have a baseline for com-
paring the performance of the proposed control laws, we consider the ideal case,
assuming we can fully control all traffic, and that we can control every class of traffic
independently. This corresponds to having a 100% penetration rate of connected,
communicating, and controlled vehicles, and knowing each vehicle’s destination.
Assuming the inflow of off-ramp-bound vehicles is lower than the capacity of the
off-ramp, we only need to minimally delay the mainstream-bound background traffic
so that the flow at the bottleneck never exceeds its capacity qin

b (tT ) ≤ qcap
b = qmax

b .
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In the multi-class CTM, which is used as the simulation model here, this is
equivalent to ensuring that the traffic density immediately upstream of the bot-
tleneck ρib(tT ) ≤ σ+ for all t, where σ+ is the critical density of the stationary
bottleneck, with Uκi (tT ) as close as possible to V . Assuming the platooned vehicles
belong to class a, and the background traffic bound for the bottleneck belongs to
class b, this can be achieved by setting U bi (tT ) recursively,

U bib(tT )= V,

U bi (tT )=Vmin

1,max

U bmin
V

,
ρb∗i (tT )− V−Ubi+1(tT )

V ρbi+1(tT )
ρbi (tT )


, i = 1,. . . ,ib−1

ρb∗i (tT )=
{
σ+ − ρ∗ξ(tT ), 0 < Xb−(i−1)L

V − Xb−xξ(tT )
uξ(tT ) <

lξ(tT )
uξ(tT ) + L

V ,

σ+, otherwise,
, ξ = 1, . . . ,Ξ,

(6.11)

where ib is the cell with the stationary bottleneck. This way, the mainstream-bound
background traffic is regulated so that the total demand at the bottleneck, including
the arriving platoons, is kept as close to its capacity as possible without exceeding it.
The mainstream-bound background traffic is delayed minimally, while the platoons
and the off-ramp-bound background traffic experience no delay, travelling at their
respective maximum speeds.

Platoon-actuation not aware of on- or off-ramps

The control objective, maximizing the throughput, i.e., the outflow qout
b (t), can be

achieved by keeping nb(t) = 0 and qin
b (t) as close as possible to qcap

b . Additionally,
we require that the queue at the platoon is already discharged when the platoon
reaches the bottleneck, nξ(tuξ (t0)) = 0. Therefore we employ control law using
tandem queueing model with moving bottlenecks as the prediction model,

q̃cap
ξ (t) =


qref(t), nb(t) = 0 ∧ t ≥ tuξ−1(t0),
q̃cap
ξ−1(t), ñξ−1(t) = 0 ∧ t < tuξ−1(t0),
qlo, otherwise,

(6.12)

where we calculate the control action at time t0, and the reference flow qref(t) can
be externally determined. The coordinate shifted times tVξ (t0) and tuξ (t0) are given
by (4.33) and (4.34), respectively. For maximizing the throughput, we set

qref(t) = qhi − qub (t),

taking the largest admissible qhi ≤ qcap
b . In order to compute the current

qcap
ξ (t0) = q̃cap

ξ (tVξ (t0)) for all platoons, we need to predict nb(t) until tVΞ (t0), which
requires calculating qcap

Ξ (t0) and qcap
ξ (t) for 0 ≤ t ≤ min

{
tuξ (t0), tVΞ (t0)

}
.
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Assuming this control law is applied, we set the speed of each platoon so that
nξ(tuξ (t0)) = 0 and nb(t) = 0, tcξ(t0) ≤ t ≤ tuξ (t0), with minimum tcξ(t0), where

tcξ(t0) ≥ max
{
tVξ (t0), tuξ−1(t0) + lξ−1

V

}
.

This is achieved when

ñξ(tuξ (t0))=ñξ(tcξ(t0))+
tu1 (t0)∫
tc
ξ
(t0)

q̃in
1 (t)dt−qhi(tu1 (t0)−tc1(t0))=0. (6.13)

For ξ = 1, in case it is known that tV2 (t0) < tu1 (t0), (6.13) simplifies to

ñ1(tu1 (t0)) = ñ1(tV2 (t0)) + qlo(tu1 (t0)− tc1(t0))− qhi(tu1 (t0)− tc1(t0)) = 0,

u1(t0) =
(
qhi − qlo) (Xb − x1(t0))

ñ1(tV2 (t0)) + (qhi − qlo) tc1(t0)
,

since we can explicitly calculate

ñ1(tV2 (t0)) =
∫ tV2 (t0)

tV1 (t0)
V ρ(Xb − V t, 0)dt− qlo(tV2 (t0)− tV1 (t0)).

Otherwise, uξ(t0) is calculated by solving (6.13) numerically, and can be obtained
as a by-product of iterating the prediction steps for nb(t) and ñξ(t). The simplest
way of calculating uξ(t0) is to initialize it to

u
(0)
ξ (t0) = min

{
Umax, uξ−1(t0) Xb − xξ(t0)

Xb − xξ−1(t0) + lξ−1

}
,

and then decrease it until either uξ(t0) = Umin or (6.13) is satisfied. This also
ensures that uξ(t0) is constrained to be within the range

Umin ≤ uξ(t0) ≤ min
{
Umax, uξ−1(t0) Xb − xξ(t0)

Xb − xξ−1(t0) + lξ−1

}
,

which is required for the limitations to be met if there is no platoon merging.

Platoon-actuation aware of on- or off-ramps

Consider now the case when there are on- or off-ramps. In order to predict the
evolution of queues, which is needed for computing the control inputs, we need to
know the ramp flows q̃r

k(t) in advance. This information can be hard to obtain,
since it will depend on the routing decisions of individual drivers constituting the
background traffic. Therefore, we use the predicted ramp flows.



158 CHAPTER 6. BOTTLENECK DECONGESTION

If ramp k is an on-ramp, we can replace the actual ramp flow with its average
q̂r
k(t) = q̄r

k(t), which in reality can be determined statistically. If ramp k is an off-
ramp, we can employ the standard assumption that some constant ratio of vehicles
Rk leave the road via the off-ramp. We can then write

q̂r
k(t) = −Rk

q̃in,r
k (t) +

∑
l∈Kr,k

o (t)

q̃r
l (t)

 ,

q̃in,r
k (t) =

{
qVb (t), xu1 (t) < xr

k < Xb

q̃out
ξ+1(t), xuξ+1(t) < xr

k < xuξ (t)

Kr,k
o (t) =


{l|xu1 (t) < xr

l < xr
k} , t > tV1 (t0), xr

k < xuξ−1(t){
l|xuξ (t) < xr

l < xr
k

}
, xr

k < xuξ−1(t), ξ > 1
{l|Xb − V t < xr

l < xr
k} ,otherwise

xuξ (t) = xξ(t0) + uξ(t0)(t− t0), t ≥ t0,

depending on the origin of the flow to off-ramp k at time t, and use q̂r
k(t) in place

of qr
k(t) in (4.35).
The portion of queue at platoon ξ that remains after the platoon has passed

the off-ramp k can be estimated to be

ñξ(tr,kξ (t0)+) = (1−Rk)ñξ(tr,kξ (t0)), xuξ (tr,kξ (t0)) = Xr
k,

and we may now apply a control law similar to the one derived for the case when
there are no on- and off-ramps.We modify (6.12) to take into account the fact that
there might be some off-ramps k ∈ K∗ whose flow we do not want to obstruct. Since
it is not possible to selectively allow the off-ramp-bound traffic to pass without also
releasing the mainstream-bound traffic, we will only allow unrestricted flow towards
those off-ramps by setting q̃cap

ξ (t) = qhi if there are other platoons downstream that
are regulating the inflow to the bottleneck. The updated control law is

q̃cap
ξ (t) =


qref(t), nb(t) = 0 ∧ t ≥ tuξ−1(t0),
qhi, Kp−1∗

ξ (t) 6= ∅ ∧ t < tuξ−1(t0),
q̃cap
ξ−1(t),Kp−1∗

ξ (t) = ∅ ∧ ñξ−1(t) = 0 ∧ t < tuξ−1(t0),
qlo, otherwise,

(6.14)

where Kp∗
ξ (t) = Kp

ξ+1(t) ∩K∗.
The platoon speeds are again obtained in the course of predicting the queue

evolution, as described in the previous subsection.

6.3.2 Closed-loop system analysis
In order to understand the effects and limitations this control law will have in real-
istic situations, we first study it under simplified conditions, in an idealised setting.
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Whereas in simulations the inflow of background traffic will vary in time, taking
random values belonging to some range, we first assume constant background traffic
inflow qin(t) = qin. Similarly, in simulations the platoons arrive with exponentially
distributed gaps, but here we first assume periodic platoon arrivals, with period
τπ, and each platoon consisting of nπ passenger car equivalents. Later, we will
allow the inflow and gaps between two platoons vary within some range. In this
subsection, we derive:

1. Exact limits on the maximum initial excess congestion for which the un-
controlled and controlled systems are stable, assuming constant inflow and
periodic platoon arrivals.

2. The number of controlled platoons required to fully dissipate the congestion
at a stationary bottleneck and return the road to the unperturbed free flow
state.

3. An estimate of throughput given varying inflow and gap between platoons,
i.e., the average inflow for which we are able to dissipate the congestion at
the bottleneck with a predefined probability.

The bottleneck will be considered to have capacity qcap
b , which is reduced to qdis

b
in case there is capacity drop, qdis

b < qcap
b . We study the case when the bottleneck is

already congested at initial time. If the platoon arrives at a congested bottleneck,
its vehicles are added to the bottleneck queue. Otherwise, if there is no queue at
the platoon and it arrives at a bottleneck in free flow, the platoon passes through
the bottleneck without causing traffic breakdown.

In summary, the system that we study in this section is

ṅb(t) = qin
b (t)− qout

b (t), (6.15)
nb(tV1 (t0)) = µ0, (6.16)

qin
b (t) =

{
q̃out
ξ , max

{
tVξ (t0), tuξ−1(t0)

}
≤ t ≤ tuξ (t0),

qin(t), otherwise,
(6.17)

qout
b (t) =

{
qin

b (t), qin
b (t) ≤ qcap

b ∧ nb(t) = 0,
qdis

b , qin
b (t) > qcap

b ∨ nb(t) > 0,
(6.18)

˙̃nξ(t) = q̃in
ξ (t)− q̃out

ξ (t), tVξ (t0) < t < tuξ (t0), (6.19)
ñξ(tVξ (t0)) = 0, (6.20)

q̃in
ξ (t) =

{
q̃out
ξ+1, tVξ+1(t0) < t < tuξ+1(t0),
qin(t), t ≤ tVξ+1(t0),

(6.21)

q̃out
ξ (t) =

{
q̃in
ξ (t), q̃in

ξ (t) ≤ q̃cap
ξ (t) ∧ ñξ(t) = 0,

q̃dis
ξ , q̃in

ξ (t) > q̃cap
ξ (t) ∨ ñξ(t) > 0,

(6.22)
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nb(tuξ (t0)+) =
{
nb(tuξ (t0)) + ñξ(tuξ (t0)) + nπ, nb(tuξ (t0)) + ñξ(tuξ (t0)) > 0,
0, nb(tuξ (t0)) + ñξ(tuξ (t0)) = 0,

(6.23)

ξ = 1, . . . ,Ξ,

where q̃cap
ξ (t) is governed by control law (6.12).

We control the platoons by setting their speeds and formation. The platoon
speed uξ(t0) can range from some set minimum speed Umin to the free flow speed
of all traffic V , and it will determine the time at which the platoon will reach the
bottleneck tuξ (t0). By setting the platoon formation (i.e. number of lanes a platoon
occupies), we control the maximum overtaking flow at its position q̃cap

ξ (t), with
overtaking flow of qlo corresponding to maximum number of lanes taken, and qhi

corresponding to one lane taken. To simplify the presentation, we omit writing (t0).

Constant inflow and periodic platoon arrivals

We study the stability of the queue at the bottleneck under conditions of constant
inflow and periodic platoon arrivals for different initial bottleneck queue lengths.
First, in case no control is applied (i.e. uξ = V , tuξ = tVξ , and q̃

cap
ξ (t) = qhi), the

system under consideration simplifies to (6.15)–(6.18) and (6.23) with ñξ(tuξ ) = 0.
The system is stable if

qin + nπ
τπ

< qdis
b ,

i.e., if the average total inflow is less than the dissipating flow of the bottleneck, its
queue length will go to zero regardless of its initial value.

If the platoons can be controlled, we are able to extend the range of qin for which
the system is stable. In this case, it is of interest to study what is the maximum
initial queue length µ0 for which the system is stable for a given qin. The length of
the considered road segment is Xb−X0 and a platoon moving at speed uk traverses
it and reaches the bottleneck after τuk = Xb−X0

uk
. Assuming the first platoon enter

the road at time t = 0 and tV1 = (Xb −X0)/V , we define the initial queue length
µ0 = nb(tV1 ) as the queue length at the bottleneck at the time when the overtaking
flow from the platoon reaches it. This is equivalent to saying that there is µ0 excess
congestion to be dissipated, signifying how many vehicles need to be temporarily
removed from the inflow in order for the bottleneck to return to free flow. For the
first platoon entering the road segment, the entire congestion will be located at
the bottleneck, and for subsequent platoons, the initial excess congestion µk will
be distributed between the bottleneck and downstream platoons that previously
entered the road.

The case we are considering assumes that the flow values are arranged as

qlo < qdis
b < qin < qin + nπ

τπ
< qhi ≤ qcap

b , (6.24)

and the uncontrolled system is unstable.
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The system is stable if µk+1 < µk until µk = 0 for some k. This means that
every subsequent platoon has less excess congestion to dissipate until the system
returns to the unperturbed state. Since we are looking for maximum µk for which
this holds, we study the situation when maximum control action is applied, i.e. the
platoon speed is uk = Umin and maximum overtaking flow is qlo until the queue at
the bottleneck is dissipated, which happens at τdis

k = µk/
(
qdis

b − qlo). Moving at
minimum speed, a platoon will reach the bottleneck after τmax = (Xb−X0)/Umin,
so a necessary condition to be able to begin dissipating the congestion is τmax > τdis

k ,
which yields

µ0 <
(
qdis

b − qlo) τmax.

The process of dissipating excess congestion can be split into two phases:

• saturation, and

• recovery.

In the saturation phase, maximum control action is applied and there is a queue
at the platoons when they reach the bottleneck. In the recovery phase, each subse-
quent platoon will have a higher speed, until the traffic returns to the unperturbed
state. The recovery phase begins with platoon k that is able to dissipate all excess
congestion and reach the bottleneck with no queue, which happens when µk < µsat

qin ,
where

µsat
qin = 1

a

((
qhi − qlo) τmax −

(
qin − qlo) τπ) . (6.25)

In saturation phase, given µk ≥ µsat
qin , the excess congestion left for platoon k+1

to dissipate will be

µk+1 = aµk + b, (6.26)

a = qhi − qlo

qdis
b − qlo > 1, (6.27)

b = τπ
(
qin − qdis

b
)

+ nπ − τmax (qhi − qdis
b
)
< 0. (6.28)

Therefore, the excess congestion (6.26) will decrease if

µk <
b

1− a.

Starting with µ0, we can calculate µk by recursing (6.26),

µk = akµ0 +
k−1∑
i=0

aib.

Note that since the discharging flow qdis
b by definition lies between qlo and qhi,

we may represent it as a weighted average between these two values,

qdis
b = a− 1

a
qlo + 1

a
qhi,
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where a is given by (6.27), and we have a−1
a ∈ (0, 1) and 1

a ∈ (0, 1). We may regard
a as a measure of capacity drop severity, with a ≈ 1 indicating almost no capacity
drop, and a high value of a indicating a severe capacity drop.

Given µ0, the transition into the second phase of congestion dissipation happens
after ksat platoons, where ksat is the lowest integer such that

ak
sat
µ0 +

ksat−1∑
i=1

aib ≤ µsat
qin .

The recovery phase is characterized by the lack of congestion at the stationary
bottleneck, nb(t) = 0, i.e. all the congestion is in the queues at the platoons.

The minimum time when platoon ksat can reach the bottleneck with no queue
is

τuksat = µksat

qdis
b − qlo + τπ

qin − qlo

qhi − qlo ,

travelling at speed uksat = Xb−X0
τu
ksat

. Since the stationary bottleneck will be in free
flow, starting with k = ksat, the excess congestion will follow

µk+1 = µk − τπ
(
qhi − qin) ,

until for some k = krec we have µkrec ≤ τπ
(
qhi − qin), after which the traffic returns

to the unperturbed state. Given µksat , we may calculate krec by rounding up

krec =
⌈

µksat

τπ (qhi − qin)

⌉
.

The dynamics of µk through both phases of congestion dissipation can be jointly
described as

µk+1 =


aµk + b, µk ≥ µsat

qin ,

µk − τπ
(
qhi − qin) , τπ

(
qhi − qin) ≤ µk < µsat

qin ,

0, µk < τπ
(
qhi − qin) ,

with a and b given by (6.27) and (6.28).
We summarize the analysis in this proposition:

Proposition 1. Assuming constant inflow qin(t) = qin, periodic arrival of platoons
with period τπ and ordering of flow values (6.24), the queue length nb(t) of system
(6.15)–(6.23) controlled by control law (6.12) is stable and will remain 0 after some
time t, if the initial queue length satisfies

µ0 <
b

1− a,

where a and b are given by (6.27) and (6.28), respectively. Furthermore, if this
condition is satisfied , the system returns to the unperturbed state with nb(t) = 0
and ñξ(t) = 0 after platoon krec reaches the bottleneck.
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Conversely, substituting b = (1− a)µ0 into (6.28), we may derive the maximum
qin for which the system will be stable for a given µ0,

qin
µ0

= qdis
b −

nπ
τπ

+ a− 1
a

(qhi − qlo)τ
max

τπ
− (a− 1)µ0

τπ
. (6.29)

Varying inflow and platoon arrivals

The uncertainty coming from the varying inflow of background traffic and random
platoon arrivals can be modelled by adding another term to (6.26), which then
becomes equal to:

µk+1 = aµk + b+ εk, (6.30)

where εk = ετπk (qin − qdis
b ) + τπε

qin

k + ετπk ε
qin

k represents the disturbance (i.e. the
aggregate deviation from the average queue length update), ετπk is the difference
of the gap between platoon k − 1 and k from τπ, and εq

in

k is the difference of the
average inflow from qin during that time. We may also write

µk = akµ0 +
k−1∑
i=0

ak−1−i (εi + b) .

Proposition 2. Assuming that |εk| < E < |b|, if for any k we have

µk <
b+ E

1− a , (6.31)

with a given by (6.27) and b by (6.28), then system (6.30) is stable, so we are able
to dissipate the congestion at the bottleneck. Conversely, if for any k we have

µk >
b− E
1− a , (6.32)

then system (6.30) is unstable, so in that case the queue at the bottleneck will grow
unbounded.

Consequently the conclusions about stability can be extended to system (6.15)–
(6.23) if a suitable bound on uncertainty E can be derived.

For the initial excess congestion between these two values, b+E1−a < µ0 <
b−E
1−a , µk

will almost surely satisfy either condition (6.31) or (6.32) for some k, after which
the queue stability does not depend on εk. Assuming uniformly distributed εk, with
E {εk} = 0, Var {εk} = E2

3 (e.g., if εk ∼ U [−E,E]), the probability of µk satisfying
(6.32) (i.e., failing to decongest the bottleneck) closely follows the logistic curve
depending on µ0,

Puns(µ0) ≈
(

1 + exp
(

b
1−a − µ0

E
4

))−1
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and the probability of µk satisfying (6.31) for some k (i.e., successfully decongesting
the bottleneck) is Psta(µ0) = 1− Puns(µ0).

Finally, given an appropriately chosen µ0, we may define the estimate of through-
put of the controlled system as the maximum qin for which the control algorithm
is able to decongest the bottleneck with probability P∗. This yields the bound on
qin,

qin
µ0,∆ = qdis

b −
nπ
τπ

+ qhi − qdis
b

τπ

(
τmax − µ0 + ∆

qdis
b − qlo

)
,

qin
µ0,∆ = qdis

b −
nπ
τπ

+ a− 1
a

(qhi − qlo)τ
max

τπ
− (a− 1)µ0 + ∆

τπ
, (6.33)

where
∆ = E

4 log
(
P∗

1− P∗

)
,

is the measure of combined uncertainty in the system. Moreover, if we substitute
∆ = 0 into (6.33), we recover (6.29). This means that the deterioration of qin

µ0,∆
due to the introduction of varying inflow and platoon arrivals is

qin
µ0,∆ − q

in
µ0

= −(a− 1) ∆
τπ
.

Note that this bound is only valid for µ0 > µsat
qin
µ0,∆

, for which the dissipation
process starts in the saturation phase. Substituting (6.33) into (6.25), we find the
minimum µ0 for which this holds,

µsat
0 =

(
qhi − qlo) (τmax − τπ)

a
+ nπ + (a− 1)∆,

in which case we have

qin
µsat

0 ,∆ = qhi − anπ
τπ
− a(a− 1) ∆

τπ
. (6.34)

6.3.3 Simulation setup
The proposed control laws were tested in simulations, executed on a 5 km long
stretch of highway, illustrated by Figure 6.5, with an on-ramp around the 2 km
mark, and an off-ramp around the 3 km mark. Most of the highway stretch has
three lanes, corresponding to a critical density of σ− = 60 veh/km and capacity of
qmax
− = 6000 veh/h, with free flow speed of V = 100 km/h. There is a bottleneck
caused by an accident 80 m upstream of the end of the considered stretch, with
capacity of qmax

+ = 4000 veh/h. The capacity drop phenomenon is modelled with
α = 0.4, which causes the bottleneck capacity to be reduced to qdis

+ = 3273 veh/h,
representing a 18.2% capacity drop for this road configuration.
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(a) No control

(b) Platoon-actuated control ignoring on- and off-ramps

(c) Platoon-actuated control taking on- and off-ramps into account
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(d) Ideally actuated control

Figure 6.6: An example comparing the outcome of the four simulation cases. Traffic
density is color-coded, with warmer color representing higher density.

The simulation model we used was the multi-class CTM, given in Section 4.3,
with three classes of traffic: class a consists of the platoons we control, class b is
the mainstream-bound background traffic, and class c the off-ramp-bound back-
ground traffic. The arrival of class a vehicles is modelled as Poisson process with
Poisson arrival rate of λ = 81 platoon/h, τπ = 0.0123 h. We assume that each
platoon consists of 2 passenger car equivalents, although in reality, due to having
shorter inter-vehicular gaps, these platoons might be up to about five passenger
cars or about three trucks long. The minimum platoon reference speed is set to
Umin = 50km/h. The inflow of background traffic is assumed to be time-varying
and uniformly distributed, changing every 14.4 seconds. At the beginning of the
highway segment, the demand of mainstream-bound background traffic takes val-
ues in φb1(t) ∼ U(1000, 2000) veh/h, and the demand of off-ramp bound traffic is
φc1(t) ∼ U(750, 1250) veh/h. Since the on-ramp and off-ramp are close, we assume
that none of the vehicles entering the highway via the on-ramp will exit it via the
off-ramp, φcion

(t) = 0 veh/h. The inflow of mainstream-bound traffic at the on-ramp
is modelled as φbion

(t) ∼ U(900, 1500) veh/h.
With the parameters specified in the previous paragraph, we may calculate

an estimate of the throughput that we may achieve by applying the presented
control law. Using (6.34) with E = τπ

(
max

(
φb1 + φbion

)
− E

{
φb1 + φbion

})
and P∗ =

0.9, yielding ∆ ≈ 5.4, we estimate that the throughput would be improved from
qin

unc + nπ
τπ

= 3273 veh/h to qin
µc

0,∆
+ nπ

τπ
= 3513.2 veh/h. Note that in deriving (6.34)

we do not take into account the existence of the on-ramp.
The duration of each simulation run is 2 hours, of which the background traffic

inflow is halved for the first 3 minutes, in order to properly initialize the system,
and for the last 12 minutes, in order to allow the traffic to return to free flow and
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ensure fair comparison between different control laws. Simulations are done with
four cases of control:

(n.c.) No control.

(i.r.) Platoon-actuated control ignoring on- and off-ramps, with q̃cap
ξ (t) given by

(6.12).

(c.r.) Platoon-actuated control taking on- and off-ramps into consideration, with
q̃cap
ξ (t) given by (6.14).

(i.a.) Ideally actuated control, with U bi (t) given by (6.11).

In order to demonstrate the effect applying these control laws has on the traffic, a
part of one simulation run is shown in Figure 6.6.

6.3.4 Simulation results
Consider the uncontrolled case shown in Figure 6.6a. Around time t = 0.144 h,
the aggregate density of the platooned vehicles and background traffic arriving at
the bottleneck is too high, and the aggregate demand exceeds bottleneck capacity.
This causes a traffic breakdown, and after a brief transient, congestion is formed
and bottleneck capacity is reduced. Because of this, even though the incoming traf-
fic density is lower after t = 0.154 h, and would not exceed the original bottleneck
capacity, it is not enough to dissipate the congestion at the bottleneck. Conse-
quently, the throughput is reduced, the total time spent significantly increased,
and the bottleneck will stay congested until the inflow to the highway segment is
reduced close to the end of the simulation run.

In contrast to this, in the ideally actuated case shown in Figure 6.6d, the
mainstream-bound background traffic is controlled directly. A part of this traf-
fic is delayed so that when there is a platoon arriving at a stationary bottleneck,
the density of the remaining traffic is low enough so as not to cause traffic break-
down and capacity drop. In this way, free flow is maintained and throughput is
close to its theoretical maximum.

As shown in Figure 6.6b and Figure 6.6c, the performance of the two proposed
control laws is similar. However, in case the influence of on- and off-ramps is
ignored while predicting the evolution of the system, the applied control action is
more severe than required. This leads to more congestion upstream of the off-ramp
and overall lower efficiency. The control law that takes the on- and off-ramps into
account comes close to emulating the ideal actuation case. However, it achieves
somewhat worse performance because it is unable to selectively affect only one
class of background traffic, since it only has access to the average splitting ratio for
the off-ramp, and requires delaying the platoons.

We executed 50 Monte Carlo simulations, with the same platoon arrival times
and background traffic inflow profiles for each control case. The resulting average
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(a) Class a (b) Class b (c) Class c (d) All classes

Figure 6.7: Box plots showing the increase in TTS compared to the ideal actuation
case. The different cases of control are: no control (n.c.), ignoring on- and off-ramps
(i.r.) and considering on- and off-ramp (c.r.).

Table 6.1: Average and median TTS for each vehicle class and all vehicles.
TTS Class a Class b Class c Total
[veh h] average median average median average median average median
(n.c.) 22.62 22.94 369.84 374.13 56.62 56.04 449.08 453.94
(i.r.) 23.25 23.03 329.91 315.75 60.62 60.37 413.78 398.18
(c.r.) 21.77 21.34 304.90 278.63 58.60 58.41 385.27 357.58
(i.a.) 17.00 16.91 255.00 254.09 55.92 55.93 327.92 326.42

Table 6.2: Average and median delay for individual vehicle classes and all vehicles.
Delay Class a Class b Class c Total
[%] average median average median average median average median
(n.c.) 33.1 35.3 45.0 46.9 1.2 0.0 36.9 38.3
(i.r.) 36.8 33.5 29.4 24.1 8.4 8.0 26.2 21.7
(c.r.) 28.1 20.7 19.6 8.6 4.8 4.4 17.5 8.4

and median TTS are shown in Table 6.1. We show the TTS of each vehicle class,
and for all vehicles combined. Apart from comparing the TTS, we also considered
the delay, defined as the difference in TTS compared to the ideal actuation case,
which is taken as a benchmark for minimum achievable TTS of each simulation
run. The delay is shown as percentage of minimum travel time, and it is shown as
a box plot in Figure 6.7, and given in Table 6.2. For example, if a vehicle would
traverse the road segment in 3 minutes if it travelled at free flow speed, and actually
traverses it in 4.5 minutes, we say that it had a 50% delay.
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We can see that even by applying control that ignores the existence of on- and
off-ramps, as described in Section 6.3.1, we reduce the TTS by about 10% of the
ideal TTS on average, with the median reduced by about 17%. This corresponds
to eliminating 29.1% of the delay on average, or 43.7% by median. However, only
the TTS of class b (the mainstream-bound background traffic) is reduced, while
the TTS of other vehicles is even somewhat increased. This can be explained by
the fact that the controller assumes that all vehicles are headed for the bottleneck,
and will therefore delay the traffic too much, stalling the off-ramp-bound traffic
which would otherwise be able to leave the highway unhindered. In spite of this
inefficiency, and owing to the fact that vehicles of class b comprise the majority of
the traffic, this control law is still able to preserve free flow and forestall capacity
drop at the bottleneck, thus the overall TTS and delays are lower than in the
uncontrolled case.

In contrast, when the control from Section 6.3.1 was used, the TTS of both
class a (the platooned vehicles) and class b vehicles, is reduced, with the aggregate
TTS lower by almost 20% of ideal TTS on average, or by almost 30% in median.
This corresponds to eliminating 52.7% of the delay on average, or 75.6% by median.
Even though the platoons will be delayed in order to actuate the control action,
their TTS will be lower, since they will avoid waiting in congestion upstream of the
bottleneck. This is especially important, since it shows that it is beneficial for the
platooned vehicles to employ this control law, even if their goal is not to optimize
the overall traffic performance, but to minimize only their own travel time. The
TTS of class c vehicles is still increased compared to the uncontrolled case, but less
so than with the previous control law. Overall, this control law comes very close
to the ideal case, with the median delay being only 8.4%, and an average delay of
17.5%.

It is notable that while the proposed control laws achieve significant reduction
of both average and median TTS, there is a number of outliers corresponding to
particularly unfavourable simulation runs. Since the arrival of platoons is modelled
as a Poisson process, we can expect to occasionally have long gaps between two
platoons. If this occurrence coincides with a higher demand of mainstream-bound
background traffic, we will not be able to prevent the traffic breakdown, since there
would be no platoons available to actuate the control action, resulting in a build-up
of congestion and higher TTS.

6.4 Summary

Decongesting the traffic bottlenecks, especially those of non-recurrent nature, is a
challenging traffic control task. The equipment necessary for most classical traffic
control methods might not be available at the location where a non-recurrent bot-
tleneck arises. For this reason, an alternative, Lagrangian approach is preferred. In
this chapter, we used controlled moving bottleneck to decongest stationary bottle-
necks and keep them in free flow.
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First, a control law that reacts to stochastic traffic breakdown is presented and
tested in simulation. While it effectively decongests the stationary bottleneck, the
described control law is derived for worst case and does not consider the stochastic
nature of bottleneck dynamics, leading to some inefficiencies. Furthermore, the
proposed control law only reacts to traffic breakdowns that have already happened,
and will not attempt to pre-empt it by spreading the inflow to the bottleneck more
evenly over time, thus making it more likely that the traffic will stay in free flow.

Next, we study the deterministic case in more detail, proposing a prediction-
based control law for platoon coordination so that the stationary bottleneck is
decongested and kept in free flow. We employ a tandem queueing model with mov-
ing bottlenecks as the prediction model, and the control law uses platoon speed
and formation as control inputs. The performance of these control laws is tested
in multi-class CTM simulations, on a 5 km long stretch of highway upstream of
a bottleneck at an accident site, going from three lanes to two. The considered
highway segment also includes an on-ramp and an off-ramp. The achieved TTS
using these control laws is compared to the case when no control is used, as well
as with the case when we have ideal actuation, and can fully control all individ-
ual vehicles. It has been demonstrated that applying the proposed control laws
significantly reduces the TTS compared to the situation with no control, coming
close to the performance of the ideal actuation case. Moreover, even the platooned
vehicles, which are delayed in order to affect the rest of traffic, incur lower delays,
since they avoid having to traverse the congestion at the bottleneck, making the
proposed control beneficial for all traffic participants.



Chapter 7

Single stop-and-go wave dissipation

Stop-and-go waves are a peculiar traffic phenomenon which is well-known empir-
ically, but somewhat problematic to describe in traffic models. They typically

arise due to a disturbance in the traffic flow, and get amplified as they propagate
upstream due to the hysteresis effect of acceleration and deceleration in human
driving behaviour, until they are dissipated. Such irregularities in the traffic flow
are not only bad for the throughput of the road, they also cause increased fuel
consumption and are a potential safety hazard. For all these reasons, stop-and-go
wave dissipation is a control problem worth investigating. Classical traffic control
approaches can have difficulties with stop-and-go wave dissipation, since this mov-
ing phenomenon can arise at locations where traffic control equipment is not avail-
able. And while control approaches using variable speed limits have been proposed,
with one notable example being SPECIALIST [67], stop-and-go wave dissipation
remains an ideal control problem for Lagrangian traffic control paradigm.

In this chapter, we study the simplest case of stop-and-go wave dissipation us-
ing controlled moving bottlenecks, using a single controlled moving bottleneck to
dissipate a single stop-and-go wave. In Section 7.1, the stop-and-go wave problem
is discussed in more detail, first using a general traffic flow control framework, and
then focusing on using controlled moving bottlenecks. We approach the problem
from two angles. First, in Section 7.2, we assume that the controlled moving bot-
tleneck, e.g. a heavy-duty vehicle, is already present on the road, and control its
speed so that the stop-and-go wave is dissipated without creating excessive addi-
tional disturbance to the traffic. This approach is suitable for use on highways with
few lanes, due to limitations on the control action that a single vehicle can actuate.
Then, in Section 7.3.1, we generalize this approach by adding an additional phase
to the control, in which we gather multiple connected vehicles into a more severe
controlled moving bottleneck, in order to be able to apply stronger control. Once
enough connected vehicles are gathered, we may proceed to use them to dissipate
the stop-and-go wave in a similar way.

171
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7.1 Single stop-and-go wave dissipation problem

Stop-and-go wave dissipation problem is a variant of the congestion reduction prob-
lem, outlined in Subsection 1.2.2, where the outflow from the considered road seg-
ment is limited by the discharging flow from some stop-and-go wave. The objective
of the control is to minimize the total time spent (TTS) of all vehicles, which is
achieved by maximizing the early outflow from the road,

Jcr =
tend∫
t0

(t− tend)qout(t)dt.

As discussed in Section 4.1, the presence of stop-and-go waves will reduce the
throughput of the road, so we endeavour to accelerate their dissipation using what-
ever means of traffic control we have available.

Consider a road segment with constant free flow speed V , and a single stop-
and-go wave at some position zψ(t0), propagating upstream with some constant
velocity λψ < 0,

zψ(t) = zψ(t0) + λψ(t− t0), t ≤ tcψ,

where tcψ is the time when the stop-and-go wave is cleared. We write the accumu-
lation of congestion at the stop-and-go wave nψ(t), and

ṅψ(t) = V − λψ
V

(
qin
ψ (t)− qdis

ψ

)
, t ≤ tcψ,

where at some initial time t0, nψ(t0) = 0, qin
ψ (t0) > qdis

ψ , and with nψ(tcψ) = 0,
qin
ψ (tcψ) < qdis

ψ , i.e. the stop-and-go wave dissipates at time tcψ > t0, when

nψ(tcψ) =

tcψ∫
t0

V − λψ
V

(
qin
ψ (t)− qdis

ψ

)
dt = 0, nψ(t) > 0, t ∈ (t0, tcψ). (7.1)

If the road is in free flow downstream of the stop-and-go wave, the traffic flow that
discharges from the stop-and-go wave at time t reaches the downstream boundary
of the road Xb at time tVψ (t), given by

tVψ (t) = t+ Xb − zψ(t)
V

= Xb − zψ(t0) + (V − λψ)t+ λψt0
V

,

and we have
qout(t) = qdis

ψ , t ≤ tdψ,

where tdψ = tVψ (tcψ). Conversely, we denote by t−Vψ (t) the inverse of tVψ (t),

t−Vψ (t) = V t−Xb + zψ(t0)− λψt0
V − λψ

.



7.1. SINGLE STOP-AND-GO WAVE DISSIPATION PROBLEM 173

Assume that we can influence the traffic flow on the road upstream of the stop-
and-go wave, so that we are able to control qin

ψ (t) after some time tu. We may
then use this control to expedite the dissipation of the stop-and-go wave, which can
improve the throughput and reduce the TTS. Let qin

ψ (t) = qout
u (t) for t ≥ tu, where

qout
u (t) denotes the outflow from some regulated accumulation of vehicles,

ṅu(t) = V − λψ
V

(
qin
u (t)− qout

u (t)
)
, t ∈ [tu, tcψ],

qout
u (t) =

{
min{qin

u (t), qcap
u (t)}, nu(t) = 0,

qcap
u (t), nu(t) > 0,

with nu(tu) = 0, and assume we can control qcap
u (t) within some range

[
qlo, qhi]. If

qlo < qdis
ψ , we may dissipate the stop-and-go wave by time tcψ by setting qcap

u (t) = qlo

for t ≤ tcψ, in which case

tcψ = t−Vψ (tdψ), tdψ = tVψ (tu) + nψ(tu)
qdis
ψ − qlo ,

assuming
∫ t
tu
qin
u (τ)dτ > (t − tu)qlo for t ∈ (tu, tdψ). After the stop-and-go wave is

dissipated, it ceases to obstruct the traffic flow, and we will be able to control

qout(t) = qout
u

(
t− Xb −Xu

V

)
, t > tdψ,

assuming we control the traffic flow at position Xu = zψ(tcψ) for t ≥ tcψ. We may
then set qcap

u (t) = qhi for t ∈ (tcψ, tcu] in order to discharge the accumulated traffic
nu(t),

ṅu(t) = qin
u (t)− qout

u (t), t ∈ (tcψ, tcu],
by time tcu, given by

nu(tcψ) +
tcu∫
tc
ψ

qin
u (t)dt = qcap(tcu − tcψ),

and keep the road in free flow afterwards. The traffic flow discharging from
nu(t) at time t ∈ (tcψ, tcu) reaches the downstream boundary of the road at time
t+ (Xb −Xu))/V , and we denote tdu = tcu + (Xb −Xu))/V .

In a simplified case when the stop-and-go wave is at the downstream boundary
of the road segment at time t0, zψ(t0) = Xb, the inflow qin

u (t) = qin is constant
for t ≥ tu, and the congestion at the stop-and-go wave at time tu is given, the
congestion reduction cost function (1.2) simplifies to

Jcr =
(
t2

2 − tendt

)∣∣∣∣t
d
ψ

t0

qdis
ψ +

(
t2

2 − tendt

)∣∣∣∣t
d
u

td
ψ

qhi +
(
t2

2 − tendt

)∣∣∣∣tend

tdu

qin,
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(a) ρ(0, x) = σ, x ∈ [0, L] (b) ρ(0, x) = 2σ, x ∈ [L/2, L]

Figure 7.1: Example of two situations with the same TTS, but different T.V.

with tdψ and tdu given by

tdψ = tVψ (tu) + nψ(tu)
qdis
ψ − qlo , tdu = tdψ + qin − qlo

qhi − qin

(
tdψ − tVψ (tu)

)
.

In comparison, if no control is applied, the cost function is

Jnc
cr =

(
t2

2 − tendt

)∣∣∣∣t
d,nc
ψ

t0

qdis
ψ +

(
t2

2 − tendt

)∣∣∣∣tend

td,nc
ψ

qin,

td,nc
ψ = tdψ + nψ(tu)(qin − qlo)

(qdis
ψ − qin)(qdis

ψ − qlo)
,

and the improvement in TTS achieved by applying control is

Jnc
cr − Jcr =

(
t2

2 − tendt

)∣∣∣∣t
d
u

td
ψ

(
qdis
ψ − qhi)+

(
t2

2 − tendt

)∣∣∣∣t
d,nc
ψ

tdu

(
qdis
ψ − qin) .

Note that the cumulative outflow for the two cases is equal for t > td,nc
ψ , and(

tdu − tdψ
) (
qdis
ψ − qhi) =

(
td,nc
ψ − tdu

) (
qdis
ψ − qin)

so in essence, the control has shifted a part of the outflow to an earlier time, leading
to a reduction in TTS.

Unsurprisingly, in case there is no capacity drop at the stop-and-go wave, the
achieved TTS in the controlled and uncontrolled case will be equal, since in that case
qdis
ψ = qcap = qhi, and tdu = tdψ

nc. This is due to the fact that TTS does not directly
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depend on the traffic conditions on the road, only on the outflow, which might be
identical for very different traffic conditions, as shown in Figure 7.1. Therefore,
there is a need for an additional cost function that indicates how favourable the
current traffic profile is. One such cost function is the Average Total Variation
(ATV) of the smoothed traffic density profile ρ̄(x, t), i.e. the Total Variation (T.V.),

T.V.(ρ̄(x, t)) =
Xb∫
0

∣∣∣∣∂ρ̄(x, t)
∂x

∣∣∣∣ dx,
averaged over the considered time horizon, from t0 to tend. Since the traffic density
might be discontinuous due to shocks, we need to apply spatial smoothing before
differentiation, which we do here using a spatial moving average filter with window
length L. We may then write the ATV as

ATV =
tend∫
t0

Xb∫
L

|ρ(x, t)− ρ(x− L, t)|
(tend − t0)L dxdt.

We may use the ATV as a measure of traffic homogeneity, where lower ATV (higher
homogeneity) is preferable to higher ATV (lower homogeneity). Essentially, the
existence of a stop-and-go wave corresponds to high total variation of traffic density,
so if the stop-and-go wave is dissipated quicker, we can expect the ATV to be lower
Note that if the traffic density ρ(x, t) is given as an average value inside N cells of
length L, Xb = NL, during time periods of length T , with tend = tTendT , tTend ∈ N
and t0 = tT0 T , tT0 ∈ N,

ρ(x, t) = ρi
(
tT
)
, x ∈ [(i− 1)L, iL),

where tT = bt/T c, the ATV simplifies further to

ATV =
tTend−1∑
tT=tT0

N∑
i=2

∣∣ρi(tT )− ρi−1(tT )
∣∣

tTend − tT0
.

7.2 Moving bottleneck control

While there are many traffic control schemes that can regulate the inflow of traffic
to a stop-and-go wave, e.g. using variable speed limits [67], here in particular we
are interested in using controlled moving bottlenecks as Lagrangian actuators. In
this section we adapt the general stop-and-go wave dissipation control to this case.
The designed control law will be tested in simulations, and used as a component of
the overall control strategy throughout the remainder of this thesis.
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7.2.1 Control law
Consider a road segment with traffic density ρ(x, t), with downstream boundary
in Xb, where the traffic travels at a constant speed V in free flow. Let there be
a single CAV at some position xξ(t), whose reference speed uξ(t) we can directly
control within some range, uξ(t) ∈ [umin

ξ , umax
ξ ], with umin

ξ ≥ 0 and umax
ξ ≤ V . If

the road downstream of the CAV is in free flow, the traffic flow overtaking it at
time t reaches the downstream boundary of the road at time

tVξ (t) = t+ Xb − xξ(t)
V

,

and we write the inverse of this transformation t−Vξ (t), t−Vξ (tVξ (t)) = t. In case there
is a stop-and-go wave downstream of the CAV, zψ(t) > xξ(t), with the downstream
front position of the stop-and-go wave denoted zψ(t), we can attempt to control
uξ(t) in order to have the CAV act as a moving bottleneck and help dissipate the
congestion. The overtaking flow from the moving bottleneck at xξ(t), which we
denote qout

ξ (t), reaches the stop-and-go wave at time t−Vψ (tVξ (t)), and we may write

qin
ψ (tVψ (t)) = qout

ξ (tVξ (t)), qin
ψ (t) = qout

ξ (t−Vξ (tVψ (t))),

until the stop-and-go wave is dissipated at time tcψ, or the CAV itself reaches its
downstream front at some time tψξ , xξ(t

ψ
ξ ) = zψ(tψξ ). Here, qout

ξ (t) is given as the
outflow from the queue at the moving bottleneck,

ṅξ = V − uξ(t)
V

(
qin
ξ − qout

ξ (t)
)
,

qout
ξ (t) =

{
min{qin

ξ (t), qcap
ξ (t)}, nξ(t) = 0,

qcap
ξ (t), nξ(t) > 0,

and we have qout
ξ (t) ≤ qcap

ξ (t).
We can therefore attempt to emulate the control action described in the pre-

vious section using the moving bottleneck, with tu = t−Vψ (tVξ (t0)), if the (possibly
speed-dependent) capacity limitation of the moving bottleneck, qcap

ξ (t) = qlo
ξ (uξ(t)),

restricts the flow more severely than the stop-and-go wave, qlo
ξ (uξ(t)) < qdis

ψ . As-
suming the inflow to the moving bottleneck qin

ξ (t) is higher than qlo
ξ (uξ(t)), the

evolution of the accumulated traffic at the stop-and-go wave is then given by

nψ(t) = nψ(tu)− (tVψ (t)− tVψ (tu))qdis
ψ +

tVψ (t)∫
tV
ψ

(tu)

qlo
ξ

(
uξ

(
t−Vξ
(
tVψ (t)

)))
dt>0, t ∈ (tu, tcψ),

and nψ(tcψ) = 0.
Since the moving bottleneck only affects the inflow to the stop-and-go wave

while it is upstream of it, xξ(t) < zψ(t), in order to dissipate the stop-and-go wave,
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we need to have tcψ ≤ tψξ . Conversely, in order avoid excessively restricting the
traffic flow after the stop-and-go wave has dissipated, we need to ensure that the
CAV stops acting as a moving bottleneck after time tcξ,

tcξ = t−Vξ (tdψ).
Assuming umax

ξ = V , we may do this by setting uξ(t) = V for t ≥ tcξ. Therefore,
the conditions for optimal stop-and-go wave dissipation using a controlled moving
bottleneck are

tψξ ≤ t
c
ψ,

uξ(t) = V, t > tcξ.

The simplest choice of uξ(t) that satisfies these conditions is

uξ(t) =
{
u∗ξ , t ≤ tcξ,
umax
ξ , t > tcξ,

where u∗ξ is given by

nψ(tu)−
(
qdis
ψ − qlo

ξ (u∗ξ)
)(

tVψ

(
t0 + zψ(t0)− xξ(t0)

u∗ξ − λψ

)
− tVψ (tu)

)
= 0, (7.2)

i.e. the moving bottleneck moves with constant speed u∗ξ , reaches the stop-and-go
wave just as it dissipates, and afterwards continues on at free flow speed. Note that
in this case we do not need to assume that umax

ξ = V . If (7.2) yields u∗ξ < umin
ξ ,

the moving bottleneck is unable to dissipate the stop-and-go wave.
Assume the traffic dynamics are modelled by the CTM with moving bottle-

necks, as discussed in Section 4.2.2. The road is split into N cells of length L,
with the traffic conditions described by average traffic densities in the cells, ρi(tT ),
i = 1, . . . , N , at time instant tT = tT0 , . . . , t

T
end − 1. We write the position of a CAV

xξ(t), and the traffic density directly upstream of it is denoted ρξ−(tT ). The CAV
is thus located in cell iξ(tT ) = b(xξ(t)/Lc + 1, t = tTT . Along with ρi(tT ), xξ(t)
and ρξ−(tT ) constitute the system state and evolve according to the CTM with
moving bottlenecks.

If the cell traffic densities are known, we may use the controlled vehicle to act on
the rest of the traffic as a moving bottleneck, restricting the overtaking flow to some
value and helping dissipate any potential stop-and-go wave. Here, a stop-and-go
wave is defined as a region downstream of xξ(t) where the traffic speed is lower than
the maximum CAV speed umax

ξ , V(ρi(tT )) < umax
ξ , and denote the last cell where

that is the case iψ(tT ). The position of the downstream front of the stop-and-go
wave is thus given by zψ(tTT ) = iψ(tT )L.

We use the reference speed of the CAV uξ(tT ) ∈ [umin
ξ , umax

ξ ] as a control input
and endeavour to minimize the TTS. Every time instant tT , we calculate

uξ(tT ) = min
(
umax
ξ ,max

(
umin
ξ , u∗ξ(tT )

))
,
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where u∗ξ is given by (7.2). The parameters t0, tu, nψ(tu), qdis
ψ , qlo

ξ (u), and λψ are
given as states and parameters of the traffic model that is used. Time t0 = tTT is
the initial time for calculating the control. Since in basic CTM there is no capacity
drop, the discharging flow from the stop-and-go wave will be equal to the road
capacity, qdis

ψ = V σ, and the stop-and-go wave propagates upstream with speed
λψ = −W . Therefore, we have

tu = t−Vψ (tVξ (t0)) = zψ(t0)− xξ(t0)
V +W

,

at which time the accumulated congestion at the stop-and-go wave will be

nψ(tu) = (zψ(t0)− xξ(t0))ρzψxξ (tT )− (tVψ (tu)− tVψ (t0))qdis
ψ ,

where ρzψxξ (tT ) denotes the average traffic density between the CAV and the stop-
and-go wave,

ρ
zψ
xξ (tT ) =

iψ(tT )∑
i=iξ(tT )+1

ρi(tT )

iψ(tT )− iξ(tT ) ,

since by that time, all the vehicles currently between the CAV and the stop-and-
go wave will have entered its congestion, and some will have left it. Finally, the
speed-dependent overtaking flow limitation imposed by the moving bottleneck is
given by

qlo
ξ (u) = Q(ρd

ξ (u)),
Q(ρd

ξ (u))−Qξ(ρτξ (u)) = u(ρτξ (u)− ρd
ξ (u)), ρd

ξ (u) ∈ [0, σmax
Q ],

ρτξ (u) = arg max
ρ

Qξ(ρ)− uρ, ρ ≥ 0.

If the flux function in the zone of the moving bottleneck is a scaled-down version
of the flux function elsewhere on the road,

Qβξ (ρ) = (1− β)Q
(

ρ

1− β

)
,

the overtaking flow limit qlo
ξ (u∗ξ) no longer depends on the moving bottleneck speed,

qlo
ξ = V (1− β)σ. In this case, u∗ξ(tT ) can be expressed explicitly,

u∗ξ(tT ) = V − λψ
V

βσ

ρ
zψ
xξ (tT )− (1− β)σ

+ λψ. (7.3)

We can see that the reference moving bottleneck speed does not depend on the
initial distance between the moving bottleneck and the stop-and-go wave, although
the average traffic density between them will change as their distance decreases.
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We recalculate the controlled moving bottleneck reference speed uξ(tT ) every
time instant using the current traffic density profile. Once all congestion down-
stream of the CAV acting as a moving bottleneck has dissipated, its reference
speed is set to maximum uξ(t) = umax

ξ , and it continues traversing the remainder
of the road. The effect of the control action uξ(tT ) will be included in the updated
ρ
zψ
xξ (tT + 1), thus providing feedback in the control loop.
Note that the CAV will only be able to dissipate the stop-and-go wave if

u∗ξ(tT0 ) ≥ umin
ξ , in which case, it will avoid going through the congestion with mini-

mum delay. Otherwise, the CAV is not able to improve the TTS, since the conges-
tion that builds up in its wake will get returned to the stop-and-go wave once the
controlled vehicle reaches it. Therefore, if it is certain that a CAV will be unsuc-
cessful in stop-and-go wave dissipation, it should continue driving along with the
rest of traffic, with reference speed equal to its maximum.

7.2.2 Simulation Results
We tested the control law in simulations using the CTM with moving bottlenecks
described in Section 4.2.2 as the simulation model. The simulated road consists of
N = 110 cells with L = 0.5 km, and tend = 1.5 h. The traffic flow is modelled with
a triangular fundamental diagram, with free flow speed V = 110 km/h, critical den-
sity σ = 40 veh/km and jam density P = 186.66 veh/km, yielding W = 30 km/h.
We assume that a moving bottleneck halves the capacity of the road, β = 0.5,
(1− β)σ = 20 veh/km, and Vξ = 110 km/h.

The simulation scenario in question is as follows:

1. t < t0 = 5 minutes: The traffic is in free flow, with heterogeneous traffic
density. The controlled automated vehicle is moving at speed umax.

2. t0 ≤ t < t1 = 20 minutes: A traffic jam is caused by blocking the road at
position zψ(t0). The CAV is acting as a moving bottleneck, and its speed is
controlled so that the congestion is cleared as soon as possible.

3. t ≥ t1, xξ(t) ≤ zψ(t): The blockage is removed and the stop-and-go wave
starts propagating upstream. The automated vehicle’s speed uξ is controlled
so that it helps dissipate and avoids the congestion with minimum delay.

Figure 7.2: Control loop example. Cell traffic densities ρi are color-coded (warmer
is higher density).
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(a) Controlled

(b) Fast

(c) Slow
Figure 7.3: Traffic densities and moving bottleneck trajectories for the three cases.
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Figure 7.4: Controlled vehicle speeds for the three cases.

4. xξ(t) > zψ(t) or the stop-and-go wave has been dissipated: The vehicle con-
tinues at speed umax

ξ .

The simulation results for umax
ξ = 80 km/h are shown on Figure 7.3. Warmer

colors represent higher traffic density and the congestion, where V(ρ) ≤ umax, is
outlined in dashed red line. The trajectory of the controlled CAV is represented
by the solid red line. The blockage happens at t1 = 5 minutes and lasts for 15
minutes. During this time, the road is blocked at zψ(t0) = 50 km. The minimum
and maximum speeds of the controlled vehicle is taken to be umin = 50 km/h. We
compare three cases:

1. Case 1 (Controlled moving bottleneck): The vehicle is controlled according
to the control law (7.3) until there is no more congestion downstream of it.

2. Case 2 (Fast moving bottleneck): The vehicle does not reduce its speed, and
continues at umax

ξ until it is forced to slow down as it enters congestion.

3. Case 3 (Slow moving bottleneck): The vehicle reduces its speed to umin
ξ until

there is no more congestion downstream of it.

We can see that by implementing this control strategy, the controlled vehicle
avoids the traffic jam with little delay, while also helping dissipate it faster. In
the second case, the controlled vehicle does traverse the road segment the fastest
out of the three cases, but it does not help clear the traffic jam, and is forced to
sharply reduce its speed while inside the congestion, as shown on Figure 7.4. In
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Figure 7.5: Total variation of traffic density for the three cases.

case the vehicle reduces its speed to umin
ξ , it helps resolve the traffic jam, but it is

unnecessarily delayed, and has held up more traffic than necessary.
The achieved Total Time Spent for the three scenarios are TTS = 3212.3 h for

case 1, TTS = 3207.9 h for case 2, and TTS = 3288.6 h for case 3. We can see
that applying the control law from Section 7.2.1 results in almost no increase in
TTS compared to the fast moving bottleneck case, and we see an increase in TTS
in the slow moving bottleneck case due to it to causing unnecessary additional
congestion. Total variations of traffic density for the three cases are shown in
Figure 7.5. Although it caused a very slight increase in TTS, we see that the
controlled moving bottleneck is able to decrease the ATV of traffic density, thus
having a calming effect on the overall traffic without impeding the throughput.

We examined the average influence this control law has on the surrounding
traffic, through 100 simulation runs for randomly generated background traffic in
the range [σ/2, σ] and three different values for umax

ξ . As performance metric, we
considered the increase in TTS compared to the ideal case where the road is always
in free flow (results are shown on Figure 7.6 and in Table 7.1) and the ATV results
are shown on Figure 7.11 and in Table 7.2.

We can see that employing the described control law leads to an improvement
in traffic conditions, in addition to ensuring more desirable conditions for the con-
trolled vehicle, since it avoids going through congestion. The TTS for this case is
only very slightly higher than in the case of a fast moving bottleneck, while the
ATV is lower. In the slow moving bottleneck case, although we avoid entering
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Figure 7.6: TTS increase comparison.

Table 7.1: TTS increase compared to minimum TTS without congestion, when the
average travel time is 0.5 h.

umax[km/h] Controlled Fast Slow
80 km/h 19.33 % 19.19 % 21.09 %
90 km/h 18.73 % 18.63 % 19.98 %
95 km/h 18.50 % 18.40 % 19.56 %

Figure 7.7: Average total variations of traffic density comparison.

Table 7.2: Average total variations of traffic density.

umax Controlled Fast Slow
80 km/h 101.94 108.11 102.67
90 km/h 101.86 108.32 102.61
95 km/h 101.88 108.15 102.59
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the traffic jam with the controlled vehicle, the TTS is increased due to a drop in
throughput, and the ATV is comparable to than in the controlled case.

7.3 Accumulated moving bottlenecks control

It follows from the analysis done in the previous section that in order for the
condition (7.1) to be satisfied, and a stop-and-go wave dissipated, we need to have
qin
ψ (t) < qdis

ψ for at least a part of the time, which in case we are using moving
bottleneck control is equivalent to min{qin

ξ (t), qcap
ξ (t)} < qdis

ψ . Therefore, in order to
be able to guarantee that this condition holds independently of the traffic conditions
upstream of the moving bottleneck, we need to ensure qcap

ξ (uξ(t)) < qdis
ψ , i.e. we

need to be able to restrict the traffic flow using the moving bottleneck more than
the capacity drop at stop-and-go wave restricts it. In the previous section, since
a two-lane road was considered, a single CAV acting as a bottleneck had a strong
effect on the surrounding traffic. However, the more lanes the considered road has,
the less of an effect a single vehicle will have on the rest of the traffic. Coupled
with the limitations on the minimum reference speed umin

ξ a controller may set for
a CAV, this severely limits the impact a control law using only a single vehicle can
have. Therefore, in this section we explore using multiple CAVs acting together in
a formation, in order to apply control action on the rest of the traffic.

7.3.1 Moving bottleneck accumulation
Let there be two classes of vehicles, class a of CAVs that can be controlled from
the infrastructure and class b of human-driven background traffic that cannot be
directly controlled. Therefore, Uai (t) is the control input that we can change in
some range 0 ≤ Umin ≤ Uai (t) ≤ Umax ≤ V , and we set U bi (t) = V except where a
different free flow speed is needed to properly model stop-and-go waves. In case the
control region is in free flow, ρKi (t) < σ, we will have qκi (t) = Uκi (t)ρκi (t), and it is
easy to show that ρbi is not controllable by Uai . If class a vehicles only represent a
very small portion of the traffic, the effect of solely controlling these vehicles in free
flow will be very small; instead, we need to also indirectly control the background
traffic by creating a controlled congestion. Therefore, the control we propose will
consist of three phases:

1. selecting the initial point where we start accumulating controllable vehicles

2. collecting enough controllable vehicles so that they can affect the rest of traffic,
and

3. using the collected controllable vehicles as a controlled moving bottleneck.

The overall control structure is outlined in Figure 7.8.
The simplest way of creating an accumulation of vehicles is to enforce a moving

free flow speed gradient on the directly controllable vehicle class a. Let ρa(x, t) be
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the CAV traffic density profile,

ρa(x, t) = ρai (tT ), Xi ≤ x < Xi+1, t
TT ≤ t < (tT + 1)T.

We can attempt to create a controlled moving bottleneck at position xξ(t), evolving
in time according to

ẋξ(t) = uξ(t),
which will then be used to for stop-and-go wave dissipation control. Starting with
t = t0 and setting uξ(t) = uξ = Umax = V , if the position-dependent free flow
speed of class a vehicles is set to

Ua(x, t) =
{
Umax, x ≤ xξ(t),
Umin, x > xξ(t),

we can expect them to accumulate close to xξ(t),

xξ(t) = xξ(t0) + (t− t0)uξ.

In the ideal situation, the number of accumulated vehicles around xξ(t) is given by

na
ξ(t) =

xa
ξ(t)∫

xξ(t0)

ρa(x, t0)dx, (7.4)

xa
ξ(t) = xξ(t0) + (t− t0)(Umax − Umin),

i.e. all vehicles that at time t0 are in [xξ(t0), xa
ξ(t)] will have accumulated around

xξ(t) by time t. Denote by n∗ξ(t0) the goal accumulation of controllable vehicles
that is required to limit the traffic flow to some value qlo

ξ . According to (7.4), this
accumulation na

ξ(t) = n∗ξ(t0) will have been achieved at time

t∗ξ = t0 +
Ra−1

(
Ra(xξ(t0)) + n∗ξ(t0)

)
− xξ(t0)

Umax − Umin , (7.5)

Figure 7.8: Control loop sketch. We use the traffic density data and information
about stop-and-go wave boundaries to calculate reference speeds for controlled ve-
hicles. Vehicles upstream of xξ(t) drive faster than those downstream, causing them
to eventually accumulate at that point.
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where we denote by Ra(x) the integral of ρa(x, t0), dRa(x)
dx = ρa(x, t0).

In the multi-class CTM framework, we create a free flow speed gradient akin to
(4.20), setting

Uai (t)=



min
{
Umax,max

{
Umin,

ρ∗ξ(t)−
V−Ua

i+1(t)
V ρai+1(t)

ρa
i
(t)

}}
, i−ξ (t) ≤ i < iξ(t),

min
{
Umax,max

{
Umin,

ρ∗ξ(t)
xξ(t+1)−Xiξ(t+1)

L

ρa
i
(t)

}}
, i = iξ(t),

Umin, iξ(t) < i ≤ i+ξ (t),
where Xiξ(tT ) < xξ(tT ) ≤ Xiξ(tT )+1 will cause class a vehicles to accumulate in cell
iξ(t) until they achieve the reference density ρ∗ξ(t0). The process of accumulation
will be somewhat different due to diffusion. Assuming Umax = V and L = V T , we
have

na
ξ(tT ) =

tT−tT0∑
k=0

A
tT−tT0
k ρaiξ(t0)(tT0 ),

where AKk is given iteratively,

AKk =


1, k = 0,
V−Umin

V AK−1
k−1 + Umin

V AK−1
k , 0 < k ≤ K,

0, k > K,

which is only approximately equivalent to (7.4). In order to be able to restrict the
traffic flow to qlo = V (σ−ρ∗ξ(t0)) in this framework, we need to accumulate n∗ξ(t0) =
2Lρ∗ξ(t0) CAVs, which is achieved at time t∗Tξ , na

ξ(t∗Tξ − 1) < n∗ξ(t0) ≤ na
ξ(t∗Tξ ). In

practice, (7.5) can be used as a good approximation for t∗Tξ , although it underes-
timates the time required to achieve the desired accumulation. Such accumulation
will then act as a moving bottleneck moving at speed uξ(t), and limiting the traffic
flow to qcap

ξ (t) = qlo
ξ (t) = V (σ − ρ∗ξ(t0)), as given by (4.24).

7.3.2 Control law
As opposed to the control law discussed in Section 7.2.1, where the initial position
of the moving bottleneck was given, we are now free to choose any point xξ(t0)
where we begin accumulating vehicles, as a control input. Once a large enough
accumulation of controlled vehicles is achieved, the controller proceeds with stop-
and-go wave dissipation according to the control law (7.3), with βσ = ρ∗ξ(t0) as
described in Section 7.2.1, where ρ∗ξ(t0) is another decision variable. Therefore,
when a stop-and-go wave is detected, we need to select suitable xξ(t0) and ρ∗ξ(t0),
and then proceed with the next step, with u∗ξ given by

nψ(tu)−
(
qdis
ψ − qlo

ξ

)(
tVψ

(
t∗ξ +

zψ(t∗ξ)− xξ(t∗ξ)
u∗ξ − λψ

)
− tVψ (tu)

)
= 0, (7.6)
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Figure 7.9: Calculating xξ(t0) given uξ. We calculate xξ(t0) so that we accumulate
enough vehicles after t∗ξ − t0, continue moving the controlled bottleneck at speed
uξ and reach the stop-and-go wave at time tcξ, exactly as it dissipates.

where nψ(tu) and tVψ (tu) depend on xξ(t0), t∗ξ and xξ(t∗ξ) depend on both xξ(t0) and
ρ∗ξ(t0), and qlo

ξ depends only on ρ∗ξ(t0). The decision variables xξ(t0) and ρ∗ξ(t0) may
be found by solving the congestion reduction problem with cost function (1.1) with
additional constraint (7.6). A simpler option is to first choose u∗ξ and ρ∗ξ(t0), and
then solve (7.6) to find xξ(t0). The full process of calculating the control actions is
outlined in Figure 7.9.

A good choice for u∗ξ is u∗ξ = Umin −∆u, with small ∆u > 0, leading to quick
stop-and-go wave dissipation, while still being robust for delayed accumulation of
CAVs due to diffusion or some other disturbances. The choice of ρ∗ξ(t0) will typically
be constrained to physically achievable cases, with CAVs occupying some number
of lanes, ρ∗ξ(t0) = βσ, where β is the ratio of the number of occupied lanes to total
number of lanes.

Calculating xξ(t0), ρ∗ξ(t0), and u∗ξ(t), requires us to have a very detailed knowl-
edge about the system state. If some part of that state is not directly measurable,
or is uncertain, it would be estimated from the data that is available. In particular,
when calculating u∗ξ(t) in (7.3), calculating ρzψxξ (tT ) might be challenging, since it
requires information about traffic density in each cell. We may instead use the esti-
mated average traffic density between xξ(t) and zψ(t), ρ̂zψxξ (tT ), which is initialized
at some time, and then follows

ρ̂
zψ
xξ (tT + 1) = ρ̂

zψ
xξ (tT )−

V−λψ
V qdis

ψ − (V − uξ(tT ))(σ − ρ∗ξ)
zψ(tT )− xξ(tT ) T. (7.7)
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Note that since we are not taking in new measurements of traffic density, nor of the
stop-and-go wave, this variant essentially corresponds to feedforward control. Since
we assume we can communicate with class a vehicles, and know their positions, we
may use exact information about their density ρai (tT ).

7.3.3 Simulation results

The parameters of the multi-class CTM model that were used are V = 110 km/h,
L = 0.5 km, T = L/V , σ = 60 veh/km, P = 240 veh/km, W = V σ/(P − σ), and
we assume a capacity drop of severity α = 0.1. The initial traffic density ρi(0) is
randomly generated, with every 5 adjacent cells taking a uniformly distributed value
from [0.8σ, σ]. Similarly, the inflow into the first cell q0(t) is randomly generated
in the same way, with every 5 samples taking a uniformly distributed value from
[0.8V σ, V σ]. The ratio of CAVs in the initial traffic density, r0

i , and in inflow, rq(t),
also takes an uniformly distributed random value from [0, 2r̄], where r̄ is the average
ratio. For example, the initial density of class a vehicles in cell i is ρai (0) = r0

i ρi(0),
while the initial density of class b is ρbi (0) = (1− r0

i )ρi(0), etc. We are considering
50 km of highway with no on- or off-ramps. At the beginning of each simulation, a
stop-and-go wave is induced by fully closing the road for 2 minutes at a point close
to the end of the considered stretch, after which we proceed with phase 1 of the
described control law. Since the average inflow is equal to the discharge rate of the
stop-and-go wave, it is likely that, unless some control action is applied, the wave
will remain until the end of the simulation run.

We choose ρ∗ξ(t0) = σ
3 , i.e. the moving bottleneck will cover one third of the

lanes, and use u∗ξ = 60 km/h, Umin = 50 km/h. Two different versions of the control
law described in Subsection 7.3.2 will be compared. In the first one, we use exact
information about the current traffic density when calculating (7.3), while in the
second one we calculate u∗ξ(tT ) approximately, using estimated average density
(7.7).

We evaluate the two versions of the proposed control law in 100 simulation runs,
with different average ratios of class a vehicles r̄k. The box plots of relative change
of TTS and ATV, compared to the base case when no stop-and-go wave is induced,
∆Indexks = Indexks−Index0

s

Index0
s

, with s denoting the number of the simulation run, are
shown in Figure 7.10 and Figure 7.11, respectively. The mean and median relative
change of these indices are also given in Table 7.3 and Table 7.4.

We can see that applying either version of the control law leads to improve-
ments in both performance indices, even with penetration rates as low as 3%, with
higher penetration rates leading to larger improvements, especially in case we use
exact traffic density data. Approximate feedforward control is also more likely
to fail to dissipate the stop-and-go wave, since it can underestimate the amount
of vehicles between the controlled moving bottleneck and the downstream end of
the stop-and-go wave, as witnessed by a higher spread or number of outliers in
Figures 7.10 and 7.11.
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(a) Exact (b) Approximate

Figure 7.10: Box plots of TTS change compared to the base case.
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(b) Approximate

Figure 7.11: Box plots of ATV change compared to the base case.

To further illustrate the influence the ratio of controlled vehicles has, as well as
highlight the difference in performance of the two control versions, in Figure 7.12
we compare the execution of one simulation run for different penetration rates
and control law versions. In Figure 7.12a and 7.12b we compare the exact and
the approximate feedforward control laws under penetration rate of r̄ = 5%. In
the latter case, the speed of the controlled moving bottleneck is too high due to
underestimating the traffic volume, causing it to arrive at the stop-and-go too wave
early and fail to dissipate it.
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(a) Exact, 5%

(b) Approximate, 5%

(c) Exact, 10%
Figure 7.12: One example simulation run for different ratios of controlled vehicles
and version of the control algorithm.
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Table 7.3: Mean and median change in TTT compared to the base case with no
stop-and-go wave formed.

r̄k [%] exact approximate
mean median mean median

0% 6.6% 6.49% 6.6% 6.49%
3% 4.51% 4.04% 5.22% 4.49%
5% 3.99% 3.64% 4.49% 3.78%
10% 3.58% 3.32% 3.82% 3.37%

Table 7.4: Mean and median change in ATV compared to the base case with no
stop-and-go wave formed.

r̄k [%] exact approximate
mean median mean median

0% 331.13% 326.87% 331.13% 326.87%
3% 153.46% 142.76% 216.99% 167.01%
5% 127.73% 125.63% 169.84% 130.67%
10% 109.92% 107.99% 129.88% 111.45%

Additionally, by comparing Figure 7.12a and Figure 7.12c, we see the benefit of
having a higher penetration rate of connected automated vehicles. In case r̄ = 10%,
we are both able to start collecting the vehicles closer to the stop-and-go wave, and
finish collecting enough of them much quicker than in case r̄ = 5%. This allows us
to dissipate the stop-and-go wave quicker, leading to improvement in performance.

7.4 Summary

In this chapter we considered the simplest case of the stop-and-go wave dissipation
problem, dissipating a single stop-and-go wave using a single controlled moving bot-
tleneck. The proposed control laws were tested in simulation and shown to achieve
good results, successfully dissipating the stop-and-go wave. In case there was no
capacity drop, dissipating the stop-and-go wave did not improve the TTS, as ex-
pected, but it did improve the ATV, making the traffic density profile smoother
and more homogeneous. In case the discharging flow of the stop-and-go wave was
lower than the capacity of the road, dissipating it reduced the TTS. By accumu-
lating enough controlled vehicles, we are able to implement stop-and-go dissipating
control on roads with an arbitrary number of lanes, provided that there is enough
time and space to execute the control actions.

The simplest case of stop-and-go wave dissipation presented here is expanded
upon in the following chapter, and generalized to the case with multiple stop-and-go
waves, using multiple controlled moving bottlenecks as actuators.





Chapter 8

Reconstruction-based multiple
stop-and-go wave dissipation

Using connected vehicles as actuators for traffic control has been shown to
achieve good results in the previous chapters. In this chapter, we consider

using these vehicles to also fill other roles in the control loop. So far, the full traffic
state was assumed to be known, and this information was used for control action
calculation. If we assume multiple connected vehicles are present on the road, we
may use their trajectories and potential local traffic state measurements to estimate
and reconstruct the traffic state, as well as to learn the traffic model governing the
behaviour of the traffic flow. This traffic state reconstruction can then be used in
place of actual traffic state in case the full state information is not available.

Apart from considering reconstruction-based control instead of full-information
control, in Section 8.1 we also continue the work presented in the previous chapter
by generalizing the stop-and-go wave problem to the case when we dissipate multiple
randomly arising stop-and-go waves using multiple randomly arriving connected ve-
hicles used as controlled moving bottlenecks. Stop-and-go waves originating from
congestion in the wake of moving bottlenecks are also considered. First, in Sec-
tion 8.2, a simple traffic state reconstruction scheme is considered, assuming the
underlying traffic model is known and presenting heuristic rules for selecting a sub-
set of available CAVs whose local measurements will be used. Then, in Section 8.3,
we drop the assumption that the traffic model is known, and use the FTTSM
to control a more complex traffic model, simultaneously reconstructing the traffic
state, learning the traffic model, and calculating the control actions, all based on
the CAVs acting as both sensors and actuators.

8.1 Multiple stop-and-go wave dissipation

The stop-and-go wave dissipation problem described in Section 7.1 can easily be
generalized to the case when there are multiple stop-and-go waves ψ, and multiple
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controlled moving bottlenecks ξ. At some time t0, let the positions of the stop-and-
go waves and moving bottlenecks be zψ(t0) and xξ(t0), where ψ ∈ Ψ(t0), ξ ∈ Ξ(t0),
Ψ(t0) is the set of all stop-and-go waves present on the considered road segment at
time t0, and Ξ(t0) is the set of all moving bottlenecks present at time t0. We denote
by #»

ψ and #»

ψ the first stop-and-go wave downstream and upstream of stop-and-go
wave ψ, respectively,

#»

ψ = arg min
k∈K

zk(t0), K = {m ∈ Ψ(t0)|zm(t0) > zψ(t0)},
#»

ψ = arg max
k∈K

zk(t0), K = {m ∈ Ψ(t0)|zm(t0) < zψ(t0)}.

Similarly, #»

ξ and #»

ξ denote the first moving bottleneck downstream and upstream
of moving bottleneck ξ, respectively,

#»

ξ = arg min
k∈K

xk(t0), K = {m ∈ Ξ(t0)|xm(t0) > xξ(t0)},
#»

ξ = arg max
k∈K

xk(t0), K = {m ∈ Ξ(t0)|xm(t0) < xξ(t0)}.

We may also order the indices of stop-and-go waves and moving bottlenecks so that
zψ(t0) > zψ+1(t0), ψ ∈ Ψ(t0), and xξ(t0) > xξ+1(t0), ξ ∈ Ξ.The multiple stop-and-
go wave dissipation problem can be decomposed into |Ξ| single stop-and-go wave
problems, where each of the controlled moving bottlenecks ξ tries to dissipate the
most severe stop-and-go wave downstream of it, also taking into account the new
stop-and-go waves that may arise in the wake of the moving bottleneck #»

ξ .
Let Ψξ(t0) be the set of stop-and-go waves that are downstream of the moving

bottleneck ξ at time t0,

Ψξ(t0) = {ψ ∈ Ψ|zψ(t0) > xξ(t0)} .

Firstly, we denote the downstream-most controlled moving bottleneck ξ = 1. For
this moving bottleneck, at time t = t0, we may calculate the optimal reference
speeds for dissipating each stop-and-go wave ψ ∈ Ψ1(t0) according to (7.2). We
denote these reference speeds uψ∗1 (t0), calculated for stop-and-go wave ψ, assuming
all other stop-and-go waves were not impeding the traffic flow. The overall reference
speed is then given as the minimum of all reference speeds for single stop-and-go
waves,

u∗1(t0) = min
ψ∈Ψ1(t0)

uψ∗1 (t0).

If u∗ξ(t0) > umin
ξ , the moving bottleneck ξ will be able to fully dissipate all stop-

and-go waves downstream of it. In this case, the most severe stop-and-go wave ψξ
is the one for which the minimum reference speed was calculated,

ψξ = arg min
ψ∈Ψξ(t0)

uψ∗ξ (t0).
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Otherwise, if for any ψ ∈ Ψξ(t0) we get uψ
∗

ξ (t0) < umin
ξ , the moving bottleneck ξ

will not be able to fully dissipate at least one stop-and-go wave. We denote the set
of these remaining stop-and-go waves Ψf

ξ(t0),

Ψf
ξ(t0) =

{
ψ ∈ Ψξ(t0)|uψ∗ξ (t0) < umin

ξ

}
.

Each subsequent controlled moving bottleneck ξ tries to dissipate the stop-and-
go waves that originate from the area between itself and moving bottleneck #»

ξ ,
Ψξ(t0) \Ψ #»

ξ (t0), and the stop-and-go waves left from moving bottleneck #»

ξ . If the
previous moving bottleneck fails to dissipate some stop-and-go waves, Ψf

#»
ξ

(t0) 6= ∅,
moving bottleneck ξ attempts to dissipate them as well. However, if moving bottle-
neck #»

ξ successfully dissipated all stop-and-go waves from Ψ #»
ξ (t0), the congestion

left in its wake can form a new, less severe stop-and-go wave, that moving bottle-
neck ξ will have to dissipate. We denote this newly created stop-and-go wave ψ′#»

ξ
,

it is created at time tcψ #»
ξ
at position zψ′#»

ξ
(tcψ #»

ξ
) = x #»

ξ (tcψ #»
ξ

), and we have qdis
ψ′#»
ξ

> qdis
ψ #»
ξ
.

Finally, the reference speed of controlled moving bottleneck ξ is given again by

u∗ξ(t0) = min
ψ∈Ψξ(t0)

uψ∗ξ (t0). (8.1)

where uψ∗ξ (t0) is calculated differently depending on ψ:

• For the stop-and-go waves that moving bottleneck #»

ξ was not able to fully
dissipate, ψ ∈ Ψξ(t0) \Ψ #»

ξ (t0) ∪Ψf
#»
ξ

(t0), uψ∗ξ (t0) is given by (7.2), with

tu = t−Vψ (tVξ (t0)).

• For the stop-and-go wave left in the wake of moving bottleneck #»

ξ , ψ = ψ′#»
ξ
,

if Ψf
#»
ξ

(t0) = ∅, we calculate uψ∗ξ (t0) according to

nψ′(t′u)−
(
qdis
ψ′ − qlo

ξ (uψ∗ξ (t0))
)(

tVψ

(
t0 + zψ(t0)− xξ(t0)

uψ∗ξ (t0)− λψ

)
− tVψ (t′u)

)
= 0,

where t′u = min{t−Vψ (tVξ (t0)), tcψ}, and

nψ′(t′u) =

x #»
ξ (t0)∫

xξ(t0)

ρ(x, t0)dx+ max
{
tdψ − tVξ (t0), 0

}(
qlo
ξ (uψ∗ξ (t0))− qlo

#»
ξ

(u∗#»
ξ

(t0))
)
.

• For all other ψ, which are dissipated by moving bottleneck #»

ξ or dissipate on
their own, we set uψ∗ξ (t0) = umax

ξ .
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As described in Section 4.3.5, the discharging flow of a stop-and-go wave ψ
depends on the maximum traffic density ρc

ψ(t0) in it,

qdis
ψ = Q(ρd

ψ(t0)),

where ρd
ψ(t0) is given as the minimum solution of

Q(ρd
ψ(t0)) = Q(ρc

ψ(t0)) + λψ(ρd
ψ(t0)− ρc

ψ(t0)), ρ ≥ 0

and Q is the flux function of the overall traffic. The overtaking flow of moving
bottleneck ξ dissipating stop-and-go wave ψ is given by

qlo
ξ (uψ∗ξ (t0)) = Q(ρd

ξ (t0)),

where ρd
ξ (t) is the minimum ρ > 0 for which

Q(ρ) = Qξ(ρτ ) + uψ∗ξ (t)(ρ− ρτ ) (8.2)

holds, and ρτ is the traffic density at which a line with slope uψ∗ξ (t) is tangent to
the moving bottleneck flux function Qξ(ρ),

ρτ = arg max
ρ

Qξ(ρ)− uψ∗ξ (t)ρ.

Conversely, we denote the maximum solution of (8.2) as ρc
ξ(t), which is the traffic

density of the congestion that accumulates in the wake of the moving bottleneck,
assuming the incoming traffic flow is higher than qlo

ξ (uψ∗ξ (t0)). After the stop-and-
go wave ψ is dissipated by moving bottleneck ξ, the congestion in its wake creates
a new stop-and-go wave with

qdis
ψ′ = Q(ρd

ψ′(t0)),

and ρd
ψ′(t0) calculated based on

ρc
ψ′(t0) = ρc

ξ(t0)).

Therefore, it is easy to show that qdis
ψ′ > qdis

ψ , and event though dissipating a stop-
and-go wave using a moving bottleneck causes another stop-and-go wave to be
created, the new stop-and-go wave is less severe than the original one and the
overall traffic throughput will be increased.

8.2 Basic traffic state reconstruction and probe vehicle
selection

Since we are now using multiple CAVs to dissipate multiple stop-and-go waves,
possibility arises to rely solely on the CAVs to act both as the only sensors and
as the only actuators on the road, with measurements communicated among them
in order to estimate the traffic state and calculate the control action. We may
differentiate between three types of CAVs:
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1. Inactive CAVs – not currently acting as sensors or actuators,

2. Probe CAVs – acting only as sensors, and

3. Actuator CAVs – acting as both sensors and actuators,

based on the level of capabilities and compliance of the vehicles. Here, actuator
CAVs represent the highest level of CAV automation and compliance, that are able
to measure the local traffic conditions, communicate them with the infrastructure,
and follow the commands that is sent to them from the infrastructure. Probe CAVs
are either unable or unwilling to receive commands from the infrastructure, but they
share their local traffic measurements, and inactive CAVs are those that are able
to act as probe vehicles, but are either currently refusing to share their measure-
ments with the infrastructure, or have been (potentially temporarily) commanded
not to send their measurements e.g. to reduce the communication burden. Further-
more, collecting local measurements from probe vehicles might incur some costs,
so deactivating those probe vehicles whose measurements are not needed might be
beneficial.

8.2.1 Traffic state reconstruction in CTM

Consider a stretch of road divided into N cells of length L, with cell i stretching
from Xi−1 = (i − 1)L to Xi = iL. We assume that the dynamics of traffic are
given by the CTM (3.16), as defined in Section 3.3, with time step T = L/V . Let
Ξs(tT ) be the set of all CAVs acting as sensors at discrete time tT , t = tTT , whose
local traffic measurements we can access. The position of probe CAV ξ ∈ Ξs(tT )
is denoted xξ(tT ), the cell it is currently in is iξ(tT ), Xiξ(tT )−1 < xξ(tT ) ≤ Xiξ(tT ).
We assume that probe vehicles can measure local traffic densities in cells i ∈ Is(tT )
adjacent to the cell they are in,

Is(tT ) =
{
i ∈ {1, . . . , N}

∣∣ |i− iξ(tT )| ≤ 1, ξ ∈ Ξs(tT )
}
,

assuming that the cell length L is chosen so that the sensors on CAVs can indeed
cover this range. This set will typically change every time step, since the CAVs
move along the road, leave the road segment at its downstream end, and new ones
will arrive at its upstream end. The position of the CAVs is updated as

xξ(tT + 1) = xξ(tT ) + Tvξ(tT ),

where the speed of the CAV vξ(tT ) depends on its reference speed and the speed
of the traffic immediately downstream of it,

vξ(tT ) = min
{
uξ(tT ),

q̌iξ(tT )(tT )
ρ̌iξ(tT )

(tT )

}
.
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Using these measurements, we can attempt to approximately reconstruct the traffic
density,

ρi(tT ) =
{
ρ̌i(tT ), i ∈ Is(tT ),
ρi(tT − 1) + T

L

(
qi−1(tT − 1)− qi(tT − 1)

)
, i /∈ Is(tT ).

Here we denote by ρ̌ and q̌ the true traffic density and flow, and by ρ and q the
traffic density and flow estimates, reconstructed using the available traffic data.
The traffic flows qi(tT ) are defined using the reconstructed traffic density ρi(tT )
instead of the real traffic density ρ̌i(tT ).

Since we assume that the traffic flow model is known, there are only three sources
of uncertainty in the traffic density estimate: the initial condition ρ̌i(0), the inflow
q̌0(tT ), and the conditions at the downstream end of the road segment, which in
this case will consist of stop-and-go waves arriving from downstream. We assume
that at least the average inflow q̄0 is known, which in practice could be learned from
historical data, or could be acquired from some stationary sensor upstream of the
road segment under consideration. Then, we may use this value as the estimated
inflow, q0(tT ) = q̄0, if no other information is available, as well as for initializing the
traffic density estimates, ρi(0) = q̄0/V . However, unless they can be measured in
some other way, changes in the traffic conditions downstream of the road segment
will only be detected once a probe vehicle reaches their spillback.

Note that in the proposed simple reconstruction algorithm it is required that
all probe vehicles communicate their measurements at each time step, potentially
straining the communication resources. However, since many of the vehicles will
be in free flow, moving at the same speed as the vehicles around them, the mea-
surements that they would communicate are often redundant. Therefore, it can
be beneficial to develop an algorithm that will only activate the potential probe
vehicles when their measurements are needed.

8.2.2 Probe vehicle selection
It is clear that the quality of traffic state reconstruction can only increase if we
gain access to more information, i.e. use more probe vehicles. However, in a situa-
tion where the communication channel bandwidth is limited, it might be useful to
reconstruct the density with fewer sensors, eliminating the redundant information.
Information about the congestion and stop-and-go waves is particularly important
and will significantly improve the control performance, whereas the information
about the rest of the road that is in free flow is less impactful.

There are numerous ways of selecting which CAVs are used as probe vehicles,
and the selection will depend on the intended purpose. Here, we propose a simple
adaptive probe vehicle selection scheme. Denote by Ξ the set of all CAVs. First,
we use a subset Ξs

0 of CAVs that are always activated. The set of actuator vehicles
is denoted Ξa, Ξa ⊂ Ξs

0, and Ξs(tT ) is the set of probe vehicles activated at time t.
When the vehicles in Ξs

0 detect any congestion, we activate all vehicles that are less
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Case Sensors Actuators
No control ∅ ∅

Predefined subset of CAVs Ξs
0 ⊂ Ξ Ξa ⊂ Ξs

0
Adaptive subset of CAVs Ξs(tT ) ⊂ Ξ Ξa ⊂ Ξs

0
All CAVs Ξ Ξa ⊂ Ξ

Full-information all the road Ξa ⊂ Ξ

Table 8.1: Summary of different state reconstruction and control scenarios using
CAVs.

than some predefined distance ` away from any cell where ρi(tT ) > σ, i.e. where
we expect to encounter congestion, leading to the following definition:

Ξs(tT ) = Ξs
0 ∪
{
ξ ∈ Ξ

∣∣ρi(tT ) > σ, i− iξ(tT ) ∈
[
0,
⌊
`

L

⌋]}
.

After these vehicles leave the congestion, they will be deactivated. With this selec-
tion scheme, we aim to improve the quality of traffic state reconstruction that is
most impactful with regards to the control performance.

In the following subsection, we will compare this probe vehicle selection scheme
to using only the probe vehicles from Ξs

0, as well as with using all CAVs as probe
vehicles.

8.2.3 Simulation results

The efficiency of the proposed traffic density reconstruction scheme and control law
is studied in simulations with different parameters. The initial traffic densities, flow
into the road segment and stop-and-go waves entering the road from downstream
are randomized and the same values are taken for all parameter combinations. The
arrival of CAVs is modelled as Poisson arrival process with average gap of G, and
the newly arrived vehicle is a probe vehicle with probability ps, an actuator vehicle
with probability pa (in which case it also acts as a probe vehicle), and an inactive
CAV if it is neither a probe nor an actuator vehicle.

We executed 100 simulations for every different combination of parameter G
and ps values, with G ∈ {0.5km, 1km, 1.5km, 2.5km}, ps ∈ {0.1, 0.3, 0.5, 0.7}, and
pa = 0.3. For each simulation run, five control cases were used, as summarized in

q̄0 = 3200 veh/h σ = 40 veh/km α = 0.25
V = 100 km/h W = 50 km/h umin = 30 km/h

Table 8.2: Simulation parameters.
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(a) G = 0.5km (b) G = 1km

(c) G = 1.5km (d) G = 2.5km

Figure 8.1: Median delay compared to the no control case shown for different ps
and G for a given pa = 0.3.

Table 8.1. The performance metric that was used is the median of the delay ratio,

TTS − TTSmin

TTSunc − TTSmin ,

i.e. the ratio between the increases of TTS in the controlled and uncontrolled case.
The increase is calculated compared to the minimum TTSmin = q̄0

V NLtsim, where
NL = 5 km is the length of the simulated road segment and tsim = 1 h the duration
of each simulation run.

The simulation results are shown in Figure 8.1. We can see how increasing ps
affects the delay ratio for constant G and pa. Unsurprisingly, we can see that control
performance deteriorates as we use less and less information. When G = 0.5 km,
the full-information control achieves the best performance, eliminating close to
80% of delay, whereas using all CAVs as sensors eliminates around 72% of delay
for the same G. In case we are using a subset of CAVs as sensors, the performance
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will improve as ps increases, starting from eliminating around 60% and 65% of
the delay, using a predefined and adaptive subset of CAVs as sensors respectively,
and approaching the performance of the case where we use all CAVs as sensors as
ps + pa goes to 1, when the same subsets of CAVs are used. We can also see that
the main factor determining the control performance is the average gap between
two CAVs. When G is very low, all control schemes achieve good results, and probe
vehicle-based control approaches the full-information control.

To further illustrate the control and state reconstruction algorithms, in Fig-
ure 8.2 we show a detail from one of the simulation runs. The figures show the
density profile along the road, with brighter colours representing denser traffic.

The baseline case, with no control, is shown in Figure 8.2a, and the full-
information control case is shown in Figure 8.2b. A stop-and-go wave originat-
ing from downstream enters the road around t = 0.52 h, and propagates upstream
unless dissipated by applying some control action.

Figures 8.2c and 8.2e show the attempt to dissipate the congestion using only
the predefined set of CAVs (shown in green and red) as sensors, with the real traffic
situation ρ̌i(tT ) shown in Figure 8.2c, and the reconstructed estimation of the traffic
state ρi(tT ) shown in Figure 8.2e. Around t = 0.536 h, an actuator vehicle runs
into the stop-and-go wave, detecting it as it goes through it. The actuator vehicle
upstream reacts by slowing down and restricting the flow. Four inactive CAVs
reach the stop-and-go wave before the actuator vehicle, but since they transmit no
information, the control law underestimates the width of the wave and the CAV
fails to completely dissipate it. However, in case we use the proposed adaptive
probe vehicle activation, once these four inactive CAVs get close to the congestion,
they are temporarily activated, as shown in Figures 8.2d and 8.2f (shown in dashed
green). The additional information corrects the underestimation, and the stop-and-
go wave is successfully dissipated.

8.3 Reconstruction-based control with model learning

In the previous section, the use of local traffic measurements provided by probe
vehicles to reconstruct the traffic state and calculate the control action was demon-
strated, assuming that only the average traffic density was known. However, we
also assumed that the traffic model was known exactly, and used the same model
for both simulation, and state reconstruction and control design. In this section,
we explore an even more general problem, dropping the assumption that the traffic
model is known. We use the FTTSM framework for traffic state reconstruction,
model learning, and finally control design and implementation, whereas the simu-
lation model on which the proposed algorithms are tested is of different form and,
moreover, noisy. While the previous section focused more on the process of select-
ing which CAVs would be used as probe vehicles, here we assume that all available
CAVs can act as actuator vehicles, and focus on the remainder of the control loop.
The overall structure of the closed-loop system is shown in Figure 8.3.
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(a) Real density without control. (b) Real density with full information con-
trol.

(c) Real density with reconstruction-based
control using a predefined subset of CAVs.

(d) Real density with control using an adap-
tive subset of CAVs.

(e) Reconstructed density of situation (c). (f) Reconstructed density of situation (d).

Figure 8.2: Traffic density obtained from a numerical simulation in different cases.
The trajectories of inactive CAVs are in black, probe vehicles in green and actuator
vehicles in red.
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control actions Prediction-based
control law

State reconstruciton,
model learning, and
prediction model

measurements

ξ1 ξ2 ξ3

Figure 8.3: Closed-loop system structure. Local traffic measurements are collected
by the CAVs and sent to the infrastructure, where traffic state reconstruction and
model learning is implemented. Based on the current state estimate, control actions
for the CAVs are calculated using the learned predictions model.

8.3.1 Traffic state reconstruction and model learning

As described in Section 4.5, we assume that CAVs can measure the local traffic
density ρ̌ξ and traffic speed v̌ξ, from which we can get the local traffic flow q̌ξ = ρ̌ξ v̌ξ.
In case the CAV ξ is moving slower than the surrounding traffic, we also assume
that it can measure the overtaking flow ω̌ξ. These measurements acquired from
CAVs will be used to reconstruct the traffic state, as well as to identify the flux
functions and other parameters that describe the traffic system.

We first describe how local traffic density measurements can be used to attempt
to reconstruct the broader traffic state, which will later be used to calculate control
actions. While reconstructing the traffic state, we assume that all flux functions
and other parameters of the traffic model are known. We then propose algorithms
that can be used to identify each of these aspects of the traffic model. The proposed
algorithms exploit the continuous piecewise linear structure of the flux functions to
simplify calculations and avoid making assumptions about their shape. Indeed the
only assumption made is that the dynamics of the traffic can, at least approximately,
be described as a first order conservation law, ignoring the dynamics of the traffic
speed.

State reconstruction

Firstly, we use the local measurements of traffic density ρ̌ξ to attempt to reconstruct
the traffic state, and other measurements are used only in model learning. This
information can be included into the FTTSM by forcing the traffic density to be
equal to the measured one at the position of the CAV ξ, by setting Fξ = ρ̌ξ. If the
flux functions of all road segments are known, the influence of these measurements
will spread to the rest of the space.

Assuming we have a homogeneous stretch of road that can be described by a
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single flux function, we can initialize the traffic model at some start time t0 = 0 to

X 0 =
(
N0, t0, z0, ρ0, Q0,W 0,R0)=

(
0, 0, ∅, ρavg, Q0,W 0, ∅

)
,

Q0 =
(
V 0,Σ0,Λ±,0, ξ0, F 0)=([0] , [ρmax] , (0, 0), 0, ∅),

with constant initial traffic density ρ0 using the overall average density known from
historical data, wavespeed bounds W 0 such that all wavespeeds are allowed, and
ρmax chosen large enough so that the traffic density will never exceed it. The
flux functions and other parameters will be updated as new measurements become
available, according to the algorithms described in the remainder of this section.

We update the traffic state in an event-based manner at some time t′ when

1. a new CAV enters the road,

2. the difference between the current traffic density measurement of some
CAV ρ̌′ξ∗ , and the previous forced traffic density Fξ∗ , exceeds some bound,
|ρ̌′ξ∗ − Fξ∗ | > Bρ, or

3. before prediction of the traffic state evolution.

If the state X was last updated at time t, we may calculate the current state X ′ at
time t′ as described in Section 4.5, chaining transitions that make the current state
admissible, with the passage of time transition τ(t′) until the current time becomes
t′. During this update, the CAVs are described by their previous forced densities
Fξ, and boundary speeds λ±ξ = xξ(t′)−xξ(t)

t′−t , which ensure that the positions of
the CAVs in X ′ correspond to their real positions on the road xξ(t′). If the state
update was caused by the entry of a new CAV, we assign a new unique identifier
ξ∗ > max Ξ to it, where Ξ is the set of identifiers of all CAVs that were on the
road before the new arrival. The newly arrived CAV ξ∗ is then added to the set
Ξ′ = Ξ∪{ξ∗}, and added to the model at position xξ∗(t′), with forced traffic density
set to F ′ξ∗ = ρ̌′ξ∗ . Otherwise, if the state update was caused by a large deviation
of the currently measured traffic density ρ̌′ξ∗ from Fξ∗ , we update its forced traffic
density to F ′ξ∗ = ρ̌′ξ∗ once the state reaches X ′. The process then repeats at the next
update time t′′. We can influence the frequency of updates by choosing a higher Bρ,
which also decreases the sensitivity to measurement noise, but may yield a higher
state reconstruction error.

Learning the background traffic flux function Q

Consider a CAV ξ travelling through a road segment described by flux function Q,
and let its reference speed be uξ ≥ vmax

Q . Then the actual speed of the CAV will
depend only on the speed of the traffic immediately downstream of it, and it will
not influence the surrounding traffic, so λ±ξ = v̌ξ, and since the CAV is following the
flow of the traffic, we have ω̌ξ = 0. The measurements should then be consistent
with the flux function, Q(ρ̌ξ) ≈ q̌ξ.
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Denote by
(
ρ̌Q, q̌Q

)
the set of all the collected measurement using all the CAVs

inside the considered road segment. We may fit the data to a piecewise function with
some number of breakpoints m satisfying the conditions imposed on flux functions
(4.47), minimizing a choice of error metric using some batch processing algorithm.
However, this batch processing approach might lead to sluggish update of Q, as
well as unnecessary computational complexity, and might thus be unsuitable for
real-time control.

Instead, here we propose a stream processing event-triggered method for on-line
flux function update, summarized in Algorithm 1. Operator avg denotes finding the
average value, and operator |ρ̌Q,Bσξ | is the number of elements in set ρ̌Q,Bσξ . Let ΞQ

be the set of CAVs collecting measurements about the flux function Q. If, for any
CAV ξ, the deviation of the measured traffic flow q̌ξ from the modelled traffic flow
based on the measured traffic density Q(ρ̌ξ) is greater than some margin Bq, we
update the flux function based on the measurement. Choosing higher Bq reduces
the update frequency and sensitivity to measurement noise, at the cost of higher
model error. Instead of using all the collected data, the set of measurements which
we use for flux function fitting

(
ρ̌Q, q̌Q

)
will now consist only of the measurements

that triggered a flux function update.
First, we add the (ρ̌ξ, q̌ξ) for which |Q(ρ̌ξ)− q̌ξ| > Bq to

(
ρ̌Q, q̌Q

)
. Next, if the

flux function already has any breakpoints close to the measurement, |σi − ρ̌ξ| < Bσ,

Algorithm 1: Updating the background traffic flux function Q using mea-
surements from CAVs travelling with the flow
Input: ρ̌ξ, q̌ξ, ξ ∈ ΞQ, Q
Output: Q′
for ξ ∈ ΞQ do

if |Q(ρ̌ξ)− q̌ξ| > Bq then
Add (ρ̌ξ, q̌ξ) to

(
ρ̌Q, q̌Q

)
;

Remove from ΣQ all {σ∈ΣQ : |σ − ρ̌ξ|<Bσ};
Find

(
ρ̌Q,Bσξ , q̌Q,Bσξ

)
=
{
(ρ, q)∈

(
ρ̌Q, q̌Q

)
: |ρ−ρ̌ξ|<Bσ

}
;

Add σ′ = avgρ̌Q,Bσξ to ΣQ;
Recalculate VQ, so that Q′(σ′)=avgq̌Q,Bσξ ;
if |ρ̌Q,Bσξ | > Bň then

Remove from
(
ρ̌Q, q̌Q

)
and

(
ρ̌Q,Bσξ , q̌Q,Bσξ

)
(ρ,q)=arg max

(ρ,q)∈(ρ̌Q,Bσξ
,q̌Q,Bσ
ξ )

(
ρ
ρ̌ξ
−1
)2

+
(
q
q̌ξ
−1
)2

end
end

end
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they will be replaced by a new breakpoint; otherwise a new breakpoint is added
without moving any of the other breakpoints. Choosing higher Bσ decreases the
number of breakpoints in flux function Q, at the cost of potentially increasing the
frequency of updates and higher model error. The new breakpoint σ′ and its flux
Q(σ′) are taken as the average values of all measurements from

(
ρ̌Q, q̌Q

)
that are

close to the new measurement,
(
ρ̌Q,Bσξ , q̌Q,Bσξ

)
=
{
(ρ, q)∈

(
ρ̌Q, q̌Q

)
: |ρ−ρ̌ξ|<Bσ

}
. We

therefore add the new breakpoint σ′ to ΣQ and recalculate VQ so that we have
Q′(σ′) = q′, where σ′ is the average of ρ̌Q,Bσξ and q′ the average of q̌Q,Bσξ . The
updated ΣQ′ and VQ′ are given by

ΣQ′=
[
σ1 . . . σiξ− σ′ σiξ− . . . σm

]>
,

VQ′=
[
V1 . . . Viξ− V ′− V ′+ Viξ−+1 . . . Vm

]>
,

iξ−=
{

max i s.t. σi ∈ ΣQ, σi < ρ̌ξ −Bσ, σ1 ≥ ρ̌ξ −Bσ,
0, σ1 < ρ̌ξ −Bσ,

iξ+ =min i s.t. σi ∈ ΣQ, σi > ρ̌ξ +Bσ,

V ′− =
q′ −Q(σiξ−)
σ′ − σiξ−

, V ′+ =
Q(σiξ+)− q′

σiξ+ − σ′
,

where the first blocks of ΣQ′ and VQ′ are empty if iξ− = 0, and the third block of
VQ′ is empty if iξ+ = m. We also need to ensure by suitable selection of initial Q
that σm > ρ̌max −Bσ, i.e. the final breakpoint of Q is never moved.

Finally, in order to accelerate the adaptation of Q to potentially new condition
on the road, we may choose to always calculate the breakpoint densities and flows
using only the Bň most relevant measurements. Then, if after adding the new
measurement to

(
ρ̌Q, q̌Q

)
we have |ρ̌Q,Bσξ | > Bň, i.e. the number of measurements

close to ρ̌ξ is higher than Bň, we may remove the measurement that differs from
the measure (ρ̌ξ, q̌ξ) the most.

Learning the bottleneck diagram Qξ

Consider again a CAV ξ travelling through a road segment described by flux func-
tion Q, but with reference speed that is lower than the speed of the surrounding
traffic, uξ < v̌ξ. Then the CAV will follow its reference speed, the overtaking flow
will be ω̌ξ > 0, and the presence of the slow moving vehicle might be affecting the
behaviour of the surrounding traffic. We aim to model this influence by using a
different flux function Qξ at the position of the CAV, with λ±ξ = uξ. Then we need
the measurement to satisfy

(∀ρ ≥ 0) Qξ(ρ) ≤ ω̌ξ + ρuξ,

(∃ρ ≥ 0) Qξ(ρ) = ω̌ξ + ρuξ,

i.e. the line ω̌ξ + uξρ should be tangent to Qξ(ρ).
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Algorithm 2: Updating the bottleneck diagram flux function Qξ using mea-
surements of overtaking flow
Input: ω̌ξ, uξ, Qξ
Output: Q′ξ
Find ωmax

ξ =maxσ∈ΣQξ
Qξ(σ)−uξσ= Qξ(σiω

ξ
)−uξσiω

ξ
;

if ωmax
ξ > ω̌ξ +Bω then
Find σ− = min ρ ≥ 0 s.t. Qξ(ρ) = uξρ+ ω̌ξ, and
σ+ = max ρ ≥ 0 s.t. Qξ(ρ) = uξρ+ ω̌ξ ;
Remove from ΣQξ all

{
σ ∈ ΣQξ : σ− ≤ σ ≤ σ+

}
;

Add {σ−, σ+} to ΣQξ ;
Recalculate VQξ, so that Q′ξ(ρ)= ω̌ξ+uξρ, σ−≤ρ≤σ+;

else if ωmax
ξ < ω̌ξ −Bω then

Recalculate VQξ, so that Q′ξ(σiωξ )= ω̌ξ+uξσiω
ξ
;

end

If the conditions (8.3) are violated by more than some margin Bω, we update
flux function Qξ according to the proposed Algorithm 2 so that (8.3) will hold.
Choosing a higher Bω decreases the frequency of updates of Qξ and sensitivity to
measurement noise, but increases the model error. We first calculate the maximum
overtaking flow ωmax

ξ that Qξ allows in case the boundary speed is uξ, which is
achieved for traffic density σiω

ξ
, ωmax

ξ = Qξ(σiω
ξ

) − uξσiω
ξ
. Since Qξ is piecewise

linear, we only need to search for σωξ within the set of its breakpoints ΣQξ . Then,
if ωmax

ξ > ω̌ξ + Bω, the current flux function Qξ admits a higher overtaking flow
than the measured one, so we proceed to update it with

ΣQ′
ξ

=
[
σ1 . . . σiξ− σ− σ+ σiξ− . . . σm

]>
,

VQ′
ξ

=
[
V1 . . . Viξ−+1 uξ Viξ+ . . . Vm

]>
,

σ− = min ρ ≥ 0 s.t. Qξ(ρ) = uξρ+ ω̌ξ

σ+ = max ρ ≥ 0 s.t. Qξ(ρ) = uξρ+ ω̌ξ

iξ− =
{

max i s.t. σi ∈ ΣQξ , σi < σ−, σ1 ≥ σ−,
0, σ1 < σ−,

iξ+ = min i s.t. σi ∈ ΣQξ , σi > σ+,

where the first block of ΣQ′
ξ
is empty if iξ− = 0. Otherwise, if ωmax

ξ < ω̌ξ −Bω, the
current flux function Qξ admits a lower overtaking flow than the measured one, so
we proceed to update it with

VQ′
ξ
=
[
V1 . . . Viω

ξ
−1 V ′− V ′+ Viω

ξ
+2 . . . Vm

]>
,
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Algorithm 3: Updating the wavefront speed bounds W using traffic density
and flow measurements
Input: ρ̌ξ, q̌ξ, v̌ξ, uξ, ξ ∈ Ξ, Q, W
Output: W ′
for ξ ∈ Ξ do

if |ρ̌′ξ − ρ̌ξ| > Bρ then

if uξ > v̌ξ, uξ > v̌′ξ, Σ̃ρ̌ξ ρ̌′ξ
Q 6=

[
ρ̌ξ ρ̌

′
ξ

]>
then

if ρ̌ξ > ρ̌′ξ then
if w̌ξ > Ṽ

ρ̌ξ ρ̌′ξ
Q,1 then

Add w̌ξ to w̌ “W− ;
else if w̌ξ < Ṽ

ρ̌ξ ρ̌′ξ
Q,1 then

Add w̌ξ to w̌ “W+ ;
end

else
if w̌ξ > Ṽ

ρ̌ξ ρ̌′ξ
Q,1 then

Add w̌ξ to w̌W̆− ;
else if w̌ξ < Ṽ

ρ̌ξ ρ̌′ξ
Q,1 then

Add w̌ξ to w̌W̆+ ;
end

end
Recalculate all W for which w̌W̃± 6= ∅ so that W̃ ′± = avgw̌W̃± ;

end
end

end

V ′− =
ω̌ξ+uξσiω

ξ
−Qξ(σiω

ξ
−1)

σiω
ξ
− σiω

ξ
−1

, V ′+ =
Qξ(σiω

ξ
+1)−ω̌ξ−uξσiω

ξ

σiω
ξ
+1 − σiω

ξ

,

where if iωξ = 1, we take σiω
ξ
−1 = 0, and the first block of VQ′

ξ
is empty.

Learning the wavefront speed bounds W

Finally, we may also use the traffic density and speed measurements of the CAVs
to learn the wavefront speed bounds W . We may detect the influence of wavefront
speed bounds upon a change in the measurements of some CAV ξ as it enters a zone
of different traffic density, when |ρ̌′ξ − ρ̌ξ| > Bρ, where ρ̌ξ is the old traffic density
measurement, and ρ̌′ξ the new one. If the CAV ξ is travelling with the traffic flow
without affecting it (uξ > v̌ξ and uξ > v̌′ξ), then as discussed in Section 4.5.1,
the solution to the Riemann problem between these two traffic densities should
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include zones of traffic density Σ̃ρ̌ξ ρ̌′ξ
Q , according to the flux function that describes

the traffic flow Q. Essentially, the transition from ρ̌ξ to ρ̌′ξ should happen along
an upper concave envelope of Q if ρ̌ξ > ρ̌′ξ, or over a lower convex envelope of
Q if ρ̌ξ < ρ̌′ξ. Therefore, if Σ̃ρ̌ξ ρ̌′ξ

Q 6= [ρ̌ξ ρ̌′ξ]>, we can suspect that the reason for
this discrepancy is the limit on wavefront speeds, which we will use to estimate
W =

(
W̆−, W̆+, “W−, “W+

)
, as outlined in Algorithm 3.

We denote the wavefront speed based on these measurements w̌ξ = q̌′ξ−q̌ξ
ρ̌′
ξ
−ρ̌ξ . If

Σ̃ρ̌ξ ρ̌′ξ
Q 6= [ρ̌ξ ρ̌′ξ]>, this wavefront speed offers information about one wavefront speed

bound: W̆± or “W± depending on whether ρ̌ξ < ρ̌′ξ or ρ̌ξ > ρ̌′ξ, respectively, and W̃−

or W̃+ depending on whether w̌ξ > Ṽ
ρ̌ξ ρ̌′ξ

Q,1 or w̌ξ < Ṽ
ρ̌ξ ρ̌′ξ

Q,1, respectively. Finally, we
calculate those wavefront speed bounds W̃±, for which we have at least one such
measurement, w̌W̃± 6= ∅, as the average over the whole set, W̃± = avgw̌W̃± .

8.3.2 Control laws

Four cases of control are considered: control with full access to the information
about both the traffic state and traffic model, using the actual traffic state but
without considering the variation in the traffic model, using the actual traffic model
and reconstructed traffic density, and prediction-based control using the FTTSM.
The control action of CAV ξ is its reference speed, uξ(t) ∈

[
umin, umax]. The only

restriction on the reference speed is in practice the minimum speed uξ(t) ≥ umin,
as the maximum speed of the CAV will be dictated by the speed of the surrounding
traffic. The first three control laws differ only in what information they use, i.e.
whether they use the reconstructed or actual traffic state, and exact or estimated
model, and are discussed in more detail in Section 8.1. Here we briefly present the
simplified approximate control laws, and outline based on which information the
control action is calculated.

Full-information control: When calculating the full-information control at
time t0, we assume that the full traffic state ρ(x, t0), the flux function of the road
Q(ρ), and the stop-and-go wave speed λψ = W̆− are all known. We may simplify
the calculation of uψ∗ξ (t) by approximating qlo

ξ (uψ∗ξ (t0)) ≈ qlo
ξ (umin), and ignoring

the stop-and-go waves that are created in the wake of the preceding CAVs. In
fact, since qlo

ξ (uψ∗ξ (t0)) ≤ qlo
ξ (umin) if uψ∗ξ (t0) ≥ umin, the traffic flow overtaking

moving bottleneck ξ is overestimated if the aprroximate qlo
ξ is used, leading to

more robust control. Denoting the traffic density of the traffic flow overtaking the
moving bottleneck moving at minimum speed as ρd,max

ξ , Q(ρd,max
ξ ) = qlo

ξ (umin),
the traffic density of the discharging traffic flow from the stop-and-go wave as ρd

ψ,
qdis
ψ = Q(ρd

ψ), and the average traffic density from xξ(t0) to zψ(t0) as ρzψxξ (t0), we
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can express the reference speed uψ∗ξ (t) in closed form,

uψ∗ξ (t) =
qlo
ξ (umin)− qdis

ψ ) + “W−

(
ρdψ − ρ

zψ
xξ (t0)

)
ρd,max
ξ − ρzψxξ (t0)

. (8.4)

The reference speed is thus given by (8.1), where the set Ψξ(t0) contains the stop-
and-go waves downstream of xξ(t0) that the preceding CAVs are not able to dissi-
pate.

Estimated-model control: In the full-information case, we assume that
both the model and the current traffic density profile are fully known. In reality,
the parameters of the traffic model might change due to varying weather or other
conditions, and the traffic density profile will have to be reconstructed using avail-
able measurements. If the true model is not known, we may calculate the reference
speeds using its best available estimate,

uψ∗ξ (t) =
q̂lo
ξ (umin)− q̂dis

ψ ) + “̂W−

(
ρ̂dψ − ρ

zψ
xξ (t0)

)
ρ̂d,max
ξ − ρzψxξ (t0)

. (8.5)

Note that the average density ρzψxξ (t0) is assumed to be known exactly. If the actual
model changes, or if it deviates from the estimated one, the calculated control
action may be overly conservative, leading to superfluous traffic disruption, or overly
optimistic, leading to failure to dissipate stop-and-go waves.

Reconstructed-state control: Conversely, if the traffic density profile is not
known, we may use the estimated average density ρ̂zψxξ (t0) instead,

uψ∗ξ (t) =
qlo
ξ (umin)− q̂dis

ψ ) + “W−

(
ρ̂dψ − ρ̂

zψ
xξ (t0)

)
ρd,max
ξ − ρ̂zψxξ (t0)

. (8.6)

The stop-and-go wave discharging density ρ̂dψ and flow q̂dis
ψ depend on the maximum

traffic density of the stop-and-go wave, and will therefore have to be estimated
based on the reconstructed traffic profile ρ̂(x, t0). We may use the simple traffic
state reconstruction algorithm described in Section 8.2.1. In this case, the full set
of stop-and-go waves Ψ(t0) may not be known, since some of the stop-and-go waves
are possibly not detected, and we use Ψ̂(t0) based on ρ̂(x, t0) instead.

FTTSM-based control: Finally, we employ the FTTSM to calculate control
actions for all CAVs. Employing the traffic state reconstruction and model learning
algorithms described in Section 8.3, we acquire the current estimated FTTSM state
X̂ (t0), which includes both the traffic density and model information. The control
actions uξ(t0) will be based on the predicted state X̂ (t0+θ) with θ ranging from 0 to
the prediction horizon Θ, taken long enough that all CAVs are guaranteed to either
dissipate or run into stop-and-go waves.During the process of finding X̂ (t+ θ), all
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traffic densities are unforced F̂ξ = ∅, and the boundary speeds of all CAVs are set
to

λ̂±ξ =
{
umin, v̂ξ+ > umin ∧ (∃i ≥ iξ+)ρ̂i ≥ σ̂∗

v̂ξ+, otherwise,

where vξ+ is given by (4.49), iξ+ by (4.50), and σ̂∗ is the minimum traffic density
considered as a stop-and-go wave,

σ̂∗ =

σ
max
Q̂

, (@i)V̂i < “̂W−,

max
{
σmax
Q̂

, σ
“W−
Q̂

}
, (∃i)V̂i < “̂W−,

σ
“W−
Q̂

= σ̂i, i = max j s.t. V̂k > “̂W−, k = 1, . . . , j.

Essentially, the CAVs are driven at minimum speed, applying maximum control
action, until they run into congestion or there is no congestion downstream of their
location.

Next, for each CAV ξ, we identify the position and prediction time (x̂∗ξ , τ̂∗ξ ) at
which the final zone i where ρ̂i > σ̂∗ is dissipated, i.e. the congestion is dissipated
and the CAV no longer needs to apply control action. The prediction time is given
in relative coordinates, compared to the initial time t at which the prediction is
calculated. This congestion will include the stop-and-go waves initially present in
the system, as well as potential congestion created in the wake of CAVs downstream
of the considered one. If the CAV ξ fails to dissipate all congestion, and instead
enters congested traffic, v̂ξ+ < umin, we instead set (x̂∗ξ , τ̂∗ξ ) to the point at which this
happened, and if there was no congestion downstream of CAV ξ at the beginning
of the prediction, we set (x̂∗ξ , τ̂∗ξ ) = (xξ(t), 0) Then, the reference speed uξ(t) is set
to

uξ(t) =

u
max, τ̂∗ξ = 0,

max
{
umin,min

{
umax,

x̂∗ξ+x̂~ξ−x̂~ξ(t)+u
minτ̂∗~ξ

τ̂∗
ξ

}}
, τ̂∗ξ > 0,

(8.7)

where ~ξ denotes the first CAV downstream of CAV ξ. The control action is therefore
calculated by first predicting the evolution of the system under maximum control
effort, and then reducing the control effort where possible, based on the prediction.

8.3.3 Simulation setup

Apart from the FTTSM, which is used as the model for traffic state reconstruction
and control calculation for the FTTSM-based control, we also use a variant of the
CTM with process noise as the simulation model to test the proposed traffic state
reconstruction, model learning and control algorithms. The model used consists of
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(3.16), (3.17), with the demand and supply functions based on(3.20),

Di(tT ) = ρ
i
(tT ) min

{
Ui(tT ),max

{
0,V

(
ρ
i
(tT )

)
+ δi(tT )

}}
,

Si(tT ) = ρi(tT ) min
{

max
{

0,V
(
ρi(tT )

)
+ δi−1(tT )

}}
,

where ρ
i
(tT ) = min{ρi(tT ), σmax

Q }, ρi(tT ) = max{ρi(tT ), σmax
Q }, and δi(tT ) is an

added normally distributed noise term δi(t) ∼ N (0,∆) that models the stochastic
nature of human driving.

The flux function used is (3.11), yielding average speed of each cell is given by
the speed-density relation

V(ρ) = V max
Q exp

(
− 1
m

(
ρ

σmax
Q

)m)
. (8.8)

The inflow to the first cell q0(tT ) is given as an external input, and can be delayed if
the conditions in cell 1 are such that they can not admit such flow, and the outflow
from the final cell qN (tT ) will be limited by extraneously setting SN+1(tT ) in order
to generate stop-and-go waves entering the road segment from downstream. We
use reference maximum speed Ui(tT ), to model the influence of moving bottlenecks
with (4.27) and stop-and-go waves with (4.31), as described in Section 4.3.3 and
4.3.4.

The simulations were executed on a 10 km stretch of a two-lane road, which
consists of N = 100 cells of length L = 100 m each. The simulation length is
taken to be tend = 3 h, and the simulation time step is T = 3 s. The inflow to
the road segment randomly varies in time, changing every minute, and is uniformly
distributed q0(t) ∼ U(1450, 4350) veh/h. The CAVs arrive with random time gaps
between them, gξ = max{γξ, 30} s, γξ ∼ Exp( 1

30 ). We create the stop-and-go waves,
arriving from downstream, by limiting the maximum outflow at the downstream
end of the road segment to U(200, 400) veh/h for 30 s, causing congestion to build
up. Once this restriction is removed, the congestion will start dissipating, with
capacity drop, propagating upstream as a stop-and-go wave. The time gap between
two generated stop-and-go waves is uniformly distributed gψ ∼ U(360, 1080) s (6
to 18 minutes).

In order to demonstrate how control adapts to time-varying traffic model, e.g.
due to a change in weather conditions when it starts raining [194], we change the
flux function at time t = 0.5 h. Both flux function are given by Q(ρ) = ρV(ρ),
(8.8), with parameters m = 2.34, V max

Q = 120 km/h, σmax
Q = 51.1 veh/km, yielding

capacity Qmax = 4000 veh/h, for t ≤ 0.5 h , and m = 3.4, V max
Q = 75 km/h,

σmax
Q = 60.4 veh/km, yielding capacity Qmax = 3375 veh/h, for t > 0.5 h. The

variance of the additive process noise of the velocity is in both cases ∆ = 16 km2/h2.
The FTTSM state reconstruction and model learning algorithms described in

this section used traffic flow bound Bq = 1000, flux function breakpoint bound
Bσ = 20, bound on the maximum number of used data points Bň = 20, overtaking
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Figure 8.4: Box plots of delay ratios with different control laws. FI: Full-information (8.4),
EM: Estimated-model (8.5), RS: Reconstructed-state (8.6), FT: FTTSM-based (8.7),
NC: No control.

Delay ratio [%] FI EM RS FT NC
Mean 2.92 3.44 9.44 8.02 15.69
Median 2.06 3.02 7.45 5.20 14.73

Table 8.3: Achieved mean and median delay ratios of the different control laws.

flow bound Bω = 500, and traffic density bound Bρ = 30. Furthermore, all of the
measurements were perturbed with multiplicative noise ε ∼ N (1, 0.0025).

8.3.4 Simulation results

Finally, we executed 50 simulation runs, comparing the performance of the four
described control laws. For each simulation run, six simulations with the same
realization of all random variables were executed, one using each of the control laws,
one with no control, and a benchmark simulation with no stop-and-go waves. The
performance metric used was the delay ratio, defined as the percentage increase
of Total Time Spent (TTS) compared to the TTS of the benchmark simulation,
DR = TTScase

i −TTSmin

TTSmin 100%. The results are shown in Figure 8.4 and Table 8.3.
We can see that all control cases achieve significant reduction of delay compared

to the uncontrolled case. In particular, control laws that use full information about
the traffic density profile (FI and EM) perform significantly better than those based
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Figure 8.5: Detail from the simulations, no control

Figure 8.6: Detail from the simulations, reconstructed-state control

on state reconstruction (RS and FT). This is not surprising, since in this case, the
control law is able to react as soon as a stop-and-go wave appears on the road,
instead of waiting for one CAV to detect it first. In this case, not knowing the exact
model only deteriorated the control performance slightly (in case of EM compared
to FI), since the change in model parameters was not severe.
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Figure 8.7: Detail from the simulations, full-information control

Figure 8.8: Detail from the simulations, FTTSM-based control

Reconstructed-state control performs worse than the other control laws, prob-
ably due to the fact that it does not correctly capture the build-up of congestion
in the wake of CAVs. Conversely, since the traffic state reconstruction is done
model-based in case of the FTTSM-based control, this control law achieves bet-
ter performance, in spite of using less information. Overall, in spite of being fully
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Figure 8.9: Overview of the changes to Q̂ through time in one simulation run before
t = 0.5. Some updates when Q is changed are shown. Density-flow measurement
pairs for t < 0.5 are shown as grey dots and the current Q is shown in dashed black.
The estimation of Q̂ is done based on measurements

(
ρ̌Q, q̌Q

)
, shown as ×-es, and

newly added ×-es are shown in the same colour as the current Q̂.

data-driven, this control law is able to dissipate stop-and-go waves and significantly
reduce the overall Total Time Spent.

In Figure 8.8 we show a detail from one of the simulations. In case no control is
applied, stop-and-go waves will grow and propagate upstream. In this simulation
run, the reconstructed-state control failed to dissipate the stop-and-go wave, and
the other control laws were successful, albeit with the FTTSM-based control causing
some more congestion further upstream.

The background traffic flux function Q is the most impactful component of the
overall traffic prediction model, so the process of estimating it using Algorithm 1
is shown in Figures 8.9 and 8.10. It can be seen that the first estimates of Q have
a single breakpoint and are triangular, because all available measurements are still
tightly clustered at that time. Later, as measurements of congested traffic become
available, more breakpoints are added and the flux function takes a somewhat more
complex shape. Once the flux function is changed at t = 0.5, the algorithm grad-
ually adapts the estimate to the new flux functions and either offsets or eliminates
the measurements that are the worst outliers. Even though the traffic speed is
modelled with significant process noise, and the measurements used are also noisy,
the learning algorithms are able to quickly estimate the flux function using a low
number of memorized measurements. Moreover, even though the piecewise-linear
flux function deviates from the form of the underlying actual flux function, this
deviation does not reflect particularly negatively on the control performance, while
adopting such a simple form of the flux function greatly increases the numerical
efficiency of the prediction model.
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(a) At t = 0.50167

(b) At t = 0.71333

(c) At t = 1.4925

Figure 8.10: Overview of the changes to Q̂ through time in one simulation run after
t = 0.5. In 8.10a, 8.10b, and 8.10c, Q̂ is shown at three different times t > 0.5.
Here, only the measurements from t = 0.5 to the time when Q̂ was estimated are
shown. The current Q is shown in dashed black and the old Q in dashed red. Blue
×-es are the measurements used to estimate Q̂, and red ×-es are the “forgotten”
measurements, that were used at some previous time, but have since been removed
from

(
ρ̌Q, q̌Q

)
.
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8.4 Summary

In this chapter we explored the effect of using reconstructed traffic state and learned
traffic model for multiple stop-and-go waves dissipation control. Both the state
reconstruction and actuation are executed using connected automated vehicles,
and the only other information that we assume is known is the average traffic
flow of the road. As the number and density of connected vehicles increases, the
reconstruction-based control approaches its full-information counterpart. A simple
traffic state reconstruction method was proposed, along with an empirical probe
CAV activation scheme. Then, an improved traffic state reconstruction method
using the FTTSM is presented, along with algorithms for learning different com-
ponents of the traffic model from data. The proposed control laws were tested in
simulations and shown to be able to increase the throughput of the road by dissi-
pating stop-and-go waves entering from its downstream end, leading to a reduction
in delay that the vehicles experience.
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Chapter 9

Summary and future research

Finally, in this chapter we conclude the thesis. In Section 9.1 we summarize
and discuss the presented results, and in Section 9.2 outline some possible

extensions and future work on the considered topic.

9.1 Summary

The central question of this thesis was how traffic control can be implemented
using exclusively a small portion of connected vehicles, whose trajectories and local
measurements we can use, and over which we have direct control. Focusing on the
Lagrangian framework of traffic control allows us to exploit the largely untapped
potential that the emerging technologies of Connected and Autonomous Vehicles
can bring to the field of Intelligent Transportation Systems in the near future. The
mobile nature of sensors and actuators is especially advantageous in case the road
of interest is not instrumented with the required traffic control equipment, as well
as if the traffic phenomenon is mobile itself.

In order to design and implement the Lagrangian traffic control laws, we need
an appropriate traffic model. This model needs to be able to capture the mutual
influence that the directly controlled vehicle and the rest of the traffic have on
each other, and we model this interaction by considering the connected vehicles as
controlled moving bottlenecks. Furthermore, other traffic phenomena that are rele-
vant to the considered problems, such as stop-and-go waves and capacity drop, also
need to be properly modelled. In this thesis we considered four related modelling
frameworks that can represent all of the relevant traffic phenomena, and we studied
three control problems: platoon merging coordination, congestion dissipation, and
traffic state reconstruction.

First, we introduced moving bottlenecks to the cell transmission model by
exploiting its correspondence with the Lighthill-Whitham-Richards model, where
moving bottlenecks were modelled by introducing constraints on capacity, or a mov-
ing zone with a reduced flux function. Second, in the multi-class cell transmission
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model, we used the reference speed of each class in different cells to force the den-
sity profile to reflect the influence of platoons acting as moving bottlenecks and
stop-and-go waves. In both these cell-based traffic models, it was shown that ca-
pacity drop at a stationary bottleneck can be introduced in a straightforward way
by modifying the demand or supply functions. Next, the tandem queueing model
includes capacity drop in its basic form. Next, we extended the tandem queueing
model to include moving bottlenecks and stop-and-go waves, by allowing the delay
between two queues to vary in time, and allowing the structure of the model to
change. Finally, we proposed the front tracking transition system model, in which
moving bottlenecks are conveniently modelled in the same way as with the Lighthill-
Whitham-Richards model. We modelled stop-and-go waves by introducing a new
type of weak solution, with constraints on the rarefaction wave front speed. We
have presented a variety of macroscopic traffic models, and their advantages and
disadvantages.

The first traffic control problem we studied was coordination of a pair of trucks
merging into a platoon on a highway. In order to improve the reliability and fuel
economy of the platoon merging process, all external influences need to be consid-
ered, including the influence of the road grade and the surrounding traffic. We used
experimental data to identify the influence of road grade on both vehicles, allowing
us to better predict when and where they will merge into a platoon. By modelling
the trucks as moving bottlenecks, we were able to predict how much the follower
vehicle will be delayed by the congestion left in the wake of the leader vehicle, and
formulate a control law for platoon merging that minimizes the fuel consumption.
Our approach has the additional benefit of being able to indicate when attempt-
ing to form a platoon would not yield fuel savings, and thus prevent unnecessary
deviations from vehicles’ original plans.

The congestion dissipation problem was studied in three settings: decongestion
of a single stationary bottleneck, dissipation of a single stop-and-go wave using a
single controlled moving bottleneck, and dissipation of multiple stop-and-go waves
using multiple controlled moving bottlenecks. We used platoons of vehicles to
decongest stationary bottlenecks and keep them in free flow, by controlling the
speed of the platoons, and how many lanes they occupy. This way, we were able
to counteract the generally negative effect that arrivals of platoons have on the
traffic situation around bottlenecks. By shaping the traffic flow that reaches the
bottleneck, we were able to dissipate its queue and keep it in free flow, eliminating
a large portion of the additional delay that would be incurred due to capacity
drop. Connected vehicles acting as both sensors and actuators were shown to be
a particularly good match for dissipating stop-and-go waves, since they can be
employed wherever a stop-and-go wave arises. In the simplest case, if there are
only a few lanes of traffic, a single controlled vehicle can be used to dissipate it. By
slowing down the controlled vehicle and using it as a moving bottleneck, we were
able to restrict the inflow of the traffic to the stop-and-go wave until it dissipates.
We used appropriate traffic models to predict the evolution of the stop-and-go wave
and calculate the optimal moving bottlneck speed, minimizing the total time spent
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on the road for all vehicles. This approach was then extended to dissipation of
multiple stop-and-go waves, using multiple controlled moving bottlenecks. In this
case, each moving bottleneck attempts to dissipate both the stop-and-go waves that
are currently present downstream of it, and the stop-and-go waves that will arise
from the congestion left in the wake of other moving bottlenecks, further improving
the traffic situation.

Finally, we considered the traffic state reconstruction problem in tandem with
multiple stop-and-go wave dissipation, by dropping the assumption that the traffic
state was known, and instead using an estimate based on the local measurements
from the connected vehicles. The connected vehicles were used both as sensors, to
detect the congestion and stop-and-go waves, and as actuators, to restrict the traffic
flow and dissipate the stop-and-go waves. We proposed some simple traffic state
reconstruction algorithms, together with algorithms for learning components of the
traffic dynamics, such as the flux function and the wave speed bound which gov-
erns the propagation speed of the stop-and-go waves. In order to demonstrate the
effectiveness of the proposed traffic state reconstruction and control under realistic
settings, we included both measurement and process noise in the simulations.

9.2 Future research directions

There is a plethora of ways the work presented in this thesis can be continued
and expanded. First and foremost, a more thorough validation of the proposed
models and control laws is needed. We have conducted preliminary validation of
the multi-class cell transmission model and tandem queueing model with moving
bottlenecks upstream of a stationary bottleneck, using microscopic traffic simula-
tions done in SUMO to represent real traffic. The model extensions were mostly
derived based on theoretical properties of the base models, with few additional as-
sumptions. However, a thorough validation of all aspects of the models and the
control laws needs to be conducted using suitable microscopic traffic simulations.
For example, the dynamics of the mechanism of mutual influence between the di-
rectly controlled vehicles and the rest of the traffic should be examined in depth.
We employed different macroscopic models for simulation, and for prediction and
control implementation. However, using a microscopic traffic simulator, and ap-
plying traffic control calculated using the macroscopic traffic models will serve to
both validate, and reinforce the general applicability of all proposed control laws.
Furthermore, additional implementation issues that stem from a microscopic simu-
lation framework will surely need to be dealt with, and other phenomena that are
not apparent from the macroscopic models might need to be explained.

Although some of the discussed models can be readily extended to more com-
plex traffic network configurations consisting of multiple road links, these general
network structures were not explicitly considered in any of the considered control
problems. The focus of this thesis was mostly on phenomena that happen on a
section of the road, possibly upstream of a stationary bottleneck. However, these
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sections can be used as building blocks for more general traffic networks, and sim-
ilar control approaches can be generalized to this case. Scalability is an issue that
is bound to arise when transferring these control laws to more general settings, and
it will have to be addressed, potentially by employing approximate and multi-scale
adaptations of the control laws. Furthermore, while the goal of this thesis was
to present the Lagrangian traffic control paradigm, focusing only on the sensing
and actuation done by connected vehicles, it is indisputable that best performance
would be achieved by a combination of Lagrangian and Eulerian approaches. Mov-
ing bottleneck control, which was the centrepiece of this thesis, should be combined
with other available types of traffic control, such as variable speed limits, ramp
metering and route guidance. The local traffic measurements from the probe vehi-
cles should be combined with the available traffic measurements coming from fixed
sensors, such as inductive loops.

There are also many theoretical aspects of the considered control problems that
should be further analysed. Analysis of the closed-loop systems, particularly focus-
ing on stability and performance bounds of the proposed control laws, is needed.
Indications about the required level of availability of connected vehicles to be used
for control should also be derived. Many aspects of the control, such as pro-active
control in case of stochastic traffic breakdowns, or active control of probe vehi-
cles in order to improve the traffic state reconstruction quality, have not yet been
fully explored. Furthermore, treating the traffic from fluid dynamics perspective,
described by deterministic PDE models, disregards the inherent stochasticity of
human driving behaviour. Therefore, robustness of any proposed control law needs
to be examined and ensured, in order to ensure they would remain effective in
real-world applications.

Last but not least, the traffic control approaches proposed here should also be
implemented and tested in real-world experiments. Indeed most of the required
additional equipment on the connected vehicles could to some degree be emulated
by a simple mobile app that would communicate reference speeds to the drivers.
The drivers could then be compensated, monetarily or with services, for following
the assigned reference speeds, as well as for sharing their trajectories and potential
local traffic measurements. The Lagrangian traffic control paradigm has so far been
underutilized, and has the potential to greatly broaden the extent of control the
authorities have over the traffic, leading to more efficient utilization of the available
infrastructure, and a better future with less traffic congestion.
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