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Abstract

Traffic congestion is a constantly growing problem, with a wide array
of negative effects on the society, from wasted time and productivity to ele-
vated air pollution and increased number of accidents. Classical traffic control
methods have long been successfully used to alleviate congestion, improving
the traffic situation of many cities and highways. However, traffic control
is not universally employed, because of the necessity of installing additional
equipment and instating new legislation.

The introduction of connected, autonomous vehicles offers new opportuni-
ties for sensing and controlling the traffic. The data that most of the vehicles
nowadays provide are already widely used to measure the traffic conditions.
It is natural to consider how vehicles could also be used as actuators, driv-
ing them in a specific way so that they affect the traffic positively. However,
many of the currently considered strategies for congestion reduction using au-
tonomous vehicles rely on having a high penetration rate, which is not likely
to be the case in the near future. This raises the question: How can we in-
fluence the overall traffic by using only a small portion of vehicles that we
have direct control over? There are two problems in particular that this thesis
considers, congestion wave dissipation and avoidance, and platoon catch-up
coordination.

First, we study how to dissipate congestion waves by use of a directly
controlled vehicle acting as a moving bottleneck. Traffic data can help predict
disturbances and constraints that the vehicle will face, and the individual
vehicles can be actuated to improve the overall traffic situation. We extend
the classical cell transmission model to include the influence of a moving
bottleneck, and then use this model to devise a control strategy for an actuator
vehicle. By employing such control, we are able to homogenize the traffic
without significantly reducing throughput. Under realistic conditions, it is
shown that the average total variation of traffic density can be reduced over
5%, while the total travel time increases only 1%.

Second, we study how to predict and control vehicles catching up in order
to form a platoon, while driving in highway traffic. The influences of road
grade and background traffic are examined and vehicles attempting to form
a platoon are modelled as moving bottlenecks. Using this model, we are able
to predict how much the vehicles might be delayed because of congestion and
adjust the plan accordingly, calculating the optimal platoon catch-up speeds
for the vehicles by minimizing their energy consumption. This leads to a re-
duction of energy cost of up to 0.5% compared to the case when we ignore the
traffic conditions. More importantly, we are able to predict when attempting
to form a platoon will result in no energy savings, with approximately 80%
accuracy.
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Sammanfattning

Trafikstockning är ett ständigt växande problem, med ett brett utbud
av negativa effekter på samhället, från bortkastad tid och produktivitet till
ökade mängd luftföroreningar och antal olyckor. Klassiska metoder för trafik
kontroll har länge använts framgångsrikt för att lindra detta problem, med
förbättrad trafiksituation för många städer och motorvägar. Trafikkontrollen
är emellertid inte universellt tillämpad eftersom den är beroende av ytterligare
utrustning och ny lagstiftning som behöver installeras och införas.

Införandet av uppkopplade, autonoma fordon medför nya möjligheter att
mäta och kontrollera trafiken. Data som de flesta fordon tillhandahåller redan
idag används allmänt för att mäta trafikförhållandena. Det är naturligt att
överväga hur fordon också skulle kunna användas som ställdon, genom att
driva dem på ett visst sätt så att de påverkar trafiken positivt. Men många
av dagens strategierna för trängselnedsättning med hjälp av autonoma fordon
är beroende av att de tillämpas av en stor del av fordonen, vilket sannolikt
inte kommer att bli fallet inom en snar framtid. Det väcker frågan: Hur kan
vi påverka den totala trafiksituationen genom att kontrollera en liten del av
fordonen? Det finns två problem specifika problem som den här avhandlingen
tar hänsyn till, trängselvågsavledning och –undvikande samt koordinering av
fordonståg av lastbilar.

I det första problemet studerar vi hur vi kan skingra trängselvågor med
hjälp av ett direktstyrt fordon som fungerar som en rörlig flaskhals. Trafik-
data kan hjälpa till att förutsäga störningar och begränsningar som fordonet
kommer att stöta på, och de enskilda fordonen kan styras för att förbättra
den totala trafiksituation. Vi utvidgar den klassiska cellöverföringsmodellen
för att inkludera påverkan av en rörlig flaskhals och använder sedan den-
na modell för att utforma en kontrollstrategi för ett styrbart fordon. Genom
att använda sådan styrning kan vi homogenisera trafiken utan att avsevärt
minska genomströmningen. Under realistiska förhållanden visar vi att den
genomsnittliga totala variationen i trafiktäthet kan minskas med över 5%,
medan den totala körtiden ökar med endast 1%.

I det andra problemet studerar vi hur vi kan förutsäga och styra fordonens
hastighetsprofiler vid formering av fordonståg under körning i motorvägstra-
fik. Påverkan av väglutning och motorvägstrafik undersöks, och fordon som
försöker bilda en fordonståg modelleras som rörliga flaskhalsar. Med denna
modell kan vi förutsäga förseningar på grund av trängsel och justera planen
i enlighet med dessa, samt beräkna de optimala hastigheterna för fordonen
genom att minimera energiförbrukningen. Detta leder till en minskning av
energikostnaden på upp till 0,5% i jämförelse med fallet när vi ignorerar tra-
fikförhållandena. Ännu viktigare är att vi kan vi förutsäga när försök att bilda
ett fordonståg kommer att resultera i utebliven energibesparing, med ungefär
80% noggrannhet.
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Chapter 1

Introduction

Introducing new communication and control technologies into vehicles and trans-
portation infrastructure offers new possibilities to solve the growing traffic con-

gestion problem. Even a small portion of connected collaborating autonomous
vehicles on the roads can enable the traffic control centres to directly influence the
traffic situation, without the need for building additional road infrastructure, or
installing traffic control equipment.

This paradigm offers us a way to utilize the resources that will become available
over the course of the slow, partial or complete, transition from human-driven to
self-driving vehicles. It is important to understand and model the mutual influence
the individual vehicles and the overall traffic have on each other. This under-
standing would enable us to better predict how some vehicles of interest, such as
heavy-duty vehicles and platoons, will actually be able to move in traffic, as well
as to develop control strategies that exploit this interdependence. This is the focus
of this thesis.

The outline of this chapter is as follows. In Section 1.1 we motivate why using
individual vehicles to control the traffic is a promising approach. In Section 1.2 we
formulate the problems this work addresses. Lastly, Section 1.3 gives an overview
of this thesis, its contents and contributions.

1.1 Motivation

Traffic congestion has been a growing problem for at least as long as there have
been cars, and with ever accelerating urbanization, its gravity can only be expected
to increase in the future [1]. The negative effect that it has is not limited to
wasting road user’s time in traffic jams, leading to decreased reliability, efficiency
and quality of life. Traffic congestion also increases fuel consumption [2], and as
a direct consequence, CO2 emissions, thus contributing to air and noise pollution.
Additionally, it also poses a safety hazard, since it both stresses and frustrates

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of connected vehicles. Vehicles communicate with each
other (V2V) and with the infrastructure (V2I).

the drivers and increases the risk for collisions due to stop-and-go traffic and low
headways.

The advent of autonomous vehicles promises to change the way we think of traffic
forever. This technology has the potential to greatly impact virtually all facets
of traffic [3], including significantly increasing traffic safety, reducing congestion
and fuel consumption, and increasing the efficiency of freight transport, to name
but a few. However, many of these benefits hinge on having a high autonomous
vehicles market penetration rate. For example, the reservation-based intersection
control mechanism [4] outperforms conventional traffic light control with average
delays that are two to three hundred times lower—but only in case all vehicles
are autonomous. Including even a small number of human drivers would lead to a
sharp performance deterioration, and traditional traffic lights become a preferred
strategy if the portion of human drivers is significant.

A number of major car manufactures promise to have fully autonomous cars in
highway driving scenarios in the early 2020s [5]. Alongside them, we can expect ve-
hicles communicating with other vehicles and with the infrastructure (See Fig. 1.1)
[6]. Even if these predictions materialize, it will take decades for the market pene-
tration rate to become high enough for some of the benefits to become significant
[7]. For example, Shladover et al. [8] estimate that we can achieve 90% higher lanes’
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Figure 1.2: A phantom traffic jam in effect. Vehicles at a standstill are circled in
red.

capacity if we have a 80% market penetration rate of cooperative adaptive cruise
control (CACC), but with low market penetration rates around 10%, the increase
in capacity drops to only 1%. Therefore, in order to successfully deal with the tran-
sition period, we have to answer the following question: “How can we influence the
overall traffic by using only a small portion of vehicles that we have direct control
over?” This notion of regulating the macroscopic traffic conditions by acting at a
microscopic level is the centrepiece of emerging traffic control strategies.

If the traffic volume exceeds the road capacity, there is little that can be done
to reduce the congestion other than rerouting some of the traffic to other roads
[9]. However, if the traffic density is close to the critical density, it is possible for
the actions of individual drivers to cause traffic jams. For example, an aggressive
lane change can force the driver in front of which the lane changing vehicle cut
in to brake. This breaking in turn forces the driver behind to break harder, and
the disturbance propagates upstream, amplified until the point some car is forced
to come to a full stop, and a so-called phantom traffic jam, shown in Fig. 1.2, is
formed.
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Figure 1.3: Heavy-duty vehicles in a platoon. Image courtesy of Scania.

Individual vehicles can, under some circumstances, also help prevent or dissi-
pate congestion waves. The notion of “jam-busting” or “jam-absorbing” driving
techniques has been discussed, not only in research [10, 11], but also in media [12].
These techniques offer guidelines to the drivers, for example to leave a large gap in
front of them and drive at the average speed of the surrounding traffic. By doing
this, the driver is less likely to be forced to break aggressively if another car cuts
in front of them, while also leaving enough space for cars to change lanes and move
towards the exit lane or merge into the mainstream from merging lanes. Although
this strategy focuses on vehicle interaction at a microscopic level, we may think
of extending this approach to a higher layer of control. A similar idea, but in the
macroscopic traffic model with moving bottlenecks, will be explored in Chapter 4.

Automated heavy-duty vehicle platooning, shown in Fig. 1.3, is expected to
enter the traffic at an accelerated pace [13]. Since these vehicles are typically
moving slower than the rest of the traffic, they naturally act as moving bottlenecks.
In the future, we can expect fleet management systems to employ some centralized
remote control over vehicles, using vehicle-to-infrastructure (V2I) communication to
enable advanced route planning [14]. Since in addition, these vehicles would send
their status to the fleet management system and receive reference speed profiles
to follow, this makes them an ideal candidate for in-flow traffic actuators. It is
therefore important to understand how controlling these vehicles can affect the
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Figure 1.4: Congestion wave dissipation problem. The road can be split into six
zones: (1) unaffected oncoming vehicles, (2) congestion upstream of the moving
bottleneck, (3) moving bottleneck zone, (4) “starvation” zone downstream of the
moving bottleneck, (5) traffic jam, and (6) vehicles discharging from the traffic jam

traffic around them, as well as how the traffic conditions could cause these vehicles
to be delayed, thus enabling us to better plan their trajectories. We study how
platoon coordination can take traffic conditions into account in Chapter 5.

1.2 Problem formulation

The focus of this thesis is on modelling and control of heavy-duty vehicles, platoons
and the rest of traffic, as well as the interaction between them. There is a mutual
influence between the individual vehicles and the surrounding traffic that in many
cases cannot be ignored, and needs to be modelled. In particular, we are interested
in modelling the influence that heavy-duty vehicle platoons have on other vehicles.
Since these platoons consist of large vehicles that typically move slower than the
rest of the traffic, they can be modelled as moving bottlenecks. The effect of
moving bottlenecks can be captured either as an extension of the classical cell
transmission model (CTM), or in the framework of multi-class CTM. Traffic data
can help better predict disturbances and constraints that the vehicle of interest
will face, and individual vehicles can be used as actuators, in order to improve the
overall traffic situation. In the rest of this section, we will present these problems
in more detail.

Congestion wave dissipation and avoidance problem
The traffic scenario in which we consider this problem is shown in Figure 1.4. A
vehicle that we control is approaching a congestion wave stretching from xc(t) to
xd(t) at time t. The congestion wave will evolve according to the traffic dynamics,
with vehicles leaving from its downstream end at some rate, and new vehicles arriv-
ing at its upstream end. Effectively, the congestion wave will propagate backwards,
and shrink or grow according to the difference of outflow and inflow.

The position of the vehicle is xb(t), and its speed can be controlled within some
limits, ub(t) ∈ [umin, umax]. If the controlled vehicle is slower than the surrounding
traffic, it acts as a moving bottleneck and limits the traffic flow that can go past it,
thus creating a zone of lower traffic density between it and the traffic jam (“starva-
tion” zone), and also delaying some of the traffic flow that reaches the traffic jam.
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By doing this, a congestion is formed upstream of the moving bottleneck, but if the
vehicle is suitably controlled, this congestion will be less severe and harmful than
the one in the congestion wave.

The congestion wave dissipation and avoidance problem entails calculating the
controlled vehicle speed that is optimal with regard to some cost function. There
are two main directions from which we can approach this problem—from the per-
spective of the controlled vehicle and from the perspective of the overall traffic.

From the perspective of the controlled vehicle, the goal is to avoid the traffic jam
with minimum delay. This objective can be expressed as an optimization problem

minimize
ub∈[umin,umax]

controlled vehicle travel time

subject to controlled vehicle dynamics and constraints
traffic with a moving bottleneck,

where controlled vehicle constraints include the condition that the vehicle never
enters the congestion wave.

The other option is to consider the problem from the perspective of the overall
traffic, in this case optimizing some performance indices. In this case, the optimiza-
tion problem is

minimize
ub∈[umin,umax]

traffic performance index

subject to controlled vehicle dynamics and constraints
traffic with a moving bottleneck.

In Chapter 4, we will focus on the first optimization problem, but also discuss
the second. The two objectives are related and compatible, so we will show that
by applying the speed at which the controlled vehicle avoids the traffic jam with
minimal delay, we also improve the traffic performance.

Platoon catch-up coordination problem
Consider the simplest platoon catch-up problem, illustrated in Figure 1.5. Assume
a potential platooning pair, driving along the common stretch of road, has been
identified by a platooning coordinator at a higher decision layer. These two vehicles

x2(t)
χ2(τ |t) x1(t) χ1(τ |t) χm(t)

Figure 1.5: Platoon catch-up problem.
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adjust their speeds so that the leader (the vehicle farther ahead, i = 1) drives slower
than the follower (i = 2), so that they would meet and merge into a platoon at
some point. Their state at time t is given by their positions xi(t) and their speeds
vi(t), so we have that x1(t) > x2(t) and v1(t) < v2(t).

Considering a discrete time instant t, we define the continuous time τ so that
the next time instants t+ k correspond to τ = kT , where T is the sampling period.
We can then adopt a relative coordinate system so that at time τ = 0, the leading
vehicle’s position is χ1(0|t) = χ0 = x1(t)− x2(t), and the following vehicle’s posi-
tion χ2(0|t) = 0. Time τ denotes the prediction time after the time instant t, i.e.,
xi(t+ k) = χi(kT |t), k = 1, 2, . . .. The dynamics of the vehicles for τ > 0 can thus
be written

χ̇1(τ) = v1(τ),
χ̇2(τ) = v2(τ),

with χ1(0) = χ0, χ2(0) = 0.
The distance between the vehicles is d = χ1 − χ2. We say that the vehicles

merge into a platoon at time τm if the distance between them is lower than some
predefined distance dp for the first time,

τm = min {τ |d(τ) ≤ dp} , (1.1)

and the position of the merge as the position of the follower vehicle at the time of
the merge,

χm = χ2(τm) = χ1(τm)− dp. (1.2)

In the simplest case, vehicles attempt to drive at some constant desired speeds
u1 and u2 until they have successfully merged into a platoon, and then proceed
together driving at speed up.

There are two parts of this problem that we study: predicting when and where
the platoon merging will occur assuming we know how vehicle speed is controlled,
and calculating vehicle catch-up speeds that are optimal with regard to some metric.
Both parts are covered in Chapter 5.

1.3 Thesis outline and contributions

In this section, we provide an overview of the thesis. We describe each chapter’s
content and contribution, and indicate the publications on which they are based.

Chapter 2 Background
In this chapter, we provide the background of the thesis. We discuss how the traffic
congestion problem is addressed in the literature, and how the introduction of
new technologies can change this. Using intelligent vehicles as moving bottleneck
for traffic control is particularly pointed out. Finally, we discuss how platoon
coordination systems can be used to fulfil this role, as well as how insights from
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traffic models with moving bottlenecks can be used to improve platoon operations
planning.

Chapter 3 Traffic and platooning models

In this chapter, we give models of traffic and platoons, both from the literature, as
well as contributed by the author.

We present the traffic models, discuss how they relate to each other, and then
study how trucks and platoons can be introduced to these models as moving bottle-
necks. The models from this chapter are then mostly used in the following chapters,
but some are included for completeness of the overview.

This chapter is based on the author’s modelling work in the following publica-
tions:

• M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC), Maui,
US, 2018

• M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic
in moving bottleneck framework,” in European Control Conference (ECC),
Naples, Italy, 2019, Submitted

• L. Jin, M. Čičič, S. Amin, and K. H. Johansson, “Modeling the impact of vehi-
cle platooning on highway congestion: A fluid queuing approach,” in Proceed-
ings of the 21st International Conference on Hybrid Systems: Computation
and Control (part of CPS Week). ACM, 2018, pp. 237–246

Chapter 4: Congestion wave dissipation and avoidance

In this chapter, we study the potential of using individual automated vehicles to
control the surrounding traffic. We consider the scenario when the automated
vehicle (or platoon) acts as a moving bottleneck for the rest of the traffic. The
control strategy was tested on a simulation where the controlled vehicle helping
clear a congestion wave downstream, while also avoiding running into congestion
itself.

This chapter is based on the control part of the publication:

• M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC), Maui,
US, 2018
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Chapter 5: Platoon catch-up coordination
In this chapter, we address the problem of coordinating the process of vehicles catch-
ing up and forming a platoon while driving on a highway. First we discuss predicting
the vehicle trajectories during the catch-up phase, and using these predicted trajec-
tories to estimate when and where the vehicles will merge into a platoon. Here, we
use the data obtained from an experiment to learn the vehicles’ control law and dy-
namics, and use the information about the road grade to achieve better prediction
of platoon merging position. Second, we calculate optimal catch-up speeds for the
vehicles attempting to form a platoon. We consider the mutual influence between
the controlled vehicles and the traffic, and calculate energy-optimal catch-up speed
pairs.

This chapter is based on the following publications:

• M. Čičić, K.-Y. Liang, and K. H. Johansson, “Platoon merging distance pre-
diction using a neural network vehicle speed model,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3720–3725, 2017

• M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic
in moving bottleneck framework,” in European Control Conference (ECC),
Naples, Italy, 2019, Submitted

Chapter 6: Conclusions and future work
Finally, in this chapter we conclude the thesis, summarizing and discussing the re-
sults, and outline some future and ongoing work, indicating some possible directions
in which this work can be extended.

Contribution by the author
The order of the author names reflects the workload, where the first has the most
important contribution. In all listed publications, all authors were actively involved
in formulating the problems, developing the solutions, evaluating the results, and
writing the paper.





Chapter 2

Background

This chapter provides some background on a number of topics relevant to the
rest of the thesis. Since the thesis deals with control of automated vehicles

and traffic, it falls within the scope of intelligent transportation systems (ITS). We
give a brief overview on ITS, including established traffic control technologies as
well as new technologies. One of the new approaches is microscopic actuation in
macroscopic traffic, which holds the central place of this thesis. Heavy-duty vehicle
platoons are a significant part of the thesis, since their interaction with the rest
of the traffic follows the same mechanism that we use for actuation. Finally, the
different behaviour that automated vehicles have compared to human-driven vehi-
cles necessitates handling these two classes of vehicles separately in traffic models.
These topics are discussed in this chapter.

2.1 Intelligent transportation systems

Conventionally, the problem of traffic congestion would be tackled either by increas-
ing the capacity of the road network, by adding more lanes or new links and routes,
or by reducing the number of vehicles that use the road network, using various
policy approaches such as congestion pricing [19] and other incentive schemes [20].
Mitigation of excess demand typically requires costly investment in transportation
infrastructure, and it may produce undesirable side-effects [21], as well as have a
negative impact on the environment. Building new infrastructure is therefore a
decreasingly attractive solution, and it is desirable to attempt to solve this problem
by other, more cost-efficient, means.

Apart from excess demand, traffic congestion can also be caused by poor traf-
fic management [22], or conflicts between traditional and new traffic management
[23]. Although not universally employed, the traditional methods of traffic con-
trol, such as variable speed limits [24, 25, 26], ramp metering [27, 28, 29] and their
combinations [30, 31, 32] have successfully been used to manage traffic systems,
improve their efficiency and reduce congestions. These control strategies rely on

11
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traffic monitoring infrastructure consisting of inductive loops detectors, cameras
and radars, and communicate or enforce their control actions by use of traffic lights
or variable-message signs. Although the cost of installing additional equipment is
much lower than the cost of expanding or building new roads, it is not negligible.
Furthermore, the fact that the required equipment is fixed at certain locations re-
duces the flexibility of these systems, since they’re only able to control the traffic
flow at certain points.

These relatively old traffic control strategies are a part of the wider and newer
trend of ITS [33, 34]. The new technologies include “intelligent” vehicles with vary-
ing levels of vehicle-to-vehicle and vehicle-to-infrastructure communication capabil-
ities [35], and varying degrees of autonomy, such as those equipped with adaptive
cruise control (ACC) and collaborative ACC (CACC) [36], and platooning systems
[14]. In addition to reducing traffic congestion simply by virtue of being able to
drive more smoothly or with lower headways [8, 17], these vehicles can be used
for sensing traffic by providing floating car data [37, 38], and for controlling traffic
[39, 40].

2.2 Mixed traffic models

All these traffic control strategies require at least some basic traffic model, either
for testing and tuning control parameters through simulations, directly setting the
parameters based on a model, or even directly calculating the control action using
optimization-based control such as model predictive control (MPC). For an overview
on different types of traffic models, the reader is referred to [41, 42, 43], and to [44]
for a historical view.

One class of widely used traffic models are the microscopic traffic models.
In these models, the traffic evolution is described through the longitudinal (car-
following) and lateral (lane-changing) behaviour of each single vehicle. This high
level of complexity allows microscopic traffic models to replicate real-life traffic con-
ditions with high fidelity, at the cost of requiring numerous parameters to be prop-
erly calibrated. Car-following (or follow-the-leader) models describe how drivers
follow the preceding vehicle (leader). Some of the most well-known car-following
models are Gazis-Herman-Rothery model [45], Gipps model [46] and Intelligent
Driver Model [47, 48]. Recently, efforts have been made to model the car-following
behavior by using artificial neural networks [49], specifically aimed at capturing
some emergent phenomena such as stop-and-go waves. There exist many commer-
cial traffic simulators that use microscopic traffic models, e.g. Aimsun [50] and
Vissim [51], as well as open-source traffic simulators such as SUMO [52].

The behaviour of intelligent vehicles, heavy-duty vehicles and platoons can sig-
nificantly differ from the behaviour of human-driven passenger cars, at least in
some specific scenarios, which motivates considering them as different flows. Driv-
ing behaviour heterogeneity in car-following models was studied in [53]. Even if all
vehicles have the same driving behaviour, we might want to classify them based on
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their destination or route, in order to be able to correctly model their behaviour at
off-ramps and diverges. Since microscopic traffic models typically allow for vehicles
to have different parameters, modelling different classes of traffic in them can often
be straightforward. For example, this can be done by setting different reaction
times to human drivers, ACC-enabled and CACC-enabled vehicles in Improved
Intelligent Driver Model, as was done in [40].

Modelling different classes of vehicles in macroscopic traffic models is more chal-
lenging, and there are numerous different approaches to choosing the parameters
that will differ across the classes. In [54] the authors present a generalization of the
Lighthill-Whitham and Richards (LWR) traffic flow model, with different classes
having different free flow speeds, and [55] gives a multi-class gas-kinematic traf-
fic model. The model from [56] distinguishes between different classes of traffic
by allowing for different reaction times for each (with automated vehicles having
a shorter reaction time than human-driven vehicles), leading to congestion wave
speed that depends on the ratio of automated vehicles in traffic. Conversely, in
[57], different classes of traffic are allowed separate fundamental diagrams, and
traffic flow is allocated between them based on how much space they take on the
road. While in [57] the space the vehicle take was a constant, in [58] a model is pro-
posed where the personal car equivalent of heavy vehicles is dynamically depending
on the speeds of the vehicles. The model given in [59] captures the overtaking and
creeping behaviour, where small vehicles are able to advance even though larger
vehicles are not moving. Some other notable macroscopic multi-class traffic models
include [60] and [61].

2.3 Microscopic actuation in macroscopic traffic

A large portion of solutions that rely on autonomous vehicles suffer from the lack
of communication and cooperation from older and less technologically advanced
vehicles. However even if the ratio of intelligent vehicles is small, we can influ-
ence the surrounding traffic by using them as Lagrangian (in-flow) actuators. A
notable example of this is given in [62], where one autonomous vehicle was able to
dissipate and prevent emergence of stop-and-go waves, as predicted in [63]. Stop-
and-go, or congestion waves, are traveling ripples in traffic density on highways, as
demonstrated in circle road experiments [64] and modeled in theory [65]. Other
jam-absorption driving strategies have also been proposed in the literature [10, 11].

While multi-class traffic models are appropriate for modelling the interaction
of different vehicle classes, they are often unable to describe the effect individual
vehicles can have on the rest of the traffic, at least in their basic form. One notable
way a single vehicle can affect the overall traffic is by acting as a moving bottleneck.
If a vehicle moves slower than the surrounding traffic, it affects the traffic flow by
limiting the number of vehicles that can pass it. In order to model this effect, we
may impose some additional local constraints on the traffic flow in the area close to
the slow–moving vehicle. In the literature, moving bottlenecks have predominantly
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been considered in PDE traffic models [66, 67, 68, 69], but also in an experimental
and empirical way [70], or in the framework of kinematic wave theory [71].

There exist a multitude of second- or higher-order models in the literature, like
the Aw-Rascle-Zhang model [72], or METANET [73], which are widely used. How-
ever, introducing second-order dynamics would make the analysis and introducing
moving bottlenecks much less tractable.

While moving bottlenecks are usually seen as detrimental to traffic efficiency,
the prospect of controlling them for traffic regulation has attracted some attention
lately. Since this is a new traffic control approach, very few published works exist
on this topic as of writing of this thesis, but we can forecast much interest in
this field in the near future. In [74] the authors considered an optimal control
problem using the speed of the moving bottleneck as control variable and fuel
consumption as the performance metric. A similar mechanism was exploited for
bottleneck decongestion in [75], though here the controlled automated vehicles were
not used as moving bottlenecks, but instead simply held up other vehicles in a
microscopic traffic model.

2.4 Platoons in traffic

Recent years have seen an accelerated push towards heavy-duty vehicle platooning
[14], with numerous projects working on it [13]. Traditionally, such platooning was
primarily regarded as means of reducing the air drag acting on the vehicles [76], and
thus fuel consumption, but there are also other benefits, like facilitating a higher
level of automation. There has been much work done on controlling the vehicles
inside a platoon [77, 78, 79, 80], and this technology is slowly transitioning from
academia to industry. There are other aspects of platooning that still require more
research, including how truck platoons influence traffic, how platoons should be
formed, and how to make decisions on which vehicles should platoon with which
other vehicles [81].

Real-time platoon formation, where vehicles attempt to form platoons en-route,
is one of these open problems. Dynamic planning strategies have been proposed,
with platooning coordinator matching and organizing vehicles into platoons [82].
Selected vehicles receive jointly fuel-optimal speed profiles and routes, and by fol-
lowing them, merge into a platoon and drive together for some time. However, this
also means that, since the participating vehicles will have to deviate from their own
optimal speed profiles, attempting to form a platoon entails higher fuel consump-
tion during the catch-up and merging phase. The hope is to offset this effect by fuel
savings during the time the vehicles drive in the platoon [83]. If the platoon merging
is delayed due to some unpredicted disturbance [84], or if the vehicles fail to merge
into a platoon, the net energy consumption could be much higher than expected,
potentially leading to more fuel being spent compared to the case when the vehicles
would continue driving at their individual optimal speeds. It is therefore important
to have a good prediction of when the platoon merging will be completed, so as to
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be able to calculate predicted energy savings and make a better informed decision
on whether to attempt to form a platoon at all. This problem was studied in [85]
and [86], as well as in [87]. In these papers, however, the authors did consider the
influence of traffic, but did not study how to compensate for it.

2.5 Summary

In this chapter we have provided a number of references relevant to the scope of the
thesis. First, the ITS were discussed, along with the technological basis for imple-
menting the different control laws that are discussed. Then, we covered the topic of
modelling mixed traffic, with various model structures and distinguishing charac-
teristics between vehicle classes. Next, we discussed how microscopic actuation can
be introduced to macroscopic models, mostly using the framework of controlled
moving bottlenecks. Finally, we provided some background on heavy-duty vehi-
cle platooning. This technology is one of the first that is predicted to enter the
mainstream, and could provide suitable candidates for vehicles to use as controlled
moving bottlenecks. Conversely, the performance of platooning operations can be
improved by also considering the influence of traffic condition in planning.





Chapter 3

Traffic and platooning models

In this chapter we discuss various traffic flow models and extend some of them to
incorporate the influence of slow-moving vehicles and platoons acting as mov-

ing bottlenecks. A slow-moving vehicle in traffic forces faster moving vehicles to
overtake it, restricting the road capacity at the slow-moving vehicle’s position. We
call this slow-moving vehicle a moving bottleneck. In particular, we are looking for
traffic models that can be extended to capture the moving bottleneck phenomenon,
in a way that is conducive to control design, which will be the main focus of the
next two chapters.

First, we will discuss the traffic flow models that will be used, and then introduce
the extensions which capture the influence of slow-moving vehicles and platoons.

3.1 Traffic models

Macroscopic models have the advantage of being relatively easy to simulate and
analyse, which makes them suitable for traffic control design. For more in-depth
view on traffic models, the reader is referred to [43]. Macroscopic models describe
traffic by using aggregate variables such as traffic density ρ(x, τ), average traffic
speed v(x, τ) and traffic flow q(x, τ), where x is the position along the road and τ
time. These three variables are linked by the hydrodynamic equation,

q(x, τ) = ρ(x, τ)v(x, τ). (3.1)

Additionally, in a given road segment, the number of vehicles n(τ) will be a con-
served quantity,

ṅ(τ) = qin(τ)− qout(τ), (3.2)

where qin(τ) is the flow into the segment and qout(τ) the flow from the segment.
Note that here we use τ to denote the continuous time, and the dot operator
represents derivation by τ . We use t to denote the discrete time step.

17
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Figure 3.1: Greenshields and Newell-Daganzo flux function and speed function.

Since here we only consider first-order models, the state of the system will be
uniquely determined by the traffic density, and the average speed is given by a
function, V(ρ(x, τ)).

The LWR model
The oldest macroscopic traffic model is the Lighthill-Whitham-Richards (LWR)
model [88, 89]. Although it originated in the 50s, this model and its many extensions
are still widely used. The model consists of a first-order nonlinear partial differential
equation

∂τρ(x, τ) + ∂xQ(ρ(x, τ)) = 0. (3.3)
It is assumed that the traffic flow q(x, τ) is given as function of ρ(x, τ),

q(x, τ) = Q(ρ(x, τ)),

or equivalently, that the traffic flow is given by (3.1) where the average speed is a
function of ρ(x, τ) ∈ [0, P ], where P is the maximum, jam traffic density at which
the vehicles stop moving.

The function Q(ρ) is known as the fundamental diagram, or the traffic flux func-
tion. The two most commonly used fundamental diagrams are the Greenshields [90]
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flux function and Newell-Daganzo [91, 92] (triangular or trapezoidal) flux function,
shown in Fig. 3.1. In this thesis, we will use the latter.

In Greenshields fundamental diagram, traffic speed is given by

V(ρ) = V
(

1− ρ

P

)
,

where V denotes the free flow speed, at which the vehicles would be travelling if
the rest of the traffic did not affect them. Using this expression to model average
traffic speed, makes the traffic flow Q(ρ) = ρV(ρ) a parabolic function,

Q(ρ) = V

(
ρ− ρ2

P

)
,

as shown in Fig. 3.1a. Since this function is once continuously differentiable, (3.3)
is a hyperbolic conservation law. This allows us to use the broad body of literature
that deals with such systems (see, for example [93, 94]).

Newell-Daganzo flux function is a piecewise linear function (see Fig. 3.1b), and
is given by

Q(ρ) = min (V ρ,Qmax,W (P − ρ)) ,

where W is the backward congestion wave propagation speed (i.e., the negative
slope in congested mode, ρ > σ) and Qmax some maximum traffic flow. We denote
by σ the critical density at which V σ = W (P − σ), and take Qmax = V σ, so that

Q(ρ) =
{
V ρ, 0 ≤ ρ ≤ σ,
W (P − ρ), σ < ρ ≤ P,

(3.4)

and the traffic speed dependence on traffic density is

V(ρ) =
{
V, 0 ≤ ρ ≤ σ,
W
(
P
ρ − 1

)
, σ < ρ ≤ P.

Note that Newell-Daganzo flux function is not continuously differentiable, but an
arbitrary smoothed version of it is, so (3.3) will be a limit case of a hyperbolic
conservation law.

The cell transmission model
Consider a stretch of highway between positions Xi and Xi+1 with length
Li = Xi+1 −Xi. We can describe the evolution of the number of vehicles inside
this “cell”, Ni according to the conservation law (3.2), with inflow and outflow de-
pending on the surrounding traffic conditions. This is the original cell transmission
model (CTM) [91, 95]. The evolution of traffic density ρi in cell i is then given by

ρi(t+ 1) = ρi(t) + T

Li

(
Φ+
i (t)− Φ−i (t)

)
, i = 1, . . . N. (3.5)
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Figure 3.2: A representation of CTM.

Here T is the time step, N the number of cells, and Φ+
i (t) and Φ−i (t) are the total

flow during one time step into cell i, and out of cell i, respectively, given by

Φ+
i (t) = qi−1(t) + ri(t),

Φ−i (t) = qi(t) + si(t),

where qi is the flow from cell i to cell i+ 1, ri(t) is the flow entering cell i from the
on-ramp, and si(t) flow exiting cell i through the off-ramp (see Fig. 3.2). We require
T to be short enough so that the Courant-Friedrichs-Lewy condition is satisfied,
V ≤ L/T .

For now, we will assume that all cells are of same length, Li = L and consider
a section that has no on- or off-ramps, si(t) = ri(t) = 0, i = 1, . . . , N . The CTM
then reduces to

ρi(t+ 1) = ρi(t) + T

Li
(qi−1(t)− qi(t)) , i = 1, . . . N. (3.6)

We can determine qi(t) as a minimum between a “demand” (sending) function of
cell i and “supply” (receiving) function of cell i+ 1,

qi(t) = min (Di(t), Si+1(t)) , (3.7)

where
Di(t) = min (Viρi(t), Qmax

i ) ,
Si(t) = min (Wi(Pi − ρi(t)), Qmax

i ) .
(3.8)

In order to make the model consistent with the LWR model with Newell-Daganzo
flux function, we set the congestion wave speeds to Wi = Vi

σi

Pi−σi
, so that

Viσi = Wi(Pi − σi), and set Qmax
i = Viσi. Notice that the demand and supply func-

tions can also be written as a function of minimum and maximum, respectively, of
ρ and σ,

D(ρ, σ) = Q(min (ρ, σ)),
S(ρ, σ) = Q(max (ρ, σ)),

with parameters specific to the cell for which they are calculated, V = Vi, W = Wi,
σ = σi and P = Pi.

We can handle the boundaries of the model by separately defining either the flow
into the first cell q0(t) and out of the last cell qN (t), or boundary traffic densities
ρ0(t) and ρN+1(t).
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PDE interpretation of the CTM
Although in its original formulation [91] it was conceived as a distinct model, the
CTM has been shown [96] to be equivalent to a Godunov (finite volume) discretiza-
tion of the LWR model, assuming all parameters are the same for all cells, σi = σ,
Pi = P , Vi = V , Wi = W .

Godunov discretization of (3.3) corresponds to taking piecewise constant initial
conditions for ρ(x, τ),

ρ(x, 0) =



ρ0(t), x ≤ X1,

ρ1(t), X1 ≤ x < X2,
...

...
ρi(t), Xi ≤ x < Xi+1,
...

...
ρN (t), XN ≤ x < XN+1,

ρN+1(t), XN+1 ≤ x,

(3.9)

where ρ0(t) and ρN+1(t) are the boundary conditions, ρ(x, 0) = ρ0(t), x < X1, and
ρ(x, 0) = ρN+1, x > XN + L, solving the initial values problem for time up to τ = T .
As stated earlier, we use τ to denote the continuous time in PDE models and t to
denote the discrete time step in CTM.

We can then obtain average cell traffic density at the next time step ρ(t + 1)
by averaging the solution of the PDE ρ(x, T ) over the interval corresponding to
each cell, (Xi, Xi+1). The reader is referred to [94] for more details on handling
hyperbolic conservation laws.

Since the flux function (3.4) is piecewise linear, the solution of (3.3), ρ(x, τ), will
be piecewise constant in x for every τ , and it can be calculated exactly by solving
Riemann problems for the cell interfaces.

The Riemann problem is the Cauchy problem (problem of finding a solution to
a PDE given initial conditions) in the particular case when the initial conditions
are given as

ρ(x, 0) =
{
ρ−, x < 0,
ρ+, x > 0.

(3.10)

This corresponds to assuming we have a cell interface at x = 0 and looking at
the evolution of traffic density around it. The solution of this problem will be a
self-similar function of form ρ(x, τ) = f(x/τ). If ρ− = ρ+, the initial conditions are
not discontinuous, and the solution will stay constant. Otherwise, the solution can
either be a shock or a rarefraction wave. A shock is a solution of form

ρ(x, τ) = f(x/τ) =
{
ρ−, x/τ < λ

ρ+, x/τ > λ,
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where λ = Λ(ρ−, ρ+) is the Rankine-Hugoniot transition speed between ρ− and ρ+,

Λ(ρ−, ρ+) = Q(ρ+)−Q(ρ−)
ρ+ − ρ−

.

We call such a moving discontinuity a wavefront or a front. A rarefraction wave is
a solution of the form

ρ(x, τ) = f(x/τ) =


ρ−, x/τ ≤ α,
r(x/τ), α ≤ x/τ < β,

ρ+, x/τ > β,

where r(x/τ) is a monotonic function related to the lower convex envelope of Q if
ρ− < ρ+ or the upper concave envelope of Q if ρ− > ρ+.

In the particular case of Newell-Daganzo flux function (3.4), the solution to the
Riemann problem ((3.3), (3.10)) will consist of one or two wavefronts radiating
from the discontinuity, depending on the density upstream of the cell interface, ρ−
and downstream, ρ+. In case we have a congestion upstream ρ− > σ, and free flow
downstream ρ+ ≤ σ, the solution will be a rarefraction wave, with two wavefronts,

ρ(x, τ) =


ρ−, x < −Wτ

σ, −Wτ < x < V τ,

ρ+, x > V τ,

as shown in Fig. 3.3c. Otherwise, the solution will be a shock, consisting of one
wavefront,

ρ(x, τ) =
{
ρ−, x < Λ(ρ−, ρ+)τ,
ρ+, x > Λ(ρ−, ρ+)τ,

corresponding to Fig. 3.3a, Fig. 3.3b or Fig. 3.3d, depending on ρ− and ρ+. We
will be using the style of the upper figures to describe the evolution of solutions in
space and time.

The overall solution to (3.3),(3.4) for initial conditions (3.9) can be acquired
by solving a composite Riemann problem, i.e., solving a Cauchy problem with
piecewise constant initial conditions through solving Riemann problems for all dis-
continuities in initial conditions (cell interfaces), evolving the solutions in time until
some wavefronts originating from these interfaces collide, and then solving the new
Riemann problems that thus appear. This procedure is known as front tracking,
and since the flux function Q is piecewise-linear, it will yield exact solutions for
all τ > 0. In case the flux function is not piecewise-linear, front tracking can still
be applied, but the flux function needs to be approximated with a piecewise-linear
function.

The multi-class CTM
Multi-class traffic models are often inspired by the introduction of autonomous and
connected vehicles, but can also provide a useful tool for capturing uncertainties
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Figure 3.3: Riemann problem solutions for the four cases of initial conditions. The
solutions for densities ρ(x, τ) are shown color-coded, with space on x-axis and time
on y-axis, and on lower figures, we show three snapshots of the solution with space
on x-axis and traffic density on y-axis. The direction in which the wavefronts travel
over time is indicated with an arrow.
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in the flow model. Introducing two (or more) classes of traffic, for example the
’rabbits’ and the ’slugs’, can also be seen as a simple way of defining a second-
order (or higher-order) traffic model, where the conserved quantities would be the
total traffic density and the ratio of vehicles of one class in it. The multi-class cell
transmission model (MCCTM) we use here is similar to the model introduced in
[61], with proportional priority allocated to all vehicle classes.

Let K be the set of vehicle classes κ ∈ K. Although the traffic consists of various
types of vehicles, we commonly express all their contribution to the overall traffic
density in passenger car equivalents. The traffic density of vehicles of class κ in cell
i at time t will be denoted ρκi (t). We allow each of the classes to have a distinct free
flow speed Uκi (t) in every cell and at every time instant. Furthermore, we allow the
vehicles of each class to have a different, possibly time-varying headway ratio hκi (t)
in every cell. This headway ratio describes how much total space a vehicle of class
κ takes on the road, compared with some baseline value for which the critical and
jam densities σ and P were calculated. We can let hκi (t) depend on the surrounding
traffic conditions, or on some external input. Typically, for human-driven vehicles,
we fix Uκi (t) = V and hκi (t) = 1. The effective traffic density is defined as

ρ̄κi (t) = ρκi (t)hκi (t),

indicating the density of regular passenger cars that would have the same effect on
the rest of the traffic. Essentially, by ρ̄κi (t) we denote the aggregate contribution to
the overall congestion level from class κ vehicles that the other vehicles perceive,
and it reflects the total road space these vehicles take.

For example, suppose class a represents platooning autonomous vehicles, while
class b represents the ’background’ traffic that consists of human-driven vehicles.
Vehicles of class a are able to safely maintain much shorter headway times than
vehicles of class b, so if we assume that characteristic densities are calculated for
human-driven vehicles, this would mean that hai (t) < 1 and hbi (t) = 1. The total
traffic density

ρi(t) =
∑
k∈K

ρki (t)

will then differ from the total effective traffic density

ρ̄i(t) =
∑
k∈K

ρki (t)hki (t) =
∑
k∈K

ρ̄ki (t).

Same as in the single-class case (3.5), the evolution of cell traffic densities for
each class is given by

ρκi (t+ 1) = ρκi (t) + T

Li

(
Φ+κ
i (t)− Φ−κi (t)

)
.
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Assuming again that the cells are of same length and that there are no on- or
off-ramps, we have

ρκi (t+ 1) = ρκi (t) + T

L

(
qκi−1(t)− qκi (t)

)
,

and the traffic flow is again given by

qκi (t) = min(Dκ
i (t), Sκi+1(t)).

However, the demand and supply functions of each class will now also depend on
vehicles of other classes, due to shared road capacity. We write the demand function

Dκ
i (t) = Uκi (t)ρκi (t) min

 V σi∑
k∈K

Uki (t)ρ̄ki (t)
, 1

 , (3.11)

and the supply function

Sκi (t) =
ρκi−1(t)
ρ̄i−1(t) min (W (Pi − ρ̄i(t)), V σi) . (3.12)

It is easy to verify that in case we only have one class K = {a} and Uai (t) = V ,
hai (t) = 1, expressions (3.11) and (3.12) simplify to (3.8).

Another benefit of using the MCCTM is that it gives us a way of precisely
defining flows of off-ramps or diverging links. Instead of assuming that a fraction
of all vehicles leaves the mainstream, we can now distinguish vehicles with different
destinations as members of different classes. Let ir be a cell with an off-ramp or
a diverge (denoted (1) and (2) in Fig. 3.4, respectively), where vehicles of classes
Kir ⊂ K exit the mainstream. We may then write

Φ−κir (t) = qκir (t) + rκir (t),

rκir (t) =
{

min
(
Dκ
ir

(t), Sκir+1(t), Sκj,ir (t)
)
, κ ∈ Kir ,

0, κ ∈ K \ Kir ,

where
Sκj,ir (t) =

ρκir (t)∑
κ∈Kir

ρ̄κir (t) min (W (Pj − ρ̄j(t)), V σj) , (3.13)

is the supply of the first cell j of the link that the traffic flow from cell ir diverges
into. Alternatively, if vehicles leave the highway via an off-ramp in cell ir, we may
replace (3.13) with

Sκr,ir (t) =
ρκir (t)∑

κ∈Kir

ρ̄κir (t)Q
max
r,ir .



26 CHAPTER 3. TRAFFIC AND PLATOONING MODELS
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(2)

(3)

Figure 3.4: Map of Trafikplats Nyboda with an overlay illustrating an arrangement
of cells, off-ramps, diverges and merges for modelling traffic originating from Es-
singeleden and bound for Södra länken eastwards. The mainstream is shown in
red, with black circles indicating cell boundaries. At (1) there is an off-ramp, at
(2) a portion of the mainstream diverges westwards (shown in blue), and at (3)
the mainstream traffic merges with the traffic from another link (shown in green).
Imagery taken from OpenStreetMap.

Finally, we update qκir (t) accordingly,

qκir (t) =
{

min(Dκ
ir

(t), Sκir+1(t)), κ ∈ K \ Kir ,
0, κ ∈ Kir .

For multiple links merging, we will assume proportional allocation of road ca-
pacity. Let i be the cell the links are merging into and Pre(i) the set of preceding
cells, from which traffic flows into cell i (denoted (3) in Fig. 3.4). Then we may
write

Φ+κ
i (t) =

∑
j∈Pre(i)

qκj (t),
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qκj (t) = min
(
Dκ
j (t), Sκi,j(t)

)
, j ∈ Pre(i),

Sκi,j(t) =
ρκj (t)∑

ι∈Pre(i)
ρ̄ι(t)

min (W (Pi − ρ̄i(t)), V σi) , j ∈ Pre(i),

and all other equations remain unchanged.

3.2 Platoon and moving bottleneck models

Broadly speaking, there are two ways we can model moving bottleneck, as shown in
Figure 3.5. The first approach is to consider it a moving traffic flow constraint, i.e.
a reduction of road capacity at the moving bottleneck’s position, and not explicitly
count the slow vehicle acting as a moving bottleneck a part of the overall traffic
density. The second approach is to represent the slow moving vehicles through their
density, and model interactions between vehicles moving at different speeds in some
cell-based model.

In this section we introduce the moving bottleneck into the CTM, using the first
approach, and model platoons, which can act as moving bottlenecks, in MCCTM
using the second approach. We will first address this effect in the LWR model
and describe the Riemann problems that arise from its treatment. Then, we apply
a Godunov-like scheme to obtain traffic flow updates in the CTM, in order to
incorporate moving bottlenecks into it. Finally, we will describe how a platoon
acting as a moving bottleneck can be modelled in MCCTM.

Figure 3.5: A platoon of trucks acting as a moving bottleneck and two ways of
representing this phenomenon.

Moving bottlenecks in the LWR model
Assume we have a vehicle (or a platoon of vehicles) in traffic, at position χb(τ), mov-
ing at speed ub that is lower than the speed of the surrounding traffic V(ρ(τ, χb(τ)+)),
and thus acting as a moving bottleneck. We can model this phenomenon by im-
posing additional constraints on the LWR model. This yields a PDE-ODE strongly
coupled system [66], with the traffic conditions evolution described by a scalar
conservation law with a moving flux constraint, and the motion of the moving
bottleneck described by an ordinary differential equation,

∂τρ(x, τ) + ∂xQ(ρ(x, τ)) = 0,
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Q(ρ(χb(τ), τ))− ẋb(τ)ρ(χb(τ), τ) ≤ Qmax
β (χ̇b(τ)),

χ̇b(τ) = min (ub,V(ρ(χb(τ)+, τ))) .

Here χb(τ) is the position of the moving bottleneck, ub its desired speed and Qmax
β

maximum flow past the bottleneck. The maximum flow is obtained by studying
the problem in the reference frame of the moving bottleneck,

Qmax
β (χ̇b(τ)) = max

0≤ρ≤P
Qb(ρ)− χ̇b(τ)ρ,

as shown in Figure 3.6b.
This formulation is equivalent to using a different flow model in the zone of the

moving bottleneck. Let the flux function in this zone, Qb(ρ), be of the same form
as (3.4), with different parameters,

Qb(ρ) =
{
Vbρ, ρ ≤ σb,
Wb(Pb − ρ), ρ > σb,

where Wb = W Vb

V . An example of flux functions Q(ρ) and Qb(ρ) is shown in
Figure 3.6a.

In order to model the capacity reduction in presence of a bottleneck, we in-
troduce a new parameter β ∈ [0, 1] that describes the severity of the bottleneck.
Density parameters σ and P are reduced to

σ(xb) = σb = σ(1− β),
P (xb) = Pb = P (1− β).

Since it depends on the behaviour of drivers, we would have to experimentally
determine β, but in general, it can be taken to be close to the portion of the road
that the moving bottleneck takes. For example, if one of two lanes is blocked, we

0 σb σ ρub P

ρ

Vbσb

V σ

q

(a) Fixed reference frame

0 σb σ ρub P

ρ

Qmax

β

q
−
χ̇
b
ρ

(b) Moving bottleneck reference frame

Figure 3.6: Flux functions Q(ρ) (solid black) and Qb(ρ) (red) for Vb > V in fixed
and moving bottleneck reference frame.
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can set β = 0.5, or we might choose a somewhat higher value to capture additional
"friction" effects.

Furthermore, we allow the free flow speed at the position of the bottleneck
Vb to differ from the free flow speed elsewhere, possibly even as a function of ub.
This enables us to model the overtaking behaviour in more detail, with Vb > V
indicating eagerness, and Vb < V indicating reluctance to overtake. To ensure that
the Rankine-Hugoniot condition can be satisfied at moving bottleneck interfaces,
we also need ub ≤ Vb ≤ V−ubβ

1−β . As with β, Vb depends on driver behaviour, and
would have to be experimentally determined. We make the standing assumption
that Vb is constant, Vb > V and ub ≤ V

β −
Vb(1−β)

β . If we let Vb depend on ub, we can
use this function Vb(ub) to capture any bottleneck diagram [97], i.e. a curve whose
tangents with slope ub we intersect with Q(ρ) to obtain traffic densities upstream
and downstream of a moving bottleneck.

To model the influence the moving bottleneck has on the surrounding traffic,
we solve two Riemann problems, one for its head (downstream end) and one for its
tail (upstream end). We denote the traffic density upstream of the bottleneck as
ρ− and downstream ρ+, and the traffic density in the bottleneck zone as ρb.

First, we define some helper functions,

rf (ρb, ub) = Qb(ρb)− ubρb
V − ub

,

rc(ρb, ub) = WP −Qb(ρb) + ubρb
W + ub

,

r−1
f (ρ, ub) = Q(ρ)− ubρ

Vb − ub
,

r−1
c (ρ, ub) = WbPb −Q(ρ) + ubρ

Wb + ub
,

that give us intersections between the flux function Q(ρ) (Qb(ρ)) and a line with
slope ub originating from (ρb, Qb(ρb)) ((ρ,Q(ρ))) respectively. It is easy to check
that r−1

f,c(rf,c(ρ, ub), ub) = ρ and rf,c(r−1
f,c(ρ, ub), ub) = ρ. Note that for Vb = V and

ρb ≤ σb, rf (ρb, ub) = ρb, so it does not depend on ub.
The Riemann problems for the moving bottleneck boundaries can be written as

∂τρ+ ∂x (Q±(ρ, x, τ)) = 0,

Q±(ρ, ub, x, τ) =
{
Q−(ρ), x < ubτ,

Q+(ρ), x > ubτ,

ρ(x, 0) =
{
ρ−, x < 0,
ρ+, x > 0.

Example solutions to Riemann problems for moving bottleneck head and tail for
all traffic density cases are given in Figure 3.7.
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(a) ρb ≤ σb, ρ+ < rc(ρb, ub)

0

x

0

T

τ

(b) ρb < r−1
f (ρ+, vb), ρ+ > rc(σb, vb)

0

x

0

T

τ

(c) rf (ρb, ub) < ρ+ < rc(ρb, ub)

0

x

0

T

τ

(d) ρ− < rf (σb, ub), ρb ≤ r−1
c (ρ−, ub)

0

x

0

T

τ

(e) ρ− > rf (ρb, ub), ρb > σb

0

x

0

T

τ

(f) ρ− > rf (ρb, ub), ρb ≤ σb

Figure 3.7: Solutions for all cases of Riemann problems for moving bottleneck head
(a-c) and tail (d-f). Denser traffic is shown darker, and the bottleneck zone is shown
hatched.
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Consider first the Riemann problem for the moving bottleneck head. In this
case, we haveQ−(ρ) = Q(ρ), Q+(ρ) = Qb(ρ) and ρ− = ρb and the Riemann problem
corresponding to it is

∂τρ+ ∂x (Q+(ρ, ub, x, τ)) = 0,

Q+(ρ, ub, x, τ) =
{
Qb(ρ), x < ubτ,

Q(ρ), x > ubτ,

ρ(x, 0) =
{
ρb, x < 0,
ρ+, x > 0.

We control the movement of the bottleneck, so the transition speed between
the zones where different models are valid has to be equal to its speed ub. The
Rankine-Hugoniot condition for the discontinuity, ub(ρ+−ρb)=Q(ρ+)−Qb(ρb), can
only hold for ρ+ = rf (ρb, ub) or ρ+ = rc(ρb, ub) (equivalently, ρb = r−1

f (ρ+, ub) or
ρb = r−1

c (ρ+, ub)). In this case, the entropy solution is simply

ρ(x, τ) =
{
ρb, x < ubτ,

ρ+, x > ubτ.

Otherwise, the entropy solution will, depending on ρb and ρ+, have one or two
additional wavefronts. These solutions are:

• If ρb ≤ σb and ρ+ < rc(ρb, ub),

ρ(x, τ) =


ρb, x < ubτ,

rf (ρb, ub), ub < x < Λ(rf (ρb, ub), ρ+)τ,
ρ+, x > Λ(rf (ρb, ub), ρ+)τ.

• If ρb < r−1
f (ρ+, vb) and ρ+ > rc(σb, vb),

ρ(x, τ) =


ρb, x < Λb(ρb, r−1

c (ρ+, vb))τ,
r−1
c (ρ+, vb), Λb(ρb, r−1

c (ρ+, vb))τ < x < vbτ,

ρ+, x > vbτ,

where vb = min(ub,V(ρ+)). If V(ρ+) < ub, the speed of both the platoon
head and tail are set to V(ρ+).

• If rf (ρb, ub) < ρ+ < rc(ρb, ub),

ρ(x, τ) =


ρb, x < Wbτ,

σb, Wbτ < x < ubτ,

rf (ρb, ub), ubτ < x < V τ,

ρ+, x > V τ.
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We have a similar situation for the Riemann problem for the moving bottleneck
tail (upstream end). Now, Q−(ρ) = Qb(ρ), Q+(ρ) = Q(ρ) and ρ+ = ρb, and the
Riemann problem is

∂τρ+ ∂x (Q−(ρ, x, τ)) = 0,

Q−(ρ, ub, x, τ) =
{
Q(ρ), x < ubτ,

Qb(ρ), x > ubτ,

ρ(x, 0) =
{
ρ−, x < 0,
ρb, x > 0.

Again, we have three cases of the entropy solution, depending on ρb and ρ+:

• If ρ− < rf (σb, ub) and ρb ≤ r−1
c (ρ−, ub),

ρ(x, τ) =


ρ−, x < ubτ,

r−f 1(ρ−, ub), ub < x < Λ(ρ−, ρb)τ,
ρb, x > Λ(ρ−, ρb)τ.

• If ρ− > rf (ρb, ub) and ρb > σb,

ρ(x, τ) =


ρ−, x < Λ(ρ−, rc(ρb, ub))τ,
rc(ρb, ub), Λ(ρ−, rc(ρb, ub))τ < x < ubτ,

ρb, x > ubτ.

• If ρ− > rf (ρb, ub) and ρb ≤ σb,

ρ(x, τ) =


ρb, x < Wτ,

rc(σb, ub), Wτ < x < ubτ,

σb, ubτ < x < Vbτ,

ρb, x > Vbτ.

Incorporating moving bottlenecks into the CTM
Having described the effect of the moving bottleneck in the LWR model framework,
we can now apply a similar Godunov-like scheme to calculate the effects of the
moving bottleneck on traffic flows of adjacent cells. If Xi ≤ xb(t) < Xi + L, where
xb(t) is the position of the moving bottleneck at time t, the moving bottleneck is
in cell i and ib(t) = i. For compactness, we will omit writing the time step for
all CTM-related variables wherever the time step is obvious. We may write the
resulting flows as

qi = min(V ρib , V σ,W (P − ρib+1)) + ∆qb,i.
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Assume the moving bottleneck in cell ib is the only one in the road stretch con-
sidered. Since it only affects traffic flows through the interfaces of the cell it is
currently in (i.e. from cell ib − 1 to ib and from cell ib to ib + 1), we will have
∆qb,i = 0 for all i /∈ {ib − 1, ib}. Therefore the resulting model will be the same as
the already described standard CTM (3.6)–(3.7) for i 6= ib, i 6= ib − 1.

In order to correctly describe the behaviour of the moving bottleneck and the
effect it has on the surrounding traffic, we need to augment the cell transmission
model with three additional states, the position of the moving bottleneck xb(t), the
traffic density directly upstream of it ρb−(t) and the traffic density in the moving
bottleneck zone ρb(t). The second and third additional states are necessary in order
to properly model the flow of traffic past the bottleneck [68], effectively splitting
the cell i into three parts. We will keep ρi(t) as a state and instead, calculate the
traffic density downstream of the bottleneck so that

ρi(t) = (xb − lb −Xib)ρb− + lbρb + (Xib+1 − xb)ρb+
L

,

where lb is the length of the bottleneck in question. If there are multiple bottlenecks
fully or partially in the same cell, splitting the cell and calculating traffic densities
in its different segments is done in a similar way, starting from the cell’s upstream
end and calculating traffic densities towards its downstream end so that they still
average to ρi(t).

We obtain ∆qb,ib−1(t) and ∆qb,ib(t), as well as updates xb(t+ 1), ρb−(t+ 1) and
ρb(t+ 1) by solving the composite Riemann problem

∂τρ+ ∂x (Q(ρ, ub, x, τ)) = 0,

Q(ρ, ub, x, τ) =
{
Q(ρ), x /∈ (χb(τ)− lb, χb(τ)) ,
Qb(ρ), x ∈ (χb(τ)− lb, χb(τ)) ,

χ̇b(τ) = min (ub,V(ρ(τ, χb(τ)+)) ,

(3.14)

with initial conditions

ρ(x, 0) =



ρib−1, x < Xib ,

ρb−, Xib < x < xb − lb,
ρb, xb − lb < x < xb,

ρb+, xb < x < Xib+1,

ρib+1, x > Xib+1,

χb(0) = xb,

(3.15)

for τ up to T . The solution is easily obtained through front tracking, successively
solving Riemann problems as described in sections 3.1 and 3.2. An example of a
solution is shown in Figure 3.8.

If there are multiple moving bottlenecks, we either solve (3.14) with initial
conditions (3.15) for each one if there is at least one cell between them, or include
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Xib
xbXib+1

x

0

T

τ

ρb+

ρb−
σ

ρib−1

ρib+1

P

Figure 3.8: Front tracking solution example for τ ∈ [0, T ] and lb ≈ 0. Note that
the moving bottleneck slows down when it enters the dense traffic from cell ib+1.

both of them in a larger composite Riemann problem. For example, for the situation
shown in Figure 3.9, the initial conditions would be

ρ(x, 0) =



ρib−1, x < Xib,1 ,

ρb−,1, Xib,1 < x < xb,1 − lb,1,
ρb,1, xb,1 − lb,1 < x < xb,1,

ρb+,1, xb,1 < x < Xib,1+1,

ρb−,2, Xib,1+1 < x < xb,2 − lb,2,
ρb,2, xb,2 − lb,2 < x < xb,2,

ρb+,2, xb,2 < x < Xib,1+2,

ρib+2, x > Xib,1+2.

In this case, one moving bottleneck is in cell ib,1 and a second one in cell ib,1 + 1 = ib,2,
so we need to include cells ib,1−1 through ib,1+2 into the problem. Here we assumed
that the moving bottlenecks are truck platoons, and that the follower catches up
with the leader and merges into one platoon. If the tail of one and head of another
bottleneck collide, we say that those two bottlenecks have merged, and take their
speed to be the speed of the leader bottleneck.

Formally, we may write the updated traffic model that incorporates moving
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Xib,1 Xib,1+1 Xib,1+2

x

0

T

τ

0

σ

P

Figure 3.9: Front solution example of two platoons merging. Note that the follower
platoon slows down when it enters the denser traffic from cell ib,1 + 1, originating
from the leader platoon. The two moving bottlenecks merge into one before τ = T .

bottlenecks as

ρi(t+1) = ρi(t) + T

L
(qi−1(t)− qi(t)) ,

qi(t) = min (V ρi(t), V σ,W (P − ρi+1(t))) + ∆qb,i(t),
∆qb(t)
xb(t+ 1)
ρb−(t+ 1)
ρb(t+ 1)

 = P (ρ(t), x(t), u(t), ρb−(t), ρb(t)) ,

(3.16)

where by P we encapsulate the procedure of calculating ∆qb and new values for xb,
ρb- and ρb from the solution of (3.14) with initial conditions (3.15) at τ = T .

For ease of presentation, consider the case where there is only one moving bot-
tleneck. Then we may calculate the updates ∆qb,ib(t) and ∆qb,ib−1(t) as

∆qb,ib = 1
T

Xib+2∫
Xib+1

ρ(x, T )− ρ̃(x, T )dx,

∆qb,ib−1 = 1
T

Xib∫
Xib−1

ρ(T, x)− ρ̃(x, T )dx.

(3.17)

Here by ρ̃(x, T ) we denote the solution of the composite Riemann problem with no
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moving bottlenecks and for initial conditions

ρ̃(x, 0) =


ρib−1, x < Xib ,

ρib , Xib < x < Xib+1,

ρib+1, x > Xib+1.

Since this solution can be expressed explicitly, integrals of ρ̃(x, T ) can easily be
calculated as

1
T

Xib+2∫
Xib+1

ρ̃(x, T )dx = max (Λ(min(ρib , σ), ρib+1), 0) (ρib+1 −min(ρib , σ)) ,

1
T

Xib∫
Xib−1

ρ̃(x, T ) = min (Λ(ρib−1,max(ρib , σ)), 0) (ρib−1 −max(ρib , σ)) .

Finally, the new position of the bottleneck is

xb(t+ 1) = χb(T ), (3.18)

and the new traffic density upstream of it

ρb−(t+ 1) =

χb(T )−lb∫
Xib(t+1)

ρ(x, T )dx

χb(T )− lb −Xib(t+1)
, (3.19)

and inside the bottleneck zone

ρb(t+ 1) =

χb(T )∫
χb(T )−lb

ρ(x, T )dx

lb
. (3.20)

In case we have merging moving bottlenecks, we also need to keep track of their
number and their lengths.

To summarize, the model we propose is an extended version of CTM (3.6)–(3.7),
which can be written as (3.16). Traffic flow updates for cells adjacent to the moving
bottleneck are calculated according to (3.17). To properly model the dynamics of
the moving bottleneck, we require adding two additional states (3.18), (3.19) and
(3.20), whose updates are obtained from the solution of the composite Riemann
problem. The proposed model is simple and tractable, as well as consistent with
the PDE moving bottleneck traffic models. This approach also allows extensions
to other PDE traffic models and different traffic phenomena, such as police cars, as
well as enables traffic control design using the speed of the moving bottleneck as
control variable and cell traffic densities as measurements.
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Platoons and moving bottlenecks in the MCCTM
Although it is often driven by the need to classify automated and human-driven
vehicles separately, MCCTM in its basic form is not suitable for modelling the
behaviour of platoons. The main reason is that by discretizing the spatial coordi-
nate, we lose information about the exact position of the platoon head and tail.
Let platooning vehicles belong to class a and background traffic to class b, and let
the platoon move at speed up ∈ [Umin, Umax]. Note that simply setting Uai (t) = up
in cells where the platoon is would not be sufficient, since it would not maintain
crisp boundaries of the platoon, as some vehicles would diffuse to the next cell. For
example, for a one cell long platoon travelling at up = V/2, we would have

ρai (0) = ρp, ρai+1(0) = 0, ρai+2(0) = 0,

ρai (1) = ρp
2 , ρai+1(1) = ρp

2 , ρai+2(1) = 0,

ρai (2) = ρp
4 , ρai+1(2) = ρp

2 , ρai+2(2) = ρp
4 ,

where the correct behaviour would be

ρai (2) = 0, ρai+1(2) = ρp, ρai+2(2) = 0.

We can deal with this problem by allowing cell interfaces to move [98], or by
independently remembering the platoon position. However, if we assume that pla-
tooning control works to maintain constant headways between the vehicles, so that
the density of platooned vehicles is ρp, the position of the platoon head will be
encoded in the traffic density of the cell it is in. Then we may use the cell speeds
Uai (t) to correctly model the behaviour of platoons.

Denote by iph(t) and ipt (t) the cells in which the platoon head and tail are at
time t respectively, and by xph(t) and xpt (t) their exact positions. Since the platoon
moves at speed up, xph(t+ 1) = xph(t) + upT and xpt (t+ 1) = xpt (t) + upT . Under
perfect spacing regulation, the densities of platooning vehicles would be

ρai (t) =



0, i < ipt (t) ∨ i > iph(t),

ρp
xp

t (t)−Xi
p
t

(t)+1

L , i = ipt (t),
ρp, ipt (t) < i < iph(t),

ρp
xp

h
(t)−Xi

p
h

(t)

L , i = iph(t).

(3.21)

Then by setting

Uai (t) =


V, i < ipt (t),
V

ρp

ρa
i

(t) −
(
V − Uai+1(t)

) ρa
i+1(t)
ρa

i
(t) , ipt (t) ≤ i < iph(t),

V − (V − up) ρp

ρa
ih

(t) , i = iph(t),

0, i > iph(t),

(3.22)
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the traffic densities will both converge to (3.21) and evolve according to it, thus
correctly modelling the behaviour of the platoon. Note that in case ρi(t) = ρp,
ipt (t) < i < iph(t), we have Uai (t) = up, ipt (t) < i < iph(t). This approach only works
if there are at least npmin = ρpL vehicles (or passenger car equivalents) inside a
platoon.

Let the remainder of traffic consist of human-driven vehicles of class b, U bi (t) = V ,
and σi = σ. Under (3.22), the maximum class b traffic density flowing past the pla-
toon will be ρbihp (t)+1(t) = σ − ρp. This is exactly the same result as we get for
the maximum traffic density flowing past the moving bottleneck in the model de-
scribed in Section 3.2 if we take Vb = V , which shows that, while in free flow, the
two models are functionally equivalent.

3.3 Summary

There are many models we may use to capture the behaviour of highway traffic.
Due to their relative simplicity, macroscopic traffic models are widely used for traffic
control design. In this chapter, we described the two most well-known macroscopic
traffic models, the CTM and the LWR model. These two models were shown to
be equivalent, since the CTM can be seen as a discretization of LWR. This fact
was used to extend the classical CTM to include the theoretical results in moving
bottleneck modelling from PDE (LWR) models. By doing this, we were able to
introduce new ways of controlling traffic into the well-established model.

Another interesting extension of the CTM that we discussed is the Multi-class
CTM. Having multiple classes of vehicles enables us to both model some traffic
phenomena with higher fidelity, and also design and analyse control strategies that
only act on a (potentially very small) subset of vehicles on the road. In this way,
we may, for example, consider more advanced variable speed limit control, model
platoons or accurately describe the routes the vehicles take.



Chapter 4

Congestion wave dissipation and
avoidance

This chapter deals with the problem of stop-and-go wave avoidance dissipation,
here assumed to be caused by a temporary reduction of road capacity. In

contrast to some previous solutions that used variable speed limits (notable example
being SPECIALIST [99]) or used autonomous vehicles in ring road traffic [62], we
propose using a controlled automated vehicle acting as a moving bottleneck. We
are using the moving bottleneck extension of the CTM described in Section 3.2.

In Section 4.1 we give a more detailed formulation of the congestion wave avoid-
ance and dissipation problem, including some traffic performance metrics that will
be evaluated. The control law is then derived by analytically solving the optimiza-
tion problem under some assumptions in Section 4.2, which are then verified by
simulations in Section 4.3.

4.1 Congestion wave dissipation and avoidance problem

As outlined in Section 1.2, there are two ways we can look at this problem. The
first approach is from the perspective of the controlled vehicle, in which case we
focus on congestion wave avoidance, i.e. calculating the constant speed at which
the vehicle avoids the traffic jam with minimum delay. The second approach is to
look at the problem from the perspective of the overall traffic, focusing instead on
congestion wave dissipation and using the controlled vehicle just as an actuator in
order to optimize traffic performance indices. In both cases, the mutual influence
between the controlled vehicle and the rest of the traffic is given by model (3.16).

The control objective for the first approach can be expressed as an optimization
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problem
minimize

ub

tf

subject to xb(tf ) ≥ Xf

umin ≤ ub ≤ umax

Traffic and moving bottleneck model (3.16)
ρib(k)(k) ≤ ρj

where we assume that the speed of the moving bottleneck ub will remain constant,
and all constraints have to be satisfied for k = t, t + 1, . . . , tf . We say that a cell
i is in traffic jam at time t if ρi(t) > ρj , where ρj > σ is some predefined density.
Here we will set ρj to the traffic density at which the average traffic speed is equal
to the automated vehicle’s maximum speed umax,

V(ρj) = umax.

Note that ρj is not the jam density, which we denote P .
Since reducing the speed of the controlled vehicle both causes it to reach the

congestion wave later and the congestion wave to be dissipated sooner (in case
Vb 6= V , otherwise the congestion wave is dissipated at the same rate in this model),
it is not hard to find the analytical solution, and there is no need to apply numerical
methods.

In case we take the second approach, we no longer constrain the controlled vehi-
cle not to enter congestion. Instead, we optimize some cost function Jtr consisting
of one or more traffic performance indices,

minimize
ub

Jtr

subject to xb(tf ) ≥ Xf

umin ≤ ub ≤ umax

Traffic and moving bottleneck model (3.16).
One of the most used traffic performance indices is the Total Travel Time (TTT)
[veh h], which represents the time spent in the highway mainstream segment by all
vehicles in the considered time horizon, and can be calculated as

TTT =
τend∫
0

Xend∫
X1

ρ(x, τ)dxdτ =
tend∑
t=0

N∑
i=1

ρi(t)TL.

Some other performance indices that are commonly used are the Total Travel Dis-
tance (TTD) [veh km], which is the total distance covered by all vehicles in the
considered time horizon, calculated as

TTD =
τend∫
0

Xend∫
X1

Q (ρ(x, τ)) dxdτ =
tend∑
t=0

N∑
i=1

qi(t)TL,
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and theMean Speed (MS) [km/h] of the vehicles travelling in the considered highway
segment in the considered time horizon,

MS = TTD
TTS .

Based on the mean speed, it is straightforward to calculate the Average Travel Time
(ATT) [h],

ATT = Xend −X1

MS .

Note that because of the simple traffic model and set-up, it is possible to have
very different traffic situations for which these indices are the same. In order to
distinguish these situations, we need to consider some additional metrics. Another
performance index that will be considered here is based on the Total Variation
(T.V.) of traffic density,

T.V.(ρ(x, τ)) = sup
∑
j

|ρ(xj , τ)− ρ(xj−1, τ)| ,

which in case of CTM simplifies to

T.V.(ρ(t)) =
N∑
i=2
|ρi(t)− ρi+1(t)| .

We will therefore consider the Average Total Variation (ATV),

ATV =
tend∑
t=0

N∑
i=2

|ρi(t)− ρi+1(t)|
tend

,

as a measure of traffic homogeneity, where lower ATV (higher homogeneity) is
preferable to higher ATV (lower homogeneity).

Consider for example two different initial conditions for ρ(x, τ),

ρ(x, 0) =


0, x < 0,
σ, 0 < x < L,

0, x > L,

(4.1)

and

ρ(x, 0) =


0, x < L/2,
2σ, L/2 < x < L,

0, x > L,

(4.2)

shown in Figure 4.1. If we look at the segment [0, L] and time interval [0, T ], these
two examples will have the same TTT, but the second one has higher ATV, which
makes it less desirable than the first one.
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(a) Initial conditions (4.1)
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(b) Initial conditions (4.2)

Figure 4.1: Example of two situations with the same TTT, but different ATV.

4.2 Controlled moving bottleneck

In this section we derive a control law for moving traffic jam dissipation and avoid-
ance. We are using the speed of controlled automated vehicle ub(t) as a control
variable, and assuming that we know cell traffic densities ρi(t) and that the vehi-
cle attempts to move at constant speed until the congestion downstream of it has
dissipated. For readability, (t) will be omitted.

We denote by xb, xc, and xd the positions of the automated vehicle, traffic jam
tail and traffic jam head, respectively, and by ρ the vector of cell traffic densities.
The traffic jam encompasses a number of cells, xc = Xic , xd = Xid , with ρi > ρj ,
i = ic, . . . , id.

The speed of the automated vehicle will be controlled as

ub = U(xb, xc, xd, ρ),

within some limits, ub ∈ [umin, umax]. The control law U is a static mapping from
its arguments to ub. It is calculated in real-time by considering the updated states.
It is hard to specify U explicitly, but it can be calculated in a simple way by using
front tracking. The calculation of U will be described in the remainder of this
section, and is illustrated in Figure 4.2. A representation of the control loop is
shown in Figure 4.3.

Due to the simplicity of the underlying traffic model, we do not need to explicitly
solve the optimization problem to know the form of the solution. When there is
no traffic jam ahead of the controlled vehicle, it can continue driving at its default
desired speed, which is equal to its maximum speed umax. However, while there
exists a traffic jam downstream of the controlled vehicle, it can reduce its speed,
thus giving the traffic jam more time to dissipate. By doing this, it also restricts
the flow of traffic at its position, by acting as a moving bottleneck, helping dissipate
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the traffic jam faster. We calculate and apply some constant controlled automated
vehicle speed ub so that the congestion downstream of it is cleared as soon as
possible and, if feasible, so that the vehicle avoids the traffic jam with minimum
delay. Since the vehicle’s speed is constrained to be higher than some minimum
speed ub > umin, this might not always be possible, in which case the vehicle will
move at its minimum speed until it has passed the traffic jam.

For the vehicle to avoid the traffic jam with minimum delay, at some τ = τc, we
need

χb(τc) = χc(τc) = χd(τc). (4.3)

Here we denote by χ∗ the predicted evolution of x∗ in PDE framework. We assume
that the congestion head will move at some constant speed λd,

χd(τ) = xd + λdτ, χd(0) = xd.

While the reduction of capacity is still in effect, this speed will be λd = 0, and
afterwards, while the traffic jam is being discharged, λd = −W . For the position
of the controlled vehicle, we have

χb(τ) = xb + ubτ, χb(0) = xb.

Figure 4.2: Front tracking calculation of ub(t).

Figure 4.3: Control loop example. Cell traffic densities ρi are color-coded (warmer
is higher density).
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From (4.3), we can calculate the dependence of τc on ub,

τc(ub) = xd − xb
ub − λd

, (4.4)

and for the position of the traffic jam tail at τ = τc we write

χc(τc) = xc + ∆χc(ρ, ub).

The dynamics of χc(τ) are hard to describe in closed form, but we may calculate
∆χc by the composite Riemann problem for initial conditions

ρ(x, 0) =


rf (σb, ub), x ≤ xb,
ρi, x ∈ [xi, xi+1), xc > x > xb,

ρc, x > xc,

by front tracking for τ ∈ [0, τc]. Note that here we model the influence of the moving
bottleneck by formally taking the initial traffic density to be equal to rf (σb, ub)
everywhere upstream of it. This also assumes that the demand from upstream
of the moving bottleneck is always higher than the moving bottleneck capacity.
Otherwise, this method will overestimate the time it takes for the traffic jam to
dissipate.

Then, we can write

∆χc(ρ, ub) = ∆χc,0(ρ) + ∆χc,ub
(ub),

∆χc,0(ρ) =
ic−ib∑
j=1

λj∆τj ,

∆χc,ub
(ub) = xc − xb + ∆χc,0(ρ)− τc,0(ρ)ub

ub − λf (ub)
λf (ub),

where

λj = Λ (ρic−j , ρc) ,

∆τj =
{

L
V−λj

, ic − j > ib,
(ib+1)L−xb

V−λj
, ic − j = ib,

τc,0(ρ) =
ic−ib∑
j=1

∆τj ,

λf (ub) = Λ(rf (σb, ub), ρc).

Substituting (4.4), we calculate ub so that

xc + ∆χc,0(ρ) + ∆χc,ub
(ub) = xb + ub(xd − xb)

ub − λd
.
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The above closed form solution is applied at each time t until there is no more
congestion ahead of the controlled vehicle. If ub is calculated to be less than umin
or greater than umax, we apply these extreme values instead.

The optimality of ub can especially easily be shown for Vb = V , since in that case,
as long as ub is low enough so that the vehicle avoids the congestion wave, it does not
affect the time when the congestion wave is completely dissipated. For τ ∈ [0, τc,0),
the inflow to the congestion wave depends on the initial conditions of the traffic
between the controlled vehicle and the congestion wave, so the choice of ub can only
affect what happens after τc,0. Letting Vb = V yields rf (σb, ub) = σb, the difference
between inflow to and outflow from the congestion wave is V (σb − σ) = −V σβ, and
the congestion wave is dissipated at

τc = τc,0 + (χd(τc,0)− χc(τc,0)) ρc
V σβ

.

Selecting maximum ub so that χb(τc) ≤ χd(τc) satisfies the congestion wave avoid-
ance constraints and leads to minimum tf .

4.3 Simulation Results

We tested the control law in simulations. The simulation scenario in question is as
follows:

1. t < t0: The traffic is in free flow, with heterogeneous traffic density. The
controlled automated vehicle is moving at speed umax.

2. t0 ≤ t < t1: A traffic jam is caused by blocking the road at position xd(t0).
The automated vehicle is acting as a moving bottleneck, and its speed is
controlled so that the traffic jam is cleared as soon as possible.

3. t ≥ t1, xb(t) ≤ xd(t): The blockage is removed and the traffic jam is being
resolved. The automated vehicle’s speed is controlled so that it helps dissipate
and avoids the traffic jam with minimum delay.

4. xb(t) > xd(t): The vehicle has passed the traffic jam and it continues at speed
umax.

The simulation results for umax = 80 km/h are shown on Figure 4.4. Warmer
colors represent higher traffic density and the traffic jam is outlined in dashed red
line. The trajectory of the controlled automated vehicle is represented by full red
line. The parameters of the fundamental diagram we used were V = 110 km/h,
σ = 45 veh/km, P = 210 veh/km and we take ρj so that V(ρj) = umax. The
parameters of the moving bottleneck are β = 0.5 and Vb = 110 km/h.

The reduction of capacity happens at t0 = 0.1 and lasts for 15 minutes. Dur-
ing this time, the capacity at xd = 40 is reduced to 30%. The minimum and
maximum speeds of the controlled vehicle are taken to be umin = 50 km/h and
umax = 100 km/h. We compare three cases:
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(a) Controlled

(b) Fast

(c) Slow

Figure 4.4: Traffic densities and moving bottleneck trajectories for the three cases.
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Figure 4.5: Controlled vehicle speeds for the three cases.

1. Case 1 (Controlled moving bottleneck): The vehicle is controlled according
to the control law from Section 4.2.

2. Case 2 (Fast moving bottleneck): The vehicle does not reduce its speed, and
continues at umax until it is forced to slow down by entering the traffic jam.

3. Case 3 (Slow moving bottleneck): The vehicle reduces its speed to umin until
there is no longer any traffic jam ahead of it.

We can see that by implementing such control strategy, the controlled vehicle
avoids the traffic jam with little delay, while also helping resolve it faster. In second
case, the controlled vehicle does traverse the road segment the fastest out of the
three cases, but it does not help clear the traffic jam, and is forced to sharply reduce
its speed while inside the congestion, as shown on Figure 4.5. In case the vehicle
reduces its speed to umin, it helps resolve the traffic jam, but it is unnecessarily
delayed.

The achieved average travel times for the three scenarios are ATT = 0.5913 h
for case 1, ATT = 0.5900 h for case 2, and ATT = 0.6048 h case 3. We can
see that applying the control law from Section 4.2 results in almost no increase in
ATT compared to the fast moving bottleneck case, and we see an increase in ATT
in the slow moving bottleneck case due to it to causing unnecessary additional
congestion. Total variations of traffic density for the three cases are shown in
Figure 4.6. Although it caused a (very) slight increase in ATT, we see that the
controlled moving bottleneck is able to decrease the ATV of traffic density, thus
having a calming effect on the overall traffic without impeding the throughput.
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Figure 4.6: Total variation of traffic density for the three cases.

We examined the average influence this control law has on the surrounding
traffic, through 100 simulation runs for randomly generated background traffic in
the range [σ/2, σ] and three different values for umax. As performance metric, we
considered the ATT (results are shown on Figure 4.7 and in Table 4.1) and the
ATV results are shown on Figure 4.8 and in Table 4.2.

We can see that employing the described control law leads an improvement in
traffic conditions, in addition to ensuring more desirable conditions for the con-
trolled automated vehicle. The ATT for this case is only very slightly higher than
in the case of a fast moving bottleneck, while the ATV is lower. In the slow moving
bottleneck case, although we avoid entering the traffic jam with the controlled vehi-
cle, the ATT is increased due to a drop in throughput, and the ATV is comparable
to than in the controlled case. Note that the control law was not explicitly derived
in order to minimize ATT or ATV, so we might get even greater reduction by using
optimization-based control.

4.4 Summary

In this chapter we considered the possibility of using automated vehicles acting as
moving bottlenecks for congestion wave dissipation and avoidance. The problem
was approached from the perspective of the controlled automated vehicle, and the
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Figure 4.7: Average travel times in hours comparison.

Table 4.1: Average travel times. Without delays, ATT0 = 0.5 h

umax[km/h] Controlled Fast Slow
80 0.5931 0.5905 0.5894
90 0.5923 0.5900 0.5889
95 0.6026 0.5972 0.5949

control objective was minimizing its vehicle delay and avoiding the traffic jam. This
led to an optimization problem with controlled vehicle speed as the control variable,
to which we gave an analytical solution under some assumptions.

The control law designed in this way was shown to achieve good results, suc-
cessfully avoiding the traffic jam at low delay. By applying this control, the overall
traffic conditions were also improved in terms of homogeneity, with only a very
small decrease in throughput and total travel time.
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Figure 4.8: Average total variations of traffic density comparison.

Table 4.2: Average total variations of traffic density

umax[km/h] Controlled Fast Slow
80 113.6694 120.4884 114.9623
90 114.0927 120.6848 114.4940
95 113.2028 119.5922 115.1994



Chapter 5

Platoon catch-up coordination

In this chapter we discuss the problem of platoon catch-up coordination, i.e. how
vehicles starting from different positions on the road should adapt their speeds

so that they form a platoon en-route. Most proposed large-scale platooning solu-
tions involve a layered control architecture [100]. On the higher layer, platooning
coordinator plans the transport assignments and optimizes vehicle routes, including
identifying and managing potential platoons. On the middle layer, vehicles receive
their routes and generate their speed profiles, which the lower layer control is tasked
to follow. Platoon catch-up control is handled on the middle layer. There are two
approaches we can take in studying this problem.

The first sub-problem pertains to predicting the vehicle trajectories during the
catch-up phase. Here we assume that some control laws are governing the motion
of the vehicles, and apply it to vehicle and environment models in order to predict
when and where platoon merging will occur. These control laws can be learned
from experimental data, depending on the deviation of vehicles’ speeds from their
reference values and road grade at their position.

The second sub-problem is designing an optimal control law for platoon catch-
up. The case when only the varying road grade and engine power constraints are
considered is well known in the literature as the look-ahead vehicle control problem
[101, 102] In contrast, we consider the influence of traffic, and calculate energy-
optimal catch-up speed pairs taking the interaction between the trucks and the
surrounding traffic into account.

We will first give the model of vehicles used in this chapter in Section 5.1, then
in Section 5.2 describe reasons we might deviate from the desired catch-up speeds,
and finally deal with the two sub-problems in detail in Sections 5.3 and 5.4.

5.1 Vehicle model

While the two sub-problems studied in this chapter have different goals, they will
share the basic simplified model of vehicle longitudinal dynamics. Since in this

51
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chapter we consider control at a higher level than the level of a single vehicle, a
simple vehicle model will be used. The reader is referred to [103] for more detailed
vehicle models. By applying Newton’s second law of motion, the dynamics of vehicle
i can be expressed as

miv̇i = Ft,i − Fb,i − Fa,i(vi, di)− Fr,i − Fg,i(α(xi)),
ẋi = vi,

(5.1)

where xi is the vehicle’s longitudinal position, vi the vehicle speed andmi the vehicle
mass. The vehicle is actuated through controlling the traction force Ft,i, and the
braking force Fb,i, either by a human driver or some form of cruise control. Two
resistive forces are considered, roll resistance Fr,i and aerodynamic drag Fa,i(vi, di).
The road grade at position x is denoted by α(x), and the gravitational force acting
on the vehicle in the opposite direction of its movement,

Fg,i(α(xi)) = mig sin (α(xi)) .

The aerodynamic drag Fa,i is major component of the resistive force acting on
a large vehicle. Based on the vehicle’s speed vi and the distance to its preceding
vehicle in a platoon di, the aerodynamic drag is modelled as

Fa,i(vi, di) = 1
2ρaAacDφ(di)v2

i = kav
2
i φa(di),

where φa(d) is positive, monotonically increasing and goes to 1 as d goes to infinity.
Assuming we have a platoon of np vehicles with constant headway d between

them yields the resistive force acting on the platoon leader Fa,l(u) = kav
2
p and on

followers Fa,f (u) = kav
2
pφf , φf = φa(d) < 1. Here vi = vp since all vehicles drive at

the same speed in order to maintain constant headway. Then the total aerodynamic
resistance acting on the whole platoon can be written as Fa,p(vp) = kav

2
pφp, where

φp = φl + (np − 1)φf is the total air drag coefficient of the platoon. Platooning
always reduces the total air drag, i.e. air drag coefficients of single vehicles would
be φ1 = φ2 = 1, while the total air drag coefficient of the platoon consisting of those
vehicles would be approximately φp ≈ 1.7, assuming the intervehicular distance is
20m [76].

Since the road grade is given as a function of the position, it can be beneficial
to rewrite (5.1) to the form with position as the independent variable and time as
dependent variable. Since vi > 0, xi(t) is a bijection and we can write ti(x) as its
inverse, i.e. the time when vehicle i is at the position x. Then (5.1) is uniquely
rewritten as

mivi
dvi
dx = Ft,i − Fb,i − Fa,i(vi, di)− Fr,i − Fg,i(α(x)). (5.2)

5.2 Deviations from nominal platoon catch-up

Consider the simple platoon catch-up problem as formulated in Section 1.2. If both
vehicles would be able to keep their desired speeds, v1(τ) = u1 and v2(τ) = u2 for
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Figure 5.1: Deviation from the desired speed due to varying road grade for two
trucks with different masses and negative road grade.

0 ≤ τ ≤ τm, their merging time and position would be

τm = χ0 − dp
u2 − u1

,

χm = u2
χ0 − dp
u2 − u1

.

(5.3)

However, even if the vehicles’ desired speeds are constant, they will often be
forced to deviate from them. Due to their large mass, the gravitational force affects
trucks much more than it affects passenger cars. Heavy vehicles will often need to
reduce their speed in order to tackle even small uphill slopes, even when driving
at full power, and they need to brake or coast on downhill slopes in order to keep
speed within safe bounds. A comparison of speed deviation from the nominal for
the two trucks of different weight is shown in Fig. 5.1.

The surrounding traffic will also have an effect on the vehicles attempting to
catch-up and merge into a platoon. Although when traffic is in free flow, trucks
typically drive at a lower speed than the passenger cars, the same might not hold in
case of congestion. This is particularly important for the case of platoon catch-up,
since here the slower moving leader vehicle can act as a moving bottleneck, in turn
worsening the traffic situation upstream of it. Traffic density and average traffic
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speed upstream of the moving bottleneck moving at speed u1 are rc(σb, u1) and
V(rc(σb, u1)), respectively. If the follower vehicle’s desired speed is higher than this
average traffic speed u2 > V(rc(σb, u1)), it is likely that the follower vehicle will be
forced to reduce its speed and follow the overall traffic.

5.3 Platoon merging distance prediction based on the road
grade

The first subproblem considered in this chapter is predicting how long it will take
two trucks to form a platoon while driving on a highway at set cruise speeds, consid-
ering only the influence of varying road grade. In order to model this influence on
the vehicle speed, we can either use a cruise control model, if available, or identify
the dependence from data. Here, we used the experimental data from [84] to train a
model that we then use to predict the evolution of vehicle speed. We then integrate
the predicted vehicle speed profiles to calculate a prediction of when and where the
platoon merge will occur. A significant advantage of speed prediction based merge
distance prediction is that it gives us a prediction of the vehicle positions during
the whole catch-up phase. This means that a disturbance that will change the pla-
toon merging time can be detected immediately, by comparing the current vehicle
positions, acquired from the GPS system, with their predicted values. When such
a disturbance is identified, the prediction can be recalculated taking into account
the updated information. Additionally, the new information can be used to re-plan
desired vehicle speed profiles in order to compensate for the disturbance.

The prediction of platoon merge time and position can therefore be written
exactly the same as (1.1) and (1.2), but using the predicted vehicle speeds v̂i instead
of the real speeds vi. We use the hat to indicate predictions. The predicted positions
of vehicles are

dχ̂1(τ |t)
dτ = v̂1(τ |t),

dχ̂2(τ |t)
dτ = v̂2(τ |t),

(5.4)

where τ > 0 is the relative time for the prediction calculated at (discrete) time
instant t, i.e. χ̂i(θT |t) is a prediction of xi(t+θ) and T is the sampling period. The
predicted distance is d̂(τ |t) = χ̂1(τ |t) − χ̂2(τ |t). The predicted platoon merging
time and position are given by

τ̂m(t) = min
{
τ ≥ 0

∣∣∣d̂(τ |t) ≤ dp
}
,

χ̂m(t) = χ̂2(τ̂m(t)|t).
(5.5)

Vehicle speed prediction models
We will first discuss two simple speed prediction models, and then give the neural
network speed model proposed in [18] in more detail. Finally, we describe how the
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proposed models were trained from data.

Constant average speed models:

The simplest vehicle speed prediction model assumes that both vehicles perfectly
follow their reference speeds, assuming there are no disturbances. In that case,
vehicle speed predictions are taken to be constant v̂1 = u1, v̂2 = u2, and platoon
merging time and distance predictions are the same as (5.3), i.e.

τ̂m(t) = χ0(t)− dp
v̂2 − v̂1

,

χ̂m(t) = v̂2
χ0(t)− dp
v̂2 − v̂1

,

(5.6)

where v̂1 = u1 and v̂2 = u2.
However, as already discussed, due to the changing road grade, traffic conditions

and other exogenous effects, vehicle speeds will change. It has already been shown
that even if there is no influence of traffic, even the mean speed deviation will be
different for different vehicles (Fig. 5.1). Therefore, the prediction can be improved
by incorporating mean speeds v̂1 = v̄1 and v̂2 = v̄2 in (5.6) as speed predictions
during the catch-up phase for the training set of the given experiment scenario.

Road grade moving average speed model:

Better results can be obtained by modelling the vehicle speed deviation from its
nominal value as a piecewise linear function of the moving average of road grade
ᾱ(x),

v̂αi (x) = ui + ui ·

{
ki,α+ ᾱ(x) ᾱ(x) ≥ 0
ki,α− ᾱ(x) ᾱ(x) < 0.

(5.7)

An example of measured and modelled vehicle speeds are shown in Fig. 5.2. Note
that the speed prediction for each vehicle is now given as a function of position,
regardless of the vehicles’ measured speed. We use different coefficients for posi-
tive and negative grades because the vehicles are affected differently by uphill and
downhill slopes, and the distance over which we average road grade is determined
empirically.

Neural network speed model:

Finally, the vehicle speed prediction proposed in [18] is based on learning the net
propulsive force model and applying it in the dynamic equations (5.1) or (5.2). If
we group air drag resistance Fa,i and roll resistance Fr,i with the traction force Ft,i
and braking force Fb,i into Fp,i = Ft,i − Fb,i − Fa,i − Fr,i, this net propulsive force
can be treated as the control action of the cruise controller, applied to overcome
keep the vehicle speed close to its reference value. The cruise controller can adjust
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Figure 5.2: Actual and predicted deviation from the desired speed u using speed
prediction model (5.7) and negative road grade.

the traction force, within the constraints imposed by maximum engine torque, so
the propulsive force will also be manipulated within constraints that also take the
resistive forces into account. Then, the speed dynamics of vehicle i (5.1) simplifies
to

miv̇i = Fp,i −mig sin(α(xi)).

We assume that Fp,i will be a function of vehicle speed deviation from its refer-
ence speed, and of road grade at its position, Fp,i(vi − ui, α(xi)). Then the speed
prediction can be written as

dv̂i(τ |t)
dτ = Fp,i (v̂i(τ |t)− ui(t), α (χi(τ |t) + x2(t)))

mi
− g sin (α (χ̂i(τ |t) + x2(t))) ,

dχ̂i(τ |t)
dτ = v̂i(τ |t),

with initial conditions χ̂1(0|t) = χ0(t), χ̂2(0|t) = 0, and v̂i(0|t) = vi(t). Alterna-
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tively, taking position as the independent variable, we have

dv̂i(x|t)
dx = 1

v̂i(x|t)

(
Fp,i (v̂i(x|t)− ui(t), α(x))

mi
− g sin (α(x))

)
,

dτ̂i(x|t)
dx = 1

v̂i(x|t)

with initial conditions τ̂1(χ0|t) = 0 or τ̂2(0|t) = 0, and again v̂i(0|t) = vi(t). Now,
the function

Fp,i (v̂i(x|t)− ui(t), α(x))
mi

= v̂i(x|t)
dv̂i
dx (x|t) + g sin (α(x)) (5.8)

can be learned from data. Using this model, we can predict vehicle speed for the
whole length of the road of interest.

In order to do this, we will first need to discretize this model. Consider equally
spaced points along the road, Xk = kL, where the road segment length L is small
enough to capture the dynamics of the system, but large enough so that L > Tvmax,
i.e., vehicles do not pass through segments of length L in less than T . Then, to
each Xk along the vehicle trajectory, for both vehicles i, we assign

τi,k = min {τ |xi(τ) > Xk} ,

vi,k =

τi,k+1∫
τi,k

vi(τ)dτ

τi,k+1 − τi,k
,

where τi,k is the time vehicle i enters segment [Xk, Xk+1], and vi,k its average speed
in the segment. The road grade αk is also taken as average road grade over the
road segment [Xk, Xk+1]. Since road grades will typically be less than 5%, we can
approximate sin(α) ≈ α.

Discretizing (5.8) by integration and taking this approximation, we get

Fp,i (vi,k−1 − ui, αk−1)
mi

=
v2
i,k − v2

i,k−1

2L + gαk−1. (5.9)

It turns out that (5.9) can be learned using a feedforward neural network, as will be
described in the next subsection. Once the model for Fp,i is available, the discrete
prediction model for vehicle speed becomes

v̂i,k+1 = 2L

√
v̂2
i,k + Fp,i (v̂i,k − ui, αk)

mi
− gαk, (5.10)

and v̂i(τ |t) can be written as

v̂i(τ |t) = v̂i,k, τ̂i,k ≤ τ < τ̂i,k+1, (5.11)
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Figure 5.3: Predicted (v̂) and measured (v) speed for the leader and the follower
vehicle and negative road grade.

where
τ̂i,k+1 = τ̂i,k + L

v̂i,k
,

assuming vehicle speeds will be approximately constant while driving on each road
segment.

Finally, the vehicle speed prediction is calculated by initializing (5.10) with
either v̂i,ki(t)(t) = vi(t) or v̂i,ki(t)(t) = ui(t), where ki(t) is the segment the vehicle
is in at time t, Xki(t) ≤ xi(t) < Xki(t)+1 and recursing (5.10). We then use (5.11)
in (5.4) to get

χ̂i(τ |t) = v̂i,ki(t)−1τ̂i,ki(t) +
Ki(τ |t)∑
k=ki(t)

(v̂i,k (τ̂i,k+1 − τ̂i,k)) + v̂i,Ki(τ |t)(τ − τ̂i,Ki(τ |t)),
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where ki(t) and Ki(τ |t) are given by

Xki(t) ≤ xi(t) < Xki(t),

XKi(τ |t) ≤ x2(t) + χi(τ |t) < XKi(τ |t)+1.

The platoon merge time and position predictions are calculated according to (5.5).
A comparison between the measured speeds and the speed prediction acquired this
way, for a part of a test run, is shown in Figure 5.3.

Speed prediction model training
In the experiments [84] two HDVs were driving on an 11 km long stretch of pub-
lic highway between Stockholm and Södertälje, namely between the Hallunda and
Moraberg interchanges. Two standard Scania tractor trucks were used. The lead ve-
hicle had a 480 hp engine and its total weight, including its trailer, was 37.5 tonnes.
The follower vehicle had a 450 hp engine, had no trailer and weighed 15 tonnes. The
road is fairly hilly, with road grades as high as ±5%. The HDVs, initially apart,
attempted to form a two-vehicle platoon by driving with different desired speed
adaptive cruise control (ACC) settings. Three different desired speed pairs were
considered, (u1, u2) = (75, 85), (75, 89) and (80, 89) km/h, where u1 is the reference
speed of the leader vehicle and u2 of the follower. Downhill speed control was also
active, with the offset of 5 km/h, allowing the vehicles to accelerate on downhill
slopes and gain speed up to the set limit. The initial distance between the vehi-
cles ranged from 400m to 1300m. The part of the experiment data that we used
consist of periodical vehicle speed measurements and calculated distance between
the vehicles, together with the information about road topography. Since we are
primarily interested in the catch-up phase, we will consider the platoon merging
completed when the distance between the vehicles is less than dp = 80m, ignoring
phenomena such as persistent drivers [84].

We used the vehicle speed data from the experiments to train the two proposed
vehicle speed prediction models, the neural network approximation model (5.9)–
(5.11) and the simple road grade moving average piecewise linear model (5.7).
Roughly half of the experiment data was used for training and the rest was used
for testing, and only the test runs which resulted in successful platoon formation
were considered. Models for the leader and the follower vehicle speed prediction
were trained independently.

Training the road grade moving average piecewise linear model consists of four
linear regression equations of the form

vi,k − ui
ui

= ki,α± ᾱk,

one for uphill (α+) and one for downhill (α−) slopes for each vehicle. Here,
road grade is averaged over 400meters and the calculated values of the regression
parameters are k1,α+ = −1.28, k1,α− = −1.81 for the leader and k2,α+ = −0.32,
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k2,α− = −0.73 for the follower vehicle. The speeds of both vehicles are more af-
fected by downhill slopes than uphill slopes, and this effect is more pronounced on
the leader vehicle, since it is significantly heavier than the follower vehicle. Uphill
slopes have little effect on the follower vehicle speed, which could also be observed
in experiment data (Fig. 5.1).

Before training the neural network speed model, it’s necessary to select a struc-
ture for the neural network. Several structures were tested, and best results were
acquired using a neural network with two hidden layers with five and three nodes
and hyperbolic tangent sigmoid activation functions. This neural network is shown
in Fig. 5.4. The output of the neural network is a nonlinear function of its inputs,
yi(j) = fw,i(xi(j)), parametrized by its weight matrices W (l)

i , l = 1, 2, 3, which
are trained using a back-propagation algorithm. The j-th sample input and target
data for both neural networks are

xi(j) = [vi,j − ui αj−1]> ,

yi(j) =
v2
i,j − v2

i,j−1

2L + gαj−1.

By adopting this simple model, we assume that the behaviour of the vehicles
only depends on local road topography. This allows us to use this model on any
road segment whose topography is represented in the training data. Since highways
in general follow similar topographic guidelines, most highways should be covered,
except for road segments with long uphill or downhill slopes, which were not present
in the training data. To enable generalization to these road segments, more data
would need to be collected by running more experiments on different roads.

The training data from all three desired speed pair scenarios (u1, u2) was consid-
ered together, excluding data points if the distance between the vehicles is smaller
than 200m, vehicle speed differs from the goal speed by more than 10 km/h or

vk − u

αk

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Fp/m

1

1
1

Figure 5.4: Structure of Fp/m neural networks.



5.3. PLATOON MERGING DISTANCE PREDICTION BASED ON THE
ROAD GRADE 61

0.05

-1

-10

α

0

v − u

0

F
p
/m

0

-0.0510

1

(a) Leader

0.05

-1

-10

α

0

v − u

0

F
p
/m

0

-0.0510

1

(b) Follower

Figure 5.5: Fp/m as a function of v − vref and α for the leader and the follower
vehicle.

the distance from the start is less than 200m. These data points are excluded in
order to avoid speed changes that occur during the final platoon merging maneuver
or if the vehicle is forced to brake, as well as to give the follower vehicle enough
time to reach its goal speed. Finally, to reduce computational effort, the trained
neural networks are implemented as look-up tables. Values of Fp,i/mi are shown
in Fig. 5.5. In general, applied propulsive force will increase with road grade and
vehicle speed deviation. This increase is faster around the origin (vi ≈ ui, α ≈ 0)
and it gets slower for larger speed discrepancies and road grades because the engine
power is limited.

Experimental results
Platoon merging distance prediction based on the two proposed vehicle speed pre-
diction methods is evaluated using the test data set. The comparison is summed
up in Table 5.1 and box plots of relative errors are shown in Fig. 5.6. The relative
error is defined as the ratio between the distance prediction error and the actual
platoon merging position,

χ̃rel
m = χ̂m(t)− χm(t)

χm(t) .

Also shown are naive estimates according to (5.6), assuming vehicle speed is con-
stant. We can see that the neural network based approach shows consistently better
results, with the smallest root mean square error and standard deviation.
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Figure 5.6: Box plots of relative platoon merge distance prediction errors.

Table 5.1: Comparison between the predicted merge distance errors for different
speed prediction models.

Constant v = u Constant v = v̄ Grade mov. avg. Neural network
RMSE STD RMSE STD RMSE STD RMSE STD

(75,85) 1492.65 704.58 1275.65 700.42 814.51 700.49 678.65 579.22
(75,89) 1386.28 948.91 1289.35 952.21 1060.23 956.22 865.83 829.03
(80,89) 1658.93 837.86 1287.53 870.10 975.07 861.52 835.46 786.28
Total 1516.22 855.45 1284.41 851.30 959.11 846.51 800.49 741.33

Once the future speed profile is predicted, it is easy to adopt some empirical
criterion for recalculating the platoon merge distance predictions. This enables us
to only recalculate speed profile predictions when the measured speed deviates from
its predicted value due to some disturbances or model mismatch, instead of recal-
culating them periodically. The results of applying one such recalculation criterion
for one test run are shown on Fig. 5.7. Here, recalculations were done at most
once per 400m, when speed deviations are more than 3 km/h. The speed of the
follower vehicle will be recalculated twice, once at x2 = 600m and another time at
x2 = 1020m. We can see that recalculating the speeds improves the platoon merg-
ing distance prediction, from approximately 393m (4.12% of the current remaining
distance) at the start of the test run to 170m (1.9%) after 600m, and down to 70m
(0.8%) after another 420m.
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Figure 5.7: Recalculated merge distance predictions. The diagonal dashed black
line shows the platoon catch-up phase if both vehicles would follow their reference
speeds, and the horizontal dashed black line indicates distance dp. The coloured
dashed lines show the prediction of the distance between the vehicles, calculated
when x2 = 0, x2 = 600 and x2 = 1020.

The neural network model predicts nominal vehicle speeds reasonably well in
nominal conditions (Fig. 5.3). However, the vehicles will often deviate from their
nominal behaviour, resulting in larger discrepancies between the predicted and ac-
tual speed and causing outliers in merging distance prediction. Most often, we
cannot be sure what caused the deviation. In a number of test runs, the cruise con-
trol goal speeds were set wrong, and a vehicle drove slower or faster than intended.
The nominal downhill speed control offset, set to 5 km/h, was exceeded in some
test runs (clearly visible on Fig. 5.3), and in some other test runs, the offset was
reduced to 3 km/h. Apart from these situations, the traffic conditions are the most
likely cause of larger deviations from nominal vehicle behaviour, especially when
the nominal speed of the vehicles was close to the speed limit.

The box plots (Fig. 5.6) show that the mean error for all methods is negative, i.e.,
all methods on average predict that the platoon will merge sooner than it actually
does. The neural network speed model gives the smallest median and mean relative
errors, −3% and −4%, respectively. In general, the influence of the surrounding
traffic conditions on the trucks is hard to see from truck speed measurements when
the speed of the truck is much lower than the average speed on the road. In the first
test-scenario, the follower vehicle was driving with nominal speed of 85 km/h, while
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the speed limit on the road was 100 km/h, and the road grade was the main cause
of its speed deviation. In two other scenarios, the influence of traffic conditions
was much more apparent, resulting in larger root mean square errors (835.46 and
865.83 versus 678.65).

5.4 Energy-optimal platoon catch-up in traffic

The second subproblem considered in this chapter is calculating energy-optimal
speeds for vehicles attempting to merge to a platoon. These speeds will be given as
reference speeds u1 and u2 that the vehicles will attempt to follow. We will assume
these speeds are constant, unless something in the environment changes from the
time they were calculated. Whereas in the previous section, the focus was solely on
the catch-up phase, we now also have to take into account the platooning phase,
during which the vehicles drive together and achieve fuel savings through air drag
reduction.

We denote by xf the end of the common road segment, i.e. the position at
which the platoon will split, with vehicles continuing their separate ways afterwards.
Without loss of generality, we will set dp to zero in this section. Although in
reality, vehicles might have some degree of flexibility with regard to timing, by only
considering one fixed tf , we ensure that the comparison between different pairs of
speeds (u1, u2) is fair. In order to negate the ostensible energy saving by simply
reducing the speed of a vehicle, in turn causing it to be delayed, we assume that
both vehicles need to be at position xf at some specified time tf . This is trivially
satisfied in case the vehicles did form a platoon, but even if we chose for the vehicles
not to attempt to catch-up and form a platoon, we can use this assumption while
calculating optimal speeds. While calculating the optimal catch-up speeds at time
instant t, we will be using the relative coordinate system similar to the one used in
the previous section, and

τf (t) = (tf − t)T,
χf (t) = xf − x2(t).

For readability, we omit writing t wherever this time instant is irrelevant or obvious.
If the calculated speeds are such that the vehicles merge into a platoon very close
to xf , we will know that is not beneficial to attempt forming a platoon, and the
vehicles can proceed driving according to their own plans.

Another way of dealing with this issue is by including delay into the cost func-
tion. However, this would lead to a more complicated optimization problem and

x2(t) χ2(τ |t) x1(t) χ1(τ |t) χm(t) xf

Figure 5.8: Platoon catch-up problem.
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necessitate ad-hoc combination of two heterogeneous terms. To keep the optimiza-
tion problem consistent and simple, we will therefore use the former approach and
take tf so that it satisfies the most stringent constraints the two vehicles have.

Energy-optimal catch-up problem
We focus on reducing the total work required to overcome the resistive forces acting
on the vehicles. The three major external forces acting on vehicles are air drag,
rolling resistance and gravity. Since we are generating reference speed profiles, we
assume that road grade is zero. In reality, varying road grade will be handled
by some form of look-ahead control. This assumption allows us to focus solely
on reducing air drag, since the contribution of rolling resistance will be the same
whether or not the vehicles adjust their speeds and attempt to merge into a platoon.

Ideally, the metric that we would like to use to evaluate the optimality of cho-
sen catch-up speeds would be fuel consumption. However, getting accurate fuel
consumption models can be very difficult, and will depend on the properties of
the vehicles in question. Instead, we focus on reducing the total work required
to overcome the resistive forces acting on the vehicles, which yields more general
results.

Based on the air drag model described in 5.1, the cost function related to this
component of the overall resistive force can therefore be written

J =
∫ τm

0
v3

1(τ) + v3
2(τ)dτ + φ

∫ τf

τm

v3
p(τ)dτ, (5.12)

where by φ we denote the total air drag coefficient of the platoon. In order for the
vehicles to obey the timing and platoon merge constraints, we require that∫ τm

0
v2(τ)− v1(τ)dτ = χ0, (5.13a)∫ τm

0
v1(τ)dτ +

∫ τf

τm

vp(τ)dτ = χf − χ0, (5.13b)∫ τm

0
v2(τ)dτ +

∫ τf

τm

vp(τ)dτ = χ0, (5.13c)

umin ≤ v1 ≤ umax, (5.13d)
umin ≤ v2 ≤ umax, (5.13e)
umin ≤ vp ≤ umax. (5.13f)

Here constraint (5.13a) ensures that χ1(τm) = χ2(τm), constraints (5.13b) and
(5.13c) ensure that χ1(τf ) = χf and χ2(τf ) = χf , and constraints (5.13d), (5.13e)
and (5.13f) give the admissible ranges for speeds v1, v2 and vp.

Assume first that the vehicles were able to follow their desired speeds, vi(τ) = ui
and vp(τ) = up. We will denote the platoon merging time and position for this case
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by τm0 and χm0 . Then, consistently with the conditions (5.13a)-(5.13c), τm0 and
χm0 are given by (5.3), and the speed of the merged platoon is

vp(τ) = up = χf − χm0

τf − τm0

.

Then the cost function (5.12) becomes

J0(u) = (u3
1 + u3

2)τm0 + φ
(χf − χm0)3

(τf − τm0)2 .

This cost function is parametrized by χ0, χf , τf and φ, and we seek to minimize it
by choice of u1 and u2.

Denote by u10 = χf−χ0
τf

and u20 = χf

τf
the constant speeds individual vehicles

should keep in order to reach χf at τf , and assume this is possible without violating
the constraints on minimum and maximum speed. Note that, although possible,
it will never be beneficial for the leader to go faster than u10 ≤ umax nor for
the follower to go slower than u20 ≥ umin. Therefore, we can further tighten the
constraints to umin ≤ u1 ≤ u10 and u20 ≤ u2 ≤ umax. The minimization problem
that we solve to calculate optimal u1 and u2 then becomes

minimize
u1,u2

(u3
1 + u3

2)χ0

u2 − u1
+ φ

(χf (u2 − u1)− u2χ0)3

(u2 − u1)(τf (u2 − u1)− χ0)2

subject to umin ≤ u1 ≤ u10

u20 ≤ u2 ≤ umax

(5.14)

This is a convex problem and can easily be solved numerically.
However, since we assumed no interference from traffic and other extraneous

factors that might render it impossible for the follower vehicle to maintain its op-
timal speed, we might see discrepancies in behaviour that will make this solution
suboptimal. In Fig. 5.9 we see the calculated optimal catch-up speeds and the aver-
age traffic speed upstream of the leader vehicle calculated in the moving bottleneck
framework. The optimal speeds are given as a function of φ, ranging from 1 (the
follower vehicle in a platoon experiences no air drag) to 2 (platooning does not re-
duce air drag at all). We can see that even for φ ≈ 1.8, we have u2 > V(rc(σb, u1))
(u2 greater than the average traffic speed upstream of the leader vehicle), so the
follower vehicle will not be able to maintain its optimal catch-up speed in face of
congestion caused by the leader, and this discrepancy will cause the actual platoon
merging to occur later. Consequently, the energy savings will be lower than ex-
pected and suboptimal, further motivating including the traffic conditions in the
optimization problem.

The influence of traffic
We assume we can split the initial traffic conditions between them into two zones,
ρ(x, 0) ≈ ρf , x < χc and ρ(x, 0) ≈ ρc, x > χc, where χc is the minimal x for which
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Figure 5.9: Optimal catch-up speeds for leader and follower vehicles and average
traffic speed upstream of the leader vehicle.

V(ρ(χc, 0)) < umax. We calculate ρf and ρc as average values of ρ on [0, χc] and
[χc, χ0] respectively. If V(ρ(x, 0)) ≥ umax for all x ∈ [0, χ0], we set χc = χ0 and
ρc = σ.

The follower vehicle can only be slowed down when it enters the zone of density
ρc, or the zone of density rc(σb, u1), originating from the leader vehicle. In further
text, we denote rf (σb, u2) as simply rf and rc(σb, u1) as rc.

The solution to thus described composite Riemann problem for τ ≈ 0 is given
by

ρ(x, τ) =


rf , x < λrfρf

τ,

ρf , λrfρf
τ < x < χc + λρfρcτ,

ρc, χc + λρfρc
τ < x < χ0 −Wτ,

rc, χ0 −Wτ < x,

where λρ−ρ+ = Λ(ρ−, ρ+). This solution is valid until the first front interaction,
when either the zone of density ρf disappears,

λrfρf
τ = χc + λρfρcτ (5.15)

or the zone of density ρc disappears,

χc + λρfρc
τ = χ0 −Wτ. (5.16)
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We denote the solution in τ to (5.15)

τρf
(u) = χc

λrfρf
− λρfρc

,

and the solution in τ to (5.16)

τρc(u) = χ0 − χc
λρfρc +W

.

The times of following front interactions will be delineated by noting the order in
which the zones of particular density vanished. For example, τρcρf

denotes the
time at which zone of density ρf vanishes in second front interaction, after zone of
density ρc vanished in first front interaction.

The rest of the front interaction times are given by

τρfrf
= τρf

λrfρf
− λrfρc

u2 − λrfρc

,

τρfρc =
χ0 + τρf (λrfρc

− λrfρf
)

λrfρc +W
,

τρcρf
=
χ0 − τρc(λρfrc +W )

λrfρf
− λρfrc

,

τρcrc
= τρc

λρfrc +W

λρfrc
− u1

,

τt1 = τρfrfρc =
χ0 + τρfrf

(vρc
(u2)− u2)

vρc(u2) +W
,

τt2 = τρfρcrf
=
χ0 − τρfρc

(λrfrc
+W )

u2 − λrfrc

,

τt3 = τρcρfrf
= τρcρf

λrfρf
− λrfrc

u2 − λrfrc

,

τρcρfrc
=
χ0 + τρcρf

(λrfrc − λrfρf
)

λrfrc
− u1

From the standpoint of cost function, there are four cases of traffic we need to
consider based on the ordering of front interactions:

• Case 0: The follower is unaffected by traffic. This case typically happens
in light traffic, when the zone of density ρc vanished first, τρc

< τρf
, and

the zone of density rc vanishes before the zone of density rf , with either
τρcρfrc

< τρcρfrf
or τρcrc

< τρcρf
.

This case was already discussed and corresponds to using J0 as the cost func-
tion.
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• Case 1: The zone of density ρf vanishes first, τρf
< τρc , then the zone of

density rf , τρfrf
< τρfρc . The follower vehicle first enters the zone of traffic

of density ρc, and then of traffic density rc at time τt1 .

• Case 2: The zone of density ρf vanishes first, τρf
< τρc , then the zone of

density ρc, τρfrf
> τρfρc

. The follower vehicle only enters the zone of traffic
density rc at time τt2 .

• Case 3: The zone of density ρc vanishes first, τρf
> τρc

, and the zone of
density rf vanishes before the zone of density rc, with τρcρfrc

> τρcρfrf
and

τρcrc
> τρcρf

. The follower vehicle only enters the zone of traffic density rc
at time τt3 .

The latter three cases are shown on Figure 5.10. We denote the speed the follower
vehicle maintains in traffic of density ρ, vρ(u2) = min(u2,V(ρ)). Finally, for traffic
cases i = 1, 2, 3, the platoon merge will occur when the fronts corresponding to the
leader and the follower vehicle intersect, at

τmi
= χ0 − χti + vrc

(u2)τti
vrc

(u2)− u1

χmi
= χ0 + u1τmi

where

χt1 = χ0 −Wτρfrfρc ,

χt2 = u2τρfρcrf
,

χt3 = u2τρcρfrf
,

are the positions where the follower vehicle enters the traffic zone of density rc.
Under the stated assumptions, the cost function (5.12) can be written as

J(u) =


J0(u), τρf

> τρc
, (τρcρfrc

< τρcρfrf
∨ τρcrc

< τρcρf
),

J1(u), τρf
< τρc , τρfrf

< τρfρc ,

J2(u), τρf
< τρc , τρfrf

> τρfρc ,

J3(u), τρf
> τρc

, τρcρfrf
< τρcρfrc

, τρcρf
< τρcrc

,

where

J1(u) = u3
1τm1 + u3

2τρfrf
+ u3

ρc
(τt1 − τρfrf

) + u3
rc

(τm1 − τt1) + (χf − χm1)3

(τf − τm1)2 ,

J2(u) = u3
1τm2 + u3

2τt2 + u3
rc

(τm2 − τt2) + (χf − χm2)3

(τf − τm2)2 ,

J3(u) = u3
1τm3 + u3

2τt3 + u3
rc

(τm3 − τt3) + (χf − χm3)3

(τf − τm3)2 .
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(a) τρf < τρc , τρf rf < τρfρc (b) τρf < τρc ,τρf rf > τρfρc (c) τρf > τρc

Figure 5.10: Front tracking prediction of traffic between the leader (dashed blue)
and the follower (dashed red).

To enforce speed and timing constraints on the vehicles, we add two additional
barrier terms to Ji, corresponding to inequalities

χf − χmi

τf − τmi

≤ up,max,

τmi
≤ τf ,

where up,max is the maximum speed of the merged platoon, which could differ from
umax. These two inequalities ensure that both vehicles will be able to reach position
xf at time tf .

Finally, the optimization problem we want to solve in order of finding the energy-
optimal catch-up speeds for two vehicles under constraints imposed by the surround-
ing traffic is

minimize
u1,u2

J(u)

subject to umin ≤ u1 ≤ u10

u20 ≤ u2 ≤ umax

(5.17)

This problem might not be convex, but it is unimodal.
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Simulation results
Finally, we test the derived control laws in simulations. The metric we will be using
is the percentage of energy saved, according to (5.12), compared to the case the
vehicles would drive at a constant speed and arrive at xf at time tf . In total a 100
simulations were executed for each control law and traffic density range.

The simulation scenario in question is as follows:

1. t < t10: The traffic is in free flow, with heterogeneous traffic density. The
leader vehicle enters the road segment at t = t10.

2. t10 ≤ t < t20: The leader vehicle travels at speed v01, at which it would reach
χf at time tf . The follower vehicle enters the road segment at t = t20.

3. T20 ≤ t < tm: The leader and the follower adjust their speeds according to
the specified control law, until they merge into a platoon.

4. t ≥ tm: The newly merged platoon proceeds and adjusts its speed so that it
reaches xf at time tf .

If the platoon merging fails for any of the control laws, or if the vehicles violate
the timing constraint (not arrive at xf by tf ), the vehicles proceed at their max-
imum speed until the end of the segment, and that simulation run is not counted
in average cost calculations.

The initial background traffic conditions ρi(0) and inflow into the first cell q0(t)
are randomly generated heterogeneous free flow. We used three scenarios with
different traffic density ranges, light traffic [σ/5, σ], medium traffic [σ/3, σ] and
heavy traffic [σ/2, σ], resulting in average traffic density of 0.6σ, 0.66σ and 0.75σ
respectively.

We are comparing three different control laws:

• Control law (1): The optimal reference speeds are calculated by solving
(5.14) once at t = t20, ignoring traffic conditions.

• Control law (2): The optimal reference speeds are calculated by solving
(5.14) periodically during the catch-up phase, ignoring traffic conditions,

• Control law (3): The optimal reference speeds are calculated by solving
(5.17) periodically during the catch-up phase, taking traffic conditions into
account.

We also considered the case when some disturbance is acting on the vehicles.
Namely, at a random time instant between 5 and 10 minutes after the catch-up
has begun, we decrease the speed of the follower vehicle by 20km/h for 10 minutes.
This delays the platoon merging and would result in lower energy savings, so recal-
culating optimal speeds is required. Examples of simulation runs without and with
follower speed disturbance are shown in Figure 5.11 and Figure 5.12. Vehicles form-
ing a platoon are shown in traffic plots by red lines. Dashed black lines represent
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(c) Speed profiles under control law (2) (top) and (3) (bottom)

Figure 5.11: Traffic situation (subfigures (a) and (b)) and speed profiles (c) of one
simulation run with no disturbances. Attempting to form a platoon using control
law (2) led to an increase in energy cost by 0.71636%, whereas the control law (3)
achieved energy savings of 0.50955%.
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(c) Speed profiles under control law (2) (top) and (3) (bottom)

Figure 5.12: Traffic situation (subfigures (a) and (b)) and speed profiles (c) of one
simulation run with follower speed disturbance. Attempting to form a platoon using
control law (2) led to an increase in energy cost by 0.48012%, whereas the control
law (3) achieved energy savings of 0.32183%.
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Figure 5.13: Relative energy consumption change with no disturbances.

ρ (1) (2) (3)
Light -2.4642% -2.4741% -2.6547%

Medium -2.0452% -2.0559% -2.3969%
Heavy -1.3909% -1.4183% -2.0220%

merging vehicles’ trajectories if they would not be slowed down by the traffic, and
dashed green lines in traffic plots for control law (2) represent the trajectories that
would be followed if control law (3) was used instead. Crosses mark the position
and time at which the platoon merge occurred.

The average energy savings are shown in Fig. 5.13 and Fig. 5.14. We can see that
using control laws that take traffic conditions into consideration improves average
energy savings, especially in heavy traffic.

In addition to calculating optimal catch-up speeds, this approach can also be
used to predict when attempting to form a platoon is not beneficial. In Table 5.2
we see the number of "bad platooning attempts", i.e. in how many simulation runs
the vehicles failed to reach the goal position in time, or had higher overall energy
cost. If the calculated optimal catch-up speeds are such that platoon merging is
predicted to occur very close to the end of the common road segment xf , we know
that attempting to form a platoon will not yield fuel savings, and may abandon the
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Figure 5.14: Relative energy consumption change with a disturbance.

ρ (1) (2) (3)
Light -1.8712% -1.9245% -2.1577%

Medium -1.4860% -1.5536% -1.9228%
Heavy -0.7458% -0.8396% -1.5171%

attempt at the start, instead continuing driving at vehicles’ own optimal speeds. We
also see the number of times the algorithm correctly predicted this outcome (true
positive), which could be used to pre-emptively abort the platooning attempt, as
well as the number of times the bad outcome was not predicted (false negative) and
falsely predicted (false positive).

5.5 Summary

Optimal platoon formation coordination is a complex problem, even when consid-
ering only a single pair of vehicles attempting to catch-up and form a platoon. In
this case, the difficulties come from a large number of potential disturbances from
the environment that can disrupt the process.

Selecting correct catch-up speeds for the vehicles is important because failing to
do so might result in higher fuel consumptions. Even deciding whether the vehicles
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Table 5.2: Bad platooning attempt prediction.

Light Medium Heavy
Total bad attempts 5 15 23
Correctly predicted 5 14 19

Not predicted 0 1 4
Falsely predicted 6 3 1

should attempt to platoon at all should be influenced by what kind of disturbances
from the environment we might experience.

It is therefore important to have a good prediction model, for the merging vehicle
trajectories in the catch-up process. Using this model, we tested different catch-
up speed pairs and select the optimal one. Having predicted vehicle trajectories
also enabled us to detect when the vehicles are deviating from the plan, and take
appropriate actions to correct them.

It is clear that traffic conditions can play a significant role in the platoon catch-
up phase, and that they cannot be ignored if we want to make a good prediction.
By using the moving bottleneck framework, we were able to anticipate the effect the
congestion formed upstream of the leader vehicle will have on the follower vehicle.
This allowed us to calculate energy-optimal catch-up speeds, as well as to decide
when platooning should be attempted.



Chapter 6

Conclusion and future work

Finally, in this chapter we conclude the thesis. In Section 6.1 we summarize
and discuss the presented results, and in Section 6.2 outline some possible

extensions and future work on the considered topic.

6.1 Conclusions

The central question of this thesis was how can we influence the overall traffic by us-
ing only a small portion of vehicles that we have direct control over. In accordance
with that, the overarching theme of this thesis is dealing with mixed traffic consist-
ing of some form of automated vehicles and human-driven vehicles in macroscopic
framework. We studied how the interaction between these two classes of vehicles
can be modelled, and what effects may arise from it. The situation of particular
importance and interest was when the fraction of automated vehicles, that can be
controlled from the infrastructure in some way, is small. This corresponds to the
situation that we can expect to have in the near future, until autonomous vehicles
achieve higher market penetration rate.

The question that this thesis aimed to answer is how to use these few directly
controllable vehicles to improve the traffic situation, as well as how to take the
influence of traffic into account when planning these vehicles’ own operations. If
we assume that the vehicles in question are moving slower than the rest of the
traffic, one good way of modelling them macroscopically is to consider them moving
bottlenecks. This assumption is well founded, since human drivers are inclined to
try to maximize their speed, especially in congested traffic. By decreasing the speed
of the directly controlled vehicle, we can create a controlled congestion, giving us
the ability to control the traffic flow.

This effect was examined in the framework of PDE traffic models, and a way
of including it into the cell transmission model (CTM) was proposed. Because
of the correspondence between the CTM and the PDE model, the addition was
done consistently, and without superfluous assumptions. Additionally, a multi-class
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CTM was introduced and discussed, and then used to model vehicle platoons. This
enabled us to use these platoons as moving bottlenecks, implementing a similar
control law in this model as in the framework of CTM with moving bottlenecks.
Even if platoons are not formed a priori, we can apply a different control law to first
organize the vehicles into clusters, and then use them for traffic control as moving
bottlenecks.

With such models available, we studied the problem of congestion wave dissi-
pation and avoidance. From the perspective of the controlled vehicle, the control
objective was to avoid the congestion wave with minimum delay, while also helping
dissipate it quicker. The designed control law was shown to achieve good results,
successfully avoiding the traffic jam with low delay, while also improving the over-
all traffic situation. The traffic density was made more homogeneous, with average
total variation of traffic density reduced by over 5%, while the throughput was kept
at a similar level, with total travel time increases by only 1%.

The CTM with moving bottlenecks also allowed us to take the influence of traffic
into account when planning platoon formation while driving on the road. The
simple case of two vehicles, one leading and one following, attempting to catch-up
and form a platoon while driving on the road was studied. Since the leading vehicle
has to slow down, it can cause a zone of congestion to form upstream of it, so
the following vehicle is likely to encounter heavier traffic, which might render it
impossible for it to follow its optimal calculated trajectory. Instead, the proposed
model was used to take the traffic conditions, and this effect, into account, yielding
a further reduction of energy cost of up to 0.5% in simulations compared to the case
when we ignore the effect of traffic. This approach has an additional benefit of being
able to indicate when attempting to form a platoon would not yield improvements in
fuel consumption, and thus prevent unnecessary deviations from vehicles’ individual
plans. We are able to predict when attempting to form a platoon will result in no
energy savings in approximately 80% of cases.

6.2 Future work

In the work presented in this thesis, we only used single vehicles as actuators. Con-
sidering multiple controlled vehicles, or even having direct control over a small por-
tion of all vehicles participating in traffic is a logical next step. Platoons and moving
bottlenecks can be represented in multi-class CTM in a way that is consistent with
CTM with moving bottlenecks and PDE traffic models, as described in Chapter 3.
It is straightforward to extend the results and control laws presented in Chapter 4
to this model. However, using the multi-class CTM offers additional possibilities
for control, where the vehicles that can be controlled from the infrastructures are
first consolidated into clusters, which are then used for control through the mecha-
nism of moving bottlenecks. Because of its nonlinear nature, this approach suffers
much less from low penetration rates of controllable connected vehicles, compared
to control approaches that are based on linearized traffic models. The preliminary
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traffic control results using the multi-class CTM are promising and this research
direction will be explored next.

Possible use of the multi-class CTM is not limited to this particular control
strategy. By assuming we can assign reference speeds to some vehicles, we may be
able to model many complex situations where controllable connected vehicles are
used to improve the traffic situation. Many of such problems, e.g. vehicle trajec-
tory optimization at a signalized intersection or bottleneck decongestion, have been
approached in a microscopic traffic model setting, which may be problematic due to
having to simulate and consider large number of individual vehicles. However, the
solutions often lead to emergent behaviours with clear spatio-temporal patterns,
which may be captured by macroscopic models. By adapting these solutions, we
might be able to achieve similar results by applying a more general control action to
all vehicles within a spatio-temporal region, instead of calculating separate control
for all individual vehicles, thus greatly improving the tractability of the problem.

There are plenty of other ways this work can be continued and extended. First,
the presented CTMwith moving bottlenecks lends itself to other extensions, in order
to cover a wider array of platooning maneouvres. One of the maneouvres that can be
covered include reordering the vehicles in a platoon, where the vehicles will overtake
each other, causing an even more severe disturbance in traffic. This maneouvre
could be important in order to equalize the benefits that the platooning vehicles
experience, since the first vehicle in a platoon usually benefits less from platooning
than do the vehicles following it. Additionally, the control strategy for platooning
is derived for an aggregated macroscopic traffic model, and it would be beneficial to
test it in microscopic simulations. In this way, we might be able to look specifically
at lane-changing behaviour around the controlled vehicles, though these effects
could also be examined using multi-lane multi-class macroscopic traffic models.
Additionally, more complicated control problems can be tackled, with the added
complexity stemming from, for example, including uncertain traffic information,
dissipating multiple traffic jams, explicitly minimizing some traffic performance
metric, or having different constraints on traffic and controlled vehicles.





Bibliography

[1] European Commission, Roadmap to a Single European Transport Area: To-
wards a Competitive and Resource Efficient Transport System: White Paper.
Publications Office of the European Union, 2011.

[2] M. Barth and K. Boriboonsomsin, “Real-world carbon dioxide impacts of
traffic congestion,” Transportation Research Record: Journal of the Trans-
portation Research Board, no. 2058, pp. 163–171, 2008.

[3] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous ve-
hicles: opportunities, barriers and policy recommendations,” Transportation
Research Part A: Policy and Practice, vol. 77, pp. 167–181, 2015.

[4] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-
based intersection control mechanism,” in Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 2. IEEE Computer Society, 2004, pp. 530–537.

[5] J. Walker, “The self-driving car timeline – predictions from the top 11 global
automakers,” Tech Emergence, 2018.

[6] F. Dressler, H. Hartenstein, O. Altintas, and O. Tonguz, “Inter-vehicle com-
munication: Quo vadis,” IEEE Communications Magazine, vol. 52, no. 6, pp.
170–177, 2014.

[7] T. Litman, Autonomous vehicle implementation predictions. Victoria Trans-
port Policy Institute Victoria, Canada, 2017.

[8] S. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive cruise
control on freeway traffic flow,” Transportation Research Record: Journal of
the Transportation Research Board, no. 2324, pp. 63–70, 2012.

[9] L. D. Baskar, B. De Schutter, and H. Hellendoorn, “Optimal routing for au-
tomated highway systems,” Transportation Research Part C: Emerging Tech-
nologies, vol. 30, pp. 1–22, 2013.

81



82 BIBLIOGRAPHY

[10] R. Nishi, A. Tomoeda, K. Shimura, and K. Nishinari, “Theory of jam-
absorption driving,” Transportation Research Part B: Methodological, vol. 50,
pp. 116–129, 2013.

[11] Z. He, L. Zheng, L. Song, and N. Zhu, “A jam-absorption driving strategy for
mitigating traffic oscillations,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 4, pp. 802–813, 2017.

[12] S. Shellenbarger, “One driver can prevent a traffic jam,” Wall Street Journal,
2016.

[13] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa,
“Overview of platooning systems,” in Proceedings of the 19th ITS World
Congress, Vienna, Austria, 2012.

[14] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, “Heavy-
duty vehicle platooning for sustainable freight transportation: A cooperative
method to enhance safety and efficiency,” IEEE Control Systems, vol. 35,
no. 6, pp. 34–56, 2015.

[15] M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled
automated vehicles: a cell transmission model approach,” in 21st IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC), Maui,
US, 2018.

[16] M. Čičić and K. H. Johansson, “Energy-optimal platoon catch-up in traffic
in moving bottleneck framework,” in European Control Conference (ECC),
Naples, Italy, 2019, Submitted.

[17] L. Jin, M. Čičič, S. Amin, and K. H. Johansson, “Modeling the impact of
vehicle platooning on highway congestion: A fluid queuing approach,” in
Proceedings of the 21st International Conference on Hybrid Systems: Com-
putation and Control (part of CPS Week). ACM, 2018, pp. 237–246.

[18] M. Čičić, K.-Y. Liang, and K. H. Johansson, “Platoon merging distance pre-
diction using a neural network vehicle speed model,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3720–3725, 2017.

[19] A. de Palma and R. Lindsey, “Traffic congestion pricing methodologies
and technologies,” Transportation Research Part C: Emerging Technologies,
vol. 19, no. 6, pp. 1377–1399, 2011.

[20] D. Ettema, J. Knockaert, and E. Verhoef, “Using incentives as traffic man-
agement tool: empirical results of the "peak avoidance" experiment,” Trans-
portation Letters, vol. 2, no. 1, pp. 39–51, 2010.



BIBLIOGRAPHY 83

[21] T. Roughgarden, “On the severity of braess’s paradox: designing networks
for selfish users is hard,” Journal of Computer and System Sciences, vol. 72,
no. 5, pp. 922–953, 2006.

[22] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,” Eco-
nomics of Transportation, vol. 4, no. 3, pp. 135 – 146, 2015.

[23] A. Keimer, N. Laurent-Brouty, F. Farokhi, H. Signargout, V. Cvetkovic, A. M.
Bayen, and K. H. Johansson, “Information patterns in the modeling and
design of mobility management services,” Proceedings of the IEEE, vol. 106,
no. 4, pp. 554–576, 2018.

[24] M. Papageorgiou, E. Kosmatopoulos, and I. Papamichail, “Effects of vari-
able speed limits on motorway traffic flow,” Transportation Research Record:
Journal of the Transportation Research Board, no. 2047, pp. 37–48, 2008.

[25] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. Van Arem, “Con-
nected variable speed limits control and car-following control with vehicle-
infrastructure communication to resolve stop-and-go waves,” Journal of In-
telligent Transportation Systems, vol. 20, no. 6, pp. 559–572, 2016.

[26] Y. Zhang and P. A. Ioannou, “Combined variable speed limit and lane change
control for highway traffic,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 7, pp. 1812–1823, 2017.

[27] M. Papageorgiou and A. Kotsialos, “Freeway ramp metering: An overview,”
IEEE transactions on intelligent transportation systems, vol. 3, no. 4, pp.
271–281, 2002.

[28] G. Gomes and R. Horowitz, “Optimal freeway ramp metering using the asym-
metric cell transmission model,” Transportation Research Part C: Emerging
Technologies, vol. 14, no. 4, pp. 244–262, 2006.

[29] L. D. Baskar, B. De Schutter, J. Hellendoorn, and Z. Papp, “Traffic control
and intelligent vehicle highway systems: a survey,” IET Intelligent Transport
Systems, vol. 5, no. 1, pp. 38–52, 2011.

[30] R. C. Carlson, I. Papamichail, M. Papageorgiou, and A. Messmer, “Opti-
mal motorway traffic flow control involving variable speed limits and ramp
metering,” Transportation Science, vol. 44, no. 2, pp. 238–253, 2010.

[31] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive control
for optimal coordination of ramp metering and variable speed limits,” Trans-
portation Research Part C: Emerging Technologies, vol. 13, no. 3, pp. 185–209,
2005.



84 BIBLIOGRAPHY

[32] X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. Shladover, “Novel free-
way traffic control with variable speed limit and coordinated ramp meter-
ing,” Transportation Research Record: Journal of the Transportation Research
Board, no. 2229, pp. 55–65, 2011.

[33] A. Festag, “Cooperative intelligent transport systems standards in europe,”
IEEE communications magazine, vol. 52, no. 12, pp. 166–172, 2014.

[34] K. Sjoberg, P. Andres, T. Buburuzan, and A. Brakemeier, “Cooperative intel-
ligent transport systems in europe: current deployment status and outlook,”
IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 89–97, 2017.

[35] A. Vinel, L. Lan, and N. Lyamin, “Vehicle-to-vehicle communication in C-
ACC/platooning scenarios,” IEEE Communications Magazine, vol. 53, no. 8,
pp. 192–197, 2015.

[36] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and
M. Nakamura, “Cooperative adaptive cruise control in real traffic situations.”
IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp.
296–305, 2014.

[37] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and
A. M. Bayen, “Evaluation of traffic data obtained via GPS-enabled mobile
phones: The mobile century field experiment,” Transportation Research Part
C: Emerging Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[38] C. De Fabritiis, R. Ragona, and G. Valenti, “Traffic estimation and prediction
based on real time floating car data,” in 11th International IEEE Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2008, pp. 197–203.

[39] T. Kim and K. Jerath, “Mitigation of self-organized traffic jams using coop-
erative adaptive cruise control,” in International Conference on Connected
Vehicles and Expo (ICCVE). IEEE, 2016, pp. 7–12.

[40] A. Askari, D. A. Farias, A. A. Kurzhanskiy, and P. Varaiya, “Effect of adap-
tive and cooperative adaptive cruise control on throughput of signalized arte-
rials,” in Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1287–1292.

[41] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow Dynamics:
Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013.

[42] S. P. Hoogendoorn and P. H. Bovy, “State-of-the-art of vehicular traffic flow
modelling,” Proceedings of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering, vol. 215, no. 4, pp. 283–303,
2001.

[43] A. Ferrara, S. Sacone, and S. Siri, Freeway Traffic Modelling and Control.
Springer, 2018.



BIBLIOGRAPHY 85

[44] F. van Wageningen-Kessels, H. Van Lint, K. Vuik, and S. Hoogendoorn, “Ge-
nealogy of traffic flow models,” EURO Journal on Transportation and Logis-
tics, vol. 4, no. 4, pp. 445–473, 2015.

[45] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear follow-the-leader
models of traffic flow,” Operations research, vol. 9, no. 4, pp. 545–567, 1961.

[46] P. G. Gipps, “A behavioural car-following model for computer simulation,”
Transportation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111,
1981.

[47] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in em-
pirical observations and microscopic simulations,” Physical review E, vol. 62,
no. 2, p. 1805, 2000.

[48] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver model
to access the impact of driving strategies on traffic capacity,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 368, no. 1928, pp. 4585–4605, 2010.

[49] F. Wu and D. B. Work, “Connections between classical car following models
and artificial neural networks,” in 21st IEEE International Conference on
Intelligent Transportation Systems (ITSC), Maui, US, 2018.

[50] J. Barceló and J. Casas, “Dynamic network simulation with aimsun,” in Sim-
ulation approaches in transportation analysis. Springer, pp. 57–98.

[51] M. Fellendorf, “Vissim: A microscopic simulation tool to evaluate actuated
signal control including bus priority,” in 64th Institute of Transportation En-
gineers Annual Meeting. Springer, 1994, pp. 1–9.

[52] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation
of urban mobility,” in The Third International Conference on Advances in
System Simulation (SIMUL), Barcelona, Spain, vol. 42, 2011.

[53] S. Ossen and S. P. Hoogendoorn, “Heterogeneity in car-following behavior:
Theory and empirics,” Transportation research part C: emerging technologies,
vol. 19, no. 2, pp. 182–195, 2011.

[54] S. Benzoni-Gavage and R. M. Colombo, “An n-populations model for traffic
flow,” European Journal of Applied Mathematics, vol. 14, no. 5, pp. 587–612,
2003.

[55] S. P. Hoogendoorn and P. H. Bovy, “Continuum modeling of multiclass traffic
flow,” Transportation Research Part B: Methodological, vol. 34, no. 2, pp.
123–146, 2000.



86 BIBLIOGRAPHY

[56] M. W. Levin and S. D. Boyles, “A multiclass cell transmission model for
shared human and autonomous vehicle roads,” Transportation Research Part
C: Emerging Technologies, vol. 62, pp. 103–116, 2016.

[57] S. Logghe and L. H. Immers, “Multi-class kinematic wave theory of traffic
flow,” Transportation Research Part B: Methodological, vol. 42, no. 6, pp.
523–541, 2008.

[58] J. Van Lint, S. Hoogendoorn, and M. Schreuder, “Fastlane: New multiclass
first-order traffic flow model,” Transportation Research Record: Journal of
the Transportation Research Board, no. 2088, pp. 177–187, 2008.

[59] S. Fan and D. B. Work, “A heterogeneous multiclass traffic flow model with
creeping,” SIAM Journal on Applied Mathematics, vol. 75, no. 2, pp. 813–835,
2015.

[60] P. Bagnerini and M. Rascle, “A multiclass homogenized hyperbolic model
of traffic flow,” SIAM journal on mathematical analysis, vol. 35, no. 4, pp.
949–973, 2003.

[61] M. Wright, G. Gomes, R. Horowitz, and A. A. Kurzhanskiy, “A new model for
multi-commodity macroscopic modeling of complex traffic networks,” arXiv
preprint arXiv:1509.04995, 2015.

[62] R. E. Stern, S. Cui, M. L. D. Monache, R. Bhadani, M. Bunting, M. Churchill,
N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprin-
kle, and D. B. Work, “Dissipation of stop-and-go waves via control of au-
tonomous vehicles: Field experiments,” Transportation Research Part C:
Emerging Technologies, vol. 89, pp. 205 – 221, 2018.

[63] S. Cui, B. Seibold, R. Stern, and D. B. Work, “Stabilizing traffic flow via a
single autonomous vehicle: Possibilities and limitations,” in Intelligent Vehi-
cles Symposium (IV). IEEE, 2017, pp. 1336–1341.

[64] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari,
S.-i. Tadaki, and S. Yukawa, “Traffic jams without bottlenecks–experimental
evidence for the physical mechanism of the formation of a jam,” New journal
of physics, vol. 10, no. 3, p. 033001, 2008.

[65] M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales, and B. Seibold,
“Self-sustained nonlinear waves in traffic flow,” Physical Review E, vol. 79,
no. 5, p. 056113, 2009.

[66] J.-P. Lebacque, J. Lesort, and F. Giorgi, “Introducing buses into first-order
macroscopic traffic flow models,” Transportation Research Record: Journal of
the Transportation Research Board, no. 1644, pp. 70–79, 1998.



BIBLIOGRAPHY 87

[67] C. Lattanzio, A. Maurizi, and B. Piccoli, “Moving bottlenecks in car traffic
flow: a pde-ode coupled model,” SIAM Journal on Mathematical Analysis,
vol. 43, no. 1, pp. 50–67, 2011.

[68] M. L. Delle Monache and P. Goatin, “A front tracking method for a strongly
coupled pde-ode system with moving density constraints in traffic flow,” Dis-
crete and Continuous Dynamical Systems-Series S, vol. 7, no. 3, pp. 435–447,
2014.

[69] M. D. Simoni and C. G. Claudel, “A fast simulation algorithm for multiple
moving bottlenecks and applications in urban freight traffic management,”
Transportation Research Part B: Methodological, vol. 104, pp. 238–255, 2017.

[70] J. C. Muñoz and C. F. Daganzo, “Moving bottlenecks: a theory grounded on
experimental observation,” 15th International Symposium on Transportation
and Traffic Theory, pp. 441–462, 2002.

[71] C. F. Daganzo and J. A. Laval, “On the numerical treatment of moving
bottlenecks,” Transportation Research Part B: Methodological, vol. 39, no. 1,
pp. 31–46, 2005.

[72] A. Aw and M. Rascle, “Resurrection of" second order" models of traffic flow,”
SIAM journal on applied mathematics, vol. 60, no. 3, pp. 916–938, 2000.

[73] M. Papageorgiou, J.-M. Blosseville, and H. Hadj-Salem, “Modelling and real-
time control of traffic flow on the southern part of boulevard peripherique in
paris: Part I: Modelling,” Transportation Research Part A: General, vol. 24,
no. 5, pp. 345–359, 1990.

[74] G. Piacentini, P. Goatin, and A. Ferrara, “Traffic control via moving bottle-
neck of coordinated vehicles,” in 15th IFAC symposium on control in trans-
portation systems, 2018.

[75] E. Vinitsky, K. Parvatey, A. Kreidiehz, C. Wu, and A. Bayen, “La-
grangian control through deep-rl: Applications to bottleneck decongestion,”
in 21st IEEE International Conference on Intelligent Transportation Systems
(ITSC), Maui, US, 2018.

[76] H. L. Humphreys, J. Batterson, D. Bevly, and R. Schubert, “An evaluation
of the fuel economy benefits of a driver assistive truck platooning prototype
using simulation,” SAE Technical Paper, Tech. Rep., 2016.

[77] R. Horowitz and P. Varaiya, “Control design of an automated highway sys-
tem,” Proceedings of the IEEE, vol. 88, no. 7, pp. 913–925, 2000.

[78] M. E. Khatir and E. J. Davison, “Decentralized control of a large platoon
of vehicles using non-identical controllers,” in Proceedings of the American
Control Conference, vol. 3. Portland, US: IEEE, 2004, pp. 2769–2776.



88 BIBLIOGRAPHY

[79] V. Turri, B. Besselink, J. Mårtensson, and K. H. Johansson, “Fuel-efficient
heavy-duty vehicle platooning by look-ahead control,” in 53rd IEEE Confer-
ence on Decision and Control (CDC). Los Angeles, US: IEEE, 2014, pp.
654–660.

[80] J. Ploeg, D. P. Shukla, N. van de Wouw, and H. Nijmeijer, “Controller synthe-
sis for string stability of vehicle platoons,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 854–865, 2014.

[81] A. K. Bhoopalam, N. Agatz, and R. Zuidwijk, “Planning of truck platoons: A
literature review and directions for future research,” Transportation Research
Part B: Methodological, 2017.

[82] S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas, “Fuel-efficient en
route formation of truck platoons,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 19, no. 1, pp. 102–112, 2018.

[83] K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “When is it fuel efficient
for a heavy duty vehicle to catch up with a platoon?” IFAC Proceedings
Volumes, vol. 46, no. 21, pp. 738–743, 2013.

[84] K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “Experiments on platoon
formation of heavy trucks in traffic,” in 19th IEEE International Conference
on Intelligent Transportation Systems (ITSC), Nov 2016, pp. 1813–1819.

[85] M. Saeednia and M. Menendez, “Analysis of strategies for truck platooning:
Hybrid strategy,” Transportation Research Record: Journal of the Transporta-
tion Research Board, no. 2547, pp. 41–48, 2016.

[86] W. Zhang, E. Jenelius, and X. Ma, “Freight transport platoon coordination
and departure time scheduling under travel time uncertainty,” Transportation
Research Part E: Logistics and Transportation Review, vol. 98, pp. 1–23, 2017.

[87] K.-Y. Liang, Q. Deng, J. Mårtensson, X. Ma, and K. H. Johansson, “The
influence of traffic on heavy-duty vehicle platoon formation,” in Intelligent
Vehicles Symposium (IV). Seoul, Korea: IEEE, 2015, pp. 150–155.

[88] M. J. Lighthill and G. B. Whitham, “On kinematic waves II. a theory of
traffic flow on long crowded roads,” Proc. R. Soc. Lond. A, vol. 229, no. 1178,
pp. 317–345, 1955.

[89] P. I. Richards, “Shock waves on the highway,” Operations research, vol. 4,
no. 1, pp. 42–51, 1956.

[90] B. Greenshields, W. Channing, H. Miller et al., “A study of traffic capacity,”
in Highway research board proceedings, vol. 1935. National Research Council
(USA), Highway Research Board, 1935.



BIBLIOGRAPHY 89

[91] C. F. Daganzo, “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Transportation
Research Part B: Methodological, vol. 28, no. 4, pp. 269–287, 1994.

[92] G. F. Newell, “A simplified theory of kinematic waves in highway traffic, part
i: General theory,” Transportation Research Part B: Methodological, vol. 27,
no. 4, pp. 281–287, 1993.

[93] P. D. Lax, “Nonlinear hyperbolic equations,” Communications on Pure and
Applied Mathematics, vol. 6, no. 2, pp. 231–258, 1953.

[94] H. Holden and N. H. Risebro, Front tracking for hyperbolic conservation laws.
Springer, 2015, vol. 152.

[95] C. F. Daganzo, “The cell transmission model, part ii: network traffic,” Trans-
portation Research Part B: Methodological, vol. 29, no. 2, pp. 79–93, 1995.

[96] J.-P. Lebacque, “The Godunov scheme and what it means for first order traf-
fic flow models,” Proceedings of the 13th International Symposium on Trans-
portation and Traffic Theory, pp. 647–677, 1996.

[97] K. Fadhloun, H. Rakha, and A. Loulizi, “Analysis of moving bottlenecks con-
sidering a triangular fundamental diagram,” International journal of trans-
portation science and technology, vol. 5, no. 3, pp. 186–199, 2016.

[98] C. C. de Wit and A. Ferrara, “A variable-length cell road traffic model: ap-
plication to ring road speed limit optimization,” in 55th IEEE Conference on
Decision and Control (CDC), 2016.

[99] A. Hegyi, S. Hoogendoorn, M. Schreuder, H. Stoelhorst, and F. Viti, “SPE-
CIALIST: A dynamic speed limit control algorithm based on shock wave
theory,” in 11th IEEE International IEEE Conference on Intelligent Trans-
portation Systems (ITSC). IEEE, 2008, pp. 827–832.

[100] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson, “Heavy-
duty vehicle platooning for sustainable freight transportation: A cooperative
method to enhance safety and efficiency,” IEEE Control Systems, vol. 35,
no. 6, pp. 34–56, Dec 2015.

[101] E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen, “Look-ahead control
for heavy trucks to minimize trip time and fuel consumption,” Control Engi-
neering Practice, vol. 17, no. 2, pp. 245–254, 2009.

[102] V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead control
for fuel-efficient and safe heavy-duty vehicle platooning,” IEEE Transactions
on Control Systems Technology, vol. 25, no. 1, pp. 12–28, 2017.

[103] L. Guzzella, A. Sciarretta et al., Vehicle propulsion systems. Springer, 2007,
vol. 1.


