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Abstract

With the transition towards renewable energy and the deregulation of the
electricity markets, the power system is changing. Growing electricity demand
and more intermittent power production increase the need for transfer capacity.
Lower inertia levels due to a higher share of renewables increase the need for
fast frequency reserves (FFR). In this thesis, we study fundamental control
limitations for improving the damping of interarea oscillations and frequency
stability.

The first part of the thesis considers the damping of oscillatory interarea modes.
These system-wide modes involve power oscillating between groups of generators
and are sometimes hard to control due to their scale and complexity. We consider
limitations of decentralized control schemes based on local measurements, as well
as centralized control schemes with limitations associated to actuator dynamics
and network topology. It is shown that the stability of asynchronous grids can be
improved by modulating the active power of a single interconnecting high-voltage
direct current (HVDC) link. One challenge with modulating HVDC active power
is that the interaction between interarea modes of the two grids may have a
negative impact on system stability. By studying the controllability Gramian,
we show that it is possible to improve the damping in both grids as long as the
frequencies of their interarea modes are not too close. It is demonstrated how
the controllability, and therefore the achievable damping, deteriorates as the
frequency difference becomes small. With a modal frequency difference of 5%,
the damping can be improved by around 2 percentage points whereas a modal
frequency difference of 20% allows for around 8 percentage points damping
improvement. The results are validated by simulating two HVDC-interconnected
32-bus power system models. We also consider the coordinated control of two
and more HVDC links. For some network configurations, it is shown that the
interaction between troublesome interarea modes can be avoided.

The second part considers the coordination of frequency containment reserves
(FCR) in low-inertia power systems. A case study is performed in a 5-machine
model of the Nordic synchronous grid. We consider a low-inertia test case where
FCR are provided by hydro power. The non-minimum phase characteristic of
the waterways limits the achievable bandwidth of the FCR control. It is shown
that a consequence of this is that hydro-FCR fails at keeping the frequency nadir
above the 49.0Hz safety limit following the loss of a HVDC link that imports
1400MW. To improve the dynamic frequency stability, FFR from wind power
is considered. For this, a new wind turbine model is developed. The turbine is
controlled at variable-speed, enabling FFR by temporarily borrowing energy
from the rotating turbine. The nonlinear wind turbine dynamics are linearized
to facilitate a control design that coordinate FFR from the wind with slow
FCR from hydropower. Complementary wind resources with a total rating of
2000MW, operating at 70–90% rated wind speeds, is shown to be more than
enough to fulfill the frequency stability requirements. The nadir is kept above
49.0Hz without the need to install battery storage or to waste wind energy by
curtailing the wind turbines.
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Sammanfattning
Övergången till förnybar energi och avregleringen av elmarknaden leder till

förändringar i elnätet. En växande efterfrågan på el och en mer väderberoende
och osäker produktion ökar behovet av överföringskapacitet. En minskning av
rotationsenergin till följd av en högre andel förnyelsebar elproduktion medför även
ett ökat behov av snabba frekvensreserver, fast frequency reserves (FFR). I denna
avhandling så studeras fundamentala begränsningar för att med återkoppling
dämpa interareapendlingar och förbättra frekvensstabiliteten.

Den första delen av avhandlingen undersöker fundamentala prestandabegrän-
sningar för dämpningen av interareapendlingar. Dessa systemövergripande
pendlingar involverar grupper av generatorer som svänger i förhållande till
varandra. Interareapendlingar är ibland svåra att styra på grund av deras skala
och komplexitet. Vi studerar begränsningar vid återkoppling från lokala mätsig-
naler, samt för centraliserade regulatorstrukturer med begränsningar kopplade
till ställdonsdynamik och elsystemets topologi. Det visas hur stabiliteten hos
två olika synkrona nät sammankopplade med högspänd likström, high-voltage
direct current (HVDC), kan förbättras genom att modulera den aktiva effekten
hos en enda HVDC-länk. En utmaning med aktiv effektmodulering är att
växelverkan mellan interareapendlingar hos de två näten kan ha en negativ
inverkan på systemets stabilitet. Genom att studera styrbarhetsgramianen visar
vi att det alltid är möjligt att förbättra dämpningen i båda näten så länge
som frekvenserna hos deras interareapendlingar inte ligger för nära varandra.
Det visas hur styrbarheten, och därmed de möjliga dämpningsförbättringarna,
försämras då frekvensskillnaden blir liten. Då frekvensskillnad är 5% så kan
dämpningen förbättras med cirka 2 procentenheter medan en frekvensskillnad på
20% möjliggör cirka 8 procentenheters förbättring av dämpningen i båda näten.
Resultaten valideras i en detaljerad simuleringsstudie av två elnät (vardera med
32 noder) sammankopplade med en HVDC-länk. Utöver detta undersöks även
koordinerad styrning av två och fler länkar. För vissa elnätstopologier visas det
att växelverkan mellan besvärliga interareapendlingar kan undvikas.

I avhandlingens andra del undersöks koordinering av frekvenshållningsreserver,
frequency containment reserves (FCR), i kraftsystem med låg rotationsenergi.
En fallstudie genomförs i en modell av det nordiska kraftsystemet bestående
av 5 maskiner. Vi undersöker ett scenario med låg rotationsenergi där FCR
tillhandahålls från vattenkraft. Vattenvägarnas icke-minfasegenskaper medför en
bandbreddsbegränsning. En konsekvens av detta är att FCR baserad på enbart
vattenkraft misslyckas med att hålla frekvensen över det tillåtna gränsvärdet
49,0Hz efter bortfallet av en HVDC-länk som importerar 1400MW. För att
förbättra frekvenssvaret undersöks möjligheten att tillhandahålla FFR från
vindkraft. För detta ändamål så utvecklas en ny vindkraftverksmodell. Turbinen
styrs med variabelt varvtal och tillåter FFR genom att tillfälligt låna energi från
turbinen. Vindkraftverket linjäriseras för att möjliggöra en koordinering med
långsam FCR från den befintliga vattenkraften. Kompletterande vindresurser med
totalt 2000MW märkeffekt (vid 70–90% av nominell vindhastighet) visar sig vara
mer än tillräckligt för att uppnå frekvenskraven. Frekvensen hålls över 49,0Hz
utan att behöva installera batterilager eller begränsa vindkraftens produktion
och spilla energi från vinden.
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Chapter 1

Introduction

With the transition towards renewable energy, and the deregulation of the electricity
markets, generation patterns and grid topology are changing. A more weather
dependent intermittent power production, growing electricity demand, and a more
interconnected electricity market increase the need for transfer capacity. At the same
time, the frequency stability of grids are becoming more sensitive to load imbalances
due to the growing share of converter-interfaced generation. The utilization of
controllable power electronics devices, such as high-voltage direct current (HVDC)
transmission lines, is considered a key to ensuring stable and secure operation of
today’s power system. The present thesis aims to study uses and limitations of
controllable power electronics devices for improving dynamic stability of power
systems. Of particular interest are the fundamental control limitations arising when
dynamic interactions with the power source is in conflict with the control objective.

The first part of the thesis considers the use of HVDC control for stabilizing
interarea oscillations. An analysis of the fundamental control limitations imposed
by the interactions of two synchronous grids over a single controlled HVDC line
is performed. Following this we study how coordinated control of two or more
links can be used to circumvent these limitations. In addition we also consider
control performance limitations associated with the measurement type. We identify
conditions for when damping control based on local measurements may conflict with
transient rotor angle stability.

The second part consider frequency stability. Here we extend the scope past
HVDC transmission to also include other controllable energy sources such as wind
turbines, battery storage, and hydropower plants. A decentralized control scheme
is developed to achieve a global frequency containment objective in a low-inertia
power system. The control scheme assumes that higher-order network dynamics,
such as interarea modes, are stable. To ensure this, a scalable stability criterion is
developed that provide a priori stability guarantees for connecting new devices to
the power system, using only local information.

This introductory chapter is organized as follows. Section 1.1 gives a motivation

1
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Share of electricity production from renewables
Renewables includes electricity produc�on from hydropower, solar, wind, biomass. and waste, geothermal, wave and �dal sources.
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Figure 1.1: Graphic illustrating the share of renewables [1] (with data from [2, 3]).

to why further research in power system stability is necessary. In Section 1.2 practical
examples of HVDC damping control are studied. The examples show how dynamic
interactions between the interconnected systems limit the usefulness of HVDC
control. Section 1.3 considers frequency control in a low-inertia power system. An
example show how fast acting control from converter-interfaced renewable energy can
be used to fulfill dynamic requirements, not achievable by conventional synchronous
generation. In Section 1.4, we formulate the problem this thesis addresses. Lastly,
Section 1.5 lists the remaining structure of the thesis, its contents and contributions.

1.1 Motivation

Electric power systems are facing significant changes, motivated by a changing
climate and increased environmental awareness. Between 1985 and 2020 the world
share of electricity production from renewables grew from 21% to 29% as illustrated
in Figure 1.1. In 1990, around 71% of the world’s population has access to electricity;
this has increased to 87% in 2016 [1]. Much of this growth has been met by an
increase in coal and gas as shown in Figure 1.2. But the total share of renewable
energy is increasing. A continued growth in renewable energy will lead to power
system with lower synchronous generation and a more intermittent energy supply.
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Figure 1.2: Graphic illustrating the global electricity mix [1] (with data from [2, 3]).

This imposes new technological challenges. In this thesis we study control methods
for improving power system stability margins. The goal is to improve reliability and
allow for a more cost efficient use of the power system infrastructure. To sustain a
growth backed by renewable energy, technological developments are needed to make
renewables a cost effective alternative to fossil fuels.

The increased share of renewable energy also leads to a transition from central-
ized large-scale electricity producers, towards a more decentralized system with
small-scale producers. Another alteration to the power system seen during the last
couple of decades is the deregulation of the electricity market [4, 5]. The classical
vertically integrated system is split up into generation, transmission system opera-
tors, distribution system operators, and retailers. System operators used to have
full control over the system, but this is no longer the case. At the same time we
see an increase in long distance transmission. An increase enabled by a growing
interconnection between countries, e.g., using HVDC. Investments, motivated by
climate change, and deregulation of the power system have led to an increase in
installed generation and transactions. However, due to uncertainties and long lead
times, investments in the transmission system have not followed the same pace. As
a result, congestion and stability problems are a growing problem in today’s power
systems. This thesis deals with the latter of these issues.
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(a) The Nordic power system

(b) Nuclear power

(c) Hydro power

(d) Wind power

(e) HVDC

Figure 1.3: The Nordic power system (a) is an extensive power system with generation
relying mainly on hydro (c) and nuclear (b). The system is experiencing great changes due
to a decommissioning of nuclear power plants and an increase in converter-interfaced wind
power (d). At the same time HVDC transmission (e), purple lines in (a), are increasingly
installed in the power system integrating the Nordic electricity market with the Continental
European, the Baltic, and the UK grid. Thermal plants (including nuclear power plants)
are indicated by triangles in (a). Hydro plants, mostly located in Norway and northern
Sweden and Finland, are indicated by squares. (a) Map courtesy of Svenska kraftnät.
(b) Image courtesy of Vattenfall, photo: Elin Bergqvist. (c) Image courtesy of Vattenfall,
photo: Hans Blomberg. (d,e) Images courtesy of ABB.
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System operators need to ensure that the variable load demand is constantly
matched with generation from dispatchable energy sources such as coal, gas, nuclear
(Figure 1.3b), and hydro (Figure 1.3c), together with intermittent energy sources such
as solar and wind (Figure 1.3d). For power systems with long transmission corridors,
such as the Nordic power system (Figure 1.3a), transmission capacity is sometimes
limited by dynamical stability [6, 7]. In this work, we study a dynamic phenomenon
known as interarea oscillations. The dynamics of these involve electromechanical
interactions between large generator groups in different regions (or areas) of the
system oscillating against each other in poorly damped modes. Sufficient stabilizing
control often requires coordinated tuning of multiple components. The strength and
controllability of HVDC (Figure 1.3e) make it suitable for stabilization of these
system-wide oscillatory modes.

With an increasingly intermittent power production and a deregulated electricity
market, we see an increase in long distance transmission and international trade.
Because of this, operation in highly stressed conditions is becoming more common.
Instability in the form of interarea oscillations have therefore become an even greater
concern than in the past [8]. At the same time, the number of controllable devices
in the grid is growing rapidly. The control of power electronic based devices such as
HVDC links and flexible ac transmission systems (FACTS) is recognized as a key
factor in maintaining a secure and dependable power system. The interaction between
multiple controllable devices and dynamical components is far from trivial. To deal
with this complexity, researchers have studied optimization-based control methods
[9–14]. Resorting to numerical optimization-based methods may be necessary for
practical applications. However, it can reduce valuable physical insight into the
system. To aid the increasingly complex control problem, this thesis focuses on
understanding the limitations imposed by the network structure and the interaction
between physical devices and controllers.

The potential of HVDC control for damping of interarea modes have been
studied for decades. A prime example of this is the damping of the 0.3Hz north–
south interarea mode in the western North American power system in the 1970s.
During heavy loading, the transmission system frequently experienced growing
power fluctuations as seen in Figure 1.4. This phenomenon constrained the amount
of surplus hydro power that could be transmitted to the southwest. Active power
modulation of the Pacific HVDC Intertie (PDCI) was implemented to counteract
these power oscillations, thereby increasing the transfer capacity of the parallel ac
transmission system [15, 16]. However, the PDCI damping control scheme never left
prototype status. This is because the feedback signal, based on local ac power flow,
had a transfer-function zero which limited the controller gain and caused oscillations
at higher frequencies to worsen [17]. Poor damping of the north–south interarea
mode has continued to be an issue in the western North American power system
where it was one of the major factors in the Blackout of August 10, 1996 [18, 19].

To maintain a high power quality with stable and secure supply, it is important
that new devices aid in services previously provided by synchronous machines.
The strength and controllability of HVDC makes it a suitable technology to aid
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Figure 1.4: Negatively damped power oscillations in the western North American power
system recorded August 2, 1974 [15]. © 1976 IEEE

in controlling the system-wide interarea modes. However, most existing HVDC
installations today are not utilized for this purpose. The purpose of this thesis is
to improve the theoretical understanding of the problem and increase confidence
in new control solutions. Thus increasing the chances for auxiliary HVDC control
schemes, such as damping control, to be adopted by the system operators.

When controlling point-to-point HVDC links that interconnects asynchronous
power systems, both of the connected systems will be affected. As seen in Figure 1.5,
troublesome interarea modes may exist in the power system at either end of the
HVDC link. The focus of this work is on the control limitations imposed by the
interaction of poorly damped modes when controlling HVDC interconnections
between two asynchronous ac grids.
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Figure 1.5: Interarea modes in Europe. Credit Florian Dörfler.

1.2 HVDC Power Oscillation Damping

HVDC is used to strengthen transmission corridors in power systems. Since the
HVDC installations often bridge long distances, they have a strong influence on
dominant power system modes. Through active power injection, damping of interarea
modes, or so called power oscillation damping (POD), can be improved by reducing
local rotor speed deviations between the HVDC terminals. In the following, results
from the operating experience of the PDCI damping control [16] are presented as
practical examples of how HVDC modulation can improve POD. Following this,
simulations on a simplified model are done to further illustrate the concept. The
setup is conceptually the same as the practical example where the PDCI is embedded
in the western North American power system in parallel with the ac transmission
(Figure 1.6). The examples shows that dc active power modulation is effective at
improving POD in a parallel setting. When using HVDC active power modulation
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between asynchronous systems however, damping control may excite poorly damped
modes in the assisting system.

Control of active power injections to provide damping of interarea modes is
an important research topic today [10–14, 20–23] due to the increasing amount
of power electronics, battery storages, and renewable production. However, most
research does not consider the interaction that may occur with the power source,
which in this case would be the other ac grid. In the last example it is shown how
the interaction between interarea modes of two HVDC interconnected ac systems
may limit POD performance.

Example 1.1 (Modulation of the PDCI) The western North American power sys-
tem spans the continent from the western Pacific coast to the foot of the Rocky
Mountains in the east, from Canada in the north and partly into Mexico in the south
as seen in Figure 1.6. The system has a history of poorly damped interarea modes
(Figure 1.4) limiting the amount of surplus hydro power that could be transmitted to
the southwest. To increase the transfer capacity, the Bonneville Power Administrator
began studies which led to the development of a control system to modulate the
PDCI running parallel to the ac transmission system in north–south direction as
seen in Figure 1.6. In Figures 1.7a and 1.7b large disturbances effect on the parallel
Pacific AC Intertie is shown. In Figure 1.7a a 600MW generating unit is relayed
off line. Without the dc modulation in service, the disturbance results in a poorly
damped interarea mode visible as oscillating ac power flow. In Figure 1.7b the
response to a 1100MW load rejection is shown. With dc modulation activated the
improved POD is clearly visible. The POD improvement, allowed for an ac line
rating increase from 2100MW to 2500MW [15, 16].

Although showing promising results, the PDCI control never became produc-
tion grade. One of the major reasons for this was that the local ac power flow
measurement used for feedback, showed a non-minimum phase (NMP) zero that
caused the modulation to introduce a 0.7Hz oscillation under certain operating
conditions [17]. With the installation of wide-area measurement systems (WAMS),
the project has seen new developments. Preliminary studies in [17] found local
frequency measurement at the northern dc terminal (bus 24 in Figure 1.6) to be a
suitable signal for POD, showing good observability and robust performance over
a range of operating conditions. However, it was observed that damping based on
local frequency measurements may deteriorate transient performance and cause first
swing instability for some scenarios, as shown in Figure 1.8a. A centralized controller,
communicating frequency measurements from the southern dc terminal (bus 49
in Figure 1.6), was found to be a more robust alternative, as seen in Figure 1.8b.
The recent implementation of a proof-of-concept WAMS controller found that a
4–5% damping improvement of the north–south interarea mode could be achieved,
without degradation of other modes [24].
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Figure 1.6: One-line diagram of the western North America power system [17]. © 2013 IEEE

(a) System response to relaying 600MW gen-
erating unit without dc modulation.

(b) System response to a 1100MW load rejec-
tion test with dc modulation.

Figure 1.7: Power oscillations in the Pacific AC Intertie following a system disturbance.
Initial ac intertie loading is approximately 2500MW in both scenarios [16]. © 1978 IEEE
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(a) System response using feedback from local
frequency measurement at bus 24.

(b) System response using relative frequency
measurement between buses 24 and 49.

Figure 1.8: Simulation of power flow following the disconnection of generator 26 using
PDCI control, with proportional feedback gain 1000/0.1Hz, and Pmax = 250 MW [17].
© 2013 IEEE

Example 1.2 (Four-Machine Two-Area Test System) This example simulates
HVDC damping control in a parallel configuration similar to the previous example.
An HVDC interconnection is installed in a four-machine two-area power system
as shown in Figure 1.9. The test system was developed in [25] for the study of
electromechanical modes. The implemented model, fitted with some modifications,
is available in the Simulink library [26]. All four generators are equipped with
a steam turbine governor and automatic voltage regulator (AVR). To illustrate
damping improvement, power system stabilizers (PSS) have been deactivated
making the interarea oscillation between Area 1 and 2 unstable. The HVDC link
is a 400MVA, 200 kV point-to-point voltage source converter (VSC) HVDC. The
VSC-HVDC is represented using an averaged model and a Π-circuit transmission
line with typical converter and line data according to [27].

The system is initiated with a 400MW ac and 300MW dc power flow from
Area 1 to Area 2 as seen in Figure 1.9. The interarea oscillation is triggered by
tripping one of the ac transmission lines interconnecting the two areas. Without
HVDC damping control the system is unstable and the two areas eventually separate
as shown in Figure 1.10.

To stabilize the system we use feedback control of the VSC-HVDC link. Con-
trollability analysis shows, as seen in previous studies [11, 28, 29], that active
power-modulation is effective at improving POD in the proposed system. For illus-
trative purposes we here assume an ideal scenario were rotor speed measurements
from all four machines are available to represent the interarea mode. Since the two
machines in each area are of equal size [25], the interarea mode can be represented
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Figure 1.9: A simple four-machine two-area test system with a VSC-HVDC link in parallel
with the ac interconnection.

Figure 1.10: Rotor speeds and phase angle difference between machine 1 and 3 of the
four-machine two-area test system following ac transmission line trip as seen in Figure 1.9.
Without HVDC POD control the system is unstable.

by
∆ω = ω1 + ω2

2 − ω3 + ω4

2 .

HVDC active power is modulated using proportional control

P in
DC = KDC∆ω. (1.1)

With feedback gain KDC = 200 MW/Hz we see in Figure 1.11 that POD is improved.
By increasing the feedback gain KDC to 600MW/Hz we see (in Figure 1.12) that
damping of the interarea mode is improved at the cost of higher active power usage.
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Figure 1.11: Rotor speeds and dc active power of the four-machine two-area test system
following ac transmission line trip as seen in Figure 1.9. DC active power is controlled
using (1.1) with a proportional gain, KDC = 200 MW/Hz.

Figure 1.12: Rotor speeds and dc active power of the four-machine two-area test system
following ac transmission line trip as seen in Figure 1.9. DC active power is controlled
using (1.1) with a proportional gain, KDC = 600 MW/Hz. Compared to Figure 1.11 we see
that a faster disturbance attenuation is achieved at the cost of a higher dc active power.

Example 1.3 (HVDC-Interconnected Asynchronous AC Networks) The system
in Example 1.2 is modified. Two two-area test systems are interconnected using
a VSC-HVDC as seen in Figure 1.13. The two systems are structurally identical,
and as in Example 1.2, they are inherently unstable. An interarea oscillation is
triggered by a load disturbance in the top ac network. The disturbance is attenuated
with the help of the bottom network, through HVDC POD control. The system
will be uncontrollable if the eigenvalues corresponding to the considered interarea
modes coincide [30]. To avoid this, the machine inertia of the bottom network have
been scaled to increase the frequency of the interarea mode by 20%, compared to
the top network. In Figure 1.14a it is seen that both ac networks are stabilized by
the HVDC active power modulation. With increasing feedback gain however, the
controllability of the interarea modes are reduced until the controller can no longer
stabilize the system as seen in Figure 1.14b. As shown in Chapter 4, the proximity
of the interarea modes put an upper bound on the achievable damping.
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Figure 1.13: Two four-machine test systems interconnected with a VSC-HVDC link.

(a) 400MW/Hz (b) 800MW/Hz

Figure 1.14: Frequency difference between western and eastern areas in the two HVDC-
interconnected ac networks following a 200MW load disturbance at time 1–2 s. With a
higher feedback gain in (b) we see that the control fails to stabilize the system.

1.3 Frequency Stability in Low-Inertia Power Systems

Power systems exhibiting low rotational inertia present faster frequency dynamics,
making frequency control and system operation more challenging. Small-scale power
systems, which have historically supplied small geographical regions or cities, have
therefore been interconnected into large synchronous ac grids. With long distance
transmission, modern power systems interconnect, not only cities and regions, but
also countries and continents. This has made it easier to maintain the frequency
quality since more synchronous machines are able to contribute to the rotational
inertia of the grid. Asynchronous HVDC interconnections however, offer no direct
physical improvement to the frequency stability. The reason is that HVDC active
power flow does not depend directly on bus voltage phase angles, but on the
converter control. This adds flexibility, since HVDC links can often react faster
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than conventional transmission, but it also brings an increased complexity. Similarly,
converter-interfaced generation such as wind or solar does not contribute either,
to the inertia of the grid. As renewable production begins to replace conventional
production, frequency stability is a growing challenge for the modern grid [31, 32].
Increasingly unpredictable generation patterns are also putting more stress on
today’s already strained transmission infrastructure [33]. A number of relatively
recent blackouts are related to large frequency disturbances. The incidence of
this phenomena is expected to increase in the future as the energy transition
continues; in fact they have doubled from the early 2000s [34]. Examples from the
literature attributes the root causes of recent blackouts to overloading of transmission
lines following an unsuccessful clearing of a short circuit fault [35], damage on
transmission lines due to extreme weather [36], and power plant tripping due to
malfunctioning of protections [37]. In all of them, the lack of frequency response from
converter-interfaced renewable production made the system operators incapable
of avoiding blackouts. With growing shares of renewables, system operators are
therefore increasingly demanding renewable generation to participate in frequency
containment reserves (FCR) [38].

1.3.1 Frequency Containment in the Nordic Synchronous Grid
The Nordic synchronous grid includes the transmission grids of Sweden, Norway,
Finland, and eastern Denmark. The grid has a high amount of hydro production
with reservoirs that provide a relatively cheap flexibility both on a day-ahead and
hourly operation. This has enabled the Nordic grid to maintain a good frequency
quality, despite its relatively small size. However, as renewable generation begins
to replace conventional generation the amount of kinetic energy in the system is
decreasing. This has an impact on the ability of the system to handle frequency
changes following load and production imbalances.

The Nordic system currently applies two types of FCR. FCR for normal operation
(FCR-N) keeps the frequency within the normal 50.0± 0.1 Hz frequency range. FCR
for disturbance situations (FCR-D) is used to mitigate the impact of incidental
disturbances. Following larger disturbances the maximum instantaneous frequency
deviation (the nadir) should be limited to 49.0Hz [39]. At steady-state, FCR-D is
designed to keep the frequency between 49.9 and 49.5Hz. FCR in the Nordic grid is
almost exclusively provided by hydropower. The same units typically deliver both
FCR-N and FCR-D. Although providing a cheap flexible reserve, hydropower has
dynamic constraints that limits its use in operating conditions with low kinetic
energy. Due to the bandwidth limitations imposed by the NMP dynamics of the
waterways, the response speed of hydro units may not be increased, without reducing
the closed-loop stability margins [40]. Because of this, the Nordic system operators
have developed a new market for fast frequency reserves (FFR), to supplement
FCR-D [41]. The following example is taken from Chapters 7 and 8 of this thesis.
The example show how FFR from converter-interfaced wind power can be used as a
complement to hydro-FCR, fulfilling the system operators FCR-D requirements.
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Example 1.4 (Coordinating Hydro and Wind) Consider a severe load disturbance
in a 5-machine model of the Nordic synchronous grid,1 shown in Figure 1.15. We
consider a low-inertia scenario where the total kinetic energy is only 110GWs.
Assume the dimensioning fault to be the instant disconnection of the NordLink
HVDC cable [42] importing 1400MW from Germany into Norway as shown in
Figure 8.2. Following the incident, FCR-D manages to restore the center of inertia
(COI) frequency ωCOI to 49.5Hz, as seen in Figure 1.16a. We consider two scenarios:
one where FCR is provided by ideal controllable power sources (black curves), and a
second more realistic scenario (red curves) where FCR is provided by hydro units at
buses 1, 2, and 3. As seen in Figure 1.16b, the hydro-FCR shows the characteristic
NMP initial drop, as governors react to the falling frequency. This reduces the
transient FCR response. Thus, hydro-FCR fails to keep the nadir above 49.0Hz.

The requirements can be fulfilled by supplementing hydro-FCR with other power
sources, that are able to deliver power with faster response time. One such energy
source is wind power. Since wind turbines (WTs) are connected to the grid through
back-to-back converters, they can increase their power output to the grid almost
instantly (assuming that the converter is operated within allowed current limits).
Combining hydro-FCR with FFR from wind in Figure 1.17a, we see that the dynamic
FCR-D requirements are now fulfilled.

Figure 1.15: One-line diagram of the Nordic 5-machine (N5) test system.

1The N5 test system is described in Chapters 7 and 8. The full model, and test cases, are
available at the GitHub repository https://github.com/joakimbjork/Nordic5.

https://github.com/joakimbjork/Nordic5
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Figure 1.16: Response to a 1400MW fault. The black curves shows the power injections
and corresponding frequency response where FCR is provided by ideal controllable power
sources. The red curves show the system response with FCR from hydropower.
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(b) WT power output and speed.

Figure 1.17: Response to a 1400MW fault with coordinated FCR and FFR.

In this scenario, we assume that FFR is supplied by uncurtailed wind power,
providing steady power at the maximum power point (MPP). Since the WTs cannot
increase their steady-output, the extra power excursion can only be obtained by
borrowing kinetic energy from the rotating turbines. When returning to the MPP,
the WTs will have to draw extra power from the grid, as seen in Figure 1.17. This
behavior is characterized by slow NMP zeros in the WT’s corresponding transfer
function. In Chapters 7 and 8, we study the control design and models needed to
deliver the coordinated FCR and FFR response shown in Figure 1.17.
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Figure 1.18: The thesis focuses on fundamental control performance limitations imposed by
the power system, control architecture, and actuators and sensors.

1.4 Problem Formulation

In this thesis we consider fundamental control performance limitations for improving
the damping of interarea modes and frequency stability. Of particular interest is
the use of converter-based generation and transmission. Power electronics compo-
nents offer controllability of active power injections, unparalleled by conventional
technologies that are often limited by the dynamic constraints of mechanical valves,
servo systems, etc. [41]. Active power modulation, however, leads to interactions
with other dynamical subsystems of the power system. In this thesis, we study
the limitations arising from these interactions. As illustrated in Figure 1.18, the
limitations relate to the dynamics of the system to be controlled; the available
actuators and sensors; and the control architecture. The control design itself does
not impose particular limitations, but is more of a mean to compute a specific
control law. The thesis does not focus on developing new such methods, but the
results are mainly independent of the control design.

1.4.1 Models for Interarea Oscillations

Interarea modes are a complex dynamic phenomenon involving groups of machines
in one end of the system swinging against machines in other parts of the system.
Swinging of the machine results in ac power oscillating in the interconnecting tie-
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lines. Interarea oscillations are therefore also known as power oscillations. Frequency
stability is concerned with the average network mode. It refers to the ability of a
power system to maintain steady COI frequency following a severe disturbance in
load and generation [8].

To simplify the analysis, a model abstraction is performed. We let the COI mode
and the dominant interarea mode be represented by a two-machine network model.
Consider the Nordic 32-bus Cigré test system [43] shown in Figure 1.19a. The mode
of interest is chosen as the poorly damped interarea mode between the north and
south area. The dynamics of this mode are represented using a two-machine model
where each machine represents a lumped sum of the machines in each respective
area. In Figure 1.19b a similar simplification is shown on the four-machine two-area
test system. Aggregating multiple machines in one area into a single machine is a
common simplifying approach used in analysis [44]. The benefit of the simplified
representation is that the interarea mode is easier to analyze. However, interesting
dynamics might be lost in the simplification. For instance the two-machine model
contains no information about the local modes occurring between the machines
within the two areas in Figure 1.19b.

The dynamics of a power system can be described by a set of differential algebraic
equations

ẋ = f(x, γ, u)
0 = g(x, γ, u)

where vectors x and γ contain system state and algebraic variables, respectively.
The vector u contains control inputs. For the purpose of analyzing the stability
of electromechanical modes, a linearized small-signal model suffices. The small-
signal model considers small deviations [∆x, ∆γ, ∆u] around an operating point
[x, γ, u] = [x∗, γ∗, u∗]. Deviations are assumed sufficiently small so that (if ∂g

∂γ is
invertible) the linearized model

∆ẋ =
(
∂f

∂x
− ∂f

∂γ

(
∂g

∂γ

)−1
∂g

∂x

)
∆x+

(
∂f

∂u
− ∂f

∂γ

(
∂g

∂γ

)−1
∂g

∂u

)
∆u (1.2)

accurately describes system dynamics [25]. Since the linear model always consider
deviations from a linearization point, we drop the “∆” notation. The linearized
model (1.2) gives a linear time-invariant state-space representation

ẋ = Ax+Bu

y = Cx+Du

where A and B are system state and input matrices given by the partial derivatives in
(1.2), and y is some output with output matrix C and direct feed-through matrix D.

1.4.2 Interarea Oscillation Damping
The overarching question addressed in Part I of this thesis is: what are the fun-
damental control limitations for improving the stability of interarea modes using
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(a) Nordic 32-bus test system.

(b) Four-machine two-area system.

Figure 1.19: Model abstraction of dominating interarea mode in two power system models.
The simplified two-machine representation lose information about tie-line flows and local
modes within the two areas and between other machine groupings.

HVDC active power modulation?
A common method to assess the suitability of POD control is using the notation

of controllability and observability, e.g., using the residue method [25, 45, 46].
Although proven to be useful in practice, there is no straight-forward way to relate
the notion of observability and controllability to the fundamental limitations of the
closed-loop performance. In this thesis we instead address limitations associated
with zero dynamics and the dynamics of the controlled power source.

The first question we ask is how and when high-speed excitation control from
AVR affects the potential of ancillary POD control. In particular we are interested
in input-output signal combinations when the AVR influence gives rise to NMP
zeros, since NMP zeros affect the achievable performance and robustness of the
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Figure 1.20: Two asynchronous power systems interconnected by two HVDC links.

closed-loop system. This question is answered in Chapter 3.
Another question we ask is what the fundamental control limitations are when

modulating the active power of HVDC transmission interconnecting asynchronous
power systems. Controlled active power injections can be used to improve POD. The
electrical position of the HVDC terminals affects the controllability and therefore
the efficiency of POD control from the considered network bus. In the simplified
model representation shown in Figure 1.20, line impedance, and thus electrical
position, is visualized as length of the transmission line. However, when modulating
the HVDC link between two networks, active power is injected from one network
to the other causing the interarea modes of the two networks to interact. This
may impose further control limitations. The objective is to describe the underlying
system properties that limit achievable performance in terms of POD. Using HVDC
links interconnecting two asynchronous power systems as shown in Figure 1.20, with
a feedback controller

u = Ky,

the goal is to stabilize the interarea modes by increasing the POD in both the HVDC-
interconnected ac networks. The controller K can be either static or dynamic. The
question answered in Chapter 4 is how the modal interactions between two ac
networks affect the achievable damping performance when controlling a single
interconnecting HVDC link. In Chapter 5 we consider the control of two or more
HVDC links. Here, we identify HVDC configurations that may improve the achievable
POD performance. How can we design controllers to avoid modal interaction between
the interconnected ac networks and when can this be done without making the
system sensitive to actuator, sensor, or communication failure?

The final question we ask is how the measurements available for POD affect the
transient stability following large load disturbances. Is it possible to design a POD
controller, using local frequency measurements, that improves small-signal stability
while avoiding a negative impact on large-signal stability? This question is answered
in Chapter 6.
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Figure 1.21: COI model abstraction of the N5 test system. The simplified representation
lose information about tie-line flows and interarea modes.

1.4.3 Frequency Stability
The overarching question in Part II is how to coordinate frequency reserves in large-
scale power systems. Frequency reserves are provided by a heterogeneous collection
of devices with different capacities and dynamic constraints. To facilitate the analysis
we abstract the power system model to a single-machine equivalent as illustrated
in Figure 1.21. The reduced model describes the COI frequency (ωCOI) dynamics
and assumes that higher-order dynamics (such as interarea modes) are stable. We
do not address limitations associated with local measurements, instead the focus
is on limitations associated with the dynamics of the controlled power sources Hi,
i ∈ {1, . . . , n}. Controllers Ki are to be designed so that the heterogeneous ensemble
collectively fulfills the system operator’s FCR requirement.

To facilitate the control design, models of the actuators Hi are needed. When it
comes to conventional thermal or hydro plants, these models are readily available
from the literature [25]. When it comes to batteries, curtailed wind power plants,
or HVDC links (operated below the converters maximum current capacity), the
dynamics are typically neglected since the converter dynamics are too fast to be
relevant for FCR. For WTs, curtailed operation means that the turbines are operated
at a sub-optimal steady-power output, in order to participate in FCR. In Chapter 8,
we develop a controller that allows WTs to participate in FCR, without the need
for curtailment. The goal is robustness, and for the WT to behave in a predictable
manner for various wind speed conditions.

In Chapter 7 we show how to coordinate controllers Ki so that the global FCR
requirement is fulfilled. We answer the question to when the design target can be



22 Chapter 1. Introduction

fulfilled, while accounting for the dynamic constraints of all participating devices. In
Chapter 8 we answer how to model a variable-speed WT so that its FCR response
can be coordinated with other units, while ensuring stable operation of the turbine.

The COI frequency abstraction (Figure 1.21) does not allow us to directly address
the stability of interarea modes. The question answered in Chapter 9 is how stability
can be guaranteed using only locally available information and without modeling
the network, while allowing for a heterogeneous ensemble Hi 6= Hj , i 6= j, where
actuators may have time delays and NMP dynamics.

1.5 Outline and Contributions

The outline of the remainder of this thesis and its main contributions are summarized
below.

Chapter 2: Background

In this chapter we give a short overview of power system stability and control. A
brief introduction to HVDC technology and a literature study of HVDC control for
power oscillation damping are given.

Part I: Interarea Oscillation Damping

Chapter 3: Zero Dynamics Coupled to High-Speed Excitation Control

In Chapter 3, we present a second-order network model, modeling voltage phase
angles and amplitudes in a connected network. The model is used to study fun-
damental control limitations for improving rotor angle stability. Chapter 3 differs
from the remainder of the thesis in that we include voltage dynamics in the analysis.
This is done in order to explicitly study the consequences that interactions between
voltage and phase angle dynamics have on achievable control performance. In a
single-machine infinite bus (SMIB) model, it is shown that the presence of NMP
zeros are closely linked to the destabilizing effect of AVRs. It is found that NMP
zeros may persist in the system even if the closed-loop system is stabilized through
feedback control. A simulations study show that NMP zeros introduced by AVR
limit the achievable performance and stabilization using feedback control.

Chapter 3 is based on

• J. Björk and K. H. Johansson, “Control limitations due to zero dynamics
in a single-machine infinite bus network,” in IFAC World Congress, Berlin,
Germany, Jul. 2020
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Chapter 4: Single-Line HVDC Control Limitations

Here, we study the fundamental performance limitations in utilizing HVDC for
POD when interconnecting two asynchronous power systems with a single HVDC
line. Using a simplified model, an analytical study is performed. The goal is to
investigate the limitations for POD using active power modulation of a single HVDC
link with no energy storage. It is shown how the proximity of interarea modes puts
a fundamental limit on the achievable performance. The findings are evaluated on a
two HVDC-interconnected two-machine network as well as on an interconnection of
two Nordic 32-bus Cigré test systems [43].

Chapter 4 is based on

• J. Björk, K. H. Johansson, and L. Harnefors, “Fundamental performance
limitations in utilizing HVDC to damp interarea modes,” IEEE Transactions
on Power Systems, vol. 34, no. 2, pp. 1095–1104, Mar. 2019

Chapter 5: Coordinated HVDC Control

In this chapter, we build on the problem formulation of Chapter 4 by adding addi-
tional HVDC links. By coordinated control of multiple HVDC links, the limitations
studied in Chapter 4 can be circumvented. In addition it is shown that decoupled
control of the concerned modes is achievable using a proportional controller. The best
coordinated control design is investigated by looking on input usage and stability
following dc link failure.

Chapter 5 is based on

• J. Björk, K. H. Johansson, L. Harnefors, and R. Eriksson, “Analysis of co-
ordinated HVDC control for power oscillation damping,” in IEEE eGrid,
Charleston, SC, Nov. 2018

Chapter 6: Transient Stability when Measuring Local Frequency

Chapter 6 considers fundamental sensor feedback limitations for improving rotor
angle stability using local frequency or phase angle measurements. Using a simplified
two-machine model, it is shown that improved damping of interarea oscillations
must come at the cost of reduced transient stability margins, following larger load
or generation disturbances. This holds regardless of the control design method. The
results are validated on a modified Kundur four-machine two-area test system [25]
where the active power is modulated on an embedded HVDC link.

Chapter 6 is based on

• J. Björk, D. Obradović, K. H. Johansson, and L. Harnefors, “Influence of sensor
feedback limitations on power oscillation damping and transient stability,”
IEEE Transactions on Power Systems, under review
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Part II: Frequency Stability

Chapter 7: Coordination of Dynamic Frequency Reserves

Chapter 7 considers the coordination of conventional (slow) FCR with faster FFR.
The design results in a dynamic virtual power plant (DVPP) whose aggregated
output fulfills the system operator requirements at all time scales, while accounting
for the capacity and bandwidth limitation of participating devices. The results
are validated in a 5-machine representation of the Nordic synchronous grid. By
coordinating wind and hydro resources, it is shown that the system requirements
can be fulfilled in a realistic low-inertia scenario, even with moderate wind resources,
without the need for curtailment or battery installations.

Chapter 7 is based on

• J. Björk, K. H. Johansson, and F. Dörfler, “Dynamic virtual power plant design
for fast frequency reserves: Coordinating hydro and wind,” IEEE Transactions
on Power Systems, under review

Chapter 8: Uncurtailed Wind Power for Fast Frequency Reserves

In this chapter, we design a wind power model useful for FFR. It is shown that the
dynamical shortcomings of a WT, in providing steady power or slow FCR support,
is suitably described by a linear first-order transfer function with a slow NMP zero.
The model is tested in a 5-machine representation of the Nordic synchronous grid
using the DVPP control developed in Chapter 7.

Chapter 8 is based on

• J. Björk, D. V. Pombo, and K. H. Johansson, “Variable-speed wind turbine
control designed for coordinated fast frequency reserves,” IEEE Transactions
on Power Systems, under review

Chapter 9: A Scalable Nyquist Stability Criterion

Here, we consider stability of electromechanical power system dynamics, separated
into two categories: stability of the average frequency mode, and small-signal rotor
angle stability. Using the generalized Nyquist criterion, a condition that gives a priori
stability guarantees for the connection of new devices are presented. The method
allows for various degree of conservatism depending on the available information.
In particular, a criterion that guarantees stability using only local information is
derived. The method can be applied to a network with heterogeneous devices.
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Part III: Conclusions

Chapter 10: Conclusions and Future Work
Finally, in this chapter we conclude the thesis, summarizing and discussing the
result. We also outline some future and ongoing work, indicating some possible
directions in which this work can be extended.

Other Publications
A number of the results presented in this thesis have previously appeared in

• J. Björk, “Performance quantification of interarea oscillation damping using
HVDC,” Licentiate Thesis, KTH Royal Institute of Technology, Stockholm,
Sweden, 2019

The Author’s Contributions
In the publications listed above, the author of this thesis had the most significant
role in developing the results, and has completed all or the majority of the writing.
Remaining authors have contributed to problem formulations and taken advisory or
supervisory roles.





Chapter 2

Background

A power system can be divided into three parts: generation, transmission, and distri-
bution as shown in Figure 2.1. Its objective is to generate electricity from naturally
available forms and to transmit it to customers connected to the distribution grid.
The advantage of electrical energy is that it can be transported and controlled
with high efficiency and reliability. However, unlike other types of energy, electricity
cannot be conveniently stored. A major challenge of the power system is therefore to
meet the continuously changing load demands. Today this is becoming increasingly
challenging as conventional synchronous generation such as coal, gas, and nuclear, is
being replaced by inverter based generation from intermittent sources such as wind
and solar.

Energy should be supplied at minimum cost and optimal efficiency. Losses in the
transmission system are minimized by controlling tie-line flows. This can be done by
allocating generation, connecting and disconnecting transmission lines, controlling
HVDC power transmission etc. Tie-line flows can also be controlled by adjusting

Figure 2.1: A typical power system. Image courtesy of United States Department of Energy1.

1United States Department of Energy (DOE), version by User: J J Messerly [CC BY 3.0
(https://creativecommons.org/licenses/by/3.0) or Public domain], via Wikimedia Commons.
Changes made to label positions and the text of customer labels.
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Figure 2.2: A two-bus power system

system voltages using tap-changing transformers, generator excitation, or power
electronic devices controlling reactive power such as HVDC and FACTS.

Controls should also contribute to maintaining an adequate power quality with
respect to: constancy of frequency, constancy of voltage, and level of reliability. The
aforementioned control methods all have a big impact on the dynamic performance
of the power system [25]. The focus of this thesis is on reliability in terms of dynamic
stability of the power system.

The remainder of this chapter is organized as follows. Section 2.1 gives a brief
introduction to power system dynamic modeling. In Sections 2.2 and 2.3 an in-
troduction to classifications of power system stability and interarea oscillations is
given. In Section 2.4, we briefly discuss how converter-based power sources: HVDC
connections between asynchronous grids, and wind power, can be used to provide
frequency support. In Section 2.5 an introduction to HVDC technologies is given.
In Section 2.6 the function, control and modeling of HVDC are briefly explained.
Finally, Section 2.7 presents a literature survey of work on HVDC damping control
methods.

2.1 Power System Modeling

Power systems can be modeled on various levels of detail depending on the purpose
of the study. For the analyses in this thesis, we will consider fairly simple models. All
the findings are however validated in detailed power system simulations in Simulink
Simscape Electrical. Simulations are run in phasor mode, which is a useful method
for studying electromechanical oscillations of power systems consisting of large
generators and motors [51].

2.1.1 Balanced Three-Phase Power Flow
Consider a simple power system model consisting of two buses interconnected by
a transmission line, as shown in Figure 2.2. The balanced three-phase voltage at
each bus is given by the phasors U1e

jϕ1 and U2e
jϕ2 , respectively, and the line

admittance2 is given by g12 − jb12. The power transmitted from bus 1 to bus 2 is
2The impedance of the line is R12 + jX12 = (g12 − jb12)−1.
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given by S12 = P12 + jQ12, where active power

P12 = g12U1
(
U1 − U2 cos(ϕ1 − ϕ2)

)
+ b12U1U2 sin(ϕ1 − ϕ2)

and reactive power

Q12 = b12U1
(
U1 − U2 cos(ϕ1 − ϕ2)

)
− g12U1U2 sin(ϕ1 − ϕ2).

The power balance equation gives S1 = S12 + SL1 , where SL1 = PL1 + jQL1 is the
load at bus 1, and S1 is the power injected at bus 1.

2.1.2 Static Load Modeling
In power system stability studies, loads are typically classified into two broad
categories: static models and dynamic models. The static load model expresses the
characteristics of the aggregated loads connected to a network bus as an algebraic
function of the voltage magnitude, U , and frequency, ω = d

dtϕ.
The voltage dependency can be expressed by the exponential model

PL = P ∗L

(
U

U∗

)mp
, QL = Q∗L

(
U

U∗

)mq
where P ∗L and Q∗L are the active and reactive components when the bus voltage
magnitude U = U∗. The characteristics of the load are given by the parameters mp

and mq. With exponents equal to 0, 1, or 2, the model represent constant power,
constant current, or constant impedance characteristics, respectively [25].

Frequency dependency is typically represented by multiplying the exponential
model by a factor. For instance, a frequency dependent active power load is given by

PL = P ∗L

(
U

U∗

)mp (
1 +D(ω − ω∗)

)
. (2.1)

2.1.3 Synchronous Machines Modeling
The dynamics of the power system are dominated by the dynamics of the synchronous
machine. Synchronous machines can be modeled at various levels. In this thesis, we
make use of the one-axis machine model (Chapter 3) and classical machine model
(Chapters 4 to 9). These are fairly simple representations of machine dynamics,
which are useful for analytical purposes. To validate the analytical results obtained
with these simple models, more detailed simulations are performed at the end of
each chapter.

One-Axis Machine Model

Assume that the two-bus power system in Figure 2.2 represents the connection of a
synchronous machine to an algebraic network bus as shown in Figure 2.3. In the
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Figure 2.3: Two buses representing a synchronous machine connected to an algebraic
network bus, e.g., the machine terminal.

one-axis model (also known as the flux-decay model) the voltage at the machine bus
is approximated by the q-axis transient voltage, E′qejδ. To emphasize that bus 2 is
an algebraic bus, let the voltage at bus 2 be written as V ejθ. Using the notation
from [52], the machine dynamics are given by

δ̇ = ω

Mω̇ = − 1
X ′d

E′qV sin(δ − θ) +Dω + Pm

T ′doĖ
′
q = −Xd

X ′d
E′q + Xd −X ′d

X ′d
V cos(δ − θ) + Ef .

(2.2)

Parameters M represent the machine inertia, T ′do the d-axis transient open-circuit
time constant, and X ′d and Xd the d-axis transient reactance and synchronous
reactance respectively (including transformers and line reactances). The small non-
negative damping constant D can represent higher-order dynamics from machine
damper winding or frequency dependent loads (2.1) close to the machine bus.
External inputs are the mechanical power Pm, from the turbine, and the field
voltage Ef , controlled by the exciter.

Classical Machine Model

Truncating the voltage dynamics in (2.2) gives us the classical machine model,

δ̇ = ω

Mω̇ = − 1
X ′d

E′qV sin(δ − θ) +Dω + Pm.

The simplicity of this model makes it useful for analysis of multi-machine power
systems. However, it is important to remember that voltage dynamics have been
neglected before drawing any conclusions from analysis based on this model.

2.2 Power System Stability

The modern power system is mankind’s largest and most complex machine. It is
the backbone of the modern economy and our daily lives. Many crucial parts of our
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society rely on a high quality, constant and dependable supply of electricity. Thus,
stability of the power system, like the stability of any dynamic system, is crucial.
The stability of a power system can be defined as follows.

“Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after being
subjected to a physical disturbance, with most system variables bounded so that
practically the entire system remains intact” [8].

This definition is wider than that of a single stable operating point. However, in
this work we will mostly consider stability in the sense of stable operating points. The
definition of system security is closely related to stability but may be distinguished
from stability in terms of the resulting consequences.

“Security of a power system refers to the degree of risk in its ability to survive
imminent disturbances (contingencies) without interruption of customer service.
It relates to robustness of the system to imminent disturbances and, hence, de-
pends on the system operating condition as well as the contingent probability of
disturbances” [53].

Power system security is usually guaranteed in the sense on N − 1 stability. The
N − 1 criterion states that the power system must be operated at all times such
that after an unplanned loss of an important generator or transmission line it will
remain in a secure state.

The ability of ac networks to reliably transfer power is referred to as transfer
capacity (or capability). The net transfer capacity may be limited by various factors:

• Thermal limits are given by the maximum current a conductor can tolerate
before risking overheating. Higher than rated currents may be allowed for
some period of time.

• Voltage limits are given by the acceptable voltage levels at each point in
the system. Voltage drop due to reactive power flows in an inductive power
system sets a limit to the amount of power that can be transfered while still
maintaining acceptable voltages.

• Stability limits are determined by system stability following small and large
disturbances of different types. The system must be operated so that it is
able to survive disturbances through the transient and following time period
ranging from millisecond to minutes. In complex, heavily loaded transmission
systems, stability limitations often set the transfer capacity limit.

Dynamic power system stability is usually separated into the three categories
shown in Figure 2.4, namely, frequency stability, voltage stability, and rotor angle
stability [8]. The following is an introduction to these definitions.

2.2.1 Voltage Stability
Voltage stability refers to the power system’s ability to maintain acceptable voltages
at all buses following a system disturbance. The driving force for instability is
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Figure 2.4: Classification of dynamic power system stability.

usually loads attempting to restore their power using control mechanisms such as
tap-changers. Failure to meet load demands leads to a progressive drop in voltage.
Voltage instability is usually a local phenomena, although its consequences can be
wide spread.

On way to improve the voltage stability is through load reduction or reactive
power support. Reactive power support from the transmission system is limited by
the voltage drop that occurs when active and reactive power flow in the inductive
transmission lines. Since voltage stability is a local phenomenon, an efficient solution
is to provide local reactive power support. Reactive power injection using flexible ac
transmission system (FACTS) devices such as, static var compensators (SVCs) or
a static synchronous compensator (STATCOM) has been proven to be efficient at
improving voltage stability of power systems [54].

2.2.2 Frequency Stability

System frequency is maintained by balancing mechanical and electrical torques
resulting from generation and load. A simple representation of overall frequency
dynamics is given by the aggregate swing equation

Mω̇COI = Pm(ωCOI)− Pload(ωCOI) (2.3)

where ωCOI is the center of inertia (COI) frequency and M is the combined inertia
of all the synchronous machines. Following a load disturbance, change in Pload, the
system frequency will start to deviate from its initial state. Frequency stability is
concerned with the ability to maintain and restore the frequency by balancing load
demands with that of mechanical input power Pm. In this section, frequency control
measures will be discussed in terms of frequency containment reserves (FCR) and
frequency restoration reserves (FRR).

FCR, also referred to as primary reserves, have the purpose to stabilize the
system frequency following a load disturbance, and to maintain the frequency within
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allowed boundaries [55]. As seen in (2.3), an increase in system load will lead to a
deceleration of system frequency. To counteract this, generated power needs to be
increased to stabilize the frequency.

FRR, also referred to as secondary reserves, act to replace the activated FCR
and possibly to restore system frequency to its nominal value. This can be done
either by manually control, or by adding a integrating feedback. There are also other
slower mechanics with the purpose of restoring FRR and to redistribute production
to increase system safety and minimize losses [55].

The concept of FCR and FRR is illustrated in the following example.

Example 2.1 (Frequency Stability) As mentioned in Section 1.3.1, the Nordic sys-
tem currently applies two types of FCR: FCR for normal operation (FCR-N), for
operation in the normal 50± 0.1 Hz frequency range; and FCR for disturbance situ-
ations (FCR-D), activated when the frequency falls below 49.9Hz. FCR-D reserves
have a faster response time and are designed to limit the maximum instantaneous
frequency deviation (the nadir) to 49Hz, and to stabilize the system at 49.5Hz .
Within 15min, the FRR should restore the frequency to normal [39].

Consider again the Nordic 5-machine (N5) test system in Example 1.4, where
FCR are provided solemnly by hydro units in Norway, northern Sweden and Finland,
at buses 1, 2, and 3, respectively. Assume that the system is operated at 49.9Hz
so that FCR-D is activated directly following a down-frequency event. Here, we
consider a high-inertia scenario with a total kinetic energy, Wkin = 240 GWs. As
seen in Figure 2.5, hydro-FCR manage to keep the nadir above 49.0Hz (compared
to the low-inertia scenario shown in Figure 1.16) following a loss of the 1400MW
NordLink HVDC cable.

The FCR-D control input is

ui = Ki(s)(49.9− ω̂i), (2.4)

where ω̂i is the machine speed at bus i ∈ {1, 2, 3}, and Ki(s) is the FCR controller
at bus i (designed later in Chapter 7). As an illustrative example, FRR are activated
2min after the fault, using the control law

ui = Ki(s)
(

1 + 1
40s

)
(49.9− ω̂i). (2.5)

As shown in Figure 2.5, the PI-controller brings the frequency back to 49.9Hz.

Initial frequency stability concerns are the rate of change of frequency (RoCoF)
and the maximum frequency deviation (the nadir) shown in Figure 2.5. RoCoF is
proportional to the occurring load/generation disturbance and inversely proportional
to the system inertia. The nadir is proportional to the size of the disturbance and
the inverse system inertia as well as the available FCR and the speed of which these
can be activated. Exceeding allowed RoCoF or nadir limits may lead to tripping of
system components and a cascading failure [56].
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Figure 2.5: System response to a 1400MW load step. Reserves are provided by hydropower
at buses 1, 2, and 3, as shown in Example 1.4. With Wkin = 240 GWs, the FCR control
(2.4) manages to keep the nadir above 49.0Hz, and to restore the steady-frequency to
49.5Hz. The FRR controller (2.5), is activated 2min after the disturbance event. This
restores the frequency to the normal operating range.

Historically, power systems where small scale with operators supplying small
geographical regions or cities, frequency stability was a big problem since variability
of load and production caused a severe impact on system power balance. The solution
to this problem was the introduction of large-scale power systems with long distance
transmission interconnecting not only cities and regions but also countries. As power
systems grow larger, the impact of single variations becomes smaller. The dynamics
of the system become slower, making it easier to maintain a steady frequency. As
the power system grow in complexity however, new issues are introduced.

2.2.3 Rotor Angle Stability

Rotor angle stability refers to the power system’s ability to maintain synchronism
following disturbances. Instability may occur in the form immediate separation or
increasing angular swings between synchronous generators. This may result from
the disconnection of one or a group of generators from the rest of the system.

Transient Stability

Transient stability is concerned with the power systems ability to maintain syn-
chronism following large disturbances such as the outage of a transmission line or a
generating unit. Transient stability is influenced by the non-linear power-angle rela-
tionship resulting in aperiodic instability. Following a fault, the speed of generators
start to deviate due changing operating condition, resulting in a deviation of rotor
angle. A lack of synchronizing torque may cause a system separation resulting in
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what is called first-swing instability. Installing fast-acting exciters with automatic
voltage regulation (AVR) can greatly improve the synchronizing torque of the gen-
erator as seen in Example 2.2. The need for AVR becomes greater as transmission
distances and transmitted power increases. In large power systems however, this
phenomena may be more complex and instability may not always occur with the
first swing. Transient stability depends on both the initial operating point as well
as the location of the failure [57].

As seen in Example 2.2 the AVR tends to reduce the damping torque of the
system, risking the system to become oscillatory unstable. Thus, AVR often has to
be accompanied by stabilizing controllers such as power system stabilizers (PSS),
stabilizing FACTS control, or HVDC control as seen in Examples 1.2 and 1.3.

Small-Signal Stability

Small-signal (or small-disturbance) stability considers the power system’s response
to small changes around an operating point. The disturbances are considered to be
sufficiently small so that a linearized model is suitable for analysis.

Instability can occur in two forms [8]:

• aperiodic increase in rotor angle due to lack of sufficient synchronizing torque;

• rotor oscillation of increasing amplitude due to lack of damping torque.

In today’s power systems, small-signal stability is mainly an issue of damping of
oscillations.

Oscillations are due to natural modes in the power system and cannot be
completely eliminated. One of the primary source of negative damping torque is the
AVR control of synchronous generators as illustrated in the following example.

Example 2.2 (Rotor Angle Stability) We implement Example 13.2 from [25] in
Simulink Simscape Electrical [51]. A single machine, representing the aggregation of
four synchronous machines, feeds 0.9 per unit (p.u.) active power into an infinite
bus as shown in Figure 2.6. At time t = 1 s a three phase ground fault occurs at one
of the transmission lines. The fault is cleared by disconnecting the affected line at
both ends. Two scenarios with a fault clearing time of 0.07 s and 0.10 s respectively
are run to illustrate the destabilizing effect of AVR control and the need for PSS.

P = 0:9 p:u:

j0:15 p:u:

j0:5 p:u:

j0:93 p:u:

Fault

Infinite bus4×555
MVA

Figure 2.6: A single-machine network with p.u. reactances on a 2220MVA base.
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Figure 2.7: Simulation result showing rotor angle response with fault cleared in 0.07 s.

• Constant field voltage: With no excitation control, the generator survives with
0.07 s fault clearing time and remains stable under the new configuration as
seen in Figure 2.7. However, for a 0.10 s fault clearing time, the generator is
first-swing unstable due to a lack of synchronizing torque as seen in Figure 2.8.

• AVR without PSS: A fast-acting exciter and AVR are used to increase the
synchronizing torque making the generator first-swing stable for a 0.10 s fault
clearing time as seen in Figure 2.8. However, the degradation of damping
torque causes the generator to lose synchronism during the second swing. In
addition, the introduction of AVR makes the previously stable system unstable
due to a lack of damping torque as seen in Figure 2.7. Because of this, the
system can no longer survive even with 0.07 s fault clearing time. To increase
the allowed fault clearing time without sacrificing stability, damping torque
can be increased by adding a PSS to the generators excitation control.

• AVR with PSS: The addition of a PSS contributes to the damping torque
ensuring transient as well as small-signal stability of the system as seen in
Figure 2.8.

Electromechanical dynamics are those associated with the oscillation of syn-
chronous machine such as the one seen in previous example. These come in two
types [58]:

• Local modes between one our a group of generators in a geographical region,
swinging against the rest of the system. The time frame of such oscillations is
typically around 1–3Hz.

• Interarea modes, associated with groups of generators in one area of the
system swinging against machines in other areas of the power system. Interarea
oscillations are caused by weak transmission line and large line loadings.
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Figure 2.8: Simulation result showing rotor angle response with fault cleared in 0.10 s.

Other modes relevant for the analysis of synchronous machine involve [58]:

• Control modes associated with control equipment. Poorly tuned exciters,
HVDC converters, or STATCOM devices are the usual causes of instability of
these modes which typically are close to 3Hz.

• Torsional modes, associated with the turbine-generator shaft rotations system.
These are faster modes, typically in the range of 10–50Hz. Instability is
generally caused by interaction with control equipment.

2.3 Stability of Interarea Modes

Interarea modes involve complex interactions between multiple machines. As more
power is being transferred over long distances, stability of these mode may deterio-
rate. For long networks, such as the Nordic transmission system, or the Western
Interconnection of North America, this often poses a limiting factor for ac transmis-
sion capacity [17, 59]. In the 10 August 1996 power blackout in the western North
America, growing power oscillation due to insufficient damping was found to be a
decisive factor [18]. As interconnection increases with an increase in international
trade due to deregulated electricity markets, these problems are likely to become
worse in the future. At the same time, the shift towards renewable energy sources
such as wind and solar imposes further changes to the grid. The intermittent nature
of these sources increases the demand for international interconnection to help
balancing load and production and maintaining system frequency [60].

In addition to excitation control of synchronous machines, interarea modes
are also heavily affected by load dynamics. With an increasing amount of power
electronics in loads and production facilities, constant power load characteristics are
becoming increasingly dominant in the system. This further reduces the inherent
damping in the system.
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Conventional control methods such as PSS based on local measurements may
prove insufficient to damp interarea modes due to actuator limitations and limited
observability of the considered modes. The methods to improve performance include
coordinated PSS control using either local or wide-area measurements from phasor
measurement units (PMUs). Control of power electronic devices such as FACTS
and HVDC has also been proved a useful complement for improving the damping
of interarea modes [7, 59]. In what follows are two incidents reports where poor
damping of interarea modes were reported in the synchronous grid of Continental
Europe (CE). In both occasions the investigations concluded that new methods are
needed for ensuring stability in the changing power system.

On the 1th of December 2016 an unexpected tripping of a line interconnecting
the French power system to the Spanish system occurred. The event triggered an
east–center–west interarea oscillation in the CE system. In the event the Iberian
Peninsula and the Turkish system oscillated in anti-phase with the central part of
the CE system. The oscillations were damped in three minutes after mitigation
actions were taken by the Spanish transmission system operator. Analysis of the
incidents showed that reactive power modulation of the HVDC line between France
and Spain contributed in damping of the oscillation. Investigations into optimizing
active and reactive HVDC modulation for damping of interarea oscillations were
investigated following the event [61].

On the 3rd December 2017 a north–south interarea oscillation was registered
in the CE system. The oscillation began at 1.09 a.m. and reached its maximum
at around 1.15 a.m. when actions were taken. The causes of the incident were
identified as

• low consumption (low load contribution to damping)

• high-voltage phase angle differences in the Italian power system

• unavailability of some generators caused non-standard power flows

• huge imports to the southern part of the CE system

leading to a gradual decrease of general damping. A conclusion drawn from the event
was that changes and integrations of new technologies in the European power grid
call for additional innovative damping countermeasures. New devices and methods
must be developed to minimize serious consequences of interarea oscillations [62].

In this thesis we investigate the usage of active power modulation in HVDC lines
for damping of interarea modes. The critical operation requirement on the grid and
the complexity of interarea oscillations motivate the need for an increased system
understanding. In this thesis we therefore strive to understand the fundamental
nature and limitations of oscillation damping control using simplified dynamic
models.
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2.4 Converter-Based Frequency Support

Power systems exhibiting low rotational inertia present faster frequency dynamics,
making frequency control and system operation more challenging. Unlike conven-
tional synchronous generation, converter-interfaced generation such as wind or solar
does not contribute to the inertia of the grid. As renewable production begins to
replace conventional production, frequency stability is a growing challenge for the
modern grid [32]. With growing shares of renewables, system operators are therefore
increasingly demanding renewable generation to provide FCR [38, 63].

2.4.1 Frequency Support Using HVDC

Contrary to traditional ac transmission, HVDC enables the interconnection of
asynchronous grids. Active power modulation, if made fast enough, allows for the
networks to share FCR, reducing the nadir and the steady-state frequency deviation
following disturbances in load or production [30, 64–69]. This facilitates a higher
penetration of renewable energy, where inertia and FCR are important concerns.

HVDC transmission allows resources to be shared between asynchronous power
systems such as the CE system and the Nordic system as seen in Figure 2.9. HVDC-
interconnections are becoming increasingly important to balance the increased share
of intermittent renewable production [60, 72]. An increased interconnection of the
energy market is crucial in the transition towards a renewable and sustainable power
sector. Since this expansion may lead to an increased system complexity, and an
even higher demand on transmission capacity, the stability of interarea modes is
likely to become a greater concern in the future.

Utilization of hydro power in the Nordic system, as flexible production reserves,
is an interesting business opportunity but will also play an important role in reducing
the fossil dependency in the CE grid. However, due to its geographic extensiveness,
the Nordic system is already limited by stability of interarea modes [6, 59]. Sharing
FCR through HVDC interconnections may put further stress on system transmission
[60, 71]. This may increase the need for both damping and synchronizing torque,
which could be provided by the interconnecting HVDC links.

2.4.2 Frequency Support From Wind Power

For wind power, the concept of synthetic inertia has gained a lot of attention.
Synthetic inertia allows to temporally increase the output power of a wind turbine
(WT) in exchange for reducing the rotor speed. The speed of which active power
can be modulated makes it possible to reduce the initial RoCoF and nadir following
load disturbances.

If the turbine is operated at its maximum power point (MPP), the act of
frequency support will have to be followed by a recovery period in which the output
power is less than the starting point, until the rotor speeds up again [73–78]. To
supply FCR for a sustained period of time, curtailed operation is required. With
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RG Continental Europe (CE)*
RG Nordic
RG United Kingdom
RG Ireland
RG Baltic and IPS/UPS

HVDC converter stations
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* Synchronous with CE

Figure 2.9: Map of the synchronous ac interconnections in Europe with an overview of
HVDC interconnections in operation and under construction [70]. The high amount of
hydro production with reservoirs in the Nordic region provides a relatively cheap flexibility
both on a day-ahead and hourly operation. With increasing interconnection to the CE, the
UK, and the Baltic regions, the competition for this low cost flexibility provided by hydro
will increase. This may lead to changes in power flows and a more stressed system [71].

respect to electromechanical oscillations and frequency control, a curtailed WT can
be viewed as an ideal controllable power source (if operated within the converter
capacity rating). The downside of curtailed operation is the economic cost due to
the sub-optimal utilization of the wind resources. In Chapters 7 and 8 we present a
method for coordinating FFR from uncurtailed wind power with slow FCR from
hydropower plants. The method allows for meeting the requirements on RoCoF,
nadir, and steady-state frequency deviation, while avoiding the economic cost of
curtailment.
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Figure 2.10: The first commercial HVDC link manufactured by ASEA (now ABB) connected
the Island of Gotland to the mainland of Sweden in 1954.

2.5 HVDC Technologies

HVDC is one of the most promising technologies for strengthening the future grid
due to its high efficiency and controllability. In this section we give a brief overview
of different HVDC converter technologies.

2.5.1 Line Commutated Converters

The first commercial application of HVDC was to connect the island of Gotland
to the mainland of Sweden in 1954 (Figure 2.10). The installation provided 20MW
through a 96 km underwater cable using mercury-arc valves developed by Uno
Lamm and his team at ASEA (now ABB). Since the 1970s thyristor valve converters
have replaced the less durable and cost efficient mercury-arc technology. The first
commercial thyristor based HVDC installation was the Eel River scheme, installed
in 1972 between the Canadian provinces of New Brunswick and Québec [25, 79].
Thyristors are capable of conducting the current in one direction only and will do so
when switched on by the gate signal and will continue to do so as long as the anode
is positive with respect to the cathode. This technology is called line commutated
converter (LCC) HVDC. As this control method relies on the grid voltage to stop
conducting, switching has to occur at grid frequency.

LCC-HVDC could in theory be operated as either current source or voltage source.
In practice however, current source converters prevail as the commutation process is
less sensitive to ac voltage disturbances [80]. The converters absorb reactive power,
as the current is always lagging behind the voltage. The reactive power requirement
is in the order of 60% of power rating and depends on power flow level. Due to this,
LCC-HVDC installations, in weak systems, need to be accompanied by reactive
power compensation such as STATCOM or SVC [25, 79–82]. The shortcomings of
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LCC-HVDC, such as reactive power consumption and ac grid requirements, spurred
the development of force commutated converters.

2.5.2 Force Commutated Converters
Since the 1990s insulated-gate bipolar transistors (IGBTs) have been implemented
in voltage source converter (VSC) HVDC applications. This new semiconductor
technology allows for commutation (switching) operations regardless of ac line
voltage and allows for control of reactive power and installation in weak ac systems
[81]. Early adoptions of the VSC technology use an pulse-width modulation (PWM)
at high frequency to approximate the ac waveform. However due to switching losses
this method is unfavorable to the traditional thyristor based LCC converters for
high power installation. The modular multilevel converter (MMC) has improved the
efficiency of VSC-HVDC since switching can be done at grid frequency. This greatly
reduces power losses making VSC competitive with the traditional LCC technology.

Some of the advantages of force commutated voltage source converters over line
commutated current source converters are that [79]:

• the commutation does not fail when ac voltage is decreased or distorted;

• PWM reduces low-order harmonics, greatly reducing requirements of harmonic
filters;

• it allows for independent control of active and reactive power;

• no local reactive power supply is required;

• it allows for connection to weak ac grids such as off-shore wind power plants.

2.5.3 Multi-Terminal HVDC
Most HVDC installations today are point-to-point installations. However, a lot of
research focus today is on multi-terminal HVDC (MTDC) systems interconnecting
three (or more) converters. The most promising technology for this is MMC-HVDC
as it offers lower switching losses, better fault performance, and higher controllability
[9, 65, 76, 82–87]. There are currently two MTDC projects in operation using the
MMC technology: the Nan’ao Multi-terminal VSC-HVDC project [88], and the
Zhoushan dc power grid project [89].

2.5.4 Advantages of HVDC
HVDC transmission has some advantages over ac transmission [25, 79, 90].

• Transmission losses for HVDC are lower than ac making it an attractive
solution for bulk energy transmission. However, the terminal cost and losses
are higher for HVDC. Typically, the break-even distance for overhead lines is
around 500–800 km as shown in Figure 2.11.
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(a) Losses of HVDC compared to HVAC. (b) Cost of HVDC compared to HVAC.

Figure 2.11: Losses and cost for HVDC converter stations and transmission compared
to similarly rated high-voltage alternating current (HVAC) overhead lines [90]. Images
courtesy of ABB.

• AC transmission via long underground or submarine cable is impractical due
to the high capacitance. These restrictions do not apply to dc. The typical
break-even distance is reduced to around 50 km for submarine cables.

• DC constitutes an asynchronous connection allowing for the interconnection
of asynchronous power systems, possibly with different frequencies, as seen in
Figure 2.9.

• The asynchronous connection allow for an increased transmission capacity
without increasing the short-circuit power at the connection points. This means
that it will not be necessary to change ac circuit breakers.

• The active power flow in the HVDC links can easily be controlled at high speed.
With appropriate control the HVDC link can be used to improve ac-system
stability.

HVDC is typically installed where ac is infeasible such as between asynchronous
grids or for long submarine cables. However, together with other properties such
as controllability there are many important factors to consider in the overall cost
analysis for HVDC installations.

The property that is of most interest in this work is the controllability of HVDC
active power flows. The possibility to almost instantaneously control power injections
between different ends of the power system may prove a vital role of ensuring stable
and secure operations in the future grid.

2.6 HVDC Dynamics and Control

The converters of HVDC act as a bridge between ac and dc sides. By the switching
of valves, dc is turned in to ac and vice versa. In this section we show the principle
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(a) 6-pulse thyristor bridge. (b) AC line-to-neutral voltage and current at
converter terminal under rectifier operation.

Figure 2.12: A simplified single-line diagram of a three-phase LCC 6-pulse bridge.

of how this is done for LCC- and VSC-HVDC.

2.6.1 LCC-HVDC

The workings of a LCC can be understood by studying the 6-pulse thyristor bridge
shown in Figure 2.12a. A nearly constant dc current3, iDC = IDC, is ensured by a
large dc inductance LDC. Thus the converter is operated as a current source. The
thyristor is switched between phases to crate an ac waveform. The resulting square
wave seen in Figure 2.12b is rich in harmonics that need to be filtered out. Typically
two 6-pulse bridges are stacked to create a 12-pulse bridge, producing an output
with less harmonics.

Thyristors are capable of conducting the current in one direction only and will
do so when switched on by the gate signal and will continue to do so as long as
the anode is positive with respect to the cathode. By controlling the firing angle, α,
turn-on is controlled. The dc output voltage is given by

vDC = 3
√

2E
π

cosα−RcIDC, (2.6)

where E is the line-to-line root-mean-squared ac voltage [91]. Due to commutation
inductance, Lc, the ac current cannot change instantly. This results in a commutation
delay, µ, where the current commutates between phases. The resistance Rc in (2.6)
models the resulting voltage drop due to commutation losses.

From (2.6) we see that if α < 90° the converter works as a rectifier. With higher
firing angle the dc voltage goes negative and the converter becomes an inverter.
The firing angle in rectifying operation can be reduced to around 5°. This is to
ensure sufficiently high positive voltage over the valves and to account for small
asymmetries in ac line voltages. Inverter operation is a bit more complicated. A

3Lower case letters are used to emphasize that we are considering time varying parameters.
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commutation margin γ = π−α−µ of 15° (18°) is typically needed for 50Hz (60Hz)
systems. This is because the thyristor valves require a certain time interval with
negative voltage to recover their blocking capability. If the thyristor fails to turn off,
commutation failure occurs where the dc side becomes short circuited [79, 80, 91].

As the current is always lagging behind the voltage, the LCC consumes reactive
power proportional to active power at both rectifier and inverter terminals.

2.6.2 VSC-HVDC

The VSC synthesizes an ac voltage from a dc voltage source maintained by a
large dc capacitance. Thus the converter is inherently a voltage source. Since the
IGBTs used in VSC can be turned off regardless of ac line voltage, any desirable ac
voltage can be imposed at the converter terminal. Provided that operation is within
the voltage/current capability of the converter and a power source/sink is able to
maintain the dc voltage vDC at desired level VDC.

The basic operation of a VSC can be understood by studying the single-phase two-
level converter shown in Figure 2.13a. The ac terminal is switched between positive
and negative dc voltage. Pulse-width modulation is implemented by comparing a
triangular wave to a sinusoidal carrier wave of desired shape. By switching between
voltage levels a sinusoidal is emulated as seen in Figure 2.13a. Only filtering of higher
switching harmonics is required. This significantly reduces ac filter sizes compared
to LCC-HVDC. By adding a connection at neutral dc voltage (Figure 2.13b), a
three-level converter gives a better ac approximation. [91]

Switching frequency is typically 1–2 kHz. For high power applications, switching
losses limit the achievable switching frequency and the usefulness of VSC. Thyristors
are also a more mature technology than IGBTs allowing for higher voltage ratings.
Therefore LCC is still the dominating technology when it comes to high power
applications. With the development of MMCs the efficiency of VSC is approaching
LCC however.

The MMC synthesize a high-quality sinusoidal voltage waveform by incrementally
switching between a high number of series-connected voltage sources as shown
in Figure 2.13c4. The switching frequency can be reduced to 100–150Hz. Thus,
switching losses are reduced. Typically converter station losses are 1.5–2% for two-
and three-level VSC, 0.8–1% for MMC, and 0.6–0.8% for LCC [82].

2.6.3 Modeling HVDC Dynamics

Traditional LCC-HVDC still dominates applications for bulk power transmission as
the mature thyristor technology offers lowest losses. However, with the development
of MMC, VSC is approaching the efficiency of LCC and is thus seeing an increased
market share. The independent control of active and reactive power and ability to
connect to weak ac systems make VSC-HVDC an important technology in a power

4In practice PWM occurs between adjacent voltage levels similar to the three-level VSC.
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(a) Single-phase two-level converter.

(b) Single-phase three-level converter.

(c) Single-phase MMC.

Figure 2.13: Operating principle of VSC-HVDC.

system where synchronous generation is being phased out [9, 91]. Because of this,
this work mainly focuses on VSC-HVDC but the results can also be extended to
LCC, provided that sufficient reactive power compensation is available, e.g., from
complementary STATCOM or SVC installations.

As previously mentioned, one of the benefits of power electronic based components
such as HVDC is the speed of which these can be controlled. Bandwidths in tens
of Hz can easily be obtained for the HVDC current control. Even for devices rated
hundreds of MW [92]. When analyzing the electromechanical dynamics involved in
interarea oscillations (0.1–1Hz) most HVDC dynamics can be neglected. For the
analysis of interarea modes, HVDC links are therefore often modeled as constant
power loads [30, 93]. This simplification is justified in the following example.
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Figure 2.14: Topology of VSC-HVDC with control system in a dq reference frame.

Simulating a VSC-HVDC Link

Figure 2.14 shows a typical control scheme of a VSC-HVDC link. Controls are
implemented in a dq framework where the d current controls either the dc voltage
or the activate power and the q current controls either the ac voltage or the reactive
power. For stable operation, one of the terminals needs to control the dc voltage.
In the following example it is shown how the dc link can be controlled using a
leader-follower architecture where the rectifier control active power while the inverter
control dc voltage.

Example 2.3 (Leader-Follower Control) Consider a VSC-HVDC link interconnec-
ting two ac terminals as seen in Figure 2.15. In this example we use an average value
model5 of the converters. This means that switching dynamics are not modeled.
This is typically the level of detailed needed to study ac and dc dynamics for the
high-level control system design [91]. Modeling the dc transmission as a Π-circuit,
the dynamics of interest for the dc system are

• voltage dynamics at the dc terminals

C
dvrec

DC
dt

= irec − iDC,

C
dvinv

DC
dt

= iDC − iinv,

where C includes capacitance of converter sub-modules, dc cable, and dc
capacitors;

5Simulations are implemented in Simulink. VSCs are based on a STATCOM phasor type model
available in the Simulink library [51].
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Figure 2.15: Leader-follower control of a VSC-HVDC link.

• dc current dynamics

L
diDC

dt
= vrec

DC − vinv
DC −RiDC,

where L and R are the inductance and resistance of the dc cable, respectively.

Neglecting converter losses, active power at the dc and ac terminals are given by

P rec
AC = irecv

rec
DC,

P inv
AC = iinvv

inv
DC.

Power flow and dc voltage can be controlled using a leader-follower architecture as
shown in Figure 2.15.

Here, active power is controlled using a PI-controller at the rectifier with sufficient
bandwidth to follow a reference step with 0.2 s rise time and a 0.5Hz sinusoid as
shown in Figure 2.16. Similarly the dc voltage is controlled at the inverter terminal
as seen in Figure 2.17. The dc voltage is controlled so that the inverter active power
tracks the power injected at the rectifier terminal. For the time frame of interest,
the only considerable difference between the two power flows is the small resistive
losses in the converters and the cable. For the analysis of interarea modes, which
falls in the 0.1-1Hz range, modeling the converters as constant power loads can
therefore be considered a reasonable approximation.

The rating of the dc cable and the tuning of the PI-controllers are shown in
Tables 2.1 and 2.2, respectively.
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Figure 2.16: Active power reference tracked by using a PI-controller at the rectifier terminal.
Initial disturbances are due to a change in dc voltage reference according to Figure 2.17.

Figure 2.17: DC voltage reference tracked by using a PI-controller at the inverter terminal.
Initially, small voltage reference steps are done. This is followed by active power changes
according to Figure 2.16.

The dc controller needs to maintain the voltage within acceptable levels. Thus
sufficient closed-loop bandwidth is needed. For connection to weak ac systems, this
can be a problem as non-minimum phase (NMP) behavior of the ac transmission
system limits the achievable bandwidth. With larger dc capacitors, however, the
voltage control can be relaxed. Taking advantage of dc energy storage, the rectifier
and inverter power flows could also be decoupled to some extent. For instance,
auxiliary control such as a virtual synchronous generator control [94] could be
added at the inverter terminal to provide power oscillation damping (POD) to
the ac network connected on the inverter side. In this thesis however, we do not
consider dc energy storage. Instead the focus is on the interaction between the
HVDC-interconnected ac networks.
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Table 2.1: Converter and line data obtained
from [27]. DC capacitance includes lines, con-
verter sub-modules and dc capacitors.

Voltage rating 200 kV
Power rating 400MVA

Length 220 km
R 0.011W/km
L 2.615mH/km
C 175 µF

Table 2.2: PI-controller settings. Both
controllers prevent windup by limiting
integral action at ±1 p.u.

Active Power Controller
Proportional gain 10 p.u.
Integral gain 100 p.u./s
DC Voltage Controller
Proportional gain 5 p.u.
Integral gain 25 p.u./s

2.7 Power Oscillation Damping Using HVDC

Since HVDC transmissions often bridge long distances, they have a strong influence
on dominant power system modes. Controlling the active power, local rotor speed
deviations at the HVDC terminals can be reduced, thereby improving POD. In
the 1970s active power modulation of the Pacific HVDC Intertie (PDCI) was
implemented to improve POD in the western North American power system, thereby
increasing the transfer capacity of the parallel Pacific AC Intertie [15, 16]. In LCC-
HVDC, active and reactive control are heavily coupled. With coordinated control of
rectifier firing angle and inverter extinction angle however, some degree of decoupling
can be achieved. In [95], Grund et al. develop such a method by modulating rectifier
dc current and the inverter dc voltage. The implemented controller is a linear
quadratic Gaussian (LQG) regulator designed to minimize the system measurement
requirements. The incorporation of reactive power control is shown to give an
increased POD performance. With VSC technology, possible POD benefits are even
higher as active power (typically at the rectifier terminal) and reactive power at
both dc terminals can be controlled independently within the capability curve of
the VSC system [96].

The addition of reactive power control may not always improve POD perfor-
mance as it depends on ac network topology and placement of the dc terminals. In
[93], Smed and Andersson show that the effect of active and reactive modulation is
complementary. Active modulation is effective at dc terminals adjacent to generators
participating in the interarea mode, while reactive modulation has highest controlla-
bility in the mass-weighted electrical midpoint between the two areas. An example
of this is seen in [11] where Pipelzadeh et al. design a coordinated control scheme for
VSC-HVDC POD control. The control design was implemented in the four-machine
two-area test system [25] shown in Example 1.2. It is found that although reactive
power control at both terminals is implemented, the control design favors active
power control. It is found that controllability from reactive power control improved
as the ac power flow increased which agrees with the findings of [93].
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2.7.1 Wide-Area Measurement Systems

The availability of wide-area information from PMUs offers new possibilities for
damping of interarea oscillations in large systems. Recent development in wide-area
measurement systems (WAMS) allows for greater observability and coordination
of multiple control units [97]. Kamwa et al. [98] recall the 30-year history of wide-
area measurements at Hydro-Québec. It is found that damping control based on
specific local measurements may cause transient instability for some contingencies,
whereas WAMS yield transient stability improvements as well as damping over a
wide range of operating conditions. Trudnowski et al. [17] evaluate PDCI damping
control in the western North American power system. The conclusion is that the
relative feedback between the two dc terminals of the PDCI gives better robustness
properties than local frequency or ac power flow measurements. Practical tests of
the PDCI wide-area damping controller showed a 4–5% damping improvement of
the north–south interarea mode, without degradation of other modes [24]. In [28],
Preece et al. evaluate the robustness and performance of WAMS based POD control
using a probabilistic methodology. The centralized and decentralized control of two
VSC-HVDC links are designed using a modal LQG method targeting weakly damped
modes. The method allows for individual modes to be targeted and synthesizes a
controller based on the available measurement [28, 99]. In [100], Hadjikypris et al.
use the same modal LQG design to coordinately control two FACTS devices and a
VSC-HVDC link for POD. Juanjuan et al. [101] design a WAMS-based POD control
for multiple HVDC lines in the China Southern Power Grid, known as the largest
ac/dc paralleling transmission system in the world. The transfer capacity of the
system is often limited by weakly damped interarea modes. The control of HVDC
showed advantages over conventional methods where achievable POD is limited by
the adjustable capacity of generators under PSS control and FACTS supplementary
damping control. In [14], Azad et al. design a decentralized supplementary control
of multiple LCC-HVDC links in a meshed ac network. The controller is designed
using sparsity-promoting optimal control to prevent interactions among the HVDC
links and to enhance damping of interarea modes. The sparsity-promoting optimal
control simultaneously identifies the optimal control structure and optimizes the
closed-loop performance [13, 102].

Although providing unprecedented advantages for system monitoring and control,
WAMS have some obvious drawbacks, such as, increased system complexity as
well as potential reliability [103] and security issues [104, 105]. Researches and
developers from utilities, national labs, and universities are currently focusing on
addressing the threats and vulnerabilities connected to cybersecurity. In [106],
Adhikari et al. develop a WAMS cyber-physical test bed to model realistic power
system contingencies and cyber-attacks. In [107], Jevtić and Ilić address power
system reliability issues in presence of malicious cyber-attacks on measurement
signals. A moving-target defense algorithm based on dynamic clustering is developed
to detect stealthy cyber-attacks.

In light of potential reliability and security issues, the use of WAMS should be
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well motivated. In Chapter 6 we study the fundamental control limitations imposed
by choosing local frequency measurements, as compared to WAMS. Improving the
understanding of the control problem helps to understand if control problems, such
as the issue with transient stability, motivate the need for WAMS or if re-tuning of
local POD controllers may suffice.

2.7.2 Multi-Terminal HVDC
More controllable devices in the system improves the ability to control poorly
damped modes. In [108], Fuchs and Morari present a linear matrix inequality based
method for optimal placement of multiple point-to-point HVDC lines within a
meshed ac network, for improving POD. Coordinated control of MTDC offers
potentially more controllability and flexibility than point-to-point HVDC. In [30],
Harnefors et al. investigate POD from active power modulation of three- and four-
terminal HVDC networks embedded in a single ac network and when interconnecting
two asynchronous grids. The study shows that the pairing of two terminals in general
provides the best result. Using an analytical approach, recommendations for terminal
pairings are developed. With few active systems in operation today, MTDC is
receiving a lot of research focus [9]. In [83], Eriksson develops a decentralized control
method to improve POD through an MTDC system connected to an ac grid. Active
power is controlled at the dc terminal with strongest controllability of the oscillatory
mode. Voltage droop controllers, at the remaining dc terminals, are then tuned to
maximize POD without the need of communication between the terminals. In [76] a
cascaded control strategy is developed to provide virtual inertia to an ac network
by utilizing energy stored in dc capacitors and the inertia of the wind turbines. It is
shown that utilizing power stored in dc capacitors before exerting power from wind
turbine inertia could help increase wind power production by allowing for a better
power point tracking. The HVDC capacitor value, however, was shown to have
little effect on overall inertia support compared to the kinetic energy stored in the
wind turbines. In [84] the interaction between an ac network and an MTDC system
integrated with wind power is analyzed. Normally, electromechanical dynamics are
much slower than the converter control of the MTDC. But under certain conditions,
the dc voltage control is shown to cause strong dynamic interactions between the
MTDC and ac systems, degrading POD performance. In [85], Shah et al. analyzes
the impact of MTDC grid reconfiguration on the host ac system. It is found that
dc reconfiguration has little impact on ac small-signal stability. The analysis show,
however, that dc reconfigurations can have a high impact on large-disturbance
stability and frequency stability due to loss of infeed.

2.7.3 HVDC Interconnecting Asynchronous Power Systems
Most existing literature focuses on the dc and inverter dynamics, or paralleling ac/dc
transmission systems. To complement existing research, this work instead focuses
on the electromechanical interactions between HVDC-interconnected asynchronous
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grids. One concern that arises when utilizing HVDC active power control for POD
is that interarea modes of the assisting network may be excited [30]. Since poorly
damped interarea modes usually fall in the same frequency ranges [25], control
methods should avoid unnecessary excitation of weekly damped modes. In a case
study of a future North Sea grid, Ndreko et al. [22] describe how HVDC active power
modulation can be utilized to improve a poorly damped 0.5Hz oscillatory mode in
the UK grid. This, however, results in a disturbance propagating through the North
Sea HVDC network, exciting a poorly damped 0.5Hz interarea mode in the Nordic
grid at the other end. The interaction between the interconnected ac systems can
be mitigated by utilizing the wind power resources in the North Sea grid [22] or
in the dc capacitors [94, 109]. The latter method may however increase the cost of
the dc installation since larger capacitors may be needed. In addition such control
methods require careful tuning since the dc dynamics may interact with the ac
system and degrade the POD performance [84]. In [110], Van Hertem et al. show
that coordinated control of two links that interconnect two asynchronous ac system
can be used to improve POD in one of the networks. The poorly damped system
is modeled as a two-machine system with a dc terminal close to each machine.
Controlling the terminals in anti-phase, the setup resembles a long HVDC link
interconnecting the two areas. Oscillation damping is improved by injecting power
between the two areas, using the external asynchronous ac network to which the
HVDC links are connected as a power sink. In Chapter 5 we extend this analysis
to include more general configurations. In particular we consider the case where
dynamics of the external HVDC-interconnected system cannot be neglected. The
considered design criteria are stability of interarea modes, input usage, and stability
in the event of dc link failure.

Due to the complexity and high order of the power systems, almost all works
addressing POD rely on numerical studies. Although necessary for practical ap-
plication, resorting to a numerical representation sacrifices physical intuition. In
this thesis we build on the analytical approach of [21, 30, 93] to achieve more
insight into the problem at hand. In [93], Smed and Andersson lay the foundational
work for the theory used in this thesis. It is shown that active and reactive power
control complement each other in the ability to provide POD. The focus of this
work is on how electromechanical interactions limit achievable POD from HVDC
that interconnect asynchronous grids. Thus, we will mainly consider active power
modulation. In [30], Harnefors et al. investigate POD in asynchronous ac networks
interconnected by a single point-to-point HVDC link. Modulation of HVDC active
power using local frequency measurement is shown to be a robust control strategy
both for the sharing of FCR and for improving the POD. In Chapter 4 we investigate
to what extent oscillation damping in the HVDC-interconnected system can be
improved. With active power modulation of the HVDC link, the interconnected
ac systems will interact. This affects the control performance and may limit the
achievable POD improvement.
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Chapter 3

Zero Dynamics Coupled to High-Speed
Excitation Control

This chapter considers fundamental control limitations for rotor angle stability.
Limitations are identified by characterizing open-loop transfer function zeros for
input-output combinations of certain power system configurations. Of particular
interest are non-minimum phase (NMP) zeros that limit the achievable performance
of the closed-loop system. By studying a single-machine infinite bus (SMIB) power
system model, analytic conditions for the presence of NMP zeros are derived. They
are shown to be closely linked to the destabilizing effect of automatic voltage
regulators (AVRs). Depending on the control loop, it is found that NMP zeros may
persist in the system even if the closed-loop system is stabilized through feedback
control. A simulation study shows that NMP zeros introduced by AVR limit the
achievable performance and stabilization using feedback control.

The study of fundamental limitations in filtering and control design dates back to
the ground breaking work of Bode in the 1940s [111]. In this chapter, we consider the
feedback control limitations associated with NMP zeros. With increasing feedback
gain, the closed-loop poles tends to the position of the open-loop zeros. NMP zeros
therefore introduce a limitation on the achievable performance of the closed-loop
system. For an overview of control limitations associated with NMP zeros see for
instance [112–117]. When designing a power system stabilizer (PSS) we typically
only care about a bandwidth window around poorly damped poles. Thus only
NMP zeros close to the considered poles impose limitations on the closed-loop
system. Since zero positions highly depend on the operating condition, they need
to be carefully analyzed. An example is the modulation control of the Pacific DC
Intertie in the 1970s. The modulation control considerably improved stability of the
north–south interarea mode in the western North American power system. However,
using local ac power flow as feedback signal, the open-loop system showed an NMP
zero that caused the modulation to introduce a 0.7Hz oscillation under certain
operating conditions [16]. This was one of the primary reasons that the control
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method eventually got rejected [17].
Rigorous numerical case studies are required to identify troublesome zero dy-

namics and to gain insight into the control problem at hand [118]. Today, efficient
methods are available to identify transfer function zeros even in large power system
models [119]. In [20], trade-offs between local measurements and wide-area measure-
ments are studied in the general control configuration. Limitations due to NMP
zeros and time-delays are taken into account to identify suitable input-output pairs.
Resorting to a numerical solution, however, loses valuable physical insight into the
problem at hand.

The contribution of this chapter is to identify fundamental control limitations for
POD by characterizing the open-loop transfer function zero dynamics for different
input-output combinations in the system. To obtain useful analytical results, the
focus is on a SMIB model. For this model, it is explicitly shown how AVR destabilizes
the electromechanical mode. For some transfer functions, NMP zeros are found to
be caused by interaction with the AVR. Depending on the control-loop, it is shown
that the NMP zeros persist in the system even if the closed-loop system is stabilized.
The analysis gives insight into where in the system NMP zeros are likely to occur,
and where they may impose a problem for POD control design.

The remainder of this chapter is organized as follows. In Section 3.1 a linearized
SMIB model is presented. In Section 3.2 control limitations are derived and in
Section 3.3 the results are validated on a detailed nonlinear power system model.
Section 3.4 concludes the work.

3.1 Dynamic Modeling of Multi-Machine Power Systems

We consider a nonlinear differential algebraic power network model on the form

ẋ(t) = f
(
x(t), γ(t), u(t)

)
(3.1a)

0 = g
(
x(t), γ(t), u(t)

)
(3.1b)

y(t) = h
(
x(t), γ(t), u(t)

)
(3.1c)

where x(t) ∈ Rnx constitute the states, γ(t) ∈ Rnγ are time-varying parameters,
u(t) ∈ Rnu external inputs, and y(t) ∈ Rny some outputs of the system.

For small-signal analysis, the system is linearized at a stationary operating point
x(t) = x∗, γ(t) = γ∗, and u(t) = u∗, resulting in the linear state-space model

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(3.2)

Since the time constants in (3.2) depend on the current operating point, the model
can only be considered accurate for small deviation from this point.
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3.1.1 Network Model
Consider a power network and let the system voltages be given by

Uejϕ =
[
U1e

jϕ1 , U2e
jϕ2 , . . . , UNe

jϕN
]T ∈ CN (3.3)

where U ∈ RN and ϕ ∈ RN are voltage amplitudes at system nodes and the phase
angles relative to a constant reference frame rotating at nominal frequency, typically
at 50 or 60Hz. The impedance between two nodes is given by

Zik = Rik + jXik

and corresponding admittance is

yik = 1/Zik = gik − jbik.

Nodes are interconnected over a network described by the admittance matrix
Y ∈ CN×N with elements

Yik = −yik, and Yii = yii = yi +
∑
k∈Ni

yik (3.4)

where yi = gi − jbi is the shunt admittance at node i and Ni is the set of nodes
directly connected to node i. Power injected at the nodes are given by

S = P + jQ = diag(Uejϕ)Ȳ Ue−jϕ ∈ CN , (3.5)

where Ȳ is the complex conjugate of Y . Active and reactive power injected at node
i give the two algebraic equations

Pi = giiU
2
i +

∑
k∈Ni

UiUk

(
bik sin(ϕi − ϕk)− gik cos(ϕi − ϕk)

)
Qi = biiU

2
i −

∑
k∈Ni

UiUk

(
bik cos(ϕi − ϕk) + gik sin(ϕi − ϕk)

)
.

For the analysis it is convenient to write (3.5) as S = Y 1, where 1 ∈ RN is a vector
of ones and Y ∈ CN×N is a weighted admittance matrix with elements

Yik = −ȳikUiUkej(ϕi−ϕk), and Yii = ȳiiU
2
i . (3.6)

We partition (3.3) as

Uejϕ =
[

(Eejδ)T︸ ︷︷ ︸
Dynamic nodes.

, (V ejθ)T︸ ︷︷ ︸
Algebraic network nodes.

]T ∈ CN ,

to differentiate between nodes where voltages Eejδ ∈ Cnδ are determined by differ-
ential equations (3.1a), and nodes where voltages V ejθ ∈ Cnθ are determined by
algebraic equations (3.1b).
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Figure 3.1: One-axis synchronous machine with AVR.

3.1.2 One-Axis Synchronous Machine Model
For study of electromechanical dynamics, the synchronous machines in the system
are often described using the one-axis model, with notation from [52],

δ̇ = ω

Mω̇ = − 1
X ′d

E′qV sin(δ − θ) +Dω + Pm

T ′doĖ
′
q = −Xd

X ′d
E′q + Xd −X ′d

X ′d
V cos(δ − θ) + Ef ,

(3.7)

where state variables δ, ω, and E′q represent the rotor phase angle, rotor speed
deviation from nominal speed, and q-axis transient voltage, respectively. Parameter
M represent the machine inertia, D a small non-negative machine damping constant,
T ′do the d-axis transient open-circuit time constant, and X ′d and Xd the d-axis
transient reactance and synchronous reactance respectively.1 External inputs Pm
and Ef are the mechanical power from the turbine and the field voltage. Variables
V and θ represent the voltage amplitude and phase angle at the adjacent network
node. The node adjacent to the machine node will typically be referred to as the
machine terminal. The total series reactance between the machine node and the
machine terminal include transformers, line reactances etc.

Let Pe and Qe be the active and reactive power exported from the machine
node to the network as shown in Figure 3.1. The second line in (3.7) corresponds to
Mω̇ = −Pe +Dω+Pm, i.e., rotor angular acceleration depends on the active power
balance at the machine node. Similarly the third line is a function of the reactive
power. Let X∆ = Xd −X ′d, b′d = 1/X ′d, and b∆ = 1/X∆. The third line in (3.7) can
then be rewritten as

T ′dob∆Ė
′
q = −b∆E′q−b′dE′q + b′dV cos(δ − θ)︸ ︷︷ ︸

−Qe/E′q

+b∆Ef .

Note that b∆ represents the shunt susceptance at the machine node. Thus, we can
describe the machine node as a dynamical node connected to an algebraic network
node.

1The prime notation is used to emphasize that the model assumes parameters linearized at a
fixed speed and that the model is accurate only for a transient time period. Faster subtransient
dynamics are often noted with double prime. In the one-axis model, the subtransient and d-axis dy-
namics have been neglected by setting the corresponding time constants T ′′do = T ′′qo = T ′qo = 0 [52].
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3.1.3 Excitation Control of Synchronous Machine
The excitation system performs control and protective functions essential to sat-
isfactory performance of the power system by controlling the field voltage, Ef .
High-speed excitation systems with AVRs are commonly installed at generators as
it is by far the most effective and economical method to improve transient stability
[25]. AVRs are typically modeled using the first-order model

TeĖf = −Ef +KA(Vref − V ), (3.8)

where V is typically measured at the machine terminal. Here however, it is assumed
that the fast dynamics of the excitation system can be neglected, so

Ef = KA(Vref − V ), (3.9)

as shown in Figure 3.1.

3.1.4 Linearized Multi-Machine Model
Consider a multi-machine power system, as shown in Figure 3.2, with nδ machines
represented using the one-axis model (3.7). Let state variables x = [δT, ωT, E′Tq ]T ∈
R3nδ represent the generator states and algebraic variables γ = [θT, V T]T ∈ R2nθ

voltages at the nθ network nodes.
Partition the weighted network admittance matrix (3.6) as

Y =
[
Yδδ Yδθ
Yθδ Yθθ

]
∈ CN×N

where Yδδ ∈ Cnδ×nδ . If the machine terminals are modeled, as shown in Figure 3.2,
the corresponding unweighted admittance matrix (3.4) is given by Yδδ = −j diag(b′d+
b∆). Network matrix Yθθ ∈ Cnθ×nθ connects network nodes where voltages are
determined by the algebraic equation (3.1b). Off-diagonal blocks Yδθ ∈ Cnδ×nθ
and Yθδ ∈ Cnθ×nδ models the connection between the machine and network nodes.
Constant power inputs are assumed to be zero at the algebraic network nodes,
whereas constant impedance loads can be incorporated as shunt elements in (3.4).

Following the modeling above and excluding the AVR, the state matrix of (3.2)
becomes

A0 =

 0 I 0
−M−1 Im(YA) −M−1D −M−1 Re(YA + 2Ysh)E−1

T−1 Re(YA) 0 −T−1 Im(YA + Ysh)E−1

 , (3.10)

where 0 and I are appropriately sized zero and identity matrices, M =
diag(M1, . . . ,Mnδ), D = diag(D1, . . . , Dnδ), E = diag(E′∗q,1, . . . , E′∗q,nδ) ∈ Rnδ×nδ ,
and T = diag(T ′do,1b∆1E

′∗
q,1, . . . , T

′
do,nδ

b∆nδE
′∗
q,nδ

).
The network matrix YA is obtained from Yred = Yδδ − YδθY −1

θθ Yθδ and Ysh =
diag(Yred1), as YA = Yred − Ysh, evaluated around a steady-state operating point.
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Figure 3.2: Multi-machine power system with nδ machines interconnected over a network
with nθ ≥ nδ nodes.

Note that Ysh contains the power injected by turbines and excitation system at the
machine nodes.

Considering constant power inputs u = [PT, QT]T ∈ R2nθ and outputs y = γ at
network nodes, we have input matrix, excluding AVR and with u∗ = 0,

B0 =

 0 0
M−1 Re(YB) −M−1 Im(YB)
T−1 Im(YB) T−1 Re(YB)

 , (3.11)

output matrix

C =
[

Re(YC) 0 − Im(YC)E−1

V Im(YC) 0 V Re(YC)E−1

]
,

and direct feed-through matrix

D =
[

Im(YD) Re(YD)
−V Re(YD) V Im(YD)

]
, (3.12)

where YD = −Y −1
θθ , YB = YδθYD, YC = YDYθδ, and V = diag(V ∗1 , . . . , V ∗nθ ).

With AVR modeled using (3.9), the state matrix of (3.2) is instead given by

A = A0 −KAVR

 0 0 0
0 0 0

V Im(YC) 0 V Re(YC)E−1

 ,
and the input matrix by

B = B0 −KAVR

 0 0
0 0

−V Re(YD) V Im(YD)

 , (3.13)

where KAVR = diag(KA,1, . . . ,KA,nδ) diag(T ′do,1, . . . , T ′do,nδ)
−1.
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Figure 3.3: SMIB model with three network nodes.

3.2 Zero Dynamics and Control Limitations

Consider the SMIB model in Figure 3.3. At the machine terminal, V1 is measured
for the AVR. We will first show how interaction between the electromechanical
and voltage dynamics have a destabilizing effect on the electromechanical mode.
Then we study the control performance limitations in stabilizing this mode. This
is done by studying the open-loop zeros in the single-input single-output (SISO)
transfer function Gyu(s) from inputs u = P3 or Q3 at a control bus to measurements
y = θ2 or V2 at a measurement bus.2 To limit the number of possible scenarios, the
following standing assumption is made.

3.2.1 SMIB Model
The SMIB model shown in Figure 3.3 is commonly used for analyzing generators
connected to the grid. The machine is connected to a strong (infinite) bus that
represent the rest of the system. Here, the voltage EN can be considered as a
constant voltage rotating at the nominal system frequency. We introduce three
network nodes as shown in Figure 3.3. The system voltages are given by

Uejϕ =
[
E′qe

jδ EN V1e
jθ1 V2e

jθ2 V3e
jθ3
]T
,

where V1 is measured for the AVR. The linearized state-space model (3.2) is obtained
as above with the unforced dynamics for the states x = [δ, ω,E′q]T given by3

ẋ− ẋ∗ = A(x− x∗) =

 0 1 0
−a21 −a22 −a23
−a31 0 −a33

 (x− x∗) (3.14)

with elements

a21 = bΣ
M
E′∗q EN cos δ∗, a22 = D

M
, a23 = bΣ

M
EN sin δ∗,

a31 = bΣ
T ′dob∆

EN sin δ∗ − KA

T ′do
β1E

′∗
q sin ε∗1,

a33 = b∆ + bΣ
T ′dob∆

+ KA

T ′do
β1 cos ε∗1, (3.15)

2For PSS, the control bus coincide with the machine node.
3Dynamics at the infinite bus are truncated since ĖN = δ̇N = 0.
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where bΣ is the total series susceptance between the machine node and the infinite
bus. Note that element a31 and a33 are affected by the AVR using measurements at
the machine terminal. At network nodes i = 1, 2, 3,[

θi − θ∗i
Vi − V ∗i

]
= βi

[
E′∗q
V ∗
i

cos ε∗i 0 1
V ∗
i

sin ε∗i
−E′∗q sin ε∗i 0 cos ε∗i

]
(x− x∗), (3.16)

where βi = b′1i/(b′1i + biN ) ∈ [0, 1] is the relative electrical position of the network
node and ε∗i = δ∗ − θ∗i . The input matrix (3.11) can be derived similar to (3.16).
With AVR, a direct feed-through between the input and voltage measurement at
the machine terminal are introduced as shown in (3.13). The direct feed-through
(3.12) between nodes are given in Appendix 3.A.
Assumption 3.1 Active power flows in a uniform direction between the machine
node and the infinite bus. The load angles ε∗i = δ∗ − θ∗i , i = 1, 2, 3, therefore have
the same sign. The network nodes may coincide or be placed in any order between
the machine node and the infinite bus.

3.2.2 AVR Influence on Stability
In this section we consider the influence of the AVR on the dynamics. A common
simplifying assumption is that the load angle δ∗ ≈ θ∗i ≈ 0. Under this assumption
a23 = a31 = 0 and (3.14) has three eigenvalues: λ1,2 ≈ −a22/2± j

√
a21 (assuming

a21 � a22
4) and λ3 = −a33 associated with [δ, ω] and E′q respectively.

Now as δ 6= 0 the voltage mode λ3 will start to interact with the electromechanical
mode λ1, λ2. If KA = 0, or if θ∗1 = δ∗, then since sgn(a31) = sgn(a23) the eigenvalues
will attract each other, thus stabilizing the electromechanical mode. However, usually
with AVR, KA � 0 and θ∗1 6= δ∗. In this case λ3 moves further into the left half
plane (LHP) and is mostly unaffected by the interaction. This does not hold true
for the electromechanical mode, however. We notice that if∣∣∣∣ bΣb∆EN sin δ∗

∣∣∣∣ > |KAβ1E
′∗
q sin ε∗1| , (3.17)

is violated, then a31 changes sign. Therefore, the eigenvalues will repel each other.
The interaction thus destabilizes the electromechanical mode.

The same conclusion can be draw from studying the characteristic polynomial
of (3.14):

p(s) = s3 + (a22 + a33)s2 + (a22a33 + a21)s+ a21a33 − a23a31. (3.18)

This polynomial is stable if

β1KA (cos δ∗ cos ε∗1 + sin δ∗ sin ε∗1) + b∆ + bΣ
b∆

(
cos δ∗ − EN

E′∗q
sin2 δ∗

)
> 0,

4With machine speed in rad/s, typically D ∈ [0, 3/2π50] or D ∈ [0, 3/(2π60)]. Thus a21 � a22.



3.2. Zero Dynamics and Control Limitations 65

Figure 3.4: SMIB model with PSS. Note that network node 2 may coincide directly with
the machine node.

which holds true for reasonable load angles and large KA, and if

a22(a22a33 + a21 + a2
33) + a23a31 > 0.

For the remainder of the section, we make the simplifying assumption that the direct
machine damping D = 0. Hence, a22 = 0, so the stability criterion becomes

a23a31 > 0,

which is equivalent to (3.17).

3.2.3 Auxiliary Excitation Control
A common way to improve stability is to combine AVR with PSS. With input upss
in Figure 3.4, the transfer function to system states becomes

(sI −A)−1

 0
0
KA

 = KA

p(s)

 −a23
−sa23
s2 + a21

 , (3.19)

where p(s) is given by (3.18). Note that zeros in (3.19) are unaffected by the AVR.
Using (3.16), the open-loop zeros of the transfer function from upss to θ2,

Gθ2,upss(s) are

q
(θ2,upss)
1,2 = ±

√
bΣ
M
E′∗q EN

(
sin δ∗ cos ε∗2

sin ε∗2
− cos δ∗

)
. (3.20)

Since sgn(δ∗) = sgn(ε∗2) and |δ∗| ≥ |ε∗2|, the zeros are real if δ∗ 6= 0. For PSS, rotor
frequency are typically measured directly, in which case q(θ2,upss)

1,2 → ±∞ as |ε∗2| → 0.

The open-loop zeros of GV2,upss(s) are

q
(V2,upss)
1,2 = ±j

√
bΣ
M
E′∗q EN

(
cos δ∗ + sin δ∗ sin ε∗2

cos ε∗2

)
. (3.21)

With direct machine damping a22 > 0, both zero pairs in (3.20) and (3.21) will
move in the negative real direction with increased damping gain.
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Remark 3.1 (Observability) The zeros (3.21) are very close to the undamped
frequency of the electromechanical mode

Ω =
√
bΣ
M
E′∗q EN cos δ∗, (3.22)

making this an unsuitable loop to close.

Remark 3.2 (Power measurement) In the SMIB model, active power measure-
ment can be considered a special case of phase angle measurements, where ε∗2 = δ∗

and β2 = bΣ in (3.16). By (3.20), this results in two zeros in the origin.

3.2.4 Auxiliary Governor Control
In [93], Smed and Andersson show that active power injections close to the machine
node are ideal for controlling the electromechanical mode. Assuming that the
governor is fast enough so that its dynamics can be ignored, the transfer function
to system states becomes

(sI −A)−1

0
1
0

 = 1
p(s)

 s+ a33
s(s+ a33)
−a31

 . (3.23)

The transfer function Gθ2,Pm(s) has one open-loop zero

q(θ2,Pm) = −1
T ′dob∆

(
b∆ + bΣ

(
1− EN

E′∗q

sin ε∗2
cos ε∗2

sin δ∗
))

− KA

T ′do
β1

(
cos ε∗1 + sin ε∗2

cos ε∗2
sin ε∗1

)
,

which is minimum phase. Similarly, for GV2,Pm(s)

q(V2,Pm) = −1
T ′dob∆

(
b∆ + bΣ

(
1 + EN

E′∗q

cos ε∗2
sin ε∗2

sin δ∗
))

− KA

T ′do
β1

(
cos ε∗1 −

cos ε∗2
sin ε∗2

sin ε∗1
)
.

With high load angles, and if the voltage V2 is measured closer to the machine node
than the machine terminal |ε∗2| < |ε∗1|, the zero, q(V2,Pm) may potentially move into
the right half-plane.

3.2.5 Active Power Injection and Phase Angle Measurement
Power electronic devises can be used to improve the stability of electromechanical
modes. If fast and strong enough, power oscillations can be controlled directly by
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controlling active power injections. The difference from the governor control in
Section 3.2.4 is that the input is not directly acting on the state ω. The transfer
function to system states

(sI −A)−1

 0
b2
b3

 = 1
p(s)

 (s+ a33)b2 − a23b3
s(s+ a33)b2 − sa23b3
−a31b2 + (s2 + a21)b3

 ,
is a combination of (3.19) and (3.23) where from (3.11)

b2 = β3E
′∗
q

MV ∗3
cos ε∗3, and b3 = β3

T ′dob∆V
∗
3

(
sin ε∗3 − bAVR

3
)
. (3.24)

The term bAVR
3 in (3.24) is introduced by the AVR due to direct feed-through

between the input bus and the machine terminal as shown in (3.13).
Remark 3.3 The input matrix elements, b2 and b3 in (3.24), are not to be confused
with susceptance.
From calculations in Appendix 3.A we find that

bAVR
3 = b∆KA

β3b̂13
sin ε∗13, (3.25)

where b̂13 = b′11 + b′11b3N
b13

+ b3N and ε∗13 = θ∗1 − θ∗3 . Thus

b3 = β3

T ′dob∆V
∗
3

(
sin ε∗3 −

b∆KA

β3b̂13
sin ε∗13

)
. (3.26)

The transfer function Gθ2,P3(s) becomes

Gθ2,P3(s) =
c1
(
(s+ a33)b2 − a23b3

)
+ c3

(
(s2 + a21)b3 − a31b2

)
+ dp(s)

p(s) , (3.27)

where from (3.16)

c1 = β2
E′∗q
V ∗2

cos ε∗2, c3 = β2
1
V ∗2

sin ε∗2, (3.28)

and from Appendix 3.A, the direct feed-through term

d = cos ε∗23

b̂23V ∗2 V
∗
3
. (3.29)

Substituting (3.18) in (3.27), the zero polynomial of Gθ2,P3(s) becomes

s3d+ s2(da33 + c3b3) + s(da21 + c1b2) + da21a33 − da23a31

+ c1a33b2 − c1a23b3 + c3a21b3 − c3a31b2, (3.30)
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Figure 3.5: SMIB model with POD controller.

which similar to (3.18), for reasonable load angles and large KA, is stable if

(c3b2 + da23)(c1b3 + da31) > 0. (3.31)

Under Assumption 3.1, all load angles have the same sign, so (3.31) reduces to

sin δ∗(c1b3 + da31) > 0. (3.32)

Combining (3.26) with (3.28),

c1b3 = β2
E′∗q
V ∗2

cos ε∗2
1

T ′doV
∗
3

(
β3

b∆
sin ε∗3 −

KA

b̂13
sin ε∗13

)
(3.33)

and (3.15) with (3.29),

da31 = cos ε∗23

b̂23V ∗2 V
∗
3

(
bΣ

T ′dob∆
EN sin δ∗ − KA

T ′do
β1E

′∗
q sin ε∗1

)
.

It now follows that if (3.17) is fulfilled, then Gθ2,P3(s) is minimum phase. Con-
ditions (3.17) and (3.32) are similar but with an extra term from (3.33) that relaxes
the condition in (3.32) as long as |β3 sin ε∗3/b∆ −KA sin ε∗13/b̂13| > 0, which holds
true for ε∗13 sgn(δ∗) < 0 and for small |ε∗13| � |ε∗3|. The system can therefore be
minimum phase even if it is unstable.

Remark 3.4 The zero of interest in Gθ2,P3(s) is a complex conjugated zero pair as-
sociated with the electromechanical dynamics of the rotor. The undamped frequency
of the electromechanical mode (3.22) is Ω =

√
bΣE′∗q EN cos δ∗/M . Assuming that

interaction between the electromechanical and voltage dynamics can be neglected, i.e.
if we have low load angles and no AVR, then the electromechanical zero pair is given
by, ±j

√
a21 + c1b2/d assuming that E′q ≈ EN , ε∗2 ≈ ε∗3, and cos δ∗ ≈ cos ε∗2 cos ε∗3

then

Im q
(θ2,P3)
1,2 ≈ ±

√
b′12
M
E′∗2q cos δ∗, where

∣∣∣q(θ2,P3)
1,2

∣∣∣ ≥ Ω.

The closer the control and measurement are to the machine node, the faster the
zero. The mode is unobservable at the infinite bus, where b′12 = bΣ.
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3.2.6 Active Power Injection and Voltage Measurement
Consider active power injections as in Section 3.2.5, but with voltage amplitude at a
network node as the measured output. The zero polynomial in the transfer function
from P3 to V2 will be the same as (3.30) but with

c′1 = −β2E
′∗
q sin ε∗2, c′3 = β2 cos ε∗2, (3.34)

and direct feed-through term
d′ = sin ε∗23

b̂23V ∗3
. (3.35)

Here the step from (3.31) to (3.32) is no longer valid. To analyze the presence of
NMP zeros, we first make the following assumptions.
Assumption 3.2 (θ2 = θ3) Control and measurement occur at the same bus.
Therefore, the direct term (3.35) is zero.
The zero polynomial of GV2,P3(s) become

s2c′3b3 + sc′1b2 + c′1(a33b2 − a23b3) + c′3(a21b3 − a31b2),

which divided by c′3b3 gives us the zero polynomial

s2 + sα1 + α2. (3.36)

Assumption 3.3 (θ1 = θ2 = θ3) Control and measurement both occur at the
machine terminal.
Substituting (3.24), (3.26) and (3.34) in (3.36) we find that

α1 = −
E′∗2q T ′dob∆ sin ε∗2 cos ε∗3

M cos ε∗2
(

sin ε∗3 −
b∆KA
β3b̂13

sin ε∗13

) = −
E′∗2q T ′dob∆

M

where the 2nd equality follows due to Assumption 3.3. As shown in Appendix 3.B
this also mean that

α2 ≈ −
E′∗2q (bΣ + b∆)

M
.

Assumption 3.4 (|α1| � |α2|) With parameters in p.u. it is reasonable that
T ′do ≈ 10 s and that b∆ > bΣ [25]. Therefore, α1 dominates α2 in (3.36).
Under Assumption 3.4, the transfer function GV1,P1(s) have an open-loop NMP zero
at −α1. Note also that the undamped frequency of the electromechanical mode

Ω =
√
bΣ
M
E′∗q EN cos δ∗ �

E′∗2q T ′dob∆

M
. (3.37)



70 Chapter 3. Zero Dynamics Coupled to High-Speed Excitation Control

Thus, the NMP zero does not indicate any damping control limitations. If we relax
Assumption 3.3 but still assume that α1 dominates α2, then GVi,Pi(s), i = 1, 2, 3,
has an open-loop zero

q(Vi,Pi) ≈
E′∗2q T ′dob∆ sin ε∗i

M
(

sin ε∗i −
b∆KA
βib̂1i

sin ε∗1i
) . (3.38)

Remark 3.5 If ε∗1i sgn(δ∗) < 0 the NMP zero moves towards the origin. This may
limit damping control design. If ε∗1i sgn(δ∗) > 0 the zero moves further into the right
half-plane and eventually crosses over into the LHP where it goes towards the origin.
Typically however, |ε∗i | > |ε∗1i| ≈ 0 and thus (3.38) is insensitive to both AVR and
the control bus location.
If we relax Assumption 3.2 and allow θ2 6= θ3 then GV2,P3(s) has an open-loop right
half-plane zero

q(V2,P3) ≈
E′∗2q T ′dob∆

M

tan ε∗2
tan ε∗3

. (3.39)

Thus if the measurement bus is closer to the machine than the control bus, the
NMP zero moves closer to the origin.

3.2.7 Summary
In this section, fundamental control limitations in a SMIB power system have been
analyzed by studying the presence of NMP zeros in open-loop transfer functions.

The P -θ transfer function Gθ2,P3(s) has a zero pair

q
(θ2,P3)
1,2 ≈ σ ± j

√
b′12
M
E′∗2q cos δ∗.

The condition for σ < 0 is that∣∣∣∣T ′dod c1b3 + bΣ
b∆
EN sin δ∗

∣∣∣∣ > |KAβ1E
′∗
q sin ε∗1| ,

where c1b3 from (3.33) depends on the location of the measurement and control bus
respectively. The sign of σ is closely linked to the destabilizing effect that the AVR
has on the electromechanical mode. The closer the control and measurement is to
the machine node, however, the less sensitive the system is to the effect of the AVR.

The P -V transfer function is less sensitive to the AVR. Its NMP zero (3.39) tells
us that control input should preferably be close to the machine node and that the
measurement is best located further out in the system. This agrees with [93] where
active power controllability and phase angle observability was found most effective
far away from mass-weighted electrical midpoint, which for the SMIB model means
far away from the infinite bus. On the contrary, reactive power controllability and
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voltage observability is shown to be the most effective at the midpoint. However,
since the voltage at the infinity bus is assumed fixed, this makes the SMIB model
unsuitable for the study of Q-V control, as noted in Remark 3.1.

3.3 Simulation Study

In this section we study the control limitations imposed by zero dynamics using
a more detailed power system model implemented in Simulink. The considered
SMIB system shown in Figure 3.6 has a 6th order synchronous machine model and
fast, but not neglected, exciter dynamics. The model is described in detail in [25,
Example 13.2], where it is used to study the effect of AVR and PSS. The machine,
representing the aggregation of four synchronous machines, feeds 0.9 p.u. active
power into an infinite bus.

3.3.1 Active Power Injection and Phase Angle Measurement

To test the transient and steady-state rotor angle stability, we consider a three phase
ground fault at time t = 1 s. The fault occurs in the lower circuit close to bus 2 as
shown in Figure 3.6. The fault is cleared by disconnecting the affected line at both
ends within 0.10 s.

Following the numbers listed in Figures 3.7 to 3.9.

1 With constant field voltage, the system fails to maintain synchrony following
the fault in Figure 3.7. To enhance the transient stability, AVR is implemented.
As seen in Figure 3.8 this moves the poles associated to the voltage dynamics
further into the LHP, increasing the synchronizing torque of the machine.

The presence of an extra pole on the real axis in Figure 3.8 stems from the fact that
the electrical dynamics of the synchronous machine is represented by a 6th order
model.

2 Although the AVR achieves initial transient stability the system goes unstable
in the second swing in Figure 3.7. This is because the AVR has moved the pole
of the electromechanical mode into the right half-plane as seen in Figure 3.8.

To stabilize the system we consider active power injections using local phase angle
measurements at buses 2–3 in Figure 3.6.

3 As shown in Section 3.2.5, the presence of NMP zeros are closely linked to
the destabilizing effect of the AVR. For nodes closer to the machine, the zeros
are shifted further into the LHP. This can be seen in Figure 3.9a where the
open-loop zeros are plotted alongside the electromechanical mode.
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Figure 3.6: SMIB network from [25, Example 13.2].

Figure 3.7: Rotor angle response with fault cleared
in 0.10 s.

Figure 3.8: Root locus with AVR
at bus 1.

We consider a classical POD design using the residue method. Let Pi = −K(s)θi,
where the feedback controller

K(s) = s+ T1

s+ T2︸ ︷︷ ︸
Phase compensation

s

(
100

s+ 100︸ ︷︷ ︸
Low-pass

)2
s

s+ 1/1.5︸ ︷︷ ︸
Wash-out

kPOD. (3.40)

The eigenvalue sensitivity to changes in K(s) is given by the residue [45]

R(λ) = − ∂λ

∂K(s) . (3.41)

The phase compensation in (3.40) is tuned so that arg
(
R(λ)K(λ)

)
= −π for the

electromechanical mode. Thus, feedback moves the eigenvalue in the negative real
direction as seen in Figures 3.9b and 3.9c. However, as the gain kPOD increases, the
trajectory of the closed-loop eigenvalue changes and it eventually approaches the
position of the nearby open-loop zero.

4 With POD at bus 2, the control achieves an optimal damping of 13% as shown
in Figure 3.9b. With POD and AVR, the system achieves both transient and
steady-state stability as seen in Figure 3.7.

Note that the zero q(θ2,P2) does not move in Figure 3.9b. This is natural since
closed-loop zeros in a SISO system cannot be moved by feedback control [112].
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(a) AVR at bus 1.

(b) POD at bus 2.

(c) POD at bus 3.

Figure 3.9: Poles and zeros of Gθi,Pi(s), i ∈ {2, 3, 4}, with AVR or AVR plus POD control.
The “×” marks the feedback gain level where the pole crosses the imaginary axis.

5 With an increasing feedback gain, the closed-loop poles approaches the open-
loop zeros. In Figure 3.9c we see that this impose a limitation for control at
bus 3 that fails to achieve stability for any kPOD.

The residue (3.41) is useful to find suitable input-output pairs as it is a measure of
the controllability and observability of the considered mode [45]. In general λ can
be stabilized as long as |R(λ)| 6= 0. With nearby NMP zeros however, robustness
deteriorates, increasing the sensitivity to changes in the system [112].

3.3.2 Active Power Injection and Voltage Measurement
Consider the system in Figure 3.6 as in Section 3.3.1 but now with voltage as the
measured output. According to (3.39), the transfer function GVi,Pk(s) should have a
zero on the positive real axis. The zero should be roughly at the same point for all
local measurement loops GVi,Pi(s). In Figure 3.10 we see that these zeros appear at
50 rad/s which, in agreement with (3.37), is much larger than the electromechanical
mode. With external measurement, the NMP zero moves closer to the origin if the
measurement is closer to the machine and vice versa. As shown in Section 3.2.6, all
NMP zeros are insensitive to the AVR.
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(a) Active power injection at bus 1.

(b) Active power injection at bus 2.

(c) Active power injection at bus 3.

Figure 3.10: Poles and zeros of GVi,Pk (s), i ∈ {1, 2, 3}, with AVR.

3.4 Summary

The presence of open-loop transfer function zeros have been characterized for different
input-output configurations in power systems. It was shown, using a SMIB model,
that NMP zeros are closely linked to the destabilizing effect of AVR. Depending on
input-output combination chosen for feedback control, these NMP zeros may persist
in the system. Right half-plane zeros close to an unstable electromechanical mode
was shown to prevent stabilization using feedback control.

The SMIB model have been used since it allows for an analytically tractable
solution to the problem. The model detail will of course have an impact on the pole-
zero locations of the system. For instance, the approximation from the dynamical
AVR model (3.8) to the simple proportional model (3.9) is only accurate if the
AVR is fast compared to the electromechanical dynamics. However, reducing the
bandwidth of the AVR also means that the intended transient stability improvement
will be reduced. So there will still be a trade-off between transient and small-signal
stability as described in Section 3.2.2.
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Appendix

3.A Direct Feed-Through
The admittance matrix interconnecting network nodes i and k in Figure 3.3 is given
by

Yθθ = j

[
−b′1i − bik bik

bik −bik − bkN

]
,

with nodes ordered so that b′1i ≥ b′1k, i.e., node i is closer to the machine node. By
(3.6), the weighted admittance matrix

Yθθ = j

[
(b′1i + bik)V 2

i −bikViVkejεik
−bikViVke−jεik (bik + bkN )V 2

k

]
,

where εik = θi − θk. With YD =

−Y −1
θθ = j

1
V 2
i V

2
k

1/bik
b̂ik

[
(bik + bkN )V 2

k bikViVke
jεik

bikViVke
−jεik (b′1i + bik)V 2

i

]
,

where b̂ik = b′1i + b′1ibkN
bik

+ bkN , the direct feed-through between the network nodes
are then obtained using (3.12).

3.B Zero Polynomial Coefficient
Substituting (3.15), (3.24), (3.26) and (3.34) in (3.36) we find that

α2 =
(
−c′1a23b3 + c′3a21b3 + c′1a33b2 − c′3a31b2

)/
c′3b3 =

E′∗2q bΣ

M

1
cos ε∗2 (sin ε∗3 − bAVR

3 )

(
EN
E′∗q

sin δ∗ sin ε∗2
(
sin ε∗3 − bAVR

3
)

+ EN
E′∗q

cos δ∗ cos ε∗2
(
sin ε∗3 − bAVR

3
)
− bΣ + b∆

bΣ
sin ε∗2 cos ε∗3

− b∆
bΣ
KAβ1 cos ε∗1 sin ε∗2 cos ε∗3 −

EN
E′∗q

sin δ∗ cos ε∗2 cos ε∗3

+ b∆
bΣ
KAβ1 sin ε∗1 cos ε∗2 cos ε∗3

)
≈ −

E′∗2q (bΣ + b∆)
M

,

where from (3.25), bAVR
3 = b∆KA

β3b̂13
sin ε∗13. Note that all effects from the AVR cancel

out due to Assumption 3.3.





Chapter 4

Single-Line HVDC Control Limitations

This chapter considers power oscillation damping (POD) by modulating the active
power of a high-voltage direct current (HVDC) transmission line. An analytical study
of how the proximity between interarea modal frequencies in two interconnected
asynchronous grids puts a fundamental limit to the achievable performance is
presented. It is shown that the ratio between the modal frequencies is the sole factor
determining the achievable performance. This is of course assuming that the HVDC
can provide the desired power and that the ac buses are strong enough to receive
the power injections. Since the control cannot exceed rated HVDC power the latter
of these points should not be an issue for a properly installed HVDC link. The
phenomenon is a physical limitation caused by the two interconnected ac grids,
and cannot be circumvented by better control design or by the use of wide-area
measurements. To validate the derived limitations, simulations using a wide-area
controller tuned to optimize performance in terms of POD are done. The influence
of limited system information and unmodeled dynamics is shown on a simplified
two-machine model. The analytical result is then tested on a realistic model with
two interconnected 32-bus networks. The result shows that the analytical result are
useful for assessing the fundamental performance limitations also as networks grow
in complexity.

The proximity in frequency of two poorly damped oscillatory modes can be
troublesome. It greatly affects the controllability of the interarea modes and therefore
impairs the achievable POD from HVDC active power modulation. This modal
interaction is the main focus of this chapter. In [30] it is shown that HVDC primary
frequency control never decreases POD under some simplifying assumptions. This is
proven by using a simple proportional droop controller, phase compensated for the
HVDC active power actuation lag, with feedback from local frequency measurements
at the two HVDC terminals. Such a control allows for efficient sharing of inertia
response and primary reserves between the connected systems using only local
measurements. In general, dc dynamics are orders of magnitude faster than interarea
modes (see Section 2.6.3). For the remainder of this work, a residualized model [120]

77
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will be used, where faster dc dynamics are neglected. Instead, the focus will be on
interactions occurring between ac systems interconnected with HVDC.

The main contribution of this chapter is to show how modal interaction limits the
achievable POD from HVDC active power modulation. This is done by extending
the work of [21, 30, 93]. In our analysis, the well-known controllability Gramian
[121, 122] is used to assess the controllability of the system. The Gramian gives
a fundamental measure for how hard it is to control the interarea oscillations,
independent of control structure.

The remainder of this chapter is organized as follows. In Section 4.1 nonlinear
and linear models of the HVDC-interconnected system are defined. In Section 4.2,
reduction of the linear model is done along with an energy interpretation. In
Section 4.3, controllability analysis of the reduced model is made. In Sections 4.4
and 4.5 a droop controller is synthesized and implemented in simulations to show
POD performance and sensitivity. The chapter is summarized in Section 4.6.

4.1 Model of the HVDC-Interconnected System

Consider the HVDC-interconnected system in Figure 4.1. We let the dominant
interarea mode in Network 1 (top) and Network 2 (bottom) be represented by two
synchronous machines connected by an ac transmission line. The grouping of power
system buses into regions that model the dominant slow interarea modes is an
analysis method validated by slow coherency theory [44, 123]. The method gives
a simplified model that facilitates analysis. It should be noted that fast dynamics
inside the regions have been neglected. Because of this, results derived from the
reduced-order model need to be validated in more realistic detailed models.

Machines are modeled, using the classical machine model, as a stiff electromotive
force behind a transient reactance. Higher-order ac dynamics such as impact from
machine damper windings, voltage regulators and system loads, governors etc. are
lumped into the damping constant Dij . In addition, transmission is assumed lossless
and the electrical distance between machine ij and dc bus i is represented by
the reactance Xij , consisting of transient machine reactance, transformers, and
transmission lines [25]. Thus, the electromechanical dynamics for network i ∈ {1, 2}
is given by the swing equation

δ̇ij = ωij

Mijω̇ij = Pm,ij − Pload,ij︸ ︷︷ ︸
∆Pij

− VijVi
Xij

sin(δij − θi)︸ ︷︷ ︸
Pe,ij

−Dijωij (4.1)

for machines j ∈ {1, 2}, where δij is the machine busbar-voltage, ωij represents
machine ij’s deviation from the nominal frequency ωnom. The constantMij represents
the frequency and pole-pair scaled inertia of each machine.

The difference between the mechanical input power from the machines and the
local loads is given by ∆Pij . Since load dynamics are not of interest in the analysis,
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V11 δ11, ω11

M11, D11

jX11

PDC

V1 θ1

V2 θ2

Network 1
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Pe,11

∆P11 ∆P12

∆P21 ∆P22

Pe,12

Pe,21 Pe,22

V12 δ12, ω12

M12, D12

jX12

V21 δ21, ω21

M21, D21

jX21

V22 δ22, ω22

M22, D22

jX22

Figure 4.1: The HVDC-interconnected system used to study modal interaction, between
two ac networks.

loads are assumed to act directly on generator states. DC busbar-voltage phase
angle θi is given by the active power

PDC +
2∑
j=1

VijVi
Xij

sin(δij − θi) = 0 (4.2)

and reactive power balance

QDC +
2∑
j=1

VijVi cos(δij − θi)− V 2
i

Xij
= 0 (4.3)

where PDC and QDC is active and reactive power injected at the HVDC terminal. In
addition we make the simplifying assumption that machine excitation and reactive
power at the HVDC terminal are controlled (using, e.g., a voltage source converter
HVDC terminal, a static var compensator, or a variable shunt capacitor bank) so
that all buses have the voltage amplitude V for the time frame of interest [30].

Linearization and further simplifications commonly done in small-signal studies
of power systems are made next. The second machine is set as phase reference in each
network. Without loss of generality: δi2 = 0, ∆δi = δi1 − δi2, and ∆δ̇i = ωi1 − ωi2.
Assuming small power flows, with ∆Pij ≈ 0, gives small voltage phase-angle dif-
ferences between buses. This implies that cos(δij − θ) ≈ 1. If we let QDC = 0
then (4.3) does not play a role in the small-signal dynamics. The assumption of
small voltage phase-angle differences also implies sin(δij − θ) ≈ δij − θ in (4.1) and,
similarly, from (4.2) then approximately

θi = Xi2

XΣ,i
δ + Xi1Xi2

V 2XΣ,i
PDC

where XΣ,i := Xi1 +Xi2 is the total series impedance in Network i. These simplifi-
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cations result in the linear state-space model

ẋi = A′ixi +B′iu

yi = C ′ixi
(4.4)

with state vector xi = [∆δi, ωi1, ωi2]T, input u = PDC, and y some general output.
For the study of POD and modal interaction, additional simplifications are

possible without loss of relevant dynamics. This is essential for facilitating the
analysis of the HVDC-interconnected system. Only the electromechanical oscillations
between the two machines are of interest. Therefore, only frequency in relation to
the center of inertia (COI) frequency

ωCOI,i = Mi1

MΣ,i
ωi1 + Mi2

MΣ,i
ωi2

where MΣ,i = Mi1 + Mi2, needs to be considered. We therefore let the output
vector be yi = [∆δi, ωi1−ωCOI,i, ωi2−ωCOI,i]T. Additionally, we make the following
assumption that will let us reduce the system.
Assumption 4.1 (Damping Proportional to Inertia) The machine damping is
evenly distributed and proportional to the machine inertia constant (which in turn
is proportional to rated power)

Dij = Di
Mij

MΣ,i

such that the machines become scaled versions of each other.

Remark 4.1 Since the mode (corresponding eigenvalue λ) is assumed poorly
damped (|Re(λ)| � |λ|) Assumption 4.1 has little effect on model accuracy. This is
further discussed in the Section 4.2.

With Assumption 4.1, the system matrices in (4.4) becomes

A′i =

 0 1 −1
−V 2

Mi1XΣ,i

−Di
MΣ,i

0
V 2

Mi2XΣ,i
0 −Di

MΣ,i

, B′i =

 0
Xi2

Mi1XΣ,i
Xi1

Mi2XΣ,i

 (4.5)

and since

ωi1 − ωCOI,i =
(

1− Mi1

MΣ,i

)
ωi1 −

Mi2

MΣ,i
ωi2 = Mi2

MΣ,i
ωi1 −

Mi2

MΣ,i
ωi2

the output matrix becomes

C ′i =

1 0 0
0 Mi2

MΣ,i

−Mi2
MΣ,i

0 −Mi1
MΣ,i

Mi1
MΣ,i

. (4.6)
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4.2 Model Reduction and Energy Interpretation

In this section we discuss how to reduce the state dimension of the model introduced
previously, and how to make a useful energy interpretation of the model.

Due to Assumption 4.1, the two machines are linearly scaled versions of each
other. Therefore, only machine frequency deviations, scaled by Mi1 or Mi2, around
ωCOI,i are observable in yi. Hence, only the difference ωi1−ωi2 (and not the absolute
states) is observable. Thus, (4.4) to (4.6) is not a minimal realization but can be
reduced further without losing additional control information [121].

4.2.1 Model Reduction

Let zi be a reduced state vector that represents the observable subspace of (4.4)
to (4.6) given by zi = P †xi. The transformation matrix P is time invariant and
P † is its Moore-Penrose pseudoinverse. A minimal (observable and controllable)
realization of (4.4) to (4.6) is then

żi = Aizi +Biu

yi = Cizi
(4.7)

where Ai = P †A′iP , Bi = P †B′i and Ci = C ′iP [121, Theorem 10.13].
For the analysis, it is convenient to let the reduced state vector zi = [∆δi, ∆ωi]T

where ∆ωi = ωi1 − ωi2. This is achieved by choosing

P † :=
[
1 0 0
0 1 −1

]
. (4.8)

The matrices in (4.7) thus become

Ai =
[

0 1
−V 2MΣ,i

Mi1Mi2XΣ,i

−Di
MΣ,i

]
, Bi =

[
0

Mi2Xi2−Mi1Xi1
Mi1Mi2XΣ,i

]
, Ci =

1 0
0 Mi2

MΣ,i

0 −Mi1
MΣ,i

 (4.9)

where the undamped frequency of the interarea mode is given by

Ωi =

√
V 2MΣ,i

Mi1Mi2XΣ,i
. (4.10)

This construction can be compared to the classical two-body problem of Newtonian
mechanics [124]. From (4.9) it is easily seen that the interarea mode is controllable
using active power injection, as long the HVDC terminal is not located at the
mass-scaled electrical midpoint between the two machines, i.e., as long as Mi1Xi1 6=
Mi2Xi2. This result is also found in [21, 30, 93]. To simplify the analysis further,
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consider the special caseMi1 = Mi2 = Mi, which we refer to as a symmetric network.
The system matrices become

Ai =
[

0 1
−2V 2

MiXΣ,i

−Di
2Mi

]
, Bi =

[ 0
XB,i
Mi

]
, Ci =

1 0
0 0.5
0 −0.5

 , (4.11)

where XB,i = Xi2−Xi1
XΣ,i

∈ [−1, 1] is the electric position of the dc bus in network i
w.r.t. line impedance.

For system (4.9) to be a minimal realization of (4.4) it is required that the
machines are scaled versions of each other according to Assumption 4.1. In the
following example we study the effects of this assumption.

Example 4.1 (Consequence of Assumption 4.1) Consider a nominal network G0
where Assumption 4.1 holds and a perturbed network G where there is no damping
at the second machine.

• Nominal network, G0. The nominal network is defined with fnom = 50Hz,
unit voltage, unit line impedance and an undamped modal frequency set to
Ωi/2π = 0.5 Hz. From (4.10), Ωi =

√
2/Mi and thusMi = 2/Ω2

i . The damping
constant Di at both machines are chosen such that the 0.5Hz interarea mode
in the nominal network have a damping ratio of 8% as shown in Appendix 4.F.

• Perturbed network, G. In the perturbed network we let system damping be
concentrated in machine 1. That is, let Di1 = 2Di and Di2 = 0.

In the reduced model (4.9) original state variables [∆δi, ωi1, ωi1]T are approx-
imated to [∆δi, ∆ωi = ωi1 − ωi1]T. This reduction requires that Assumption 4.1
holds. In Figure 4.2 we study the accuracy of this reduction. The bode plot of
the transfer function from input u to output ∆ωi are shown for the nominal and
perturbed system respectively.

In Figure 4.2a we consider a system with XBi = 0.5, i.e., the dc bus is located
close to machine 1. Here, the phase angle differs between G and G0 at lower
frequencies. In Figure 4.2b we consider a system with XBi = −0.5, thus the dc bus
is closer to the machine without damping. In this case, the amplitude of |G| and
|G0| differ at lower frequencies. However, for both of these cases, the system gain
|G| and |G0| is already comparatively low at these frequencies. We see that in the
relevant bandwidth window around the modal frequency, perturbations have little
effect on the system response. Thus, the proposed model reduction is fairly accurate
also when Assumption 4.1 does not hold.

Remark 4.2 In modal analysis of power systems, it is common practice to describe
system dynamics in terms of eigenvalues [25, 125] as shown in Appendix 4.A. The
resulting system matrix is diagonal and thus the dynamics of the system states are
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(a) DC bus location XB = 0.5 (b) DC bus location XB = −0.5

Figure 4.2: Transfer function of nominal (G0) and perturbed system (G) from input u to
output ∆ωi considering two different dc bus locations. Around the modal frequency 0.5Hz
(gray line) the system perturbation has little effect.

decoupled from each other. Therefore, the system can easily be reduced. However,
as the representation result in complex valued system matrices it is not useful for
the purpose of our analysis. As shown in Appendix 4.C, a diagonal modal matrix
can be transformed into a real Jordan form [126]. Here the system is represented in
block diagonal form where complex conjugated eigenvalue pairs λl = −γl ± jωe,l,
corresponding to modes of oscillation, are represented by real 2× 2 blocks on the
form [

γl ωe,l
−ωe,l γl

]
.

If Assumption 4.1 holds then transformation with (4.8) also preserves the dynamics
of the interarea oscillations. This, since the transformation matrix is a linear combi-
nation of the relevant eigenvectors. The benefit of the proposed reduction method
is that the states of the new model reflects properties of the original system that
are easy to study and interpret. If the assumption does not hold, the system can
still be reduced but the new states are going to be a combination of original state
variables, thus making further analysis cumbersome.

4.2.2 Energy Interpretation

In this section we derive an expression for the oscillatory energy stored in Network i
at state

[
∆δi, ∆ωi

]T =
[
δ0,i, ω0,i

]T.
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Figure 4.3: Visualization of a reduced two-machine ac network.

Interarea oscillations (or power oscillations) are electric power being transfered
between machines. Consider the unforced, undamped symmetrical ac network shown
in Figure 4.3, where the swing equation (4.1) gives

Miω̇0,i = −2Pe,i1 = − V 2

XΣ,i/2
δ0,i. (4.12)

Work is the conversion between mechanical kinetic energy and electrical potential
energy. Hence, power oscillations are an electromechanical phenomenon. Multiplying
both sides in (4.12) by d∆δi/dt = ∆ωi and deriving work done to both machines as
the integral of power over time, t, we get

2
∫
Mω0,i

dω0,i

dt
dt = −2

∫
V 2

XΣ,i/2
δi,0

dδ0,i
dt

dt (4.13)

or
2V 2

XΣ,i
δ2
0,i +Mω2

0,i = Ep,i + Ek,i =: E0,i (4.14)

where, since we are dealing with a conservative system, the sum of kinetic Ek,i =
Miω

2
0,i and potential energy Ep,i = 2V 2

XΣ,i
δ2
0,i is constant over time [124]. This sum is

referred to as the oscillatory energy E0,i, which is the quantity we are interested in
controlling using active power injection at the dc terminal.

4.2.3 Modeling the HVDC-Interconnected System

Using (4.7) together with (4.9) or (4.11), the HVDC-interconnected system in
Figure 4.1 can now be described by

ż :=
[
ż1
ż2

]
=
[
A1 0
0 A2

] [
z1
z2

]
+
[
B1
−B2

]
u =: Az +Bu. (4.15)
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4.3 Controllability Analysis

In this section we introduce some mathematical tool that are commonly known in
control theory. These will be useful for the analysis of the system.

Consider a n-dimensional linear time-invariant (LTI) system. As long as the
controllability matrix

C =
[
BABA2B · · · An−1B

]
(4.16)

has full rank, the system is controllable.

Theorem 4.1 (Controllability Gramian [122]) The LTI system (4.15) is control-
lable if and only if the controllability Gramian

WC =
∫ T

0
eAtBBTeA

Ttdt. (4.17)

is nonsingular for any T > 0.

Theorem 4.1 is equivalent to the controllability matrix (4.16) having full rank
[122, Theorem 6.1]. However, the controllability Gramian has more uses as it gives
us information on how hard the system is to control.

If damping constants D1, D2 > 0 then A is strictly Hurwitz, i.e., its eigenvalues
have strictly negative real part. The controllability Gramian WC over infinite time,
T =∞, can then be obtained by solving a Lyapunov equation.

Theorem 4.2 (Controllability Gramian t→∞ [122]) If A is strictly Hurwitz,
then the controllability Gramian, with t→∞, is given by the unique solution to the
Lyapunov equation

AWC +WCA
T +BBT = 0. (4.18)

The controllability Gramian gives us the minimal energy control, or control
effort, required to transfer the system from one state to another.

Theorem 4.3 (Control Effort [122]) The control effort required to transfer an
initially disturbed system state, z(t = 0) = z0, to the origin, lim

t→∞
z(t) = 0, is given

by
‖u‖22 = zT

0W
−1
C z0

where u ∈ L2[0, ∞).

Definition 4.1 (Unitary Matrix [127]) A (complex) matrix V is unitary if its com-
plex conjugate transpose

VH = V−1.
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Definition 4.2 (Singular Value Decomposition (SVD) [127]) The SVD of a ma-
trix W ∈ Cn×n is based on the existence of unitary matrices U ,V ∈ Cn×n such
that

W = UΣVH

where
Σ = diag(σ1, σ2, . . . σn)

and
σ̄ := σ1 ≥ σ2 ≥ · · · ≥ σn =:

¯
σ

are the singular values of W . SVD is also applicable to non-square matrices.

Since WC is created from the square of two matrices (4.17) WC ≥ 0 and
WC = WT

C . In addition WC and thus U and V are real. This means that

WC = UΣVT ⇔WT
C =

(
UΣVT)T = VΣUT.

Consequently V = U , and σl(WC) is the same as the eigenvalue λl(WC).
With zl := vT

l z0, where singular vectors vl are the columns in V, it follows that
the control effort can be computed as

‖u‖22 = zT
0 VΣ−1VTz0 =

n∑
l=1

z2
l

σl
. (4.19)

4.3.1 Assessing Controllability of an Isolated AC Network
Consider the single ac network i in (4.11) with Di > 0, controlled with an arbitrary
active power injection at the dc bus from a source with negligible dynamics, e.g.,
a large battery storage. By Theorem 4.2, the controllability Gramian for the two-
machine network is (see Appendix 4.E)

WC,i =
X2
B,i

Di

[
XΣ,i
2V 2 0
0 1

Mi

]
. (4.20)

According to (4.19), the control effort required to transfer the system from an
initially disturbed state to zero is given by

‖u‖22 = zT
0,iW

−1
C,iz0,i = Di

X2
B,i

2V 2

XΣ,i
δ2
0,i + Di

X2
B,i

Miω
2
0,i. (4.21)

Expressing (4.21) in the terms of oscillatory energy (4.14), we get

‖ui‖22 = Di

X2
B,i

(Ep,i + Ek,i) = Di

X2
B,i

E0,i. (4.22)

Here it is seen that control effort is inversely proportional to the squared (mass-
weighted) electric position, X2

B,i, of the dc terminal. This agrees with the findings
of [21, 30, 93].
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Remark 4.3 If we let Di = 0, then the finite-time controllability Gramian (The-
orem 4.1) gives us an intuitive interpretation of the required control effort (Theo-
rem 4.3). The time, T , is a measure of the control aggressiveness.

For large T , we have (see Appendix 4.D)

WC,i ≈ X2
B,i

T

2Mi

[
XΣ,i
2V 2 0
0 1

Mi

]

which is the same as (4.20) with

Di = 2Mi

T
.

Thus, (4.18) is considered a good controllability estimate with Di > 0 representing
the control aggressiveness.

The finite-time controllability Gramian becomes impractical as the dimension of
the system increases. Therefore, Theorem 4.2 will be used to analyze the HVDC-
interconnected system.

4.3.2 Computing the Gramian WC

The controllability Gramian (4.18) for the HVDC-interconnected system, computed
using Kronecker products [128] (see Appendix 4.E) yields

WC =


a1 −α 0 −γ
−α a2 γ 0
0 γ b1 −β
−γ 0 −β b2

 (4.23)

with state variables ordered

z =
[
∆δ1, ∆δ2, ∆ω1, ∆ω2

]
.

The elements of (4.23) depend on the parameters of Network 1 and 2. The main
factor determining controllability is the undamped modal frequencies Ω1 and Ω2 in
(4.10).

Assumption 4.2 (Identical Networks, Except for the Inertia Constant) For the
following analysis we chooseM := M1,M2 := M +ε and let the systems be identical
in all other aspects, i.e., let D1 = D2 =: D and XΣ,1 = XΣ,2 =: XΣ. Note that
Ω1 6= Ω2 if ε 6= 0.
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The elements of (4.23) are then given by

a1 = a2 = X2
B

D

XΣ

2V 2 =: a

b1 = X2
B

D

1
M

=: b

b2 = b
M

M + ε

α = a
2M + ε

2M + ε+ 2cε2

β = b
2M

2M + ε+ 2cε2

γ = X2
B

D2
2ε

2M + ε+ 2cε2

c = 2V 2

D2XΣ
.

(4.24)

Here we note that α → a, β → b, b2 → b, and γ → 0, as ε → 0, which make WC

rank deficient. Moreover, the matrix of singular vectors is given by

lim
ε→0
V = 1√

2


0 1 0 1
0 −1 0 1
1 0 1 0
−1 0 1 0

 (4.25)

As can be expected for the control of a multivariable system, directionality will
have to be considered [115]. With state variables ordered z =

[
∆δ1, ∆δ2, ∆ω1, ∆ω2

]
we see (according to (4.14)) that the interesting singular vectors corresponding to
the least controllable directions represent potential energy, Ep := Ep1 + Ep2, z0 ∈
span(v4); and kinetic energy, Ek := Ek1 + Ek2, z0 ∈ span(v3). Interpreted as
oscillatory energy, this becomes E0 := Ep + Ek, z0 ∈ span(v3, v4).

For small ε, networks will have similar modal frequencies, and controllability is
going to be greatly affected by system interactions α, β and γ. The two smallest
singular values of WC corresponding to directions vl with highest required control
effort are the most interesting ones. Approximating these gives an analytical estimate
of the controllability.

Making a Maclaurin series expansion of matrix elements (4.24) with respect to ε
(see Appendix 4.G) shows that for small ε

∣∣∣∣dα(ε)
dε

∣∣∣∣ < ∣∣∣∣dβ(ε)
dε

∣∣∣∣ < ∣∣∣∣db2(ε)
dε

∣∣∣∣ < ∣∣∣∣dγ(ε)
dε

∣∣∣∣ .
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Figure 4.4: Controllability of the two HVDC-interconnected networks in Example 4.2.
Estimated singular values σγ , σp, and σ̂ together with numerically calculated σ.

A simplification of WC , accurate for small ε, is then

W γ
C :=


a −a 0 −γ
−a a γ 0
0 γ b −b
−γ 0 −b b


where the smallest singular value becomes

σγ := min
(
svd(W γ

C)
)

=
∣∣∣b−√(b2 + γ2)

∣∣∣ . (4.26)

Maclaurin series expansion of σγ gives the estimate

σγ(ε) = X2
B

D

1
2D2M

ε2 +O(ε3). (4.27)

Example 4.2 In Figure 4.4 we let the networks 1 and 2 be defined with fnom =
50Hz, XB = 0.5, unit voltage, unit line impedance and the undamped modal
frequency are set to Ω1/2π = 0.5 Hz. From (4.10), Ω1 =

√
2/M and thus M = 2/Ω2

1.
To study how modal interaction affects controllability, the undamped modal

frequency in Network 2 is set to Ω2 =
√

2/(M + ε) according to Assumption 4.2. The
damping constant D are chosen such that the 0.5Hz interarea mode in Network 1
have a damping ratio of 8% as shown in the Appendix 4.F.

As seen in Figure 4.4, the estimate (4.26) is only accurate for small ε. For slightly
larger ε the properties of WC is dominated by the diagonal blocks

W p
C :=

[
a −α
−α a

]
and W k

C :=
[
b −β
−β b2

]
in (4.23), where, the smallest singular value

σp := min
(
svd(W p

C)
)

= |a− α|
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together with (4.24) becomes

σp(ε) = X2
B

D

XΣ

2V 2
2cε2

2M + ε+ 2cε2 . (4.28)

Maclaurin series expansion of (4.28) yields

σp = X2
B

D

cXΣ

2D2M
ε2 +O(ε3).

With c = 2V 2

D2XΣ
according to (4.24) (4.28) becomes

σp(ε) ≈ X2
B

D

1
D2M

ε2. (4.29)

From (4.27) we have that that for small ε

σγ(ε) ≈ X2
B

D

1
2D2M

ε2. (4.30)

For the second-order term of (4.29) to match that of (4.30), c in (4.28) needs to be
replaced by c/2, suggesting the estimate

ˆ
¯
σ(ε) = X2

B

D

XΣ

2V 2
cε2

2M + ε+ cε2
. (4.31)

As seen in Figure 4.4 this is a fairly accurate analytical estimate of the real singular
value.

4.3.3 Modal Interaction and Energy Interpretation
From (4.10) and Assumption 4.2 it follows that

ε = 2V 2

XΣΩ2
2
−M. (4.32)

Substituting (4.32) in (4.31) yields

ˆ
¯
σ(ε) = 2V 2

XΣ

D

X2
B

(
1 +D2 1 + Ω2

1/Ω2
2

2V 2M
XΣ

(1− Ω2
1/Ω2

2)2

)
.

The control effort required for an initial disturbed state, z0 ∈ span(v4) and Ep =
vT

4
2V 2

XΣ
v4 becomes

‖u‖22 ≈ Ep
D

X2
B

(
1 +D2 1 + Ω2

1/Ω2
2

2V 2M
XΣ

(1− Ω2
1/Ω2

2)2

)
(4.33)
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However, as implied by (4.22) and (4.25), (4.33) holds for any z0 ∈ span(v3, v4) thus
Ep can be replaced by E0. This allows us to express the worst-case required control
effort due to modal interaction between the HVDC-interconnected ac networks as

‖uD‖22 := E0
D

X2
B

(
1 +D2 1 + Ω2

1/Ω2
2

2V 2M
XΣ

(1− Ω2
1/Ω2

2)2

)
. (4.34)

The subscript D indicates that the controllability Gramian is calculated using
Theorem 4.2 and thus depends on the damping constant.
Remark 4.4 For differences in the HVDC-interconnected networks parameters,
some adjustments to (4.34) is needed to get an accurate estimate (see Appendix 4.H).
This is however left out here for the sake of readability.

In Figure 4.5 the estimate (4.34) is compared with numerical results using a
finite-time controllability Gramian (4.17) for an undamped system

‖uT ‖22 := zT
0

(∫ T

0
eAtBBTeA

Ttdt

)−1

z0 (4.35)

where z0 ∈ span(v3, v4) and we let T ∝ 1/D used in (4.34). For the graphical
comparison in Figure 4.5, the measures (4.34) and (4.35) are normalized as

‖ūD‖2 :=
(

1 +D2 1 + Ω2
1/Ω2

2
2V 2M
XΣ

(1− Ω2
1/Ω2

2)2

)
(4.36)

and

‖ūT ‖2 :=

√
‖uT ‖22

‖uT,1‖22 + ‖uT,2‖22
(4.37)

where ‖uT,1‖22 and ‖uT,2‖22 are the corresponding finite-time minimal control effort
for Network 1 and Network 2, respectively.
Remark 4.5 In Figure 4.5 it is shown how the modal interaction puts a limit to
how aggressive the control action can be. As for a single ac network (see Remark 4.3)
an inverse relation between D and T is seen. This indicates that D is a reasonable
representation of control aggressiveness also for the interconnected system.



92 Chapter 4. Single-Line HVDC Control Limitations

Figure 4.5: The normalized minimal energy control calculated using (4.36)(top) with D
chosen to give damping factor ζ = {2, 4, 6, 8, 10 %} and (4.37) (bottom) with no inherent
damping and T = 1/D. It follows that a more aggressive control comes at the cost of
increased sensitivity to modal interaction.

4.4 Control Synthesis

As seen in Section 2.2, oscillatory instability is caused by a lack of damping torque.
In this section, a controller designed to optimize achievable damping torque by
maximizing the minimal system damping ratio is proposed.

First consider an individual network

żi

[
0 1
−2V 2

MiXΣ,i

−Di
2Mi

]
zi +

[ 0
XB,i
Mi

]
u.

With u = −Ki∆ωi, Ki > 0 we see that damping torque is improved as the complex
eigenvalue pair is moved left in the complex plane [93]. With an increasing gain Ki

system performance in terms of POD is improved if controlled from a source with
negligible dynamics, e.g., a large battery storage. However, as shown in Section 4.3,
modal interaction will put a limit to achievable POD performance in the HVDC-
interconnected system.

Consider the HVDC-interconnected system depicted in Figure 4.1. The input
u = PDC is controlled with proportional feedback. Neglecting the HVDC actuation
lag, the following control law is used:

u = P 0
DC −Ky. (4.38)
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Here we propose the output signal

y =
[
∆ω1
∆ω2

]
:=
[
ω11 − ω12
ω21 − ω22

]
(4.39)

to increase the damping torque and to target the oscillatory energy in each system.
For simplicity a proportional droop controller, K =

[
K1, −K2

]
is considered.

Let λl, l ∈ {1, . . . , n} be the eigenvalues of the closed-loop system

ż = Az −BKy. (4.40)

The damping ratio of the modes is given by

ζl = −Re(λl)/|λl| (4.41)

with the minimal damping ratio for all N modes given by

ζmin := min
l∈{1,...,n}

ζl.

For optimal performance in terms of POD, we seek K such that

max
K

ζmin. (4.42)

This control strategy requires that a good estimate of y is available, which for
practical application could be obtained using local or external measurements [129].

4.4.1 Detailed Model Specification

To illustrate the control strategy on a more detailed system, we consider a HVDC-
interconnected system as seen in Figure 4.1 where each network i ∈ {1, 2} is
represented using two synchronous machines j ∈ {1, 2} where

• the nonlinear dynamics given by (4.1), (4.2) are considered;

• we allow asymmetric networks with XB,1 6= XB,2 and

Mi1 := Mi, Mi2 := αiMi;

• each machine is participating in the frequency containment reserves (FCR).
The active power injection is given by the first-order governor

Pm,ij = P 0
m,ij −

1
sTg + 1

Rg
ωnom

ωij (4.43)

with time constant Tg = 2 s and droop gain Rg = 25 p.u. for all machines;
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Table 4.1: The four considered cases together with optimal gain and damping obtained for
simplified and detailed model.

Case 1 2 3 4
Network 1 2 1 2 1 2 1 2
Ω/2π [Hz] 0.5 0.525 0.5 0.6 0.5 0.6 0.5 0.6
H [s] 6 6 6 6 4 6 6 6
XB 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.5

• HVDC is utilized to share primary frequency reserves by adding FCR control
to (4.38)

u = P 0
DC −Ky + 1

sTDC + 1
RDC

ωnom
(ωCOI,1 − ωCOI,2) (4.44)

where TDC = 2 s and RDC = 50 p.u.

Four cases of HVDC-interconnected ac networks as specified in Table 4.1 are
considered. The system parameters are given in per unit (p.u.). Common to all
cases is that we let D1 = D2 = 2/ωnom, α1 = α2 = 1, and FCR control at machines
and dc terminals as specified by (4.43) and (4.44). The machine inertia constant
Mi = 2HiSr/ωnom are based on the inertia time constant H, which usually falls
within 3–8 s for a power system dominated by synchronous machines [25]. The rated
power of each machine is set to Sr = 4 p.u., fnom = 50Hz, and V1 = V2 = 1 p.u.
The network impedance is given by (4.10) such that Ωi, i ∈ {1, 2} are obtained
for the cases in Table 4.1. As an example,

[
XΣ,1, XΣ,2

]
≈
[
1.3, 1.2

]
for Case

1. The active power injection is consumed locally at each machine bus. Hence,
∆Pi = Pe,i = P 0

DC = 0, ∀i.

4.4.2 Reconstructing a Simplified Model

The controllability analysis done in Section 4.3 and the control strategy (4.42) are
based on a simplified model where higher-order dynamics such as FCR control, (4.43)
and (4.44), are lumped into the damping constant D. The effect of the unmodeled
dynamics is studied by synthesizing a controller based on the simplified forth order
HVDC-interconnected system model (4.11). Performance, in terms of POD, is then
compared between the simplified and the detailed model.

To investigate the sensitivity to unmodeled dynamics we assume that the only
information available is the estimated eigenvalues λ̂l = −γ̂l ± jω̂e,l. In particular
interest are the eigenvalues representing the poorly damped interarea mode in
Network 1 and Network 2, respectively. Using this information, a model of the
reduced networks in (4.9) is reconstructed by solving the characteristic equation
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of Ai:

∆δ̈i + Di

MΣ,i︸ ︷︷ ︸
2γi

∆δ̇i +
V 2
i MΣ,i

Mi1Mi2XΣ,i︸ ︷︷ ︸
Ω2
i

∆δi = 0. (4.45)

Remark 4.6 From the characteristic equation (4.45), and the state-space repre-
sentation (4.9), we see that proportional (negative) feedback of ∆ωi = ∆δ̇i will
move the pole straight in the negative real direction. This will increase the damping
torque (in phase with ∆ωi) of the electromechanical mode.
Since the mode is poorly damped, we assume ωe,i ≈ Ωi. Proposing some parameter
estimates Ĥi, X̂B,i, and α̂i allows us to reconstruct the second order state-space
representation (4.9)

Ĝi
s=
[
Âi B̂i
Ĉi 0

]
of each network. The HVDC controller is then tuned on the interconnected model

Ĝ =
[
Ĝ1
−Ĝ2

]
using (4.42).

4.4.3 Tuning Result Using Reconstructed Model
In this section we compare the result using the reconstructed and the detailed model
for tuning. In Table 4.2 it is seen that the controller gains K̂ result in slightly lower
POD when applied to the detailed model (ζmin < ζ̂min). Comparing K̂ with the
optimal gain obtained for the detailed system K∗, we see that a good conservative
approach to account for these unmodeled dynamics would be to scale K̂ with some
factor smaller than one. The main reason for POD deterioration is the HVDC FCR
control (4.44), which could be taken into account in the tuning process. In Figure 4.6
the minimal system damping ratio ζmin for Case 3 is shown as a function of both
K1 and K2 while Figure 4.7 shows the highest ζmin achieved at each given K1. In
Figure 4.7 it is seen that lowering the inertia, or moving the dc bus location closer to
one of the generator as in 3 and 4, respectively, makes Network 1 more controllable.
Feedback gain K1 consequently has a higher effect on POD in Network 1. However,
its seen that only the modal frequency ratio Ω1/Ω2 will have a significant effect on
optimal performance as indicated in Section 4.3.3. Consequently, this means a lower
optimal K1 for the more controllable cases.

Root Locus

Let the HVDC POD controller be K = kK ′, where K ′ is either or K̂ or K∗ obtained
from the reconstructed or detailed model respectively. In Figure 4.8 the root locus
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Table 4.2: Feedback gain K̂ and ζ̂min are obtained by solving (4.42) for a reconstructed
simplified model (see Section 4.4.2) while ζmin is the actual damping ratio achieved using
K̂ on the complete detailed model. Optimal gain feedback gain K∗ and ζ∗min are obtained
by solving (4.42) with complete knowledge of the system.

Case 1 2 3 4
Network 1 2 1 2 1 2 1 2

Reconstructed K̂ [1/Hz] 0.27 0.29 1.02 1.23 0.64 1.18 0.64 1.24
simplified ζ̂min [%] 2.9 9.4 9.2 9.4
model ζmin [%] 2.2 7.0 6.9 7.0
Complete K∗ [1/Hz] 0.26 0.29 1.02 1.22 0.64 1.18 0.64 1.23
model ζ∗min [%] 2.7 9.1 9.0 9.2

Figure 4.6: Case 3: Level curves for the minimal system damping ratio ζmin [%] as a function
of both K1 and K2.

of the HVDC-interconnected system is drawn showing poles of the poorly damped
interarea modes as k goes from zero to infinity. Note that oscillatory modes appear
as complex conjugates. For clarity only the eigenvalues with positive imaginary part
are shown in Figure 4.8. Their conjugate counterparts are mirrored over the real
axis.

As the gain increases the poles move towards each other until they diverge. At
the bifurcation point the eigenvalues of the two system are identical. Afterwards
they split up into two new eigenvalues pairs. The pair corresponding to the easily
controllable system direction (which in Section 4.3 corresponds to state variables in
span(v1, v2)) continues into the left half-plane (LHP). The pair that corresponds
to the least controllable directions span(v3, v4) moves back towards the imaginary
axis until all additional damping from the HVDC control is lost. This might be a
problem if one of the ac networks are inherently unstable. The inaccuracy of the
reconstructed model causes the poles to diverge when they are further apart, as
seen in Figure 4.8a.
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Figure 4.7: The highest minimal system damping ratio ζmin as a function of K1.

(a) Controller tuned using reconstructed
model, K = kK̂

(b) Controller tuned using detailed model,
K = kK∗

Figure 4.8: Case 2: Root locus of the electromechanical mode in each of the HVDC-
interconnected systems using HVDC POD control.

4.4.4 Step Response

Simulations using the model considered in Section 4.4.1 are presented next. A
disturbance in the form of a sudden 0.4 p.u. load increase at machine-bus 1 in
Network 1 is the considered scenario.

Machine speeds with feedback gain K̂ obtained from the simplified model, using
the procedure introduced in Section 4.4.2, are presented in Figures 4.9 and 4.10 for
Case 1 and 2, respectively.

An immediate frequency fall can be seen at machine-bus 1 in Network 1 where
the load increase occurs. The load imbalance causes a separation in machine speeds
and an ensuing power oscillation between the two machines. The proposed control
scheme (4.40) is implemented to increase POD, consequently spreading the power
oscillation to the assisting network. A larger difference between Ω1 and Ω2 gives a
lower modal interaction between the networks according to Section 4.3.3. Hence,
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Figure 4.9: Case 1: Machine speeds for the HVDC-interconnected two-machine networks
following a 0.4 p.u. load increase in Network 1 (bottom line-pair) aided by Network 2 (top
line-pair). Gray and black lines shows performance with and without sharing of primary
reserves through the HVDC link (4.44), respectively.

Figure 4.10: Case 2: Scenario identical to Figure 4.9.

Case 2 facilitates a higher POD performance compared to Case 1. A higher feedback
gain moves Ω1 and Ω2 closer to each other as seen in Figure 4.8. As the modal
frequencies move closer to each other, controllability and thus, POD benefits are
reduced.

To illustrate the effect of FCR control (4.44) we also consider a model with
RDC = 0 in both cases. Comparing the cases with FCR control (gray lines), to those
without (black lines) we see that sharing of primary reserves, to reduce nadir and
steady-state frequency deviation, can be implemented independent of POD control.

4.4.5 Sensitivity to Parameter Estimates

To show the effect of misjudging the dc busbar location in the tuning process, we
consider Case 2 (see Table 4.1) with two different estimates of X̂B , given in Table 4.3.
Here we let RDC = 0 so as to not get interference from FCR control.
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Table 4.3: Sensitivity to parameter estimate X̂B using ideal feedback ∆ω (4.46) and estimate
∆ω̂ (4.47) from local frequency measurements.

Feedback Signal ∆ω ∆ω̂
Case X̂B K̂1 K̂2 [1/Hz] ζ̂min ζ1 ζ2 ζ1 ζ2 [%]
2 0.5 1.08 1.31 9.4 9.9 8.8 9.9 8.8
2.a 0.25 2.16 1.31 9.4 24 3.2 44 1.5
2.b 0.75 0.72 1.31 9.4 5.5 10 3.8 10
2.0 - - - - 0.52 0.39 0.52 0.39

External Measurement

First we study the case where the ideal feedback signal from (4.39)

y =
[
∆ω1
∆ω2

]
(4.46)

is available using communication from remote phasor measurement units at the
machine busbars.

Local Measurement

Assume that ∆ωi is estimated using local frequency measurements at the dc terminals.
A good estimate, ∆ω̂i, will require accurate knowledge of the model. Miss-judging
the observability (which for this case is the same as the controllability XB,i) will
affect the magnitude of the estimate and will therefore give the same effect as an
incorrectly tuned feedback gain. Since the focus of this chapter is not on observer
design we are here assuming that

∆ω̂i = ∆ωi
XB,i

X̂B,i

(4.47)

i.e., if the observability is underestimated we are going to have an overestimate
of ∆ωi. In Table 4.3 we see how the use of local measurements makes the control
method more sensitive to model error.
Remark 4.7 In practice ∆ω̂i could be obtained using a wash-out or band-pass
filter, in which case transient response and phase would be affected by model error
and filter tuning. To achieve a more robust estimate, additional feedback signals
such as ac power flow and voltage could be used.

Simulation of Oscillatory Energy Following a Load Step

In Case 2.a, where controllability and observability is underestimated, an overesti-
mated K̂1 greatly increases POD performance in Network 1 at the cost of overall
system performance, measured by ζmin. In Figures 4.11 and 4.12 the oscillatory
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Figure 4.11: Oscillatory energy (top) following a 0.4 p.u. load increase in Network 1 for
the cases specified in Table 4.3, with the resulting PDC (bottom). Per unit energy is
calculated using (4.13), where the potential energy is in relation to pre- and post-disturbed
steady-state. Control is implemented using ideal feedback ∆ω.

Figure 4.12: Same scenario as in Figure 4.11 but with feedback signal ∆ω̂ (4.47). We see
that the dependency on observability of ∆ω from local measurements gives increased
sensitivity to model error.

energy (4.13), E0 = E0,1 +E0,2, following a sudden 0.4 p.u. load increase at machine-
bus 1 is shown. The oscillatory energy E0,1 in the disturbed network is greatly
reduced due to a high initial PDC. This however, introduce a large oscillatory energy
E0,2 in the assisting network where the POD is lower, reducing overall system
performance. Comparing Figure 4.11 with Figure 4.12 we see that the negative
impact of model error increases if we also considers the effect on observability. As
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can be seen, underestimating K̂ in Case 2.b gives the opposite result. For comparison
Case 2.0 gives an base reference where POD control is not utilized. From Case 2.0
we see that even though badly tuned K gives poor POD, we can always expect an
improvement from the case without POD control.

4.5 Simulation Study

To improve the confidence in the analytical results, simulations on more detailed
power system models are made in Simulink. We consider the Nordic 32-bus Cigré
test system (N32) [43]. The model is implemented in Simulink Simscape Electrical
[51] with synchronous machines, excitation systems, governors, transmission, trans-
formers, and load characteristics as specified in [43]. The N32 model is a system with
large power transfers from the hydro dominated north and external areas (lumped
into north area) to loads in the central and southwestern areas (lumped into the
south area) where a large amount of thermal power is installed. The implemented
N32 model shows a 0.5Hz interarea mode Ω between the north and south areas.
For illustrative purposes, the damping of this mode is reduced to roughly 1% by
modifying the PSS at machines 4072 and 1042.

For the study, an artificial system is created by interconnecting two separate N32
networks with a point-to-point HVDC link as shown in Figure 4.13. Four cases with
different system topologies are considered. In Cases 1 and 2 the dc link is located
at bus 4045 in both ac networks. In Cases 3 and 4 the dc terminal is moved to
bus 4072 in Network 1. To illustrate limitations imposed by modal interaction, the
inertia time constants are scaled to modify modal frequencies (4.10) of Network 2.
The cases are summarized in Table 4.4.

4.5.1 HVDC POD Controller

The HVDC active power is modulated using (4.40) with the relative frequency
difference

yi =
∑
j∈south Mijωij∑
j∈south Mij

−
∑
j∈north Mijωij∑
j∈north Mij

(4.48)

as a single-machine equivalent (SIME) [57, 130] feedback signal from each network.
The signal is obtained by communicating the machine measurements to the dc

controller. A proportional controller is implemented using the tuning procedure
introduced in Section 4.4. The second-order system representation (4.9), used in the
tuning process, is obtained using Simulink’s Linear Analysis Tool.

The result shown in Table 4.5 confirms the analytic result that modal interaction
limits the potential POD benefits from active power modulation. The control, tuned
to each specific case, exploits the modal frequency differences. With higher gains,
the modal frequencies move closer to each other and the system lose controllability
of the interarea modes. Moving the dc terminal to the more controllable position
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Figure 4.13: The artificial network model consisting of two HVDC-interconnected N32
networks [43].

Table 4.4: Modal frequencies and dc buses of the four considered cases of HVDC-
interconnected N32 networks.

Case 1 2 3 4
Network 1 2 1 2 1 2 1 2
Ω/2π [Hz] 0.51 0.53 0.51 0.60 0.51 0.53 0.51 0.60
DC Bus 4045 4045 4045 4045 4072 4045 4072 4045

at bus 4072 in Cases 3 and 4 reduces the required dc power actuation but have
negligible effect on resulting POD performance.

Remark 4.8 The damping ratio ζ̂min is obtained in the tuning process by solving
(4.42) for the reduced second-order model (4.9). Naturally, the minimal damping
ratio ζmin achieved in the full-scale model will deviate slightly. Notably, we see that
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Table 4.5: Resulting POD of the HVDC-interconnected N32 networks. Controller Ki is
tuned to the corresponding Case i.

Controller K1 K2 K3 K4

Gain [MW/Hz] 453 617 1558 1675 190 514 663 1410
ζ̂min [%] 3.4 9.4 3.2 8.6
ζmin(Case 1) [%] 2.9 1.4 1.8 1.6
ζmin(Case 2) [%] 3.0 6.9 1.8 3.7
ζmin(Case 3) [%] 1.5 0.9 2.9 1.1
ζmin(Case 4) [%] 4.2 3.0 3.0 7.1

the ζmin < ζ̂min. This is because the damping ratio is tuned to optimize the POD in
both systems, modeling both networks as SIMEs (4.9). Any change from this ideal
model will either reduce controllability, making the controller gain Ki to small; or
increase controllability, increasing the modal interaction between the two systems.
Both of these effects lead to ζmin < ζ̂min.

4.5.2 Simulation Results

To validate the results, we simulate the nonlinear system.

Scenario 1) Load Disturbance, HVDC-Configuration Case 1, Controller K1

A 500MW load disturbance occur at the time interval t = [1,2] s at bus 4072 in
Network 1. As shown in Figure 4.14 the load disturbance reduces the initial machine
speed at bus 4072 ensuing in a north–south interarea oscillation.

Scenario 2) Line Trip, HVDC-Configuration Case 2, Controller K2

The transmission line between buses 4011 and 4021 is tripped at time t = 1 s. Since
there is a large power transfer from the north to the south, the initial loss of transfer
capacity causes machines in the north area to accelerate while the southern machines
decelerate. As seen in Figure 4.16 a local mode within the north area is also excited
by the disturbance. However, the local mode is well damped and after a while the
response is dominated by the north–south interarea mode.

The resulting HVDC active power for the two scenarios is shown in Figure 4.15.
In agreement with the analysis, HVDC active power modulation is shown to be
more effective in Scenario 2, where we consider the network topology with higher
modal ratio. This allows for a large feedback gain and a damping improvement from
1% to 6.9%. As a comparison, Scenario 1, where we consider a network topology
with a low modal ratio, allows for a comparatively smaller feedback gain, as shown
in Table 4.5. As a result, the damping can only be improved to around 2.9%.
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Figure 4.14: Scenario 1: Machine speeds at buses 4072 and 1012 in the northern areas and
4051 and 4063 in the southern areas following a 500MW load disturbance at bus 4072 in
Network 1.

0 5 10 15 20

-200

0

200

Figure 4.15: HVDC active power following the disturbance of the two scenarios in Fig-
ures 4.14 and 4.16.

Remark 4.9 The control design method used in this chapter is designed to optimize
POD using a simplistic proportional feedback controller. However, this assumes
that a good representation of the relative frequency difference (4.48) is available
as a feedback signal, for instance using wide-area measurements. It also assumes
that the SIME model (4.9) is a good estimate of the system. If this is not the case,
e.g., if Assumption 4.1 is not justified due to a disproportionate distribution of
frequency dependent loads and governors, then a dynamic controller will likely be
necessary to achieve optimal POD. A more sophisticated control design method, is
then needed. A controller dealing with these issues can be designed, e.g., using the
modal linear quadratic Gaussian control design presented in [28, 99] or the signal
based H2 optimal control presented later in Section 6.4.



4.6. Summary 105

Figure 4.16: Scenario 2: Machine speeds at buses 4072 and 1012 in the northern areas and
4051 and 4063 in the southern areas following a line trip in the northern area of Network 1.

4.6 Summary

Oscillatory stability has become an increasing concern in the modern power system.
Stability of interarea modes often limits the transfer capacity over weak transmission
corridors. In this chapter we have studied how HVDC active power modulation
between two asynchronous ac networks can be used to improve POD. It was shown
that the location of the dc terminal affects the controllability, and thus the size of
the required control action. However, if POD improvements are desired in both ac
networks, then the ratio between the modal frequencies is the sole factor determining
the achievable nominal performance. If the modal frequencies moves closer to each
other, e.g., due to operational changes in any of the interconnected networks, then
the damping contribution from the HVDC POD will deteriorate due to an increased
modal interaction. With a reduced modal ratio, lower feedback gains are required,
to avoid issues with modal interaction. The analytical results were validated by
simulating on a simple test case as well as on a detailed model of two HVDC-
interconnected 32-bus networks.
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Appendix

4.A Eigenvalue Decomposition of a Matrix

Consider a diagonalizable matrix A (with complete basis of eigenvectors). Let

Λ = diag(λ1, . . . , λn)

where λi, i ∈ {1, . . . , n} are the ith eigenvalue of A. Then

AU = UΛ
VHA = ΛVH

VH = U−1,

where the left modal matrix V = [v1, . . . , vn] and the right modal matrix U =
[u1, . . . , un]. The factorization

A = UΛVH.

is useful for calculating matrix exponentials as

eA = U eΛ VH = U diag(eλ1 , . . . , eλn)VH. (4.49)

4.B State-Space Equation on Modal Form

Let ξ be a vector given by the linear transformation

ξ = VHx.

The new variables ξn, n ∈ {1, . . . , n} are complex variables describing the modes of
the original system. The dynamic of the system modes are described by the state
equation

ξ̇(t) = VHAUξ(t) + VHBu(t) = Λξ(t) + VHBu(t). (4.50)

Since the state matrix Λ is diagonal, system dynamics are decoupled. The solution
to (4.50) are thus given by

ξl(t) = eλlξ(t0) +
∫ t

t0

eλl(t−τ)vH
l Bu(τ)dτ.

Remark 4.10 The diagonal state matrix Λ makes this a practical system to analyze.
However, for oscillatory modes (which appear as complex conjugated eigenvalue
pairs) the resulting state variables and system matrices become complex.
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4.C Real Jordan Form

Let V =
[
v1, . . . ,vn

]
∈ Rn×n be a transformation matrix with

•
[
vi,vi+1

]
=
[
Re(vi), Im(vi)

]
if λi = λ̄i+1, and

• vi = vi if λi is real.

With the linear transformation, z = V Tx the state-space representation of the
system becomes

Gy
s=
[
J V TB
Cy 0

]
(4.51)

where, J = V TA
(
V T)−1 is the block diagonal matrix1

J =



λ1 0 · · · 0

0
. . .

...
...

[
ai bi
−bi ai

]
0

0 · · · 0
. . .

 (4.52)

where complex eigenvalues λi = −ai ± jbi.

Model Reduction in Section 4.2

Let zl be the reduced state vector representing the observable subspace zi = P †x. If
the transformation matrix P † is chosen as a linear combination of left eigenvectors
as

P † = S

[
Re(vH

l )
Im(vH

l )

]
where S is an invertible square matrix of appropriate dimension. Then the model
reduction Ai = P †A′iP , Bi = P †B′i and Ci = C ′iP results in a minimal (observable
and controllable) realization of the oscillatory mode l in the original system. The
new 2 × 2 state matrix Ai is similar (same characteristic polynomial, i.e., same
eigenvalues, counting multiplicity [126]) to the corresponding 2× 2 block in (4.52).

1The modal form (5.10) is on complex Jordan form. Here we have assumed that A is diago-
nalizable, i.e. that all eigenvectors are linearly independent. If this is not the case, both Λ and J
will have ones on the super-diagonal at positions corresponding to linearly dependent eigenvectors
[126].
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4.D Solving the Controllability Gramian
Consider the LTI system (4.9) describing the electromechanical mode of an ac
network with system state matrix and input matrix

A =
[ 0 1
−2V 2

MXΣ
−D
2M

]
, B =

[
0
XB
M

]
. (4.53)

For ease of notation we rewrite (4.53) as

A =
[

0 1
−Ω2 −2γ

]
, B =

[
0
b

]
. (4.54)

Finite-Time Controllability Gramian

The finite time (T <∞) controllability Gramian (Theorem 4.1) is given by

WC =
∫ T

0
eAtBBTeA

Ttdt. (4.17)

Calculating the finite-time Gramian for the Undamped 2× 2 System

Using (4.49), WC can be calculated as

WC =
∫ T

0
VHeΛtUBBTUHeΛHtVHdt. (4.55)

For the 2× 2 system 4.54 we have

Λ =
[
−jΩ 0

0 jΩ

]
eΛt =

[
cos(Ωt)− j sin(Ωt) 0

0 cos(Ωt) + j sin(Ωt)

]
VH =

[
−j Ω

2
1
2

j Ω
2

1
2

]
U =

[
j 1

Ω −j 1
Ω

1 1

]
UeΛtVH =

[
cos(Ωt) sin(Ωt)

Ω2
sin(Ωt)

Ω2 cos(Ωt)

]
.

thus the integral (4.55) becomes

WC = b2
∫ T

0

[
sin2(Ωt)

Ω2
cos(Ωt) sin(Ωt)

Ω
cos(Ωt) sin(Ωt)

Ω cos2(Ωt)

]
dt

= b2

[
2ΩT−sin(2ΩT )

4Ω3
sin2(ΩT )

2Ω2
sin2(ΩT )

2Ω2
2T−sin(2ΩT )

4Ω

]
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Substituting in Ω =
√

2V 2

MXΣ
and b = XB

M gives

WC =
[
w11 w12
w21 w22

]
where

w11 = X2
BT

2M
XΣ

2V 2 −
√

2XΣ

MV 2
X2
B

8
XΣ

2V 2 sin

√
8T 2V 2

MX2
Σ

w12 = w21 = X2
BXΣ

4MV 2 sin

√
2T 2V 2

MX2
Σ

w22 = X2
BT

2M
1
M

+
√

2XΣ

MV 2
X2
B

8
1
M

sin

√
8T 2V 2

MX2
Σ
.

For large T , this simplifies to

WC ≈ X2
B

T

2M

[
XΣ
2V 2 0
0 1

M

]

Calculating the finite-time Gramian for Higher Order Systems

As system dimension increases, solving the integral (4.17) analytically becomes
harder. For low-order systems (n = 2) or a numerical solution of higher order
systems, the integral can conveniently be solved using matrix exponentials.

Theorem 4.4 ([131, Theorem 1]) Consider the system

ẋ(t) = Ax(t) +Bu(t).

Let
exp

([
−A BBT

0 AT

]
T

)
=
[
F1(T ) G(T )

0 F2(T )

]
,

where
F1(T ) = e−AT , F2(T ) = eA

TT

and

G(T ) =
∫ T

0
e−A(T−t)BBTeA

Ttdt = e−AT
∫ T

0
eAtBBTeA

Ttdt.

The finite-time controllability Gramian is given by

WC(T ) = FT
2 (T )G(T ).
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4.E Infinite-Time Controllability Gramian
If A is strictly Hurwitz, then the controllability Gramian (Theorem 4.2) is given by
the unique solution to the Lyapunov equation

AWC +WCA
T +BBT = 0. (4.18)

Calculating the infinite-time Gramian for the 2× 2 System

For the 2× 2 system 4.54 we have[
0 1
−Ω2 −2γ

]
WC +WC

[
0 −Ω2
1 −2γ

]
+
[
0 0
0 b2

]
= 0

with
WC = WT

C =
[
w11 w12
w12 w22

]
the controllability Gramian obtained by solving the equations

w12 + w12 = 0
w22 − Ω2w11 = 0

w11 = w22

Ω2

−2γw22 − 2γw22 + b2 = 0

w22 = b22
4γ

Substituting in Ω =
√

2V 2

MXΣ
, γ = D

4M , and b = XB
M gives

WC = XB

D

[
XΣ
2V 2 0
0 1

M

]
.

Calculating the infinite-time Gramian for Higher Order Systems

The Lyapunov equation (4.18) can be solved using Kronecker products [128]

(A⊗ I + I ⊗AT )wc = −b

where

• I is a identity matrix with the same dimensions as A;

• b is a column vector with the rows of BBT stacked on top of each other;

• wc is a column vector to be solved with the columns of WC stacked on top of
each other.



4. Appendix 111

4.F Damping Constant in Examples 4.1 and 4.2

The complex conjugated eigenvalue pair of Ai in (4.11) is given by

λi = γi ± ωe,i = − Di

4Mi
±

√(
Di

4Mi

)2
− 2
Mi

. (4.56)

The damping ratio is defined as

ζi := −Re(λi)
|λi|

= −γi√
γ2
i + ω2

e,i

and thus

|γi| = ωe,i

√
ζ2
i

1− ζ2
i

≈ Ωi

√
ζ2
i

1− ζ2
i

.

where we have assumed that the mode is poorly damped. Using (4.56) the damping
constant is then given by

Di ≈ 4MiΩi

√
ζ2
i

1− ζ2
i

= 8
Ωi

√
ζ2
i

1− ζ2
i

≈ 8 ζiΩi

4.G Maclaurin Series Expansion for Small |ε|

The Maclaurin series expansion of (4.23) becomes

a = X2
B

D

XΣ

2V 2

α = a
(

1− c

M
ε2
)

+O(ε3)

b = X2
B

D

1
M

b2 = b

(
1− ε

M
+ ε2

M2

)
+O(ε3)

β = b
1

4M2

(
4M2 − 2Mε+ (1− 4cM)ε2

)
+O(ε3)

γ = X2
B

D2

(
ε

M
− ε2

2M2

)
+O(ε3).
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Taking derivatives with respect to ε

dα(ε)
dε

= 0 +O(ε2)

db2(ε)
dε

= − b

M
ε+O(ε2)

dβ(ε)
dε

= − b

2M ε+O(ε2)

dγ(ε)
dε

= b

D
ε+O(ε2).

For the weakly damped system in Example 4.2, M � D, and therefore∣∣∣∣dα(ε)
dε

∣∣∣∣ ≤ ∣∣∣∣dβ(ε)
dε

∣∣∣∣ ≤ ∣∣∣∣db2(ε)
dε

∣∣∣∣ ≤ ∣∣∣∣dγ(ε)
dε

∣∣∣∣ .
4.H Improved Control Effort Estimate
The control effort estimate (4.34) holds for any network parameterizations. Defining

ρ := 2

√
V 2

1 M1

XΣ,1

V 2
2 M2

XΣ,2

Ψ1 := 1 +D2 1 + Ω2
1/Ω2

2
ρ(1− Ω2

1/Ω2
2)2

Ψ2 := 1 +D2 1 + Ω2
2/Ω2

1
ρ(1− Ω2

2/Ω2
1)2

gives the estimate
‖u‖22 ≈ E2

∞(D) := E0
D

X2
B

√
Ψ1Ψ2,

which is more accurate for parameter differences between the HVDC-interconnected
networks.



Chapter 5

Coordinated HVDC Control

In this chapter, coordination of multiple point-to-point high-voltage direct current
(HVDC) lines interconnecting asynchronous ac systems is considered. As shown in
Chapter 4, when controlling a single HVDC link, achievable performance is limited
since control actions may excite modes of similar frequencies in the assisting networks.
However, with coordinated control of two or more HVDC links, the limitations
can be circumvented. And with decoupling control, the system interactions can be
avoided altogether. In this chapter, conditions suitable for decoupling control are
investigated. It is shown that decoupling between system modes can be achieved
using a proportional controller. The control method is compared to decentralized
and centralized optimal control. The best control method for different system
topologies is investigated by looking at input usage and stability following actuator
or measurement failures. The results are validated on a realistic model with two
interconnected 32-bus networks.

One concern that arises when utilizing HVDC active power control for power
oscillation damping (POD) is that interarea modes of the assisting network may be
excited [30]. Since poorly damped interarea modes usually fall in the same frequency
ranges [25], control methods should avoid unnecessary excitation of weekly damped
modes. Interactions can be mitigated by incorporating energy storage from integrated
wind power or large capacitor banks in the dc system [76, 84]. In this work, a solution
that does not require dc energy storage is proposed. In [30] it was shown that through
HVDC active power control, although propagating the disturbance to the assisting
network, the overall POD can be improved in both of the HVDC-interconnected
ac networks. In Chapter 4 it has been shown that the limiting performance factor
for such a control strategy is the proximity of interarea modal frequencies between
the two ac networks. A higher feedback gain improves POD of the two ac networks,
but also moves the frequency of their interarea modes, and their eigenvalues, closer
to each other thereby reducing controllability through modal interaction. This
limitation is independent of the inertia and dc bus location1 in each respective

1As long as the dc bus is not exactly at the mass-weighted electrical midpoint.

113
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Figure 5.1: Two-sided HVDC-configuration between two asynchronous two-machine net-
works. Power oscillation damping of one network can be improved by controlling the two
links in anti-phase, using the other ac network as a power sink.

network, provided that the measurement quality allows for sufficiently high feedback
gains, and that the actuator capacity is sufficient for realizing the desired control.

With additional HVDC lines, the limitations imposed by modal interactions can
be circumvented. In [110] it was shown that by controlling two distant HVDC links (as
seen in Figure 5.1) in anti-phase, the link resembles a long HVDC link interconnecting
the two areas. Oscillation damping is then improved by injecting power between the
two areas, using the asynchronous ac network to which the HVDC links is connected,
as a power sink. Since multiple HVDC connections between asynchronous ac networks
are common today, improvement of dynamic performance using coordinated control
can be achieved without the need for any additional hardware installations.

The main contribution of this chapter is to show how the system topology affects
multivariable interactions in a HVDC-interconnected system where both ac networks
have poorly damped interarea modes. A decentralized control method is compared
to decoupling control. It is shown that decoupling control, that avoid interaction
between selected interarea modes, can be achieved using a proportional controller.
The decentralized and decoupling controllers are compared to a single-line equivalent
where the links are controlled as one, as well as a centralized optimal controller.
Suitability of the different control methods is analyzed with respect to network
topology and sensitivity to dc link failures.

The remainder of the chapter is organized as follows. In Section 5.1 a generalized
linear model representation of a power system with arbitrary many buses and HVDC
links is presented. In Section 5.2 test systems with different HVDC-configurations
are specified. In Section 5.3 some useful tools for analyzing multiple-input multiple-
output (MIMO) systems are introduced. In Section 5.4 coordinated control methods
are designed for the test cases of interest defined in Section 5.2. In Section 5.5 closed-
loop stability properties of the control methods with respect to communication,
measurement and actuator failure is discussed. In Section 5.6 it is shown how to
implement decoupling control in a system with arbitrary number of states and
input-output combinations. In Section 5.7 and Section 5.7 simulations on more



5.1. Model of System with Multiple HVDC Links 115

detailed power system models are performed to validate the analytical findings.
Section 5.9 summaries the chapter.

5.1 Model of System with Multiple HVDC Links

With multiple HVDC links, the limitations imposed by modal interactions may be
circumvented. To obtain insight into how additional controllable HVDC links may
improve achievable system we first introduce a more general system description.

5.1.1 General Model of an HVDC-Interconnected System
The model of an ac network with arbitrary many machine and buses, linearized in
the same manner as in Section 4.1, can be described asI 0 0

0 M 0
0 0 0

 δ̇ω̇
θ̇

 =

 0 I 0
−Lδδ −D −Lδθ
−Lθδ 0 −Lθθ

δω
θ

+

0 0
I 0
0 I

[Pδ
Pθ

]
where 0 and I are zero and identity matrices of appropriate sizes, M =
diag(M1, . . . ,Mn) and D = diag(D1, . . . , Dn) are diagonal matrices containing
machine inertia and damping constants, respectively. Vectors δ = [δ1, . . . , δnδ ]T
and θ = [θ1, . . . , θnθ ]T, represent the voltage phase angle at machine and dc buses,
respectively, and ω = [ω1, . . . , ωnδ ]T represent the machine speeds. This model
representation, is also known as the multi-machine classical model [52]. It is
obtained following the same reasoning as in Section 3.1, but by truncating the
dynamics of the q-axis transient voltage E′q in (3.7), thereby neglecting all voltage
dynamics. Consequently, only rotor angle dynamics and the effect of constant power
loads and active power injections can be studied.

Let the external input Pδ = Pm − Pload ∈ Rnδ be the active power injected to
the system from machine buses and let Pθ ∈ Rnθ be the power injected at other
buses e.g. from constant power loads or HVDC power injections. The linearized ac
power flow is given by [

Pδ
Pθ

]
= L

[
δ
θ

]
=
[
Lδδ Lδθ
Lθδ Lθθ

] [
δ
θ

]
where L is the linearized susceptance matrix of the network, L = Im(YA) in (3.10).
The susceptance matrix L is a Laplacian matrix, Lδδ is diagonal, Lθθ is assumed to
be invertible, and Lδθ = LT

θδ.
Machine rotor dynamics, is given by the swing equation (4.1)

Mω̇ = Pm − Pload − Pe −Dω.

Using Kron reduction [10, 132], Pe can be reduced to a function of state variables δ
and active power injection Pθ at the dc buses:

Pe = Lδδ + LθPθ
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where Lδ = Lδδ − LδθL−1
θθ Lθδ and Lθ = LδθL−1

θθ . Note that both L and Lδ are
Laplacian matrices.

Assuming that there are no loads at the dc buses we have Pθ = PDC. The
dynamics of the power system, linearized around an initial operating point, is then
given by[

δ̇
ω̇

]
=
[

0 I
−M−1Lδ −M−1D

] [
δ
ω

]
+
[

0 0
M−1 M−1Lθ

] [
Pm − Pload

PDC

]
.

Similarly, voltage phase angle or frequency measurements at non generator buses is
given by LT

θ δ and LT
θω respectively [133].

5.1.2 Two-Machine Networks Interconnected by Two HVDC Lines

To simplify the analysis we make the following assumption:
Assumption 5.1 (Damping Proportional to Inertia) The machine damping is
evenly distributed and proportional to the machine inertia constant (which in turn
is proportional to rated power)

Dij = Di
Mij

MΣ,i

such that the machines become scaled versions of each other.

Remark 5.1 Since the mode (corresponding to eigenvalue λ) is assumed poorly
damped (|Re(λ)| � |λ|) Assumption 5.1 has little effect on model accuracy. This is
further discussed in the Section 4.2.

As shown in Section 4.2, the swing mode of a two-machine system can then
be represented using the relative phase and machine speeds ∆δi = δi1 − δi2 and
∆ωi = ωi1 − ωi2, respectively. The linearized dynamics of the system is given by[

∆δ̇i
∆ω̇i

]
=
[

0 1
−V 2

i MΣ,i
Mi1Mi2XΣ,i

−Di
MΣ,i

]
︸ ︷︷ ︸

Ai

[
∆δi
∆ωi

]
+
[

0 0
bi1 bi2

]
︸ ︷︷ ︸

Bi

[
PDC1
PDC2

]
︸ ︷︷ ︸

u

where XΣ,i is the series reactance between the machine buses in Network i, Ai, and
Bi is the system state and input matrix respectively. The input u are the controlled
active power injections of the two dc links. As an example, the input matrix

B1 =
[

0 0
M12(X12+X13)−M11X11

M11M12XΣ,1

M12X12−M11(X11+X13)
M11M12XΣ,1

]
(5.1)

is obtained for Network 1 in Figure 5.2.
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Let yi = ∆ωi be the measured output signal. The transfer function Gi(s) from
u to yi then becomes

Gi =
[
0 1
]

(sI −Ai)−1Bi = s

s2 + s2γi + Ω2
i

[
bi1 bi2

]
where

Ωi =

√
V 2
i MΣ,i

Mi1Mi2XΣ,i

is the undamped frequency of Network i and

γi = 1
2
Di

MΣ,i
.

The HVDC-interconnected system to be controlled, is thus represented by the
transfer function

G =
[
G1
−G2

]
=
[

s
s2+s2γ1+Ω2

1
0

0 s
s2+s2γ2+Ω2

2

][
b11 b12
−b21 −b22

]
. (5.2)

5.2 Model Specifications

The mutual placement of the HVDC terminals determine the interaction of the
two ac networks due to HVDC active power modulation. Thus it will play a big
role in POD control design. If we consider the damping of one dominant interarea
mode in each of the asynchronous ac networks there are essentially three relevant
configurations possible using two HVDC links.

Two-Sided HVDC-Configuration

In a two-sided HVDC-configuration the HVDC terminals are located on each side of
the mass-weighted electrical midpoint in each system, as seen in Figure 5.1. The mass-
weighted electrical midpoint is the location where the interarea mode is uncontrollable
using HVDC active power injection. At this location, the corresponding element in
the input matrix (5.1) is zero.

Remark 5.2 In a meshed grid, such as the N32 network shown in Figure 4.13,
it is hard to identify the exact location of the mass-weighted electrical midpoint.
However, the exact location of the midpoint is only interesting for a theoretical
understanding of the control problem. In practice, we only consider dc buses with
reasonable controllability of the mode. That is, we only consider HVDC links with
at least one of its terminals clearly separated from the electric midpoint.
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Figure 5.2: One-sided HVDC-configuration between two asynchronous two-machine net-
works.

Figure 5.3: Uneven HVDC-configuration between two asynchronous two-machine networks.

One-Sided HVDC-Configuration

We use the term one-sided to describe a configuration where both HVDC terminals
are located on the same side of the mass-weighted electrical midpoint in each system,
as seen in Figure 5.2.

Uneven HVDC-Configuration

The term uneven will be used to describe the HVDC-configuration seen in Figure 5.3
where the HVDC terminals are located on either side of the mass-weighted electrical
midpoint in one of the ac networks, and on the same side in the other network.

A special case of the uneven configuration is when one of the dc terminals is
located directly in the mass-weighted electrical midpoint. It is quite intuitive that
interaction between oscillatory modes can be avoided when providing POD in such
a setup since the centrally placed link will only affect one of the networks. In the
following sections we will investigate this further. For this, we first specify three
models with the considered HVDC-configurations.
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Table 5.1: Electrical positions of HVDC terminals for three different HVDC-configurations.

Network 1 Network 2
Configuration XB,11 XB,12 XB,21 XB,22

Two-Sided 0.6 -0.4 0.4 -0.6
One-Sided 0.6 0.4 0.4 0.6

Uneven 0.6 -0.4 0.6 0.4

5.2.1 Model Parameters
To study the effect of multivariable interactions on the HVDC-interconnected
system we consider two ac networks, each represented by a two-machine model,
interconnected with two point-to-point HVDC lines as seen in Figures 5.1 to 5.3.
The (mass-weighted) electrical position2 XB,ih ∈ [−1, 1] for the three considered
configurations is shown in Table 5.1. To isolate the effect of HVDC-configuration we
considered the two networks to be identical in all scenarios. As shown in Chapter 4
the system would therefore not be controllable using only one dc link. For all three
configurations, model dynamics are given by (5.2) with

• no inherent damping, D1 = D2 = 0;

• undamped modal frequencies Ω1 = Ω2 = 0.5 Hz;

• constant voltage V1 = V2 = 1 p.u. assumed at all buses;

• identical machine inertia constants Mij = 2HSr/ωnom. For each machine:
rated power Sr = 4 p.u., inertia time constant H = 6 s, and ωnom = 2πfnom
where fnom = 50 Hz is the nominal system frequency. Since the networks
are symmetrical, the mass-weighted electrical midpoint is the same as the
electrical midpoint given by XB,ih.

Transfer Functions

The transfer functions (5.2) of the three systems specified in Table 5.1 becomes

Gtwo-sided =
[ s
s2+π2 0

0 s
s2+π2

][
3.9 −2.6
−2.6 3.9

]
, (5.3)

Gone-sided =
[ s
s2+π2 0

0 s
s2+π2

][
3.9 2.6
−2.6 −3.9

]
, (5.4)

and
Guneven =

[ s
s2+π2 0

0 s
s2+π2

][
3.9 −2.6
−3.9 −2.6

]
. (5.5)

2Calculated according to (5.1), but leaving out machine inertia constants.
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The dynamics of the two ac systems are given by the first (diagonal) matrix while
the second (input) matrix describe how the corresponding input uh affect each
output yi.

For the two- and one-sided configuration (5.3) and (5.4) the input have been
ordered so that the plant, G, is as diagonal as possible. That is, input u1 will have
most effect on y1 while u2 have most effect on y2. For the uneven configuration (5.5)
there is no clear way to order the inputs.

Since the off-diagonal entries of the input matrices are non-zero, each input will
affect both outputs. That is, there is interaction between the inputs and outputs.
How these multivariable interactions affect the potential benefit of adding additional
HVDC lines will be studied in the following sections.

5.3 Analysis of Multivariable Interactions

Some of the difficulties in MIMO system control are an increased sensitivity to
uncertainties due to directionality and interactions that may occur between the
inputs and outputs. Here we introduce two useful measures for quantifying the
degree of directionality and the level of interactions.
Definition 5.1 (Condition Number [115]) The condition number of a matrix G
is the ratio between the maximum and minimum singular values

κ(G) := σ̄(G)

¯
σ(G) .

A matrix with a large condition number is said to be ill-conditioned. If G is a transfer
function then the condition number may be frequency dependent.

If the condition number is small, then problems with multivariable interactions are
not likely to be serious. If the condition number are large however this may indicate
a control problem. The large condition number may also be the result of input and
output scalings. To avoid this, we will instead use the minimized condition number
over all possible input and output scalings W1 and W2 [115]

κ∗(G) = min
W1,W2

κ(W1GW2).

Another useful measure (independent of input and output scaling) is the RGA.
Definition 5.2 (Relative Gain Array (RGA) [115]) The RGA of a non-singular
square matrix G is defined as the Hadamard product (element wise product)

RGA(G) := G× (G−1)T.

The RGA matrix indicates the coupling between inputs and outputs. One
property of the RGA is that rows and columns all sum up to one. Input-output
combination should be selected so that the corresponding RGA element is as close
to 1 as possible [115].
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Table 5.2: Condition number and RGA for the HVDC-interconnected systems (5.3) to (5.5).

Two-Sided One-Sided Uneven
κ∗ 5 5 1

RGA
[

1.8 −0.8
−0.8 1.8

] [
1.8 −0.8
−0.8 1.8

] [
0.5 0.5
0.5 0.5

]

5.3.1 Analysis of HVDC-Interconnected Systems
The (minimized) condition number and RGA of the three systems specified in
Section 5.2 are shown in Table 5.2. Since the dynamics of the systems are given by
a diagonal matrix (5.3) to (5.5), the condition number and RGA are the same for
all frequencies.

We see that the condition number and RGA is identical for the one- and two-sided
systems. This indicates similar issues with respect to multivariable interactions.
Because of this we only consider the one-sided configuration in the following control
design and simulation study. For the uneven configuration, we find that the minimized
condition number κ∗(Guneven) = 1. This indicate that directionality does not limit
the achievable performance for the uneven configuration.

5.4 Coordinated Control Design

In this Section we study the HVDC-interconnected system defined in Section 5.2.
The goal is to see how multivariable interactions and directionality affect system per-
formance when trying to improve POD in both networks. As shown in Table 5.2 the
one- and two-sided HVDC-configurations have the same problem with directionality.
We therefore choose to leave out the two-sided configuration.

The one-sided configuration is compared to the uneven configuration which
according to Table 5.2 should have no issues with multivariable interactions. To see
the implications of this we design four different multivariable controllers designed
to improve POD in both of the interconnected ac networks. We then present the
simulated system response to a 0.4 p.u. load step at machine-bus 1 in Network 13.

5.4.1 Single-Line Control
To counteract ac power flows and improve POD, the dc active power is controlled
uniformly for the two HVDC links

u1 = u2 =
[
−k k

]
y

where we let k = 1/Hz. As shown in Chapter 4, the achievable POD performance will
be limited by modal interactions. Increasing the gain will cause system eigenvalues

3System is modeled using (4.1) and (4.2) to incorporate nonlinear power flow.
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Figure 5.4: Single-line control of the one-sided HVDC-configuration. Relative machine speeds
and HVDC active power following a 0.4 p.u. load step at machine-bus 1 in Network 1.

corresponding to the two interarea modes to approach each other (see Figure 4.8).
The controllability of the interarea modes are thereby lost. In this case, since
Ω1 = Ω2 the interarea modes are uncontrollable no matter the feedback gain. The
only achievable benefit is sharing of the disturbance between the two networks as can
be seen in Figure 5.4. In this case, performance can be improved using multivariable
control methods.

5.4.2 Decentralized Control

The simplest multivariable control approach is to use a diagonal block controller K
where each input is paired with one suitable output measurement. Assuming that
each actuator is controlled independently using local measurements, this control
method can be called decentralized. Decentralized control works well if the condition
number of G is small and the controllability from chosen input-output pairings are
high relative to the other input-output combinations [115]. For the one-sided (5.4)
and uneven (5.5) HVDC-configurations, satisfactory decentralized control is realized
with the diagonal controller

u =
[
−k 0
0 sgn(b22)k

]
y, sgn(b11) := 1. (5.6)

In Figure 5.5 it is seen that the decentralized control method manages to
circumvent the limitations of the single-line control. For the one-sided configuration
in Figure 5.5a however, this comes at the cost of cycling extra power through
the HVDC lines. For the uneven configuration in any input-output pairing is
suitable, according to the RGA in Table 5.2. We also see in Figure 5.5b that the
disturbance is attenuated faster with less input usage. This can be expected since
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(a) One-sided HVDC-configuration (b) Uneven HVDC-configuration

Figure 5.5: Decentralized control. Relative machine speeds and HVDC active power following
a 0.4 p.u. load step at machine-bus 1 in Network 1.

κ(Guneven) > κ(Gone-sided) indicates that the uneven configuration has less issues
with multivariable interactions.

Since a decentralized control method makes no attempt to cancel interactions
in G, resulting performance may be poor if these are considerable. This can be
improved by using decoupling control where we attempt to cancel out off-diagonal
input-output interactions.

5.4.3 Decoupling Control

By shaping G̃ = GW to be a diagonal system, independent control of each input-
output combination can be realized using a diagonal controller. Each control-loop
can be tuned independently using single-input single-output (SISO) methods for
the corresponding input-output path [115]. The pre-compensator W can be chosen
in many ways4. Here we choose

W =
[

1 −b12
b11

−b21
b22

1

]
(5.7)

and thus

G̃ =
[

s
s2+Ω2

1
0

0 s
s2+Ω2

2

][
b11 − b12b21

b22
0

0 −
(
b22 − b12b21

b11

)] .
4Choosing W = G−1 would result in G̃ = I. To make the controller proper however, additional

poles would have to be added to K.
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(a) One-sided HVDC-configuration (b) Uneven HVDC-configuration

Figure 5.6: Decoupling control. Relative machine speeds and HVDC active power following
a 0.4 p.u. load step at machine-bus 1 in Network 1.

Disturbance rejection, comparable to the decentralized controller (5.6), is achieved
using

u = W

[
−k 0
0 sgn(b22)k

]
y = Ky, sgn(b11) = 1. (5.8)

With a decoupling controller, the excitation of the interarea mode in the assisting
system is avoided as seen in Figure 5.6. The downside of the decoupling control
method may be an increased input usage since one link is controlled to counteract
the effect on the assisting network. If G is ill-conditioned, no obvious input-output
combination exist to control the multivariable system. This makes it unsuitable for
both decoupling and decentralized control.

Decoupling using a constant matrix is possible since we represent the interarea
mode using individual state variables and assume that these are available from
measurement. Basically, we are decoupling the system at the frequency of the
interarea mode. In Section 5.6 we generalize this control method to a higher order
system.
Remark 5.3 Asynchronous grids with multiple HVDC-interconnections spread over
vast geographical distances are suitable candidates for exploiting the benefits of
decoupling control. A possible candidate could for instance be the interconnections
between the Nordic synchronous grid and the Baltic region shown in Figure 1.5.
Here, the NordBalt link between southern Sweden and Lithuania could potentially
be coordinated with the EstLink interconnections between Finland and Estonia,
to dampen north–south interarea modes in the Nordic grid, while simultaneously
dampening any potential east–west spanning interarea modes in the IPS/UPS grid.
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Figure 5.7: The closed-loop feedback system used for H2 synthesis. Block Gd represents
the transfer function from machine bus disturbances to relative machine speeds.

Remark 5.4 Changing ac power flows, system inertia or the connection/disconnec-
tion of ac transmission lines may affect the decoupling performance of the controller
since the (mass-weighted) electrical midpoint or the HVDC terminals position
relative to each other may change. However, such uncertainties are unlikely to be
severe enough to cause instability if the system is eligible for decoupling control in
the first place.

5.4.4 H2 Optimal Control
Optimization based methods have been excessively studied for multivariable feedback
design in power systems [9, 12]. Such design methods offer a structured way to
synthesize multivariable feedback controllers which can potentially yield an better
system-performance than a decentralized control design. Here we will consider an H2
optimal controller. Since the H2-norm weights the disturbances over all channels and
frequencies, a controller yielding satisfactory performance can usually be achieved
without too much tuning.

The H2 controller (essentially a linear quadratic Gaussian (LQG) controller [115])
is obtained as the controller K that minimizes the H2-norm of the closed-loop system
shown in Figure 5.7, from input variables ∆P and dy to performance variables zy
and zu. For a dynamic response similar to that of the decentralized and decoupled
controller, the controller is tuned with

• external inputs |∆Pij | ≤ 0.4 p.u. and |dyi| ≤ 5%, i, j ∈ {1, 2} over all frequen-
cies;

• performance weights Wz = 1 and Wu = 5.

Comparing Figures 5.5a and 5.8a we see that H2 synthesis yields a controller
similar to that of the decentralized controller (5.6). This is because the decoupling
controller in the one-sided configuration decouples the system by controlling one
dc link in the wrong direction. Since this decoupling control action counteracts
disturbance attenuation this will not be the H2 optimal control method.

For the uneven HVDC-configuration we find that the H2 optimal controller
resembles a decoupling controller as seen in Figures 5.6b and 5.8b. This is because
disturbance attenuation and decoupling requires the same dc power direction as
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(a) One-sided HVDC-configuration (b) Uneven HVDC-configuration

Figure 5.8: H2 optimal control. Relative machine speeds and HVDC active power following
a 0.4 p.u. load step at machine-bus 1 in Network 1.

indicated by the RGA in Table 5.2. Similarly, if the system is ill-conditioned, the
H2 optimal controller will resemble the single-line controller since cancellation of
multivariable interactions will require too much input usage.

5.5 Closed-Loop Stability Properties: HVDC Link Failure

With single-line control, a disconnection will lead to a weaker control action. In
the case of decentralized control, disconnection of one HVDC link will leave one
of the networks outside the feedback-loop altogether. Neither of the mentioned
contingencies will destabilize the system so the N − 1 criterion (with respect to the
HVDC control) is fulfilled without additional safety actions. With the decoupling
controller however, it can be shown (see Appendix 5.A) that if

− sgn(b22)b21b12 > 0, sgn(b11), and sgn(k) := 1 (5.9)

is violated, the system will be destabilized by the HVDC controller following a dc
link failure. Equation (5.9) thus represent an N−1 stability criterion with respect to
dc link (or control actuator) failure. If the inherent damping is weak, then instability
is likely to ensue if no safety measures are taken.

The N − 1 stability criterion (5.9) can also be assessed by studying the RGA.
The RGA of a two-by-two matrix is given by [115]

RGA =
[

q 1− q
1− q q

]
where for (5.2)

q = 1
1− b12b21

b11b22

.
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Assuming that input and outputs are ordered so that b11, b22 6= 0, then if (5.9)
holds, 0 < q ≤ 1 and all RGA elements are non-negative.

Measurement Failure

If the system experiencing measurement failure is open-loop stable then instability
does not ensue.

Communication Failure

If a measurement signal fails to reach one of the dc link controllers and (5.9) is
violated, then one link will provide negative feedback while the other link provides
positive feedback. If the communication to the negative feedback link fails then the
system will be destabilized.

5.6 Decoupling Control in Higher-Order Systems

The benefit of a decoupling POD controller is that excitation of poorly damped
modes in the assisting network can be avoided. The method proposed in Section 5.4.3
achieved this using a proportional controller. In this section we will study how this
can be extended to a larger system.

Consider a linear time-invariant (LTI) system

G = C(sI −A)−1B
s=
[
A B
C 0

]
.

rewritten on modal form (see Appendix 4.B)

Gµ
s=
[

Λ VHB
Cµ 0

]
=
[

Λ BΛ
Cµ 0

]
(5.10)

where

• Λ = diag{λ1, . . . , λn} has eigenvalues of A (poles of G) on its diagonal;

• V = [v1, . . . , vn] is the left modal matrix of A s.t. VHA = ΛVH;

• µ is the set of modes ξµ = VH
µx that we are interested to control.

Since Λ is diagonal, system dynamics are decoupled. The poles, and therefore
the stability of each mode, can be controlled individually given that a good estimate
of ξµ is used as feedback signal [134].

If we design W so that VH
µBW = BΛ

µW is diagonal, then λl, l ∈ µ can be
stabilized without exciting the modes ξm, m ∈ µ, m 6= l. If the transfer function
from |µ| inputs to the |µ| outputs in Gµ is invertible, then the system can be
decoupled using a constant pre-compensator matrix W ∈ C|µ|×|µ|.
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Complex modal states appear in complex conjugate pairs s.t. ξl+1 = ξ̄l. If
y = Re(VH

µ )(VH)−1ξ = Re(VH
µ )x is chosen as feedback signal, only one element in

each complex conjugated pairs are needed in µ (see Appendix 5.B).
Assumption 5.2 (Phase Condition) Assume that the inputs affect each mode ξn
with the same phase. Then

BΛ
µ = ΦRe(VH

µ )B

where
Φ = diag

(
ejϕ1 , . . . , ejϕ|µ|

)
.

The selected modes ξµ can then decoupled with the pre-compensator

W = (Re(VH
µ )B)−1 ∈ R|µ|×|µ|. (5.11)

Remark 5.5 The eigenvectors are not uniquely defined. When designing (5.11) it
is good to align V so that the condition number κ(Re(VH

µ )B) is small.
A good approach is to set ∠Vµ(ω̄µ) = 0 or π. The notation Vµ(ω̄µ) means that

we consider the elements of the left eigenvectors that corresponds to the states
representing rotor speeds of the machines with highest participation in each of the
modes in µ. The mode shape, as given by rotor speeds, will then be close to the
real axis as seen in Figures 5.9b and 5.15.

The proposed decoupling controller is demonstrated in two simulations examples.
In Section 5.7 we consider the interconnection of two three-machine networks.
This configuration lets us see how the decoupling control targets specific modes
in the system. In Section 5.8 we study the N − 1 stability criterion (5.9) on two
HVDC-interconnected 32-bus networks.

5.7 Illustrative Example

To illustrate the selectivity of the decoupling method, we consider the interconnection
of two identical ac networks as shown in Figure 5.9a. Each of the networks have an
interarea mode Ω1 at 0.5Hz and a faster local mode Ω2 at 1.1Hz. The decoupling
controller (designed according to Section 5.6) are then compared to a centralized
optimal controller.

5.7.1 Model
The linearized system dynamics (as described in Section 5.1) are given by

s

[
δ
ω

]
=
[

0 I
−M−1Lδ −M−1D(s)

]
︸ ︷︷ ︸

A

[
δ
ω

]
+
[

0
M−1Lθ

]
︸ ︷︷ ︸

B

PDC

where:
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(a) HVDC-interconnected system. (b) Mode shapes of interarea mode
Ω1 and local mode Ω2 in each three-
machine network.

Figure 5.9: Two identical three-machine networks interconnected by two HVDC links. Line
impedances shows electrical position of dc buses in each network.

• Matrix M is diagonal with the machine inertia constants 2HiSr/ωnom, i ∈
{1, . . . , 6} on its diagonal. The machine inertia time constants Hi are shown
Figure 5.9a. Rated power of each machine Sr = 4 p.u., ωnom = 2πfnom, and
fnom = 50 Hz.

• Mechanical input power is affected both by a proportional damping constant
as well as a first-order governor (4.43). Diagonal elements in D(s) are given
by the transfer function

Di(s) = Mi

MΣ

(
2 + 25

4s+ 1

)
1

ωnom

where MΣ is the total inertia in each respective network. The machines are
thereby scaled versions of each-other and Assumption 5.1 holds.

• Using Kron reduction [132] the network Laplacian matrix and input matrix
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are

Lδ =


0.8 −0.4 −0.4 0 0 0
−0.4 2.4 −2 0 0 0
−0.4 −2 2.4 0 0 0

0 0 0 0.8 −0.4 −0.4
0 0 0 −0.4 2.4 −2
0 0 0 −0.4 −2 2.4

 , and Lθ =


0.2 0.8
0.8 0
0 0.2
−0.2 0
−0.8 −0.5

0 −0.5

 .

5.7.2 Goal

Design a multivariable controller that targets the 0.5Hz interarea mode in each ac
network. The controller should decouple the two modes to avoid exciting the 0.5Hz
mode in the assisting network.

5.7.3 Decoupling Control Design

Let the two eigenvalues (one in each complex conjugated pair) be denoted λµ an let
the corresponding left eigenvectors be given by Vµ. We have that

∠(VH
µB) =

[
−π 0
0 0

]
thus Assumption 5.2 holds and adequate decoupling should be achievable with a
constant pre-compensator.

With Vµ = Re(Vµ) we have that

BΛ
µ = V T

µ B =
[
−1.5 1.8
1.5 2.6

]
and

RGA(Gµ) = BΛ
µ ×

(
(BΛ

µ )−1)T =
[
0.6 0.4
0.4 0.6

]
(5.12)

thus we see that the N − 1 stability criterion (5.9) is fulfilled and the system should
be suitable for decoupling control.

The decoupling matrix (with columns scaled to have magnitude one on diagonal)
becomes

W =
(
BΛ
µ

)−1 scale=
[

1 −1.2
−0.6 −1

]
.

In practice, zµ = Vµx is not available and has to be estimated. Here we assume
that machine speed measurements are available and base the observer on the
corresponding elements in Vµ5. To have a feedback signal that is zero in steady

5See the mode shape of interarea mode Ω1 in Figure 5.9b.
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Figure 5.10: Closed-loop system with decoupling POD control.

state we scale the output matrix as in (4.48). Thus the output is given by

y = Hω =
[
1 −0.6 −0.4 0 0 0
0 0 0 1 −0.6 −0.4

]
︸ ︷︷ ︸

H

ω.

The resulting closed-loop system with

u = kWHω (5.13)

can be seen in in Figure 5.10 where we have added an external input d acting on
the system through Gd. For reasonable input usage, we let k = 0.2 p.u./Hz.
Remark 5.6 In Chapter 4 we designed a controller considering only one link and
found that optimal feedback gain is limited by modal interaction. Here, arbitrary high
POD can be achieved since the multivariable control circumvents these limitations.
This might not be desirable however since this comes at a higher input cost, increased
interaction with other modes, and an increased sensitivity to model error. If the
eigenvectors are incorrectly estimated, the feedback will affect other eigenvalues and
which might destabilize the system. Therefore it is good practice to be conservative
when designing the feedback control.

5.7.4 H2 Optimal Control Design
As shown in Section 5.4.4 similar results can easily be obtain with a H2 optimal
control design. Here we consider the H2 controller K that minimizes the closed-loop
system shown in Figure 5.11, where

• load disturbances at machine-buses, |∆P | ≤ 0.4 p.u.,

• measurement noise, |dy| ≤ 5 %,

are the considered external inputs. To target the interarea mode, we choose Ω1
from each network as a performance variable. Since we also have observability and
controllability of the local modes we add Ω2 as a performance variable. To get a
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Figure 5.11: The closed-loop feedback system used for H2 synthesis. Block Gd represents
the transfer function from machine bus disturbances to relative machine speeds. Block H
gives the mode shapes (Figure 5.9b) of the interarea and local modes in each network.

(a) Machine speeds and HVDC active power. (b) Interarea modes Ω1 and local modes Ω2 in
the two networks.

Figure 5.12: The HVDC-interconnected system in Figure 5.9a following a 0.4 p.u. load
increase at machine-bus 1 in Network 1.

POD performance similar to (5.13) we weight the performance variables by Wy = 1
and input usage Wu = 2.5 s+πs . The integrator is added to avoid steady-state input
usage. Resulting K is reduced to 10th order6 using balanced residualization [115].

5.7.5 Simulation Results

The considered scenario is a 0.4 p.u. load increase at machine-bus 1 in Network 1.
In Figure 5.12 the system response with no HVDC control is shown. The load step
causes a frequency drop in Network 1 and also triggers the interarea mode Ω1 at
0.5Hz as seen in Figure 5.12b. The local mode Ω2 is fairly unaffected by the load
disturbance.

We now add the decoupling POD controller (5.13) and consider the same dis-
turbance scenario. As seen in Figure 5.13 the control method greatly improves the

6The original controller is 18th order, the same as the open-loop system.
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(a) Machine speeds and HVDC active power. (b) Interarea modes Ω1 and local modes Ω2 in
the two networks.

Figure 5.13: Same scenario as in Figure 5.12 but with the decoupling POD controller (5.13)
and k = 0.2 p.u./Hz.

damping of Ω1 in Network 1 without exciting the corresponding interarea mode in
Network 2. However, since only decoupling between the interarea modes is imple-
mented, other modes may be affected. For example, we see that the control action
excites the local mode Ω2 in both networks. To include these two modes in the
design, and to decouple these with a constant pre-compensator, we would require
two more HVDC links. For a design to target all four modes using only two links,
it is better to instead opt for a dynamic controller, e.g., using the proposed H2
optimal control design.

In Figure 5.14 the same disturbance scenario is simulated using the H2 controller.
As indicated by the RGA (5.12) the HVDC-configuration is uneven with respect
to the interarea modes Ω1. The H2 controller therefore decouples the interarea
modes fairly well as seen in Figure 5.14b. In addition to POD of the interarea mode,
the controller is also tuned to attenuate oscillations in the local modes Ω2. The
corresponding RGA for the local modes is

RGA(GΩ2) = BΛ
Ω2
×
(
(BΛ

Ω2
)−1)T =

[
2.9 −1.9
−1.9 2.9

]
thus the H2 controller does not attempt to decouple the system at the frequency of
the local modes, Ω2, as seen in Figure 5.14b.
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(a) Machine speeds and HVDC active power. (b) Interarea modes Ω1 and local modes Ω2 in
the two networks.

Figure 5.14: Same scenario as in Figure 5.12 but with a H2 controller targeting both local
and interarea modes.

5.8 Simulation Study

In this section we will analyze N − 1 stability with respect to failure of one HVDC
link while using decoupling control. We consider an artificial system made up by the
interconnection of two Nordic 32-bus (N32) Cigré test systems [43] implemented in
Simulink7.

The N32 system has large power transfers from the hydro dominated north and
external areas (lumped into north area) to loads in the central and southwestern
areas (lumped into the south area) where a large amount of thermal power is
installed. The model shows a 0.5Hz interarea mode between the north and south
areas as shown in Figure 5.15. For illustrative purposes, the damping of this mode
is reduced to roughly 1% by modifying the PSS of the machines at buses 4072
and 1042. Since we want to investigate stability issues following HVDC link failure,
the system needs to be controllable from a single HVDC link. This is achieved by
adjusting the interarea mode of Network 2 to 0.6Hz by scaling down system inertia.

The two N32 models are interconnected using two different HVDC-configurations,
as shown in Figure 5.17. The two systems are identical with respect to relative
controllability from the dc bus locations. Let VΩ be the left eigenvector corresponding
to the north–south interarea mode and let B be the input vector from all considered
dc buses (ordered 4072, 4022, 4045, and 4063) then controllability from each input
is given by

VH
ΩB =

[
1 2° 0.4 8° 0.4 −167° 0.7 −170°

]
.

7The model was used in Section 4.5 to study controllability.
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Figure 5.15: Mode shape of the north–south interarea mode in the N32 model given by left
eigenvector VωΩ (left). Projection on the real axis, V ω

Ω used for scaling output (right). The
notation VωΩ indicates elements of VΩ corresponding to states ω.

Figure 5.16: Four machine speed measurements (top) following a 500MW load disturbance
without HVDC POD control. The relative speed (bottom) is estimated using (5.14).

This indicates that Assumption 5.2 holds fairly well. Thus, interaction between
interarea modes can be avoided using a constant pre-compensator designed according
to Section 5.6.

The dynamic response following a 500MW load disturbance (duration 1–2 s) at
bus 4051 is simulated and the effect of dc link failure is investigated. The considered
feedback signals are the relative machine speeds

∆ωi =
20∑
j=1
VωΩ,ijωij , i ∈ {1, 2} (5.14)

obtained by measuring generator speeds in both networks as shown in Figure 5.16.
The notation VωΩ,i indicates elements of VΩ,i corresponding to the vector of state
variables ωi; and VωΩ,ij the elements of VωΩ,i corresponding to the state variable ωij .
For instance, if xi are the states of network i, then ∆ωi = VωΩ,ixi.
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(a) Two-sided configuration (b) Uneven configuration

Figure 5.17: Two HVDC-interconnected N32 networks. The frequency of the interarea mode
in Network 1 and Network 2 are 0.5Hz and 0.6Hz respectively.
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(a) Decoupling control (b) DC link 2 disconnected

Figure 5.18: Case 1: Two-sided HVDC-configuration, Figure 5.17a. Relative machine speeds
and HVDC active power injections following a 500MW load disturbance.

Case 1: Two-Sided HVDC-Configuration
The HVDC active power injection are given by

u = −k
[

1 0.5
0.4 1

] [
∆ω1
∆ω2

]
, k = 1000 MW/Hz.

The dc terminals are placed on both side of the electrical mid point in each system
as shown in Figure 5.17a. Similar to the one-sided configuration in Figure 5.2 this
violates the N − 1 stability criterion (5.9). Thus, disconnection of one HVDC link
lead to instability as shown in Figure 5.18.

Case 2: Uneven HVDC-Configuration
The HVDC active power injection are given by

u = −k
[

1 −0.6
0.4 1

] [
∆ω1
∆ω2

]
, k = 1000 MW/Hz.

The dc terminals are placed unevenly in the two systems as shown in Figure 5.17b
such that the N − 1 stability criterion is fulfilled. Therefore, disconnection of one
HVDC link does not cause instability. Additionally, the system is controllable from
one HVDC link. Thus the HVDC control still stabilizes the system as seen in
Figure 5.19.
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(a) Decoupling control (b) DC link 2 disconnected

Figure 5.19: Case 2: Uneven HVDC-configuration, Figure 5.17b. Relative machine speeds
and HVDC active power injections following a 500MW load disturbance.

5.9 Summary

Stability of oscillatory modes has become an increasing concern in the modern
power system. In this chapter we have studied how HVDC active power modulation
between two asynchronous ac networks can be used to improve POD. To achieve
best performance, coordinated control of multiple controllable devices may be
required. In this chapter we have analyzed the suitability of different coordinated
HVDC control methods with respect to network topology. The focus has been
on asynchronous power systems interconnected with two HVDC lines. For certain
HVDC-configurations it was shown that a decoupling control method, avoiding
excitation of selected troublesome interarea modes between the two networks, is
a suitable option. For some configurations however, it was shown that decoupled
control have an excessive input usage and might destabilize the system in the event of
dc link failure. The decoupling control method was compared to decentralized, single-
line, and centralized optimal control. It was found that the optimal H2 controller
yielded the best combination of the previous methods for any HVDC-configuration.
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Appendix

5.A Internal Stability
A system is internally stable if all the four closed-loop transfer functions in Fig-
ure 5.20,

u = (I −KG)−1du +K(I −GK)−1dy

y = G(I −KG)−1du + (I −GK)−1dy,
(5.15)

from external input disturbances du and output disturbances dy, are stable. Since
G and K ((5.2) and (5.8) respectively) contains no open right half-plane (ORHP)
poles it is sufficient to show that one of the transfer functions in (5.15) are stable
[114]. If we assume failure of HVDC link 2, then internal stability can be assessed
by picking the SISO internal sensitivity function from du1 to u1

(s2 +Ω2
1)(s2 +Ω2

2)
p(s) .

Internal stability can then be assessed from the pole polynomial

p(s) = s4 + s3(b1 + b2) + s2(Ω2
1 + Ω2

2) + s(b1Ω2
2 + b2Ω

2
1) + Ω2

1Ω
2
2 . (5.16)

where w11 and w12 are constant elements from the top row of the decoupling
pre-compensator (5.7), and

b1 := kb11w11, b2 := sgn(b22)kb21w12. (5.17)

Routh’s algorithm provide a necessary and sufficient condition for stability of
the system [135]. For the pole polynomial (5.16) to have negative-real-part roots its
required that

1 > 0
b1 + b2 > 0 (5.18)

b1Ω
2
1 + b2Ω

2
2

b1 + b2
> 0 (5.19)

b1b2(Ω2
1 −Ω2

2)2

b1Ω2
1 + b2Ω2

2
> 0 (5.20)

Ω2
1Ω

2
2 > 0.

With (5.7) and (5.17) stability condition (5.18) becomes

b1 + b2 = kb11 − sgn(b22)kb21
b12

b11
> 0 (5.21)

thus the condition simplifies to b211 > sgn(b22)b21b12. Similarly, condition (5.19) boils
down to

b211 > sgn(b22)Ω
2
2

Ω2
1
b21b12. (5.22)
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Figure 5.20: Closed-loop system used to study internal stability.

If (5.21), and thus (5.22) holds then the pole polynomial (5.16) have negative-real-
part roots if (from (5.20))

b1b2 = k2b11

(
−sgn(b22)b21

b12

b11

)
> 0.

This gives the N − 1 stability criterion

− sgn(b22)b21b12 > 0, sgn(b11), and sgn(k) := 1. (5.9)

If Ω1 = Ω2, b12, or b21 the system is not controllable and thus cannot be stabilized
nor destabilized by the remaining HVDC link.

5.B Closed-Loop System on Real Jordan Form
Consider the system (4.51) and (4.52) given on real Jordan form. Assume that the
measurement

yi =
[
zi
z̄i

]
=
[
Re(vH

i )
Im(vH

i )

]
x

is available for feedback. The closed loop system then becomes

ż = Jz + V TBK

[
zi
z̄i

]
=


λ1 0

... 0

0
. . .

...
...

... 0
[
ai bi
−bi ai

]
+ V TBK 0

0 0
...

. . .


z

where K is some controller.
Complex eigenvalues are given by λi = ai±jbi. Since bi 6= 0, λi (and its conjugate

λ̄i) can be controlled with any of state variables in the pair zi, z̄i as long as either
Re(vH

i )B or Im(vH
i )B 6= 0.



Chapter 6

Transient Stability when Measuring Local
Frequency

In this chapter, fundamental sensor feedback limitations for improving rotor angle
stability using local frequency or phase angle measurement are derived. Using a
two-machine power system model, it is shown that improved damping of interarea
oscillations must come at the cost of reduced transient stability margins, regardless of
the control design method. The control limitations stem from that the excitation of
an interarea mode by external disturbances cannot be estimated with certainty using
local frequency information. The results are validated on a modified Kundur four-
machine two-area test system where the active power is modulated on an embedded
high-voltage direct current (HVDC) link. Power oscillation damping (POD) control
using local phase angle measurements, unavoidably leads to an increased rotor angle
deviation following certain load disturbances. For a highly stressed system, it is
shown that this may lead to transient instability. These findings may motivate the
need for wide-area measurement systems (WAMS) in POD control.

In practice, POD is typically implemented as feedback control using locally
available measurements. Shortcomings of these measurements, such as potentially
poor observability of system-wide interarea modes, can be circumvented by collecting
measurement also from distant geographical locations. With the increased number
of installed phasor measurement units (PMUs), POD using WAMS has become
popular. WAMS greatly improves system monitoring and control. This however,
comes at the cost of an increased system complexity as well as potential reliability
and security issues. Therefore, the use of WAMS should be well motivated.

Performance issues may be caused by the choice of measurements, but may also
be a consequence of the control design. With optimization-based control design, good
performance can often be achieved [58, 136]. However, tuning of the optimization
criteria can be an endless task as evaluating the achieved closed-loop performance
is often far from trivial. Fundamental design limitations helps us to understand if
unsatisfactory closed-loop performance—be it with traditional or modern control

141
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design methods—are due to a bad design or to inherent system limitations. The
position of zeros relative to poorly damped poles are relevant since closed-loop poles
tend to the position of nearby open-loop zeros with increasing feedback gain, as
shown in Section 3.3. Because of this, it is desirable to select a combination of
input and output signals that results in a large separation between poles and zeros
[137, 138]. Although proven to be useful in practice, there is no straight-forward way
to relate the notion of pole-zero separation, or the commonly used residue metric,
to the fundamental limitations of the closed-loop performance. In this chapter, we
use the Bode integral constraint to bridge the gap between small-signal analysis and
control performance limitations.

The contribution of this chapter is in the analysis of fundamental limitations
for improving the overall rotor angle stability of the power system using local
frequency measurements. Transient rotor angle stability is considered in terms
of the system’s ability to maintain synchronism in the first swing following large
load disturbances. The analysis is performed on a linearized two-machine power
system representing a poorly damped interarea mode. It is shown that with ideal
measurements, performance in terms of rotor angle stability is only limited by the
available input power. Then it is shown, using Bode integral constraints on the
filtering sensitivity, that the excitation of the interarea mode cannot be accurately
estimated using local phase angle or frequency measurements. Last it is shown
that the consequence of this filtering limitation is that any damping improvement
based on local frequency measurements, must come at the cost of reduced transient
stability margins, as implied by the findings of [17, 98]. The results are validated
in nonlinear simulations using the well-known Kundur four-machine two-area test
system, where the active power of an embedded HVDC link is modulated to improve
damping of the dominant interarea mode. In the simulation study, we extend on
the results by considering WAMS, local ac power flow measurement, and local bus
voltage measurement.1

The remainder of this chapter is organized as follows. In Section 6.1 a linearized
two-machine power system model is derived. Section 6.2 introduces results from
the literature on sensor feedback limitations derived for general linear control and
filtering problems. In Section 6.3 these results are applied to the two-machine
power system model and explicit limitation are derived for two different sensor
configurations. In Section 6.4 the results are validated on a nonlinear benchmark
power system model. Section 6.5 summarizes the chapter.

6.1 Linearized Power System Model

In this section a linearized model of a two-machine power system is derived. A
state-space representation is developed from physical equations based on simplifying
assumptions (the same derivation is done in Chapter 4 but is repeated here for

1 The four-machine test system and the control design examples are available at the GitHub
repository: https://github.com/joakimbjork/4-Machine.

https://github.com/joakimbjork/4-Machine
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Figure 6.1: Two-machine power system with a controlled supplementary active power
injection. The energy source could for instance be a wind power park, a controllable load,
or an HVDC link connecting to an asynchronous system.

the sake of completeness). Then, transfer functions are derived, capturing the zero
dynamics relevant for the control limitations studied in the chapter.

The derived model assumes active power control only at the bus where we
measure the voltage phase angles. In Section 6.4 we assume modulation of active
power in an HVDC link connecting two buses. Although input controllability is
improved compared to a single point of injection, this does not affect the sensor
feedback limitations.

6.1.1 State-Space Representation of a Two-Machine Power System

We consider a power system represented by two synchronous machines connected
by an ac transmission line shown in Figure 6.1. Making simplifying assumptions in
line with those of Chapter 4 this can be considered a simplistic representation of
the dominant interarea mode in a more realistic multi-machine grid.

The electromechanical dynamics can be described using the swing equation

δ̇i = ωi

Miω̇i = −V
2

Xi
sin(δi − θ)−Diωi + ∆Pi

(6.1)

for i ∈ {1, 2}. Machines are modeled, using the classical machine model, as a
stiff electromotive force behind a transient reactance [25]. Machine excitation and
reactive power at the control bus are controlled so that all buses have constant
voltages amplitudes V for the time frame of interest. The rotor phase angles δi and
machine speed ωi represents machine i’s deviation from a synchronously rotating
reference frame with frequency 2πfnom, where fnom is usually 50 or 60Hz. Constants
Mi represents the frequency and pole-pair scaled inertia of each machine and Di

represent the equivalent damping of higher-order dynamics such as impact from
machine damper windings, voltage regulators, system loads, and governors etc.
The transmission is assumed lossless and the electrical distance between machine
i and the control bus is represented by the reactance Xi, consisting of transient
machine reactance, transformers, and transmission lines. The difference between
the mechanical input power from the machines and the local loads is given by ∆Pi.
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Voltage phase angle θ at the control bus is given by the active power balance

Pu +
2∑
i=1

V 2

Xi
sin(δi − θ) = 0 (6.2)

where Pu is active power injected at the control bus.
Linearizing around a stationary operating point δi(t0) = δ∗i and θ(t0) = θ∗, we

get V 2

Xi
sin(δi− θ) ≈ V 2

Xi
cos(δ∗i − θ∗)(δi− θ) = X∗i

−1(δi− θ) in (6.1). From (6.2) then
approximately

θ = X∗2
X∗Σ

δ1 + X∗1
X∗Σ

δ2 + X∗1X
∗
2

X∗Σ
Pu (6.3)

where X∗Σ = X∗1 + X∗2 . Substituting (6.3) into (6.1) then gives us the linearized
swing equation in state-space form[

δ̇
Mω̇

]
=
[

0 I
−Lδ −D

] [
δ
ω

]
+
[
0 0
I Lθ

] [
∆P
Pu

]
(6.4)

where inputs ∆P = [∆P1,∆P2]T, and state variables δ = [δ1, δ2]T and ω =
[ω1, ω2]T. Inertia and damping constants are given by M = diag(M1,M2) and
D = diag(D1, D2), respectively, while 0 and I are appropriately sized zero and iden-
tity matrices, respectively. The linearized power flow are described by the network
matrices

Lδ = 1
X∗Σ

[
1 −1
−1 1

]
, and Lθ = 1

X∗Σ

[
X∗2
X∗1

]
.

6.1.2 Transfer Function of a Two-Machine Power System

The sensor feedback limitations consider in this chapter are connected with the
controllability and observability of the interarea mode. Commonly, the residue
method [25] is used to characterize the input-output controllability and observability
of modes in small-signal analysis studies and POD controller design. However,
for the purpose of this analysis, residues provide insufficient information. Instead
we use (6.4) to derive transfer functions capturing the poles and zero of relevant
input-output combinations.

The electrical midpoint may differ from the mass-weighted electrical midpoint.
However, to simplify notation we assume that the machines have identical inertia
constants so that M1 = M2 = M . For convenience, we also assume that damping
can be neglected so that D1 = D2 = 0 and that we consider the extreme case
where load disturbances d = [d1, d2]T occur close to the machines so that d1 = ∆P1
and d2 = ∆P2. Consider u = Pu in (6.4) to be a controlled active power injection
somewhere between the two machines as shown in Figure 6.1. The transfer function
of (6.4) mapping external inputs d and u to phase angles at machine and control
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Figure 6.2: The system interpreted as two masses on a swing plank subject to an external
force d1 or d2. At initial time t0, ω1(t0) = ω2(t0) = θ̇(t0) = 0.

buses δ = [δ1, δ2]T and θ, respectively, are given by[
Gδd Gδu
Gθd Gθu

]
= G0

s2 + Ω2/2 Ω2/2 N1
Ω2/2 s2 + Ω2/2 N2
N1 N2 N3

, (6.5)

where Ω =
√

2/MX∗Σ is the undamped frequency of the interarea mode and

G0 = 1
s2M (s2 + Ω2) . (6.6)

In particular, for an unloaded system we have

N1 = X∗2
X∗Σ

(
s2 + 1

MX∗2

)
, N2 = X∗1

X∗Σ

(
s2 + 1

MX∗1

)
, (6.7)

and N3 = MX∗ΣN1N2.

6.1.3 Mechanical Analogy
The machines in Figure 6.1 can be interpreted as masses on a swing plank with
the electrical distance as physical distance. An external force applied to the system
will initiate a relative swing between the two masses, if not applied directly at the
center [93]. Now consider Figure 6.2. We want to design a sensor feedback controller
using local frequency (or phase angle) measurement, y = θ̇, to attenuate the relative
swing. At time t0, a force d1 or d2 is applied to one of the machines. To dampen the
swing, the sign of z = ω1 − ω2 need to be estimated. As seen in Figure 6.2, however,
this information is not directly attained from the local frequency measurement. A
damping controller may therefore cause transient stability issues by amplifying the
first swing as observed in [17]. In this chapter, we study the fundamental limitations
of this control problem.

6.2 Sensor Feedback Limitations

We review some results for general linear systems. In this chapter, the scope is
limited to scalar systems. For more extended overview see [112–117]. In Section 6.3
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the result will be used to show sensor feedback limitations for the two-machine
power system derived in Section 6.1.

Let the scalar transfer function Gyu represent a plant with output y and input
u. Consider a linear controller u = −Ky where K is any proper rational transfer
function.
Definition 6.1 (Sensitivity functions) The closed-loop sensitivity and complemen-
tary sensitivity functions are given by

S = (1 +GyuK)−1, and T = 1− S,

respectively.

Lemma 6.1 (Interpolation constraints [112]) For internal stability, no cancella-
tion of open right half-plane (ORHP) poles or zeros2 are allowed between the plant
and the controller. Let pi, i = 1, . . . , np and qi, i = 1, . . . , nq be the ORHP poles and
zeros of the plant Gyu. Then for all pi and qi,

S(pi) = 0, T (pi) = 1, S(qi) = 1, and T (qi) = 0.

Since S and T represent closed-loop amplification of load disturbances and
measurement noise, respectively. The interpolation constraints limits the achievable
performance.

Lemma 6.2 (Bode integral [112]) Suppose that the loop-gain GyuK is a proper
rational function. Then, if S(∞) 6= 0

∫ ∞
0

ln
∣∣∣∣S(jω)
S(∞)

∣∣∣∣ dω = π

2 lim
s→∞

s
(
S(s)− S(∞)

)
S(∞) + π

np∑
i=1

pi, (6.8)

where j =
√
−1.

If the loop-gain is strictly proper, then S(∞) = 1. Typically, both Gyu and K
are strictly proper. The limit in (6.8) then goes to 0. The reduction of the sensitivity
at some angular frequencies then has to be compensated by an (at least) equally
large amplification in other frequencies. This resembles the displacement of water in
a water-bed. The Bode integral constraint is therefore also known as the water-bed
effect.

In general the measured output y may differ from the performance variable z
that we want to control. For an open-loop plant in the general control configuration

2ORHP poles and zeros are also referred to as non-minimum phase (NMP) poles and zeros.
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Figure 6.3: General control configuration as a control and filtering problem. The filter Fu
decouples the control input u from the estimation error z̃.

shown in Figure 6.3, the goal is to design a sensor feedback controller K that reduces
the amplitude of the closed-loop system from d to z, given by

Tzd = Gzd −GzuK(1 +GyuK)−1Gyd. (6.9)

In the general control configuration, ORHP poles and zeros in Gyd, Gzd, and Gzu
may put further restrictions on achievable performance [116]. The general control
problem can be separated into a control and an estimation problem as shown in
Figure 6.3. This chapter focuses on the latter by studying limitations in the linear
filtering problem.

Assume that the system is detectable from y, i.e., all unobservable states are
stable, and that ẑ = Fy is an unbiased, bounded error estimate of z. An observer is
a bounded error estimator if for all finite initial states, the estimation error z̃ = z− ẑ
is bounded for all bounded inputs. A bounded error estimator is unbiased if u is
decoupled from z̃ [112].

Definition 6.2 (Filtering sensitivity functions [112]) If Gyd is detectable, F is a
stable filter, and Gzd is right invertible3, the filtering sensitivity functions are given
by

P = (Gzd − FGyd)G−1
zd , and M = FGydG

−1
zd ,

with P(s) +M(s) = 1 at any s ∈ C that is not a pole of P orM.

The filtering sensitivity function P represents the relative effect of disturbance d
on the estimation error z̃, while the complementary filter sensitivityM represents
the relative effect of d on the estimate ẑ.

3For Gzd to be right invertible there need to be at least as many inputs as signals to be
estimated. Note that G−1

zd
is not necessarily proper.
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Lemma 6.3 (Interpolation constraints for P andM [112]) Let ρi, i = 1, . . . , nρ
be the ORHP poles of Gzd and let ξi, i = 1, . . . , nξ be the ORHP zeros of Gyd that
are not also zeros of Gzd. Assume that F is a bounded error estimator. Then

P(ρi) = 0, M(ρi) = 1, P(ξi) = 1, and M(ξi) = 0.

Lemma 6.4 (Bode integral for P [112]) Suppose that P is proper and that F is
a bounded error estimate. Let the ORHP zeros of P be %i, i = 1, . . . , n% and let
ςi, i = 1, . . . , nς be the ORHP zeros of Gzd such that F (ςi)Gyd(ςi) 6= 0. Then if
P(∞) 6= 0∫ ∞

0
ln
∣∣∣∣P(jω)
P(∞)

∣∣∣∣ dω = π

2 lim
s→∞

s
(
P(s)− P(∞)

)
P(∞) + π

n%∑
i=1

%i − π
nς∑
i=1

ςi.

Similar to Lemmas 6.1 and 6.2, this tells us that the estimation error cannot be
made arbitrarily small over all angular frequencies.

6.3 Power System Sensor Feedback Limitations

The results from Section 6.2 will here be used to identify fundamental sensor feedback
limitations for improving rotor angle stability in a two-machine power system. First
we show that with ideal wide-area measurements, without communication delay,
performance in terms of rotor angle stability is only limited by the available input
power. Second we show that, using local phase angle measurements, it is impossible
to perfectly estimate the excitation of the interarea mode. Water-bed constraints on
the filtering sensitivity dictates that accurate estimation of the interarea mode has to
be compensated by inaccuracy outside a certain angular frequency window. Finally,
the main result of the chapter is presented. We show that the filtering limitation
results in feedback limitation for the closed-loop system using local measurements.
Consequently, amplification of certain disturbances are unavoidable.

6.3.1 Ideal Feedback Measurement y = ω1 − ω2

interarea oscillations are an electromechanical phenomena where groups of machines
in one end of the system swing against machines in the other end of the system [25].
Consider the two-machine system shown in Figure 6.1. Here, the interarea mode is
accurately observed from the modal speed [137] which for the two-machine system
is given by the relative machine speed

z = δ̇1 − δ̇2 = ω1 − ω2. (6.10)
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If available, this is the ideal feedback signal [137]. With input-output mappings
given by the transfer function matrix in (6.5) the system to stabilize with feedback
control becomes

Gzu = X∗1 −X∗2
MX∗Σ

s

s2 + Ω2 . (6.11)

Proposition 6.5 Suppose that y = z, Gzu has no ORHP zeros, and that |Gzd| rolls
off at higher angular frequencies. Then for every positive ε there exist a controller
K such that

|Tzd(jω)| < ε, ∀ω. (6.12)

Proof: First we note that u = −Kzz. Thus the closed-loop system (6.9) reduces
to Tzd = SGzd. Since |Tzd| ≤ |S||Gzd|, the objective (6.12) is fulfilled if

|S(jω)| < ε/|Gzd(jω)|, ∀ω.

If there are no ORHP zeros in Gzu then, by Lemma 6.1, S is not constrained at
any specific angular frequencies.

Example 6.1 Suppose that we choose proportional control u = −kz then with Gzu
given by (6.11)

S = s2 + Ω2

s2 + sk
X∗1−X∗2
MX∗Σ

+ Ω2
.

According to Lemma 6.2 we then have∫ ∞
0

ln |S(jω)| dω = π

2 lim
s→∞

s
(
S(s)− 1

)
= −kπ2

X∗1 −X∗2
MX∗Σ

which, for k (X∗1 −X∗2 ) > 0, is always negative.

This implies that the excitation of the interarea mode, by load disturbances,
can be made arbitrarily small for all angular frequencies. In terms of rotor angle
stability, both POD and transient stability are then only limited by the available
input power and the achievable actuator bandwidth.

6.3.2 Filtering Limitations — Local Measurement y = θ

Typically the industry is restrained from using external communication for crucial
system functions such as POD. Thus, using relative machine speed for feedback is
normally not an option. The controller instead need to rely on local measurements.
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Here we will show the limitations of estimating the relative machine speed (6.10)
using local measurements.

Consider the two machine system shown in Figure 6.1 using local phase angle
measurement, y = θ. With transfer function[

Gzd1 Gzd2

Gyd1 Gyd2

]
= G0

[
s3 −s3

X∗2
X∗Σ

(
s2 + 1

MX∗2

)
X∗1
X∗Σ

(
s2 + 1

MX∗1

)] (6.13)

given by (6.5) to (6.7). Assume that 0 ≤ X∗1 < X∗2 ≤ X∗Σ, i.e., machine 1 is closest
to the measurement bus. Then the corresponding complex conjugated zero pairs
q1 = ±j

√
1/MX∗2 and q2 = ±j

√
1/MX∗1 fulfill

Ω/
√

2 ≤ |q1| < |q2| ≤ ∞.

Partition the general control problem (6.9) into a control and an estimation
problem as shown in Figure 6.3.

Proposition 6.6 Suppose that y = θ and let P1 and P2 be the filtering sensitivity
functions associated with d1 and d2 respectively. Then an estimator ẑ = Fy, such
that

|Pi(jω)| < 1, i ∈ {1, 2}

is only possible in a frequency interval
(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
.

Proof: A minimum requirement for |Pi| < 1 is that the estimate ẑ has the same
sign as z, i.e., thatMi > 0. From (6.13), the complementary filtering sensitivities
to consider becomes

M1(s) = F (s)Gyd1(s)G−1
zd1

(s) = F (s)X
∗
2

X∗Σ

s2 + |q1|2

s3 ,

M2(s) = F (s)Gyd2(s)G−1
zd2

(s) = −F (s)X
∗
1

X∗Σ

s2 + |q2|2

s3 .

(6.14)

Clearly,M1(jω),M2(jω) > 0 are then only possible if

sgn
(
|q1|2 − ω2) = − sgn

(
|q2|2 − ω2) = −1.

Proposition 6.7 Suppose that y = θ and that a estimator ẑ = Fy achieves∫ ω̄

¯
ω

ln |Pi(jω)|dω < 0, i ∈ {1, 2}
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in a frequency interval
(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
. Then amplification of the disturbance

on the relative estimation error,

sup
ω

max (|P1(jω)|, |P2(jω)|) > 1,

is unavoidable in the frequency intervals ω <
¯
ω and ω > ω̄.

Proof: Since Gyd1G
−1
zd1

and Gyd2G
−1
zd2

in (6.14) are strictly proper, Pi(∞) = 1.
According to Lemma 6.4 we then have∫ ∞

0
ln |Pi(jω)| dω = π

2 lim
s→∞

s
(
Pi(s)− 1

)
+ Ci

where Ci is a non-negative constant resulting from any ORHP zeros in Pi. From
Definition 6.2, Pi − 1 = −Mi. With the complementary filtering sensitivities given
by (6.14), then ∫ ∞

0
ln |P1(jω)| dω = −π2F (∞)X

∗
2

X∗Σ
+ C1,∫ ∞

0
ln |P2(jω)| dω = π

2F (∞)X
∗
1

X∗Σ
+ C2.

If the filter is strictly proper, then any region with |Pi(jω)| < 1 need to be com-
pensated with an (at least) equally large region with |Pi(jω)| > 1. If the filter is
proper, this holds true with respect to at least one of the disturbances d1 or d2.

Example 6.2 Consider the two-machine power system shown in Figure 6.1 with
linear dynamics (6.13) derived in Section 6.1. Let the line reactance X∗Σ = 1 p.u. and
scale the machine inertiaM so that the interarea modal frequency Ω =

√
2/MX∗Σ =

1 rad/s. In addition, add a 0.05 p.u./(rad/s) damping constant at each machine so
that the interarea mode has small but positive damping. Figure 6.4 shows the Bode
diagram of GydiG−1

zdi
, i = 1, 2, with X∗1 = 0.1 p.u. and X∗2 = 0.9 p.u., i.e., the control

bus is located closer to machine 1.
Consider the case where the mode is estimated using a simple derivative filter.

Following the numbers listed in Figure 6.4:

1 The derivative filter adds 90° phase to GydiG−1
zdi

and thus M1(jω) > 0 for
ω > |q2|. However, disturbances d2 coming from the other end of the system
will result in an initial estimate with a 180° phase shift, i.e.,M2(jω) < 0.

2 At ω < |q1| we will have the opposite problem.

The mechanical analogy in Section 6.1.3 thus appears as a sensor feedback limitation
both around the high frequency zero q2 and the low frequency zero q1.
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Figure 6.4: Bode diagram visualizing the filtering limitation when using local phase angle
measurement, y = θ, in Example 6.2.

3 In a frequency interval
(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
both transfer functions have the

same phase. ThusM1,M2 > 0 can be guaranteed no matter the origin of the
disturbance.

Remark 6.1 (Observability Analogy) If the control bus are at the electrical mid-
point, then the relative frequency z is unobservable using local frequency measure-
ment [93]. At the electrical midpoint, we also have |q1| = |q2| = Ω and thus the
frequency interval in which the sign of z can be accurately estimated shrinks to
zero. If the control bus are adjacent to a machine, then we have best achievable ob-
servability of z [93]. Similarly we have the maximum interval,

(
¯
ω, ω̄

)
⊂
(
Ω/
√

2,∞
)
.

Note that there is still a lower limit, so the considered filtering limitations applies.
Ultimately, however, consequences for closed-loop performance are more relevant
when the excitation of the mode is large. As seen in Figure 6.4, for ω ≤ Ω, |Gzd(jω)|
decreases as ω → 0. Filtering limitations therefore becomes less significant when
measuring closer to a machine.

Example 6.3 Consider again the two-machine system introduced in Example 6.2.
An estimate of the mode is here obtained by the filter F0, tuned to minimize
the H2-norm from external inputs d and n to the weighted output e as shown in
Figure 6.5.

Note that the H2 design does not allow for pure integrators in the plant. The
pole of the output integral weight is therefore shifted slightly into the left half-plane
(LHP). Additionally, the integrator in Gyd is canceled with a wash-out filter.

In the tuning process, external inputs are modeled as white noise with amplitudes
|d1|, |d2| = 0.2 p.u. and |n| = 0.05 rad. With the output weight fixed, the ratio |d|/|n|
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Figure 6.5: Block diagram for filter design in Example 6.3. The integral weight on the
output reduces the steady-state estimation error.

Figure 6.6: Relative machine speed z and estimate ẑ using local phase angle measurement
following a 0.2 p.u. load step d1 (left) and d2 (right) in Example 6.3.

determines the filter performance. As seen in Figure 6.6 the initial sign of z cannot
accurately be estimated for both disturbances. By choosing |d1| 6= |d2| in the
tuning process, we can choose which disturbance to be favored by the filter. The
corresponding filtering sensitivities P1 and P2 are shown in Figure 6.7.

6.3.3 Feedback Limitations — Local Measurement y = θ

If there are no ORHP zeros or time-delays in Gyu, then the sensitivity can be made
arbitrarily small, e.g., using an inverse based controller. However, making S small is
not necessarily the same as making the closed-loop system (6.9) small if y 6= z. Here
it will be shown that the filtering limitation in Propositions 6.6 and 6.7 result in
closed-loop performance limitations in terms of achievable disturbance attenuation.

The aim of a feedback controller is to reduce the amplitude of the closed-
loop system (6.9) compared to the open-loop system, i.e., to make |Tzd| < |Gzd|.
Multiplying with G−1

zd this can be expressed using the disturbance response ratio

|Rzd| =
∣∣1−GzuK(1 +GyuK)−1GydG

−1
zd

∣∣ < 1. (6.15)

Proposition 6.8 Suppose y = θ and let Rzd1 and Rzd2 be the disturbance response
ratios associated with d1 and d2 respectively. Then a sensor feedback controller
u = −Ky, such that

|Rzdi(jω)| < 1, i ∈ {1, 2}
is only possible in a frequency interval

(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
.
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Proof: In Figure 6.3, decoupling of control input u from the estimation error is
achieved by selecting Fu such that

Gzu = F (Gyu + Fu).

Substituting Gyu with Gyu + Fu and K with KzF then (6.15) can be written as

|Rzdi | = |1− (1 +GzuKz)−1GzuKzMi| < 1. (6.16)

The proof then follows from Proposition 6.6.

Proposition 6.9 Suppose that y = θ and that a sensor feedback controller u = −Ky
achieves disturbance attenuation with∫ ω̄

¯
ω

ln |Rzdi(jω)|dω < 0, i ∈ {1, 2}

in a frequency interval
(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
. Then disturbance amplification

sup
ω

max (|Rzd1(jω)|, |Rzd2(jω)|) > 1, (6.17)

is unavoidable in the frequency intervals ω <
¯
ω and ω > ω̄.

Proof: Bode integral constraints similar to Lemma 6.4 can be derived also for Rzd.
Suppose that the closed-loop two-machine system is stable and that the performance
variable z = ω1 − ω2. Since both Gzu andMi are strictly proper, Rzdi − 1 have a
relative degree ≥ 2.4 Thus,∫ ∞

0
ln |Rzdi(jω)| dω = π

nγ∑
r=1

γr ≥ 0

where γr are ORHP zeros ofRzdi [116]. It then follows that disturbance amplification
(6.17) is unavoidable in the frequency intervals ω <

¯
ω and ω > ω̄ due to the water-bed

effect.

Remark 6.2 ORHP zeros of Pi are not necessarily shared withRzdi . But ifKz →∞
in (6.16) then Rzdi → Pi.

4 If we instead choose the performance variable as z = δ1 − δ2, then Gzu have a relative degree
of 2 in itself.
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Figure 6.7: Filtering sensitivity and disturbance response ratio with respect to d1 (top) and
d2 (bottom) in Examples 6.3 and 6.4. Due to the water-bed effect, disturbance amplification
is unavoidable around the zero frequencies |q1| and |q2|.

Example 6.4 Consider again the two-machine system with the filter F designed in
Example 6.3. Since the filter gives an estimate of the mode, damping of the mode can
be improved by closing the loop with a controller Kz = 0.5 p.u./(rad/s) as shown in
Figure 6.3. In accordance with Propositions 6.8 and 6.9 this result in an unavoidable
disturbance amplification outside the frequency interval

(
¯
ω, ω̄

)
⊂
(
|q1|, |q2|

)
for

either Rzd1 or Rzd2 as seen in Figure 6.7.

6.4 Simulation Study

In this section we study filtering limitations in a Simulink implementation [26] of the
Kundur four-machine two-area test system [25] shown in Figure 6.8. For illustrative
purposes, the system has been modified by reducing the POD. We assume the
controllable devise is an embedded HVDC link where the dc power can be controlled
in a linear region with sufficiently high bandwidth. Without further loss of generality,
the dc dynamics are then neglected, as motivated in [30]. We begin this section
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Area 1 Area 2

Figure 6.8: Four-machine two-area system [25, 26]. Modifications: embedded HVDC link,
inertia reduced to 75%, interarea ac power flow increased to 500MW, and PSSs tuned
down for a marginally damped interarea mode.

by showing the filtering limitations associated with local phase angle or frequency
measurement. Then we show the consequences this have on rotor angle stability.
Finally, it is shown how alternative measurement signals can be useful to limit rotor
angle stability issues associated with phase angle measurements in the considered
four-machine test system.

To facilitate the analysis and controller design, we need a linear representation
of the system. Using the Simulink linear analysis toolbox we obtain the 90th order
state-space realization

ẋ = Ax+Bdd+Buu

y = Cyx+Dydd+Dyuu

z = Czx

(6.18)

where x is the state vector representing rotor speeds, rotor angles, generator voltages,
controller states, etc.; d is a vector of external inputs, such as the active power
load at buses 7 and 9; u is the controllable dc power in the HVDC link; y is some
measured output such as the phase angle θ9; and z is a performance variable chosen
to represent the interarea mode.

6.4.1 Filtering Limitations — Local Measurement y = θ9

Let us illustrate how to extend the analysis in Section 6.3.2 to study the filtering
limitations associated with local phase angle measurement in the four-machine
system. To do this, it is convenient to represent (6.18) on its modal form.

Let λi, i = 1, . . . , 90 be the eigenvalues of A so that det(A − λiI) = 0. Let
V =

[
v1, . . . , v90

]
∈ C90×90 and U =

[
u1, . . . , u90

]
∈ C90×90 be matrices of left and

right eigenvectors so that vH
i A = vH

i λi, Aui = λiui, and VH = U−1, where vH
i is the

complex conjugate transpose of vi.
Transforming the state-space coordinates x into the modal coordinates ζ = VHx

we can rewrite (6.18) as

ζ̇ = VHAUζ + VHBdd+ VHBuu

y = CyUζ +Dydd+Dyuu

z = CzUζ
(6.19)
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where VHAU = diag(λ1, . . . , λ90) ∈ C90×90.
Oscillatory modes, λi, are characterized by two complex conjugated modal states.

For instance let the oscillatory interarea mode be represented by the pair ζ1 and
ζ2 = ζ̄1. Ideally, to stabilize the mode, we would like a good estimate of either ζ1 or
ζ2. The problem is that most available numerical methods do not allow for a complex
valued state-space representation. This can be amended by instead representing
(6.19) on real Jordan form [126]. Let V =

[
v1, . . . ,v90

]
∈ R90×90 be a transformation

matrix with

•
[
vi,vi+1

]
=
[
Re(vi), Im(vi)

]
if λi = λ̄i+1, and

• vi = vi if λi is real.

With the coordinate transform ζ = V Tx, we rewrite the system (6.19) on real
Jordan form

ζ̇ = V TAUζ + V TBdd+ V TBuu

y = CyUζ +Dydd+Dyuu

z = CzUζ

(6.20)

where U−1 = V T and V TAU ∈ R90×90 is block-diagonal, as shown in Appendix 4.C.
The state-space realization (6.20) can be used to study the filtering limitations

associated with local phase angle measurements. But first, to facilitate the subsequent
controller design, let us rotate the eigenvectors so that ζ1 and ζ2 are suitable to
represent the damping and synchronizing torque of the interarea mode.

For the undamped symmetrical two-machine system (6.5), suitable states to
represent damping and synchronizing torque would be ζ1 = ω1−ω2 and ζ2 = δ1−δ2
respectively. Suitable states to represent damping and synchronizing torque in the
detailed four-machine model (6.18) are not as obvious. However, if we assume that
the interarea oscillations are still dominated by the mechanical dynamics of the
synchronous machines we can rotate the corresponding eigenvectors, e.g., v1 and
v2 = v̄1, so that the elements corresponding to machine speeds are aligned with the
real axis, as shown in Figure 6.9. This makes

ζ1 = Re
(
vH

1
)
x = vT

1 x and ζ2 = Im
(
vH

1
)

= vT
2 x

state variables suitable for analyzing damping and synchronizing torque in the four-
machine system even though governors, voltage dynamics, higher-order generator
dynamics, etc., have been introduced. To target damping of the interarea mode, let
the performance variable

z = ζ1 = Czx = vT
1 x (6.21)

where v1 is the left eigenvector associated with the interarea mode, aligned with the
real axis as shown in Figure 6.9.

Assume now that we use local measurement y = θ9 to improve POD in the four-
machine system shown in Figure 6.8. The sensor feedback limitations considering
active power disturbances d1 and d2 at buses 7 and 9, respectively, are shown in
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Figure 6.9: Mode shape of the interarea mode in the four-machine system.

Figure 6.10: Bode diagram visualizing the filtering limitation with local phase angle
measurement, y = θ9, and load disturbances d1 and d2 at buses 7 and 9 respectively, as
shown in Figure 6.8.

Figure 6.10. The Bode diagram bares close resemblance to the simplified model
in Figure 6.4. The main difference is that Gyd2G

−1
zd2

shows a prominent zero pair
also at higher angular frequencies. This is because the disturbance d2 occur at the
measurement bus. As shown in (6.5), the transfer function Gyd2 therefore has a low
frequency and a high frequency zero pair. Proposition 6.7 implies that it will be
impossible to accurately determine the source of the load disturbance. According to
Proposition 6.9, POD using local frequency measurements will therefore unavoidably
amplify disturbances around the low frequency and high frequency zero pairs. In
the following subsection, we show the consequence of this for transient rotor angle
stability.

It is also worth noting that the electromechanical zero pairs are in the ORHP.
This is often the case in power systems due to the destabilizing effect of generator ex-
citation controllers, as shown in Chapter 3. Since we have ORHP zeros, interpolation
constraints on the sensitivity further limits the achievable closed-loop performance,
according to Lemma 6.1. Ultimately, this will have consequences for robustness. It
is important to keep this in mind when designing the feedback controller [115].
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6.4.2 Feedback Limitations — Local Measurement y = θ9

To show the consequences of the filtering limitations on rotor angle stability, we first
need to design a feedback controller. In this section, we will compare two types of
controllers. A conventional phase compensating controller, typically used for power
system stabilizer (PSS) implementations, and a H2 optimal controller tuned to
attenuate the performance variable (6.21).

PSS-Style Controller

Let PDC = −KPSSθ9

KPSS = s kPSS
sT1 + 1
sT2 + 1︸ ︷︷ ︸

Phase compensation

(
5Ω1

s+ 5Ω1

)
︸ ︷︷ ︸

Low-pass

2
s

s+ 0.2Ω1︸ ︷︷ ︸
Wash-out

(6.22)

where Ω1 = |λ1| ≈ 4.4 rad/s is the frequency of the poorly damped interarea
mode. The eigenvalue sensitivity to small changes in KPSS is given by the residue
R(λ1) = −Cyu1v

H
1Bu [45]. We tune the phase compensation in (6.22) so that

arg
(
R(λ1)K(λ1)

)
= −π. Thus, feedback moves the eigenvalue, λ1, associated with

the interarea mode in the negative real direction as shown in Figure 6.11. Choosing
kPSS = 1.05, the damping of the interarea mode improves from 2.7% to 10%.
The low-pass filters in (6.22) are selected to avoid amplification of high frequency
measurement noise. The wash-out filter is tuned to avoid amplification at low angular
frequencies. The required phase compensation, −5°, is achieved with T1 = 0.21 and
T2 = 0.25 in (6.22).

In Figure 6.12, the system response to a 1 s long 350MW disturbance is shown.
The worst case disturbances are those that increase the rotor phase angle difference.
Therefore we consider a load loss at bus 5 and a generation loss at bus 11 (simulated
as active power loads). This could for example represent the commutation failure of
an exporting or importing HVDC link.

The trajectory of λ1 in Figure 6.11 indicates that the implemented controller
improves damping torque. It also marginally improves synchronizing torque. This
could lead us to believe that both POD and transient stability have been improved.
Indeed, as seen in Figure 6.12, both the damping and transient response are improved
for disturbances occurring close to the measurement bus at bus 11. However, for
disturbances occurring in the other end of the system, this is not the case. In
accordance with Proposition 6.9, an erroneous control input and thus a disturbance
amplification is unavoidable. This increases the initial angle, δ1 − δ4, leading to a
system separation in the first swing.

H2 Optimal Controller

Let PDC = −KH2θ9, where KH2 is the controller that minimizes the H2-norm from
white noise inputs d and n to weighted outputs in the extended system shown in
Figure 6.13. Let power and phase be given in MW and degrees, respectively, and
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Figure 6.11: Root locus used for selecting controller gain kPSS.

Figure 6.12: Rotor angle differences and control input following a 350MW disturbance with
PDC = −KPSSθ9.

• let load disturbances |d| = 1 and measurement noise |n| = 1, and let the input
weights Wd/Wn = 100;

• let Wu = 1; and

• let |Cz| = 1 in (6.21) and Wz = 40 · 360.

The tuned controller then achieves 10% damping of the interarea mode. Closing
the feedback loop, eigenvalues of the interarea mode are shifted into the LHP
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Figure 6.13: Extended system for optimal control design.

Figure 6.14: Rotor angle differences and control input following a 350MW disturbance with
PDC = −KH2θ9.

whereas the remaining open-loop poles are unaffected, as shown in Figure 6.11. The
optimal controller has the same order as the extended system. Here however, it
could be reduced to 4th order without significantly changing the dynamic closed-loop
performance. The implemented controller is

KH2 = 0.042s(172− s)(s+ 12.6)(s+ 0.59)
(s2 + 3.9s+ 19.4)(s2 + 3.4s+ 51.1) . (6.23)

Remark 6.3 Note that the reduced controller (6.23) has an ORHP at s = 172.
However, since Ω1 � 172, this is insignificant for the closed-loop performance.

In Figure 6.14, the system response to a 1 s long 350MW disturbance is shown.
Just as in Figure 6.12 we see good damping as well as improved transient perfor-
mance when disturbances occur close to the measurement bus. Unlike the PSS-style
controller, we see that the H2 optimal controller survive the first swing, also for
disturbances occurring at bus 5. This implies that transient stability issues may
be avoided with proper controller tuning. However, also the well tuned H2 opti-
mal controller amplifies the first swing as seen in Figure 6.14. In accordance with
Proposition 6.9, this is unavoidable.

For the simulations, the controllable dc power variation has been saturated at
±75 MW from the steady-state set point. One way to reduce the erroneous excitation
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of the interarea mode, is to reduce this saturation limit. This would improve the
transient stability margin for disturbances occurring in the other end of the system.
It is also worth noting that both the PSS-style controller and the H2 controller
improve POD as well as first swing stability in the case where load disturbances
occur in the same area. In a more distributed setting where POD is provided by
decentralized controllers in each end of the system, then the negative effect on the
first swing will be counterbalanced by controllers in the other end of the system.
Remark 6.4 (Weight Selection) There are many ways of choosing the input and
performance weights. For instance, the inputs weights can be chosen to reflect
the size and dynamics of expected load disturbances and to account for PMU
measurement noise. Similarly, the performance weights can reflect the allowed signal
sizes and input usage. This is particularly useful in H∞ control design since then
performance specifications can be considered together with the small-gain theorem,
guaranteeing robust performance by ensuring that the H∞-norm of the closed-loop
is less than one. A convenient design procedure is often to first design the controller
by optimizing the H2-norm, and then to assess robustness using the H∞-norm [115].

6.4.3 Feedback Limitations — Alternative Measurements
In this section we will consider H2 optimal feedback control with alternative mea-
surements. It will be shown that by using WAMS or by substituting local phase
angle measurement with local power flow or voltage measurements, the transient
stability issues associated with local phase angle measurements can be avoided.
Conclusions from the analysis in Section 6.3 can, to some extent, be extrapolated to
power flow and voltage measurements.

WAMS

System awareness can be improved by using WAMS. Complementary measurements
should be selected at buses with good observability, and ideally in the other end of
the system, to provide as much information as possible. To complement local phase
angle measurement, one suitable candidate is therefore the rotor speed ω1. Assume
a 200ms communication delay. Using the H2 optimal control design method in
Section 6.4.2 the controller is tuned to achieve 10% damping of the interarea mode.
As shown in, Figure 6.15, the use of WAMS improves the transient performance by
reducing the amplification of the first swing.

AC Power Flow y = PAC

Let the feedback controller be an H2 optimal controller tuned to improve the
damping to 10% using measurement of ac power flow in one of the lines between
buses 8 and 9.

Since the power flow over the line depends on the angle difference, θ9 − θ7, it
is useful for determining the source of the disturbance. This can be confirmed by
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Figure 6.15: Rotor angle differences and control input following a 350MW disturbance.
Transient rotor angle stability is improved using WAMS.

studying the complementary filtering sensitivity in Figure 6.16. Therefore, as seen
in Figure 6.17, power flow does not exhibit the same issues with transient stability
as local phase angle measurements. For this reason, ac power flow would here be
a better measurement choice compared to phase angle measurements. For a more
complex system, however, this may not necessary be the case as observability will
depend on the topology of the particular system. For instance, the initial surge of
power will always be in the direction of the load disturbance. If measuring in a shunt,
e.g. the electric power of a synchronous machine, then we may experience similar
filtering limitations as with phase angle measurements. Power flow also shows more
sensitivity to process noise. In Figure 6.17, although the attenuation of the rotor
angle looks smooth, there is quite a bit of fluctuation in the input signal due to
interaction with the local modes. To extend the analysis, it will be interesting to
consider a more detailed network model.

Bus Voltage y = V9

Let the feedback controller be anH2 optimal controller tuned to improve the damping
to 10% using measurement of local bus voltage V9. As seen in Figure 6.17, using
local voltage measurement, the feedback controller efficiently attenuates disturbances
originating in either end of the system.

Typically, voltage measurement are best used in combination with reactive power
control [93, 137, 138]. But it could also be used when controlling active power.
Best observability of the interarea mode is achieved when measuring the voltage
close to the electrical midpoint. As seen in Figure 6.17, POD control implemented
using voltage measurement is less sensitive to the location of active power load
disturbances. The reason for this is that the average speed mode is not observable in
the voltage. But there could be other dynamical phenomena, for instance involving
reactive power disturbances and short circuits faults that could exhibit similar first
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Figure 6.16: Bode diagram visualizing the complementary filtering sensitivity with local
power flow measurement, y = PAC, and load disturbances d1 and d2 at buses 7 and 9
respectively, as shown in Figure 6.8. Compared to Figure 6.10 we see that measurement
of ac power flow does not show the same filtering limitations associated with local phase
angle measurement.

Figure 6.17: Rotor angle differences and control input following a 350MW disturbance.
For the considered two-area system, feedback control using ac power flow or local voltage
measurement does not show the same issues with transient rotor angle stability as feedback
from local phase angle measurement.

swing stability issues. The classical machine model (6.4) used for the analysis does
not capture voltage dynamics. To properly extend the analysis, a more detailed
machine modeling is needed.

It is also worth noting that the use of voltage measurement can have other
drawbacks, not captured in this study. For instance, when using voltage measurement
in combination with reactive power control, the residue angle is sensitive to load
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dynamics [139]. This can have consequences for the robustness of the control design.

6.5 Summary

Sensor feedback limitations for improving rotor angle stability using feedback from
local phase angle measurements has been studied. For a linearized two-machine
power system model it was shown that, although arbitrarily good damping can be
achieved, sensor feedback limitation dictates that damping improvement must come
at the cost of decreased transient performance. Using a detailed power system model,
it was shown that this decrease in transient performance may result in transient
instability.
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Frequency Stability
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Chapter 7

Coordination of Dynamic Frequency
Reserves

To ensure frequency stability in future low inertia power grids, fast ancillary services
such as fast frequency reserves (FFR) have been proposed. In this chapter, the
coordination of conventional (slow) frequency containment reserves (FCR) with
FFR is treated as a decentralized model matching problem. The design results
in a dynamic virtual power plant (DVPP) whose aggregated output fulfills the
system operator requirements at all time scales, while accounting for the capacity
and bandwidth limitation of participating devices. The results are illustrated in
a 5-machine representation of the Nordic synchronous grid, where hydro-FCR is
coordinated with FFR from wind.

Deregulation of the market and the transition towards renewable energy, is
diversifying the mechanics behind electricity production. At the same time, the
frequency stability of grids are becoming more sensitive to load imbalances due to
the growing share of converter-interfaced generation [32]. A number of relatively
recent blackouts are related to large frequency disturbances. These incidences are
expected to become more common in the future; in fact they have doubled from the
early 2000s [34]. With growing shares of renewables, system operators are therefore
increasingly demanding renewable generation and other small-scale producers to
participate in FCR [38].

Virtual power plants (VPPs), aggregating together groups of small-scale pro-
ducers and consumers, are proposed to allow smaller producers with more variable
production to enter into the market with the functionality of a larger conventional
power plant [140, 141]. The main objectives are to coordinate dispatch, maximize
the revenue, and to reduce financial risk of variable generation, in the day-ahead
and intra-day markets [142, 143]. But also other services, such as voltage regulation
[144] and allocation of FCR resources [145–147] have been proposed.

In this chapter, we design controllers that coordinate FCR over all time scales,
beyond mere set-point tracking, forming a DVPP offering dynamic ancillary services

169
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[148]. While none of the individual devices may be able to provide FCR consistently
across all power and energy levels or over all time scales, a sufficiently heterogeneous
ensemble will be able to do so. Examples of heterogeneous devices complementing
each other while providing FFR include hybrid storage pairing batteries with
supercapacitors providing regulation on different time scales [149, 150], demand
response [151], or wind turbines (WTs) [73, 78] that can provide a quick response
but subject to rebound effects that have to be compensated by other sources later
on, if not operated below the maximum power point (MPP) [152].

The contribution of this chapter is the design of a decentralized dynamic ancillary
service, distributing FCR between a heterogeneous ensemble of devices, to form
a DVPP. The controllers rely on dynamic participation factors (DPFs) and are
designed so that all devices collectively match the Bode diagram of a design target,
specified by the system operator requirements. Stability is ensured by selecting a
suitable design target and by ensuring that the DPFs account for the capacity and
speed limitations of participating devices. To test the design, we consider a model of
the Nordic synchronous grid. In the Nordic grid, FCR is almost exclusively provided
by hydro power. The controllability and storage capability of hydropower makes
it ideal for this purpose. In recent years however, the inertia reduction due to the
renewable energy transition has made the bandwidth limitations associated with
non-minimum phase (NMP) waterway dynamics a problem. Since the bandwidth of
hydro-FCR cannot be increased without reducing the closed-loop stability margins
[40], the Nordic system operator’s have launched a project to complement hydro-
FCR with FFR from other power sources [41]. In this chapter wind and hydro
resources in the Nordic grid are coordinated as a DVPP. Numerical simulations
indicate that the latest regulations can be fulfilled without the need for curtailment
or battery installations.

The remainder of the chapter is structured as follows. Section 7.1 presents the
control problem, introducing the test system and models of controllable energy
sources. Section 7.2, formally introduces the DVPP control design. In Section 7.3 a
local DVPP is designed and in Section 7.4 we close the frequency loop and coordinate
FCR and FFR in the whole grid. Section 7.5 concludes the chapter with a discussion
of the results.

7.1 Problem Formulation

In this chapter, we are interested in the frequency containment and post fault
dynamics of the center of inertia (COI). That is, we do not directly address short
term synchronization and interarea oscillations in the control design. In the end,
stability is verified in simulations by applying the control to a detailed power system
model designed for large signal analysis.

Power balance between production and consumption is ensured by controlling
the COI frequency [25]. For a network with ngen synchronous machines, the COI



7.1. Problem Formulation 171

frequency is

ωCOI =
∑ngen
i=1 Miωi
M

, M =
∑ngen

i=1
Mi,

where ωi is the speed and Mi the inertia of machine i. Assuming that the grid stays
connected, the motion of the COI frequency is determined by the power balance

sMωCOI = PCOI =
∑n

i=1
Pin,i − Pout,i

of the n inputs and outputs distributed all over the system.
For the analysis, we assume that physical frequency-dependent or frequency-

controlled power sources can be linearized, e.g., neglecting effects of saturation. The
power balance PCOI is divided into frequency-dependent power sources Fi(s)ωCOI
and external power sources ui, so that

PCOI =
∑n

i=1
Fi(s)ωCOI + ui = F (s)ωCOI + u.

We can then express the COI frequency disturbance response

ωCOI = 1
sM + F (s)u. (7.1)

Let Fi(s) be broken up into Fi(s) = Di(s) +Hi(s)Ki(s), where Di(s) is some
fixed frequency-dependent load or power source (typically assumed to be a constant),
Hi(s) represent the dynamics of some controllable power source, and Ki(s) is a
linear FCR controller taking a measurement of the local frequency as input. The goal
is then to design Ki(s), i ∈ {1, . . . , n}, so that (7.1) fulfills the FCR requirements of
the system operator. In this chapter we will study this problem using a case study
of a 5-machine representation of the Nordic synchronous grid.

7.1.1 The Nordic 5-Machine Test System
Consider the Nordic 5-machine (N5) test system shown in Figure 8.2. The system is
phenomenological but has dynamical properties similar to the Nordic synchronous
grid. The model is adapted from the empirically validated 3-machine model presented
in [153]. Loads, synchronous machines and WTs are lumped up into a single large
unit at each bus. The model is developed in Simulink Simscape Electrical [51]. Hydro
and thermal units are modeled as 16th order salient-pole and round rotor machines,
respectively. Assuming that inverters are operated within allowed limits and are fast
enough so that their dynamics have only a marginal effect on (7.1), we model all
inverter sources as grid-following controllable power loads.1

The amount of synchronous generation connected to the grid varies with the
load demand and dispatch. Therefore the amount of system kinetic energy varies

1The full model, and test cases presented in this chapter, are available at the GitHub repository
https://github.com/joakimbjork/Nordic5.

https://github.com/joakimbjork/Nordic5
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(a) One-line diagram.

(b) Ideal FCR response.

(c) Bode diagram of the FCR open-loop.

Figure 7.1: The N5 test system.

Table 7.1: Machine parameters for the 240GWs and 110GWs test cases.

Bus Wkin [GWs] Pe [MW] Wkin [GWs] Pe [MW]
1 67.5 18 000 34 9000
2 45 12 000 22.5 6000
3 7.5 2000 7.5 2000
4 73.3 11 000 33 5000
5 46.7 7000 13 2000
Σ 240 110

greatly over the year [41]. Here, we will consider a high-inertia scenario, adapted
from [153], with Wkin = 240 GWs and a low-inertia scenario with Wkin = 110 GWs
distributed according to Table 7.1. Loads are modeled as constant power loads with
a combined proportional frequency dependency D(s) = D = 400 MW/Hz.

To specify a desired “ideal” FCR response, we use the FCR for disturbance
(FCR-D) specifications in the Nordic synchronous grid. The FCR-D is used to contain
the frequency outside normal operation. Following a rapid frequency fall from 49.9
to 49.5 Hz, the reserves should be 50% activated within 5 s and fully activated in
30 s. Following larger disturbances the maximum instantaneous frequency deviation
(the nadir) should be limited to 49.0Hz [39]. Hence, we let the FCR-D design target
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Figure 7.2: Block diagram of the FCR control loop.

take the form
FFCR(s) = RFCR

6.5s+ 1
(2s+ 1)(17s+ 1) . (7.2)

Consider the dimensioning fault to be the instant disconnection of the NordLink
high-voltage direct current (HVDC) cable [42] importing 1400MW from Germany
into Norway as shown in Figure 8.2. Choosing RFCR = 3100 MW/Hz, the post-fault
system stabilizes at 49.5Hz, as seen in Figure 7.1b. The second-order filter in (7.2)
is tuned so that the FCR-D requirements are fulfilled for both scenarios, while also
avoiding an overshoot and a second frequency dip when the frequency is restored.

In Figures 7.1b and 7.1c, we consider ideal actuation Hi(s) = 1. Thus, (7.2) is
realized with ideal controllable power sources distributed at buses 1, 2, and 3 so that
the total controlled input PFCR = FFCR(s)(ωref − ω̂), where ωref is the frequency
reference and ω̂ ≈ ωCOI is the locally measured frequency. As shown in Figure 7.1b,
this approximation has no big impact on the result, assuming that the post fault
system remains stable. With reduced inertia, the speed of the system increases. This
also increases the cross-over frequency of the FCR open-loop

L(s) = FFCR(s) 1
sM +D

,

obtained by breaking the loop at the input/output of FFCR(s), as shown in Fig-
ure 7.2. Since real actuators will have bandwidth limitations, the low-inertia scenario
therefore poses a greater control challenge.

When deviating from the above ideal actuation scenario, as we will see, the NMP
characteristics of hydro units will make it impossible to match the design target
(7.2). The target can be modified, by increasing the cross-over frequency, so that
the FCR-D requirements are fulfilled even if FCR are delivered by hydro governors.
However, due to bandwidth limitations imposed by the NMP zeros, see next section
for details, this is not a good solution since this reduces the closed-loop stability
margins [40]. Because of this, the Nordic system operators have developed a new
market for FFR [41]. FFR can be provided by, e.g., battery sources or wind farms
bidding on such a market.

In this chapter, we consider the control problem of coordinating multiple het-
erogeneous plants with different time constants and limitations. We will consider
hydro units, batteries, and WTs.
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Figure 7.3: Block diagram of the hydro turbine and governor model.

7.1.2 Hydro Governor Model
The hydro governor model implemented in this chapter is an adaption of the hydro
governor model available in the Simulink Simscape Electrical library [51]; modified
to allow a general linear FCR controller, K(s), instead of the predefined PID/droop
control structure as shown in Figure 7.3. The nonlinear second-order model is
useful for large-signal time-domain simulations. For the linear design, the turbine is
modeled as

Hhydro(s) = 2 z − s
s+ 2z

1
sTy + 1 , z = 1

g0Tw
, (7.3)

where Ty is the servo time constant, g0 the initial gate opening, and Tw the water
time constant [25]. Following a gate opening, the pressure over the turbine falls
before the water accelerates, due to the inertia in the water column. Because of this,
the initial power surge will be in the opposite direction of the gate opening change.
This behavior results in a bandwidth limitation which in the linearized model (7.3)
is characterized by the RHP zero [25].

7.1.3 Battery Storage Model
In the time frame of interest for frequency control, the dynamics of battery storage
units are dominated by the dynamics of the inverter and its controls [145, 146].
Assuming that the inverter dynamics have no significant impact on (7.1), see for
instance Example 2.3 or Remark 7.1 later on, we therefore model batteries as ideal
controllable power sources, with

Hbattery(s) = 1.

For the simulation case study we also keep track of the energy level, to indicate the
required battery size. Depending on the size of the energy storage, batteries can be
used as both FCR and FFR. In this chapter, we consider that the storage is limited
so that batteries are used only for FFR.

7.1.4 Wind Power Model

We consider a 8th order WT model shown in Figure 7.3. The model is based on the
National Renewable Energy Laboratory (NREL) 5MW baseline WT model [154].
The control system has been modified by adding a stabilizing feedback controller,
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Figure 7.4: Block diagram of a variable-speed controlled WT WIND.

Fstab, to allow the turbine to participate in FFR. For a full description and analysis
of the modified turbine, the reader is referred to Chapter 8. Here we give a brief
overview of the WT model and its linearization.

The pitch controller, Fpitch, ensures that the rotor speed Ω does not exceed the
rated speed Ωnom, by adjusting the pitch angle β. The control logic, Flogic allows the
turbine to operate in various operating modes by adjusting the generator set-point
and choosing when to activate the pitch controller.

Assume uncurtailed operation at the MPP below rated wind speed, then β = 0
and Pe = PMPP. Assuming that the inverter dynamics have no significant impact on
(7.1), we let Pin = PDC = Pe. The mechanical power Pm is a function of rotor speed
Ω and the wind speed v. Any deviation from the optimal speed ΩMPP will result in
a reduced sustainable power output. However, if operated below rated speed, the
electric power can be temporarily increased, allowing the WT to participate in FFR.
This however will decelerate the rotor and reduce the sustainable steady-power,
as shown by the power/speed characteristics in Figure 7.10b later on. To ensure
stability, a variable speed feedback controller, Fstab, is implemented. The controller
uses measurements v̂ and Ω̂ of the wind and rotor speed, to modify the power
reference Pref to Pstab. As shown later in Chapter 8, the dynamics most relevant for
FFR are

Pe ≈
s− z

s+ kstab − z
Pref ,

where the RHP zero z is a function of the drivetrain and aerodynamics, and kstab is
the effective stabilizing feedback gain from Fstab at the current wind speed. As the
turbine decelerates, z increases. Keeping the turbine above the minimum allowed
speed, then z ≤ z̄. Let kstab = 2z̄, then

Hwind(s) = s− z̄
s+ z̄

is a linear representation useful for analysis and control design. For the modified
NREL turbine, z̄ = 5.8v · 10−3.
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Figure 7.5: Block diagram of the FCR design problem.

7.2 Decentralized Control Design

Using FFR from wind to assist FCR from slower conventional generation has been
proposed in the literature [73, 78, 152]. Here, we take this one step further. We
develop a linear control design method that coordinates the dynamic response of a
heterogeneous ensemble of plants, so that the combined Bode plot of all participating
plants matches a target function over all frequency ranges. Using the target function
(7.2) result is a DVPP that meet the system operator’s FCR-D requirements. The
method is general and allows us to take into account energy capacity, power, and
bandwidth limitations. From a control design perspective, limitations imposed by
NMP zeros will be the hardest to address, since they also affect stability margins.
Therefore, this chapter focuses on combining hydro and wind.

This section presents a coordinated FCR and FFR control design method. It can
be applied globally, or locally in a DVPP. Our design is based on the COI model
and assumes asymptotic synchronization on the average mode. In the end, stability
is verified by applying the control and simulating the power system model.

7.2.1 Coordinated FCR and FFR Using Model Matching
Let D(s) = D represent the uncontrolled, proportional, frequency dependent loads
in the system and let H(s) = [H1(s), . . . ,Hn(s)]T, and K(s) = [K1(s), . . . ,Kn(s)]T.

Breaking the loop at the input of K(s) in Figure 7.5 the global open-loop gain
of the FCR control scheme becomes

L(s) =
∑n

i=1
Li(s), Li(s) = G(s)Hi(s)Ki(s) (7.4)

where G(s) = 1/(sM +D).
We pose the DVPP design as a decentralized model matching problem. Let

Ldes(s) = G(s)FFCR(s) be the desired, stable and MP, loop-gain that fulfill the
FCR-D specifications. The loop-gain of each plant is then given by

Li(s) = ci(s)Ldes(s) = ci(s)G(s)FFCR(s) (7.5)

where ci(s), are DPFs to be designed. DPFs are frequency-dependent version of
static participation factors [25], which allow us to take the dynamic characteristics
of each device into account. The controller for subsystem i is then given by

Ki(s) = ci(s)FFCR(s)/Hi(s).
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We say that perfect model matching is achieved if∑n

i=1
ci(s) = 1, ∀s ∈ C (7.6)

in which case L1(s) + · · · + Ln(s) = c1(s)Ldes(s) + · · · + cn(s)Ldes(s) = Ldes(s).
However, taking into account dynamical constraint of the actuators Hi(s), such as
NMP zeros, we may have to relax (7.6) to ensure that Ki(s) is proper and that
the resulting closed-loop system is internally stable. We relax (7.6) by allowing a
mismatch in the equality. Typically, we want a good match at steady-state up to
some frequency ωB , e.g., we want

∑n
i=1 ci(jω) = 1 for ω ∈ [0, ωB ].

Remark 7.1 A rule of thumb is that, for the resulting closed-loop system to be
close to nominal, we want a good match up until at least ten times the cross-over
frequency [115]. For model matching in the low-inertia N5 test case in Figure 7.1c
this indicates that ωB ≈ 2.6 rad/s. This also justifies neglecting stable dynamics
of batteries and power electronics in the FCR and FFR control design since these
typically are � 2.6 rad/s [145, 146] (see Example 2.3).

7.2.2 Internal Stability
In addition to shaping the COI frequency disturbance response, we have to ensure
internal stability with respect to the interfaces between the plant G(s), the FCR
controllers Ki(s), and the controllable power sources Hi(s) in Figure 7.5.

Theorem 7.1 The system is internally stable if and only if the sensitivity

S(s) = 1
1 + L(s) (7.7)

is stable and no unstable pole-zero cancellation occur between plants and controllers
G(s), Hi(s), and Ki(s), i ∈ {1, . . . , n}.

Proof: See Appendix 7.A.

Corollary 7.2 In case of RHP poles pj ∈ C+ in Hi(s) or G(s) we need that

L−1
i (pj) = 0.

Since we are not allowed to cancel RHP poles, any RHP poles must therefore remain
in the global open-loop L(s). However, if pj belongs to Hi(s), we may pre-stabilize
Hi(s) by first designing a local feedback controller [155].
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Corollary 7.3 In the case of NMP zeros zj ∈ C+ in Hi(s) or G(s) we need that

Li(zj) = 0.

Zeros cannot be moved by series compensation or feedback. So unlike unstable
poles these must remain in the system. However, since zeros are moved by parallel
connections, as in Figures 7.5 and 7.6, it is not necessary for the NMP zeros of
Hi(s) to remain in the global loop-gain L(s).

For the remainder, we assume that G(s) is stable and MP, and that any unstable
poles in Hi(s) have been pre-stabilized. The problem that remains is then how to
deal with NMP zeros. Ideally, we want the global open-loop to be MP so that perfect
matching (7.6) can be achieved.

7.2.3 Choosing Dynamic Participation Factors (DPFs)
There are many ways of choosing the DPFs ci(s), i ∈ {1, . . . , n}. Ideally, the factors
are distributed between VPP units to play on their dynamic strengths, compensate
for their weaknesses, and align with economic considerations. To illustrate how this
can be achieved, we here propose a method where the frequency control is divided
up into slower FCR and faster FFR.

Let ci(s), i ∈ {1, . . . ,m} and ci(s), i ∈ {m + 1, . . . , n} be the DPFs for FCR
and FFR, respectively. Let each producer specify a variable ki indicating their
willingness or marginal cost for supplying FCR and FFR. Normalize the constants
so that

∑m
i=1 ki = 1 and

∑n
i=m+1 ki = 1.

Starting with FCR, let

ci(s) = kiBi(s)/Bi(0), i ∈ {1, . . . ,m}

where, as necessary according to Corollary 7.3,

Bi(s) =
∏nz

j=1

zj − s
s+ pj

(7.8)

contains all the nz NMP zeros of the plant Hi(s). The poles pj are design parameters,
e.g., to adjust the cross-over frequency of Li(s). A good starting point however, is
to let pj = zj so that the DPFs are all-pass.

Next, we design the FFR participation factors. Let

ci(s) = ki
Bi(s)
Bi(∞)

(
1−

∑m

l=1
cl(s)

)
, i ∈ {m+ 1, . . . , n}

where Bi(s) are first-order filters (7.8). Note that Bi(∞) is a negative real number
if nz is odd.
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Figure 7.6: One-line diagram of a battery-hydro DVPP.

At this point, we have FCR and FFR controllers that achieves perfect matching∑n
i=1 ci(s) = 1 for s = 0 and s → ∞. Since no NMP zeros are canceled, internal

stability is achieved if the sensitivity (7.7) is stable. However, if any of the FFR
plants Hi(s) are NMP, we do not have perfect model matching, due to the required
modifier Bi(s)/Bi(∞). If the total sum is MP however, this can be amended by
adding a final normalization step c′i(s) = ci(s)/

∑n
i=1 ci(s).

7.3 Illustrative Examples

In this section we will show how a set of heterogeneous plants can be controlled so
that they together form a DVPP with favorable MP characteristics. We do this,
using DPFs as described in Section 7.2. For simplicity, we consider open-loop control
of a subsystem connected to the grid. Therefore, it is not yet possible to state any
requirement on the loop gains (7.4) and (7.5). Instead, the design is specified in
terms of the ideal FCR response (7.2). The insight gained from this will later be
used for the Nordic case study.

7.3.1 FCR Provided by two Hydro Units

Consider a subsystem with two 50MVA hydro units exporting power to the grid as
shown in Figure 7.6. Assume water time constants Tw,1 = 1.25 s and Tw,2 = 2.5 s,
respectively, and an initial gate opening g0 = 0.8 and servo time constant Ty = 0.2 s
for both turbines, then

H1(s) = 2−s+ 1
s+ 2

1
0.2s+ 1 , H2(s) = 2−s+ 0.5

s+ 1
1

0.2s+ 1 .

Goal

Design FCR controllers K1(s) and K2(s) for the two-hydro subsystem so that:
both units increase their steady-power output by 10MW following a 1Hz frequency
reference step, and so that H1(s)K1(s) +H2(s)K2(s) comes close to the ideal FCR
response (7.2) with RFCR = 20 MW/Hz.



180 Chapter 7. Coordination of Dynamic Frequency Reserves

10
-2

10
-1

10
0

10
1

10
2

0.4

0.6

0.8

1

10
-2

10
-1

10
0

10
1

10
2

-180

-90

0

(a) Participation factors.

0 20 40 60 80 100

80

90

100

0 20 40 60 80 100

40

45

50

(b) Power injections.

Figure 7.7: Power output and bode diagram of the two hydro units.

Solution

From Proposition 7.4 in Appendix 7.B, we know that the two-hydro subsystem will
have a RHP zero z ∈ [0.5, 1]. Thus, perfect matching is not realizable. The design
criteria requires that c1(0) = c2(0) = 0.5, and for internal stability, RHP zeros need
to be included. Let Ki(s) = ci(s)FFCR(s)/Hi(s), i ∈ {1, 2} with

c1(s) = 0.5−s+ 1
s+ 1 and c2(s) = 0.5−s+ 0.5

s+ 0.5 . (7.9)

Result

The resulting sum equals

c1(s) + c2(s) = (−s+ 1/
√

2)(s+ 1/
√

2)
(s+ 1)(s+ 0.5) .

As shown in Figure 7.7a the model matching is fulfilled at steady-state with c1(0) +
c2(0) = 1. However, the consequence of the RHP zero is that the DPF c1(s) + c2(s)
have a −180° phase shift at higher frequencies. The 1Hz reference step response
in Figure 7.7b shows the characteristic NMP initial drop. This is an unavoidable
physical property of the hydro governors that make it impossible to fulfill the design
target (7.2).

Although perfect matching is impossible, the performance can be improved
by modifying the participation factors, e.g., by selecting faster poles in (7.9), or
by selecting a design target (7.2) with a higher cross-over frequency. However, in
low-inertia power systems, this may result in dangerously low closed-loop stability
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margins or even instability [40]. A more robust solution is to complement hydropower
with FFR.

7.3.2 Battery Storage FFR Support
As shown in 7.3.1, it is impossible to achieve a MP FCR response using only hydro
units. To improve the transient response, one solution is to assist the hydro units
with FFR from a battery storage, forming a DVPP as shown in Figure 7.6.

Goal

Consider the battery storage as an ideal controllable power source, with H3(s) = 1.
Design K3(s) so that the DVPP, with Ki(s) = ci(s)FFCR(s)/Hi(s), fulfills∑3

i=1
Ki(s)Hi(s) = FFCR(s), (7.10)

that is, design the DPFs as in (7.6).

Solution

From Proposition 7.5 in Appendix 7.B, we know that since Re
(
c1(jω)+c2(jω)

)
≤ 0,

∀ω, the complementary DPF

c3(s) = 1−
(
c1(s) + c2(s)

)
= 2s (s+ 0.75)

(s+ 1)(s+ 0.5)

is guaranteed to be stable and MP. With the battery dynamics, H3(s), being stable
and MP, perfect matching is achieved with K3(s) = c3(s)FFCR(s)/H3(s).

Result

As seen in Figure 7.8a, the battery compensates for the phase lag of the hydro
units so that

∑n
i=1 ci(s) = 1. As a result, the DVPP output in Figure 7.9a matches

the ideal response Pdes = FFCR(s)(ωref − ω̂). With a more detailed battery plus
converter model, perfect matching can only be expected up to a certain frequency.
Arguably however, the very high frequency dynamics will not be relevant for FFR
and the COI response. From the “rule of thumb" argument in Remark 7.1, fast
stable dynamics � 10 · 0.26 rad/s can be neglected when we connect the DVPP to
the low inertia N5 grid.

Having a stable MP controllable power source is ideal for providing FFR in a
DVPP. With a battery storage, bounds on achievable performance are determined by
the power rating and the storage capacity. As shown in Figure 7.9b, for assisting the
100MVA hydro park, we need at least 5.5MW and 17 kWh. An obvious drawback
is that the battery needs to be recharged before it can provide any additional
FFR. Taking into account the recharging needs, the long-term dynamics cannot be
neglected.
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Figure 7.8: Bode diagram of participation factors, where c(s) =
∑n

i=1 ci(s).
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Figure 7.9: Power output of the battery-hydro DVPP.

7.3.3 Wind Power FFR Support

An alternative to providing FFR with battery storage, is to assist with FFR from
wind power. Compared to the battery solution however, for the WT, its dynamics
cannot be neglected. Here, we consider WTs operated at the MPP, but below
rated wind speed so that the power output can, at least temporarily, be increased.
When commanded by the FFR controller to exert power above the MPP, the rotor
decelerates, and thus the sustainable steady-power output decreases, as shown by
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(a) One-line diagram of the DVPP. (b) Wind farm power/speed characteristic.

Figure 7.10: Wind-hydro DVPP with a 30MW wind farm.

the power/speed characteristics in Figure 7.10b. The decline in sustainable power
manifests in a NMP behavior.

Goal

Consider a 30MW wind park connected to the subsystem as shown in Figure 7.10.
Assume initially that P3 = PMPP. Let the wind speed be v = 8 m/s. Then the
all-pass filter

H3(s) = s− 0.048
s+ 0.048 (7.11)

is a suitable linear representation of the WT dynamics. Design K3(s) so that the
DVPP fulfills (7.10).

Solution

Using the three-step approach in Section 7.2.3, let c1(s) and c2(s), as in (7.9), and
c3(s) =

(
1 − c1(s) − c2(s)

)
H3(s). The normalized DPFs c′i(s) = ci(s)/

∑3
i=1 ci(s)

then gives perfect model matching with
∑3
i=1 c

′
i(s) = 1.

Result

As seen in the Bode diagram Figure 7.8b, the wind farm compensates for the phase
lag of the hydro units at higher frequencies. From Proposition 7.6 in Appendix 7.B,
we know that that perfect matching can always be achieved, provided that we allow
for interaction between the FCR and FFR controllers. For example, in order to
achieve

∑3
i=1 c

′
i(jω) = 1 for low frequencies where Re

(
c′3(jω)

)
< 0, then we need

the hydro units to compensate with excessive FCR, i.e., Re
(
c′1(jω) + c′2(jω)

)
> 1.

This is seen in Figure 7.8b, where the normalization step increases the gain of
the hydro units at ω ≈ 0.1 rad/s. A larger separation between the zeros, gives less
interaction between the competing NMP dynamics.
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Figure 7.11: Power output of the wind-hydro DVPP.

The coordinated response to a 1Hz reference step is shown in Figure 7.11a. The
small discrepancy between the actual DVPP response and the ideal response comes
from the fact that the linear model (7.11) underestimates the power output of the
nonlinear WT dynamics as seen in Figure 7.11b.

7.3.4 Local A Priory Stability Guarantees

One benefit of the DVPP design is that it allows us to ensure stable interconnection
to the system, e.g., using the scalable Nyquist stability criterion derived later in
Chapter 9. Since both the WTs and hydro units present slow NMP dynamics, it will
be hard to guarantee stability when connecting these individually to the grid, using
only local information. One way to guarantee stable interconnection is to group
units into DVPPs. If perfect matching is achieved, then the aggregated actuator of
the DVPP matches the positive real plant (7.2). If all plants or DVPPs connected
to the grid are positive real, then global stability is guaranteed.

7.4 Simulation Study

In this section, we study FCR and FFR control design in the N5 test system
introduced in Section 7.1.1. First we show that, providing FCR solemnly from hydro
power, the MP design target (7.2) cannot be achieved. Then we show that the
desired MP design can be achieved by combining hydro and wind.
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Table 7.2: Hydro parameters for the 110GWs test case.

Bus FCR [%] Ty Tw g0
1 60 0.2 0.7 0.8
2 30 0.2 1.4 0.8
3 10 0.2 1.4 0.8
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(a) FCR response to a 1400MW fault.
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Figure 7.12: N5 test system with hydro FCR.

7.4.1 Hydropower FCR in the N5 Test System

Consider the N5 110GWs test case studied in Section 7.1.1, but now assume that
the FCR is provided by hydro units. Based on the test case in [153], let parameters
and FCR resources be distributed according to Table 7.2. The FCR controllers for
the three hydro units are designed following the same procedure as in Section 7.3.1.
By design, the target (7.2) just barely fulfills the FCR-D requirements with ideal
actuation and control Pdes = FFCR(s)(ωref − ω̂). Since the hydro-FCR is NMP, the
FCR-D requirements are no longer fulfilled since the combined output at buses 1, 2,
and 3, Phydro 6= Pdes, as seen in Figure 7.12a. The reason for this is the negative
phase shift, in the aggregated hydro open-loop Lhydro(s) resulting from the NMP
zero, shown in Figure 7.12b.

7.4.2 Coordinated Wind and Hydropower in the N5 Test System

Consider again the N5 110GWs test case, but now let the hydro resources be
complemented with FFR from wind power at buses 2 and 4, as shown in Figure 8.2.
Assume that the WTs participating in FFR have a total nominal power rating
of 2000MW distributed according to Table 7.3. Using the same design procedure
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Table 7.3: WT parameters for the 110GWs test case.

Bus Pnom [MW] v [m/s] PMPP [MW] FFR [%]
2 500 10 348 33
4 1500 8 534 67
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(a) Response to a 1400MW fault. (b) Bode diagram.

Figure 7.13: N5 test system with coordinated FCR and FFR.

described in Section 7.3.3 we leverage the FFR capability of the WTs to achieve
perfect matching. With a total output Pwind, the combined wind-hydro response
closely matches the ideal response Pdes, as seen in Figure 7.13a. As shown in
Figure 7.13b, with the aggregate WT open-loop Lwind, the FCR-D requirements
are now fulfilled with no significant change to the cross-over frequency of Lhydro.

The proposed DVPP design method is aligned with the FFR market solution
developed to cope with future low-inertia scenarios in the Nordic grid [41]. To
address limitations caused by the NMP characteristics of hydro and wind, the
proposed DVPP solution targets the whole angular frequency range, so that the
interactions between slow and fast dynamics can be addressed when distributing
frequency reserves.

7.5 Summary

A method for distributing ancillary FCR services between a heterogeneous ensemble
of controllable plants, by forming a DVPP, has been derived. The method matches
the aggregated loop-gain of all participating devices to the Bode diagram of a target
function, specified by the system operator’s requirements. Treating the design as a
decentralized model matching problem, the final controller can be implemented with
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local frequency measurements. The proposed DVPP design was implemented in a
model of the Nordic synchronous grid. By compensating for the NMP dynamics of
hydro, the FCR-D requirements where fulfilled with quite moderate wind resources,
without the need for curtailment or battery installations.
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Appendix

7.A Proof of Theorem 7.1

The proof of Theorem 7.1 can be found in [114]. We write it here for completeness.

Proof: (Theorem 7.1) To ensure internal stability we need to consider the closed-
loop system with respect to all control interfaces in Figure 7.5. This implies that we
have to compute the multiple-input multiple-output (MIMO) “internal” sensitivity
function SI = (I +KGHT)−1. However, using the push-through rule [115],(

I +KGHT)−1︸ ︷︷ ︸
SI

KGHT = K
(
1 +GHTK

)−1︸ ︷︷ ︸
S

GHT,

we only have to consider the scalar sensitivity S. If the sensitivity S is stable, then
so is the complementary sensitivity T = 1− S = SL, and vice versa. Stability of
KSGHT therefore entails stability of SI . It is therefore sufficient to check stability
of S, SG, SHTK, SHT, SGHT, KS, KSG, and KSGHT.

If no unstable pole-zero cancellations occur between plants and controllers in
GHTK, then S has a zero polynomial containing all unstable poles of L, with
multiplicity. A necessary and sufficient condition for internal stability is therefore
that S is stable and that no unstable pole-zero cancellations occur in GHTK.

7.B Conditions for Perfect Model Matching with NMP Plants

Proposition 7.4 Consider two stable plants ci(s), i ∈ {1, 2} with one real NMP
zero each at zi > 0. Assume positive signed dc gain, i.e., let ci(0) > 0. Then
c(s) = c1(s) + c2(s) must have at least one real NMP zero z ∈ [z1, z2].

Proof: Let ci(s) = ai(s)(zi − s)/bi(s), where bi(s) and ai(s) are polynomials with
no RHP roots. Without loss of generality, assume that plants have been normalized
so that b1(s) = b2(s) = b(s). Then c(s) = c1(s) + c2(s) is

c(s) =
(
z1a1(s) + z2a2(s)− s

(
a1(s) + a2(s)

))/
b(s),

and has zeros on the positive real axis where

z1a1(σ) + z2a2(σ)
a1(σ) + a2(σ) − σ = 0, σ ≥ 0. (7.12)
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With ci(0) > 0, and with no zeros in the RHP, ai(σ) > 0, ∀σ ≥ 0. The first term in
(7.12) is therefore a convex combination

z1a1(σ) + z2a2(σ)
a1(σ) + a2(σ) ∈ [z1, z2], ∀σ ≥ 0.

Since 0 < min(z1, z2) ≤ max(z1, z2) <∞, (7.12) must have at least one real NMP
zero where σ = z ∈ [z1, z2].

Proposition 7.5 Consider a stable and proper plant c1(s). If Re
(
c1(jω)

)
≤ 1, ∀ω,

then perfect matching is achieved with the stable and MP plant c2(s) = 1− c1(s).

Proof: If c1(s) is stable and proper, then so is c2(s) = 1− c1(s). If Re
(
c1(jω)

)
≤ 1,

∀ω, then Re
(
c2(jω)

)
≥ 0, ∀ω. Since c2(s) is stable and positive real, it is also MP

[156].

Proposition 7.6 Consider a stable first-order plant

c1(s) = (1 + ε)z1 − s
s+ z1

,

with RHP zero z1 > 0 and ε > 0 so that c1(0) > 1. Then under perfect matching,
the assisting first-order plant c2(s) = 1 − c1(s) is stable, has a RHP zero in z2 =
z1ε/(2 + ε), and has a negative steady-gain c2(0) = −ε < 0.

Proof: The assisting plant c2(s) is

1− c1(s) = s(2 + ε)− z1ε

s+ z1
= 2 + ε

s+ z1

(
s− z1ε

2 + ε

)
.





Chapter 8

Uncurtailed Wind Power for Fast Frequency
Reserves

In this chapter, we design a wind turbine (WT) model useful for fast frequency
reserves (FFR) control design. It is shown that the dynamical shortcomings of the
WT, in providing steady-power or slow frequency support, is suitably described by a
linear first-order transfer function with a slow non-minimum phase (NMP) zero. The
new WT model is tested in a 5-machine representation of the Nordic synchronous
grid. It is shown that the linearized NMP model is useful for designing a controller
that coordinates FFR from wind with slow frequency containment reserves (FCR)
from hydro turbines. Using the design procedure developed in Chapter 7, the WT
model is then used to design a dynamic virtual power plant (DVPP) that coordinates
FCR and FFR over all time scales.

Synthetic inertia allow to temporally increase the output power of a WT in
exchange of reducing the rotor speed. If the turbine operates at its maximum power
point (MPP), this implies the appearance of a recovery period after the initial
power increase in which output power is less than the starting point, until the rotor
speeds up again [73–78, 152]. This means that WTs are unable to provide FCR for
a sustained period of time. However, the speed at which the converter-interfaced
WTs are able to react makes them suitable for FFR, to complement conventional
synchronous generation limited by the dynamic constraints of mechanical valves,
servo systems, etc. [41].

The contributions of this chapter are, firstly, the design of a variable-speed
feedback controller, allowing a WT to provide FFR without curtailment. The design
is similar to the control implemented in [73], but here, the emphasis is on making the
WT behave in a similar manner for different wind speed conditions so that a useful
linearization can be obtained. When extracting power above the MPP, the turbine
decelerates, thereby reducing its steady-state output. Consequently, the FFR control
action puts the WT in an unstable mode of operation. To amend this, a model-based
stabilizing controller is implemented, using wind speed measurement and feedback

191
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Table 8.1: Parameters of the NREL 5MW WT model.

Rated electric power Pnom: 5MW
Torque rate limit d

dtτset: ±15 kNm/s
Electric efficiency η: 94.4%
Rated speed Ωnom: 12.1 rpm
Gearbox ratio N : 97
Inertia, high speed shaft Je: 534.116 kgm2

Inertia, low speed shaft Jm: 35 444 067 kgm2

Air density ρ: 1.225 kg/m3

Rotor radius r: 63m
Optimal tip speed ratio λopt: 7.5

of the normalized rotor speed. The controller is designed so that the WT exhibits
similar dynamic properties for various wind speed conditions. Secondly, a first-order
linear approximation is derived. The linearized model is design to be a “worst-case”
model, capturing the dynamic shortcomings relevant for safe coordination of FCR
and FFR. Lastly, the linearized WT model is used for coordinating FCR and FFR
from wind and hydro, using the model matching approach developed in Chapter 7.
The modified WT and the coordinated controller are tested both in a local DVPP
and in a model of the Nordic synchronous grid.

The remainder of the chapter is structured as follows: Section 8.1 presents the
problem formulation. In Section 8.2, a benchmark 5MW WT model is adapted in
order to capture relevant dynamics related to FFR. In Section 8.3, it is shown how
the modified WT model can be used to coordinate wind power with other resources.
Lastly, Section 8.4 concludes the chapter with a discussion of the results.

8.1 Background and Problem Formulation

This section introduces the original National Renewable Energy Laboratory (NREL)
5MW WT model. We also give a brief presentation of the Nordic 5-machine (N5)
test system, previously introduced in Chapter 7.

8.1.1 The NREL 5MW Baseline WT Model
The NREL WT model was developed to be representative of a typical utility-scale
land- and sea-based WT [154], but did not envision the latest developments on the
field, e.g., synthetic inertia. To overcome this, we modified its control system so that
the turbine can participate in FFR even when operated at the MPP. Here we give a
brief overview the simplified model depicted in Figure 8.1, which we used for the
analysis and control design.

The drivetrain and turbine properties are presented in Table 8.1. For the analysis,
the stable drivetrain dynamics are ignored. Therefore, we do not differentiate between
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(a) Simplified block diagram.

(b) Power/speed characteristic with β = 0.

Figure 8.1: The NREL 5MW baseline WT model.

rotor speed and generator speed. Then, the total inertia with respect to the low
speed shaft is J = Jm +N2Je = 40 470 000 kg m2. The acceleration of the rotor is
determined by the electric power output Pe of the generator and the mechanical
power input Pm from the turbine. The main component of the control system is the
logic operator shown as Flogic in Figure 8.1. It controls Pe by adjusting the electric
torque set-point τset to min(τref , τopt), where the reference torque τref is given by
the external power reference Pref and τopt is the optimal torque read from the MPP
lookup table. If the measured rotor speed Ω̂ exceeds the rated speed Ωnom, then
Flogic activates the pitch controller Fpitch as to stabilize the speed at Ω = Ωnom.
This is done by increasing the pitch β, thereby reducing the aerodynamic power
coefficient cp and thus the power Pm extracted from the wind. Assuming operation
below rated speed, then β = 0. Thus, the power coefficient is only a function of the
tip speed ratio λ. If τref ≥ τopt, the turbine operates at the MPP curve shown in
Figure 8.1b.

The control structure of the original NREL model does not allow the WT
to participate in FFR without curtailment. To amend this, the lookup table in
Figure 8.1a is replaced with a variable-speed feedback controller.
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Figure 8.2: One-line diagram of the N5 test system.

8.1.2 Nordic 5-Machine (N5) Test System

Consider the N5 test system shown in Figure 8.2; introduced earlier in Chapter 7.
The N5 test system is adapted from the empirically validated 3-machine model
presented in [153]. The system is fictitious but has dynamic properties similar to
those of the Nordic synchronous grid. The test system is implemented in Simulink
Simscape Electrical [51]. Loads, synchronous machines, and WTs are lumped up
into a single large unit at each bus. The hydro and thermal units are modeled
as 16th order salient-pole and round rotor machines, respectively. Assuming that
inverters are operated within allowed limits, and have high enough bandwidth so
that they have no significant impact on the studied frequency dynamics, we assume
that all inverters can be modeled as controllable power loads. The WTs, modified
to participate in FFR, are of 8th order.1

The system’s kinetic energy varies greatly over the year, as the amount of
synchronous generation connected to the grid depends on the demand [41]. For the
purpose of this analysis, we consider a low inertia scenario with Wkin = 110 GWs
distributed according to Table 8.2. Loads are modeled as constant power loads with
a combined frequency dependency of 400MW/Hz.

1 The full model, and test cases presented in this chapter, are available at the GitHub repository
https://github.com/joakimbjork/Nordic5.

https://github.com/joakimbjork/Nordic5
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Table 8.2: Machine parameters for the 110GWs test case. Time constants and distribution
of FCR are based on the case study in [153].

Bus Wkin [GWs] Pgen [MW] FCR [%] Ty Tw g0
1 34 9000 60 0.2 0.7 0.8
2 22.5 6000 30 0.2 1.4 0.8
3 7.5 2000 10 0.2 1.4 0.8
4 33 5000 – – – –
5 13 2000 – – – –

Figure 8.3: Block diagram of the hydro turbine and governor model.

The FCR control is designed to ensure that the center of inertia (COI) frequency

ωCOI =
∑5
i=1Wkin,iωi∑5
i=1Wkin,i

is kept within allowed dynamic bounds. Here, ωi notates the synchronous rotor speed
and Wkin,i the total kinetic energy of machines in area i. In the Nordic synchronous
grid, FCR is primarily provided by hydro. The hydro governor implemented in this
chapter is an adaption of the model available in the Simulink Simscape Electrical
library [51]. It has been modified to allow a general linear FCR controller, K(s),
instead of the fixed PID/droop control structure, as shown in Figure 8.3. The servo
rate limit is set to the default ±0.1 p.u./s. The nonlinear second-order model is
useful for large-signal time-domain simulations. For the linear analysis, the turbine
is modeled as

Hhydro(s) = 2 z − s
s+ 2z

1
sTy + 1 , z = 1

g0Tw
(8.1)

where Ty is the servo time constant, g0 the initial gate opening, Tw the water time
constant, ω̂ the locally measured frequency, and ωref the frequency reference.

8.1.3 The FCR and FFR Control Problem
In this chapter, we will coordinate FFR from wind with FCR from hydro, to fulfill
an FCR design goal that cannot be achieved individually by the two resources. To
do this in a methodical manner, we derive a linear model, similar to the well known
hydro model (8.1), that captures the shortcomings of wind-FFR.

To specify a desired FCR response, we use the FCR for disturbance (FCR-D)
specifications in the Nordic synchronous grid. As described in Section 7.1.1, the
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(a) FCR response.

0 2 4 6 8 10

-50

0

50

100
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Figure 8.4: System response to a 1400MW fault with hydro FCR.

FCR-D is used to contain the frequency outside normal operation in the frequency
range 49.9 to 49.5 Hz. Following larger disturbances the maximum instantaneous
frequency deviation (the nadir) should be limited to 49.0Hz [39]. As in Section 7.1.1,
we let the FCR-D design target take the form

FFCR(s) = RFCR
6.5s+ 1

(2s+ 1)(17s+ 1) . (8.2)

Choosing RFCR = 3100 MW/Hz, the post-fault system stabilizes at 49.5Hz, follow-
ing the dimensioning fault. The dimensioning fault is here considered to be the
instant disconnection of the NordLink high-voltage direct current (HVDC) cable
[42] importing 1400MW from Germany into Norway as shown in Figure 8.2.

The system response following the dimensioning fault is shown in Figure 8.4a.
If we consider ideal controllable power sources, the FCR control action Pdes =
FFCR(ωref − ω̂). In this case, we see that the FCR-D requirement are fulfilled.

Now consider a more realistic scenario, where the total FCR, Phydro, is delivered
by the hydro units at buses 1, 2, and 3. With hydro-FCR, the FCR-D requirements
are no longer fulfilled using the design target (8.2). This is because the initial surge
of power from the hydro turbines are in the opposite direction of the gate opening
change, as seen in Figure 8.4b. As the gate opens, the pressure over the turbine falls
before the water, due to the inertia in the water column, has time to accelerate to
a new steady-value [25]. This behavior is characterized by the NMP zero in (8.1).
The implemented hydro model also captures nonlinear ramp rate and saturation
constraints. However, with hydro-FCR resources distributed according to Table 8.2,
absolute capacity and rate limiters are not a problem. The dynamic limitations due
to NMP zeros will be more relevant.
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The design target (8.2) can be modified so that the FCR-D requirements are
fulfilled even if FCR are delivered by hydro governors. However, due to the bandwidth
limitations imposed by the NMP zeros, this is not a good solution since this reduces
the closed-loop stability margins [40]. Because of this, the Nordic system operators
have developed a new market for FFR [41].

8.2 Design of a New Variable-Speed Wind Turbine Model

In this section, we design a new model-based variable-speed feedback control, allowing
WTs to participate in FFR without curtailment. The control scheme is similar to
[73], but is designed so that the turbine can be conveniently linearized, thereby
allowing the WT to be easily coordinated with other power sources. The result is a
first-order linear model, similar to the commonly accepted hydro governor model
(8.1). The model is compared to the detailed nonlinear model in a simulation study,
validating that the linearized model captures dynamics relevant for FFR control
design.

The dynamic properties of the WT varies greatly with the wind speed. Because
of this, it is convenient to express the dynamics in terms of the normalized speed
ratio

x := Ω/ΩMPP = λ/λopt, (8.3)

where ΩMPP is the MPP turbine speed.

8.2.1 Open-Loop Stable and Unstable Operating Modes
The open-loop characteristic of the WT are described by the nonlinear differential
equation

d

dt
Ω = ΩR(Ω)− Pe

M(Ω) .

Linearizing around the operating point Ω = Ω0, Pe = P0, and x = x0 = Ω0/ΩMPP,
with some abuse of notation, we get the transfer function

Ω = −1
sM(Ω0)−R(Ω0)Pe, (8.4)

where the inertia
M(Ω0) = JΩMPPx0

and the power coefficient derivative

R(Ω0) = ∂

∂Ω
Pm

∣∣∣∣
Ω=Ω0

= Pwind

ΩMPP

∂

∂x
cp

∣∣∣∣
x=x0

. (8.5)

Due to the nonlinear power–speed characteristics in Figure 8.5, the WT presents
both stable and unstable operating modes.
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(a) Power coefficient. (b) Derivative of power coefficient.

Figure 8.5: Power efficiency coefficient of the NREL 5MW turbine with β = 0.

Stable Operating Mode

Forcing the turbine to accelerate above optimal speed reduces the mechanical output
power, which automatically reduces the acceleration. This, intuitively results in a
stable mode of operation which can be verified by (8.5). As seen in Figure 8.5b,
∂
∂xcp < 0 for operation above optimal speed. Thus, the open-loop system (8.4) has
a single pole in the left-half complex plane

s = R(Ω0)/M(Ω0) < 0, for x0 > 1

and is therefore stable.

Unstable Operating Mode

Forcing the turbine to decelerate below optimal speed reduces the mechanical output
power, which is automatically enhanced as it continues to reduce the mechanical
power. This results in an unstable operating mode. Again, from (8.4) we see that
the open-loop system will have an unstable pole at

s = R(Ω0)/M(Ω0) > 0, for x0 < 1. (8.6)

If we assume that the turbine is controlled, such that the normalized speed ratio
is bounded from below by x > 0, then M(Ω0) > JΩMPP x. Moreover, as seen in
Figure 8.5b, ∂

∂xcp > 0. Consequently, the unstable open-loop pole (8.6) is bounded
from above by

s = Pwind

JΩ2
MPP

1
x0

∂

∂x
cp

∣∣∣∣
x=x0

<
Pwind

JΩ2
MPP

1
x

∂

∂x
cp

∣∣∣∣
x=x

. (8.7)

Remark 8.1 (Scalability) Note that

Pwind

J

1
Ω2

MPP
= ρπr2v3

2J
r2

λ2
optv

2 = ρπr2

2J
r2

λ2
opt

v.
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Figure 8.6: Block diagram of WT with variable-speed feedback control.

Thus, the open-loop pole (8.7)

s = πr2

J︸︷︷︸
size/inertia

constant

ρ

2
r2

λ2
opt︸︷︷︸

aerodynamic
constant

v
1
x0

∂

∂x
cp

∣∣∣∣
x=x0

= Cv
1
x0

∂

∂x
cp

∣∣∣∣
x=x0

(8.8)

varies linearly with the wind speed v. The constant C should be fairly consistent for
all WT models. Thus, the location of the unstable pole should be similar for WTs
of various ratings.

8.2.2 Variable-Speed Feedback Controller

To operate the WT in the unstable region, we implement a stabilizing variable-speed
feedback controller. The closed-loop system in Figure 8.6 from reference to output is

Pe = G(s) sM(Ω0)−R(Ω0)
sM(Ω0) +G(s)K̂(s)−R(Ω0)

Pref

where the generator dynamics |G(jω)| ≈ 1 in the frequency range of interest. Note
that the closed-loop system has a NMP zero at the location of the unstable open-loop
pole that is unaffected by the generator dynamics and the controller design.

Let K(s) be a linear controller and let

K̂(s) = K(s)P̂wind/Ω̂MPP (8.9)

where the notation P̂wind and Ω̂MPP indicate estimates of Pwind and ΩMPP re-
spectively, e.g., from wind speed measurements as shown in Figure 8.6. The pur-
pose of K̂(s) is to stabilize the WT. For this, a proportional feedback controller
K̂(s) = kP̂wind/Ω̂MPP is sufficient. Neglecting generator and measurement dynamics,
the WT is described by the transfer functions

Pe = s− z
s+ p

Pref and Ω = −1
JΩMPP(s+ p)Pref. (8.10)
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8.2.3 Linearization Capturing Undesirable NMP Characteristics
To be useful for FFR control design, we let the model be a “worst case” realization
of (8.10) with fastest possible zero and slowest possible pole. This will result in a
model that underestimates the WT’s power output.

Assuming operation at a normalized speed x < x < 1, x = 0.8. The unstable
open-loop pole (8.7), and consequently the NMP closed-loop zero

z = Cv
1
x0

∂

∂x
cp

∣∣∣∣
x=x0

≤ z̄ = Cv
1
x

∂

∂x
cp

∣∣∣∣
x=x

. (8.11)

With a proportional feedback controller

p = k
P̂wind

Ω̂MPP

1
JΩMPPx0

− z ≈ Cv 1
x0

(
k − ∂

∂x
cp

∣∣∣∣
x=x0

)
(8.12)

with equality if P̂wind = Pwind and Ω̂MPP = ΩMPP. Note that since the zero is
bounded from above, the stabilized pole (8.12) is bounded from below by

p ≥ p = Cv
1
x

(
k − ∂

∂x
cp

∣∣∣∣
x=x

)
. (8.13)

For the analysis, (8.10) is linearized by setting z and p to their bounds z̄ and p,
respectively. A good starting point is to select k so that the unstable pole (8.7) is
reflected into the LHP, in which case p = z̄. Inserting values from the NREL 5MW
WT into (8.8), then

C = 0.013, ∂

∂x
cp

∣∣∣∣
x=0.8

= 0.36, k = 2 · 0.36,

and the transfer function from Pref to Pe

Hwind(s) = s− z̄
s+ z̄

, z̄ = 5.8v · 10−3. (8.14)

We will show that that (8.14) is a worst case representation of the WT, useful for
designing a coordinated FCR and FFR controller.

8.2.4 Validating the Properties of the Linearized WT Model
The purpose of the linearized model (8.14) is to capture the dynamics most relevant
for FFR. Because of this, it is designed to underestimate the electric power output of
the WT. In addition, the model also need to capture the dynamics that are relevant
for safe operation, with minimal conservatism. Since the most important property
in this context is the normalized speed ratio (8.3), the linear model is designed to
overestimate the decline in turbine speed. To ensure stability of the WT, regardless
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Table 8.3: Model properties for the step response simulations.

k v [m/s] PMPP [MW] ΩMPP [rad/s] z̄ [rad/s] p [rad/s]
0.72 8 1.8 0.95 0.048 0.048
0.72 10 3.5 1.19 0.060 0.060
1.08 8 1.8 0.95 0.048 0.096

of the power reference input, we also implement a low speed protection mechanism.
To show that the linearized model (8.14) possess the desired properties, we here
compare it with the nonlinear modified NREL WT model. Model properties such
as pole and zero bounds for various wind speeds and controller gains are shown in
Table 8.3.

Varying Wind Speeds

Let k = 0.72 so that the WT is stable for operation with a normalized speed ratio
above x = 0.8. Consider operation at wind speeds 8 and 10m/s.

As shown in Figure 8.7, after a +20 % reference step, the active electric power
output is initially increased above the MPP. Consequently, the rotor speed decreases,
which reduces the aerodynamic efficiency of the WT according to Figure 8.1b.
Therefore, the increased power output cannot be sustained for long and eventually
falls below the initial MPP output.

The location of the open-loop pole (8.8) and consequently the closed-loop zero
(8.11) varies linearly with the wind speed. However, since the variable-speed controller
(8.9) uses feed forward of the estimated wind energy P̂wind, it will be equally efficient
for different wind speeds, as seen in Figure 8.7b.

Note that the linear model (8.14) is conservative in the sense that it overestimates
the size of the nonlinear NMP zero (8.11) which varies with the power coefficient
derivative Figure 8.5b. Thus the linear model overestimates the decline in power
from the turbine. Similarly it overestimates the decline in turbine speed since the
pole (8.13) is underestimated.

Varying Feedback Gain

The choice of feedback gain affects the size of of the stabilized pole p as shown in
Table 8.3. In Figure 8.8a we see that increasing the feedback gain makes the output
decline faster. Consequently the rotor speed and output power stabilizes at a higher
level.

Low Speed Protection

For stability, it is important that the normalized speed ratio does not decline below
x = 0.8, since for x < 0.8, the power efficient derivative changes rapidly as shown in
Figure 8.5b. With the stabilizing gain k = 0.72 we have designed the turbine to safely
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(a) SI-units. (b) Normalized.

Figure 8.7: Power output and rotor speed with feedback gain k = 0.72.

(a) Varying feedback gain. (b) Low speed protection.

Figure 8.8: Power output and rotor speed at 8m/s wind speed.

operate at normalized speeds x > 0.8. As shown in Figure 8.8a, a +20 % reference
step almost reaches the speed limit. Increasing the step size to +30 % makes the
turbine decelerate to much so that it becomes unstable, as seen in Figure 8.8b.

Stability can be ensured by increasing the feedback gain. However, when con-
trolling the WT to provide FFR, the focus is on the output power, Pe, not on
the internal operation of the WT. Stable poles can then very well be canceled
by a FFR controller, as we will see in Section 8.3.1. The location of the stable
WT pole is therefore not critical in closed-loop FFR control, as long as stability is
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ensured. To hinder accidental destabilization of the WT, a low speed safety measure
is implemented, that disables the FFR controller and halt the deceleration when
the normalized speed fall below x = 0.8. Let

Pset =

P
′
set = Pref + P̂windk(x̂− 1),

min
(
P0.8

(
1− 100(x̂− 0.8)2) , P ′set

)
,

x̂ > 0.8
x̂ < 0.8

where P0.8 = Pm(x = 0.8). As shown in Figures 8.8b and 8.12b this stabilizes the
WT, bringing the turbine speed back to x ≈ 0.8.

8.3 Simulation Study

In this section, we show how the linearized WT model (8.14) can be used for
designing FFR. In particular, we will show how the NMP characteristics captured
by (8.14) are useful for coordinating FFR from wind with slow FCR from hydro, so
that a common design goal is achieved.

We do this in two steps. First, we will show how to coordinate wind-hydro
resources in a open-loop FCR and FFR setting, creating a DVPP that fulfills design
objectives that cannot be fulfilled with wind or hydro individually. Finally, we show
the implementation of closed-loop FCR and FFR controller using feedback from
local frequency measurement. We show how FFR from wind resources can be used
to fulfill the FCR-D requirements in the hydro dominated N5 test system.

8.3.1 Open-Loop FCR and FFR in a Wind-Hydro DVPP

Consider a region with wind and hydro turbines exporting power to the grid as
shown in Figure 8.9. For simplicity, assume that all hydro units are lumped into
a single 100MVA unit, that the 20MW wind power park is lumped into a single
(scaled) NREL WT, and that the two lumped models are connected to the same
bus.

Assuming an initial gate opening g0 = 0.8, servo time constant Ty = 0.2 s, and
water time constant Tw = 2 s, then the linearized hydro model

H1(s) = 100 1
0.2s+ 12−s+ 0.625

s+ 1.25 .

Let v = 8 m/s, then the linearized WT model

H2(s) = 4 · 1.8s− 0.048
s+ 0.048 .
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Figure 8.9: One-line diagram of a wind-hydro DVPP.

Goal

Design controllers K1 and K2 so that the hydro unit and wind park behaves like an
DVPP fulfilling the FCR requirement,

H1K1 +H2K2 = F := 20 6.5s+ 1
(2s+ 1)(17s+ 1) .

Solution

Using the model matching procedure described in Chapter 7, design dynamic
participation factors c1(s) + c2(s) = 1 so that H1K1 +H2K2 = F is fulfilled for all
s ∈ C using the controllers

Ki(s) = ci(s)F (s)/Hi(s), i = 1, 2. (8.15)

For internal stability, cancellation of NMP zeros is not allowed. Thus, NMP
zeros need to be present in c1 and c2.

1. Starting with the hydro unit, including the NMP zero, let

c′1 = −s+ 0.625
s+ 0.625

where we have included a stable pole to make c′1 proper. The location of the
pole is a design parameter, but a good starting point is to make c′1 all-pass.

2. With c′1 defined, the naive approach is to let c′2 = 1− c′1. But since H2 is NMP,
this is not possible. Instead, let

c′2 =
(
1− c′1

)s− 0.048
s+ 0.048 . (8.16)

3. The sum
c′1 + c′2 = s2 + 0.48s+ 0.03

s2 + 0.67s+ 0.03 ≈ 1 + j0

so we could stop here. However, since c′1 +c′2 is stable and MP, model matching
with c1(s) + c2(s) = 1 is achievable using

c1 = c′1
c′1 + c′2

, and c2 = c′2
c′1 + c′2

. (8.17)

Controllers K1 and K2 are then obtained by substituting (8.17) into (8.15).
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(a) Power injections.
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(b) WT response.

Figure 8.10: Power output of the wind-hydro DVPP.

Table 8.4: WT parameters for the 110GWs test case.

Bus Pnom [MW] v [m/s] PMPP [MW] FFR [%]
2 500 10 348 33
4 1500 8 534 67

Result

The coordinated response to a 0.5Hz reference step is shown in Figure 8.10. As shown
in Figure 8.10a the DVPP closely matches the desired output Pdes = F (s)(ωref − ω̂).
The discrepancy between the actual response and the desired response comes from
the underestimation of wind power output seen in Figure 8.10b.

In (8.16) we leverage the fact that we can allow the WT to draw power as
|s| → 0. To avoid dynamic interaction we want the NMP zero of the hydro unit
to be much faster than the NMP zero of the WT. Note that the WT zero varies
significantly with the turbine speed, but that it is bounded from above (8.11). Thus,
the control design, using the derived linearized WT model (8.14), assumes worst
case interaction.

8.3.2 Closed-Loop FCR and FFR in the N5 Test System

Consider the N5 test system introduced in Section 8.1.2. Assume that the hydro-FCR
is complemented with FFR from wind power at buses 2 and 4 as shown in Figure 8.2.
Assume that the WTs participating in FFR have a total nominal power rating of
2000MW distributed according to Table 8.4.
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Goal

Design coordinated FCR and FFR controllers fulfilling the FCR-D requirements
in Section 8.1.3, with feedback from local frequency measurements. That is, design
controllers Ki, i ∈ {1, . . . , 5} so that (8.2) is fulfilled, with

5∑
i=1

Hi(s)Ki(s) = FFCR(s) = RFCR
6.5s+ 1

(2s+ 1)(17s+ 1) .

Solution

Using the three-step model matching approach in Section 8.3.1, dynamic partici-
pation factors ci(s) are designed so that

∑5
i=1 ci(s) = 1, ∀s ∈ C. Let the shares of

FCR and FFR be distributed according to Table 8.2 and Table 8.4, respectively.
The resulting controllers Ki(s) = ci(s)FFCR(s)/Hi(s) will be fourth order.

Result

The system response following the dimensioning fault, i.e., the disconnection of the
1400MW NordLink HVDC cable, is shown in Figure 8.11. Comparing Figure 8.4a
with Figure 8.11a we see that the transient frequency response is improved when
the hydro-FCR, Phydro, is supported by, Pwind, from WTs at buses 2 and 4. The
combination Phydro+wind = Phydro + Pwind matches the desired response Pdes =
FFCR(s)(ωref − ω̂). With the nadir kept above 49.0Hz, the FCR-D requirement are
now fulfilled. By utilizing the WTs for FFR, this is achieved without increasing the
bandwidth of the hydro units. Thus, the frequency response is improved without
reducing the closed-loop stability margin [40].

In Figure 8.11b we see that the WTs participating in FFR decelerate to around
90% of optimal speed following the fault. Since the WT based on the NREL model
allows for a deceleration to around 80% of optimal speed, there is more room for
FFR improvement. Note however that the 500MW WT at bus 2 almost reaches
rated power. If the limit is reached, the WT will saturate. However, the WT at
bus 4 have plenty of margin left. This shows how only a limited wind resource is
enough to compensate for the FCR bandwidth limitation of hydro power in this
power system. In fact, the FCR-D requirements can be fulfilled with significantly
less wind resources.

Sensitivity Study with 50% Wind Resources

Consider the same scenario shown in Figure 8.11 but now let Pnom = 250 MW at
bus 2 and Pnom = 750 MW at bus 4. As shown in Figure 8.12b, the WT at bus 2
now reaches its saturation limit. This has a small effect on the nadir in Figure 8.12a,
but not enough to violate the FCR-D requirement. With less wind resources, the
FFR response gives a larger deceleration of the participating WTs. As seen in
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(b) WT output and speed.

Figure 8.11: System response to a 1400MW fault with coordinated FCR and FFR.
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(a) FCR and FFR response. (b) WT output and speed.

Figure 8.12: Sensitivity study with 50% of the wind resources in Figure 8.11.

Figure 8.12b, the low speed protection is activated for the WTs at bus 4, ensuring
stability of the WTs.

8.4 Summary

A variable-speed controlled WT model based on the NREL 5MW baseline WT model
has been presented. The new model-based variable-speed feedback controller allows
the WT to provide temporary FFR when operated at the MPP, without the need
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for curtailment. The controller has been designed to give the WT similar dynamic
properties for various wind speeds. This facilitated a meaningful linearization of
the WT, resulting in a first-order linearized model, capturing the relevant dynamic
properties for FFR control design at various wind speeds. The linear WT model is
useful for coordinating wind-FFR with slow hydro-FCR, fulfilling dynamic design
objectives not achievable by wind or hydro individually. This was shown in a local
DVPP and in a 5-machine representation of the Nordic synchronous grid. During
FFR, WTs take the lead (via synthetic inertia) in order to limit the frequency
nadir and compensate for the initial under production of hydro units, as depicted in
Figure 8.4b. After this initial transitory, hydro units take over during FCR recovery,
compensating not only for the initial down frequency event, but also for the kickback
effect caused by the WT-based FFR. In the linearized WT model, the kickback
effect is characterized by a NMP zero. Including this NMP characteristic in the
coordinated FCR and FFR control design, results in an excellent frequency recovery
as depicted in Figures 8.11a and 8.12a, compared to hydro-only FCR in Figure 8.4a.



Chapter 9

A Scalable Nyquist Stability Criterion

In this chapter, we develop a theoretical framework to bridge the gap between small-
signal rotor angle stability and frequency stability. We combine tools from linear
algebra, graph theory, and complex analysis to formulate a scalable Nyquist stability
criterion. This allows us to provide a priori stability guarantees for connecting new
devices to the network. The method is applied to a power system, where the most
dominating dynamic feature is the synchronous machines. In the model, these are
modeled as integrators. The new stability criterion requires only locally available
information and is shown to be less conservative than existing methods.

In a synchronous grid, balancing between load and production is achieved by
controlling the center of inertia (COI) frequency. Higher-order dynamics can often
be ignored, given sufficient time-scale separation [157]. In frequency control, stability
of interarea modes are therefore typically ignored and treated as a separate problem.
However, with an increasing share of converter-interfaced generation, the inertia is
decreasing. Consequently, faster frequency control is required. Because of this, the
assumption that interarea modes can be ignored is becoming harder to motivate.
With renewable and small-scale generation connecting to the grid, the number
of possible system configurations increases drastically. This makes it difficult to
apply conventional control design methods, since one cannot determine a priori the
model to use, or which set of network configurations or operating points to consider.
Methods addressing global stability has to be scalable and computationally effective,
since the computational effort grows with the system size [158].

Local requirements that ensures global stability are essential. If we do not have
any information about the network, we need to make some conservative assumptions
in order to guarantee stability. Homogeneity, i.e., assuming identical or proportional
subsystems, is one such conservative assumption. In [159], a Nyquist-like criterion is
derived for checking the stability of a network of homogeneous single-input single-
output (SISO) agents, connected over a static network. In [160], these results are
generalized to include networks of homogeneous multiple-input multiple-output
(MIMO) agents interconnected over a dynamics network. Other methods, allowing

209
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for heterogeneous plants, guarantee stability using passivity assumptions or by
using the small gain theorem [161]. Consensus protocols for networks with directed
information flow and switching topology has also received attention in the study of
self-organizing networked systems [162, 163]. For power system applications, however,
we are concerned with fixed networks. In [155], a robust scale-free syntheses method
is developed, guaranteeing stability by identifying a separating hyperplane in the
Nyquist diagram. The method provide a priori stability guarantees for connecting
new devices to the grid, with limited knowledge of the network. In this chapter,
we will present a generalization of the results in [155, 159], using the generalized
Nyquist criterion in combination with the field of values.

The main contribution of this chapter is a scalable Nyquist stability criterion
allowing for a network of heterogeneous agents coupled over a connected (possi-
bly lossy) network. We distinguish between exponential stability and asymptotic
synchronization on the average network mode. For a system to be exponentially
stable we require asymptotic synchronization, but also that the average mode is
stable [163]. In power systems, we are concerned about the average frequency mode.
Typically, the average frequency mode is approximated as the COI frequency mode.
One problem is that the COI mode contains information about higher-order network
modes, making it hard to derive closed form expressions for heterogeneous networks.
In this chapter, we instead focus on the average frequency dynamics, which can
be expressed from the network equations also for heterogeneous networks. If the
system achieves asymptotic synchronization on the average mode, then the COI
frequency mode converges to the average frequency mode.

The remainder of this chapter is organized as follows. Section 9.1 introduces the
Nyquist theorem and field of values. Section 9.2 presents the addressed problem. In
Section 9.3, the average frequency dynamics are derived from a modal decomposition
of the network equations. Section 9.4 presents the main result: a scalable Nyquist
stability criterion guaranteeing asymptotic synchronization on the average mode
using only local information. Section 9.5 evaluates the proposed method on a power
system example. Section 9.6 concludes the chapter.

9.1 Preliminaries

We review some results for MIMO linear time-invariant (LTI) systems [114, 115, 164–
166].

Let L(s) denote a square, proper, and rational transfer matrix with no internal
right half-plane (RHP) pole-zero cancellations. Assume that the feedback system
with return ratio −L(s) is well posed. Let det

(
I + L(s)

)
= φcl(s)

φol(s) , where φol(s) and
φcl(s) are the open- and closed-loop characteristic polynomials, respectively. The
closed-loop system is stable if and only if φcl(s) have no roots in the RHP. Define
the Nyquist D-contour as a contour in the complex plane that includes the entire
jω-axis and an infinite semi-circle into the RHP, making small indentations into the
RHP to avoid any open-loop poles of L(jω) (roots of φol(s)) directly on the jω-axis.
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Lemma 9.1 (Generalized Nyquist theorem [164, Theorem 2.9]) If L(s) has Pol
unstable (Smith-McMillan) poles, then the closed-loop system with return ratio −L(s)
is stable if and only if the eigenloci of L(s), taken together, encircle the point −1
Pol times anticlockwise, as s goes clockwise around the Nyquist D-contour.

The spectrum of a matrix A is the set λ(A) = {λ1(A), . . . , λn(A)} of eigenvalues
λi(A), i ∈ {1, . . . , n}. The spectrum lies inside the field of values

F(A) :=
{
vHAv : v ∈ Cn, vHv = 1

}
see [167]. Consider matrices A ∈ Cn×n and B ∈ Rn×n. Assume that B is pos-
itive semi-definite with the eigenvalue decomposition B = VΛVT, where Λ =
diag

(
λ1(B), . . . , λn(B)

)
and VTV = I. It follows that λ

(
AVΛVT) = λ

(
VTAVΛ

)
and F(A) = F(VTAV). Assume that the eigenvalues are ordered such that 0 ≤
λ1(B) · · · ≤ λn(B). Then the ijth element of the matrix product AB

λ1(B)(Aij) ≤ (AB)ij ≤ λn(B)(Aij).

Consequently,

λ
(
AB
)
⊂ F

(
AB
)

=
{
vHAv : v ∈ Cn, vHv ∈ [λ1(B), λn(B)]

}
where

F
(
AB
)

= αF
(
A
)

=
{
vHAv : v ∈ Cn, vHv = α, α ∈ [λ1(B), λn(B)]

}
. (9.1)

9.2 Problem Formulation

In this section we present the network stability problem. We consider rotor angle
stability in a power system with n buses. The dynamics at bus i ∈ {1, . . . , n} is
described by the transfer function

gi(s) := 1
s2Mi + sFi(s) +Ri(s)

, (9.2)

for instance, representing the dynamics of a synchronous machine with or without
governor, a load, or a power electronics device. The scalar transfer functions Ri(s)
and Fi(s) represent local phase angle and frequency dependent actuators, respec-
tively, whereas the constant Mi ≥ 0 represents the inertia. If Mi > 0, then the
agent represents a synchronous machine. The closed-loop network dynamics can be
described by the feedback interconnection

δ = G(s)(d− u)
u = Lδ,

(9.3)
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Figure 9.1: Network of n agents coupled through the network L.

where outputs δ = [δ1, . . . , δn]T are the voltage phase angles, u = [u1, . . . , un]T are
the inputs, and d = [d1, . . . , dn]T are some external disturbances. The agent dynamics
G(s) = diag

(
g1(s), . . . , gn(s)

)
is coupled through a lossless network described by

the Laplacian matrix L.
We make the standard assumptions that bus voltage magnitudes are constant

for the time frame of interest, transmission is lossless, and reactive power does not
affect bus voltage phase angles and frequency [25]. Then the elements of L is given
by

Lij = − ∂

∂δj

∑n

l=1
V ∗i V

∗
l bil sin(δi − δl)

∣∣∣
δ=δ∗

, (9.4)

where V ∗ = [V ∗1 , . . . , V ∗n ]T ∈ Rn and δ∗ = [δ∗1 , . . . , δ∗n]T ∈ Rn represent the voltage
magnitude and phase angles, respectively, at the steady-state linearization point,
and bil ≥ 0 is the susceptance of the transmission line connecting buses i and l. If
bil = 0, then buses are not directly connected [155].

Equivalently, (9.3) can be written as

sE

[
δ
ω

]
= A(s)

[
δ
ω

]
+Bd, E = diag(I,M), (9.5)

where
A(s) =

[
0 I

−L−R(s) −F(s)

]
, B =

[
0
I

]
, (9.6)

and the transfer matrices R(s) = diag [R1(s), . . . , Rn(s)] and F(s) =
diag [F1(s), . . . , Fn(s)], and the constant matrix M = diag(M1, . . . ,Mn).
The vector ω = [ω1, . . . , ωn]T = sδ represent the voltage frequency at each node.
We assume that there are no algebraic network nodes, i.e., there are no node i
such that Mi = Fi(s) = Ri(s) = 0. This is not a restriction since we can always
formulate a reduced network model without algebraic nodes by taking the Schur
complement of L with respect to the algebraic nodes. This reduction of an electric
network is known as Kron reduction [132].

Let eigenvalue decomposition of L be

diag
(
λ1(L), . . . , λn(L)

)
= diag(λ1, . . . , λn) = VTLV

where V ∈ Rn×n is a unitary matrix of eigenvectors V =
[
v1, . . . , vn

]
so that VTV = I.

Let the eigenvalues be arranged in ascending order so that 0 = λ1 < λ2 ≤ · · · ≤ λn.
Since L is a Laplacian matrix, λ1 = 0 and the corresponding eigenvector v1 = 1√

n
1,
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where 1 is a vector of ones. The mode Λ1 = vT
1 δ describes the average phase angle,

whereas Ω1 = vT
1ω describes the average frequency of the network.

In this chapter we want to identify a criterion that guarantees stability of
the feedback interconnection (9.3) using only locally available information. We
differentiate between exponential stability, and asymptotic synchronization on the
average mode.

9.3 Classification of Network Stability

In this section we present the classification of network stability used in this chapter.
A common way to characterize stability of a power system is by diagonalizing the
system equations [25]. The system stability is then expressed in terms of the stability
of network modes, e.g., the average mode plus interarea modes.

Consider the coordinate change to modal states[
Λ1, Ω1, . . . , Λn, Ωn

]T := WT
[
δ
ω

]
(9.7)

using the transformation matrix

W :=
[
v1 0 · · · vn 0
0 v1 · · · 0 vn

]
∈ R2n×2n,

made up of the eigenvectors vi, i ∈ {1, . . . , n} of L. SinceWT = W−1, the coordinate
transform (9.7) applied to (9.5),

sWTEWWT
[
δ
ω

]
= WTA(s)WWT

[
δ
ω

]
+WTBWWTd,

is a similarity transformation. It gives a block-diagonal realization of (9.5), with the
2× 2 blocks

s

[
Λi

MλiΩi

]
=
[

0 1
−λi −Rλi(s) −Fλi(s)

] [
Λi
Ωi

]
+
[
0
1

]
vT
i d,

characterizing the dynamics of network mode i, where Mλi = vT
iMv, Fλi(s) =

vT
i F(s)v, and Rλi = vT

i R(s)v.
The transfer function from vT

i d to Λi is

1
s2Mλi + sFλi(s) +Rλi(s) + λi

= hi(s)
1 + λihi(s)

, (9.8)

where
hi(s) := 1

s2Mλi + sFλi(s) +Rλi(s)
.

Since the similarity transform preserves stability, the network (9.5) is stable if (9.8)
is stable for all i ∈ {1, . . . , n}. At this point, we could apply the Nyquist criterion
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on the SISO return ratio −λihi(s). The crux, however, is that it is impossible to say
anything with certainty about hi(s) without complete information of L and G(s).
What we do instead is to characterize the agent’s contribution to the average mode
{Λ1, Ω1} since the eigenvector v1 = 1√

n
1 is known.

Introduce COI frequency

ωCOI :=
∑n
i=1Miωi
M

, M =
∑n

i=1
Mi. (9.9)

If the actuator parameters are proportional to inertia, then the COI frequency
corresponds to the average frequency mode of the network [168].

The transfer function (9.8) of the average frequency mode is

Ω1 = sΛ1 = s
√
n

s2M + sF (s) +R(s)

n∑
i=1

di, (9.10)

where F (s) =
∑n
i=1 Fi(s) and R(s) =

∑n
i=1Ri(s). Scaling (9.10) with 1/

√
n, the

average frequency disturbance response

ωavg := Ω1/
√
n = s

s2M + sF (s) +R(s)
∑n

i=1
di.

Note that we can incorporate network losses and phase angle dependent actuators
in R(s) into F(s) by substituting F(s) with F(s) + 1

sR(s) in (9.6). Thus, with the
first-order network model, the average frequency disturbance response is given by

ωavg = 1
sM + F (s)

∑n

i=1
di. (9.11)

Remark 9.1 If we have homogeneous or proportional agents, then ωavg = ωCOI.
With heterogeneous agents, the exact representation of the COI mode cannot easily
be obtained [168]. The problem is that the COI mode contains information about
the higher-order network modes, the interarea modes {Λi, Ωi}, i ∈ {2, . . . , n}. This
makes the transient response of (9.9) different from (9.11) (this is shown later in
Section 9.5.3). However, if the system achieves asymptotic synchronization on the
average mode then ωCOI and ωavg converge.

We classify stability of (9.3) using the following terminology. If

• (9.8) is stable for all i ∈ {1, . . . , n} then the system is exponentially stable;

• (9.8) is stable for all i ∈ {2, . . . , n} then the system achieves asymptotic
synchronization on the average mode (the system has stable interarea modes).
Exponential stability therefore implies asymptotic synchronization;

• h1(s) is stable, then the average mode is stable; and if

• (9.11) is stable, then the average frequency mode is stable.

We say that the feedback interconnection (9.8) has stable frequency dynamics if it
has stable interarea modes and a stable average frequency mode.
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Figure 9.2: Feedback interconnection of n agents coupled through the output over a lossless
network L. Normalized using (9.12).

9.4 Asymptotic Synchronization Criterion

Let
G′(s) := Γ 1

2G(s)Γ 1
2 , and L′ := Γ- 1

2LΓ- 1
2 , (9.12)

where Γ is the diagonal matrix

Γ := diag(γ1, . . . , γn) = 2 · diag(L11, . . . ,Lnn)

with Lii, being the diagonal entries of the network matrix (9.4). The eigenvalues
of L′ are then 0 = µ1 < µ2 ≤ · · · ≤ µn ≤ 1. The constant µ2 is refereed to as the
algebraic connectivity of the network L′ [163]. Stability of the interconnection of
G(s) over L is equivalent to stability of the normalized interconnection of G′(s) over
L′, as shown in Figure 9.2 [155]. The first eigenvector u1, L′u1 = 0, is typically not
parallel to 1.

Theorem 9.2 Assume that G′(s) has Pol unstable poles. Then the closed-loop system
with return ratio −L′G′(s) achieves asymptotic synchronization on the average mode
if and only if the eigenloci

{
λ2
(
L′G′(s)

)
, . . . , λn

(
L′G′(s)

)}
taken together, encircle

the point −1 Pol times anticlockwise, as s goes clockwise around the Nyquist D-
contour.

Proof sketch: The closed-loop system is exponentially stable if the transfer func-
tions

G′(s)L′
(
I + G′(s)L′

)−1
,
(
I + G′(s)L′

)−1

G′(s)
(
I + G′(s)L′

)−1
, L′

(
I + G′(s)L′

)−1 (9.13)

are all stable. Consider first the special case where we assume that the network is
lossy1, e.g., substitute the matrix L′ with L′ + εI in (9.13), where ε > 0. Since L′ is
constant and has full rank, it is sufficient to check one of the four transfer functions

1As noted in Section 9.3, this can represent a system (9.6) where one or more of the frequency
dependent actuators Fi(s) has integral action.
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in (9.13). Factorize L′ =WYWT, where the diagonal matrix Y > 0, and WTW = I.
We have that

L′(I + G′(s)L′)−1 =WYWT(I + G′(s)WYWT)−1 =WY (I +WTG′(s)WY )−1WT

Clearly, this is stable if the sensitivity function(
I + P (s)

)−1 :=
(
I +WTG′(s)WY

)−1 (9.14)

is stable. Since the feedback system with return ratio −P (s) is well posed, we can
assess stability using Lemma 9.1. Let Pol be the number of unstable poles in G′(s).
The closed-loop (9.14) is then stable if and only if the image of

det
(
I + P (s)

)
=

n∏
i=1

λi
(
I + P (s)

)
=

n∏
i=1

(
1 + λi

(
P (s)

))
makes Pol anticlockwise encirclements of the origin as s goes clockwise around
the Nyquist D-contour. Note that the image of 1 + λi

(
P (s)

)
encircles the origin if

λi
(
P (s)

)
encircles the point −1; and that the argument of a product is the same as

the sum of the arguments. The closed-loop system (9.14) is therefore stable if and
only if the eigenloci of P (s), taken together, encircle the point −1 Pol times.

Returning to the closed-loop system with a lossless network matrix L. Here,
the feedback system is ill-posed and we can therefore not use Lemma 9.1 to assess
stability of the the four transfer functions (9.13). To continue, we instead make
some observations that connect the case with a lossless network (λ1(L′) = 0) to the
case with a lossy network (λ1(L′) > 0) studied above.

Factorizing L′ = UXUT = ÛX̂ÛT allows us to separate the average mode from
the interarea modes. Normalized using (9.12), then

0 ≤ X ≤ I ∈ Rn×n, U = [u1, . . . , un] ∈ Rn×n,

while
µ2I ≤ X̂ ≤ I ∈ Rn−1×n−1, Û = [u2, . . . , un] ∈ Rn×n−1.

Note that
UUT = u1u

T
1 + Û ÛT = I ∈ Rn×n.

The transfer function from d′ to δ′ is therefore equivalent for the closed-loop systems
shown in Figure 9.2 and Figure 9.3.

The transfer function

L′
(
I + G′(s)L′

)−1 = ÛX̂ÛT(I + G′(s)ÛX̂ÛT)−1 = ÛX̂(I + ÛTG′(s)ÛX̂)−1ÛT

is stable if the (n− 1)× (n− 1) sensitivity function(
I + L(s)

)−1 :=
(
I + ÛTG′(s)ÛX̂

)−1 (9.15)



9.4. Asymptotic Synchronization Criterion 217

Figure 9.3: The normalized feedback interconnection shown in Figure 9.2 with interarea
modes isolated from the average mode.

is stable. Since the feedback system with return ratio −L(s) is well posed, we can
assess stability using Lemma 9.1. The sensitivity (9.15) is stable if

det
(
I + L(s)

)
=
n−1∏
i=1

λi
(
I + L(s)

)
=
n−1∏
i=1

(
1 + λi

(
L(s)

))
(9.16)

makes Pol anticlockwise encirclements of the origin as s goes clockwise around the
Nyquist D-contour. That is, if the eigenloci of L(s), taken together, encircle the
point −1 Pol times.

Stability of (9.13) is equivalent to stability of the n transfer functions

hi(s)
1 + λihi(s)

(9.17)

in (9.8). This can only be the case if

λihi(s) = λi
(
G(s)L

)
= λi

(
G′(s)L′

)
.

If λ1 = 0, then (9.17) is exponentially stable if and only if h1(s) is stable, and if
(9.15) is stable (i.e., the interarea modes are stable). If the interarea modes are
stable, and if sh1(s) is stable, then the system has stable frequencies dynamics.

If we assume that Pol = 0, then we can formulate a conservative stability criterion
using (9.1).

Corollary 9.3 (Scalable Nyquist Stability Criterion) Let µ2 = λ2(L′) denote the
algebraic connectivity of the network L′. Assuming that G′(s) has no unstable poles,
then asymptotic synchronization on the average mode is guaranteed if the field of
values

αF
(
G′(s)

)
, α ∈ [µ2, 1] (9.18)

does not encircle the point −1 as s goes around the Nyquist D-contour.
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Proof sketch: We have that

λi
(
L′G′(s)

)
∈ λ
(
ÛTG′(s)ÛX̂

)
, ∀i ∈ {2, . . . , n},

where X̂ = diag(µ2, . . . , µn) and 0 < µ2 ≤ · · · ≤ µn = 1. Consequently, (9.1) gives

λ
(
ÛTG′(s)ÛX̂

)
⊂ αF

(
ÛTG′(s)Û

)
= αF

(
G′(s)

)
, α ∈ [µ2, 1].

Stability of the interarea modes can then be assessed using (9.15) and (9.16), noting
that if the field of values does not include or encircle the point −1, then the eigenloci
can not encircle −1.

The proposed method is similar to the robust scale-free criterion [155, Theorem 1]
briefly summarized below:

Assume that the system (9.3) has been normalized using (9.12) so that L′ =
ÛX̂ÛH, εI ≤ X̂ ≤ I ∈ Cn−1×n−1, ε > 0; and that for all i ∈ {1, . . . , n},

(i) sgi(s) is a stable transfer function;

(ii) lims→0 sgi(s) 6= 0; and

(iii) h(s)
(
1+γigi(s)

)
is extended strictly positive real, where the multiplier function

h(s) is a positive real transfer function that is continuous on the extended
imaginary axis.

Then (9.3) has stable frequency dynamics.
Since (i) assumes that there are no unstable poles, the robust scale-free criterion

can be compared to Corollary 9.3. Condition (ii) implies that actuators Fi(s) in
(9.2) are not allowed to have integral action. Graphically, (iii) can be interpreted as
the existence of a separating hyperplane between the vertices γigi(jω), ω > 0, and
the point −1 [155]. If this is the case, then there also is a separating hyperplane
between the point −1 and the field of values (9.18). Thus the separating hyperplane
method fulfills the asymptotic synchronization criterion in Corollary 9.3. Note that
the robust scale-free criterion makes no assumption on the algebraic connectivity of
the network µ2, other than that µ2 > 0. However, since this cannot be viewed as
locally available information, this does not obstruct the ability to assess stability
using locally available information.

As argued above, a system that fulfills the separating hyperplane theorem will
also fulfill Corollary 9.3. However, the reverse is not true. In the following section
we will present a example to further discuss the distinction between the two criteria.

9.5 Power System Application

The scalable Nyquist stability criterion (Corollary 9.3) gives us a graphical interpre-
tation to the stability problem, similar to the separating hyperplane theorem. In this
section we will present an example, highlighting the difference between Corollary 9.3
and the separating hyperplane method.
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(a) Nyquist diagram of vertices. (b) Step disturbance, d1, at bus 1.

Figure 9.4: Agents fulfill (9.19) to (9.21).

9.5.1 Synchronization Criterion Based on a Separating Hyperplane

Consider a power systems with n agents connected over a lossless network. We
assume that each agent is participating in the frequency containment reserves (FCR)
using a proportional droop, and that this droop is subject to a time delay. In order
to get simpler criteria, governor and turbine dynamics are neglected. Let the agents
be represented by

gi(s) = 1
s

1
sMi +Di +Kie−sτi

, (9.19)

where Mi ≥ 0 and Di ≥ 0. Assume that Di is unknown and close to zero. Then it
can be shown that if √

γiMi/2 ≤ Ki, (9.20)

for all i, stability is guaranteed if the delays, τi, satisfy

0 ≤ τi ≤ πMi/4Ki. (9.21)

For a system that fulfill (9.19) to (9.21), a separating hyperplane like the one shown
in Figure 9.4a, are guaranteed to exist [155]. The system frequency is therefore
stable, as shown in Figure 9.4b.

If one of the agents does not participate in FCR, e.g., if K2 = 0, then it is
impossible to find a separating hyperplane (Figure 9.5a), even though the system is
clearly stable (Figure 9.5b). This is a problem for the separating hyperplane method
since many of the devices connected to a power grid only provide steady set-point
power, without participating in FCR. It is also a problem if any of the agents are
unable to increase their steady-output, i.e., if Fi(0) = 0. This rules out agents that
cannot increase their output for an unforeseeable time horizon, such as a limited
battery storage.
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(a) Nyquist diagram of vertices. (b) Step disturbance, d1, at bus 1.

Figure 9.5: The agent shown in blue does not participate in FCR.

9.5.2 Synchronization Criterion Based on the Field of Values
Consider again the example in Section 9.5.1, with agents (9.19) coupled through the
output over a lossless network. If we assume worst-case unknown damping constant
Di = 0, then γigi(jω) crosses over the real axis at ω = π/2τi. This means that
for ω > π/2τi, γigi(jω) can attract vertices of the eigenloci up into the top left
quadrant, thereby possibly encircling the critical point −1.

A sufficient condition for asymptotic synchronization is that agents (9.19) either
fulfill (9.20) and (9.21), or that

|γigi(jω)| =
∣∣γi/ω2Mi

∣∣ ≤ 1, for ω ≥ π/2τ̄ ,

where τ̄ = maxi τi, i ∈ {1, . . . , n}. That is, we need that

Mi ≥ γi4τ̄2/π2.

As an example, consider a two-machine network, with agents

g1(s) = 1
s

1
sM1 +K1e−sτ̄

, and g2(s) = 1
s

1
sM2

. (9.22)

LetM1 = 1,K1 = 1/
√

2, and τ̄ = π
√

2/4; and assume that the network is normalized
so that

L = 0.5
[

1 −1
−1 1

]
, λ(L) = {0, 1}, and γ1 = γ2 = 1.

As seen in Figure 9.6a, if M2 = 1.2γ24τ̄2/π2, then the eigenlocus passes to the
right of −1. Asymptotic synchronization is therefore achieved. If instead M2 =
0.8γ24τ̄2/π2, as in Figure 9.6b, then the eigenlocus encircles −1, making the system
unstable.

Note that for a two-node network, the eigenlocus of interest is only one single
vertex λ2

(
LG(jω)

)
. In Figure 9.6, the field of values wherein λ2

(
LG(jω)

)
must be
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(a) Stable, M2 > γ24τ̄2/π2. (b) Unstable, M2 < γ24τ̄2/π2.

Figure 9.6: Nyquist diagram of two-machine system with K2 = 0.

contained, is shown as a gray lined area between γ1g1(jω) and γ2g2(jω) for some
evenly spaced values of ω. In general, λ2

(
LG(jω)

)
, can be anywhere inside the field

of values. But for a two-node network, it will be exactly in the center.

9.5.3 Stability of the Average Frequency Mode
The average frequency (9.11) for agents (9.19) is

ωavg = 1
sM +D +

∑n
i=1Kie−sτi

∑n

i=1
di, (9.23)

where M =
∑n
i=1Mi and D =

∑n
i=1Di. Using Lemma 9.1, stability is ensured if

the open-loop
L(s) = 1

sM

(
D +

∑n

i=1
Kie

−sτi
)

(9.24)

does not encircle −1, as s goes around the Nyquist D-contour.
If τi = 0, i ∈ {1, . . . , n}, then stability is guaranteed if D +

∑n
i=1Ki > 0. With

τi > 0, however, there is a possibility for (9.23) to become unstable. Assuming worst-
case time delay in all plants, τi = τ̄ , and worst-case unknown damping constant
D = 0, then (9.24) simplifies to

L(s) = 1
sM

Ke−sτ̄ , K =
∑n

i=1
Ki.

Instability occur if |L(jω)| ≥ 1 at the point where arg
(
e−jωτ̄

)
= −ωτ̄ = −π/2. A

sufficient stability criterion is therefore that | 2τ̄π
K
M | < 1. Since

arg
(

1
jωM

(
D +Ke−jωτ̄

))
≥ arg

(
1

jωM
Ke−jωτ̄

)
,

this is a worst case criterion.
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(a) Nyquist diagram of the average frequency mode.

0 10 20 30 40

-2

-1

0

(b) Step disturbance, d1, at bus 1.

Figure 9.7: Frequency dynamics of the stable system in Figure 9.6a.

Consider again the two-machine network with agents (9.22), where

L(s) = 1
s(M1 +M2)K1e

−sτ̄ . (9.25)

As seen in Figure 9.7a, with the considered parameters, the average frequency mode
is clearly stable. If the system also achieves asymptotic synchronization, then the
frequency dynamics are stable, as illustrated in Figure 9.7b. Note that ωCOI oscillate
around ωavg. As noted in Remark 9.1, this is to be expected since the COI contains
information about the oscillatory interarea mode.

9.6 Summary

A scalable, decentralized, stability criterion has been derived. By applying the
generalized Nyquist criterion on the filed of values spanned by the agents, the
method allowed us to analyze the system, without making prior assumption on
network losses or agent dynamics. Using the proposed method, a local stability
criterion was derived for a network with time delayed droop control, as well as
agents with no actuation control.
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Chapter 10

Conclusions and Future Work

In this chapter we conclude the thesis. In Section 10.1 we summarize and discuss the
presented results, and in Section 10.2 outline some possible extensions and future
work.

10.1 Conclusions

In this thesis, we have considered fundamental control performance limitations for
improving the damping of interarea modes and frequency stability. Broadly, these
have been partitioned into limitations associated with the dynamics of the controlled
power source, and limitations associated with the measurements.

10.1.1 Interarea Oscillation Damping

Zero Dynamics Coupled to High-Speed Excitation Control

In Chapter 3, we studied the connection between high-speed excitation control
from automatic voltage regulators (AVRs) and the presence of non-minimum phase
(NMP) zeros in transfer functions with frequency (or phase angle) measurements as
the output. NMP, or open right half-plane (ORHP), zeros are of particular interest
since they impose interpolation constraints on the sensitivity function and therefore
limit the achievable closed-loop performance.

It is well known that zeros cannot be moved by feedback. However, AVR uses
feedback from voltage measurements. With respect to frequency measurements, this
can be viewed as parallel compensation. Therefore, the AVR does have some effect
on the zeros associated with frequency measurements. In Chapter 3, we showed
that the destabilizing effect of AVR on the electromechanical mode also meant that
zero pairs, observed in the frequency measurement, moved into the ORHP. Even
though these control loops show NMP zeros, frequency measurement is still suitable
for power oscillation damping (POD). Since feedback does not move the locations
of zeros, this means that NMP zeros will remain in the ORHP, even though their

225
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corresponding electromechanical poles have been stabilized and moved into the left
half-plane (LHP).

Interactions Between HVDC Interconnected Power Systems

Active power modulation of high-voltage direct current (HVDC) transmission is
useful for improving the POD of interarea modes. In Chapters 4 and 5, we have
studied the control of point-to-point HVDC lines that interconnect asynchronous
power grids. When controlling the active power between asynchronous grids, the
interarea modes are affected in both grids. This system interaction limits the
achievable POD improvement.

In Chapter 4, we studied the case where two asynchronous power systems were
interconnected with a single HVDC line. For the analysis, the troublesome interarea
mode was represented abstractly as a two-machine network. It was shown that
active power modulation is suitable for improving POD. If the dynamics of the
power source can be neglected, then performance is essentially only limited by the
available power. However, since active power (unlike reactive power if voltage source
converters are used) cannot be controlled independently at the two dc terminals,
interactions between the two systems are unavoidable.

By studying the controllability Gramian, a fundamental measure, independent
of the control structure, was obtained for how hard it is to control the interarea os-
cillations. When considering damping improvement of both networks simultaneously,
the ratio between modal frequencies was shown to set a fundamental limitation to
achievable performance. With moderate feedback gains, differences in open-loop
modal frequencies between the interconnected systems could be used to increase
system performance in terms of POD. With a too aggressive control, the interarea
oscillations of the two systems will essentially be synchronized. High feedback would
allow the networks to share inertial response following disturbances. However, if POD
is desired, then feedback gains are limited by the modal interaction. This is because
the disturbance propagates and excites the interarea mode in the neighboring system.
The findings were validated on a detailed power system of two HVDC-interconnected
32-bus networks.

In Chapter 5, we considered the case with additional HVDC links. It is well
known that for a system to be functionally controllable it is required that there are
at least as many inputs as outputs. In other words, if we want to freely control the
two outputs (i.e. the interarea mode in each network) then we need an additional
controllable input. Adding control to an additional HVDC link could solve this
problem. Assuming that the condition number of the resulting multiple-input
multiple-output (MIMO) system is sufficiently small, individual control of the two
interarea modes is achievable. It was shown that if we want to improve damping of
the dominant interarea mode in each of the HVDC-interconnected networks, using
two HVDC links and linear control, there are three main control structures: single-
line, decentralized, and decoupled. The latter of these avoid interaction between the
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two modes altogether. This could be desirable if system operators in the different
networks are concerned by the excitation of poorly damped modes.

Centralized optimal control was also investigated. By targeting input usage
and the desired modes (given by corresponding left eigenvectors), an H2 optimal
design proved convenient for obtaining the most suitable trade-off between the three,
previously mentioned, control methods. For certain configurations of the HVDC
links, decoupling control risks destabilizing the system in the event of communication
or actuator failure. However, decoupling control would here require excessive input
usage and is thus not H2 optimal. If the condition number is sufficiently small, the
H2 design would instead opt for a controller resembling the decentralized controller.

In the study, we have considered that external measurements are available
from the machines involved in the interarea oscillations, giving us a nearly perfect
estimation of the interarea mode to be used as a feedback signal. However, the results
also extend to local measurements since an observer can be used to estimate the
mode. Using the proposed H2 method, this is achieved without much adjustments
since the designer only has to specify the available measurements in the tuning
process. Additional control criteria, such as damping of additional modes can also
easily be included by adding these to the performance criteria, as was done in
Section 5.4.3. However, with only local measurements, the information available for
the controller is limited. This may impose additional control limitations.

Limitations Using Local Measurements

Local frequency feedback is a popular design choice for modulating active power
injections since it yields a damping controller with good linear robustness properties
while avoiding the need for external communication systems. As studied in Chap-
ter 3, the usefulness of frequency measurements may be limited by the presence
of NMP zeros. But these limitations may be mitigated by choosing to implement
the control at a suitable network bus with good controllability and observability
of the considered interarea mode. It has been observed however, that proportional
control implemented using local frequency measurement may have a negative effect
on transient (first swing) stability following contingencies involving a generator or
load trip. In Chapter 6, we addressed this problem by studying the Bode integral
constraints of the filtering sensitivity. We showed that improved POD must come
at the cost of reduced transient stability margins, regardless of the control design
method. It was found that the issue can be characterized by the zero dynamics
of the general control configuration. The control limitations stem from that the
excitation of an interarea mode by external disturbances cannot be estimated with
certainty using local frequency information. The studied sensor feedback limitations
are relevant in the bandwidth window between interarea oscillation damping and
fast acting primary reserves, or fast frequency reserves (FFR). They are therefore
important to account for when designing FFR control schemes in low-inertia power
systems.
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10.1.2 Frequency Stability

Coordinated Dynamic Frequency Reserves from Hydro and Wind

In Chapter 7, we considered coordination of frequency containment reserves (FCR).
Of particular interest was to develop a method that takes into account the fast
dynamic constraints of the participating devices. Because of this, the focus was
on the fast spectra of FCR, i.e., the coordination of FCR and FFR. The control
problem was treated as a decentralized model matching problem. The controllers of
each device were designed so that their combined control effort matched the Bode
diagram of a design target, specified by the system operator requirements. Even if
power capacity is available, there are still dynamic constraints that may limit the
bandwidth of participating devices. These include ramp rate limits and dynamic
stability limits. In Chapter 7, we payed extra attention to the dynamic stability
limitations imposed by NMP zeros.

A case study was performed on a 5-machine test system, representing the Nordic
synchronous grid. The Nordic power system is a relatively small grid with FCR almost
exclusively provided by hydropower. Under low-inertia conditions, hydropower may
not be able to act fast enough to fulfill the FCR requirements, in part due to the
NMP zeros of the waterways. With the proposed method we were able to identify an
upper limit on the open-loop cross-over frequency, imposed by the NMP zeros of all
participating hydro units. If all units that supply FCR are NMP, then the aggregated
response will also be NMP. The NMP zero of the aggregated response will be located
in a bandwidth window spanned by the NMP zeros of all participating devices. It
was shown that this issue could be solved by complementing the hydro-FCR with
FFR from minimum phase (MP) power sources such as fast acting thermal units or
battery storage. This however, may be an unnecessarily costly solution. We therefore
investigated how to achieve the FCR requirements by supplementing hydro-FCR
with FFR from wind.

With respect to FCR, wind power has the opposite problem compared to hydro.
If operated below rated power, then the wind turbine (WT) can almost immediately
increase its electric power output. However, if the turbine is operating at the
maximum power point (MPP) the output will eventually fall below the initial
steady-output. In Chapter 8, we showed that this behavior manifests in a NMP
behavior. WTs operating at the MPP have a slow NMP zero (around 0.05 rad/s)
that imposes a lower bandwidth limit on the FFR response. That is, the WT can
only sustain an increased electric power output for a limited time. This makes it
ideal to combine with hydropower, whose response has an upper bandwidth limit
due to the comparatively faster NMP zeros (around 1–2 rad/s) of the waterways.
To achieve this, we designed a new variable-speed WT controller, enabling the WT
to participate in FFR without the need for curtailment. What sets the design apart
from existing methods [73] is that the controller is designed with the end goal of
facilitating a useful linearization for coordinating wind-FFR with hydro-FCR, using
the method developed in Chapter 7.
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Stability in Large Heterogeneous Networks

In Part I, we studied rotor angle stability of interarea oscillations, ignoring the
center of inertia (COI) frequency; whereas in Chapters 7 and 8 we studied the COI
frequency stability problem, ignoring the dynamics of interarea modes. This is a
fairly common approach in power system analysis. However, with an increasing
penetration of renewable energy and power electronic devices, the grid inertia is
decreasing. This increases the need for FFR. Because of this, the separation between
frequency stability and rotor angle stability is becoming harder to motivate.

In Chapter 9, we developed a theoretical framework to bridge the gap between
small-signal rotor angle stability and frequency stability. Combining tools from
linear algebra, graph theory, and complex analysis we formulated a scalable Nyquist
stability criterion. The power system is expressed as a set of agents, coupled through
the output over a network. The method allowed us to study the effect of different
machines and actuators on the stability of network modes (average/COI frequency
mode and oscillatory interarea modes) in closed form, albeit with some conservative
assumptions. The method tells us if any of the agents may have a destabilizing effect
on the network modes. If we assume that all agents have stable dynamics, we can
also use the method to formulate a decentralized stability criterion.

A scalable Nyquist stability criterion was derived, providing a priori stability
guarantees for connecting new devices to the network, using only locally available
information. The developed method was shown to be a practically useful improvement
over other similar methods by allowing for a more general set of agents. Unfortunately,
since the method requires all agents to be stable, this rules out FFR from wind.
Agents that model uncurtailed wind turbines are unstable since their corresponding
transfer functions will have the NMP actuator dynamics in the denominator. In
Chapter 7, we showed how this issue can be circumvented by controlling the WTs
in a subsystem with other power sources, forming a dynamic virtual power plant
(DVPP) whose combined output can be shaped to fulfill the scalable Nyquist stability
criterion.

10.2 Future Work

We conclude this thesis by providing some interesting future research directions.

10.2.1 Fundamental Control Limitations in Multi-Machine Networks
In Part I, we considered fundamental control limitations for improving POD. An
interesting extension would be to extend the results by including more complex
models directly in the analysis. A way to obtain insightful results also for higher-order
systems is to opt for a conservative approach using the methodology developed in
Chapter 9. Possible extension could involve heterogeneous multi-machine networks
with more detailed governor dynamics as well as second-order network modeling to
include voltage dynamics and reactive power.
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10.2.2 Economical Allocation of Control Reserves
In Chapter 7, we considered the allocation of FCR and FFR over different frequency
ranges to match the Bode diagram of a design target. We classified reserves into two
groups: slow and fast. An extension to this is to generalize the allocation process by
developing optimization methods to dispatch reserves over continuous or discrete
frequency ranges. The method can be designed, not only to fulfill the system operator
requirements, but also to optimize some frequency dependent economic cost function.
Another interesting issue would be to develop economic methods to deal with NMP
plants. The challenge is that these act as producers in some frequency ranges, but
as consumers in other ranges.

10.2.3 Practical Implementation of Coordinated Frequency Reserves
In Chapter 7, we studied the coordination of devices participating in FCR by forming
a DVPP. In particular, we were concerned with coordinating FCR from hydro with
FFR from wind using the WT model developed in Chapter 8. It would be interesting
to test the proposed control method in a real-world experiment by controlling a
subsystem, for instance consisting of hydro units and WTs, as a DVPP. It would be
interesting to test the proposed WT control for different turbine models, and to see
how the hydro-FCR controller could be retrofitted into an existing hydro governor
control system. In addition, it would be interesting to see how the hydro-FCR
control, proposed in Chapter 7, could address concerns with the slow 60 s period
oscillations experienced in the Nordic system [153].

10.2.4 Experimental Study of HVDC POD Control
In Chapters 4 and 5, we considered POD control limitations when controlling HVDC
links between asynchronous power systems. It would be interesting to test the
obtained results in practice. One challenge for such a study is that asynchronous
grids often have different transmission system operators. Proposing experiments
that may introduce disturbances from another system may therefore be met with
skepticism. For this, the coordinated control methods proposed in Chapter 5 could
be easier to justify since they can reduce the interactions between the systems. It
would also be interesting to see how relevant the considered control limitations
are when connecting grids of vastly different sizes, such as the Nordic grid to the
Continental European grid.
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