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Abstract

Multi-agent systems are interconnected control systems with many ap-
plication domains. e ërst part of this thesis considers nonlinear multi-
agent systems, where the control input can be decoupled into a product of a
nonlinear gain function depending only on the agent’s own state, and a nonlinear
interaction function depending on the relative states of the agent’s neighbors.We
prove stability of the overall system, and explicitly characterize the equilibrium
state for agents with both single- and double-integrator dynamics.

Disturbancesmay seriously degrade the performance ofmulti-agent systems.
Even constant disturbances will in general cause the agents to diverge, rather
than to converge, for many control protocols. In the second part of this thesis
we introduce distributed proportional-integral controllers to attenuate constant
disturbances in multi-agent systems with ërst- and second-order dynamics. We
derive explicit stability criteria based on the integral gain of the controllers.

Lastly, this thesis presents both centralized and distributed frequency con-
trollers for electrical power transmission systems. Based on the theory developed
for multi-agent systems, a decentralized controller regulating the system frequen-
cies under load changes is proposed. An optimal distributed frequency controller
is also proposed, which in addition to regulating the frequencies to the nominal
frequency, minimizes the cost of power generation.
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Chapter 1

Introduction

M -agent systems, consisting of interconnected sub-systems, arise in several
applications and have received overwhelming interest from researchers over the

past decade. Multi-robot systems, electrical power systems, see Figure 1.1, and vehicle
platoons, see Figure 1.2, are examples of multi-agent systems, to mention a few. In
many of the applications of multi-agent systems, it is necessary to control the system
in order to achieve the desired properties. Due to the size and complexity of many of
these systems, controllers for these systems are often distributed and rely on only the
states from the neighboring agents rather than the states of all agents. However, the
control objectives are, with few exceptions, global. ese control objectives might be
for the mobile robots to meet at a common point, or for the frequency of power system
generators to converge to a reference frequency. Managing global control speciëcations
with only local measurements is one of the main challenges in multi-agent systems. In
this chapter we will introduce the main problems considered in this thesis by some
motivating applications, before giving a mathematical problem formulation.

1.1 Motivating applications

A few illustrative examples will be presented here to demonstrate the ubiquitousness
of multi-agent systems in engineering applications, and to motivate the problems
considered in this thesis. e examples will highlight some of the shortcomings of
the state of the art controllers for multi-agent systems, which will be addressed in this
thesis.

Example 1.1 (Thermal energy storage in buildings) ermal energy storage has
emerged as a possible method for energy-efficient regulation of temperatures in
buildings, as discussed by Zalba et al. (2003). By using a substance which undergoes

1
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Figure 1.2 Platoon of multiple trucks.

a phase transition near the desired maximum temperature in the building, the
temperature may be kept below the maximal desired temperature. While the heat
capacity of the air in a building is approximately constant, the total heat capacity
of the room is highly nonlinear due to the thermal energy storage. e endothermic
and exothermic processes of the phase transitions may be modeled by nonlinear heat
capacities, which take the form of a Dirac delta function at the temperature of the
phase transition. e model ëts well with a consensus protocol for agents with single-
integrator dynamics with nonlinear gain and interaction functions. Due to Fourier’s
law, see e.g., Fourier (1888), the room temperatures are thus well-described by the
following nonlinear differential equation

Ṫi = −γi(Ti)
∑
j∈Ni

αij(Ti − Tj), (1.1)

where Ti is the temperature of room i, αij(Ti − Tj) is the heat conductivity between
room i and j, where αij(·) is a nonlinear function ∀(i, j) ∈ E . 1/γi(Ti) is the
temperature-dependent heat capacity of room i, capturing the dynamics of the energy
storage. It is of interest to determine the asymptotic temperature in the rooms given
their initial temperatures. Furthermore, it is of interest to characterize the convergence
rate of the room temperatures towards their ënal temperature.



4 Introduction

Example 1.2 (Autonomous space satellites) Groups of autonomous space satellites
may solve tasks in space that require coordination. For a solar power plant in space, this
could involve formation control of mirrors, reìecting the sunlight to a solar panel. If
the agents are far away from any reference points, it may be assumed that the satellites
only have access to their distance and velocity relatively to their neighboring satellites.
It is however often important to analyze the dynamical behavior of the satellites from
a common reference frame, e.g., the earth. Even if the control laws are linear in
the relative velocities in the satellites reference frame, they are generally nonlinear in
other reference frames. More speciëcally, the dynamics of a group of N satellites are
assumed to be governed by Newton’s second law of motion, resulting in second-order
dynamical systems. e raw control signal is the power applied by each agent’s engine,
Pi. However, the acceleration in an observers reference frame is ai = Pi/|vi| due to
Pi = ⟨Fi, vi⟩ and Fi being parallel to vi, where vi is agent i:s velocity. We assume that
the agents only have access to relative measurements. is results in the dynamics

ẋi = vi

v̇i = − 1
|vi|
∑
j∈Ni

[
αij
(
xi − xj

)
+ βij

(
vi − vj

)]
, (1.2)

whereαij(·) and βij(·) are possibly nonlinear interaction functions, i = 1, . . . n andNi
denotes the neighbor set of satellite i. Here xi and vi denote the position and velocity
of satellite i. is networked system motivates the analysis of consensus protocols for
agents with double-integrator dynamics with nonlinear gain and interaction functions.
It is of particular interest to characterize the asymptotic behavior of the satellites, and
study the role of the nonlinearities in the formation of the satellites.

Example 1.3 (Unmanned underwater vehicles) Unmanned underwater vehicles can
be used to explore underwater environments where manned vehicles are simply not
feasible due to high pressure or extreme temperatures, see Yuh (2000). e exploration
of large underwater areas motivates the use of groups of underwater vehicles. In
situations where the communication range between the underwater vehicles is limited,
the vehicles have to be able to rely only on local and relative measurements. Due
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to the high viscosity of water, damping due to friction will considerably inìuence
the dynamics of the vehicles. Since the viscosity of the water depends on the water
pressure and hence on the operating depth, the damping will in general depend on
the state of the underwater vehicle. We thus model the underwater vehicles by double-
integrator dynamics with a, possibly nonlinearly, state-dependent damping coefficient.
We consider the cooperative task of rendezvous, where the objective of the underwater
vehicles is to meet at a common point. For simplicity we only consider rendezvous in
one dimension, namely in the depth. us, the dynamics of the agents are assumed to
be given by

ẋi = vi
v̇i = −γi(x)vi + ui,

(1.3)

where xi denotes the depth of agent i, and γi(xi) is the state-dependent damping
coefficient. e controller is assumed to be local and based on the relative states of
the agents, and is given by

ui = −
∑
j∈Ni

αij(xi − xj), (1.4)

where αij(·) is a well-behaved nonlinear function. e control input ui is the vertical
force driving the underwater vehicle. is motivates the study of nonlinear control
protocols for multi-agent systems with double-integrator dynamics, where the agents
dynamics are subject to state-dependent damping. Of particular interest is the stability
of the controlled system, and its equilibria.

Example 1.4 (Mobile robot coordination under disturbances) As all control
systems, mobile robot systems are susceptible to disturbances. In general, even constant
disturbances cause the robot formation to drift, while not achieving the overall
objective. We will consider the particular control objective of reaching position-
consensus, i.e., rendez-vous. To address the issues caused by disturbances to the
robots, a distributed PI controller can be employed. We consider robots with second-
order dynamics with damping γ, and a constant disturbance di acting on robot i.
e disturbance di can be caused by e.g., biased sensors or actuators, or a physical
disturbance such as an unknown incline. e robots are controlled with a distributed
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PI controller. us, the dynamics of the robots take the form

ẋi = vi
v̇i = ui − γvi + di

ui = −
∑
j∈Ni

(
β(xi − xj) + α

∫ t

0
(xi(τ)− xj(τ)) dτ

)
,

(1.5)

where xi is the position, vi is the velocity, and zi is the integrated position of robot
i. α, β, γ > 0 are constant parameters. We will investigate when distributed PI
controllers can attenuate static disturbances in mobile-robot networks. Furthermore,
given the system-speciëc damping coefficient γ, we would like to characterize under
which conditions on the controller gains α and β, the system is stable.

Example 1.5 (Frequency control of power systems) Power systems are among
the largest and most complex dynamical systems ever created by mankind, see e.g.,
Machowski et al. (2008). Whilst being entirely build by humans, the dynamics
governing the power systems are very complex. Furthermore, the interconnectivity
of power systems poses many challenges when designing controllers. We model the
power system by interconnected second-order systems, often referred to as the the
swing equation. e swing equation has been used, e.g., in studying transient stability
of power systems by Doerìer and Bullo (2011) and fault detection in power systems
by Shames et al. (2011). e linearized swing equation is given by

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui, (1.6)

where δi is the phase angle of bus i, mi and di are the inertia and damping coefficient
respectively, pmi is the electrical power load at bus i and ui is the mechanical input
power. kij = |Vi||Vj|bij, where V i = |Vi|e jδi is the voltage of bus i, and bij is the
susceptance of the line (i, j). e frequency of the power system is denoted ωi = δ̇i.
Maintaining a steady frequency is one of the major control problems in power systems.
If the frequency is not kept close to the nominal operational frequency, generation and
utilization equipment may cease to function properly. e frequency is maintained
primarily by automatic generation control (AGC), which is carried out at different
levels. In the ërst level, which is carried out locally at each bus, the power generation
is controlled by the deviation from a dynamic reference frequency. At the second level,
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which is carried out by a central controller, the reference frequency is controlled based
on the average frequency in the power system. While the second level controller could
easily be automated, it is handled by a human operator in most power systems today.

A simple decentralized frequency control with integral action would take the form:

ui = α(ωref − ωi(t)) + β

∫ t

0
(ωref − ωi(t ′)) dt ′, (1.7)

where ωref is the reference frequency. We would like to guarantee the stability of
the above controller, while ensuring that the system frequency reaches the nominal
operational frequency, i.e.,

lim
t→∞

ωi = ωref ∀i ∈ V.

By providing measurements of the states of the neighboring buses to the controllers,
control performance can be improved. We will study how these controllers should be
designed, and what control objectives can be fulëlled by adding additional measure-
ments.

1.2 Problem formulation

System model

In this thesis we will consider and distinguish between centralized, distributed, and
decentralized control of multi-agent systems. We will consider several classes of multi-
agent systems, whose common property is that the dynamics of each agent depend
on the agent’s own state and the states of its neighboring agents. Hence we consider a
general multi-agent system model on the form

ẋi = f (x i,∪j∈Ni x j, ui) (1.8)

where xi is the state of agent i andNi denotes the neighbor set of agent i. As motivated
by the previous examples, we will restrict our analysis to static graphs. Depending on
which control architecture is employed, the control input may depend differently on
the agents’ states. We will distinguish between centralized control, distributed control
and decentralized control, illustrated in Figure 1.3. In general we will assume that

ui =


ui(∪j∈V x j) (Centralized)
ui(xi,∪j∈Ni x j) (Distributed)
ui(xi) (Decentralized),

(1.9)
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where V denotes the set of all agents.

..P1. P2. P3.

C

(a) Centralized control architecture

..P1. P2. P3.

C1

.

C2

.

C3

(b) Distributed control architecture

..P1. P2. P3.

C1

.

C2

.

C3

(c) Decentralized control architecture

Figure 1.3 Illustration of (a) decentralized, (b) distributed and (c) decentralized control
architectures. P1, P2 and P3 represent plants controlled by the controller C or by the
controllers C1, C2 and C3 respectively.
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Objective

e main objectives of this thesis are threefold, and motivated by the applications
discussed earlier. Our ërst objective is to characterize the stability of nonlinear feedback
protocols where the control input can be decoupled into a nonlinear gain depending
on the agents own state, and a nonlinear coupling term depending on the relative
states of the neighboring agents. Furthermore, we would like to determine under which
nonlinear feedback protocols the consensus point of the agents may be determined a
priori. We will study the problem both for agents with single- and double-integrator
dynamics. We will also consider agents with double-integrator dynamics and control
protocols with nonlinear coupling and nonlinear, state-dependent damping.

e second objective is the design of distributed feedback protocols which are ro-
bust to disturbances. We will focus on constant but unknown disturbances.e overall
objective will be for all agents to converge to a common state, i.e., limt→∞ xi(t) =
x∗ ∀i ∈ V for single-integrator dynamics, and limt→∞ vi(t) = v∗ ∀i ∈ V for
double-integrator dynamics, where xi denotes the position, and vi denotes the velocity
of agent i.

e third objective is the design of efficient frequency controllers for power
systems, which stabilize the power system under unknown load changes.We will model
the power system by the swing equation, as mentioned earlier. e control objective
will be twofold. First we would like to asymptotically drive the power system frequency
towards a nominal reference frequency, i.e., limt→∞ = ωref. Second, we would like to
asymptotically minimize the cost of power generation in the power system.

1.3 Main Contributions

emain contributions of this thesis are threefold. e ërst contribution of this thesis
is the analysis of distributed nonlinear control protocols for multi-agent systems with
single- and double-integrator dynamics. By using integral Lyapunov functions, we
prove the stability of a class of distributed control protocols where the control signal is
decoupled into a product of a nonlinear gain function which only depends on each
agents’ own state, and a sum, over the agents’ neighbors, of nonlinear interaction
functions, each depending on the relative state of the agent and its neighbor. e
equilibrium is characterized by invariant integral quantities. e above results have
been published in the following proceeding

• M. Andreasson, D. Dimarogonas, and K. H. Johansson. Undamped nonlinear
consensus using integral lyapunov functions. In American Control Conference
(2012a)



10 Introduction

e second contribution is the analysis of distributed PI-controllers for multi-agent
systems. We introduce distributed PI-controllers for multi-agent systems with single-
and double-integrator dynamics. We analyze the stability of the proposed protocols
through linear system theory, and give necessary and sufficient stability criteria. e
proposed controllers are proven to attenuate constant disturbances in the network.
e above results have been published in the following proceeding

• M. Andreasson, H. Sandberg, D. V. Dimarogonas, and K. H. Johansson.
Distributed integral action: Stability analysis and frequency control of power
systems. In IEEE Conference on Decision and Control (2012d)

e two contributions above have been submitted for journal publication as

• M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson. Dis-
tributed control of networked dynamical systems: Static feedback and integral
action (2012c). Submitted

e third contribution of this thesis is frequency control of power systems. We propose
a decentralized and a distributed frequency controller for power systems, and compare
their performance with two centralized controllers. We provide sufficient stability
conditions for the proposed control protocols, and provide simulations on the IEEE
30 bus test system. e above results have been submitted for publication partly in
Andreasson et al. (2012d) as well as

• M. Andreasson, D. Dimarogonas, K. H. Johansson, and H. Sandberg. Dis-
tributed vs. centralized power systems frequency control under unknown load
changes (2012b). Submitted

Two other contributions not included in this thesis have been published in

• N. Jayakrishnan, M. Andreasson, L. Andrew, S. Low, and J. Doyle. File
fragmentation over an unreliable channel. In Proceedings IEEE International
Conference on Computer Communications, San Diego, March 2010, 1–9. IEEE
(2010)

• M. Andreasson, S. Amin, G. Schwartz, K. H. Johansson, H. Sandberg, and
S. Sastry. Correlated failures of power systems : Analysis of the nordic grid.
In Preprints of Workshop on Foundations of Dependable and Secure Cyber-Physical
Systems (2011)
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1.4 Outline

e remaining chapters of this thesis are organized as follows. Chapter 2 presents some
background in graph theory, nonlinear systems, linear systems, multi-agent systems
and power systems, of relevance for this thesis. In Chapter 3, nonlinear controllers
for multi-agent systems are presented. In Chapter 4, a distributed PI controllers for
multi-agent systems is presented. In Chapter 5, several frequency controllers for power
systems are presented. e thesis is concluded in Chapter 6, which also contains a
discussion on possible future research directions.





Chapter 2

Background

T study of multi-agent systems, as presented in this thesis, relies on several results
from algebraic graph theory as well as nonlinear and linear system theory. is

chapter provides the most important results in the above mentioned areas. Some basic
power system theory will also be covered. Recent related work is also presented.

2.1 Notation

We denote by R−/R+ the open left/right real axis, and by R̄−/R̄+ its closure. Let
C−/C+ denote the open left/right half complex plane, and C̄−/C̄+ its closure. We
will denote the scalar position of agent i as xi, and its velocity as vi, and collect them
into column vectors x = (x1, . . . , xn)T, v = (v1, . . . , vn)T. We denote by cn×m a vector
or matrix of dimension n×m whose elements are all equal to c. In denotes the identity
matrix of dimension n. A function f (·) with domain X is said to be globally Lipschitz
(continuous) if there exists K ∈ R+ : ∀x, y ∈ X :

∥∥ f (x)− f (y)
∥∥ ≤ K

∥∥x− y
∥∥.

2.2 Mathematical preliminaries

Graph theory

Let G = (V, E) be an undirected, static graph. Let V = {1, . . . , n} denote the node
set of G, and E = {1, . . . ,m} ⊂ (V ×V) denotes the edge set of G. LetNi be the set
of neighboring nodes to i. e degree of node i is denoted deg(i) = |Ni|. Two vertices
i and j are called adjacent if there is an edge connecting them, i.e., if either (i, j) ∈ E or
(j, i) ∈ E . A path is a sequence of edges, such that the starting node of the proceeding
edge is the end node of the previous edge. A graph G is connected if there is a path
between any pair of nodes. We denote by B = B(G) the node-edge incidence matrix

13



14 Background

of G. e node-edge incidence matrix of an undirected graph is deëned by assigning
an arbitrary orientation of each edge. e elements of the node-edge incidence matrix
are deëned as

Bvw =


1 if (v,w) ∈ E

−1 if (w, v) ∈ E
0 otherwise.

e Laplacian matrix of G, is denoted L. Its elements are deëned by

Lij =


deg(i) if i = j

−1 if i is adjacent to j
0 otherwise.

For undirected graphs, there is a simple algebraic relation between the Laplacian and
the node-edge incidence matrix, as shown by the following lemma.
Lemma 2.1 For undirected graphs, L = BBT.

e following result is of great importance for the analysis of multi-agent systems.
Lemma 2.2 (Diestel (2005)) e eigenvalues of L are nonnegative. L has one eigenvalue
equal to zero, with the corresponding eigenvector e = 1n×1. e remaining eigenvalues are
nonzero if and only if G is connected.

Nonlinear systems

Consider a nonlinear system, described by a nonlinear differential equation:

ẋ = f (x)
y = h(x)

(2.1)

Assume without loss of generality that x = 0 is an equilibrium point of (2.1).
Definition 2.1 (Khalil (2002)) e equilibrium point x0 = 0 of (2.1) is

• stable if for every ϵ > 0, there exists δ > 0 such that∥∥x(0)∥∥ < δ ⇒
∥∥x(t)∥∥ < ϵ ∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that∥∥x(0)∥∥ < δ ⇒ lim
t→∞

∥∥x(t)∥∥ = 0
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Theorem 2.1 (Khalil (2002)) Let D ⊂ Rn be a domain containing 0. Let V : D → R
be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D \ {0}

V̇ (x) =
∂V (x)
∂x

∂x
∂t

=
∂V (x)
∂x

f (x) ≤ 0 in D,

then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D \ {0},

then x = 0 is asymptotically stable.
e function V(x) is often referred to as a Lyapunov function. For some systems,

it may be possible to ënd a Lyapunov function V(x) with only non-positive derivative.
Under some conditions, it is still possible to guarantee asymptotic stability with such
a V(x). First, we need to deëne the notion of positive invariance. A set S is said to be
invariant if x(0) ∈ S ⇒ x(t) ∈ S ∀t, and positively invariant if x(0) ∈ S ⇒ x(t) ∈
S ∀t ≥ 0.
Theorem 2.2 (Khalil (2002)) Let Ω ∈ D be a compact set which is positively invariant
with respect to (2.1). Let V : D → R be a continuously differentiable function such that
V̇(x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇(x) = 0. Let M be the largest
invariant set in E. en every solution starting in Ω approaches M as t → ∞.

In particular eorem 2.2, which is commonly referred to as LaSalles invariance
principle, implies that if the origin is the largest invariant set in E, then it is
asymptotically stable.

Linear time-invariant systems

A linear time-invariant system is deëned as a set of linear time-invariant ordinary
differential equations. A linear system can be described by

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(2.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.
If u(t) is given by linear state feedback u(t) = −K x(t), the system equation (2.2)
becomes

ẋ(t) = (A − BK )x(t)
y(t) = Cx(t).

(2.3)

e linear system (2.3) is indeed a special case of the nonlinear system (2.1).
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Theorem 2.3 (Kailath (1980)) e solution of (2.3), starting at x(0) = x0 is given by

x(t) = e(A−BK )t x0,

where

e(A−BK )t = T−1e JT .

Here, the columns of T−1 consist of the generalized eigenvectors of (A− BK ), i.e., T−1 =
[e11, . . . , e

µ1
1 , . . . , e1k , . . . , e

µk
k ]. e J ∈ Rn×n is given by

e J t =


e J1t 0 . . . 0
0 e J2t . . . 0
...

...
. . .

...
0 0 . . . e J kt

 and e J it =


eλit t eλit . . . tµi−1eλi t

(µi−1)!

0 eλit . . . tµi−2eλi t
(µi−2)!

...
...

. . .
...

0 0 . . . eλit


where λ1, . . . , λk are the eigenvalues of (A − BK ) of multiplicities µ1, . . . , µk.

By the previous theorem, the stability of a linear system can be easily determined.
Corollary 2.1 e system (2.3) is asymptotically stable if and only if all eigenvalues of
(A − BK ) lie in the open left half complex plane.

2.3 Multi-agent systems

Multi-agent systems consist of several coupled sub-systems, so called agents. Both the
dynamics of the agents, as well as the coupling between the agents can take many
different forms. We will here give a general mathematical model of a multi-agent
system.Wemodel the coupling of the agents with a graph G.e agents are represented
by nodes, and the coupling by edges. Two agents are coupled if and only if they are
connected by an edge. e dynamics of an agent i is given by

ẋi = f (x i,∪j∈Ni x j, ui) (2.4)

where ui may depend either only on xi (decentralized control), or on xi and xj for
all j ∈ Ni (distributed control). e control objective depends on the application,
and are numerous. One of the most well-studied control problems is the consensus
problem, where the control objective of the agents is to reach a common state, i.e.,
limt→∞ |xi(t) − xj(t)| = 0 ∀ i, j ∈ G. e consensus problem has been studies by,
e.g., by Olfati-Saber and Murray (2004), Ren and Beard (2005) and Ren et al. (2007).
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e consensus problem may be solved by a linear control protocol. Assuming that the
agent dynamics are linear single integrators

ẋi = ui, (2.5)

the controller

ui = γi
∑
j∈Ni

αij(xj − xi), (2.6)

where γi and αij are positive constants, satisëes limt→∞ |xi(t)− xj(t)| = 0 ∀ i, j ∈ G
if G is connected, see e.g. Olfati-Saber and Murray (2004).

Another control problem in the framework of multi-agent systems is formation
control, which has been studied by, e.g., Tanner et al. (2003), Olfati-Saber (2006) and
Dimarogonas and Johansson (2010). e control objective is here to attain certain,
generally nonzero, distances between the agents rather than a zero distance as in
the consensus problem. e control objective may be formulated mathematically as
limt→∞ |xi(t)− xj(t)| = d ij ∀ i, j ∈ G. It has been shown that the formation control
problemmay be solved by introducing a potential function which attains its minimum
at the desired distances d ij, and letting the control input be given by the negative
gradient of the potential function.

When studying more advanced control problems in multi-agent systems, the
required control protocols tend to be more involved. We will here brieìy discuss two
more advanced control problems of interest to this thesis. e ërst is static nonlinear
feedback control protocols, and the second is distributed PI control.

Distributed control with static nonlinear feedback

Distributed control by nonlinear controllers is a natural extension of linear consensus
protocols, and a well-studied problem, see e.g. Olfati-Saber et al. (2003); Chen et al.
(2009); Hui and Haddad (2008); Moreau (2005), with applications to consensus with
preserving connectedness and collision avoidance, see e.g. Tanner et al. (2007); Ji and
Egerstedt (2007); Dimarogonas and Kyriakopoulos (2008). Sufficient conditions for
the convergence of nonlinear protocols for ërst-order integrator dynamics are given
in Ajorlou et al. (2011) and extended to multidimensional state-spaces in Lin et al.
(2007). Consensus on a general function value was introduced in Olfati-Saber and
Murray (2004) as χ-consensus, and a solution to the so called χ-consensus problem
was presented in Cortés (2006), by using nonlinear gain functions. χ-consensus has
applications for instance in weighted power mean consensus, see Cortés (2006); Bauso
et al. (2006); Cortés (2008).
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e literature on nonlinear controllers has been focused on agents with single-
integrator dynamics. However, as we show later, the results can be generalized to
double-integrator dynamics. Consensus protocols where the input of an agent can
be separated into a product of a positive function of the agents own state were
studied in Bauso et al. (2006) for single integrator dynamics. Münz et al. (2011)
studied position consensus for agents with double-integrator dynamics under a class
of nonlinear interaction functions and nonlinear velocity-damping. In contrast to
the references, this thesis will focus on undamped consensus protocols for single-
and double-integrator dynamics using integral Lyapunov functions. Xie and Wang
(2007) consider double-integrator consensus problems with linear non-homogeneous
damping coefficients. We later generalize the results for the corresponding linear
damping to hold also for a class of nonlinear damping coefficients.

Distributed control under disturbances

Multi-agent systems, as all control processes, are in general sensitive to disturbances.
When only relative measurements are available, disturbances are often spread through
the network. It has for example been shown by Bamieh et al. (2012) that vehicular
string formations with only relative measurements cannot maintain coherency under
disturbances as the size of the formation increases. Young et al. (2010) study the
robustness of consensus-protocols under disturbances, but limit their study to the
relative states of the agents.

Distributed control of multi-agent systems with integral action for disturbance
attenuation has been studied in Freeman et al. (2006). It was shown that the proposed
consensus protocol can attenuate constant and some time-varying disturbances to a
certain degree. In Yucelen and Egerstedt (2012) the authors take a similar approach
to attenuate unknown disturbances. In both papers the analysis is limited to agents
with single-integrator dynamics. Our proposed PI controller is related to the consensus
protocols studied in Cheng et al. (2008); Hong et al. (2007). However, the models
presented in these references do not consider disturbances.

2.4 Power systems

Electrical power systems aremulti-agent systems, which often cover a large geographical
area. Due to their vital importance to virtually every part of society, power systems are
among the most critical infrastructures in a modern society.

While the dynamics of power transmission networks are very complex, they may
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be well approximated by the swing equation, see e.g. Machowski et al. (2008)

miδ̈i + diδ̇i = −
∑
j∈Ni

kij sin(δi − δj) + pmi + ui, (2.7)

where δi is the phase angle of bus i, mi and di are the inertia and damping coefficient
respectively, pmi is the electrical power load at bus i and ui is themechanical input power.
kij = |Vi||Vj|bij, where V i = |Vi|e jδi is the voltage of bus i, and bij is the susceptance
of the line (i, j). By linearizing (2.7) around he equilibrium where δi = δj ∀i, j, we
obtain the linearized swing equation

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui, (2.8)

Control of power systems

An AC transmission system must operate at a synchronous frequency ω = δ̇, which is
typically 50 Hz or 60 Hz. Any deviations from the nominal frequency may damage the
generation equipment or even cause instability. Hence it is of of major importance to
operate the power system close to its nominal frequency. Automatic generation control
(AGC), see e.g. Jaleeli et al. (1992); Ibraheem et al. (2005) and frequency controllers,
see Liu et al. (2003); Machowski et al. (2008) are two commonly employed control
strategies to maintain a constant operation frequency. e commonly employed
frequency controllers are mainly centralized, as in Bevrani (2009); Liu et al. (2003),
however some efforts towards decentralized control of power system frequencies have
been made by Venkat et al. (2008), by employing a distributed MPC. Due to load and
generation changes as well as model imperfections, a proportional frequency controller
cannot reach the desired reference frequency in general. To attenuate static errors,
integrators are used, see Machowski et al. (2008) and the references therein.

Due to the inherent difficulties with distributed PI control, detailed in Morari and
Zaëriou (1989), automatic frequency control of power systems is typically carried out
at two levels: an inner and an outer level. In the inner control loop, the frequency is
controlled with a proportional controller against a dynamic reference frequency. In
the outer loop, the reference frequency is controlled with a centralized PI controller to
eliminate static errors. While this control architecture works satisfactorily in most of
today’s situations, future power system developments might render it unsuitable. For
instance, large-scale penetration of renewable power generation increases generation
ìuctuations, creating a need for fast as well as local disturbance attenuation. Decen-
tralized control of power systems might also provide efficient anti-islanding control
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and self-healing features, even when communication between subsystems is limited or
even unavailable, see e.g. Senroy et al. (2006); Yang et al. (2006).



Chapter 3

Distributed control with static
nonlinear feedback

I  this chapter we will study distributed control protocols using static nonlinear state
feedback.e control objective is to drive the states of the agents towards a common

state, and to explicitly characterize the limit set of the system.e control input might
either be a part of the system’s natural dynamics, or it might be an external control
input, depending on the application. In the end of this chapter we revisit themotivating
applications and demonstrate that the results of this chapter have several applications.

3.1 Distributed control for single-integrator dynamics

We consider agents with the ërst-order dynamics, and controllers of the form

ẋi = ui

ui = −γi(xi)
∑
j∈Ni

αij(xi − xj). (3.1)

e study of agents with dynamics given by (3.1) is motivated by, e.g., the study of
thermal energy storage in smart buildings, as discussed in Chapter 1.1. We make the
following technical assumptions of the gain and interaction functions.
Assumption 3.1 γi is continuous and γi(x) ≥ γ > 0 ∀i ∈ V, ∀x ∈ R
Assumption 3.2 αij(·) is Lipschitz continuous ∀i ∈ V, ∀ (i, j) ∈ E , and furthermore:

1. αij(−y) = −αji(y) ∀(i, j) ∈ E , ∀y ∈ R

2. αij(y) > 0 ∀(i, j) ∈ E , ∀y > 0,

21
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3. αij(0) = 0,

Remark 3.1 Assumption 3.2 guarantees that the agents move in the direction of their
neighbors, as well as symmetry in the ìow. e assumption that αij(0) = 0, ensures
that the consensus point where xi = xj ∀i, j ∈ V is an equilibrium.

We are now ready to state the main result of this section.
Theorem 3.1 Given n agents with dynamics (3.1), where γi and αij satisfy Assumptions
3.1 and 3.2 respectively, then the agents converge asymptotically to an agreement point
limt→∞ xi(t) = x∗ ∀ i ∈ V depending on the initial condition, where x∗ is uniquely
determined by the integral equation∑

i∈V

∫ x0i

0

1
γi(y)

dy =
∫ x∗

0

∑
i∈V

1
γi(y)

dy, (3.2)

for any condition xi(0) = x0i , i = 1, . . . , n.

Proof. Consider the quantity

E(x) =
∑
i∈V

∫ xi

0

1
γi(y)

dy.

Differentiating E(x) with respect to time yields

dE(x(t))
dt

=
∂E(x(t))

∂x
∂x
∂t

= −
[

1
γ1(x1)

, . . . ,
1

γn(xn)

]
Γ(x)Bα(BTx)

= −11×nBα(BTx) = 0,

where Γ(x) = diag([γ1(x1), . . . , γn(xn)]), and α(·) is taken component-wise. Hence
E(x) is invariant and the agreement point x∗ is given by (3.2). By Assumption 3.1,
E(x∗1n×1) is strictly increasing in x∗, and hence (3.2) admits a unique solution. Now
consider the following candidate Lyapunov function:

V(x) =
∑
i∈V

∫ xi

x∗

y− x∗

γi(y)
dy, (3.3)

where x∗ is the agreement point given by (3.2). It can easily be veriëed thatV(x∗1n×1) =
0. To show that V(x) > 0 for x ̸= 0, it suffices to show that

∫ xi
x∗ y− x∗/γi(y) dy >

0 ∀i ∈ V . Consider ërst the case when xi > x∗∫ xi

x∗

y− x∗

γi(y)
dy =

∫ xi−x∗

0

z
γi(z+ x∗)

dz > 0,
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by the change of variable z = y− x∗. e case when xi < x∗ is treated analogously∫ xi

x∗

y− x∗

γi(y)
dy =

∫ x∗−xi

0

z
γi(x∗ − z)

dz > 0,

with the change of variable z = x∗−y. is also implies that V(x) = 0 ⇒ x = x∗1n×1.
Now consider V̇(x) along trajectories of the closed loop system:

V̇(x) =
∑
i∈V

∂V(x(t))
∂xi

∂xi
∂t

= −
∑
i∈V

xi − x∗

γi(xi)
· γi(xi)

∑
j∈Ni

αij(xi − xj)

= −
∑
i∈V

xi
∑
j∈Ni

αij(xi − xj) +
∑
i∈V

x∗
∑
j∈Ni

αij(xi − xj).
(3.4)

Due to the symmetry property in Assumption 3.2, the ërst term of (3.4) may be
rewritten as∑
i∈V

xi
∑
j∈Ni

αij(xi − xj) =
∑
i∈V

∑
j∈Ni

xiαij(xi − xj) = −1
2

∑
i∈V

∑
j∈Ni

(xi − xj)αij(xi − xj)

Clearly the second term of (3.4) satisëes
∑

i∈V x∗
∑

j∈Ni
αij(xi − xj) = 0 due to

Assumption 3.2. Hence, V̇(x) may be rewritten as

V̇(x) = −1
2

∑
i∈V

∑
j∈Ni

(xi − xj)αij(xi − xj) < 0,

unless xi = xj ∀i, j ∈ V . Hence the agents converge to xi = x∗ ∀i ∈ V .

Remark 3.2 e agreement protocol (3.1) has an intuitive physical interpretation. If
we consider the smart building problem in Example 1.1, and let xi be the temperature
of the rooms, 1/γi(·) is the temperature-dependent heat capacity of the rooms.
Analogously, αij(·) is the thermal conductivity of the walls, being dependent on the
temperature gradient between the rooms. e invariant quantity

E(x) =
∑
i∈V

∫ xi

0

1
γi(y)

dy

is the total thermal energy of the system, e.g. the ìoor, which is assumed to be constant.
Remark 3.3 e convergence of the dynamics (3.1) was proven by Shi and Hong
(2009). However, as opposed to this reference, we here explicitly characterize the
equilibrium set. Furthermore our proof relies on a different Lyapunov function.
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3.2 Distributed control for double-integrator dynamics

In this section we consider agents with double-integrator dynamics, and control input
given by

ẋi = vi
v̇i = ui

ui = −γi(vi)
∑
j∈Ni

[
αij
(
xi − xj

)
+ βij

(
vi − vj

)]
.

(3.5)

e study of consensus protocols for double integrator dynamics of the form (3.5)
is motivated by, e.g., distributed coordination of satellites without absolute position
or measurements, as discussed in Chapter 1.2. We show that under mild conditions,
the consensus protocol (3.5) achieves asymptotic consensus on the velocities vi. e
following theorem generalizes both the literature on linear second-order consensus as
in Ren and Beard (2008), as well as the literature on ërst-order nonlinear consensus as
in Bauso et al. (2006). By using an integral Lyapunov function, we are able to prove
that the agents reach consensus for the nonlinear consensus protocol also under double-
integrator dynamics.
Theorem 3.2 Consider agents with dynamics (3.5), where αij(·) and γi(·) satisfy
Assumptions 3.1 and 3.2, respectively, and βij(·) satisíes 3.2, mutatis mutandis. e system
achieves consensus with respect to x and v, i.e., |xi−xj| → 0, |vi−vj| → 0 ∀i, j ∈ G as t →
∞ for any initial condition (x(0), v(0)). Furthermore, the velocities converge to a common
value limt→∞ vi(t) = v∗ ∀ i ∈ V uniquely determined by∑

i∈V

∫ v0i

0

1
γi(y)

dy =
∫ v∗

0

∑
i∈V

1
γi(y)

dy. (3.6)

Proof. We write (3.5) in vector form as

ẋ = v

v̇ = −Γ(v)
[
Bα(x̄) + Bβ(BTv)

]
,

where x̄ = BTx, and α(·) and β(·) are taken component-wise, and
Γ(x) = diag([γ1(x1), . . . , γn(xn)]). Consider now the following candidate Lyapunov
function, also used by Münz et al. (2011),

V (x̄, v) =
∑
i∈V

(∫ vi

v∗

y−v∗

γi(y)
dy

)
+
∑

(i,j)∈E

∫ x̄ij

0
αij(y) dy,
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where v∗ is the common velocity of the agents in steady state, given by (3.6). It is
straightforward to verify that V([01×m, v∗11×n]

T) = 0. By following the proof of the
positive semi-deëniteness of V(x) in the proof of eorem 3.1, mutatis mutandis,
the positive semi-deëniteness of

∑
i∈V(

∫ vi
v∗ y−v∗/γi(y) dy) follows. For showing the

positive semi-deëniteness of the second term, it suffices to show that
∫ x̄ij
0 αij(y) dy >

0 ∀(i, j) ∈ E . For x̄ij > 0, this inequality clearly holds. When x̄ij < 0 we have∫ x̄ij

0
αij(y) dy = −

∫ 0

x̄ij
αij(y) dy =

∫ 0

x̄ij
αji(−y) dy > 0.

We may write V(x̄, v), using the incidence matrix B, as

V (x̄, v) =
∫ x̄

0
11×nBTα(y) dy+

∫ v

v∗1n×1

ỹTΓ−1(y)1n×1 dy,

where ỹ = [y1−v∗, . . ., yn−v∗]T. Differentiating V(x, v) with respect to time yields:

dV (x̄, v)
dt

=
∂V (x, v)

∂x
∂x
∂t

+
∂V (x, v)

∂v
∂v
∂t

= α(x̄)TBTv− (v− v∗1)TΓ−1(v)Γ(v)
[
Bα(x̄) + Bβ(BTv)

]
= −vTBβ(BTv) + v∗1TBβ(BTv) = −vTBβ(BTv) ≤ 0

due to Assumption 3.2, with equality if and only if BTv = 0. We now invoke LaSalles
invariance principle to show that the agreement point satisëes v̇ = 0. e subspace
where V̇ (x̄, v) = 0 is given by S1 =

{
(x̄, v)|v = c1n×1

}
. We note that on S1,

v̇ = −Γ(v)
[
Bα(x̄) + Bβ(BTv)

]
= −Γ(v)Bα(x̄) ̸= k(t)1n×1.

To see this, suppose that

v̇(t) = −Γ(v)Bα(x̄) = k(t)1n×1 ⇔ Bα(x̄) = Γ−1(v)k(t)1n×1,

where k(t) ̸= 0. Premultiplying the above equation with 11×n yields

0 = 11×nBα(x̄) = k(t)1TΓ−1(v)1 ̸= 0,

which is a contradiction since k(t) ̸= 0 by assumption. Hence the only trajectories
contained in S1 are those where v = v∗1n×1, v̇ = 0. It can also be shown that no
trajectories where x̄ ̸= 0 are contained in S1. Assume for the sake of contradiction that
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x̄ ̸= 0 in S1. Let i− = min j∈V x j s.t. ∃k ∈ Ni− : xk > x i− . It is clear that such an i−

exists, since otherwise x̄ = 0. Consider

v̇i− = −γi−(vi−)
∑
j∈Ni−

[
αi−j

(
xi− − xj

)
+ βij

(
vi− − vj

)]
= −γi−(vi−)

∑
j∈Ni−

[
αi−j

(
xi− − xj

)]
> −γi−(vi−)αi−k (xi− − xk) > 0

by the assumption that xk > x i− . us, any trajectory in S1 where x̄ ̸= 0 cannot
remain in S1, implying that |xi−xj| → 0, |vi−vj| → 0 ∀i, j ∈ G as t → ∞ and
furthermore v̇(t) = 0. Next we show that

P(v) =
∑
i∈V

∫ vi

0

1
γi(y)

dy =
∫ v

0
1TΓ−1(v)1 dy

is invariant under (3.5). Consider:

dP(v(t))
dt

=
∂P
∂v

∂v
∂t

= −1TΓ−1(v)Γ(v)
[
Bα(x̄) + Bβ(BTv)

]
= −1TBα(x̄)− 1TBβ(BTv) = 0.

us we conclude that limt→∞ x(t) = x∗(t)1 and limt→∞ v(t) = v∗1 with v∗ given
by the integral equation

∑
i∈V

∫ v0i

0

1
γi(y)

dy =
∫ v∗

0

∑
i∈V

1
γi(y)

dy.

e existence and uniqueness of the solution to the above integral equation follows
from Assumption 3.1, and by the proof of eorem 3.1, mutatis mutandis.

Remark 3.4 eorem 3.2 has a physical interpretation. If we regard 1
γi(vi) as the

velocity dependent mass of agent i, e.g. due to special relativity, then the invariant
quantity

P(v) =
∑
i∈V

∫ vi

0

1
γi(y)

dy

is the total momentum of the mechanical system.
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3.3 Distributed control for double-integrator dynamics with state-
dependent damping

In this section we consider agents with double-integrator dynamics, and control input
given by:

ẋi = vi
v̇i = ui

ui = −γi(xi)vi −
∑
j∈Ni

αij(xi − xj).
(3.7)

e study of consensus protocols for double-integrator dynamics with state-dependent
damping, as in equation (3.7), is motivated by, e.g., coordination of underwater
vehicles, as discussed in Chapter 1.3. e following theorem generalizes the results
of Xie and Wang (2007) to include nonlinear state-dependent damping, as well as
nonlinear interaction functions. With this framework, we are able to generalize the
average consensus to a much broader class of controllers.
Theorem 3.3 Consider agents with dynamics (3.7), where γi(·) satisíes Asssumption
3.1, and αij(·) satisíes Assumption 3.2. en the agents converge to a common point for
all initial positions xi(0). Furthermore, the consensus point is uniquely determined by∑

i∈V

(∫ x0i

0
γi(y) dy+ vi(0)

)
=

∫ x∗

0

∑
i∈V

γi(y) dy. (3.8)

Proof. We ërst note that by Assumption 3.1 and 3.2, a unique continuous solution of
(3.7) exists for all t ≥ 0. Consider the candidate Lyapunov function

V(x, v) =
∑
i∈V

v2i
2

+
∑
j∈Ni

∫ xi−xj

0
αij(y) dy

 .

Differentiating V(x, v) along trajectories of (3.7) yields

V̇(x, v) =
∑
i∈V

[
∂V(x, v)

∂xi
∂xi
∂t

+
∂V(x, v)

∂vi
∂vi
∂t

]
=
∑
i∈V

vi
(
− γi(xi)vi −

∑
j∈Ni

αij(xi − xj)
)

+
∑
i∈V

(∑
j∈Ni

αij(xi − xj)
)
vi = −

∑
i∈V

γi(xi)v2i ≤ 0.
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It is thus clear that ∃ Ω compact, such that [x̄(t), v(t)] ∈ Ω ∀t ≥ 0, namely
{(x, v) : V(x̄, v) ≤ V(x̄0, v0)}, where x̄ = Bx and x̄0 = x̄(0), v0 = v(0). It remains to
ensure that also [x(t), v(t)] evolve in a compact set. Since x̄ is bounded, then clearly x
is bounded iff x′ = 1

n
∑

i∈V xi is bounded. Consider now

E(x, v) =
∑
i∈V

(∫ xi

0
γi(y) dy+ vi

)
.

Differentiating E(x, v) along trajectories of (3.7) yields

Ė(x, v) =
∑
i∈V

(
∂E(x, v)
∂xi

∂xi
∂t

+
∂E(x, v)
∂vi

∂vi
∂t

)
= −

∑
i∈V

∑
j∈Ni

αij(xi − xj) = 0

by Assumption 3.2. Denoting the initial condition by [x0, v0], we obtain

E0 = E(x0, v0) =
∑
i∈V

(∫ xi

0
γi(y) dy+ vi

)
.

Since [x̄(t), v(t)] evolve in a compact set, vi(t) is bounded. Hence ∀i ∈ V ∃M ∈ R+ :

|vi(t)| ≤ M ∀t ≥ 0, ∀i ∈ V . By assumption 3.1 γi(x) ≥ γ > 0 ∀i ∈ V, ∀x ∈ R.
Using these inequalities we obtain∣∣∣∣∫ xi

0
γi(y) dy

∣∣∣∣ ≤ nM+ |E0|, (3.9)

Assume for the sake of contradiction that x′(t) is unbounded. Let us consider the case
when x′(t) → +∞. Since x̄ is bounded and G is connected, |xi(t)−xj(t)| is bounded
∀i, j ∈ V by let us say M ′. us xi(t) > 0 ∀i ∈ V whenever x′(t) > M ′. Provided
that x′(t) > M ′, we obtain the following inequality:∑

i∈V

∫ xi

0
γi(y) dy ≥

∑
i∈V

γxi

By assumption, x′(t) is unbounded, implying that also
∑

i∈V xi(t) is unbounded.us
∃t1 :

∑
i∈V xi(t1) > max{ 1

γ

(
nM+ |E0|

)
,M ′}. But this contradicts (3.9). Hence

x′(t)must be bounded. e cases when x′(t) → −∞ as well as the case when no limit
of x′(t) exists are treated analogously. We conclude that xmust be bounded. Denoting
the closure of the set in which [x, v] evolves Ω′, we note that Ω′ is compact by the
Heine-Borel eorem.
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Let E = {(x, y)|v = 0}. Consider any trajectory of (3.7) with x ̸= x∗(t)1. By (3.7)
and the assumption that G is connected, v̇i ̸= 0 for at least one index i. us the largest
invariant manifold of E is {(x, v)|x = x∗, v = 0}. Since Ω′ is compact and positively
invariant, by LaSalle’s invariance principle, see eorem 2.2, the agents converge to a
common point xi = x∗ ∀i ∈ G, with vi = 0 ∀i ∈ G.

It remains to show that the common point to which the agents converge to is
the point given by (3.8), and that the solution is unique. Indeed, consider again the
function E(x, v). Since Ė(x, v) = 0, and the agents converge to a point x∗ with vi =
0 ∀i ∈ V . It follows that x∗ is given by (3.8). Since γi(y) > 0 by assumption, (3.8)
admits a unique solution.

e following corollary follows directly fromeorem 3.3.
Corollary 3.1 Given n agents starting from rest, i.e., vi(0) = 0 ∀i ∈ V , and applying
the control law (3.7), the agents converge to a common point for all initial positions xi(0) if
and only if the underlying communication graph G is connected. Furthermore, the consensus
point is uniquely determined by

∑
i∈V

∫ x0i

0
γi(y) dy =

∫ x∗

0

∑
i∈V

γi(y) dy. (3.10)

Remark 3.5 In eorem 3.1, the consensus point is given by

∑
i∈V

∫ x0i

0

1
γi(y)

dy =
∫ x∗

0

∑
i∈V

1
γi(y)

dy,

as opposed to (3.10) in Corollary 3.1. e intuition behind this peculiarity is that in
(3.1), γi(xi) acts as a gain of agent i, where an increased γi(xi) will increase the speed
of agent i. In (3.7) however, γi(xi) acts as a damping on agent i, where an increased
γi(xi) will decrease the speed of agent i.

3.4 Motivating applications revisited

In this section we revisit some of the motivating applications introduced in Chapter
1.1. We will demonstrate that the results in this Chapter have numerous potential
engineering applications.
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Figure 3.1 Floor topology.

Example 1.1 (Thermal energy storage in buildings, continued) We here return to
the example of thermal energy storage in smart buildings. Recall that the temperatures
dynamics in the rooms can be described by:

Ṫi = −γi(Ti)
∑
j∈Ni

αij(Ti − Tj), (3.11)

In accordance with Fourier’s law, the heat conductivity α is assumed to be constant
and uniform, implying αij(x) = αx ∀(i, j) ∈ E , where it is assumed that α =
0.5W/K. Consider the ìoor topology in Figure 3.1. We assume that the desired
maximum temperature is given by tb = 23◦C.e heat capacity is assumed to be given
by Figure 3.2 for i ∈ {Room 2,Room 5} due to thermal energy storage installations,
and 1

γi(T) = 50kJ/K for i ∈ {Room 1,Room 3,Room 4,Room 6,Corridor} where
no thermal energy storage is installed.e temperatures as a function of time are shown
in Figure 3.3 for a given set of initial temperatures. We note that the temperatures in
room 2 and 5 never exceed the desired maximum temperature tb = 23◦C, due to the
thermal energy storage, and that the temperatures converge to a temperature below tb
in all rooms. In fact, this follows as a direct consequence of eorem 3.1.
Corollary 3.2 If there exists T̂ such that

∑
i∈V

∫ Ti(0)

0

1
γi(y)

dy ≤
∫ T̂

0

∑
i∈V

1
γi(y)

dy,

then the temperatures converge to T ∗ ≤ T̂ .



3.4. Motivating applications revisited 31

.....
0
.

50
.

100
.

150
.

200
.

250
.

300
.

350
.

400
.

450
.

500
.−500 .

−400

.

−300

.

−200

.

−100

.

t

.

x(
t)

Figure 3.2 e ëgure shows the heat capacities of Room 2 and Room 5.
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Figure 3.3 eëgure shows the temperatures in the building ìoor.e initial temperatures
was 29◦C for room 6, 24◦C for room 1, 22◦C for the corridor and 20◦C for the other
rooms.

Example 1.2 (Autonomous space satellites, continued) Consider a group of au-
tonomous space satellites with unitary masses. e agents are denoted 1, . . . , 5, and
their communication topology is given by Figure 3.7. e control objective is to reach
position and velocity consensus in one dimension by applying a distributed consensus
control law by using only relative position and velocity measurements.e raw control
signal is the power applied by each agent’s engine, Pi. However, the acceleration in an
observers reference frame is ai = Pi/|vi| due to Pi = ⟨Fi, vi⟩ and Fi being parallel to
vi, where vi is agent i:s velocity. We assume that the agents only have access to relative
measurements. is scenario can be modeled by the proposed nonlinear consensus
protocol (3.5), where the gain function γi(y) = 1/(|y|+ c) ∀i ∈ V captures the
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Figure 3.4 Communication topology of the space satellites.

dependence of the agents acceleration on it’s absolute speed:

ẋi = vi

v̇i =
1

|y|+ c

∑
j∈Ni

αij
(
xi − xj

)
+ βij

(
vi − vj

) ,
(3.12)

where c ∈ R+ is arbitrarily small, and ensures the boundedness of γi(y) as |y| → 0.
us the dynamics of the satellites can be described by (3.5). e interaction functions
in this example are assumed to be αij(y) = 2βij(y) = 20 (ey − 1) sgn (y) ∀(i, j) ∈ E ,
which clearly satisfy Assumption 3.2. It is clear that the above dynamics cannot
be modeled by any previously proposed linear consensus protocols. e proposed
interaction functions αij(·) and βij(·) grow faster than linear, resulting in faster
convergence when the satellites are far away. When the satellites are close, αij(·) and
βij(·) are approximately linear, resulting in smooth exponential convergence. Figure
3.6 shows the state trajectories for different initial conditions. As predicted byeorem
3.2, consensus is reached, and the ënal consensus velocity, as seen from an observer, is
calculated by (3.8), and is indicated by the dashed line.
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Figure 3.5 e ëgures show the state trajectories of the space satellites described by (3.12)
for the initial conditions x(0) = [−4, 0, 3,−1,−5], v(0) = [−3,−7, 3,−1, 0]T.

Example 1.3 (Unmanned underwater vehicles, continued) Consider again a group
of unmanned underwater vehicles. With only relative measurements available, the
control objective is to rendezvous at a common depth. Due to the viscosity of water
being pressure-dependent, the damping coefficients of the agents will depend on their
depth. Let xi denote the depth of agent i. e dynamics of agent i are given by

ẋi = vi
v̇i = −(d0 + kdx i)vi + ui

ui = −k
∑
j∈Ni

min(|xi − xj|, a) sgn(xi − xj).
(3.13)

Clearly the dynamics are on the form (3.7), satisfying assumptions 3.1 and 3.2. e
saturation function guarantees an upper bound on the input of each agent, considering
that the damping is due to the water resistance. By knowing the degree ∆i of agent
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Figure 3.6 e ëgures show the state trajectories of the space satellites described by (3.12)
for the initial conditions x(0) = [−4, 0, 3,−1,−5], v(0) = [8, 4, 14, 10, 11]T.

i, the input umi is bounded by: |umi | ≤ ∆ia. e constants were set to d0 = 1, kd =
0.01, k = 1 and a = 25. e communication topology of the agents is illustrated
in Figure 3.7.Figure 3.8 shows the state trajectories of the agents, starting at rest from
x(0) = [−100,−200,−300,−400,−500].

e effect of the saturation of umi is clearly visible in the state trajectories of the
vehicles, where the velocities of the agents is almost constant in the beginning, to
decrease in magnitude as the agents approach each other.

3.5 Summary

In this section we have studied a class of nonlinear controllers for multi-agent
systems, endowed with single- and double-integrator dynamics. In particular, we have
studied distributed controllers where the control input i separated into a product of
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Figure 3.7 Communication topology of the underwater vehicles.

a nonlinear gain function depending only on the agents own state, and a sum of
nonlinear interaction functions depending on the relative states of its neighbors. We
proved stability for the proposed protocols by Lyapunov analysis, and characterized
the convergence point by invariant functionals, for which we provided physical
interpretations in terms of the constant quantities energy and momentum. We have
also considered nonlinear control protocols for agents with double-integrator dynamics
and state-dependent damping. We proved stability for the control protocol, and
characterized the convergence point by an invariant functional. We have demonstrated
how the obtained results can be applied in control of autonomous space satellites,
control of underwater vehicles and in building temperature control.
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Figure 3.8 State trajectories of the underwater vehicles governed by (3.13), with x(0) =
[−100,−200,−300,−400,−500], v(0) = [0, 0, 0, 0, 0]T



Chapter 4

Distributed control
with integral action

M -agent systems are, like most control processes, sensitive to disturbances.
Generally, static distributed control protocols cannot stabilize multi-agent sys-

tems in the presence of even constant disturbances. In this section we propose a
control protocol for single- and double-integrator dynamics that drives the agents to
a common state under static disturbances. By using distributed integral action, we are
able to cancel the disturbances in a distributed setting. Moreover, with the proposed
control algorithm, the agents reach the average of their initial positions for arbitrary
initial velocities in the absence of disturbances. We study the properties of the control
protocols and derive necessary and sufficient conditions under which the multi-agent
system is stable in terms of the controller gains.

4.1 Distributed integral action for single-integrator dynamics

Consider agents with single-integrator dynamics, and control input given by:

ẋi = ui + di

ui = −
∑
j∈Ni

(
β(xi − xj) + α

∫ t

0
(xi(τ)−xj(τ)) dτ

)
− δ(xi − xi(0))

(4.1)

where α ∈ R+, β ∈ R+, δ ∈ R̄+ are ëxed parameters, and di ∈ R is an unknown
disturbance. Note that if δ = 0, absolute position measurements are unavailable, and
(4.1) is completely distributed. e study of control protocols of the form (4.1) is
motivated by mobile robot coordination under constant disturbances, as discussed in

37
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Chapter 1.4. Having made the above deënitions, we are now ready to state the ërst
theorem of this Chapter.

Theorem 4.1 Under the dynamics (4.1), the agents converge to a common value x∗ for
any constant disturbance di and any initial condition. If di = 0 ∀i ∈ V , the agents
converge to

x∗ =
1
n

∑
i∈V

xi(0) ∀ vi(0), zi(0) = 0 ∀i ∈ V,

for any initial condition. If absolute position measurements are not present, i.e., δ = 0, it
still holds that limt→∞ |xi(t)− xj(t)| = 0 ∀i, j ∈ V for any set of disturbances di and any
α, β ∈ R+. However the absolute states are unbounded, i.e., limt→∞ |xi(t)| = ∞ ∀i ∈
V , unless 11×nd = 0.

Proof. First consider the case where δ = 0 and di = 0 ∀i ∈ V . By introducing the
integral states z = [z1, . . . , zn]T we may rewrite the dynamics (4.1) in vector form as

[
ż
ẋ

]
=

[
0n×n In
−αL −βL

]
︸ ︷︷ ︸

≜A

[
z
x

]
, (4.2)

together with the initial condition z(0) = 0n×1. By elementary column operations we
note that the characteristic equation of A is given by 0 = det

(
(βs+ α)L+ s2In

)
. By

comparing the characteristic polynomial with the characteristic equation of L, being
0 = det (L − κIn), with solutions κ = λi ≥ 0, we obtain the equation 0 = s2 +
λiβs+ λiα. is equation has two solutions s = 0 if λi = 0, and solutions s ∈ C− if
λi > 0. Since the above equation has exactly two solutions for every λi, it follows that
the algebraic multiplicity of the eigenvalue 0 must be equal to two. It is well-known
that for connected graphs G, λ1 is the only zero-eigenvalue of the Laplacian L. By
straightforward calculations we obtain that e11 = [11×n, 01×n]

T is an eigenvector and
e21 = [01×n, 11×n]

T is a generalized eigenvector of A corresponding to the eigenvalue
0. It can also be veriëed that v1 = 1

n [11×n, 01×n] and v2 = 1
n [01×n, 11×n] are a

generalized left eigenvector and an eigenvector of A, respectively, corresponding to the
eigenvalue 0, and that v1e11 = 1, v2e21 = 1 and v2e11 = 0, v1e21 = 0. If we let P be an
orthonormal matrix consisting of the normalized eigenvectors of A, we can chose the
ërst columns of P to be e11 and e21, and the ërst rows of P−1 to be v1 and v2, respectively.
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Since all remaining eigenvalues of A have strictly negative real part we obtain

lim
t→∞

eAt = lim
t→∞

PeJtP−1 = P lim
t→∞

 1 t 01×(2n−2)
0 1 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 eJ′t

 P−1

= lim
t→∞

P

 1 t 01×(2n−2)
0 1 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 0(2n−2)×(2n−2)

 P−1

= lim
t→∞

1
n

[
1n×n t1n×n
0n×n 1n×n

]

us, given an initial position x(0) = x0, we obtain

lim
t→∞

xi(t) =
1
n

∑
i∈V

x0,i ∀ i ∈ V

i.e., the agents converge to the average of their initial positions.
We now consider the case where δ = 0 and di ̸= 0 ∀i ∈ V . Deëne the output of

the system

[
yz
yx

]
=

[
BT 0m×n
0m×n BT

]
︸ ︷︷ ︸

≜C

[
z
x

]

and consider the linear coordinate change:

x =
[

1√
n1n×1 S

]
u u =

[
1√
n11×n

ST

]
x

z =
[

1√
n1n×1 S

]
w w =

[
1√
n11×n

ST

]
z

(4.3)

where S is a matrix such that [ 1√
n1n×1, S] is an orthonormal matrix. In the new
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coordinates, the system dynamics (4.2) become:

ẇ = u

u̇ =

[
0 01×(n−1)

0(n−1)×1 −αSTLS

]
w

+

[
0 01×(n−1)

0(n−1)×1 −βSTLS

]
u+

[
1
n11×n
ST

]
d.

(4.4)

We also note that the states u1 and w1 are both unobservable and uncontrollable. We
thus omit these states to obtain a minimal realization by deëning the new coordinates
u′ = [u2, . . . , un]T and w′ = [w2, . . . ,wn]

T, thus obtaining the system dynamics[
ẇ′

u̇′

]
=

[
0(n−1)×(n−1) I(n−1)
−αSTLS −βSTLS

][
w′

u′

]
+

[
0(n−1)×1

STd

]
.

Clearly xTSTLSx ≥ 0, with equality only if Sx = k1n×1. However, since [ 1√
n1n×1, S]

is orthonormal, 11×nSx = 01×nx = 0 = k11×n1n×1 = kn, which implies k = 0.
Hence STLS is positive deënite and thus invertible, and we may deëne[

w′′

u′′

]
=

[
w′

u′

]
−

[
0(n−1)×1

1
α(S

TLS)−1STd

]
.

It is easily veriëed that the origin is the only equilibrium of the system dynamics, which
in the new coordinates are given by[

ẇ′′

u̇′′

]
=

[
0(n−1)×(n−1) I(n−1)
−αSTLS −βSTLS

]
︸ ︷︷ ︸

≜A′′

[
w′′

u′′

]
.

By elementary column operations, the characteristic polynomial in κ of A′′ is given by
det(κ2I(n−1)+(βκ+α)STLS). By comparing this polynomial with the characteristic
polynomial det(sI+STLS), which since STLS is positive deënite has solutions−si < 0,
we know that the eigenvalues of A′′ must satisfy κ2 + siβκ+ siα = 0, with solutions
κ ∈ C−. us A′′ is Hurwitz. From the dynamics (4.4), it is clear that u̇1 = 1

n11×nd.
Hence limt→∞ u1(t) = ±∞ unless 11×nd = 0. Since u′ is bounded, by the coordinate
change (4.3), x is bounded if and only if 11×nd = 0.
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Now consider the case where δ > 0 and di = 0 ∀i ∈ V . e dynamics can be
written as: [

ż
ẋ

]
=

[
0n×n In
−αL −βL − δI

]
︸ ︷︷ ︸

≜A

[
z
x

]
.

By elementary column operations, the characteristic polynomial of A may be written
as 0 = det

(
(βs+ α)L+ (s2 + δs)In

)
. By similar arguments used in the previous

parts of the proof, A has a simple eigenvalue 0, with the corresponding eigenvector
e1 = [11×n, 01×n]

T and the left eigenvector v1 = 1
n [11×n, 01×n], whereas all other

eigenvalues have negative real part. We see that v1e1 = 1, and hence it follows that

lim
t→∞

eAt = lim
t→∞

PeJtP−1 = P lim
t→∞

[
1 01×(2n−1)

0(2n−1)×1 eJ′t

]
P−1

= P

[
1 01×(2n−1)

0(2n−1)×1 0(2n−1)×(2n−1)

]
P−1 =

1
n

[
1n×n 0n×n
0n×n 0n×n

]
.

Given any initial position x(0) = x0, it immediately follows that limt→∞ x(t) = 0.
Now let δ > 0 and di ̸= 0 for at least one i ∈ V . Since the proof is analogous

to the case when δ = 0 and di ̸= 0, it is omitted. Finally, if di = 0 ∀i ∈ V , the
stationarity of x(t) implies
limt→∞ 11×n

(
−αLz(t)− βLx(t)− δx(t) + δx(0)

)
= 0, so nx∗ =

∑
i∈V xi(0),

which concludes the proof.

Remark 4.1 eorem 4.1 guarantees that the agents converge to a common state,
even in the presence of constant disturbances. If absolute position measurements are
available, i.e., when δ > 0, the agents converge to a constant, bounded state. Since the
agents converge to the average of their initial states in the absence of disturbances, and
the system remains stable for any integral gain, there are no immediate performance
degradations by the introduction of integral action, in the sense that it does not affect
the stability nor the equilibria of the system, compared with a system with zero integral
gain.

4.2 Distributed integral action for double-integrator dynamics

In this section we will generalize the results of Section 4.1 to agents with double-
integrator dynamics. Consider agents with velocity-damped double-integrator dynam-
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ics, and control input given by a distributed PI-controller:

ẋi = vi
v̇i = ui − γvi + di

ui = −
∑
j∈Ni

(
β(xi−xj) + α

∫ t

0
(xi(τ)−xj(τ)) dτ

)
− δ(xi−x0i )

(4.5)

where x0i = xi(0), α ∈ R+, β ∈ R+, γ ∈ R+, δ ∈ R̄+ and di ∈ R is an unknown
scalar disturbance. Note that if δ = 0, (4.5) is completely distributed. e study of
control protocols of the form (4.5) is motivated by mobile robot coordination under
constant disturbances, as discussed in Chapter 1.4.
Theorem 4.2 Under the dynamics (4.5), the agents converge to an agreement point for
any constant disturbance di and any initial condition, provided that α < βγ. If di =
0 ∀i ∈ V , the agents converge to

x∗ =
1
n

∑
i∈V

xi(0) ∀ vi(0).

If absolute position measurements are not present, i.e., δ = 0, we still have limt→∞ |xi(t)−
xj(t)| = 0 ∀i, j ∈ V for any set of disturbances di. However the absolute states are in general
unbounded, i.e., limt→∞ |xi(t)| = ∞ ∀i ∈ V . Also, in this case the agents converge to a
common value if and only if α < βγ.

Proof. e proof follows the same principle ideas as the proof of eorem 4.1.
However, as we consider second-order dynamics, the problem is inherently different
to ërst-order dynamics. First consider the case where δ = 0. Let also di = 0 ∀i ∈ V .
By introducing the state vector z = [z1, . . . , zn]T we may rewrite the dynamics:żẋ

v̇

 =

0n×n In 0n×n
0n×n 0n×n In
−αL −βL −γIn


︸ ︷︷ ︸

≜A

zx
v

 ,

together with the initial condition z(0) = 0n×1. By elementary column operations
it is easily shown that the characteristic polynomial of A can be written as 0 =
det((α+βs)L+ s2(s+ γ)I), where I is the identity matrix of appropriate dimensions.
Comparing the above equation with the characteristic polynomial of L, we get that
0 = s3 + γs2 + λiβs + λiα, where λi is an eigenvalue of L. If λi > 0, the
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above equation has all its solutions s ∈ C− if and only if α < βγ, and α, β, γ >
0 by the Routh-Hurwitz stability criterion. Since G by assumption is connected,
λ1 = 0 and λi > 0 ∀i = 2, . . . , n. For λ1 = 0, the above equation has the
solutions s = 0, s = −γ. By straightforward calculations it can be shown that
e11 = [11×n, 01×n, 01×n]

T and e21 = [01×n, 11×n, 01×n]
T are an eigenvector

and a generalized eigenvector of A, respectively, corresponding to the eigenvalue 0.
Furthermore v1 = 1

γ2n [γ
211×n, 01×n, −11×n] and v2 = 1

γn [01×n, γ11×n, 11×n] are
a generalized left eigenvector and a left eigenvector ofA corresponding to the eigenvalue
0. Furthermore v1e11 = 1, v2e21 = 1 and v2e11 = 0, v1e21 = 0. Hence the ërst columns
of P can be chosen as e11 and e21, and the ërst rows of P−1 can be chosen to be v1 and
v2. Since all other eigenvalues of A have strictly negative real part we obtain

lim
t→∞

eAt = lim
t→∞

PeJtP−1

= P lim
t→∞

 1 t 01×(3n−2)
0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 eJ′t

 P−1

= lim
t→∞

P

 1 t 01×(3n−2)
0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 0(3n−2)×(3n−2)

 P−1

= lim
t→∞

1
n

1n×n t1n×n
tγ−1
γ2 1n×n

0n×n 1n×n
1
γ 1n×n

0n×n 0n×n 0n×n

 .

Given any initial position x(0) = x0, v(0) = v0, we obtain limt→∞ xi(t) =
1
n
∑

i∈V x0,i + 1
γn
∑

i∈V v0,i ∀ i ∈ V . Now let us turn our attention to the case
where where δ = 0 and di ̸= 0 ∀i ∈ V . We deëne the output of the system as

yzyx
yv

 =

 BT 0m×n 0m×n
0m×n BT 0m×n
0m×n 0m×n BT


︸ ︷︷ ︸

≜C

zx
v

 ,

and consider the same linear coordinate change of z, x and v as applied to z and x in
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the proof of eorem 4.1. In the new coordinates the system dynamics are

ż′ = x′

ẋ′ = v′

v̇′ =

[
0 01×(n−1)

0(n−1)×1 −αSTLS

]
z′ +

[
0 01×(n−1)

0(n−1)×1 −βSTLS

]
x′

− γv′ +

[
1
n11×(n)
ST

]
d.

(4.6)

We note that the states z′1, x′1 and v′1 are unobservable and uncontrollable. We thus
omit these states to obtain a minimal realization by deëning the new coordinates
z′′ = [z′2, . . . , z

′
n]
T, x′′ = [x′2, . . . , x

′
n]
T and v′′ = [v′2, . . . , v

′
n]
T we obtain the system

dynamicsż′′ẋ′′
v̇′′

 =

 0(n−1)2 I(n−1)2 0(n−1)2

0(n−1)2 0(n−1)2 I(n−1)2

−αSTLS −βSTLS −γI(n−1)2


︸ ︷︷ ︸

≜A′′

z′′x′′
v′′

+

0(n−1)×1
0(n−1)×1

STd

 .

We now shift the state space by deëningz(3)x(3)

v(3)

 =

z′′x′′
v′′

−

 0(n−1)×1
0(n−1)×1

1
α(S

TLS)−1STd

 .

It is easily veriëed that the origin is the only equilibrium of the system dynamics,
and that the dynamics in the new coordinates are also characterized by the matrix A′′.
By a similar argument used when showing that A has eigenvalues with non-positive
real part, we may show that A′′ has eigenvalues with non-positive real part. But since
STLS is full-rank, A′′ must also be full-rank, and hence A′′ is Hurwitz. is implies
that limt→∞ |xi(t) − xj(t)| = 0 ∀i, j ∈ V even in the presence of disturbances di.
It is also clear that whenever α ≥ βγ, at least one eigenvalue will have non-negative
real part, and that its (generalized) eigenvector will be distinct from e11 and e21. us
consensus is not reached. From the dynamics (4.6), it is clear that ẋ′1 =

1
n11×nd. Hence

limt→∞ x′1(t) = ±∞ unless 11×nd = 0. Since x′′ is bounded, by the coordinate change
(4.3), x is bounded if and only if 11×nd = 0.
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We now turn our attention to the case where δ > 0 and di = 0 ∀i ∈ V . e
dynamics (4.5) can then be written in vector form asżẋ

v̇

 =

0n×n In 0n×n
0n×n 0n×n In
−αL −βL − δI −γIn


︸ ︷︷ ︸

≜A

zx
v

 .

By performing elementary column operations the characteristic polynomial of A can be
written as det((α+βs)L+(s3+γs2+δs)I). By comparing the characteristic polynomial
of A with the characteristic polynomial of L, it can be seen that the eigenvalues s of A
satisfy 0 = s3 + γs2 + (δ + λiβ)s+ λiα, where λi ∈ spec(L) Since G by assumption
is connected, L has a single simple eigenvalue λ1 = 0, which gives the characteristic
equation 0 = s(s2+γs+δ), with one solution s = 0, and two solutions s ∈ C−. As all
other eigenvalues are strictly positive, the solutions s corresponding to strictly positive
λi satisfy s ∈ C− iff λiα + δ < λiβγ. is is satisëed whenever α < βγ. It can be
veriëed that e1 = [11×n, 01×n, 01×n]

T and v1 = 1
n [δ11×n, γ11×n, 11×n]

T are a right
and left eigenvector of A, corresponding to the eigenvalue 0. Furthermore v1e1 = 1.
Since all other eigenvalues have strictly negative real part, we have

lim
t→∞

eAt = lim
t→∞

PeJtP−1 = P lim
t→∞

[
1 01×(3n−1)

0(3n−1)×1 eJ′t

]
P−1

=
1
n

δ1n×n γ1n×n 1n×n
0n×n 0n×n 0n×n
0n×n 0n×n 0n×n

 .

Given any initial position x(0) = x0, v(0) = v0, we obtain that limt→∞ x(t) = 0.
Now let δ > 0 and di ̸= 0 for at least one i ∈ V . Since the proof is analogous to

the case when δ = 0 and di ̸= 0, it is omitted.
Finally, if di = 0 ∀i ∈ V , the stationarity of v(t) implies:

limt→∞ 11×n
(
−αLz− βLx− δx+ δx(0)− γv

)
= 0, so nx∗ =

∑
i∈V xi(0), which

concludes the proof.
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4.3 Motivating application revisited

In this section we revisit some of the motivating applications introduced in Chapter
1.1. We will demonstrate that the results in this Chapter have potential applications.

Example 1.4 (Mobile robot coordination under disturbances, continued) In this
section we revisit the example of mobile robots from Section 1.4. e dynamics of the
robots are given by

ẋi = vi
v̇i = ui − γvi + di

ui = −
∑
j∈Ni

(
β(xi − xj) + α

∫ t

0
(xi(τ)− xj(τ)) dτ

)
,

(4.7)

Let the damping coefficient be given by γ = 3, and the static gain β = 5. We consider
the systemwith a constant disturbance d = [1, 0, 0, 0, 0], for the different integral gains
α = 0, α = 1, and α = 15.e initial conditions are given by x(0) = [5,−6, 8, 4, 5],
v(0) = [0, 0, 0, 0, 0]T. e setup we will consider consists of a string of 5 mobile
robots, whose communication topology is a string graph.

Byeorem 4.2 stability is guaranteed if and only ifα < βγ. In Figure 4.1 the state
trajectories are shown for different choices of α. We observe that asymptotic consensus
amongst the mobile robots is only reached whenα = 1.Whenα = 0, consensus is not
reached due to the static disturbance. When α = 1, the disturbance is attenuated, and
asymptotic consensus is reached. However, as we increase α to 15 = βγ, the system
becomes marginally unstable, i.e., stable but not asymptotically stable. By increasing
α further, the system becomes unstable, in accordance with eorem 4.2.

4.4 Summary

In this section we have studied distributed PI-controllers for multi-agent systems
with constant disturbances. We have considered both agents with single- and double-
integrator dynamics, and agents with velocity-damped double-integrator dynamics.
We have provided necessary and sufficient conditions for the integral gains, under
which the system is stable. Furthermore we have shown that the relative states of the
agents converge to zero if the integral gain is strictly positive. We have demonstrated
our results on mobile robot coordination under disturbances.
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(d) α = 20

Figure 4.1 e ëgures show the state trajectories of (1.5) for α = 0, α = 1, α = 15 and
for α = 20.





Chapter 5

Frequency control of power systems

M  a constant frequency under varying power loads is one of the main
control problems in today’s power systems. Generators and electric machines

will take damage if operated far from the nominal frequency. Keeping the frequency
close to the nominal frequency is thus of major importance in any power system.
Frequency control is traditionally carried out by automatic generation control (AGC),
which employs distributed proportional controllers with a dynamic reference value,
set by a centralized PI controller or even a human operator. Hence, even though
parts of the controller are distributed, the overall control architecture is centralized.
Furthermore, the AGC will in general not consider generation costs, i.e., an optimal
load proële might become suboptimal in steady-state after a change in load occurs.
Moreover, the centralized controller or its communication to the buses may be sensitive
to link failures. A distributed controller structure may provide more redundancy to
controller and link failures. A centralized control architecture might be particularly
susceptible to failure under islanding, when the power system is split into two or
more disconnected components. Maintaining stability under islanding is particularly
motivated by emerging micro-grid applications, see e.g. Katiraei et al. (2005). A
micro-grid is typically a part of the main electrical power system, but can operate
autonomously in case of isolation.is requires controllers that can stabilize the micro-
grid both when it is connected with the main grid and when operating autonomously.
Distributed control for micro-grids that can be disconnected from the main grid has
been studied by, e.g., Lopes et al. (2006). However, the aspect of power sharing or
optimal generation is not treated in a distributed fashion within the micro-grid.

In this chapter we will address the above mentioned shortcomings with centralized
AGC, by introducing distributed frequency controllers. For comparison purposes we
also consider centralized controllers. We ërst compare the performance of a model
of an AGC with a proposed suboptimal decentralized frequency controller. Later we
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propose a centralized and decentralized frequency controller whichminimize the power
generation cost in steady state, and compare the their performance.

5.1 Power system model

Consider a power system modeled by a graph G = (V, E). Each node, here referred
to as a bus, is assumed to obey the swing equation, as described by Machowski et al.
(2008)

miδ̈i + diδ̇i = −
∑
j∈Ni

kij sin(δi − δj) + pmi + ui, (5.1)

where δi is the phase angle of bus i, mi and di are the inertia and damping coefficient
respectively, pmi is the power load at bus i and ui is the mechanical input. By convention
we will deëne injected power to have a positive sign, and power load to have a negative
sign. kij = |Vi||Vj|bij, where Vi is the voltage of bus i, and bij is the susceptance of the
line (i, j). By linearizing (5.1) around the equilibrium where δi = δj ∀i, j ∈ V , we
obtain the linearized swing equation

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui. (5.2)

By deëning δ = [δ1 . . . , δn]
T, we may rewrite (5.1) in state-space form:[

δ̇
ω̇

]
=

[
0n×n In
−MLk −MD

][
δ
ω

]
+

[
0n×1
Mpm

]
+

[
0n×1
Mu

]
(5.3)

where M = diag( 1
m1
, . . . , 1

mn
), D = diag(d1, . . . , dn), Lk is the weighted Laplacian

with edge weights kij, pm = [pm1 , . . . , p
m
n ]

T, u = [ui, . . . , un]T.

5.2 Suboptimal centralized PI control

We will here present a a centralized frequency control protocol for power systems and
analyze its stability properties. Traditionally, the AGC of a power systems is carried
out at two levels, see e.g. Machowski et al. (2008). In the ërst level, the frequency is
controlled with a proportional controller against a reference frequency. At the second
level, the reference frequency is controlled with a proportional controller to eliminate
static errors. We model the ërst level, proportional controller of bus i as:

ui = α(ω̂ − ωi) (5.4)
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Figure 5.1 e IEEE 30-bus test system, an example of an electrical power system.

e outer proportional controller, regulating ω̂ is assumed to be given by:

˙̂ω = β

(
ωref − 1

n

∑
i∈V

ωi

)
, (5.5)

where we have assumed that the average frequency of the buses is measured by the
central controller1. e centralized controller architecture is illustrated in Figure 5.2.
Theorem 5.1 e power system described by (5.3) where ui is given by (5.4)–(5.5), is
stable for α, β > 0. Furthermore limt→∞ ωi(t) = ωref for any set of initial conditions.

1In reality the frequency is often measured at a speciëc bus. is will typically lead to longer delays,
since disturbances need to propagate through the system before control action can be taken.
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Figure 5.2 Centralized control architecture

Proof. We may write (5.3) with u given by (5.4)–(5.5) as: ˙̂ω

δ̇
ω̇

 =

 0 01×n −β
n 11×n

0n×1 0n×n In
α1n×1 −MLk −MD− αIn


︸ ︷︷ ︸

≜A

ω̂δ
ω

+

βωref

0n×1
pm

 .

We now consider the matrix A′ deëned as

A′ ≜

 0 01×n −β
n 11×n

0n×1 0n×n In
α1n×1 −MLk −αIn

 .

By elementary column operations on A′, we may write the characteristic equation of
A′ as

s det

((
MLk +

αn
β
1n×n

)
+ (s2 + αs)In

)
= 0.

e ërst factor has the solution s = 0. Comparing the second factor with the
characteristic polynomial of (MLk+αn/β1n×n), we see that s satisëes s2+sα+ti = 0,
where ti > 0 is an eigenvalue of (MLk+αn/β1n×n). Also this equation has solutions
s ∈ C−. us A′ is Hurwitz, implying that A is Hurwitz. Stationarity implies that the
equilibrium solution satisëes ω = ωref1n×1.
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5.3 Suboptimal decentralized PI control

In this section we analyze a decentralized AGC, where each bus controls its own
frequency based only on local phase and frequency measurements. us, no frequency
measurements need to be sent to a central controller, and there is no need to send
control signals or reference values to the buses. is architecture might be favorable
due to security concerns when sending unencrypted frequency measurements and
control signals over large areas. Another beneët is improved performance when the
tripping of one or several power lines causes the network to be split up into two or
more sub-networks, so called islanding. e controller of node i is assumed to be given
by Equation (1.7), here written as

żi = ωref − ωi (5.6)

ui = α(ωref − ωi) + βzi. (5.7)

e controller architecture is illustrated in Figure 5.3. e decentralized controller

..

C′
1

.
...

.

C′
n

.

Bus 1

.
...

.

Bus n

...

u1

.

un

.

ω1, δ1

.

ωn, δn

.

ωref

.

ωref

Figure 5.3 Decentralized control architecture.

(5.6)–(5.7) is typically not practically feasible with only frequency measurements
available at the generation buses. Even the slightest measurement error will be
integrated and cause instability, see, e.g., Machowski et al. (2008). However, with
recent advances in phasor measurement unit (PMU) technology however, phase
measurements are becoming more likely to be available to all generator buses, see,
e.g., Phadke (1993). By employing optimal PMU placement, the number of PMUs
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needed for complete observability can be drastically reduced, as described by Nuqui
and Phadke (2005). By integrating (5.6) we obtain

zi = ωreft− δi.

is implies that in order to accurately estimate the integral state zi, each generator bus
needs access only to accurate time and phase measurements, both provided by PMU’s.
Theorem 5.2 e power system described by (5.3) where ui is given by (5.6)–(5.7), is
stable for any choice of α, β > 0. Furthermore limt→∞ ωi(t) = ωref.

Proof. If we consider [BTδ, ω] to be the output, the dynamics of (5.3) may be modiëed
as long as the dynamics of [BTδ, ω] are left unchanged. We thus may rewrite (5.3) with
u given by (5.6)–(5.7):[

ż
ω̇

]
=

[
0n×n In

−MLk−βM −MD−αM

]
︸ ︷︷ ︸

≜A

[
z
ω

]
+

[
−ωref1n×1

M(pm+αωref1n×1)

]
,

since δ̇− ω̇ = ωref1n×1, implying that δ−ω = tωref1n×1. Since Lk1n×1 = 0n×1, the
output dynamics of the above equation is equivalent to that of (5.3) with respect to the
output [BTδ, ω]. Here, the i’th element of β is βi. Let m = minimi and d = mini di.
We can now write MD = mdIn + D′, where D′ is a diagonal positive-semideënite
matrix. Deëne:

A′ ≜
[

0n×n In
−MLk − βM −m dIn

]
.

By elementary column operations, the eigenvalues of A′ are given by the roots of 0 =
det((s2+ sm d)In+ML+βIn×n). Comparing this with the characteristic polynomial
ofMLk + diag(β), we conclude that smust satisfy s2 + sm d+ ti = 0, where ti ≥ 0 is
an eigenvalue ofMLk + diag(β). SinceMLk + diag(β) is positive deënite, the above
equation has all its solutions in C−. It follows that also A is Hurwitz. Now consider
the coordinate shift [

z′

ω′

]
=

[
z
ω

]
−

[
zo
ωo

]
where

z0 = (βIn + Lk)
−1(Dωref1n×1 − pm)

ω0 = ωref1n×1.
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Figure 5.4 e ëgures show the bus frequencies and control signals respectively under
centralized frequency control for α = 0.8, β = 0.04 and γ = 0.04.

In the translated coordinates, the origin is the only equilibrium of the system. Hence
limt→∞ ωi(t) = ωref ∀i ∈ V .

Example 1.5 (Frequency control of power systems — Suboptimal PI control) e
centralized and decentralized frequency control algorithms were tested on the IEEE 30
bus test system, illustrated in Figure 5.1. e line admittances were extracted from the
IEEE 30 bus test system, and the voltages were assumed to be 132 kV for all buses.e
values ofM and D were assumed to be given by mi = 105 kgm2 and di = 1 s−1 ∀i ∈
V . e power system is initially in an operational equilibrium, until the power load is
increased by a step of 200 kW in the buses 2, 3 and 7. is will immediately result in
decreased frequencies at the extra load buses.e frequency controllers at the buses will
then control the frequencies towards the desired frequency of ωref = 50 Hz. For the
centralized controller the parameters were set to α = 0.8, β = 0.04, γ = 0.04, while
for the decentralized control architecture the parameters were α = 0.8, β = 0.04.e
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Figure 5.5 e ëgures show the bus frequencies and control signals respectively under
decentralized frequency control for α = 0.8 and β = 0.04.

step responses of the frequencies are plotted in Figure 5.4 for the centralized controller,
and in Figure 5.5 for the decentralized controller. We note that if there is a centralized
PI controller for the reference frequency, the generation is increased uniformly among
the generators. If however the integral action is distributed amongst the generators,
some generators will increase their generation more than others. Figure 5.6 and 5.7
show the step response under much larger integral action for the centralized and
the decentralized controller respectively. For the centralized controller the parameters
were set to α = 0.8, β = 0.8, γ = 0.8, while for the decentralized control
architecture the parameters were α = 0.8, β = 0.8. We notice that the step
response of the decentralized controller shows better performance compared to the
centralized controller. As the centralized controller only has knowledge about the
average frequency in the power system, the reference frequency ω̂ will be too large
for some buses, decreasing generation too much at those buses. On the other hand, ω̂
will be too small for other buses, increasing the generation too much at those buses.
Neither the proposed centralized nor the decentralized controller take into account
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Figure 5.6 e ëgures show the bus frequencies and control signals respectively under
centralized frequency control for α = 0.8, β = 0.8 and γ = 0.8.

the cost of power generation. As the frequency of the power system at steady state is
determined by the total power generation, this allows for an optimal distribution of
the power generation to minimize a certain cost.

Load sharing

It is well-known that a centralized PI frequency controller has the property of load
sharing, see e.g. Kundur (1994). is means that if the load is increased at some bus
in the power system, all generators will increase their generation equally, provided
that the proportional controller gain α is uniform. However, as seen in Example 1.5,
the proposed decentralized PI controller does not have the load sharing property in
general. However, we show that in the limit when the integral gain β approaches zero,
the decentralized controller has the load sharing property. On the other hand, as the
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Figure 5.7 e ëgures show the bus frequencies and control signals respectively under
decentralized frequency control for α = 0.8 and β = 0.8.

integral gain β approaches inënity, load changes will result only in local increase of
power generation.

Theorem 5.3 Consider the power system described by (5.3) where ui is given by (5.6)–
(5.7). Assume that the power system is initially operating at ωref, after which the load is
changed by pm. e power generation u the satisíes:

lim
β
α
→∞

lim
t→∞

u(t) = (Dωref1n×1 − pm)

lim
β
α
→0

lim
t→∞

u(t) =
(
11×n(Dωref1n×1 − pm)

)
1n×1

Proof. By the proof ofeorem 5.2, the steady state solution of y (5.3) where u is given
by (5.6)–(5.7), is given by
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z0 = (βIn + Lk)
−1(Dωref1n×1 − pm)

ω0 = ωref1n×1.

e control signal is given by (5.7), i.e.,

ui = α(ωref − ωi) + βzi,

where α > 0 is ëxed. is implies that in steady state, the control signal is given by

u = β(βIn + Lk)
−1(Dωref1n×1 − pm). (5.8)

Consider ërst the ërst case, when β → ∞. Clearly:

lim
β→∞

β (βIn + Lk)
−1 = lim

β→∞

(
In +

1
β
Lk

)−1
= I−1

n = In.

Hence, by (5.8), the control signal in steady state is given by

u = (Dωref1n×1 − pm).

Consider now the ërst case, when β → 0.e characteristic equation of (βIn+Lk)
is given by

0 = det (βIn + Lk − sIn) = det
(
Lk − (s− β)In

)
, (5.9)

implying that the solutions to (5.9) are given by λl = λl(Lk) + β, where λl(Lk)
denotes the l:th eigenvalue of Lk. (βIn + Lk) can easily be shown to have full rank,
implying that we may write

(Dωref1n×1 − pm) =
n∑

l=1

alvl,

where vl denotes the l:th eigenvector of (βIn + Lk). Using the above substitution in
(5.8) we obtain

u = β(βIn + Lk)
−1(Dωref1n×1 − pm) = β(βIn + Lk)

−1

 n∑
l=1

alvl


=

n∑
l=1

β
al
λl
vl =

n∑
l=1

β
al

λl(Lk) + β
vl = a1v1 +

n∑
l=2

β
al

λl(Lk) + β
vl,
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since the smallest eigenvalue of (βIn +Lk) is given by β, as the smallest eigenvalue of
Lk is zero. Clearly, the above expression converges to a1v1 as β → 0. a1 is given by the
projection of (Dωref1n×1 − pm) onto v1. v1 is easily shown to be equal to 1n×1, since

(βIn + Lk)1n×1 = βIn1n×1 + Lk1n×1 = β1n×1,

and zero is an eigenvalue of Lk, with the corresponding eigenvector 1n×1. us

a1 = vT1 (Dω
ref1n×1 − pm) = 11×n(Dωref1n×1 − pm),

which implies that in steady state it holds that

u = 11×n(Dωref1n×1 − pm)1n×1.

Remark 5.1 eorem 5.3 implies that when β
α → ∞, power is always generated

where it is consumed, whereas when β
α → 0, power generation is shared equally

amongst the generators.

5.4 Optimal centralized frequency control

Motivated my discussion in the previous section, we will in addition to the objective of
maintaining a constant reference frequency also consider the objective of minimizing
a cost function of the power generation. is generalizes the concept of load sharing,
as setting the costs of all buses equal will achieve load sharing. Assume that there is a
quadratic cost f ci(x) =

1
2Cix2 of generating power at bus i. e control objective is to

design a distributed control protocol that asymptotically attains the reference frequency
at all buses, while minimizing the accumulated generation cost. We formalize these
requirements by the two conditions below.
Condition 5.1 e controller asymptotically regulates the bus frequencies to the
reference frequency ωref, i.e.,

lim
t→∞

ωi(t) = ωref ∀i ∈ V . (5.10)

Condition 5.2 e power generation minimizes the accumulate generation cost in
steady state of (5.3), i.e.,

lim
t→∞

u(t) = u∗, (5.11)



5.4. Optimal centralized frequency control 61

where u∗ is the minimizer of∑
i∈V

1
2
Ciu2i s.t. Lkδ − u = Pm − ωrefD1n×1. (5.12)

We propose the following centralized controller to solve the frequency control
problem:

ui = α(ω̂i − ωi)

˙̂ωi = β
(
u∗ − α(ω̂i − ωi)

)
+ γ(ωref − ωi),

(5.13)

where α, β, γ ∈ R+, and u∗ is given by

[u∗, δ∗] = argmin
[u,δ]

∑
i∈V

1
2
Ciu2i

s.t. Lkδ − u = Pm − ωrefD1n×1.

Remark 5.2 e centralized controller (5.13) requires global information about the
total power load proële Pm, as well as global information about the power generation
costs C, in addition to the exact model of the power system.

In the following sections we will show that the controller (5.13) satisëes conditions
5.1 and 5.2, and derive conditions under which it stabilizes the power system.

Sufficient stability criterion based on eigenvalues

In this section we study the stability of (5.3) with the control given by (5.13). We will
give sufficient conditions for the stability of the proposed control protocol based on
linear system theory.

Theorem 5.4 e power system (5.3) with control input (5.13) satisíes Conditions 5.1
and 5.2 for any initial condition (δ(0), ω(0)) if the matrix

A ≜

−αβIn 0n×n (αβ − γ)In
0n×n 0n×n In
αM −MLk −M(D+αIn)

,
has exactly one eigenvalue equal to 0 and all other eigenvalues in the left half complex plane.
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Proof. Assume that A has exactly one zero eigenvalue, and all other eigenvalues in the
left half complex plane. It can be veriëed that the dynamics of the system (5.3) with
the control given by (5.25) can be written as ˙̂ω

δ̇
ω̇

 = A

ω̂δ
ω

+

βu∗ + γωref1n×1
0n×1
MPm

 . (5.14)

Consider the linear change of coordinates:

δ =
[

1√
n1n×1 S

]
δ′

δ′ =

[
1√
n11×n

ST

]
δ.

where S is a matrix such that [ 1√
n1n×1 S] is an orthonormal matrix. In the new

coordinates the system dynamics are given by:

˙̂ω = −αβω̂ + (αβIn − γIn)ω + βu∗ + γ1n×1ω
ref

δ̇′ =

[
1√
n11×n

ST

]
ω

ω̇ = αMω̂−MLk

[
1√
n1n×1 S

]
δ′−M(D+αIn)ω+MP.

By deëning the output of the system (5.3) and (5.25) as

y =

[
Lkδ
ω

]
=

Lk

[
1√
n1n×1 S

]
δ′

ω

 =

[
[0 LKs] δ′

ω

]
,

which are the system states of interest, we note that δ′1 is unobservable. Hence we
may omit this state by deëning δ′′ = [δ′2, . . . , δ

′
n]. In the new coordinates the system

dynamics are given by ˙̂ω

δ̇′′

ω̇

 = A′

 ω̂δ′′
ω

+

βu∗ + γωref1n×1
0n×1
MPm


︸ ︷︷ ︸

≜b

, (5.15)
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where

A′ =

 −αβIn 0n×(n−1) (αβ − γ)In
0(n−1)×n 0(n−1)×(n−1) ST

αM −MLkS −M(D+αIn)

 .

We now show that A′ has full rank. Consider

A′

ω̂δ′
ω

 =

 0n×1
0(n−1)×1
0n×1

 .

e second row of the above equation gives STω = 0(n−1)×1, implying ω = k1n×1.
Multiplying the third row with β and adding it to the ërst row yields:

βLkSδ + (βD+ γIn)ω = 0n×1.

Premultiplying the above equation with 11×n and substituting ω = k1n×1 yields:β
∑
i∈V

di + γn

 k = 0,

implying k = 0. us, substituting ω = 0n×1 in the ërst row immediately gives
ω̂ = 0n×1 . Finally the third row with ω̂ = 0n×1 and ω = 0n×1 gives δ′ = 0(n−1)×1
Since by the change of coordinates, the eigenvalues of A remain the same, we also
conclude that A′ has the same eigenvalues as A, except the zero eigenvalue. It follows
that A′ is Hurwitz iff A has exactly one zero eigenvalue, and all other eigenvalues in the
left half complex plane. We now shift the state-space by deëning ω̂

δ′′′

ω

 =

 ω̂δ′′
ω

− A′−1b.

It follows that in these new coordinates, the system dynamics are ˙̂ω

δ̇′′′

ω̇

 = A′

 ω̂
δ′′′

ω

 . (5.16)
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e equilibrium solution of (5.28) satisëes

β(u∗ + α(ω − ω̂)) + γ(ωref1n×1 − ω) = 0n×1 (5.17)

STω = 0n×1 (5.18)
α(ω − ω̂) + LkSδ′ + Dω = 0n×1. (5.19)

As the rows of ST are orthonormal to 11×n, (5.18) implies that ω = c11n×1, where
c1 ∈ R. Noting that u = α(ω̂ − ω), (5.17) becomes

β(u∗ − u) + γ(ωref1n×1 − ω) = 0n×1. (5.20)

We also note that by (5.12), u∗ satisëes

Lkδ − u∗ = Pm − ωrefD1n×1. (5.21)

Since LkSδ′ = Lkδ, substituting (5.21) in (5.19) yields

(u− u∗) + D(ωref1n×1 − ω) = 0. (5.22)

Multiplying (5.22) with β and adding to (5.20) while substituting ω = c11n×1 yields

(βD+ γIn)1n×1(ω
ref − c1) = 0n×1,

which implies c1 = ωref. By (5.17) we get that u = u∗, which concludes the proof.

Explicit sufficient stability criterion

While eorem 5.4 provides a straightforward condition weather a given set of
parameters result in a stable system, it does not give any implication on how to stabilize
an unstable system.e following theorem gives a sufficient conditions for when A has
all eigenvalues except one in the open left half complex plane.
Theorem 5.5 A has exactly one zero eigenvalue, and all other eigenvalues in the left half
complex plane if the following condition is satisíed

βmλmax(Lk) < (γ + βD)(αD+ αβm).

where m = minimi, m = maximi and D = miniDi.
Remark 5.3 ere always exists β > 0, such that the controller (5.13) stabilizes the
power system.
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Proof. e characteristic equation of A is given by:

0 =

∣∣∣∣∣∣∣
(−αβ − s)In 0n×n (αβ − γ)In

0n×n −sIn In
αM −MLk −MD− αM− sIn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γ − s)In

0n×n −sIn In
αM −MLk −MD− sIn

∣∣∣∣∣∣∣
=

1
sn

∣∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γs− s2)In

0n×n −sIn 0n×n
αM −MLk −sMD− s2In −MLk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γs− s2)In

0n×n −In 0n×n
αM 0n×n −sMD− s2In −MLk

∣∣∣∣∣∣∣
=

∣∣∣∣∣(−αβ − s)In (−γs− s2)In
αM −sMD− s2In −MLk

∣∣∣∣∣
= α detM det

(
(αβ + s)(MLksMD+ s2In) + (γs+ s2In)

)
. (5.23)

Clearly the above characteristic equation has a solution only if

xT
(
(αβ + s)(MLksMD+ s2In) + (γs+ s2In)

)
x = 0. (5.24)

has a solution. Hence if (5.24) has all its solutions in C− for all∥x∥ = 1, then (5.23)
has all its solutions in C−. is condition thus becomes that the equation

xTβLkx︸ ︷︷ ︸
a0

+s xT
(
γIn +

1
α
Lk + βD

)
x︸ ︷︷ ︸

a1

+s2 xT
(
In +

1
α

)
x︸ ︷︷ ︸

a2

+s3
1
α
xTM−1x︸ ︷︷ ︸

a3

= 0,

has all its solutions in C−. We distinguish between the two cases: xTLkx = 0 and
xTLkx ̸= 0. Starting with the former case, equation (5.32) may be written as

sa1 + s2a2 + s3a3 = s(a1 + sa2 + s2a3) = 0

If ai > 0 for i = 1, 2, 3, the above equation has one solution s = 0, and two solutions
s ∈ C− if and only if ai > 0, i = 1, 2, 3 by the Routh-Hurwitz stability criterion.
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We now proceed with the case when xTLkx ̸= 0. Since xTLkx ≥ 0, we conclude that
xTLkx > 0. e Routh-Hurwitz stability criterion is ai > 0 for i = 0, 1, 2, 3, and
a0a3 < a1a2. Clearly ai > 0 i = 0, 1, 2, 3, and the latter condition becomes

xTβLkx
1
α
xTM−1x < x

(
γIn +

1
α
Lk + βD

)
xxT
(
In +

1
α

)
x.

A sufficient condition for the above equation to hold is obtained by upper bounding
the left hand side and lower bounding the right hand side, which yields

βmλmax(Lk) < (γ + βD)(αD+ αβm).

5.5 Optimal distributed frequency control

In this section we propose a distributed control protocol, which satisëes Condi-
tions 5.1 and 5.2. e proposed controller consists of a proportional and an integral
part, which compares the local frequency to a global reference frequency, and compares
the marginal cost of power generation with its neighboring buses. We propose the
following control protocol:

ui = α(ω̂i − ωi)

˙̂ωi = β

∑
j∈Ni

kijα(Cj(ω̂j − ωj)− Ci(ω̂i − ωi))

+ γ(ωref − ωi)
(5.25)

where α, β, γ ∈ R+. We will show that the controller (5.25) satisëes conditions 5.1
and 5.2.

Remark 5.4 e control protocol (5.25) is distributed.

Remark 5.5 Ci can be interpreted as the marginal cost of power generation for bus i.

Sufficient stability criterion based on eigenvalues

In this section we study the stability of (5.3) with the control given by (5.25). We ërst
give sufficient conditions for the stability of the proposed control protocol based on
linear system theory.
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Theorem 5.6 e power system (5.3) with control input (5.25) satisíes Conditions 5.1
and 5.2 for any initial condition (δ(0), ω(0)) if the matrix

A ≜

−αβLkC 0n×n αβLkC− γIn
0n×n 0n×n In
αM −MLk −M(D+αIn)


where C = diag [c1, . . . , cn]. has exactly one eigenvalue equal to zero and all other
eigenvalues in the open left half complex plane.

Proof. Assume that A has exactly one zero eigenvalue, and all other eigenvalues in the
left half complex plane. It can be veriëed that the dynamics of the system (5.3) with
the control given by (5.25) can be written as ˙̂ω

δ̇
ω̇

 = A

ω̂δ
ω

+

γωref1n×1
0n×1
MPm

 . (5.26)

Consider the linear change of coordinates:

δ =
[

1√
n1n×1 S

]
δ′

δ′ =

[
1√
n11×n

ST

]
δ.

where S is a matrix such that [ 1√
n1n×1 S] is an orthonormal matrix. In the new

coordinates the system dynamics are given by:

˙̂ω = −αβLkCω̂ + (αβLkC− γIn)ω + γ1n×1ω
ref

δ̇′ =

[
1√
n11×n

ST

]
ω

ω̇ = αMω̂−MLk

[
1√
n1n×1 S

]
δ′−M(D+αIn)ω+MP.

By deëning the output of the system (5.3) and (5.25) as

y =

[
Lkδ
ω

]
=

Lk

[
1√
n1n×1 S

]
δ′

ω

 =

[
[0 LKs] δ′

ω

]
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which are the system states of interest, we note that δ′1 is unobservable. Hence we
may omit this state by deëning δ′′ = [δ′2, . . . , δ

′
n]. In the new coordinates the system

dynamics are given by  ˙̂ω

δ̇′′

ω̇

 = A′

 ω̂δ′′
ω

+

 γ1n×1
0(n−1)×1

MP


︸ ︷︷ ︸

≜b

, (5.27)

where

A′ =

−αβLkC 0n×(n−1) αβLkC− γIn
0(n−1)×n 0(n−1)×(n−1) ST

αM −MLkS −M(D+αIn)

 .

We now show that A′ has full rank. Consider

A′

ω̂δ′
ω

 =

 0n×1
0(n−1)×1
0n×1

 .

e second row of the above equation gives STω = 0(n−1)×1, implying ω = k1n×1.
e ërst row gives αβLkCω̂ = (αβLkC − γIn)k1n×1, which implies k = 0 since
1n×1 does not lie i the range of Lk. Finally, the third row gives MLkSδ′ = 0(n−1)×1,
implying δ′ = 0(n−1)×1. Since by the change of coordinates, the eigenvalues of A
remain the same, we also conclude that A′ has the same eigenvalues as A, except the
zero eigenvalue. It follows that A′ is Hurwitz iff A has exactly one zero eigenvalue, and
all other eigenvalues in the left half complex plane. We now shift the state-space by
deëning  ω̂

δ′′′

ω

 =

 ω̂δ′′
ω

− A′−1b.

It follows that in these new coordinates, the system dynamics are ˙̂ω

δ̇′′′

ω̇

 = A′

 ω̂
δ′′′

ω

 . (5.28)
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e equilibrium solution of (5.28) satisëes

αβLkC(ω − ω̂)− γω = γ1n×1ω
ref (5.29)

STω = 0n×1. (5.30)

As the rows of ST are orthonormal to 11×n, (5.30) implies that ω = c11n×1, where
c1 ∈ R. Substituting this in (5.29) yields

αβLkC(ω − ω̂)− γc11n×1 = γ1n×1ω
ref.

Since 1n×1 does not lie in the range of Lk, we conclude that c1 = ωref, implying
that (5.10) is satisëed. Furthermore (5.29) implies C(ω − ω̂) = c21n×1. e KKT
conditions Karush (1939) of the convex constrained optimization problem (5.12) are

Cu = Cα(ω − ω̂) = λ1n×1,

where λ is the Lagrange multiplier. Since the equilibrium of (5.28) implies the KKT
conditions, and the KKT conditions are necessary and sufficient optimality conditions,
the equilibrium pf (5.26) must be the optimal solution of (5.12).

Explicit sufficient stability criterion

While eorem 5.6 provides a relatively straightforward condition whether a given
set of parameters result in a stable system, it does not suggest how to stabilize an
unstable system. In the following section we give sufficient conditions for when A has
all eigenvalues except one in the left complex plane.
Theorem 5.7 A has exactly one zero eigenvalue, and all other eigenvalues in the left half
complex plane if the following conditions are satisíed

βλmax(LkCLk)m < α

(
βλmin

(
1
2
(LkCD+DCLk)

)
+ γ

)
·(

βλmin

(
1
2
(LkCM−1 +M−1CLk)

)
+ 1+

D
α

)

βλmin

(
1
2
(LkCD+ DCLk)

)
+ γ > 0

βλmin

(
1
2
(LkCM−1 +M−1CLk)

)
+ 1+

D
α

> 0

(5.31)

where m = minimi and D = miniDi.
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Remark 5.6 eorem 5.7 reveals some interesting qualitative rules of thumb when
designing the control parameters of (5.25). e maximum integral gain β is inversely
proportional to the minimum rotor mass m. Furthermore, there always exists β > 0,
such that the controller (5.25) stabilizes the power system.

Proof. e characteristic equation of A is given by:

0 =

∣∣∣∣∣∣∣
sIn + αβLkC 0n×n −αβLkC+ γIn

0n×n sIn −In
−αM −MLk sIn +M(D+αIn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
sIn + αβLkC 0n×n (γ + s)In

0n×n sIn −In
−αM −MLk sIn +MD)

∣∣∣∣∣∣∣
=

1
sn

∣∣∣∣∣∣∣
sIn+αβLkC 0n×n (γs+ s2)In

0n×n sIn 0n×n
−αM 0n×n s2In+sMD+MLk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
sIn+αβLkC 0n×n (γs+ s2)In

0n×n In 0n×n
−αM−sIn−αβLkC 0n×n sMD−sγIn+MLk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣sIn + αβLkC (γs+ s2)In
−αM s2In + sMD+MLk

∣∣∣∣∣
= det(−αM) det

[
In(γs+ s2) + (sIn + αβLkC)

1
α
M−1(s2In + sMD+MLk)

]
= det

(
βLkCLk + s(γIn +

1
α
Lk + βLkCD) +

s2(In +
1
α
D+ βLkCM−1) + s3

1
α
M−1

)
≜ detQ,

where we have used standard properties of determinants, see e.g., Silvester (2000). A
necessary condition for the above equation to have a solution is that ∃x : xTQ(s)x = 0.
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We may without loss of generality assume xTx = 1. Hence we consider

0 = xTQx = xT(βLkCLk)x︸ ︷︷ ︸
≜a0

+s xT
(
γIn +

1
α
Lk + βLkCD

)
x︸ ︷︷ ︸

≜a1

+ s2 xT
(
In +

1
α
D+ βLkCM−1

)
x︸ ︷︷ ︸

≜a2

+s3 xT
(
1
α
M−1

)
x︸ ︷︷ ︸

≜a3

. (5.32)

We distinguish between two cases. xTLkCLkx = 0, and xTLkCLkx ̸= 0. First consider
the case when xTLkCMLkx = 0. Equation (5.32) may now be written

sa1 + s2a2 + s3a3 = s(a1 + sa2 + s2a3) = 0.

e above equation has one solution s = 0, and two solutions s ∈ C− if and only if
ai > 0, i = 1, 2, 3 by the Routh-Hurwitz stability criterion. We now proceed with the
case when xTLkCLkx ̸= 0. Since xTLkCLkx ≥ 0, we must have that xTLkCLkx > 0.
e Routh-Hurwitz stability criterion is ai > 0 for i = 0, 1, 2, 3, and a0a3 < a1a2.
Clearly a0 > 0 and a3 > 0. Consider:

a1 = γ + xT
1
α
Lkx + xTβLkCDx.

Clearly xT 1
αLkx ≥ 0, and since xTβLkCDx = 1

2βx
T(LkCD+DCLk)x, we conclude

that a1 > 0 if

βλmin

(
1
2
(LkCD+DCLk)

)
+ γ > 0.

By similar arguments it can be shown that a2 > 0 if

βλmin

(
1
2
(LkCM−1 +M−1CLk)

)
+ 1+

D
α

> 0.

Finally the condition a0a3 < a1a2 can be guaranteed by bounding the left hand side
from above, and the right hand side from below. e following bounds are easily
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veriëed:

a0 ≤ βλmax(LkCLk)

a3 ≤
m
α

a1 ≥ βλmin

(
1
2
(LkCD+ DCLk)

)
+ γ

a2 ≥ βλmin

(
1
2
(LkCM−1 +M−1CLk)

)
+ 1+

D
α
.

By substituting ai, i = 0, 1, 2, 3 with the above bounds we obtain (5.31).

Example 1.5 (Frequency control of power systems — Optimal PI control) e
centralized and the distributed frequency control algorithms were tested on the IEEE
30 bus test system, illustrated in Figure 5.1. e line admittances were extracted from
the IEEE 30 bus test system and the voltages were assumed to be 132 kV for all
buses. M and D were set to reasonable numerical values. All buses were assumed to
be synchronous motors. e power system is initially in an operational equilibrium,
until the power load is increased by a step of 200 kW in the buses 2, 3 and 7. is will
immediately result in decreased frequencies at the load buses.e frequency controllers
at the buses will then control the frequencies towards the desired frequency ofωref = 50
Hz. When simulating the centralized controller the parameters were set to α = 5 ·104,
β = 5 ·10−11, γ = 0.02, while when simulating the decentralized control architecture
the parameters were α = 5 · 104, β = 5 · 10−6, γ = 0.2. e choice of parameters
was veriëed to stabilize the power system using eorems 5.7 and 5.5, respectively.

As seen in Figure 5.8, the centralized controller quickly regulates the bus fre-
quencies towards a common frequency, which is subsequently regulated towards the
reference frequency, whereas the distributed controller regulates the frequencies to a
frequency lower than the nominal frequency. As seen in Figure 5.9, the frequencies are
subsequently regulated towards the nominal frequency by the distributed controller.
Also both controllers asymptotically minimize the power generation costs, as seen in
Figure 5.10, while the distributed controller is notably slower than the centralized.

e centralized controller is able to regulate the system much faster because the
optimal generation proële is assumed to be known a priori, whereas it is unknown a
priori for the distributed controller. Calculation of the optimal generation proële by
(5.12) would require global knowledge of the current generation costC and the current
power demand Pm, as well as the static system parameters, including Lk and D. By
deëning an appropriate cost of a suboptimal power generation proële, this cost can
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we weighted against the investment costs of the new communication infrastructure
required to implement the centralized controller. Both the investment costs as well
as the control costs are in general system dependent, and may serve as a decision
making tool to determine if the investment in new communication infrastructure is
economically feasible.

Example 1.5 (Frequency control of power systems — Control under islanding)
Islanding refers to the event when one or several power transmission lines or other
components fail, rendering parts of the power system isolated from the remaining grid.
In this example we will study islanding of the IEEE 30 bus power system. In particular,
we will assume that all loads are initially zero. At time t = 0 s, the loads of the buses
2,3,7 and 30, as seen in in Figure 5.1, are set to 200 kW and all other loads remain
zero. At time t = 50 s, the power lines connecting bus 25 and 27, 6 and 28 as well
as 8 and 28, as seen in Figure 5.1, are disconnected. It is assumed that the centralized
controller cannot communicate with the isolated buses 27, 28, 29 and 30.

e two upper ëgures in Figure 5.11 show the frequencies and the power
generation at the buses when using the optimal centralized controller. Before the
islanding, all frequencies converge to the nominal frequency 50 HZ. However, after
the islanding, the centralized secondary frequency controller has no longer access
to frequency measurements from the isolated buses. As a result of power deëcit in
the isolated area, since the local controllers are only proportional controllers, the
frequencies in the isolated area immediately drop and stabilize at a value lower than
the nominal frequency.

e lower two ëgures in Figure 5.11 show the frequencies and the power generation
at the buses when using the optimal distributed controller.We note that the frequencies
converge to the nominal frequency before the islanding. Immediately after the island-
ing, the frequencies drop in the underpowered area and rise in the overpowered area.
e frequencies in both areas are however regulated towards the nominal frequency by
the distributed PI controllers.

In Figure 5.12, the power generation costs are shown when using the centralized
and distributed controller respectively. We see that the cost of power generation is
minimized in each isolated area by the distributed frequency controller, while the
centralized controller is suboptimal.
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5.6 Summary

In this section we have studied frequency control of electrical power systems. We have
proposed a centralized and a decentralized frequency controller which need only local
phase and frequencymeasurements.e proposed decentralized controller showed very
fast response in frequency regulation. However, having access only to local phase and
frequencymeasurements, the controllers were not optimal in terms of power generation
cost. To overcome this issue, we have introduced a centralized and a decentralized
frequency controller which asymptotically minimize a cost function of the power
generation. We have studied the stability of the proposed protocols, and derived
sufficient stability conditions based on eigenvalue problems and on scalar inequalities.
e controllers were simulated on the IEEE 30 bus test system. Simulations suggest
that the centralized controller can achieve faster convergence than the decentralized
controller. However, decentralized control possesses the advantage of not requiring
global knowledge of the state, nor of the system parameters.
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Figure 5.8 e ëgures show the transient performance of the centralized controller (5.13)
versus the performance of the distributed controller (5.25). e two upper ëgures show
the transient bus frequencies and control inputs of the centralized controller, while the
two lower ëgures show the transient bus frequencies and control inputs of the distributed
controller.
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Figure 5.9 e ëgures show the long term performance of the centralized controller (5.13)
versus the performance of the distributed controller (5.25). e two upper ëgures show
the transient bus frequencies and control inputs of the centralized controller, while the
two lower ëgures show the transient bus frequencies and control inputs of the distributed
controller.
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Figure 5.10 e upper ëgure shows the costs of the power generation of the buses when
using the centralized controller, while the lower ëgure shows the generation costs for the
decentralized controller.
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Figure 5.11 eupper two ëgures show the bus frequencies and control signals respectively
under the centralized optimal frequency controller, while the lower two ëgures show the
bus frequencies and control signals respectively under the distributed optimal frequency
controller.. At time t = 50 s, three transmission lines fail, dividing the power system into
two isolated parts.
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Figure 5.12 e upper ëgure shows the costs of the power generation of the buses when
using the optimal centralized controller, while the lower ëgure shows the generation costs
for the optimal distributed controller.





Chapter 6

Conclusions

Tis chapter concludes the thesis by summarizing the main results presented in
chapters 3–5, as well as discussing some interesting possible future research topics.

6.1 Summary

Distributed control with static nonlinear feedback

Distributed nonlinear feedback controllers have been presented formulti-agent systems
where the control objective of the agents is to reach a common state. In particular,
controllers that can be separated into a product of a nonlinear but positive gain
function, and a sum of nonlinear odd interaction functions of the relative states of
the relative states of the neighboring agents. We have shown by Lyapunov analysis
that the proposed controllers stabilize multi-agent systems with single- and double-
integrator dynamics. In the case when the agents’ dynamics are single-integrators the
agents converge to a common position, while in the case when the agents’ dynamics
are double integrators the agents converge to a point moving with a constant velocity.
In both cases, the agents ënal position and velocity, respectively, are determined by an
integral equation of only the agents’ gain functions.

Agents with double-integrator dynamics and state-dependent damping are also
considered. A distributed nonlinear controller, similar to the previously mentioned
controllers, is proposed. It is shown that the proposed controller stabilizes the multi-
agent system, and that the agents converge to a common point which is determined
by an integral equation of the damping coefficients.

e results have been applied to control of unmanned underwater vehicles, control
of autonomous space satellites and thermal energy storage in smart buildings, where
the validity and practical implications of the results are demonstrated by simulations.

81
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Distributed control with integral action

Distributed PI controllers have been presented for multi-agent systems where the
control objective of the agents is to reach a common state, in spite of constant
disturbances acting on the system. In particular, we have studied agents with single-
integrator dynamics and with damped double-integrator dynamics. We have derived
necessary and sufficient stability criteria for the proposed controllers by linear system
theory. In particular, PI controllers for agents with single-integrator dynamics were
shown to be stabilizing for any proportional and integral gains. PI controllers for agents
with double-integrator dynamics however, are only stabilizing if the integral gain is
lower that a threshold value, determined by the proportional gain and the damping
coefficient. Whenever the stability conditions are fulëlled, the agents converge to a
common point, despite the presence of constant disturbances.

e results have been applied to mobile robot coordination under disturbances.
e robots were modeled by double-integrator dynamics with damping. By the derived
results, the robots would fulëll the control objective even under constant disturbances
if and only if the integral gain of the PI controller is nonzero.

Frequency control of power systems

A centralized and a decentralized frequency controller have been proposed. e
centralized controller employs distributed P control, where the reference value is
determined by a central PI controller. e decentralized controller however employs
distributed PI control by frequency and phase measurements. Both the centralized and
the decentralized controller, when stabilizing, were shown to regulate the frequency of
the power system to the reference frequency under unknown load changes. Sufficient
stability criteria were derived in terms of the control parameters. Simulations show
equal performance of the two controllers with respect to frequency regulation.

A distributed and a novel centralized controller were also presented, by allowing
either communication or measurements between buses directly connected by power
lines. By the additional measurements, the distributed controller is able to regulate
the frequency of the power system to the reference frequency under unknown load
changes, while minimizing a cost function of the power generation. Sufficient stability
criteria for the proposed controllers were derived in terms of both the eigenvalues of the
linear systemmatrix, and the control parameters. Simulations show that the centralized
controller is able to perform faster than the distributed controller, while requiring a
good model and global state information.
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6.2 Future work

Many interesting open questions remain in the area of multi-agent systems. Many of
the results of Chapter 3 and 4 can most likely be extended to switching topologies
with standard connectivity assumptions, such as e.g., uniform joint connectivity. As
the Lyapunov function used in the proof of eorem 3.1 does not depend on the
edge set of the graph, it will be continuous under switching topologies. is allows
the results to be easily extended also to switching topologies. e Lyapunov functions
used in the proofs of eorem 3.2 and 3.3, where the dynamics are of second-order,
however depend on the graph topology. is may cause the Lyapunov function to
increase discontinuously at switching instances. To prove stability for the second-
order nonlinear dynamics, one would have to consider other Lyapunov functions,
which are independent of the graph topology. As for distributed PI-controllers, the
controllers must be deëned properly to function under switching topologies. Proving
stability would require a common Lyapunov function for all switching topologies. e
extension of the results of Chapter 3 and 4 to switching topologies would be of practical
importance, since the communication topology inmany of the motivating applications
cannot always be justiëed as static, even if this is true for instance for most power
transmission systems.

Integral action is often employed when there are unknown disturbances, constant
or time-varying. It would be of interest to study PI control of multi-agent systems
under time-varying disturbances. Also, distributed internal model control would be
an interesting option when the disturbance model is known but not necessary being
constant.

While none of the proposed controllers in this thesis are model-based, the stability
of the closed loop system depends on the model. Hence it would be interesting to study
the robustness of multi-agent systems under PI control with respect to model errors. In
this setting, it would also be of interest to study general interconnected linear systems.
It is well-known that integrators may suffer from windup due to saturation of the
control signal, seriously degrading the performance of the PI-controller. It is not clear
how windup may affect multi-agent systems with distributed PI-controllers. Hence,
it would be of interest to study the affects of integral windup in these systems, and
possible solutions such as e.g., distributed anti-windup schemes.

In the area of power systems, many interesting research questions remain open.
An interesting problem is whether the proposed distributed PI controllers for power
systems can be analyzed in the context of the nonlinear swing equation or possibly
more advanced power systemmodels, or not. Also, developing faster control algorithms
for optimal frequency control would also be a research topic of high priority. An
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interesting open research topic is whether it is possible to implement decentralized
frequency controllers which achieve both frequency regulation and power sharing
without communication between the buses.
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