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Abstract

Cyber-physical systems (CPSs) tightly integrate physical processes with comput-
ing and communication to autonomously interact with the surrounding environment.
This enables emerging applications such as autonomous driving, coordinated flight
of swarms of drones, or smart factories. However, current technology does not
provide the reliability and flexibility to realize those applications. Challenges arise
from wireless communication between the agents and from the complexity of the
system dynamics. In this thesis, we take on these challenges and present three main
contributions.

We first consider imperfections inherent in wireless networks, such as communica-
tion delays and message losses, through a tight co-design. We tame the imperfections
to the extent possible and address the remaining uncertainties with a suitable control
design. That way, we can guarantee stability of the overall system and demonstrate
feedback control over a wireless multi-hop network at update rates of 20-50 ms.

If multiple agents use the same wireless network in a wireless CPS, limited
bandwidth is a particular challenge. In our second contribution, we present a
framework that allows agents to predict their future communication needs. This
allows the network to schedule resources to agents that are in need of communication.
In this way, the limited resource communication can be used in an efficient manner.

As a third contribution, to increase the flexibility of designs, we introduce machine
learning techniques. We present two different approaches. In the first approach,
we enable systems to automatically learn their system dynamics in case the true
dynamics diverge from the available model. Thus, we get rid of the assumption of
having an accurate system model available for all agents. In the second approach, we
propose a framework to directly learn actuation strategies that respect bandwidth
constraints. Such approaches are completely independent of a system model and
straightforwardly extend to nonlinear settings. Therefore, they are also suitable for
applications with complex system dynamics.





Sammanfattning

Cyber-physical systems (CPSs) integrerar fysiska processer med beräkningar
och kommunikation för att autonomt interagera med omgivningen. Detta möjliggör
nya applikationer som autonom körning, koordinerat flyg av dronsvärmar eller
smarta fabriker. Den nuvarande tekniken ger dock inte tillräcklig tillförlitlighet och
flexibilitet för att förverkliga dessa applikationer. Utmaningar uppkommer fr̊an den
tr̊adlösa kommunikationen mellan agenterna och fr̊an komplexiteten av systemets
dynamik. I denna avhandling tar vi oss an dessa utmaningar och presenterar tre
huvudbidrag.

Vi betraktar först imperfektioner som är naturligt förekommande i tr̊adlösa
nätverk, s̊asom kommunikationsfördröjningar och meddelandestörningar, genom
en tät samdesign. Vi tämjer dessa begränsningar i den utsträckning det är möjligt
och tar itu med de återst̊aende osäkerheterna med en lämplig kontrolldesign. P̊a
det sättet kan vi garantera stabiliteten hos det övergripande systemet och visa
återkopplingskontroll över ett tr̊adlöst multihopp-nätverk vid uppdateringsfrekvenser
av 20-50 ms.

Om flera agenter använder samma tr̊adlösa nätverk i ett tr̊adlöst CPS är
begränsad bandbredd en speciell utmaning. I v̊art andra bidrag presenterar vi
ett ramverk som gör det möjligt för agenter att förutsäga deras framtida kommu-
nikationsbehov. Detta gör det möjligt för nätverket att schemalägga resurser till
agenter i behov av kommunikation. P̊a s̊a sätt kan den begränsade kommunikationen
användas p̊a ett effektivt sätt.

Som ett tredje bidrag, för att öka flexibiliteten i nätverk introducerar vi mask-
ininlärningstekniker. Vi presenterar tv̊a olika tillvägag̊angssätt. I det första tillväg-
ag̊angssättet gör vi det möjligt för system att automatiskt lära sig systemdynamiken
om den verkliga dynamiken avviker fr̊an den tillgängliga modellen. S̊aledes blir
vi av med antagandet om att ha en exakt systemmodell tillgänglig för alla agen-
ter. I det andra tillvägag̊angssättet föresl̊ar vi ett ramverk för att direkt lära
sig aktiveringsstrategier som tar hänsyn till begränsningar i bandbredd. S̊adana
tillvägag̊angssätt är helt oberoende av en systemmodell och kan enkelt utökas
till icke-linjära inställningar. Därför är de ocks̊a lämpliga för applikationer med
komplicerad systemdynamik.
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Chapter 1

Introduction

Cyber-physical systems (CPSs) are key to many emerging applications of recent
interest, but severe challenges have to be overcome to release their full potential.
We start with some motivating examples for CPSs and discuss the challenges that
they impose for control design. After having discussed the challenges, we present
the problem setting investigated in this thesis, review related literature, and present
the contributions and the outline of the thesis.

1.1 Motivation

Engineering systems that are used in industry or available for home usage today
are usually tailored to specific applications in an isolated environment. Industrial
robotic systems are often inside a cage to prevent them from hurting people and
are unable to interact with other robots or humans. Also mobile robots that are
meant for home usage, such as robotic lawn movers or vacuum cleaners, only work in
specific domains, are unable to communicate, and easy to trick. In contrast to that,
future engineering systems will be in tight connection with the surrounding world.
These CPSs will be connected with each other and with the Internet, often called
the Internet of Things, and will be able to act autonomously in the real world. The
connection with each other will enable CPSs to work collaboratively and coordinate
their actions. While sharing information between different CPSs is clearly beneficial
for collaborative tasks, it also makes a lot of data available for each single agent.
This is further amplified through the connection to the Internet and can be exploited
by learning from data. If the available data is used for learning, CPSs can be enabled
to improve their behavior over time or adapt in case the environmental conditions
change. The ability to communicate also opens the possibility to carry out heavy
computations that are often needed for learning at cloud computing services. In the
following, we will highlight some examples of CPSs that are expected to have high
impact in the future.

Autonomous cars, depicted in Figure 1.1a, have been a field of growing interest
since the end of the last century. If autonomous cars are able to interact with

1



2 Introduction

(a) Autonomous cars on a road [U.S. De-
partment of Transportation].

(b) Factory automation [Kuka Roboter
GmbH].

Figure 1.1: Two examples of CPSs.

each other, they can, for instance, share information about planned paths, what
would allow for adaptive traffic control. Adaptive traffic control is expected to
lead to reduced fuel consumption and fewer traffic jams. As a concrete example,
connected vehicles, sometimes referred to as the Internet of vehicles, can form
platoons with short inter-vehicle distance. Platooning of autonomous cars has been
widely researched and its potential, e.g., in terms of fuel savings, has been shown [1].
Models of vehicle dynamics and their fuel consumption, which are used for planning
in such frameworks, can become complex. Therefore, using data to improve the
models or to find optimal actuation strategies would be beneficial. Moreover, the
dynamics might change over time due to replacement of parts or because of external
factors, such as different load or road conditions. Learning from data would eliminate
the need to reprogram controllers or foresee all possible scenarios at design time.

In smart factories (see Figure 1.1b), robotic systems are expected to interact with
each other and with human collaborators. The connection of plants with remote
control stations, where humans can influence the processes, through wired bus
networks, is already common practice in process industry today. However, cable-
based solutions limit the flexibility and increase the installation and maintenance
cost of the overall system. Cables are for instance subject to wearout and will
break after sufficient time. This leads to errors that are difficult to find and lower
productivity. Future smart factories that will be connected over wireless networks,
do not encounter such problems. The availability of data will further advance smart
factories. Today, controllers in process industry are typically tuned manually. This
does not necessarily lead to good system performance [2], so already nowadays the
ability to detect bad performance and automatically retune controllers would be
beneficial. Additionally, plants in process industry, as well as any other system, are
subject to wearout, thus, the system dynamics also change over time. To guarantee
high-quality performance throughout the whole working life of the system, this
change in the dynamics has to be compensated for by retuning the controller.
Moreover, in future smart factories, the specific tasks of plants will change over time
and the ability to adapt to that will be necessary.

Another interesting area for CPSs is medical health-care. In traditional clinical
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practice, medical devices mostly act as sensors and actuators for caregivers. If these
different systems are able to communicate, the information of all sensors can be used
to generate smart alarms, in contrast to nowadays threshold-based alarms, that call
the caregiver and provide useful context information. Such smart alarm systems are
a challenging topic, as they require the integration and filtering of multiple sensor
signals that have to be used in concert with a patient model. A patient model has
to be created individually for each patient and is in general not trivial to come
up with. Thus, learning it from data or improving it using available data would
clearly be beneficial. Going beyond smart alarms, a next step would be to use the
information to automatically act, e.g., inject a drug. But this demands for a very
reliable communication between devices and an accurate patient model to prevent
wrong treatments.

1.2 Challenges

All of the above mentioned examples represent interesting application areas of
wireless CPSs, but current technology is lacking the reliability and flexibility to
realize them.

In autonomous driving and medical health-care, safety is clearly an issue and
systems need to meet strict requirements. Classical control theory usually assumes
perfect communication when providing stability guarantees, but this assumption
does not hold for wireless CPSs. Wireless channels are orders of magnitude less
reliable than wired setups, i.e., there is a significant probability of losing mes-
sages. Especially, when message losses are correlated, providing stability guarantees
becomes challenging.

When taking the example of autonomous driving or robots collaborating in a
smart factory, we are dealing with fast physical systems. Such systems are difficult
to control over wireless networks, as the end-to-end delay of message passing is
non-negligible and subject to, possibly huge, variations. The problem of delays
becomes even more apparent, if communication occurs over long distances, as is
typically the case in smart factories. To cover large distances, intermediate relay
nodes are necessary that retransmit messages, as the agents cannot talk with each
other directly. In such a multi-hop network, the delay increases when more hops
are added. In its first part, this thesis addresses the challenge of fast and reliable
feedback control over wireless multi-hop networks.

In all of the examples described above, we have multiple agents that need to
use the network for communication. This reveals another shortcoming of wireless
networks. Wireless networks have bandwidth constraints, thus, not all agents may
be able to communicate at the same time. In order to allocate communication slots
to agents, the network needs to be informed in advance about future communication
needs. Apart from bandwidth, communication is also costly in terms of energy. This
is a particular challenge for wireless CPSs, as they are usually realized through
embedded devices with constraints on size and weight and, therefore, limited energy
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resources. For both reasons, communication should only occur when needed, and
not in a time-triggered, periodic fashion as done in classical control theory. The
second part of this thesis takes on the challenge of limiting communication between
agents and, in particular, prediction of communication needs.

Methods that address these challenges are typically based on models of the
system dynamics. However, in examples like smart factories or autonomous vehicles,
we deal with many systems with potentially complex dynamics. Moreover, dynamics
might change over time, e.g., due to wearout. Therefore, the assumption of always
having accurate system models available is not realistic. Instead of assuming accurate
models to be given, available data can be leveraged to either learn models or to
directly learn actuation strategies. Learning dynamics models and control policies
from data is the third challenge that this thesis aims to address.

1.3 Problem Setting

The main focus of this thesis is on feedback control of wireless CPSs. We consider
a general wireless CPS as shown in Figure 1.2. While Figure 1.2 shows only one
physical system, we typically consider multiple systems using the same network
for communication. Each physical system is equipped with sensors and actuators
and connected to a controller over a wireless network. That is, sensor signals and
actuation commands need to be communicated over a wireless network, subject
to delays and message losses. The first problem we consider is how to come up
with suitable control laws that can deal with these network imperfections while still
guaranteeing stability. If multiple systems use the same network for communication,
the limited bandwidth of wireless channels becomes an issue. The second problem
we consider is how to use the limited bandwidth in an efficient manner. If we have
multiple systems with possibly complex dynamics, the assumption of having an
accurate model for all of them is not realistic. As a third problem we will consider
settings, where such accurate models are not available. In order to cope with these
challenges, we will present a control design that addresses challenges imposed by the
wireless network, different ways of reducing communication, and introduce learning
techniques to automatically learn system dynamics or arrive at control policies
without the need for a dynamics model. The concrete problem formulations and
contributions towards these problems will be contained in the Chapters 2 - 5. Here,
we will introduce the general class of systems and setup that we consider in this
thesis to provide a unifying view on the different contributions.

The physical system in Figure 1.2 is represented by a differential equation of the
form

dx(t) = f (x(t), u(t)) dt+QdW (t), (1.1)

with x(t) ∈ Rn the state, u(t) ∈ Rm the control input, and W (t) ∈ Rn a multi-
dimensional Wiener process capturing process noise. For most parts of the thesis,
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Controller

Wireless Network

Physical System SensorActuator x

y

u

Figure 1.2: Schematic of a wireless CPS.

we restrict to linear systems, i.e.,

dx(t) = Ax(t) dt+Bu(t) dt+QdW (t), (1.2)

with the state transition matrix A ∈ Rn×n and the input matrix B ∈ Rn×m. As
CPSs are realized through embedded devices, control laws are implemented digitally.
We will thus often consider a discretized version of (1.2),

x(k + 1) = Adx(k) +Bdu(k) + v(k), (1.3)

with the discrete-time index k, the discrete-time process noise v(k), and the discrete-
time state and input matrices Ad and Bd. The index d will be dropped if clear from
context.

In parts of the thesis, we will also deal with state estimation, i.e., reconstructing
the state x from the measurements y in Figure 1.2. In discrete time, y is defined as

y(k) = Cdx(k) + w(k), (1.4)

with the measurements y(k) ∈ Rl, the output matrix Cd ∈ Rl×n, and the measure-
ment noise w(k) ∈ Rl a Gaussian random variable with probability density function
(PDF) N (w(k); 0,Σmeas).

The main focus of the thesis, however, is on feedback control of wireless CPSs.
For feedback control of a system as in (1.3), we will often use the linear quadratic
regulator (LQR) [3]. In the LQR setting, the (time-invariant) control law u(k) =
Fx(k) is obtained as the optimal feedback controller that minimizes a quadratic
cost function

J = lim
K→∞

1
K

E
[K−1∑
k=0

x(k)TQx(k) + u(k)TRu(k)
]
. (1.5)

The positive definite matrices Q and R are design parameters, which represent the
designer’s trade-off in achieving a fast response (large Q) or low control energy
(large R).
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The first problem we consider is how to come up with provably stable control
laws when messages are sent over wireless channels, subject to delays and message
losses. In classical control theory, communication is usually assumed to be perfect.
That is, the control input u(k), as also presented in (1.5), depends on the system
state x(k) at the same time instant and messages sent between system and controller
always arrive, i.e., communication delays and message losses are neglected. As
discussed in Section 1.2, both assumptions do not hold if communication happens
over wireless networks as illustrated in Figure 1.2. We will, thus, present a suitable
control strategy, taking into account network imperfections, and prove stability of
the overall system in Chapter 2.

We will then, as a second problem, consider the limited bandwidth of wireless
channels. In control, we typically use time-triggered control laws, i.e., tk+1 = tk + T
with a constant sampling time T . Wireless communication channels have limited
bandwidth, thus, if all systems transmit information at high rates, this will overload
the channel and in turn lead to higher transmission delays and higher probability of
message losses [4]. Moreover, CPSs usually consist of battery-powered embedded
devices with constraints on size and weight. As communication is also costly in
terms of energy, frequent communication lowers the lifetime of those systems. We
will therefore turn the attention to event-triggered control (ETC), where tk+1 =
inf{t > tk|C(x(t), x(tk)) ≥ 0}, with a cost function C, i.e., we only communicate in
case of an event (e.g., some error growing too large). As discussed in Section 1.2,
making instantaneous decisions about communication may not be sufficient, as
the communication system then does not have the possibility to reschedule unused
resources. Thus, we will present with triggering laws that at time tk decide about
communication demands at time tk+M, with M > 0 in Chapter 3.

The third problem we consider is how to come up with control laws that respect
the limited resource communication when accurate system models are not available.
The LQR presented in (1.5) depends on the system matrices A and B from (1.2). It
is a typical assumption in linear feedback control that these matrices are known. If
we, for example, look at large-scale factory automation systems, where we have a
lot of plants, manually deriving system matrices for each of them becomes infeasible.
Moreover, as already motivated, they may also change over time. We will thus
investigate learning approaches that allow us to 1) automatically identify the system
matrices from (1.2); 2) automatically learn a control policy that does not depend on
a system model and therefore is not restricted to the linear case, but applicable to
complex, nonlinear systems (1.1). These approaches will be presented in Chapters 4
and 5, respectively.

1.4 Literature Overview

Cyber-physical systems are a topic of emerging interest and have drawn increasing
attention both in academia and industry due to their potential benefits to society,
economy, and environment [5–7]. Application areas are broad, as discussed above,
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and include for instance autonomous driving [1, 8], factory automation [9, 10], and
health-care systems [11, 12]. In the following subsections, we provide an overview
over literature related to the topics of the thesis, covering literature on wireless
CPSs (Section 1.4.1), resource savings through ETC (Section 1.4.2), and approaches
for combining machine learning with control theory, with focus on ways of using
machine learning in settings with limited bandwidth (Section 1.4.3).

1.4.1 Wireless Cyber-Physical Systems

Control systems that are connected over a communication network, also named
networked control systems, have received considerable attention in literature, see for
instance [13, 14] and references therein for an overview. Major concerns in networked
control systems are transmission delays and the unreliability, i.e., the non-negligible
probability of message losses, of wireless networks.

The control community has extensively studied design and stability analysis for
different architectures, delay models, and message loss processes [15–19]. Toolboxes
have been developed to evaluate control designs in simulation based on an abstract
model of an imperfect network [20, 21]. Similarly, co-design based on an integration
of control and real-time scheduling theory [22] and formal analysis of closed-loop
properties using hybrid automata modeling physical, control, and network-induced
timing aspects [23] have been proposed.

Turning to the sensor network, embedded, and real-time communities, we find
work on how to achieve real-time communication across distributed, unreliable,
and dynamic networks of resource-constrained devices [24]. Early efforts based on
asynchronous multi-hop routing provide soft guarantees on end-to-end message
deadlines [25, 26]. Solutions from industry and academia have been proposed [27–30]
and analyzed [31–33], targeting real-time monitoring in static networks with a
few sinks. Using a flooding-based approach, real-time communication in dynamic
networks with any number of sinks has been demonstrated [34]. The problem of
lifting real-time guarantees from the network to the application level is studied
in [35], but the achievable end-to-end latencies on the order of seconds are too long
for emerging closed-loop control applications [36].

Co-design of control and routing based on WirelessHART has been studied in
simulation [37, 38]. While [37] focuses on the impact of the routing strategy on
control performance, the work in [38] proposes to adapt the network protocol at
runtime in response to changes in the state of the physical system.

Practical efforts on control over wireless fall in two categories. First, multi-hop
solutions based on low-power 802.15.4 devices exist for physical systems with slow
dynamics achieving update intervals on the order of seconds, such as adaptive
lighting in road tunnels [39] and power management in data centers [40]. Second,
solutions for physical systems with fast dynamics providing update intervals below
100 ms are exclusively based on single-hop networks of 802.11 [41, 42], Bluetooth [43],
or 802.15.4 [21, 44] devices.

This leaves a gap, as results for feedback control with update intervals below
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100 ms over multi-hop networks have not been reported yet. We will fill this gap
in Chapter 2, where we demonstrate feedback control over a multi-hop network
with update intervals of 20-50 ms. Apart from the practical demonstration, we also
provide theoretical stability guarantees.

1.4.2 Event-Triggered State Estimation and Control

The above literature mainly covers challenges introduced through the unreliability of
wireless networks, but leaves out the fact that communication is a scarce resource in
wireless CPSs. This problem is addressed by event-triggered methods. Because of the
promise to achieve high-performance control on resource-limited systems, the area
of ETC and event-triggered state estimation (ETSE) has seen substantial growth in
the last decades. For general overviews, see [45–48] for control and [45, 49–51] for
state estimation.

Especially in early works on ETC, impulse control has often been considered, see
for instance [52–54]. Event-triggered impulse control can be regarded as a replacement
for periodic proportional controllers. The problem of finding a suitable replacement
for the integral part that is often used in periodic control to cope for instance
with load disturbances, has also been addressed. In [55], a disturbance observer
is used. A typical example for a periodic controller that combines proportional
and integral part are PID-controllers, which are the most common controllers
used in industry. Event-triggered PID-control has also been investigated starting
from [56]. A particular problem here is the replacement of the integral part of the
PID-controller [57]. Mostly, a network between sensor and controller is considered,
thus, the main problem for the integral part is the non-constant sampling time of the
event-triggered mechanism. In [58] this is dealt with by explicitly taking into account
the actual sampling time instead of assuming a nominal, constant sampling time.
A different approach is presented in [59], where the event detector is connected to
the sensor. Instead of looking at the absolute value of the integrator, the difference
between current value and the value at the last triggering instant is used to trigger
communication, as a constant value of the integrator indicates a control error of
zero. For more advanced ETC techniques, we refer the reader to [45–48].

Also for ETSE various design methods have been proposed in literature, and, in
particular, for its core components, the estimation algorithms and event triggers.
For the former, different types of Kalman filters [60–62], modified Luenberger-
type observers [63, 64], and set-membership filters [65, 66] have been used, for
example. Variants of event triggers include triggering based on the innovation
[60, 67], estimation variance [61, 68], or entire PDFs [69]. In these works it has been
shown that high performance can be achieved with a significantly reduced amount
of samples. However, the triggers proposed therein make instantaneous transmit
decisions, i.e., there is no time for the communication system to reschedule resources.

The concept of self triggering has been proposed [70] to address the problem of
predicting future sampling instants. In contrast to event triggering, which requires
the continuous monitoring of a triggering signal, self-triggered approaches predict
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the next triggering instant already at the previous trigger. Several approaches to self-
triggered control have been proposed in literature (e.g., [46, 71–73]). Self triggering
for state estimation has received considerably less attention. Some exceptions are
discussed next.

Self triggering is considered for set-valued state estimation in [74], and for high-
gain continuous-discrete observers in [75]. In [74], a new measurement is triggered
when the uncertainty set about some part of the state vector becomes too large. In
[75], the triggering rule is designed so as to ensure convergence of the observer. The
recent works [76] and [77] propose self triggering approaches, where transmission
schedules for multiple sensors are optimized at a-priori fixed, periodic time instants.
While the re-computation of the schedule happens periodically, the transmission
of sensor data does generally not. In [78], a discrete-time observer is used as a
component of a self-triggered output feedback control system. Therein, triggering
instants are determined by the controller to ensure closed-loop stability.

In Chapter 3, we take on the challenge of predicting future communication
demands. We propose the predictive trigger, which continuously monitors the trigger
signal, but still makes communication decisions ahead of time. We show that the
performance of the predictive trigger is between the known concepts of self triggering
and event triggering.

1.4.3 Learning Resource-Aware Control

Using machine learning techniques to learn feedback controllers from data has been
considered in previous works, see e.g., [79–90] and references therein. These works
typically consider learning of control policies only, without incorporating the cost of
communication such as when controller and plant are connected over a network link.

Model-free reinforcement learning (RL) for event-triggered controllers has for
example been proposed in [91], where an actor-critic method is used to learn an event-
triggered controller and stability of the resulting system is proved. However, the
authors consider a predefined communication trigger (a threshold on the difference
between current and last communicated state); that is, they do not learn the
communication policy from scratch. Similarly, in [92], an approximate dynamic
programming approach using neural networks is implemented to learn event-triggered
controllers, again with a fixed error threshold for triggering communication. In [93],
the authors propose an algorithm to update the weights of a neural network in an
event-triggered fashion. Model-based RL is used in [94] to simultaneously learn an
optimal event-triggered controller with a predefined fixed communication threshold,
and a model of the system. In [95], an architecture for control of interconnected
systems using RL is proposed. There, the focus is on increasing the efficiency of
learning algorithms that only get feedback at event times. The algorithms are
independent of the triggering condition.

Solving scheduling problems with deep reinforcement learning (DRL) has been
proposed in [96]. Given M agents that use the same communication network, which
supports simultaneous communication of N agents, where N < M , the algorithm
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assigns communication slots to the agents.
The recent work [97] uses learning to improve communication behavior for ETSE.

There, the idea is to improve accuracy of state predictions through model-learning.
A second event-trigger is introduced that triggers learning experiments only if the
mathematical model deviates from the real system.

In Chapters 4 and 5, we will present two different approaches how learning can
be used for ETC. As a first approach we will, similar as in [97], introduce a second
trigger to trigger learning experiments, but here in the context of event-triggered
pulse control. Moreover, we will show, how we can extend this approach to cope
with load disturbances and thus replace the integrator from periodic control, a
particular challenge for ETC as discussed in Section 1.4.2. As a second approach, we
will demonstrate how DRL can be used to learn event-triggered controllers. Other
than existing approaches, we will learn both, the control law and the triggering
condition, simultaneously.

1.5 Thesis Outline and Contributions

The thesis is subdivided into four main parts in Chapters 2 - 5. These are next
described in more detail.

Chapter 2

The first part of the thesis takes on the challenges imposed by using wireless
technology for control. Through a tight integration at design time, we present an
approach that enables fast closed-loop control over low-power wireless networks. We
give theoretical stability guarantees and demonstrate the feasibility of the approach
on a real testbed, consisting of physical systems and a low-power multi-hop network.
Like that, we demonstrate for the first time feedback control over low-power multi-
hop networks with update rates of 20-50 ms. Moreover, we show that our design is
flexible enough to also deal with synchronization tasks in a straightforward manner.
This part is based on the following contributions:

• Dominik Baumann1, Fabian Mager1, Romain Jacob, Lothar Thiele, Marco
Zimmerling, and Sebastian Trimpe, “Fast feedback control over low-power
wireless with guaranteed stability and mode changes”, in preparation.

• Fabian Mager1, Dominik Baumann1, Romain Jacob, Lothar Thiele, Sebastian
Trimpe, and Marco Zimmerling, “Feedback control goes wireless: Guaranteed
stability over low-power multi-hop networks”, The 10th ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS), Montreal, Canada,
2019, accepted.

1Equal Contribution
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• Dominik Baumann1, Fabian Mager1, Harsoveet Singh, Marco Zimmerling, and
Sebastian Trimpe, “Evaluating low-power wireless cyber-physical systems”,
IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems
(CPSBench), Porto, Portugal, 2018.

Chapter 3

After having shown that through integration at design time we are able to achieve
provably stable closed-loop control over wireless networks, we next look at the
problem of limited bandwidth. Existing approaches for limiting the number of
communication slots typically take instantaneous decisions about whether to send
information or not. Different from these approaches, we present a framework that
predicts future communication demands in advance and, therefore, allows the
communication system to reschedule resources. Having knowledge about future
communication demands, network resources can be rescheduled. This part is based
on the following contribution:

• Sebastian Trimpe and Dominik Baumann, “Resource-aware IoT control: Sav-
ing communication through predictive triggering”, IEEE Internet of Things
Journal, accepted.

Chapter 4

The approaches until here demand for an accurate dynamics model of the system to
be controlled. In Chapter 4, we drop the assumption of having such a model, but
look at the system performance to detect, whether the current model is accurate or a
new model needs to be learned. We further propose a new design for event-triggered
pulse control that takes into account load disturbances, thus, replacing the integral
part of periodic controllers, and input saturations. This part is based on the following
contribution:

• Dominik Baumann, Friedrich Solowjow, Karl H. Johansson, and Sebastian
Trimpe, “Event-triggered pulse control with adaptation through learning”,
The American Control Conference (ACC), Philadelphia, Pa, USA, 2019, under
review.

Chapter 5

In Chapter 5, we propose end-to-end learning of resource-aware controllers, as an
alternative to model-based control strategies. That is, we do not design a specific
control strategy, but include the task of saving resources in the reward function
of a RL algorithm. Different than other approaches for learning resource-aware
controllers, we do not assume a fixed triggering rule, but learn communication
strategy and control policy simultaneously. A main advantage of this approach is
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that it straightforwardly generalizes to nonlinear settings. This part is based on the
following publication:

• Dominik Baumann1, Jia-Jia Zhu1, Georg Martius, and Sebastian Trimpe,
“Deep reinforcement learning for event-triggered control”, The 57th IEEE
International Conference on Decision and Control (CDC), Miami Beach, Fl,
USA, 2018.

The last chapter, i.e., Chapter 6, concludes this thesis and gives an outline of
work that is already ongoing or work that is planned in the near future.

1.5.1 Contributions by the author
As pointed out above, this thesis is based on several papers, or papers under
submission, by the author of this thesis and different co-authors. The order of the
authors in the mentioned papers generally reflects the workload and contributions
of the authors (first author being the main contributor). However, in all the listed
publications, all authors contributed and were actively involved in formulating the
problems, developing the solutions, evaluating the results, and writing the paper. For
the papers that are the basis of Chapters 2 and 5, the first two authors contributed
equally.



Chapter 2

Feedback Control with Guaranteed Stability
over Wireless Multi-Hop Networks

As discussed in the previous chapter, the interconnection of CPSs over wireless
networks has a lot of benefits. But at the same time, the introduction of wireless
technology poses severe challenges for control design. Current solutions of wireless
CPSs are not able to stabilize systems that require update intervals below 100 ms
over multi-hop networks. In this chapter, we will show, how imperfections of wireless
communication can be tamed and addressed through a tight co-design of communi-
cation and control strategy. That way, we will come up with a design that enables
for the first time fast feedback over low-power wireless multi-hop networks with
update intervals of 20-50 ms. Stability of the overall system will be proved formally
and demonstrated on a cyber-physical testbed.

2.1 Introduction

CPSs use embedded computers and networks to monitor and control physical
systems [98]. While monitoring using sensors allows, for example, to better under-
stand environmental processes [99], it is control and coordination through actuators
what nurtures the CPS vision of robotic materials [100], smart transportation [1],
multi-robot swarms for disaster reponse and manufacturing [101], etc.

A key hurdle to realizing this vision is how to close the feedback loops between
sensors and actuators as these may be numerous, mobile, distributed across large
spaces, and attached to devices with size, weight, and cost constraints. Low-power
wireless multi-hop communication provides the cost efficiency and flexibility to
overcome this hurdle [102, 103] if two requirements are fulfilled. First, fast feedback
is required to keep up with the dynamics of physical systems [104]; for example,
robot motion control and drone swarm coordination require update intervals of tens
of milliseconds [105, 106]. Second, as feedback control modifies the dynamics of
physical systems [107], guaranteeing closed-loop stability under imperfect wireless
communication is a major concern.

13
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Figure 2.1: Design space of wireless CPS that have been validated on real-world
devices and networks.

Hence, this chapter investigates the following question: Is it possible to enable fast
feedback control and coordination across real-world multi-hop low-power wireless
networks with formal guarantees on closed-loop stability? One of the challenges, as
detailed in Section 2.2, is that even slight variations in the quality of a wireless link
can trigger drastic changes in the routing topology [39]—and this can happen several
times per minute [110]. Hence, to establish trust in feedback control over wireless, a
real-world validation against these dynamics on a realistic CPS testbed is absolutely
essential [102], as opposed to considering setups with a statically configured routing
topology and only a few nodes on a desk as, e.g., in [111]. Prior works on control
over wireless that validate their design through experiments on physical platforms
do not provide an affirmative answer. Figure 2.1 classifies prior control-over-wireless
solutions that have been validated using experiments on real devices and against the
dynamics of real wireless networks along two dimensions: the diameter of the network
(single-hop or multi-hop) and the dynamics of the physical system (slow or fast).
While not representing absolute categories, we use ‘slow’ to refer to update intervals
of seconds, which is typically insufficient for feedback control of, e.g., mechanical
systems.

In the single-hop/slow category, Araujo et al. [109] investigate resource efficiency
of aperiodic control with closed-loop stability in a single-hop wireless network of
IEEE 802.15.4 devices. Using a double-tank system as the physical process, update
intervals of 1 to 10 seconds are sufficient.

A number of works in the single-hop/fast class stabilize an inverted pendulum via
a controller that communicates with a sensor-actuator node at the cart. The update
interval is 60 ms or less, and the interplay of control and network performance,
as well as closed-loop stability are investigated for different wireless technologies:
Bluetooth [43], IEEE 802.11 [41], and IEEE 802.15.4 [21, 108]. Belonging to the
same class, Ye et al. use three IEEE 802.11 nodes to control two dryer plants at
update intervals of 100-200 ms [42], and Lynch et al. use four proprietary wireless
nodes to demonstrate control of a three-story test structure at an update interval of
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80 ms [44].
For multi-hop networks, there are only solutions for slow process dynamics and

without stability analysis. For example, Ceriotti et al. study adaptive lighting in
road tunnels [39]. Owing to the length of the tunnels, multi-hop communication
becomes unavoidable, yet the required update interval of 30 seconds allows for
a reliable solution built out of mainstream sensor network technology. Similarly,
Saifullah et al. present a multi-hop solution for power management in data centers,
using update intervals of 20 seconds or greater [40].

In contrast to these works, we demonstrate fast feedback control over wireless
multi-hop networks at update intervals of 20-50 ms, which is significantly faster than
existing multi-hop solutions. Moverover, we provide a formal stability proof, and our
solution seamlessly supports control and coordination of multiple physical systems,
validated through experiments on a realistic cyber-physical testbed.
Contribution and road-map. This chapter presents the design, analysis, and
real-world validation of a wireless CPS that fills the gap visualized in Figure 2.1.
Section 2.2 highlights the main challenges and corresponding system design goals
we need to achieve when closing feedback loops over wireless multi-hop networks.
Underlying our approach is a careful co-design of the wireless embedded components
(in terms of hardware and software) and the closed-loop control system, as described
in Section 2.3 and Section 2.4. We tame typical wireless network imperfections, such
as message losses and end-to-end communication jitter, so that they can be tackled
by well-known control techniques or safely neglected. As a result, our solution is
amenable to a formal end-to-end analysis of all CPS components (i.e., wireless
embedded, control, and physical systems), which we exploit to guarantee closed-loop
stability for linear dynamic systems. Moreover, unlike prior work, our solution
supports control and coordination of multiple physical systems out of the box—a
key asset in many CPS applications [101, 105, 106].

To evaluate our design in Section 2.5, we developed a cyber-physical testbed that
consists of 20 wireless embedded devices forming a 3-hop network and multiple cart-
pole systems whose dynamics match a range of real-world mechanical systems [107,
112]. As such, this testbed addresses an important need in CPS research [102]. Our
experiments reveal the following key findings: (i) two inverted pendulums can be
safely stabilized by two remote controllers across the 3-hop wireless network; (ii)
the movement of five cart-poles can be synchronized reliably over the network;
(iii) increasing message loss rates and update intervals can be tolerated at reduced
control performance; and (iv) experiments match the theoretical results.

In summary, this chapter contributes the following:

• We are the first to demonstrate feedback control and coordination across real
multi-hop low-power wireless networks at update intervals of 20-50 ms.

• We formally prove that our end-to-end CPS design guarantees closed-loop
stability for linear dynamic systems.
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Figure 2.2: Application tasks and message transfers for a single feedback loop. In
every iteration, the sensing task (S) takes a measurement of the physical system and
sends it to the control task (C), which computes a control signal and sends it to the
actuation task (A).

• Experiments on a novel cyber-physical testbed show that our solution can
stabilize and synchronize multiple inverted pendulums despite significant
message loss.

2.2 Problem Formulation and Approach

Scenario. We consider wireless CPSs that consist of a set of embedded devices
equipped with low-power wireless radios. The devices execute different application
tasks (i.e., sensing, control, or actuation) that exchange messages over a wireless
multi-hop network. Each node may execute multiple application tasks, which may
belong to different distributed feedback loops. As an example, Figure 2.2 shows the
execution of application tasks and the exchange of messages for a single periodic
feedback loop with one sensor and one actuator. The update interval TU is the time
between consecutive sensing or actuation tasks. The end-to-end delay TD is the time
between corresponding sensing and actuation tasks.
Challenges. Fast feedback control over wireless multi-hop networks is an open
problem due to the following challenges:

• Lower end-to-end throughput. Multi-hop networks have a lower end-to-end
throughput than single-hop networks because of interference: the theoretical
multi-hop upper bound is half the single-hop upper bound [113]. This limits the
number of sensors and actuators that can be supported for a given maximum
update interval.

• Significant delays and jitter. Multi-hop networks also incur longer end-to-end
delays, and the delays are subject to larger variations because of retransmissions
or routing dynamics [39], introducing significant jitter. Delays and jitter can
both destabilize a feedback system [19, 114].

• Constrained traffic patterns. In a single-hop network, each node can commu-
nicate with every other node due to the broadcast property of the wireless
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medium. This is generally not the case in a multi-hop network. For exam-
ple, WirelessHART only supports communiation to and from a gateway that
connects the wireless network to the control system. Feedback control under
constrained traffic patterns is more challenging and may imply poor perfor-
mance or even infeasibility of closed-loop stability [115].

• Correlated message losses. Message losses are a common phenomenon in
wireless networks, which complicate control design. Further, due to significant
correlation among the message losses [116], a valid theoretical analysis to
provide strong guarantees is hard, if not impossible.

• Message duplicates and out-of-order message delivery are typical in wireless
multi-hop protocols [110, 117] and may further hinder control design and
stability analysis [14].

Approach. We adopt the following co-design approach to solve the above problems:
Address the challenges on the wireless embedded system side to the extent possible,
and then consider the resulting key properties in the control design. This entails the
design of a wireless embedded system that aims to:

G1 reduce and bound imperfections impairing control performance (e.g., reduce
TU and TD and bound their jitter);

G2 support arbitrary traffic patterns in multi-hop networks with real dynamics
(e.g., time-varying link qualities);

G3 operate efficiently in terms of limited resources, while accommodating the
computational needs of the controller.

On the other hand, the control design aims to:

G4 incorporate all essential properties of the wireless embedded system to guar-
antee closed-loop stability for the entire CPS for physical systems with linear
dynamics;

G5 enable an efficient implementation of the control logic on state-of-the-art
low-power embedded devices;

G6 use support for arbitrary traffic patterns for straightforward distributed control
and multi-agent coordination.

2.3 Wireless Embedded System Design

To reach design goals G1–G3, we design a wireless embedded system that consists
of three key building blocks:
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Figure 2.3: Operation of low-power wireless protocol.

1) a low-power wireless protocol providing multi-hop many-to-all communication
with bounded end-to-end delay and accurate network-wide time synchroniza-
tion;

2) a hardware platform that enables an efficient, predictable execution of all
application tasks and message transfers;

3) a scheduling framework to schedule all application tasks and message transfers
so that given bounds on TU and TD are met at minimum communication
energy costs.

We describe each building block, followed by an analysis of the resulting properties
that matter for the control design.

2.3.1 Low-power Wireless Protocol
To support arbitrary traffic patterns (G2), we need a multi-hop protocol capable of
many-to-all communication. Moreover, the protocol must be highly reliable and the
time needed for many-to-all communication must be tightly bounded (G1). It has
been shown that a solution based on Glossy floods [118] can meet these requirements
with high efficiency (G3) in the face of wireless dynamics (G2) [34]. Thus, similar
to other recent proposals [119, 120], we design a wireless protocol on top of Glossy,
but aim at a new design point: bounded end-to-end delays of at most a few tens of
milliseconds for the many-to-all exchange of multiple messages in a control cycle.

As shown in Figure 2.3, the operation of the protocol proceeds as a series of
periodic communication rounds with period T . Each round consists of a sequence of
non-overlapping time slots. In every time slot, all nodes in the network participate
in a Glossy flood, where a message is sent from one node to all other nodes. Glossy
approaches the theoretical minimum latency for one-to-all flooding at a reliability
above 99.9 %, operates independently of the time-varying network topology, and
provides microsecond-level network-wide time synchronization [118]. Nodes exploit
the accurate time synchronization to sleep as long as possible between rounds and
to awake in time for the next round, as specified by the round period T . A beacon
slot (b) initiated by a dedicated node is used for synchronization at the beginning
of each round.

As detailed in Section 2.3.3, we compute the communication schedules offline
based on the traffic demands, and distribute them to all nodes before the application
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operation starts. A schedule includes the assignment of messages to data slots in
each round (see Figure 2.3) and the round period T . Using static schedules brings
several benefits. We can a priori verify if closed-loop stability can be guaranteed for
the achievable latencies (see Section 2.4). Moreover, compared to prior solutions [34,
119, 120], we can support significantly shorter latencies, and the protocol is more
energy efficient (no need to send schedules) and more reliable (schedules cannot be
lost).

2.3.2 Hardware Platform

CPS devices need to concurrently handle application tasks and message transfers.
While message transfers involve little but frequent computations, sensing and
especially control tasks may require less frequent, but more demanding computations
(e.g., floating-point operations). An effective approach to achieve low latency and high
energy efficiency for such diverse needs is to exploit hardware heterogeneity (G3).

For this reason, we leverage a heterogeneous dual-processor platform (DPP).
Application tasks execute exclusively on a 32-bit MSP432P401R ARM Cortex-
M4F application processor (AP) running at 48 MHz, while the wireless protocol
executes on a dedicated 16-bit CC430F5147 communication processor (CP) running
at 13 MHz. The AP has a floating-point unit and a rich instruction set, accelerating
operations related to sensing and control. The CP has a low-power microcontroller
and a radio operating at 250 kbit s−1 in the 868 MHz band.

AP and CP are interconnected using Bolt [121], an ultra-low-power processor
interconnect that supports asynchronous bi-directional message passing with formally
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verified worst-case execution times. Bolt decouples the two processors with respect
to time, power, and clock domains, enabling energy-efficient concurrent executions
with only small and bounded interference, thereby limiting jitter and preserving the
time-sensitive operation of the wireless protocol.

All CPs are time-synchronized via the wireless protocol. Locally, AP and CP must
also be synchronized to minimize end-to-end delays and jitter between application
tasks running on different APs (G1). To this end, we use a GPIO line between the
two processors, called SYNC line. Every CP asserts the SYNC line in response to an
update of Glossy’s time synchronization. Every AP schedules application tasks and
message passing over Bolt with specific offsets relative to these SYNC line events
and resynchronizes its local time base. Likewise, the CPs execute the communication
schedules and perform SYNC line assertion and message passing over Bolt with
specific offsets relative to the start of communication rounds. As a result, all APs
and CPs act in concert.

2.3.3 Scheduling Framework

We illustrate the scheduling problem with a simple example, where node P senses
and acts on a physical system and node C runs the controller.

Figure 2.4 shows a possible schedule of the application tasks and message transfers.
After sensing (S1), the APP writes a message containing the sensor reading into
Bolt (w). CPP reads out the message (r) before the communication round in which
that message (mS1) is sent using the wireless protocol. CPC receives the message
and writes it into Bolt. After reading out the message from Bolt, APC computes
the control signal (C1) and writes a message containing it into Bolt. The message
(mC1) is sent to CPP in the next round, and then APP applies the control signal on
the physical system (A1).

This schedule resembles a pipelined execution, where in each communication
round the last sensor reading and the next control signal (computed based on the
previous sensor reading) are exchanged (mS1mC0, mS2mC1, . . .). Note that while
it is indeed possible to send the corresponding control signal in the same round
(mS1mC1, . . .), this would increase the update interval TU at least by the sum of
the execution times of the control task, Bolt read, and Bolt write. For the schedule
in Figure 2.4, TU is exactly half the end-to-end delay TD.

In general, the scheduling problem entails computing the communication sched-
ules and the offsets with which all APs and CPs perform wireless communication,
application tasks, message transfers over Bolt, and SYNC line assertion. The problem
gets very complex for any realistic scenario with more nodes or multiple feedback
loops that are closed over the same network, so solving it must be automated.

To this end, we use time-triggered wireless (TTW) [122], an existing framework
tailored to solve this type of scheduling problem. TTW takes as main input a
dependency graph among application tasks and messages, similar to Figure 2.2.
Based on an integer linear program, it computes all communication schedules
and offsets. TTW provides three important guarantees: (i) a feasible solution is



2.3. Wireless Embedded System Design 21

found if one exists, (ii) the solution minimizes the energy consumption for wireless
communication, and (iii) the solution can additionally optimize user-defined metrics
(e.g., the update interval TU as for the schedule in Figure 2.4).

2.3.4 Essential Properties and Jitter Analysis
The presented wireless embedded system design provides the following properties
for the control design:

P1 As analyzed below, for update intervals TU and end-to-end delays TD up to
100 ms, the worst-case jitter on TU and TD is bounded by ±50 µs. It holds
TD = 2TU .

P2 Statistical analysis of millions of Glossy floods [123] and percolation theory for
time-varying networks [124] have shown that the spatio-temporal diversity in a
flood reduces the temporal correlation in the series of received and lost messages
by a node, to the extent that the series can be safely approximated by an i.i.d.
Bernoulli process. The success probability is typically above 99.9 % [118].

P3 By provisioning for multi-hop many-to-all communication, arbitrary traffic
patterns are efficiently supported.

P4 It is guaranteed by design that message duplicates and out-of-order message
deliveries do not occur.

To underpin P1, we analyze the worst-case jitter on TU and TD. We refer to T̃end
as the nominal time interval between the end of two tasks executed on (possibly)
different APs. Due to jitter J , this interval may vary, resulting in an actual length
of T̃end + J . In our system, the jitter is bounded by

| J | ≤ 2
(
êref + êSYNC + T̃end (ρ̂AP + ρ̂CP)

)
+ êtask (2.1)

where each term in (2.1) is detailed below.
1) Time synchronization error between CPs. Using Glossy, each CP computes an

estimate t̂ref of the reference time [118] to schedule subsequent activities. In doing
so, each CP makes an error eref with respect to the reference time of the initiator.
Using the approach from [118], we measure eref for our Glossy implementation and
a network diameter of up to nine hops. Based on 340 000 data points, we find that
eref ranges always between −7.1 µs and 8.6 µs. We thus consider êref = 10 µs a safe
bound for the jitter on the reference time between CPs.

2) Independent clocks on CP and AP. Each AP schedules activities relative
to SYNC line events. As AP and CP are sourced by independent clocks, it takes
a variable amount of time until an AP detects that CP asserted the SYNC line.
The resulting jitter is bounded by êSYNC = (2fAP)−1, where fAP = 48 MHz is the
frequency of APs clock that can detect SYNC line events on both falling and rising
edges.
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3) Different clock drift at CPs and APs. The real offsets and durations of
activities on the CPs and APs depend on the frequency of their clocks. Various
factors such as manufacturing process, temperature, and aging lead to different
frequency drifts ρCP and ρAP . State-of-the-art clocks, however, drift by at most
ρ̂CP = ρ̂AP = 50 ppm [125].

4) Varying task execution times. The difference between the task’s best- and
worst-case execution time êtask adds to the jitter. For the jitter on TU and TD,
only the execution time of the actuation task matters, which typically exhibits
little variance as it is short and highly deterministic. For example, actuation in our
experiments has a jitter of ±3.4 µs. To be safe, we consider êtask = 10 µs for our
analysis.

Using (2.1) and the above values, we can compute the worst-case jitter for a
given interval T̃end. Fast feedback control as considered in this chapter requires
T̃end = TD = 2TU ≤ 100 ms, which gives a worst-case jitter of ±50 µs, as stated in
P1.

2.4 Control Design and Analysis

Building on the design of the wireless embedded system and its properties P1–P4,
this section addresses the design of the control system to accomplish goals G4–G6
from Section 2.2. Because the wireless system supports arbitrary traffic patterns
(P3), various control tasks can be solved including typical single-loop tasks such
as stabilization, disturbance rejection, or set-point tracking, as well as multi-agent
scenarios such as synchronization, consensus, or formation control.

Here, we focus on remote stabilization over wireless and synchronization of
multiple agents as prototypical examples for both the single- and multi-agent case.
For stabilization, modeling and control design are presented in Section 2.4.1 and
Section 2.4.2, thus achieving G5. The stability analysis is provided in Section 2.4.3,
which fulfills G4. Synchronization is discussed in Section 2.4.4, highlighting support
for straightforward distributed control G6.

2.4.1 Model of Wireless Control System
We address the remote stabilization task depicted in Figure 2.5 (left), where controller
and physical system are associated with different nodes, which can communicate
via the wireless network. Such a scenario is relevant for instance in process control,
where the controller often resides at a remote location [126]. We consider stochastic
linear time-invariant (LTI) dynamics for the physical process as expressed by (1.3).

We assume that the full system state x(k) can be measured through appropriate
sensors, but is corrupted by Gaussian nosie. Thus, we have (1.4) with C = I, i.e.,

y(k) = x(k) + w(k). (2.2)
If the complete state vector cannot be measured directly, it can typically be recon-
structed via state estimation techniques [107].



2.4. Control Design and Analysis 23

Controller
x̂(k)

Wireless Network

Physical System
x(k)

A S
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Figure 2.5: Considered wireless control tasks: stabilization (left) and synchronization
(right). The feedback loop for stabilizing the physical system (left) is closed over
the (multi-hop) low-power wireless network, which induces delay and message losses
(captured by i.i.d. Bernoulli variables θ and φ). Two physical systems, each with a
local controller (Ctrl), are synchronized over the wireless network (right).

The process model is stated in discrete time. This representation is particularly
suitable here as the wireless system offers a constant update interval TU with worst
case jitter of ±50 µs (P1), which can be neglected from controls perspective [22,
p. 48]. Thus, u(k) and y(k) in (1.3) and (2.2) represent sensing and actuation at
periodic intervals TU as in Figure 2.4.

As shown in Figure 2.5, measurements y(k) and control inputs û(k) are sent
over the wireless network. According to P1 and P2, both arrive at the controller,
respectively system, with a delay of TU and with a probability governed by two
independent Bernoulli processes. We represent the Bernoulli processes by θ(k) and
φ(k), which are i.i.d. binary variables, indicating lost (θ(k) = 0, φ(k) = 0) or
successfully received (θ(k) = 1, φ(k) = 1) messages. To ease notation and since
both variables are i.i.d., we can omit the time index in the following without any
confusion. We denote the probability of successful delivery by µθ (i.e., P[θ = 1] = µθ),
respectively µφ. As both, measurements and control inputs, are delayed, it also
follows that in case of no message losses, the applied control input u(k) depends
on the measurement two steps ago y(k − 2). If a control input message is lost, the
input stays constant since zero-order hold is used at the actuator; i.e.,

u(k) = φû(k) + (1− φ)u(k − 1). (2.3)

The model proposed in this section thus captures the properties P1, P2, and
P4. While P1 and P2 are incorporated in the presented dynamics and message
loss models, P4 means that there is no need to take duplicated or out-of-order
sensor measurements and control inputs into account. Overall, these properties
allow for accurately describing the wireless CPS by a fairly straightforward model,
which greatly facilitates subsequent control design and analysis. Property P3 is not
considered here, where we deal with a single control loop, but will become essential
in Section 2.4.4.
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2.4.2 Controller Design

Designing a feedback controller for the system, we proceed by first discussing
state-feedback control for the nominal system (i.e., without delays, message losses,
and noise), and then enhance the design to cope with the network and sensing
imperfections.
Nominal design. Assuming ideal measurements, we have y(k)=x(k). A common
strategy in this setting is static state-feedback control, u(k)=Fx(k), where F is a
constant feedback matrix, which can be designed for instance via pole placement or
optimal control such as the linear quadratic regulator (LQR) [3, 107]. Under the
assumption of controllability [107], desired (in particular, stable) dynamics can be
obtained for the state (1.3) in this way.
Actual design. We augment the nominal state-feedback design to cope with non-
idealities, in particular, delayed measurements and message losses as shown in
Figure 2.5 (left).

Because the measurement arriving at the controller y(k−1) represents information
that is one time step in the past, the controller propagates the system for one step
as follows:

x̂(k) = θAy(k−1) + (1−θ)(Ax̂(k−1)) +Bû(k−1) (2.4)
= θAx(k−1) + (1−θ)Ax̂(k−1) +Bû(k−1) + θAw(k−1),

where x̂(k) is the predicted state, and û(k) is the control input computed by
the controller (to be made precise below). Both variables are computed by the
controller and represent its internal states. The rationale of (2.4) is as follows: If the
measurement message is delivered (the controller has information about θ because
it knows when to expect a message), we compute the state prediction based on this
measurement y(k−1)=x(k−1) + w(k−1); if the message is lost, we propagate the
previous prediction x̂(k−1). As there is no feedback on lost control messages (i.e.,
about φ) and thus a potential mismatch between the computed input û(k−1) and
the actual u(k−1), the controller can only use û(k−1) in the prediction.

Using x̂(k), the controller has an estimate of the current state of the system.
However, it will take another time step for the currently computed control input
to arrive at the physical system. For computing the next control input, we thus
propagate the system another step,

û(k + 1) = F (Ax̂(k) +Bû(k)) , (2.5)

where F is as in the nominal design. The input û(k + 1) is then transmitted over
the wireless network (see Figure 2.5).

The overall controller design requires only a few matrix multiplications per
execution. This can be efficiently implemented on embedded devices, thus satisfying
goal G5.
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2.4.3 Stability Analysis

We now present a stability proof for the closed-loop system given by the dynamic
system of Section 2.4.1 and the proposed controller from Section 2.4.2. Because the
model in Section 2.4.1 incorporates the physical process and the essential properties
of the wireless embedded system, we will thus achieve goal G4.

While the process dynamics (1.3) are time invariant, the message losses intro-
duce time variation and randomness into the system dynamics. Therefore, we will
leverage stability results for linear, stochastic, time-varying systems [127]. For ease
of presentation, we will consider (1.3) and (2.2) without process and measurement
noise (v(k) = 0 and w(k) = 0), and comment later on extensions. We first introduce
required definitions and preliminary results, and then apply these to our problem.

Consider the system

z(k + 1) = Ã(k)z(k) (2.6)

with state z(k) ∈ Rn and Ã(k) = Ã0 +
∑L
i=1 Ãipi(k), where pi(k) are i.i.d. random

variables with mean E[pi(k)] = 0, variance Var[pi(k)] = σ2
pi , and E[pi(k)pj(k)] =

0 ∀i, j.
A common stability notion for stochastic systems like (2.6) is mean-square

stability:

Definition 2.1 ([127, p. 131]). Let Z(k) := E[z(k)zT(k)] denote the state correla-
tion matrix. The system (2.6) is mean-square stable (MSS) if limk→∞ Z(k) = 0 for
any initial z(0).

That is, a system is called MSS if the state correlation vanishes asymptotically for
any initial state. MSS implies, for example, that z(k)→ 0 almost surely as k →∞,
[127, p. 131].

In control theory, linear matrix inequalities (LMIs) are often used as compu-
tational tools to check for system properties such as stability (see [127] for an
introduction and details). For MSS, we shall employ the following LMI stability
result:

Lemma 2.1 ([127, p. 131]). System (2.6) is MSS if, and only if, there exists a
positive definite matrix P > 0 such that

ÃT
0 PÃ0 − P +

∑N

i=1
σ2
piÃ

T
i PÃi < 0. (2.7)

We will now apply this result to the system and controller from Section 2.4.1 and
Section 2.4.2. The closed-loop dynamics are given by (1.3) and (2.2)–(2.5), which
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we rewrite as an augmented system
x(k + 1)
x̂(k + 1)
u(k + 1)
û(k + 1)


︸ ︷︷ ︸

z(k+1)

=


A 0 B 0
θA (1− θ)A 0 B
0 φFA (1− φ)I φFB
0 FA 0 FB


︸ ︷︷ ︸

Ã(k)


x(k)
x̂(k)
u(k)
û(k)


︸ ︷︷ ︸

z(k)

. (2.8)

The system has the form of (2.6); the transition matrix depends on θ and φ, and
thus on time (omitted for simplicity). We can thus apply Lemma 2.1 to obtain our
main stability result, whose proof is given in the appendix.

Theorem 2.1. The system (2.8) is MSS if, and only if, there exists a P > 0 such
that (2.7) holds with

Ã0 =
(

A 0 B 0
µθA (1−µθ)A 0 B

0 µφFA (1−µφ)I µφFB
0 FA 0 FB

)
, Ã1 =

( 0 0 0 0
−µθA µθA 0 0

0 0 0 0
0 0 0 0

)
,

Ã2 =
( 0 0 0 0

0 0 0 0
0 −µφFA µφI −µφFB
0 0 0 0

)
, σ2

p1
= 1/µθ − 1, σ2

p2
= 1/µφ − 1.

Using Theorem 2.1, we can analyze stability for any concrete physical system
(1.3), a state-feedback controller F , and probabilities µθ and µφ. Searching for a
P > 0 that satisfies the LMI (2.7) can be done using efficient numerical tools based
on convex optimization (e.g., [128]). If such a P is found, we have the stability
guarantee (G4).

The stability analysis can be extended to account for process and measurement
noise so that MSS then implies bounded Z(k). Such an analysis, taking into ac-
count process and measurement noise, is shown in the appendix. Moreover, other
combinations of end-to-end delay TD and update interval TU are possible, including
TD = nTU (n ∈ N). Also the ‘sensor to controller’ and ‘controller to actuator’ delays
may be different.

2.4.4 Multi-agent Synchronization
In distributed or decentralized control architectures, different controllers have access
to different measurements and inputs, and thus, in general, different information. This
is the core reason for why such architectures are more challenging than centralized
ones [129, 130]. Which information a controller has access to depends on the traffic
pattern and topology of the network. For instance, an agent may only be able to
communicate with its nearest neighbor via point-to-point communication, or with
other agents in a certain range. Property P3 of the wireless embedded system in
Section 2.3 offers a key advantage compared to these structures because every agent
in the network has access to all information (except for rare message losses). We
can thus carry out a centralized design, but implement the resulting controllers in a
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distributed fashion (cf. Figure 2.5, right). Such schemes have been used before for
wired-bus networks (e.g., in [112]).

Here, we present synchronization of multiple physical systems as an example
of how distributed control tasks can easily be achieved with the proposed wireless
control system (G6). We assume multiple physical processes as in (1.3) and (2.2),
but with possibly different dynamics parameters (Ai, Bi, etc.). We understand
synchronization in this setting as the goal of having the system state of different
agents evolve together as close as possible. That is, we want to keep the error
xi(k)− xj(k) between the states of systems i and j small. Instead of synchronizing
the whole state vector, also a subset of all states can be considered. Synchronization
of multi-agent systems is a common problem and also occurs under the terms
consensus or coordination [131].

We demonstrate feasibility of synchronization with multiple systems in Sec-
tion 2.5.3. The synchronizing controller is based on an LQR [3]; details of the
concrete design are given in Section A.4.

2.5 Experimental Evaluation

This section uses measurements from a cyber-physical testbed (see Figure 2.6)
consisting of 20 wireless embedded devices (forming a three-hop network) and
several cart-pole systems to evaluate the performance of the proposed wireless CPS
design. Our experiments reveal the following key findings:

• We can safely stabilize two inverted pendulums via two remote controllers
across the 3-hop wireless network.

• Using the same CPS design with a different control logic, we can reliably
synchronize the movement of five cart-poles thanks to the support of arbitrary
traffic patterns.

• Our system can stabilize an inverted pendulum at update intervals of 20-50 ms.
Increasing the update interval decreases the control performance, but leads to
significant energy savings on the wireless communication side.

• The system is highly robust to message losses. Specifically, it can stabilize an
inverted pendulum at an update interval of 20 ms despite 75 % i.i.d. Bernoulli
losses and situations with bursts of 40 consecutively lost messages.

• The measured jitter on the update interval and the end-to-end delay is less
than ±25 µs, which validates our analysis of the theoretical worst-case jitter
of ±50 µs (P1).

2.5.1 Cyber-physical Testbed
Realistic cyber-physical testbeds are essential for the validation and evaluation of
CPS solutions [102, 132]. We developed the wireless cyber-physical testbed depicted
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Figure 2.6: Cyber-physical testbed consisting of 20 DPP nodes that form a three-hop
wireless network and five cart-pole systems (two real ones attached to nodes 1 and 2,
and three simulated ones at nodes 9, 14, and 15).

Cart Pole

0-5-10-15-20-25 5 10 15 20 25

Track

Cart Position s [cm]

Pole Angle θ [°]

Figure 2.7: Schematic of a cart-pole system.

in Figure 2.6. It consists of 20 DPP nodes, two real physical systems (A and B), and
three simulated physical systems (C, D, and E). The testbed is deployed in an office
building and extends across an area of 15 m by 20 m. All nodes transmit at 10 dBm,
which results in a network diameter of three hops. The wireless signals need to
penetrate various types of walls, from glass to reinforced concrete, and are exposed
to different sources of interference from other electronics and people’s activity.

We use cart-pole systems as physical systems. As shown in Figure 2.7, a cart-pole
system consists of a cart that can move horizontally on a track and a pole attached to
it via a revolute joint. The cart is equipped with a DC motor that can be controlled
by applying a voltage to influence the speed and the direction of the cart. Moving
the cart exerts a force on the pole and thus influences the pole angle θ. This way,
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the pole can be stabilized in an upright position around θ = 0°, which represents an
unstable equilibrium and is called the inverted pendulum. The inverted pendulum
has fast dynamics that are typical for real-world mechanical systems [133] and
require feedback with update intervals of tens of milliseconds.

For small deviations from the equilibrium (i.e., sin(θ) ≈ θ), the inverted pendulum
can be well approximated by an LTI system. The state x(k) of the system consists
of four variables. Two of them, the pole angle θ(k) and the cart position s(k), are
measured by angle sensors. Their derivatives, the angular velocity θ̇(k) and the
cart velocity ṡ(k), are estimated using finite differences and low-pass filtering. The
voltage applied to the motor is the control input u(k). In this way, the APs of nodes
1 and 2 interact with the two real pendulums A and B, while the APs of nodes 9,
14, and 15 run simulation models.

The cart-pole system is subject to a few constraints. Control inputs are capped
at ±10 V. The track has a usable length of ±25 cm from the center (see Figure 2.7).
Surpassing the track limits immediately ends an experiment. At the beginning of an
experiment, we move the carts to the center and the poles in the upright position;
then the controller takes over. The appendix details the implementation of the
controllers, following the design outlined in Section 2.4.2 and Section 2.4.4.

Using this cyber-physical testbed, we measure the control performance in terms
of pole angle, cart position, and control input. In addition, we measure radio duty
cycle at each node in software and record messages that are lost over the wireless
network.

2.5.2 Multi-hop Stabilization

In our first experiment, we want to answer the main question of this work and
investigate the feasibility of fast feedback control over multi-hop low-power wireless
networks.
Setup. We use two controllers that run on nodes 14 and 15 to stabilize the two
real pendulums A and B at θ = 0° and s = 0 cm. Hence, there are two independent
control loops sharing the same wireless network, and it takes six hops to close each of
them. We configure the wireless embedded system and the controller for an update
interval of TU = 45 ms. Using Theorem 2.1, we can prove stability for the overall
system using µθ = µφ = 0.999 as per property P2.
Results. The experimental results confirm the theoretical analysis: We are able
to safely stabilize both pendulums over the three-hop wireless network. Figure 2.8
shows a characteristic 30 s trace of one of the pendulums. Cart position, pole angle,
and control input oscillate, but always stay within safe regimes. For example, the
cart never comes close to either end of the track and less than half of the possible
control input is needed to stabilize the pendulum. Not a single message was lost in
this experiment, which demonstrates the reliability of our wireless embedded system
design.

During the same experiment, we also used a logic analyzer to continuously
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Figure 2.8: Cart position s, pole angle θ, and control input u of a cart-pole system
when concurrently stabilizing two cart-pole systems over a multi-hop network.
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Figure 2.9: Measured jitter on the end-to-end delay TD.

measure the update interval TU and the end-to-end delay TD (see Figure 2.4).
Figure 2.9 shows the jitter on TD; the results for TU look very similar. We see
that the empirical results are well within the theoretical worst-case bounds, which
validates our analysis in Section 2.3.4 and assumptions in Section 2.4.

2.5.3 Multi-hop Synchronization
We now apply the same wireless CPS design to a distributed control task to
demonstrate its versatility.
Setup. We use the two real pendulums A and B and the three simulated pendulums
C, D, and E. The goal is to synchronize the cart positions of the five pendulums
over the wireless multi-hop network, while each pendulum is stabilized by a local
control loop. This scenario is similar to drone swarm coordination, where each
drone stabilizes its flight locally, but exchanges its position with all other drones to
keep a desired swarm formation [105]. In our experiment, stabilization runs with
TU = 10 ms, and nodes 1, 2, 9, 14, and 15 exchange their current cart positions
every 50 ms.
Results. The left plot in Figure 2.10 shows the cart positions without synchroniza-
tion. The carts of the real pendulums move with different amplitude, phase, and
frequency due to slight differences in their physics and imperfect measurements.
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Figure 2.10: Cart positions of five cart-pole systems stabilized locally at an update
interval of 10 ms and synchronizing their cart positions (middle and right plot) over
the network at an update interval of 50 ms.

The simulated pendulums are perfectly balanced and behave deterministically as
they all start in the same state.

In the middle plot, we see the behavior of the pendulums when they synchronize
their cart positions over the wireless multi-hop network. Now, all five carts move in
concert. The movements are not perfectly aligned because, besides the synchroniza-
tion, each cart also needs to locally stabilize its pole at θ = 0° and s = 0 cm. Since
no message is lost during the experiment, the simulated pendulums all receive the
same state information and, therefore, show identical behavior.

This effect can also be seen in our third experiment, shown in the right plot of
Figure 2.10, where we hold pendulum A for some time at about s = −20 cm. The
other pendulums now have two conflicting control goals: stabilization at s = 0 cm and
θ = 0°, as well as synchronization while one pendulum is fixed at about s = −20 cm.
As a result, they all move towards this position and oscillate between s = 0 and
s = −20 cm. Clearly, the experiments show that the cart-pole systems influence
each other, which is enabled through the network.

2.5.4 Impact of Update Interval
We take a closer look at the impact of different update intervals (and hence end-to-
end delays) on control performance.
Setup. To minimize effects that we cannot control, such as external interference, we
use two nodes close to each other: pendulum A (node 1) is stabilized via a controller
on node 2.
Results. Figure 2.11 shows control performance and radio duty cycle for different
update intervals based on more than 12 500 data points. We see that a longer update
interval leads to larger pole angles and more movement of the cart. Indeed, the total
distance the cart moves during an experiment increases from 3.40 m for 20 ms to
9.78 m for 50 ms. This is consistent with the wider distribution of the control input
for longer update intervals. At the same time, the radio duty cycle decreases from
about 40 % for 20 ms to about 15 % for 50 ms.

2.5.5 Resilience to Message Losses
Next, we evaluate the impact of message losses, which are a well-known phenomenon
in wireless networks [134].
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Figure 2.11: Distribution of control performance metrics and average radio duty
cycle when remotely stabilizing a pendulum at different update intervals.

Setup. We use again the two-node setup from before, but now fix the update
interval at 20 ms. Both nodes intentionally drop messages in two different ways.
In a first experiment, they independently drop a received message according to
a Bernoulli process with given failure probability. In a second experiment, they
drop a certain number of consecutive messages every 10 s. This violates the i.i.d.
assumption and allows us to evaluate the robustness of our control design.
Results. Figure 2.12a and Figure 2.12b show results for varying i.i.d. Bernoulli
message loss rates. The control performance decreases for higher loss rates, but the
pendulum can be stabilized even at a loss rate of 75 %. One reason for this is the
short update interval. For example, losing 50 % of the messages at an update interval
of 20 ms is comparable to an update interval of 40 ms without any losses, which is
enough to stabilize the pendulums as we know from the previous experiment.

To study the impact of correlated message losses, we test different burst lengths.
Figure 2.12c shows the pole angle for a burst length of 40 consecutively lost messages,
with the right plot zooming into the time around the second burst phase. No control
inputs are received during a burst, and depending on the state of the pendulum and
the control input right before a burst, the impact of a burst may be very different
as visible in Figure 2.12c. The magnified plot shows that the pole angle diverges
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magnifies the second burst.

Figure 2.12: Control performance when remotely stabilizing one pendulum under
artificially injected message loss, for i.i.d. Bernoulli losses (a,b) and for longer bursts
of multiple consecutive losses (c).

from around 0° with increasing speed. As soon as the burst ends, the control input
rises to its maximum value of 10 V to bring the pendulum back to a non-critical
state, which usually takes 1-2 s.

2.6 Conclusions

In this chapter we have presented a CPS design that enables, for the first time,
fast closed-loop control over multi-hop low-power wireless networks with update
intervals of 20-50 ms. Other existing solutions for feedback control over wireless are
either limited to the single-hop case or to systems with slow dynamics, where update
intervals of several seconds are sufficient. Through a tight co-design approach, we
tame network imperfections and take the resulting properties of the communication
network into account in the control design. This enables to formally prove closed-loop
stability of the entire CPS. Experiments on a novel cyber-physical testbed with
multiple physical systems further demonstrate the applicability, versatility, and
robustness of our design. By demonstrating how to close feedback loops quickly and
reliably over multiple wireless hops, this chapter is an important stepping stone
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toward realizing the CPS vision.



Chapter 3

Saving Communication through Predictive
Triggering

In the last chapter, we demonstrated feasibility of feedback control over low-power
wireless networks. But communication was running at the highest, periodic rates that
the network was able to support. To enable resource savings, we will now present
event-triggered methods that only communicate if needed. Existing approaches
typically instantaneously decide, whether communication is necessary, thus, there is
no time for the communication system to reschedule resources. In contrast to that,
we will present a framework that in adavance decides about future communication
needs.

3.1 Introduction

In this chapter, we will consider state estimation and control problems for distributed
CPSs as discussed in Section 2.4.4. Figure 3.1 shows an abstraction of multiple
CPSs connected over a communication network. We assume a network that provides
many-to-all communication, i.e., a network as the one presented in the previous
chapter.

Advantages and challenges of using wireless networks instead of wires to connect
multiple agents have already been discussed. While the general feasibility of such
approaches has been demonstrated in the previous chapter, one challenge remains
open. Because the network bandwidth is shared by multiple entities, each agent
should use the communication resource only when necessary. Developing such
resource-aware control methods is the focus of this chapter. This is in contrast to
traditional feedback control, where data transmission typically happens periodically
at a priori fixed update rates.

Owing to the shortcomings of traditional control, event-triggered methods for
state estimation and control have emerged since pioneering work at the beginning of
the century [56, 135]. The key idea of event-triggered approaches is to apply feedback
only upon certain events indicating that transmission of new data is necessary (e.g.,

35
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Figure 3.1: Abstraction of multiple CPSs connected over a communication network.
Each System is composed of Dynamics representing its physical entity and an Agent
representing its algorithm unit. Dynamics and Agent are interconnected via sensors
(S) and actuators (A). The Network connects all systems.

a control error passing a threshold level, or estimation uncertainty growing too
large). Core research questions concerning the design of the event triggering laws,
which decide when to transmit data, and the associated estimation and control
algorithms with stability and performance guarantees have been solved in recent
years (see [45, 46, 48, 51] for overviews).

This chapter builds on a framework for distributed event-triggered state es-
timation (DETSE) developed in prior work [60, 61, 63, 64], which is applied to
resource-aware control as in Figure 3.1. The key idea of DETSE is to employ
model-based predictions of other systems to avoid the need for continuous data
transmission between the agents. Only when the model-based predictions become
too inaccurate (e.g., due to a disturbance or accumulated error), an update is sent.
Figure 3.2 represents one agent of the overall system in Figure 3.1 and depicts the
key components of the DETSE architecture:

• Local control: Each agent makes local control decisions for its actuator; for
coordinated action across the network, it also needs information from other
agents in addition to its local sensors.

• Prediction of other agents: State estimators and predictors (e.g., of Kalman
filter type) are used to predict the states of all, or a subset of all agents, based
on agents’ dynamics models; these predictions are reset (or updated) when
new data is received from the other agents.

• Event trigger: Decides when an update is sent to all agents. For this purpose, the
local agent implements a copy of the predictor of its own behavior (Prediction
System i) to replicate locally the information the other agents have about
itself. The event trigger compares the prediction with the local state estimate:
the current state estimate is transmitted to other agents only if the prediction
is not sufficiently accurate.
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Figure 3.2: Algorithmic components implemented on each agent i = 1, . . . , N of the
control system in Figure 3.1. Agent i’s control decision is based on local information
(State Estimation i) and predictions of all (or a subset of) other systems (Prediction
System 1 to N). Each agent sends an update (Event Trigger) to all other agents
whenever the prediction of its own state (Prediction System i) deviates too far from
the truth, so that predictions can be reset (R).

Key benefits of this architecture are: each agent has all relevant information available
for coordinated decision making, but inter-agent communication is limited to the
necessary instants (whenever model-based predictions are not good enough).

Experimental studies [60, 63] demonstrated that DETSE can achieve significant
communication savings, which is inline with many other studies in event-triggered
estimation and control. The research community has had remarkable success in
showing that the number of samples in feedback loops can be reduced significantly
as compared to traditional time-triggered designs, which can be translated into
increased battery life [109] in wireless sensor systems, for example. Despite these
successes, better utilization of shared communication resources has typically not
been demonstrated. A fundamental problem of most event-triggered designs (incl.
DETSE) is that they make decisions about whether a communication is needed
instantaneously. This means that the resource must be held available at all times in
case of a positive triggering decision. Conversely, if a triggering decision is negative,
the reserved slot remains unused because it cannot be reallocated to other users
immediately.

In order to translate the reduction in average sampling rates to better actual
resource utilization, it is vital that the event-triggered system is able to predict
resource usage ahead of time, rather than requesting resources instantaneously. This
allows the processing or communication system to reconfigure and make unneeded
resources available to other users or set to sleep for saving energy. Developing such
predictive triggering laws for DETSE and their use for resource-aware control are
the main objectives of this chapter.
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Contributions

This chapter proposes a framework for resource-aware control based on DETSE.
The main contributions are summarized as follows:

1. Proposal of a Bayesian decision framework for deriving predictive triggering
mechanisms, which provides a new perspective on the triggering problem in
estimation;

2. Derivation of two novel triggers from this framework: the self trigger, which
predicts the next triggering instant based on information available at a current
triggering instant; and the predictive trigger, which predicts triggering for a
given future horizon of M steps;

3. Demonstration and comparison of the proposed triggers in experiments on an
inverted pendulum testbed; and

4. Simulation study of a multi-vehicle system.

The Bayesian decision framework extends previous work [49] on event trigger
design to the novel concept of predicting trigger instants. The proposed self trigger
is related to the concept of variance-based triggering [61], albeit this concept has
not been used for self triggering before. To the best of the authors’ knowledge,
predictive triggering is a completely new concept in both event-triggered estimation
and control. Predictive triggering is shown to reside between the known concepts of
event triggering and self triggering.

3.2 Fundamental Triggering Problem

In this section, we formulate the predictive triggering problem that each agent
in Figure 3.2 has to solve, namely predicting when local state estimates shall be
transmitted to other agents. We consider the setup in Figure 3.3, which has been
reduced to the core components required for the analysis in subsequent sections.
Agent i, called sensor agent, sporadically transmits data over the network to agent
j. Agent j here stands representative for any of the agents that require information
from agent i. Because agent j can be at a different location, it is called remote agent
here. We next introduce the components of Figure 3.3 and then make the predictive
triggering problem precise.

3.2.1 Process dynamics
We consider each agent i to be governed by dynamics as described in (1.3) and (1.4),

xi(k) = Aix
i(k − 1) +Biu

i(k − 1) + vi(k − 1) (3.1)
yi(k) = Cix

i(k) + wi(k), (3.2)
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Figure 3.3: Predictive triggering problem. The sensor agent i runs a local State
Estimator and transmits its estimate x̂i(k) to the remote agent j in case of a positive
triggering decision (γi(k) = 1). The predictive trigger computes the triggering decisions
(γi(k + M) ∈ {0, 1}) M steps ahead of time. This information can be used by the
network to allocate resources. Local control (cf. Figure 3.2) is omitted here for clarity,
but treated in the analysis.

where xi(0) is a mutually independent random variable with PDF N (xi(0); x̄i, Xi).
Equations (3.1) and (3.2) represent decoupled agents’ dynamics, which we con-

sider in this work (cf. Figure 3.1). Agents will be coupled through their inputs (see
Section 3.2.3 below). While the results are developed herein for the time-invariant
dynamics (3.1), (3.2) to keep notation uncluttered, they readily extend to the linear
time-variant case (i.e., Ai, Bi, Ci, Qi, and Ri being functions of time k). Such a
problem is discussed in Section 3.8.

The sets of all measurements and inputs up to time k are denoted by Yi(k) :=
{yi(1), yi(2), . . . , yi(k)} and U i(k) := {ui(1), ui(2), . . . , ui(k − 1)}, respectively.

3.2.2 State estimation
The local state estimator on agent i has access to all measurements Yi(k) and
inputs U i(k) (cf. Figure 3.3). The Kalman filter (KF) is the optimal Bayesian
estimator in this setting, [136]; it recursively computes the exact posterior PDF
f(xi(k)|Yi(k),U i(k)). The KF recursion is

x̂i(k|k − 1) = Aix̂
i(k − 1) +Biu

i(k − 1) (3.3)
P i(k|k − 1) = AiP

i(k − 1)AT
i +Qi =: V io (P i(k − 1)) (3.4)

Li(k) = P i(k|k − 1)CT
i (CiP i(k|k − 1)CT

i +Ri)−1 (3.5)
x̂i(k) = x̂i(k|k − 1) + Li(k)(yi(k)− Cix̂i(k|k − 1)) (3.6)
P i(k) = (I − Li(k)Ci)P i(k|k − 1). (3.7)

where f(xi(k)|Yi(k−1),U i(k)) = N (xi(k); x̂i(k|k − 1), P i(k|k − 1)), f(xi(k)|Yi(k),
U i(k)) = N (xi(k); x̂i(k), P i(k)), and the short-hand notation x̂i(k) = x̂i(k|k) and
P i(k) = P i(k|k) is used for the posterior variables. In (3.4), we introduced the
short-hand notation V io for the open-loop variance update for later reference. We
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shall also need the M -step ahead prediction of the state (M ≥ 0), whose PDF is
given by [136, p. 111]

f(xi(k +M)|Yi(k),U i(k +M)) = N (xi(k +M); x̂i(k +M |k), P i(k +M |k)),
(3.8)

with mean and variance obtained by the open-loop KF iterations (3.3), (3.4),
i.e., x̂i(k +M |k) = AMi x̂

i(k) +
∑M
m=1A

M−m
i Bui(k +m− 1) and P i(k +M |k) =

(V io ◦ · · · ◦ V io )(P i(k)), where ‘◦’ denotes composition. Finally, the error of the KF is
defined as

êi(k) := xi(k)− x̂i(k). (3.9)

3.2.3 Control
Because we are considering coordination of multiple systems, the i’s control input
may depend on the prediction of the other systems (cf. Figure 3.2). We thus consider
a control policy

ui(k − 1) = Fix̂
i(k − 1) +

∑
j∈NN\{i}

Fj x̌
j(k − 1) (3.10)

where the local KF estimate x̂i(k) is combined with predictions x̌j(k) of the other
agents (to be made precise below), and NN denotes the set of all integers {1, . . . , N}.
For coordination schemes where not all agents need to be coupled, some Fj may be
zero. Then, these states do not need to be predicted.

It will be convenient to introduce the auxiliary variable ξi(k)=
∑
j∈NN\{i}Fj x̌

j(k);
(3.10) thus becomes

ui(k − 1) = Fix̂
i(k − 1) + ξi(k − 1). (3.11)

3.2.4 Communication network
Communication between agents occurs over a bus network that connects all systems
with each other. In particular, we assume that data (if transmitted) can be received
by all agents that care about state information from the sending agent:

Assumption 3.1. Data transmitted by one agent can be received by all other
agents.

Such bus-like networks are common, for example, in automation industry in
form of wired fieldbus systems [137], but are also feasible for wireless networks as
shown in the previous chapter. For the purpose of developing the triggers, we further
abstract communication to be ideal:

Assumption 3.2. Communication between agents is without delay and message
loss.

This assumption is dropped later in the multi-vehicle simulation.
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3.2.5 State prediction
The sensor agent in Figure 3.3 sporadically communicates its local estimate x̂i(k)
to the remote estimator, which, at every step k, computes its own state estimate
x̌i(k) from the available data via state prediction. We denote by γi(k) ∈ {0, 1} the
decision taken by the sensor about whether an update is sent (γi(k) = 1) or not
(γi(k) = 0). For later reference, we denote the set of all triggering decisions until k
by Γi(k) := {γi(1), γi(2), . . . , γi(k)}.

The state predictor on the remote agent (cf. Figure 3.3) uses the following
recursion to compute x̌i(k), its remote estimate of xi(k):

x̌i(k) =
{
Aix̌

i(k − 1) +Biǔ(k − 1) if γi(k) = 0
x̂i(k) if γi(k) = 1;

(3.12)

that is, at times when no update is received from the sensor, the estimator predicts
its previous estimate according to the process model (3.1) and prediction of the
input (3.11) by

ǔi(k − 1) = Fix̌
i(k − 1) + ξi(k − 1). (3.13)

Implementing (3.13) thus requires the remote agent to run predictions of the form
(3.12) for all other systems m that are relevant for computing ξi(k − 1). This is
feasible as an agent can broadcast state updates (for γi(k) = 1) to all other systems
via the bus network. We emphasize that ξi(k − 1), the part of the input ui(k − 1)
that corresponds to all other agents, is known exactly on the remote estimator, since
updates are sent to all agents connected to the network synchronously. Hence, the
difference between the actual input (3.11) and predicted input (3.13) stems from a
difference in x̂i(k − 1) and x̌i(k − 1).

With (3.13), the prediction (3.12) then becomes

x̌i(k) =
{
Āix̌

i(k − 1) +Biξ
i(k − 1) if γi(k) = 0

x̂i(k) if γi(k) = 1;
(3.14)

where Āi := Ai + BiFi denotes the closed-loop state transition matrix of agent i.
The estimation error at the remote agent, we denote by

ei(k) := xi(k)− x̌i(k). (3.15)

A copy of the state predictor (3.14) is also implemented on the sensor agent to
be used for the triggering decision (cf. Figure 3.3).

Finally, we comment how local estimation quality can possibly be further im-
proved in certain applications.

Remark 3.1. In (3.14), agent j makes a pure state prediction about agent i’s state
in case of no communication from agent i (γi(k) = 0). If agent j has additional
local sensor information about agent i’s state, it may employ this by combining
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the prediction step with a corresponding measurement update. This may help to
improve estimation quality (e.g., obtain a lower error variance). In such a setting,
the triggers developed herein can be interpreted as ‘conservative’ triggers that take
only prediction into account.

Remark 3.2. Under the assumption of perfect communication, the event of not
receiving an update (γi(k) = 0) may also contain information useful for state estima-
tion (also known as negative information [65]). Here, we disregard this information
in the interest of a straightforward estimator implementation (see [49] for a more
detailed discussion).

3.2.6 Problem formulation
The main objective of this chapter is the development of principled ways for predicting
future triggering decisions. In particular, we shall develop two concepts:

1. predictive triggering: at every step k and for a fixed horizon M>0, γi(k +M)
is predicted, i.e., whether or not communication is needed at M steps in future;
and

2. self triggering: the next trigger is predicted at the time of the last trigger.

In the next sections, we develop these triggers for agent i shown in Figure 3.3,
which is representative for any one agent in Figure 3.1. Because we will thus discuss
estimation, triggering, and prediction solely for agent i (cf. Figure 3.3), we drop the
index ‘i’ to simplify notation. Agent indices are re-introduced in Section 3.7, when
multiple agents are again considered.

For ease of reference, key variables from this and later sections are summarized
in Table 3.1.

3.3 Triggering Framework

To develop a framework for making predictive triggering decisions, we extend the
approach from [49], where triggering is formulated as a one-step optimal decision
problem trading off estimation and communication cost. While this framework was
used in [49] to re-derive existing event triggers (summarized in Section 3.3.1), we
extend the framework herein to yield predictive and self triggering (Section 3.3.2
and 3.3.3).

3.3.1 Decision framework for event triggering
The sensor agent (cf. Figure 3.3) makes a decision between using the communication
channel (and thus paying a communication cost C(k)) to improve the remote esti-
mate, or to save communication, but pay a price in terms of a deteriorated estimation
performance (captured by a suitable estimation cost E(k)). The communication
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Table 3.1: Summary of main variables used in this chapter. The agent index ‘i’ is
dropped for all variables in Section 3.3 to 3.5.

NN Set of integers {1, . . . , N}
Ai, Bi, Ci, Qi, Ri Dynamic system parameters
Fi Control gain corresponding to agent i’s state
xi(k) State of agent i, eq. (3.1)
x̂i(k) Kalman filter (KF) estimate (3.6)
x̌i(k) Remote state estimate (3.14)
êi(k) KF estimation error (3.9)
ei(k) Remote estimation error (3.15)
γi(k) Communication decision (1=communicate, 0=not)
Γi(k) Set of communication decisions {γi(1), . . . , γi(k)}
X|γ(k)=0, X|γ(k)=1 Expression X evaluated for resp. γ(k) = 0, γ(k) = 1
Yi(k) Set of all measurements on agent i until time k
U i(k) Set of all inputs on agent i until time k
x̃(k), ẽ(k), etc. Collection of corresponding variables for all agents
C(k) Communication cost (‘i’ dropped)
E(k) Estimation cost (‘i’ dropped)
M Prediction horizon (‘i’ dropped)
`(k) Last triggering time (‘i’ dropped)
κ(k) Time of last nonzero elem. in Γ(k +M) (‘i’ dropped)
∆ Number of steps from κ(k − 1) to k+M (cf. Lem. 3.2)

cost C(k) is application specific and may be associated with the use of bandwidth
or energy, for example. We assume C(k) is known for all times k. The estimation
cost E(k) is used to measure the discrepancy between the remote estimation error
e(k) without update (γ(k) = 0), which we write as e(k)|γ(k)=0, and with update,
e(k)|γ(k)=1. Here, we choose

E(k) = e(k)Te(k)|γ(k)=0 − e(k)Te(k)|γ(k)=1 (3.16)

comparing the difference in quadratic errors.
Formally, the triggering decision can then be written as

min
γ(k)∈{0,1}

γ(k)C(k) + (1− γ(k))E(k). (3.17)

Ideally, one would like to know e(k)|γ(k)=0 and e(k)|γ(k)=1 exactly when computing
the estimation cost in order to determine whether it is worth paying the cost for
communication. However, e(k) cannot be computed since the true state is generally
unknown (otherwise we would not have to bother with state estimation in the first
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place). As is proposed in [49], we consider instead the expectation of E(k) conditioned
on the data D(k) that is available by the decision making agent. Formally,

min
γ(k)∈{0,1}

γ(k)C(k) + (1− γ(k)) E[E(k)|D(k)] (3.18)

which directly yields the triggering law

at time k: γ(k) = 1 ⇔ E[E(k)|D(k)] ≥ C(k). (3.19)

In [49], this framework was used to re-derive common event-triggering mechanisms
such as innovation-based triggers [60, 67], or variance-based triggers [61], depending
on whether the current measurement y(k) is included in D(k), or not.

Remark 3.3. The choice of quadratic errors in (3.16) is only one possibility for
measuring the discrepancy between e(k)|γ(k)=0 and e(k)|γ(k)=1 and quantifying
estimation cost. It is motivated from the objective of keeping the squared estimation
error small, a common objective in estimation. The estimation cost in (3.16) is
positive if the squared error e(k)Te(k)|γ(k)=0 (i.e., without communication) is larger
than e(k)Te(k)|γ(k)=1 (with communication), which is to be expected on average.
Moreover, the quadratic error is convenient for the following mathematical analysis.
Finally, the scalar version of (3.16) was shown in [49] to yield common known
event triggers. However, other choices than (3.16) are clearly conceivable, and the
subsequent framework can be applied analogously.

3.3.2 Predictive triggers

This framework can directly be extended to derive a predictive trigger as formulated
in Section 3.2.6, which makes a communication decision M steps in advance, where
M>0 is fixed by the designer. Hence, we consider the future decision on γ(k +M)
and condition the future estimation cost E(k+M) on D(k) = {Y(k),U(k)}, the data
available at the current time k. Introducing Ē(k+M |k) := E[E(k+M)|Y(k),U(k)],
the optimization problem (3.17) then becomes

min
γ(k+M)∈{0,1}

γ(k +M)C(k +M) + (1− γ(k +M))Ē(k +M |k) (3.20)

which yields the predictive trigger (PT):

at time k: γ(k +M) = 1 ⇔ Ē(k +M |k) ≥ C(k +M). (3.21)

In Section 3.4, we solve Ē(k + M |k) = E[E(k + M)|Y(k),U(k)] for the choice of
error measure (3.16) to obtain an expression for the trigger (3.21) in terms of the
problem parameters.
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3.3.3 Self triggers

A self trigger computes the next triggering instant at the time when an update is
sent. A self triggering law is thus obtained by solving (3.21) at time k = `(k) for the
smallest M such that γ(k+M) = 1. Here, `(k) ≤ k denotes the last triggering time;
in the following, we drop ‘k’ when clear from context and simply write `(k) = `.
Formally, the self trigger (ST) is then given by:

at time k=`: find smallest M≥1 s.t. Ē(`+M |`) ≥ C(`+M),
set γ(`+ 1)= . . .=γ(`+M − 1)=0, γ(`+M)=1. (3.22)

While both the PT and the ST compute the next trigger ahead of time, they
represent two different triggering concepts. The PT (3.21) is evaluated at every
time step k with a given prediction horizon M , whereas the ST (3.22) needs to be
evaluated at k = ` only and yields (potentially varying) M . That is, M is a fixed
design parameter for the PT, and computed with the ST. Which of the two should
be used depends on the application (e.g., whether continuous monitoring of the
error signal is desirable). The two types of triggers will be compared in simulations
and experiments in subsequent sections.

3.4 Predictive Trigger and Self Trigger

Using the triggering framework of the previous section, we derive concrete instances
of the self and predictive trigger for the squared estimation cost (3.16).

To this end, we first determine the PDF of the estimation errors.

3.4.1 Error distributions

In this section, we compute the conditional error PDF f(e(k +M)|Y(k),U(k)) for
the cases γ(k +M) = 0 and γ(k +M) = 1, which characterize the distribution of
the estimation cost E(k +M) in (3.16). These results are used in the next section
to solve for the triggers (3.21) and (3.22).

Both triggers (3.21) and (3.22) predict the communication decisions M steps
ahead of the current time k. Hence, in both cases, the set of triggering decisions
Γ(k +M) can be computed from the data Y(k), U(k). In the following, it will be
convenient to denote the time index of the last nonzero element in Γ(k +M) (i.e.,
the last planned triggering instant) by κ(k); for example, for Γ(10) = {. . . , γ(8) =
1, γ(9) = 1, γ(10) = 0}, k = 6, and M = 4, we have κ(6) = 9. It follows that
κ(k) ≥ `(k), with equality κ(k) = `(k) if no trigger is planned for the next M steps.

The following two lemmas state the sought error PDFs.
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Lemma 3.1. For γ(k+M) = 1, the predicted error e(k+M) conditioned on Y(k),
U(k) is normally distributed with1

f(e(k +M)|Y(k),U(k)) = N (e(k +M); êc(k +M |k), P c(k +M |k))
= N (e(k +M); 0, P (k +M)). (3.23)

Proof. See Appendix B.1.

Lemma 3.2. For γ(k+M) = 0, the predicted error e(k+M) conditioned on Y(k),
U(k) is normally distributed1

f(e(k +M)|Y(k),U(k)) = N (e(k +M); ênc(k +M |k), P nc(k +M |k)) (3.24)

with mean and variance given as follows.
Case (i): k > κ(k − 1) (i.e., no trigger planned in prediction horizon)

ênc(k +M |k) = ĀM
(
x̂(k)− Āk−`x̂(`)−

k−∑̀
m=1

Āk−`−mBξ(`+m− 1)
)

(3.25)

P nc(k +M |k) = P (k +M |k) + Ξ(k,M) (3.26)

where

Ξ(k,M) :=
M−1∑
m=1

G(M −m− 1)L(k +m)P̃ (k +m)L(k +m)TG(M −m− 1)T,

(3.27)
P̃ (k) := CAP (k)ATCT + CQCT +R, (3.28)
G(m) := AG(m− 1) +BFĀm, G(0) := BF, (3.29)

L(k) is the KF gain (3.5), and P (k +M |k) is the KF prediction variance in (3.8).
Case (ii): k ≤ κ(k − 1) (i.e., trigger planned in horizon)

ênc(k +M |k) = 0 (3.30)
P nc(k +M |k) = P (κ+ ∆|κ) + Ξ(κ,∆) (3.31)

where κ is used as shorthand for κ(k − 1), and ∆ := k +M − κ(k − 1).

Proof. See Appendix B.2.

A simpler formula for Lemma 3.2 can be given for the case of an autonomous
system (3.1) without input:

1The superscripts ‘c’ and ‘nc’ denote the cases ‘communication’ (γ = 1) and ‘no communication’
(γ = 0).
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Corollary 3.1. For (3.1) with Biui(k − 1) = 0, (3.24) holds for case (i) with

ênc(k +M |k) = AM (x̂(k)−Ak−`x̂(`)) (3.32)
P nc(k +M |k) = P (k +M |k) (3.33)

and for case (ii) with

ênc(k +M |k) = 0 (3.34)
P nc(k +M |k) = P (κ+ ∆|κ). (3.35)

Proof. Taking B = 0 yields Ā = A and Ξ(k,M) = 0 and thus the result.

We thus conclude that the extra term Ξ(k,M) in the variance (3.26) stems from
additional uncertainty about not exactly knowing future inputs.

3.4.2 Self trigger

The ST law (3.22) is stated for a general estimation error Ē(` + M |`). With the
preceding lemmas, we can now solve for Ē(`+M |`) and obtain the concrete self
triggering rule for the quadratic error (3.16).

Proposition 3.1. For the quadratic error (3.16), the self trigger (ST) (3.22) be-
comes:

find smallest M ≥ 1 s.t.
trace(P (`+M |`) + Ξ(`,M)− P (`+M)) ≥ C(`+M);
set γ(`+ 1)= . . .=γ(`+M − 1)=0, γ(`+M)=1. (3.36)

Proof. Applying Lemma 3.1 and Lemma 3.2 (for k = ` = κ(k − 1)), we obtain

Ē(`+M |`) = E
[
e(`+M)Te(`+M)|γ(`+M)=0

∣∣Y(`),U(`)
]

− E
[
e(`+M)Te(`+M)|γ(`+M)=1

∣∣Y(`),U(`)
]

= ‖ênc(`+M |`)‖2 − ‖êc(`+M |`)‖2 + trace(P nc(`+M |`)− P c(`+M |`))
= trace(P (`+M |`) + Ξ(`,M)− P (`+M)) (3.37)

where E[eTe] = ‖E[e]‖2 + trace(Var[e]) with ‖·‖ the Euclidean norm was used.

The self triggering rule is intuitive: a communication is triggered when the
uncertainty of the open-loop estimator (prediction variance P (`+M |`) + Ξ(`,M))
exceeds the closed-loop uncertainty (KF variance P (`+M)) by more than the cost
of communication. The estimation mean does not play a role here, since it is zero in
both cases for k = κ.
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3.4.3 Predictive trigger
Similarly, we can employ lemmas 3.1 and 3.2 to compute the predictive trigger
(3.21).

Proposition 3.2. For the quadratic error (3.16), the predictive trigger (PT) (3.21)
becomes, for k > κ(k − 1),

γ(k +M) = 1 ⇔
∥∥ĀM (x̂(k)− Āx̌(k − 1)−Bξ(k − 1))

∥∥2

+ trace
(
P (k +M |k) + Ξ(k,M)− P (k +M)

)
≥ C(k +M) (3.38)

and, for k ≤ κ(k − 1),

γ(k +M) = 1 ⇔ trace
(
P (κ+ ∆|κ) + Ξ(κ,∆)− P (κ+ ∆)

)
≥ C(κ+ ∆). (3.39)

with ∆ as defined in Lemma 3.2.

Proof. For k > κ(k − 1) (i.e., the last scheduled trigger occurred in the past), we
obtain from lemmas 3.1 and 3.2

Ē(k +M |k) =
∥∥ĀM (x̂(k)−Ax̌(k − 1)−Bξ(k − 1))

∥∥2

+ trace
(
P (k +M |k) + Ξ(k,M)− P (k +M)

)
, (3.40)

where we used Āk−`x̂(`) +
∑k−`
m=1 Ā

k−`−mBξ(`+m− 1) = Ax̌(k − 1) +Bξ(k − 1),
which follows from the definition of the remote estimator (3.14) with γ(k) = 0 for
k > `.

Similarly, for k ≤ κ(k−1), we obtain Ē(k+M |k) = trace
(
P (κ+∆|κ)+Ξ(`,∆)−

P (κ+ ∆)
)
.

Similar to the ST (3.36), the second term in the PT (3.38) relates the M -step
open-loop prediction variance P (k + M |k) + Ξ(k,M) to the closed-loop variance
P (k +M). However, now the reference time is the current time k, rather than the
last transmission `, because the PT exploits data until k. In contrast to the ST,
the PT also includes a mean term (first term in (3.38)). When conditioning on new
measurements Y(k) (k > `), the remote estimator (which uses only data until `) is
biased; that is, the mean (3.25) is non-zero. The bias term captures the difference
in the mean estimates of the remote estimator (Ax̌(k − 1) +Bξ(k − 1)) and the KF
(x̂(k)), both predicted forward by M steps. This bias contributes to the estimation
cost (3.38).

The rule (3.39) corresponds to the case where a trigger is already scheduled
to happen at time κ in future (within the horizon M). Hence, it is clear that the
estimation error will be reset at κ, and from that point onward, variance predictions
are used in analogy to the ST (3.36) (` replaced with κ, and the horizon M with
∆). This trigger is independent of the data Y(k), U(k) because the error at the
future reset time κ is fully determined by the distribution (3.23), independent of
Y(k), U(k).
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3.4.4 Discussion
To obtain insight into the derived PT and ST, we next analyze and compare their
structure. To focus on the essential triggering behavior and simplify the discussion,
we consider the case without inputs (Biui(k − 1) = 0 in (3.1)). We also compare to
an event trigger (ET), which is obtained from the PT (3.38) by setting M = 0:

γ(k) = 1 ⇔ Ē(k|k) = ‖x̂(k)−Ax̌(k − 1)‖2 ≥ C(k). (3.41)

The trigger directly compares the two options at the remote estimator, x̂(k) and
Ax̌(k− 1). To implement the ET, communication must be available instantaneously
if needed.

The derived rules for ST, PT, and ET have the same threshold structure

γ(k +M) = 1 ⇔ Ē(k +M |k) ≥ C(k +M) (3.42)

where the communication cost C(k +M) corresponds to the triggering threshold.
The triggers differ in the expected estimation cost Ē(k +M |k). To shed light on
this difference, we introduce

Ēmean(k,M) :=
∥∥AM (x̂(k)−Ax̌(k − 1))

∥∥2 (3.43)
Ēvar(k,M) := trace(P (k +M |k)−P (k +M)). (3.44)

With this, the triggers ST (3.36), PT (3.38), (3.39), and ET (3.41) are given by
(3.42) with

Ē(k + 0|k) = Ēmean(k, 0),M = 0 (ET) (3.45)
Ē(k +M |k) = Ēmean(k,M) + Ēvar(k,M) (PT), k > κ (3.46)
Ē(k +M |k) = Ēvar(κ,∆) (PT), k ≤ κ (3.47)
Ē(`+M |`) = Ēvar(`,M) (ST). (3.48)

Hence, the trigger signals are generally a combination of the ‘mean’ signal (3.43)
and the ‘variance’ signal (3.44). Noting that the mean signal (3.43) depends on
real-time measurement data Y(k) (through x̂(k)), while the variance signal (3.44)
does not, we can characterize ET and PT as online triggers, while ST is an offline
trigger. This reflects the intended design of the different triggers. ST is designed to
predict the next trigger at the time ` of the last triggering, without seeing any data
beyond `. This allows the sensor to go to sleep in-between triggers, for example. ET
and PT, on the other hand, continuously monitor the sensor data to make more
informed transmit decisions (as shall be seen in the following comparisons).

While ET requires instantaneous communication, which is limiting for online
allocation of communication resources, PT makes the transmit decision M ≥ 1
steps ahead of time. ET compares the mean estimates only (cf. (3.45)), while PT
results in a combination of mean and variance signal (cf. (3.46)). If a transmission is



50 Saving Communication through Predictive Triggering

already scheduled for κ(k − 1) ≥ k, PT resorts to the ST mechanism for predicting
beyond κ(k − 1); that is, it relies on the variance signal only (cf. (3.47)).

While ST can be understood as an open-loop trigger ((3.48) can be computed
without any measurement data), ET clearly is a closed-loop trigger requiring real-
time data Y(k) for the decision on γ(k). PT can be regarded as an intermediate
scheme exploiting real-time data and variance-based predictions. Accordingly, the
novel predictive triggering concept lies between the known concepts of event and
self triggering.

The ST is similar to the variance-based triggers proposed in [61]. Therein, it
was shown for a slightly different scenario (transmission of measurements instead of
estimates) that event triggering decisions based on the variance are independent
of any measurement data and can hence be computed off-line. Similarly, when
assuming that all problem parameters A, C, Q, R in (3.1), (3.2) are known a priori,
(3.36) can be pre-computed for all times. However, if some parameters only become
available during operation (e.g., the sensor accuracy R(k)), the ST also becomes an
online trigger.

For the case with inputs (Biui(k − 1) 6= 0 in (3.1)), the triggering behavior is
qualitatively similar. The mean signal (3.43) will include the closed-loop dynamics Ā
and the input ξ(k − 1) corresponding to other agents, and the variance signal (3.44)
will include the additional term Ξ(k,M) accounting for the additional uncertainty
of not knowing the true input.

3.5 Illustrative Example

To illustrate the behavior of the obtained PT and ST, we present a numerical
example. We study simulations of the stable, scalar, LTI system (3.1), (3.2) with:

Example 3.1. A = 0.98, B = 0 (no inputs), C = 1, Q = 0.1, R = 0.1, and
x̄(0) = X0 = 1.

3.5.1 Self trigger
We first consider the self trigger (ST). Results of the numerical simulation of the
event-triggered estimation system (cf. Figure 3.3) consisting of the local state
estimator (3.3)–(3.7), the remote state estimator (3.14), and the ST (3.36) with
constant cost C(k) = C = 0.6 are shown in Figure 3.4. The estimation errors of the
local and remote estimator are compared in the first graph. As expected, the remote
estimation error e(k) = x(k) − x̂(k) (orange) is larger than the local estimation
error ê(k) = x(k)− x̂(k) (blue). Yet, the remote estimator only needs 14 % of the
samples.

The triggering behavior is illustrated in the second graph showing the triggering
signals Ēmean (3.43), Ēvar (3.44), and Ē = Ēmean + Ēvar, and the bottom graph
depicting the triggering decision γ. Obviously, the ST entirely depends on the
variance signal Ēvar (orange, identical with Ē in black), while Ēmean = 0 (blue).
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Figure 3.4: Example 3.1 with self trigger (ST). TOP: KF estimation error ê =
x − x̂ (blue) and remote error e = x − x̂ (orange). MIDDLE: components of the
triggering signal Ēmean (3.43) (blue), Ēvar (3.44) (orange), the triggering signal
Ē = Ēmean+Ēvar (black, hidden), and the threshold C(k) = 0.6 (dashed). BOTTOM:
triggering decisions γ.

This reflects the previous discussion about the ST being independent of online
measurement data. The triggering behavior (the signal Ē and the decisions γ)
is actually periodic, which can be deduced as follows: the variance P (k) of the
KF (3.3)–(3.7) converges exponentially to a steady-state solution P̄ , [136]; hence,
the triggering law (3.36) asymptotically becomes trace(VMo (P̄ ) − P̄ ) ≥ C with
Vo(X) := AXAT +Q, and (3.22) thus has a unique solution M corresponding to
the period seen in Figure 3.4.

Periodic transmit sequences are typical for variance-based triggering on time-
invariant problems, which has also been found and formally proven for related
scenarios in [61, 68].

3.5.2 Predictive trigger

The results of simulating Example 3.1, now with the PT (3.38), (3.39), and prediction
horizon M = 2, are presented in Figure 3.5 for the cost C(k) = C = 0.6, and in
Figure 3.6 for C(k) = C = 0.25. Albeit using the same trigger, the two simulations
show fundamentally different triggering behavior: while the triggering signal Ē and
the decisions γ in Figure 3.5 are irregular, they are periodic in Figure 3.6.

Apparently, the choice of the cost C(k) determines the different behavior of the
PT. For C(k) = 0.6, the triggering decision depends on both, the mean signal Ēmean

and the variance signal Ēvar, as can be seen from Figure 3.5 (middle graph). Because
Ēmean is based on real-time measurements, which are themselves random variables
(3.2), the triggering decision is a random variable. We also observe in Figure 3.5
that the variance signal Ēvar is alone not sufficient to trigger a communication.
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Figure 3.5: Example 3.1 with predictive trigger (PT) and C(k) = 0.6. Coloring of
the signals is the same as in Figure 3.4. The triggering behavior is stochastic.
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Figure 3.6: Example 3.1 with predictive trigger (PT) and C(k) = 0.25. Coloring of
the signals is the same as in Figure 3.4. The triggering behavior is periodic.

However, when lowering the cost of communication C(k) enough, the variance
signal alone becomes sufficient to cause triggers. Essentially, triggering then happens
according to (3.39) only, and (3.38) becomes irrelevant. Hence, the PT resorts to
self triggering behavior for small enough communication cost C(k). That is, the
PT undergoes a phase transition for some value of C(k) from stochastic/online
triggering to deterministic/offline triggering behavior.

3.5.3 Estimation versus communication trade-off
Following the approach from [49], we evaluate the effectiveness of different triggers
by comparing their trade-off curves of average estimation error E versus average
communication C obtained from Monte Carlo simulations. In addition to the ST
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Figure 3.7: Trade-off between estimation error E and average communication C for
different triggering concepts applied to Example 3.1. Each point represents the average
from 50’000 Monte Carlo simulations, and the light error bars correspond to one
standard deviation.

(3.36) and the PT (3.38), (3.39), M = 2, we also compare against the ET (3.41).
The latter is expected to yield the best trade-off because it makes the triggering
decision at the latest possible time (ET decides at time k about communication at
time k).

The estimation error E is measured as the squared error e(k)2 averaged over
the simulation horizon (200 samples) and 50 000 simulation runs. The average
communication C is normalized such that C = 1 means γ(k) = 1 for all k, and C = 0
means no communication (except for one enforced trigger at k = 1). By varying
the constant communication cost C(k) = C in a suitable range, an E-vs-C curve is
obtained, which represents the estimation/communication trade-off for a particular
trigger. The results for Example 3.1 are shown in Figure 3.7.

Comparing the three different triggering schemes, we see that the ET is superior,
as expected, because its curve is uniformly below the others Also expected, the
ST is the least effective since no real-time information is available and triggers are
purely based on variance predictions. The novel concept of predictive triggering
can be understood as an intermediate solution between these two extremes. For
small communication cost C(k) (and thus relatively large communication C), the
PT behaves like the ST, as was discussed in the previous section and is confirmed
in Figure 3.7 (orange and black curves essentially identical for large C). When the
triggering threshold C(k) is relaxed (i.e., the cost increased), the PT also exploits
real-time data for the triggering decision (through (3.43)), similar to the ET. Yet,
the PT must predict the decision M steps in advance making its E-vs-C trade-off
generally less effective than the ET. In Figure 3.7, the curve for PT is thus between
ET and ST and approaches either one of them for small and large communication C.
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3.6 Hardware Experiments: Remote Estimation &
Feedback Control

Experimental results of applying the proposed PT and ST on an inverted pendulum
platform are presented in this section. We show that trade-off curves in practice are
similar to those in simulation (cf. Figure 3.7), and that the triggers are suitable for
feedback control (i.e., stabilizing the pendulum).

3.6.1 Experimental setup
As an experimental platform we use the cyber-physical testbed already introduced
in Section 2.5.1. Instead of a multi-hop network, the pendulum here is directly
connected to a standard laptop running Matlab/Simulink. Thus, characteristics of the
communication network to be investigated are implemented in the Simulink model.
The round time of the network is assumed to be 10 ms. For the PT the prediction
horizon is M=2. Thus, the communication network has 20 ms to reconfigure, which
is expected to be sufficient for fast protocols such as the one presented in the previous
chapter.

For stabilization we use an LQR with Q = 30I and R = I, with I the identity
matrix, which leads to stable balancing with slight motion of the cart.

3.6.2 Remote estimation
The first set of experiments investigates the remote estimation scenario as in
Figure 3.3. For this purpose, the pendulum is stabilized locally via the above
LQR, which runs at 1 ms and directly acts on the encoder measurements and their
derivatives obtained from finite differences. The closed-loop system thus serves as
the dynamic process in Figure 3.3 (described by equation (3.1)), whose state is to
be estimated and communicated via ET, PT, and ST to a remote location, which
could represent another agent from Figure 3.1.

The local State Estimator in Figure 3.3 is implemented as the KF (3.3)–(3.7) with
properly tuned matrices updated every 1 ms (at every sensor update). Triggering
decisions are made at the round time of the network (10 ms). Accordingly, state
predictions (3.14) are made every 10 ms (in Prediction System i in Figure 3.3).

Analogously to the numerical examples in Section 3.5, we investigate the
estimation-versus-communication trade-off achieved by ET, PT, and ST. As can be
seen in Figure 3.8, all three triggers lead to approximately the same curves. These
results are qualitatively different from those of the numerical example in Figure 3.7,
which showed notable differences between the triggers. Presumably, the reason
for this lies in the low-noise environment of this experiment. The main source of
disturbances is the encoder quantization, which is negligible. Therefore, the system
is almost deterministic, and predictions are very accurate. Hence, in this setting,
predicting future communication needs (PT, ST) does not involve any significant
disadvantage compared to instantaneous decisions (ET).
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Figure 3.8: Trade-off between averaged communication and the estimation error for
a pendulum experiment with low sensor noise. Each marker represents the mean of 10
experiments with the same communication cost. The variance is negligible and thus
omitted.
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Figure 3.9: Same experiment as in Figure 3.8, but with noisy sensors.

To confirm these results, we added zero-mean Gaussian noise with variance
5× 10−6 to the position and angle measurements. This emulates analog angle
sensors instead of digital encoders, and is representative for many sensors in practice
that involve stochastic noise. The results of this experiment are shown in Figure 3.9,
which depict the same qualitative difference between the triggers as was observed in
the numerical example in Figure 3.7.

3.6.3 Feedback control
The estimation errors obtained in Figure 3.8 are fairly small even with low com-
munication. Thus, we expect the estimates obtained with PT and ST also to be
suitable for feedback control, which we investigate here. In contrast to the setting
in Section 3.6.2, the LQR controller does not use the local state measurements
at the fast update interval of 1 ms, but the state predictions (3.14) instead. This
corresponds to the controller being implemented on a remote agent, which is relevant
for control of multiple CPSs as in Figure 3.1, where feedback loops are closed over a
resource-limited network.

Figures 3.10 and 3.11 show the experimental results of using PT and ST for
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Figure 3.10: Closing the feedback loop with the PT. The graphs show, from top to
bottom, the cart position s, the pendulum angle θ, and the obtained average commu-
nication γ̄, computed as a moving average over 1200 samples. The communication cost
was set to C(k) = C = 0.009.

feedback control. For these experiments, the weights of the LQR approach were
chosen as those suggested by the manufacturer in [138], which leads to a slightly
more robust controller. Both triggers are able to stabilize the pendulum well and
save around 80 % of communication.

In addition to disturbances inherent in the system, the experiments also include
impulsive disturbances on the input (impulse of 2 V amplitude and 500 ms duration
every 10 s), which we added to study the triggers’ behavior under deterministic
disturbances. In addition to stochastic noise, such disturbances are relevant in
many practical scenarios (e.g., a car braking, a wind gust on a drone). Under these
disturbances, a particular advantage of PT over ST becomes apparent. The ST is an
offline trigger which yields periodic communication (in this setting) that does not
react to the external disturbances. The PT, on the other hand, takes the current
error into account and is thus able to issue additional communication in case of
disturbances. As a result, the maximum angle of the pendulum stays around 0.03 rad
in magnitude for the PT, while it comes close to 0.04 rad for the ST.

3.7 Control with Multiple Agents

In the preceding sections, we addressed the problem posed in Section 3.2.6 for the
case of two agents. In this section, we make precise how these results can be used
for the scenario with multiple agents in Figure 3.1. Moreover, we sketch how the
resulting closed-loop dynamics can be analyzed when remote estimates are used for
feedback control.
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Figure 3.11: Closing the feedback loop with the ST. Same plots as in Figure 3.10.

Because we discuss multiple agents, we reintroduce the index ‘i’ to refer to an
individual agent i from here onward.

3.7.1 Multiple agents
The derivations for a pair of agents as in Figure 3.2 in the previous sections equally
apply to the scenario in Figure 3.1. Each agent implements the blocks from Figure 3.2:
State Estimation is given by the KF (3.3)–(3.7), Prediction by (3.14), Control by
(3.10), and the Event Trigger is replaced by either the ST (3.36) or the PT (3.38),
(3.39). In particular, each agent makes predictions for those other agents whose state
it requires for coordination. Whenever one agent transmits its local state estimate,
it is broadcast over the network and received by all agents that care about this
information, e.g., via many-to-all communication. In the considered scenario, the
dynamics of the systems are decoupled according to (3.1), (3.2) (cf. Figure 3.1), but
their action is coupled through the cooperative control (3.10).

In Section 3.8, a simulation study of a control problem with multiple agents is
discussed.

3.7.2 Closed-loop analysis
While the main object of study in this chapter are predictive and self triggering for
state estimation (cf. Figure 3.3), an important use of the algorithms is for feedback
control as in Figures fig:iotControlSchematic and 3.2. The general suitability of the
algorithms for feedback control has already been demonstrated in Section 3.6.3. As
for feedback control, analyzing the closed-loop dynamics (e.g., for stability) is often
of importance, we briefly outline here how this can be approached.
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The closed-loop state dynamics of agent i are obtained from (3.1) and (3.10),
and can be rewritten as

xi(k) = Aix
i(k − 1) +BiFix̂

i(k − 1) +
∑

j∈NN\{i}

BiFj x̌
j(k − 1) + vi(k − 1)

= Aix
i(k − 1) +BiFix

i(k − 1) +
∑

j∈NN\{i}

BiFjx
j(k − 1)

−BiFiêi(k − 1)−
∑

j∈NN\{i}

BiFje
j(k − 1) + vi(k − 1) (3.49)

where êi(k) is the KF estimation error (3.9) and ej(k) the remote estimation error
(3.15). The combined closed-loop dynamics of N systems with concatenated state
x̃T(k) = [(x1(k))T, (x2(k))T, . . . , (xN (k))T] can then be written as

x̃(k) = (Ã+ B̃F̃ )x̃(k − 1)− D̃˜̂e(k − 1)− (B̃F̃ − D̃)ẽ(k − 1) + ṽ(k − 1) (3.50)

where

Ã := diag(A1, . . . , AN ), B̃T :=
[
BT

1 . . . BT
N

]
,

D̃ := diag(B1F1, . . . , BNFN ), F̃ :=
[
F1 . . . FN

]
,

diag denotes block-diagonal matrix, and ˜̂e(k), ẽ(k), and ṽ(k) are the combined
vectors of all êi(k), ei(k), and vi(k) (i ∈ NN ), respectively. The ‘tilde’ notation
indicates variables that refer to the ensemble of all agents.

Equation (3.50) describes the closed-loop dynamics of N systems of Figure 3.1
that implement the control architecture in Figure 3.2; it can therefore be used to
deduce closed-loop system properties. The evolution of the complete state x(k) is
governed by the transition matrix Ã+ B̃F̃ and driven by three input terms: the KF
error ˜̂e(k − 1), the remote error ẽ(k − 1), and process noise ṽ(k − 1). Under mild
assumptions, the feedback matrix F̃ can be designed such that a stable transition
matrix Ã + B̃F̃ results (i.e., all eigenvalues with magnitude less than 1), which
implies that x̃(k) = (Ã + B̃F̃ )x̃(k − 1) is exponentially stable. Stability analysis
then amounts to showing that the input terms are well behaved and bounded
in a stochastic sense (e.g., bounded moments).2 While ṽ(k − 1) is Gaussian by
assumption (cf. Section 3.2.1), ˜̂e(k − 1) being Gaussian follows from standard KF
analysis [136] (cf. Section 3.2.2). Lemmas 3.2 and 3.1 can be instrumental to analyze
the distribution of ẽ(k − 1). However, the distribution of ẽ(k − 1) depends on the
chosen trigger, and its properties (e.g., bounded second moment) would have to be
formally shown, which is beyond the goals of this chapter.

2For example, if, in x̃(k) = (Ã+ B̃F̃ )x̃(k − 1) + z̃(k − 1), the input z̃(k) is uncorrelated and
Gaussian with bounded variance, then stability of Ã+ B̃F̃ implies bounded state variance (see,
e.g., [136, Sec. 4.3]).
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Figure 3.12: Schematic of vehicle platooning.

3.8 Simulation Study: Vehicle Platooning

To illustrate the scalability of the proposed triggers, we present a simulation study
of vehicle platooning. Autonomous driving and in particular platooning of vehicles
has already been motivated in Section 1.1. Platooning of autonomous vehicles has
been extensively studied in literature, e.g., for heavy-duty freight transport [1, 139].
It has been shown, that platooning leads to remarkable improvements in terms of
fuel consumption.

3.8.1 Model

We consider a chain of N vehicles (see Figure 3.12), which are modeled as unit
point masses (cf. [64, 140]). The state of each vehicle is its absolute position si and
velocity vi, and its acceleration ui is the control input. The control objectives are to
maintain a desired distance between the vehicles and track a desired velocity for the
platoon. For this study, we assume that every vehicle measures its absolute position.

The architecture of the vehicle platoon is as in Figure 3.1. To control the inter-
vehicle distances, communication between the vehicles is required. We thus implement
the control architecture given by Figure 3.2 with PT and ST to save communication.
We assume 100 ms as the sample time for the inter-vehicle communication. Here,
we consider the case where each vehicle transmits its local state information to all
other vehicles. Alternative architecture, where communication is only possible with
a subset of vehicles, are also conceivable in the considered scenario (see [139]), and
the PT and ST can be used for only the required communication links appropriately.

For our chosen setup, where each vehicle is only able to measure its own absolute
position, it is obvious that communication between vehicles is necessary to control
the inter-vehicle distance. However, even if local sensor measurements are available,
e.g., if every vehicle can measure the distance to the preceding vehicle via a radar
sensor, communication is required to guarantee string stability. String stability
indicates, whether oscillations are amplified upstream the traffic flow. In [141], it has
been proven that if only local sensor measurements are used, string stability can only
be guaranteed for velocity dependent spacing policies, i.e., the faster the cars drive
the larger distances are required, and thus, the less fuel can be saved. Therefore,
even in the presence of local measurements, communication between vehicles is
crucial for fuel saving. In such a case, where additional local sensor measurements
are available, predictive and self triggering can similarly be used, as also stated in
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Remark 3.1.
To address the control objectives, we design an LQR for the linear state-space

model that includes the vehicle velocities and their relative distances, i.e., xi(t) =
[vi(t), si(t)− si−1(t)]T. The complete state x̃ is given by x1, x2, . . . , xN except for
no relative position for the last vehicle i = N (cf. Figure 3.12). For this system, an
LQR is designed with Q = I and R = 1000I. The even-numbered diagonal entries of
the Q matrix specify the inter-vehicle distance tracking, while the odd ones weight
the desired velocity. To achieve tracking of desired velocity and inter-vehicle distance,
the desired state x̃des is introduced, and the LQR law ũ(k) = F̃ (x̃(k) − x̃des(k))
implemented.

We emphasize that the feedback gain matrix F̃ is dense; that is, information
about all states in the platoon are used to compute the optimal control input.
Such controller can only be implemented in a distributed way, if complete state
information is available on each agent via the architecture presented in Section 3.2.4
with all-to-all communication.

In the simulations below, position measurements are corrupted by independent
noise, uniformly distributed in [−0.1 m, 0.1 m]. Likewise, the inputs are corrupted
by uniform noise in [−0.1 m s−2, 0.1 m s−2]. Additionally, we assume 10 % Bernoulli
message losses.

3.8.2 Platooning on changing surfaces

We investigate the performance versus communication trade-off achieved with PT
and ST for platooning of 10 vehicles. Here, we are interested in the closed-loop
performance that is achieved with the proposed architecture; hence, instead of the
estimation error we use the sum of the element-wise absolute value of x̃ − x̃des,
averaged over the time steps and scaled by the state dimension, as performance
metric J̃3. The platoon drives for 25 s, while keeping desired inter-vehicle distances
of 10 m and velocity of 22.2 m s−1. After 200 m, the dynamics change due to different
road conditions (e.g., continue driving on a wet road after leaving a tunnel), which is
modeled by altering the vehicle dynamics accordingly (vehicles moving 50 % faster,
and the effect of braking/accelerating is reduced by 50 %). Figure 3.13 shows the
results from 100 Monte Carlo simulations.

Both triggers achieve significant communication savings at only a mild decrease
of control performance. Similar to studies in previous sections, the PT performs
better than the ST for low communication rates, because it can react to changing
conditions. For high communication rates, PT and ST are identical. If the prediction
horizon is extended, the performance of the PT gets closer to that of the ST, as can
be obtained from the blue curve in Figure 3.13.

3Other performance metrics, such as the LQR cost, lead to similar insights, but have higher
variance.
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Figure 3.13: Trade-off between normalized communication and control cost for a 10
vehicles platoon. Every marker represents the mean of 100 Monte Carlo simulations.
The variance is negligible and hence omitted. The plot shows the ST (black) as well
as two curves for the PT, one with a prediction horizon of 2 (orange) and one with a
prediction horizon of 5 (blue).

3.8.3 Braking

If vehicles drive in close proximity, the ability to react to sudden changes such as a
braking maneuver of the preceding car, is critical. This is investigated here for three
vehicles (simulation with more vehicles leads to the same insight).

Figure 3.14 shows simulation results, where all cars start with a velocity of
22.2 m s−1, but after 10 s, the first car brakes. The results in Figure 3.14 (left) show
that even with very little communication, the PT is able to deal with this situation.
The PT detects the need for more communication and is able to control inter-vehicle
distances within safety bounds. As previously pointed out, the ST (Figure 3.14
right) cannot react online, which causes a crash in this example (∆s1 = 0).

3.9 Conclusion

In control of multiple CPSs, the network is shared by many entities, thus, com-
munication is a limited resource that must be taken into account when making
control decisions for optimal system-level operation. This chapter sets a foundation
for such resource-aware control. Distributed event-triggered state estimation pro-
vides a powerful architecture for sharing information between multiple systems and
their cooperative control. The developed self trigger and predictive trigger allow
one to anticipate future communication needs, which is fundamental for efficiently
(re-)allocating network resources.

In order to leverage the potential of this chapter and realize actual resource
savings on concrete systems, the integration of ST and PT herein with a suitable
communication system is essential. While DETSE has successfully been implemented
on wired CAN bus networks in prior works [60, 63], we target the integration with
the protocol developed in Chapter 2, which provides many-to-all communication.
Hence, it is ideally suited for scenarios such as in Figures 3.1 and 3.2, where multiple
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Figure 3.14: 3 vehicles platooning with a constant velocity of 22.2 m s−1. After 10 s
the first car starts braking. The top plot shows the distances ∆s1 (blue) and ∆s2
(red); the bottom plot shows the communication instants (vehicle 1 in blue, vehicle
2 in red, and vehicle 3 in yellow). The left plots show the behavior for the PT (with
communication cost C(k) = C = 10), the right plots for the ST (with communication
cost C(k) = C = 0.7).

systems require information of each other for coordination. In particular, many-to-all
communication allows for the effective realization of the predictors (3.14) on any
agent that needs the corresponding state information. The concrete development
and integration of such schemes is subject of ongoing research. While the focus of
this chapter is on saving communication bandwidth, the proposed triggers can also
be instrumental for saving other resources (e.g., computation or energy).

The predictive and self triggers are suitable for different application scenarios.
The simulation and experimental studies herein clearly highlight the advantage of
the predictive trigger: by continuously monitoring the triggering condition, it can
react to unforeseeable events such as disturbances. The self trigger, on the other
hand, is an offline trigger, which allows for setting devices to sleep. In contrast to
commonly used event triggers, both proposed triggers can predict resource needs
rather than making instantaneous decisions. Predictive triggering is a novel concept
in-between the previously proposed concepts of self triggering and event triggering.

Concrete instances of the predictive and self trigger were derived herein for
estimation of linear Gaussian systems. While the general idea of predicting triggers
also extends to nonlinear estimation, properly formalizing this and deriving trig-
gering laws for nonlinear problems is an interesting task for future work. Likewise,
considering alternative optimization problems for different error choices in (3.16), as
well as dynamic programming formulations in place of the one-step optimization in
(3.17), may lead to interesting insights and alternative triggers. While the predictive
and self triggers herein were shown to stabilize the inverted pendulum in the reported
experiments, formally analyzing stability of the closed-loop system (e.g., along the
lines outlined in Section 3.7.2) is another relevant open research question.



Chapter 4

Event-Triggered Pulse Control with
Adaptation through Learning

The approaches presented so far rely on the availability of an accurate dynamics
model. From here on, this assumption will be dropped. Instead of assuming a perfect
model, we will evaluate the performance of the currently used model through a
statistical analysis and trigger learning in case we detect an inaccurate model. We will,
in addition, show that the learning approach is able to deal with load disturbances
and introduce a novel event-triggered pulse control strategy that respects input
saturations.

4.1 Introduction

In this chapter, we will present a new architecture for event-triggered pulse control
that quantifies model accuracy and, if beneficial, automatically identifies system
dynamics through learning. A block diagram of the approach is provided in Figure 4.1.
We consider a plant with sensors and actuators, subject to process noise and
disturbances (v and ε), and input saturations umax. Controller and actuator are
connected over a communication network. Since communication is a scarce resource,
periodic communication is not desirable and, therefore, we employ an event-triggered
design (block ’State Trigger’). In case of an event, we apply a pulse with length tinput
to reset the system to its equilibrium state. The pulse length naturally depends
on the system dynamics. To obtain an accurate model of the system dynamics, we
leverage system identification techniques to learn the model from data. As learning
may be expensive, e.g., due to the involved computations, we only learn a new
model if necessary, for instance, in case of a poor initial model or if the dynamics
have changed. This decision process is quantified within a ’Learning Trigger’. Based
on a statistical analysis of the time between events, the learning trigger decides
whether the model of the system dynamics is accurate enough. If not, learning of a
new model is triggered.

Contributions: The contributions of this chapter can be summarized as follows:
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Figure 4.1: Block diagram of the proposed control design. Dashed lines represent
connections that are only active in case of an event.

• A new architecture for event-triggered pulse control with learning;

• Development of a learning trigger for ETC, which allows to automatically
identify system dynamics on necessity;

• Handling load disturbances by learning and compensating for them, thus
replacing the integrator typically used in periodic control in a way suitable for
wireless CPSs.

Outline: In the following section, we will formulate the problem setting. After that,
we will detail our approach for event-triggered pulse control and the implementation
of the learning trigger in Section 4.3. In Section 4.4, we will present a numerical
study and conclude with a discussion in Section 4.5.

4.2 Problem Formulation

To study load disturbances, we enhance the LTI description (1.2) by a load distur-
bance ε ∈ Rn, i.e., we arrive at a system of the form

dx(t) = Ax(t) dt+Bu(t) dt+ εdt+QdW (t). (4.1)

We assume that we can measure the full state, thus, y = x in Figure 4.1.
As depicted in Figure 4.1, control commands have to be communicated over a

communication network. We thus employ an event-triggered design, with the block
’State Trigger’ implemented by

γctrl = 1 ⇐⇒ ‖x‖2 ≥ δ, (4.2)
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where δ is a user-defined threshold and is essentially the deviation from the equilib-
rium that we are willing to tolerate. In case of an event, we apply a pulse to reset
the system to its equilibrium, i.e.,

u(t) =
{

0 if γctrl = 0
φumax

(
Â, B̂, ε̂, xtk

)
if γctrl = 1,

(4.3)

where φumax is the pulse generating policy that will be made precise in Section 4.3.3,
(Â, B̂, ε̂) defines the model of the system dynamics we use to generate the pulse,
and xtk the state of the system at the triggering instant. By applying a pulse with
appropriate length, we can reset the system to its equilibrium state. This, however,
requires that we have a model that accurately describes the true system dynamics.
We obtain this model, and adapt it in case the dynamics change, via model-learning
techniques. Model-learning may be expensive due to the involved computations or
required exploration, therefore, we only want to learn in case the estimated dynamics
(Â, B̂, ε̂) deviate too much from the real dynamics (A,B, ε). Since the real dynamics
are hidden, our decision needs to be based on some implicit feature, which will be
the communication signal. Developing such a learning scheme for ETC is the main
objective of this chapter.

4.3 Event-triggered Pulse Control with Adaptation through
Learning

In this section, we present the control framework. We start with a derivation of the
learning trigger, then show how we learn the system dynamics, and finally detail
the derivation of the pulses.

4.3.1 Event-triggered Learning for Control

The learning trigger is based on the framework presented in [97] for ETSE. Here,
we extend this framework to ETC. For the theoretical analysis, we assume a control
strategy based on Dirac impulses, thus we have a control law of the form

u(t) = Fδtk(t), (4.4)

where F is the control gain and δtk the Dirac impulse. In particular, the control
input is zero apart from the triggering times tk, where tk corresponds to γctrl = 1
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in (4.2). To further investigate this, we write (4.1) in integrated form,

x (tk) =
tk∫

tk−1

eA(tk−t)Bu(t) dt

+
tk∫

tk−1

eA(tk−t)εdt+
tk∫

tk−1

eA(tk−t)QdW (t)

︸ ︷︷ ︸
:=N(tk)

= eA(tk−tk)BF +N (tk)

= BF +N (tk) != 0,

(4.5)

where we assume that the process starts in x(tk−1) = 0. If the matrix B is invertible,
we can show that F = B−1N(tk), where N(tk) is the measurement we get before
applying the impulse, resets the system to zero. Implementing such a control law
then also fulfills the prior assumption of x(tk−1) = 0, as the system starts in zero
after every triggering instant. In Section 4.3.3, we will drop the assumption of being
able to apply Dirac impulses as inputs and instead apply pulses with the maximum
input umax for a given time.

Considering a control law as proposed in (4.4), we thus have a random process
that always starts in zero. This is only true, if the input matrix B is known exactly.
In that case, the sole cause of an error would be propagated noise and the load
disturbance ε. Therefore, in case of no communication, we obtain

x(t) =
t∫

0

eA(t−s)εds+
t∫

0

eA(t−s)QdW (s). (4.6)

We can now define a stopping time τ as the first moment the state crosses the
threshold δ, which resets the error to zero,

τ := inf {t : ‖x(t)‖2 ≥ δ} . (4.7)

The stopping times defined in (4.7) coincide with the time between commu-
nication, hence, ’stopping times’ and ’inter-communication times’ will be used
synonymously hereafter. We can now further define the expected value of these
stopping times, E[τ |x(0) = 0], which is the average communication rate of the
system. This expected value can be obtained via Monte Carlo simulations (for a
more detailed discussion, see [97]).

If we had a perfect model of the system dynamics, the average inter-communication
times that we observe in the system should approach the expected value of the
stopping time. If both values diverge, we have evidence that the model is inaccurate
and can trigger learning of a new model. Precisely, we define the learning trigger in
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Figure 4.1 as

γlearn = 1 ⇐⇒
∣∣∣∣∣ 1
N

N∑
i=1

τi − E[τ ]
∣∣∣∣∣ ≥ κ. (4.8)

In this equation, γlearn = 1 indicates that a new model shall be learned, E[τ ]
is approximated using Monte Carlo simulations, i.e., E[τ ] ≈ 1

M

∑M
i=1 τ

sim
i , and

τ1, τ2, . . . , τN define the last N empirically observed inter-communication times.
Due to the randomness of the process, it can still happen that we trigger learning
despite the model being perfect. Assuming that the stopping times are bounded by
τmax, the confidence level can be quantified using Hoeffding’s inequality [142] and
influenced through the design parameter η.

Theorem 4.1. Let the parameters η, N , M > N , and τmax be given, τ1, . . . , τN
and τ sim

1 , . . . , τ sim
M independent and identically distributed, and assume a perfect

model. For

κ = τmax

√
− 2
N

ln η4 (4.9)

we obtain

P

[∣∣∣∣∣ 1
N

N∑
i=1

τi −
1
M

M∑
i=1

τ sim
i

∣∣∣∣∣ ≥ κ
]
< η. (4.10)

Proof. We compare stopping times obtained via Monte Carlo simulations with
stopping times observed from the real process. In both cases, we have a random
process that always starts in zero. This is the same setting as investigated in [97],
thus, the theorem can be proven as shown therein.

Boundedness of the stopping times can easily be ensured in practice by applying
a control input the latest when τmax is reached. The parameter η then basically
defines the tradeoff between accepting an inaccurate model or triggering learning
despite the model being perfect.

Intuitively, η defines the probability that the error κ is observed, while empirical
and expected stopping times are drawn from the same distribution (i.e., we have a
perfect model). If this probability is below a predefined threshold, we learn a new
model.

4.3.2 Model-Learning
For the derivation of the stopping times as well as for the final controller design
we need knowledge of the full system dynamics (matrices A and B) and the load
disturbance ε. To calculate the stopping times we additionally need knowledge of
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the process noise variance Q. For this purpose, we rewrite system (4.1) in discrete
time,

x(k + 1) = Adx(k) +Bdu(k) + ε+ v(k)

=
(
Ad Bd ε

)x(k)
u(k)

1

+ v(k).
(4.11)

This way we can learn the system dynamics with standard least-squares techniques.
Having knowledge of the load disturbances, we can incorporate them in the

control design in Section 4.3.3. This represents a suitable solution to replace the
integral part of standard, periodic controllers.

Remark 4.1. Another problem that may be considered with this approach is the
knowledge of the zero-level of the system. We are considering an equilibrium at
x(t) = 0, but the measurements we typically get are only voltage signals from a
sensor and what zero means for that system is not clear from the beginning. We
can model this as a sensor bias, i.e., we would have the following system dynamics

x(k + 1) = Adx(k) +Bdu(k) + v(k) (4.12a)
y(k) = x(k) + ξ, (4.12b)

where ξ is the sensor bias. Rewriting this yields

y(k + 1) = x(k + 1) + ξ

= Ad (y(k)− η) +Bdu(k) + v(k)

=
(
Ad Bd (I −Ad) ξ

)y(k)
u(k)

1

+ v(k).
(4.13)

That way we can identify the system dynamics and the sensor bias vial least-squares
techniques.

Estimating both, a sensor bias and a load disturbance, is, however, not possible,
as they are not distinguishable given the output data. Infinite combinations of bias
and load disturbance could explain the sensor data equally well.

4.3.3 Implementation of Event-triggered Pulse Control with
Input Saturation

If the state of the system exceeds the threshold δ we want to quickly reset it to zero.
Application of Dirac impulses is not compatible with our assumption of an input
saturation at the actuator.

Instead of applying Dirac impulses, we propose to apply the maximum input
and vary the duration of the pulse. This has two main benefits: 1) The input cannot
exceed the saturation and thus will drive the system state to its desired value, as it
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will not be limited but applied as computed; 2) The system will be driven to zero
as fast as possible, that way coming as close to the idealized Dirac input as possible.
For the derivation of the length of the input we will restrict to first-order systems
and later comment on extensions to higher-order systems.

To derive the length of an impulse we look at the system equation in integrated
form. If no event is triggered, i.e., if the system is close to its desired state, we have
u(t) = 0. At triggering times tk we apply the maximum input,

x(t) = eatx (tk) +
t∫

tk

ea(t−s) (bumax + ε) ds. (4.14)

The input shall be applied for enough time such that the state becomes zero. So we
can set (4.14) to zero and solve for t (setting tk = 0),

0 != eatx (0) +
t∫

0

ea(t−s) (bumax + ε) ds,

which leads to

t = 1
a

ln
(

bumax + ε

ax (0) + bumax + ε

)
. (4.15)

In (4.14) and (4.15) we assumed the noise to be zero during the application of
the pulse. For the Dirac impulse this holds, as the time of the application tends
to zero. Here, we explicitly derive how long the input will be applied, hence, the
system will during this time also be excited by noise and we will not be able to
exactly drive it to zero. We explicitly take this into account when computing the
stopping times. Instead of having a process that always starts in zero, we now have
a process that starts in x(0) ∼ N (0,Σ0), with variance Σ0.

For a system with state dimension larger than one, a single input will generally
not be sufficient to drive the system state to zero. Instead, we would have to
change between maximum and minimum input, what would lead to a bang-bang
controller [143].

4.4 Numerical Study

For the numerical study, we will consider a collection of dynamical, first-order
processes. For each system, we assume a remote controller that is colocated with
the sensor, but needs to transmit its actuation commands over a communication
network, where all controllers share the same network. We look at processes with
different dynamics that we want to stabilize within the same range δ and with the
same maximum input umax. However, the approach is also applicable for systems
where δ and umax are not identical.
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Table 4.1: Comparison of the average inter-communication times for different investi-
gated systems before and after learning.

System Before After System Before After
1 44 ms 239 ms 6 128 ms 271 ms
2 136 ms 349 ms 7 56 ms 240 ms
3 107 ms 283 ms 8 55 ms 219 ms
4 135 ms 256 ms 9 89 ms 279 ms
5 163 ms 363 ms 10 34 ms 273 ms

We assume a continuous-time system that we discretize with a sample time of
1 ms. The sample time is not equal to the update interval of the communication
system and is only limited by the maximum frequency of the timers in the processors
used for controller and actuator. A fine discretization is necessary, as we will derive
a continuous pulse length. The finer the discretization, the more accurate is the
application of the pulse (and the earlier we notice if the system is outside the
tolerable range).

We consider a continuous-time process of the form

dx(t) = ax(t) dt+ b (u(t) + ε) dt+QdW (t). (4.16)

The system has a maximum input of umax =1 and we choose δ = 0.02. We model
the load disturbance to enter with the input, as for instance done in [144, p. 54].
The nominal dynamics are given with a = 5, b = 3, ε = 0.01, and Q = 10−4.

We demonstrate the applicability of the proposed algorithm by looking at ten
specific systems, where parameters are uniformly sampled from intervals a ∈ [1, 10],
b ∈ [1, 2], ε ∈ [0.01, 0.02], and Q ∈ [10−4, 10−3].

As parameters of the learning trigger, we choose a confidence level η = 0.05,
N = 2000, M = 10 000, and τmax = 1 s. According to Theorem 4.1, we then arrive
at κ ≈ 0.066. If learning is triggered, we use all data we have collected so far to
learn a new model.

In Table 4.1, we compare the average inter-communication times of all three
system before and after deriving new system matrices. For all of them we observe a
significant increase in the inter-communication times after learning, i.e., communi-
cation is reduced. This demonstrates the potential of adapting dynamics models
through learning.

In Figure 4.2, one specific system is investigated before (Figure 4.2a) and after
(Figure 4.2b) learning new system matrices. Due to the error in the initial matrices,
the system is not reset to zero with the pulses before learning and, thus, new
control inputs have to be generated very frequently. After learning, the pulse length
is such that the system is successfully reset, which also results in increased inter-
communication times. This is especially emphasized as in Figure 4.2a, before learning,
we show only 1 s, while in Figure 4.2b we show 2 s and still observe far less pulses.

To further investigate the learning performance of the approach, we look at the
average and expected inter-communication times in Figure 4.3. The average inter-
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Figure 4.2: Performance of one specific system before (left) and after (right) learning.
It can be seen that before learning, the pulses are too short and the system is not reset
to zero, while after learning the pulse length is appropriate. Further, communication
is significantly reduced through learning.

communication times are computed with a moving average over 2000 stopping times,
which we reset in case learning is triggered and after deriving new system matrices.
For these simulations, we always collect data for 200 s in case learning is triggered
and then only use these data points to learn the system dynamics. The system under
investigation has parameters (a, b,Q) = (5, 3, 10−4), without a load disturbance, and
all other parameters as in the previous examples. In the beginning, we assume that
we have an accurate model, hence, the observed inter-communication times approach
the expected ones. After 2000 stopping times, the dynamics change, we then have
b = 2 and a load disturbance ε = 0.03. As expected, the inter-communication times
decrease and learning is triggered. After learning, the empirical inter-communication
times again approach the expected ones and we reduce communication. In a second
change, after 6000 stopping times, the load disturbance ε is zero again and we have
(a, b) = (8, 1). Similar as before, this leads to a decrease of the inter-communication
time and a learning experiment is triggered. Having learned new dynamics, the
empirical inter-communication-times again approach the expected ones, i.e., average
communication is reduced through learning.

The study reveals that the proposed architecture enables us to reduce inter-
communication times through learning. We are able to learn system dynamics and
subsequently reset the state of the system to zero in case it leaves its tolerable range.
Through learning load disturbances, the architecture is a suitable replacement for
integral control in event-triggered settings.
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Figure 4.3: Average inter-communication times during one simulation. The solid line
shows the empirically observed inter-communication times computed as an moving
average over 2000 stopping times. The moving average is reset in case learning is
triggered and when a new model has been learned. The dashed line indicates the
expected inter-communication times with highlighted confidence interval in gray. The
dynamics change after 2000 and after 7000 stopping times. In both cases, a decrease in
the inter-communication time is observed and an increase after learning new matrices.

4.5 Conclusion

In wireless CPSs, communication is a scarce and limited resource. In this chapter,
we presented a framework for event-triggered pulse control for wireless CPSs. Most
common ETC approaches rely on the availability of an accurate dynamics model.
Contrary to that, the proposed framework does not rely on this assumption, but
uses model-learning instead. As learning is expensive (e.g., due to the involved
computations), we only learn if necessary using the ETL framework. By observing
the communication behavior we quantify the accuracy of the model and trigger
learning of a new model only in case the accuracy is not sufficient.

Further, the presented control design respects input saturations at the actuator
and can also handle load disturbances, essentially replacing the integral part of
common periodic controllers.

A numerical study demonstrates the applicability of the approach and the benefit
of learning the system dynamics. After learning, we observe a significant increase
in the inter-communication time. However, the presented example is a first-order
system. In future work, we seek to consider also higher order systems. Moreover,
we assumed that we are able to perfectly measure the full state of the system.
Incorporating Gaussian measurement noise is already possible with the presented
approach. How to extend the ETL framework to partial state measurements is
subject to ongoing research.

We employed a straightforward ETC scheme in this work in order to demonstrate
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the benefits of ETL for control. Extensions of this idea to other ETC approaches is
an interesting topic for further research.

In this work, we proposed for the first time to limit learning in ETC through
ETL. We triggered learning experiments through comparing the expected and the
observed time between communication. While this is an intuitive approach, in some
cases this trigger does not detect disturbed models. A more robust behavior can
be achieved by triggering on the full distribution, e.g., via a Kolmogorov-Smirnoff
test [145]. Deriving similar theoretical guarantees as for the expected value trigger
is also subject to ongoing work.





Chapter 5

Deep Reinforcement Learning for
Event-Triggered Control

In the last chapter we outlined an approach for automatically learning system
models and an event-triggered strategy based on these models. In this chapter we
will, as an alternative, present an approach for end-to-end learning of ETC, without
a manually designed control strategy. In contrast to existing approaches, we will
learn both, the control policy and the communication strategy, simultaneously. We
will further demonstrate that this approach straightforwardly extends to nonlinear
systems.

5.1 Introduction

Most ETC approaches depend on a predesigned control strategy, including for
instance a (fixed or dynamic) triggering threshold. In contrast to this, we show
herein that deep reinforcement learning (DRL) algorithms can be leveraged in order
to learn both control and communication law from scratch without the need for a
dynamics model. We formulate resource-aware control as a RL problem, where the
learning agent optimizes its actions (control input and communication decision) so
as to maximize some expected reward over a time horizon. The reward function
is composed of two terms, one capturing control performance, and one that gives
rewards for time steps without communication. This way, the agent learns to control
the system with good performance, but without communicating all the time.

More specifically, we consider the setup in Figure 5.1. While the learning agent
is directly connected to the sensor and thus receives its measurements continuously,
it must transmit actuator commands over a wireless network link. Thus, we seek to
reduce communication of control inputs. We propose two approaches for learning
ETC in this setting. In the first approach, we assume that a time-triggered feedback
controller is given, and we learn only the communication policy. As an alternative, we
learn both control and communication policy simultaneously. This can be regarded
as end-to-end learning. In DRL, end-to-end learning (e.g., [86]) typically refers to
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Actuator Physical System Sensor

Learning
Agent

Figure 5.1: Learning of event-triggered control. The learning agent continuously
receives sensor inputs, but has to transmit control signals over a resource-limited
wireless network. The agent learns both control and communication; that is, (i) what
actuator command to send, and (ii) when to send it.

learning the complete control policy from raw sensor data to actuator commands
‘end to end,’ without (artificially) separating into sub-tasks such as filtering, planning,
and tracking. In the context of ETC, end-to-end thus emphasizes learning of both
control and communication simultaneously, rather than separating the two. This is
particularly interesting as the separation principle does not generally hold in ETC;
that is, optimizing controller and communication structure separately, as often done
in practice, does not necessarily yield the overall optimal event-triggered control
law [146]. End-to-end DRL is a way to overcome this separation.

By means of numerical examples, we demonstrate that end-to-end learning
of ETC is feasible. Moreover, we compare to some common model-based ETC
approaches. The comparison reveals that, for linear settings with an accurate model
available, model-based ETC typically cannot be outperformed by the proposed DRL
approach—at least, at medium to high average communication rates. In some cases,
however, DRL can find superior policies at very low communication rates, where
model-based ETC yields unstable solutions. In contrast to common ETC methods,
the proposed learning approach straightforwardly applies also to nonlinear control
problems.

Contributions The contributions of this chapter can be summarized as follows:

• Proposal of DRL to learn event-triggered controllers from data;

• learning of communication policy only (with a given controller) with policy
gradients [90];

• end-to-end learning of control and communication policy with deep determin-
istic policy gradient (DDPG) algorithm [89];

• demonstration of feasibility of DRL in numerical benchmark problems; and

• comparison to model-based ETC methods.

Outline The next section continues with a introduction to DRL with particular
focus on approaches for continuous state-action spaces. The proposed approaches
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for DRL of ETC are then introduced in Section 5.3. Section 5.4 presents numerical
results, and the chapter concludes with a discussion in Section 5.5.

5.2 Background

We consider a discretized version of (1.1), i.e.,

x(k + 1) = f (x(k), u(k)) + v(k), (5.1a)

where we assume that the full state can be measured, but measurements are corrupted
by Gaussian noise,

y(k) = x(k) + w(k). (5.1b)

5.2.1 Deep Reinforcement Learning
We give a brief introduction to RL in general and present the two baseline algorithms
we later focus on in Section 5.3.

The main goal in RL is to learn an optimal policy by trial and error while
interacting with the environment. Mathematically, this can be formulated as a
Markov decision process (MDP). In an MDP, we consider the setting where an
agent interacts with the environment. At every time step, the agent selects an
action a(k), from the action space A, based on its current state s(k), from the state
space S, according to a policy π (a(k)|s(k)).1 The agent receives a reward r(k) and
the state transitions to the next state s(k + 1) according to the state transition
probability p(s′, r|s = s(k), a = a(k)). The goal of the RL agent is to maximize
the expected discounted reward E[R(k)] = E

[∑T−1
i=0 ζir(k + i)

]
, where ζ ∈ (0, 1]

is the discount factor.2 There are generally two types of RL methods: model-free
and model-based. One model-free method to achieve the goal is to learn a value
function vπ(s) != E [R(k)|s(k) = s], which denotes the expected return in case policy
π is followed from state s onwards. The value function vπ(s) follows the Bellman
equation [147],

vπ(s) =
∑
a

π (a|s)
∑
s′,r

p (s′, r|s, a) [r + ζvπ(s′)] , (5.2)

which can then be maximized to find the optimal state values.
Similarly, one can estimate a state-action value function (Q-function) Qπ (s, a) !=

E (R(k)|s(k) = s, a(k) = a) which determines the expected return for selecting ac-
tion a in state s and following the policy π thereafter. In an MDP, the optimal

1If we want to learn a controller for a dynamical system, often s(k) ≡ x(k) and a(k) ≡ u(k)
holds. However, this is not necessarily the case and, in particular, not in the setup we shall develop
herein.

2To simplify the formulation, we consider the episodic case with k ∈ [0, T − 1].
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action in the current state can be derived by maximizing the Q-function. If the
transition probabilities p are available, this can, e.g., be done using (exact) dy-
namic programming (DP). In cases where the model is not known, we resort to RL
(simulation-based approximate DP) methods. In such cases, the Q-function can be
learned using the Q-learning algorithm presented in [148],

Q(s(k), a(k))← Q(s(k), a(k))

+ α

(
r(k) + ζ max

a(k)′
Q (a(k)′, s(k)′)−Q(s(k), a(k))

)
.

(5.3)

The Q-learning algorithm updates the Q-function using the collected experience
(s(k), a(k), r(k), s(k)′). For a more detailed introduction to RL, see [149].

This basic RL approach has successfully been applied to low-dimensional tasks
with discrete state and action space [149]. For controlling a dynamical system, we
usually deal with a continuous state and action space, which might be of high
dimension for complex systems. Continuous spaces could be discretized, but the
discretization needs to be very fine for high-performance control. This, in turn,
leads to very high-dimensional state and action spaces imposing unreasonable
computational complexity and hampering convergence speed drastically.

To the rescue come parametrized function approximators. In machine learning,
deep neural networks (DNNs) have widely been used to handle high-dimensional
tasks. Recently, they have also been applied to RL, giving rise to the field of DRL. For
instance, in deep Q-learning [150], the state-action function Q is approximated with
a DNN, making it possible to solve complex tasks in high-dimensional continuous
state spaces. However, this algorithm only works for discrete action spaces.

One possible solution to this problem is the actor-critic architecture [149]. The
actor outputs continuous actions while the critic estimates the value function. Both
can be implemented using DNNs. One such algorithm is deep deterministic policy
gradient (DDPG) [89, 151], which we introduce in the following.

As an alternative, we look at policy search methods that directly learn a policy
without a Q-function. Specifically, we will present the policy gradient algorithm [90]
and the trust region policy optimization (TRPO) algorithm [152].

DDPG

The DDPG algorithm, and a variation of it, are presented in [89, 153]. For com-
pleteness, we restate the main derivations.

DDPG is an actor-critic algorithm with two networks. One is the actor network
µ, parametrized by θµ that takes the state s(k) as input and outputs an action a(k).
Additionally, we have the critic network Q, parametrized by θQ, which takes state
and action as input and outputs a scalar estimate of the value function, the Q-value
Q (s(k), a(k)). The updates of the critic network are close to the original formulation
of the Q-learning algorithm given in (5.3). Adapting (5.3) to the described neural
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network setting leads to minimizing the loss function

LQ
(
s(k), a(k)|θQ

)
=
(
Q
(
s(k), a(k)|θQ

)
−
(
r(k) + ζ max

a(k)′
Q
(
s(k)′, a(k)′|θQ

)))2
.

(5.4)

For continuous action spaces, equation (5.4) is not tractable, as we would have to
maximize over the next-state action a(k)′. Instead, we take the next-state action
a(k)′ = µ (s(k)′|θµ) of the actor network. Inserting this in equation (5.4) leads to

LQ
(
s(k), a(k)|θQ

)
=
(
Q
(
s(k), a(k)|θQ

)
−
(
r(k) + ζQ

(
s(k)′, µ (s(k)′|θµ) |θQ

)))2
.

(5.5)

Based on this loss function, the critic can learn the value function via gradient
descent. Clearly, a crucial point is the quality of the actor’s policy. The actor tries
to minimize the difference between its current output a and the optimal policy a∗,

Lµ (s(k)|θµ) = (a(k)− a(k)∗) =
(
µ
(
s(k)|θQ

)
− a(k)∗

)2
. (5.6)

The true optimal action a(k)∗ is of course unknown. As simply estimating it would
require to solve a global optimization problem in continuous space, the critic
network can instead provide a gradient that leads to higher estimated Q-values:
∇a(k)Q

(
s(k), a(k)|θQ

)
. Computing this gradient is much faster. This was first

introduced in [154]. The gradient implies a change in actions, which is used to
update the actor network in this direction by backpropagation. In particular, for
an observed state s(k) and action a(k), the parameters of the actor network are
changed according to

∇θµJ = ∇a(k)Q
(
s(k), a(k)|θQ

)
∇θµµ (s(k)|θµ) (5.7)

approximating the minimization of (5.6).
Two general problems arise from this approach. For most optimization algorithms,

it is usually assumed that samples are independent and identically distributed. This
is obviously not the case if we sequentially explore an environment. To resolve this, a
replay buffer of fixed size that stores tuples (s(k), a(k), r(k), s(k + 1)) is used. Actor
and critic are now updated by uniformly sampling mini-batches from this replay
buffer.

The second problem is that the update of the Q-network uses the current Q-
network to compute the target values (see (5.5)). This has proved to be unstable in
many environments. Therefore, copies of actor and critic networks,Q′

(
s(k), a(k)|θQ′

)
and µ′

(
s(k)|θµ′

)
are created and used to calculate the target values. The copies

are updated by slowly tracking the learned network,

θ′ = κθ + (1− κ) θ′, (5.8)
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with κ� 1. This typically leads to more robust learning.
In Section 5.3.1, we will show how this algorithm can be used to jointly learn

controller and communication behavior.

Trust Region Policy Optimization (TRPO)

A second approach is to perform direct parameter search without a value function.
This is referred to as direct policy search or policy gradient [90]. A parametrized
policy π is adapted directly to maximize the expected reward. Since, without a
model, analytical gradients of the reward function are not available, policy gra-
dient methods use stochastic policies and adapt them to increase the likelihood
of a high reward. Formally, let the policy π(s(k); θπ) representing p(a(k)|s(k)) be
parametrized by θπ in a differentiable way. Now we aim to maximize the utility
J(θπ) = Ea(k)∼π(s(k);θπ)R(s(k), a(k)). Policy gradient methods follow the gradient
estimator of J for a given trajectory:

∇θπJ(θπ) =
T−1∑
k=0

R(k)∇θπ log π(s(k); θπ) . (5.9)

A recent advance of policy gradient methods is given by the Trust Region Policy
Optimization [152] (TRPO) that uses a surrogate optimization objective and a trust
region approach for updating the policy efficiently. In terms of theoretical guarantees,
this algorithm ensures monotonic improvement of the policy performance, given the
amount of training samples is large. We will use this method in Section 5.3.2 to
learn the controller and triggering policy independently.

5.3 Approach

We present two approaches to learn resource-aware control. First, we consider
learning communication structure and controller end-to-end. The policy should then
output both, the communication decision and the control input,

(γ(k), u(k)) = πcombined (s(k)) = πcombined (x(k), u(k − 1)) , (5.10)

where γ(k) is a binary variable with γ(k) = 0 indicating no communication. Alter-
natively, we start with a control strategy for the system without communication
constraints, either learned or designed. The goal is then to learn the communication
structure, i.e., a policy

γ(k) = πcomm (s(k)) = πcomm (x(k), u(k), u(k − 1)) . (5.11)

This strategy requires us to separate the design of controller and communication
structure.

For both settings, the state of the RL agent includes the current state x(k) of
the system and the last control input u(k − 1). This is necessary, as in case of no
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communication, u(k − 1) will be applied again, so knowledge of the last control
input is needed for the problem to form an MDP. In (5.11), the state is further
augmented and also includes the current control input u(k). The RL agent learns a
communication policy, i.e., it needs to decide, whether u(k) or u(k−1) will be applied.
Therefore it needs knowledge of both. The action a(k) of the RL agent consists of
the communication decision for the separated policy, and of communication decision
and control input in the combined case.

In RL, the reward function typically depends on the states and actions of the
system. We additionally consider communication, thus we arrive at a reward function
of the form

r(k) = −x(k)TQx(k)− u(k)TRu(k)− λγ(k), (5.12)

where λ is a hyper-parameter. During training, the agent receives negative rewards
for bad performance and for communication. In an episodic reinforcement learning
task, where agents’ interaction with the environment is divided into episodes, an
additional constant positive reward is often given to the agent to prevent undesired
early termination of the episodes, e.g., the pole dropping for the cart-pole system.

5.3.1 Joint Learning of Communication and Control
To learn resource-aware controllers, we consider both the discrete action space (the
decision whether to communicate) and the continuous action space (the control
input that should be applied). This is related to the idea of reinforcement learning
in parameterized action space [153, 155].

This framework considers a parameterized action space Markov decision process
(PAMDP), which involves a set of discrete actions Ad = {d1, d2, . . . , dk}. Each dis-
crete action d ∈ Ad is associated with md continuous parameters

{
pd

1 , p
d
2 , . . . , p

d
md

}
∈

Rmd . An action is represented by a tuple
(
d, pd

1 , . . . , p
d
md

)
. This leads to the following

action space: A = ∪d∈Ad

(
d, pd

1 , . . . , p
d
md

)
.

In our case, there are two discrete actions, d1 and d2, where d1 corresponds to
the decision to communicate the control input (γ(k) = 1). Accordingly, the action
d1 has md1 = 1 continuous parameter pd1

1 = u, which is the control input. Action d2
does not have any continuous parameter, as we apply the last control input again.

As stated in Section 5.2.1, we consider the DDPG algorithm3, where both actor
and critic network are implemented using DNNs. The architecture is depicted in
Figure 5.2. The actor network outputs continuous values for all actions in the action
space, i.e., we have

a(k) = (d1(k), d2(k), u(k)) = πcombined (x(k), u(k − 1)) . (5.13)

This is different from (5.10), as we do not receive a discrete parameter γ(k), but
continuous values for all parameters a(k). To obtain a discrete decision, we determine

3Our implementation is based on the non-parameterized DDPG framework provided in [156].
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Figure 5.2: Visualization of the actor-critic network structure (adapted from [153]).
On the left, the general network architecture, showing the units and activation function
of each layer. Each block represents one layer of the network with the number describing
the number of neurons. The smaller blocks indicate the activation functions. On the
right, the update of the actor using back-propagation.

the communication decision by

γ(k) =
{

1 if d1(k) > d2(k)
0 otherwise.

(5.14)

The continuous parameter (the control input u(k)) is directly obtained as an output
of the actor. The output of the actor and the current state then serve as input for
the critic, which estimates the Q-function value. This structure has been applied to
a gaming environment in [153].

During training, exploration is done in an ε-greedy fashion. With probability ε,
we select a random discrete action (whether to communicate). Besides the ε-greedy
exploration we add exploration noise in form of an Ornstein Uhlenbeck process to
the output of the actor as has been successfully demonstrated in [89]. Pseudo-code
of this approach is presented in Algorithm 1.

5.3.2 Learning Communication only

An alternative to the aforementioned end-to-end approach is to separately learn
the communication strategy and the stabilizing controller. In this approach, a
control policy is first fully trained using a high-performing RL algorithm, e.g.,
TRPO [152]. Instead of hand-engineering the communication strategy, we propose
to use policy gradients [90] to learn this communication structure. In essence, the
trained controller computes the control input in every time-step, whereas another
learning agent controls whether to send this control input to the system, thus
implementing (5.11).



5.4. Validation 83

Algorithm 1 Jointly learn communication and controller (adapted from [89]).
1: Initialize ε
2: Randomly initialize critic DNN Q

(
s(k), a(k)|θQ

)
and actor DNN µ (s(k)|θµ) with

weights θQ and θµ.
3: Initialize target networks Q′ and µ′ with weights θQ

′
← θQ, θµ

′
← θµ

4: Initialize replay buffer R
5: for episode = 1 to N do
6: Receive initial observation state s(1)
7: for k = 1 to M do
8: Generate uniformly distributed φ ∈ [0, 1]
9: if φ < ε then

10: Generate ξ ∼ B (2, 0.5) from Bernoulli distribution
11: if ξ == 1 then
12: Choose discrete action d1
13: else
14: Choose discrete action d2
15: end if
16: else
17: Select a(k) = µ

(
s(k)|θQ

)
and apply exploration noise to the actor output

18: Get communication decision γ(k) using (5.14)
19: end if
20: Execute action a(k), receive reward r(k) and state s(k + 1)
21: Store transition (s(k), a(k), r(k), s(k + 1)) in R
22: Sample random mini-batch from R
23: Update critic by minimizing loss function (5.5)
24: Update actor policy using sampled policy gradient (5.7)
25: Update target networks according to equation (5.8)
26: end for
27: end for

The general scheme is related to hierarchical reinforcement learning [157] and
gated recurrent neural networks [158]. We discuss preliminary experimental results
of this alternative approach, in relatively challenging tasks, in Section 5.4.4.

5.4 Validation

In this section, we validate the proposed DRL approaches through several numerical
simulations. For the algorithm introduced in Section 5.3.1, which jointly learns
communication behavior and controller, we show the general applicability as a
proof of concept on the inverted pendulum, compare to several model-based ETC
algorithms on the same platform, and show its general applicability for nonlinear
tasks. In Section 5.4.4, we demonstrate learning resource-aware locomotion tasks
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using the algorithm presented in Section 5.3.2.4
The numerical simulations presented in this section were carried out in envi-

ronments adapted from the OpenAI Gym5. The OpenAI Gym provides simulation
models of different classical control tasks, such as the inverted pendulum and the
cart-pole system, as well as physics simulation systems, Atari games, and many
more. For our approaches, we augment the reward functions provided in the OpenAI
Gym according to (5.12). The simulations are carried out on a cluster utilizing
parallel runs for the training and testing processes with randomized seeds.

5.4.1 Proof of Concept
As a proof of concept, we apply the learning algorithm presented in Section 5.3.1 to
the inverted pendulum. The inverted pendulum consists of a pendulum attached to
a motor with the goal to keep the pendulum close to its upright position at θ=0 rad.
We assume process and measurement noise as in (5.1) and the initial state also a
Gaussian distributed random variable with x(0) ∼ N (x(0); 0,Σ0). The standard
deviation of noise and initial position was chosen to be 10−4.

The simulation environment provides upper and lower bounds of ±2 N m on the
input torque that may be applied to the pendulum. One discrete time step lasts
50 ms.

We train the controller using the joint learning approach detailed in Section 5.3.1.
The hyper-parameter λ in (5.12) is tuned by a grid search of 25 values between 0.01
and 100. Different hyper-parameter values correspond to different communication
rates and controller performances. For each hyper-parameter setting and task, we
carry out 5 randomized training processes using different random seeds, each consists
of one million training iterations. During performance evaluation, we carry out 100
randomized test episodes for each of the 5 trained agents for each hyper-parameter
setting with each episode lasting 500 discrete time steps.

Results of one such test episode can be seen in Figure 5.3. The plot is a represen-
tative example for the results obtained from the different agents and test episodes.
The pendulum system remains stable with the angle staying well within ±0.1 rad,
while significantly saving communication. Here we observe a saving rate of around
90 %. Further it can be seen that the learning approach does not converge to a
triggering law with fixed threshold. The threshold at which communication of a new
control input is triggered is dynamically changing throughout the experiment.

In general, stability is very important in control tasks. However, most works in
reinforcement learning aim at achieving optimal control instead of stability. For policy
iteration methods (which we use herein), guarantees on monotonic improvement of
the policy can be given, as discussed for instance in [152, 159]. However, the resulting
controller derived in this work is approximated by a deep neural network, which is
highly nonlinear, thus analyzing the stability of the system is not straightforward.

4Code of representative examples and video of resource-aware locomotion are available at
https://sites.google.com/view/drlcom/.

5https://gym.openai.com/

https://sites.google.com/view/drlcom/
https://gym.openai.com/
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Figure 5.3: Stabilization of the inverted pendulum with an event-triggered controller
learned with the method presented in Section 5.3.1. The plots show, from top to
bottom, the angle of the pendulum θ, the control input u, and the communication
(decision γ in black, average communication in red). The average communication here
and in following plots is computed as a moving average over 50 samples.

Further, finding optimal control policies does not necessarily imply stability, but the
connection is more subtle (cf. [160, 161]). For the time being, this renders the effort
of analyzing stability intractable. While stability of DRL is an important topic for
research, this example is a proof of concept that joint control and communication
policies can be found with DRL.

5.4.2 Comparison
We compare the performance of the learning approach to common model-based
ETC designs on the inverted pendulum. For balancing, the inverted pendulum can
be approximated as a linear system and methods from linear control theory may
be used. We consider the intuitive ETC algorithm, where we only communicate,
if the state deviates too much from its desired position. The state of the inverted
pendulum consists of its angle θ and its angular velocity θ̇, the desired value for
both is zero. Hence, we apply the following control law

u(k) =
{
Kx(k) if ‖x(k)‖2 > δ

u(k − 1) otherwise,
(5.15)

where the matrix K is designed with an LQR approach using Q and R as in
the reward function of the learning algorithm. Additionally, we compare to the
approaches introduced in [162] and [163]. In both cases, we use the formulation as a
periodic event-triggered control algorithm provided in [164], which is γ(k) = 1 ⇐⇒
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‖Kx̂(k)−Kx(k)‖ > δ ‖Kx(k)‖ for [162], and γ(k) = 1 ⇐⇒ ‖x̂(k)− x(k)‖ >
δ ‖x(k)‖ for [163]. The algorithms only give a communication threshold, but require
a stabilizing controller K. For both, we used the same LQR as for (5.15).

The algorithms have different triggering laws but are all based on a fixed threshold
δ. For comparison, we vary this threshold. After every experiment, we compute
the quadratic cost and the average communication. These simulations revealed
that communication savings up to around 60 % for [163], 70 % for [164], and 80 %
for (5.15) are possible. When running similar simulations with the DDPG approach
from Section 5.3.1, we noted that the model-based approaches clearly outperform
the learning approach. However, communication savings of 90 %, as observed in
Figure 5.3, cannot be achieved with these model-based approaches as they become
unstable before. The learning agent, in contrast, is still able to come up with a good
policy.

5.4.3 Swing-up

As previously stated, the presented DRL approach can also be applied to more
challenging, e.g., nonlinear, systems. In this section, we take on such a setting
where the aforementioned ETC designs do not apply. The training and evaluation
procedures in this section follow the same paradigm detailed in Section 5.4.1.

In Figure 5.4, the inverted pendulum is presented again, but with the initial
angle well beyond the linear region. As can be seen, the agent is able to learn a
resource-aware swing-up policy and then stabilize the pendulum around θ=0 rad
while saving around 80 % communication.

We also trained the learning agent on the cart-pole system, where it was similarly
able to learn a stable policy while saving around 90 % of communication (with an
underlying sample time of 25 ms). The result of an experiment is shown in Figure 5.5.

5.4.4 Simulated locomotion

So far, we have addressed canonical tasks in optimal control using the proposed
end-to-end approach. In this section, we move the focus to advanced tasks, i.e.,
locomotion. We applied the proposed parameterized DDPG approach of Section 5.3.1
to resource-aware locomotion, but only with moderate success. This is possibly due to
the lack of reward hand-engineering and is left for future work considerations. During
our experiments, we discovered that learning controller and communication behavior
separately, as explained in Section 5.3.2, allows us to address even challenging tasks
such as robotic locomotion. In this approach, we first train the agent with full
communication using TRPO, typically using iteration numbers on the 106 order-of-
magnitude. After the TRPO agent is trained, we train the communication strategy
using a policy gradient approach with augmented reward as in (5.12) until we
observe desired behaviors trading off performance and communication saving. Our
experimental environment is based on the Mujoco physics simulation engine[165].
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Figure 5.4: Resource-aware swing-up of the inverted pendulum, showing the angle θ
(top) and the communication (bottom, discrete decision in black, average communica-
tion in red). The jump observed in the beginning is due to the pendulum crossing π
and thus immediately switching from π to −π.
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Figure 5.5: Resource-aware control of the cart-pole system.
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Figure 5.6: The ant robot.

0 5 10 15 20
0

5

10

15

s
(m

)

0 5 10 15 20

−0.5

0

0.5

u
(N

m
)

0 5 10 15 20
0

0.5

1

t (s)

γ

Figure 5.7: Simulation of the Ant robot (see Figure 5.6) learning to walk while saving
communication, showing from top to bottom the position s of the center of mass, the
input u, which is the torque applied to the hip motor, communication instants in black
and the average communication in red.

As an example we trained an ant (quadruped) robot (Figure 5.6) in a simulated 3D
locomotion task. It is a relatively challenging task considering the high-dimensional
state space (111 states with 13 for position, 14 for velocity, 84 for external force)
and under-actuation (8 actuators). To make matters worse, it can be easily toppled
and is then subsequently not able to stand up. The underlying sampling time is
50 ms.

As shown in Figure 5.7, the ant learns to walk saving around 60 % of communi-
cation. We did observe that, during some of the runs, the resource-aware ant falls
and causes worse performance. However, this happens only around 10 % of the time.
As our method is task agnostic and not specifically engineered for locomotion tasks,
we consider the performances and communication savings non-trivial.
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Agent 1
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Figure 5.8: Learning resource-aware control with two learning agents. The first agent
continuously receives measurements and can transmit information to the second agent
over a wireless channel with limited bandwidth. The second agent can continuously
apply control commands.

5.5 Discussion

Most existing approaches in ETC rely on the availability of accurate dynamics
models for the design of control law and event trigger. In contrast, we proposed the
use of DRL for simultaneously learning control and communication policies from
simulation data without the need of an analytical dynamics model. For scenarios
where an accurate linear model is available, the numerical comparisons herein have
shown that common model-based ETC approaches are superior to the learning
approach. This is to be expected because the model-based design fully exploits
the model structure. For some cases, however, the DRL approach succeeded in
finding stabilizing controllers at very low average communication rates, which the
model-based designs were unable to obtain. What is more, the key advantage of the
learning-based approach lies in its versatility and generality. As the examples herein
have shown, the same algorithm can be used to also learn control and communication
policies for nonlinear problems, including complex ones like locomotion. In the
presented example, significant communication savings of around 60 % were obtained.

One limitation of our current approaches is the zero-order hold employed at
the actuator. Instead of zero-order-hold, some model-based approaches perform
predictions based on the dynamics model in case of no communication, and thus
achieve better performance. This could also be done if learning agents are used
and would lead to a two agent problem as depicted in Figure 5.8. The first agent
continuously receives measurement updates and decides when to transmit data to
the second agent. The second agent can continuously apply control inputs, which
includes the possibility of making predictions based on a learned model. Investigating
such more general learning architectures is an interesting and challenging topic for
future work. Whether theoretical guarantees such as on stability and robustness
can also be obtained for the learned controllers is another topic worthwhile to be
investigated.





Chapter 6

Summary and Future Work

This chapter summarizes the results of this thesis and highlights future research
directions.

6.1 Summary

Cyber-physical systems (CPSs) are expected to tightly interact with each other
and the physical world while leveraging available data for learning. This enables
emerging application, such as autonomous driving or smart factories. As a stepping
stone towards that vision, this thesis presented results on fast and resource-efficient
control of wireless CPSs. Typical wireless imperfections, such as packet losses, delays,
and bandwidth constraints, were addressed by a tight integration of communication
protocol and control strategy. Classical control concepts were then enhanced by
machine learning techniques to get rid of the assumption that accurate dynamics of
the systems are available and that these dynamics are time-invariant.

Chapter 2 presented for the first time feedback control over low-power wireless
multi-hop networks with update intervals of 20-50 ms. A network protocol was
developed that tamed network imperfections to the extent possible. Remaining
imperfections (constant delay and rare, i.i.d. packet losses) were then taken into
account in the control design to achieve stable closed-loop behavior. Stability
was formally proven and demonstrated in experiments on a cyber-physical tested.
Moreover, the network provides a many-to-all communication structure, allowing
to straightforwardly implement distributed control. As an example for distributed
control, synchronization of multiple physical systems over a low-power wireless
multi-hop network was presented.

Chapter 3 took on the challenge of limited bandwidth inherent in wireless
communication channels. Typical event-triggered control (ETC) and state estimation
methods take instantaneous decisions about whether to transmit information or not.
That way, the communication system cannot react and reallocate resources, thus,
resource savings are not possible. In contrast to that, novel triggering strategies were
introduced that predict communication requirements in advance. This allows to
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reallocate resources in case of no communication and thus to actually save resources.
In Chapter 4, the assumption of having an accurate system model available was

dropped. An event-triggered pulse control strategy was introduced and, based on a
statistical analysis of the inter-communication times, model quality was evaluated.
In case of a bad model, learning of a new model was triggered. Apart from the
model, possible load disturbances were learned as well, thus, the approach represents
a replacement of the integrator typically used in periodic control.

Independently optimizing control and communication strategy does not necessar-
ily yield the optimal overall ETC strategy. Moreover, model-based approaches often
only work for linear dynamics. Chapter 5 presented an end-to-end learning approach
that simultaneously learns communication and control policy from scratch. The
approach straightforwardly generalizes to nonlinear systems and communication
savings of around 60 % were demonstrated on a simulated robotic system.

6.2 Future Work

To arrive at CPSs that autonomously act in the real world, make efficient use
of available resources, and acquire new skills or improve their behavior through
learning, there are more challenges to be overcome.

In the thesis, we showed how fast physical systems can be controlled over wireless
networks. However, this was done in a time-triggered fashion, i.e., communication
was running at the fastest periodic rates the network was able to support. We also
presented frameworks to schedule communication in an event-triggered way, but
without implementing them in a real wireless setting. In future work, we seek to
combine event-triggered approaches with the wireless communication system. As
a first step towards this direction, we will enhance the flexibility of the wireless
control system by allowing for switching between different schedules, e.g., switching
between synchronization and stabilization tasks. Next steps involve the integration
with the concepts presented in Chapter 2. By deciding about future communication
demands in advance, we want to show that we can save not only energy, but also
resources. This will complement the integration at design time by an integration
at runtime. However, the concepts presented in Chapter 2 still make deterministic
decisions about communication, i.e., the communication system must be able to
support simultaneous communication of all agents. As this might not be possible,
we plan to instead derive a priority measure that is sent to the network manager.
That way, the network manager can assign available slots to systems that are in
need of communication.

We also presented a framework to learn dynamics models on demand based on a
statistical analysis in Chapter 4. Currently, old models are overwritten whenever a
new model is learned. However, in reality, dynamics might change due to repeating
reasons, such as different loads of a heavy-duty vehicle or changing road conditions.
Thus, in future work we want to store old models to be able to reuse them in case
they become relevant again. This might be possible by relating models to available
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information about the environment. Building knowledge about causal relationships
between changes in the environment and changes in the dynamics model is then a
key challenge.

We discussed the constrained embedded devices as one limitation of wireless
CPSs. As learning is computationally expensive, the integration of such concepts
with the wireless control system is challenging. We therefore seek to further exploit
the communication capabilities of wireless CPSs through outsourcing heavy compu-
tations to cloud services. If the cloud is accessible by all agents, they can also use, for
instance, models learned by agents with similar dynamics. This further fosters the
collaboration aspect of CPSs. By outsourcing heavy computations to cloud services,
we plan to integrate the model-learning framework with the wireless control system.
The learned models can then be used to make better informed decisions about future
communication demands.

End-to-end learning of communication and control strategy represents an al-
ternative to model-based designs. Building on the methods shown in Chapter 5,
we plan to investigate other hierarchical reinforcement learning [157] and temporal
abstraction methods such as the option framework [166, 167]. Temporal abstraction
naturally also opens the possibility to make statements about future communication
needs. This will then again lead to interesting comparisons between model-based
strategies as in Chapter 3 and model-free reinforcement learning techniques. How
these methods can be used in setups with resource-constrained embedded devices
and what kind of guarantees are possible is another open problem for future research.





Appendix A

Control Details of Chapter 2

Here, we present details of the control design from Chapter 2. In particular, we
present the proof of Theorem 2.1, a stability analysis including noise, implementation
details of the controllers we used for the stabilization experiments, and outline the
approach to multi-agent synchronization.

A.1 Proof of Theorem 2.1

For clarity, we reintroduce time index k for θ and φ here. Following a similar approach
as in [168], we transform θ(k) as θ(k) = µθ (1− δθ(k)) with the new binary random
variable δθ(k) ∈ {1, 1−1/µθ} with P[δθ(k) = 1] = 1−µθ and P[δθ(k) = 1−1/µθ] = µθ;
and analogously for φ(k) and δφ(k). We thus have that δθ(k) is i.i.d. (because θ is
i.i.d.) with E[δθ(k)] = 0 and Var[δθ(k)] = σ2

p1
, and similarly for δφ(k). Employing

this transformation, Ã(k) in (2.8) is rewritten as Ã(k) = Ã0 +
∑2
i=1 Ãipi(k) with

p1(k) = δθ(k), p2(k) = δφ(k), and Ãi as stated in Theorem 2.1. Thus, all properties
of (2.6) are satisfied, and Lemma 2.1 yields the result.

A.2 Stability Analysis with Noise

Dropping the assumption of v(k) = w(k) = 0, the system description (2.6) becomes

z(k + 1) = Ã(k)z(k) + Ẽε(k). (A.1)

For a system that is constantly perturbed by Gaussian noise the state correlation
will not vanish, but we can guarantee it to be bounded. We thus define MSS for
systems as (A.1) (cf. [169, 170]).

Definition A.1. Let M(k) := E[z(k)zT(k)] denote the state correlation matrix.
The system (A.1) is mean square stable (MSS) if limk→∞M(k) <∞ for any initial
z(0).
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Lemma A.1 ([127]). The state correlation matrix for system (A.1) satisfies the
difference equation

M(k + 1) = Ã0M(k)ÃT
0 + Ẽ0WẼT

0 +
L∑
i=1

σ2
i

(
ÃiM(k)ÃT

i + ẼiWẼT
i

)
. (A.2)

The noise covariance W and the matrices Ẽ0 and Ẽi are constant, thus to simplify
notation we can write Ẽ0WẼT

0 +
∑L
i=1 σ

2
i ẼiWẼT

i = Ŵ . We further define:

Definition A.2. The difference equation (A.2) can be written as

M(k + 1) = f (M(k)) + Ŵ , (A.3)

with

f(X) = Ã0XÃ
T
0 +

L∑
i=1

σ2
i ÃiXÃ

T
i . (A.4)

We will now show that mean-square stability of system (2.6) implies mean-square
stability of system (A.1).

Lemma A.2. Mean-square stability of system (2.6) implies mean-square stability
of (A.1).

Proof. We first write (A.3) in explicit form,

M(k) = fk (M(k)) +
k−1∑
i=0

f i
(
Ŵ
)
, (A.5)

where fk denotes the repeated composition of f with itself. Now taking the limit
yields

lim
k→∞

M(k) = lim
k→∞

fk (M(k))︸ ︷︷ ︸
=0, as Lemma 2.1 is fulfilled

+ lim
k→∞

k−1∑
i=0

f i
(
Ŵ
)

= lim
k→∞

k−1∑
i=0

f i
(
Ŵ
)

= lim
k→∞

k−1∑
i=0

f i
(
W̄ − f

(
W̄
))

= lim
k→∞

k−1∑
i=0

f i
(
W̄
)
− lim
k→∞

k∑
i=1

f i
(
W̄
)

= f0 (W̄ )− lim
k→∞

fk
(
W̄
)

= W̄ ,

(A.6)
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with W̄ the unique solution to

Ŵ = W̄ − f
(
W̄
)
. (A.7)

That is, MSS of the noise-free system implies MSS of the system perturbed by
Gaussian noise.

To show that Lemma A.2 can be applied to our system, we rewrite (2.8) to
include noise
x(k + 1)
x̂(k + 1)
u(k + 1)
û(k + 1)


︸ ︷︷ ︸

z(k+1)

=


A 0 B 0
θA (1− θ)A 0 B
0 φFA (1− φ)I φFB
0 FA 0 FB


︸ ︷︷ ︸

Ã(k)


x(k)
x̂(k)
u(k)
û(k)


︸ ︷︷ ︸

z(k)

+


1 0
0 θ
0 0
0 0


︸ ︷︷ ︸
Ẽ(k)

(
v(k)
w(k)

)
︸ ︷︷ ︸

ε(k)

.

(A.8)

Theorem A.1. The system (A.8) is MSS if, and only if, there exists a P > 0 such
that (2.7) holds with Ã0, Ã1, Ã2, σ2

p1
, and σ2

p2
as in Theorem 2.1 and

Ẽ0 =
( 1 0

0 µθ
0 0
0 0

)
, Ẽ1 =

( 0 0
0 −µθ
0 0
0 0

)
, Ẽ2 =

( 0 0
0 0
0 0
0 0

)
.

Proof. We employ the same transformation for θ and φ as in Theorem 2.1, what in
the same way fulfills the requirements on pi(k). v(k) and w(k) are i.i.d., zero-mean
Gaussian random variables with finite variance (Σproc respectively Σmeas), what
fulfills the requirements on ε(k). Thus, Lemma A.2 yields the stability result.

A.3 Stabilizing Controllers

For the stability experiments of Section 2.5.2, we employ the design outlined in
Section 2.4.2. The system matrices A and B of the cart-pole system that are used
for predictions and nominal controller design are given by the manufacturer in [138].
The nominal controller is designed for an update interval TU = 40 ms via pole
placement, and we chose F such that we get closed-loop eigenvalues at 0.8, 0.85, and
0.9 (twice). In experiments with update intervals different from 40 ms, we adjusted
the controller to achieve similar closed-loop behavior.

To derive more accurate estimates of the velocities, filtering can be done at higher
update intervals than communication occurs. For the experiments in Section 2.5,
estimation and filtering occurred at intervals between 10 ms and 20 ms, depending
on the experiment.
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A.4 Synchronization

For simplicity, we consider synchronization of two agents in the following, but the
approach directly extends to more than two, as we show in the experiments in
Section 2.5.3.

We consider the architecture in Figure 2.5, where each physical system is associ-
ated with a local controller that receives local observations directly, and observations
from other agents over the network. We present an approach based on linear quadratic
optimal control (LQR) [3] to design the synchronizing controllers. We choose the
quadratic cost function

J = lim
K→∞

E
[K−1∑
k=0

2∑
i=1

(
xT
i (k)Qixi(k) + uT

i (k)Riui(k)
)

+ (x1(k)− x2(k))TQsync(x1(k)− x2(k))
]

(A.9)

which expresses our objective of keeping x1(k)− x2(k) small (through the weight
Qsync > 0), next to usual penalties on states (Qi > 0) and control inputs (Ri > 0).
Using augmented state x̃(k) = (x1(k), x2(k))T and input ũ(k) = (u1(k), u2(k))T,
the term in the summation over k can be rewritten as

x̃T(k)
(
Q1 +Qsync −Qsync
−Qsync Q2 +Qsync

)
x̃(k) + ũT(k)

(
R1 0
0 R2

)
ũ(k).

Thus, the problem is in standard LQR form and can be solved with standard
tools [3]. The optimal stabilizing controller that minimizes (A.9) has the structure
u1(k) = F11x1(k) + F12x2(k) and u2(k) = F21x1(k) + F22x2(k); that is, agent 1
(u1(k)) requires state information from agent 2 (x2(k)), and vice versa. Because of
many-to-all communication, the wireless embedded system directly supports this
(as well as any other possible) controller structure (P3).

As the controller now runs on the node that is collocated with the physical
process, local measurements and inputs are not sent over the wireless network and
the local sampling time can be shorter than the update interval of the network, over
which states of other agents are received. While the analysis in Section 2.4.3 can be
generalized to the synchronization setting, a formal stability proof is beyond the
scope of this chapter. In general, stability is less critical here because of shorter
update intervals in the local feedback loop.

For the synchronization experiments in Section 2.5.3, we chose Qi in (A.9) for
all pendulums as suggested by the manufacturer in [138] and set Ri = 0.1. As we
here care to synchronize the cart positions, we set the first diagonal entry of Qsync
to 5 and all others to zero.



Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.1

Because x̌(k) = x̂(k) for γ(k) = 1 from (3.14), the remote error e(k) is identical to
the KF error ê(k) = x(k)− x̂(k). From KF theory [136, p. 41], it is known that the
conditional and unconditional error distributions are identical, namely

f(ê(k)) = f(ê(k)|Y(k),U(k)) = N (ê(k); 0, P (k)). (B.1)

That is, the error distribution is independent of any measurement data. Therefore,
we also have f(e(k +M)|Y(k),U(k)) = f(ê(k +M)|Y(k),U(k)) = f(ê(k +M)) (see
[171, Proof of Lem. 2] for a formal argument), from which the claim follows with
(B.1).

B.2 Proof of Lemma 3.2

We first establish, for any M ≥ 0,

x̂(k +M) = ĀM x̂(k) +
M∑
m=1

ĀM−mBξ(k +m− 1)

+
M∑
m=1

ĀM−mL(k +m)z(k +m) (B.2)

x̂(k +M |k) = ĀM x̂(k) +
M∑
m=1

ĀM−mBξ(k +m− 1)

+
M−1∑
m=1

G(M −m− 1)L(k +m)z(k +m) (B.3)

with z(k) := y(k)−Cx̂(k|k− 1) the KF innovation, L(k) the KF gain, and G(m) as
in (3.29), through proof by induction. For M = 0, (B.2) and (B.3) hold trivially with
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x̂(k) = x̂(k) and x̂(k|k) = x̂(k), respectively. Induction assumption (IA): assume
(B.2) and (B.3) hold for M . Show they are then also true for M + 1. We have from
the KF iterations:

x̂(k +M + 1) = Ax̂(k +M) +Bu(k +M) + L(k +M + 1)z(k +M + 1)
= Āx̂(k +M) +Bξ(k +M) + L(k +M + 1)z(k +M + 1)

(by (3.11))

= ĀM+1x̂(k) +
M+1∑
m=1

ĀM+1−mBξ(k +m− 1)

+
M+1∑
m=1

ĀM+1−mL(k +m)z(k +m) (from IA (B.2))

and

x̂(k +M + 1|k) = Ax̂(k +M |k) +Bu(k +M)
= Ax̂(k +M |k) +BFx̂(k +M) +Bξ(k +M)

= (A+BF )
(
ĀM x̂(k) +

M∑
m=1

ĀM−mBξ(k +m− 1)
)

+Bξ(k +M)

+A
(M−1∑
m=1

G(M −m− 1)L(k +M)z(k +M)
)

+BF
( M∑
m=1

ĀM−mL(k +M)z(k +M)
)

(from IA (B.2), (B.3))

= ĀM+1x̂(k) +
M+1∑
m=1

ĀM+1−mBξ(k +m− 1)

+
M∑
m=1

G(M −m)L(k +M)z(k +M) (by def. of G(m)).

Hence, (B.2) and (B.3) are true for M + 1, which completes the induction.
Next, we analyze the error e(k+M) for the case γ(k+M) = 0 (no communication).

To ease the presentation, we introduce the auxiliary variable enc(k) := e(k)|γ(k)=0.
Case (i): First, we note that k > κ(k − 1) implies κ(k − 1) = `(k) because

κ(k − 1), the last nonzero element of Γ(k +m− 1), is in the past, and the identity
thus follows from the definition of `(k). It follows further that all triggering decisions
following γ(`) = 1 are 0 until γ(k +m− 1) (otherwise γ(`) would not be the last
element in Γ(k +m− 1)). Hence, we have the communication pattern γ(`) = 1 and
γ(`+ 1) = γ(`+ 2) = · · · = γ(k +m− 1) = 0.
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Let ∆̃ := M + k − `. From

enc(k +M) = x(k +M)− Ā∆̃x̂(`)−
∆̃∑

m=1
Ā∆̃−mBξ(`+m− 1)

it follows that the conditional distribution (3.24) is Gaussian. It thus suffices to
consider mean and variance in the following.

For the conditional mean, we have

E[enc(k +M)|Y(k),U(k)]

= E[x(k +M)|Y(k),U(k)]− Ā∆̃x̂(`)−
∆̃∑

m=1
Ā∆̃−mBξ(`+m− 1), (B.4)

and

E[x(k +M)|Y(k),U(k)] = E
[
E[x(k +M)|Y(k),U(k +M)]

∣∣Y(k),U(k)
]

= E[x̂(k +M |k)|Y(k),U(k)]

= ĀM x̂(k) +
M∑
m=1

ĀM−mBξ(k +m− 1) (B.5)

where we used the tower property of conditional expectation, (3.8), and (B.3) with
the fact that the KF innovation sequence z(k) is zero-mean and uncorrelated. Using
(B.5) with (B.4), we obtain

E[enc(k +M)|Y(k),U(k)] = ĀM (x̂(k)− Āk−`x̂(`)) +
M∑
m=1

ĀM−mBξ(k +m− 1)

−
k−∑̀
m=1

Ā∆̃−mBξ(`+m− 1)−
M+k−`∑
m=k−`+1

ĀM+k−`−mBξ(`+m− 1) (B.6)

= ĀM
(
x̂(k)− Āk−`x̂(`)−

k−∑̀
m=1

Āk−`−mBξ(`+m− 1)
)

(B.7)

which proves (3.25). The first and third sum in (B.6) can be seen to be identical by
substituting m with m+ k − `.

Employing the tower property for the conditional variance, we get

Var[enc(k +M)|Y(k),U(k)]
= E

[
Var[enc(k +M)|Y(k),U(k +M)]

∣∣Y(k),U(k)
]

+ Var
[
E[enc(k +M)|Y(k),U(k +M)]

∣∣Y(k),U(k)
]

= E[P (k +M |k)|Y(k),U(k)] + Var[x̂(k +M |k)|Y(k),U(k)]
= P (k +M |k) + Var[x̂(k +M |k)|Y(k),U(k)].
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Furthermore, Var[x̂(k +M |k)|Y(k),U(k)] = Ξ(k,M) follows from (B.3), z(k) being
uncorrelated, and

Var[z(k +M)|Y(k),U(k)]
= Var[CAê(k +m− 1) + Cv(k +m− 1) + w(k +M)|Y(k),U(k)]
= P̃ (k +M)

as defined in (3.28). This completes the proof for Case (i).
Case (ii): We use κ = κ(k − 1) to simplify notation. By definition of κ, we have

κ ≤M + k− 1, and hence k ≤ κ ≤M + k− 1. That is, a triggering will happen now
or before the end of the horizon M + k. At the triggering instant κ, we have from
(3.14), e(κ) = x(κ)− x̂(κ). Hence, the distribution of the error at time κ is known
irrespective of past and future data. Following the same arguments as in the proof of
Lemma 3.1, we have f(e(κ)|Y(k),U(k)) = f(e(κ)|Y(κ),U(κ)) = N (e(κ); 0, P (κ)).

From the definition of κ, we know that there is no further communication
happening until M + k − 1. Thus, we can iterate (3.14) with γ = 0. Using the same
reasoning as in Case (i), we have

enc(k +M) = enc(κ+ ∆) = x(κ+ ∆)− Ā∆x̂(κ)−
∆∑

m=1
Ā∆−mBξ(κ+m− 1)

and thus

E[enc(κ+ ∆)|Y(κ),U(κ)]

= E[x(κ+ ∆)|Y(κ),U(κ)]− Ā∆x̂(κ)−
∆∑

m=1
Ā∆−mBξ(κ+m− 1)

= E[x̂(κ+ ∆|κ)|Y(κ),U(κ)]− Ā∆x̂(κ)−
∆∑

m=1
Ā∆−mBξ(κ+m− 1) = 0

where the last equality follows from (B.3) and z(k) being zero-mean. Similarly, for
the variance, we obtain

Var[enc(κ+ ∆)|Y(κ),U(κ)] = E[P (κ+ ∆|κ)|Y(κ),U(κ)]
+ Var[x̂(κ+ ∆|κ)|Y(κ),U(κ)]
= P (κ+ ∆|κ) + Var[x̂(κ+ ∆|κ)|Y(κ),U(κ)]
= P (κ+ ∆|κ) + Ξ(κ,∆).
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Silva, Cormac J. Sreenan, Vasos Vassiliou, Thiemo Voigt, Lars Wolf, Zinon
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