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Sammanfattning

I reglering av multi-robot system är syftet att uppnå ett samordnat bete-
ende genom lokala interaktioner bland robotarna. Ett fleragentsystem är en
abstrakt modell av ett multi-robot system. I denna avhandling undersöks fle-
ragentsystem där kommunikationen mellan agenterna modelleras som tidsdis-
kreta händelser som utlöses av vilkor på agenternas inre tillstånd. Vi betraktar
två kommunikationsmodeller. I den första modellen utbyter två agenter direkt
information med varandra. I den andra modellen utbyts all information ge-
nom asynkron tillgång till ett gemensamt minne. Avhandlingens bidrag består
av fyra delar.

Det första bidraget är en händelsestyrd pinningregleringsalgoritm för ett
nätverk av agenter med olinjär dynamik och tidsvarierande topologi. Pin-
ningreglering är en strategi för att styra beteendet hos ett fleragentsystem
på ett önskat sätt genom att endast styra en liten del av agenterna. Vi ut-
trycker styrbarheten hos nätverket i form av ett medelvärde av nätverkskon-
nektiviteten över tiden, och vi visar att alla agenter kan drivas till en önskad
referenstrajektoria.

Det andra bidraget är en regleringsalgoritm för fleragentsystem där kom-
munikationen mellan agenterna är ersatt av ett gemensamt minne som är
installerat på ett moln. Kommunikationen mellan varje agent och molnet mo-
delleras som en följd av händelser som planeras rekursivt av agenten. Vi kvan-
tifierar nätverkets konnektivitet och vi visar att det är möjligt att synkronise-
ra fleragentsystemet till samma tillståndstrajektoria och att två på varandra
följande uppkopplingar till molnen av samma agent separeras av ett nedåt
begränsat tidsintervall.

Det tredje bidraget är en samling av distribuerade regulatorer för täcknings-
och övervakningsuppgifter med ett nätverk av mobila sensorer med anisotropa
sensormönster. Vi utvecklar en abstrakt modell av den inspekterade miljön
och definierar ett mått på den täckning som uppnås av sensornätverket. Vi
visar att nätverket uppnår gradvis förbättrad täckning, och vi karaktäriserar
nätverkets jämviktskonfigurationer.

Det fjärde bidraget är en distribuerad, molnbaserad regleringsalgoritm för
inspektion av 3D-strukturer med ett nätverk av mobila sensorer, som liknar
dem som betraktas i det tredje bidraget. Vi utvecklar en abstrakt modell av
strukturen som ska inspekteras och kvantifierar omfattningen av inspektio-
nen. Vi visar att nätverket enligt den föreslagna algoritmen är garanterat att
slutföra inspektionen inom begränsad tid.

Alla restultat som presenteras i avhandlingen bekräftas av numeriska si-
muleringar och ibland av experiment med flygrobotplattformar. Experimen-
ten visar att teorin och metoderna som utvecklas i avhandlingen är av praktisk
relevans.



Abstract

In control of multi-robot systems, the aim is to obtain a coordinated be-
havior through local interactions among the robots. A multi-agent system
is an abstract model of a multi-robot system. In this thesis, we investigate
multi-agent systems where inter-agent communication is modeled by discrete
events triggered by conditions on the internal state of the agents. We con-
sider two models of communication. In the first model, two agents exchange
information directly with each other. In the second model, all information
is exchanged asynchronously over a shared repository. Four contributions on
control algorithms for multi-agent systems are offered in the thesis.

The first contribution is an event-triggered pinning control algorithm for
a network of agents with nonlinear dynamics and time-varying topology. Pin-
ning control is a strategy to steer the behavior of the system in a desired
manner by controlling only a small fraction of the agents. We express the
controllability of the network in terms of an average value of the network
connectivity over time, and we show that all the agents can be driven to a
desired reference trajectory.

The second contribution is a control algorithm for multi-agent systems
where inter-agent communication is substituted with a shared remote repos-
itory hosted on a cloud. The communication between each agent and the
cloud is modeled as a sequence of events scheduled recursively by the agent.
We quantify the connectivity of the network and we show that it is possible to
synchronize the multi-agent system to the same state trajectory, while guar-
anteeing that two consecutive cloud accesses by the same agent are separated
by a lower-bounded time interval.

The third contribution is a family of distributed controllers for cover-
age and surveillance tasks with a network of mobile agents with anisotropic
sensing patterns. We develop an abstract model of the environment under
inspection and define a measure of the coverage attained by the sensor net-
work. We show that the network attains nondecreasing coverage, and we
characterize the equilibrium configurations of the network.

The fourth contribution is a distributed, cloud-supported control algo-
rithm for inspection of 3D structures with a network of mobile sensing agents,
similar to those considered in the third contribution. We develop an abstract
model of the structure to inspect and quantify the degree of completion of the
inspection. We demonstrate that, under the proposed algorithm, the network
is guaranteed to complete the inspection in finite time.

All results presented in the thesis are corroborated by numerical simu-
lations and sometimes by experiments with aerial robotic platforms. The
experiments show that the theory and methods developed in the thesis are of
practical relevance.
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Chapter 1

Introduction

La donzelletta vien dalla campagna
in sul calar del sole,
col suo fascio dell’erba; e reca in mano
un mazzolin di rose e viole,
onde, siccome suole,
ornare ella si appresta
dimani, al dì di festa, il petto e il crine.

G. Leopardi,
Il sabato del villaggio, vv 1–7.

A multi-robot system is a network of interconnected devices, where each device
is endowed with some sensing and actuation capabilities. This thesis is con-

cerned with the design, analysis and implementation of distributed algorithms to
obtain a coordinated collective behavior in a multi-robot system with only sparse
communication among the devices.

Throughout the thesis, we use the formalism of a multi-agent system as an abstract
model of a multi-robot system. A multi-agent system is composed of a set of
interconnected subsystems, or agents, where each subsystem is the abstract model
of a single robot. Roughly speaking, each agent is modeled by a set of differential
equations that describe its behavior and its interactions with the external world.

This chapter is dedicated to discussing the factors that motivate the research work
described in this thesis and to outlining the contents of the thesis. First, we il-
lustrate the need for distributed algorithms for coordination under limited com-
munication and the existence of technologies that enable the implementation of
these algorithms in real systems. Then, we give three specific examples of possible
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Chapter 1. Introduction

application domains for the control designs proposed in the thesis. Finally, we de-
scribe the contributions provided by the thesis, and we outline the contents of the
following chapters.

The rest of this chapter is organized as follows. In Section 1.1, we illustrate the
general motivations for the research work presented in the thesis. In Section 1.2,
we briefly discuss the modern technologies that enable the implementation of dis-
tributed algorithms of the type presented in the thesis. In Section 1.3, we discuss
three particular motivating applications for the research work described in the the-
sis. In Section 1.4, we formulate the research questions that are addressed in the
thesis. Finally, Section 1.5 gives a detailed outline of the thesis and a list of the
publications that the thesis is based on.

1.1 Motivation

Multi-agent systems are a powerful model to describe a wide array of phenomena in
nature, society and technology. This thesis is concerned with multi-agent systems
as a model for multi-robot systems, where each robot is modeled as a dynamical
system.

In each of Chapters 3 to 7, we illustrate a desired coordinated behavior for a multi-
robot system, and we design a distributed control algorithm that drives the robots
to attain that behavior.

Within the broad context of modern technological solutions, networks of intercon-
nected devices are ubiquitous. A few examples of systems that can be effectively
studied as multi-agent systems are: a fleet of Autonomous Underwater Vehicles
(AUVs) deployed on a seafloor mapping or exploration mission; a team of Un-
manned Autonomous Vehicles (UAVs) deployed on a surveillance, inspection, or
rescue mission; a platoon of autonomous heavy-duty vehicles transporting goods;
a set of mobile sensing agents deployed into an environment to locally measure a
specified quantity (such as temperature or humidity), and return a collective mea-
surement to the user. Each of these examples constitutes a motivating application
for the research work described in this thesis, and some of these applications are
discussed in detail in Section 1.3. It is worth noting that multi-agent systems can
be used to model also a variety of phenomena in biological and social sciences (such
as swarming, schooling, and social networks, to name just a few). However, these
applications are not directly considered in this thesis.

In most modern scenarios, communication among different devices in a network
occurs over a wireless medium with limited throughput. For this reason, assuming
that there is a continuous stream of information from one device to another is
often unrealistic. In this thesis, communication between agents is considered an
intermittent but instantaneous phenomenon. The amount of information that is
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1.2. Enabling technologies

passed from one agent to another on a single communication instance is limited.

Throughout the thesis, we consider two possible communication patterns. In the
first case, a device may exchange information directly with a subset of the other
devices in the network. This pattern is used in Chapters 3 and 6. In the second
case, a device may only exchange information with a remote repository hosted on a
cloud server. Hence, a device may only withdraw information about another device
if the latter has previously deposited such information in the cloud repository. This
pattern is used in Chapters 4, 5 and 7.

1.2 Enabling technologies

Thanks to the recent technological developments in computation and communica-
tion, networks of interconnected devices have permeated modern society.

The growing availability of small-scale, affordable, and general-purpose electronics
makes it increasingly easy to design and construct a network of interconnected de-
vices to perform some automated task. However, in spite of Moore’s law (Moore,
1965), small embedded microprocessors still have limited computational and com-
munication capabilities with respect to complex missions, such as surveillance or
inspection of a 3D structure. Therefore, it is crucial to design algorithms that
make an intelligent use of the computational resources of the device, as well as of
the throughput capacity of the communication medium.

There exist two main models of communication in real-world networks. In the first
model, all information sent by the devices is collected in a central server, which
then redistributes each piece of information to the target device or devices. In the
second model, information is sent from one device directly to another device. In
certain domains, such as telecommunications and signal processing, this model is
sometimes referred to as Device-to-Device (D2D). In computer science, it is often
referred to as Peer-to-Peer (P2P). Recently, the D2D model has been subject to
keen research attention: see for example Della Penda (2018) and references therein.
These two network models reflect closely the two communication patterns for multi-
agent systems that we consider in this thesis.

The most prominent example of a network of interconnected devices is probably the
Internet. The Internet can be seen as an infrastructure for information exchange
among computers. The topology of the information exchanges through the Internet
is in continuous evolution, but, in general, one may say that the Internet incorpo-
rates both the server model and the P2P model, with individual users relaying
information from a central server to each other. Several widespread commercial
applications, such as the Swedish music streaming service Spotify, use P2P systems
for video and audio distribution.

3



Chapter 1. Introduction

Figure 1.1: The research AUV Carl, developed at the KTH Centre for Naval Architecture.
Source: courtesy of the KTH Centre for Naval Architecture.

1.3 Illustrative examples

In this section, we discuss three motivating examples for our research. In each
example, we describe a multi-robot system that can be controlled by means of
intermittent communication, and we describe the related possible control objectives
and challenges.

Coordinated AUV navigation

AUVs are currently employed (with levels of automation varying from teleoperation
to autonomous navigation) in numerous applications, such as seafloor mapping, un-
derwater sampling, exploration, circumnavigation, search and rescue (Fiorelli et al.,
2006). Figure 1.1 shows a research platform capable of autonomous underwater
navigation developed by the KTH Centre for Naval Architecture.

In most realistic scenarios, it is desirable to deploy several AUVs at the same time,
so that the mission at hand can be completed in a shorter time frame. Moreover,
there exist some applications, such as target capturing, that structurally require
the use of multiple AUVs platforms.

Consider, for example, the problem of circumnavigating a target with a fleet of
AUVs. The target to circumnavigate may be a school of fish that is to be kept
under observation for a biological study. The motion of each vehicle needs to be
controlled by taking into account the possible motion of the school, but also the
whereabouts of the other vehicles in the fleet. Hence, the vehicles need to exchange
information about their positions and velocities. Moreover, the control action needs
to take into account possible interferences arising from marine currents or other

4



1.3. Illustrative examples

Figure 1.2: Schematic representation of a sea floor mapping mission with a fleet of AUV. In
order to perform a cooperative task, such as mapping the sea floor, the vehicles have to move
in a coordinated way. However, underwater communication is severely limited. Moreover,
GPS is not available underwater, and the vehicles have to surface whenever they need a GPS
position measurement. On the water surface, the vehicles have access to GPS and may also
communicate with a base station to deposit and retrieve data.

disturbances.

In the control of a single AUV, the challenges are usually related to modeling the
dynamics of the underwater navigation, compensating for the disturbances pro-
duced by the marine currents, localization, poor maneuverability, and optimization
of the fuel consumption. In particular, Global Positioning System (GPS) is usually
not available underwater, and localization is often obtained by means of odometry,
while letting the vehicle surface every now and then to receive a GPS position fix.
The challenges compound in the context of controlling a fleet. In fact, coordination
among the vehicles relies on their reciprocal exchange of feedback or some other
information. Underwater communication may be realized by means of acoustic
modems, but these are relatively expensive, short-ranged, and power-hungry. For
these reasons, it is essential to design control algorithms that require a sparse ex-
change of information between the vehicles. Intermittent communication should be
accounted for explicitly in the control design.

Another possible approach to cooperative AUV control is to let each vehicle surface
periodically to communicate with a base station. The base station may be used to
obtain localization information, but also as a shared repository to asynchronously

5



Chapter 1. Introduction

Figure 1.3: A modern wind power plant. Source: publicdomainpictures.net, Public Do-
main.

exchange information with the other vehicles. Figure 1.2 illustrates a schematic
of the envisioned scenario of a team of AUVs performing a cooperative seafloor
mapping mission, and attaining coordination by periodically reaching the surface
to access a shared information repository.

The coordination of a fleet of AUVs is the main motivating application to the
algorithms proposed in Chapters 4 and 5. More precisely, in Chapter 4 we study
the use of a cloud repository as a replacement to inter-agent communication for a
generic coordination objective. In Chapter 5, we specialize the control design to a
circumnavigation problem.

Surveillance and inspection of 3D structures with UAV networks
Figure 1.3 shows a modern wind power plant. Wind turbines are predicted to play
a crucial role in the future of power generation, and as such, they constitute an
area of growing interest for energy suppliers.

One of the most challenging aspects of power generation from wind turbines is
the inspection and maintenance of the power plants. In fact, the blades, (and,
more generally, all the higher parts) of a wind turbine are hardly accessible to

6
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1.3. Illustrative examples

Figure 1.4: Schematic representation of the inspection of a wind turbine with a team of
UAVs. The aerial robots need to inspect the whole surface of the turbine. A possible approach
is to have each UAV take up one part of the surface of the turbine. To attain the desired
coordination (that is, to decide which part of the turbine should be assigned to each robot) the
UAVs communicate over a wireless medium, which is a shared resource with limited capacity.
The robots also need to avoid collisions and counteract possible air currents. Different robots
may be equipped with different sensing hardware.

direct human observation, and a manual inspection requires trained manpower and
relatively dangerous maneuvers. As a consequence, the cost of performing periodic
inspection and maintenance of the turbines is currently a major disadvantage of
producing energy from wind. For these reasons, companies that supply energy
generated from wind turbines are looking with interest at solutions for automated
inspection and maintenance. UAVs, especially in the form of multi-copter robots,
constitute an ideal platform for such endeavors.

Currently, the development of UAVs platforms is remarkably fast-paced compared
to other branches of robotics, and new models with increased payload, autonomy
and maneuverability appear on the market virtually on a daily basis.

The use of teleoperated multicopters for inspection of industrial infrastructures
in hazardous contexts is already widespread: see for example the patents Williams
(2010), Haffner and Venkataraman (2012). Jordan et al. (2018) gives a recent survey
of available technologies for UAV inspection. Figure 1.4 illustrates the envisioned
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scenario of performing the inspection of a wind turbine with a team of UAVs. A
team of UAVs, ideally in the form of multicopter robots, constitutes the ideal plat-
form for this type of mission. However, the multicopter platforms that are currently
available for industrial inspection typically exhibit a limited level of autonomy be-
yond teleoperation, and they are meant to be used as standalone vehicles. The
design and implementation of algorithms for cooperative inspection missions with
multiple aerial platforms is the subject of keen research attention from the control
and robotics communities. The EU Project AEROWORKS (aeroworks2020.eu),
which has funded part of the work that this thesis is based on, is an example of a
recent research effort in the direction of collaborative autonomous aerial inspection
of wind turbines. The Swedish power supplier Skellefteå Kraft (SK) was a partner
in the project and provided the developers with realistic inspection scenarios for
development and testing.

When controlling a team of UAVs, coordination requires that the vehicles exchange
information. In all realistic scenarios, such communication is handled by small em-
bedded processors, and takes place over a wireless medium with limited throughput
capacity. Therefore, it is crucial to design and implement algorithms that are able to
attain the desired coordination with sparse, intermittent communication. Similarly
to AUV applications, communication may occur directly between two robots, or
asynchronously through a shared information repository hosted on a base station.

In this thesis, surveillance and inspection of 3D structures with a team of UAVs are
the main motivating applications to the algorithms presented in Chapters 6 and 7.
More precisely, the surveillance of a 3D structure with a team of autonomous mobile
sensing agents is considered in Chapter 6, while the inspection of a 3D structure is
considered in Chapter 7.

Automated platooning of heavy-duty vehicles

Heavy-Duty vehicles (HDVs) are responsible for a significant share of energy con-
sumption and greenhouse gas emissions on a global scale. Since the number of active
HDVs worldwide is correlated to economical growth, the environmental impact of
these vehicles is predicted to grow even further in the coming years.

By letting a set of heavy-duty vehicles drive in a line, with short inter-vehicle
distance, the aerodynamic drag applied to all vehicles but the first one in the line
can be significantly reduced, which may lead to lowering the fuel consumption by
up to ten percent. This technique is called platooning, and the vehicles that apply
it are called a platoon. Figure 1.5 portrays a platoon consisting of three HDVs.

Recently, platooning has been the subject of keen research interest in the field of
autonomous mobility (see for example Turri (2018) and references therein). A large
number of providers of transport solutions, such as the Swedish company Scania,
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1.3. Illustrative examples

Figure 1.5: A platoon of three HDVs. Source: Courtesy of Scania, license CC BY-NC-ND
3.0, https://creativecommons.org/licenses/by-nc-nd/3.0/.

are working to design and construct platforms that are capable of autonomous pla-
tooning (Scania AB, 2017). While autonomous platooning is promising in terms
of fuel efficiency, it also presents impending challenges with respect to safety, espe-
cially in relation to external traffic. For example, platoons are expected to drive on
public highways, where the presence of other vehicles cannot be neglected. More-
over, altitude changes have a significant impact on the motion of HDVs. Because
of their large mass and limited engine power, HDVs experience large longitudinal
forces in presence of slight slopes, which makes it hard to maintain a constant speed
when moving from an uphill to a downhill segment or viceversa. Additional chal-
lenges arise if one considers applications such as adding a vehicle to the platoon,
removing a vehicle from the platoon, or merging two different platoons.

A platoon of self-driving HDVs can be modeled as a multi-robot system, where the
desired coordinated behavior is to safely platoon while minimizing fuel consump-
tion. The vehicles need to exchange information about the trajectory to follow, and
about their relative distances and velocities. However, the information exchange
occurs over a shared wireless medium, which implies that communication may be
subject to delays and packet drops. Hence, it becomes crucial to develop coordina-
tion algorithms that offer some form of robustness to this kind of communication

9
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imperfections.

1.4 Problem formulation

This thesis is concerned with the design and implementation of algorithms that
attain a desired coordinated behavior in a multi-robot system by means of inter-
mittent communication. Communication may occur synchronously between agents,
or asynchronously by exchanging data on a shared repository. More specifically, we
consider benchmark coordinated behaviors such as synchronization (Chapters 3
and 4), formation (Chapter 5), coverage (Chapter 6), and inspection (Chapter 7).

We model a multi-robot system as a multi-agent system, where each agent is defined
by a set of differential equations that describe quantitatively the behavior of the
corresponding robot. Roughly speaking, the motion of each robot is modeled as
a continuous-time phenomenon, while a communication instance is modeled as an
instantaneous phenomenon.

The collective behavior of the multi-agent system is modeled in terms of an objective
function, which describes succinctly and quantitatively the degree of coordination
attained by the agents. The control design aims at optimizing, or at least im-
proving, the value of this objective function. Each agent is endowed with a local
controller that intermittently communicates with the controllers of the other agents.
We analyze the closed-loop system mathematically to demonstrate its convergence
properties, and we corroborate our theoretical results with numerical simulations.
In some cases, we also provide preliminary experimental evaluations on an UAV
platform.

The main challenges in attaining the coordination objectives reside in guarantee-
ing that the closed-loop system is well-posed (for example, that two consecutive
communication instances required to attain coordination are separated by a finite
time interval), and that the equilibrium configurations attained under the proposed
control designs exhibit satisfactory properties in terms of stability and robustness.

The overall thesis problem is broken down in the following four research questions.

Q1 How can we obtain leader-following synchronization in a network of nonlinear
agents by means of pairwise intermittent communication?

Q2 How can we coordinate a network of agents that can only exchange informa-
tion asynchronously using a shared cloud repository?

Q3 How can we deploy a set of mobile sensing agents to appropriate locations for
the surveillance of a 3D structure if the agents can only communicate pairwise
and intermittently?
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Q4 How can such mobile agents perform the inspection of a 3D structure if they
can only communicate asynchronously through a shared cloud repository?

1.5 Thesis outline and contributions

This thesis is a compilation of results presented in or submitted to peer-reviewed
journals and conferences. Chapter 2 illustrates some background notions and results
that are used in the thesis. Chapters 3 to 7 address specific problems in the area of
event-triggered or cloud-supported control of multi-robot system, and are based on
one or more peer-reviewed publications by the author of the thesis. Each of these
chapters is written to be relatively self-contained. Chapter 8 concludes the thesis
by providing a summary of the results and offering possible directions for future
work. A more detailed outline of the thesis is given as follows.

In Chapter 2, we provide a review of the background notions and results that are
used in the thesis. The topics included in this chapter are: graph theory, agreement
protocols, pinning control, hybrid systems, event-triggered control, coverage con-
trol, and effective coverage control. For each topic, we provide a few basic notions
and we review some of the most relevant related works available in the literature.
Most of the results that are mentioned in Chapter 2 are then used directly in the
rest of the thesis; some of them are not used directly, but they are included to give
a better picture of the topic.

In Chapter 3, we answer research question Q1. We consider the problem of synchro-
nizing a network of nonlinear systems by using an event-triggered pinning control
protocol. In particular, we consider networks with time-varying topologies, where
the agents are linearly coupled. We design a model-based and event-triggered pin-
ning control law, which drives the states of the agents to an a-priori specified,
common reference trajectory. We derive a set of sufficient conditions under which
the closed-loop system is well-posed, and the agents achieve exponential conver-
gence to the reference trajectory. Networks with static topologies are studied as a
special case, for which we also prove that there exists a lower bound for the inter-
event times in the sequences of updates of the control signals. Different than most
existing works on event-triggered multi-agent control, we envision an implementa-
tion of the control algorithm which does not require the agents to exchange state
measurements at each update time. The agents exchange state measurements only
when they establish their connection. When an agent updates its control signal to
a new value, it is required to broadcast its value to its neighbors in the network.
In this way, it is possible for neighboring agents to predict the state of each other
consistently. The theoretical results are corroborated by numerical simulations.

Chapter 3 is based on the following publications.
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A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Bernardo,
and K. H. Johansson. Event-triggered pinning control of complex net-
works with switching topologies. IEEE Conference on Decision and
Control, 2014.
A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Bernardo,
and K. H. Johansson. Event-triggered pinning control of switching net-
works. IEEE Transactions on Control of Network Systems, 2(2):204–
213, 2015a.

In Chapter 4, we answer research question Q2. We consider the problem of coor-
dinating a team of second-order dynamical systems through the use of a remote
information repository hosted on a cloud, which removes the need for direct inter-
agent communication. Each agent schedules its own accesses independently, and
does not need to be alert for information broadcast by other agents. When an
agent accesses the repository, it uploads some data packets, and downloads other
packets that were previously deposited by other agents. Therefore, each agent re-
ceives outdated information about the state of the other agents. The control law
and the rule for scheduling the cloud accesses are designed to guarantee that the
closed-loop system is well-posed and achieves a given coordination objective, even if
each agent receives only outdated information about the state of the other agents.
Our motivating example is a waypoint generation algorithm for AUVs, which, as
described above, represent a challenging application, since underwater communi-
cation is interdicted. We demonstrate analytically that the closed-loop system is
well-posed and reaches the desired coordination objective. The theoretical results
are corroborated by numerical simulations.

Chapter 4 is based on the following publications.

A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson. Con-
trol of multi-agent systems with event-triggered cloud access. European
Control Conference, 2015b.
A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson. Multi-
agent trajectory tracking with event-triggered cloud access. IEEE Con-
ference on Decision and Control, 2016.
A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson. Co-
ordination of multi-agent systems with intermittent access to a cloud
repository. T. I. Fossen, K. Y. Pettersen, and H. Nijmeijer, editors,
Sensing and Control for Autonomous Vehicles: Applications to Land,
Water and Air Vehicles. Springer, 2017b.
A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson. Cloud-
supported formation control of second-order multi-agent systems. IEEE
Transactions on Control of Network Systems, Online, 2017c.
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In Chapter 5, we further investigate research question Q2 with respect to a specific
coordination behavior. Namely, we consider the problem of tracking and circum-
navigating a target with unknown position through a network of autonomous mobile
agents. The agents have access to intermittent measurements of the bearing of the
target, and can also exchange data by asynchronously accessing a remote repository
hosted on a cloud. First, we define mathematically the desired circumnavigation
objective. Then, we design an event-triggered rule by which the agents perform
the bearing measurements, and a self-triggered, recursive rule by which the agents
schedule their accesses to the cloud repository. The information obtained from the
measurements and from the cloud is used to steer the motion of each agent accord-
ing to an appropriately designed control law. We show that, with the proposed
controller, and under the proposed rules for triggering the bearing measurements
and the cloud accesses, the closed-loop system is well-posed and attains the desired
circumnavigation objective. We corroborate our theoretical results with a numer-
ical simulation. We also present an experimental setup to validate the proposed
algorithm.

Chapter 5 is based on the following publications.

A. Boccia, A. Adaldo, D. V. Dimarogonas, M. di Bernardo, and K. H.
Johansson. Tracking a mobile target by multi-robot circumnavigation
using bearing measurements. IEEE Conference on Decision and Con-
trol, 2017.

C. Cavaliere, D. Mariniello, A. Adaldo, F. Lo Iudice, D. V. Dimarogonas,
K. H. Johansson, and M. di Bernardo. Cloud-supported self-triggered
control for multi-agent circumnavigation. Submitted to the IEEE Con-
ference on Decision and Control, 2018.

In Chapter 6, we answer research question Q3. We study a coverage problem for a
network of mobile sensing agents with anisotropic and heterogeneous sensing pat-
terns. The environment to cover is abstracted into a finite set of landmarks, where
each landmark constitutes a point or small area of interest within the environment.
We redefine the well-known notion of Voronoi tessellation to account for anisotropic
patterns and discretized environments. With these premises, we define a distributed
algorithm for coverage where communication is limited, pairwise, intermittent and
asynchronous. We demonstrate the convergence properties of the proposed algo-
rithm mathematically, and we corroborate the theoretical results with numerical
simulations. We also illustrate two experimental implementations of the proposed
algorithm that employ an AUV as a sensing agent.

Chapter 6 is based on the following publications.
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A. Adaldo, D. V. Dimarogonas, and K. H. Johansson. Hybrid coverage
and inspection control for anisotropic mobile sensor teams. IFAC World
Congress, 2017a.
A. Adaldo, S. S. Mansouri, C. Kanellakis, D. V. Dimarogonas, K. H. Jo-
hansson, and G. Nikolakopoulos. Cooperative coverage for surveillance
of 3D structures. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2017d.

In Chapter 7, we answer research question Q4. Namely, we consider an effective
coverage problem (i.e., an inspection problem) for a network of mobile sensing
agents exchanging information on a cloud repository. We use a similar system
model as in Chapter 6, where each agent is described in terms of its kinematics and
sensing pattern, while the environment to inspect is abstracted into a finite set of
landmarks. Inter-agent communication is completely replaced by communication
over a cloud. The cloud is modeled as a shared information repository which receives
asynchronous and partial information about the progress of the inspection, but has
no computational power. As a motivating example, we consider the inspection
of a 3D structure abstracted into a finite set of landmarks, where each landmark
carries information about the local curvature of the surface. The algorithm is
formally shown to complete the inspection in finite time. The theoretical results
are corroborated by a simulation, and we also illustrate the setup for a preliminary
experimental evaluation.

Chapter 7 is based on the following publication.

A. Adaldo, D. V. Dimarogonas, and K. H. Johansson. Cloud-supported
effective coverage of 3D structures. European Control Conference, 2018.

In Chapter 8, we present a summary of the results described in the thesis, and we
discuss possible directions for future research. Overall conclusions are drawn first;
then, the results obtained in Chapters 3 to 7 are reviewed. Finally, possible future
developments are outlined.

The following publications do not correspond directly to any technical content in
this thesis, but they are relevant to the endeavors considered therein.

J. Wei, S. Zhang, A. Adaldo, X. Hu, and K. H. Johansson. Finite-time
attitude synchronization with a discontinuous protocol. IEEE Interna-
tional Conference on Control & Automation (ICCA), 2017b.
J. Wei, S. Zhang, A. Adaldo, J. Thunberg, X. Hu, and K. H. Johansson.
Finite-time attitude synchronization with a distributed discontinuous
protocol. IEEE Transactions on Automatic Control, Online, 2018.
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For each of the listed publications, the order of the authors reflects their contri-
bution, in the sense that the first authors have contributed more directly to the
control design and to the writing of the paper, while the last authors have taken
a supervisory role. Where listed as the first author of a publication, the author of
this thesis has contributed the control design, the numerical simulations, and ei-
ther the majority or all of the writing. The experiments described in Adaldo et al.
(2017d) have been performed by the coauthors affiliated with Luleå University of
Technology (LTU). In Wei et al. (2017b, 2018), the author of this thesis has con-
tributed actively to the control design, but to a smaller extent to the writing of the
papers. In Boccia et al. (2017), Cavaliere et al. (2018), the author of this thesis
has supervised the control design and participated actively to the writing of the
papers.
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Chapter 2

Background

Siede con le vicine
su la scala a filar la vecchierella,
incontro là dove si perde il giorno;
e novellando vien del suo buon tempo,
quando ai dì della festa ella si ornava,
ed ancor sana e snella
solea danzar la sera intra di quei
ch’ebbe compagni nell’età più bella.

G. Leopardi,
Il sabato del villaggio, vv 8–14.

In this chapter, we review some of the existing research work that has offered the
theoretical grounds to this thesis. For each topic that we touch, we give some

fundamental notions and recall some of the most well-known research works related
to that topic.

The rest of this chapter is organized as follows. In Section 2.1, we present some
fundamental notions in graph theory. In Section 2.2, we describe the consensus
problem. In Section 2.3, we introduce the pinning control problem. In Section 2.4,
we recall some fundamental notions related to hybrid systems. In Section 2.5, we
describe the main ideas related to triggered control. In Section 2.6, we describe the
coverage problem for multi-agent systems in its classical formulation. Finally, in
Section 2.7, we describe the effective coverage problem for multi-agent system.
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Figure 2.1: Illustration of a graph with N = 4 nodes and M = 5 edges.

2.1 Graph theory

Graph theory is an important tool in the study of multi-agent systems, because, in
many cases of interest, a graph constitutes a convenient abstraction for a group of
interconnected systems. The interested reader will find a comprehensive treatment
in Newman (2010), Gould (2012), Dietsel (2016) among others. A more concise
introduction to graph theory, with special focus on its use in the study analysis of
multi-agent systems, is found in Mesbahi and Egerstedt (2010). In this section, we
present only a few selected notions that we will use in Chapters 3 to 5.

In this thesis, a graph is defined as a tuple G = (V, E , w). V is a finite set, and its
elements are called the vertexes of the graph. Although any objects may be used as
vertexes, in the context of multi-agent systems it is common to take V = {1, . . . , N}
and let each vertex index one agent in the system. E = {e1, . . . , eM} is a proper
subset of V ×V, with the condition (i, i) /∈ E for all i ∈ V. The elements of E are
called the edges of the graph. We let M be the number of edges in the graph, and
we let the edges be indexed with the integers from 1 to M in any order. Moreover,
we let ek denote the kth edge. Each edge (j, i) represents some form of information
flow from agent j to agent i. Finally, w : E → R>0 is called the weight function
of the graph, with w(j, i) being the weight of edge (j, i). With a slight abuse of
notation, the weight of edge (j, i) is also denoted wji. The weight wji of an edge
(j, i) represents the strength of the influence that agent j has on agent i.

Usually, a graph is drawn by representing each node as a circle, and each edge as
an arrow from one node to another. Namely, if (j, i) ∈ E , then an arrow is drawn
from node j to node i. Each node is labeled with its cardinality, and each edge is
labeled with its cardinality and weight. For example, Figure 2.1 illustrates a graph
with N = 4 nodes and M = 5 edges.

The set N i = {j ∈ V : (j, i) ∈ E} is called the neighborhood of vertex i, and the
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vertexes j ∈ Ni are called the neighbors of i. The degree di of a vertex i is defined
as the sum of the weights of its neighbors, di =

∑
j∈Ni w(j, i). The N -by-N matrix

A such that Aij = w(j, i) is called the adjacency matrix of the graph. The N -by-N
diagonal matrix D such that Dii = di is called the degree matrix of the graph. The
N -by-N matrix L = D − A is called the Laplacian of the graph. Since all rows
of the Laplacian sum to zero, 1N is always an eigenvector of the Laplacian with
eigenvalue zero. For example, for the graph in Figure 2.1, we have:

A =


0 0 1 0
1 0 0 2
0 2 0 0
0 0 1 0

 ; (2.1)

D = diag(1, 3, 2, 1); (2.2)

L =


1 0 −1 0
−1 3 0 −2
0 −2 2 0
0 0 −1 1

 . (2.3)

The N -by-M matrix B such that, for each edge ek = (j, i) we have Bik = 1,
Bjk = 1, and Bvk = 0 for all v /∈ {i, j}, is called the incidence matrix of the graph.
The N -by-M matrix W such that for each edge ek = (j, i) we have Wik = wji and
Wvk = 0 for all v 6= i is called the weight in-incidence matrix. For example, for the
graph in Figure 2.1, we have:

B =


−1 0 0 1 0
1 −1 0 0 1
0 1 −1 −1 0
0 0 1 0 −1

 ; (2.4a)

W =


0 0 0 1.0 0

1.0 0 0 0 2.0
0 2.0 0 0 0
0 0 1.0 0 0

 . (2.4b)

One can verify that, for any graph, L = WBᵀ.

Given two distinct vertexes j and i, a path from j to i is a finite sequence of distinct
vertexes v0, v1, . . . , v` such that v0 = j and v` = i. A subset T of the edges is called
a spanning tree if it has the following properties: (i) there exists a vertex r such that
there exist paths from r to all other vertexes made up of edges in T ; (ii) property
(i) does not hold for any proper subset of T . The vertex r is called the root of
the spanning tree. For example, for the graph in Figure 2.1, T = {e1, e2, e3} is a
spanning tree.

Proposition 2.1. A spanning tree contains exactly N − 1 edges.
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Proposition 2.2. If a graph contains a spanning tree, then the algebraic multi-
plicity of the zero eigenvalue of the Laplacian is 1, and all other eigenvalues have
positive real parts.

Suppose that a graph contains a spanning tree. Without loss of generality, we
let the edges be indexed as so that the first N − 1 edges constitute the spanning
tree. Accordingly, partition the incidence matrix as B = [BT BC ] and the weight-
incidence matrix as W = [WT WC ].

Proposition 2.3. Given a spanning tree T , the matrix BT is full column-rank
N − 1.

Since BT is full column rank, it has an unique left pseudoinverse, which we denote
as B†T . Moreover, we denote T = B†T BC . The (N − 1)-by-(N − 1) matrix R =
BT (WT +WCT

ᵀ) is called the reduced edge Laplacian of the graph.

Proposition 2.4. If a graph contains a spanning tree, all eigenvalues of the re-
duced edge Laplacian have positive real parts, and they coincide, including their
multiplicities, with the nonzero eigenvalues of the Laplacian.

A graph is called undirected if, for all (i, j) ∈ V2, it holds that (j, i) ∈ E ⇐⇒
(i, j) ∈ E and w(j, i) = w(i, j) for all (j, i) ∈ E . The Laplacian of an undirected
graph is symmetric, and therefore it has real eigenvalues.

2.2 Consensus

Consensus is a benchmark problem within the broader field multi-agent systems,
and may serve as an abstract model for a wide variety of coordination behaviors.
Consensus is a problem of distributed computation, where a set of autonomous
agents with limited communication capabilities are required to reach some form
of coordination. Typical examples are: a team of mobile robots that are required
to meet at the same point in space; a set of sensors that are required to average
their measurements to present a single measurement to the user; a set of oscillators
that are required to synchronize their oscillations. Consensus problems are usually
formulated in terms of graphs, with each node corresponding to an agent, and each
edge corresponding to a communication channel, or an information flow, between
two agents.

The appearance of the consensus problem in the engineering literature may be
traced back to DeGroot (1974), where the author analyzes a consensus-like behavior
in the context of opinion dynamics in a social network. Consensus has attracted
an immense amount of research in the past few decades, and an exhaustive review
of the related results is out of the scope of this thesis. Let us recall the pioneering
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works of Pecora and Carroll (1990), Carroll and Pecora (1991); the later studies
from Pecora et al. (1997), Pecora and Carroll (1998), Watts and Strogatz (1998),
Strogatz (2000), Barahona and Pecora (2002), Acebron et al. (2005) on network
synchronization; the use of consensus strategies for coordination of networks of
autonomous vehicles from Olfati-Saber (2006), Ren (2006, 2007), Ren and Beard
(2008); and the use of gossip algorithms to reach consensus in a network system
from Boyd et al. (2006), Aysal et al. (2009), Carli et al. (2010). Recently, Wei
et al. (2017a) have studied consensus algorithms in networks with arbitrary sign-
preserving nonlinearities.

The interested reader will find a modern overview of the main consensus problems
and the corresponding resolving algorithms in Olfati-Saber et al. (2007). Here we
present only a few selected definitions and results that will be used in Chapters 3
to 5.

Consider a network of N agents, and let xi(t) ∈ Rn be the value held by the ith
agent at time t. We say that the network achieves asymptotic consensus if

lim
t→∞

(xi(t)− xj(t)) = 0n ∀(i, j) ∈ {1, . . . , N}2. (2.5)

Moreover, given ε > 0, we say that the agents achieve practical consensus with
tolerance ε if

lim sup
t→∞

‖xi(t)− xj(t)‖ ≤ ε ∀(i, j) ∈ {1, . . . , N}2. (2.6)

Diffusive coupling is a simple consensus algorithm based on updating the value held
by one agent according to its difference with the values held by a subset of the other
agents. Considering a graph G = (V, E , w) with V = {1, . . . , N}, diffusive coupling
can be written as

ẋi(t) =
∑
j∈N i

wij(xj(t)− xi(t)) ∀i ∈ V . (2.7)

Denoting x(t) = [x1(t)ᵀ, . . . , xN (t)ᵀ]ᵀ, the diffusive coupling equation (2.7) can be
written compactly as

ẋ(t) = −(L⊗ In)x(t), (2.8)

where L is the Laplacian of the graph, and ⊗ denotes the Kronecker product.
A fundamental result in consensus theory states that diffusive coupling attains
asymptotic consensus from any initial conditions as long as the underlying graph
contains a spanning tree. This result can be elicited easily if we rewrite the diffusive
coupling equation in terms of the reduced edge Laplacian. Namely, we left-multiply

21



Chapter 2. Background

both sides of (2.8) by Bᵀ
T ⊗ In, and we recall that

L =WBᵀ

=WT B
ᵀ
T +WCB

ᵀ
C

=WT B
ᵀ
T +WC(BT T )ᵀ

=(WT +WCT
ᵀ)Bᵀ

T .

(2.9)

Then, we can rewrite (2.8) as

(Bᵀ
T ⊗ In)ẋ(t) =− (Bᵀ

T ⊗ In)((WT +WCT
ᵀ)Bᵀ

T ⊗ In)x(t),

=− (R⊗ In)(Bᵀ
T ⊗ In)x(t).

(2.10)

Since −R is Hurwitz, from (2.10) we know that (Bᵀ
T ⊗ In)x(t) must converge to

the zero vector exponentially. However, since BT refers to the edges in a spanning
tree, for any two nodes i, j, the difference xj(t) − xi(t) can be written as a linear
combination of entries of (BT ⊗ In)x(t). Hence, for any (i, j) ∈ V2, xj(t) − xi(t)
must converge to zero exponentially. This result can be formalized as follows.

Proposition 2.5. Consider N networked agents with dynamics (2.7). If the un-
derlying graph contains a spanning tree, the agents attain asymptotic consensus.
Moreover, for each (i, j) ∈ V2 there exists αij > 0 such that

‖xi(t)− xj(t)‖ ≤ αij e−ρt, (2.11)

where ρ = min{Re(λ) : λ ∈ eig(R)}, and R is the reduced edge Laplacian of G.
Here, Re(λ) denotes the real part of λ, which may be a complex number.

When the agents are subject to additive, bounded disturbances, a similar result
to proposition 2.5 can be formulated establishing that the agents attain practical
consensus.

Proposition 2.6. Consider N networked agents with dynamics ẋi(t) = ui(t) +
di(t), where ui(t) is a control input and di(t) is a disturbance input. Let the agents
be connected over a graph G = (V, E , w), and let the control inputs be computed as
diffusive couplings ui(t) =

∑
j∈N i wij(xj(t)−xi(t)). Let the disturbances be bounded

as ‖di(t)‖ ≤ ςi,0 e−λςt +ςi,∞, where ςi,0, ςi,∞ are positive constants for each i ∈ V,
and λς is a positive constant. If G contains a spanning tree, then the network attains
practical consensus with a tolerance that depends only on G and on the parameters
ς1,∞, . . . , ςN,∞. Moreover, if ςi,∞ = 0 for all i ∈ V, then, for each (i, j) ∈ V2, there
exists αij > 0 such that

‖xi(t)− xj(t)‖ ≤ αij e−ρt, (2.12)

where ρ = min({Re(λ) : λ ∈ eig(R)} ∪ λς), and R is the reduced edge Laplacian of
G.
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2.3 Pinning control

Pinning control is a particular consensus problem where one wants a set of agents
to synchronize onto a given reference trajectory by exploiting the interconnections
among the agents, rather than controlling each individual agent. The agents that
receive direct feedback from the reference are said to be pinned.

The origins of pinning control can be traced back to Grigoriev et al. (1997), where
the authors propose a pinning strategy to synchronize a network of chaotic oscil-
lators. Pinning control received plenty of research attention towards the turn of
the century, and here we only recall a few of the related works. Wang and Chen
(2002) study how the selection of the pinned agents affects the controllability of
the network. Li et al. (2004) investigate stabilization of multi-agent systems via
pinning control. Porfiri and di Bernardo (2008) introduce the concept of pinning
controllability of a multi-agent system, and they introduce several criteria to as-
sess this property. Wu et al. (2009) apply pinning control to a problem of cluster
synchronization, which means that the agents are divided into subsets and each
subset is required to synchronize onto a different trajectory than the others. (Song
et al., 2010) apply pinning control to a leader-following problem for a network of
second-order systems. (Liu et al., 2011) study how the minimum number of pinned
nodes that is necessary to control the network varies depending on the network
topology.

Formally, the control objective of a pinning control problem can be written as

lim
t→∞

(xi(t)− r(t)) = 0n ∀i ∈ {1, . . . , N}, (2.13)

where r(t) ∈ Rn is a given reference trajectory. Pinning control algorithms usually
consist in controlling a small subset of the agents directly, while relying on the in-
terconnections to steer the other agents. Suppose that the reference trajectory r(t)
satisfies ṙ(t) = f(r(t)), and that the agents have dynamics ẋi(t) = f(xi(t)) + ui(t),
where ui(t) is a control signal. Moreover, suppose that the agents are connected
according to a graph G = (V, E , w). Then, a simple pinning control algorithm is

ui(t) = pi(r(t)− xi(t)) +
∑
j∈N i

wij(xj(t)− xi(t)), (2.14)

where pi > 0 if the ith agent is controlled directly, and pi = 0 otherwise. Whether
algorithm (2.14) achieves control objective (2.13) depends on the network topology
and on the dynamics f of the agents.

2.4 Hybrid systems

Hybrid systems are a powerful formalism to model dynamical systems that exhibit
continuous-time dynamics as well as instantaneous phenomena. The origins of this

23



Chapter 2. Background

formalism can be traced back to Witsenhausen (1966). Since then, a large number
of hybrid system models have been proposed, and giving an exhaustive account
is out of the scope of this thesis. Notable reference books for hybrid systems are
van der Shaft and Schumacher (2000), Goebel et al. (2012).

In this thesis, we follow the hybrid-system model presented in Goebel et al. (2012).
According to this model, a hybrid system is a tuple

H = (C,F,D,G). (2.15)

C ⊆ Rn is called the flow set, F : C → 2Rn is called the flow map, D ⊆ Rn is
called the jump set, and G : D → 2Rn is called the jump map. Roughly speaking, F
describes the continuous dynamics (i.e., the flow) of the system, while G describes
the instantaneous phenomena (i.e., the jumps). When dealing with hybrid system,
the ordinary concept of time as a scalar variable needs to be abandoned in favor of
a construct that captures both flow and jumps.

A hybrid time domain Θ is a (finite or infinite) sequence of intervals Ik = [tk, tk+1],
with k ∈ {0, 1, . . .} and tk ≤ tk+1. If the sequence is finite, then the last interval
may be finite or extend to infinity to the right. The index k functions as a jump
counter: the interval Ik happens between the kth and the (k+ 1)th jump. A value
in a hybrid time domain is completely specified by a tuple (t, k), with t ∈ Ik and
k ∈ {0, 1, . . .}. Therefore, we write with abuse of notation (t, k) ∈ Θ to mean that
t ∈ Ik, where Ik is the kth interval of the hybrid time domain Θ. We define the
following two operators on a hybrid time domain:

sup
t

Θ = sup{t ∈ R≥0 : ∃k ∈ N : (t, k) ∈ Θ}; (2.16a)

sup
k

Θ = sup{j ∈ N : ∃t ∈ R≥0 : (t, k) ∈ Θ}. (2.16b)

A hybrid time domain Θ is said to be complete if either supt Θ or supk Θ is infinite;
it is said to be Zeno if supt Θ is finite and supk Θ is infinite.

Note that a hybrid time domain is completely defined by the sequence {tk} of its
jump times. (The sequence includes infinity if the last interval extends to infinity
to the right.) Therefore, we can introduce the notion of union of two hybrid time
domains.

Definition 2.1. Let Θ1,Θ2 be two hybrid time domains. The union of Θ1 and Θ2

is defined as the hybrid time domain whose jump times are the union of the jump
times of Θ1 and the jump times of Θ2. (Infinity is counted once, if present in either
of the two sequences.) The union of three or more hybrid time domains is defined
associatively from the union of two time domains.

Proposition 2.7. The union of any finite number of hybrid time domains is Zeno
if and only if one or more of the hybrid time domains is Zeno.
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A hybrid arc is a function x : Θ → Rn, where Θ is a hybrid time domain, with
the property that, in each interval Ik of Θ, the function x(·, k) is locally absolutely
continuous. This property implies that x(·, k) is differentiable almost everywhere
in Ik, and we denote its derivative as ẋ(·, k). A hybrid arc is said to be complete
(respectively, Zeno) if its domain is complete (respectively, Zeno); it is said to be
precompact if it is complete and its range is bounded.

A solution of a hybrid system is a hybrid arc x : Θ → Rn with the following
properties: (i) x(t, k) ∈ C for all t ∈ Int Ik; (ii) ẋ(t, k) ∈ F (x(t, k)) for almost all
t ∈ Ik; (iii) for all (t, k) ∈ Θ such that (t, k + 1) ∈ Θ, it holds that x(t, k) ∈ D and
x(t, k + 1) ∈ G(x(t, k)).

The analysis of Zeno solutions in hybrid systems has received special research at-
tention. When the hybrid system is a model of a closed-loop control system, Zeno
solutions are considered an undesired phenomenon, because they often imply that
the time interval between two consecutive control updates converges to zero. In fact,
one sometimes says that a hybrid system that admits one or more Zeno solutions
is not well posed. Among the numerous works that study the Zeno phenomenon,
we refer the reader to Johansson et al. (1999), Heymann et al. (2005).

The following result constitutes a generalization of LaSalle’s invariance principle to
hybrid systems.

Proposition 2.8 (Corollary 8.4 in Goebel et al. (2012)). Given a hybrid system
(2.15), consider a function V : Rn → R, continuously differentiable in a neighbor-
hood of C. Consider also the functions

uC(x) =

{
maxv∈F (x)∇V (x)ᵀv if x ∈ C,
−∞ otherwise,

(2.17a)

uD(x) =

{
maxξ∈G(x) V (ξ)− V (x) if x ∈ D,
−∞ otherwise,

(2.17b)

where ∇V denotes the gradient of V . Suppose that, for a given set U ⊂ Rn, it holds
that uC(z) ≤ 0 and uD(z) ≤ 0 for all z ∈ U . Consider a precompact solution x of H
with rgex ⊂ U . Then, for some r ∈ V (U), the set V −1(r)∩U ∩ (u−1

C (0)∪ (u−1
D (0)∩

G(u−1
D (0)))) has at least one invariant subset, and x converges to the largest such

subset.

Hybrid automaton are a special class of hybrid systems. For a more detailed in-
troduction to hybrid automata, the interested reader is referred to Lygeros et al.
(2003). Since a hybrid automaton is also a hybrid system as defined by (2.15), there
is a procedure to rewrite any hybrid automaton to the form (2.15). The interested
reader will find the procedure in Goebel et al. (2012, Chapter 1).
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A hybrid automaton is written as a tuple

H = (Q,X, I, F,D,E,G,R), (2.18)

where: Q = {q1, q2, . . .} is a set of discrete states; X ⊂ Rn is a continuous state
space; I ⊆ Q × X is a set of possible initial states; F : Q × X → X is a set of
vector fields, with f(q, x) being the dynamics of x under state q; D : Q→ 2X is a
set of domains, with D(q) being the domain under state q; E :⊆ Q×Q is a set of
edges, with (q1, q2) ∈ E signifying a possible transition from state q1 to state q2;
G : E → 2X is a set of guards, meaning that x ∈ G1,2 triggers a transition from
q1 to q2; R : E ×X → 2X is a set of reset maps, meaning that, upon a transition
from q1 to q2, the continuous state x of the system is reset to a value in R1,2(x).
A hybrid automaton can be represented as a graph, where each node represents a
discrete state and each edge represents a transition. Each node is labeled with the
corresponding vector field, while each edge is labeled with the corresponding guard
and reset map. If the reset map for an edge (q1, q2) is not specified, it is implied
that R1,2(x) = x for all x ∈ G1,2. Initial discrete states are labeled with a start
flag.

2.5 Event-triggered control

Event-triggered control is a control strategy where the control input is recomputed
only when a specified condition is verified. Event-triggered control strategies can
be used to reduce variations in the control input, which are usually associated to
actuator wear, or to reduce communication between different parts of a control
system. Given a controller in the form

u(t) = κ(x(t)), (2.19)

with x(t) ∈ Rn and u(t) ∈ Rm, a possible event-triggered implementation is

u(t) = κ(x(tk)) ∀t ∈ [tk, tk+1), (2.20a)
tk+1 = inf{t > ti,k : σk(t) ≥ 0}, (2.20b)

where σk(t) is the function that triggers the control updates. For example, the
threshold function could be chosen as

σk(t) = ‖x(t)− x(tk)‖ − ε, (2.21)

with ε > 0. In this case, the event-triggered design invokes a control update every
time that the difference between the current state x(t) and the state x(tk) used in
the controller has overcome the chosen threshold ε.

Event-triggered control is particularly appealing in the contexts of networked con-
trol systems and multi-agent systems. In a networked control system, sensing,
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control and actuation may reside in different physical locations, and need to com-
municate wireless: because the wireless channel has limited bandwidth, it is desir-
able to reduce the amount of information that needs to circulate among different
devices. Similarly, in a multi-agent system it is desirable to reduce the amount of
information that needs to be exchanged between different agents.

Event-triggered control is usually considered in opposition to periodic control, where
the control updates are triggered periodically, and which has been–for several
decades–the standard technique for implementing feedback control on digital plat-
form.

It is possible to further distinguish between event-triggered and self-triggered con-
trol. We say that a controller is event-triggered when the condition that triggers the
control updates is checked time-continuously. Conversely, we say that a controller
is self-triggered when control updates are scheduled recursively: when the control
signal is updated, the controller also schedules the following update.

The origins of event-triggered control cannot be traced back to a specific publica-
tion, but aperiodic implementations of feedback control loops have been appearing
in the literature for about half a century. Among the best-known works that pro-
posed systematic techniques for event-triggered control designs, we recall Tabuada
(2007), Henningsson et al. (2008), Heemels et al. (2008), Anta and Tabuada (2010),
Postoyan et al. (2013). A tutorial introduction to event-triggered and self-triggered
control is offered in Heemels et al. (2012).

In this thesis, we use event-triggered control in the context of multi-agent coor-
dination: the control updates correspond to communication events between two
different agents. Such communication is event-triggered to reduce the effort put on
the communication medium. Event-triggered control for multi-agent systems has
received plenty of research attention in the last decade. For example, Dimarogonas
et al. (2012), Seyboth et al. (2013), Dormido et al. (2013), Garcia et al. (2014) study
event-triggered control for consensus-type coordination in multi-agent systems.

2.6 Coverage control

Coverage is a problem of multi-agent coordination with direct applications in mobile
robotics and sensor networks. The coverage problem consists in finding a distributed
algorithm that deploys a set of agents in a given domain of interest, in such a way
that the collective perception of the domain attained by the agents is optimized,
or at least improved. The standard reference for coverage control of a mobile
sensing network is Cortes et al. (2004). Notable variations on the theme include
Kwok and Martinez (2010), Martinez et al. (2007), Pavone et al. (2011), Zhong and
Cassandras (2011), Bullo et al. (2012), Durham et al. (2012), Nowzari and Cortes
(2012), Stergiopoulos and Tzes (2013), Le Ny and Pappas (2013), Kantaros et al.
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(2015), Stergiopoulos et al. (2015), Patel et al. (2016).

A formal definition of the coverage problem can be given as follows. Let Ω ⊂ Rn be
a compact set. Consider N mobile agents indexed as 1, . . . , N , and let pi ∈ Rn be
the position occupied by the ith agent. Let f : (R+)2 → R+ and φ : Rn → R+. The
objective is to find positions p1, . . . , pN that minimize the following cost function:

VΩ(p) =

∫
Ω

min
i∈{1,...,N}

f(pi, q)φ(q)dq, (2.22)

where we have denoted p = (p1, . . . , pN ). In this formalism, Ω is the environment
where the agents are deployed and where they can navigate, φ is a measure of the
importance of different points in Ω, and f is a model of how the agents perceive the
surrounding environment. For example, if the agents are omnidirectional sensors,
one may choose

f(p, q) = ‖p− q‖2, (2.23)

to signify that perception improves when the sensing agent is close to the observed
point. This is the model considered, for example, in Cortes et al. (2004). It is
worth noting that the cost function VΩ is generally nonconvex, even if the functions
f and φ happen to be convex. Consequently, the coverage problem has no efficient
general solution, and remains a challenging problem to date. Most of the related
research works assume that the agents have a simple kinematic model (for example,
ṗi(t) = ui(t) where ui(t) is a control signal) and focus on designing a distributed
controller that drives the agents to positions that progressively improve the value
of VΩ, possibly reaching a local minimum. This behavior is usually achieved by
using a version of Lloyd’s algorithm, which was introduced by Lloyd (1982), and
has a modern treatment by Du et al. (1999).

2.7 Effective coverage

Effective coverage is the problem of steering the motion of a set of sensing agents to
search an assigned area, until all locations therein have been searched sufficiently
well with respect to an assigned satisfaction threshold.

A formal definition of the effective coverage problem can be given as follows. Sim-
ilarly to what we have done for the coverage problem, consider N mobile agents
indexed as 1, . . . , N , and let pi(t) ∈ Rn be the position occupied by the ith agent
at time t. Let f : (Rn)2 → R+ be a model of perception, in the sense that f(p, q)
corresponds to the perception of point q from position p. The effective coverage of
a point q at time t is given by

Cq(t) =

∫ t

0

N∑
i=0

f(pi(τ), q)dτ. (2.24)
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The control objective is to steer the motion of the agents in such a way that all
points attain an effective coverage larger than or equal to a desired value C∗ in
finite time. In some cases, additional challenges are considered, such as collision
avoidance among the sensing agents.

The best known work on the effective coverage problem is by Hussein and Sti-
panovic (2007), which also addresses collision avoidance among the sensing agents.
Notable variations on the theme include Wang and Hussein (2010), where the au-
thors consider intermittent communication among the agents, and (Panagou et al.,
2016), where the authors consider agents with anisotropic sensing patterns.
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Chapter 3

Event-triggered pinning control

Già tutta l’aria imbruna,
Torna azzurro il sereno, e tornan l’ombre
Giù da’ colli e da’ tetti,
Al biancheggiar della recente luna.

G. Leopardi,
Il sabato del villaggio, vv 16–19.

In this chapter, we begin our exploration of control designs for multi-agent coordi-
nation with sparse communication with an algorithm for event-triggered pinning

control of switching networks.

The rest of the chapter is organized as follows. In Section 3.1, we review the ex-
isting related work and highlight the novel contributions offered in the chapter. In
Section 3.2, we give a mathematical formulation of the pinning control problem
under investigation, and we outline the proposed control algorithm to address such
problem. In Section 3.3, we discuss a distributed and model-based implementation
of the proposed algorithm that aims at reducing the necessary amount of commu-
nication among the agents. In Section 3.4, we state our main convergence result,
whose proof occupies Sections 3.5 to 3.7. In Section 3.8, we specialize the general
results to the case of networks with fixed topologies. In Section 3.9, we present a
simulated network of nonlinear systems under the proposed algorithm, and we show
that the simulation corroborates the theoretical results. Section 3.10 concludes the
chapter with a summary of the results.
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3.1 Introduction

Multi-agent systems constitute a suitable model for many distributed phenomena
in biology, social sciences, physics, economics and engineering. Therefore, the topic
of distributed control of multi-agent systems has attracted much research interest
in the last few decades (Strogatz, 2001, Newman, 2003, Boccaletti et al., 2006,
Olfati-Saber et al., 2007, Arenas et al., 2008).

Pinning control is a strategy to steer the collective behavior of a multi-agent system
in a desired manner. In pinning control problems the goal is for a set of intercon-
nected dynamical systems to synchronize onto a given reference trajectory. The
reference trajectory is supposed to be a solution of the dynamics of the uncoupled
agents, known a-priori, and corresponding to a specified control objective. A small
fraction of the agents are selected in order to receive direct feedback control. Such
agents are called pins or pinned agents. The remaining agents are influenced only
through their connections with other agents.

Research on pinning control has been carried out from both physical and engineering
perspectives. The focus is usually on the design of adaptive pinning controllers (Lu,
2007, Chen et al., 2007, Zhou et al., 2008), or on finding criteria for optimal selection
of the agents to control (Grigoriev et al., 1997, Li et al., 2004, Song et al., 2010), or
on finding sufficient conditions for synchronization (Wang and Chen, 2002, Chen
et al., 2007, Porfiri and di Bernardo, 2008). Such conditions usually relate to the
dynamics of the agents, to the network topology and to the pinning topology.

In many scenarios of multi-agent coordination, an assumption that the network
topology is constant over time is unrealistic. Topology variations are due to imper-
fect communication between agents, or simply the existence of a proximity range
beyond which communication is not possible. A large number of papers investi-
gate synchronization (Olfati-saber and Murray, 2004, Belykh et al., 2004) or pin-
ning control (Liu et al., 2008, Xia and Cao, 2009, Porfiri and Fiorilli, 2009) under
time-varying interaction topologies. Note that communication failures can usually
be regarded as switching events. Therefore, a pinning control algorithm which
is intended to be robust against such failures can be designed by considering the
controlled network as a switched system.

Pinning control algorithms have been traditionally designed under the hypothesis of
continuous-time communication. In many realistic network systems, however, such
hypothesis is not verified. On the other hand, a synchronized sampled communica-
tion is hard to obtain. Event-triggered control was introduced to limit the amount
of communication instances for feedback systems (Tabuada, 2007). Recently, event-
triggered control has been extended to multi-agent systems (Dimarogonas et al.,
2012, Seyboth et al., 2013, Garcia and Antsaklis, 2013, Garcia et al., 2014, Liuzza
et al., 2016).
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In a realistic multi-agent control problem, several challenges are present at the
same time: nonlinear dynamics, exogenous reference signals, limited communication
capacity, and time-varying interaction topology. In this chapter, a general setup is
considered, namely weighted switching topologies with generic linear interactions are
investigated. A model-based and event-triggered pinning control law is designed,
which drives the agent states to an a-priori specified common reference trajectory.
We derive a set of sufficient conditions under which the closed-loop system is well
posed and the agents achieve exponential convergence to the reference trajectory.
Static networks are studied as a special case, for which we also prove that there
exists a lower bound for the inter-event times in the sequences of updates of the
control signals. Different than most existing works on event-triggered multi-agent
control, we envision an implementation of the control algorithm which does not
require the agents to exchange state measurements at each update time. Agents
exchange state measurements only when they establish their connection. When an
agent updates its control signal to a new value, it is required to broadcast its value
to its neighbors in the network. In this way, it is possible for neighboring agents to
predict the state of each other consistently.

The rest of the chapter is organized as follows. In Section 3.2, we give a math-
ematical formulation of the pinning control problem under investigation, and we
outline the proposed control algorithm to address such problem. In Section 3.3, we
discuss a distributed and model-based implementation of the proposed algorithm
that aims at reducing the necessary amount of communication among the agents. In
Section 3.4, we state our main convergence result, whose proof occupies Sections 3.5
to 3.7. In Section 3.8, we specialize the general results to the case of networks with
fixed topologies. In Section 3.9, we present a simulated network of nonlinear sys-
tems under the proposed algorithm, and we show that the simulation corroborates
the theoretical results. Section 3.10 concludes the chapter with a summary of the
results.

3.2 System model and problem statement

Consider a multi-agent system with agents indexed as V = {1, . . . , N}. Let each
agent have state xi(t) ∈ Rn that evolves according to{

ẋi(t) = f(t, xi(t)) + ui(t),

xi(0) = xi,0,
(3.1)

where f : R×Rn → Rn is a time-varying field, xi,0 ∈ Rn is an initial condition, and
ui(t) ∈ Rn is a control input. We introduce the assumption that f is a globally
Lipschitz function of the state, with uniform Lipschitz constant with respect to the
time. This assumption is formalized as follows.

Assumption 3.1. For each t ≥ 0, the function f(t, ·) is globally Lipschitz with
Lipschitz constant λf . Namely, there exists λf > 0 such that, for each t ≥ 0 and
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each x1, x2 ∈ Rn, we have

‖f(t, x1)− f(t, x2)‖ ≤ λf‖x1 − x2‖. (3.2)

A reference trajectory r(t) ∈ Rn is assigned, whose dynamics is compatible with
the dynamics of the agents. Namely, we have{

ṙ(t) = f(t, r(t)),

r(0) = r0.
(3.3)

The control objective is that the states of all the agents asymptotically converge to
the reference trajectory, and it is formalized as

lim
t→∞
‖r(t)− xi(t)‖ = 0 ∀i ∈ V . (3.4)

To reach the control objective, we employ piecewise constant control signals,

ui(t) = ui,k ∀t ∈ [ti,k, ti,k+1), (3.5)

with ui,k ∈ Rn. The sequence of the time instants {ti,k}k∈N0
defines a hybrid time

trajectory, and corresponds to the times when the control signal ui(t) is updated
to a new value. We let ti,0 = 0 for all i ∈ V, so that ui,0 is the initial control input
for each agent. The control values are computed as

ui,k =

N∑
j=1

wij(t
+
i,k)C(xj(ti,k)− xi(ti,k))

+ pi(t
+
i,k)K(r(ti,k)− xi(ti,k)),

(3.6)

where wij(t) ∈ R and pi(t) ∈ R for all t ≥ 0, and C,K ∈ Sn>0. Here Sn>0 denotes
the set of the n-by-n symmetric and positive definite matrices. The interpretation
of (3.6) is that each agent receives feedback from the other agents and from the
reference trajectory to align its state with the states of the other agents and with
the reference. The matrices C and K can be interpreted as a control protocol that
translates a mismatch in the state space into a control action. The scalar wij(t)
is the weight of the feedback from agent j to agent i at time t, while pi(t) is the
weight of the feedback from the reference trajectory to agent i at time t. Hence,
the scalars wij(t) and pi(t) with i, j ∈ V define the topology of the networked
multi-agent system at each time instant t ≥ 0. We make the assumption that the
feedback between two agents is symmetric, which is formalized as follows.

Assumption 3.2. For each i, j ∈ V, we have wij(t) = wj,i(t) for each t ≥ 0.
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We also make the assumption that the signals wij(t) and pi(t) are piecewise constant
and bounded. This agrees with the interpretation that changes in the values of
wij(t), pi(t) correspond to changes in the topology of the network, due, for example,
to communication failures. This assumption is formalized as follows.

Assumption 3.3. The signals wij(t) and pi(t) that appear in (3.6) are piece-
wise constant, and they are lower-bounded and upper-bounded. Namely, there exist
wij , w̄ij and p

i
, p̄i such that wij ≤ wij(t) ≤ w̄ij and p

i
≤ pi(t) ≤ p̄i for all t ≥ 0.

Moreover, the hybrid time trajectory defined by the instants when a change of value
occurs for some wij(t) or pi(t) is not Zeno.

In practice, wij(t) 6= 0 means that agents i and j are connected, and can exchange
information, while pi(t) 6= 0 means that agent i is connected to the reference. In
most applications, we have that, at each time t ≥ 0, wij(t) 6= 0 only for a small
fraction of the possible pairs of agents, and pi(t) 6= 0 only for a small fractions of
the agents. Note that, in order to compute ui,k as by (3.6), agent i only needs to
receive the state of agent j if wij(t+i,k) 6= 0, and similarly, it only needs to receive
the value r(ti,k) of the reference if pi(t+i,k) 6= 0. For these reasons, (3.6) can be
considered a pinning control law.

In order to completely define our control strategy, we also need to specify a rule
for scheduling the control updates ti,k for each agent. To this aim, consider the
following signals:

zi(t) =

N∑
j=1

wij(t)C(xj(t)− xi(t))

+ pi(t)K(r(t)− xi(t)).
(3.7)

Note that zi(t) is similar to the control signals (3.6), but the update time ti,k is
substituted with the current time. In other words, zi(t) would correspond to the
control input ui(t) if this were to be continuously updated. An update for agent i
is scheduled for each time instant when the difference between zi(t) and ui(t) has
overcome an assigned threshold. The threshold is defined by the function

ς(t) = ς0 e
−λςt, (3.8)

where ς0 is a positive constant and λς > 0 is a positive convergence rate. We
refer to ς(t) as the threshold function. The threshold function is part of the control
design, and it is known by all the agents. An update for agent i is also scheduled
for the instants when wij(t) for some j or pi(t) has changed its value. The rule for
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scheduling the updates can therefore be formalized as follows:

ti,k+1 = inf{t ≥ ti,k :

wij(t) 6= wij(t
+
i,k) for some j, or

pi(t) 6= pi(t
+
i,k), or

‖ũi(t)‖ ≥ ς(t)},

(3.9)

where
ũi(t) = ui(t)− zi(t). (3.10)

Our goal is to show that the control algorithm defined by (3.3) and (3.5) to (3.10)
makes the closed-loop system well-posed and attains the control objective (3.4).
Well-posedness of the closed-loop system means that the sequences {ti,k}k∈N0

of
the control updates do not exhibit Zeno behavior.

The topology of the multi-agent system (3.1) can be loosely represented as a time-
varying graph G(t). Each agent in the system corresponds to a node in the graph,
while each couple (i, j) such that wij(t) 6= 0 constitutes an edge in the graph, with
weight equal to wij(t). Under Assumption 3.2, such graph is undirected. However,
according to the definition given in Section 2.1, the weights in a graph are positive
scalars, while here we only need that the weights wij(t) are lower-bounded and
upper-bounded. Nevertheless, interpreting the topology of the multi-agent system
(3.1) as a graph allows to relate the convergence properties of the multi-agent
system to the structural properties of the graph, as we will discuss in Section 3.8.

3.3 Implementation

In order to implement scheduling rule (3.9), agent i needs to know the value of
the signals wij(t), pi(t) and ũi(t) at every time instant. The signals wij(t) and
pi(t) represent the topology of the information sources of agent i, therefore it is
reasonable that agent i is aware of the value of these signals at any time instant.
On the other hand, to compute ũi(t) as by (3.7) and (3.10), agent i needs to know
its own state xi(t), the reference r(t), and the states xj(t) of the other agents.
However, since all the agents and the reference have the same known dynamics,
these signals can be predicted simply by integrating said dynamics. Namely, for
the reference trajectory, (3.3) holds for all t ≥ 0. Therefore, in order to compute
r(t) at all t ∈ [ti,k, ti,k+1), agent i only needs to know the initial value r(ti,k).
Moreover, agent i needs to compute r(t) for t ∈ [ti,k, ti,k+1) only if pi(t+i,k) 6= 0. In
fact, if pi(t+i,k) = 0, r(t) does not affect ũi(t) for t ∈ [ti,k, ti,k+1) (see (3.5) to (3.7)
and (3.10)). Similarly, for the states xj(t) of the other agents, (3.1) holds for all
t ≥ 0. Therefore, in order to compute xj(t) for all t ∈ [ti,k, ti,k+1), agent i only
needs to know the initial value xj(ti,k) and the values, say uj,hj , of the control
signal that agent j uses within the interval [ti,k, ti,k+1). Moreover, agent i needs
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to compute xj(t) for t ∈ [ti,k, ti,k+1) only if wij(t+i,k) 6= 0. In fact, if wij(t+i,k) = 0,
xj(t) does not affect ũi(t) for t ∈ [ti,k, ti,k+1) (see (3.5) to (3.7) and (3.10)). This
fact implies that when an agent j updates its control input, it has to broadcast
the newly computed control input, say uj,hj , to all the other agents i such that
wij(t

+
j,hj

) 6= 0. These considerations lead us to propose the following Algorithm 1
as an implementation of the control algorithm (3.5) to (3.10). From Algorithm 1,
it is clear that the proposed control algorithm requires inter-agent communication
only when one of the agents updates its control input, and not at every time instant.

Algorithm 1 Operations executed by each agent i at a generic time instant t ≥ 0.

compute xi(t) by prediction
if pi(ti,k) 6= 0, compute r(t) by prediction
compute xj(t) by prediction for each j such that wij(ti,k) 6= 0
compute ũi(t) as by (3.10)
compute ς(t) as by (3.8)
if wij(t) 6= wij(ti,k) for some j or pi(t) 6= pi(ti,k) or ‖ũi(t)‖ ≥ ς(t) then

for j ∈ V \{i} do
if wij(t) 6= 0 & wij(ti,k) = 0 then

acquire xj(t) from agent j
end if

end for
if pi(t) 6= 0 & pi(ti,k) = 0 then

acquire r(t)
end if
k ← k + 1
ti,k ← t
compute ui,k as by (3.6) and set it as the control input
broadcast ui,k to each agent j such that wj,i(ti,k) 6= 0

end if

3.4 Main result

In order to state our main result, we need to introduce some further notation. Let

x(t) = [x1(t)ᵀ, . . . , xN (t)ᵀ]ᵀ, (3.11a)
F (t, x(t)) = [f(t, x1(t))ᵀ, . . . , f(t, xN (t))ᵀ]ᵀ, (3.11b)

u(t) = [u1(t)ᵀ, . . . , uN (t)ᵀ]ᵀ, (3.11c)
x0 = [xᵀ1,0, . . . , x

ᵀ
N,0]ᵀ. (3.11d)

With (3.11a) to (3.11d), the dynamics of the open-loop system (3.1) can be rewrit-
ten compactly as {

ẋ(t) = f(t, x(t)) + u(t),

x(0) = x0.
(3.12)
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Consider now the error signals

ei(t) = r(t)− xi(t), (3.13)

and let
e(t) = [e1(t)ᵀ, . . . , eN (t)ᵀ]ᵀ

= 1N ⊗ r(t)− x(t).
(3.14)

Note that the control objective (3.4) can be rewritten in terms of the error vector
e(t) as

lim
t→∞

e(t) = 0Nn. (3.15)

Let

L(t)ij =

{∑N
j=1 wij(t) if i = j,

−wij(t) otherwise,
(3.16a)

P (t) = diag(p1(t)ᵀ, . . . , pN (t)ᵀ), (3.16b)
A(t) = L(t)⊗ C + P (t)⊗K, (3.16c)
λ(t) = min eig(A(t)). (3.16d)

Note that, under Assumption 3.2, and with C,K ∈ SN>0, the matrix A(t) is sym-
metric for any t ≥ 0, and, therefore, its minimum eigenvalue λ(t) is well defined.

Remark 3.1. From (3.16a), we see that L(t) can be loosely interpreted as the
Laplacian of the undirected graph G(t) that represents the topology of the multi-
agent system (3.1). Recall that this interpretation is not precise, since we are not
requiring that wij(t) ≥ 0.

Our main result can now be formalized as the following theorem.

Theorem 3.1. Consider the multi-agent system (3.1), under the control algorithm
defined by (3.3) and (3.5) to (3.10). Let Assumptions assupmtions 3.1 to 3.3 hold.
If there exist T > 0 and ϕ > λf + λς such that, for any t ≥ 0,

1

T

∫ t+T

t

λ(τ) dτ ≥ ϕ, (3.17)

then the closed-loop system is well posed and achieves the control objective (3.4).
In particular, the error stack vector e(t) defined by (3.14) converges to zero expo-
nentially with a convergence rate that is lower-bounded by the convergence rate λς
of the threshold function; namely, there exists η̄ > 0 such that

‖e(t)‖ ≤ η̄ exp(−λςt) ∀t ≥ 0. (3.18)
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We recall here that λf > 0 is the Lipschitz constant of the agent dynamics f , and
λς > 0 is the convergence rate of the threshold function ς.

Remark 3.2. Condition (3.17) essentially requires that the connectivity between
the reference trajectory and the agents in the network, parametrized by the minimum
eigenvalue λ(t) of A(t), has an average over time that is large enough, compared to
the Lipschitz constant of the dynamics of the agents and to the convergence rate of
the threshold function. However, condition (3.17) does not require λ(t) to be large
at any specific time instant.

The proof of Theorem 3.1 is given in the next three sections of the chapter. Namely,
in Section 3.5, we prove that the closed-loop system achieves exponential conver-
gence of the error vector e(t), and in Section 3.6, we prove that the closed-loop
system is well posed, in the sense that the sequence of the control updates of each
agent does not exhibit Zeno behavior. Finally, in Section 3.7, we use the results
obtained in the previous two sections two formalize the proof of Theorem 3.1.

3.5 Convergence proof

In order to analyze the convergence properties of the closed-loop system (3.1), (3.3)
and (3.5) to (3.10), we write the dynamics of the open-loop system in terms of the
error vector e(t). Taking the time derivative of both sides in (3.14), and using (3.3)
and (3.12), we can write the open-loop dynamics of the error signals as{

ė(t) = 1N ⊗ f(t, r(t))− f(t, x(t))− u(t),

e(0) = 1N ⊗ r0 − x0,
(3.19)

where e0 = e(0). Note that (3.7) can be rewritten in terms of the error signals
(3.13) as

zi(t) =

N∑
j=1

wij(t)C(ei(t)− ej(t)) + pi(t)Kei(t). (3.20)

Moreover, letting
z(t) = [z1(t)ᵀ, . . . , zN (t)ᵀ]ᵀ, (3.21)

we can rewrite (3.20) compactly as

z(t) = A(t)e(t), (3.22)

where A(t) is defined in (3.16c).

Substituting (3.10) and (3.22) into (3.19), we have

ė(t) = 1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t). (3.23)
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From (3.23), it is clear that convergence of the error vector e(t) can be related to
f(·, ·) being Lipschitz, to the eigenvalues of A(t), and to the boundedness of ũ(t).
This is formalized in the following lemma.

Lemma 3.1. If ‖ũi(t)‖ ≤ ς(t) for all t ∈ [0, T ] for all i ∈ V, where T > 0, then,
under Assumption 3.1, we have ‖e(t)‖ ≤ η(t) for all t ∈ [0, T ], where η(t) satisfies{

η̇(t) = (λf − λ(t))η(t) +
√
N ς(t),

η(0) = η0,
(3.24)

where η0 = ‖e0‖ and λ(t) is defined by (3.16d)

Proof. Consider the function

V (t) =
1

2
e(t)ᵀe(t). (3.25)

Note that we shall not refer to V (t) as to a candidate Lyapunov function, since we
are not going to use any Lyapunov theorem. Taking the time derivative of both
sides, and using (3.23), we have

V̇ (t) =e(t)ᵀė(t)

=e(t)ᵀ(1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t))

=

N∑
i=1

ei(t)
ᵀ(f(t, r(t))− f(t, xi(t)))

− e(t)ᵀA(t)e(t)− e(t)ᵀũ(t).

(3.26)

The terms on the right-hand side of (3.26) can be bounded as follows. By Assump-
tion 3.1, we have

ei(t)
ᵀ(f(t, r(t))− f(t, xi(t)) ≤ λf‖ei(t)‖2. (3.27)

Since A(t) is symmetric, we have

− e(t)ᵀA(t)e(t) ≤ −λ(t)‖e(t)‖2, (3.28)

where λ(t) is the smallest eigenvalue of A(t). Finally, if t ∈ [0, T ], by hypothesis we
have ‖ũi(t)‖ ≤ ς(t), implying

e(t)ᵀũ(t) ≤ ‖e(t)‖
√
N ς(t). (3.29)

Substituting (3.27) to (3.29) in (3.26), we have

V̇ (t) ≤ (λf − λ(t))‖e(t)‖2 + ‖e(t)‖
√
N ς(t). (3.30)
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Now note that (3.25) can be written equivalently as V (t) = 1/2‖e(t)‖2, which
taking the time derivative of both sides yields V̇ (t) = ‖e(t)‖d‖e(t)‖/dt, which, in
turn, compared with (3.30) yields

‖e(t)‖d‖e(t)‖
dt

≤ (λf − λ(t))‖e(t)‖2 + ‖e(t)‖
√
N ς(t). (3.31)

For any t such that ‖e(t)‖ 6= 0, (3.31) reduces to

d‖e(t)‖
dt

≤ (λf − λ(t))‖e(t)‖+
√
N ς(t). (3.32)

On the other hand, if e(t) = 0, we can write, for t ∈ [0, T ),

d‖e(t)‖
dt

= lim
δt→0

‖e(t+ δt)‖ − ‖e(t)‖
δt

. (3.33)

where ‖e(t)‖ = 0, and

e(t+ δt) =

∫ t+δt

t

ė(τ) dτ . (3.34)

Substituting (3.23) into (3.34), taking norms of both sides, using the triangular
inequality and Assumption 3.1, and observing that ũi(t) ≤ ς(t) for all t ∈ [0, T ),
we have

‖e(t+ δt)‖ ≤
∫ t+δt

t

((λf − λ(τ))‖e(τ)‖+
√
N ς(τ)) dτ (3.35)

Dividing both sides by δt, taking the limit for δt→ 0, using the mean value theorem,
and comparing with (3.33), we have again (3.32), which therefore applies for all t ∈
[0, T ). From (3.32), and using Gronwall’s lemma (Khalil, 2002), we have (3.24).

Under the hypotheses of Lemma 3.1, we have e(t)→ 0Nn if η(t)→ 0. Therefore, we
only need to prove that the closed-loop system is well posed and achieves η(t)→ 0 to
prove Theorem 3.1. The following lemma gives a sufficient condition for convergence
of η(t).

Lemma 3.2. Let η(t) be defined by (3.24), and let Assumption 3.3 hold. If (3.17)
holds, then there exists η̄ > 0 such that

η(t) ≤ η̄ exp(−λςt), (3.36)

In particular, η(t)→ 0.

Proof. Condition (3.17) can be rewritten as∫ t+T

t

(λf − λ(τ)) dτ ≤ −Tφ ∀t ≥ 0, (3.37)
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where φ = ϕ− λf > λς . For any t′ > t we can write t′ = t+ νT + δt, with ν ∈ N0

and 0 ≤ δt < T . Therefore, using (3.37) repeatedly, we have∫ t′

t

(λf − λ(τ)) dτ ≤ −νTφ+

∫ t′

t+νT

(λf − λ(τ)) dτ

= −φ(t′ − t) +

∫ t′

t+νT

(λf − λ(τ)) dτ .

(3.38)

Under Assumption 3.3, λ(τ) is bounded, and therefore, the last integral in (3.38)
is bounded. Hence, we can rewrite (3.38) as∫ t′

t

(λf − λ(τ)) dτ ≤ −φ(t′ − t) + ξ (3.39)

for some ξ > 0. The Laplace solution of (3.24) in [0, t) reads, using also (3.8),

η(t) = Φ(t, 0)η0

+
√
N ς0

∫ t

0

Φ(t, τ) exp(−λςτ) dτ ,
(3.40)

where

Φ(t′, t) = exp

(∫ t′

t

(λf − λ(τ)) dτ

)
. (3.41)

Using (3.39) in (3.41), we have

Φ(t′, t) ≤ exp(−φ(t′ − t)) exp(ξ) (3.42)

Using (3.42) in (3.40), we have

η(t) ≤ exp(−φt) exp(ξ)η0

+
√
N ς0 exp(ξ)

∫ t

0

exp(−φ(t− τ)) exp(−λςτ) dτ ,
(3.43)

Since φ > λς , we have∫ t

0

exp((φ− λς)τ) dτ =
exp((φ− λς)t)− 1

φ− λς
, (3.44)

which substituted into (3.43) yields

η(t) ≤ k′
(
η0 +

√
N ς0 exp(ξ)

exp((φ− λς)t)− 1

φ− λς

)
e−φt . (3.45)

Using again φ > λς , we can further bound (3.45) as (3.36), with

η̄ = k′
(
η0 +

√
N ς0

φ− λς

)
. (3.46)
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Thanks to Lemmas 3.1 and 3.2, proving that the proposed control algorithm attains
the objective (3.4) reduces to proving that the algorithm makes the closed-loop
system well-posed, and attains ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 as well as (3.39). This
will be the subject of the following Section 3.6.

3.6 Well-posedness proof

Well-posedness of the closed-loop systems means that the hybrid time trajectory
generated by the control updates {ti,k} of each agent i do not exhibit Zeno behavior.
In order to study this property, first observe that ‖ũi(t)‖ ≤ ς(t) is automatically
guaranteed by the scheduling rule (3.9). In fact, for each k ∈ N0 and each i ∈ V,
we have from (3.6) and (3.7) that zi(ti,k) = ui,k, which by (3.10) implies

ũi(ti,k) = 0. (3.47)

Since a new update ti,k+1 is triggered whenever ‖ũi(t)‖ ≥ ς(t), it is not possible
that ‖ũi(t)‖ > ς(t) for some t ≥ 0, i ∈ V. Well-posedness of the closed-loop system
is formalized in the following lemma.

Lemma 3.3. Consider the multi-agent system (3.1), under the control algorithm
defined by (3.3) and (3.5) to (3.10). Under Assumptions assupmtions 3.1 to 3.3,
and (3.39), the closed-loop system is well posed. In particular, the sequences {ti,k}k∈N
of the control updates for i ∈ V do not exhibit Zeno behavior.

Proof. Let us consider a generic agent i ∈ V within the generic time interval
[ti,k, ti,k+1). By (3.6), taking the time derivative of both sides in (3.10), we have

˙̃ui(t) = −żi(t). (3.48)

Note now that, from (3.22), we have zi(t) = A(t)n(i−1)+1:in,:e(t), and moreover,

A(t)n(i−1)+1:in,: = A(ti,k)n(i−1)+1:in,:, (3.49)

because wij(t) for all j ∈ V \{i} and pi(t) are constant for t ∈ [ti,k, ti,k+1). There-
fore, żi(t) = A(ti,k)n(i−1)+1:in,:ė(t), which substituted in (3.48) yields

˙̃ui(t) = −A(ti,k)n(i−1)+1:in,:ė(t). (3.50)

Substituting (3.23) into (3.50), we have

˙̃ui(t) =−A(ti,k)n(i−1)+1:in,:(

1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t)).
(3.51)

Note now that, by Assumption 3.3, we have ‖A(t)‖ ≤ α for some α > 0, since all
the entries of A(t) are bounded. Therefore, taking norms of both sides in (3.51),
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using the triangular inequality, ‖ũj(t)‖ ≤ ς(t) for all j ∈ V, and Assumption 3.1,
we have

‖ ˙̃ui(t)‖ ≤α((λf + α)e(t) +
√
N ς(t)). (3.52)

Since Lemmas 3.1 and 3.2 apply, we have ‖e(t)‖ ≤ η̄ e−λςt, which compared with
(3.52), together with (3.8), yields

‖ ˙̃ui(t)‖ ≤ α((λf + α)η̄ +
√
N ς0) e−λςt . (3.53)

Since ũi(ti,k) = 0, we have ũi(t) =
∫ t
ti,k

˙̃ui(τ) dτ , which by taking norms of both
sides, and using the triangular inequality yields

‖ũi(t)‖ ≤
∫ t

ti,k

‖ ˙̃ui(τ)‖ dτ . (3.54)

Substituting (3.53) into (3.54), we have

‖ũi(t)‖ ≤ α((λf + α)η̄ +
√
N ς0)

1− e−λς(t−ti,k)

λς
e−λςti,k . (3.55)

Note now that (3.8) can be written as

ς(t) = ς0 e−λςti,k e−λς(t−ti,k) . (3.56)

Comparing (3.55) and (3.56), it is clear that a necessary condition for having
‖ũi(t)‖ ≥ ς(t) is

α((λf + α)η̄ +
√
N ς0)

1− e−λς(t−ti,k)

λς
≥ ς0 e−λς(t−ti,k), (3.57)

which is attained if and only if t− ti,k ≥ δ > 0, where δ satisfies

α((λf + α)η̄ +
√
N ς0)

1− e−λςδ

λς
= ς0 e−λςδ, (3.58)

or equivalently

δ = ln

(
λς + α((λf + α)η̄ +

√
N ς0)

α((λf + α)η̄ +
√
N ς0)

)
> 0. (3.59)

From (3.59), it is clear that two consecutive control updates due to ‖ũi(t)‖ ≥
ς(t) are separated by a positively lower-bounded inter-event time. Then, using
Proposition 2.7, we can conclude that the hybrid time trajectory generated by the
control updates due to ‖ũi(t)‖ ≥ ς(t) is not Zeno. From Assumption 3.3, we know
that the sequence of the control updates due to wij(t) 6= wij(t

+
i,k) for some j ∈ V or

pi(t) 6= pi(t
+
i,k) is not Zeno either. From the scheduling law (3.9), we know that the

sequence {ti,k}k∈N0
of the control updates of agent i is the union of the sequence of
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the control updates due to ‖ũi(t)‖ ≥ ς(t) and the sequence of the control updates
due to wij(t) 6= wij(t

+
i,k) for some j ∈ V or pi(t) 6= pi(t

+
i,k). Since the union of

a finite number of nonzeno sequences is not Zeno (see Proposition 2.7), we can
conclude that the sequence {ti,k}k∈N0

is not Zeno. Finally, since this reasoning
is valid for all agents i ∈ V, we can conclude that the closed-loop system is well
posed.

Remark 3.3. Lemma 3.3 does not guarantee that two consecutive control updates
ti,k and ti,k+1 are separated by a finite inter-event time. In fact, two events of the
type wij(t) 6= wij(t

+
i,k) or pi(t) 6= pi(t

+
i,k) may occur infinitely close to each other,

and also infinitely close to the events of the type ‖ũi(t)‖ ≥ ς(t). However, a finite
inter-event time is guaranteed in the particular case that the network topology is
constant (that is, that the scalars wij(t) and pi(t) are constant for all i, j ∈ V).
This case is further discussed in the following Section 3.8, which examines the
particular case of networks with fixed topology.

3.7 Proof of the main result

Using Lemma 3.3, we have that, under the scheduling rule (3.9), ‖ũi(t)‖ ≤ ς(t) for
all t ≥ 0 and all i ∈ V. Hence, using Lemmas 3.1 and 3.2, and taking t → ∞,
we can conclude that ‖e(t)‖ ≤ η(t) ≤ η̄ exp(−λςt) → 0. Therefore, the control
objective (3.4) is achieved, and, in particular, e(t) converges to zero exponentially.

3.8 Fixed network topologies

In this section, we consider the particular case that the topology of the networked
multi-agent system (3.1) is constant, i.e., that the scalars wij(t) ≡ wij and pi(t) ≡ pi
are constant for all i, j ∈ V. In this case, condition (3.39) in Lemma 3.2 is equivalent
to

λ > λf + λς , (3.60)

where λ is the minimum eigenvalue of the (now constant) matrix A defined by
(3.16c). Since the eigenvalues of A scale linearly with the matrices C and K (when
C and K are scaled simultaneously), (3.60) can be satisfied by making A positive
definite, and then by scaling it opportunely by scaling the matrices C and K. The
following lemma relates the positive definiteness of A to the positive definiteness of
L+P . Here SN≥0 denotes the set of the N -by-N symmetric and positive semidefinite
matrices.

Lemma 3.4. Let A,B ∈ SN≥0 and C,D ∈ Sn>0. Then A⊗ C +B ⊗D ∈ SNn≥0 , and
A⊗ C +B ⊗D ∈ SNn>0 if and only if A+B ∈ SN>0.

Proof. Since A,B ∈ SN≥0, if A + B ∈ SN>0, then either A ∈ SN>0 or B ∈ SN>0

(possibly both). Consequently, A ⊗ C,B ⊗D ∈ SNn+ , and either A ⊗ C ∈ SNn>0 or
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B⊗D ∈ SNn>0 . Hence, A⊗C+B⊗D ∈ SNn>0 . Similarly, since A⊗C,B⊗D ∈ SNn+ ,
if A⊗C+B⊗D ∈ SNn>0 then either A⊗C ∈ SNn>0 or B⊗D ∈ SNn>0 (possibly both).
Therefore, either A ∈ SN>0 or B ∈ SN>0, which implies A+B ∈ SN>0.

By Lemma 3.4, A can be made positive definite by making L and P positive semidef-
inite and L + P positive definite. A sufficient condition for making L positive
semidefinite is that wij ≥ 0 for all i, j ∈ V. In fact, for wij ≥ 0 for all i, j ∈ V,
L is the Laplacian matrix of a graph, which is positive semidefinite. On the other
hand, a sufficient condition for making P positive semidefinite is that pi ≥ 0 for all
i ∈ V. The hypotheses wij ≥ 0 and pi ≥ 0 correspond to the feedback between any
two agents and from the reference to each agent being either positive (wij > 0 or
pi > 0) or absent (wij = 0 or pi = 0). Such hypotheses are verified in most realistic
settings, while negative feedback occurs in applications featuring adversarial con-
nections between two or more agents. Given that L and P are positive semidefinite,
a sufficient condition for making L + P positive definite is given by the following
lemma.

Lemma 3.5. Let wij = wj,i ≥ 0 and pi ≥ 0 for all i, j ∈ V. Let G be the undirected
graph defined by the nodes V and the edges E = {(j, i) ∈ V ×V : wij > 0}, where
wij > 0 is also the weight of the edge (j, i). The nodes i ∈ V such that pi > 0 are
said to be pinned. Let L and P be defined by (3.16a) and (3.16b), so that L is the
Laplacian matrix of G. Then L + P is positive definite if and only if there is at
least one pinned node in each connected component of G.

Proof. Without loss of generality, suppose that the nodes of G are ordered in such
a way that the first n1 nodes are in a first component, the following n2 nodes are
a the second component, etc. Then L and P are block-diagonal, with each block
corresponding to one of the components. We divide the proof in two parts.

Part 1 (Necessity: if L + P is positive definite, then there is at least one pinned
node in each component of G.). Suppose that L+P is positive definite, and suppose
by contradiction that there is a connected component that does not contain any
pinned node. Without loss of generality, suppose that this component is the first
component. Then, consider the vector v = [1ᵀn1

, 0ᵀn2
, . . . , 0ᵀnNc ]ᵀ, where Nc is the

number of components in G. Then we have

vᵀ(L+ P )v = 1ᵀn1
(L1 + P1)1n1 , (3.61)

where L1 and P1 are the blocks of L and P respectively corresponding to the first
component. Since the first component does not contain any pinned node, we have
P1 = 0n1×n1

, and since L1 is a Laplacian matrix, we have L11nc = 0. Substituting
the last two equations into (3.61), we have vᵀ(L+ P )v = 0, with v 6= 0N , which is
a contradiction.
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Part 2 (Sufficiency: if there is at least one pinned node in each component of
G, then L + P is positive definite.). Viceversa, suppose that there is at least one
pinned node in each connected component of G, and suppose by contradiction that
L + P is not positive definite, i.e., that there exists a nonzero v ∈ RN such that
vᵀ(L+P )v = 0. Since both L and P are block-diagonal with each block of L being
the same size of the corresponding block of P , the previous equation implies that

Nc∑
i=1

vᵀ(i)(Li + Pi)v(i) = 0 (3.62)

for each i ∈ {1, . . . , Nc}, where Nc is the number of components in G, v(i) ∈ Rni

is the restriction of v to the entries corresponding to the i-th component, and Li
and Pi are the i-th diagonal block of L and P respectively. Note that Li and Pi
are both positive semidefinite, since Li is a Laplacian matrix and Pi is diagonal
with nonnegative diagonal entries. Therefore, (3.62) implies vᵀ(i)(Li +Pi)v(i) for all
i ∈ {1, . . . , Nc}, which, in turn, implies

vᵀ(i)Liv(i) = 0, (3.63a)

vᵀ(i)Piv(i) = 0. (3.63b)

for all i ∈ {1, . . . , Nc}. Since Li is a Laplacian matrix, (3.63a) implies v(i) = α1ni
for some α ∈ R, which substituted in (3.63b) gives α tr(Pi) = 0, where tr(·) denotes
the trace of a matrix. Since the entries of Pi are nonnegative, and since there is at
least one pinned node in each component, we have tr(Pi) > 0, which means that
α = 0. Hence, v(i) = α1ni = 0ni . Since this reasoning applies to all components
i ∈ {1, . . . , Nc}, we conclude that v = 0N , which is a contradiction.

The intuition behind Lemma 3.5 is very simple: for the multi-agent system to con-
verge to the reference trajectory, each agent needs to have access to information
originating from the reference trajectory, either by directly receiving feedback from
the reference trajectory, or by receiving feedback from other agents that are influ-
enced by the reference trajectory. As a particular case of Lemma 3.5, we have the
following corollary.

Corollary 3.1. In Lemma 3.5, if G is connected, then L+P is positive definite if
and only if there is at least one pinned node.

Remark 3.4. If in Lemma 3.5 we relax the assumption that the scalars wij and
pi are nonnegative, we can still write Part 1 of the proof to show that a necessary
(but, in this case, not sufficient) condition for L+ P to be positive definite is that
there is at least one node i such that pi 6= 0 in each component of the graph.

When the topology of the network system is fixed, the proposed control algorithm
comes with a guaranteed constant lower bound for the inter-event times between
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two consecutive control updates ti,k and ti,k+1 of the same agent. This property
is immediately deduced by the proof of Lemma 3.3, observing that in this case
the control updates can only be triggered by events of the kind ‖ũi(t)‖ ≥ ς(t). In
particular, the lower bound for the inter-event times is given by δ > 0 defined by
(3.59).

3.9 Numerical simulations

To illustrate the effectiveness of the proposed control algorithm, we apply it to a
simulated network of N = 5 identical Chua oscillators (Matsumoto, 1984). The
individual dynamics of each oscillator is described by

f(x) =

a(x2 − x1 − γ(x1))
x1 − x2 + x3

−bx2

 , (3.64)

with x = [x1, x2, x3]ᵀ ∈ R3, where a, b,m0,m1 ∈ R and γ : R→ R, namely,

γ(y) = m1y +
1

2
(m0 −m1)(|y + 1| − |y − 1|). (3.65)

Choosing a = b = 0.9, m0 = −1.34, and m1 = −0.73, the oscillators are globally
Lipschitz with Lipschitz constant λf = 3.54 (Liuzza et al., 2013). Let C = 5I3
and K = 30I3. All the agents are connected to each other with wij(t) ≡ 1. Our
simulation is set on the time interval [0, 30]. At the beginning of the simulation,
we set p1(0) = p2(0) = 1, while pi(0) = 0 for i ∈ {3, 4, 5}, which yields λ(0) = 6.14.
At t = 0.75, we set p1(t) = 0, so that λ(t) = 2.88. At t = 0.90s, we set p2(t) = 0,
which yields λ(t) = 0. At t = 1.0 the original values of the signals pi(t) are
restored, and the cycle is repeated for every time unit. With this setting, it is
clear that Assumptions assupmtions 3.2 and 3.3 are satisfied. Also, we can verify
that condition (3.39) is satisfied with γ = 1.5 and k = 0. Figure 3.1 provides an
illustration of the graph underlying the simulated network.

For the threshold function (3.8), we choose ς0 = 1 and λς = 0.3, so that the hy-
potheses of Lemma 3.2 are satisfied. For each agent, the initial conditions are chosen
within the domain of attraction of a Chua oscillator with the chosen parameters
a, b,m0,m1.

Some results of the simulation are illustrated in Figures figs. 3.2 to 3.4 and Table ta-
ble 3.1. Namely, Figure fig. 3.2 illustrates the evolution of the second state variable
x

(2)
i for each agent i ∈ {1, . . . , 5} over the whole simulation. This result confirms

that the control objective (3.4) is achieved, i.e., the state of each agent converges
asymptotically to the reference trajectory. As a term of comparison, Figure fig. 3.3
illustrates the evolution of the same state variables, with the same initial condi-
tions, when no control input is applied (ui(t) ≡ 03). Figure fig. 3.4 illustrates the
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1
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Figure 3.1: An illustration of the graph underlying the simulated network. Each node in the
graph represents a Chua oscillator. The nodes with thicker contour represent the oscillators
that receive feedback from the reference trajectory during part of the simulation.

Table 3.1: Average inter-event time for each Chua oscillator over the time interval [0.0, 30.0],
with the proposed control algorithm applied.

node average tii,k+1 − ti,k
1 0.061
2 0.054
3 0.115
4 0.123
5 0.115

time instants when each agent updates its control input within the interval [0, 1],
and Table table 3.1 illustrates the average inter-event time for each agent over the
whole simulation. These results confirm that the closed-loop system is not Zeno.

3.10 Summary

In this chapter, we have proposed an algorithm for event-triggered pinning syn-
chronization of complex networks of nonlinear agents with switching topologies.
We have found sufficient conditions under which Zeno behavior of the closed-loop
system is excluded, and the synchronization objective is achieved. We have also
shown that the error stack vector that represents the global distance of the system
from the synchronization vanishes exponentially. A constant lower bound on the
inter-event times has been provided for the case of networks with time-invariant
topologies. Numerical simulations have been presented to validate the theoretical
results.

Some viable extensions of this work include the application of the proposed al-
gorithm to more general classes of networks, such as networks with asymmetric
couplings among the agents, and networks where errors in the communication can
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Figure 3.2: Evolution of the state variable x(2)i (t) for each Chua oscillator i ∈ {1, . . . , 5} and
of r(2)(t) for the reference trajectory, over t ∈ [0, 30] (above) and t ∈ [0, 1] (below), with the
proposed control algorithm applied. As predicted by Theorem 3.1, the state of each agent
converges to the reference trajectory.
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Figure 3.3: Evolution of the state variable x(2)i for each Chua oscillator i ∈ {1, . . . , 5} and of
r(2) for the reference trajectory, over t ∈ [0, 30], with no control input applied (ui(t) ≡ 03).
The states of the agents do not converge to the reference trajectory.
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Figure 3.4: Control updates for each Chua oscillator i ∈ {1, . . . , 5} over the time interval
[0, 1], with the proposed control algorithm applied.
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occur, such as delays and packet drops.
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Chapter 4

Cloud-supported formation control

Or la squilla dà segno
Della festa che viene;
Ed a quel suon diresti
Che il cor si riconforta.

G. Leopardi,
Il sabato del villaggio, vv. 20–23.

In this chapter, we encounter cloud-supported coordination for the first time in
the thesis. We consider a similar coordination objective as in Chapter 3, but

we propose a different, novel communication scheme where all information passes
through a shared repository hosted on a cloud.

The rest of this chapter is organized as follows. In Section 4.1, we review the
existing related work and highlight the novel contributions offered in the chapter.
In Sections 4.2 and 4.3, we present the proposed system model, problem statement,
and control strategy. In Section 4.4, we state our main result, whose proof is given
in Sections 4.5 to 4.7. Section 4.8 corroborates the theoretical results by presenting
two numerical simulations of the proposed control strategy. Section 4.9 concludes
the chapter with a summary of the results.

4.1 Introduction

In some realistic applications of multi-agent systems, inter-agent communication is
completely or almost completely interdicted. This challenge arises, for example,
in the coordination of a fleet of autonomous underwater vehicles (AUVs) (Teixeira
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et al., 2011). Because of their severely limited communication, sensing, and local-
ization capabilities, underwater vehicles are virtually isolated systems. Underwater
communication and positioning may be implemented by means of battery-powered
acoustic modems, but such devices are expensive, limited in range, and power-
hungry. Inertial sensor for underwater positioning are prohibitively expensive in
most practical scenarios. Moreover, GPS is not available underwater, and a vehicle
needs to surface whenever it needs to get a position fix (Paull et al., 2014).

When such limitations arise, coordination strategies that rely on continuous in-
formation exchanges among the agents cannot be implemented. To address this
challenge, the idea of triggered control has been tailored to multi-agent systems.
Triggered control is a control technique where the control input is only updated
at discrete time instants, when some condition is satisfied (Heemels et al., 2012).
Triggered control was introduced in relation to networked control systems, to limit
the amount of communication within the different parts of the system (i.e., the
plant, the sensors, the actuators). In the context of multi-agent systems, triggered
control is used to limit the communication among different agents. Various flavors
of triggered control have been applied to multi-agent systems: with event-triggered
control, inter-agent communication is triggered when a given state condition is sat-
isfied; with self-triggered control, the agents schedule when to exchange data in a
recursive fashion, so that there is no need to monitor a condition between con-
secutive communication instances. However, even these triggered control schemes
require that the agents exchange information, and, therefore, are not well-suited
for those scenarios where direct inter-agent communication is interdicted.

In the control architecture described in this chapter, inter-agent communication is
substituted by the use of a shared information repository hosted on a cloud. Each
agent schedules its own accesses independently, and does not need to be alert for
information broadcast by other agents. When an agent accesses the repository,
it uploads some data packets, and downloads other packets that were previously
deposited by other agents. Therefore, each agent receives outdated information
about the state of the other agents. The control law and the rule for scheduling
the cloud accesses are designed to guarantee that the closed-loop system is well-
posed and achieves a given coordination objective, even if each agent receives only
outdated information about the state of the other agents. Our motivating example
is a waypoint generation algorithm for AUVs, which, as described above, represent
a challenging application, since underwater communication is interdicted.

The use of a shared information repository in multi-agent control tasks is subject
to recent, but growing, research attention. For example, Patel et al. (2016), employ
asynchronous communication with a base station to address a multi-agent coverage
control problem; Hale and Egerstedt (2015) present a cloud-supported approach to
multi-agent optimization; Bowman et al. (2016) present a cloud-supported control
algorithm to consensus of first-order integrators.
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In this chapter, we introduce cloud support for multi-agent systems with second-
order dynamics. We consider both persistent and vanishing disturbances, which
lead to approximate and asymptotic coordination, respectively. In both cases, we
show that the closed-loop system is well posed (meaning that the sequence of the
cloud accesses does not exhibit Zeno behavior (Johansson et al., 1999, Heymann
et al., 2005)), and achieves the control objective. Our analysis extends the use of
the edge Laplacian (Zelazo and Mesbahi, 2011, Zeng et al., 2015) to second-order
multi-agent systems on directed graphs, which allows us to consider control tasks
with asymmetric information flow among the agents, such as leader-following tasks.

4.2 System model and problem statement

In this section, we describe our control architecture, by defining the dynamical
model of the agents, the communication between the agents and the cloud reposi-
tory, the control inputs to the agents, and the control objective.

Agent Model

We consider a set V = {1, . . . , N} of N agents. The position and velocity of agent
i are denoted respectively as pi, vi ∈ Rn. For the sake of generality, we consider
the generic agent dimension n ∈ N. However, in our motivating example of planar
AUV coordination, we have n = 2. The agents move according to the following
equations:

ṗi(t) = vi(t), (4.1a)
v̇i(t) = ui(t) + di(t), (4.1b)

for i = 1, . . . , N , where ui(t) is a control input and di(t) is a disturbance signal.
We denote p(t) = [p1(t)ᵀ, . . . , pN (t)ᵀ]ᵀ, and similarly for v(t), u(t) and d(t), so that
(4.1) can be rewritten as

ṗ(t) = v(t), (4.2a)
v̇(t) = u(t) + d(t). (4.2b)

The control objective is for all the agents to converge to the same positions and
velocities within a given tolerance. Such objective is formalized mathematically
later in this section.

Assumption 4.1. The disturbance signals di(t) in (4.1b) satisfy ‖di(t)‖ ≤ δ(t),
where

δ(t) = (δ0 − δ∞)e−λδt + δ∞, (4.3)

for some 0 ≤ δ∞ ≤ δ0 and λδ > 0.
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Assumption 4.1 allows to consider both scenarios where only a constant upper
bound is known (δ0 = δ∞) and scenarios where the disturbances slowly vanish
(δ∞ = 0), which makes it possible to reach asymptotic convergence.

Cloud Repository
The agents cannot exchange any information directly, but can only upload and
download information on a shared repository hosted on a cloud. The cloud is
accessed intermittently by each agent and asynchronously by different agents. A
motivating application is a group of AUVs that can only communicate with a remote
repository when they are on the water surface, while they are isolated when they
are underwater. When an agent accesses the cloud, it also has access to a sampled
measurement of its own position and velocity. In our motivating application, this
corresponds to the underwater vehicles being able to access GPS while they are on
the water surface. The time instants when agent i accesses the cloud are denoted
ti,k, k ∈ N, and by convention ti,0 = 0 for all the agents. For convenience, we
denote li(t) the index of the most recent access time of agent i before time t; that
is,

li(t) = max{k ∈ N : ti,k ≤ t}. (4.4)

The position and velocity measurement obtained by agent i upon the time instant
ti,k are denoted pi,k and vi,k respectively. The control signals ui(t) are held constant
between two consecutive cloud accesses:

ui(t) = ui,k ∀t ∈ [ti,k, ti,k+1). (4.5)

When an agent accesses the cloud, it uploads data that other agents may download
later, when they, in turn, access the cloud. Namely, when agent i accesses the cloud
at time ti,k, it uploads a packet containing the following information: the current
time ti,k, the position and velocity measurements pi,k and vi,k, the value ui,k of
the control input that is going to be applied in the time interval [ti,k, ti,k+1), and
the time ti,k+1 of the next access. The data packet may overwrite the packet that
was uploaded on the previous access, avoiding that the amount of data contained
in the cloud grow over time, since, at each time instant, the cloud only contains
the data that each agent has uploaded upon its latest access. The data contained
in the cloud at a generic time instant is represented in Table table 4.1.

To achieve inter-agent coordination, each agent needs to download information
about a subset of the other agents. For each agent i, we denote as N i ⊆ V \{i} the
subset of the agents whose information is downloaded by agent i. Namely, when
agent i accesses the cloud at time ti,k, it downloads and stores the latest packet
uploaded by each agent j ∈ N i. This information, together with the measurements
pi,k and vi,k, is used by agent i to compute its control input ui,k for the upcoming
time interval [ti,k, ti,k+1), and to schedule the next cloud access ti,k+1. The number
N i of other agents whose information is downloaded by agent i may be chosen
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agent 1 2 . . . N

last access t1,l1(t) t2,l2(t) . . . tN,lN (t)

position p1,l1(t) p2,l2(t) . . . pN,lN (t)

velocity v1,l1(t) v2,l2(t) . . . vN,lN (t)

control u1,l1(t) u2,l2(t) . . . uN,lN (t)

next access t1,l1(t)+1 t2,l2(t)+1 . . . tN,lN (t)+1

Table 4.1: Data contained in the cloud at a generic time instant t ≥ 0. The i-th column
corresponds to the latest packet uploaded by agent i.

tj,lj(ti,k)

ti,k

tj,lj(ti,k)+1 tj,lj(ti,k)+2

ti,k+1

Figure 4.1: Excerpt of a possible sequence of cloud accesses on the time line. Recall that
tj,lj(t) denotes the most recent cloud access of agent j with respect to the time t. Note that
there can be more than one access of agent j between two consecutive accesses of agent i.

according to the available bandwidth or to the computational capabilities of the
agent.

In order to better illustrate the access sequence and the corresponding notation,
Figure 4.1 illustrates a possible sequence of cloud accesses on the time line. Note
that, in the scenario depicted in Figure 4.1, within the interval [ti,k, ti,k+1), while
agent i is underwater and, therefore, isolated, agent j surfaces and changes its con-
trol input more than one time. Agent i does not know the control input that agent
j will apply after tj,hj+1, nor it knows whether agent j will surface additional times
after tj,hj+1. The scheduling algorithm is able to guarantee the overall system’s
convergence in spite of these limitations.

The cloud uses the packets that it is storing to compute information about the
global state of the system. Such information can be downloaded by the agents
when they access the cloud, and used to improve the coordination performance.
Here, we consider the following case: when agent i accesses the cloud at time ti,k,
it also receives the positive scalar η̂(ti,k) representing an estimate of how far the
system is from reaching the control objective. This estimate is formally defined in
Section 4.5. The operations that each agent i performs upon each cloud access ti,k
are summarized in the following Algorithm 2.

Remark 4.1. In most existing self-triggered control protocols for multi-agent coor-
dination (De Persis and Frasca, 2013, Fan et al., 2015), when one agent updates its
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Algorithm 2 Operations executed by agent i at ti,k.
measure position pi,k
measure velocity vi,k
for j ∈ N i do

download packet {tj,lj , pj,lj , vj,lj , uj,lj , tj,lj+1}
end for
receive η̂(ti,k) from the cloud
compute control input ui,k
schedule next access ti,k+1

upload packet {ti,k, pi,k, vi,k, ui,k, ti,k+1}

control input, such information is broadcast immediately to that agent’s neighbors,
which requires the neighbors to always be alert for possibly coming information.
This requirement is relaxed in the proposed cloud-supported framework.

Controller
The controls ui,k, with i ∈ V, are computed as follows:

ui,k =
∑
j∈N i

wij(kp(p̂j(ti,k)− pi,k) + kv(v̂j(ti,k)− vi,k)), (4.6a)

v̂j(t) = vj,lj(t) + uj,lj(t)(t− tj,lj(t)), (4.6b)

p̂j(t) = pj,lj(t) + vj,lj(t)(t− tj,lj(t)) +
1

2
uj,lj(t)(t− tj,lj(t))2, (4.6c)

where kp, kv > 0 are control gains and wij > 0 represents the strength of the
influence of agent j on agent i. The values p̂j(t(i,k)) and v̂j(t(i,k)) represent the
estimates of, respectively, the position and the velocity of agent j at time ti,k. Note
that, in order to compute such estimates, agent i only needs the data downloaded
from the cloud at time ti,k, and it is not necessary to communicate directly with
agent j.

The sets N 1, . . . ,NN and the scalars wij induce a graph G = (V, E , w) over the set
V of the agents, where N i is the set of the neighbors of i and wij is the weight of
edge (j, i). We are going to refer to this graph as the network graph. Throughout
the chapter, we assume that the network graph contains a spanning tree.

Assumption 4.2. The network graph contains a spanning tree.

Control Objective
As we have anticipated, the control objective is that the agents synchronize their
positions and velocities. This objective can be formalized in a convenient way if
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we exploit Assumption 4.2. Denote the spanning tree of the network graph as
T and let C = E \ T . Without loss of generality, let the edges that are in T be
indexed from 1 to N − 1 and the edges that are in C be indexed from N to M , and
partition the incidence matrix and weight matrix accordingly as B = [BT , BC ] and
W = [WT ,WC ]. Denote x(t) = (Bᵀ

T ⊗ In)p(t) and y(t) = (Bᵀ
T ⊗ In)v(t). In other

words, x(t) = [x1(t)ᵀ, . . . , xN−1(t)ᵀ]ᵀ, where each xι(t) = phead(ι)(t)− ptail(ι) is the
difference between the positions of two agents whose indexes constitute an edge in
T . Similarly, y(t) = [y1(t)ᵀ, . . . , yN−1(t)ᵀ]ᵀ, where yι(t) = vhead(ι)(t)− vtail(ι). Let
ξ(t) = [x(t)ᵀ, y(t)ᵀ]ᵀ. Note that, for each i, j ∈ V, pj(t) − pi(t) can be written
as a linear combination of the variables xι(t) for ι ∈ {1, . . . ,M}, and, similarly,
vj(t)−vi(t) can be written as a linear combination of the variables yι(t). Therefore,
the control objective can be formalized in terms of ξ(t) as follows.

Definition 4.1. Consider the multi-agent system (4.2) and the associated network
graph G. We say that the multi-agent system achieves practical convergence with
tolerance ε ≥ 0 if

lim sup
t→∞

‖ξ(t)‖ ≤ ε. (4.7)

In particular, if the system achieves practical convergence with tolerance ε = 0, we
say that the system achieves asymptotic convergence.

4.3 Self-triggered cloud access scheduling

Each agent schedules its own access to the cloud recursively, i.e., agent i schedules
the access ti,k+1 when it accesses the cloud at time ti,k. The scheduling is based on
comparing two time-varying functions of the data downloaded from the cloud with
a given threshold function. The threshold function is chosen as

ς(t) = ς∞+(ς0− ς∞)e−λςt, (4.8)

with λς > 0 and 0 ≤ ς∞ < ς0. To define the scheduling rule, we need to introduce
some additional notation. Let p̂(t) = [p̂1(t)ᵀ, . . . , p̂N (t)ᵀ]ᵀ, where p̂i(t) is defined in
(4.6c), and similarly for v̂(t). Let

x̂(t) = (BT ⊗ In)p̂(t), (4.9a)
ŷ(t) = (BT ⊗ In)v̂(t), (4.9b)

ξ̂(t) = [x̂(t)ᵀ, ŷ(t)ᵀ]ᵀ. (4.9c)

Moreover, let

∆i(t) =

∫ t

ti,li(t)

∫ τ

ti,li(t)

δ(σ) dσ dτ +

∫ t

ti,li(t)

δ(τ) dτ , (4.10a)

∆(t) = [∆1(t), . . . ,∆N (t)]ᵀ, (4.10b)

η̂(t) = ‖ξ̂(t)‖+ ‖BT ‖ · ‖∆(t)‖, (4.10c)
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where δ(·) is defined in Assumption 4.1. Note that (4.10c), evaluated for t =
ti,k, defines the estimate η̂(ti,k) that agent i receives from the cloud at time ti,k.
Moreover, let

Fe,r =

[
0(N−1)×(N−1) IN−1

−kpR −kvR

]
, (4.11)

where kp and kv are the control gains in (4.6a), R is the reduced edge Laplacian of
the network graph, and

λ = −max{Re(s) : s ∈ eig(Fe,r)}. (4.12)

Consider the function

η(t, η0) = e−λ(t−t0)η0 +
√
N‖BT ‖

∫ t

t0

e−λ(t−τ)(ς(τ) + δ(τ)) dτ , (4.13)

and the coefficients

βi =
(√

k2
p + k2

v

)∥∥(WT +WCT
ᵀ)i
∥∥, (4.14a)

νi = max
j:i∈N j

{∑
q∈N j

wqj

}
, (4.14b)

where (WT +WCT
ᵀ)i denotes the i-th row of (WT +WCT

ᵀ). Finally, choose α such
that 0 < α < 1. Then, each agent schedules the cloud accesses as follows:

ti,k+1 = inf

{
t > ti,k :σi,k(t) ≥ ς(t) ∨ Ωi,k(t) ≥ α

νi
ς(t)

}
, (4.15)

where

Ωi,k(t) = kp

∫ t

ti,k

∫ τ

ti,k

δ(σ)dσ dτ + kv

∫ t

ti,k

δ(τ) dτ , (4.16a)
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σi,k(t) =

∥∥∥∥(∑
j∈N

wij

)(
kv(t− ti,k)ui,k

+ kp((t− ti,k)vi,k + (1/2)(t− ti,k)2ui,k)
)

+
∑
j∈N i

wij(kv(t
′
j,hj − ti,k)uj,hj

+ kp((t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj )(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj )uj,h))

∥∥∥∥
+
∑
j∈N i

wij

(∫ t′′j,hj

tj,hj+1

µi,kj (τ) dτ

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

µi,kj (θ) dθ dτ

)
+

(∑
j∈N i

wij

)
Ωi,k(t) +

∑
j∈N i

wijΩj,hj (t),

(4.16b)

µi,kj (t) = βjη(t, η̂(ti,k)) + ς(t), (4.16c)

t′j,hj = min{t, tj,hj+1}, (4.16d)

t′′j,hj = max{t, tj,hj+1}, (4.16e)

and where we have denoted hj = lj(ti,k) for brevity. Recall here that li(t) is defined
by (4.4). The scheduling rule (4.15) and (4.16) can be interpreted as follows. After
the access ti,k, Ωi,k(t) represents an upper bound on the part of ‖ũi(t)‖ that is due
to the disturbances that have acted on agent i in the interval [ti,k, t). This upper
bound is kept under a threshold (here set to (α/νi) ς(t)), so that the information
deposited by agent i in the cloud can be used to predict its position and velocity
within a certain error bound. Similarly, σi,k(t) represents an upper bound on the
mismatch ‖ũi(t)‖, which takes into account both the effect of the disturbances dj(t)
with j ∈ N i ∪{i}, the piecewise-constant nature of the control signals uj(t) with
j ∈ Ni ∪{i}, and the fact that, for t > tj,hj+1, the current value of uj,hj+1 of uj(t)
is not known by agent i (agent i has downloaded uj,hj in the latest packet, but
has no information on the choice of the control that agent j will adopt at time
tj,hj+1). Indeed, for t > tj,hj+1, agent i uses µ

i,k
j (t) as an upper-bound for uj(t),

hence exploiting the estimate η̂(ti,k). The upper bound σi,k(t) is kept under ς(t),
so that the hypotheses of Lemma 4.2 are satisfied. A new cloud access is triggered
when either of Ωi,k(t) or σi,k(t) are about to cross the assigned threshold. In fact,
under the scheduling rule (4.15), since Ωi,k(t) and σi,k(t) are continuous functions
of time, we have Ωi,k(t) < α/νi ς(t) and σi,k(t) < ς(t) for all t ∈ (ti,k, ti,k+1).
Note that (4.15) and (4.16) can be evaluated by agent i when it accesses the cloud
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(i.e., at time ti,k) and do not require communication with the other agents. Under
such assumption, it is easy to prove that the multi-agent system (4.1) achieves the
desired control objective. Then, we show that said assumption is satisfied at all
times if the accesses of the agents to the cloud are scheduled according to (4.15)
and (4.16).

Remark 4.2. The requirement that the cloud should compute η̂(ti,k) upon each
agent connection introduces a form of centralized computation in the algorithm.
However, as we shall see later in the chapter, η̂(ti,k) is only used in the scheduling
as an upper bound, and it can be substituted by a more conservative bound (for
example, a bound depending on the initial conditions) if it is desired to avoid this
centralized computation.

4.4 Main result

Our main result is formalized as the following theorem.

Theorem 4.1. Consider the multi-agent system (4.1), with control law (4.6a)
to (4.6c) and cloud accesses scheduled by (4.15) and (4.16). Let Assumptions 4.1
and 4.2 hold, and let kp and kv be such that Fe,r is Hurwitz. If ς∞ > 0, the closed-
loop system does not exhibit Zeno behavior and achieves practical convergence with
radius

ε =

√
N‖BT ‖(ς∞+δ∞)

λ
, (4.17)

where ς∞ is the asymptotic value of the threshold function (4.8), δ∞ is the asymp-
totic value of the disturbance bound (4.3), and λ is defined in (4.12). If δ∞ = 0,
ς∞ = 0 and λς < min{λ, λδ}, then the closed-loop system does not exhibit Zeno
behavior and achieves asymptotic convergence.

Remark 4.3. Note that our convergence result (4.17) is similar to the convergence
results obtained in classic papers about event-triggered coordination of multi-agent
system, such as the references presented in Section 2.5. Here, however, convergence
is obtained by means of a remote repository accessed asynchronously by the agents,
and not by direct inter-agent communication.

Remark 4.4. Note that, under Assumption 4.2, we can always choose kp and kv
such that Fe,r is Hurwitz. The proof of this remark is formalized as follows.

The proof of Theorem 4.1 is given in the following three sections of the chapter.
Namely, in Section 4.5, we study the convergence properties of the closed-loop
system, while, in Section 4.6, we show that the closed-loop system does not exhibit
Zeno behavior (Johansson et al., 1999). Finally, in Section 4.7 we put the results
of Sections 4.5 and 4.6 together to state a formal proof of Theorem 4.1.
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4.5 Convergence of the closed-loop system

Our first step in the analysis of the closed-loop system is to rewrite the system
dynamics in terms of the error vector ξ(t). First, compare the control signals ui,k
defined by (4.6a) with

zi(t) =
∑
j∈N i

wij(kp(pj(t)− pi(t)) + kv(vj(t)− vi(t))). (4.18)

We can write zi(t) in terms of the incidence matrix and the weight matrix of the
network graph as

zi(t) = ((WiB
ᵀ)⊗ In)(kpp(t) + kvv(t)), (4.19)

where Wi denotes the i-th row of W . Letting z(t) = [z1(t)ᵀ, . . . , zN (t)ᵀ]ᵀ, we can
rewrite (4.18) as

z(t) = ((WBᵀ)⊗ In)(kpp(t) + kvv(t)). (4.20)

Moreover, substituting W = [WT WC ] and B = [BT BC ] = BT [I T ] in (4.20), we
have

z(t) = ((WT +WCT
ᵀ)Bᵀ

T ⊗ In)(kpp(t) + kvv(t)). (4.21)

Using the properties of the Kronecker product, and recalling that x(t) = (Bᵀ
T ⊗

In)p(t) and y(t) = (Bᵀ
T ⊗ In)v(t), we can rewrite (4.21) as

z(t) = ((WT +WCT
ᵀ)⊗ In)(kpx(t) + kvy(t)). (4.22)

Left-multiplying both sides of (4.22) by Bᵀ
T ⊗ In, using again the properties of the

Kronecker product, and denoting the reduced edge Laplacian of the network graph
as R, we have

(Bᵀ
T ⊗ In)z(t) = (R⊗ In)(kpx(t) + kvy(t)). (4.23)

Let ũi(t) be the mismatch between the control input of agent i and zi(t), namely,

ũi(t) = ui(t)− zi(t). (4.24)

We denote ũ(t) = [ũ1(t)ᵀ, . . . , ũN (t)ᵀ]ᵀ, so that we can rewrite (4.24) as

ũ(t) = u(t)− z(t). (4.25)

Left-multiplying both sides of (4.2a) and (4.2b) by Bᵀ
T ⊗ In, we have

ẋ(t) = y(t), (4.26a)
ẏ(t) = (Bᵀ

T ⊗ In)(u(t) + d(t)). (4.26b)

Substituting (4.23) and (4.25) in (4.26a) and (4.26b), we have

ẋ(t) = y(t), (4.27a)
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ẏ(t) = −(R⊗ In)(kpx(t) + kvy(t))

+ (Bᵀ
T ⊗ In)(ũ(t) + d(t)),

(4.27b)

which, recalling that ξ(t) = [x(t)ᵀ y(t)ᵀ]ᵀ, can be rewritten as

ξ̇(t) = (Fe,r ⊗ In)ξ(t) + (G⊗ In)(ũ(t) + d(t)), (4.28)

where Fe,r is defined in (4.11) and G = [0ᵀ(N−1)×N Bᵀ
T ]ᵀ.

The following Lemma 4.1 shows that η̂(t) defined by (4.10c) constitutes an upper
bound for the state error vector ξ(t).

Lemma 4.1. Under Assumption 4.1, we have ‖ξ(t)‖ ≤ η̂(t) for all t ≥ 0, where
η̂(t) is defined by (4.10c).

Proof. Denote Dv,i(t) =
∫ t
ti,li(t)

di(τ) dτ and Dp,i(t) =
∫ t
ti,li(t)

∫ τ
ti,li(t)

di(θ) dθ dτ ,
let Dp(t) = [Dp,1(t), . . . , Dp,N (t)], and similarly for Dv(t). Using (4.1), (4.6b)
and (4.6c), we have

p(t) = p̂(t) +Dp(t), (4.29a)
v(t) = v̂(t) +Dv(t), (4.29b)

Left multiplying (4.29a) and (4.29b) by (BT ⊗ In), and using (4.9a) to (4.9c), we
have

ξ(t) = ξ̂(t) + ((BT ⊗ In)⊗ I2)D(t), (4.30)

where we have denoted D(t) = [Dp(t)
ᵀ, Dv(t)

ᵀ]ᵀ. Taking norms of both sides,
and using the triangular inequality, the properties of the Kronecker product, and
Assumption 4.1, we have

‖ξ(t)‖ ≤ ‖ξ̂(t)‖+ ‖BT ‖‖D(t)‖. (4.31)

Under Assumption 4.1, we have ‖D(t)‖ ≤ ‖∆(t)‖, which substituted in (4.31) yields
the desired result.

Note that η̂(t) as defined in (4.10c) can be computed by the cloud at any time
instant. However, the cloud does not need to compute η̂(t) at all time instants, but
only when an agent connects to download η̂(ti,k). As a consequence of Lemma 4.1,
we have, in particular,

‖ξ(ti,k)‖ ≤ η̂(ti,k). (4.32)

The following lemma relates a bound on the control errors ũi(t) to a bound on the
state error vector ξ(t) and on the control signals ui(t).

64



4.5. Convergence of the closed-loop system

Lemma 4.2. Consider the multi-agent system (4.1), and let Assumption 4.1 hold.
Suppose that

‖ũi(t)‖ ≤ ς(t) (4.33)

for all t ∈ [t0, tf ) and all i ∈ V, where ũi(t) is defined by (4.24) and ς(t) is the
threshold function (4.8). Let η0 ≥ ‖ξ(t0)‖. Then, for all t ∈ [t0, tf ), we have

‖ξ(t)‖ ≤ η(t, η0), (4.34)

where η(·, ·) is defined by (4.13). Moreover, we have

‖ui(t)‖ ≤ βiη(t, η0) + ς(t) (4.35)

for all t ∈ [t0, tf ), and all i ∈ V, where βi is defined by (4.14a).

Proof. The Laplace solution of (4.28) reads

ξ(t) = eFe,r(t−t0)ξ(t0) +

∫ t

t0

eFe,r(t−τ)(G⊗ In)(ũ(τ) + d(τ)) dτ . (4.36)

Taking norms of both sides in (4.36), and using (4.33), Assumption 4.1, the prop-
erties of the Kronecker product, and the triangular inequality, and observing that
‖eFe,r(t−t0)‖ ≤ e−λ(t−t0), and that ‖G‖ = ‖BT ‖, we have (4.34). Moreover, from
(4.24), we have ui(t) = zi(t)+ũi(t). Taking norms of both sides, and using the trian-
gular inequality, we have ‖ui(t)‖ ≤ ‖zi(t)‖+‖ũi(t)‖. Selecting the rows correspond-
ing to the i-th agent in (4.22), we have zi(t) = ((WT +WCT

ᵀ)i⊗In)(kpx(t)+kvy(t)),
where (WT +WCT

ᵀ)i denotes the i-th row of (WT +WCT
ᵀ). Taking norms of both

sides, and substituting the result in the previous inequality, we have ‖ui(t)‖ ≤
βi‖ξ(t)‖+ ‖ũi(t)‖. Using (4.33) and (4.34), we obtain (4.35).

Since (4.32) holds, we can invoke Lemma 4.2 with t0 = ti,k and η0 = η̂(ti,k), which
leads to the implication

‖ũj(t)‖ ≤ ς(t) ∀t ∈ [ti,k, tf ), j ∈ V
=⇒ ‖uj(t)‖ ≤ µi,kj (t) ∀t ∈ [ti,k, tf ), j ∈ V,

(4.37)

where µi,kj (t) is defined by (4.16c).

The following Lemma 4.3 shows that, under the scheduling rule (4.15) and (4.16),
we can guarantee that ‖ũi(t)‖ ≤ ‖ς(t)‖ for all agents, thus satisfying the hypotheses
of Lemma 4.2.

Lemma 4.3. Consider the multi-agent system (4.2) under the control law (4.5)
and (4.6a) to (4.6c) and the scheduling rule (4.15) and (4.16). Then, under As-
sumption 4.1, we have ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 and i ∈ V.
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Proof. Since (4.15) guarantees σi,li(t)(t) ≤ ς(t) for all t ≥ 0 and all i ∈ V, we only
need to show that ‖ũi(t)‖ ≤ σi,li(t)(t) for all t ≥ 0 and all i ∈ V. Without loss of
generality, let li(t) = k, and consider t ∈ [ti,k, ti,k+1). Substituting (4.6a) and (4.18)
in (4.24), we have

ũi(t) =
∑
j∈N i

wij(kp((p̂
(i,k)
j − pj(t))− (pi,k − pi(t)))

+ kv((v̂
(i,k)
j − vj(t))− (vi,k − vi(t)))).

(4.38)

First, consider the term vi(t) in (4.38). Integrating (4.1b) in (ti,k, t), we have, for
t ∈ (ti,k, ti,k+1),

vi(t) = vi,k + (t− ti,k)ui,k +

∫ t

ti,k

di(t) dτ . (4.39)

Now consider the term vj(t) in (4.38). Integrating (4.1b) for agent j in (tj,hj , t),
and using (4.6b), we have

vj(t) = v̂
(i,k)
j +

∫ t

ti,k

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ . (4.40)

Now we need to distinguish two cases. If t ≤ tj,hj+1, then (4.40) can be rewritten
as

vj(t) = v̂
(i,k)
j + (t− ti,k)uj,hj +

∫ t

tj,hj

dj(τ) dτ . (4.41)

Conversely, if t > tj,hj+1, (4.40) can be rewritten as

vj(t) = v̂
(i,k)
j + (tj,hj+1 − ti,k)uj,hj

+

∫ t

tj,hj+1

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ .
(4.42)

Using (4.16d) and (4.16e), we can write (4.41) and (4.42) compactly as

vj(t) = v̂
(i,k)
j + (t′j,hj − ti,k)uj,hj

+

∫ t′′j,hj

tj,hj+1

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ .
(4.43)

Now consider the term pi(t) in (4.38). Integrating (4.1a) in (ti,k, t), and using
(4.39), we have, for t ∈ (ti,k, ti,k+1),

pi(t) = pi,k + vi,k(t− ti,k) + (1/2)(t− ti,k)2ui,k

+

∫ t

ti,k

∫ τ

ti,k

di(θ) dθ dτ .
(4.44)
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Finally, consider the term pj(t) in (4.38). Integrating (4.1a) for agent j in [tj,hj , t),
and using (4.6c), we have

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+

∫ t

ti,k

∫ τ

tj,hj

uj(σ) dσ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ .
(4.45)

Similarly as we did for (4.40), we need to distinguish two cases. If t ≤ tj,hj+1, then
(4.45) can be rewritten as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(t− ti,k)(t+ ti,k − 2tj,hj )uj,hj

+

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ .

(4.46)

Conversely, if t > tj,hj+1, (4.45) can be rewritten as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(tj,hj+1 − ti,k)(tj,hj+1 + ti,k − 2tj,hj )uj,hj

+ (t− tj,hj+1)(tj,hj+1 − tj,hj )uj,hj

+

∫ t

tj,hj+1

∫ τ

tj,hj+1

uj(σ) dσ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ .

(4.47)

Using (4.16d) and (4.16e), we can write (4.46) and (4.47) compactly as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj )(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj )uj,h

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

uj(θ) dθ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(θ) dθ dτ .

(4.48)

Substituting (4.39), (4.43), (4.44) and (4.48) in (4.38), taking norms of both sides,
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and using the triangular inequality and Assumption 4.1, we have

‖ũi(t)‖ ≤
∥∥∥∥(∑

j∈N
wij

)
(kv(t− ti,k)ui,k

+ kp((t− ti,k)vi,k + (1/2)(t− ti,k)2ui,k))

+
∑
j∈N i

wij(kv(t
′
j,hj − ti,k)uj,hj

+ kp((t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj )(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj )uj,h))

∥∥∥∥
+
∑
j∈N i

wij

(∫ t′′j,hj

tj,hj+1

‖uj(τ)‖ dτ

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

‖uj(θ)‖ dθ dτ

)
+

(∑
j∈N i

wij

)
Ωi,k(t) +

∑
j∈N i

wijΩj,hj (t).

(4.49)

Comparing (4.49) with (4.16b), we have that, if ‖ũi(t)‖ > σi,k(t) for some t ∈
(ti,k, ti,k+1), then it must be ‖uj(τ)‖ > µi,kj (τ) for some j ∈ V and some τ ∈
(tj,hj+1, t). But, by (4.37), the previous inequality implies ‖ũj(τ ′)‖ > ς(τ ′) for some
τ ′ ∈ (tj,hj+1, t), which, by (4.15), implies in turn ‖ũj(τ ′)‖ > σj,lj(τ ′)(τ

′). Therefore,
the condition ‖ũi(t)‖ ≤ σi,li(t)(t) cannot be violated by any of the agents if it has
not been previously violated by another agent. Since we have ũ(0) = 0Nn, this
condition holds for all the agents at time zero, and, therefore, cannot be violated
by any of the agents. Hence, we have ‖ũi(t)‖ ≤ σi,li(t)(t) for all t ≥ 0 and all i ∈ V,
which, by (4.15), implies ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 and all i ∈ V.

4.6 Well-posedness of the closed-loop system

The second step in our analysis is to prove that the closed-loop system is well posed,
in the sense that the sequence of the updates ti,k for k ∈ N0 does not present Zeno
behavior for any of the agents. We are going to distinguish two cases, namely
ς∞ > 0 and ς∞ = 0, where ς∞ is the asymptotic value of the threshold function
(4.8).

Lemma 4.4. Consider the multi-agent system (4.2), with control law (4.5) and (4.6a)
to (4.6c) and cloud accesses scheduled by (4.15) and (4.16). Let kp and kv be such
that Fe,r is Hurwitz. Suppose ς∞ > 0. Then, under Assumptions 4.1 and 4.2, the
closed-loop system does not exhibit Zeno behavior.

68



4.6. Well-posedness of the closed-loop system

Proof. First, note that Ωi,k(t), for t ∈ [ti,k, ti,k+1), can be computed explicitly as

Ωi,k(t) = kp

(
δ0 − δ∞
λδ

e−λδti,k
(

(t− ti,k)

− 1− e−λδ(t−ti,k)

λδ

)
+

1

2
δ∞(t− ti,k)2

)
+ kv

(
δ0 − δ∞
λδ

e−λδti,k(1− e−λδ(t−ti,k)) + δ∞(t− ti,k)

)
.

(4.50)

Observing that e−λδti,k ≤ 1, we can bound (4.50) as

Ωi,k(t) ≤ kp
(
δ0 − δ∞
λδ

(t− ti,k) +
1

2
δ∞(t− ti,k)2

)
+ kv

(
δ0 − δ∞
λδ

(1− e−λδ(t−ti,k)) + δ∞(t− ti,k)

)
,

(4.51)

while ς(t) ≥ ς∞. Therefore, for Ωi,k(t) to be larger than α ς(t)/νi, the right-hand
side of (4.51) must be greater or equal than α ς∞ /νi, which, in turn, requires a
strictly positive value of t− ti,k. Hence, the triggering condition Ωi,k(t) ≥ α ς(t)/νi
cannot be responsible for Zeno behavior. Now we produce a similar argument for the
triggering condition σi,k(t) ≥ ς(t). First, note that, thanks to (4.14b) and (4.15),
the last two addends of σi,k(t) in (4.16b) can be bounded by(∑

j∈N
wij

)
Ωi,k(t) +

∑
j∈N

wijΩj,hj (t) ≤ α ς(t). (4.52)

Moreover, for t ∈ [ti,k, ti,k+1), letting hj = lj(ti,k), we have, from Lemma 4.2,

‖ui,k‖ ≤ βiη(ti,k, ‖ξ(0)‖) + ς(ti,k), (4.53a)
‖uj,hj‖ ≤ βjη(ti,k, ‖ξ(0)‖) + ς(ti,k). (4.53b)

Since η(t, η0) is an upper-bounded function of t for any η0, we can denote as η̄ the
upper bound of η(·, ‖ξ(0)‖), which, by observing also that ς(ti,k) ≤ ς0, allows us to
further bound (4.53a) and (4.53b) as

‖ui,k‖ ≤ βiη̄ + ς0, (4.54a)
‖uj,hj‖ ≤ βj η̄ + ς0 . (4.54b)

Reasoning similarly for µj(t) for t ∈ [tj,hj+1), we have

µj(t) ≤ βj η̄ + ς0 . (4.55)

Also, note that
‖vj,hj − vi,k‖ ≤ ‖ξ(ti,k)‖ ≤ η̄. (4.56)
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Substituting (4.52), (4.54a), (4.54b), (4.55) and (4.56) into (4.16b), and using the
triangular inequality, we have

σi,k(t) ≤
(∑
j∈N

wij(βj η̄ + ς0 +βiη̄ + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
η̄kp(t− ti,k) + α ς(t).

(4.57)

Noticing also that ς(t) ≥ ς∞ for all t ≥ 0, the triggering condition σi,k(t) ≥ ς(t)
implies that the first two addends of (4.57) are larger than (1−α) ς∞, which requires
a strictly positive value of t − ti,k. Hence, the triggering condition σi,k(t) ≥ ς(t)
cannot be responsible for Zeno behavior either.

When the disturbances eventually vanish, the particular case of asymptotic conver-
gence may be considered with the specific choice of ς∞ = 0 and a convergence rate
λς slower than λ, which is defined by (4.12) and can be interpreted as the natural
convergence rate of the network. This result is formally stated in the following
lemma.

Lemma 4.5. Consider the multi-agent system (4.1), with control law (4.5) and (4.6a)
to (4.6c) and cloud accesses scheduled by (4.15) and (4.16). Let Assumptions 4.1
and 4.2 hold, with δ∞ = 0 in Assumption 4.1. Choose kp and kv such that Fe,r is
Hurwitz, and choose ς∞ = 0 and λς < min{λ, λδ}. Then, the closed-loop system
does not exhibit Zeno behavior.

Proof. We write the proof for the case λ > λδ. The structure of the proof is the
same for λ < λδ and λ = λδ, with only the expression (4.65) of the coefficient ¯̄η
taking a slightly different form. Under Assumption 4.1 with δ∞ = 0 and λς < λδ,
we can write

δ(t) ≤ δ0e−λςt. (4.58)

Substituting (4.58) in (4.16a), and solving the integrals explicitly, we have

Ωi,k(t) ≤
(
kp
δ0
λς

(
(t− ti,k)− 1− e−λς(t−ti,k)

λς

)
+ kv

δ0
λς

(1− e−λς(t−ti,k))

)
e−λςti,k .

(4.59)

Since by hypothesis ς∞ = 0, we have

ς(t) = ς0 e
−λςt = ς0 e

−λςti,ke−λς(t−ti,k). (4.60)
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Comparing (4.59) and (4.60), after dividing both sides by e−λςti,k , we have that
the triggering condition Ωi,k(t) ≥ α/νi ς(t) requires

kp
δ0
λς

(
(t− ti,k)− 1− e−λς(t−ti,k)

λς

)
(4.61a)

+ kv
δ0
λς

(1− e−λς(t−ti,k)) ≥ α

νi
ς0 e
−λς(t−ti,k), (4.61b)

which, in turn, requires a strictly positive value of t − ti,k. Hence, the triggering
condition Ωi,k(t) ≥ α/νi ς(t) cannot be responsible for Zeno behavior. Now we
produce a similar argument for the triggering condition σi,k(t) ≥ ς(t). Under
Assumption 4.1 with δ∞ = 0, Lemma 4.2 holds, and (4.13) can be written as

η(t, η0) = e−λ(t−t0)η0 +
√
N‖BT ‖e−λt(

ς0(e(λ−λς)t − e(λ−λς)t0)

λ− λς
+
δ0(e(λ−λδ)t − e(λ−λδ)t0)

λ− λδ

) (4.62)

for all t ≥ t0. Choosing t0 = 0 and η0 = ‖ξ(0)‖, from (4.62) we have

η(t, ‖ξ(0)‖) ≤ e−λt‖ξ(0)‖+
√
N‖BT ‖

(
ς0 e
−λςt

λ− λς
+
δ0e
−λδt

λ− λδ

)
(4.63)

for all t ≥ 0. Since, by hypothesis, λς < λ, (4.63) can be further bounded by

η(t, ‖ξ(0)‖) ≤ ¯̄ηe−λςt, (4.64)

where we have denoted

¯̄η =

(
‖ξ(0)‖+

√
N‖BT ‖

(
ς0

λ− λς
+

δ0
λ− λδ

))
. (4.65)

Substituting (4.64) in (4.53a) and (4.53b), and observing that ς(ti,k) = ς0 e
−λςt, we

have

‖ui,k‖ ≤ (βi ¯̄η + ς0)e−λςti,k , (4.66a)

‖uj,hj‖ ≤ (βj ¯̄η + ς0)e−λςti,k . (4.66b)

Reasoning similarly for µj(t) for t > tj,hj+1, we have

µj(t) ≤ (βj ¯̄η + ς0)e−λςti,k . (4.67)

Also, note that
‖vj,hj − vi,k‖ ≤ ‖ξ(ti,k)‖ ≤ ¯̄ηe−λςti,k . (4.68)

Finally, note that (4.52) remains valid under the hypotheses of this lemma. There-
fore, substituting (4.52), (4.66a), (4.66b), (4.67) and (4.68) into (4.16b), observing
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that ς(t) = ς0 e
−λςti,k and using the triangular inequality, we have

σi,k(t) ≤
((∑

j∈N
wij(βj ¯̄η + ς0 +βi ¯̄η + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
¯̄ηkp(t− ti,k) + α ς0

)
e−λςti,k .

(4.69)

From (4.60) and (4.69), after dividing both sides by e−λςti,k , we can see that the
triggering condition σi,k(t) ≥ ς(t), implies((∑

j∈N
wij(βj ¯̄η + ς0 +βi ¯̄η + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
¯̄ηkp(t− ti,k)

)
≥ (1− α) ς0 e

−λς(t−ti,k),

(4.70)

which, in turn, requires a strictly positive value of t − ti,k. Hence the triggering
condition σi,k(t) ≥ ς(t) cannot be responsible for Zeno behavior either.

4.7 Proof of the main result

In this section, we use the partial results that we have developed in this chapter so
far to establish a formal proof of Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.3, we know that, under the control law (4.5)
and (4.6a) to (4.6c) and the scheduling rule (4.15) and (4.16) the hypotheses of
Lemma 4.2 are satisfied.

If δ∞ > 0, we know from Lemma 4.4 that the closed-loop system does not exhibit
Zeno behavior. Therefore, we can take t → ∞ in (4.13) in Lemma 4.2, obtaining
lim supt→∞‖ξ(t)‖ ≤ ε, with ε given by (4.17).

If δ∞ = 0, ς∞ = 0 and λς < min{λ, λδ}, we know from Lemma 4.5 that the closed-
loop system does not exhibit Zeno behavior. Therefore, we can take again t→∞ in
(4.13), obtaining lim supt→∞‖ξ(t)‖ ≤ ε. But since δ∞ = ς∞ = 0, (4.17) evaluates
to zero, and therefore limt→∞ ξ(t) = 0.

4.8 Numerical simulations

In this section, two numerical simulations of the proposed control algorithm are
presented, one for a scenario where practical convergence is reached, and one for
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Figure 4.2: A graph with 4 nodes and 5 edges. The nodes and the edges are labeled with
their indexes.

a scenario where asymptotic convergence is reached. For both simulations, we
consider a multi-agent system made up of N = 4 agents with state in R2, which ex-
change information through a cloud repository according to the graph G illustrated
in Figure 4.2, where all the edges are assigned unitary weights.

The assigned graph contains a spanning tree T made up of the first three edges.
The corresponding reduced edge Laplacian is

R =

 2 0 −1
−1 2 1
0 −1 1

 . (4.71)

The control gains are chosen as kp = 0.5 and kd = 1.0, which leads to λ =
−max{Re(s) : s ∈ eig(Fe,r)} = 0.5 and ‖BT ‖ ' 2.45. The disturbances are
chosen as

di(t) = δ(t)

[
cos(2π(i/N)t+ 2π((N − i)/N))
sin(2π(i/N)t+ 2π((N − i)/N))

]
, (4.72)

where δ(t) is defined by (4.3) with δ0 = 0.2, λδ = 0.45, δ∞ = 0.02 in the first
simulation, and δ∞ = 0 in the second simulation. It is easy to see that, with
these parameters, Assumption 4.1 is satisfied. The threshold function is chosen as
(4.8), with ς0 = 5.0, λς = 0.4, ς∞ = 0.5 for the first simulation, and ς∞ = 0 for
the second simulation. Note that, with these choices, the first simulation scenario
satisfies the hypotheses of Theorem theorem 4.1 for practical coordination, and
the second simulation scenario satisfies the hypotheses of Theorem theorem 4.1 for
asymptotic convergence. For the coefficient α that appears in (4.15), we choose
α = 0.05.

The results of the first simulation are illustrated in Figure 4.3. From Figure 4.3
it looks clear that the multi-agent system only achieves practical convergence, but
the norm of the disagreement vector is significantly reduced. From Figure 4.3, we
can also see that the cloud accesses do not accumulate; on the contrary, they seem
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to become less frequent over time, which corroborates the result that the closed-
loop system does not exhibit Zeno behavior. The results of the second simulation
are illustrated in Figure 4.4. From Figure 4.4, we can see clearly that ξ(t) → 0,
which means that asymptotic convergence is reached. From Figure 4.4, we can
also see that the cloud accesses do not accumulate even if the threshold function is
converging to zero, which again corroborates the result that the closed-loop system
does not exhibit Zeno behavior.

4.9 Summary

This chapter has addressed a cloud-supported self-triggered control problem for
multi-agent coordination of a team of agents with second-order dynamics. Coordi-
nation has been achieved by having the agents asynchronously deposit and retrieve
data on a cloud repository, rather than by inter-agent communication. Two control
objectives have been considered, namely practical and asymptotic convergence. It
has been shown that the proposed control strategy achieves practical convergence in
the presence of unknown bounded persistent disturbances, and asymptotic conver-
gence in the presence of unknown disturbances if they slowly vanish. Well-posedness
of the closed-loop system has been proved by showing that there is a lower bound
for the time interval between two consecutive accesses to the cloud. The proposed
scheme can be adopted in all cases when direct communication among agents is in-
terdicted, as illustrated in our motivating example of controlling a fleet of AUVs.
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Figure 4.3: Simulation with persistent disturbances. Top: position mismatches across the
edges (j, i) in the spanning tree over time. Middle: time instants when each agent accesses
the cloud; a green cross denotes an access triggered by Ωi,k(t) ≥ α/νi ς(t); a red cross denotes
an access triggered by σi,k(t) ≥ ς(t). Bottom: norm of the global disagreement vector ξ(t)
over time.
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Figure 4.4: Simulation with asymptotically vanishing disturbances. Same subplots as in Fig-
ure 4.3.
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Chapter 5

Cloud-supported circumnavigation

I fanciulli gridando
Su la piazzuola in frotta,
E qua e là saltando,
Fanno un lieto romore:
E intanto riede alla sua parca mensa,
Fischiando, il zappatore,
E seco pensa al dì del suo riposo.

G. Leopardi,
Il sabato del villaggio, vv. 24–30.

In this chapter, we study a particular application for the cloud-supported control
design introduced in Chapter 4. Namely, we apply cloud-supported coordination

to a problem of target circumnavigation.

The rest of this chapter is organized as follows. In Section 5.1, we review the
existing related work and highlight the novel contributions offered in the chapter.
In Section 5.2, we define the mathematical model used to describe the network of
agents that are asked to perform the circumnavigation. In Section 5.3, we design
an event-based rule to trigger the measurement of the bearing of the target, and
we demonstrate that, under this rule, each agent converges to a circle centered at
the target, with a desired distance from the target. In Section 5.4, we design a self-
triggered control law to schedule the accesses of each agent to the cloud repository,
and we demonstrate that, under this rule, the agents converge to a regular-polygon
formation around the target. In Section 5.5, we validate our results by numerical
simulation. In Section 5.6, we describe a preliminary experimental evaluation of
the proposed algorithm. Section 5.7 concludes the chapter with a summary of the
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results.

5.1 Introduction

The problem of tracking and circumnavigating a target with a network of au-
tonomous agents finds numerous applications in mobile robotics. A first application
is the surveillance of a building or structure with a team of aerial robots. In fact, in
many cases, having the robots circumnavigate the target to survey yields a better
coverage than deploying the robots to fixed positions around the target. Another
application is monitoring an organism by surrounding it with a set of autonomous
mobile sensing agents.

Circumnavigation of a target with a single agent has been studied, for example, in
(Shames et al., 2012, Deghat et al., 2014), where the agent measures the bearing of
the target and its distance from the target, respectively. The problem of steering a
network of autonomous agents to a circling formation is the subject of a vast body
of work, including, for example, (Marshall et al., 2004, 2006, Sepulchre et al., 2007,
Kim and Sugie, 2007, Shames et al., 2011). Recently, these two problems have
been merged, and the scenario where a network of autonomous agents is required
to locate and circumnavigate a target with unknown location has been considered
(Swartling et al., 2014).

The vast majority of the existing works on circumnavigation are based on the un-
derlying assumption that each agent may perform measurements and/or exchange
information with the other agents in a continuous-time fashion. However, in reality,
both the measurements and the exchange of information happen through wireless
communication channels with limited bandwidth capacity. Therefore, the frequency
with which the agents may perform these actions is limited. To address these con-
cerns, in this work we propose a control framework for multi-agent circumnavi-
gation where bearing measurements and communication are event-triggered and
self-triggered, respectively. Event-triggered and self-triggered control are used to
reduce the amount of communication necessary to achieve a control task (Heemels
et al., 2012). These schemes are applied to multi-agent systems to achieve the
desired coordination while reducing the amount of information exchanged among
different agents (Dimarogonas et al., 2012).

Moreover, instead of letting the agents communicate directly with each other, we
let them transfer data over a shared information repository hosted on a cloud. The
accesses of the agents to the cloud are scheduled according to a recursive rule such
that, when an agent accesses the cloud, it also computes when it will access the
cloud next. The use of a cloud repository in multi-agent systems has recently gained
much research attention, because it presents several advantages with respect to
direct communication among the agents. Several classical multi-agent coordination
problems have recently been studied in a context where a cloud repository replaces

78



5.2. System model and problem statement

direct communication (Hale and Egerstedt, 2015, Bowman et al., 2016, Patel et al.,
2016).

The effectiveness of the proposed algorithm is verified analytically and by numerical
simulation. We also illustrate a setup for preliminary experimental evaluation of
the proposed algorithm.

5.2 System model and problem statement

In this work, we consider a network of N autonomous vehicles modeled as planar,
first-order integrators, described by

ẏi(t) = ui(t), i ∈ N , (5.1)

where yi(t) ∈ R2 is the position of the agent, and ui(t) ∈ R2 is the decentralized
control action exerted on the agent, thus having the dimensions of a velocity, and
N = {1, . . . , N}. The agents are required to locate and circumnavigate a target,
whose position is denoted x, while forming a balanced circular formation around
the target. We define the counterclockwise angle between two agents i and j as the
angle βji (t) subtended at x by yi(t) and yj(t), evaluated counterclockwise from the
yi(t) to yj(t). To simplify the notation, we let

βi(t) := βi%N+1
i (t), (5.2)

where a%b, with a ∈ N and b ∈ N>0, denotes the remainder of the integer division
of a by b. In other words, βi(t) denotes the counterclockwise angle between agent
i and the agent with the consecutive index (i+ 1) in a circular fashion. Finally, we
denote ϕi(t) the bearing of the target with respect to the position yi(t) of agent i.
Namely, we set

ϕi(t) :=
x− yi(t)
‖x− yi(t)‖

. (5.3)

Note that, for any two agents i and j, we have βji (t) = ∠(ϕi(t), ϕj(t)). The bearing
vector is well defined if and only if yi(t) 6= x. Therefore, we need to make sure that
our control law guarantees that the agents do not travel indefinitely close to the
target. Also, the initial positions of the agents must not coincide with the position
of the target, and this is formalized in the following assumption.

Assumption 5.1. For all agents i ∈ N , we have yi(0) 6= x.

Our objective is to design a decentralized control action ui(t), with i ∈ {1, . . . , N}
such that

lim
t→∞
‖x− yi(t)‖ = D?, i ∈ N , (5.4a)
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lim
t→∞

(βi(t)− βj(t)) = 0, ∀(i, j) ∈ N ×N , (5.4b)

where D? > 0 is a desired distance.

Lemma 5.1. Let N distinct vectors ϕ1, . . . , ϕN ∈ R2 be such that ∠(ϕi, ϕi+1) =
∠(ϕj , ϕj+1) for any two (i, j) ∈ N ×N , where we have denoted ϕN+1 = ϕ1. Then,
for all i ∈ N , we have minj 6=i∠(ϕi, ϕj) = 2π/N .

Proof. Let β̄ = ∠(ϕi, ϕi+1) and θi = minj 6=i∠(ϕi, ϕj). Denote as νi the in-
dex j that attains the minimum ∠(ϕi, ϕj). Then, we have ∠(ϕi, ϕi+1) = β̄ =
∠(ϕνi , ϕνi+1), and, consequently, ∠(ϕi+1, ϕνi+1) = ∠(ϕi, ϕνi) = θi. However,
since ϕνi+1

must precede ϕνi+1 when proceeding counterclockwise from ϕi, we have
θi+1 = ∠(ϕi+1, ϕνi+1) ≤ ∠(ϕi, ϕνi) = θi, where we have denoted θN+1 = θ1. Since
the indexes are circular, we must conclude that θi = θj for all (i, j) ∈ N ×N .

Note that, by Lemma 5.1, the control objective (5.4) implies that the agents tend
to become equally spaced on the circle with center x and radius D∗.

To reach the control objective (5.4), we assume that the agents can measure the
bearing of the target and that they can exchange data over a shared repository
hosted on a cloud server. However, since the bearing measurements and the ex-
change of information over the cloud rely on wireless communication, we do not
assume that they can be executed continuously. Instead, we model these com-
munication instances as instantaneous events, that are triggered by appropriately
designed conditions. We let ti,k denote the time when agent i measures the bearing
of the target for the k-th time. Similarly, we let τi,k denote the time when agent i
accesses the cloud repository for the k-th time.

The distributed control law that we propose takes the following form:

ωi,k =κ(α+ β̂i,k), (5.5a)

ui(t) =D∗ωi,kϕ̂i(t)
⊥, t ∈ (τi,k, τi,k+1), (5.5b)

where κ and α are positive constants, while ϕ̂i(t) and β̂i,k are local estimates of
ϕi(t) and βi(t), respectively. As we shall see in the following, ωi,k > 0 represents
the angular speed with which agent i rotates around its current estimate of the
position of the target.

For the control law (5.5) to be completely defined, we need to specify how the
estimates ϕ̂i(t) and β̂i,k are computed. Roughly speaking, the estimates ϕ̂i(t) of the
bearing vectors are obtained from the bearing measurements, while the estimates
β̂i,k of the counterclockwise angles are obtained from the information exchanged
over the cloud.
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agent 1 2 . . . N

last access τ1,l1(t) τ2,l2(t) . . . τN,lN (t)

bearing ϕ̂1,l1(t) ϕ̂2,l2(t) . . . ϕ̂N,lN (t)

speed ω1,l1(t) ω2,l2(t) . . . ωN,lN (t)

next access τ1,l1(t)+1 τ2,l2(t)+1 . . . τN,lN (t)+1

Table 5.1: Data contained in the cloud at a generic time instant t ≥ 0. The i-th column
corresponds to the latest packet uploaded by agent i.

Estimate of the bearing vectors
The estimates ϕ̂i(t) of the bearing vectors are obtained as follows. For all t ∈
(ti,k, ti,k+1), we let

x̂i(t) =yi(ti,k) +D∗ϕi(ti,k), (5.6a)

ϕ̂i(t) =
x̂i(t)− yi(t)
‖x̂i(t)− yi(t)‖

. (5.6b)

The estimation law (5.6) can be interpreted as follows: between two consecutive
bearing measurements ϕi(ti,k) and ϕi(ti,k+1), agent i assumes that the target is
located on the direction defined by the most recent bearing measurement ϕi(ti,k),
at a distance D∗ from the position yi(ti,k) of the agent at the measurement time.
Differentiating (5.6b) and using (5.1) and (5.5), we can write the dynamics of ϕ̂i(t)
as

˙̂ϕi(t) = ωi,kϕ̂i(t)
⊥, t ∈ (τi,k, τi,k+1), t /∈ {ti,h}h∈N. (5.7)

Note that (5.7) simply means that ϕ̂i(t) rotates counterclockwise with constant
angular speed ωi,k during the interval (τi,k, τi,k+1). The time instants ti,h with
h ∈ N are excluded because ϕ̂i(t) is discontinuous over such instants.

Estimate of the counterclockwise angles
To define the estimates of the counterclockwise angles, we need first to define the
pattern by which the agents exchange information over the cloud repository. To
this aim, let li(t) denote the cardinality of the most recent access to the cloud of
agent i before time t. In other words, let

li(t) = max{k ∈ N : τi,k < t}. (5.8)

The information contained in the cloud repository at a generic time instant is
illustrated in Table 5.1. From Table 5.1, we can see that each column contains
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information about one agent. Namely, the i-th column contains: the time τi,li(t)
of the most recent access of agent i to the cloud; the estimated bearing vector
ϕ̂i(τi,li(t)) of agent i at said time; the angular velocity ωi(τi,li(t)) applied to agent i at
said time, and; the time of the following access τi,li(t)+1. Whenever agent i accesses
the cloud repository, it downloads the information relative to agent i%N + 1, and
computes the angular speed ωi,k and the time τi,k+1 of its next access; then, it
uploads the quadruple (τi,k, ϕ̂i(τi,k), ωi(τi,k), τi,k+1). This quadruple overwrites the
corresponding row in the repository, so that the cloud contains updated information
about agent i. In this way, the amount of information contained in the repository
does not grow over time, and the capacity of the repository can be proportional to
the number of agents in the network. The estimates of the counterclockwise angles
are generated as follows. Let

β̂ji,k = ∠(ϕ̂i(τi,k), rot(ϕj(τj,lj(τi,k)), ωj(τj,lj(τi,k))(τi,k − τj,lj(τi,k))), (5.9)

where rot(φ, θ) denotes the vector obtained rotating the vector φ clockwise by an
angle θ. In particular, let β̂i,k = β̂i%N+1

i,k .

Simply put, β̂i,k is an estimate of βi(τi,k) based on the data available in the cloud.
(In fact, β̂i,k = βi(τi,k) if the estimates of the bearing vectors contained in the cloud
coincide with the actual bearing vectors at the access times.) Note that β̂i,k can
be computed by agent i using only information downloaded from the cloud at time
τi,k.

Remark 5.1. In order to compute β̂i,k, agent i needs to download only the informa-
tion related to agent i%N + 1. Therefore, even though the cloud stores information
about all the agents, the pattern of the information exchange among the agents is
distributed. More specifically, the information is exchanged as if the agents were
connected on a graph where the edges are {(i%N + 1, i), i ∈ N}. This type of
graph is called a directed ring. A directed ring with N vertexes contains exactly N
spanning trees, each thereof is obtained by removing a single edge from the ring.

To conclude the definition of our control law, we must now give the rules that
trigger the measurements of the bearing vector and the accesses to the cloud. In
the following Sections 5.3 and 5.4, we illustrate appropriate scheduling rules to
attain the control objective (5.4).

5.3 Triggering of the bearing measurements

Our control strategy prescribes that the generic agent i performs a measurement
of the bearing vector whenever the estimated bearing vector ϕ̂i(t) is orthogonal
to the most recent bearing measurement ϕi(ti,k). In other words, the bearing
measurements are scheduled according to the following recursive rule:

ti,k+1 = inf{t ≥ ti,k : ∠(ϕ̂i(t), ϕ(ti,k)) ≥ π/2}. (5.10)
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In the following Theorem 5.1, we show that, under the scheduling rule (5.10), the
position of the target x̂i(t) estimated by each agent converges to the real position
x of the target.

Theorem 5.1. Consider a generic agent i with kinematics (5.1) and under the
control law (5.5). Let the bearing measurements be scheduled as prescribed by (5.10).
Then, under Assumption 5.1, we have yi(t) 6= x for all t ≥ 0 and limt→∞ x̂i(t) = x.
Moreover, the interval ti,k+1 − ti,k between two consecutive bearing measurements
is lower-bounded by (π/2)/(α+ 2π).

Proof. First note that ϕ̂i(t) rotates with angular speed ωi,k, which is upper-bounded
by κ(α+ 2π). Hence, the interval between two consecutive measurements is lower-
bounded by (π/2)/(α + 2π). Let us consider the discrete time system obtained
by integrating (5.1) over the time interval between two consecutive measurements
ti,k and ti,k+1 of the bearing vector ϕi(t). Substituting in (5.1) the expression of
ui(t) given in (5.5), and noting that α > 0 by design, and βi(t) is nonnegative
by definition, we have that, at any time instant, agent i rotates about its current
estimate of the target with strictly positive (counterclockwise) angular velocity, and
thus ti,k+1 is finite for all k ∈ N. Hence,

yi(ti,k+1) = x̂i(ti,k) + (yi(ti,k)− x̂i(ti,k))⊥. (5.11)

Substituting in (5.11) the expressions of x̂i(t) and ϕ̂i(t) in (5.6), we obtain

yi(ti,k+1) = yi(ti,k) + ϕi(ti,k)D? − ϕ(ti,k)⊥D?. (5.12)

Now, consider the estimation error

x̃i,k := x̂i(ti,k+1)− x, (5.13)

and the distance between the agent and the target

zi,k = yi(ti,k)− x. (5.14)

From Figure 5.1, and leveraging (5.12), we can see that

‖zi,k+1‖ =

√
‖x̃i,k‖2 +D?2 (5.15a)

‖x̃i,k‖ =

√
‖x̃i,k‖2 +D?2 −D? (5.15b)

From (5.15a), we can see that, as long as zi,0 6= 0, we have zi,k 6= 0 for all k ∈ N.
Since under Assumption 5.1 we have zi,0 = yi(0) − x 6= 0, we can conclude that
zi,k = yi(ti,k) − x 6= 0 for all k ∈ N. Moreover, subtracting ‖x̃i,k‖ from both sides
in (5.15b), we have

‖x̃i,k+1‖ − ‖x̃i,k‖ =

√
‖x̃i,k‖2 +D?2 − (‖x̃i,k‖+D?). (5.16)
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x yi(ti,k)

yi(ti,k+1)

x̂i(ti,k)

x̂i(ti,k+1)
D?

D?‖x̃i,k‖

D?

‖x̃i,k+1‖

Figure 5.1: Illustration of (5.15).

From (5.16), we can see that ‖x̃i,k+1‖ − ‖x̃i,k‖ ≤ 0, and that ‖x̃i,k+1‖ − ‖x̃i,k‖ = 0
if and only if ‖x̃i,k‖ = 0. From LaSalle’s invariance principle for discrete systems
(LaSalle, 1986), we know that ‖x̃i,k‖ must converge to zero for k → ∞. Hence,
x̂i(t) must converge to x, which concludes the proof.

Theorem 5.1 ensures the control law in (5.5) is capable of achieving the control goal
in (5.4a), that is, ensuring the agents circumnavigate the target. This is evident if
the reader recalls that the agents are modeled as simple integrators, and thus ui(t)
is the velocity of agent i. Then, if x̂i(t) converges to x, from (5.3) and (5.6b) we
have that ϕ̂i tends to ϕi and thus from (5.5) we have that agent i rotates about
x at a distance D? with positive (counterclockwise) angular velocity. Note that
this result is completely independent from the task of achieving a balanced circular
formation about the target and thus from the estimates of βi(t), as Theorem 5.1
only assumes such estimates are nonnegative, which is true by definition.

5.4 Triggering of the access to the cloud

Having taken care of the circumnavigation task, we can now turn our attention to
ensuring that the agents achieve a balanced circular formation; that is, the control
goal in (5.4b). Achieving such goal is intrinsically tied to the selection of the rule
that triggers accesses to the cloud.

We propose two different scheduling rules to trigger the communication between
each agent and the cloud repository. The first rule is based on a similar rationale
as the one developed in Chapter 4. Under this rule, it is possible to demonstrate
analytically that the agents converge to the desired polygonal formation around
the target, but the at the cost of performing possibly more communication than
necessary. The second rule is heuristic, and its soundness is corroborated by sim-

84



5.4. Triggering of the access to the cloud

ulation results. This rule has the advantage of resulting in a smaller number of
communication instances with the cloud.

Rule A: Analytic scheduling
We start by noting that accessing the cloud to download the information to com-
pute β̂i,k only affects the goal of achieving a balanced circular formation. By The-
orem 5.1, we know all agents converge to the circle of radius D∗ centered in the
position of the target, regardless of the particular values assumed by the angular
speed ωi,k. Therefore, we can as well study the triggering of the cloud accesses
assuming that all agents have already converged to the desired circle. In this case,
from (5.5) we have that the planar velocities ui(t) of the agents are substantially
tangential to the circle. Hence, we can reason directly on the angular speeds, which
we have denoted ωi,k. Note that, since β̂i,k ≥ 0 by definition, we have that each
agent circumnavigates the target counterclockwise.

Without loss of generality, let t ∈ (τi,k, τi,k+1), and let j = i%N + 1, h = lj(τi,k).
With this notation, when agent i accesses the cloud at time τi,k, it downloads the
quadruple (τj,h, ϕ̂j(τj,h), ωj,h, τj,h+1).

Note that, when all agents have reached the desired circle, we have ϕ̂i(t) = ϕi(t)
for all i ∈ N . Hence, from (5.7), we have

β̇i(t) = ωj,lj(t) − ωi,k, (5.17)

which, using (5.5a), becomes

β̇i(t) = κ(β̂j,lj(t) − β̂i,k). (5.18)

Denoting ei(t) = β̂i,li(t) − βi(t), (5.18) becomes

β̇i(t) = κ(βj(t)− βi(t) + ej(t)− ei(t)), (5.19)

From (5.19), it is clear that βi(t) evolves according to a diffusive coupling (over
a ring graph) with additive disturbances ei(t). In fact, (5.19) can be rewritten in
vectorial form as

β̇(t) = −κL(β(t) + e(t)), (5.20)

where we have denoted β(t) = [β1(t), . . . , βN (t)]ᵀ and e(t) = [e1(t), . . . , eN (t)]ᵀ,
and where L is the Laplacian of a ring graph with N nodes. Since a ring graph
has a spanning tree, the variables βi(t) will reach consensus as long as the additive
disturbances vanish quickly enough. To formalize this result, let yi(t) = βi+1(t) −
βi(t) for i ∈ N \{N}, and let y(t) = [y1(t), . . . , yN−1(t)]ᵀ. In this way, we can write
y(t) = Bᵀ

T β(t), where BT is the part of the incidence matrix of the ring graph
relative to the edges (2, 1), . . . , (N,N − 1), and we can rewrite (5.20) as

ẏ(t) =− κBᵀ
T L(β(t) + e(t))

=− κRy(t)− κSe(t), (5.21)
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where R denotes the reduced edge Laplacian of the ring graph and S = B†T L. The
Laplace solution of (5.21) reads

y(t) = e−κRt y(0)− κS
∫ t

0

e−κR(t−τ) e(τ)dτ. (5.22)

Let us suppose that we find a scheduling that makes ei(t) vanish exponentially:
|ei(t)| ≤ ςi(t), where ςi(t) = ςi,0e

−λςt. In this case, we can take norms of both sides
in (5.22) and use the triangular inequality to write

‖y(t)‖ ≤ ‖e−κRt‖ · ‖y(0)‖+ κ‖S‖ · ‖ς0‖
∫ t

0

‖e−κR(t−τ)‖ e−λςτ dτ, (5.23)

where ς0 = [ς1,0, . . . , ςN,0]ᵀ. Since −R is Hurwitz, (5.23) implies that y(t) converges
to zero, which means that all βi(t) converge to the same value. Our conclusion can
be formalized as the following Lemma.

Lemma 5.2. Let β(t) evolve as by (5.20), and let |ei(t)| ≤ ςi(t), where ςi(t) =
ςi,0 e−λςt and ςi,0, λς are positive constants. Then, βi(t) − βj(t) converges to zero
for any pair (i, j) ∈ N ×N .

Proof. Follows from (5.23) observing that yi(t) = Bᵀ
T β(t).

Remark 5.2. In order to evaluate the right-hand side of (5.23), the agents need to
have access to an upper bound of ‖y(0)‖. Such bound could be given, for example,
in terms of a bounding box for the initial positions of the agents.

Now we need to formulate a scheduling rule that guarantees that |ei(t)| ≤ ςi(t). To
this aim, we can find an upper bound for |ei(t)| and schedule a cloud access whenever
that upper bound is about to reach ςi(t). The recursive rule to schedule the accesses
to the cloud takes into account that part of the error ei(t) arises from the possible
existence, in the time interval (τi,k τi,k+1), of a smaller interval (τj,h+1 τi,k+1) in
which the angular speed of agent j is different from ωj,h downloaded by agent i
from the cloud. This indeed happens if τj,h+1 ∈ (τi,k, τi,k+1).

Recalling that ei(t) = βi,k − βi(t), and integrating (5.18), we have

ei(t) =

∫ t

ti,k

(ωi,k − ωj,lj(τ))dτ

=(t− τi,k)ωi,k + (min{t, τj,h+1} − τi,k)ωj,h +

∫ max{t,τj,h+1}

τj,h+1

ωj,lj(θ)dθ.

(5.24)
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Observing that ωj,lj(θ) = κβ̂j,lj(θ) = βj(θ) + ej(θ), we can use (5.24) to write an
upper bound for ei(t) as

|ei(t)| ≤ (t− τi,k)ωi,k + (min{t, τj,h+1} − τi,k)ωj,h +

∫ max{t,τj,h+1}

τj,h+1

µj(θ)dθ,

(5.25)
where

µj(θ) = κ(η(t) + ςj(t)), (5.26)

with η(t) denoting the right-hand side of (5.23). Note that the right-hand side of
(5.25) can be computed by agent i when it accesses the cloud at time τi,k, by using
the data downloaded from the cloud together with some limited knowledge about
the initial conditions of the network. Hence, the desired upper bound for ei(t) is
given by (5.25). If we denote as σi,k(t) the right-hand side of (5.25),

σi,k(t) = (t− τi,k)ωi,k + (min{t, τj,h+1}− τi,k)ωj,h +

∫ max{t,τj,h+1}

τj,h+1

µj(θ)dθ, (5.27)

then, the rule to schedule the accesses to the cloud is defined by:

τi,k+1 = inf{t > τi,k : σi,k(t) ≥ ςi(t)}. (5.28)

Broadly speaking, (5.28) indicates that the next access to the cloud performed by
agent i is scheduled as soon as σi,k(t) reaches the threshold ςi(t). The rationale
behind (5.28) is that σi,k(t) constitutes an upper bound for ei(t) that agent i can
compute at time τi,k. Hence, by ensuring that σi,k(t) ≤ ςi(t), one automatically
ensures that ei(t) converges to zero exponentially, with a rate of at least λς . This
result is formalized in the following Lemma 5.3.

Lemma 5.3. Let βi(t) evolve as by (5.18), and let the cloud accesses τi,k be sched-
uled as per (5.28). Then, ei(t) = β̂i,k − βi(t) converges to zero for all i ∈ N , and,
consequently, βi(t) − βj(t) converges to zero for all (i, j) ∈ N ×N . Moreover, the
interval τi,k+1− τi,k between two consecutive accesses to the cloud performed by the
same agent is lower-bounded by a positive constant.

Proof. Follows by observing that σi,k(t) is an upper bound for |ei(t)|, and that
under (5.28) one has σi,k(t) ≤ ςi(t). The result that the interval τi,k+1 − τi,k is
lower-bounded by a positive constant is proven in a similar way as in Lemma 4.5,
and therefore a formal proof is omitted here.

Rule B: Heuristic scheduling
To reduce the communication between the agents and the cloud, we propose the
following heuristic rule to trigger the cloud accesses:

τi,k+1 := inf{t > τi,k : (t− τi,k)ωi,k = β̂i,k} (5.29)
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Roughly speaking, this rule prescribes that each agent i accesses the cloud whenever
it sweeps, around its current estimate of the target x̂i(t), an angle equal to β̂i,k.

5.5 Numerical simulations

Comparison between Rule A and Rule B

To demonstrate the effectiveness of our approach, for each of the two rules proposed
in Section 5.4, we carried out extensive numerical simulations involving a set of
N = 5 agents. Specifically, we performed 100 simulations of the duration of T = 25s
each. As the asymptotic convergence of the agents to the circle of radiusD? centered
in x is guaranteed regardless of the rule triggering the accesses to the cloud, in this
set of numerical experiments, we assumed the agents have already converged onto
the circle surrounding the target and started all simulations accordingly. Therefore,
we focused on their angular speed ωi,k = κ(α+ β̂i,k) and, throughout our numerical
campaign, we have set κ = 1 and α = 0.5. To ensure the comparison between Rule
A and Rule B is independent of the initial conditions, we have randomly selected a
set of 100 different values of the vector y(0) and assigned the i-th initial condition to
both the i-th simulation performed under Rule A, and the i-th simulation performed
under Rule B. As for the parameters of Rule A, we have γi = 1 i = 1, . . . , 4, γ5 = 2,
and λ = min(Re(eig(R))) = 0.69. Moreover, we have set λς = 0.68, and ςi,0 = 10
for all i ∈ N .

In all simulations performed under Rule B we have observed convergence of the
angles βi i = 1, . . . , n, in a time tc if tc computed as the first time instant such that
an agent accesses the cloud and |βi(t)− 2π/N | ≤ 0.01(2π/N). Having provided
numerical evidence demonstrating the effectiveness of Rule B in allowing the agents
to achieve the control goal in (5.4b), we next compare the performances of the two
rules regulating the accesses to the cloud. We start by highlighting that, as is the
case for the two simulations with identical initial conditions shown in Figures 5.2
and 5.3, Rule A ensures faster convergence than Rule B. Namely, we find that
the observed average convergence time under Rule A is 6.32s, while under Rule B
it is 14.98. These results confirm that the observed difference in the convergence
time is statistically significant. Conversely, we find that under Rule A, the total
number of accesses to the cloud before convergence is achieved averages at 316
accesses against the average of 103 observed under Rule B. Again, we find that this
difference is statistically significant. Moreover, we observe that the frequency of
the total accesses to the cloud under Rule A averages to 50Hz, while the frequency
under Rule B to 7Hz. Finally, as expected, we observe a substantial difference in
the frequency of the accesses after convergence is achieved. Namely, under Rule A
such frequency averages at 203Hz, while under Rule B it averages at 7Hz.

To summarize, our numerical investigation confirms that
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Figure 5.2: Plot of βi(t) i = 1, . . . , 5 for a simulation performed under Rule A. The black
dashed line denotes the target value for βi(t), that is 2π/5.
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Figure 5.3: Plot of βi(t) i = 1, . . . , 5 for a simulation performed under Rule B. The black
dashed line denotes the target value for βi(t), that is 2π/5.
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Figure 5.4: Results of the ROS simulation described in Section 5.5: trajectories of the agents.

(a) Rule A allows to achieve convergence faster than Rule B;

(b) Rule B allows to substantially reduce the frequency at which the agents access
the cloud, thus proving more efficient in achieving the control goal in (5.4b) .

Robot Operating System (ROS) implementation
To demonstrate the use of the proposed control algorithm when the agents have
to approach the target, we have run a simulation in the ROS environment, where
each agent is simulated as a different ROS node. The interested reader may find a
description of ROS in Quigley et al. (2009).

Each agent interacts with an additional ROS node that represents the cloud repos-
itory. The communication with the cloud occurs by means of ROS messages and
services. In this simulation, we consider N = 5 agents, with α = 0.4 and κ = 0.2,
and the cloud accesses are scheduled according to Rule B. The initial conditions
are y1(0) = [1, 0]ᵀ, y2(0) = [2, 3]ᵀ, y3(0) = [−2,−2]ᵀ, y4(0) = [−1,−2]ᵀ, and
y5(0) = [2, 2]ᵀ. The results of the simulation are summarized in Figures 5.4 to 5.6,
where we can see that the agents converge to the desired circle around the tar-
get while reaching a regular formation, and that each agent accesses the cloud at
approximately 0.3Hz. Although the ROS implementation requires some overhead,
it presents the following significant advantages: as each agent is implemented as
a ROS node, the distributed nature of the algorithm is reproduced in the simula-
tion; the code used to implement the controller in the simulation can be re-used
tout-court in the experimental implementations.
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Figure 5.5: Results of the ROS simulation described in Section 5.5: angles βi(t).
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Figure 5.6: Results of the ROS simulation described in Section 5.5: cloud access times for
each agent.
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5.6 Preliminary experimental evaluation

In order to validate the proposed control framework, we have performed some exper-
iments in the flying arena of the Smart Mobility Lab at KTH. In the experiments,
the networked agents are three Bitcraze CrazyFlie (CF) (bitcraze.io), which are
open-source and open-hardware nanoquadcopters. We have implemented the con-
trol and communication features in ROS, exploiting its modularity and robot-aimed
tools. We have used a custom USB radio dongle called CrazyRadio (CR) through
which we sent setpoints consisting in thrust and attitude (roll, pitch and yaw an-
gles); these were then transformed into commands for the four propellers by an
on-board micro-controller. The real-time positions and orientations of quadcopters
are tracked by a motion capture system with an update rate of 100Hz, capable of
detecting the position of some reflective spherical markers that we applied on the
quadcopters.

The logical structure of the control architecture is described in Figure 5.7. As a
preliminary implementation, we integrate the velocity command ui(t) generated by
the controller according to (5.5), producing a certain number of intermediate goal
positions that are fed to a PID flight controller, as shown in Figure 5.7.

In this experiments, different scheduling rules than Rule A and Rule B were used
to determine the times when the agents would access new information about the
other agents. In fact, this setup should be considered a preliminary testbed for
the proposed control infrastructure, rather than an exact implementation of the
proposed control algorithm.

Convergence was achieved in spite of the limitations of the experimental setup,
whose improvement will be the subject of future work. In particular, the control
strategy designed so far uses predictions of the angular speed of the agents, causing
convergence to be affected by any real-world deviation of the trajectories from the
predicted ones. Moreover, the PID controller used on-board as a flight controller
could not always cope with the unmodeled dynamics leading to possible instabilities
that rendered the experimental results worse that the numerical ones.

A video of the execution of a representative experiment is reachable on Zenodo
(Mariniello et al., 2017), and a snapshot is shown in Figure 5.8.

5.7 Summary

In this chapter, we have proposed a cloud-supported control framework for multi-
agent circumnavigation missions. We have proposed a scenario where the agents
have limited communication capabilities, and, to attain the desired circumnaviga-
tion, they may intermittently measure the bearing of the target to circumnavigate
and intermittently access a shared information repository hosted on a cloud. We
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Figure 5.7: Logical structure of the implemented control solutions for experiments. The dashed
arrows correspond to ROS services, the continue ones correspond to ROS topics. The colors
are used as follows: the orange nodes represent features that are replicated for each agent
of the network; the green node is the cloud node that is able to get informations from every
agent of the network; the plotter, in white color, gets informations both about the agents and
about the designed task, and represents the interface for the human user; the blue nodes are
related to the actuation of the control and to the acquisition of the feedback from the ground.

Figure 5.8: Execution of an experiment consisting in a localization and circumnavigation task
made by a network of three CF in the Smart Mobility Lab. On the ground, we can see the
projection of: the target position, as a red dot, in the center of the arena; the agents position,
represented as blue spots; the agent-neighbor relations consisting in green arrows pointing
from the agent towards the neighbor; the desired circumference, plotted as a red circle.
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have designed event-triggered and self-triggered rules to schedule the bearing mea-
surements and the cloud accesses performed by the agents. We have investigated
how the proposed scheduling rules attain the desired circumnavigation objective,
both analytically and with simulations.
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Chapter 6

Event-triggred coverage control

Poi quando intorno è spenta ogni altra face,
E tutto l’altro tace,
Odi il martel picchiare, odi la sega
Del legnaiuol, che veglia
Nella chiusa bottega alla lucerna,
E s’affretta, e s’adopra
Di fornir l’opra anzi il chiarir dell’alba.

G. Leopardi,
Il sabato del villaggio, vv. 31–37.

In this chapter, we move on to study a substantially different coordination objec-
tive than those considered in Chapters 3 to 5. Namely, we consider the objective

to deploy a network of autonomous sensing agents within an assigned environment
in such a way that the collective perception of the environment attained by the
agents is improved according to a specified measure.

The rest of this chapter is organized as follows. In Section 6.1, we review the ex-
isting related work and highlight the novel contributions offered in the chapter.
In Sections 6.2 and 6.3, we define the abstract model that is used to describe the
surveillance scenario under investigation. In Section 6.4, we give our generalized
definition of Voronoi tessellation, that is later used to describe formally the conver-
gence properties of the proposed coverage algorithm. In Section 6.5, we describe
the controller used to steer the motion of a single agent, when no communication
with the other agents occurs. In Section 6.6, we describe the information exchanged
by different agents, and we formalize the event-triggered mechanism by which the
communication instances are initiated. In Section 6.7, we describe the distributed
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controller that implements the proposed coverage algorithm, and we derive the con-
vergence properties of this controller mathematically. In Section 6.9, we describe
two numerical simulations that validate the proposed coverage algorithm. In Sec-
tion 6.10, we describe two preliminary experimental evaluations of the proposed
algorithm. Section 6.11, concludes the chapter with a summary of the results.

6.1 Introduction

A wide variety of applications involve collecting information in hazardous environ-
ments, which makes it desirable to delegate such missions to a team of autonomous
agents with sensing capabilities. Therefore, in the last few decades, a lot of research
interest has been devoted to the problem of autonomous deployment of robot teams
in an assigned space (Cortes et al., 2004, Martinez et al., 2007, Kwok and Martinez,
2010, Zhong and Cassandras, 2011, Le Ny and Pappas, 2013). Typically, the goal
is to design a distributed algorithm that gradually drives the agents to a spatial
configuration such that the team’s collective perception of the environment is op-
timized according to some criterion. This problem is commonly known as the
coverage problem, and it is often approached using Voronoi tessellations and the
Lloyd algorithm. The classical reference for the coverage problem is Cortes et al.
(2004). The original formulation of the Lloyd algorithm is found in Lloyd (1982),
while a modern treatment can be found in Du et al. (1999).

The majority of the existing work on coverage considers agents with omnidirectional
perception of the surrounding environment. Recently, agents with anisotropic sens-
ing patterns (Stergiopoulos and Tzes, 2013, Stergiopoulos et al., 2015) as well as
vision-based sensing patterns (Kantaros et al., 2015) have been considered.

Dynamic versions of the coverage problem have also been studied, where the agents
do not converge to fixed positions, but navigate the environment until a satisfactory
level of coverage has been reached. This problem is commonly known as effective
or dynamic coverage. One of the first references for the effective coverage problem
is Hussein and Stipanovic (2007). A vision-based version of effective coverage is
studied in Panagou et al. (2016). We shall consider a problem similar to effective
coverage in Chapter 7, where the described formalism is employed to model the
mission of inspecting a 3D structure with a network of sensing agents.

Information exchange among the sensing agents constitutes one of the major chal-
lenges in the real-world implementation of coverage algorithms. For this reason, a
gossip-based communication strategy for coverage is studied in Bullo et al. (2012).
In some coverage missions, it is convenient to abstract the environment into a finite
set of points (Durham et al., 2012), which may either correspond to a sparse set of
points of interest, or to a discretized approximation of the environment itself.

In this chapter, we consider a coverage problem where the idea of discretization of
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the environment under observation (Durham et al., 2012) is conjugated with the use
of generalized sensing patterns for the agents (Panagou et al., 2016), as well as with
the idea of Voronoi tessellations, which is opportunely redefined according to the
considered sensing patterns. To the best of our knowledge, Voronoi tessellations for
anisotropic sensing have only been considered in Gusrialdi et al. (2008), but only for
elliptical footprints and under continuous environments. Instead, we apply vision-
based sensing patterns over discretized environments. Using our notion of Voronoi
tessellation, we are able to define a novel distributed algorithm for coverage, where
communication is limited, pairwise, intermittent and asynchronous.

Unlike in the classical works on coverage control, continuous computations to par-
tition the environment into time-varying Voronoi cells are not necessary in this
framework. In fact, inspired by (Durham et al., 2012), we abstract the structure
to survey into a finite set of landmarks, so that the area assigned to one agent is
defined by the set of the landmarks assigned to that agent.

Using the hybrid system model developed in Goebel et al. (2012), we show formally
that our algorithm makes the sensing agents converge to a configuration correspond-
ing to a Voronoi tessellation, while a measure of the coverage attained by the team
increases monotonically. We also propose an extension of the algorithm to avoid
collisions among the agents as well as with other objects nearby. The algorithm is
validated by means of numerical simulations and experiments with aerial robotic
platforms.

6.2 System model and problem statement

We consider a set of N mobile sensors, indexed as 1, . . . , N . The ith sensor has pose
Ti(t) ∈ SE(3). The position and orientation of the ith sensor are denoted pi(t) ∈ R3

and Ri(t) ∈ SO(3) respectively. If the orientation is expressed as a rotation matrix,
and the pose is expressed as a homogeneous transformation matrix, then one has

Ri(t) =
[
xi(t) yi(t) zi(t)

]
, (6.1)

Ti(t) =

[
Ri(t) pi(t)

0ᵀ3 1

]
, (6.2)

where xi(t), yi(t) and zi(t) form an orthonormal right-handed frame. However, the
specific representation of the pose is not relevant to our purposes, and we write
simply Ti(t) = (pi(t), xi(t), yi(t), zi(t)) to mean that the pose of a sensor aggregates
its position and orientation. We assume that, for each sensor, it is possible to
control the position and the orientation independently. Namely, we let

ṗi(t) =vi(t), (6.3a)

ξ̇i(t) =− Skew(ξi(t))ωi(t), ξi ∈ {xi, yi, zi}, (6.3b)
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where vi(t) and ωi(t) are control variables and are called, respectively, the linear
velocity and the angular velocity of the sensor. Here, Skew denotes the skew op-
erator. We recall that the skew operator corresponds to the cross product, in the
sense that, for any u, v ∈ R3, we have u× v = Skew(u)v.

The environment that the sensors are required to cover is abstracted into a finite
set of landmarks. A landmark represents a point or small area of interest within a
domain. We consider a set of M landmarks indexed as 1, . . . ,M . Like a sensor, a
landmark is characterized by its pose, with the difference that, in this work, the pose
of a landmark is assumed to be constant. The pose of the jth landmark is denoted
Lj ∈ SE(3). The position and orientation are denoted qj and Qj respectively, with
Qj =

[
φj χj ψj

]
, and we write Lj = (qj , φj , χj , ψj).

Our objective is to find a distributed controller that makes the sensors arrange
themselves in a configuration such that their collective perception of the landmarks
is improved. To this aim, we need to derive a model of the perception of the
landmarks attained by the sensors.

We let the sensing capabilities of the sensors be described by a function f : SE(3)2 →
R. This function is called the footprint of the sensors. Namely, f(Ti(t), Lj) is a
measure of how well the ith sensor perceives the jth landmark, with higher values
corresponding to a better perception. For simplicity, in this work we assume that
all the sensors have the same footprint; however, the results generalize easily to the
case that different sensors have different footprints. A footprint needs to satisfy the
following technical assumptions.

Assumption 6.1. The sensor footprint f is continuously differentiable with respect
to pi, xi, yi and zi. Moreover, the footprint is radially unbounded from below; i.e.,

lim
ρ→∞

sup
‖pi‖=ρ

f(Ti, L) = −∞ (6.4)

for any L ∈ SE(3).

This formalism is more general than most of those found in the literature, because
different sensor models can be captured by choosing the sensor footprint oppor-
tunely. For example, the sensing agents considered in Cortes et al. (2004) have
omnidirectional perception, and their sensing capabilities degrade proportionally
to the squared distance between the sensor and the perceived point, regardless
of the orientations. This model can be captured with our framework by setting
f(Ti(t), Lj) = −‖pi(t)− qj‖2.

It is reasonable to assume that the sensor footprint only depends on the relative
pose of the landmark with respect to the sensor. In this case, we have f(Ti(t), Lj) =

f̃(Ti(t)
−1Lj), where Ti(t)−1Lj is the pose of the landmark in the reference frame
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of the sensor, and f̃ : SE(3) → R. However, for the sake of generality, we let the
footprint depend separately on the pose of the sensor and that of the landmark.
In this way, the footprint may capture, if desired, environmental features such as
lighting and occlusion.

Once a sensor footprint is given, the coverage of the environment can be defined as
a function of the poses of the sensors. To this aim, we let each sensor be assigned
a subset of the landmarks. We let Li(t) denote the subset assigned to the ith
sensor at time t. We require that the subsets Li(t) constitute a partition of the set
{1, . . . ,M} of the landmarks; namely, we require that, at all times t ≥ 0,

Li(t) ∩ Lj(t) = ∅ ∀(i, j) ∈ {1, . . . , N}2, (6.5)
L1(t) ∪ · · · ∪ LN (t) = {1, . . . ,M}. (6.6)

Given a partition P(t) = (L1(t), . . . ,LN (t)) of the landmarks, the global coverage
attained by the sensors is defined as

Γ(T (t),P(t)) =

N∑
i=1

∑
j∈Li(t)

f(Ti(t), Lj). (6.7)

where we have denoted T (t) = {T1(t), . . . , TN (t)}. In other words, the global
coverage is defined as the sum of the perceptions of the landmarks, each attained
by the sensor that the landmark is assigned to. For convenience, we denote the
contribution given by the ith sensor to the coverage function (6.7) as Γi(Ti(t),Li(t)).
Namely, we let

Γi(Ti(t),Li(t)) =
∑

j∈Li(t)

f(Ti(t), Lj), (6.8)

so that (6.7) can be rewritten as

Γ(T (t),P(t)) =

N∑
i=1

Γi(Ti(t),Li(t)). (6.9)

Our control objective is to find a distributed controller that steers the poses of the
sensors and the partition of the landmarks in such a way that the global coverage is
progressively improved. Note that finding an optimal set of poses and an optimal
partition is a challenging problem, because the global coverage function depends
jointly on the poses T (t), which are constrained to the continuous set SE(3), and on
the partition P(t) which belongs to the discrete set of the partitions of {1, . . . ,M}.

6.3 Footprint design for surveillance of 3D structures

Before we move on to the design of our distributed controller, we describe a foot-
print design that is particularly well-suited for applications in surveillance of 3D
structures with a team of mobile robots.
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Ti(t)

xi(t)

Lj

φj

Figure 6.1: Abstraction of a mobile camera as a sensing agent and of a 3D structure as a
set of landmarks. The frame Ti(t) is attached to the camera, with xi(t) corresponding to the
direction that the camera is looking at. M points of interest are selected on the surface, and
the frame Lj is attached to the jth point, with φj corresponding to the inward normal to the
surface at that location.

In this application domain, each sensor is a monodirectional camera, and the vector
xi(t) denotes the direction that the ith sensor is looking at. A landmark is a point
or small area of interest on a 3D structure that the sensors are asked to survey, and
φj denotes the inward normal to the surface of the structure at the position qj of
the jth landmark. This scenario is illustrated in Figure 6.1.

The perception of a landmark is best when the landmark lies on the line of sight
of the sensor, at a specific distance D. This condition can be written as qj =
pi(t) +Dxi(t). Moreover, we want the inward normal to the surface to be parallel
to the line of sight of the sensor, which means that the surface is exposed to the
sensor frontally, rather than sideways. This condition can be expressed simply as
φj = xi(t). A footprint that captures these properties can be expressed as follows:

f(Ti(t), Lj) =− g(pi(t), xi(t), qj)− γg(pi(t), φj , qj), (6.10a)

g(p, φ, q) =‖p+Dφ− q‖2
(
α+ β

vᵀ(p+Dφ− q)
‖p+Dφ− q‖

)
, (6.10b)
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Figure 6.2: Contour plot of footprint (6.10) as a function of q(1)j and q(2)j , with pi(t) = 03,
xi(t) = [1 0 0]ᵀ, q(3)j = 0, α = 2.1, β = 1.9, and γ = 0.

where α, β and γ are positive weights, with α > β. It is implied that g(p, φ, q)
is given a continuous extension in all values of (p, φ, q) such that p + Dφ − q = 0.
Naturally, for such values one has g(p, φ, q) = 0.

Note that footprint (6.10) has the following properties. First, f(Ti(t), Lj) ≤ 0
for all Ti(t), Lj ∈ SE(3), so that the values that are closer to zero correspond to
a better perception. Second, f(Ti(t), Lj) = 0 if and only if pi(t) + Dxi(t) = qj
and xi(t) = φj , which means that the best possible perception is attained if and
only if the landmark lies on the line of sight of the agent at the desired distance
(i.e., pi(t) + Dxi(t) = qj), and the surface is exposed to the agent frontally (i.e.,
xi(t) = φj). Finally, f is continuously differentiable if one considers the continuous
extension of g described in the previous paragraph.

Footprint (6.10) is a function of numerous independent scalar parameters, and it
is not possible to capture its variations with respect to all these parameters in a
single plot. The rationale behind (6.10) is as follows. When the landmark lies on
the line of sight of the agent (i.e., xi(t) and qj−pi(t) have the same direction), then
g(pi(t), xi(t), qj) = (α−β)‖pi(t)+Dxi(t)−qj‖2, which is the smallest possible value
of g(pi(t), xi(t), qj) for a given value of ‖pi(t) +Dxi(t)− qj‖. Conversely, when the
landmark lies behind the line of sight of the sensor (i.e., xi(t) and qj − pi(t) have
opposite directions), then g(pi(t), xi(t), qj) = (α+β)‖pi(t)+Dxi(t)−qj‖2, which is
the largest possible value of g(pi(t), xi(t), qj) for a given value of ‖pi(t)+Dxi(t)−qj‖.
A contour plot of Footprint (6.10) as a function of q(1)

j and q(2)
j is given in Figure 6.2.
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One further advantage of Footprint (6.10) is that it can be simplified to model the
perception of a point in the Euclidean space or in the Euclidean plane, without the
point belonging to a specific surface. In fact, it is sufficient to set γ = 0 to make
Footprint (6.10) oblivious of the orientation of the landmarks. In this way, there
is no need to associate an orientation to the landmarks at all, and each landmark
may simply represent a point in space.

We are going to exemplify the different uses of Footprint (6.10) in Section 6.9.

6.4 Generalized Voronoi tessellations

Our controller is based on the idea of Voronoi tessellations (Du et al., 1999). How-
ever, we generalize the definition of Voronoi tessellations to suit our system model.

Definition 6.1. Let a sensor footprint f : SE(3)2 → [0, 1] be assigned. Sup-
pose that f is continuously differentiable in its first argument. Consider a tuple
(T,P), where T = (T1, . . . , TN ) ∈ SE(3)N and P = (L1, . . . ,LN ) is a partition
of {1, . . . ,M}. The tuple (T,P) is called a Voronoi tessellation if the following
properties are satisfied:

∂Γ

∂pi
(T,P) = 03 ∀i ∈ {1, . . . , N}, (6.11a)∑

ξi∈{xi,yi,zi}

Skew(ξi)
∂Γ

∂ξi
(T,P) = 03 ∀i ∈ {1, . . . , N}, (6.11b)

f(Tj , Lh) ≤ f(Ti, Lh) ∀h ∈ Li ∀(i, j) ∈ {1, . . . , N}2. (6.11c)

Definition 6.1 can be interpreted as follows. A tuple (T,P) is a Voronoi tessellation
if: the gradient of the coverage with respect to the position of each single sensor
evaluates to zero; the gradient of the coverage with respect to the orientation of
each single sensor evaluates to zero; each landmark is assigned to the sensor that
attains the best perception of that landmark.

Being a Voronoi tessellation is a necessary condition for a tuple (T,P) to constitute
a maximizer for the coverage function Γ. However, not all Voronoi tessellations are
also optimal solutions. This property is formalized as follows.

Proposition 6.1. Suppose that (T ∗,P∗) is an optimal solution to

maximize Γ(T,P),

subject to T ∈ SE(3)N ,

P is an N -partition of {1, . . . ,M}.
(6.12)

Then (T ∗,P∗) is also a Voronoi tessellation.
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Proof. Suppose by contradiction that (T ∗,P∗) is not a Voronoi tessellation. Then
one of conditions (6.11) is violated. Denote T ∗ = (T ∗1 , . . . , T

∗
N ), T ∗i = (p∗i , R

∗
i ) and

P∗ = (L∗1, . . . ,L∗N ).

• If (6.11a) is violated, let vi = ∂Γ(T ∗,P∗)/∂pi 6= 03. Suppose that we translate
pi by a small positive quantity dρ along vi. The increment in the value of Γ
is

dΓ =

(
∂Γ

∂pi
(T ∗,P∗)

)ᵀ

vidρ = ‖vi‖2dρ > 0. (6.13)

Hence, there exists p′i in a neighborhood of p∗i such that, denoting T ′ =
(T ∗1 , . . . , (p

′
i, R
∗
i ), . . . , T

∗
N ), we have Γ(T ′,P∗) > Γ(T ∗,P∗). Therefore, (T ∗,P∗)

is not an optimal solution to (6.12), which is a contradiction.

• If (6.11b) is violated, let ωi =
∑
ξi∈{xi,yi,zi} Skew(ξi)∂Γ(T ∗,P∗)/∂ξi 6= 03.

Suppose that we rotate R∗i by a small positive angle dθ along the axis ωi (i.e.,
dξi = − Skew(ξ∗i )ωidθ for ξi ∈ {xi, yi, zi}). Then, the increment in the value
of Γ is

dΓ =
∑

ξi∈{xi,yi,zi}

(
∂Γ

∂ξi
(T ∗,P∗)

)ᵀ

dξi

=−
∑

ξi∈{xi,yi,zi}

(
∂Γ

∂ξi
(T ∗,P∗)

)ᵀ

Skew(ξ∗i )ωidθ

=

( ∑
ξi∈{xi,yi,zi}

Skew(ξ∗i )
∂Γ

∂ξi
(T ∗,P∗)

)ᵀ

ωidθ

=‖ωi‖2dθ > 0.

(6.14)

Hence, there exists R′i ∈ SO(3) in a neighborhood of R∗i such that, denoting
T ′ = (T ∗1 , . . . , (p

∗
i , R

′
i), . . . , T

∗
N ), we have Γ(T ′,P∗) > Γ(T ∗,P∗). Therefore,

(T ∗,P∗) is not an optimal solution to (6.12), which is a contradiction.

• If (6.11c) is violated, let h ∈ L∗i and f(T ∗j , L
∗
h) > f(T ∗i , L

∗
h). Denote L′i =

L∗i \{h} and L′j = L∗j ∪{h}. Use the notation P ′ for what is obtained from
P∗ by substituting L∗i with L′i and L∗j with L′j . Then, we have

Γ(T ∗,P ′) = Γ(T ∗,P∗) + f(Tj , Lh)− f(Ti, Lh) > Γ(T ∗,P∗). (6.15)

Therefore, Γ(T ∗,P∗) is not optimal which is a contradiction.

We thus conclude that Γ(T ∗,P∗) is a Voronoi tessellation.
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6.5 Control of the motion of a single sensor

In this section, we shall design a local controller to steer the motion of a single sensor
which has a fixed set of landmarks assigned to it. This controller will constitute a
stepping stone in the design of a distributed controller for the whole sensor team,
taking into account also the possible changes in the assignment of the landmarks.
Without loss of generality, we consider the ith sensor, with pose Ti(t), and we let
the landmarks Li ⊆ {1, . . . ,M} be assigned to it.

The proposed controller is simply a gradient climb of the contribution given by the
sensor to the coverage function. Namely, we let

vi(t) =
∂Γi
∂pi

(Ti(t),Li), (6.16a)

ωi(t) =
∑

ξi∈{xi,yi,zi}

Skew(ξi)
∂Γi
∂ξi

(Ti(t),Li). (6.16b)

For the proposed controller, we have the following convergence result.

Lemma 6.1. Consider a sensing agent with pose Ti(t) and a fixed set Li of land-
marks. Let the pose of the sensor be controlled as in (6.16). Suppose that the
sensor footprint f is continuously differentiable in its first argument. Then, the
function Γi(Ti(t),Li) is nondecreasing. Moreover, there exists T ∗i ∈ SE(3) such
that Ti(t)→ T ∗i and, denoting T ∗i = (p∗i , x

∗
i , y
∗
i , z
∗
i ),

∂Γi
∂pi

(T ∗i ,Li) = 03, (6.17a)∑
ξi∈{xi,yi,zi}

Skew(ξ∗i )
∂Γi
∂ξi

(T ∗i ,Li) = 03. (6.17b)

Proof. Recalling that the sensor footprint f is bounded and continuously differen-
tiable, we can see from (6.8) that also Γi is bounded and continuously differentiable.
The time-derivative of Γi can be written as follows:

Γ̇i(Ti(t),Li) =
∂Γi
∂pi

(Ti(t),Li)ṗi(t) +
∑

ξi∈{xi,yi,zi}

∂Γi
∂ξi

(Ti(t),Li)ξ̇i(t). (6.18)

Using (6.3) and (6.16) in (6.18), we have

Γ̇i(Ti(t),Li) = ‖vi(t)‖2 + ‖ωi(t)‖2 ≥ 0, (6.19)

which proves that Γi(Ti(t),Li) is nondecreasing. Denote Ω = {Ti ∈ SE(3) :
Γi(Ti,Li) ≤ Γi(Ti(0),Li)}. Note that Ω is compact and positively invariant to
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the system dynamics. Moreover, since Γi(Ti(t),Li) is bounded, from LaSalle’s in-
variance principle we know that Ti(t) must converge to the largest invariant subset
of {Ti ∈ SE(3) : Γ̇i(Ti(t),Li) = 0}. However, in this set we have vi(t) = 03 and
ωi(t) = 03, which implies that Ti(t) must converge to some T ∗i ∈ SE(3). Finally,
evaluating (6.8) for Ti(t) = T ∗i , we have (6.17).

It is worth noting that, in general, there may exist more than one (possibly infinite)
poses T ∗i that satisfy (6.17). Lemma 6.1 only guarantees that Ti(t) converges to
one such pose. Even if the sensor footprint and the landmark Li are given, the
specific pose that Ti(t) converges to may depend on the initial conditions.

6.6 Transfer of the landmarks

In this section, we are going to describe the mechanism that governs the distribution
of the landmark among the agents.

The network is initialized with an arbitrary distribution P(0) = (L1(0), . . . ,LN (0))
of the landmarks. Variations in the landmark assignments are considered instan-
taneous events, and they occur when an agent initiates a communication instance
with another agent. When an agent i initiates a communication with another agent
j, agent i yields to agent j all the landmarks that are currently assigned to agent
i, but that agent j can perceive better. A more formal description of the policy
for the landmark transfers is given as follows. We denote as t(k)

ij the time instant
when agent i initiates a communication instance with agent j for the kth time.
Conventionally, we let t(0)

ij = 0 for all i, j. Upon the time instant t(k)
ij , the landmark

assignment is updated as follows:

∆
(k)
ij ={h ∈ Li(t(k)

ij ) : f(Tj(t
(k)
ij ), Lh) > f(Ti(t

(k)
ij ), Lh)}, (6.20a)

Li(t(k)
ij

+
) =Li(t(k)

ij ) \∆
(k)
ij , (6.20b)

Lj(t(k)
ij

+
) =Lj(t(k)

ij ) ∪∆
(k)
ij . (6.20c)

By design, each landmark transfer produces an instantaneous improvement of the
total coverage attained by the network, because a landmark is transfered only if the
receiving agent has a better perception of that landmark than the yielding agent.
This property is formalized in the following lemma.

Lemma 6.2. Consider a network of sensing agents with poses T (t) = (T1(t), . . . , TN (t)),
and let P(t) = (L1(t), . . . ,LN (t)), where Li(t) is the subset of the landmarks as-
signed to the ith agent at time t. Let the landmark assignment be updated according
to (6.20). Then, Γ(T (t

(k)
ij

+
),P(t

(k)
ij

+
)) ≥ Γ(T (t

(k)
ij ),P(t

(k)
ij )).
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Proof. The coverage attained by the network before and after the update are related
by the following equation:

Γ(T (t
(k)
ij

+
),P(t

(k)
ij

+
)) =Γ(T (t

(k)
ij ),P(t

(k)
ij ))

+
∑

L∈∆
(k)
ij

(f(Tj(t
(k)
ij ), L)− f(Ti(t

(k)
ij ), L)), (6.21)

where ∆
(k)
ij is the set of the landmarks transfered from the ith agent to the jth

agent, as given by (6.20a). However, from (6.20a), we can see that any landmark
in ∆

(k)
ij satisfies f(Tj(t

(k)
ij ), L) > f(Ti(t

(k)
ij ), L). Therefore, we have∑

L∈∆
(k)
ij

(f(Tj(t
(k)
ij ), L)− f(Ti(t

(k)
ij ), L)) ≥ 0, (6.22)

and by (6.21), we conclude Γ(T (t
(k)
ij

+
),P(t

(k)
ij

+
)) ≥ Γ(T (t

(k)
ij ),P(t

(k)
ij )).

To complete the description of the algorithm, we only need to specify a scheduling
rule to determine when the communication instances t(k)

ij shall take place. However,
the proposed algorithm does not need to enforce a specific scheduling rule. To
prove that the agents converge to a Voronoi tessellation, it is sufficient to assume
that the update times are distinct and that the interval between two consecutive
communication instances involving the same pair (i, j) of agents t(k)

ij and t(k+1)
ij is

upper-bounded. These requirements are formalized as the following assumption.

Assumption 6.2. (i) For any i, i′, j, j′ ∈ {1, . . . , N}, and any k, k′ ∈ N∪{0}, such
that (i, j, k) 6= (i′, j′, k′), we have t(k)

ij 6= t
(k′)
i′j′ . (ii) There exists τmax > 0 such that,

for all agents i, j ∈ {1, . . . , N}, and all k ∈ N∪{0}, we have t(k+1)
ij ≤ t(k)

ij + τmax.

For practical reasons, it is convenient to enforce also a lower bound on the interval
between two consecutive communication instances. Enforcing such lower bound
allows one to exclude that the solutions of the closed-loop system are Zeno.

Remark 6.1. We note that, in order to satisfy Assumption 6.2, each agent needs to
be able to initiate a communication with every other agent in the system. However,
all communication links are only pairwise and intermittent, and no continuous all-
to-all communication is required.

Before we move on to demonstrate the properties of the proposed coverage al-
gorithm, we propose here one particular strategy to schedule the communication
instances t(k)

ij for each agent.
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To simplify the notation, consider, for each agent i, the sequence {t(k)
i }k∈N∪{0} that

collects the communication instances initiated by agent i with any other agent in
the network. With this notation, consider the threshold functions

ς
(k)
i (t, vi, ωi) = min{t− εt − t(k)

i , εv − ‖vi‖, εω − ‖ωi‖}, (6.23)

where εv, εt and εω are positive constants. Then, agent i initiates a communication
instance according to the following rule:

t
(k+1)
i = inf{t > t

(k)
i : ς

(k)
i (t, vi(t), ωi(t)) > 0}. (6.24)

The agent that is going to be the communication recipient is selected in a cyclic
fashion among the other agents in the network. When the scheduling rule (6.23)
and (6.24), is used in conjunction with controller (6.16), Assumption 6.2 is satisfied.
In fact, the linear (respectively, angular) velocity of each agent is bound to drop
below εv (respectively, εω) within a finite time; Otherwise, from (6.19), we would
have that the coverage attained by the corresponding agent would grow unbounded.
However, since the footprint of the agents are upper-bounded by definition, we know
that the coverage attained by an agent must be upper-bounded as well. Finally, note
that the scheduling rule (6.23) and (6.24) also enforces a lower bound εt between two
consecutive communication instances, thus leading to the exclusion of the undesired
Zeno behavior.

6.7 Modeling the closed-loop sensor network as a hybrid system

In this section, we shall model the closed-loop system (6.3), (6.16) and (6.20) as a
hybrid system. The obtained model will be used to prove formally that the network
converges to a Voronoi tessellation. Note that this modeling process is undertaken
for purely analytical purposes. None of the controllers are required to keep track
of the global state of the hybrid system.

Roughly speaking, the system flow is given by the kinematics (6.3) of the agents and
the control law (6.16), while the system jumps are given by the landmark transfers
(6.20). The state of the hybrid system is a function of the hybrid time (i.e., of
the time elapsed and the number of jumps occurred). However, in the rest of this
section we are going to omit the dependency of the state on the hybrid time to keep
the notation agile.

The state of the hybrid system comprises the poses of the sensors, the landmark
assignment, and the current time. The state also contains the number νij of com-
munication instances elapsed between any pair of agents i and j until the current
time. We denote the state of the hybrid system as X, and we write X = (T,P, ν, t).

The flow set is given by all values of X such that a communication instance is not
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triggered. This set can be written as follows:

C = {X : t ≤ t(νij+1)
ij ∀(i, j) ∈ {1, . . . , N}}. (6.25)

Conversely, the jump set is given by all values of X that trigger a communication
instance. This set can be written as follows:

D = {X : t ≥ t(νij+1)
ij for some (i, j) ∈ {1, . . . , N}}. (6.26)

The flow map F (X) is implicitly specified by the kinematics (6.3) of the agents un-
der the control law (6.16). Note that, within two consecutive jumps, the landmark
sets Li are constant, and therefore the control law (6.16) is well-defined. The jump
map G(X) is implicitly specified by the updates (6.20), with the constraint that the
update is triggered only for the pair (i, j) such that t ≥ t(k)

ij . For the same pair, the
variable νij is incremented to keep track of the number of communications elapsed:

νij(t
+) = νij(t) + 1. (6.27)

In this model, the flow map and the jump maps are single valued, With these nota-
tions, we can prove our main result, which is formalized as the following theorem.

Theorem 6.1. Consider a network of N sensing agents indexed as 1, . . . , N and
a set L of M landmarks indexed as 1, . . . ,M . Let Ti(t) = (pi(t), xi(t), yi(t), zi(t))
be the pose of the ith agent, with kinematics (6.3). Let Li(t) ⊆ L be the set of
landmarks assigned to the ith agent at time t, and let the agents be controlled as
by (6.16) and (6.20). Let the communication times t(k)

ij satisfy Assumption 6.2.
Then, denoting T (t) = (T1(t), . . . , TN (t)) and P(t) = (L1(t), . . . ,LN (t)), the tuple
(T (t), P (t)) converges to a Voronoi tessellation, while the coverage Γ(T (t), P (t))
attained by the network is nondecreasing.

Proof. From Lemma 6.1, we know that the network coverage Γ(T (t),P(t)) is non-
decreasing along the system flow. From Lemma 6.2, we know that the network
coverage is nondecreasing across the system jumps. Hence, we can conclude that
the network coverage is nondecreasing along any solution of the hybrid system.
Next, we need to prove that any complete solution of the hybrid system converges
to a state that corresponds to a Voronoi tessellation (i.e., that satisfies the prop-
erties of Definition 6.1). Consider the function V (X) = −Γ(T,P) that measures
the coverage attained collectively by the networked agents. First, consider a time
instant t such that the state of the system belongs to the flow set C. For such t,
the values of T (t) and P(t) are well defined, as well as the kinematics of the sensing
agents. Therefore, we can write

∇V (X)ᵀF (X) =−
N∑
i=1

∑
ξi∈{pi,xi,yi,zi}

∂Γ(T (t),P(t))

∂ξi
ξ̇i

=−
N∑
i=1

∑
ξi∈{pi,xi,yi,zi}

∂Γi(Ti(t),Li(t))
∂ξi

ξ̇i.

(6.28)
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From (6.18) and (6.19) in Lemma 6.1, we know that the right-hand side can be
rewritten as

∇V (X)ᵀF (X) = −
N∑
i=1

(‖vi(t)‖2 + ‖ωi(t)‖2) ≤ 0. (6.29)

Now, consider instead a time instant t such that the state belongs to the jump set
D. For such t, there exist (i, j, k) such that t = t

(k)
ij , and a communication instance

is triggered. From Lemma 6.2, we know that the communication instance produces
an increment in the value of the coverage function. Therefore, we can write

V (G(X))− V (X) = −Γ(T (t+),P(t+)) + Γ(T (t),P(t)) ≤ 0. (6.30)

Consider the functions uC(X) and uD(X) defined as in Proposition 2.8. Using
(6.28) and (6.30) we can see that uC(X) ≤ 0 and uD(X) ≤ 0 for all possible states
X. Hence, from Proposition 2.8, we know that, for any precompact solution φ∗ of
the hybrid system, there exists r ∈ R, such that φ∗ converges to the largest invariant
subset of V −1(r) ∩ (u−1

C (0) ∪ (u−1
D (0) ∩ G(u−1

D (0)))). Let us denote such invariant
subset as Ir. Now note that, since the sensor footprint is radially unbounded from
below, V (X) is radially unbounded from above. However, since Γ(T (t),P(t)) is
nondecreasing, V (t) is nonincreasing. Hence, any complete solution of the hybrid
system is also bounded, and, therefore, it is precompact. We can conclude that
any complete solution of the hybrid system converges to Ir. Hence, to complete
the proof it is sufficient to show that any state X ∈ Ir corresponds to a Voronoi
tessellation. Suppose by contradiction that X ∈ Ir but X does not correspond to
a Voronoi tessellation. Then, by the Definition 6.1 of a Voronoi tessellation, one or
more of the following conditions occur:

∂Γ

∂pi
(T,P) 6= 03 for some i ∈ {1, . . . , N}, (6.31a)∑

ξi∈{xi,yi,zi}

Skew(ξi)
∂Γ

∂ξi
(T,P) 6= 03 for some i ∈ {1, . . . , N}, (6.31b)

f(Tj , Lh) > f(Ti, Lh) for some h ∈ Li and some (i, j) ∈ {1, . . . , N}2. (6.31c)

Hence, the value of Γ(T (t),P(t)) is bound to increase either along the system flow
or in correspondence to the system jump t(νij+1)

ij . Consequently, the value of V (X)
is bound to decrease, and X is bound to exit from Ir. But this is a contradiction,
because Ir is invariant. We thus conclude that any complete solution of the hybrid
system converges to a Voronoi tessellation.

6.8 Making the agent trajectories collision-safe

In this section, we propose a collision avoidance module to incorporate in the
proposed controller so that the trajectories generated by the sensing agents are
collision-safe.
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Collision avoidance can be incorporated in the proposed control algorithm by modi-
fying the definition of the coverage function so that it takes into account the possible
proximity of the sensor to other bodies, such as the other sensors in the network or
obstacles in the environment.

Consider the following collision avoidance function

ϕ(p, b) =

{
0, ‖p− b‖ > ρ,

1/ρ2 − 1/‖p− b‖2, ‖p− b‖ ≤ ρ, (6.32)

where ρ > 0 is a safety radius and p, b ∈ R3. Note that ϕ(p, b) ≤ 0 and ϕ(p, b) < 0
if ‖p− b‖ > ρ, and that ϕ(p, b)→ −∞ when p− b→ 0. The results in this section
can be generalized to other collision avoidance functions with these characteristics,
but for simplicity we are going to refer to (6.32).

We abuse of notation, we define the coverage attained by each sensing agent as

Γi(Ti(t),Li(t),Bi) =
∑

j∈Li(t)

f(Ti(t), Lj) +
∑

b∈Bi(t)

ϕ(pi(t), b), (6.33)

where Bi(t) is a set of points with which agent i must avoid collisions. The linear
velocity of each agent is chosen consequently as

vi(t) =
∂Γi
∂pi

(Ti(t),Li(t),Bi). (6.34)

Similarly, we define the coverage attained by the whole sensor network while avoid-
ing collisions as

Γ(T (t),L(t),B) =

N∑
i=1

Γi(Ti(t),Li(t),Bi), (6.35)

where we have denoted B = (B1, . . . ,BN ). Collision avoidance is guaranteed be-
cause, if pi(t) is sufficiently close to a body b ∈ Bi, the collision avoidance term will
dominate any other contribution to the linear velocity vi(t) of the agent, so that
the distance between the agent and the body cannot be reduced further.

Note that incorporating a collision avoidance term in the coverage function allows
to model effects such as the proximity of an agent to another body hindering the
performances of the agent. For example, the body may obstruct the field of view
of the agent or influence the motion of the agent in an undesired way.

In general, avoiding collisions with moving bodies may compromise the monotonic-
ity of the coverage function, thus negating the convergence of the system to a
Voronoi tessellation. However, as long as the bodies B are stationary, the mono-
tonicity of the coverage (and, consequently, the convergence to a Voronoi tessel-
lation) is preserved. In fact, in this case, the coverage attained by each agent is
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only affected by the motion of that agent, and the agent motion is still a gradient
climb of the coverage function Γi(Ti,Li,Bi), which means that Γi(Ti(t),Li(t),Bi)
is nondecreasing for each individual agent between any two consecutive communi-
cation instances. The formal derivation of this result is analogous to the proof of
Lemma 6.1, and it is omitted here for brevity.

Another scenario of interest is to avoid collisions between different sensors in the
network. To this aim, we can use the same collision avoidance function (6.32), but
we need to modify the definition of the total coverage attained by the network as
follows:

Γ(T (t),L(t),B) =

N∑
i=1

Γi(Ti(t),Li(t),Bi) +
∑

(i,j)∈E

ϕ(pi(t), pj(t)), (6.36)

where E denotes the set of all possible unordered pairs (i, j) with i, j ∈ {1, . . . , N}
and i 6= j. For this scenario, the linear velocity of each agent needs to be chosen as

vi(t) =
∂Γi
∂pi

(Ti(t),Li(t),Bi) +
∑

j∈{1,...,N}\{i}

∂ϕ

∂pi
(pi(t), pj(t)). (6.37)

With this choice of vi(t), one can show that the total coverage attained by the
network, as defined by (6.36), is nondecreasing. The derivation is again similar to
the proof of Lemma 6.1, and it is omitted here for brevity.

6.9 Numerical simulations

In this section, we are going to exemplify the use of the proposed coverage algo-
rithm with two numerical simulations. The simulations are programmed using the
middleware ROS (Quigley et al., 2009), and the controller of each sensor is imple-
mented as a single ROS node. In particular, for each simulated agent i, we initiate a
controller node that executes the proposed coverage algorithm, computing vi(t) and
ωi(t), and a simulator node that integrates the kinematics (6.3) to reproduce the
motion of the sensor. The different controller nodes communicate with each other
to transfer landmarks to each other by means of ROS messages and services. Sim-
ilarly, each controller node communicates with the corresponding simulator node
by means of ROS messages. This setup presents at least two advantages: first, the
simulation reproduces faithfully the distributed nature of the control algorithm;
secondly, the same ROS nodes used in the simulation can be used to execute the
control algorithm on physical robots. In all simulations, the perception attained
by the agents is modeled by footprint (6.10), and the communication instances t(k)

ij

are triggered by the recursive rule (6.23) and (6.24).
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Surveillance of a planar environment

In the first simulation, we consider a team of N = 4 sensing agents, which are
required to monitor a square planar environment with side of length 6. The room
is abstracted into a set of M = 625 landmarks, which are equally spaced about
the room. Hence, each landmark can be thought of as a tile within the planar
environment to survey. In this simulation, there is no orientation information as-
sociated with the landmarks, and therefore the orientations of the landmarks are
not assigned. Moreover, no collision avoidance module is used in this simulation.
Initially, all the landmarks are assigned to the same agent. The initial position of
agent i is chosen as pi = (0, 1.25 − 0.25i, 0), while the initial orientation is chosen
as Ri = I3 for all the sensors. The footprint parameters are chosen as D∗ = 1 and
γ = 0.

The results of this simulation are shown in Figures 6.3 to 6.5. From Figures 6.3
to 6.5, we can see how the sensors are progressively deployed about the room, and
how the landmark distribution assumes patterns corresponding to better coverage
costs. The final configuration is verified to be a Voronoi tessellation, within a
tolerance comparable to the numerical accuracy of the simulation.

Surveillance of a 3D structure

In this simulation, we consider N = 4 simulated sensing agents and a landmark set
extracted from a point cloud of originated by laser-scanning a cylindrical structure.
The proposed coverage algorithm is modified to account for collision avoidance as
described in Section 6.8, with Bi = {L1, . . . , LM}. The initial positions of the sen-
sors are taken as [−1.5,−1.5, 0]ᵀ, [−1.5, 1.5, 0]ᵀ, [−1.5,−1.5, 1]ᵀ and [−1.5, 1.5, 1]ᵀ.
The footprint parameters are chosen as D∗ = 1 and γ = 1. The simulation is
run for 100 seconds. The results of the simulation are illustrated in Figures 6.6
and 6.7. Figure 6.6 comprises six snapshots of the configuration assumed by the
sensor network during the simulation.

Figure 6.7 illustrates the coverage attained by the sensors throughout the simula-
tion, as well as the total coverage attained by the network. All the quantities are
negative since the footprint used is negative semidefinite. From Figure 6.7, we can
see that the coverage attained by each sensor presents large discontinuities across
the communication instants, since landmarks are transferred at those instants. On
the other hand, we can see that the total coverage attained by the network is non-
decreasing, and converges to a value corresponding to the equilibrium configuration
that we can see in the last snapshot of Figure 6.6. The small spikes in the plot
must be attributed to the short delays in the message transmission in ROS.
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Figure 6.3: Results of the simulation described in Section 6.9. Each sensing agent is repre-
sented as a colored arrow, and each landmark is represented as a square tile. Each tile has the
same color of the agent that it is currently assigned to. Blank tiles are in the process of being
transferred from one agent to another while the snapshot is being taken. For each agent i,
the tail of the arrow is in the point pi, while the head of the arrow is in the point pi + xi. For
each landmark, the corresponding tile is centered in the position qj . Seconds elapsed in each
snapshot, in lexicographical order: 0, 0.2, 0.5, 1.0, 2.0.

6.10 Preliminary experimental evaluation

The proposed coverage algorithm has been subject to preliminary experimental
evaluations. The experiments have been conducted in the KTH Smart Mobility
Lab, with a sensor network comprising one physical aerial robot and three simulated
aerial robots. The physical robot is a 3DR IRIS+ quadcopter. Both the physical
and the simulated robots are endowed with a controller running on a ROS node.
A ROS node is also used to implement a simple integrator model for the simulated
robots. The position of the physical robot is measured by means of a motion
capture system, while the positions of the simulated robots are computed by the
simulator, and sent to the controller by ROS. To reproduce the distributed nature
of the algorithm, each simulator and each controller is implemented as a separate
ROS node, and the different nodes communicate with each other by means of ROS
messages and services. In this section, we shall present two experiments: one for
the coverage of a planar environment, and one for the coverage of a 3D structure.
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Figure 6.4: Results of the simulation described in Section 6.9. Each sensing agent is repre-
sented as a colored arrow, and each landmark is represented as a square tile. Each tile has the
same color of the agent that it is currently assigned to. Blank tiles are in the process of being
transferred from one agent to another while the snapshot is being taken. For each agent i,
the tail of the arrow is in the point pi, while the head of the arrow is in the point pi + xi. For
each landmark, the corresponding tile is centered in the position qj . Seconds elapsed in each
snapshot, in lexicographical order: 5.0, 10.0, 15.0, 20.0, 25.0.

In these experiments, the model of the perception of the landmarks attained by the
agents, the control of the motion of the agents, and the rules for scheduling the
communication instances may differ slightly from those described in this chapter.
Therefore, for each experiment, we give a reference where a detailed description of
the algorithm can be found.

Experimental evaluation for the coverage of a planar environment
In this section we describe an experimental evaluation of the proposed algorithm
for the surveillance of a planar environment. A more detailed description of the
experimental setup is found in Sposato (2016). In this experiment, the landmarks
are represented as colored tiles, which are projected onto the lab floor, while the
agents are represented as colored arrows. The landmarks are color-coded so that
each landmark is colored as the agent that it is currently assigned to. We consider
500 landmarks as a discrete abstraction of a 5.0 by 4.0 meter rectangular domain.
There is no orientation information associated with the landmarks, and there is no
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Figure 6.5: Results of the simulation described in Section 6.9. Each sensing agent is repre-
sented as a colored arrow, and each landmark is represented as a square tile. Each tile has the
same color of the agent that it is currently assigned to. Blank tiles are in the process of being
transferred from one agent to another while the snapshot is being taken. For each agent i,
the tail of the arrow is in the point pi, while the head of the arrow is in the point pi + xi. For
each landmark, the corresponding tile is centered in the position qj . Seconds elapsed in each
snapshot, in lexicographical order: 30.0, 40.0, 50.0, 75.0, 105.0.

collision avoidance strategy applied. The results of the experiments are summarized
in Figures 6.8 and 6.9, and a video can be found at Sposato et al. (2017).

Experimental evaluation of the coverage of a 3D structure
In this section we describe an experimental evaluation of the proposed algorithm
for the surveillance of a 3D structure.

For this experiment, we use the Ascending Technologies NEO hexacopter. A monoc-
ular camera developed by Skybotix AG (weight of 0.088 kg, is attached on the
protective case on the front side of the NEO. The camera is used to capture the
surveyed structure from the perspective of the sensing agents during the execution
of the algorithm. A more detailed description of the experimental setup is found in
Adaldo et al. (2017d), together with a video of the experiment.

The experiment has been performed in the FROST Lab at LTU. To better suit
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Figure 6.6: Snapshots of the configuration assumed by the agent network in the simulation
described in Section 6.9. Each agent i is represented as a colored arrow, with the tail of
the arrow being the position pi of the sensor, and the direction of the arrow being xi. Each
landmark Lj is represented as a colored circle in position qj . (The orientation of the landmarks
is not represented to avoid cluttering the picture.) In lexicographical order, with t = 0 being
the start of the simulation, the snapshots are taken at: t = 0, t = 5, t = 25, t = 50, t = 85,
t = 100.
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Figure 6.7: Coverage attained by each sensor and total coverage attained by the network
throughout the simulation described in Section 6.9. The short spikes in the total coverage
signal are due to asynchronous message transmission among ROS nodes.

the dimensions of the laboratory, the footprint parameters are set as D∗ = 1.3 and
γ = 0.5. Figure 6.10 depicts the artificial structure to inspect assembled for the
experimental trial. The cylindrical structure in the pictures is provided for visual
purposes, while for the landmark generation we use a cylinder object is with radius
of 0.165 m and height 1 m. For the safety of the flight, and to avoid ground effects
and collisions with the ceiling, the landmarks are extracted only between 0.5 m
and 1.1 m height. We consider a network of two agents to survey the described
structure.

In this experiment, the Vicon motion-capture system has been utilized for pre-
cise object localization, and this information is utilized by the NEO for the task
execution. The waypoints generated by the algorithm are converted into position-
velocity-yaw trajectories, which are inputs for the autopilot of the NEO. For safety
reasons, the generated trajectories are executed on the same NEO, one at a time.

Figure 6.10 depicts the position of the two agents (left), and the image stream
captured by each agent (middle and right). Additionally, the reference path, (i.e.,
the trajectory which is followed by agent) and the point cloud of the surveyed object
are shown in Figure 6.12. The starting points of the agents are [−1.7,−1.5, 0]ᵀ

and [−1.7,−1.5, 0]ᵀ, while the final positions are [0, 1.3, 0.68]ᵀ and [0.5,−1.7, 0.8]ᵀ.
Moreover, the error between reference and trajectory is mainly caused by ground
effects and errors in the attitude controller. Furthermore, Figure 6.11 also includes
the point cloud that used for obtaining the landmark set. Finally, Figure 6.12 shows
the coverage attained by each sensor along its path, and the total coverage attained
by the network.
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Figure 6.8: Results of the preliminary experimental evaluation described in Section 6.10. The
physical robot is represented as a green arrow. The rounded arrows represent the positions
and orientations generated by the optimization procedures in the coverage algorithm, and
constitute reference waypoints for the robots. First part of the experiment; top: start of the
experiment; bottom: 18 seconds elapsed.
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Figure 6.9: Results of the preliminary experimental evaluation described in Section 6.10. The
physical robot is represented as a green arrow. The rounded arrows represent the positions
and orientations generated by the optimization procedures in the coverage algorithm, and
constitute reference waypoints for the robots. Second part of the experiment; top: 80 seconds
elapsed; bottom: 180 seconds elapsed.
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Figure 6.10: Snapshots from the experimental evaluation described in Section 6.10. Left:
position of two agents during the experiment. Middle: visual feedback from the first agent.
Right: visual feedback from the second agent.
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Figure 6.11: Trajectories followed by the agents during the experimental evaluation described
in Section 6.10.

6.11 Summary

Motivated by applications in the field of robotic surveillance, in this chapter we
have investigated a coverage problem of 3D structures with robotic sensor net-
works. We have introduced an abstraction of the structure to survey, and we have
generalized the concept of Voronoi tessellation to fit our problem, defining a cov-
erage score function as a measure of the quality of the surveillance attained by the
sensor network. Then, we have proposed a control algorithm that drives the sensors
to a Voronoi tessellation while the coverage score function is nondecreasing. We
have also extended the algorithm to deal with collision avoidance problems. The
algorithm has been validated with simulations and with experiments.
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Figure 6.12: Coverage attained by each sensing agent along its path, and total coverage
attained by the network during the experimental evaluation described in Section 6.10. The
short spikes in the total coverage signal are due to asynchronous message transmission among
ROS nodes.
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Chapter 7

Cloud-supported effective coverage control

Questo di sette è il più gradito giorno,
pien di speme e di gioia:
diman tristezza e noia
recheran l’ore, ed al travaglio usato
ciascuno in suo pensier farà ritorno.

G. Leopardi,
Il sabato del villaggio, vv. 38–42.

In this chapter we consider our fourth and last multi-agent coordination scenario.
Namely, we address the problem of inspecting a 3D structure with a team of

autonomous sensing agents. Instead of communicating with each other, the agents
upload information on a cloud repository to keep track of the progress of the in-
spection. The system modeling is similar to that proposed in Chapter 6, but the
controllers operate with a different logic.

The rest of this chapter is organized as follows. In Section 7.1, we review the
existing related work and highlight the novel contributions offered in the chapter. In
Section 7.2, we define the mathematical model that we use as an abstract description
of the effective coverage task under investigation. In Section 7.3, we define a hybrid
controller that we use to steer the motion of a single sensing agent. In Section 7.4,
we describe the proposed effective coverage controller for a single sensing agent.
In Section 7.5, we describe the cloud repository used to store information about
the progress of the task, and we define the proposed cloud-supported algorithm for
multi-agent effective coverage. In Section 7.6, we describe a numerical simulation
that validates our theoretical results. In Section 7.7, we describe the setup for a
preliminary experimental evaluation of the proposed algorithm on an aerial robotic
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platform. Section 7.8 concludes the chapter with a summary of the results.

7.1 Introduction

The problem that we study in this chapter falls within the scope of coverage prob-
lems for networks of mobile sensing agents. These problems have attracted a no-
table volume of research in the past few decades, because they constitute a flexible
model for numerous applications, such as deployment, inspection and surveillance
with networked robots (Cassandras and Li, 2005).

Coverage problems can be divided in two large categories. Static coverage prob-
lems (Cortes et al., 2004, Durham et al., 2012, Stergiopoulos and Tzes, 2013, Ster-
giopoulos et al., 2015) consist in finding a good placement for the sensing agents,
and possibly controlling the agents to reach their target placements. On the other
hand, dynamic coverage problems (Hussein and Stipanovic, 2007, Panagou et al.,
2016, Wang and Hussein, 2010), also known as effective coverage problems, consist
in controlling the motion of the agents to survey an environment continuously, un-
til it has been searched sufficiently well. Awareness coverage control (Song et al.,
2011, 2013) can be considered a form of dynamic coverage where the agents are
also required to learn a density function which characterizes the importance of each
point in the environment. The problem addressed in this work falls within the class
of dynamic coverage problems.

In classical works on dynamic coverage problems (Hussein and Stipanovic, 2007),
the sensors have circular sensing patterns, meaning that their sensing power is
maximal at their own position, and decays with the distance from the sensor. This
model is only appropriate to describe omnidirectional sensors, such as temperature
sensors or circular laser scans. In more recent works (Panagou et al., 2016), the
sensors have anisotropic sensing patters, which allows to model a larger variety of
sensing devices, such as monocular cameras or cone-shaped laser scans. However,
these models are still deficient in describing certain settings, such as the inspection
of structure, the surveillance of a building, or the reconstruction of a 3D surface
with depth sensors, because they do not capture the morphology of the structure
to inspect. Conversely, in this chapter we consider a network of sensing agents with
generic, anisotropic and heterogeneous sensing patterns, and we also take into ac-
count the 3D geometry of the object to inspect. Moreover, classical works assume
that each sensing agent is continuously aware of the motion of all other agents, or
that the agents can communicate continuously. More recently, intermittent inter-
agent communication has been considered (Wang and Hussein, 2010). In this work,
inter-agent communication is completely replaced by communication with a shared
information repository, or cloud. Connections with the cloud are event-triggered
and intermittent, and the amount of data exchanged upon each connection is lim-
ited. Cloud-supported solutions are becoming increasingly popular for various types
of multi-agent problems (Bowman et al., 2016, Patel et al., 2016, Hale and Egerst-
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edt, 2015), thanks to the recent explosion of cloud-based services and technologies.
Note that the cloud is not a centralized omniscient computer. In this work, the
cloud is barely a shared information repository which receives asynchronous and
partial information about the progress of the inspection. All calculations need to be
performed locally and online by the individual agents. Finally, most existing work
on effective coverage address the problem of inspecting a planar, continuous area.
Conversely, we consider the inspection of a 3D structure abstracted into a finite set
of landmarks, where each landmark carries information about the local curvature of
the surface. This setup is not only more general with respect to considering a pla-
nar continuous environment, but also computationally more tractable, and allows
the proposed control algorithm to be implemented on small embedded processors.

The algorithm is formally shown to complete the inspection in finite time, and
it is demonstrated by simulating a team of sensing agents in the ROS frame-
work (Quigley et al., 2009), paving the way to experimental evaluation. Each
agent is simulated as a different ROS node, effectively reproducing the distributed
nature of the algorithm.

The rest of this chapter is organized as follows. In Section 7.2, we define the
mathematical model that we use as an abstract description of the effective coverage
task under investigation. In Section 7.3, we define a hybrid controller that we
use to steer the motion of a single sensing agent. In Section 7.4, we describe the
proposed effective coverage controller for a single sensing agent. In Section 7.5,
we describe the cloud repository used to store information about the progress of
the task, and we define the proposed cloud-supported algorithm for multi-agent
effective coverage. In Section 7.6, we describe a numerical simulation that validates
our theoretical results. In Section 7.7, we describe the setup for a preliminary
experimental evaluation of the proposed algorithm on an aerial robotic platform.
Section 7.8 concludes the chapter with a summary of the results.

7.2 System model and problem statement

In this chapter, we use a similar abstraction as the one described in Chapter 6.
Namely, we abstract the structure to inspect into a finite set of landmarks, and
each landmark is characterized by its position and orientation. Then, we consider
a network of sensing agents with a simple kinematic model. However, the models
of the sensors and the landmarks are slightly different than those employed in
Chapter 6, since they are simplified to best suit the inspection scenario at hand. In
the rest of this section, we define this system model formally.

We consider a set of N sensing agents indexed as 1, . . . , N , and we denote N =
{1, . . . , N}. The ith agent is characterized by its position pi(t) ∈ R3 and its ori-
entation ni(t) ∈ S2, and it is denoted Ai(t) = (pi(t), ni(t)). A sensing agent is an
abstraction of a mobile sensor, such as a camera or a laser scan. The orientation

125



Chapter 7. Cloud-supported effective coverage control

of the agent defines the direction that the agent is looking at. For example, if the
sensor is a camera, the orientation of the agent corresponds to the direction that
the camera is pointing to. Similarly to the model considered in Chapter 6, the
kinematics of the agents is given by

ṗi(t) =vi(t), (7.1a)
ṅi(t) =− Skew(ni(t))ωi(t), (7.1b)

for all i ∈ N . Here vi and ωi are control inputs; vi is called the linear velocity of
the agent, while ωi is called the angular velocity of the agent. We recall that Skew
denotes the Skew operator, which corresponds to the cross product, in the sense
that, for any u, v ∈ R3, we have u× v = Skew(u)v.

The agents are required to inspect a surface which is abstracted into a set of M
landmarks indexed as 1, . . . ,M , where each landmark corresponds to a point on the
surface, and we denote M = {1, . . . ,M}. Like a sensing agent, the jth landmark
is defined by its position qj ∈ R3 and its orientation mj ∈ S2 (where, this time,
the orientation mj corresponds to the outward normal to the surface evaluated at
qj) and it is denoted Lj = (qj ,mj). However, the positions and orientations of the
landmarks are constant.

Definition 7.1. The perception of a generic landmark L attained by a generic
agent A = (p, n) is a function of the position and orientation of the landmark with
respect to the agent. We denote this function as per(A,L), and we let it take values
in [0, 1], where per(A,L) = 0 means that the landmark L is not visible at all by
agent A, while per(A,L) = 1 denotes the best possible perception. We require the
following three properties for the perception function:

P1 per(A,L) is continuously differentiable with respect to both p and n;

P2 there exists R > 0 such that, if ‖p−q‖ > R, then per(A,L) = 0, ∂ per(A,L)/∂p =
03 and Skew(n)(∂ per(A,L)/∂n) = 03;

P3 for each L ∈ R3×S2, there exists A∗L ∈ R3×S2 such that per(A∗L, L) = 1,
∂ per(A∗L, L)/∂p = 03 and Skew(n)(∂ per(A∗L, L)/∂n) = 03.

Property P1 is a technical assumption needed to prove our main result. Property P2
entails that a landmark cannot be perceived by a sensor if it is too far. Property P3
entails that for any pose of a landmark there exists a sensor pose that yields the
best possible perception, and such sensor pose constitutes a local maximum of the
perception function.
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For each landmark Lj , we define the instantaneous coverage γj(t) as the sum of the
perceptions of that landmark attained by the N sensors:

γj(t) =

N∑
i=1

per(Ai(t), Lj). (7.2)

Moreover, we define the cumulated coverage Γj(t) as the integral of the instanta-
neous coverage:

Γj(t) =

∫ t

0

γj(τ) dτ . (7.3)

Note that, since γj(t) ≥ 0, Γj(t) is a nondecreasing function of the time.

The control objective is that the cumulated coverage of each landmark reaches a
desired value C∗. This objective can be formalized as follows:

Definition 7.2. The inspection is completed successfully when Γj(t) ≥ C∗ for all
j ∈M.

Correspondingly, we introduce the landmark coverage errors

ej(t) = max{0, C∗ − Γj(t)}, (7.4)

and the total coverage error

E(t) =

M∑
j=1

ej(t), (7.5)

so that the control objective corresponds to driving all the landmark coverage errors
to zero, or equivalently, driving the total coverage error to zero. Note that the
coverage errors ej(t) are by definition nonnegative and nonincreasing.

7.3 Hybrid control of a single agent to reach a desired position
and orientation

Before we delve into the proposed control strategy, we shall show that the agent
kinematics (7.1) can be controlled to reach any desired position and orientation
A∗ = (p∗, n∗) asymptotically. To this aim, consider a generic agent Ai(t) =
(pi(t), ni(t)) with kinematics (7.1) and under the hybrid controller defined in Fig-
ure 7.1, with:

vi(t) = p∗ − pi(t), (7.6a)

q0 : ωi(t) = zi, (7.6b)

q1 : ωi(t) = Skew(ni(t))n
∗, (7.6c)
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q0start q1

G0,1

Figure 7.1: Hybrid automaton corresponding to the pose controller for a single agent. See (7.6)
for the continuous-time dynamics corresponding to each discrete state and for the guard
conditions.

G0,1 : ni(t)
ᵀn∗ ≥ −ς, (7.6d)

and where ς ∈ (0, 1) is a control parameter, and zi ∈ S2 is any unit vector or-
thogonal to ni(0). We denote this controller as Controller 7.1. Roughly speaking,
Controller 7.1 drives agent i to gradually approach the pose (p∗, n∗). If the initial
orientation of the sensor is almost the opposite of the desired orientation (a con-
dition quantified as ni(t)ᵀn∗ < − ς), then the controller undergoes an initial phase
(corresponding to state q0) where the agents rotates around a fixed axis, until such
initial alignment is amended (a condition quantified as ni(t)ᵀn∗ ≥ − ς).

Lemma 7.1. Consider a generic agent Ai(t) = (pi(t), ni(t)) with kinematics (7.1).
Under Controller 7.1, the point (p∗, n∗) is an asymptotically stable equilibrium.

Proof. Since the kinematics of pi(t) and ni(t) are decoupled, they can be analyzed
separately. Since vi(t) = p∗ − pi(t) regardless of the discrete state qi, p∗ is an
asymptotically stable equilibrium for pi(t). As for ni(t), consider the candidate
Lyapunov function V (ni) = 1− nᵀi n∗, and distinguish the two cases (i) ni(0)ᵀn∗ ≥
−ς and (ii) ni(0)ᵀn∗ < −ς. In Case (i), the controller switches immediately to state
q1, and we have

V̇ (ni) =− ṅᵀi n∗ = −(− Skew(ni)ω
ᵀ
i n
∗

=− (−Skew(ni) Skew(ni)n
∗)ᵀn∗

=− ‖Skew(ni)n
∗‖2 ≤ 0.

(7.7)

Note that, from (7.7), we have that ni(t)ᵀn∗ is nondecreasing and that V̇ (ni) = 0 if
and only if ni = ±n∗. However, since ni(0)ᵀn∗ ≥ −ς, we conclude that V̇ (ni) = 0
if and only if ni = n∗. Hence, V (ni) is a Lyapunov function and ni converges to
n∗ asymptotically. In Case (ii), the controller is initially in state q0, and ni rotates
around zi with constant angular speed. After ni has described a rotation of at most
2 arccos(ς), we have nᵀi n

∗ ≥ −ς, which causes the controller to switch to state q1,
and we can reason as in Case (i).

An important consequence of Lemma 7.1 is that, if the initial conditions Ai(0)
and the target A∗ are chosen out of a compact set I, then the agent reaches any
arbitrarily small neighborhood of A∗ = (p∗, n∗) in finite time. (Note that, since S2
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is compact, the condition that Ai(0) and A∗ should lie in a compact set reduces to
pi(0) and p∗ being in a compact set.) In particular, if A∗ is such that per(A∗, L) = 1
for some landmark L, we have the following corollary.

Corollary 7.1. Let a sensing agent Ai(t) with kinematics (7.1) be controlled by
Controller 7.1, with A∗ = A∗L is such that per(A∗, L) = 1. Then, if Ai(0), A∗L ∈ I
where I is a compact set, for any ε′ < 1 there exists a finite time TI,ε′ such that
per(Ai(t), L) ≥ ε′ for all t ≥ TI,ε′ .

7.4 Effective coverage control for one agent

In this section, we describe a controller that lets a single sensing agent attain the
effective coverage of a set of landmarks. This controller will serve as a stepping
stone to introduce our multi-agent cloud-supported control scheme in Section 7.5.

First, note that when the coverage mission is performed by a single agent, the
coverage of each landmark only depends on the motion of that agent. Therefore,
the agent can keep track of the coverage error associated to each landmark with only
local information. Denoting as usual the pose of the agent as Ai(t) = (pi(t), ni(t)),
the derivative of the total coverage error is

Ė(t) = −
∑

j∈M: ej(t)>0

per(Ai(t), Lj) ≤ 0. (7.8)

Since the control objective is to drive E(t) to zero, we can control Ai(t) according
to a gradient descent of Ė(t), so that the decay of E(t) is as fast as possible.

The proposed single-agent controller is a hybrid controller that switches between a
gradient descent of Ė(t) and Controller fig. 7.1, the latter being used as a backup
when the gradient of E(t) is too small. The gradient-descent controller can be
written as follows:

vi(t) =− ∂Ė(t)

∂pi
, (7.9a)

ωi(t) = Skew(ni(t))
∂Ė(t)

∂ni
. (7.9b)

Writing Ë(t) = (∂Ė/∂pi)
ᵀṗi(t) + (∂Ė/∂ni)

ᵀṅi(t), and using (7.1), we can see that
under Controller 7.9 we have

Ë(t) = −‖vi(t)‖2 − ‖ωi(t)‖2 ≤ 0. (7.10)

However, Ë(t) is not defined for t such that, for some j ∈M, ej(t) = 0 and ej(τ) > 0

in a left neighborhood of t. In these time instants, instead, Ė(t) instantaneously
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q0startq1 q2

G0,1, R0,1

G1,0

G0,2

Figure 7.2: Effective-coverage controller for a single agent. States: q0 runs (7.1) and (7.9);
q1 runs (7.1) and (7.6) with A∗ = A∗

Lι ; q
2 terminates. Guards: G0,1 is (7.11); G1,0 is (7.12);

G0,2 is E(t) = 0. Reset map: R0,1 is ι :∈ {1, . . . ,M : eι(t) > 0}.

increases by per(Ai(t), Lj), because Lj has been completely inspected and stops
contributing to the decay in the total coverage error.

The controller starts in the gradient-descent mode (7.9). The condition to switch
to (7.6) is

Ė(t) > −ε ∧ E(t) > 0, (7.11)

where ε ∈ (0, 1) is a constant threshold. Condition (7.11) means that the inspection
is not complete, but the decay of E(t) is close to zero. When switching to (7.6),
one landmark Lι is selected among those with a positive coverage error, and the
reference pose is set as A∗Lι . Note that, when this transition happens, at least one
landmark with positive coverage error must exist, since E(t) > 0. The condition to
switch back to (7.9) is

eι(t) = 0 ∨ Ė(t) ≤ −ε′, (7.12)

where ε′ ∈ (ε, 1). Condition (7.12) means that either Lι has been completely
inspected (eι(t) = 0) or the decay of the coverage error is faster (Ė(t) ≤ −ε′). The
inspection terminates when the condition E(t) = 0 is detected.

The proposed switching controller is given in Figure 7.2 in the form of a hybrid
automaton, and it is referred to as Controller 7.2 in the rest of the chapter.

Now we can prove that a sensing agent with kinematics (7.1) controlled by Con-
troller 7.2 completes the inspection in finite time.

Theorem 7.1. Consider an agent Ai(t) = (pi(t), ni(t)) with kinematics (7.1), and
let it be controlled by Controller 7.2. Let I ⊂ R3×S2 be a compact set that encloses
the initial pose Ai(0) of the sensor and all the landmarks L1, . . . , LM . Then, there
exists T > 0 such that E(t) = 0 for all t ≥ T .

Proof. First note that, when Controller 7.2 is in state q0, we have Ė(t) ≤ −ε. Since
E(t) ∈ [0, C∗] by definition, Controller 7.2 can be in state q0 for a time not larger
than C∗/ε. However, under state q0, Ė(t) is nonincreasing. Therefore, the only way
to trigger a transition to state q1 is that the coverage error ej(t) of some landmark Lj
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reaches zero, causing Ė(t) to instantaneously increase by per(Ai(t), Lj). However,
from Corollary 7.1, we know that, once Controller 7.2 is in state q1, after a time
not larger than TI,ε′ , we will have per(Ai(t), Lι) ≥ ε′, which implies Ė(t) ≤ −ε′.
Therefore, Controller 7.2 can only remain in state q1 for TI,ε′ for each landmark.
Since there are M landmarks, Controller 7.2 can be in state q1 for at most a time
of MTI,ε′ before the inspection is complete. Hence, the theorem is proved with
T = C∗/ε+MTI,ε′ .

Remark 7.1. A sensible choice of ε and ε′ is needed to avoid a slow inspection
and frequent switching between states q0 and q1 in Controller 7.2. For example, a
larger ε′ reduces the switching frequency, but may slow down the inspection, because
the agent spends more time focusing on a single landmark rather than on the global
coverage error. �

7.5 Cloud-supported effective coverage control for multiple
agents

In this section, we consider the case that the inspection is performed by a team
of N agents aided by a shared information repository (cloud). In this scenario,
each individual agent does not know the coverage error ej(t) associated to each
landmark, or the total coverage error E(t). Therefore, for each agent i and each
landmark j, we introduce the estimated coverage error êij(t), which is initialized as
êi(0) = C∗ and evolves as

˙̂eij(t) = −per(Ai(t), Lj). (7.13)

Similarly, we let

Êi(t) =

M∑
j=1

êij(t). (7.14)

Each agent can intermittently communicate with the cloud to upload and download
information about the progress of the inspection. The cloud substitutes inter-
agent communication, and allows the agents to gather their contributions to the
inspection. For each landmark j ∈M, the cloud maintains an estimate êcloud

j (t) of
the coverage error associated to that landmark, which is initialized as êcloud

j (0) =
C∗. Hence, the amount of information contained in the cloud scales linearly with
the number M of landmarks, and does not grow over time. We denote as ti,k
the time when agent i connects with the cloud for the kth time. (Conventionally,
ti,0 = 0 for all agents.) Cloud accesses are considered as instantaneous events. This
assumption is mild because the time scale of wireless communication is arguably
orders of magnitude faster than the time scale of the physical motion of the agents.
Only one agent at a time can access the cloud: if it happens that ti,k = tj,h for some
agents i, j and some integers k, h, the two accesses happen one after the other in
any order. Between two consecutive connections ti,k and ti,k+1 to the cloud, agent i
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needs to keep track only of its own contribution to the coverage. This contribution
can be captured simply with a nonnegative scalar cijk defined as

cijk =

∫ ti,k

ti,k−1

per(Ai(t), Lj) dt . (7.15)

When agent i connects to the cloud at time ti,k, the estimated coverage errors are
updated as

êcloud
j (t+i,k) := max{0, êcloud

j (t−i,k)− cijk}, (7.16a)

êij(t
+
i,k) := max{0, êcloud

j (t−i,k)− cijk}. (7.16b)

This update means that the contribution cijk is incorporated in the coverage error
estimated by the cloud and coverage error estimated by the agent is immediately
updated to match the one estimated by the cloud. In this way, the contribution
given to the coverage by each agent is collected in the cloud, and can be accessed
later by other agents. Comparing (7.4) with (7.16), we can see that estimates of
the coverage errors have the following remarkable properties:

êij(t
+
i,k) ≤ êij(t−i,k); (7.17a)

ej(t) ≤ min{êcloud
j (t), êij(t)}. (7.17b)

Property (7.17a) means that a connection with the cloud can only cause the local
estimates of the coverage errors to decrease. Property (7.17b) means that the
estimates of the coverage errors are always overestimates; in particular, Êi(t) = 0
implies E(t) = 0. This gives a natural stopping condition for the agents: when
Êi(t) = 0, agent i knows that the inspection is complete. Between two consecutive
cloud accesses, each agent is controlled according to its estimated coverage errors.
Namely, (7.9) is replaced with

vi(t) =− ∂
˙̂
Ei(t)

∂pi
, (7.18a)

ωi(t) = Skew(ni(t))
∂

˙̂
Ei(t)

∂ni
. (7.18b)

The cloud accesses are triggered according to the following recursive rule:

ti,k+1 = inf{t > ti,k : Ci,k(t) ≥ ς ′(Mi(t) + 1) or Êi(t) = 0}, (7.19)

where

Ci,k(t) =

M∑
j=1

∫ t

ti,k

per(Ai(τ), Lj)dτ, (7.20a)

Mi(t) = card {j ∈M : êj(t) > 0}, (7.20b)
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q0startq1 q2

G0,1, R0,1

G1,0

G0,2, R0,2

G0,0, R0,0G1,1, R1,1

Figure 7.3: Cloud-supported effective-coverage controller for a multi-agent team. States: q0

runs (7.1) and (7.18); q1 runs (7.1) and (7.6); q2 terminates. Guards: G0,1 is (7.11); G1,0 is
(7.12); G0,2 is Êi(t) = 0; G0,0 and G1,1 are (7.19). Updates: R0,1 is ι ∈ {1, . . . ,M : eι(t) >
0}; R0,0, R1,1 and R0,2 are (7.16).

with card(·) denoting the cardinality of a set, and where ς ′ is a positive con-
stant. This rule has the intuitive meaning that a cloud access is triggered when the
agent has accumulated enough coverage contribution to share with the other agents
(Ci,k(t) ≥ (Mi(t) + 1)ς ′) or when the inspection is complete (Êi(t) = 0). The value
of ς ′ represents a tradeoff between how often the agents access the cloud and how
promptly they upload their contributions on the cloud. The proposed controller is
formalized as a hybrid automaton in Figure 7.3 and is referred to as Controller 7.3.
Note that the looping transitions in q0 and q1 represent the connections to the
cloud. Upon these connections, agent i shares its contributions cijk, so that the
estimated coverage errors êij and êcloud

j can be updated according to (7.16).

In the following Theorem 7.2 we prove formally that a team of sensing agents
controlled by Controller 7.3 completes the inspection in finite time.

Theorem 7.2. Consider a team of mobile sensing agents with poses Ai(t) =
(pi(t), ni(t)), with i ∈ N and let the agents be controlled by Controller 7.3. Let
I ⊂ R3×S2 be a compact set that encloses the initial poses Ai(0) of all the agents
and all the landmarks L1, . . . , LM . Then, there exists T > 0 such that E(t) = 0 for
all t ≥ T .

Proof. First note that, under the proposed controller, the estimated errors Êi(t)
are nonincreasing. In fact, the motion of the agents imposes ˙̂

Ei(t) ≤ 0, while,
from (7.19) we can see that the cloud accesses impose êij(t

+
i,k) ≤ êij(t

−
i,k), which

summing over the landmarks yields Êi(t+i,k) ≤ Êi(t−i,k). Similarly to the proof of

Theorem 7.1, note that when Controller 7.3 is in state q0, we have ˙̂
Ei(t) ≤ −ε. Since

Êi(t) ∈ [0, C∗] by definition, and since Êi(t) has been shown to be nonincreasing,
the controller can only remain in q0 for a time of at most C∗/ε. However, since,
under (7.18), ˙̂

Ei(t) is nonincreasing, the only way for Controller 7.3 to transit to
state q1 is that the estimated error êij(t) of a landmark reaches zero, causing ˙̂

Ei(t)
to drop by per(Ai(t), Lj). Since there are M landmarks, the controller can only
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Figure 7.4: Contour plot of f(p, n, q) in (7.22d) for p = 03, n = (1, 0, 0) and q ∈ [x, y, 0]
with x ∈ [0, 3], y ∈ [−2, 2].

transit to state q1 for at most M times. Once the controller is in state q1, by
Corollary 7.1, it will take at most a time TI,ε′ to have ˙̂

Ei(t) ≤ −ε′ and transit
back to q0. Hence, the controller can only remain in q1 for at most a time of
MTI,ε′ . We must conclude that Êi(t) reaches zero in at mostMTI,ε′+C∗/ε. Since
E(t) ≤ Êi(t) by design, this result also implies that E(t) reaches zero in at most
MTI,ε′ + C∗/ε.

7.6 Simulation

In this section, we present a simulation of the proposed cloud-supported distributed
controller. We consider a network of N = 4 agents and a set ofM = 100 landmarks
sampled from a surface with the shape of an extruded sinusoid. The desired coverage
for all landmarks is set to C∗ = 100. The sensing pattern of the agents is chosen
as follows:

per(Ai, Lj) = f(pi, ni, qj)bnᵀimjc, (7.21)

where

bxc = max{x, 0}, (7.22a)
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Figure 7.5: Coverage error estimated by the cloud during the simulation described in Sec-
tion 7.6.

g(p, n, q) =

⌊
1− ‖q − p− rn‖

2

R2

⌋
, (7.22b)

h(p, n, q) =

⌊
1− ((q − p− rn)ᵀn)2

r2

− ‖q − p− rn‖
2 − ((q − p− rn)ᵀn)2

R2

⌋
,

(7.22c)

f(p, n, q) =

{
g(p, n, q) (q − p− rn)ᵀn > 0,

h(p, n, q) (q − p− rn)ᵀn < 0,
(7.22d)

and where 0 < r < R. Recall that Lj = (qj ,mj) is the pose of landmark j. A
contour plot of f(p, n, q) is given in Figure 7.4. One can verify that (7.21) satisfies
the properties of a perception function as listed in Section 7.2.

Figure 7.5 shows the total coverage error estimated by the cloud: from this picture,
we can see that the inspection is completed in about 65 seconds. Figure 7.6 shows
the cloud accesses for each agent over time; from this picture we can see that each
agent accesses the cloud less than 15 times to complete the inspection. Figure 7.7
illustrates the trajectories followed by the agents; Figure 7.8 shows which controller
is active for each agent. Finally, Figure 7.9 shows four snapshots of the configuration
of the agents and the landmarks during the simulation. In these snapshots, each
agent is represented as an arrow located in pi and pointing in the direction of ni,
while each landmark is represented as a dot located in qj . The orientations of the
landmarks are not represented to avoid cluttering the pictures. The colors of the
landmarks vary from red to blue to represent the value of êcloud

j from C∗ to zero.
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Figure 7.6: Number of cloud accesses for each sensing agent during the simulation described
in Section 7.6.
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Figure 7.7: Trajectories followed by the sensing agents during the simulation described in
Section 7.6.
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Figure 7.8: Discrete state in Controller 7.3 for each sensing agent during the simulation
described in Section 7.6: pose for q1, corresponding to (7.6); cov for q0, corresponding to
(7.18)).

From Figure 7.9, we can see how the agents adjust their orientation to follow the
local curvature of surface.

7.7 Preliminary experimental evaluation

A preliminary experimental evaluation of the proposed controller has been carried
out in collaboration with the FROST Lab at LTU. In this experiment, we consider
the case of one UAV inspecting a cylindrical structure. As a structure to inspect,
we use a cylinder-shaped fountain located on the grounds of LTU. As a sensing
agent, we employ the NEO hexacopter, which has been already described in Sec-
tion 6.10. The outdoor localization of the UAV is obtained by means of a system of
ultrawideband transreceivers. The system measures the distance of the UAV from
an array of anchors, and then uses trilateration of filtering to infer the position of
the UAV within an assigned reference frame.

The experiment is performed as follows. We manually generate approximately 20
landmarks distributed around the body of the fountain in a spiraling fashion. Then,
we run a preliminary version of the proposed controller to generate a reference
trajectory for the UAV. Finally, we feed the reference trajectory to the UAV.

Given the preliminary nature of this evaluation, there is no associated dataset
available. However, we observe that the UAV circumnavigates the body of the
fountain as prescribed. A snapshot of the experiment is shown in Figure 7.10.
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Figure 7.9: Position and orientations of the sensing agents during the simulation described in
Section 7.6. Times from left to right: 0, 20, 40, 60.

7.8 Summary

In this chapter, we have proposed a distributed control algorithm for the inspection
of a 3D surface with a team of mobile sensing agents with generic, heterogeneous
sensing patterns. The controller is based on intermittent connections of the agents
with a cloud repository, which eliminates the need for inter-agent communication.
We have shown that the controller guarantees that the inspection is completed in
finite time. We have validated the proposed controller in a simulation, and we have
described a preliminary experimental evaluation on an aerial robotic platform.
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Figure 7.10: A snapshot of the preliminary experimental evaluation described in Section 7.7.
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Garzoncello scherzoso,
cotesta età fiorita
è come un giorno d’allegrezza pieno,
giorno chiaro, sereno,
che precorre alla festa di tua vita.

G. Leopardi,
Il sabato del villaggio, vv. 43–47.

As technology advances, networks of interconnected devices become more com-
mon and more pervasive, and, at the same time, more complex and more

challenging to analyze and control. When controlling a network system, the aim
is usually to make a desired collective behavior arise from the individual dynam-
ics of each agent in the system and from local interactions among the agents. In
most realistic applications, the communication between one agent and the rest of
the network is intermittent, rather than continuous. Moreover, in some modern
control infrastructures, a set of distributed devices with limited computational and
communication power are connected to a larger shared unit, which can either be a
simple information repository or have some computational capabilities.

In this thesis, we have studied several control strategies to achieve coordination in
network systems using intermittent communication. In some cases, we have consid-
ered a scenario where a set of devices connect to a shared information repository,
rather than communicating with each other directly.

Naturally, there remain many challenging open questions on the topic of multi-agent
coordination with limited communication.
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In the rest of this chapter, we summarize the results that we have obtained in
Chapters 3 to 7, and we discuss possible directions for future research.

8.1 Conclusions

In Chapter 3, we have derived a decentralized event-based protocol for pinning
control of networks of nonlinear systems with switching topologies. The protocol
prescribes piecewise constant control signals. Each agent in the network updates
its control signal when a given condition regarding the state of its neighborhood
is verified. Namely, a function of the state of the neighborhood of the agent is
compared to a given threshold function. When the state function overcomes the
threshold function, a control update is triggered. To avoid continuous inter-agent
communication, each agent can estimate the state of its neighborhood with a pre-
dictor, and broadcast its control input to its neighbors upon the control updates.
We have quantified the pinning controllability of the network in terms of the lo-
cal dynamics of the agents, of the variations in the network topology, and of the
variations in the number and location of the pinned nodes. We have shown that,
if the parameter that quantifies the pinning controllability of the network is large
enough with respect to the Lipschitz constant of the dynamics of the agents, and
to the convergence rate of the threshold function, then the network converges to
the reference trajectory asymptotically without exhibiting Zeno behavior in the se-
quences of the control updates. We have shown also that the convergence rate of
the threshold function is a lower bound for the convergence rate of the network to
the reference trajectory. Hence, the convergence rate of the threshold function can
be used as a parameter in the control design. Namely, a larger convergence rate
leads to faster tracking, but tends to induce a larger number of control updates.
However, as long as the convergence rate of the threshold function is chosen be-
low a value that scales linearly with the pinning controllability of the network, the
closed-loop system does not exhibit Zeno behavior.

In Chapter 4, we have derived a control algorithm for multi-agent networks where
inter-agent communication is completely substituted by the exchange of data over
a shared repository hosted on a cloud. In the proposed algorithm, each agent
schedules its own accesses to the cloud in a recursive fashion, and independently
of the other agents. When an agent accesses the cloud, it uses the information
that it has downloaded to schedule the next access. The scheduling is based on the
comparison of a time-varying function of the data downloaded from the repository
with a time-varying threshold function. Namely, when an agent accesses the repos-
itory, it schedules the following access at the earliest time when the function of the
downloaded data overcomes the threshold function. The convergence rate of the
threshold function is a parameter in the control design, and acts as a lower bound
on the convergence rate of the closed-loop system. The proposed setup has been
applied to a formation problem of mobile agents with second-order dynamics sub-
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ject to disturbances. We have shown that the proposed algorithm achieves bounded
convergence if the disturbances are persistent, and asymptotic convergence if the
disturbances slowly vanish. In both cases, we have shown that the sequence of the
accesses to the cloud repository by each agent does not exhibit Zeno behavior, as
long as the the convergence rate of the threshold function is smaller than a constant
that depends on the topology of the information exchange through the cloud.

In Chapter 5, we have designed a cloud-supported control algorithm to attain lo-
calization and circumnavigation of an unknown target with a network of mobile
agents. We have proposed a scenario where the agents have limited communication
capabilities, and, to attain the desired circumnavigation, they may measure the
bearing of the target to circumnavigate and access a shared information reposi-
tory hosted on a cloud. Both the bearing measurements and the accesses to the
cloud are modeled as discrete events, which are performed intermittently by each
agent and asynchronously by different agents. We have designed event-triggered
and self-triggered rules to schedule the bearing measurements and the cloud ac-
cesses performed by the agents. The rule to schedule the cloud accesses is similar
to that designed in Chapter 4, but it is tailored to the kinematic model of the agents
presented in this chapter. We have investigated how the proposed scheduling rules
attain the desired circumnavigation objective, both analytically and with simula-
tions. Finally, we have presented a preliminary setup for experimental evaluation
of the proposed algorithm.

In Chapter 6, we have designed a family of distributed protocols for coverage control
of anisotropic sensor networks. The environment or the structure that the sensors
are required to survey is abstracted into a finite set of landmarks, where each land-
mark is the abstraction of a point or a small area of interest. Differently than the
existing works on the coverage problem, we let each landmark be defined by a posi-
tion and an orientation, where the orientation of the landmark carries information
about the normal to the surface to inspect in the vicinity of the landmark itself.
Each sensing agent is initially assigned a subset of the landmarks to monitor. To
improve the coverage of the environment, each sensor can change its position and
orientation, but also transfer the ownership of some of its landmarks to another
agent that has a better perception of those landmarks. In the proposed control
algorithm, the control of the motion of each agent is designed as a simple gradient
climb of the coverage attained by that sensor, with respect to the landmarks that
are assigned to it. Communication among different agents is used to transfer the
responsibility for some landmarks from one agent to another, where the latter has
a better perception of those landmarks. Such communication instances can be con-
sidered instantaneous events, and they are always pairwise. We have generalized
the classical definition of Voronoi tessellation to describe locally optimal configu-
rations of the positions and orientations of the agents and of the distribution of
the landmarks among the agents. Then, we have shown that the proposed control
algorithm drives the network to a configuration corresponding to a Voronoi tessel-
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lation. We have discussed a possible extension of the proposed algorithm to handle
collision avoidance between two different agents, as well as between one agent and
one exogenous body. The proposed algorithm has been validated by means of sim-
ulations as well as experiments with aerial robotic platforms. Although we have
not demonstrated these features directly, the designed control scheme allows for the
use of sensing agents that have different footprints from each other, and behaves
robustly to the injection of new agents in the network and the removal of some
agents from the network.

In Chapter 7, we have designed a distributed, cloud-supported control algorithm to
attain the inspection of a 3D structure with a network of autonomous sensing agents.
The structure to inspect is abstracted into a finite set of landmarks, in a similar way
as described in Chapter 6. We have described a hybrid controller to steer the pose
of a sensing agent to a desired target pose, and we have shown how such a controller
can be used to have the inspection completed by a single agent. Then, we have
designed a mechanism to store information about the progress of the inspection
in a cloud repository, by having a sensing agent access the cloud intermittently
and asynchronously. We have shown how the use of the cloud repository can be
used to reduce redundant inspection when the inspection mission is assigned to
two or more agents. We have proven formally that, with the proposed control
design, the inspection is completed in finite time. The theoretical results have
been validated by a numerical simulations, and we have executed a preliminary
experimental evaluation on an aerial robotic platform.

Our overall result can be summarized as follows. We have found that several coor-
dinated behaviors of a network of autonomous agents (behaviors that are tradition-
ally attained by means of continuous communication among the agents) can also be
attained by means of intermittent, event-triggered, and asynchronous communica-
tion. Some of these behaviors can also be attained or by substituting agent-to-agent
communication with the asynchronous exchange of information over a cloud repos-
itory. Remarkably, we have observed that the performances attained by a network
with intermittent communication can be made as close as desired to those attained
by a similar network where continuous communication is allowed. Performances
that we have considered are, for example, the convergence rate of the network to a
synchronized state, or the property that a network of sensing agent converges to a
Voronoi tessellation. Performances are affected by a number of parameters that can
be appropriately tuned. In some cases, driving the performances to the same level
as attained by a network with continuous communication implies that the amount
of communication instances required grows unbounded.

The coordinated behaviors that we have investigated directly are pinning control,
formation control, coverage control, and effective coverage control. These behaviors
have immediate applications in robotics, such as formation control for robot swarms,
autonomous surveillance, and autonomous inspection.
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For the coverage and effective coverage behaviors, we have also found that using in-
termittent communication schemes makes it easier to generalize existing algorithms
so that they are applicable to a wider variety of scenarios, such as the surveillance
or inspection of a 3D structure with anisotropic sensing agents.

All our results are validated by numerical simulations. The results on circumnav-
igation, coverage, and effective coverage have also been subjected to preliminary
experimental evaluation on aerial robotic platforms. We have observed that the
proposed controllers for coverage and effective coverage lend themselves organi-
cally to implementation as ROS nodes. Implementing the controllers as ROS nodes
has allowed us to use them both as simulated controllers and controllers for the
aerial platforms, without any modification to the scripts being necessary, if not for
parameter tuning.

8.2 Future work

In Chapter 3, we have designed an event-triggered algorithm for pinning synchro-
nization which works under the assumption that the network is connected to the
reference trajectory sufficiently often. When dealing with control protocols for co-
ordination in a multi-agent network, one always needs to make some assumptions
on the connectedness of the network topology. However, we have only proved that
these assumptions are sufficient conditions for asymptotic convergence of the net-
work to the reference trajectory, but not that they are necessary. Therefore, it
would be interesting to study whether the same event-triggered protocol, or a sim-
ilar one, can be used to attain pinning controllability under even less conservative
connectivity assumptions. For example, we may consider jointly connected net-
works. A jointly connected network may be disconnected at any individual time
instant, but there exists a positive duration that, if one considers the union of the
edges that are present in the graph over any time interval of that duration, then
one obtains a connected graph. Other possible extensions of the results obtained in
Chapter 3 involve considering networks with directed topologies and more general
control protocols than diffusive coupling.

In Chapter 4, we have presented a general framework for cloud-supported multi-
agent coordination, but we have derived a control law and access scheduling rule
only for the case when the control objective can be formulated as a consensus of
the states of second-order agents. Viable future research may address more general
coordination objectives for the proposed framework. Another research challenge
arises if we attribute a cost to each cloud access, and we try to account for such
cost explicitly in the control design. For example, one may consider an LQR cost
function and incorporate an additional impulsive term to penalize the cloud accesses
of each agent.

In Chapter 5, we have presented a cloud-supported control framework that drives a
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network of mobile agents to circumnavigate a target while forming a regular poly-
gon around the target. The proposed algorithm is based on event-triggered bearing
measurements of the position of the target. The same control objective can be con-
sidered in the scenario that the agents have access to event-triggered measurements
of their distance from the target. Collision avoidance between different agents is
an important feature in realistic settings. The circumnavigation algorithm that
we have proposed in Chapter 5 does not handle collision avoidance explicitly, and
future work may address the incorporation of a collision avoidance scheme that
preserves the guarantee to reach a polygonal formation around the target.

Coverage control is widely open to improvements. The existing algorithms based
on Voronoi tessellations, including the algorithm that we have designed in Chap-
ter 6, converge to a local optimum of the cost function that represents the coverage
achieved by the sensor network, and the research ground is open for solutions that
try to avoid this type of equilibria. Depending on the footprints of the sensing
agents and on the control algorithm, a single agent may also converge to a local
optimum of the cost function that represents the coverage achieved by that sensor.
Future research may focus on a footprint design that allows a sensor to avoid the
local optima of its own coverage function. Since the footprint of a sensing agent is a
function of both the position and the orientation of the agent, the design of a foot-
print that escapes local optima should relate to the concept of geodesic convexity.
Geodesic convexity is a generalization of convexity that takes into account the possi-
bility that a function is defined on the sphere, or on a subset of the sphere. For most
practical applications of coverage control, it is important to incorporate a collision
avoidance scheme. Collision avoidance is achieved as a side effect in Voronoi-based
coverage control for sensors with omnidirectional footprints, but this benefit does
not extend to networks of sensor with general footprints. A research challenge
is to design a collision avoidance scheme which preserves as many properties as
possible of the original control algorithm, such as the monotonic improvement of
the global coverage function, and the intermittent nature of the communication
between different agents.

In Chapter 7, we have introduced a distributed and cloud-supported control frame-
work for multi-agent inspection control. This framework does not handle collision
avoidance (neither between different agents nor between an agent and an external
body), and collision avoidance is assumed to be cared for at a lower level of the con-
trol design. Future work may investigate a possible variant of the proposed control
design which handles collision avoidance directly while still guaranteeing that the
inspection is completed in finite time. Another possible future development of this
work may address the optimality of the trajectories undertaken by agents during
the inspection. In fact, a trajectory can be assigned a cost in terms of its length
or of its duration, and the cost of the inspection can be defined as the sum of the
cost of the paths undertaken by each agent involved. We may then try to design
a controller that minimizes the inspection cost, or at least a controller that offers
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guarantees in terms of upper bounds for the inspection cost. To make the problem
more tractable, we may introduce one more degree of discretization by abstracting
the space into a finite set of discrete locations for the agents, so that a trajectory
can be defined as a sequence of locations over time. Then, given a set of trajectories
that completes the inspection, one may use gradient-descent or learning techniques
to modify the trajectories and attain a reduced cost.

Finally, we mention a few possibilities for future work that transcend the specificities
of each single scenario.

Generally speaking, in this thesis we have designed algorithms for networks where
the number of agents is arbitrary. The convergence properties of the proposed
algorithms have been demonstrated to hold for any number of agents. However,
all numerical simulations and experimental validation have been conducted with
only few agents. Hence, at least from an implementation perspective, scalability
of the proposed algorithms remains worth investigating. In particular, unmodeled
aspects such as the time required to pass information between devices may have a
more tangible impact on the collective behavior of the network when the number
of agents is large.

Similar observations can be made about resilience. The coordination algorithms
proposed in this thesis all exhibit some resilience properties, in the sense that, if
an agent should be added to the network or removed from the network, the new
system would find itself in a valid initial condition to reach the desired coordination.
However, the existing agents in the network need to be informed that a new agent
has been injected or that one agent has been removed. In some cases, a removed
agent may be holding some data that needs to be transfered to the remaining
agents. In the numerical simulations presented in this thesis, these features are
handled at the simulation level, which roughly corresponds to a centralized solution.
The implementation of these features in a decentralized fashion remains an open
problem.

The algorithms presented in the thesis each employ a number of numerical con-
stants, whose value often has a macroscopic influence the execution of the algo-
rithm. We have usually chosen the values of these parameters according to intu-
ition or trial-and-error. In some cases, the meaning of these parameters, and their
influence on the collective behavior of the network has been discussed thoroughly,
but such analysis has not led to a systematic tuning method. Hence, systematic
tuning of the parameters of the distributed controllers presented in the thesis is left
as a possible future development.
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