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Abstract

Networked embedded control systems are present almost everywhere. A
recent trend is to introduce wireless sensor networks in these systems, to
take advantage of the added mobility and flexibility offered by wireless so-
lutions. In such networks, the sensor observations are typically quantized
and transmitted over noisy links. Concerning the problem of closed-loop
control over such non-ideal communication channels, relatively few works
have appeared so far. This thesis contributes to this field, by studying
some fundamentally important problems in the design of joint source–
channel coding and optimal control.

The main part of the thesis is devoted to joint design of the coding
and control for scalar linear plants, whose state feedbacks are transmit-
ted over binary symmetric channels. The performance is measured by a
finite-horizon linear quadratic cost function. The certainty equivalence
property of the studied systems is utilized, since it simplifies the overall
design by separating the estimation and the control problems. An itera-
tive optimization algorithm for training the encoder–decoder pairs, taking
channel errors into account in the quantizer design, is proposed. Monte
Carlo simulations demonstrate promising improvements in performance
compared to traditional approaches.

Event-triggered control strategies are a promising solution to the
problem of efficient utilization of communication resources. The basic
idea is to let each control loop communicate only when necessary. Event-
triggered and quantized control are combined for plants affected by rarely
occurring disturbances. Numerical experiments show that it is possible
to achieve good control performance with limited control actuation and
sensor communication.

Keywords: optimal control, joint source–channel coding, joint cod-
ing and control, certainty equivalence, linear quadratic control, stochastic
control, wireless sensor network.
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Chapter 1

Introduction

1.1 Background

Networked embedded control systems are present almost everywhere. Ap-
plication areas include industrial automation, aerospace and medical sys-
tems, as well as in consumer electronics such as home electronics and
mobile phones. The systems are often connected through either wired
(e.g., wired local area networks) or wireless (e.g., bluetooth) communica-
tion technologies. A consequence of the rapidly growing number of con-
nected systems is the increasing demands for efficient sharing of resources.
Integrating technological advancements in sensing, communication, com-
putation and control has brought up many engineering challenges, such
as finding efficient ways of processing the available information at each
distributed node and exchanging information among the nodes.

Traditional communication theory has been mainly focused on op-
timal strategies for transmitting information, while traditional control
theory provides methodologies for designing controllers to interact with
the environment. Until recently, the research work in these two disciplines
has largely been carried out separately.

A traditional control system is based on an underlying assumption of
perfect communication links between the plant and the controller. The
controller is assumed to have perfect access to the sensor observations
and the decision of the controller is available directly at the input of
the actuator. Under these ideal assumptions, there is no limitation on
how much data it is possible to transmit at each time instant, and there
are no delays and no transmission errors in the links between the plant
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and the controller. Advanced methods and tools are developed to govern
the interplay among the plant, sensor and controller under these ideal
assumptions.

A recent trend is to perform control using wireless sensor networks,
which takes advantage of the mobility and the flexibility offered by wire-
less solutions. In such a network, the sensor observations are typically
quantized and transmitted over noisy links. Also difficulties, such as data
delays and data drops, are encountered. Concerning control over non-
ideal communication links, little work has been performed so far. Devel-
opment of methods and tools for the analysis and synthesis of feedbacks
over imperfect communication links is therefore of great importance.

The constraints imposed by the imperfect communication links are
complex. As discussed above, quantization and transmission errors are
examples of crucial obstacles. The quantization, especially the quantiza-
tion granularity, deteriorates the signals transmitted between the plant
and the controller. This can potentially degrade the overall system per-
formance. Although quantization in feedback control systems was studied
since the dawn of control engineering, the results have mainly been re-
stricted to treating quantization errors as additive white noise. Moreover,
in almost all applications, simple quantizers, such as uniform quantizers
are employed. This, since they are easy to implement. However, for ap-
plications with low rate and high communication costs, it is natural to
study closer-to-optimal solutions.

Transmission errors are unavoidable in communications over unre-
liable media, for example wireless networks. Therefore, robustness to
transmission errors is one of the fundamental requirements of all mod-
ern communication systems. Concerning control applications, little has
been done to take into account imperfect communications in the overall
system design. However, due to the delay sensitivity, it is not suitable
to use long block codes to reduce the uncertainties, as commonly done
in traditional communication systems. A joint design, with a constraint
on the codeword length, which combines the source compression and the
channel protection can therefore be suitable. In this thesis we will study
the joint design of coding and control for an efficient use of the available
communication resources.

Event-triggered control strategies are considered as another promising
solution to the problem of efficient utilization of communication resources.
The basic idea is to let each control loop communicate as infrequently
as possible. It is believed that event-triggered controls can potentially
be more efficient than the conventional time-triggered control in many
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Figure 1.1: An example of a sensor network in motion control of a non-
contact objective in industrial manufacturing.

cases. However, how to schedule a number of distributed subsystems is
still an open problem. As an application of our proposed joint coding–
control strategy, we combine event-triggered and quantized control for
plants affected by rarely occurring disturbances.

1.2 Motivating Examples

Before presenting the particular control problem studied in this thesis, let
us first consider two examples of sensor networks in control applications.

Example 1 Motion Control of Non-Contact Objectives
In industrial production, there are situations when fragile materials need
to be transported by using non-contact methods. Fig. 1.1 illustrates an
example, inspired by [BBea00], where a planar object is transported by a
number of air jets. In order to eliminate the potential disturbances, such
as external forces, the air jets can provide alternative air beams of varied
angles and forces. The position of the object is monitored by spatially
distributed sensor nodes. As long as the system is working under the
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Figure 1.2: An example of a sensor network in environmental control of
greenhouse vegetable production.

normal condition, that is to say there is no disturbance detected, the
same set of air beams are applied on the object. On the other hand, once
a disturbance is detected, a new set of air beams will be selected, based
on the sensor measurements. In this case, the questions, such as how to
deploy the sensor network and how to utilize the sensor measurements,
will be part of the controller design.

Example 2 Environmental Control of Greenhouses
The following example, inspired by [Jon01], illustrates the future use of
control over sensor networks in agriculture applications. The new gener-
ation of greenhouses will support automatic environmental regulations.
Fig. 1.2 depicts such a greenhouse, which exploits a feedback control sys-
tem to maintain a perfect growing environment for plants. More precisely,
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Figure 1.3: Control system utilizes data from wireless sensor network. The
results of this thesis can be applied to optimize the use of the wireless medium.

the “perfect” environment is specified by a number of so called primary
variables, such as temperature, humidity, light, CO2 levels etc. The con-
trol task is to keep the primary variables within some ranges provided
by the grower. Typically, these values are altered continuously by com-
plicated biological and chemical processes, both inside and outside the
greenhouse. As an example, the solar radiation directly and indirectly
affects all the primary variables. The variables are monitored by the sen-
sor nodes deployed over a large area. As soon as any value exceeds the
predefined limit, the actuators, such as heaters, fans, illumination and
irrigation equipments, will act automatically to regulate the environment
into favorable conditions.

Above, we have given two specific examples of using sensor networks
in control applications. In order to have a general picture of the problems
particularly studied in this thesis, let us consider the wireless networked
control system shown in Fig. 1.3. The system consists of a number of
sensor nodes that are connected through a shared wireless medium to a
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central control node. The sensors are spatially distributed over a large
area and they measure the state of a control object, which is affected by
rarely occurring local disturbances. The control commands for keeping
the states around the equilibrium working points are executed through
a common actuator, therefore all the sensors report their state measure-
ments to a common control node. The described system is quite rep-
resentative for many emerging applications, with control using wireless
sensor networks, as can be found in industrial automation, environmental
monitoring, surveillance etc. In order to efficiently utilize communication
resources, it is especially interesting to study the case where each sensor
transmits only few symbols and each symbol consists of few bits.

The goal is to design the encoding (compression and/or quantization,
and error control), the decoding and the control strategy jointly. A decen-
tralized approach is as follows: let the control command corresponding
to a specific sensor be zero as long as no disturbance is detected. Once
the sensor detects a disturbance, the sensor measurement is encoded and
transmitted to the control node. The message is decoded at the control
node and a control command is derived and actuated to counteract the
specific disturbance observed at the transmitting sensor.

In this thesis, a stochastic control problem for the system described
in Fig. 1.3 is formulated. Before moving on to the problem formulation,
a short introduction to the topics of stochastic control theory and coding
over noisy channels is given in the remaining part of this chapter.

1.3 Stochastic Control

Stochastic control theory deals with the analysis and synthesis of con-
trollers for dynamic systems subject to stochastic disturbances. Solu-
tions to stochastic control problems rely heavily on dynamic program-

ming. A brief introduction to the concept and technique of dynamic
programming is given in Section 1.3.1. Besides dynamic programming,
we will see later that estimation theory also plays an important role in
stochastic control. We will then in Section 1.3.2 present the certainty

equivalency property, which describes the separation of state estimation
and control. There exists a rich literature in stochastic control theory,
e.g., [Åst70,Ber95,BS96,Söd03].
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1.3.1 Dynamic Programming

It is well known that a decision best for the current time instant in most
cases is not necessarily the best one for the future evolution. Dynamic
programming captures this fact and makes its decisions based on a com-
bined cost of the current state and the expected future states.

A simple stochastic control problem for a scala plant (of dimension
one) is formulated below. The state space model of the plant is given by

{
xt+1 = θt(xt, ut, vt),

yt = ht(xt, et),
(1.1)

where θt is the system function and ht is the measurement function at
time t. The variables xt, ut, yt represent the state, the control and the
measurement, respectively. Finally, vt and et denote the process noise
and the measurement noise. The subscript t is a time index.

The design goal is to find the optimal control sequence, which mini-
mizes the cost function,

J = E

{
T∑

t=0

l(xt, yt, ut)

}

, (1.2)

where T denotes the finite time horizon and l denotes a function, which
measures the instantaneous system performance. Finally, E is the expec-
tation operator.

Let us review some results [Åst70,Söd03], which will simplify the stud-
ied optimization problem. For brevity, the time index t will be ignored
for a moment. When having the complete state information, i.e., both x
and y are available, the following result has been proven: assuming the
function l(x, y, u) has a unique minimum as a function of the control sig-
nal, at u?(x, y), the minimization and the expectation are commutative,
i.e.,

min
u(x,y)

E {l(x, y, u)} = E {l(x, y, u?(x, y))} = E
{

min
u

l(x, y, u)
}

. (1.3)

On the other hand, when only y is available, i.e., the incomplete state
information scenario, one can show that

min
u(y)

E {l(x, y, u)} = E {l(x, y, u?(y))}

= Ey

{

min
u

E {l(x, y, u)|y}
}

, (1.4)
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by assuming E{l(x, y, u)|y} has a unique minimum at u?(y). Obviously,
the complete state information scenario can be considered as a special
case of the incomplete state information scenario.

Dynamic programming is based on the principle of optimality. The
intuitive idea is that a truncation of the optimal control sequence,
{u?

t , . . . , u
?
T }, is also the optimal strategy for the truncated problem whose

cost is a summation from time s to T . Let the notation zb
a = {za, . . . , zb}

describe the evolution of a discrete-time signal zt from t = a to t = b.
Based on the principle of optimality, the optimal ut is the one that min-
imizes a sum of the future costs:

u?
t = arg min

ut

E

{
T∑

s=t

l(xs, ys, us)|yt
0

}

, (1.5)

where yt
0 represents all past measurements. Introduce the optimal “cost-

to-go” function at time t, such as

V ?(ξ(t), t) = min
uT

t

E

{
T∑

s=t

l(xs, ys, us)|yt
0

}

, (1.6)

where ξ(t) denotes the conditional probability p(xt|yt−1
0 ). V ?(ξ(t), t) is

the result of the optimal control sequence {u?
0, . . . , u

?
T }. Then, the opti-

mal control function u?
t at time t can be derived by solving the following

functional equation,

V ?(ξ(t), t) = min
ut

E
{
l(xt, yt, ut) + V ?(ξ(t + 1), t + 1)|yt

0

}
. (1.7)

1.3.2 Certainty Equivalence

A certainty equivalence (CE) controller [BST74,The57,TBS75,WW81],
is obtained by replacing the full state observation xt in the optimal deter-
ministic solution, where the process noise is absent and the perfect state
observations are available, with the state estimate x̂t|t, that is,

uOpD
t = φt(xt), uCE

t = φt(x̂t|t), (1.8)

where φt(xt) denotes the optimal deterministic solution (OpD) and x̂t|t is

the conditional mean estimate E{xt|yt
0,u

t−1
0 }. The equation (1.8) depicts

a clear separation between the estimation x̂t|t and the control φt. The
CE controller is favored in stochastic control for its practicability.
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Sometimes, a CE controller is also the optimal control strategy, which
is often termed certainty equivalency property. However, a CE controller
is in general only a suboptimum solution with few exceptions. The most
well known exception is linear systems with quadratic costs and Gaussian
distributed random variables (i.e., initial state x0, process noise vt and
measurement noise et). Moreover, the variables are independent and a
so-called classical information pattern is required, which means all past
measurements are known to the controller. For this example, the sepa-
ration in (1.8) applies and the optimal control is a linear function of the
conditional mean estimate:

u?
t = −`tE

{
xt|yt

0

}
, (1.9)

where E{xt|yt
0} denotes the expected xt conditioned on all past measure-

ments yt
0 and `t is the feedback gain.

Finally, we introduce the separation property, by which x̂t|t is a suffi-

cient statistic to derive the optimal control, such as

u?
t = ϕt(x̂t|t). (1.10)

Separation property is a weak notion of the CE property, since ϕt is not
necessary the optimal deterministic solution φt.

1.4 Elements of Source and Channel Coding

Recall the example in Fig. 1.3. The signal path from a sensor to the
controller can be modeled as a point-to-point communication link. In
Fig. 1.4, a block diagram of the elemental building blocks in a traditional
communication system is given. Source coding and channel coding are
presented briefly in Section 1.4.1 and Section 1.4.2. In Section 1.4.3, we
give an introduction to the source–channel separation theorem.

1.4.1 Source Coding

Source coding deals with the compression of source data by removing the
redundancy and irrelevancy in the data sequence. Based on whether or
not the original data sequence can be reconstructed, the source coding
methods can be divided into two categories. The first, referred to as
lossless coding, requires the data processing to be reversible. For an
independent and identically distributed (i.i.d.) random variable X, the
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average length of a uniquely decodable code is bounded by the entropy

rate [CT91] of the source, which is defined as

H(X) = −
∑

x∈X

p(x) log2 p(x), (1.11)

where p(x) is the probability mass function, p(x) = Pr{X = x}. By
using base 2 logarithm, H(X) is measured in bits. In lossy coding (the
second category), the restriction of the reversibility is relaxed. A measure
of the distortion between the original data and the reconstructed data,
%(X, X̂), is required for the optimization in the coder design. The distor-
tion function % will vary from application to application. In general, the
main features of a proper distortion function are non negativity, physical
meaningfulness and easy to calculate. The conflicting relation between a
given distortion and a minimum rate is stated in a rate distortion func-
tion, see e.g., [CT91,Gal68,Kle04], which is one of the fundamentals in
lossy source coding.

Lossy source coding and quantization are two closely related terms.
Quantization describes a process of approximating a large set of possible
values into a small set of discrete symbols. Scalar quantization operates
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on scalar data, while vector quantization operates on multidimensional
vectors. Fig. 1.5 depicts the source coding over a noise-free channel. Let
X denote the source symbol, in particular the sample of a stationary
ergodic stochastic process. The encoder function f performs a mapping
of each source symbol (scalar) to an integer index: I = f(X). The integer
set I = {0, 1, . . . , 2R −1}, where R denotes the rate, contains all possible
indices. The encoder region Si is the set that contains all source symbols
assigned index i:

Si = {x|f(x) = i}, i ∈ I, (1.12)

i.e., X ∈ Si ⇔ I = i. The task of a decoding function g is to reconstruct
an estimate X̂ of the source symbol X, based on the received index, in
particular, X̂ = g(I). We define the reconstruction point qi, which is
associated with index i through

I = i ⇒ X̂ = g(i) = qi. (1.13)

The set of all reconstruction points is termed a codebook.
A pdf-optimized quantizer provides a set of reconstruction points and

their corresponding encoder regions based on the statistics of the source
symbol. The optimality is typically measured by minimizing a distortion
D (or a cost), e.g., the mean squared error (MSE):

DMSE = E
{

(X − X̂)2
}

. (1.14)

1.4.2 Channel Coding

When quantized symbols are transmitted over a noisy channel, trans-
mission errors are unavoidable. Channel coding deals with protecting
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information bits against channel errors by carefully adding redundant
bits. Channel capacity is an upper bound of the achievable rate above
which error-free transmission is not possible. Generally speaking, a dis-
crete memoryless channel can be described by a conditional probability
function p(j|i), where i and j are input and output indices to the chan-
nel. The channel capacity for a stationary discrete memoryless channel
is obtained as

C = max
p(i)

I(I; J)

= max
p(i)







∑

i∈I,j∈J

p(j|i)p(i)
p(j|i)

∑

i∈I p(j|i)p(i)






, (1.15)

where I(I; J) denotes the mutual information between the input I and
the output J . Intuitively, mutual information describes the information
about I shared by J . The references [MS98,RU02,Wic95] are good in-
troductions to the subject of channel coding.

1.4.3 The Source–Channel Separation Theorem

The source–channel separation theorem states that under certain condi-
tions the combining of separately designed source and channel codes will
still achieve the optimal performance for transmission over noisy chan-
nels. For lossless coding, it particularly states that there exists a source–
channel code to transmit a stationary ergodic source with arbitrary low
probability of error if the source satisfies the asymptotic equipartition

property, e.g., [CT91], and if the entropy rate is lower than the channel
capacity. Conversely, the source can not be transmitted reliably, i.e.,
the probability of error is bounded away from zero, if the source entropy
rate exceeds the channel capacity. The asymptotic equipartition prop-
erty concerns the probability of so-called “typical sequences”. Due to the
asymptotic equipartition property, it is possible to reconstruct the source
symbol with arbitrary low probability of error when it is compressed to
a rate arbitrarily close to the entropy rate (per source symbol). The out-
put of the source encoder can be viewed as a new source sequence, where
all source symbols are nearly equiprobable. Thereafter, by using channel
codes of very long block lengths, the probability of error in the trans-
mission approaches to zero. We see that when the separation theorem
applies, reliable transmission is possible even though the source code has
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not taken into account the channel statistics and the channel code is de-
signed without the consideration of the source statistics. More results for
wide classes of sources and channels can be found in e.g., [CT91,VV95].

There are obvious advantages to separating the source coding and
channel coding problems. The separation theorem has served as a moti-
vation for many practical designs. However, it is worth noting that the
source–channel coding theorem relies on the assumption of infinitely long
block codes. For applications with strict delay constraints, a joint design
of source–channel codes appears to outperform a separate design in many
cases. The control problem formulated in this thesis is such an example.

The remaining part of this section is devoted to two particular channel
coding related topics: non-redundant channel coding (Section 1.4.4) and
channel optimized quantization (Section 1.4.5).

1.4.4 Non-redundant Channel Coding

Index Assignment

As mentioned above, the main objective of channel coding is to combat
channel errors by means of adding redundant bits. Apparently, the more
properly added redundant bits, the more reliable the transmission will
be. Non-redundant coding is the special case with zero redundant bit,
where the designer is confronted with the problem of carefully labelling
the codewords, referred to as the index assignment (IA). The index as-
signment deals with the combinatorial optimization problem of assigning
non-redundant codewords to quantizer reconstruction points. Through-
out this chapter, we assume that the reconstruction points are labelled
by the indices i ∈ I. The index assignment in our case describes the
mapping between the reconstruction points and a set of binary code-
words. Let each reconstruction point qi have an associated integer index
i and each index i is mapped to a codeword through a deterministic
function c(i). For brevity, c(i) is also used as the notation for the result-
ing codeword, i.e., the reconstruction point qi is assigned the codeword
c(i). The codewords are different for different indices, i.e., c(i) = c(j)
if i = j, and c(i) 6= c(j), ∀i 6= j, i, j ∈ I. In Fig. 1.6 we illustrate
the signal path from the source encoder input to the channel decoder
output, when the index assignment is used. Since a binary symmetric
channel is considered in this example, c(i) and c(j) denote the binary
transmitted and received codewords, respectively. Index assignment has
been shown to be important for transmission over noisy channels. It is
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Figure 1.6: A diagram of data transmission over a binary symmetric channel.
As an example, the index i = 0 renders to transmit the binary codeword 01,
whereas the codeword 11 is received due to the noise in the channel. The
decoded index is j = 2.

widely accepted that a carelessly designed index assignment will reduce
the system performance severely. The varied ability to combat the chan-
nel errors is attributed to the different conditional transition probabilities
among the binary codewords. For more research results on this topic, see
e.g., [Kna93,KA96,RS76,SH94,ZG90]. We illustrate the importance of
a carefully designed index assignment by giving a numerical example.

Example 3 Index Assignment
The input to the quantizer is drawn according to the generalized Gaussian
distribution (GGD), see Appendix A, with parameters α = 4 and β = 2.
The quantizer has a rate R = 2 bits per source symbol, which induces
4 reconstruction points {q0, . . . , q3}, 4 codewords and 24 different index
assignments. A binary symmetric channel (BSC) (see Section 2.2) is
adopted and the transition probabilities are ε = 0.1 and ε = 0.2. Due
to the symmetries in the channel, the quantizer and the source distribu-
tion, some index assignments are given identical transition probabilities
p(qj |qi), where qi and qj are the transmitted and received reconstruction
points, respectively. It turns out that the 24 different assignments can
be divided into three groups, see Fig. 1.7, that each group will have the
same channel transition probability. In Fig. 1.8 the bit error patterns of
all three groups are listed, which tell the number of errors needed in a
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G1 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8
q0 : 11 11 10 10 01 01 00 00
q1 : 00 00 01 01 10 10 11 11
q2 : 01 10 00 11 00 11 01 10
q3 : 10 01 11 00 11 00 10 01

G2 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8
q0 : 10 01 11 00 11 00 10 01
q1 : 00 00 01 01 10 10 11 11
q2 : 01 10 00 11 00 11 01 10
q3 : 11 11 10 10 01 01 00 00

G3 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8
q0 : 10 01 11 00 11 00 10 01
q1 : 00 00 01 01 10 10 11 11
q2 : 11 11 10 10 01 01 00 00
q3 : 01 10 00 11 00 11 01 10

Figure 1.7: The 24 different index assignments are divided into three groups
G1 - G3, based on the transition probability p(qj |qi). In each group there are 8
assignments, denoted No.1 - No.8. As examples, the index assignment No.1 in
G1 will assign the binary codeword 11 to the reconstruction point q0 and the
binary codeword 00 to the reconstruction point q1 etc.

certain codeword to result in a certain decision error. Finally, the per-
formance comparison of the 24 index assignments are shown in Fig. 1.9,
where on the y-axis, the mean square error between the original source
symbol and the decoded symbol is presented. The simulation shows that
the assignments are divided into three groups based on the performance,
which agrees well with the grouping in Section 2.2. Index assignments in
Group 3 outperform those of the other two groups. By studying the bit
error patterns, one can have a rough idea about why the index assign-
ments in Group 3 perform better than the others. The merit of Group
3 is probably the strong protection, i.e., 2 error bits induce a decision
error, against a decision error between q0 (the smallest reconstruction
point) and q3 (the largest reconstruction point). This type of transmis-
sion errors give large valued quantization errors.
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Figure 1.8: The number of bit errors in the codeword when there is a de-
coding error between the reconstruction points. As examples, using any index
assignment in Group 1, transmitting q1 and receiving q0 is caused by 2 bit
errors, while transmitting q1 and receiving q3 is caused by 1 bit error.

Simulated Annealing

In a convex optimization problem, given any initial point, it is straight-
forward to arrive to the global optimum by successively moving in the
negative direction of the local gradient. When optimizing a nonconvex
function, which may have multiple local minima, the gradient search
method encounters the issue of convergence to a local minimum.

Index assignment is a combinatorial optimization problem, which be-
longs to the family of nonconvex optimization problems. An exhaustive
search for a global optimum is often exceedingly computationally expen-
sive. A fairly good local optimum can be approached with lower com-
plexity by using an optimization algorithm termed simulated annealing.
Simulated annealing, originated in metallurgy, is a controlled heating
and cooling technique. It is used to freeze the material into a mini-
mum energy structure so the defects in the material can be reduced. By
observing the similarities between this metallurgic process and the opti-
mization problem with multiple local optima, Kirkpatrick [KGV83] has
developed an efficient algorithm to solve nonconvex optimization prob-
lems, see also [EHSW87]. About simulated annealing is used for the index
assignment problem can be read in e.g., [Far90].

Before presenting the algorithm for using simulated annealing to de-
sign the index assignment, let us first introduce the permutation vector π,
which is used to specify a certain index assignment. Let ck be the binary
presentation of the integer value k ∈ I, i.e., ck is the natural binary code.
We define a state π as a permutation vector that specifies the mapping
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from index i (as well the reconstruction point qi) to the binary codeword
ck through k = π(i). Fixing the permutation vector π, the deterministic
mapping c(i) is

c(i) = cπ(i). (1.16)

An example of the use of the permutation vector π is given in Fig. 1.10.
Returning to the simulated annealing algorithm, we define a cost J ,

which is a function of the state vector π. The goal of the optimization
is to find the best state π, which minimizes the cost J . The overall
optimization procedure is summarized in Algorithm 1. Note that at
high temperatures where e−

∆J

T approaches 1, the probability to accept
a new index assignment is high. When the temperature decreases, it is
more and more unlikely to adopt a new index assignment. Finally, we
illustrate the perturbation in Algorithm 1 with Example 4.
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index i. As an example, q0 is the reconstruction point for i = 0, and it is
coded to the binary codeword 01, which can also be described by the mapping
c(0) = 01.

Example 4 Perturbation in Simulated Annealing
Given a quantizer with R = 2, the index i can take one of four values,
i ∈ {0, 1, 2, 3}. The natural binary code is assigned as, c0 = 00, c1 =
01, c2 = 10 and c3 = 11. The permutation vector π can take one of
24 combinations. As an example, assume π = (1023). The smallest
reconstruction point will be encoded to c(0) = c1 = 01. In an increasing
order, the remaining reconstruction points will be coded to c(1) = c0 =
00,c(2) = c2 = 10, and c(3) = c3 = 11. A perturbation π̄ to π is a new
permutation vector obtained by a position exchange between two entries
in π. As an example, π̄ = (1203) will result in an exchange between c(1)
and c(2), i.e., c(1) = c2 = 10 and c(2) = c0 = 00.
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Algorithm 1: Simulated Annealing

1. Select a cost function J . Define an effective temperature τ .
Set τ = τ0, where τ0 is a high initial temperature.

2. Randomly choose an initial state π and calculate J(π).
3. Select a new state π̄ by randomly changing two entries in π.
4. Let ∆J = J(π̄) − J(π),

4a. if ∆J < 0, replace π by π̄;

4b. if ∆J ≥ 0, replace π by π̄ with probability e−
∆J

τ .
5. If the number of cost drops exceeds a prescribed number or if

too many unsuccessful perturbations occur, go to Step 6.
Otherwise return to Step 3.

6. Lower the temperature. If the temperature is below some
prescribed freezing temperature τf , terminate the iterations.
Otherwise return to Step 3.
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Figure 1.11: Quantization over a noisy channel. X and X̂ are the source
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1.4.5 Channel Optimized Scalar Quantization

In the traditional separate design, the source coding block does not take
the channel properties into account. It is well recognized that, in cases of
short codewords, it is beneficial that a quantizer design takes the channel
properties into consideration [FV87,Far90,FV90,Lin98,Sko97]. When the
characteristics of the channel (p(j|i)) and the source (p(x)) are perfectly
known, a design method referred to as channel optimized quantization

(COQ) [FV87,Far90,FV90,Lin98, Sko97] can be used. The terminology
quantizer is used here since the joint source–channel coder completes a
mapping from an infinite set of continuous values to a finite set of discrete
symbols. In Fig. 1.11 quantization over a noisy channel is depicted. Let
X be the i.i.d. source symbol and the encoder function f performs a map-
ping of X to an integer index I ∈ I. The encoder region associated with
the index i ∈ I is defined as Si = {x|f(x) = i}. Comparing to Fig. 1.5, I,
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the output of the source encoder, is here fed into a channel described by
the transition probability p(j|i), where i and j are the transmitted and
the received indices, respectively. The channel output J ∈ I will be used
of the decoder to produce the estimate X̂, in particular, J = j ⇔ X̂ = qj ,
where qj is the reconstruction point in the codebook.

In short, the aim of channel optimized quantization is to find the
optimal encoder regions and reconstruction points that together minimize
a certain distortion function, e.g., the MSE distortion,

D = E
{

(X − X̂)2
}

=

2R−1∑

i=0

∫

Si

p(x)





2R−1∑

j=0

p(j|i)(x − qj)
2



 dx. (1.17)

It turns out that this type of optimization problems are difficult to
solve. Up to now, the solution is often obtained by using a method similar
to the Lloyd–Max algorithm, see [GG92]. The basic idea is to first fix the
encoder and find the optimal decoder, then fix the decoder and find the
best encoder. A local optimum is then obtained iteratively by alternating
between the above two optimization procedures. As an example, we look
at the necessary conditions for the solution to the minimum mean squared
error (MMSE) problem. For a fixed encoder, the best reconstruction
point q?

l is

q?
l = E {X|j = l}

=

∑2R−1
k=0 p(j = l|i = k)

∫

Si
xp(x)dx

∑2R−1
k=0 p(j = l|i = k)

∫

Si
p(x)dx

, (1.18)

while the best encoder region for fixed reconstruction points, is

S?
l =

{

x :

2R−1∑

k=0

p(j = k|i = l)(x − qk)2

≤
2R−1∑

k=0

p(j = k|i = m)(x − qk)2, ∀m

}

. (1.19)

For related topics in scalar and vector quantizer design for noisy channels
(COSQ and COVQ), the interested readers are referred to [FM84,FV87,
Far90,FV90,GG92,Lin98,Sko97].
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Finally, we give a comment on the general use of the terms quantizer
and encoder–decoder in this thesis. As shown above, in a communica-
tion context, an encoder–decoder pair is not necessarily a quantizer. For
example a channel code typically will add redundant bits to the input
codewords. However, when an encoder–decoder denotes a mapping from
a large set of values to a small set of discrete symbols, it has function-
ality similar to a quantizer. In those cases, the encoder–decoder can be
identified as a quantizer.

1.5 Control with Quantized Feedback

In this section, a brief introduction to the emerging research area of con-
trol with feedbacks over communication channels is given, by discussing
a number of influential publications within this field.

The effect of a quantized feedback on the overall performance of a
control system is not a new topic in the literature. However, until the end
of the 1980’s, quantization errors have mainly been modeled as additive
white noise. Tools and methods from traditional stochastic control theory
were applied to the quantized systems [Cur70].

A broad research interest has been evoked by the seminal paper of
Delchamps [Del90]. In that paper the author has shown that, even for
the simplest dynamic system (linear, scalar and noiseless), whenever the
plant has its eigenvalue greater than 2, i.e., an unstable system, it is not
possible to asymptotically stabilize the system with a finite data rate.
Other interesting phenomena at low rates are limit cycles and chaotic
behavior. By these observations, it has been realized that treating quan-
tization errors as white noise is no longer useful when the quantizer res-
olution is coarse, especially for unstable plants. The work of Delchamps
has encouraged a rigorous study of the impacts of quantization effects
in dynamic systems. Since then, topics of control designs for data-rate
limited systems have continuously attracted researchers from different
disciplines, e.g., applied mathematics, automatic control, communication
and computer science. A wide range of interesting problems have been
formulated. Before moving to a state-of-art survey, a few commonly used
nomenclatures are first introduced.

The importance of information patterns in the analysis of system
behavior and design of control strategies has been well recognized, see
e.g., [Wit71]. The concept of information pattern is introduced to specify
what information is available at each component in a connected system.
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Several authors have in their work, see e.g., [Tat00], shown that infor-
mation patterns play indeed a key role in the achievable performance for
quantized control systems. Regarding the information patterns at the en-
coder, decoder and controller, the term static refers to a time-invariant
function, while dynamic refers to a time-varying function. A static quan-
tizer is memoryless, while for a dynamic quantizer, the memory access
pattern varies, e.g., from finite memory to infinite memory.

The study of the asymptotic behavior of a dynamic system has the-
oretical importance. In the scope of automatic control, interesting fea-
tures are for example asymptotic observability, which describes the as-
ymptotic property for estimations of the state; and asymptotic stability

which describes the asymptotic behavior of the controlled state signals,
see e.g., [Tat00]. The result of Delchamps has exposed that asymptotic
stability cannot be achieved by using a static (memoryless) quantizer.
Instead, practical stability [WB97] is formulated, where the state trajec-
tories are only required to be bounded within a certain region.

In the remaining part of this section, several well studied problems
are presented. Some recent results concerning stabilities are addressed
in Section 1.5.1. A static quantizer is an example of an entity, which is
easy to build, but not transparent to understand. The study of their as-
ymptotic behavior involves advanced mathematics topics, such as ergodic
theory, chaotic theory, symbolic theory etc. In Section 1.5.2, an intro-
duction to the research of static (memoryless) quantizers will be given.
In Section 1.5.3, a few issues regarding quantization in linear quadratic
(LQ) control are discussed. Finally, a couple of information theoretic
results are revealed in Section 1.5.4.

1.5.1 Stability and State Estimation

Since the main objective for control is to deal with uncertainty, the ma-
jority of control problems deal with various stability issues. Regarding
control with quantized feedback, a fundamental problem that has aroused
a lot of attention during the last decades is to find the smallest feedback
data rate necessary to asymptotically stabilize an unstable dynamic sys-
tem. In the sequel, the expression minimum rate refers to as the above-
mentioned smallest data rate. It has been shown that, in order to attain
the asymptotic stability, the quantizer must be dynamic and have infinite
reconstruction levels [Del90].

The solutions to the minimum rate problems have mostly exploited a
“volume” based analysis. The intuitive idea is that a growth of the signal
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space for the state signal (often be addressed as uncertainty “volume”),
due to unstable poles, should be counteracted by the “volume” reduc-
tion along the coding. However, asymptotic stability can refer to dif-
ferent things, e.g., a bounded asymptotic worst-case state norm [Tat00]
or a bounded asymptotic average state norm [NE02]. The asymptotic
worst-case state norm provides conservative solutions and the analysis is
more or less straightforward, while the asymptotic average state norm
has appealed to information theoretic advances, such as different entropy
power [NE03].

The minimum rate of a discrete time scalar linear plant (xt+1 = axt +
ut, where a describes the linear dynamics) can be found in e.g., [Tat00].
The author has proved that, for an unstable discrete system the minimum
data rate is R > log2 |a|. The corresponding result for a continuous time
linear plant is R > a log2 e [Bai02]. A generalization to multidimensional
systems is pursued in e.g., [NE02, Tat00]. The most common way (not
necessarily the best) to tackle a multidimensional system is to transform
the system matrix A (the counterpart of a in the multidimensional case)
into its Jordan canonical form. Under the assumption that the system
can be decoupled into several independent one-dimensional systems, the
tools developed for scalar systems can be applied. A lower bound of the
minimum rate for multidimensional systems is given by R >

∑

s log2 |λu
s |,

where λu denotes the unstable eigenvalue of the system matrix A. A
realistic data rate should take on integer values. In [LL05a,LL05b], the
authors have proposed a practical coding scheme by using integer rates.
In their approach, a transformation to the Jordan canonical form is not
required. Instead, at each time t, the quantization is pursued only along
the most critical direction. Regarding systems perturbed by stochastic
disturbances, with fairly mild assumptions on process noise, a new lower
bound of minimum rate has been derived in [NE03], based on differential
entropy power.

Extensions to nonlinear systems can be found in [Bai04,LE04,Lib02b,
Lib03, LH05,NEMM04,Per04]. In [Lib02b], the author has developed a
zooming strategy to a nonlinear time-invariant system with an unknown
initial value. Actually, the author has investigated two quantization prob-
lems. In the first, the quantizer is located at the observation link. In the
second, the quantizer is located at the actuation link. The conditions for
the global asymptotic stability are derived for both cases.

The synthesis of a feasible controller, which achieves the minimum
rate, is as important as the derivation of the theoretical bound. The
minimum rate achievable control strategy, proposed by Liberzon and
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coworkers [BL00, BL06, Lib02a, Lib02b, Lib03], has significance in prac-
tical implementations. The basic principle behind their solution is, when
the trajectory is close to an equilibrium point a zooming-in operation will
increase the quantizer resolution, while when the trajectory is far from
the equilibrium point a zooming-out operation will decrease the quan-
tizer resolution. However, even though at each time t the quantizer is
memoryless and has finite reconstruction levels, a memoryless dynamic
quantizer will have infinite quantization levels asymptotically.

The state estimation problem and the stabilization problem have al-
ways been studied side by side, see e.g., [SV03, Tat00, WB97]. In fact,
estimation problems explore the observability of dynamic systems. It has
been shown that [Tat00], even with a rate at which achieving asymptotic
observability is impossible, it may still be possible to achieve asymptotic
stability. In [SV03] a state estimation problem over a binary symmetric
channel is considered. The encoder–decoder adopts the zooming idea to
capture the state trajectory and bound estimation errors. In their setup,
the quantizer is uniform and its range is adaptively adjusted according
to the state evolution. At each time instant only one binary bit is trans-
mitted over the channel, that is to say for a codeword of length 2R the
decoder needs to wait 2R time units before the decoding. During the
transmission of a codeword, the worst case situations are considered.

1.5.2 Static Quantizer

From the implementation point of view, it is more relevant to study a
static quantizer. The recent research has shown an increasing interest in
the fundamental properties of this type of quantizers. Problem formula-
tions involve mostly a rigorous analysis of the long term behavior. The
attention has also been devoted to problems such as proper performance
measures for static quantizers; and impacts on system performance due
to memory restriction.

Although recent research in this field has been mainly addressed to the
simplest system model (linear, scalar and noiseless), a lot of notable re-
sults have been reported, see e.g., [Del88,Del89,Del90,Del06,FZ03,FZ05,
PGB02,PPBJ04]. Together, they establish theoretical fundamentals for
the practical design of quantized feedback control.

In the remaining part of this section, some features of static memory-
less quantizers are presented. In this setup, the system evolution becomes

xt+1 = axt + ut = axt + F (q(xt)) = Γ(xt). (1.20)
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Figure 1.12: Examples of piecewise affine maps for quantized control sys-
tems. a) A piecewise affine map of a logarithmic quantizer. The dashed arrows
illustrate the system evolutions from x0 to x2. b) A piecewise affine map of a
chaotic quantizer.

where q denotes static quantization and the feedback F is static as well.
Since ut is completely determined by xt, it leads to the fact that xt+1

depends only on xt. The system evolution can be described by a piecewise
affine map Γ, see Fig. 1.12. In Fig. 1.12, the current state xt is presented
on the x-axis and the state one-step-ahead, i.e., Γ(xt), is presented on
the y-axis. In particular, the map illustrates the two most important
features of the type of control strategies. The first one is attractivity,
referring to as the attraction from an initial region (large) to a target
region (small). The second feature is the practical stability, related to
the ability of keeping the trajectories within a target region. As stated
previously, for quantizers with finite reconstruction levels, the asymptotic
stability is not achievable. Instead, the practical stability is an applicable
stability measure.

A good control strategy should both give suitable steady-state and
transient properties. Fagnani and Zampieri have shown that there is a
conflicting relation between the steady-state and the transient behavior
for quantized systems [FZ03,FZ05]. The authors were particularly inter-
ested in quantitative analysis and comparison among different quantizers.
They have suggested contraction rate for the steady state performance
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and expected time for the transient behavior. Generally speaking, a large
contraction rate is desired, since it means a smaller target region for a
given initial region. At the same time, the expected time is strived to
be small, which indicates an efficient control and a quick entrance to the
target region. Unfortunately, there is a trade-off between the contraction
rate and the expected time. Fagnani and Zampieri have evaluated this
conflicting relation for uniform quantizers, logarithmic quantizers and
chaotic quantizers. More about the uniform quantizer and the chaotic
quantizer can be found in the next paragraph. Here, we present a spe-
cial property of the logarithmic quantizer. Shown by Elia and Mitter
in [EM99,EM01], a logarithmic quantizer is special in the way that when
the number of the reconstruction levels is a prior entity, the logarithmic
quantizer is shown to be the most efficient quantization scheme, in the
sense of quadratic Lyapunov stability. Lyapunov stability is a stability
measurement commonly used in nonlinear control. The intuitive idea be-
hind this measure can be simply explained as, a stabilizable control will
make the state follow a path along which the “energy” is continuously
decreasing.

For most researchers, the design has been part of the quantizer prob-
lem. Unlike those, Picasso and coworkers have considered the quantizer as
a given building block and investigated its capabilities [PGB02,PPBJ04].
In particular, they worked with the construction of attractive and invari-
ant sets for uniform quantizers. Due to the simplicity in implementation,
the uniform quantizer is the most widely used quantization scheme. The
authors have in particular derived several theoretical results concerning
the use of a uniform quantizer to stabilize unstable linear systems, e.g.,
the construction of the target set for given an initial set and a quantizer,
as well as the number of steps needed to enter a target set. Besides
uniform quantizers and logarithmic quantizers, a special class of quan-
tizers called chaotic quantizers have also been thoroughly studied, see
e.g., [FZ03,FZ05]. The chaotic behavior is exploited to mitigate the con-
flicting relations between attractivity and invariance, done by combining
two feedback strategies. The attraction from the initial region to the tar-
get region is accomplished by one of the control strategies, which takes
the advantage of the chaotic behavior of the affine map. All the trajecto-
ries will eventually enter the target region. When the trajectory is within
the target region, it switches to the second controller, which has a task to
keep the trajectories within the target region ever after, cf. Fig. 1.12(b).

A recent paper of Delvenne [Del06] has shown a promising improve-
ment in data rate by relaxing the restriction imposed on the structure
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of quantization regions. This work has brightened the potential of new
quantization sets compared to the traditional view of connected intervals.

1.5.3 Linear Quadratic Control

Control performance for quantized systems can be developed in the con-
text of stochastic control, e.g., [BM99,MS02,MS04,Tat00]. Borkar and
Mitter have in the early 1990’s explored the linear stochastic control of
partially observed Gaussian systems. They suggested to quantize the
state innovations, out of a minimum variance filter. They have particu-
larly studied a scenario of stable plants and noiseless channel. In [Tat00],
the research on the separation principle and CE controllers has been car-
ried forward. Analyses of systems with different information patterns are
pursued. The authors have separated the total distortion into two parts.
The first is obtained by assuming that a full state knowledge is available
and the second comes from the use of a sequential quantizer, referring
to as the procedure of successively quantizing the outputs of a dynamic
system.

In [MS02,MS04], generalizations to multidimensional plants have been
brought out. In their problem formulation, process noise and measure-
ment noise are both Gaussian distributed. The transmission is performed
over a noiseless channel. The exact information pattern is as follows: the
encoder has access to all past observations, while the memoryless de-
coder has only access to the current received symbol. The authors have
investigated a controller-coder separated design, where an optimal con-
trol signal is derived assuming no data rate constraint is imposed. Then,
a coded version of the derived control signal is applied to the system.
It has been proven that the controller-coder separated design is not the
optimal solution among all searched control strategies.

1.5.4 Information Theoretic Results

Information theory has been the mathematical foundation for the de-
signs of all modern communication systems. It provides fundamen-
tal limits of reliable data compression and data transmission. On-
going research has shown that several fundamental concepts in infor-
mation theory, such as channel capacity and the rate distortion the-
ory, are in their traditional forms not useful for feedback systems
[Sah00, Sah04, Tat00, TSM04, TM04]. The reasons are multiple. It is a
common fact that control applications are much more time critical than
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conventional communication applications. Moreover, in communication
applications the performance of the current transmission has usually no
impact on what information to transmit in the future, whereas the ob-
jective of a feedback control is to affect the future states.

In [Tat00,TSM04,TM04] a sequential rate distortion theory for feed-
back systems has been developed. The author has emphasized the dif-
ference between statistical dependence in traditional information theory
and causality in a control context. The quantity of directed mutual in-

formation [Mas90] is pointed out to be instrumental in dealing with se-
quential rate distortion problems. Concerning the channel coding issues,
in [Sah00,Sah04], the author has shown that the Shannon capacity is not
a proper entity for characterizing feedback systems, instead, anytime ca-

pacity has been proposed. This new capacity resembles Gallager’s error
exponent [Gal68] with a crucial difference that the encoder is not allowed
to have an arbitrary delay as the decoder does.

1.5.5 Summary

In this section, a brief overview of recent advances in control using quan-
tized feedback has been given. The existing work has been mainly de-
voted to various stability analysis. Uniform quantizers are considered in
most contributions, since they are easy to implement. However, for the
applications with a high cost on the communications, it is appropriate
to study optimal quantizers. There is a rich literature addressed to the
optimal quantizer design for memoryless sources as well as causal coding
problems [NG82,WV83,Wit79]. The main objective of this thesis is to
jointly optimizing the encoder–decoder together with a controller..

1.6 Contributions and Outline

This thesis first gives a brief overview of the recent developments in the
area of control with feedback over communication channels. In Chapter 2,
a state space model of the overall system is presented and the information
pattern at each component is specified. A quadratic stochastic linear
control problem is then formulated. Iterative algorithms for optimizing
coder–controllers are proposed for transmission over noise-free channels
(Chapter 3) and noisy channels (Chapter 4), respectively. In Chapter 5,
the proposed encoder–decoder design is applied to an event-triggered
control problem. Finally, in Chapter 6, some topics for future research
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are suggested. Below, the contributions are described in detail for each
chapter.

Chapter 2

In this chapter, a general system model is presented. The state space
presentation is employed. The model consists of a system equation and
an observation equation. By varying the information pattern at each
component, this model can cover a wide range of scenarios. A generaliza-
tion to multidimensional systems is straightforward, by replacing scalar
signals with vector signals.

Chapter 3

This chapter is devoted to the data rate restriction imposed by a non-
ideal communication channel. In particular, we design the control feed-
back transmitted over error-free and band-limited channels. In the first
part, the focus is on the simplest system, in which the only uncertainty
is the initial state. Later on, process noise is included into the system de-
scription. For both scenarios, the conditions for the separation principle
are derived and optimal control strategies together with coding schemes
are proposed. This chapter is based on the paper [BSJ06a].

Chapter 4

Given a quantizer designed for a noise-free channel (as in Chapter 3),
the system performance deteriorates severely if the real channel produces
transmission errors. In the first part of this chapter, two remedies to
this problem are studied. The first enhancement is an approach to de-
sign a good index assignment by using simulated annealing. Since, when
communicating over a noisy channel, the mappings between the integer
indices and the binary codewords can not be overlooked. We show that
the index assignment plays an important role in the overall system per-
formance. In the second approach, on top of the source code we will
exploit a channel code with a short code length.

In the main part of this chapter we present a joint source–channel
code where the channel characteristic has been taken into account in
the quantizer design. The condition for the CE property is derived, by
which the estimation problem and the control problem are separated. The
control problem can be solved by applying the fundamentals of stochastic
control theory, while the solution to the estimation problem resembles
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channel optimized quantization. This chapter is based on the papers
[BSJ06b,BSJ06c].

Chapter 5

In this chapter, a new controller is developed for a system perturbed
by some infrequently occurring local disturbances. The disturbances
are treated as events, which trigger the control actuation. Results from
Chapter 3 are used to develop the event-triggered control strategy which
has shown to be bandwidth-efficient. This chapter is based on the pa-
per [BSJ06a].

Chapter 6

The concluding chapter summarizes the thesis. Examples for future work
are suggested, where a broad range of research topics are presented.

1.7 Notation

Throughout the thesis, the following notations will be used:

a : Dynamics of a scalar linear system.

A : Dynamics of a multidimensional linear system.

Ct : The set of information at the controller.

c(i) : Binary transmitted codeword.

c(j) : Binary received codeword.

Dt : The set of information at the decoder.

dH : Hamming distance between binary codewords.

dt : Output from the decoder.

Et : The set of information at the encoder.

E{X} : The expectation of X.

E{X|y} : The expectation of X given Y = y.

EX{f(X)} : The expectation of f(X) over the random variable X.

et : Measurement noise at each time instant.

ft : Encoder function.

GGD(α, β) : Generalized Gaussian distribution with parameters
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α and β.

gt : Decoder function.

ht : Measurement function in the state space model.

it : Index input to the discrete channel.

jt : Index output of the discrete channel.

kt : Channel function.

Mc : Channel memory.

Mt : System memory.

p(x) : Probability mass function for a discrete random variable.

Probability density function for a continuous random

variable.

qjt0 : Reconstruction point in the codebook, based on the

received indices jt0.

R : Channel Rate.

Si : Encoder region associated with index i

ut : Control signal at time t.

vt : Process noise at time t.

xt : System state at time t.

x̂t : An estimate (arbitrary) of the state signal xt.

x̂t|t : Conditional expectation estimate of xt :

x̂s|t = E{xs|it0} for a noiseless channel;

x̂s|t = E{xs|jt0} for a noisy channel.

x̄t : x̄t = xt −
t−1∑

s=0

at−1−sut.

x̃t : x̃t = xt − x̂t|t.

x́t : x́t = x̂t|t − x̂t|t−1.

yt : State observation at time t.

zb
a : Evolution of a discrete signal zt from t = a to t = b :

{za, . . . , zb}.
ε : The transition probability of a binary symmetric channel.

δ : The trigger level.
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θt : System function in the state space model.

1.8 Acronyms

Acronyms will be defined at their first occurrence in this thesis. For
convenience, these acronyms are listed below.

BSC Binary symmetric channel.

CE Certainty equivalence.

COSQ Channel optimized scalar quantizer.

COVQ Channel optimized vector quantizer.

GGD Generalized Gaussian distribution.

i.i.d. Independent identically-distributed.

IA Index assignment.

MMSE Minimum mean squared error.

MSE Mean squared error.

pdf Probability density function.

pmf Probability mass function.

SMCM Sequential Monte Carlo method.

VQ Vector quantization.



Chapter 2

Problem Statement

2.1 System Model and Information Pattern

The information pattern specifies the information available at each build-
ing block in a connected system. It plays a key role in achieving a certain
system performance. In this thesis, we design the encoder, decoder and
controller given the plant and channel, see Fig. 2.1. Listed below are
the assumed information patters at each component. Let zt

a denote the
evolution of a discrete time signal zt from z = a to z = b. The system
dynamics is then given by

{
xt+1 = θt(x

t
t−Mx

, ut, vt),
yt = ht(xt, et),

(2.1)

which has a memory of order Mx ≥ 0. The terms θt denotes a time-
varying system function and ht denotes a time-varying measurement
function. The variables xt, ut, yt ∈ R are the state, the control, and
the measurement, respectively. The signal vt refers to as the process
noise and et is the measurement noise. In stochastic control, vt is often
associated with the uncertainty in the system model while et represents
the uncertainty in state measurements.

Let Et denote the set of information available at the encoder at time
instant t, i.e., the set of variables whose values are known to the encoder.
In particular, an encoder causally utilizes full information, when Et =
{yt

0, i
t−1
0 ,ut−1

0 , jt−1
0 } is assumed. The encoder is a mapping from Et to

a discrete set of symbols. We take each symbol to be represented by an
integer index. At time t, the index is it ∈ IL = {0, 1, . . . , L − 1}, where
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Figure 2.1: A general picture of the feedback control system.

L = 2R with R denoting the rate of the transmission, in bits per state
measurement. Hence, the encoder is described by a mapping

it = ft(y
t
0, i

t−1
0 , jt−1

0 ,ut−1
0 ). (2.2)

Let the discrete channel have input variable it and output variable jt ∈
IL, with one channel use defined by

jt = kt(i
t
t−Mc

), (2.3)

where kt : IMc+1
L → IL is a stochastic mapping, and Mc ≥ 0 indicates

the (potential) channel memory.
At the receiver, the information available at the decoder is denoted

by Dt. The decoder in consideration causally utilizes full information,
i.e., Dt = {jt0,ut−1

0 }. The decoder is a deterministic mapping

dt = gt(j
t
0,u

t−1
0 ) (2.4)

from Dt to R.
Let Ct = {dt

0,u
t−1
0 } denote the (full) information available at the

controller. The controller is then defined by the mapping

ut = zt(d
t
0,u

t−1
0 ) (2.5)

from Ct to R. We also define

x̂s|t = E{xs|jt0,ut−1
0 } (2.6)

as the MMSE estimator of the state xs, based on jt0 and ut−1
0 .
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Figure 2.2: The feedback control system in (2.7), with channel constraints.

2.2 Linear System Model

It is well known in stochastic control that for most systems the optimal
performance is achievable only when the estimation and the control are
designed jointly. A closed form solution of the optimal control is in gen-
eral prohibitive. However, for traditional control systems with infinite
data rates, there are widely known examples where the separation prin-
ciple applies. Since the main objective of this thesis is devoted to the
study of the impact of bandlimited noisy channels, our attention will be
restricted to a simple linear system whose exact solution to the optimal
stochastic control problem, in absence of the rate limitation, is known.
In particular, we consider the linear time-invariant plant illustrated in
Fig. 2.2. The system can be described as

{
xt+1 = axt + ut + vt,

yt = xt,
(2.7)

where vt is white noise with the pdf p(vt). The linear dynamics is a,
where |a| < 1 so that the plant is stable. Note that full state infor-
mation is assumed available at the encoder, i.e., yt = xt and hence
Et = {xt

0, i
t−1
0 ,ut−1

0 , jt−1
0 }. In case there is an infinite bandwidth for

the feedback signal, it is straightforward to show that the separation
principle applies to this system and an analytical solution can be derived
for the optimal controller under a quadratic cost function.

The goal of this thesis is henceforth to design the coding and control

for the system in (2.7), subject to a data-rate limited and potentially noisy

channel.
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Binary Symmetric Channel

A particular class of memoryless discrete channels is considered in this
thesis, the so called binary symmetric channels (BSC). A binary sym-
metric channel is simply described by a channel transition probability,
ε = p(0|1) = p(1|0), see Fig. 2.3. Let c(i) and c(j) refer to the binary
transmitted and received codeword associated to index i and j. Assuming
an independent transmission for each binary bit, the conditional proba-
bility p(c(j)|c(i)) is a function of ε,

p(c(j)|c(i)) = (1 − ε)R−dH(c(i),c(j))εdH(c(i),c(j)), (2.8)

where dH(c(i), c(j)) is the Hamming distance between the binary code-
words c(i) and c(j), i.e., the number of bits by which they differ.

2.3 Encoder–Decoder Structure

We consider the encoder–decoder pairs as functions with memory. They
map an infinite set of continuous real values to a finite set of discrete
symbols. The finite set refers to as the codebook, whose entities are
reconstruction points labelled with memory-based index sequences.

The presence of a noisy channel raises a synchronization problem for
memory-based encoder–decoder pairs. In case of noiseless communica-
tions, it is true that it0 = jt0, where it ∈ IL denotes the transmitted index
at t and jt ∈ IL denotes the received index at t. There is no uncertainty
in the information the decoder receives. In those cases, the encoder and
the decoder have identical information about the previous events. Such
a synchronization between the encoder and the decoder is not present
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codebook at the encoder and the decoder based on the received indices jt
0
.

when the channel contains transmission errors. The encoder cannot in
advance make an error-free prediction about the index jt that the de-
coder will receive. Even worse, the decoder has lost the ability to deduce
the transmitted indices it0 by examining the received jt0. However, by
assuming the encoder has access to all past control signals, the received
indices can be deduced at the encoder. Thus, the sequence jt0 can define
the common information about the previous events, referred to as the
common memory. Fig. 2.4 depicts the common codebook at the encoder
and the decoder for communications over noisy channels. Note that the
reconstruction point qjt0 in the codebook is based on the received index

sequence jt0.
Let C denote the binary mapping from the index sequence {jt−1

0 , it}
to a binary codeword c(it) through c(it) = C(jt−1

0 , it), where c(it) ∈
{0, 1}R, with it ∈ IL, is the binary transmitted codeword at time t,
see Fig. 2.7. In a similar way, D describes the inverse mapping jt0 =
D(c(jt), j

t−1
0 ), where c(jt) ∈ {0, 1}R, with jt ∈ IL, is the received binary

codeword at time t. We comment here, for a joint source–channel code,
the binary mapping is included in the encoding and decoding functions
{ft, gt}T−1

t=0 . On the other hand, concerning the setup with separated
source and channel codes, the encoding function ft only takes care of the
selection of the integer index. The binary mapping needs to be separately
designed.

2.4 Performance Measure

The optimality of system performance depends on the design criterion.
The goal of the design in this thesis is to solve an integrated coding–
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control problem for the system in (2.7) measured by the following cost
function

JT = E

{

x2
T +

T−1∑

t=0

[x2
t + ρu2

t ]

}

. (2.9)

The above linear quadratic cost function is well established in the scope of
stochastic control, cf. Section 1.3. There is often a practical relevance in
that x2

t and u2
t are related to the energy of the state and the control at t.

The parameter ρ ≥ 0 specifies the relative weight assigned to the control
signal ut. The aim of optimizing this cost function is then to minimize
the energy of the state at all time instants, with a power constraint on
the control signal.

The overall optimization problem can be specified as

Jopt
T = min

fT−1
0 ,gT−1

0 ,zT−1
0

Ex0,vt

{

x2
T +

T−1∑

t=0

[x2
t + ρu2

t ]

}

, (2.10)

where fT−1
0 , gT−1

0 , zT−1
0 are the memory-based encoder, decoder and

controller functions, respectively. The expectation is taken over the initial
state x0, the process noise vt and the channel errors. Due to the large
number of design parameters involved, even for a simple plant, such as
the one in (2.7), the optimization problem is hard to solve.



Chapter 3

Feedback Control over

Noise-Free Channels

Imperfect communication channels have several kinds of impacts on per-
formance of control systems. In this thesis, we have restricted our at-
tention to two particular types of channel imperfections. The first one is
a limited channel rate and the second one is bit errors. This chapter is
devoted to encoder–decoder designs for data rate limited channels. An
underlying assumption of the coding strategy throughout is that the pre-
defined coding rule is known to both the encoder and the decoder. In
this chapter, the link between the sensor and the controller is error free,
hence the encoder can calculate in advance the exact control signal the
controller will produce. As will be shown later, at each time instant t,
the decoding function is

dt = gt(i
t
0), t = 0, . . . , T − 1, (3.1)

i.e., the common memory is the transmitted indices it0. The optimal state
estimator based on Dt is

x̂s|t = E{xs|it0}, t = 0, . . . , T − 1. (3.2)

Fig. 3.1 depicts the reconstruction points qit0
in the common codebook for

the encoder and the decoder. Observe that Fig. 3.1 is almost the same as
Fig. 2.4 except here the transmitted index it is available at the decoder.
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codebook at the encoder and the decoder based on the transmitted indices it0,
since the channel is noise-free.

3.1 Certainty Equivalence

In general, the optimal performance is achievable only when the coder and
the controller are designed jointly. Such an optimization problem involves
a large number of design parameters, see (2.10). Finding the optimal
solution is often computationally prohibitive. It is therefore attractive if
the overall problem can be decomposed into several complexity-reduced
subproblems. One fundamental question is hence whether or not there
will be any loss in separating the coding and the control. In this section
we explore the conditions when the separation principle applies for some
classes of linear systems subjected to a bandlimited channel.

3.1.1 Absence of Process Noise

Let us first consider the simplest system, where the only uncertainty is
the initial state. The system is modelled as







xt+1 = axt + ut,
yt = xt,
jt = it,

(3.3)

where the initial state x0 is drawn according to a pdf p(x0) and the linear
dynamics is given by a, |a| < 1.

To apply the separation principle to the system (3.3), the design of
optimal sequences of decoders {gt}T−1

t=0 and controllers {zt}T−1
t is consid-

ered. The derivation of the optimal control, which turns out to be the
CE controller, is in accordance to [BST74]. That is, at each time t, the
optimal control minimizes the “cost-to-go” Vt, which is the expected sum
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of x2
s + ρu2

s from time s = t to s = T . The proof exploits mathematical
induction over Vt, which states that the optimal “cost-to-go” at time t+1
has the form

V ?
t+1 = E

{
Pt+1x

2
t+1|it+1

0 ,ut
0

}
+ αt+1, (3.4)

where the variable Pt+1 is independent of ut−1
0 , and the variable αt+1 is

independent of ut
0. The terms Pt and αt will be derived later.

Let us first take a look at the time instant t + 1 = T (recall that
T is the time horizon in (2.9)). By choosing PT = 1 and αT = 0, the
statement (3.4) is obviously true. Henceforth, assuming the statement is
valid for time t+1, we derive the conditions for the statement to be true
for time t. It gives

V ?
t = min

ut

E
{
x2

t + ρu2
t + V ?

t+1|it0,ut−1
0

}

= min
ut

E
{
x2

t + ρu2
t + Pt+1x

2
t+1|it0,ut−1

0

}
+ E

{
αt+1|it0,ut−1

0

}

= min
ut

E
{
x2

t + ρu2
t + Pt+1(axt + ut)

2|it0,ut−1
0

}

+ E
{
αt+1|it0,ut−1

0

}

= min
ut

E{(a2Pt+1 + 1)x2
t + 2aPt+1xtut

+ (Pt+1 + ρ)u2
t |it0,ut−1

0 } + E
{
αt+1|it0,ut−1

0

}

= min
ut

E{(a2Pt+1 + 1)x2
t + 2aPt+1xtut + (Pt+1 + ρ)u2

t |it0}

+ E
{
αt+1|it0

}
. (3.5)
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The last step is since ut−1
0 is completely determined by it−1

0 . It is straight-
forward to verify that the optimal control, which minimizes (3.5), is

u?
t = − aPt+1

Pt+1 + ρ
E
{
xt|it0

}
= −`tx̂t|t, (3.6)

where `t denotes the linear feedback. Substituting u?
t into (3.5), implies

V ?
t = E{(a2Pt+1 + 1)x2

t −
2a2P 2

t+1xtx̂t|t

Pt+1 + ρ
+

a2P 2
t+1x̂

2
t|t

(Pt+1 + ρ)2
|it0} + E{at+1|it0}

= E{(1 +
a2Pt+1ρ

ρ + Pt+1
)x2

t +
a2P 2

t+1

ρ + Pt+1
(xt − x̂t|t)

2|it0} + E
{
αt+1|it0

}
.

(3.7)

Evaluate (3.4) at time t, and compare it with (3.7). In order to make
(3.4) valid for time t, Pt and αt need to fulfil

Pt = 1 +
a2Pt+1ρ

Pt+1 + ρ
, (3.8)

αt =
a2P 2

t+1

ρ + Pt+1
E
{
(xt − x̂t|t)

2|it0
}

+ E
{
αt+1|it0

}
. (3.9)

In addition, it must also hold true that

E
{
(xt − x̂t|t)

2|it0
}

(3.10)

is not a function of ut−1
0 . If that is the case, ut = −`t x̂t|t is the optimal

control strategy and the separation principle applies. The constraint in
(3.10) can be interpreted as that the estimation errors are not dependent
on the past control signals.

To summarize, in case the separation principle applies, the optimal
decoder and controller sequences are given by

dt = x̂t|t, and ut = −`tdt (3.11)

(i.e., zt(d
t
0) = −`t dt) with

`t =
aPt+1

Pt+1 + ρ
, Pt = 1 +

a2Pt+1ρ

Pt+1 + ρ
, (3.12)

for t = T − 1, . . . , 0 and Pt is initialized with PT = 1. Notice that since
the separation principle holds, there is no loss in separating the decoder–
controller into two entities, cf. Fig. 3.2. Henceforth, the decoder mapping
is fixed to dt = x̂t|t, so x̂t|t will be utilized by the controller to produce
the control output ut.
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Optimal total cost

In Section 3.1.1, it has been shown that the optimal control can be derived
by minimizing the “cost-to-go” at each t. In this section, we revisit the
control strategy by elaborating on the total cost (2.9). In particular, we
now want to show that the controller in (3.11) is in fact a CE controller
that the CE property applies, cf. Section 1.3.1. According to (3.12), the
relationship between Pt and Pt+1 can be written as

Pt = a2Pt+1 + 1 − a2P 2
t+1

Pt+1 + ρ
, (3.13)

where Pt and `t, defined in (3.12), are related by

Pt = a2Pt+1 + 1 − `2t (Pt+1 + ρ). (3.14)

Observe that

x2
t+1Pt+1 = (axt + ut)

2Pt+1, (3.15)

x2
t Pt = x2

t (a
2Pt+1 + 1 − `2t (Pt+1 + ρ)). (3.16)

By using PT = 1, together with (3.12), (3.15) and (3.16), x2
T can be

written as

x2
T = x2

0P0 +
T−1∑

t=0

[
x2

t+1Pt+1 − x2
t Pt

]

= x2
0P0 +

T−1∑

t=0

[
(axt + ut)

2Pt+1 − x2
t (a

2 + Pt+1 + 1 − `2t (Pt+1 + ρ))
]

= x2
0P0 +

T−1∑

t=0

[
(`2t (Pt+1 + ρ) − 1)x2

t + 2axtutPt+1 + u2
t Pt+1

]
. (3.17)

Substituting (3.17) into the cost function JT in (2.9), gives

JT = E

{

x2
T +

T−1∑

t=0

[
x2

t + ρu2
t

]

}

= E

{

P0x
2
0 +

T−1∑

t=0

[
`2t (Pt+1 + ρ)x2

t + 2aPt+1xtut + (Pt+1 + ρ)u2
t

]

}

= E

{

P0x
2
0 +

T−1∑

t=0

(Pt+1 + ρ)(xt`t + ut)
2

}

. (3.18)
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Note that, (3.18) reveals that when the state signal xt is available at the
controller, the optimal deterministic control is ut = −`txt. Hence, the
control in (3.11) is a CE controller.

However, under the assumption of this section, the control signal ut

is a function of the quantized xt, in particular, a function of it0. Hence,
the optimization problem becomes

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `txt)
2

}

= Eit0

{

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `txt)
2
∣
∣
∣it0

}}

= Eit0

{

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `t(xt − x̂t|t + x̂t|t))
2
∣
∣
∣it0

}}

= Eit0

{

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `tx̂t|t + `t(x̂t|t − xt))
2
∣
∣
∣it0

}}

= Eit0

{

min
uT−1

0

(

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `tx̂t|t)
2
∣
∣
∣it0

}

+

T−1∑

t=0

E{`2t (ρ + Pt+1)(xt − x̂t|t)
2|it0}

)}

, (3.19)

where Eit0
denotes the expectation over it0. Note that, if the last term in

(3.19),

Eit0

{
T−1∑

t=0

`2t (ρ + Pt+1)E{(x̂t|t − xt)
2|it0}

}

(3.20)

is not a function of ut−1
0 , then the same decoder and controller as in

(3.11) will minimize (3.19), accordingly the total cost (2.9).

3.1.2 Presence of Process Noise

In this section, we generalize the system in (3.3) to one including process
noise:







xt+1 = axt + ut + vt,
yt = xt,
jt = it,

(3.21)
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Figure 3.3: A closed-loop control system with data rate constraints, in
presence of the process noise vt.

where xt, ut and vt are the state, the control signal and the process noise,
respectively. The pdf’s p(x0) and p(vt) are given, as well as the linear
dynamics a, |a| < 1. The state xt is fully observed at the encoder (yt =
xt), and there is no transmission error in the communication channel
(jt = it). Note that the linear quadratic cost function in (2.9) should
here be interpreted as an average over x0 and vt.

We derive the optimal control for fixed encoder–decoder pairs
{ft, gt}T−1

t=0 . The approach is similar to the one presented in Section 3.1.1.
Observe that, in presence of the process noise, (3.15) and (3.16) turn out
to be

x2
t+1Pt+1 = (axt + ut + vt)

2Pt+1, (3.22)

x2
t Pt = x2

t (a
2Pt+1 + 1 − `2t (Pt+1 + ρ)). (3.23)

By using PT = 1, together with (3.12), (3.22) and (3.23), x2
T becomes

x2
T = x2

0P0 +
T−1∑

t=0

[

(axt + ut + vt)
2Pt+1 − x2

t (a
2Pt+1 + 1 − `2t (Pt+1 + ρ))

]

= x2
0P0 +

T−1∑

t=0

[

2vt(axt + ut)Pt+1 + v2
t Pt+1

+ (`2t (Pt+1 + ρ) − 1)x2
t + 2axtutPt+1 + u2

t Pt+1

]

. (3.24)
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Substituting (3.24) into the expression for JT in (2.9), gives

JT = E

{

x2
0P0 +

T−1∑

t=0

[
2vtPt+1(axt + ut) + v2

t Pt+1

]

+

T−1∑

t=0

[
x2

t `
2
t (Pt+1 + ρ) + 2axtPt+1ut + u2

t (Pt+1 + ρ)
]

}

= E

{

x2
0P0 +

T−1∑

t=0

[
2vtPt+1(axt + ut) + v2

t Pt+1

]

+

T−1∑

t=0

(Pt+1 + ρ)(xt`t + ut)
2

}

. (3.25)

By assumption, vt is white noise, uncorrelated with xt and ut, so JT can
hence be simplified to

JT = E

{

x2
0P0 + v2

t Pt+1 +

T−1∑

t=0

(Pt+1 + ρ)(xt`t + ut)
2

}

. (3.26)

Note that we have obtained an expression similar to (3.18). The differ-
ence lies in the additional term E{v2

t Pt+1}, which is not relevant to the
minimization problem. Accordingly, we will reach the same result as in
(3.19). In that case, the condition of the CE property requires that the
following term (same as (3.20))

Eit0

{
T−1∑

t=0

`2t (ρ + Pt+1)E{(x̂t|t − xt)
2|it0}

}

(3.27)

is independent of ut−1
0 . We conclude that, if (3.27) is independent of ut−1

0 ,
the optimal control for the system in (3.21) has the form (3.11). Note
that, x̂t|t here depends now on p(x0), {ft, gt}T−1

t=0 and p(vt). Obviously,
the system (3.3) is a special case of the system (3.21) where process noise
always equals to zero.

3.2 Encoder–Decoder Structure

The condition of the CE property imposes certain structure on the
encoder–decoder pairs. In this section, we investigate encoder–decoder
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structures for two classes of linear plants, namely, the system (3.3) and
the system (3.21). It is worth noting that, since the channel is error-
free, the system performance is independent of the mappings between
the indices and the binary codewords, see Section 2.3.

3.2.1 Absence of Process Noise

Let us first restrict the system model to (3.3), i.e., the initial state is the
only uncertainty. At time t = 0, once x0 is available at the encoder, the
encoder is able to calculate all future states based on the system equation
(3.3). The encoder–decoder design is therefore essentially equivalent to
the problem of constructing an optimal strategy for the encoder to succes-
sively inform the decoder about the initial state over a discrete noiseless
channel. Note that Et = {xt

0, i
t−1
0 ,ut−1

0 } is equivalent to Et = {x0, i
t−1
0 }.

This, since the encoder knows ut−1
0 based on it−1

0 (remember, jt = it),
and since xt

1 can be computed from {x0,u
t−1
0 }. Hence, we can assume

from now on, that it is generated as

it = ft(x0, i
t−1
0 ), t = 0, . . . , T − 1, (3.28)

based on x0 and the known previous indices it−1
0 .

For a fixed sequence of encoders {ft}T−1
t=0 with ft = ft(x0, i

t−1
0 ),

we notice that the CE property requires that the estimation error
E{(x0− x̂0|t)

2}, t = 0, . . . , T, is not a function of us
0, s = 0, . . . , t−1, for

any sequence us
0 of controls. It is straightforward to verify that this con-

dition holds true in our case, since i0 = f0(x0), i1 = f1(x0, i0), . . . , it =
ft(x0, i

t−1
0 ). Hence the values taken on by it0, given a fixed set of encoders,

depend only on x0 and not on us
0 for any s < t. Thus, the separation

principle holds under our assumptions.
At the receiver, full information is equivalent to Dt = {it0}, since

jt = it and ut
0 can be computed from it0, as stated previously. Therefore

the decoder mapping is

dt = gt(i
t
0), t = 0, . . . , T − 1. (3.29)

3.2.2 Presence of Process Noise

Unlike the situation in Section 3.2.1, for the system (3.21), all future
states can not be calculated at time t = 0, since at each t, new information
about v(t) will arrive at the encoder.
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The encoder–decoder design is then essentially equivalent to the prob-
lem of constructing an optimal strategy for the encoder to successively
inform the decoder about x0 and vt−1

0 . Note that the encoder knows
vt−1

0 , based on xt
0 and ut−1

0 . Moreover, ut−1
0 is completely determined

by it−1
0 . Hence it is generated as

it = ft(x0,v
t−1
0 , it−1

0 ), t = 0, . . . , T − 1. (3.30)

Now, since i0 = f0(x0), i1 = f1(x0, v0, i0), . . . , it = ft(x0,v
t−1
0 , it−1

0 ), it0
depends only on x0 and vt−1

0 , and not on us
0 for any s < t. The CE con-

troller in (3.11) is optimal for fixed encoders {ft}T−1
0 with the structure

it = ft(x0,v
t−1
0 , it−1

0 ).

For convenience, let us define x̄t as follows

x̄t = atx0 +

t−1∑

s=0

at−1−svs. (3.31)

Let us assume that the encoder has the structure it = ft(x̄t, i
t−1
0 ) and the

reconstruction point in the codebook is qit0
= E{x̄t|it0}. Since xt − x̂t|t =

x̄t − qit0 is not a function of us
0, the CE controller in (3.11) is thus also

optimal for fixed encoders {ft}T−1
0 with the structure it = ft(x̄t, i

t−1
0 ).

The term x̄t is a sufficient statistic and there is no loss in performance
by enforcing the encoder structure ft(x̄t, i

t−1
0 ).

Finally, the decoder mapping at the receiver is the same one as in
(3.29).

3.3 Iterative Design Algorithm

A method for jointly optimizing the encoder, decoder and controller func-
tions is proposed in this section. Similar to traditional iterative algo-
rithms for optimal source coder designs [GG92], the basic idea is to search
for locally optimal encoder–decoder pairs by alternating between updat-
ing the decoders for fixed encoders and vice versa, until convergence.
The convergence is monitored based on updating the value of JT in each
step. Unfortunately, this design does not guarantee global optimality.
However, the algorithm converges to a local minimum, and in this sense
produces a “good” solution.
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Algorithm 2: Encoder–Decoder Design for the System (3.3)

1. Initialize the encoder and decoder mappings {ft}T−1
0 and {gt}T−1

0 .
Compute the controller parameters {`t} by using (3.12).

2. For each t = 0, . . . , T − 1:
2a. Update the encoder mapping ft by using (3.35).
2b. Update the decoder mapping dt by using (3.32).
2c. Set ut = −`tdt.

3. If JT has not converged, return to Step 2, otherwise terminate
the iteration.

3.3.1 Absence of Process Noise

For any given sequence {ft}T−1
t=0 of encoder mappings, with ft =

ft(x0, i
t−1
0 ), the optimal decoder and controller mappings are given by

(3.11), i.e.,

gt(i
t
0) = E{xt|it0} = atqit0 +

t−1∑

s=0

at−1−sus, (3.32)

where qit0 = E{x0|it0} is the reconstruction point at the time t, stored in
the common codebook at the decoder and the encoder, cf. Fig. 3.1.

Given the sequence of decoder {gt}T−1
0 and controller mappings

{zt}T−1
0 , and assuming in addition that ft, t = 0, . . . , T − 2, are fixed

and known, it is straightforward to realize that the optimal fT−1 =
fT−1(x0, i

T−2
0 ) is described by

iT−1 = arg min
i∈IL

E
{

[x2
T + ρu2

T−1]
∣
∣
∣x0, i

T−2
0 , iT−1 = i

}

. (3.33)

Note that x1, . . . , xT−1 and u0, . . . , uT−2 are known deterministically con-
ditioned on x0 and iT−2

0 , given ft for t = 0, . . . , T − 2. The reason for
this is that the decoder and controller mappings are fixed. Hence, testing
different values for iT−1 influences only uT−1 and xT = axT−1 + uT−1.
For t < T − 1, the impact of it on all future terms should be taken into
consideration. Hence, for given decoders and controllers, and given the
encoder mappings ft for t = 0, . . . , t − 1, t + 1, . . . , T − 1, the optimal
ft = ft(x0, i

t−1
0 ) is

it = arg min
i∈IL

E

{
T∑

k=t

[x2
k + ρu2

k]
∣
∣
∣x0, i

t−1
0 , it = i

}

. (3.34)
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Note that
∑T

k=t[x
2
k + ρu2

k] is a deterministic function of it, thus (3.34) is
equal to

it = arg min
i∈IL

(
T∑

k=t

[x2
k + ρu2

k]
∣
∣
∣x0, i

t−1
0 , it = i

)

. (3.35)

The optimal mapping ft indeed has the form it = ft(x0, i
t−1
0 ). Although

straightforward in principle, the expression in (3.35) has not appeared in
our context before.

Based on (3.12), (3.32) and (3.35), an encoder–decoder design algo-
rithm is formulated in Algorithm 2.

3.3.2 Presence of Process Noise

For systems as (3.21), given the encoder, the optimal decoder is

gt(i
t
0) = E{xt|it0} = qit0 +

t−1∑

s=0

at−1−sus, (3.36)

where qit0 = E{x̄t|it0} is the reconstruction point for it0. We see that the

main task for the decoder is to estimate x̄t based on it0, and it is not
interesting to know x0 and vt−1

0 separately.
The optimal encoder needs to take the impact of the future state

evolutions into account. Hence, for fixed decoders and controllers, and
given the encoder mappings ft for t = 0, . . . , t − 1, t + 1, . . . , T − 1, the
optimal ft = ft(x0,v

t−1
0 , it−1

0 ) is

it = arg min
i∈IL

E

{
T∑

k=t

[x2
k + ρu2

k]
∣
∣
∣x0,v

t−1
0 , it−1

0 , it = i

}

. (3.37)

According to (3.37), the encoding rule is updated once the reproduction
points are recalculated. Therefore, both the encoder and decoder are
specified by the set of reconstruction points {qit0

}T−1
t=0 .

Based on (3.12), (3.36) and (3.37), an encoder–decoder design algo-
rithm is summarized in Algorithm 3.

3.4 Practical Implementation Issues

Before presenting the numerical experiments, we comment on some prac-
tical issues. Section 3.4.1 addresses the implementation of the conditional
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Algorithm 3: Encoder–Decoder Design for the as System (3.21)

1. Initialize the encoder and decoder mappings {ft}T−1
0 and {gt}T−1

0 .
Compute the controller parameters {`t} by using (3.12).

2. For each t = 0, . . . , T − 1:
2a. Update the encoder mapping ft by using (3.37).
2b. Update the decoder mapping dt by using (3.36).
2c. Set ut = −`tdt.

3. If JT has not converged, return to Step 2, otherwise terminate
the iteration.

mean estimator, while in Section 3.4.2, a couple of initialization methods
are discussed.

3.4.1 Conditional Mean Estimator

The most computationally intensive part in the proposed iterative algo-
rithms is the computation of

E{x̄t|it0} and E{x2
s + ρu2

s|x0,v
t−1
0 , it−1

0 , it}, t < s ≤ T − 1.

When the encoder–decoder pairs as well as the pdf’s p(x0) and p(vt) are
known, the conditional pdf’s p(x̄t|it0), t < T , can be derived. Similarly,
given the pdf of the current state, the pdf’s of future estimates can also
be calculated. Unfortunately, these estimation problems are computa-
tionally demanding. As an example, the state update from xt to xt+1

alone is a function involving diverse linear and nonlinear operations. To
derive the exact closed-form estimators is therefore not possible in gen-
eral. In this thesis, the simulation based sequential Monte Carlo method
(SMCM) is exploited to handle the nonlinear filtering problems. Here
“sequential” refers to the fact that the filtering is accomplished for each
new observation, which arrives sequentially in time. We illustrate the
filtering procedure by taking the example of calculating E{x̄t|it0} for the
system (3.3). At each time t, the Monte Carlo simulation involves the
steps listed in Algorithm 4.

3.4.2 Initialization

One major weakness of the proposed algorithms is that the result rests
heavily on the initial conditions. Here, we give comments on some
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Algorithm 4: Simulation of E{x̄t|it0} using SMCM

1. Generate a set of points according to p(x̄t−1|it−1
0 ).

2. Generate a set of process noise samples vt−1 according to p(vt).
3. By using the samples from Step 1 and Step 2, obtain a sequence

of x̄t based on (3.3).
4. Encode the sequence x̄t according to (3.35).
5. Estimate E{x̄t|it0} based on the samples in Step 4.

encoder–decoder initialization methods used in later simulation exper-
iments (Section 3.5 and Section 5.5). Given p(x0) for x0 and it−1

0 (and
hence the corresponding ut−1

0 ), the pdf p(x̄t|it−1
0 ) can be derived (esti-

mated from a training set). A natural choice to initialize the proposed
algorithms is to use the encoder–decoder of scalar Lloyd–Max quantiz-
ers [GG92], designed for the pdf’s p(x̄t|it−1

0 ), t = 0, . . . , T − 1. Starting
by designing f0 for p(x0), and using the resulting reconstruction points
as initial estimates for x̂0|0 as well as `0 from (3.12), the conditional pdf’s
p(x̄1|i0), i0 ∈ IL, can be determined. Base on these, L different Lloyd–
Max quantizers can be trained to determine f1(x0, i0), and so on. This
initialization will be particularly evaluated in Section 5.5. Alternatively,
the encoder–decoders can be initialized as properly scaled uniform quan-
tizers. By “properly scaled” we mean that the quantizer has memory and
the time varying range is adapted to the range of p(x̄t|it−1

0 ).

3.5 Numerical Experiments

In Section 3.5.1, Algorithm 2 developed for systems as (3.3) is evaluated
by numerical experiments. While in Section 3.5.2, simulations based on
Algorithm 3, developed for systems as (3.21), are presented.

3.5.1 Absence of Process Noise

Fig. 3.4 gives comparisons of the system performances for different initial
pdf’s. The setup of the numerical experiment is as follows. The initial
state x0 is drawn according to a generalized Gaussian distribution, see
Appendix A. The notation GGD(α, β) is used, where α describes the
exponential rate of decay, and β is the standard deviation. By varying
α, the GGD(α, β) distribution provides a wide coverage from narrow-
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Figure 3.4: Performances vs various GGD(α, β) initial distributions. The

normalized performance measure ĴT is defined in (3.38).

tailed to broad-tailed pdf’s. The variance β = 2 is used throughout the
experiment, while α varies. The plant dynamics is given by a = 0.8.
Regarding the cost function (2.9), the time horizon T is 3 and the weight

ρ is 1, which together give JT = x2
3+
∑2

t=0[x
2
t +u2

t ]. Since the initial states
have the same variance, it is convenient to normalize the cost according
to

ĴT =
JT

E{x2
0}

. (3.38)

Finally, the channel rate is R = 2 bits per time unit (per channel use).
Fig. 3.4 depicts that for an initial state with a broad pdf (a large

α value) the performance is better than those of peaked pdf’s (small α
values). This result is expected, since a peaked pdf produces more of-
ten large-valued quantization errors. The dashed curve is obtained by
employing uniform quantizers, which have optimized step-sizes with re-
spect to the conditional pdf’s p(x0|it−1

0 ). The solid curve is obtained by
applying the optimized encoder–decoder using Algorithm 2 and initial-
ized with the above-mentioned uniform quantizers. A clear performance
improvement is observed, especially at small α-values.
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3.5.2 Presence of Process Noise

In this section the encoder–decoder pairs presented in Section 3.3.1 are
evaluated by numerical experiments. Fig. 3.5 provides comparisons of
system performances for process noise with different pdf’s. The vari-
ances of the GGD process noise are held constant by setting β = 0.25
throughout, while α varies. The distribution of the initial state x0 is re-
stricted to GGD(2, 1). The other system parameters are a = 0.8, T = 3,
ρ = 1 and R = 2. The cost function is given by ĴT in (3.38). As ex-
pected, the noise with a peaked pdf induces more harm to the entire cost
function than the noise with a broad pdf. The dashed curve employs
uniform quantizers whose step-sizes are optimized for each p(x̄t|it−1

0 ).
The solid curve is obtained by exploiting the optimized encoder–decoder
pairs according to Algorithm 3 and initialized with the above-mentioned
uniform quantizers. The simulations show a clear improvement in the
system performance, especially for noise with peaked pdf’s.



Chapter 4

Feedback Control over

Binary Symmetric

Channels

4.1 Background

In Chapter 3 we have considered noise-free channels. When communicat-
ing in hostile environments, for example over radio channels, transmission
errors are however unavoidable. A well designed system should be capa-
ble to tolerate transmission errors. For control applications with strict
delay constraints and low transmission rates, a source and channel sepa-
rated strategy appears to be inefficient. This will be explored in the first
part of this chapter. In particular, two alternatives of source and channel
separated approaches are experimentally investigated in Section 4.2 and
Section 4.3. Then, in Section 4.4, a joint design of source–channel code
is proposed to further improve the overall system performance.

A fundamental problem in the system design involving noisy channels
is how to handle the impairment caused by channel errors. The two basic
strategies are either to prevent in advance or handle errors after they have
occurred. In this thesis, the first strategy is considered, that is to design
the reconstruction points taking the probability of bit errors into account.

As described previously in Section 2.3, the noise channel raises a “syn-
chronization” problem to memory-based encoders and decoders. In case
of error-free communications, it0 always equals jt0, thus, in advance, the
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encoder knows exactly the symbol the decoder will receive. Such a syn-
chronization between the encoder and the decoder is not present when
the channel produces transmission errors. In advance, the encoder can-
not make error-free estimation of the received index jt. Even worse, the
decoder has lost the ability to track the transmitted symbol it0 after re-
ceiving jt0. However, if the past control signals are available at both the
encoder and the decoder, the received sequence jt0 can be deduced at the
encoder. Thus, the encoder and the decoder can have access to the same
codebook (see Fig. 2.4) of reconstruction points {qjt0

}T−1
0 . Since, at each

time instant t, jt is available to the decoder, the decoding function is

dt = gt(j
t
0), t = 0, . . . , T − 1. (4.1)

The optimal state estimator, based on Dt is

x̂s|t = E{xs|jt0}, t = 0, . . . , T − 1. (4.2)

As will be explained later, the decoder mapping will be specialized to
dt = x̂t|t, so x̂t|t will be utilized by the controller to produce the control
output ut.

4.2 Non-redundant Channel Coding

Consider the situation where a source coder (quantizer) designed for a
noiseless channel (according to the methods in Chapter 3), encounters
a binary symmetric channel. When the error probability ε is large, the
overall system performance is deteriorated severely. In order to improve
the system performance, we will here study how to design a good index
assignment. This problem belongs to the class of non-redundant channel
coding problems, see Section 1.4.4. Note that, since the encoder and the
decoder are memory-based, the assignment involves a large number of
different indices. A full search for the best combination is therefore not
feasible. Simulated annealing, introduced in Section 1.4.4, is a practical
method to obtain a fairly good index assignment with a low computa-
tional complexity.

Recall the settings in Section 1.4.4 that each index assignment is spec-
ified by a state vector π. For the memory-based problem, we let the state
vector π consist of a number of sub-vectors πjt0

, sorted according to the

increasing (length) sequence jt0, t = 0, . . . , T − 1. A sub-vector πjt0
is a

function of the received indices jt0 and it specifies the index assignment
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Algorithm 5: Simulated Annealing

1. Select a cost function JIA. Define an effective temperature τ
and set τ = τ0, where τ0 is a high initial temperature.

2. Randomly choose an initial state π, which is a set of permutation

sub-vectors specifying the index assignments for {ft, gt}T−1
t=0 .

Calculate JIA for the given π.
3. Randomly choose a new state π̄, which performs a perturbation

on one of the sub-vectors πjt0
.

4. Let ∆JIA = JIA(π̄) − JIA(π),
4.1. if ∆JIA < 0, replace π by π̄;

4.2. if ∆JIA ≥ 0, replace π by π̄ with a probability e−
∆JIA

τ .
5. If the number of cost drops exceeds a prescribed number or if

too many unsuccessful perturbations occur, go to Step 6.
Otherwise return to Step 3.

6. Lower the temperature. If the temperature is below some
prescribed freezing temperature τf , terminate the iteration.
Otherwise return to Step 3.

for the transmission of it+1 when jt0 has been received. The index as-
signment at each t consists of the mapping C from the index sequence
{jt−1

0 , it} to a binary codeword c(it):

c(it) = C(jt−1
0 , it), (4.3)

and the inverse mapping D from {jt−1
0 , c(jt)} to jt0:

jt0 = D(jt−1
0 , c(jt)), (4.4)

see also Section 2.3. A perturbation π̄ of the state π will select only
one of the sub-vectors and exchange two entities in that sub-vector. The
selection of the sub-vector and the change of the positions are pursued
randomly. We present Algorithm 5 as a general algorithm for using simu-
lated annealing to design the index assignment. The goal of the design is
to minimize an overall cost JIA, which is a function of index assignment
π.

4.2.1 Cost Function

This section is devoted to a discussion of several issues about the cost
function used in simulated annealing. The cost function JT in (2.9) is
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denoted as JIA in Algorithm 5. Let us first take a look at computation
JT . Note that, given the distribution of the initial state, the encoder–
decoder functions and the index assignment, JT can be calculated. When
the pdf’s are described by a training set, JT can be obtained numerically
by sequential Monte Carlo simulations. The sequential Monte Carlo sim-
ulation starts by generating a sufficiently large set of samples of initial
states x0. A summary of the steps for the system evolution from the time
instant t to t + 1 is described in Algorithm 6. As was stated earlier, an
exhaustive search for the globally optimal index assignment is computa-
tionally expensive. In the worst case, (2R)T ! combinations need to be
tested, with n! denoting n factorial. Hence the number of comparisons is
infeasible for large valued R and T . By using simulated annealing, the
number of comparisons can be reduced. Still, the amount of computa-
tion is prohibitive if JT is re-calculated for each comparison. Note that,
the complexity for simulating each JT also increases exponentially with
R and T . In each calculation of JT , all the variables {xt, it, jt, ut}T−1

t=0

are involved. These variables are produced sequentially according to the
below ordering:

x0 → i0 → j0 → u0 → x1 → i1 → j1 → u1 → x2 . . .

→ xT−1 → iT−1 → jT−1 → uT−1 → xT .

In order to reduce the complexity of calculating JT , we should avoid re-
calculating a full JT by comparing only those terms affected by the index
assignment. It is worth noting that, for each new state π̄, the permutation
of a certain sub-vector π̄jt0

not only affects the cost E{x2
t + ρu2

t |jt0}, but
also the costs of all future time instants. On the other hand, the change
in π̄jt0

does not affect the costs contributed by the early time instants
s = 0, . . . , t − 1. Obviously, the index assignment at time t has most
effect on ut, and hence also xt+1. Note that, the contributions to JT ,
from xt and ut, decrease with time, so that the influence of the current
index assignment on the future states is limited. Therefore, in Example 5
we will only have a look at the effect of the index assignment on the term
E{x2

t+1 + ρu2
t |jt0}.

Example 5 Index assignment related terms in E{x2
t+1 + ρu2

t |jt0}
A unit step updating from xt to xt+1 involves

xt → it → jt → ut → xt+1.

Let ūt denote the intended control signal based on {jt−1
0 , it} and ut denote

the actual control signal based on the received symbol jt0. Observe that
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Algorithm 6: Unit Step Update of xt to xt+1

1. Appling the encoding mapping ft to xt, gives it.

2. Appling the binary mapping C{jt−1
0 , it}, gives c(it).

3. Let the coded binary symbol c(it) be fed into a BSC.

4. Appling the inverse binary mapping D{jt−1
0 , c(jt)}, gives jt0.

5. Appling the decoding mapping gt to jt0, gives dt.
6. Calculate the control signal ut based on dt

0.
7. Evolving the system according to the system equation, gives xt+1.

the transition probability p(ut|ūt) depends on the index assignment. Let
us make an elaboration on the term E{x2

t+1 + ρu2
t |jt0}:

E{x2
t+1 + ρu2

t |jt0}
= E{(axt + ut)

2 + ρu2
t |jt0}

= E{(axt + ūt + ut − ūt)
2 + ρ(ut − ūt + ūt)

2|jt0}
= E{(axt + ūt)

2 + 2(axt + ūt)(ut − ūt) + (ut − ūt)
2

+ρ(ut − ūt)
2 + 2ρūt(ut − ūt) + ρū2

t |jt0}
= E{(axt + ūt)

2 + ρū2
t |jt0}

︸ ︷︷ ︸

(I)

+E{2(axt + ūt + ρ)(ut − ūt)|jt0}
︸ ︷︷ ︸

(II)

+E{(ρ + 1)(ut − ūt)
2|jt0}

︸ ︷︷ ︸

(III)

. (4.5)

Observe that, the term (I) is independent of the index assignment at time
t, but (II) and (III) are. Thus in the comparison, (I) can be neglected.
Moreover, the values of ut and ūt are determined by the reconstruction
points qjt0 and there are a finite number of them. Hence, all possible

ut − ūt and (ut − ūt)
2 can be calculated once and stored in a look-up

table.

Besides the identification of the terms relevant to the index assign-
ment, the computational complexity can be further reduced if there are
some symmetry properties to exploit. As an example, a binary symmetric
channel can result in the same transition probability p(ut|ūt) for differ-
ent index assignments. Revisiting the example in Section 1.4.4, there are
totally 24 ways to assign the binary codewords {00, 01, 10, 11} to the
integer indices {0, 1, 2, 3}. However due to the symmetry in the channel,
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the quantizer and the distribution of the input signal, there are only 3
different values of the cost. How to divide the bit assignments into the
three groups is illustrated in Fig. 1.7.

4.2.2 Numerical Example

In this section we present a comparison of system performances between
an average of randomly selected index assignments and an index assign-
ment designed by using Algorithm 5.

The encoder–decoder pairs employed in this example are designed for
a system as (3.3) with a = 0.8. The channel is assumed to be error-free
and has a rate R = 2. The initial state is drawn according to p(x0) =
GGD(4, 2). The system performance is evaluated as the cost J̃3, which
is defined as

J̃3 = E

{
3∑

t=1

[x2
t + u2

t−1]

}

. (4.6)

Compared to the cost function in (2.9), the contribution from the initial
state x0 is omitted in (4.6). When the channel produces errors the system
performance is degraded, since the reconstruction points are optimal only
when the correct indices are received. In (3.3), the dashed line is the
average performance of randomly selected index assignments, whereas
the solid line shows the performance by exploiting the index assignment
resulted from the simulated annealing. An improvement in performance
is obvious, but the improvement is marginal. A further improvement can
be achieved when exploiting joint source–channel codes, which will be
presented in Section 4.4.

4.3 Separate Source–Channel Coding

In the previous section, non-redundant channel coding was experimen-
tally examined. In this section, the restriction that the whole channel
rate is occupied by the source code is relaxed. The trade-off between
source coding and separate channel coding becomes part of the overall
design. This means that a greater protection against channel noise can be
obtained at the cost of a coarser quantization. In general, fundamental
results in coding theory, such as the source–channel separation theorem,
hinge entirely on an infinitely large codeword length. Concerning con-
trol applications, the real-time nature may require extraordinarily short
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Figure 4.1: The performance comparison between average of randomly se-
lected index assignments and a designed index assignment using Algorithm 5.

codewords. In the following section, a numerical example is given to
demonstrate the poor performance when source and channel codes are
designed separately.

4.3.1 Numerical Example

The system is the one in (3.3) with a = 0.8 and p(x0) = GGD(2, 2). The
cost function is a modification of the one in (2.9) with T = 3 and ρ = 1,
namely (4.6).

Now first assuming that the channel rate is R = 3, which implies
three ways to allocate the three bits between the source code and the
channel code. As an example, we allot two bits on the source coding.
Only one bit is left for the channel protection and a simple channel code
is proposed as below. The codewords that the encoder will choose are
{000, 110, 101, 011} so that the minimum distance of this code is 2. At
the decoder, received {000, 001} are decoded to {000}; {110, 100} are
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Figure 4.2: The improvement in the system performance when using sepa-
rate channel codes. By (n, k) we mean k information bits will be coded to a
codeword of n bits.

decoded to {110}; {101, 001} are decoded to {101} and finally, {011, 111}
are decoded to {011}. According to channel coding theory, a code that
can correct single-bit errors requires at least a minimum distance of three,
which is not offered by the proposed code. Obviously, there is no channel
code of length three, which has a minimum distance of three and a code
rate of 2/3. The code rate is defined as the ratio between the number
of input bits and the number of output bits. Based on the minimum
distance, we expect a remarkably poor performance of this code. Even
though at a low error probability, for example only one bit error per
codeword, there is only a chance of 1/3 for this code can correct the
error. At high error probabilities, the channel code may do more harm
than good.

Fig. 4.2 provides a simulated performance comparison among the
cases with and without channel codes for an error probability region
between ε = 0 to ε = 0.3. In all experiments, the same quantizer with
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R = 2 is exploited. We have implemented two channel codes. Besides
the three-bits code described in the previous paragraph, a (5, 2) short-
ened Hamming code is adopted, which has 2 information bits as the
input and produces a codeword of 5 bits. The codewords are namely
{00000, 10110, 01011, 11101} with a minimum distance of 3. This code-
word can correct all single-bit errors and even some 2-bits errors. Fig. 4.2
shows that the improvement using the (3, 2) block code is invisible, while
the shortened Hamming code performs much better. However, it is worth
noting that the (5, 2) block code has used 3 bits more to transmit the
state information compared to the solution without any channel code.
That means the good performance is paid by a considerably inefficient
code rate. With this example we have illustrated that to design good sep-
arate source and channel codes of extraordinarily short lengths is very
difficult. In the next section, a design of joint source–channel code is
presented that will improve the control performance significantly.

4.4 Channel Optimized Encoder–Decoder

The two coding strategies presented in the previous sections belong to
the category where source and channel codes are designed separately.
The first method was referred to as non-redundant channel coding, while
the second approach employed channel codes with short block lengths.
Numerical experiments shows that for both strategies, the capabilities of
protecting against channel errors are not impressive. For control appli-
cations with strict delay constants and bandwidth limitations, we stress
that a combined source–channel coding scheme can improve upon these
traditional approaches. In this section, we propose a joint design, suit-
able for short codewords, accomplishing the source compression and the
channel protection simultaneously.

In particular, we will examine the following time-invariant linear sys-
tem,

{
xt+1 = axt + ut + vt,

yt = xt,
(4.7)

where the pdf’s p(x0) and p(vt) are known, as well as the linear dynamics
a, |a| < 1, see Fig. 2.2. Compared to the system in (3.21), here, the re-
ceived index jt is not necessarily equal to the transmitted index it, due to
the potential transmission errors produced by a binary symmetric chan-
nel. Again, we emphasize that the encoder and the decoder have access
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to the same codebook (see Fig. 2.4), which consists of the reconstruction
points {qjt0}

T−1
0 . As will be explained later, the reconstruction point qjt0

is namely

qjt0 = E{x̄t|jt0}, (4.8)

with x̄t defined in (3.31), i.e.,

x̄t = xt −
t−1∑

s=0

at−1−sus = atx0 +

t−1∑

s=0

at−1−svs.

4.4.1 Certainty Equivalence

Let us first take a look at the conditions for the CE property, given fixed
encoder–decoder pairs. According to Section 3.1.1, by the assumption
that vt is uncorrelated with xt, and ut is a function of jt0, the optimization
of the cost function JT in (3.18) is simplified to

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `txt)
2

}

= Ejt0

{

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `txt)
2
∣
∣
∣jt0

}}

= Ejt0

{

min
uT−1

0

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `t(xt − x̂t|t + x̂t|t))
2
∣
∣
∣jt0

}}

= Ejt0

{

min
uT−1

0

(

E

{
T−1∑

t=0

(ρ + Pt+1)(ut + `tx̂t|t)
2
∣
∣
∣jt0

}

+

T−1∑

t=0

E{`2t (ρ + Pt+1)(xt − x̂t|t)
2|jt0}

)}

, (4.9)

where Pt and `t are defined in (3.12), and x̂t|t = E{xt|jt0}. With a similar
reasoning as the one in Section 3.1, the condition for the CE property
can be shown to be to require that

Ejt0

{
T−1∑

t=0

`2t (ρ + Pt+1)E{(x̂t|t − xt)
2|jt0}

}

(4.10)
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is not a function of ut−1
0 , which means the mean squared estimation errors

are not dependent on the past control signals. If that is the case, the CE
controller is optimal and is given by

dt = x̂t|t, and ut = −`tdt (4.11)

(i.e., zt(d
t
0) = −`tdt) with

`t =
aPt+1

Pt+1 + ρ
, Pt = 1 +

a2Pt+1ρ

Pt+1 + ρ
, (4.12)

for t = 0, . . . , T − 1, and Pt is initialized with PT = 1. The equations
in (4.11) and (4.12) are almost identical with those in (3.11) and (3.12).
The difference lies in the term x̂t|t. Here, we have x̂t|t = E{xt|jt0} instead

of x̂t|t = E{xt|it0} as in Chapter 3.

4.4.2 Encoder–Decoder Structure

By using a similar reasoning as the one in Section 3.2.1, the encoder–
decoder structure for the system (4.7) is as follows. Note that the en-
coder knows vt−1

0 , based on xt
0 and ut−1

0 . Moreover, ut−1
0 is completely

determined by jt−1
0 . Let it be generated as

it = ft(x0,v
t−1
0 , jt−1

0 ), t = 0, . . . , T − 1. (4.13)

Since i0 = f0(x0), i1 = f1(x0, v0, j0), . . . , it = ft(x0,v
t−1
0 , jt−1

0 ), the val-
ues jt0 depend only on x0,v

t−1
0 and the potential channel errors, and not

on us
0 for any s < t. The CE controller in (4.11) is optimal for fixed

encoders {ft}T−1
0 with the structure it = ft(x0,v

t−1
0 , jt−1

0 ).

Observe that, xt − x̂t|t equals to x̄t − E{x̄|jt−1
0 } and therefore the

estimation error is not a function of us
0. We see that x̄t is a sufficient

statistic to derive the optimal control. There is no loss in performance by
enforcing the encoder structure ft(x̄t, j

t−1
0 ) and the reconstruction point

qjt0 = E{x̄t|jt0}. The decoder mapping at the decoder will be

dt = gt(j
t
0) = x̂t|t, t = 0, . . . , T − 1, (4.14)

as shown in Section 4.1. In Example 6, we will study the encoder–decoder
structure for a special case of the general model (4.7), in particular when
vt = 0,∀t.
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Example 6 Absence of Process Noise
In this example, we consider a special case of the general model (4.7),
namely, when vt = 0,∀t. The system model is

{
xt+1 = axt + ut,

yt = xt,
(4.15)

where the pdf p(x0) is known, as well as the linear dynamics a, |a| < 1. In
this case, the necessary and sufficient condition for the separation derived
in Section 4.4.1, can be shown to correspond to the requirement that the
average estimation error,

E{(x0 − x̂0|t)
2}, t = 0, . . . , T − 1, (4.16)

is not a function of us
0, s = 0, . . . , t − 1. By enforcing the encoder to

have the structure ft(x0, j
t−1
0 ), it is quite straightforward to verify that

the above condition holds true, based on the fact that i0 = f0(x0), i1 =
f1(x0, j0), . . . , it = ft(x0, j

t−1
0 ). The reconstruction point can therefore

be qjt0 = E{x0|jt0}. Observe that x̄t = atx0 when vt = 0,∀t. The encoder

ft(x̄t, j
t−1
0 ) from Section 4.4.2 in this case will become ft(ax0, j

t−1
0 ), which

agrees well with the proposed structure ft(x0, j
t−1
0 ).

4.4.3 Iterative Training Algorithm

An iterative training method is proposed in this section to optimize the
encoder–decoder pairs. Similar as in Section 3.4, this iterative approach
starts with any given initial setup, updates the reconstruction points and
the encoding rules considering not only the past but also the future state
evolution.

Let us first look at the optimal decoder for the fixed {ft}T−1
t=0 . Recall

that the optimal controller is ut = −`tdt, where dt = gt(j
t
0), then the

optimal decoder is

gt(j
t
0) = x̂t|t = qjt0 +

t−1∑

s=0

at−1−sus, (4.17)

where qjt0 = E{x̄t|jt0} denotes the reconstruction point at time t, stored
in a codebook at the decoder (and the encoder, c.f. Fig. 2.4).

The optimal encoder needs to take the impact of future state evolu-
tions into account. Hence, for fixed decoders and controllers, and given
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Algorithm 7: Encoder–Decoder Design for the System (4.7)

1. Initialize the encoder and decoder mappings {ft, gt}T−1
t=0 .

Compute the controller parameters {`t} by using (4.12).
2. For each t = 0, . . . , T − 1:

2a. Update the encoder mapping ft by using (4.18).
2b. Update the decoder mapping dt by using (4.17).
2c. Set ut = −`tdt.

3. If JT has not converged, return to Step 2, otherwise terminate
the iterations.

the encoder mappings ft for t = 0, . . . , t− 1, t + 1, . . . , T − 1, the optimal
ft = ft(x̄t, j

t−1
0 ) is

it = arg min
i∈IL

E

{
T∑

k=t

x2
k + ρu2

k

∣
∣
∣x̄t, j

t−1
0 , it = i

}

. (4.18)

According to (4.18), the encoding rule is updated once the reproduction
points are recalculated. Therefore the coder is specified by the set of
reconstruction points {qjt0}

T−1
t=0 .

Based on (4.12), (4.17) and (4.18), an encoder–decoder design algo-
rithm is formulated in Algorithm 7. The convergence is monitored based
on updating the value of JT in each step.

4.4.4 Evolution of the Estimation Error

For control applications, the imperfections of the communication link are
in general not critical as long as they do not deteriorate the closed-loop
performance. However, the idea of separation suggests to optimize the
estimation and the control separately. Hence the optimum estimation
problem is still of interest. In Chapter 3, we have shown that for fixed
the encoder–decoder pairs, the controller in (3.11) is optimal in the senses
of both “cost-to-go” (3.4) and the total cost (2.9). In this section, the
optimal control is revisited from an estimation perspective. In particular,
we are going to explore the evolution of the estimation error.

Let the encoder have the structure ft(x̄t, j
t−1
0 ) and define the estima-

tion error x̃t as

x̃t = xt − x̂t|t. (4.19)
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Observe that E{x2
t |jt0} can be written as

E{x2
t |jt0} = E{(xt − x̂t|t + x̂t|t)

2|jt0}
= E{(xt − x̂t|t)

2|jt0} − 2E{(xt − x̂t|t)x̂t|t|jt0} + x̂2
t|t

= E{(xt − x̂t|t)
2|jt0} − 2x̂t|t(x̂t|t − x̂t|t) + x̂2

t|t

= E{(xt − x̂t|t)
2|jt0} + x̂2

t|t, (4.20)

and accordingly, the cost function JT can be written as

JT = E

{

x2
T+1 +

T∑

t=0

[x2
t + ρu2

t ]

}

= E

{

(xT+1 − x̂T+1|T+1)
2 + x̂2

T+1|T+1

+
T∑

t=0

[

(xt − x̂t|t)
2 + x̂2

t|t + ρu2
t

]}

= E

{

x̂2
T+1|T+1 +

T∑

t=0

[x̂2
t|t + ρu2

t ] +
T+1∑

t=0

(xt − x̂t|t)
2

}

. (4.21)

Regarding the term xt − x̂t|t in (4.21), it can be rewritten as

xt − x̂t|t = x̄t +
t−1∑

s=0

at−1−sus − E{x̄t +
t−1∑

s=0

at−1−sus|jt0}

= x̄t − E{x̄t|jt0} = x̃t, (4.22)

where x̃t is a function of x̄t and hence does not depend on the past
control sequence ut−1

0 . For convenience, we define a new linear quadratic
cost function J̄ that is

J̄ = E

{

x̂2
T+1|T+1 +

T∑

t=0

[

x̂2
t|t + ρu2

t

]
}

= JT −
T+1∑

t=0

E{x̃2
t}. (4.23)
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Taking a close look at the term x̂t+1|t+1, we can write it as

x̂t+1|t+1 = E{xt+1|jt+1
0 }

= E{xt+1|jt0} + E{xt+1|jt+1
0 } − E{xt+1|jt0}

= E{axt + ut + vt|jt0} + E{xt+1|jt+1
0 } − E{xt+1|jt0}

= aE{xt|jt0} + ut + E{xt+1|jt+1
0 } − E{xt+1|jt0}, (4.24)

since vt is independent of jt0. In particular, jt is related to x0 and vt−1
0

(recall xt = axt−1 + ut−1 + vt−1). Observe that, the equation (4.24)
describes the evolution of x̂t|t with time, i.e,

x̂t+1|t+1 = ax̂t|t + ut + x́t+1, (4.25)

where x́t+1 = E{xt+1|jt+1
0 } − E{xt+1|jt0}. The term x́t+1 can be in-

terpreted as the difference in estimating xt+1 before and after jt+1 is
observed.

By exploiting the sequence Pt specified in (3.8), the term J̄ +
E{x̂2

0|0P0} can be written as

J̄ + E{x̂2
0|0P0} = E

{

x̂2
T+1|T+1 +

T∑

t=0

[

x̂2
t|t + ρu2

t

]
}

+ E{x̂2
0|0P0}

=

T∑

t=0

E{x̂2
t|t + ρu2

t + x̂2
t+1|t+1Pt+1 − x̂2

t|tPt}

=

T∑

t=0

E{(1 − Pt)x̂
2
t|t + ρu2

t + Pt+1(ax̂t|t + ut + x́t+1)
2}

=

T∑

t=0

E{(1 − Pt)x̂t|t + ρu2
t + Pt+1(ax̂t|t + ut)

2

+ 2Pt+1(ax̂t|t + ut)x́t+1 + Pt+1x́
2
t+1}. (4.26)

Regarding the term x́t+1, one can show that the following holds true,

E{x́t+1|jt0} = E{E{xt+1|jt+1
0 } − E{xt+1|jt0} |jt0}

= E{xt+1|jt0} − E{xt+1|jt0} = 0. (4.27)
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Hence, the cost function J̄ + E{x̂0|0P0} can be written as

J̄ + E{x̂0|0P0} =
T∑

t=0

[

E{(1 − Pt)x̂
2
t|t + ρu2

t + Pt+1(ax̂t|t + ut)
2}

+ E{Pt+1x́
2
t+1}

]

. (4.28)

Substituting Pt into (4.28), gives

J̄ + E{x̂2
0|0P0} =

T∑

t=0

E

{(

− a2ρPt+1

ρ + Pt+1

)

x̂t|t + ρu2
t + Pt+1a

2x̂2
t|t

+ Pt+1u
2
t + 2aPt+1utx̂t|t

}

+ E{Pt+1x́
2
t+1}

=

T∑

t=0

E

{
1

ρ + Pt+1
((ρ + Pt+1)

2u2
t + P 2

t+1a
2x̂2

t|t

+ 2aPt+1x̂t|t(ρ + Pt+1)ut

}

+ E{Pt+1x́
2
t+1}

=

T∑

t=0

E

{
1

ρ + Pt+1
((ρ + Pt+1)ut + aPt+1x̂t|t)

2

}

+ E{Pt+1x́
2
t+1}. (4.29)

We see again that, the control that minimizes (4.29) is the CE controller
in (4.11), i.e.,

u?
t = − aPt+1

ρ + Pt+1
x̂t|t = −`tx̂t|t.

Substituting u?
t into JT , the resulting J?

T is the minimum cost for the
given encoder–decoder pairs,

J?
T = E{x̂2

0|0P0} +

T∑

t=0

E{Pt+1x́
2
t+1} +

T+1∑

t=0

E{x̃2
t}. (4.30)

Note that, the cost J?
T is a function of the encoder–decoder pairs

{ft, gt}T−1
t=0 . The overall optimization problem is thus equivalent to find-

ing the encoder–decoder pairs, among all the encoder–decoder pairs,
which result in the minimum J?

T :

Jopt
T = min

fT−1
0 ,gT−1

0

J?
T . (4.31)
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Algorithm 8: Calculation of E{x̄t|jt0} using SMCM

1. Generate a set of points according to p(x̄t−1|jt−1
0 ).

2. Generate a set of process noise vt−1 according to p(vt−1).
3. Using the samples from Step 1 and Step 2, obtain a sequence of x̄t

based on (4.7).
4. Encode the sequence x̄t, according to (4.18).
5. Simulate the transmission over the channel and create a sequence

of received symbols jt.
6. Decode the received symbols jt and derive E{x̄t|jt0}.

This size-reduced optimization problem (4.31), cf. (2.10), however still
involves a large number of design parameters.

4.4.5 Practical Implementation Issues

In this section we consider some issues regarding the practical implemen-
tation of Algorithm 7.

Conditional Mean Estimator

Comparing with Section 3.4.1, here, the most computationally intensive
part of Algorithm 7 is the computation of

E{x̄t|jt0} and E{x2
s + ρu2

s|x0,v
t−1
0 , jt−1

0 , it}, s > t.

When the encoder–decoder pairs are known, as well as the pdf’s p(x0),
p(vt) and ε, the conditional pdf p(x̄t|jt0), t < T , can be derived. Simi-
larly, given the pdf of the current state, the pdf’s of future estimates can
also be derived. However these estimation problems are computation-
ally demanding. As in Section 3.4, a sequential Monte Carlo approach is
adopted to handle the nonlinear filtering problems.

At each time t, to obtain E{x̄t|jt0}, a Monte Carlo simulation involves
the steps listed in Algorithm 8. Since the transition probability of a BSC
has a closed-form expression, Step 4 and Step 5 can be replaced by

E{x̄t|jt−1
0 , jt = k} =

∑

it

E{x̄t|jt−1
0 , it}

p(jt = k|it)p(it)

p(jt = k)
, (4.32)

where p(it) and p(jt) are simulated.
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Initialization

Different initialization methods will be compared in Section 4.4.6. Simi-
lar as in Section 3.4, all of them exploit memory-based quantizers. The
least computationally intensive initialization employs a time varying uni-
form quantizer. The range of the quantizer has only taken the pdf of
the initial state and the dynamics of the plant into account. The sec-
ond initialization applies Lloyd–Max quantizer, designed for each pdf
p(x̄t|jt0), t = 0, . . . , T − 1. That is to say, starting by designing f0 for
p(x0), and using the resulting reconstruction points as initial estimates
for x̂0|0 as well as `0 from (4.9), the conditional pdf’s p(x0|j0), j0 ∈ IL,
can be determined, and so on for increasing t. The last initialization
applies channel optimized quantizers, designed also for each pdf p(x̄t|jt0).
It is worth noting that p(x̄t|jt0) is dependent on {fs, gs}t

s=0.

4.4.6 Numerical Experiments

To evaluate the advantage of a joint design of source–channel coding,
Algorithm 7 is applied first to a system without process noise, as (4.15),
and thereafter to a system with process noise, as (4.7) .

Absence of Process Noise

Numerical experiments are pursued for a plant with a = 0.8. The per-
formance is measured by JT in (2.9) with ρ = 1 and T = 3. The random
magnitude of the initial state is modelled using the generalized Gaussian
distribution. Fig. 4.3 shows simulation results for p(x0) = GGD(4, 2),
where the encoder–decoders for R = 2 and R = 3 have been designed.
The channel transition probability ε is shown on the x-axis, while on the
y-axis, we plot the costs JT ’s. The horizontal dashed line in Fig. 4.3
represents the cost if no control action is taken. We can read from the
figure that there is still some advantage to feedback the state observation
over a noisy channel even with 40% bit errors. An interesting problem
would be to examine the trade-off between ε and establish how coarse
the feedback information can be, in order to meet a certain performance
requirement.

As described earlier, the iterative design requires an initial setup of re-
construction points. Two initialization methods are compared. The first
method, referred to as iniuni, employs properly scaled uniform quantiz-
ers. The second method, referred to as inico, applies channel optimized
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Figure 4.3: Performance comparisons among encoder–decoder pairs. iniuni:
uniform initialization; inico: channel optimized initialization; itiuni: iteratively
trained with iniuni as initialization; itico: iteratively trained with inico as
initialization.

quantizers designed for each pdf p(x0|jt0). Fig. 4.3 shows that with it-
erative improvements, both initializations converge to quite similar final
results, itiuni and itico, although the performance of iniuni is noticeably
worse than the performance of inico. The reason for this phenomenon
deserves a thorough investigation. Recall that for noisy channel scenar-
ios, a good index assignment is essential for the system performance. The
training in Algorithm 7 has the advantage that it produces a good index
assignment simultaneously as generating the encoder–decoder pairs.

For stable systems, the contributions of xt and ut to the total cost
JT decrease with time. Hence, the reconstruction points at t = 0, i.e.,
{qj0=k}L−1

k=0 , are the most important design parameters. Fig. 4.4 shows
the resulting encoder regions and the reconstruction points at t = 0
versus ε. On the x-axis there is the channel transition probability ε,
while on the y-axis we plot the reconstruction points, together with the
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Figure 4.4: Reconstruction points qj0 and encoding boundaries versus ε (at
time t = 0). The mark ∗ denotes an encoding boundary. The mark × denotes
a reconstruction point.

decision boundaries between each encoder regions. We note that the
number of reconstruction points chosen by the encoder decreases with
increasing ε, but the number of reconstruction points remains the same.
This phenomenon is well known in quantization for noisy channels and
is attributed to the varying abilities of binary codewords in combating
channel errors. For very noisy channels, it is beneficial to transmit only
the “stronger” codewords, providing true redundancy for error protection.
Another impact of increasing ε is that the ranges of the reconstruction
points decrease so that the boundaries and the reconstruction points are
all moved closer to zero, indicating that only small-valued control actions
are allowed.

The proposed encoder–decoder is designed for a certain ε. The sys-
tem performance is evidently degraded if the true ε deviates from the
design value. In Fig. 4.5, the robustness of the system against a mis-
match in the transition probability ε is studied. Each dashed line is
obtained by employing fixed encoder–decoder pairs designed for a cer-
tain ε, to channels with different ε’s. The solid line is obtained by using
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Figure 4.5: The robustness test against various ε.

the encoder–decoder designed for the true ε. Obviously, the performance
is deteriorated if there is a mismatch between the designed and true ε.
We also observe that underestimating the errors is more harmful than
overestimating it.

Presence of Process Noise

In this section we present the simulation results of applying Algorithm 7
to a system as (4.7). The performance is measured with J̃3, as defined
in (4.6). The random magnitudes of the initial state and the process
noise are both modelled using the generalized Gaussian distribution. We
consider an experiment with following design parameters: a = 0.8, ρ = 1,
T = 3, R = 2, p(x0) = GGD(2, 1) and p(vt) = GGD(2, 0.25). In Fig. 4.6,
the cost J̃3 is plotted against the channel transition probability ε. The
horizontal dashed line represents the cost if no control action is taken.
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We see that it is still beneficial to feeding back the state observation over
a noisy channel even with 35% bit errors.

Three initialization methods are compared in this setup. The nota-
tions are the same as used in the process noise free scenario. The first
method, referred to as iniuni, exploits properly scaled uniform quan-
tizers. The second method, referred to as inimax, applies Lloyd-Max
quantizers, designed for each pdf p(x̄t|jt0). The last method, referred
to as inico, applies channel optimized quantizers, designed for each pdf
p(x̄t|jt0). Fig. 4.6 shows that with iterative improvements, all three ini-
tializations converge to quite similar final results, i.e., itiuni, itimax, and
itico, although the performances of iniuni and inimax are notably worse
than the performance of inico.

As discussed before, the reconstruction points at t = 0, i.e.,
{qj0=k}L−1

k=0 , are important design parameters. Fig. 4.7 shows the en-
coder regions and the reconstruction points at t = 0 versus ε. While in
Fig. 4.8 we demonstrate how the encoder regions at t = 0 are changed
after iterations. Similar results as for the process noise free scenario are
also observed here. For example, the number of reconstruction points
chosen by the encoder decreases with increasing ε, but not the number
of reconstruction points. In Fig. 4.7, for ε = 0.3 and ε = 0.35, the two
middle reconstruction points are close, so that additional zooming would
be needed to distinguish them. Additionally, an increasing of ε renders
also the moving of boundaries and reconstruction values closer to zero
that only small-valued control actions are allowed.

If the encoding regions are intervals, like in the experiments, the en-
coder complexity can be significantly reduced by exploiting the knowledge
about decision boundaries. This, since the tedious estimation of the fu-
ture states is replaced by a simple comparison with a scalar value. Note
also, the boundaries can be calculated once the reconstruction points are
fixed, and then stored in a look-up table. We illustrate the calculation of
the boundaries by a simple example.

Example 7 Boundaries for inico at t = 0
In this example, we calculate the boundary for inico at t = 0. Recall
that, inico applies COSQ to each conditional distribution of the state.
In particular, the coding functions {f0, g0} for the time instant t = 0 do
not take the future evolution into account. For brevity, let x denote the
state signal x0, while i and j denote the transmitted and received indices
i0 and j0, respectively. Also, qi denotes the reconstruction point at t = 0
with i ∈ IL. Finally, p(j|i) denotes p(c(j0)|c(i0)) where c(i0) and c(j0)
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itimax: iteratively trained with inimax as initialization; itico: iteratively
trained with inico as initialization.

are the binary received and transmitted codewords.
Let us define:

αk(x) =

L−1∑

j=0

p(j|i = k)(x − qj)
2. (4.33)

It turns out that αk(x) can be written as

αk(x) = (x2 − mk)2 + sk − (mk)2, (4.34)

where mk and sk are defined as

mk =
L−1∑

j=0

p(j|i = k)qj , sk =
L−1∑

j=0

p(j|i = k)q2
j . (4.35)
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This, since expanding the right term in (4.33) gives

αk(x) = x2 − 2x

L−1∑

j=0

p(j|i = k)qj +

L−1∑

j=0

p(j|i = k)q2
j

= (x2 −
L−1∑

j=0

p(j|i = k)qj)
2 +

L−1∑

j=0

p(j|i = k)q2
j

− (

L−1∑

j=0

p(j|i = k)qj)
2. (4.36)

Let tkl be the boundary between the encoder regions Sk and Sl, where
Si = {x|f0(x) = i}, that is

tkl =

{

x :

2R−1∑

m=0

p(j = m|i = k)(x − qm)2
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Figure 4.8: The change of the encoding boundaries after iterations, cf.
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=

2R−1∑

m=0

p(j = m|i = l)(x − qm)2

}

. (4.37)

At tkl, the following equation is valid:

(tkl − mk)2 + sk − m2
k

(tkl − ml)2 + sl − m2
l

= 1. (4.38)

Hence, tkl can be calculated as

tkl =
sl − sk

2(ml − mk)
. (4.39)

For example, studying the case when k = 1 and l = 2, renders

t12 =
s2 − s1

2(m2 − m1)
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=

∑L−1
j=0 p(j|i = 2)q2

j −∑L−1
j=0 p(j|i = 1)q2

j

2(
∑L−1

j=0 p(j|i = 2)qj −
∑L−1

j=0 p(j|i = 1)qj)
.

The calculation of the boundaries for inico at t = 0 does not involve
any memory as the one in (4.18). Although the memory-based encoding
rule renders more tedious calculation, but the basic principle is similar.

Finally, shown in Fig. 4.9, experiments were pursued to evaluate the
robustness of the proposed encoder–decoder to the variations in the chan-
nel error probability ε. Along the x-axis, we have the channel transition
probability ε, while the cost J̃3 is plotted on the y-axis. The dashed
lines are obtained by using the encoder–decoder pairs designed for fixed
ε-values, while the solid line is obtained by using the encoder–decoder
pairs designed for the true ε values. As stated earlier, since each code-
book is trained for a particular ε, the system performance is degraded if
the true ε deviates from the design parameter. From the figure, one can
verify that a robust coding scheme prefers an overestimate of the error
probability to an underestimated one.



Chapter 5

Application to

Event-Triggered Control

5.1 Background

Event-triggered control strategies have the potential in many cases to
be more efficient than conventional time-triggered (or sampled) con-
trol [ÅB99]. To optimally utilize the communication resources, it is de-
sirable to let each control loop communicate only when necessary. How
this should be done in general is quite unexplored and only preliminary
results are available, e.g., [ÅB99, SJ03]. In this chapter, a new control
strategy combining the approaches from event-triggered with quantized
control is proposed. It is shown that for an interesting class of systems,
which are affected by rarely occurring disturbances drawn from a known
probability distribution, it is possible to achieve a good control perfor-
mance with limited control actuation and sensor communication. The
focus here is on how to encode sensor data efficiently. Related prob-
lems on encoding control commands for motion control have been stud-
ied in [BMP03,Bro88,EB03]. In applications to communication systems,
contributions can be found in e.g., [MCea05].

5.2 Wireless Sensor Network Example

Consider the example of wireless sensor networks presented in Section 1.2,
shown again in Fig. 5.1. Suppose that the dynamics of each plant can be
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(Identical to Fig. 5.1).

represented as a scalar system

xt+1 = axt + ut + ωt, t = 0, 1, . . . , (5.1)

where xt is the state, ut the control signal, and ωt the event-triggered
disturbance at time instant t. The disturbance is equal to zero except at
time instants t = ti ≥ 0, i = 1, 2, . . .. This disturbance is not measurable
but estimates of its distribution in time and space are known.

The control objective is to keep the state of each plant close to the
origin by using a small amount of control actuation. Since the com-
munication resources between sensor and control nodes are shared, it is
desirable to limit the amount of transmitted data. This is possible since
the plants are stable and exposed to rarely occurring individual distur-
bances. A plausible decentralized control strategy is the following. Let ut

be equal to zero as long as xt is close to the origin. Define a δ-ball around
the origin. When the sensor detects that xt is outside of the δ-ball, the
sensor measurement is encoded and transmitted to the control node. The
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message is decoded at the control node and a control command is derived
and actuated. The controller and the encoder–decoder pairs are designed
based on a finite-horizon linear quadratic criterion.

5.3 Problem Statement

The stable scalar linear time-invariant plant using an ideal channel is
descried by







xt+1 = axt + ut + ωt,
yt = xt,
jt = it,

(5.2)

where the pdf’s p(x0) and p(ωt) are given, as well as the linear dynamics a,
|a| < 1. The disturbance occurs (i.e., ωt is non-zero) at random instants
of time.

5.3.1 Performance Measure

The goal is to solve an integrated encoder–decoder design and optimal
control problem for the system in (5.2), with a performance measure of
the form

J0 = lim
K→∞

1

K

K−1∑

t=0

E
{
x2

t + ρu2
t

}
, (5.3)

where ρ ≥ 0 specifies the relative weight assigned to the cost (contribution
to J0) of the control signal ut. As mentioned earlier, let ti, i = 0, 1, . . .,
ti > 0, ∀ i > 0 and ti 6= tj , ∀ i 6= j, denote the time instant for
the occurrence of the ith disturbance. We assume that the system is
initialized at time t = t0 = −1 by the disturbance ω−1 6= 0 (x−1 = 0 and
u−1 = 0). Thus, at t = 0, we have the initial state x0 = ω−1 6= 0. Then
J0 is

J0 = lim
K→∞

1

K

K−1∑

i=0

[

1

ti+1 − ti

ti+1∑

t=ti+1

E
{
x2

t + ρu2
t

}

]

, (5.4)

conditioned on a fixed sequence {ti}.
Suppose now that a substantial part of the contribution of a distur-

bance to the performance measure is concentrated to a (small) time-
interval of length T time-instants following each disturbance, i.e., the
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contribution in the interval ti + 1 + T ≤ t < ti+1 + 1 is small compared
to the one in ti + 1 ≤ t ≤ ti + T . This is a reasonable assumption if the
feedback control succeeds in attenuating the disturbance within time T ,
and the intensity of the disturbance is low enough such that, with high
probability, there is only one disturbance per interval. Then, J0 can be
approximated by

lim
K→∞

1

KT

K−1∑

i=0

[
ti+T∑

t=ti+1

E{x2
t + ρu2

t}
]

. (5.5)

From now on, we assume that the plant is not controlled in the interval
ti + 1 + T ≤ t < ti+1 + 1, i.e., ut = 0 for these time instants. We also
explicitly assume that ti+1 − ti > T, ∀i.

In (5.5) the expectation is (implicitly) taken with respect to the pdf
p(ωt), while the random occurrences {ti} are averaged out by the time-
average. Alternatively, by treating each disturbance separately and shift
time to zero (“re-starting the clock”) after the occurrence of each distur-
bance, we end up with the following criterion function

JT =

T∑

t=0

E
{
x2

t + ρu2
t

}
, (5.6)

with the constraint uT = 0.
In (5.6) the expectation is to be interpreted as averaging over both

the values and time-instants of the disturbances, in the sense that the
expectation E is taken with respect to a new pdf p0 for x0 defined as

p0 = lim
K→∞

1

K

K−1∑

i=0

pi, (5.7)

where pi is the pdf of xti−1. As per our discussion, it should hold that
JT ≈ J0. In the remaining parts, any reference to optimality will refer
to JT and the implicit averaging over all the different disturbances in the
sense of p0.

5.3.2 Disturbance Detector

A detector is employed to mark instants when a disturbance event has
taken place. Since no measurement error is present, estimates of the sys-
tem evolution are readily calculated without error. Hence, a disturbance
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Algorithm 9: The Overall System Design (SD)

1. Initiate p0 with the disturbance pdf p(ωt). Initialize

the encoder–decoder {ft, gt}T−1
t=0 using Lloyd–Max or uniform

quantizers, as described in Section 3.3.2.
2. Set δ = 0. Design the encoder, decoder and controller by using

Algorithm 2 in Section 3.3.1.
3. Use the resulting encoder–decoder pairs and simulate the

disturbance sequence according to the statistical properties
of {ωt}. Find the value δ̄ for the threshold that minimizes JT .

4. While JT has not converged,
4a. Apply the trained encoder–decoder and δ̄ to the disturbed
control system. Collect a training set that describes p0.
4b. Train the encoder–decoder using Algorithm 2
in Section 3.3.2.

5. For the final encoder–decoder, find the threshold that minimizes
JT .

can be perfectly detected by comparing a predicted value for xt with the
observed value.

Even though there is a perfect disturbance detection mechanism, the
quantization effect makes it non-trivial to decide when to act. For ex-
ample, when the bit rate is low, it may be better to let the disturbance
die out by the plant’s own stabilizing dynamics, than to apply a control
with relatively large estimation errors. We therefore introduce a thresh-
old δ > 0. The control action is triggered only when the magnitude of the
observed state is larger than the threshold. The threshold is obviously an
additional design parameter, which will be discussed more in Section 5.4.

5.4 System Design

We observe that the proposed control problem can partly be solved by
exploiting Algorithm 2 in Chapter 3, if the initial pdf p0 is known or
can be accurately estimated. However, as discussed in Section 5.3, an
important parameter, with respect to the overall performance, is the
threshold δ. The choice of threshold is taken into account in the overall
design algorithm summarized in Algorithm 9. In Step 4b the encoder–
decoder pairs from the prior iteration is used to initialize the training.
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Figure 5.2: GGD distribution p(ωt), empirical distributions for ε = 0 and
ε 6= 0.

Note that selecting a threshold is performed once in Step 3, and for the
second time in Step 5 to set a final value for δ. Obviously, the final
δ is not the best one for the overall optimization problem, but a local
optimum.

5.5 Numerical Experiments

The setup for the numerical experiments is given by a = 0.8, ρ = 1, T = 3
and R = 2. The disturbance events {ti} are modeled as a Poisson process,
and the pdf p(ωt) of the disturbance magnitude is modeled as a general-
ized Gaussian distribution. We use β = 2 throughout. Fig. 5.2 illustrates
how the distribution of the training data changes when a threshold δ 6= 0
is introduced. In Fig. 5.3, the impact of the parameter ρ on the system
behavior is investigated. Recall that ρ is the penalty on the control signal
in the performance measure. In Fig. 5.3(a) and Fig. 5.3(b), we show state
evolutions of 100 samples for ρ = 1 and ρ = 10, respectively. While in
Fig. 5.3(c) and Fig. 5.3(d), we shown the corresponding control signals
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(b) State observations, ρ = 10
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0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

t

m

control signal, ρ=10

 δ

PSfrag replacements

Magnitude

(d) Control signals, ρ = 10

Figure 5.3: The state behavior and control signals for ρ = 1 and 10, respec-
tively. The event threshold is δ = 0.35.

at those periods. Note that when ρ is large, the optimal control signal
has small magnitude, so consequently the response times to the pulse
disturbances are longer.

To demonstrate the improvement in system performance when us-
ing optimized encoder–decoder pairs, a comparison with using uniform
quantizers has been made. In the first case, referred to as iniuniF , a
fixed optimum step-size uniform quantizer is employed for the entire pe-
riod 0 ≤ t ≤ T −1. The second approach, referred to as iniuniV , employs
time-varying uniform quantizers with optimized step size (Section 3.4.2).



88 5 Application to Event-Triggered Control

0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75 ini
uniF

ini
uniV

ini
max

iti
uniF

iti
uniV

iti
max

PSfrag replacements

α

J̆
T

t0
c0,1

Figure 5.4: The improvement of the system performance by applying the op-
timized encoder–decoder. iniuniF : time-invariant uniform quantizer. iniuniV :
time-varying uniform quantizer. inimax: Lloyd–Max quantizer. itiuniF :
trained with iniuniF as initialization. itiuniV : trained with iniuniV as ini-
tialization. itimax: trained with inimax as initialization.

Fig. 5.4 shows the performance improvement as

J̆T =
E
{
∑T

0 [x2
t + ρu2

t ]
}

− E
{
∑T

0 ω2
t

}

E
{
∑T

0 ω2
t

} , (5.8)

versus α, which represents various GGD pdf’s p(ωt). Note that a small J̆T

indicates an effective control strategy. We observe that the proposed algo-
rithm always results in an improvement over the initial encoder–decoder
pairs. In particular, for disturbances with a peaked distribution, e.g.,
GGD(0.5, 2), the performance after training is significantly improved. In
this case, the optimal quantization should obviously not be uniform. Re-
calling that the parameter α describes the exponential rate of decay, the
pdf is closer to a uniform distribution when α is large. Another interest-
ing observation is that the training algorithm still provides similar results
irrespective of the initialization of the training.



Chapter 6

Conclusions and Future

Research

6.1 Concluding Remarks

Designing a control system with feedbacks over imperfect communication
channels has received an increasing attention during the last decades.
The research area is new and evolves rapidly. This thesis has studied
approaches to joint source–channel coding and feedback control for scalar
linear plants, subjected to data rate limited noisy channels.

A brief overview on recent publications of feedback quantization in
control systems has been given. In this research field, a massive effort has
been devoted to various stability issues. This thesis however focused on
the performance optimization and solved a stochastic control problem.
An iterative optimization algorithm for training the encoder–decoder
pairs has been proposed and scenarios regarding various information pat-
terns have been investigated. Sequential Monte Carlo simulations have
shown promising improvements for the proposed coding–control schemes
compared to traditional approaches.

6.2 Future Research

This thesis takes some steps towards future work on practical designs in
joint control and source–channel coding. Suggesting a number of research
directions, listed below are a few issues for the near-future research.
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• Multidimensional Systems

Although in this work, we have only considered linear scalar plants
(of dimension one), the overall problem has been formulated under
quite general assumptions. A generalization to multidimensional
plants is straightforward, but the solutions are far from evident.
For certain classes of systems, the CE controller may still be the
optimal control strategy. In that case, it is interesting to know if
traditional stochastic control theory is still useful for the controller
design, and if vector quantization is the relevant counterpart to
the scalar quantization studied in this thesis. However, compared
to the scalar case, the information pattern for a multidimensional
system has a larger variety. Witsenhausen has demonstrated with
a famous counterexample [Wit71] that a small change in the in-
formation pattern can render completely different solutions. This
counterexample has stressed that care must be taken when gener-
alizing to multidimensional systems.

• Distributed Systems

The main motivation for study of the quantized control and the
event-triggered control is to efficiently utilize the limited commu-
nication resources. Besides the problem of optimizing the perfor-
mance for each individual plant, another challenge is how to co-
ordinate all distritbuted nodes as one system. In Chapter 5, we
have studied the response of a single plant to triggered events. In a
networked system, it may happen that several plants are triggered
simultaneously resulting congestions in networks. How to design
the trigger events that minimize the congestions in a network, and
how to handle the congestions when they have occurred, are is-
sues which deserve thorough investigations. Moreover, it has been
shown that to combine the measurements from distributed nodes
has the potential to provide more accurate estimation about the
objects a network is monitoring. How to apply the advances in
distributed sensing and data fusion techniques to network control
problems needs also to be carefully investigated.

• Measurement Noise

The assumption of the absence of observation noise is unrealistic.
Once the measurement noise is considered in system models, the
problem becomes complicated. In that case the encoder does not
know the exact system state, but only has a copy of the corrupted
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state measurement. In traditional stochastic control, the solution
relies on the minimum variance estimate by exploiting a Kalman fil-
ter. Concerning quantized systems, how good is the approach when
the minimum variance estimate out of a Kalman filter is quantized?
The state estimation problems can certainly appeal to advances in
nonlinear filtering theory.

• Suboptimal Solutions

The separation property has been addressed as a desired feature,
since it can reduce the overall optimization complexity. Even
though the separation property is attractive, there is no doubt that
for most systems, the separation principle does not apply. Also,
it turns out that the memory-based CE controller is computation-
ally demanding. Moreover, the proposed separation scheme has
its weakness when generalized to unstable systems. This, since
without any control action, the unstable poles may result in un-
bounded state trajectories and lead to unbounded estimation er-
rors, although the plant probably will be stabilized. For unstable
systems, the stability issues should be taken into account in the
coding and the estimation. Thus, we believe that it is important to
find feasible suboptimal solutions, which may not exploit the sep-
aration property. Seeking suboptimal solutions opens up a broad
spectra of research themes, both theoretical and practical. From a
practical aspect, encoder–decoders with finite memories should be
considered. Another obvious obstacle to practical implementations
is the prohibitive computational complexity. Finding complexity-
reduced algorithms is also a topic deserving considerable research
efforts.





Appendix A

Generalized Gaussian

Distribution

The generalized Gaussian Distribution (GGD) is described by the follow-
ing probability density function,

p(x) =

(

αη(α, β)

2Γ(1/α)

)

exp{−(η(α, β)|x|)α}, (A.1)

where Γ denotes the Gamma function and η(α, β) is defined as

η(α, β) = β−1

(

Γ(3/α)

Γ(1/α)

)1/2

. (A.2)

Regarding the probability density function, two parameters should be
specified, namely, α and β. In particular, α describes the exponential
rate of decay, while β states the standard deviation.

In this thesis, the inverse method for continuous distributions is ex-
ploited to implement the random variable generator for the generalized
Gaussian distribution. The inverse method is based on the fundamental
theorem which states the relation between a uniform distribution com-
pared to other continuous distributions. Suppose that X is a continuous
random variable with a strictly increasing cumulative distribution func-
tion (cdf) F , whose inverse function is denoted as F−1. Let U be a
random variable uniformly distributed between 0 and 1, then F serves
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Figure A.1: Different generalized Gaussian distributions.

as the cdf for F−1(U) as well as for X. This means that we can gener-
ate a random variable by applying the inverse function of the intended
cumulative distribution function to a uniform random variable.

The cdf of the generalized Gaussian distribution is given by

F (x) =
1

2
+

Γ((η(α, β)|x|)α, 1
α )

2Γ( 1
α )

, (A.3)

where the Gamma function and the incomplete Gamma function are de-
fined as

Γ(a) =

∫ ∞

0

e−tta−1dt, Γ(a, x) =

∫ x

0

e−tta−1dt. (A.4)

Note that the inverse function F−1 is straightforward to calculate if the
inverse of the incomplete Gamma function is available. In the remaining
part of this chapter, based on [DM86], we provide a short summary of a
numerical solution to the inverse problem.
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Algorithm 10: Iteration of xk, k = 1, . . .

1. xn+1 = xn(1 − hn)
2. hn = tn + wnt2n
3. wn = (a − 1 − xn)/2

4. tn =

{
p(a,xn)−p(a,x)

r(a,xn) , p(a, x) ≤ 1
2

q(a,x)−q(a,xn)
r(a,xn) , p(a, x) > 1

2

5. r(a, xn) = e−xxa

Γ(a) .

Let us first define p(a, x) and q(a, x) as

p(a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt, (A.5)

q(a, x) = 1 − p(a, x) =
1

Γ(a)

∫ ∞

x

e−tta−1dt. (A.6)

In particular, the algorithm is about the computation of x for given a
and p(a, x), when a ≥ 0, x ≥ 0 and a + x 6= 0. Listed in Algorithm 10
is the iterative procedure. Three iterations at most are required to
obtain 10 significant digit accuracy for x. However, the initial state x0

is not straightforward to acquire. We describe the calculation in details.
Define B = q(a, x)Γ(a) and let c denote Euler’s constant. Consider two
situations:

Case 1) For a ≤ 1, x0 is approximated by:

- Case 1.1: when (B > 0.6) or (B ≥ 0.45 and a ≥ 0.3):

x0 =
u

1 − u/(a + 1)

u =

{
(p(a, x)Γ(a + 1))1/a, Bq(a, x) > 10−6

e−q(a,x)/(a−c), otherwise.

- Case 1.2: when (0.35 ≤ B ≤ 0.6 and a < 0.3):

x0 = teu

t = e−c−B

u = tet.
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- Case 1.3: when (0.15 ≤ B ≤ 0.45 and a ≥ 0.3) or (0.15 ≤ B <
0.35):

x0 = y − (1 − a) ln v − ln

(

1 +
1 − a

1 + v

)

y = − ln B

v = y − (1 − a) ln y.

- Case 1.4: when (0.01 < B < 0.15):

x0 = y − (1 − a) ln v − ln
v2 + 2(3 − a)v + (2 − a)(3 − a)

v2 + (5 − a)v + 2

y = − ln B

v = y − (1 − a) ln y.

- Case 1.5: when (B ≤ 0.01):

x0 = y + c1 + c2 y + c3 y2 + c4 y3 + c5 y4

y = ln B

c1 = (a − 1) ln y

c2 = (a − 1)(1 + c1)

c3 = (a − 1)

(

− 1

2
c2
1 + (a − 2)c1 +

3a − 5

2

)

c4 = (a − 1)

(

1

3
c3
1 −

3a − 5

2
c2
1 + (a2 − 6a + 7)c1

+
11a2 − 46a + 47

6

)

c5 = (a − 1)

(

− 1

4
c4
1 +

11a − 17

c
c3
1 + (−3a2 + 13a − 13)c2

1

+
2a3 − 25a2 + 72a − 61

2
c1 +

25a3 − 195a2 + 477a − 379

12

)

.

Case2) For a > 1, denote the Cornish-Fisher 6-term approximation
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for x0 as

w = a + s
√

a +
s2 − 1

3
+

s3 − 7s

36
√

a
− 3s4 + 7s2 − 16

810a

+
9s5 + 256s3 − 433s

38880a
√

a
(A.7)

s = (−1)m

(

t − a0 + a1t + a2t
2 + a3t

3

1 + b1t + b2t2 + b3t3 + b4t4

)

(A.8)

t =
√
−2 ln τ

m =

{
1, 0 < p(a, x) < 1/2
0, 1/2 ≤ p(a, x) < 1

τ =

{
p(a, x), 0 < p(a, x) < 1/2
q(a, x), 1/2 ≤ p(a, x) < 1,

where

a0 = 3.31125922108741, b1 = 6.61053765625462

a1 = 11.6616720288968, b2 = 6.40691597760039

a2 = 4.28342155967104, b3 = 1.27364489782223

a3 = 0.21362349371585, b4 = 0.036117081018842.

Then following cases are considered

- Case 2.1: when (a ≥ 500 and |1 − w/a| < 10−6):
x = w.

- Case 2.2: when (a < 500) or (|1 − w/a| ≥ 10−6):

- Case 2.2.1: p(a, x) > 1/2:

- Case 2.2.1.1: w < 3a, x0 = w.

- Case 2.2.1.2: w ≥ 3a, D = max (2, a(a − 1)):

- Case 2.2.1.2.1: B > 10−D

u = T (w) = − ln B + (a − 1) ln w

− ln

(

1 +
1 − a

1 + w

)

x0 = T (u).
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- Case 2.2.1.2.2: B ≤ 10−D:

x0 = y + c1 + c2 y + c3 y2 + c4 y3 + c5 y4.

The coefficients are same as in Case 1.5.

- Case 2.2.2: p(a, x) ≤ 1/2:
define the functions

Fn(x) = e(v+x−ln Sn(x))/a

v = ln (p(a, x)Γ(a + 1))

s0 = 1

sn = 1 +
n∑

i=1

xi/((a + 1)(a + 2) · · · (a + i)),

calculate z according to

- Case: w > 0.15(a + 1) ⇒ z = w.

- Case: w ≤ 0.15(a + 1)

u1 = F0(w)

u2 = F2(u1)

u3 = F2(u2)

z = F3(u3).

Then

- Case 2.2.2.1: (z ≤ 0.002(a + 1)) ⇒ x = z.

- Case 2.2.2.2: (0.002(a + 1) < z ≤ 0.01(a + 1)) or (z >
0.7(a + 1)) ⇒ x0 = z.

- Case 2.2.2.3: (0.01(a + 1) < z ≤ 0.7(a + 1))

z̄ = FN (z)

x0 = z̄

(

1 − a ln z̄ − z̄ − v + ln sn(z)

a − z̄

)

,

where N is the smallest integer such that

zN/((a + 1) · · · (a + N)) ≤ 10−4.
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