
Event-triggered control of multi-agent systems:
pinning control, cloud coordination,

and sensor coverage

ANTONIO ADALDO

Licentiate Thesis
Stockholm, Sweden 2016

TRITA-EE 2016:129
ISSN 1653-5146
ISBN 978-91-7729-081-0

KTH Royal Institute of Technology
School of Electrical Engineering

Department of Automatic Control
SE-100 44 Stockholm

Sweden

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan
framlägges till offentlig granskning för avläggande av Teknologie licentia-
texamen i elektro- och systemteknik den 23 september 2016 klockan 10:00 i
sal E3, Kungliga Tekniska högskolan, Osquars backe 14, Stockholm.

© Antonio Adaldo, September 2016

Tryck: Universitetsservice US AB

Abstract

A multi-agent system is composed of interconnected subsystems, or
agents. In control of multi-agent systems, the aim is to obtain a coordi-
nated behavior of the overall system through local interactions among
the agents. Communication among the agents often occurs over a wire-
less medium with finite capacity. In this thesis, we investigate multi-
agent control systems where inter-agent communication is modelled by
discrete events triggered by state conditions.

In the first part, we consider event-triggered pinning control for a
network of agents with nonlinear dynamics and time-varying topolo-
gies. Pinning control is a strategy to steer the behavior of a multi-agent
system in a desired manner by controlling only a small fraction of the
agents. We express the controllability of the network in terms of an av-
erage value of the network connectivity over time, and we show that all
the agents can be driven to a desired reference trajectory.

In the second part, we propose a control algorithm for multi-agent
systems where inter-agent communication is substituted with a shared
remote repository hosted on a cloud. Communication between each
agent and the cloud is modelled as a sequence of events scheduled re-
cursively by the agent. We quantify the connectivity of the network and
we show that it is possible to synchronize the multi-agent system to the
same state trajectory, while guaranteeing that two consecutive cloud ac-
cesses by the same agent are separated by a finite time interval.

In the third part, we propose a family of distributed algorithms for
coverage and inspection tasks for a network of mobile sensors with asym-
metric footprints. We develop an abstract model of the environment un-
der inspection and define a measure of the coverage attained by the sen-
sor network. We show that the sensor network attains nondecreasing
coverage, and we characterize the equilibrium configurations.

The results presented in the thesis are corroborated by simulations or
experiments.

Contents

Contents iv

Acknowledgments vii

1 Introduction 1
1.1 Motivating examples . 1
1.2 Related work . 6
1.3 Thesis outline and contributions 9

2 Technical preliminaries 11
2.1 Notation . 11
2.2 Elements of graph theory 12
2.3 Hybrid time trajectories and Zeno behavior 17

3 Event-triggered pinning control of switching networks 19
3.1 Problem statement . 20
3.2 Representation as a graph 22
3.3 Implementation . 23
3.4 Main result . 24
3.5 Convergence proof . 26
3.6 Well-posedness proof . 30
3.7 Proof of the main result . 32
3.8 Fixed network topologies 32
3.9 Numerical simulations . 35
3.10 Summary . 36

4 Cloud-supported multi-agent coordination 41
4.1 System model . 42
4.2 Self-triggered cloud access scheduling 47
4.3 Main result . 49
4.4 Convergence proof . 51
4.5 Well-posedness proof . 57

iv

Contents v

4.6 Proof of Theorem 4.1 . 61
4.7 Numerical simulations . 61
4.8 Summary . 65

5 Coverage control of anisotropic sensor networks 67
5.1 Notations and properties related to unit vectors 68
5.2 Landmarks and sensors . 69
5.3 Voronoi tessellations . 71
5.4 Problem formulation . 71
5.5 Necessary conditions for optimality 74
5.6 Generalized discrete Lloyd descent 75
5.7 Distributed implementation 80
5.8 Simulation of the generalized discrete Lloyd descent 83
5.9 Experimental evaluation of the generalized discrete Lloyd

descent . 86
5.10 Gradient descent for coverage improvement 86
5.11 Simulation of the gradient descent for coverage improvement 90
5.12 Summary . 91

6 Conclusions and future research 95
6.1 Conclusions . 95
6.2 Future research . 97

Bibliography 99

Acknowledgments

I thank my supervisor Karl Henrik Johansson, for being always friendly sup-
portive, and for providing me with insightful guidance and contagious en-
thusiasm.

I am grateful to my co-supervisor Dimos V. Dimarogonas, for his enthu-
siasm and careful attention put in all levels of our work. I am grateful to my
former advisor Mario di Bernardo, for gently introducing me to the wonders
of networked system, but even more for always keeping his door open. I am
grateful to my advisor and collaborator Davide Liuzza, for giving me confi-
dence, reserveless support, and hearthfelt advice. I am grateful to my former
advisor and collaborator Guodong Shi, for his insightful guidance and care-
ful attention put in our work.

Hearthfelt thanks go to my former collaborator Francesco Alderisio, for
taking with me the very first steps in the research world, for coping with
my literally uninterrupted presence throughout the whole extent of our ex-
change studies at KTH, for giving me courage and motivation, and for cheer-
ing me up when I was sad.

I thank all my colleagues (current and former) at the Automatic Control
department of KTH, for creating a nice working atmosphere, and for always
keeping the door open to inspiring conversations. Special thanks go to my
office roommates (current and former), to the NetCon group, and to the read-
ing group on Hybrid Control, for all the nice and inspiring conversations and
activities that we had together. Special thanks go also to Henrik Sandberg,
Riccardo Risuleo, and Sebastian Van de Hoef, each of whom kindly agreed
to review some chapters of this thesis.

I am grateful to the Knut och Alice Wallenberg Foundation, the European
Union through the project AEROWORKS, the school of Electrical Engineer-
ing of KTH through the Program of Excellence, and the Swedish Foundation
for Strategic Research, for the financial support that made this work possible.

I am grateful to my family and friends for their unconditional love and
support. Last, but not least, I am grateful to Frank for making sure that I
always had a sufficient supply of provole.

Chapter 1

Introduction

A multi-agent system is a system composed of interconnected subsystems,
or agents. Each agent behaves according to its own dynamics, but it ex-

changes some form of interaction with a subset of the other agents in the
system. Multi-agent systems have been the subject of an enormous body of
research in the past few decades. The reason for so much research attention
is that multi-agent systems provide an abstract model for a large number
of phenomena of scientific interest, spanning physics, biology, engineering,
computer science, and social sciences [1–4]. Figure 1.1 illustrates some exam-
ples of entities that can be modelled as multi-agent systems.

The rest of this chapter is organized as follows. In Section 1.1, we dis-
cuss some applications of multi-agent systems that have motivated the work
presented in this thesis. In Section 1.2, we review some related literature. In
Section 1.3, we present the outline of the thesis and the related contributions
by the author.

1.1 Motivating examples

Coordination of autonomous underwater vehicles

A wide range of underwater missions, such as wreck inspection, sea floor
mapping, or water sample collection, can be carried out by autonomous or
semiautonomous vehicles, see Figure 1.2. Such unmanned vehicles are usu-
ally known as autonomous underwater vehicles (AUVs). The described un-
derwater missions can be performed more efficiently if more than one AUV is
used. However, the use of a fleet of AUVs inevitably brings the problem of co-
ordinating the fleet. This problem can be addressed by modelling the fleet as
a multi-agent system, where each AUV is an agent in the system. However,
the system model needs to take into account the particular limitations and

1

2 Introduction

(a) A social network. A connection be-
tween two individuals represents a so-
cial relation. Connected individuals in-
fluence each others’ behavior and opin-
ions. Source: https://pixabay.com, Pub-
lic Domain.

(b) A flock of birds exhibiting swarm be-
havior. The motion of each bird is influ-
enced by the neighboring birds. Source:
C. A. Rasmussen, own work, https://
commons.wikimedia.org, Public Domain.

(c) A power distribution network. The
frequency of the current on each line
of the network is influenced by the fre-
quency of the current in the neighboring
lines. Source: https://pixabay.com, Pub-
lic Domain.

(d) A platoon of heavy-duty vehicles.
Each vehicle’s motion is planned in co-
ordination with the closest vehicles, in
order to maintain the platoon and avoid
collisions. Source: courtesy of Scania.

Figure 1.1. Examples of entities that can be modelled as a multi-agent system.

https://pixabay.com
https://commons.wikimedia.org
https://commons.wikimedia.org
https://pixabay.com

1.1. Motivating examples 3

Figure 1.2. Schematic representation of a sea floor mapping mission with a fleet of
AUVs. In order to perform a cooperative task, such as mapping the sea floor, the
vehicles have to move in a coordinated way. However, underwater communication is
severely limited. Moreover, GPS is not available underwater, and the vehicles have to
surface whenever they need a GPS position measurement. On the water surface, the
vehicles have access to GPS and may also communicate with a base station to deposit
and retrieve data.

challenges involved in underwater missions. To achieve coordination, each
AUV needs to receive position information about itself and about a subset of
the other AUV. However, the common technologies for wireless communica-
tion cannot be used in the underwater domain. Underwater communication
may be realized by means of acoustic modems, but such devices are short-
ranged and power-hungry. Alternatively, two or more AUV may surface to
exchange data, but this strategy requires to interrupt the navigation and syn-
chronize the surfacing times. For these reasons, coordination algorithms that
involve continuous communication cannot be implemented in realistic un-
derwater setups.

4 Introduction

Coverage and inspection control with unmanned vehicles

Deployment and inspection are very common tasks for robotic networks.
Challenging missions such as search, recovery, manipulation and environ-
mental monitoring in hazardous environments are desirably delegated to a
team of unmanned vehicles. For example, consider the task of inspecting a
wind turbine with a team of unmanned aerial vehicles (UAVs), as illustrated
in Figure 1.3. The UAVs need to inspect the whole surface of the turbine. The
aerial robots are battery-powered, and the duration of the battery imposes an
upper bound on the mission time. The robots also need to avoid collisions
and counteract possible air currents. Different robots may be equipped with
different sensing hardware, which makes each vehicle more apt to inspect
certain parts of the turbine rather than others. To coordinate the inspection
mission—that is, to agree on which part of the turbine each robot should
inspect—the robots communicate over a wireless medium, which is a shared
resource with limited capacity. Therefore, communication among the robots
should be modelled as intermittent rather than continuous. The robot team
can still be seen as a multi-agent system, but the system model needs to take
into account the particular limitations and challenges of the mission.

Swarm control

The motion of large group of animals—such as flocks of birds, swarms of
insects, or schools of fish—exhibits remarkable coordination behaviors [5].
For example, a flock is capable of following a flight direction, maintaining
cohesion, and at the same time avoiding collisions, obstacles, and predators.
This coordination emerges as a result of simple interaction rules applied by
each individual with respect to its physical neighbors in the group. By study-
ing the flocks as multi-agent systems, and imitating these interaction rules,
it is possible to obtain similar coordinated behaviors on a network of mo-
bile robots. Moreover, the motion of a real flock (or swarm, or school) can
be influenced by injecting a limited number of artificial agents—also known
as leaders in the literature—in the group: a few artificial agents may success-
fully steer the whole flock towards a desired flight direction. The success
of the steering depends on the dynamics of the movement of the individual
birds, on the number and the position in the group of the artificial agents,
and on the topology of the interactions among the birds in the flock.

Thermal regulation in smart buildings

Adjacent rooms in a building influence each other’s temperature by means
of heat conduction through the building’s walls. In thermal regulation prob-
lems, we have direct control over the temperature of one or a few rooms,

1.1. Motivating examples 5

Figure 1.3. Schematic representation of the inspection of a wind turbine with a team
of UAVs. The aerial robots need to inspect the whole surface of the turbine. A possible
approach is to have each UAV take up one part of the surface of the turbine. To co-
ordinate the mission—that is, to decide which part of the turbine should be assigned
to each robot—the UAVs communicate over a wireless medium, which is a shared
resource with limited capacity. The robots also need to avoid collisions and coun-
teract possible air currents. Different robots may be equipped with different sensing
hardware.

where heating and/or cooling devices are installed, but we want to steer the
overall temperature of the building to a desired value. This problem can be
addressed by modelling the building as a multi-agent system, where each
room represents an agent in the system [6]. The dynamics of the room tem-
peratures depend, other than on the thermal conductivity on the material
and other physical factors, on the topology of the wall adjacency within the
building, and also on the topology of the heat dispersion to the external en-
vironment.

6 Introduction

Frequency regulation in power networks

A power network is a network for delivering electricity from suppliers to
consumers. A power network consists of generating stations and individual
costumers, which are connected by transmission lines that carry the electric-
ity. One of the most important problems in power systems is to maintain
the frequency of the current close to a nominal operational frequency [6]. In
fact, if the frequency deviates too much from the operational frequency, the
generation and utilization equipment may cease to function properly. Adja-
cent lines influence each other’s frequency according to a nonlinear feedback
action. Hence, a power network can be modelled as a multi-agent system,
where each agent represents a generating station or a costumer. The fre-
quency of the network may be regulated by directly controlling the frequency
on a small fraction of the stations, and letting the inter-line feedback action
propagate the control action through the network. The topology of the net-
work plays a major role in determining whether it is possible to synchronize
all the agents on the operational frequency.

1.2 Related work

Pinning control

Pinning control is a feedback control strategy for synchronization of networks
of dynamical systems. In a pinning control task, a common reference trajec-
tory for all the systems in the network is assigned, but it is possible to exert a
feedback control action on only a small fraction of the systems. The systems
that can receive direct feedback from the reference trajectory are called the
pinned nodes of the network. However, feedback links also exist among the
different systems in the network. Synchronization of the whole network to
the reference trajectory is obtained through these inter-system feedback links:
information on the reference trajectory propagates in the network through
the feedback links and eventually reaches all the systems. The success of the
synchronization depends on the dynamics of the system in the network, on
the nature of the feedback action among the systems, and on the topology of
the interconnections.

A remarkable amount of research work related to pinning control has ap-
peared around the turn of the century; here, we only recall a small selection.

In [7], the authors apply pinning control to networks of chaotic oscilla-
tors. In [8], the authors study the problem of selecting the pinned nodes in a
special class of networks, called scale-free networks. In [9], the authors com-
pare several pin selection strategies on different network classes. In [10, 11],
the authors introduce the concept of pinning controllability which quantifies
how easy it is to control the network with pinning. Pinning controllability is

1.2. Related work 7

defined in terms of the spectral properties of the network and of the inten-
sity of the feedback coupling. In [12], the authors address pinning control of
networks of systems with second-order dynamics. In [13], the authors apply
pinning control to the problem of cluster synchronization of a network of dy-
namical systems. In [14], the authors select the pinned nodes via a technique
that they call edge snapping. In [15], the authors study how the minimum
number of pinned nodes that is necessary to control the network varies ac-
cording to the network topology.

Event-triggered control for multi-agent coordination

In most of the applications of multi-agent systems related to engineering and
robotics, the feedback link existing between different agents is not the result
of mechanical coupling, but it is realized by means of wireless communica-
tion between the controllers of the agents. In this case, it is unrealistic to
assume that the agents can exchange feedback continuously. In reality, each
agent can send messages to another agent with a certain frequency, which is
upper-bounded by the throughput capacity of the wireless medium.

For these reasons, triggered control is often considered in the control design
for multi-agent applications. In triggered control of multi-agent system, the
agents exchange feedback only intermittently. Different flavors of triggered
control can be applied to multi-agent systems. With time-triggered control,
the agents exchange information periodically. With event-triggered control,
communication is triggered by a condition that is continuously monitored
by the agents. When an agent meets the specified condition, it sends a new
information packet to the other agents. With self-triggered control, each agent
schedules its communication instances recursively. Namely, when sending
an information packet, an agent schedules the time instant when to send
the following packet too. Note that, in the literature, the expression “event-
triggered control” is often used to denote triggered control in general.

Event-triggered and self-triggered control [16] have been introduced to
reduce the information flow among the different parts of a networked con-
trol system (for example, the number of packets sent by the sensors to the
controller, and by the controller to the actuators) with respect to the existing
time-triggered control strategies [17, 18]. In the context of multi-agent sys-
tems, event-triggered control is used to reduce inter-agent communication—
that is, the number of packets that the agents have to send to each other to
achieve coordination.

Event-triggered control for multi-agent system is introduced in [19]. In
[20, 21], the authors introduce the idea of event-based information broad-
casting for multi-agent coordination. Event-based broadcasting for stabiliza-
tion in networked control systems is also studied in [22]. In [23, 24], the au-
thors address self-triggered control for multi-agent systems. In [25], event-

8 Introduction

triggered coordination is studied as an application of robust consensus. In
[26], the authors study event-based agreement protocols for switching net-
works. In [27, 28], the authors study event-based consensus for multi-agent
systems with general linear agent dynamics. In [29], the authors study event-
triggered leader-following for second-order multi-agent systems. In [30],
the authors study self-triggered multi-agent coordination with ternary con-
trollers. In [31], the authors consider event-triggered control for discrete-time
multi-agent systems. Event-based model predictive control for multi-agent
systems has been proposed in [32, 33]. In [34], the authors introduce event-
triggered control for synchronization of nonlinear systems.

Triggered control strategies have been proposed for AUV coordination.
In [35], the authors employ periodic broadcasting for a formation control
task in a network of AUVs. In [36, 37], the authors study event-based mo-
tion coordination of AUVs under disturbances. In [38], the authors consider
communication scheduling in platoons of underwater vehicles. In [39], the
authors use adaptive sampling for multi-AUV control.

Coverage and inspection control

A wide variety of industrial and humanitarian applications involve collect-
ing information in hazardous environments, which makes it desirable to del-
egate such missions to a team of autonomous robots with sensing capabili-
ties. Typically, the goal is to design a distributed algorithm that drives the
robots to a spatial configuration such that the team’s collective perception
of the environment is optimized according to some criterion. This problem
is commonly known as the coverage problem in the literature on multi-agent
systems and multi-agent robotics. A different but related problem is to in-
spect the internal or external surface of a building or other structure, for ex-
ample to detect rusty spots, fractures, or other structural problems. Control
strategies addressing coverage and inspection problems are known as cover-
age control and inspection control respectively. Coverage and inspection con-
trol involve path planning for the single robotic agents, as well as the design
of the interaction protocols among the different robots for coordinating the
mission operations.

In the last few decades, a lot of research interest has been devoted to the
coverage problem, as a way to design the autonomous deployment of robotic
sensor teams in an assigned space—see [40–43] to name just a few references.

The vast majority of the existing papers considers mobile sensors with
omnidirectional footprints—that is, whose perception of the surrounding en-
vironment only depends on the distance between the sensor and the points
under observation. Typically, the analysis of such sensor networks relies on
Voronoi tessellations [44] as a way to partition the environment under inspec-
tion into parts and to assign each part to one of the sensors. Once a Voronoi

1.3. Thesis outline and contributions 9

tessellation is computed, the Lloyd algorithm [44] suggests a natural path
planning strategy for each one of the sensors.

Recently, agents with anisotropic [45–49] as well as vision-based [50–52]
sensing patterns have been considered. Additional challenges arise if non-
convex environments are considered, as studied in [51–54].

Dynamic versions of the coverage problem have also been studied, where
the robots do not converge to fixed positions but keep navigating the envi-
ronment in order to maintain a satisfactory coverage over time. This is com-
monly known as effective or dynamic coverage [55, 56]. A vision-based version
of effective coverage is studied in [57, 58].

In the real-world implementation of coverage algorithms, the design of
the communication protocols among the robots involved in the task consti-
tutes one of the major challenges. To address this challenge, a gossip-based
communication strategy for coverage is studied in [59, 60].

In some coverage missions, it is convenient to abstract the environment
into a finite set of points (which may either correspond to a sparse set of
points of major interest within the environment or provide a discretized ap-
proximation of the environment itself). This strategy is explored in [61–63].

1.3 Thesis outline and contributions

The rest of the thesis is organized as follows.

Chapter 2: Technical preliminaries

In Chapter 2, we introduce some technical definitions and results that are
used in the thesis.

Chapter 3: Event-triggered pinning control of switching networks

In Chapter 3, we consider the problem of synchronizing a network of nonlin-
ear systems by using event-triggered control updates. This chapter is based
on the following contributions.

• A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Ber-
nardo, and K. H. Johansson, “Event-triggered pinning control of com-
plex networks with switching topologies,” in IEEE Conference on Deci-
sion and Control, pp. 2783–2788, 2014.

• A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Ber-
nardo, and K. H. Johansson, “Event-triggered pinning control of switch-
ing networks,” IEEE Transactions on Control of Network Systems, vol. 2,
no. 2, pp. 204–213, 2015.

10 Introduction

Chapter 4: Cloud-supported multi-agent coordination

In Chapter 4, we consider the problem of coordinating a team second-order
dynamical systems through the use of a remote information repository, which
substitutes inter-agent communication. This chapter is based on the follow-
ing contributions.

• A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Con-
trol of multi-agent systems with event-triggered cloud access,” in Euro-
pean Control Conference, 2015.

• A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Multi-
agent trajectory tracking with self-triggered cloud access,” Accepted for
publication in the IEEE Conference on Decision and Control, 2016.

• A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Cloud-
supported coordination of second-order multi-agent systems,” Submit-
ted to the IEEE Transactions on Control of Network Systems.

Chapter 5: Coverage control of anisotropic sensor networks

In Chapter 5, we consider a coverage problem for a network of mobile sen-
sors. This chapter is based on the following contribution.

• A. Adaldo, D. V. Dimarogonas, and K. H. Johansson, “Discrete parti-
tioning and intermittent communication for anisotropic coverage and
inspection missions,” To be submitted to the 2017 World Congress of the
International Federation of Automatic Control (IFAC).

Chapter 6: Conclusions and future research

In Chapter 6, we present a summary of the results, and discuss directions for
future research.

Chapter 2

Technical preliminaries

THE study of multi-agent coordination relies on several results from alge-
braic graph theory and from linear and nonlinear control theory, while

the study of event-triggered control strategies requires some concepts related
to hybrid systems. The aim of this chapter is to provide the technical concepts
in the mentioned areas that are used to derive the main results presented in
this thesis. We also cover some general notational and mathematical prelim-
inaries.

2.1 Notation

The set of the positive integers is denoted N, while N0 = N ∪ {0}. The set of
the nonnegative real numbers is denoted R≥0, while the set of the positive
real numbers is denoted R>0.

For N ∈ N, the vector made up of N unitary entries is denoted 1N , the
vector made up of N null entries is denoted 0N , and the N -by-N identity
matrix is denoted IN . For N,M ∈ N, the N -by-M matrix whose entries are
all zero is denoted 0N×M .

For a matrix A ∈ RN×M , we let Ai1:i2,j1:j2 denote the submatrix of A
spanning the rows from i1 to i2, including i1 and i2, and the columns from j1
to j2, including j1 and j2. We let Ai,j1:j2 = Ai:i,j1:j2 and similarly Ai1:i2,j =
Ai1:i2,j:j . Also, we let A:,j1,j2 = A1:N,j1,j2 and similarly Ai1:i2,: = Ai1:i2,1:M .

The set of the symmetric matrices in RN×N is denoted as SN . For A ∈
SN , A ≥ 0 means that A is positive semidefinite, and A > 0 means that
A is positive definite. The set of the positive semidefinite matrices in SN is
denoted as SN≥0, and the set of the positive definite matrices in SN is denoted
as SN>0.

The operator ‖·‖ denotes the Euclidean norm of a vector and the corre-
sponding induced norm of a matrix.

11

12 Technical preliminaries

The operator ⊗ denotes the Kronecker product. For the properties of this
operator, the interested reader is referred to [70].

For f : R → Rn, with n ∈ N, and t ∈ R, we let f(t+) = limτ→t+ f(τ) and
f(t−) = limτ→t− f(τ).

In pseudocode segments, = denotes logical equality, while← denotes as-
signment.

2.2 Elements of graph theory

In this section, we review some concepts related to graph theory that are
commonly used in the study of multi-agent systems. Here we shall take a
different cut than the majority of the literature on multi-agent coordination,
and focus our attention to what is known as the edge space of a graph. Most
of the results mentioned in this section can be related to either [2] or [71], but
are further elaborated and expanded.

In this thesis, a multi-agent system is often associated to a graph, which
represents the topology of the connections among the agents in the multi-
agent system. For the purposes of the thesis, a graph is defined as a tuple
G = (V,E, w), where V = {1, . . . , N}, with N ∈ N, E ⊂ V2, with the constraint
that (i, i) /∈ E for all i ∈ V, and w : E→ R>0. The elements of V are called the
vertexes of the graph, while the elements of E are called the edges of the graph.
For each edge e = (j, i), we let head(e) = i and tail(e) = j. The number of
edges is denoted as M , and the edges are numbered as e1, . . . , eM . For each
edge e = (j, i), the value w(e) ∈ R>0 is called the weight of that edge. With
abuse of notation, we denote wi,j = w((j, i)).

A graph is often represented by drawing the vertexes as circles and the
edges as arrows connecting the circles. Namely, if (j, i) is an edge, then an
arrow is drawn from the circle representing vertex j to the circle representing
vertex i. The vertexes are labelled with their indexes, while the edges are
labelled as j(w), where j is the index andw is the weight. This representation
is adopted systematically in this thesis, and it is exemplified in Figure 2.1, for
a graph with N = 4 vertexes and M = 5 edges.

A path is a sequence of distinct vertexes i1, . . . , iP+1, with P ∈ N, such
that (ik, ik+1) ∈ E for each k ∈ {0, 1, . . . , P}. A spanning tree is a subset T ⊆ E

of the edges with the following properties: (i) there is a vertex r ∈ V such
that there is a path from r to any other vertex in the graph made up of edges
in T; (ii) property (i) does not hold for any proper subset of T. The vertex r is
called the root of the spanning tree. A spanning tree contains exactly N − 1
edges. For example, for the graph represented in Figure 2.1, one spanning
tree is given by

T = {e1, e2, e3},
which has vertex 1 as its root.

2.2. Elements of graph theory 13

1

2

3

4

1(1.0)

2(2.0)

3(1.0)4(1.0)

5(2.0)

Figure 2.1. Graphical representation of a graph with N = 4 nodes and M = 5 edges.
Each node is labelled with its index, and each edge is labelled with its index and its
weight.

For a given graph, several matrices can be defined that describe, partially
or completely, its structure. The incidence matrix of a graph is defined as B ∈
RN×M such that

Bi,j =

1 if head(ej) = i,
−1 if tail(ej) = i,
0 otherwise.

Each column of the incidence matrix corresponds to an edge in the graph. If
a graph contains a spanning tree, the columns of the incidence matrix can be
split into those corresponding to edges in the tree, and those corresponding
to edges that are not in the tree. Without loss of generality, suppose that the
first N − 1 columns correspond to the spanning tree, so that we can write

B = [BT, BC], (2.1)

with BT ∈ RN×N−1 and BC ∈ RN×M−(N−1). It can be shown that BT is
full column rank, which means that the columns corresponding edges in the
spanning tree are linearly independent. On the other hand, the columns cor-
responding to edges that are not in the tree can be written as linear combina-
tions of the columns corresponding to the edges that are in the tree. Namely,
there exists T ∈ RM−(N−1)×(N−1) such that

BC = BTT. (2.2)

Since BT is full column rank, its left pseudo-inverse B†T is unique, and T can
be computed as

T = B†TBC.

14 Technical preliminaries

The weight matrix is defined as W ∈ RN×M such that

Wi,j =

{
wij if head(ej) = i,
0 otherwise.

If the graph contains a spanning tree, the columns of the weight matrix can
be split in a similar way as done for the incidence matrix. Assuming without
loss of generality that the spanning tree is made up of the first N − 1 edges,
we let

W = [WT, WC]. (2.3)

The Laplacian matrix is defined as

L = WB> ∈ RN×N . (2.4)

From (2.4), it follows that

Li,j =

∑
j:(j,i)∈E wi,j if i = j,

−wi,j (j, i) ∈ E,

0 otherwise.
(2.5)

A widely known result in graph theory relates the structural properties of a
graph with the eigenvalues of its Laplacian matrix. This result can be formal-
ized as follows.

Lemma 2.1. The eigenvalues of the Laplacian matrix of a graph have nonnegative
real parts. Zero is always an eigenvalue and 1N is always an eigenvector with eigen-
value zero. All the nonzero eigenvalues have positive real parts. The algebraic multi-
plicity of the eigenvalue zero is one if and only if the graph contains a spanning tree.

For example, for the graph represented in Figure 2.1, we have

eig(L) = (0, 1, 3±
√

2i).

The edge Laplacian matrix is defined as

E = B>W ∈ RM×M . (2.6)

As a consequence of Sylvester’s determinant identity [72], the Laplacian and
the edge Laplacian have the same nonzero eigenvalues with the same alge-
braic multiplicities. In particular, if the graph contains a spanning tree, then,
by Lemma 2.1, the algebraic multiplicities of the nonzero eigenvalues of the
Laplacian sum to N − 1, and therefore also the algebraic multiplicities of
nonzero eigenvalues of the edge Laplacian sum to N − 1. This implies that,

2.2. Elements of graph theory 15

in the edge Laplacian, the eigenvalue zero has multiplicity M − (N − 1). For
example, for the graph represented in Figure 2.1, we have

eig(E) = (0, 0, 1, 3±
√

2i).

If the graph contains a spanning tree, we can substitute (2.1)–(2.3) into
(2.6), which yields

E =

[
B>TWT B>TWC

T>B>TWT T>B>TWC

]
.

Applying the similarity transformation

S =

[
IN−1 0(N−1)×(M−(N−1))

−T> IM−(N−1)

]
,

we have

SES−1 =

[
BT(WT +WCT

>) BTWC

0(M−(N−1))×(N−1) 0M−(N−1)

]
.

The upper-left block of SES−1 is called the reduced edge Laplcian of the graph,
and it is denoted as R ∈ R(N−1)×(N−1). Namely, we let

R = BT(WT +WCT
>). (2.7)

Lemma 2.2. In a graph that contains a spanning tree, the eigenvalues of the re-
duced edge Laplacian coincide with the nonzero eigenvalues of the Laplacian. Con-
sequently, −R is Hurwitz.

Proof. Since SES−1 is block-triangular, its eigenvalues are the eigenvalues
of the two blocks on the main diagonal—that is, R and 0M−(N−1). Since
E and SES−1 are similar, these eigenvalues are also the eigenvalues of the
edge Laplacian, with the same algebraic multiplicities. In particular, in the
edge Laplacian the eigenvalue zero has multiplicity M − (N − 1), which
corresponds to all the eigenvalues in the block 0M−(N−1) in SES−1. It fol-
lows that the eigenvalues of R, which are the remaining N − 1 eigenvalues
of SES−1, coincide with the nonzero eigenvalues of E, which are also the
nonzero eigenvalues of L. By Lemma 2.1, these eigenvalues have positive
real parts, which implies that −R is Hurwitz.

For example, for the graph represented in Figure 2.1, we have

eig(R) = (1, 3±
√

2i)

16 Technical preliminaries

Remark 2.1. Note that the reduced edge Laplacian is defined only if the graph has
a spanning tree. Moreover, if the graph has more than one spanning tree, selecting
different spanning trees leads to different reduced edge Laplacians. However, all the
possible reduced edge Laplacians have the same eigenvalues, because they coincide
with the nonzero eigenvalues of the Laplacian.

Remark 2.2. If T = E, the reduced edge Laplacian is conventionally defined as the
edge Laplacian itself, R = E. Lemma 2.2 also holds in this case, and has a similar
proof.

A graph is said to be undirected if (j, i) ∈ E ⇐⇒ (i, j) ∈ E and wi,j = wj,i
for all (j, i) ∈ E. In the graphical representation of an undirected graph, both
the edges in a pair (j, i) and (i, j) are usually represented as a single line
connecting nodes i and j. Clearly, if an undirected graph contains a span-
ning tree, then there exists a path from any vertex to any other vertex. For
this reason, if an undirected graph contains a spanning tree, we say that it
is connected. It follows from (2.5) that, for an undirected graph, the Lapla-
cian matrix is symmetric, and consequently it has real eigenvalues. Hence,
Lemma 2.1 can be specialized to undirected graphs as follows.

Lemma 2.3. For an undirected graph, the Laplacian matrix has real nonnegative
eigenvalues. Zero is always an eigenvalue, and 1N is always an eigenvector of eigen-
value zero. The multiplicity of the eigenvalue zero is one if and only if the graph is
connected.

If an undirected graph is not connected, then its vertex set V can be par-
titioned into subsets V1, . . . ,VNc with the property that, within each subset,
there exists a path from every node to every other node. Denoting as Ei
the restriction of E to the vertexes in Vi, we have that (Vi,Ei) is a connected
graph. The graphs (Vi,Ei) are called the (connected) components of the orig-
inal graph. A connected graph can be seen as having a single connected
component that coincides with the graph itself. Given an undirected graph,
suppose without loss of generality that the vertexes are indexed in such a
way that the first n1 vertexes belong to one component, the following n2 ver-
texes belong to another component, etc. Then, it follows from (2.5) that the
Laplacian matrix is block-diagonal, with each block being the Laplacian ma-
trix of the corresponding component of the graph. Consequently, Lemma 2.3
generalizes as follows.

Lemma 2.4. In the Laplacian of an undirected graph, the multiplicity of the eigen-
value zero is equal to the number Nc of the connected components in the graph.
Supposing without loss of generality that the vertexes are labelled in such a way
that the first n1 vertexes belong to one component, the following n2 vertexes belong
to another component, etc., the eigenvectors with eigenvalue zero are in the form
[α11>n1

, α21>n2
, . . . , αNc1

>
nNc

]>, with αi ∈ R for all i ∈ {1, . . . , Nc}.

2.3. Hybrid time trajectories and Zeno behavior 17

2.3 Hybrid time trajectories and Zeno behavior

In this section, we define the concepts of hybrid time trajectory and Zeno
behavior. These concepts have been given different formal definitions in the
literature. The definitions that are given in this section follow [73], but they
are modified to best suit the problems considered in this thesis.

Definition 2.1 (hybrid time trajectory). A hybrid time trajectory (HTT) τ =

{Ii}Ni=0 is a finite or infinite sequence of intervals of R such that:

• for all i < N , Ii = [τi, τ
′
i] with τi ≤ τ ′i = τi+1;

• if N < ∞, then either IN = [τN , τ
′
N] with τN ≤ τ ′N < ∞, or IN =

[τN ,+∞).

The time instants τi, with i ∈ {0, 1, . . . , Nτ}, are called the events of the HTT. For
an infinite HTT, the (finite or infinite) time instant τ∞ =

∑∞
i=0(τ ′i − τi) is called

the Zeno time of the HTT. The concept of Zeno time is extended to finite HTTs by
setting τ∞ =∞.

The interpretation of a HTT is that some form of event or transition occurs
at the time instants τi. A HTT extends to infinity if it is an infinite sequence,
but also if it is a finite sequence ending with an interval of the form [τNτ ,∞).
Note that a HTT is uniquely defined by the sequence of its events, {τi}Ni=0.
For this reason, sometimes we refer to a HTT by the sequence of its events.

Definition 2.2 (Zeno behavior). A HTT τ is said to exhibit Zeno behavior if it
is infinite and τ∞ <∞.

If a HTT exhibits Zeno behavior, we also say, for brevity, that it is Zeno.
The interpretation of a Zeno HTT is that the events have a finite accumulation
point, namely τ∞ <∞.

In this thesis, HTTs are associated to control signals, and the events in a
trajectory correspond to the updates of the control signal. Therefore, Zeno
behavior corresponds to an accumulation of control updates, and results
into the impossibility to implement the control law in a physical control
system. Therefore, in this thesis we regard Zeno behavior as an undesired
phenomenon, and for every proposed control law, we show that it does not
induce Zeno behavior in the closed-loop system. A sufficient condition to
exclude Zeno behavior is given in the following lemma.

Lemma 2.5. If, for an infinite HTT τ , there is a positive lower bound on the inter-
event times τ ′i − τi for all i, then τ is not Zeno.

Proof. Let τ ′i − τi ≥ δ for all i. Then
∑∞
i=0(τ ′i − τi) ≥

∑∞
i=0 δ = ∞, which by

Definition 2.2 means that τ is not Zeno.

18 Technical preliminaries

Lemma 2.6. An infinite HTT is not Zeno if and only if for any T > 0, there is an
event larger than T .

Proof. By definition, we have that τ is not Zeno if and only if
∑∞
i=0(τ ′i − τi) =

∞, which, by the definition of limit, means that for any T ≥ 0 there is a
ν ∈ N0 such that for any n > ν we have

∑n
i=0(τ ′i − τi) > T . But the left-hand

side of the last inequality is τn+1, therefore τ is not Zeno if and only if, for
any T ≥ 0, there exists an event larger than T .

For the purposes of this thesis, we need to elaborate further on the con-
cept of HTT than what is directly available in [73]. Namely, we introduce here
the concept of union of two HTTs.

Definition 2.3 (union of two HTTs). Let τ (1) and τ (2) be two HTTs with N1 and
N2 events respectively. The union of τ (1) and τ (2) is denoted as τ (1) ∪ τ (2), and it is
defined as the HTT whose events are {t ∈ {τ (1)}N1

i=0 ∪ {τ (2)}N2

i=0 : t < τ
(1)
∞ , τ

(2)
∞ }.

Lemma 2.7. If τ (1) and τ (2) are not Zeno, then τ (1) ∪ τ (2) is not Zeno.

Proof. We need to distinguish two cases. If τ (1) and τ (2) are both finite, then
τ (1) ∪ τ (2) is finite, and therefore it is not Zeno. Suppose now that one of the
sequences is infinite. Without loss of generality, suppose that τ (1) is infinite.
Note that, since both the trajectories are not Zeno, we have τ (1)

∞ = τ
(2)
∞ = ∞.

Therefore, by Definition 2.3, the events of τ (1) ∪ τ (2) are the union of the
events of τ (1) and the events of τ (2). Since τ (1) is not Zeno, by Lemma 2.6, for
any T > 0 there is an event of τ (1) larger than T . But since any event of τ (1)

is also an event of τ (1) ∪ τ (2), we have that for any T > 0 there is an event
of τ (1) ∪ τ (2) larger than T , which by Lemma 2.6 means that τ (1) ∪ τ (2) is not
Zeno.

Chapter 3

Event-triggered pinning control of
switching networks

IN this chapter, we consider a problem of event-triggered pinning control of
a multi-agent system with switching topology.
Pinning control is a strategy to steer the collective behavior of a net-

worked multi-agent system by directly controlling only a small fraction of
the agents. The goal is for the states of the agents to converge onto a given
reference trajectory, which corresponds to a control objective. The agents that
receive direct feedback control from the reference trajectory are called pins,
or are said to be pinned.

In many application scenarios for pinning control, an assumption that the
topology of the network is constant over time is unrealistic. Topology varia-
tions result from imperfect communications links among the agents or sim-
ply from the existence of a proximity range beyond which communication
is not possible. In this chapter we show that the proposed pinning control
strategy is robust with respect to a class of uncontrolled topology variations.

Pinning control algorithm have been traditionally designed under the hy-
pothesis of continuous-time communication. However, in many realistic net-
worked systems, the information flow among the agents has some limita-
tions, due, for example, to the finite capacity of the communication medium
or to communication costs. To address such limitations, the control strategy
that is proposed in this chapter employs event-triggered communication.

The rest of the chapter is organized as follows. In Section 3.1, we give
a mathematical formulation of the pinning control problem under investiga-
tion, and we outline the proposed control algorithm to address such problem.
In Section 3.2, we give a graph-theoretical interpretation of the proposed al-
gorithm. In Section 3.3, we discuss a distributed and model-based implemen-
tation of the proposed algorithm that aims at reducing the necessary amount

19

20 Event-triggered pinning control of switching networks

of communication among the agents. In Section 3.4, we state our main con-
vergence result, whose proof occupies Sections 3.5–3.7. In Section 3.8, we
specialize the general results to the case of networks with fixed topologies.
In Section 3.9, we present a simulated network of nonlinear systems under
the proposed algorithm, and we show that the simulation corroborates the
theoretical results. Section 3.10 concludes the chapter by summarizing the
results and outlining possible future developments.

3.1 Problem statement

Consider a multi-agent system with agents indexed as V = {1, . . . , N}. Let
each agent have state xi(t) ∈ Rn that evolves according to{

ẋi(t) = f(t, xi(t)) + ui(t),

xi(0) = xi,0,
(3.1)

where f : R × Rn → Rn is a time-varying field, xi,0 ∈ Rn is an initial condi-
tion, and ui(t) ∈ Rn is a control input. We introduce the assumption that f
is a globally Lipschitz function of the state, with uniform Lipschitz constant
with respect to the time. This assumption is formalized as follows.

Assumption 3.1. For each t ≥ 0, the function f(t, ·) is globally Lipschitz with
Lipschitz constant λf . Namely, there exists λf > 0 such that, for each t ≥ 0 and
each x1, x2 ∈ Rn, we have

‖f(t, x1)− f(t, x2)‖ ≤ λf‖x1 − x2‖.

A reference trajectory r(t) ∈ Rn is assigned, whose dynamics is compati-
ble with the dynamics of the agents. Namely, we have{

ṙ(t) = f(t, r(t)),

r(0) = r0.
(3.2)

The control objective is that the states of all the agents asymptotically con-
verge to the reference trajectory, and it is formalized as

lim
t→∞
‖r(t)− xi(t)‖ = 0 ∀i ∈ V. (3.3)

To reach the control objective, we employ piecewise constant control signals,

ui(t) ≡ ui,k ∀t ∈ [ti,k, ti,k+1), (3.4)

3.1. Problem statement 21

with ui,k ∈ Rn. The sequence of the time instants {ti,k}k∈N0
defines a HTT,

and corresponds to the times when the control signal ui(t) is updated to a
new value. We let ti,0 = 0 for all i ∈ V, so that ui,0 is the initial control input
for each agent. The control values are computed as

ui,k =

N∑
j=1

wi,j(t
+
i,k)C(xj(ti,k)− xi(ti,k))

+ pi(t
+
i,k)K(r(ti,k)− xi(ti,k)),

(3.5)

where wi,j(t) ∈ R and pi(t) ∈ R for all t ≥ 0, and C,K ∈ Sn>0. The inter-
pretation is that each agent receives feedback from the other agents and from
the reference trajectory to align its state with the states of the other agents
and with the reference. The matrices C and K can be interpreted as a control
protocol that translates a mismatch in the state space into a control action.
The scalar wi,j(t) is the weight of the feedback from agent j to agent i at time
t, while pi(t) is the weight of the feedback from the reference trajectory to
agent i at time t. Hence, the scalars wi,j(t) and pi(t) with i, j ∈ V define the
topology of the networked multi-agent system at each time instant t ≥ 0. We
make the assumption that the feedback between two agents is symmetric,
which is formalized as follows.

Assumption 3.2. For each i, j ∈ V, we have wi,j(t) = wj,i(t) for each t ≥ 0.

We also make the assumption that the signals wi,j(t) and pi(t) are piece-
wise constant and bounded. This agrees with the interpretation that changes
in the values of wi,j(t), pi(t) correspond to changes in the topology of the
agents’ network, due, for example, to communication failures. This assump-
tion is formalized as follows.

Assumption 3.3. The signals wi,j(t) and pi(t) that appear in (3.5) are piecewise
constant, and they are lower-bounded and upper-bounded. Namely, there exist
wi,j , w̄i,j and p

i
, p̄i such that wi,j ≤ wi,j(t) ≤ w̄i,j and p

i
≤ pi(t) ≤ p̄i for all

t ≥ 0. Moreover, the HTT defined by the instants when a change of value occurs for
some wi,j(t) or pi(t) is not Zeno.

In practice, wi,j(t) 6= 0 means that agents i and j are connected, and can
exchange information, while pi(t) 6= 0 means that agent i is connected to the
reference. In most applications, we have that, at each time t ≥ 0, wi,j(t) 6= 0
only for a small fraction of the possible pairs of agents, and pi(t) 6= 0 only for
a small fractions of the agents. Note that, in order to compute ui,k as by (3.5),
agent i only needs to receive the state of agent j ifwi,j(t+i,k) 6= 0, and similarly,
it only needs to receive the value r(ti,k) of the reference if pi(t+i,k) 6= 0. For
these reasons, (3.5) can be considered a pinning control law.

22 Event-triggered pinning control of switching networks

In order to completely define our control strategy, we also need to specify
a rule for scheduling the control updates ti,k for each agent. To this aim,
consider the following signals:

zi(t) =

N∑
j=1

wi,j(t)C(xj(t)− xi(t))

+ pi(t)K(r(t)− xi(t)).
(3.6)

Note that zi(t) is similar to the control signals (3.5), but the update time ti,k
is substituted with the current time. In other words, zi(t) would correspond
to the control input ui(t) if this were to be continuously updated. An update
for agent i is scheduled for each time instant when the difference between
zi(t) and ui(t) has overcome an assigned threshold. The threshold is defined
by the function

ς(t) = ς0e
−λςt, (3.7)

where ς0 is a positive constant and λς > 0 is a positive convergence rate. We
refer to ς(t) as the threshold function. The threshold function is part of the
control design, and it is known by all the agents. An update for agent i is
also scheduled for the instants when wi,j(t) for some j or pi(t) has changed
its value. The rule for scheduling the updates can therefore be formalized as
follows:

ti,k+1 = inf{t ≥ ti,k :

wi,j(t) 6= wi,j(t
+
i,k) for some j, or

pi(t) 6= pi(t
+
i,k), or

‖ũi(t)‖ ≥ ς(t)},

(3.8)

where
ũi(t) = ui(t)− zi(t). (3.9)

Our goal is to show that the control algorithm defined by (3.2) and (3.4)–(3.9)
makes the closed-loop system well-posed and attains the control objective
(3.3). Well-posedness of the closed-loop system means that the sequences
{ti,k}k∈N0

of the control updates do not exhibit Zeno behavior.

3.2 Representation as a graph

The topology of the multi-agent system (3.1) can be loosely represented as
a time-varying graph G(t). Each agent in the system corresponds to a node
in the graph, while each couple (i, j) such that wi,j(t) 6= 0 constitutes an
edge in the graph, with weight equal to wi,j(t). Under Assumption 3.2, such
graph is undirected. The reason why this interpretation is not precise is that,

3.3. Implementation 23

according to the definition given in Chapter 2, the weights in a graph are
positive scalars, while here we just need to weights to be lower-bounded
and upper-bounded. Nevertheless, interpreting the topology of the multi-
agent system (3.1) as a graph allows to relate the convergence properties of
the multi-agent system to the structural properties of the graph, as we will
discuss in Section 3.8.

3.3 Implementation

In order to implement scheduling rule (3.8), agent i needs to know the value
of the signals wi,j(t), pi(t) and ũi(t) at every time instant. The signals wi,j(t)
and pi(t) represent the topology of the information sources of agent i, there-
fore it is reasonable that agent i is aware of the value of these signals at any
time instant. On the other hand, to compute ũi(t) as by (3.6) and (3.9), agent
i needs to know its own state xi(t), the reference r(t), and the states xj(t) of
the other agents. However, since all the agents and the reference have the
same known dynamics, these signals can be predicted simply by integrat-
ing said dynamics. Namely, for the reference trajectory, (3.2) holds for all
t ≥ 0. Therefore, in order to compute r(t) at all t ∈ [ti,k, ti,k+1), agent i only
needs to know the initial value r(ti,k). Moreover, agent i needs to compute
r(t) for t ∈ [ti,k, ti,k+1) only if pi(t+i,k) 6= 0. In fact, if pi(t+i,k) = 0, r(t) does
not affect ũi(t) for t ∈ [ti,k, ti,k+1), see (3.4)–(3.6) and (3.9). Similarly, for the
states xj(t) of the other agents, (3.1) holds for all t ≥ 0. Therefore, in order to
compute xj(t) for all t ∈ [ti,k, ti,k+1), agent i only needs to know the initial
value xj(ti,k) and the values, say uj,hj , of the control signal that agent j uses
within the interval [ti,k, ti,k+1). Moreover, agent i needs to compute xj(t) for
t ∈ [ti,k, ti,k+1) only if wi,j(t+i,k) 6= 0. In fact, if wi,j(t+i,k) = 0, xj(t) does not af-
fect ũi(t) for t ∈ [ti,k, ti,k+1), see (3.4)–(3.6) and (3.9). This implies that when
an agent j updates its control input, it has to broadcast the newly computed
control input, say uj,hj , to all the other agents i such that wi,j(t+j,hj) 6= 0.
These considerations lead us to propose the following Algorithm 3.1 as an
implementation of the control algorithm (3.4)–(3.9). From Algorithm 3.1, it
is clear that the proposed control algorithm requires inter-agent communica-
tion only when one of the agents updates its control input, and not at every
time instant.

Algorithm 3.1. Operations executed by each agent i at a generic time instant
t ≥ 0.

1: compute xi(t) by prediction
2: if pi(ti,k) 6= 0, compute r(t) by prediction
3: compute xj(t) by prediction for each j such that wi,j(ti,k) 6= 0

24 Event-triggered pinning control of switching networks

4: compute ũi(t) as by (3.9)
5: compute ς(t) as by (3.7)
6: if wi,j(t) 6= wi,j(ti,k) for some j or pi(t) 6= pi(ti,k) or ‖ũi(t)‖ ≥ ς(t) then
7: for j ∈ V \ {i} do
8: if wi,j(t) 6= 0 and wi,j(ti,k) = 0 then
9: acquire xj(t) from agent j

10: end if
11: end for
12: if pi(t) 6= 0 and pi(ti,k) = 0 then
13: acquire r(t)
14: end if
15: k ← k + 1
16: ti,k ← t
17: compute ui,k as by (3.5) and set it as the control input
18: broadcast ui,k to each agent j such that wj,i(ti,k) 6= 0
19: end if

3.4 Main result

In order to state our main result, we need to introduce some further notation.
Let

x(t) = [x1(t)>, . . . , xN (t)>]>, (3.10)

F (t, x(t)) = [f(t, x1(t))>, . . . , f(t, xN (t))>]>, (3.11)

u(t) = [u1(t)>, . . . , uN (t)>]>, (3.12)

x0 = [x>1,0, . . . , x
>
N,0]>. (3.13)

With (3.10)–(3.13), the dynamics of the open-loop system (3.1) can be rewrit-
ten compactly as {

ẋ(t) = f(t, x(t)) + u(t),

x(0) = x0.
(3.14)

Consider now the error signals

ei(t) = r(t)− xi(t), (3.15)

and let
e(t) = [e1(t)>, . . . , eN (t)>]>

= 1N ⊗ r(t)− x(t).
(3.16)

Note that the control objective (3.3) can be rewritten in terms of the error
vector e(t) as

lim
t→∞

e(t) = 0Nn.

3.4. Main result 25

Let

L(t)i,j =

{∑N
j=1 wi,j(t) if i = j,

−wi,j(t) otherwise,
(3.17)

P (t) = diag(p1(t)>, . . . , pN (t)>), (3.18)
A(t) = L(t)⊗ C + P (t)⊗K, (3.19)
λ(t) = min eig(A(t)). (3.20)

Note that, under Assumption 3.2, and with C,K ∈ SN>0, the matrix A(t) is
symmetric for any t ≥ 0, and, therefore, its minimum eigenvalue λ(t) is well
defined.

Remark 3.1. Comparing (3.17) with (2.5), we see that L(t) can be loosely inter-
preted as the Laplacian of the undirected graph G(t) that represents the topology of
the multi-agent system (3.1). Recall that this interpretation is not precise, since we
are not requiring that wi,j(t) ≥ 0.

Our main result can now be formalized as the following theorem.

Theorem 3.1. Consider the multi-agent system (3.1), under the control algorithm
defined by (3.2) and (3.4)–(3.9). Let Assumptions 3.1–3.3 hold. If there exist T > 0
and ϕ > λf + λς such that, for any t ≥ 0,

1

T

∫ t+T

t

λ(τ) dτ ≥ ϕ, (3.21)

then the closed-loop system is well posed and achieves the control objective (3.3). In
particular, the error stack vector e(t) defined by (3.16) converges to zero exponen-
tially with a convergence rate that is lower-bounded by the convergence rate λς of
the threshold function; namely, there exists η̄ > 0 such that

‖e(t)‖ ≤ η̄ exp(−λςt) ∀t ≥ 0.

Remark 3.2. Condition (3.21) essentially requires that the connectivity between the
reference trajectory and the agents in the network, parametrized by the minimum
eigenvalue λ(t) of A(t), has an average over time that is large enough, compared
to the Lipschitz constant of the agents’ dynamics and to the convergence rate of the
threshold function. However, condition (3.21) does not require λ(t) to be large at
any specific time instant.

The proof of Theorem 3.1 is given in the next three sections of the chap-
ter. Namely, in Section 3.5, we prove that the closed-loop system achieves

26 Event-triggered pinning control of switching networks

exponential convergence of the error vector e(t), and in Section 3.6, we prove
that the closed-loop system is well posed, in the sense that the sequence of
the control updates of each agent does not exhibit Zeno behavior. Finally,
in Section 3.7, we use the results obtained in the previous two sections two
formalize the proof of Theorem 3.1.

3.5 Convergence proof

In order to analyze the convergence properties of the closed-loop system
(3.1), (3.2) and (3.4)–(3.9), we write the dynamics of the open-loop system
in terms of the error vector e(t). Taking the time derivative of both sides in
(3.16), and using (3.2) and (3.14), we can write the open-loop dynamics of the
error signals as {

ė(t) = 1N ⊗ f(t, r(t))− f(t, x(t))− u(t),

e(0) = 1N ⊗ r0 − x0,
(3.22)

where e0 = e(0). Note that (3.6) can be rewritten in terms of the error signals
(3.15) as

zi(t) =

N∑
j=1

wi,j(t)C(ei(t)− ej(t)) + pi(t)Kei(t). (3.23)

Moreover, letting
z(t) = [z1(t)>, . . . , zN (t)>]>,

we can rewrite (3.23) compactly as

z(t) = A(t)e(t), (3.24)

where A(t) is defined in (3.19).
Substituting (3.9) and (3.24) into (3.22), we have

ė(t) = 1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t). (3.25)

From (3.25), it is clear that convergence of the error vector e(t) can be related
to f(·, ·) being Lipschitz, to the eigenvalues of A(t), and to the boundedness
of ũ(t). This is formalized in the following lemma.

Lemma 3.1. If ‖ũi(t)‖ ≤ ς(t) for all t ∈ [0, T] for all i ∈ V, where T > 0, then,
under Assumption 3.1, we have ‖e(t)‖ ≤ η(t) for all t ∈ [0, T], where η(t) satisfies{

η̇(t) = (λf − λ(t))η(t) +
√
Nς(t),

η(0) = η0,
(3.26)

where η0 = ‖e0‖ and λ(t) is defined by (3.20)

3.5. Convergence proof 27

Proof. Consider the function

V (t) =
1

2
e(t)>e(t). (3.27)

Note that we shall not refer to V (t) as to a candidate Lyapunov function, since
we are not going to use any Lyapunov theorem. Taking the time derivative
of both sides, and using (3.25), we have

V̇ (t) =e(t)>ė(t)

=e(t)>(1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t))

=

N∑
i=1

ei(t)
>(f(t, r(t))− f(t, xi(t)))

− e(t)>A(t)e(t)− e(t)>ũ(t).

(3.28)

The terms on the right-hand side of (3.28) can be bounded as follows. By
Assumption 3.1, we have

ei(t)
>(f(t, r(t))− f(t, xi(t)) ≤ λf‖ei(t)‖2. (3.29)

Since A(t) is symmetric, we have

− e(t)>A(t)e(t) ≤ −λ(t)‖e(t)‖2, (3.30)

where λ(t) is the smallest eigenvalue of A(t). Finally, if t ∈ [0, T], by hypoth-
esis we have ‖ũi(t)‖ ≤ ς(t), implying

e(t)>ũ(t) ≤ ‖e(t)‖
√
Nς(t). (3.31)

Substituting (3.29)–(3.31) in (3.28), we have

V̇ (t) ≤ (λf − λ(t))‖e(t)‖2 + ‖e(t)‖
√
Nς(t). (3.32)

Now note that (3.27) can be written equivalently as V (t) = 1
2‖e(t)‖

2, which
taking the time derivative of both sides yields V̇ (t) = ‖e(t)‖d‖e(t)‖

dt , which, in
turn, compared with (3.32) yields

‖e(t)‖d‖e(t)‖
dt

≤ (λf − λ(t))‖e(t)‖2 + ‖e(t)‖
√
Nς(t). (3.33)

For any t such that ‖e(t)‖ 6= 0, (3.33) reduces to

d‖e(t)‖
dt

≤ (λf − λ(t))‖e(t)‖+
√
Nς(t). (3.34)

28 Event-triggered pinning control of switching networks

On the other hand, if e(t) = 0, we can write, for t ∈ [0, T),

d‖e(t)‖
dt

= lim
δt→0

‖e(t+ δt)‖ − ‖e(t)‖
δt

. (3.35)

where ‖e(t)‖ = 0, and

e(t+ δt) =

∫ t+δt

t

ė(τ) dτ . (3.36)

Substituting (3.25) into (3.36), taking norms of both sides, using the triangular
inequality and Assumption 3.1, and observing that ũi(t) ≤ ς(t) for all t ∈
[0, T), we have

‖e(t+ δt)‖ ≤
∫ t+δt

t

((λf − λ(τ))‖e(τ)‖+
√
Nς(τ)) dτ

Dividing both sides by δt, taking the limit for δt → 0, using the mean value
theorem, and comparing with (3.35), we have again (3.34), which therefore
applies for all t ∈ [0, T). From (3.34), and using Gronwall’s lemma [74], we
have (3.26).

Under the hypotheses of Lemma 3.1, we have e(t) → 0Nn if η(t) → 0.
Therefore, we only need to prove that the closed-loop system is well posed
and achieves η(t) → 0 to prove Theorem 3.1. The following lemma gives a
sufficient condition for convergence of η(t).

Lemma 3.2. Let η(t) be defined by (3.26), and let Assumption 3.3 hold. If (3.21)
holds, then there exists η̄ > 0 such that

η(t) ≤ η̄ exp(−λςt), (3.37)

In particular, η(t)→ 0.

Proof. Condition (3.21) can be rewritten as∫ t+T

t

(λf − λ(τ)) dτ ≤ −Tφ ∀t ≥ 0, (3.38)

where φ = ϕ − λf > λς . For any t′ > t we can write t′ = t + νT + δt, with
ν ∈ N0 and 0 ≤ δt < T . Therefore, using (3.38) repeatedly, we have∫ t′

t

(λf − λ(τ)) dτ ≤ −νTφ+

∫ t′

t+νT

(λf − λ(τ)) dτ

= −φ(t′ − t) +

∫ t′

t+νT

(λf − λ(τ)) dτ .

(3.39)

3.5. Convergence proof 29

Under Assumption 3.3, λ(τ) is bounded, and therefore, the last integral in
(3.39) is bounded. Hence, we can rewrite (3.39) as∫ t′

t

(λf − λ(τ)) dτ ≤ −φ(t′ − t) + ξ (3.40)

for some ξ > 0. The Laplace solution of (3.26) in [0, t) reads, using also (3.7),

η(t) = Φ(t, 0)η0

+
√
Nς0

∫ t

0

Φ(t, τ) exp(−λςτ) dτ ,
(3.41)

where

Φ(t′, t) = exp

(∫ t′

t

(λf − λ(τ)) dτ

)
. (3.42)

Using (3.40) in (3.42), we have

Φ(t′, t) ≤ exp(−φ(t′ − t)) exp(ξ) (3.43)

Using (3.43) in (3.41), we have

η(t) ≤ exp(−φt) exp(ξ)η0

+
√
Nς0 exp(ξ)

∫ t

0

exp(−φ(t− τ)) exp(−λςτ) dτ ,
(3.44)

Since φ > λς , we have∫ t

0

exp((φ− λς)τ) dτ =
exp((φ− λς)t)− 1

φ− λς
,

which substituted into (3.44) yields

η(t) ≤ k′
(
η0 +

√
Nς0 exp(ξ)

exp((φ− λς)t)− 1

φ− λς

)
e−φt . (3.45)

Using again φ > λς , we can further bound (3.45) as (3.37), with

η̄ = k′
(
η0 +

√
Nς0

φ− λς

)
.

Thanks to Lemmas 3.1 and 3.2, proving that the proposed control algo-
rithm attains the objective (3.3) reduces to proving that the algorithm makes
the closed-loop system well-posed, and attains ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 as
well as (3.40). This will be the subject of the following Section 3.6.

30 Event-triggered pinning control of switching networks

3.6 Well-posedness proof

Well-posedness of the closed-loop systems means that the HTT generated by
the control updates {ti,k} of each agent i do not exhibit Zeno behavior. In
order to study this property, first observe that ‖ũi(t)‖ ≤ ς(t) is automatically
guaranteed by the scheduling rule (3.8). In fact, for each k ∈ N0 and each
i ∈ V, we have from (3.5) and (3.6) that zi(ti,k) = ui,k, which by (3.9) implies

ũi(ti,k) = 0.

Since a new update ti,k+1 is triggered whenever ‖ũi(t)‖ ≥ ς(t), it is not pos-
sible that ‖ũi(t)‖ > ς(t) for some t ≥ 0, i ∈ V. Well-posedness of the closed-
loop system is formalized in the following lemma.

Lemma 3.3. Consider the multi-agent system (3.1), under the control algorithm
defined by (3.2) and (3.4)–(3.9). Under Assumptions 3.1–3.3, and (3.40), the closed-
loop system is well posed. In particular, the sequences {ti,k}k∈N of the control up-
dates for i ∈ V do not exhibit Zeno behavior.

Proof. Let us consider a generic agent i ∈ V within the generic time interval
[ti,k, ti,k+1). By (3.5), taking the time derivative of both sides in (3.9), we have

˙̃ui(t) = −żi(t). (3.46)

Note now that, from (3.24), we have zi(t) = A(t)n(i−1)+1:in,:e(t), and more-
over,

A(t)n(i−1)+1:in,: = A(ti,k)n(i−1)+1:in,:,

because wi,j(t) for all j ∈ V \ {i} and pi(t) are constant for t ∈ [ti,k, ti,k+1).
Therefore, żi(t) = A(ti,k)n(i−1)+1:in,:ė(t), which substituted in (3.46) yields

˙̃ui(t) = −A(ti,k)n(i−1)+1:in,:ė(t). (3.47)

Substituting (3.25) into (3.47), we have

˙̃ui(t) =−A(ti,k)n(i−1)+1:in,:(

1N ⊗ f(t, r(t))− f(t, x(t))−A(t)e(t)− ũ(t)).
(3.48)

Note now that, by Assumption 3.3, we have ‖A(t)‖ ≤ α for some α > 0,
since all the entries of A(t) are bounded. Therefore, taking norms of both
sides in (3.48), using the triangular inequality, ‖ũj(t)‖ ≤ ς(t) for all j ∈ V,
and Assumption 3.1, we have

‖ ˙̃ui(t)‖ ≤α((λf + α)e(t) +
√
Nς(t)). (3.49)

3.6. Well-posedness proof 31

Since Lemmas 3.1 and 3.2 apply, we have ‖e(t)‖ ≤ η̄ e−λςt, which compared
with (3.49), together with (3.7), yields

‖ ˙̃ui(t)‖ ≤ α((λf + α)η̄ +
√
Nς0) e−λςt . (3.50)

Since ũi(ti,k) = 0, we have ũi(t) =
∫ t
ti,k

˙̃ui(τ) dτ , which by taking norms of
both sides, and using the triangular inequality yields

‖ũi(t)‖ ≤
∫ t

ti,k

‖ ˙̃ui(τ)‖ dτ . (3.51)

Substituting (3.50) into (3.51), we have

‖ũi(t)‖ ≤ α((λf + α)η̄ +
√
Nς0)

1− e−λς(t−ti,k)

λς
e−λςti,k . (3.52)

Note now that (3.7) can be written as

ς(t) = ς0 e−λςti,k e−λς(t−ti,k) . (3.53)

Comparing (3.52) and (3.53), it is clear that a necessary condition for having
‖ũi(t)‖ ≥ ς(t) is

α((λf + α)η̄ +
√
Nς0)

1− e−λς(t−ti,k)

λς
≥ ς0 e−λς(t−ti,k),

which is attained if and only if t− ti,k ≥ δ > 0, where δ satisfies

α((λf + α)η̄ +
√
Nς0)

1− e−λςδ

λς
= ς0 e−λςδ,

or equivalently

δ = ln

(
λς + α((λf + α)η̄ +

√
Nς0)

α((λf + α)η̄ +
√
Nς0)

)
> 0. (3.54)

From (3.54), it is clear that two consecutive control updates due to ‖ũi(t)‖ ≥
ς(t) are separated by a positively lower-bounded inter-event time. Then, us-
ing Lemma 2.3, we can conclude that the HTT generated by the control up-
dates due to ‖ũi(t)‖ ≥ ς(t) is not Zeno. From Assumption 3.3, we know
that the sequence of the control updates due to wi,j(t) 6= wi,j(t

+
i,k) for some

j ∈ V or pi(t) 6= pi(t
+
i,k) is not Zeno either. From the scheduling law (3.8),

we know that the sequence {ti,k}k∈N0
of the control updates of agent i is the

union of the sequence of the control updates due to ‖ũi(t)‖ ≥ ς(t) and the
sequence of the control updates due to wi,j(t) 6= wi,j(t

+
i,k) for some j ∈ V

or pi(t) 6= pi(t
+
i,k). Therefore, by Lemma 2.7, the sequence {ti,k}k∈N0

is not
Zeno. Since this is valid for all the agents i ∈ V, the closed-loop system is
well posed.

32 Event-triggered pinning control of switching networks

Remark 3.3. Lemma 3.3 does not guarantee that two consecutive control updates
ti,k and ti,k+1 are separated by a finite inter-event time. In fact, two events of the
type wi,j(t) 6= wi,j(t

+
i,k) or pi(t) 6= pi(t

+
i,k) may occur infinitely close to each other,

and also infinitely close to the events of the type ‖ũi(t)‖ ≥ ς(t). However, a finite
inter-event time is guaranteed in the particular case that the network topology is
constant—that is, that the scalars wi,j(t) and pi(t) are constant for all i, j ∈ V.
This is further discussed in the following Section 3.8, which examines the particular
case of networks with fixed topology.

3.7 Proof of the main result

Using Lemma 3.3, we have that, under the scheduling rule (3.8), ‖ũi(t)‖ ≤
ς(t) for all t ≥ 0 and all i ∈ V. Hence, using Lemmas 3.1 and 3.2, and taking
t→∞, we can conclude that ‖e(t)‖ ≤ η(t) ≤ η̄ exp(−λςt)→ 0. Therefore, the
control objective (3.3) is achieved, and, in particular, e(t) converges to zero
exponentially.

3.8 Fixed network topologies

In this section, we consider the particular case that the topology of the net-
worked multi-agent system (3.1) is constant, i.e., that the scalarswi,j(t) ≡ wi,j
and pi(t) ≡ pi are constant for all i, j ∈ V. In this case, condition (3.40) in
Lemma 3.2 is equivalent to

λ > λf + λς , (3.55)

where λ is the minimum eigenvalue of the (now constant) matrix A defined
by (3.19). Since the eigenvalues of A scale linearly with the matrices C and
K (when C and K are scaled simoultaneously), (3.55) can be satisfied by
making A positive definite, and then by scaling it opportunely by scaling the
matrices C and K. The following Lemma relates the positive definiteness of
A to the positive definiteness of L+ P .

Lemma 3.4. Let A,B ∈ SN≥0 and C,D ∈ Sn>0. Then A⊗C +B ⊗D ∈ SNn≥0 , and
A⊗ C +B ⊗D ∈ SNn>0 if and only if A+B ∈ SN>0.

Proof. Since A,B ∈ SN+ , if A + B ∈ SN++, then either A ∈ SN++ or B ∈ SN++

(possibly both). Consequently, A ⊗ C,B ⊗ D ∈ SNn+ , and either A ⊗ C ∈
SNn++ or B ⊗ D ∈ SNn++. Hence, A ⊗ C + B ⊗ D ∈ SNn++. Similarly, since
A ⊗ C,B ⊗D ∈ SNn+ , if A ⊗ C + B ⊗D ∈ SNn++ then either A ⊗ C ∈ SNn++ or
B ⊗D ∈ SNn++ (possibly both). Therefore, either A ∈ SN++ or B ∈ SN++, which
implies A+B ∈ SN++.

3.8. Fixed network topologies 33

By Lemma 3.4, A can be made positive definite by making L and P posi-
tive semidefinite and L+P positive definite. A sufficient condition for mak-
ing L positive semidefinite is that wi,j ≥ 0 for all i, j ∈ V. In fact, for wi,j ≥ 0
for all i, j ∈ V, L is the Laplacian matrix of a graph, which is positive semidef-
inite, cfr. Lemma 2.3. On the other hand, a sufficient condition for making
P positive semidefinite is that pi ≥ 0 for all i ∈ V. The hypotheses wi,j ≥ 0
and pi ≥ 0 correspond to the feedback between any two agents and from the
reference to each agent being either positive (wi,j > 0 or pi > 0) or absent
(wi,j = 0 or pi = 0). Such hypotheses are verified in most realistic settings,
while negative feedback occurs in applications featuring adversarial connec-
tions between two or more agents. Given that L and P are positive semidefi-
nite, a sufficient condition for making L+ P positive definite is given by the
following lemma.

Lemma 3.5. Letwi,j = wj,i ≥ 0 and pi ≥ 0 for all i, j ∈ V. Let G be the undirected
graph defined by the nodes V and the edges E = {(j, i) ∈ V× V : wi,j > 0}, where
wi,j > 0 is also the weight of the edge (j, i). The nodes i ∈ V such that pi > 0
are said to be pinned. Let L and P be defined by (3.17) and (3.18), so that L is the
Laplacian matrix of G. Then L+ P is positive definite if and only if there is at least
one pinned node in each connected component of G.

Proof. Without loss of generality, suppose that the nodes of G are ordered in
such a way that the first n1 nodes are in a first component, the following n2

nodes are a the second component, etc. Then L and P are block-diagonal,
with each block corresponding to one of the components. We divide the
proof in two parts.

Part 1 (If L + P is positive definite, then there is at least one pinned node in
each component of G.). Suppose that L+ P is positive definite, and suppose
by contradiction that there is a connected component that does not contain
any pinned node. Without loss of generality, suppose that this component
is the first component. Then, consider the vector v = [1>n1

, 0>n2
, . . . , 0>nNc]>,

where Nc is the number of components in G. Then we have

v>(L+ P)v = 1>n1
(L1 + P1)1n1 , (3.56)

where L1 and P1 are the blocks of L and P respectively corresponding to
the first component. Since the first component does not contain any pinned
node, we have P1 = 0n1×n1 , and since L1 is a Laplacian matrix, we have
L11nc = 0. Substituting the last two equations into (3.56), we have v>(L +
P)v = 0, with v 6= 0N , which is a contradiction.

Part 2 (If there is at least one pinned node in each component of G, then L+P
is positive definite.). Viceversa, suppose that there is at least one pinned
node in each connected component of G, and suppose by contradiction that

34 Event-triggered pinning control of switching networks

L+P is not positive definite, i.e., that there exists a nonzero v ∈ RN such that
v>(L+ P)v = 0. Since both L and P are block-diagonal with each block of L
being the same size of the corresponding block of P , the previous equation
implies that

Nc∑
i=1

v>(i)(Li + Pi)v(i) = 0 (3.57)

for each i ∈ {1, . . . , Nc}, where Nc is the number of components in G, v(i) ∈
Rni is the restriction of v to the entries corresponding to the i-th component,
and Li and Pi are the i-th diagonal block of L and P respectively. Note that
Li and Pi are both positive semidefinite, since Li is a Laplacian matrix and
Pi is diagonal with nonnegative diagonal entries. Therefore, (3.57) implies
v>(i)(Li + Pi)v(i) for all i ∈ {1, . . . , Nc}, which, in turn, implies

v>(i)Liv(i) = 0, (3.58)

v>(i)Piv(i) = 0. (3.59)

for all i ∈ {1, . . . , Nc}. Since Li is a Laplacian matrix, (3.58) implies v(i) =
α1ni for some α ∈ R, which substituted in (3.59) gives α tr(Pi) = 0. Since the
entries of Pi are nonnegative, and since there is at least one pinned node in
each component, we have tr(Pi) > 0, which means that α = 0. Hence, v(i) =
α1ni = 0ni . Since this reasoning applies to all components i ∈ {1, . . . , Nc},
we conclude that v = 0N , which is a contradiction.

The intuition behind Lemma 3.5 is very simple: for the multi-agent sys-
tem to converge to the reference trajectory, each agent needs to have access
to information originating from the reference trajectory, either by directly re-
ceiving feedback from the reference trajectory, or by receiving feedback from
other agents that are influenced by the reference trajectory. As a particular
case of Lemma 3.5, we have the following corollary.

Corollary 3.1. In Lemma 3.5, if G is connected, then L + P is positive definite if
and only if there is at least one pinned node.

Remark 3.4. If in Lemma 3.5 we relax the assumption that the scalars wi,j and pi
are nonnegative, we can still write Part 1 of the proof to show that a necessary (but,
in this case, not sufficient) condition for L+ P to be positive definite is that there is
at least one node i such that pi 6= 0 in each component of the graph.

When the topology of the networked system is fixed, the proposed control
algorithm comes with a guaranteed constant lower bound for the inter-event
times between two consecutive control updates ti,k and ti,k+1 of the same
agent. This property is immediately deduced by the proof of Lemma 3.3,
observing that in this case the control updates can only be triggered by events

3.9. Numerical simulations 35

of the kind ‖ũi(t)‖ ≥ ς(t). In particular, the lower bound for the inter-event
times is given by δ > 0 defined by (3.54).

3.9 Numerical simulations

To illustrate the effectiveness of the proposed control algorithm, we apply it
to a simulated network of N = 5 identical Chua oscillators [75]. The individ-
ual dynamics of each oscillator is described by

f(x) =

a(x2 − x1 − γ(x1))

x1 − x2 + x3

−bx2

 ,
with x = [x1, x2, x3]> ∈ R3, where a, b,m0,m1 ∈ R and γ : R→ R, namely,

γ(y) = m1y +
1

2
(m0 −m1)(|y + 1| − |y − 1|).

Choosing a = b = 0.9, m0 = −1.34, and m1 = −0.73, the oscillators are glob-
ally Lipschitz with Lipschitz constant λf = 3.54 (see [34] for further details).
Let C = 5I3 and K = 30I3. All the agents are connected to each other with
wi,j(t) ≡ 1. Our simulation is set on the time interval [0, 30]. At the beginning
of the simulation, we set p1(0) = p2(0) = 1, while pi(0) = 0 for i ∈ {3, 4, 5},
which yields λ(0) = 6.14. At t = 0.75, we set p1(t) = 0, so that λ(t) = 2.88. At
t = 0.90s, we set p2(t) = 0, which yields λ(t) = 0. At t = 1.0 the original val-
ues of the signals pi(t) are restored, and the cycle is repeated for every time
unit. With this setting, it is clear that Assumptions 3.2 and 3.3 are satisfied.
Also, we can verify that condition (3.40) is satisifed with γ = 1.5 and k = 0.
Figure 3.1 provides an illustration of the graph underlying the simulated net-
work.

For the threshold function (3.7), we choose ς0 = 1 and λς = 0.3, so that
the hypotheses of Lemma 3.2 are satisifed. For each agent, the initial condi-
tions are chosen within the domain of attraction of a Chua oscillator with the
chosen parameters a, b,m0,m1.

Some results of the simulation are illustrated in Figures 3.2–3.4 and Ta-
ble 3.1. Namely, Figure 3.2 illustrates the evolution of the second state vari-
able x(2)

i for each agent i ∈ {1, . . . , 5} over the whole simulation. This result
confirms that the control objective (3.3) is achieved, i.e., the state of each agent
converges asymptotically to the reference trajectory. As a term of compari-
son, Figure 3.3 illustrates the evolution of the same state variables, with the
same initial conditions, when no control input is applied (ui(t) ≡ 03). Fig-
ure 3.4 illustrates the time instants when each agent updates its control in-
put within the interval [0, 1], and Table 3.1 illustrates the average inter-event

36 Event-triggered pinning control of switching networks

1

2

3

4

5

Figure 3.1. An illustration of the graph underlying the simulated network. Each node
in the graph represents a Chua oscillator. The nodes with thicker contour represent
the oscillators that receive feedback from the reference trajectory during part of the
simulation.

Table 3.1. Average inter-event time for each Chua oscillator over the time interval
[0.0, 30.0], with the proposed control algorithm applied.

NODE AVERAGE tii,k+1 − ti,k
1 0.061
2 0.054
3 0.115
4 0.123
5 0.115

time for each agent over the whole simulation. These results confirm that the
closed-loop system is not Zeno.

3.10 Summary

In this chapter, we have proposed an algorithm for event-triggered pinning
synchronization of complex networks of nonlinear agents with switching
topologies. We have found sufficient conditions under which Zeno behav-
ior of the closed-loop system is excluded, and the synchronization objective
is achieved. We have also shown that the error stack vector that represents
the global distance of the system from the synchronization vanishes exponen-
tially. A constant lower bound on the inter-event times has been provided for
the case of networks with time-invariant topologies. Numerical simulations
have been presented to validate the theoretical results.

Some viable extensions of this work include the application of the pro-

3.10. Summary 37

0 5 10 15 20 25 30

−1

0

1

t(s)

x
(2

)

1
2
3
4
5
r

0 0.2 0.4 0.6 0.8 1

−1

0

1

t(s)

x
(2

)

1
2
3
4
5
r

Figure 3.2. Evolution of the state variable x
(2)
i (t) for each Chua oscillator i ∈

{1, . . . , 5} and of r(2)(t) for the reference trajectory, over t ∈ [0, 30] (above) and
t ∈ [0, 1] (below), with the proposed control algorithm applied. As predicted by
Theorem 3.1, the state of each agent converges to the reference trajectory.

38 Event-triggered pinning control of switching networks

0 5 10 15 20 25 30

−1

0

1

t(s)

x
(2

)

1
2
3
4
5
r

Figure 3.3. Evolution of the state variable x(2)i for each Chua oscillator i ∈ {1, . . . , 5}
and of r(2) for the reference trajectory, over t ∈ [0, 30], with no control input applied
(ui(t) ≡ 03). The states of the agents do not converge to the reference trajectory.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

t(s)

i

Figure 3.4. Control updates for each Chua oscillator i ∈ {1, . . . , 5} over the time
interval [0, 1], with the proposed control algorithm applied.

3.10. Summary 39

posed algorithm to more general classes of networks, such as networks with
asymmetric couplings among the agents, and networks where errors in the
communication can occur, such as delays and packet drops.

Chapter 4

Cloud-supported multi-agent
coordination

In some realistic applications of multi-agent systems, inter-agent communi-
cation is completely or almost completely interdicted. This challenge arises,
for example, in the coordination of a fleet of autonomous underwater ve-
hicles (AUVs) [36, 37, 66]. Because of their severely limited communication,
sensing, and localization capabilities, underwater vehicles are virtually iso-
lated systems. Underwater communication and positioning may be imple-
mented by means of battery-powered acoustic modems, but such devices
are expensive, limited in range, and power-hungry. Inertial sensor for un-
derwater positioning are prohibitively expensive in most practical scenarios.
Moreover, GPS is not available underwater, and a vehicle needs to surface
whenever it needs to get a position fix [76].

In the control architecture described in this chapter, inter-agent commu-
nication is substituted by the use of a shared information repository hosted
on a cloud. Each agent schedules its own accesses independently, and does
not need to be alert for information broadcast by other agents. When an
agent accesses the repository, it uploads some data packets, and downloads
other packets that were previously deposited by other agents. Therefore,
each agent receives outdated information about the state of the other agents.
The control law and the rule for scheduling the cloud accesses are designed
to guarantee that the closed-loop system is well-posed and achieves a given
coordination objective, even if each agent receives only outdated informa-
tion about the state of the other agents. Our motivating example is a way-
point generation algorithm for AUVs, which, as described above, represents
a challenging application, since underwater communication is interdicted.

The use of a shared information repository in multi-agent control tasks is
subject to recent, but growing, research attention. In [63], the authors employ

41

42 Cloud-supported multi-agent coordination

asynchronous communication with a base station to address a multi-agent
coverage control problem. In [77], the authors present a cloud-supported ap-
proach to multi-agent optimization. In our previous work [66], we presented
a cloud-supported control strategy for the rendezvous of single-integrator
agents. In [78], the authors employ a similar approach to achieve asymp-
totic rendezvous in a disturbance-free scenario. In this chapter, we intro-
duce cloud support for multi-agent systems with second-order dynamics.
We consider both persistent and vanishing disturbances, which lead to ap-
proximate and perfect coordination, respectively. In both cases, we show
that the closed-loop system is well posed (meaning that the sequence of the
cloud accesses does not exhibit Zeno behavior [73]), and achieves the con-
trol objective. Our analysis extends the use of the edge Laplacian [71, 79]
to second-order multi-agent systems on directed graphs, which allows us to
consider control tasks with asymmetric information flow among the agents,
such as leader-following tasks.

The rest of this chapter is organized as follows. In Sections 4.1 and 4.2,
we present the system model and outline the control strategy. In Section 4.3,
we state our main result, whose proof is given in Sections 4.4–4.6. Section 4.7
corroborates the theoretical results by presenting two numerical simulations
of the proposed control strategy. Finally, in Section 4.8, we present our con-
clusions and some directions for future research.

4.1 System model

In this section, we describe our control architecture, by defining the agents’
model, the communication between the agents and the cloud repository, the
agents’ control inputs, and the control objective.

4.1.1 Agent Model

We consider a set V = {1, . . . , N} of N agents. The position and velocity of
agent i are denoted respectively as pi, vi ∈ Rn. For the sake of generality,
we consider the generic agent dimension n ∈ N. However, in our motivat-
ing example of planar AUV coordination, we have n = 2. The agents move
according to the following equations:

ṗi(t) = vi(t), (4.1a)
v̇i(t) = ui(t) + di(t), (4.1b)

for i = 1, . . . , N , where ui(t) is a control input and di(t) is a disturbance
signal. We denote p(t) = [p1(t)>, . . . , pN (t)>]>, and similarly for v(t), u(t)

4.1. System model 43

and d(t), so that (4.1) can be rewritten as

ṗ(t) = v(t), (4.2a)
v̇(t) = u(t) + d(t). (4.2b)

The control objective is for all the agents to converge to the same positions
and velocities within a given tolerance. Such objective is formalized mathe-
matically later in this section.

Assumption 4.1. The disturbance signals di(t) in (4.1b) satisfy ‖di(t)‖ ≤ δ(t),
where

δ(t) = (δ0 − δ∞)e−λδt + δ∞, (4.3)

for some 0 ≤ δ∞ ≤ δ0 and λδ > 0.

Assumption 4.1 allows to consider both scenarios where only a constant
upper bound is known (δ0 = δ∞) and scenarios where the disturbances
slowly vanish (δ∞ = 0), which makes it possible to reach asymptotic con-
vergence.

4.1.2 Cloud Repository

The agents cannot exchange any information directly, but can only upload
and download information on a shared repository hosted on a cloud. The
cloud is accessed intermittently by each agent and asynchronously by dif-
ferent agents. A motivating application is a group of AUVs that can only
communicate with a remote repository when they are on the water surface,
while they are isolated when they are underwater. When an agent accesses
the cloud, it also has access to a sampled measurement of its own position
and velocity. In our motivating application, this corresponds to the under-
water vehicles being able to access GPS while they are on the water surface.
The time instants when agent i accesses the cloud are denoted ti,k, k ∈ N, and
by convention ti,0 = 0 for all the agents. For convenience, we denote li(t) the
index of the most recent access time of agent i before time t—that is,

li(t) = max{k ∈ N : ti,k ≤ t}. (4.4)

The position and velocity measurement obtained by agent i upon the time
instant ti,k are denoted pi,k and vi,k respectively. The control signals ui(t) are
held constant between two consecutive cloud accesses:

ui(t) = ui,k ∀t ∈ [ti,k, ti,k+1). (4.5)

When an agent accesses the cloud, it uploads data that other agents may
download later, when they, in turn, access the cloud. Namely, when agent i

44 Cloud-supported multi-agent coordination

Table 4.1. Data contained in the cloud at a generic time instant t ≥ 0. The i-th column
corresponds to the latest packet uploaded by agent i.

agent 1 2 . . . N

last access t1,l1(t) t2,l2(t) . . . tN,lN (t)

position p1,l1(t) p2,l2(t) . . . pN,lN (t)

velocity v1,l1(t) v2,l2(t) . . . vN,lN (t)

control u1,l1(t) u2,l2(t) . . . uN,lN (t)

next access t1,l1(t)+1 t2,l2(t)+1 . . . tN,lN (t)+1

accesses the cloud at time ti,k, it uploads a packet containing the following
information: the current time ti,k, the position and velocity measurements
pi,k and vi,k, the value ui,k of the control input that is going to be applied
in the time interval [ti,k, ti,k+1), and the time ti,k+1 of the next access. The
data packet may overwrite the packet that was uploaded on the previous
access, avoiding that the amount of data contained in the cloud grow over
time, since, at each time instant, the cloud only contains the data that each
agent has uploaded upon its latest access. The data contained in the cloud at
a generic time instant is represented in Table 4.1.

To achieve inter-agent coordination, each agent needs to download infor-
mation about a subset of the other agents. For each agent i, we denote as
Ni ⊆ V \ {i} the subset of the agents whose information is downloaded by
agent i.1 Namely, when agent i accesses the cloud at time ti,k, it downloads
and stores the latest packet uploaded by each agent j ∈ Ni. This informa-
tion, together with the measurements pi,k and vi,k, is used by agent i to com-
pute its control input ui,k for the upcoming time interval [ti,k, ti,k+1), and to
schedule the next cloud access ti,k+1. In order to better illustrate the access
sequence and the corresponding notation, Figure 4.1 illustrates a possible se-
quence of cloud accesses on the time line. Note that, in the scenario depicted
in Figure 4.1, within the interval [ti,k, ti,k+1), while agent i is underwater
and, therefore, isolated, agent j surfaces and changes its control input more
than one time. Agent i does not know the control input that agent j will ap-
ply after tj,hj+1, nor it knows whether agent j will surface more times after
tj,hj+1. The scheduling algorithm is able to guarantee the overall system’s
convergence in spite of these limitations.

The cloud uses the packets that it is storing to compute information about
the global state of the system. Such information can be downloaded by the

1The number Ni of other agents whose information is downloaded by agent i may be chosen
according to the available bandwidth or to agent i’s computational capabilities.

4.1. System model 45

tj,lj(ti,k)

ti,k

tj,lj(ti,k)+1 tj,lj(ti,k)+2

ti,k+1

Figure 4.1. Excerpt of a possible sequence of cloud accesses on the time line. Recall
that tj,lj(t) denotes the most recent cloud access of agent j with respect to the time
t. Note that there can be more than one access of agent j between two consecutive
accesses of agent i.

agents when they access the cloud, and used to improve the coordination
performance. Here, we consider the following case: when agent i accesses
the cloud at time ti,k, it also receives the positive scalar η̂(ti,k) representing
an estimate of how far the system is from reaching the control objective. This
estimate is formally defined in Section 4.4. The operations that each agent i
performs upon each cloud access ti,k are summarized in the following Algo-
rithm 4.2.

Algorithm 4.2. Operations executed by agent i at ti,k.

measure position pi,k
measure velocity vi,k
for j ∈ Ni do

download packet {tj,lj , pj,lj , vj,lj , uj,lj , tj,lj+1}
end for
receive η̂(ti,k) from the cloud
compute control input ui,k
schedule next access ti,k+1

upload packet {ti,k, pi,k, vi,k, ui,k, ti,k+1}

Remark 4.1. In most existing self-triggered control protocols for multi-agent coor-
dination, when one agent updates its control input, such information is broadcast
immediately to that agent’s neighbors, which requires the neighbors to always be
alert for possibly coming information. This requirement is relaxed in the proposed
cloud-supported framework.

46 Cloud-supported multi-agent coordination

4.1.3 Controller

The controls ui,k, with i ∈ V, are computed as follows:

ui,k =
∑
j∈Ni

wij(kp(p̂j(ti,k)− pi,k) + kv(v̂j(ti,k)− vi,k)), (4.6)

v̂j(t) = vj,lj(t) + uj,lj(t)(t− tj,lj(t)), (4.7)

p̂j(t) = pj,lj(t) + vj,lj(t)(t− tj,lj(t)) +
1

2
uj,lj(t)(t− tj,lj(t))2, (4.8)

where kp, kv > 0 are control gains and wij > 0 represents the strength of
the influence of agent j on agent i. The values p̂j(t(i,k)) and v̂j(t(i,k)) repre-
sent the estimates of, respectively, the position and the velocity of agent j at
time ti,k. Note that, in order to compute such estimates, agent i only needs
the data downloaded from the cloud at time ti,k, and it is not necessary to
communicate directly with agent j.

The sets N1, . . . ,NN and the scalars wij induce a graph G = (V,E, w) over
the set V of the agents, where Ni is the set of the neighbors of i and wij is
the weight of edge (j, i). We are going to refer to this graph as the network
graph. Throughout the chapter, we assume that the network graph contains
a spanning tree.

Assumption 4.2. The network graph contains a spanning tree.

4.1.4 Control Objective

As we have anticipated, the control objective is that the agents synchro-
nize their positions and velocities. This objective can be formalized in a
convenient way if we exploit Assumption 4.2. Denote the spanning tree
of the network graph as T and let C = E \ T. Without loss of generality,
let the edges that are in T be indexed from 1 to N − 1 and the edges that
are in C be indexed from N to M , and partition the incidence matrix and
weight matrix accordingly as B = [BT, BC] and W = [WT,WC]. Denote
x(t) = (B>T ⊗ In)p(t) and y(t) = (B>T ⊗ In)v(t). In other words, x(t) =
[x1(t)>, . . . , xN−1(t)>]>, where each xi (t) = phead(i)(t) − ptail(i) is the differ-
ence between the positions of two agents whose indices constitute an edge in
T. Similarly, y(t) = [y1(t)>, . . . , yN−1(t)>]>, where yi (t) = vhead(i)(t)−vtail(i).
Let ξ(t) = [x(t)>, y(t)>]>. Note that, for each i, j ∈ V, pj(t) − pi(t) can be
written as a linear combination of the variables xi (t) for i ∈ {1, . . . ,M}, and,
similarly, vj(t)− vi(t) can be written as a linear combination of the variables
yi (t). Therefore, the control objective can be formalized in terms of ξ(t) as
follows.

Definition 4.1. Consider the multi-agent system (4.2) and the associated network
graph G. We say that the multi-agent system achieves practical convergence with

4.2. Self-triggered cloud access scheduling 47

tolerance ε ≥ 0 if
lim sup
t→∞

‖ξ(t)‖ ≤ ε.

In particular, if the system achieves practical convergence with tolerance ε = 0, we
say that the system achieves asymptotic convergence.

4.2 Self-triggered cloud access scheduling

Each agent schedules its own access to the cloud recursively, i.e., agent i
schedules the access ti,k+1 when it accesses the cloud at time ti,k. The schedul-
ing is based on comparing two time-varying functions of the data down-
loaded from the cloud with a given threshold function. The threshold func-
tion is chosen as

ς(t) = ς∞ + (ς0 − ς∞)e−λςt, (4.9)

with λς > 0 and 0 ≤ ς∞ < ς0. To define the scheduling rule, we need to
introduce some additional notation. Let p̂(t) = [p̂1(t)>, . . . , p̂N (t)>]>, where
p̂i(t) is defined in (4.8), and similarly for v̂(t). Let

x̂(t) = (BT ⊗ In)p̂(t), (4.10)
ŷ(t) = (BT ⊗ In)v̂(t), (4.11)

ξ̂(t) = [x̂(t)>, ŷ(t)>]>. (4.12)

Moreover, let

∆i(t) =

∫ t

ti,li(t)

∫ τ

ti,li(t)

δ(σ) dσ dτ +

∫ t

ti,li(t)

δ(τ) dτ ,

∆(t) = [∆1(t), . . . ,∆N (t)]>,

η̂(t) = ‖ξ̂(t)‖+ ‖BT‖ · ‖∆(t)‖, (4.13)

Note that (4.13), evaluated for t = ti,k, defines the estimate η̂(ti,k) that agent
i receives from the cloud at time ti,k. Moreover, let

Fe,r =

[
0(N−1)×(N−1) IN−1

−kpR −kvR

]
, (4.14)

where kp and kv are the control gains in (4.6),R is the reduced edge Laplacian
of the network graph, and

λ = −max{Re(s) : s ∈ eig(Fe,r)}. (4.15)

Consider the function

η(t, η0) = e−λ(t−t0)η0 +
√
N‖BT‖

∫ t

t0

e−λ(t−τ)(ς(τ) + δ(τ)) dτ , (4.16)

48 Cloud-supported multi-agent coordination

and the coefficients

βi =
(√

k2
p + k2

v

)∥∥(WT +WCT
>)i
∥∥, (4.17)

νi = max
j:i∈Nj

{∑
q∈Nj

wqj

}
, (4.18)

where (WT +WCT
>)i denotes the i-th row of (WT +WCT

>). Finally, choose
α such that 0 < α < 1. Then, each agent schedules the cloud accesses as
follows:

ti,k+1 = inf

{
t > ti,k :σi,k(t) ≥ ς(t) ∨ Ωi,k(t) ≥ α

νi
ς(t)

}
, (4.19)

where

Ωi,k(t) = kp

∫ t

ti,k

∫ τ

ti,k

δ(σ)dσ dτ + kv

∫ t

ti,k

δ(τ) dτ , (4.20)

σi,k(t) =

∥∥∥∥(∑
j∈N

wij

)(
kv(t− ti,k)ui,k

+ kp((t− ti,k)vi,k + (1/2)(t− ti,k)2ui,k)
)

+
∑
j∈Ni

wij(kv(t
′
j,hj − ti,k)uj,hj

+ kp((t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj)(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj)uj,h))

∥∥∥∥
+
∑
j∈Ni

wij

(∫ t′′j,hj

tj,hj+1

µi,kj (τ) dτ

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

µi,kj (θ) dθ dτ

)
+

(∑
j∈Ni

wij

)
Ωi,k(t) +

∑
j∈Ni

wijΩj,hj (t), (4.21)

µi,kj (t) = βjη(t, η̂(ti,k)) + ς(t), (4.22)

t′j,hj = min{t, tj,hj+1}, (4.23)

t′′j,hj = max{t, tj,hj+1}, (4.24)

and where we have denoted hj = lj(ti,k) for brevity. Recall here that li(t)
is defined by (4.4). The scheduling rule (4.19)–(4.24) can be interpreted as

4.3. Main result 49

follows. After the access ti,k, Ωi,k(t) represents an upper bound on the part
of ‖ũi(t)‖ that is due to the disturbances that have acted on agent i in the
interval [ti,k, t). This upper bound is kept under a threshold (here set to
(α/νi)ς(t)), so that the information deposited by agent i in the cloud can be
used to predict its position and velocity within a certain error bound. Simi-
larly, σi,k(t) represents an upper bound on the mismatch ‖ũi(t)‖, which takes
into account both the effect of the disturbances dj(t) with j ∈ Ni ∪ {i}, the
piecewise-constant nature of the control signals uj(t) with j ∈ Ni ∪ {i}, and
the fact that, for t > tj,hj+1, the current value of uj,hj+1 of uj(t) is not known
by agent i (agent i has downloaded uj,hj in the latest packet, but has no in-
formation on the choice of the control that agent j will adopt at time tj,hj+1).
Indeed, for t > tj,hj+1, agent i uses µi,kj (t) as an upper-bound for uj(t), hence
exploiting the estimate η̂(ti,k). The upper bound σi,k(t) is kept under ς(t), so
that the hypotheses of Lemma 4.2 are satisfied. A new cloud access is trig-
gered when either of Ωi,k(t) or σi,k(t) are about to cross the assigned thresh-
old. Note that (4.19)–(4.24) can be evaluated by agent i when it accesses the
cloud (i.e., at time ti,k) and do not require communication with the other
agents.

4.3 Main result

Our main result is formalized as the following theorem.

Theorem 4.1. Consider the multi-agent system (4.1), with control law (4.6)–(4.8)
and cloud accesses scheduled by (4.19)–(4.24). Let Assumptions 4.1 and 4.2 hold,
and let kp and kv be such that Fe,r is Hurwitz. If ς∞ > 0, the closed-loop system
does not exhibit Zeno behavior and achieves practical convergence with radius

ε =

√
N‖BT‖(ς∞ + δ∞)

λ
, (4.25)

where ς∞ is the asymptotic value of the threshold function (4.9), δ∞ is the asymptotic
value of the disturbance bound (4.3), and λ is defined in (4.15). If δ∞ = 0, ς∞ = 0
and λς < min{λ, λδ}, then the closed-loop system does not exhibit Zeno behavior
and achieves asymptotic convergence.

Remark 4.2. Note that our convergence result (4.25) is similar to that obtained
in related works on event-triggered coordination of multi-agent system, see for ex-
ample [65]. Here, however, convergence is obtained by using an asynchronously
accessed repository, rather than by direct inter-agent communication.

Remark 4.3. Note that, under Assumption 4.2, we can always choose kp and kv
such that Fe,r is Hurwitz. The proof of this remark is formalized as follows.

50 Cloud-supported multi-agent coordination

Proof. Consider the matrix

F =

[
0N×N IN

−kpL −kvL

]
,

where L is the Laplacian matrix of the graph G. A well known result in multi-
agent coordination is that, under Assumption 4.2, kp and kv can always be
chosen in such a way that F has exactly 2(N − 1) eigenvalues with negative
real parts (counted with their multiplicities) and a double eigenvalue in zero
- see for example [80]. But Fe,r ∈ R2(N−1)×2(N−1), therefore, it has exactly
2(N−1) eigenvalues (counted with their multiplicity). Therefore, if we show
that F and Fe,r have the same nonzero eigenvalues with the same multiplic-
ities, then we can conclude that Fe,r is Hurwitz.

The characteristic polynomial of F is

P(λ) = det(λI2N − F) = det
(
λ2IN + (λkv + kp)L

)
,

which for λ 6= 0 can be written as

P(λ) = λ2N det
(
IN + (λkv + kp)/λ

2L
)
. (4.26)

Now consider the matrix

Fe =

[
0M×N IM

−kpE −kvE

]
,

where E is the edge Laplacian of G. Similarly as done for F , we can compute
the characteristic polynomial of Fe as

Pe(λ) = det
(
λ2IM + (λkv + kp)E

)
, (4.27)

which for λ 6= 0 can be rewritten as

Pe(λ) = λ2M det
(
IM + (λkv + kp)/λ

2E
)
. (4.28)

Since L = WB> andE = B>W , by (4.26) and (4.28) and Sylvester’s determi-
nant identity, we have P(λ)/λ2N = Pe(λ)/λ2M for any λ 6= 0, which implies
that F and Fe have the same nonzero eigenvalues with the same multiplicity.
Therefore, we only need to prove that Fe and Fe,r have the same nonzero
eigenvalues with the same multiplicity. Consider the matrix

S =

[
IN−1 0(N−1)×(M−N+1)

−T> IM−N+1

]
,

4.4. Convergence proof 51

and note that

SES−1 =

[
R ∗

0(M−N+1)×(N−1) 0(M−N+1)

]
. (4.29)

Multiplying the right-hand side of (4.27) by det(S) det
(
S−1

)
= 1, and using

(4.29), we have

Pe(λ) = det
(
S(λ2IM + (λkv + kp)E)S−1

)
= det

(
λ2IM + (λkv + kp)SES

−1

)
= λ2(M−(N−1)) det

(
λ2IN−1 + (λkv + kp)R

)
= λ2(M−(N−1)) det

(
λ2I2(N−1) − Fe,r

)
= λ2(M−(N−1))Pe,r(λ),

where Pe,r(λ) is the characteristic polynomial of Fe,r. Therefore, Fe and Fe,r
have the same nonzero eigenvalues with the same multiplicity.

The proof of Theorem 4.1 is given in the following three sections of the
chapter. Namely, in Section 4.4, we study the convergence properties of the
closed-loop system, while, in Section 4.5, we show that the closed-loop sys-
tem does not exhibit Zeno behavior [73]. Finally, in Section 4.6 we put the
results of Sections 4.4 and 4.5 together to state a formal proof of Theorem 4.1.

4.4 Convergence proof

Our first step in the analysis of the closed-loop system is to rewrite the system
dynamics in terms of the error vector ξ(t). First, compare the control signals
ui,k defined by (4.6) with

zi(t) =
∑
j∈Ni

wij(kp(pj(t)− pi(t)) + kv(vj(t)− vi(t))). (4.30)

We can write zi(t) in terms of the incidence matrix and the weight matrix of
the network graph as

zi(t) = ((WiB
>)⊗ In)(kpp(t) + kvv(t)),

whereWi denotes the i-th row ofW . Letting z(t) = [z1(t)>, . . . , zN (t)>]>, we
can rewrite (4.30) as

z(t) = ((WB>)⊗ In)(kpp(t) + kvv(t)). (4.31)

52 Cloud-supported multi-agent coordination

Moreover, substituting W = [WT WC] and B = [BT BC] = BT[I T] in (4.31),
we have

z(t) = ((WT +WCT
>)B>T ⊗ In)(kpp(t) + kvv(t)). (4.32)

Using the properties of the Kronecker product, and recalling that x(t) =
(B>T ⊗ In)p(t) and y(t) = (B>T ⊗ In)v(t), we can rewrite (4.32) as

z(t) = ((WT +WCT
>)⊗ In)(kpx(t) + kvy(t)). (4.33)

Left-multiplying both sides of (4.33) byB>T ⊗In, using again the properties of
the Kronecker product, and recalling the definition (2.7) of the reduced edge
Laplacian, we have

(B>T ⊗ In)z(t) = (R⊗ In)(kpx(t) + kvy(t)). (4.34)

Let ũi(t) be the mismatch between the control input of agent i and zi(t),
namely,

ũi(t) = ui(t)− zi(t). (4.35)

We denote ũ(t) = [ũ1(t)>, . . . , ũN (t)>]>, so that we can rewrite (4.35) as

ũ(t) = u(t)− z(t). (4.36)

Left-multiplying both sides of (4.2a) and (4.2b) by B>T ⊗ In, we have

ẋ(t) = y(t), (4.37a)

ẏ(t) = (B>T ⊗ In)(u(t) + d(t)). (4.37b)

Substituting (4.34) and (4.36) in (4.37a) and (4.37b), we have

ẋ(t) = y(t),

ẏ(t) = −(R⊗ In)(kpx(t) + kvy(t))

+ (B>T ⊗ In)(ũ(t) + d(t)),

which, recalling that ξ(t) = [x(t)> y(t)>]>, can be rewritten as

ξ̇(t) = (Fe,r ⊗ In)ξ(t) + (G⊗ In)(ũ(t) + d(t)), (4.38)

where Fe,r is defined in (4.14) and G = [0>(N−1)×N B>T]>.
The following Lemma 4.1 shows that η̂(t) defined by (4.13) constitutes an

upper bound for the state error vector ξ(t).

Lemma 4.1. Under Assumption 4.1, we have ‖ξ(t)‖ ≤ η̂(t) for all t ≥ 0, where
η̂(t) is defined by (4.13).

4.4. Convergence proof 53

Proof. DenoteDv,i(t) =
∫ t
ti,li(t)

di(τ) dτ andDp,i(t) =
∫ t
ti,li(t)

∫ τ
ti,li(t)

di(θ) dθ dτ ,
let Dp(t) = [Dp,1(t), . . . , Dp,N (t)], and similarly for Dv(t). Using (4.1), (4.7)
and (4.8), we have

p(t) = p̂(t) +Dp(t), (4.39a)
v(t) = v̂(t) +Dv(t), (4.39b)

Left multiplying (4.39a) and (4.39b) by (BT⊗ In), and using (4.10)–(4.12), we
have

ξ(t) = ξ̂(t) + ((BT ⊗ In)⊗ I2)D(t),

where we have denoted D(t) = [Dp(t)
>, Dv(t)

>]>. Taking norms of both
sides, and using the triangular inequality, the properties of the Kronecker
product, and Assumption 4.1, we have

‖ξ(t)‖ ≤ ‖ξ̂(t)‖+ ‖BT‖‖D(t)‖. (4.40)

Under Assumption 4.1, we have ‖D(t)‖ ≤ ‖∆(t)‖, which substituted in (4.40)
yields the desired result.

Note that η̂(t) as defined in (4.13) can be computed by the cloud at any
time instant. However, the cloud does not need to compute η̂(t) at all time
instants, but only when an agent connects to download η̂(ti,k). As a conse-
quence of Lemma 4.1, we have, in particular,

‖ξ(ti,k)‖ ≤ η̂(ti,k). (4.41)

The following Lemma relates a bound on the control errors ũi(t) to a
bound on the state error vector ξ(t) and on the control signals ui(t).

Lemma 4.2. Consider the multi-agent system (4.1), and let Assumption 4.1 hold.
Suppose that

‖ũi(t)‖ ≤ ς(t) (4.42)

for all t ∈ [t0, tf) and all i ∈ V, where ũi(t) is defined by (4.35) and ς(t) is the
threshold function (4.9). Let η0 ≥ ‖ξ(t0)‖. Then, for all t ∈ [t0, tf), we have

‖ξ(t)‖ ≤ η(t, η0), (4.43)

where η(·, ·) is defined by (4.16). Moreover, we have

‖ui(t)‖ ≤ βiη(t, η0) + ς(t) (4.44)

for all t ∈ [t0, tf), and all i ∈ V, where βi is defined by (4.17).

54 Cloud-supported multi-agent coordination

Proof. The Laplace solution of (4.38) reads

ξ(t) = eFe,r(t−t0)ξ(t0) +

∫ t

t0

eFe,r(t−τ)(G⊗ In)(ũ(τ) + d(τ)) dτ . (4.45)

Taking norms of both sides in (4.45), and using (4.42), Assumption 4.1, the
properties of the Kronecker product, and the triangular inequality, and ob-
serving that ‖eFe,r(t−t0)‖ ≤ e−λ(t−t0), and that ‖G‖ = ‖BT‖, we have (4.43).
Moreover, from (4.35), we have ui(t) = zi(t) + ũi(t). Taking norms of both
sides, and using the triangular inequality, we have ‖ui(t)‖ ≤ ‖zi(t)‖+‖ũi(t)‖.
Selecting the rows corresponding to the i-th agent in (4.33), we have zi(t) =
((WT +WCT

>)i⊗In)(kpx(t)+kvy(t)), where (WT +WCT
>)i denotes the i-th

row of (WT +WCT
>). Taking norms of both sides, and substituting the result

in the previous inequality, we have ‖ui(t)‖ ≤ βi‖ξ(t)‖+ ‖ũi(t)‖. Using (4.42)
and (4.43), we obtain (4.44).

Since (4.41) holds, we can invoke Lemma 4.2 with t0 = ti,k and η0 =
η̂(ti,k), which leads to the implication

‖ũj(t)‖ ≤ ς(t) ∀t ∈ [ti,k, tf), j ∈ V

=⇒ ‖uj(t)‖ ≤ µi,kj (t) ∀t ∈ [ti,k, tf), j ∈ V,
(4.46)

where µi,kj (t) is defined by (4.22).
The following Lemma 4.3 shows that, under the scheduling rule (4.18)–

(4.24), we can guarantee that ‖ũi(t)‖ ≤ ‖ς(t)‖ for all agents, thus satisfying
the hypotheses of Lemma 4.2.

Lemma 4.3. Consider the multi-agent system (4.2) under the control law (4.5)–
(4.8) and the scheduling rule (4.19)–(4.24). Then, under Assumption 4.1, we have
‖ũi(t)‖ ≤ ς(t) for all t ≥ 0 and i ∈ V.

Proof. Since (4.19) guarantees σi,li(t)(t) ≤ ς(t) for all t ≥ 0 and all i ∈ V, we
only need to show that ‖ũi(t)‖ ≤ σi,li(t)(t) for all t ≥ 0 and all i ∈ V. Without
loss of generality, let li(t) = k, and consider t ∈ [ti,k, ti,k+1). Substituting (4.6)
and (4.30) in (4.35), we have

ũi(t) =
∑
j∈Ni

wij(kp((p̂
(i,k)
j − pj(t))− (pi,k − pi(t)))

+ kv((v̂
(i,k)
j − vj(t))− (vi,k − vi(t)))). (4.47)

First, consider the term vi(t) in (4.47). Integrating (4.1b) in (ti,k, t), we have,
for t ∈ (ti,k, ti,k+1),

vi(t) = vi,k + (t− ti,k)ui,k +

∫ t

ti,k

di(t) dτ . (4.48)

4.4. Convergence proof 55

Now consider the term vj(t) in (4.47). Integrating (4.1b) for agent j in (tj,hj , t),
and using (4.7), we have

vj(t) = v̂
(i,k)
j +

∫ t

ti,k

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ . (4.49)

Now we need to distinguish two cases. If t ≤ tj,hj+1, then (4.49) can be
rewritten as

vj(t) = v̂
(i,k)
j + (t− ti,k)uj,hj +

∫ t

tj,hj

dj(τ) dτ . (4.50)

Conversely, if t > tj,hj+1, (4.49) can be rewritten as

vj(t) = v̂
(i,k)
j + (tj,hj+1 − ti,k)uj,hj

+

∫ t

tj,hj+1

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ . (4.51)

Using (4.23) and (4.24), we can write (4.50) and (4.51) compactly as

vj(t) = v̂
(i,k)
j + (t′j,hj − ti,k)uj,hj

+

∫ t′′j,hj

tj,hj+1

uj(τ) dτ +

∫ t

tj,hj

dj(τ) dτ . (4.52)

Now consider the term pi(t) in (4.47). Integrating (4.1a) in (ti,k, t), and using
(4.48), we have, for t ∈ (ti,k, ti,k+1),

pi(t) = pi,k + vi,k(t− ti,k) + (1/2)(t− ti,k)2ui,k

+

∫ t

ti,k

∫ τ

ti,k

di(θ) dθ dτ . (4.53)

Finally, consider the term pj(t) in (4.47). Integrating (4.1a) for agent j in
[tj,hj , t), and using (4.8), we have

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+

∫ t

ti,k

∫ τ

tj,hj

uj(σ) dσ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ . (4.54)

56 Cloud-supported multi-agent coordination

Similarly as we did for (4.49), we need to distinguish two cases. If t ≤ tj,hj+1,
then (4.54) can be rewritten as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(t− ti,k)(t+ ti,k − 2tj,hj)uj,hj

+

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ . (4.55)

Conversely, if t > tj,hj+1, (4.54) can be rewritten as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(tj,hj+1 − ti,k)(tj,hj+1 + ti,k − 2tj,hj)uj,hj

+ (t− tj,hj+1)(tj,hj+1 − tj,hj)uj,hj

+

∫ t

tj,hj+1

∫ τ

tj,hj+1

uj(σ) dσ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(σ) dσ dτ . (4.56)

Using (4.23) and (4.24), we can write (4.55) and (4.56) compactly as

pj(t) = p̂
(i,k)
j + (t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj)(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj)uj,h

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

uj(θ) dθ dτ +

∫ t

tj,hj

∫ τ

tj,hj

dj(θ) dθ dτ . (4.57)

Substituting (4.48), (4.52), (4.53) and (4.57) in (4.47), taking norms of both

4.5. Well-posedness proof 57

sides, and using the triangular inequality and Assumption 4.1, we have

‖ũi(t)‖ ≤
∥∥∥∥(∑

j∈N

wij

)
(kv(t− ti,k)ui,k

+ kp((t− ti,k)vi,k + (1/2)(t− ti,k)2ui,k))

+
∑
j∈Ni

wij(kv(t
′
j,hj − ti,k)uj,hj

+ kp((t− ti,k)vj,hj

+ (1/2)(t′j,hj + ti,k − 2tj,hj)(t
′
j,hj − ti,k)uj,hj

+ (t′′j,hj − tj,hj+1)(tj,hj+1 − tj,hj)uj,h))

∥∥∥∥
+
∑
j∈Ni

wij

(∫ t′′j,hj

tj,hj+1

‖uj(τ)‖ dτ

+

∫ t′′j,hj

tj,hj+1

∫ τ

tj,hj+1

‖uj(θ)‖ dθ dτ

)
+

(∑
j∈Ni

wij

)
Ωi,k(t) +

∑
j∈Ni

wijΩj,hj (t). (4.58)

Comparing (4.58) with (4.21), we have that, if ‖ũi(t)‖ > σi,k(t) for some t ∈
(ti,k, ti,k+1), then it must be ‖uj(τ)‖ > µi,kj (τ) for some j ∈ V and some τ ∈
(tj,hj+1, t). But, by (4.46), the previous inequality implies ‖ũj(τ ′)‖ > ς(τ ′) for
some τ ′ ∈ (tj,hj+1, t), which, by (4.19), implies in turn ‖ũj(τ ′)‖ > σj,lj(τ ′)(τ

′).
Therefore, the condition ‖ũi(t)‖ ≤ σi,li(t)(t) cannot be violated by any of the
agents if it has not been previously violated by another agent. Since we have
ũ(0) = 0Nn, this condition holds for all the agents at time zero, and, therefore,
cannot be violated by any of the agents. Hence, we have ‖ũi(t)‖ ≤ σi,li(t)(t)
for all t ≥ 0 and all i ∈ V, which, by (4.19), implies ‖ũi(t)‖ ≤ ς(t) for all t ≥ 0
and all i ∈ V.

4.5 Well-posedness proof

The second step in our analysis is to prove that the closed-loop system is well
posed, in the sense that the sequence of the updates ti,k for k ∈ N0 does not
present Zeno behavior for any of the agents. We are going to distinguish two
cases, namely ς∞ > 0 and ς∞ = 0, where ς∞ is the asymptotic value of the
threshold function (4.9).

Lemma 4.4. Consider the multi-agent system (4.2), with control law (4.5)–(4.8)
and cloud accesses scheduled by (4.19)–(4.24). Let kp and kv be such that Fe,r is

58 Cloud-supported multi-agent coordination

Hurwitz. Suppose ς∞ > 0. Then, under Assumptions 4.1 and 4.2, the closed-loop
system does not exhibit Zeno behavior.

Proof. First, note that Ωi,k(t), for t ∈ [ti,k, ti,k+1), can be computed explicitly
as

Ωi,k(t) = kp

(
δ0 − δ∞
λδ

e−λδti,k
(

(t− ti,k)

− 1− e−λδ(t−ti,k)

λδ

)
+

1

2
δ∞(t− ti,k)2

)
+ kv

(
δ0 − δ∞
λδ

e−λδti,k(1− e−λδ(t−ti,k)) + δ∞(t− ti,k)

)
. (4.59)

Observing that e−λδti,k ≤ 1, we can bound (4.59) as

Ωi,k(t) ≤ kp
(
δ0 − δ∞
λδ

(t− ti,k) +
1

2
δ∞(t− ti,k)2

)
+ kv

(
δ0 − δ∞
λδ

(1− e−λδ(t−ti,k)) + δ∞(t− ti,k)

)
,

(4.60)

while ς(t) ≥ ς∞. Therefore, for Ωi,k(t) to be larger than ας(t)/νi, the right-
hand side of (4.60) must be greater or equal than ας∞/νi, which, in turn,
requires a strictly positive value of t − ti,k. Hence, the triggering condition
Ωi,k(t) ≥ ας(t)/νi cannot be responsible for Zeno behavior. Now we produce
a similar argument for the triggering condition σi,k(t) ≥ ς(t). First note that,
thanks to (4.18) and (4.19), the last two addends of σi,k(t) in (4.21) can be
bounded by (∑

j∈N

wij

)
Ωi,k(t) +

∑
j∈N

wijΩj,hj (t) ≤ ας(t). (4.61)

Moreover, for t ∈ [ti,k, ti,k+1), letting hj = lj(ti,k), we have, from Lemma 4.2,

‖ui,k‖ ≤ βiη(ti,k, ‖ξ(0)‖) + ς(ti,k), (4.62)
‖uj,hj‖ ≤ βjη(ti,k, ‖ξ(0)‖) + ς(ti,k). (4.63)

Since η(t, η0) is an upper-bounded function of t for any η0, we can denote as
η̄ the upper bound of η(·, ‖ξ(0)‖), which, by observing also that ς(ti,k) ≤ ς0,
allows us to further bound (4.62) and (4.63) as

‖ui,k‖ ≤ βiη̄ + ς0, (4.64)
‖uj,hj‖ ≤ βj η̄ + ς0. (4.65)

4.5. Well-posedness proof 59

Reasoning similarly for µj(t) for t ∈ [tj,hj+1), we have

µj(t) ≤ βj η̄ + ς0. (4.66)

Also, note that
‖vj,hj − vi,k‖ ≤ ‖ξ(ti,k)‖ ≤ η̄. (4.67)

Substituting (4.61) and (4.64)–(4.67) into (4.21), and using the triangular in-
equality, we have

σi,k(t) ≤
(∑
j∈N

wij(βj η̄ + ς0 + βiη̄ + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
η̄kp(t− ti,k) + ας(t). (4.68)

Noticing also that ς(t) ≥ ς∞ for all t ≥ 0, the triggering condition σi,k(t) ≥
ς(t) implies that the first two addends of (4.68) are larger than (1 − α)ς∞,
which requires a strictly positive value of t− ti,k. Hence, the triggering con-
dition σi,k(t) ≥ ς(t) cannot be responsible for Zeno behavior either.

When the disturbances eventually vanish, the particular case of asymp-
totic convergence may be considered with the specific choice of ς∞ = 0 and
a convergence rate λς slower than λ, which is defined by (4.15) and can be
interpreted as the natural convergence rate of the network. This is formally
stated in the following Lemma.

Lemma 4.5. Consider the multi-agent system (4.1), with control law (4.5)–(4.8)
and cloud accesses scheduled by (4.19)–(4.24). Let Assumptions 4.1 and 4.2 hold,
with δ∞ = 0 in Assumption 4.1. Choose kp and kv such that Fe,r is Hurwitz, and
choose ς∞ = 0 and λς < min{λ, λδ}. Then, the closed-loop system does not exhibit
Zeno behavior.

Proof. We write the proof for the case λ > λδ . The structure of the proof is the
same for λ < λδ and λ = λδ , with only the expression (4.75) of the coefficient
¯̄η taking a slightly different form. Under Assumption 4.1 with δ∞ = 0 and
λς < λδ , we can write

δ(t) ≤ δ0e−λςt. (4.69)

Substituting (4.69) in (4.20), and solving the integrals explicitly, we have

Ωi,k(t) ≤
(
kp
δ0
λς

(
(t− ti,k)− 1− e−λς(t−ti,k)

λς

)
+ kv

δ0
λς

(1− e−λς(t−ti,k))

)
e−λςti,k . (4.70)

60 Cloud-supported multi-agent coordination

Since by hypothesis ς∞ = 0, we have

ς(t) = ς0e
−λςt = ς0e

−λςti,ke−λς(t−ti,k). (4.71)

Comparing (4.70) and (4.71), after dividing both sides by e−λςti,k , we have
that the triggering condition Ωi,k(t) ≥ α/νiς(t) requires

kp
δ0
λς

(
(t− ti,k)− 1− e−λς(t−ti,k)

λς

)
+ kv

δ0
λς

(1− e−λς(t−ti,k)) ≥ α

νi
ς0e
−λς(t−ti,k),

which, in turn, requires a strictly positive value of t − ti,k. Hence, the trig-
gering condition Ωi,k(t) ≥ α/νiς(t) cannot be responsible for Zeno behavior.
Now we produce a similar argument for the triggering condition σi,k(t) ≥
ς(t). Under Assumption 4.1 with δ∞ = 0, Lemma 4.2 holds, and (4.16) can be
written as

η(t, η0) = e−λ(t−t0)η0 +
√
N‖BT‖e−λt(

ς0(e(λ−λς)t − e(λ−λς)t0)

λ− λς
+
δ0(e(λ−λδ)t − e(λ−λδ)t0)

λ− λδ

)
(4.72)

for all t ≥ t0. Choosing t0 = 0 and η0 = ‖ξ(0)‖, from (4.72) we have

η(t, ‖ξ(0)‖) ≤ e−λt‖ξ(0)‖+
√
N‖BT‖

(
ς0e
−λςt

λ− λς
+
δ0e
−λδt

λ− λδ

)
(4.73)

for all t ≥ 0. Since, by hypothesis, λς < λ, (4.73) can be further bounded by

η(t, ‖ξ(0)‖) ≤ ¯̄ηe−λςt, (4.74)

where we have denoted

¯̄η =

(
‖ξ(0)‖+

√
N‖BT‖

(
ς0

λ− λς
+

δ0
λ− λδ

))
. (4.75)

Substituting (4.74) in (4.62) and (4.63), and observing that ς(ti,k) = ς0e
−λςt,

we have

‖ui,k‖ ≤ (βi ¯̄η + ς0)e−λςti,k , (4.76)

‖uj,hj‖ ≤ (βj ¯̄η + ς0)e−λςti,k . (4.77)

Reasoning similarly for µj(t) for t > tj,hj+1, we have

µj(t) ≤ (βj ¯̄η + ς0)e−λςti,k . (4.78)

4.6. Proof of Theorem 4.1 61

Also, note that
‖vj,hj − vi,k‖ ≤ ‖ξ(ti,k)‖ ≤ ¯̄ηe−λςti,k . (4.79)

Finally, note that (4.61) remains valid under the hypotheses of this Lemma.
Therefore, substituting (4.61) and (4.76)–(4.79) into (4.21), observing that ς(t) =
ς0e
−λςti,k and using the triangular inequality, we have

σi,k(t) ≤
((∑

j∈N

wij(βj ¯̄η + ς0 + βi ¯̄η + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
¯̄ηkp(t− ti,k) + ας0

)
e−λςti,k . (4.80)

From (4.71) and (4.80), after dividing both sides by e−λςti,k , we can see that
the triggering condition σi,k(t) ≥ ς(t), implies((∑

j∈N

wij(βj ¯̄η + ς0 + βi ¯̄η + ς0)

)
(kv(t− ti,k) + (1/2)kp(t− ti,k)2)

+

(∑
j∈N

wij

)
¯̄ηkp(t− ti,k)

)
≥ (1− α)ς0e

−λς(t−ti,k),

which, in turn, requires a strictly positive value of t − ti,k. Hence the trig-
gering condition σi,k(t) ≥ ς(t) cannot be responsible for Zeno behavior ei-
ther.

4.6 Proof of Theorem 4.1

From Lemma 4.3, we know that, under the control law (4.5)–(4.8) and the
scheduling rule (4.19)–(4.24) the hypotheses of Lemma 4.2 are satisfied.

If δ∞ > 0, we know from Lemma 4.4 that the closed-loop system does not
exhibit Zeno behavior. Therefore, we can take t→∞ in (4.16) in Lemma 4.2,
obtaining lim supt→∞‖ξ(t)‖ ≤ ε, with ε given by (4.25).

If δ∞ = 0, ς∞ = 0 and λς < min{λ, λδ}, we know from Lemma 4.5 that the
closed-loop system does not exhibit Zeno behavior. Therefore, we can take
again t→∞ in (4.16), obtaining lim supt→∞‖ξ(t)‖ ≤ ε. But since δ∞ = ς∞ =
0, (4.25) evaluates to zero, and therefore limt→∞ ξ(t) = 0.

4.7 Numerical simulations

In this section, two numerical simulations of the proposed control algorithm
are presented, one for a scenario where practical convergence is reached, and

62 Cloud-supported multi-agent coordination

1

2

3

4

1

2

34

5

Figure 4.2. A graph with 4 nodes and 5 edges. The nodes and the edges are labelled
with their indexes.

one for a scenario where asymptotic convergence is reached. For both sim-
ulations, we consider a multi-agent system made up of N = 4 agents with
state in R2, which exchange information through a cloud repository accord-
ing to the graph G illustrated in Figure 4.2, where all the edges are assigned
unitary weights.

The assigned graph contains a spanning tree T made up of the first three
edges. The corresponding reduced edge Laplacian is

R =

 2 0 −1

−1 2 1

0 −1 1

 .
The control gains are chosen as kp = 0.5 and kd = 1.0, which leads to λ =
−max{Re(s) : s ∈ eig(Fe,r)} = 0.5 and ‖BT‖ ' 2.45. The disturbances are
chosen as

di(t) = δ(t)

[
cos(2π(i/N)t+ 2π((N − i)/N))

sin(2π(i/N)t+ 2π((N − i)/N))

]
,

where δ(t) is defined by (4.3) with δ0 = 0.2, λδ = 0.45, δ∞ = 0.02 in the
first simulation, and δ∞ = 0 in the second simulation. It is easy to see that,
with these parameters, Assumption 4.1 is satisfied. The threshold function
is chosen as (4.9), with ς0 = 5.0, λς = 0.4, ς∞ = 0.5 for the first simulation,
and ς∞ = 0 for the second simulation. Note that, with these choices, the
first simulation scenario satisfies the hypotheses of Theorem 4.1 for practical
coordination, and the second simulation scenario satisfies the hypotheses of
Theorem 4.1 for asymptotic convergence. For the coefficient α that appears
in (4.19), we choose α = 0.05.

The results of the first simulation are illustrated in Figure 4.3. From Fig-
ure 4.3 it looks clear that the multi-agent system only achieves practical con-
vergence, but the norm of the disagreement vector is significantly reduced.

4.7. Numerical simulations 63

-0.1

0.1

0.3

0.5

p
(1

)
i

(t
)
−
p
(1

)
j

(t
)

1, 2
2, 3
3, 4

1

2

3

4

i

0 2 4 6 8 10 12 14 16 18 20

0.3

0.6

t

||ξ
(t

)|
|

Figure 4.3. Simulation with persistent disturbances. Top: position mismatches across
the edges (j, i) in the spanning tree over time. Middle: time instants when each agent
accesses the cloud; a green cross denotes an access triggered by Ωi,k(t) ≥ α/νiς(t); a
red cross denotes an access triggered by σi,k(t) ≥ ς(t). Bottom: norm of the global
disagreement vector ξ(t) over time.

From Figure 4.3, we can also see that the cloud accesses do not accumulate;
on the contrary, they seem to become less frequent over time, which corrob-
orates the result that the closed-loop system does not exhibit Zeno behavior.
The results of the second simulation are illustrated in Figure 4.4. From Fig-
ure 4.4 it looks clear that ξ(t)→ 0, which means that asymptotic convergence

64 Cloud-supported multi-agent coordination

-0.1

0.1

0.3

0.5
p
(1

)
i

(t
)
−
p
(1

)
j

(t
)

1, 2
2, 3
3, 4

1

2

3

4

i

0 2 4 6 8 10 12 14 16 18 20
0

0.3

0.6

t

||ξ
(t

)|
|

Figure 4.4. Simulation with asymptotically vanishing disturbances. Same subplots as
in Figure 4.3.

is reached. From Figure 4.4, we can also see that the cloud accesses do not
accumulate even if the threshold function is converging to zero, which again
corroborates the result that the closed-loop system does not exhibit Zeno be-
havior.

4.8. Summary 65

4.8 Summary

This chapter has addressed a self-triggered control problem for multi-agent
coordination of a team of agents with second-order dynamics. Coordination
has been achieved by having the agents asynchronously deposit and retrieve
data on a cloud repository, rather than by inter-agent communication. Two
control objectives have been considered, namely practical and asymptotic
convergence. It has been shown that the proposed control strategy achieves
practical convergence in the presence of unknown bounded persistent dis-
turbances, and asymptotic convergence in the presence of unknown distur-
bances if they slowly vanish. Well-posedness of the closed-loop system has
been proved by showing that there is a lower bound for the time interval be-
tween two consecutive accesses to the cloud. The proposed scheme can be
adopted in all cases when direct communication among agents is interdicted,
as illustrated in our motivating example of controlling a fleet of AUVs.

Future work will address possible imperfections in the communication
with the repository, such as time delays and packet losses, as well as more
complex control objectives, such as coverage and inspection.

Chapter 5

Coverage control of anisotropic
sensor networks

IN this chapter, we study a coverage problem for a multi-agent network of
mobile sensors.
Coverage problems have often been addressed under the assumption that

the mobile sensors have a spherical sensing pattern, in the sense that the per-
ception that a sensor has of a point in the surrounding environment only
depends on the distance between the sensor and the point. With this as-
sumption, locally optimal solutions are identified as the Voronoi tessellations
of the environment under inspection, and one such solution is pursued via
a distributed implementation of the Lloyd algorithm—see for example [40].
Conversely, in this thesis, we consider a coverage problem where the idea of
discretizing the environment under observation [61–63] is conjugated with
the use of sensors with generalized, anisotropic sensing patterns [57, 58], as
well as with the use of Voronoi tessellations, which are opportunely rede-
fined according to our generalized setup.

Voronoi tessellations for anisotropic sensing have been considered, for ex-
ample, in [47, 49], but under the assumption of only elliptical footprints and
continuous environments. Conversely, in this thesis, we apply generalized
sensing patterns on discretized environments. Using the idea of Voronoi tes-
sellations for anisotropic sensing in discretized environments allows us to
define a novel distributed algorithm for anisotropic coverage where com-
munication is limited, pairwise, intermittent, and asynchronous; and where
complex algorithms for environment partitioning are not necessary. Thus,
the proposed algorithm is suitable for implementation on networks of un-
manned vehicles with limited computation capabilities, where motion plan-
ning must be executed in concurrence with lower-level control.

The rest of this chapter is organized as follows. In Section 5.1, we intro-

67

68 Coverage control of anisotropic sensor networks

duce some notations and properites relative to unit vectors and used exten-
sively throughout the chapter. (For notations, nomenclature and concepts
relative to optimization that are used in this chapter, the reader is referred
to [81].) In Section 5.2, we define the abstractions of a landmark and a mobile
sensor, which set the basis for a mathematical formulation of our coverage
problem. In Section 5.3 we give a generalized definition of Voronoi tessella-
tions, which plays a central role in the convergence analysis of the algorithms
proposed in the chapter. In Section 5.4, we formulate the coverage problem as
an optimization problem. In Section 5.5, we identify the generalized Voronoi
tessellations as a superset of the optimal solutions of the problem. In Sec-
tion 5.6, we present a distributed algorithm that achieves a local optimum
in the form of a Voronoi tessellation, and we demonstrate its convergence
properties. In Section 5.7, we discuss the implementation of the proposed
algorithm as a distributed program, and in Sections 5.8 and 5.9, we present
and discuss respectively a simulation and an experimental evaluation of the
proposed algorithm. In Section 5.10, we propose a control law for the motion
of the sensors, and we discuss its convergence properties. In Section 5.11, we
discuss a simulation of the proposed control law. Section 5.12 concludes the
chapter with a summary.

5.1 Notations and properties related to unit vectors

Throughout this chapter, we use unit vectors to denote directions. We denote
the set of the unit vectors in R3 as S2. Namely, we let

S2 = {n̂ ∈ R3 : ‖n̂‖ = 1}.

Sometimes we call S2 the unit sphere. A vector in the unit sphere can always
be expressed as a (not necessarily unique) tuple (θ, φ), with θ ∈ [0, 2π) and
φ ∈ [0, π). Namely, for each n̂ ∈ S2, we have

n̂ =

cos θ sinφ

sin θ sinφ

cosφ

 ,
for some θ ∈ [0, 2π)] and some φ ∈ [0, π). The angles θ and φ are called the
spherical coordinates of n̂, and we write n̂ = sph(θ, φ). If a unit vector is time-
dependent, its time derivative is always orthogonal to the vector, because the
norm of the vector must be always equal to one. Namely, we have

˙̂n = skew(n̂)ω (5.1)

5.2. Landmarks and sensors 69

for some ω ∈ R3. We call the vector ω the angular velocity of the unit vector.
Here skew(·) denotes the skew operator,

skew(v) =

 0 −vz vy

vz 0 −vx
−vy vx 0

 ,
where v = [vx, vy, vz]

>. The skew operator has the property that, for each
v, u ∈ R3, skew(v)u is equal to v × u, where × denotes the cross product.
Therefore, from (5.1), we have that skew(n̂)ω is orthogonal to n̂ and to ω for
any n̂ ∈ S2 and any ω ∈ R3.

5.2 Landmarks and sensors

In this section, we introduce the definitions of landmark and mobile sensor.
A landmark is an abstraction of a point or a small area of interest, that

must be kept under observation, and that may be part of a larger surface. A
landmark is formally defined as the tuple l = (q, m̂), where q ∈ R3 is the
position of the landmark, and m̂ ∈ S2 is the orientation of the landmark.
More specifically, m̂ is a direction that characterizes the orientation of the
landmark.

A mobile sensor is a tuple s = (p, n̂, f), where p ∈ R3 is the position of
the sensor, n̂ ∈ S2 is the orientation, and f : (R3 × S2)2 → R≥0 is a func-
tion called the footprint of the sensor. The orientation of a sensor is the unit
vector corresponding to the direction where the sensor is pointing. The foot-
print of a mobile sensor is a function that describes the sensor’s perception
of the surrounding environment. Namely, if s = (p, n̂, f) is a mobile sensor,
and l = (q, m̂) is a landmark, then f(p, n̂, q, m̂) is a measure of the quality
of the perception that the sensor has of the landmark. Lower values of the
footprint correspond to a better perception, and the value zero corresponds
to the best possible perception. In some of the control algorithms proposed
in this chapter, we assume that we can control the velocity v ∈ R3 and the
angular velocity ω ∈ R3 of a mobile sensor. The velocity and angular velocity
are related to the position and orientation of the sensor by

ṗ = v, (5.2)
˙̂n = skew(n̂)ω. (5.3)

The perception that a mobile sensor has of a landmark is given by evalu-
ating the sensor’s footprint in the position and orientation of the sensor and
of the landmark. This concept is formalized in the following Definition 5.1.

70 Coverage control of anisotropic sensor networks

Definition 5.1 (Perception of a landmark attained by a mobile sensor). The
perception of a landmark l = (q, m̂) attained by a mobile sensor s = (p, n̂, f) is
defined as f(p, n̂, q, m̂), and it is denoted as per(s , l). Namely, we let

per(s , l) = f(p, n̂, q, m̂). (5.4)

The coverage of a finite set of landmarks attained by a mobile sensor is
defined as the sum of the perceptions of the landmarks in the set attained by
the sensor. This concept is formalized in the following Definition 5.2.

Definition 5.2 (Coverage of a finite set of landmarks attained by a mobile
sensor). Consider now a finite set L = {l1, . . . , lM} of landmarks. The coverage
of the set L attained by a sensor s is defined as the sum of the perceptions of the
landmarks in L attained by the sensor. Namely, we let

cov(s ,L) =
∑
l ∈L

per(s , l). (5.5)

Finally, the coverage of a finite set of landmarks attained by a set of mo-
bile sensors is defined with respect to a partition of the landmarks among
the sensors, and it is given by the sum of the coverages attained by each sen-
sor for its subset of landmarks. This concept is formalized in the following
Definition 5.3.

Definition 5.3 (Coverage of a finite set of landmarks attained by a team of
mobile sensors). Consider a team of mobile sensors S = (s1, . . . , sN) and a finite
set of landmarks L = {l1, . . . , lM}. Let P = (L1, . . . ,LN) be a partition of L, so
that each subset Li is assigned to the sensor si. We define the coverage of the set L
attained by the team S with respect to the partition P as the sum of the coverage of
Li attained by si for i ∈ {1, . . . , N}, and we denote it, with some abuse of notation,
as cov(S,P). Namely, we let

cov(S,P) =

N∑
i=1

cov(si,Li).

Remark 5.1. Since the footprint of a sensor is nonnegative by definition, the per-
ception of a landmark attained by a sensor, the coverage of a finite set of landmarks
attained by a sensor, and the coverage of a finite set of landmarks attained by a team
of mobile sensors are all nonnegative. Note also that a lower value of perception (re-
spectively, coverage) corresponds to a better perception (respectively, coverage) of the
landmark (respectively, landmarks).

5.3. Voronoi tessellations 71

Remark 5.2. In most realistic applications, we can expectM to be one or two orders
of magnitude larger than N .

5.3 Voronoi tessellations

In this section, we introduce a generalized definition of Voronoi tessellation.
For a classical definition of Voronoi tessellation, see for example [44].

Definition 5.4 (ε-Voronoi tessellation of a set of landmarks induced by a team
of sensors). Consider a team of mobile sensors S = (s1, . . . , sN) and a finite set of
landmarks L = {l1, . . . , lM}. Let ε ≥ 0. An ε-Voronoi tessellation of L induced
by the sensors S is a partition V = (L1, . . . ,LN) of L such that,

∀l ∈ Li, per(si, q) ≤ per(sj , q) + ε ∀sj ∈ S.

A 0-Voronoi tessellation is also called simply a Voronoi tessellation. If V = (L1,
. . . ,LN) is a Voronoi tessellation, then Li is called the Voronoi cell of the sensor si.

The intuition behind Definition 5.4 is that a Voronoi cell Li of a sensor
si contains the landmarks that si can see better than any other sensor in the
team. However, we allow that Li also contain landmarks whose perception
by some other sensor sj is better (i.e., smaller) than the perception attained
by si, as long as the difference between the two perceptions is no larger than
ε.

Remark 5.3. Given the landmarks L and the sensors S, and given ε ≥ 0, an ε-
Voronoi tessellation is not necessarily unique.

Remark 5.4. Our definition of Voronoi tessellation reduces to the one in [44] for a
particular choice of the sensors’ footprints, namely for f(p, n̂, q, m̂) = ‖q − p‖2.

Remark 5.5. If V is an ε-Voronoi tessellation, then V is also an ε′-Voronoi tessel-
lation for any ε′ > ε. In particular, if V is a Voronoi tessellation, then it is also an
ε-Voronoi tessellation for any ε > 0.

5.4 Problem formulation

In this section, we give a formal description of the coverage problem ad-
dressed in this chapter.

Consider a team of mobile sensors S = (s1, . . . , sN), with si = (pi, n̂i, fi),
and a finite set of landmarks L = {l1, . . . , lM}. Consider N compact sets
Ω1, . . . ,ΩN , with Ωi ⊂ R3 × S2. Each subset Ωi is the region where the
physical motion of sensor si is confined. Our objective is to find a parti-
tion P = (L1, . . . ,LN) of L, and the positions and orientations of the sensors,

72 Coverage control of anisotropic sensor networks

such that the coverage of the set L attained by the team S with respect to the
partition P is minimized. This objective can be formalized as the following
optimization problem:

minimize
p1,...,pN∈R3

n̂1,...,n̂N∈S2

P=(L1,...,LN)

cov(S,P),

subject to (pi, n̂i) ∈ Ωi ∀i ∈ {1, . . . , N},
Li ∩ Lj = ∅ ∀i, j ∈ {1, . . . , N},
L1 ∪ . . . ∪ LN = L.

(5.6)

Problem (5.6) is a nonconvex and mixed-integer problem. Consequently, to
compute the global optimum may be computationally demanding. A glob-
ally optimal solution of Problem (5.6) can be pursued by the following ap-
proach. Introduce the scalars σi,j with i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.
For each lj ∈ L, let σi,j = 1 if lj ∈ Li and σi,j = 0 otherwise. Then, Prob-
lem (5.6) can be recast as

minimize
p1,...,pN∈R3

n̂1,...,n̂N∈S2

σ1,1,...,σN,M

N∑
i=1

M∑
j=1

σi,j per(si, lj),

subject to (pi, n̂i) ∈ Ωi ∀i, j = {1, . . . , N},
σi,j ∈ {0, 1} ∀(i, j) ∈ {1, . . . , N} × {1, . . . ,M},
σ1,j + . . .+ σN,j = 1 ∀j ∈ {1, . . . ,M}.

(5.7)

If in (5.7) we relax the integrity constraint σi,j ∈ {0, 1} to σi,j ∈ [0, 1], we ob-
tain an optimization problem that is still nonconvex, but continuous. Namely,
we have

minimize
p1,...,pN∈R3

n̂1,...,n̂N∈S2

σ1,1,...,σN,M

N∑
i=1

M∑
j=1

σi,j per(si, lj),

subject to (pi, n̂i) ∈ Ωi ∀i, j = {1, . . . , N},
σi,j ∈ [0, 1] ∀(i, j) ∈ {1, . . . , N} × {1, . . . ,M},
σ1,j + . . .+ σN,j = 1 ∀j ∈ {1, . . . ,M}.

(5.8)

The following Lemma 5.1 shows that a globally optimal solution of Prob-
lem (5.7) is readily obtained by a gloablly optimal solution of Problem (5.8).

Lemma 5.1. Let O = (p1, . . . , pN , n̂1, . . . , n̂N , σ1,1, . . . , σN,M) be a globally opti-
mal solution of Problem (5.8). For each j ∈ {1, . . . ,M}, let Ij = {i ∈ {1, . . . , N} :

5.4. Problem formulation 73

σi,j ∈ (0, 1)}. Then, any solution O∗ obtained from O by substituting σī,j = 1 for
some ī ∈ Ij and σi,j = 0 for i ∈ Ij \ {̄i} is also an optimal solution of Problem (5.8),
and it is also an optimal solution of Problem (5.7).

Proof. First note that the set of admissible solutions of Problem (5.7) is a sub-
set of the set of admissible solutions of Problem (5.8). Therefore, if a globally
optimal solution of Problem (5.8) is an admissible solution of Problem (5.7),
then it is also a globally optimal solution of Problem (5.7). Then, suppose by
contradiction that there exists lj ∈ L such that per(si1 , lj) > per(si2 , lj) for
some i1, i2 ∈ Ij . Then, let σ′i1,j = 0, σ′i2,j = σi2,j + σi1,j and σ′i,l = σi,l for all
(i, l) /∈ {(i1, j), (i2, j)}. Let O′ be the solution obtained from O by substituting
each σi,j with σ′i,j . Note that O′ is still an admissible solution of (5.8), since
0 ≤ σ′i2,j = σi1,j + σi2,j ≤ σ1,j + . . . + σN,j = 1, and σ′1,j + . . . + σ′N,j =
σ1,j + . . .+ σN,j = 1. Moreover, we have

N∑
i=1

M∑
l=1

σ′i,l per(si, ll) =

N∑
i=1

M∑
l=1

σi,j per(si, ll)

+ σi1,j(per(si2 , lj)− per(si1 , lj))

<

N∑
i=1

M∑
l=1

σi,j per(si, ll).

Therefore, O′ is an admissible solution of (5.8) and yields a smaller value of
the cost function than O does. But this is a contradiction, since O is gloablly
optimal by assumption. We must conclude that, for each j ∈ {1, . . . ,M}, we
have per(si1 , lj) = per(si2 , lj) for all i1, i2 ∈ Ij . Consequently, O∗ is another
globally optimal solution of Problem (5.8). Since O∗ is an admissible solution
of Problem (5.7), we can conclude that O∗ is also a globally optimal solution
for Problem (5.7).

Thanks to Lemma 5.1, we can solve Problem (5.8) and obtain an optimal
solution of Problem (5.6). Note that Problem (5.8) is still a nonconvex opti-
mization problem. However, depending on the nature of the sensors’ foot-
prints and of the sets Ωi, Problem (5.8) may belong to a special class of non-
convex optimization problems, for which there exist algorithms with proven
convergence properties. Consider, for example, the following scenarios.

Assumption 5.1. For each sensor si ∈ S, let

f̃i(p, θ, φ, q, m̂) = fi(p, sph(θ, φ), q, m̂),

where f̃(·, ·, ·, q, m̂) is globally Lipschitz for any (q, m̂) ∈ R3 × S2. Moreover, let

Ωi = {(p, n̂) ∈ R3 × S2 : n̂ = sph(θ, φ), gi(p, θ, φ) ≤ 0},
where gi(·, ·, ·) is globally Lipschitz.

74 Coverage control of anisotropic sensor networks

Assumption 5.2. For each sensor si ∈ S, let

f̃i(p, θ, φ, q, m̂) = fi(p, sph(θ, φ), q, m̂),

where f̃(·, ·, ·, q, m̂) is convex for any (q, m̂) ∈ R3 × S2. Moreover, let

Ωi = {(p, n̂) ∈ R3 × S2 : n̂ = sph(θ, φ), gi(p, θ, φ) ≤ 0},
where gi(·, ·, ·) is convex.

Under Assumption 5.1, Problem (5.8) is a Lipschitz optimization prob-
lem [82]; under Assumption 5.2, Problem (5.8) is a convex optimization prob-
lem [81].

However, even under one of Assumptions 5.1 and 5.2, computing a glob-
ally optimal solution of Problem (5.8) may be computationally demanding
with respect to the available resources, especially if the number of sensors
and landmarks is large. In fact, the number of optimization variables in Prob-
lem (5.8) scales with the number of sensors times the number of landmarks.
In rest of this chapter, we are going to outline several control strategies to
attack Problem (5.6) and achieve suboptimal solutions in a distributed way.

Remark 5.6. There exist several realistic scenarios that can be modelled as particu-
lar cases of Problem (5.6). If the landmarks represent each a point or small volume
of interest in the space, and are not characterized by any particular orientation, then
the sensor footprints do not depend on the landmark orientation m̂, and we have
f(p, n̂, q, m̂) = f̃(p, n̂, q). If the sensors are omnidirectional, i.e., their perception of
the surrounding environment only depends on the distance between the sensor and
the point under observation, then the sensor footprints do not depend on n̂ either,
and we have f(p, n̂, q, m̂) = f̃(‖q − p‖). If we want to consider a setup similar
to [40], where the sensors’ perception degrades with the squared distance from the
point under observation, we can simply set f(p, n̂, q, m̂) = ‖q − p‖2. Planar set-
tings are obtained by having, for each landmark (q, m̂), q = [qx, qy, 0]> for some
qx, qy ∈ R and m̂ = [mx,my, 0]> for some [mx,my]> ∈ S1, and having, for
each sensor si, Ωi ⊆ {(p, n̂) ∈ R3 × S2 : p = [px, py, 0]>, px, py ∈ R, n̂ =
[nx, ny, 0]>, [nx, ny]> ∈ S1}.

5.5 Necessary conditions for optimality

Our first step in attacking Problem (5.6) is to individuate some necessary con-
ditions for a solution to be globally optimal. First, we are going to show that
any globally optimal solution of (5.6) corresponds to a Voronoi tessellation.
This result is formalized in the following Lemma 5.2.

Lemma 5.2. Let O = (p1, . . . , pN , n̂1, . . . , n̂,L1, . . . ,LN) constitute an optimal
solution of (5.6). Then V = (L1, . . . ,LN) is a Voronoi tessellation of L induced by
the sensors S = (s1, . . . , sN), where si = (pi, n̂i, fi).

5.6. Generalized discrete Lloyd descent 75

Proof. Suppose by contradiction that V is not a Voronoi tessellation. Then,
there exist si, sj ∈ S and l ∈ Li such that per(sj , l) < per(si, l). Denote as O′

the solution of (5.6) obtained from O by substituting Li with L′i = Li \ {l }
and Lj with L′j = Lj ∪ {l }. Let V′ be the partition of L obtained from V

by substituting Li with L′i and Lj with L′j . Then, cov(S,V′) = cov(S,V) −
per(si, l) + per(sj , l) < cov(S,V). Consequently, O′ yields a lower value of
the cost function than O. But this is a contradiction, since, by hypothesis, O
is an optimal solution of (5.6).

Next, we are going to show that in a globally optimal solution, the posi-
tion and orientation of each sensor si minimize the coverage attained by that
sensor over its set of landmarks Li. This result is formalized in the following
Lemma 5.3.

Lemma 5.3. Let O = (p1, . . . , pN , n̂1, . . . , n̂,L1, . . . ,LN) constitute an optimal
solution of (5.6). Then, for each sensor si = (pi, n̂i, fi), we have

cov(si,Li) ≤ cov((p, n̂, fi),Li) ∀(p, n̂) ∈ Ωi.

Proof. Suppose by contradiction that there exist si = (pi, n̂i, fi) ∈ S and
(p, n̂) ∈ Ωi such that cov((p, n̂, fi),Li) < cov(si,Li). Denote as O′ the so-
lution of (5.6) obtained from O by substituting pi and n̂i) with p and n̂. Let S′

be the sensor team obtained by S = (s1, . . . , sN) by substituting si = (pi, n̂i)
with s ′i = (p, n̂, fi). Then, denoting P = (L1, . . . ,LN), we have cov(S′,P) =
cov(S,P) + cov(s ′i ,Li) − cov(si,Li) < cov(S,P). Consequently, O′ yields a
lower value of the cost function than O. But this is a contradiction, since, by
hypothesis, O is an optimal solution of (5.6).

5.6 Generalized discrete Lloyd descent

In this section, we present our first coverage algorithm. This algorithm can
be seen as a generalization of the discrete Lloyd descent [44]. Therefore, we
shall refer to this algorithm as the generalized discrete Lloyd descent (GDLD).

The GDLD assumes that a team of sensors S = (s1, . . . , sN) is assigned,
with si = (pi, n̂i, fi). The footprints f1, . . . , fN of the sensors are fixed, while
the positions p1, . . . , pN and the orientations n̂1, . . . , n̂N can be changed at
each iteration, since they are optimization variables. A finite set of land-
marks L = {l1, . . . , lM}, is also given, and it is initially partitioned as P =
(L1, . . . ,LN). Moreover, N compact subsets Ω1, . . . ,ΩN of R3 × S2 are given,
and each sensor si, with i ∈ {1, . . . , N}, can be moved within Ωi. Finally,
a tolerance ε > 0 is given. The algorithm aims at progressively improving

76 Coverage control of anisotropic sensor networks

the coverage of the set L attained by the sensors S with respect to the parti-
tion P. The coverage is improved by adjusting iteratively the positions and
orientations of the sensors, as well as the partition P. The coverage is im-
proved by at least ε at each iteration, and the algorithm stops after a finite
number of iterations. The partition P is improved by considering a pair of
sensors si and sj at each iteration, and rearranging the landmarks in Li ∪ Lj
so that each landmark is assigned to the sensor, between si and sj , that has
the best perception of that landmark. For each sensor si, the algorithm main-
tains a set Zi ⊆ S \ {si}, which is the subset of the other sensors sj such that
some landmarks may be transferred between Li and Lj . The algorithm ter-
minates when Zi = ∅ for each sensor. Upon termination, the partition P is
an ε-Voronoi tessellation, and the position and orientation of each sensor si
are optimized with respect to the coverage of Li. The GDLD uses a routine
that optimizes the coverage of a set of landmarks attained by a single mo-
bile sensor. Namely, the algorithm uses a routine that solves the following
optimization problem:

minimize
p,n̂

cov(s ,L),

subject to (p, n̂) ∈ Ω,
(5.9)

where s = (p, n̂, f), and where the footprint f : R3×S2 → R≥0, the landmarks
L = (l1, . . . , lM) and the domain Ω ⊂ R3 × S2 are given.

Note that, in most realistic scenarios, there exist well-established routines
to solve Problem (5.9). Namely, if Assumption 5.1 is satisfied, Problem (5.9)
is a Lipschitz optimization problem. Similarly, if Assumption 5.2 is satisfied,
Problem (5.9) is a convex optimization problem. In both these cases, there
exist well-established routines to compute an optimal solution (see [82] and
[81]). This scenario is formalized in the following Assumption 5.3.

Assumption 5.3. There exists a routine optCov that returns a globally optimal
solution of Problem (5.9). Namely, if (p, n̂) ← optCov(s ,L,Ω), then (p, n̂) is a
globally optimal solution of Problem (5.9).

The GDLD is outlined below as Algorithm 5.3. The convergence properties
of Algorithm 5.3 are outlined in the following Theorem 5.1.

Algorithm 5.3. Generalized Discrete Lloyd Descent.

1: assign the mobile sensors S = (s1, . . . , sN), with si = (pi, n̂i, fi)
2: assign the landmarks L = (l1, . . . , lM)
3: assign a partition P = (L1, . . . ,LN) of L
4: assign ε > 0.
5: set Zi = S \ {si} for i ∈ {1, . . . , N}

5.6. Generalized discrete Lloyd descent 77

6: while Zi 6= ∅ for some i ∈ {1, . . . , N} do
7: pick si such that Zi is not empty
8: pick sj ∈ Zi
9: for l ∈ Li do

10: if per(sj , l) < per(si, l)− ε then
11: transfer l from Li to Lj
12: end if
13: end for
14: for l ∈ Lj do
15: if per(si, l) < per(sj , l)− ε then
16: transfer l from Lj to Li
17: end if
18: end for
19: if one or more landmarks have been transferred then
20: Zi ← S \ {si}
21: Zj ← S \ {sj}
22: (pi, n̂i)← optCov(si,Li,Ωi)
23: (pj , n̂j)← optCov(sj ,Lj ,Ωj)
24: else
25: remove sj from Zi
26: if si ∈ Zj , remove si from Zj
27: end if
28: end while

Theorem 5.1. Let Assumption 5.3 hold. Then, algorithm 5.3 terminates in a finite
number of iterations. Namely, the number of iterations is upper-bounded by

νmax =

⌈
2N(cov0− cov∗)

ε

⌉
+N(N − 1),

where cov0 denotes the value of cov(S,P) upon initialization, cov∗ is the value of
cov(S,P) attained by an optimal solution of Problem (5.6), and dxe = min{n ∈ N :
x ≤ n} is the ceiling function. When the algorithm terminates, P is an ε-Voronoi
tessellation of L induced by the sensors S, and the pose of each sensor si minimizes
cov(si,Li) within Ωi, namely

cov(si,Li) ≤ cov((p, n̂),Li) ∀(p, n̂) ∈ Ωi. (5.10)

Proof.

Part 1. (The number of iterations is upper-bounded by νmax.) The algorithm
terminates when Zi = ∅ for all i ∈ {1, . . . , N}. Denote as z(t) the sum of the

78 Coverage control of anisotropic sensor networks

cardinalities of the sets Zi after the t-th iteration, with z(0) being the value
attained upon initialization. Similarly, introduce S(t) and P(t). Upon initial-
ization, we have Zi = S \ {si} for each sensor, implying z(0) = N(N − 1),
and cov(S(0),P(0)) = cov0. Each iteration produces one of the two follow-
ing effects: one among the sets Z1, . . . ,ZN loses one element; the value of
cov(S,P) is reduced by at least ε, and two of the sets Z1, . . . ,ZN acquire at
most N − 2 elements each. Therefore, on each iteration, we have either of the
two following difference inclusions:{

cov(S(t+),P(t+)) ≤ cov(S(t),P(t))− ε,
z(t+) ≤ z(t) + 2(N − 2),

or {
cov(S(t+),P(t+)) = cov(S(t),P(t)),

z(t+) ≤ z(t)− 1,

with initial conditions given by{
cov(S(0),P(0)) = cov0,

z(0) = N(N − 1).

The algorithm terminates when z(t) = 0. Consider the function

V (t) = 2N cov(S(t),P(t)) + εz(t).

Note that V (t) is lower-bounded by V ∗ = 2N cov∗ and that V (0) = 2N cov0 +εN(N−
1). On each iteration, we have either

V (t+) ≤2N(cov(S(t),P(t))− ε) + ε(z(t) + 2(N − 2))

≤V (t)− 4ε

or
V (t+) = 2N cov(S(t),P(t)) + ε(z(t)− 1) ≤ V (t)− ε.

In both cases, we have V (t+) ≤ V (t) − ε. Since V ∗ ≤ V (t) ≤ V (0) for all
t ∈ N ∪ 0, the number of iterations is upper-bounded by

νmax =

⌈
V (0)− V ∗

ε

⌉
=

⌈
2N(cov0− cov∗) + εN(N − 1)

ε

⌉
=

⌈
2N(cov0− cov∗)

ε

⌉
+N(N − 1).

5.6. Generalized discrete Lloyd descent 79

Part 2. (When the algorithm terminates, P is an ε-Voronoi tessellation.) When
the algorithm terminates, we have Z1 = . . . = ZN = ∅. Therefore, for any
two sensors si, sj , the latest iteration involving si and sj has not led to trans-
ferring any landmark. In particular, this statement implies that per(si, l) ≤
per(sj , l) + ε for any l ∈ Li. Since the reasoning can be applied to any couple
of sensors, we have that, by Definition 5.4, P = (L1, . . . ,LN) is an ε-Voronoi
tessellation of L.

Part 3. (When the algorithm terminates, the position and orientation of each
sensor si minimize cov(si,Li).) Each iteration of the algorithm is concluded
with a call to the procedure optCov, which optimizes the pose of two sensors
si and sj . Each sensor needs to be involved at least in (N−1) iterations for the
algorithm to terminate (because for each sensor si, the set Zi may lose up to
one element per iteration). Therefore, at the end of the algorithm each sensor
si has its position and orientation optimized (within Ωi) with respect to the
set of landmarks Li. Namely, (5.10) holds, which concludes the proof.

Remark 5.7. The upper bound on the number of iterations provided by Theorem 5.1
is conservative, because it is based on the worst-case scenario that one landmark is
transferred at each iteration, and the transfer leads to an improvement of its percep-
tion of ε. In general, multiple landmarks are transferred within the same iteration,
and when a landmark is transferred its perception improves by a value larger than
or equal to ε. The main purpose of the theorem is rather to show formally that Algo-
rithm 5.3 is guaranteed to terminate in a finite number of iterations.

The GDLD is amenable to distributed implementations, in the sense that
the algorithm may be deployed as N separate threads, each running on a mi-
croprocessor installed on one of the mobile sensors. In fact, the sensors only
need to perform local computation (when optimizing their position and ori-
entation) or to communicate pairwise (when transferring landmarks to each
other). Moreover, different iterations of the algorithm that involve different
sensors may be performed in parallel. However, a distributed implementa-
tion of the GDLD presents the following challenges.

• To ensure that the algorithm evolves in a consistent way, some form of
synchronization among the different threads is necessary. For example,
if a sensor si is involved in one iteration of the algorithm with another
sensor, it cannot be involved in a different iteration with a third sensor
before the first iteration is terminated.

• Each sensor si can keep track of its own set Zi, but, in general, none of
the sensors is aware of the state of all the sets Z1, . . . ,ZN at the same
time. This aspect introduces a new challenge in making the sensors
aware of the algorithm termination, since we defined the algorithm to
be terminated when all the sets Zi are empty.

80 Coverage control of anisotropic sensor networks

In the following Section 5.7, we are going to propose a distributed, parallel,
and asynchronous implementation of the GDLD that takes both these chal-
lenges into account.

5.7 Distributed implementation of the generalized discrete
Lloyd descent

In this section, we discuss a distributed implementation of the GDLD. The
algorithm is implemented as a parallel program, where each sensor executes
its own instructions and occasionaly interacts with other sensors. A parallel
implementation has inherent advantages: for example, it allows to execute
multiple iterations of the algorithm at the same time, as long as the concur-
rent iterations involve different pairs of sensors.

It is out of the scope of this work to discuss parallel programs and the
related programming techniques, since their use is limited to this particular
section. We use ideas and terms (such as locks and tokens) related to parallel
programs, and we assume that the reader has some intuitive understanding
of them. The interested reader is referred to [83] for an introduction to paral-
lel programs.

We consider a team of N sensors, S = (s1, . . . , sN), and a set of M land-
marks, L = (l1, . . . , lM). The algorithm is initialized as follows. Each land-
mark is assigned to one of the sensors at random, so that an initial partition
P = (L1, . . . ,LN) is defined. Each sensor si is assigned a domain Ωi ⊂ R3×S2

for its position and orientation, and a set Zi to keep track of the interactions
with the other sensors. Each of these sets is initialized as Zi = S \ {si}. A
common tolerance ε > 0 is known to all the sensors.

In this scenario, the landmarks are a shared resource that is used concur-
rently by different sensors. Therefore, we need to use some synchronization
primitives, such as locks or semaphores, to make sure that the different sensors
use this resource consistently. In the proposed implementation, each sensor
is assigned a lock. We denote the lock assigned to si as locki. Finally, one
of the sensors is assigned a token, which we denote as token. The token
represents the ability of a sensor to contact another sensor, and redistribute
the landmarks assigned to the two sensors. The token is passed from sensor
to sensor, so that, at any time, one and only one sensor can contact another
sensor and initiate a landmark redistribution. This mechanism introduces
some limitation to the parallelism in the sensors’ interactions, but guarantees
the absence of deadlocks. The initialization procedure is formalized as the
following Algorithm 5.4.

5.7. Distributed implementation 81

Algorithm 5.4. Initialization of the distributed implementation of the GDLD.

1: the sensors S = (s1, . . . , sN), with si = (pi, n̂i, fi), are given
2: the landmarks L = {l1, . . . , lM} are given
3: each landmark is assigned to one of the sensors, so that an initial partition

P = (L1, . . . ,LN) of L is defined
4: assign the tolerance ε > 0
5: for si ∈ S do
6: assign a domain Ωi ⊂ R3 × S2 to the sensor
7: Zi ← S \ {si}
8: assign a lock locki to the sensor
9: end for

10: give a token to one of the sensors
11: start all the sensors

We call the set of instructions executed by each sensor the thread of that
sensor. Each thread consists of a loop that is executed repeatedly until the
thread terminates. At the beginning of the loop, the sensor, say si, acquires its
own lock locki and checks if it has the token. If the sensor si does not have the
token, then it releases locki and sleeps for a given amount of time, allowing
other sensors to contact it to transfer landmarks. If the sensor si does have the
token, then it chooses another sensor sj ∈ Zi (we shall see that, at this point
in the program, Zi cannot be empty). Then, si acquires the lock lockj of sj .
At this point, si has to look for a third sensor sh to give it the token. The token
can be given to a sensor sh whose set Zh is not empty. The logic behind this
rule is that, if Zh is empty, then sh will not be able to contact other sensors to
transfer landmarks. Therefore, si initializes a temporary set Ti ← Si \ {si, sj}
to keep track of potential recipients for the token. A candidate sh is picked at
random in Ti, and si acquires lockh. Now si can check Zh. If Zh is not empty,
then si gives the token to sh and releases lockh. If Zh is empty, si releases
lockh, removes sh from Ti, and picks another candidate from Ti. If a suitable
recipient is not found in Ti, the sensor si tries to pass the token to sj . If Zj
is also empty, si keeps the token. Thereafter, si redistributes the landmarks
between itself and sj , thus updating the sets Li and Lj , in the partition P. If at
least one landmark is passed from one sensor to the other, then Zi is reset to
S \ {si} and Zj is reset to S \ {sj}; each of the sensors si and sj now optimizes
its position and orientation with respect to its new set of landmarks, using
the routine optCov. If no landmarks are passed from one sensor to the other,
then sj is removed from Zi, and si is removed from Zj if it is contained in
Zj ; if si has kept the token and the set Zi is now empty, then si notifies all the
other sensor that the algorithm is terminated (since all the sets Z1, . . . ,ZN are

82 Coverage control of anisotropic sensor networks

known to be empty at this point), acquiring and releasing the corresponding
lock (except for sj , whose lock lockj is already acquired). Finally, si releases
locki and lockj .

The generic thread of a sensor si is given below as Algorithm 5.5.

Algorithm 5.5. The thread run on each sensor si in the GDLD

1: while si is not terminated do
2: acquire locki
3: if si has the token then
4: choose sj in Zi
5: acquire lockj
6: Ti ← S \ {si, sj}
7: while Ti is not empty and si has the token do
8: choose sh in T

9: acquire lockh
10: if Zh is not empty then
11: give the token to sh
12: else
13: remove sh from Ti
14: end if
15: release lockh
16: end while
17: if Ti is empty and Zj is not empty then
18: give the token to sj
19: end if
20: for l ∈ Li do
21: if per(sj , l) < per(si, l)− ε then
22: transfer l from Li to Lj
23: end if
24: end for
25: for l ∈ Lj do
26: if per(si, l) < per(sj , l)− ε then
27: transfer l from Lj to Li
28: end if
29: end for
30: if one or more landmarks were transferred then
31: Zi ← Zi \ {sj}
32: Zj ← Zj \ {si}
33: (pi, n̂i)← optCov(Li,Ωi)
34: (pj , n̂j)← optCov(Lj ,Ωj)
35: else

5.8. Simulation of the generalized discrete Lloyd descent 83

36: remove sj from Zi
37: if si ∈ Zj , remove si from Zj
38: if si has the token and Zi is empty then
39: for sh ∈ S \ ({si} ∪ {sj}) do
40: acquire lockh
41: terminate sh
42: release lockh
43: end for
44: terminate si and sj
45: end if
46: end if
47: release locki and lockj
48: else
49: release locki
50: sleep
51: end if
52: end while

It is worth noting that, in Algorithm 5.5, the segment of the loop that
requires most of the computation (lines 20 to 47) is executed after that si has
passed the token to another sensor. Therefore, that segment can be executed
by many different sensors at the same time.

5.8 Simulation of the generalized discrete Lloyd descent

In this section, we present a simulation of the GDLD. Here we consider a
scenario whereN = 4 mobile cameras have to survey a square-shaped room.
The room is formally described as

Q = {(qx, qy, 0) : −4 ≤ qx, qy ≤ 4}.

Each sensor can move on the room floor, therefore we set

Ωi = {(pi, n̂i) : pi ∈ Q, n̂i = (ni,x, ni,y, 0), (ni,x, ni,y) ∈ S1}.

The sensors all have the same footprint, which is a model of the vision capa-
bilities of the cameras. The cameras have better visibility of an object if the
object is central in their cone of view, and if it is neither too far nor too close.
We capture this description with the following footprint:

f(p, n̂, q, m̂) =

1, if (q − p) ≤ 0,

1− (q − p)>n̂, if (q − p) > 0 and ‖q − p‖ ≤ 1,

1− (q−p)>n̂
‖q−p‖2 , otherwise.

(5.11)

84 Coverage control of anisotropic sensor networks

−1 0 1 2 3 4 5

qx

−3

−2

−1

0

1

2

3

q y

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

Figure 5.1. Contour plot of footprint (5.11) for p = 03, n̂ = (1, 0, 0) and q = (qx, qy, 0),
as a function of qx and qy .

Note that footprint (5.11) does not depend on the orientation of the land-
mark, since, for this application, the points in the room are not associated
with any orientation in particular. Figure 5.1 illustrates a contour plot of
footprint (5.11) for p = 03, n̂ = (1, 0, 0) and q = (qx, qy, 0), as a function of qx
and qy .

The room that the sensors have to survey is abstracted into a set of M =
400 landmarks. The landmarks are distributed in the room at equally spaced
position, so that each landmark can be seen as a tile in the room floor. Namely,
we set li = (qi, m̂i), with qi = (qi,x, qi,y, 0)>, for each i ∈ {1, . . . ,M}. The ori-
entations of the landmarks are not assigned, since they are not accounted
for in the sensors’ common footprint (5.11). For each sensor si = (pi, n̂i),
the position and orientation are initialized randomly in Ωi. Each landmark
is initially assigned to one of the sensor at random. The GDLD is run with
ε = 10−4. For practical purposes, the routine optCov is implemented as a
differential evolution algorithm [84]. The results of the simulation are illus-
trated in Figure 5.2. In the initial configuration, we have cov(S,P) ' 314,
while, in the final configuration, we have cov(S,P) ' 259. The final partition
of the landmarks is verified to be an ε-Voronoi tessellation induced by the
final positions and orientations of the sensors.

5.8. Simulation of the generalized discrete Lloyd descent 85

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5.2. Results of the simulation described in Section 5.8. Each agent is repre-
sented as a colored arrow, and each landmark is represented as a tile of the same
color of the agent that is it currently assigned to. Top left: initial configuration,
cov(S,P) ' 314. Top right: approximately one third of the simulation time elapsed.
Bottom left: approximately two thirds of the simulation time elapsed. Bottom right:
upon termination, cov(S,P) ' 259.

86 Coverage control of anisotropic sensor networks

5.9 Experimental evaluation of the generalized discrete
Lloyd descent

The GDLD has been subject to a preliminary experimental evaluation. The
experiments have been conducted in the KTH Smart Mobility Lab, with a sen-
sor network comprising one physical aerial robot and three simulated aerial
robots. The physical robot is a 3DR IRIS+ quadcopter. Both the physical
and the simulated robots are controlled by a position controller running on
the Robot Operating System (ROS). The position of the physical robot is mea-
sured by means of a motion capture system, while the position of the simu-
lated robots is computed by the simulator, and sent to the controller by ROS.
To reproduce the distributed nature of the GDLD, each simulator and each
controller is implemented as a separate ROS node, which means that it runs
as a separate program thread. In this experiment, the landmarks are repre-
sented as colored tiles, which are projected onto the lab floor. We consider
500 landmarks as a discrete abstraction of a 5.0 by 4.0 meter rectangular do-
main. For practical purposes, the robots have heterogeneous optimization
domains. The simulated robots can optimize their pose within the whole
rectangular domain, while the real robot is constrained to move within the
flying arena, at a reasonable distance from the bounding net, which leads
to a 2.2 by 1.0 meter optimization domain. Note that the coverage mission
depends on the physical motion of the real robot. In fact, when one of the
robots executes an optimization routine, it is given the resulting pose A∗i as a
waypoint, and it needs to navigate to that pose before executing the follow-
ing steps in the algorithm. Figures 5.3 and 5.4 illustrate four snapshots from
one of the experiments that have been performed.

5.10 Gradient descent for coverage improvement

So far in the chapter, we have not taken into account the physical motion of
the sensors. In this section, we study how to improve the coverage attained
by a mobile sensor by controlling its position and orientation by (5.2) and
(5.3). In this context, motion planning is executed continuously, rather than
intermittently, by each sensor, while communication is still a discrete event.
We need the following Assumption 5.4.

Assumption 5.4. The sensor footprints are continuously differentiable in all their
arguments.

Under Assumption 5.4, we can write

d

dt
f(p, n̂, q, m̂) =

∂

∂p
f(p, n̂, q, m̂)>

dp

dt
+

∂

∂n̂
f(p, n̂, q, m̂)>

dn̂

dt
, (5.12)

5.10. Gradient descent for coverage improvement 87

Figure 5.3. Results of the preliminary experimental evaluation of the GDLD described
in Section 5.9. The physical robot is responsible for the green landmarks. The rounded
arrows represent the positions and orientations generated by the optimization proce-
dures in the coverage algorithm, and constitute reference waypoints for the robots.
First part of the experiment; top: start of the experiment; bottom: 18 seconds elapsed.

88 Coverage control of anisotropic sensor networks

Figure 5.4. Results of the preliminary evaluation of the GDLD described in Section 5.9.
The physical robot is responsible for the green landmarks. The rounded arrows rep-
resent the positions and orientations generated by the optimization procedures in the
coverage algorithm, and constitute reference waypoints for the robots. Second part
of the experiment; top: 80 seconds elapsed; bottom: 180 seconds elapsed.

5.10. Gradient descent for coverage improvement 89

where the partial derivatives ∂
∂pf(p, n̂, q, m̂) and ∂

∂n̂f(p, n̂, q, m̂) are continu-
ous. Consider now a mobile sensor s = (p, n̂) and a finite set of landmarks L.
Using (5.2)–(5.5) and (5.12), we have

d

dt
cov(s ,L) =

(∑
(q,m̂)∈L

∂

∂p
f(p, n̂, q, m̂)

)>
v

+

(∑
(q,m̂)∈L

∂

∂n̂
f(p, n̂, q, m̂)

)>
skew(n̂)ω.

(5.13)

From (5.13), we have a natural control strategy to improve the coverage of L
attained by s . Namely, we can choose

v =−
∑

(q,m̂)∈L

∂

∂p
f(p, n̂, q, m̂), (5.14)

ω = skew(n̂)
∑

(q,m̂)∈L

∂

∂n̂
f(p, n̂, q, m̂). (5.15)

Substituting (5.14) and (5.15) into (5.13), we have

d

dt
cov(s ,L) =−

∥∥∥∥ ∑
(q,m̂)∈L

∂

∂p
f(p, n̂, q, m̂)

∥∥∥∥2

−
∥∥∥∥skew(n̂)

∑
(q,m̂)∈L

∂

∂n̂
f(p, n̂, q, m̂)

∥∥∥∥2

,

which implies
d

dt
cov(s ,L) ≤ 0 (5.16)

and

d

dt
cov(s ,L) = 0 ⇐⇒

{∑
(q,m̂)∈L

∂
∂pf(p, n̂, q, m̂) = 03,∑

(q,m̂)∈L
∂
∂n̂f(p, n̂, q, m̂) ∈ Null(skew(n̂)).

(5.17)

The monotonicity of cov(s ,L) suggests to use LaSalle’s Invariance Principle
to deduce the stability of the motion of the sensor under the control law (5.14)
and (5.15). This reasoning is formalized in the following Theorem 5.2.

Theorem 5.2. Consider a mobile sensor s = (p, n̂, f) and a finite set of landmarks
L. Under the control law (5.14) and (5.15), the coverage of L attained by s is strictly

90 Coverage control of anisotropic sensor networks

decreasing, and the sensor converges to a position and an orientation (p∗, n̂∗) such
that ∑

(q,m̂)∈L

∂

∂p
f(p∗, n̂∗, q, m̂) = 03, (5.18)

∑
(q,m̂)∈L

∂

∂n̂
f(p∗, n̂∗, q, m̂) ∈ Null(skew(n̂∗)). (5.19)

Proof. Consider the function cov(s ,L). Recall that cov(s ,L) is a nonnegative
function of p and n̂. Moreover, under the control law (5.14) and (5.15), we
have (5.16). Therefore, by LaSalle’s invariance principle, the system (5.2) and
(5.3) converges to the largest invariant set contained within the set

I =

{
(p, n̂) :

d

dt
cov((p, n̂, f),L) = 0

}
.

Using (5.14), (5.15) and (5.17), we can see that v = 0 and ω = 0 for all (p, n̂) ∈
I. Therefore, the set I is itself invariant, and the system converges to I. Using
(5.17) again, we can see that, in I, (5.18) and (5.19) hold. Moreover, since
v = 0 and ω = 0 for all (p, n̂) ∈ I, the sensor is not moving in I, which means
that the system converges to a single point (p∗, n̂∗) in I.

Control law (5.14) and (5.15) may be used instead of the optCov routine
in the GDLD. This choice has the disadvantage that, depending on the sen-
sor footprint, the sensor may end up in a local minimum (p, n̂) of the objec-
tive function cov((p, n̂, f),L). However, applying (5.14) and (5.15) presents at
least two advantages. First, the coverage attained by the sensor is monotoni-
cally increasing during the optimization, because the physical motion of the
sensor follows the gradient of cov(s ,L). Moreover, the sensor is not required
to run a complex optimization routine on board.

5.11 Simulation of the gradient descent for coverage
improvement

In this section, we present a simulation of control law (5.14) and (5.15). Here,
we consider the scenario where a camera sensor has to inspect the interior of
a surface, such as part of a wall and/or a ceiling. The surface to inspect is
modelled as a compact surface Θ ⊆ R3. For this simulation, we choose the
spherical sector defined by

Θ =

{
R(cos θ sinφ, sin θ sinφ, cosφ)> : θ ∈

[
0,
π

4

]
, φ ∈

[
0,
π

4

]}
,

5.12. Summary 91

with R = 3. The surface is abstracted into a set of M = 100 landmarks.
Each landmark represents a facet of interest on the surface. Namely, for each
landmark l = (q, m̂), q ∈ Θ is a point on the surface, and m̂ is the outward
normal to the surface in that point. In this scenario, since the surface is a
sphere sector, we have m̂ = q/R.

The camera sensor is modelled as s = (p, n̂, f), with the following foot-
print:

f(p, n̂, q, m̂) = ‖p+ n̂− q‖2 + ‖p+ m̂− q‖2. (5.20)

Footprint (5.20) captures the idea that a facet (q, m̂) of the surface is best seen
by the camera when the facet lays in front of the camera (q = p + n̂), and
the outward normal to the surface is aligned with the sight line of the cam-
era (n̂ = m̂). In this respect, footprint (5.20) is similar to footprint (5.11).
However, footprint (5.20) is continuously differentiable, therefore it satisfies
Assumption 5.4. Figure 5.5 illustrates a contour plot of footprint (5.20) for
p = 03, n̂ = (1, 0, 0), q = (qx, qy, 0), and m̂ = n̂, as a function of qx and
qy . As we can predict from (5.20), the level curves are circles centered in
q = p + n̂ = (1, 0, 0). The results of the simulation are illustrated in Fig-
ure 5.6. From Figure 5.6, we can see that the sensor positions itself in front of
the surface under inspection at a suitable distance, and aligns its sight line to
agree with the curvature of the surface.

5.12 Summary

In this chapter, we have discussed a general framework to address coverage
and inspection problems for networks of heterogeneous anisotropic sensors.
First, we have defined an abstraction of a mobile sensor and of the environ-
ment under inspection. Then, we have used these models to formulate the
coverage task as an optimization problem. Thereafter, we have proposed
a distributed algorithm, the GDLD, to address the formulated problem and
achieve a local minimum in an efficient way. The convergence properties of
the proposed algorithm have been demonstrated analytically and with sim-
ulations. Finally, we have proposed a control law for the motion of a sin-
gle sensor that improves the coverage attained by that sensor monotonically.
The convergence properties of the proposed control law have been demon-
strated analytically and on simulation, and we have also discussed how the
proposed control law can be used as a subroutine within the GDLD.

92 Coverage control of anisotropic sensor networks

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

qx

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

q y

0.8

2.4

4.0

5.6

7.2

8.8

10.4

12.0

13.6

15.2

Figure 5.5. Contour plot of footprint (5.20) for p = 03, n̂ = (1, 0, 0), q = (qx, qy, 0),
and m̂ = n̂, as a function of qx and qy .

5.12. Summary 93

px

−3
−2

−1
0

1
2

3

py

−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

p z

−3

−2

−1

0

1

2

3

4

Figure 5.6. Results of the simulation presented in Section 5.11. The sensor s = (p, n̂, f)
is represented as an arrow, where the tail is located in p and the tip is pointing to the
direction n̂. The solid arrows represent the initial and the final configurations, while
the shaded arrows represent some intermediate configurations. The shaded surface
represents the surface that the sensor has to inspect, and it is obtained by interpolating
the landmarks.

Chapter 6

Conclusions and future research

AS technology advances, networked systems become more common and
more pervasive, and, at the same time, more complex and more chal-

lenging to analyze and control. When controlling a networked system, the
aim is usually to make a desired collective behavior arise from the individual
dynamics of each agent in the system and from local interactions among the
agents. In most realistic applications, the communication between one agent
and the rest of the network is intermittent, rather than continuous. In this the-
sis, we have studied several control strategies for networked systems based
on intermittent, event-driven communication. In this chapter, we summarize
our results and discuss possible directions for future research.

6.1 Conclusions

Event-triggered pinning control of switching networks

We derived a decentralized event-based protocol for pinning control of net-
works of nonlinear systems with switching topologies. The protocol pre-
scribes piecewise constant control signals. Each agent in the network updates
its control signal when a given condition regarding the state of its neighbor-
hood is verified. Namely, a function of the state of the agent’s neighborhood
is compared to a given threshold function. When the state function over-
comes the threshold function, a control update is triggered. To avoid con-
tinuous inter-agent communication, each agent can estimate the state of its
neighborhood with a predictor, and broadcast its control input to its neigh-
bors upon the control updates.

We quantified the pinning controllability of the network in terms of the
agents’ local dynamics, of the variations in the netowork topology, and of the
variations in the number and location of the pinned nodes. We showed that,

95

96 Conclusions and future research

if the parameter that quantifies the pinning controllability of the network
is large enough with respect to the Lipshitz constant of the agents’ dynam-
ics, and to the convergence rate of the threshold function, then the network
converges to the reference trajectory asymptotically without exhibiting Zeno
behavior in the sequences of the control updates. We showed also that the
convergence rate of the threshold function is a lower bound for the conver-
gence rate of the network to the reference trajectory. Hence, the convergence
rate of the threshold function can be used as a parameter in the control de-
sign. Namely, a larger convergence rate leads to faster tracking, but tends
to induce a larger number of control updates. However, as long as the con-
vergence rate of the threshold function is chosen below a value that scales
linearly with the pinning controllability of the network, the closed-loop sys-
tem does not exhibit Zeno behavior.

Cloud-supported multi-agent coordination

We derived a control algorithm for multi-agent networks where inter-agent
communication is completely substituted by the exchange of data on a shared
repository hosted on a cloud. In the proposed algorithm, each agent sched-
ules its own accesses to the cloud in a recursive fashion, and independently
of the other agents. When an agent accesses the cloud, it uses the informa-
tion that it has downloaded to schedule the next access. The scheduling is
based on the comparison of a time-varying function of the data downloaded
from the repository with a time-varying threshold function. Namely, when
an agent accesses the repository, it schedules the following access at the earli-
est time when the function of the downloaded data overcomes the threshold
function. The convergence rate of the threshold function is a parameter in
the control design, and acts as a lower bound on the convergence rate of the
closed-loop system. The proposed setup was applied to a rendezvous prob-
lem of mobile agents with second-order dynamics subject to disturbances.
We showed that the proposed algorithm achieves bounded convergence if
the disturbances are persistent, and asymptotic convergence if the distur-
bances slowly vanish. In both cases, we showed that the sequence of the
accesses to the cloud repository by each agent does not exhibit Zeno behav-
ior, as long as the the convergence rate of the threshold function is smaller
than a constant that depends on the topology of the information exchange
through the cloud.

Coverage control of anisotropic sensor networks

We designed a family of distributed protocols for coverage control of anisotropic
sensor networks. The environment or structure that the sensors have to mon-
itor is abstracted into a finite set of landmarks, where each landmark is the

6.2. Future research 97

abstraction of a point or a small area of interest. Each sensor is initially as-
signed a subset of the landmarks to monitor. To improve the coverage of the
environment, each sensor can change its position and orientation, but also
transfer the ownership of some of its landmarks to another sensor that has
a better perception of those landmarks. Communication between sensors
is intermittent and event-based. We showed that the proposed protocol is
deadlock-free and leads to monotonic improvement of the global coverage
achieved by the sensor network. We showed also that the sensor network
converges to a configuration that can be seen as a generalized version of a
Voronoi tessellation. The convergence properties of the proposed algorithms
have been discussed in terms of convexity and Lipschitzianity of the sensors’
footprints. The protocol can easily handle the addition of new sensor and
landmarks to the network.

6.2 Future research

There exist many challenging open questions in the topic of multi-agent sys-
tems. In this section, we discuss some natural extensions of the work pre-
sented in this thesis.

Event-triggered pinning control of switching networks

When dealing with agreement protocols in multi-agent networks, one always
needs some assumptions on the connectedness of the network topology. For
example, the assumption that we make in our event-triggered control algo-
rithm essentially means that the network must be connected to the reference
trajectory sufficiently often. However, we showed that these assumptions
are sufficient conditions for asymptotic convergence of the network to the
reference trajectory, but not that they are necessary. It would be interesting
to study if the same event-triggered protocol, or a similar one, can be used
for pinning control of networks with even less conservative connectivity as-
sumptions, such as jointly connected networks.

Other possible extensions include considering networks with directed
topologies and more general control protocols.

Cloud-supported multi-agent coordination

The idea of substituting inter-agent communication with the access to a re-
mote repository can be applied in many different multi-agent control tasks.
In this thesis, we presented a general framework for cloud-supported multi-
agent coordination, but we derived a control law and access scheduling rule
only for the case when the objective is the rendezvous of second-order agents.

98 Conclusions and future research

Future research will address more general coordination objectives for the
proposed framework.

Another research challenge arises if we attribute a cost to each cloud ac-
cess, and we try to account for such cost explicitly in the control design. For
example, one may consider a cost function inspired to LQR control, and in-
corporate an additional impulsive term to penalize the cloud accesses of each
agent.

Coverage control of anisotropic sensor networks

Coverage control is widely open to improvements. The existing algorithms
based on Voronoi tessellations converge to a local optimum of the cost func-
tion that represents the coverage achieved by the sensor network, and the
research ground is open for solutions that try to avoid this type of equilibria.

Depending on the sensors’ footprints and on the control algorithm, a sin-
gle sensor may also converge to a local optimum of the cost function that
represents the coverage achieved by that sensor. Future research will focus
on a footprint design that allows a sensor to avoid the local optima of its own
coverage function. Since a footprint is a function of both the position and the
orientation of the sensor, the design of a footprint that escapes local optima
will relate the concepts of standard convexity and geodesic convexity.

For most practical applications, it is important to incorporate a collision
avoidance scheme to coverage control. Collision avoidance is achieved as
a side effect in Voronoi-based coverage control for sensors with omnidirec-
tional footprints, but this benefit does not extend to networks of sensor with
general footprints. A research challenge is to design a collision avoidance
scheme which preserves as many properties as possible of the original con-
trol algorithm, such as monotonic improvement of the global coverage func-
tion, intermittent communication, and guaranteed absence of deadlocks.

Bibliography

[1] M. E. J. Newman, Networks: an introduction. Oxford University Press,
2010.

[2] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Net-
works. Princeton Univerisity Press, 2010.

[3] S. H. Strogatz, “Exploring Complex Networks,” Nature, vol. 410,
pp. 268–276, 2001.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[5] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 2006.

[6] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distributed control of networked dynamical systems: Static feedback,
integral action and consensus,” IEEE Transactions on Automatic Control,
vol. 59, no. 7, pp. 1750–1764, 2014.

[7] R. O. Grigoriev, M. C. Cross, and H. G. Schuster, “Pinning Control of
Spatiotemporal Chaos,” Physical Review Letters, vol. 79, no. 15, 1997.

[8] X. F. Wang and G. Chen, “Pinning control of scale-free dynamical net-
works,” Physica A, vol. 310, pp. 521–531, 2002.

[9] X. Li, X. Wang, and G. Chen, “Pinning a Complex Dynamical Network
to Its Equilibrium,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 51, no. 10, pp. 2074–2087, 2004.

[10] F. Sorrentino, M. Di Bernardo, F. Garofalo, and G. Chen, “Controllability
of complex networks via pinning,” Physical Review E - Statistical, Nonlin-
ear, and Soft Matter Physics, vol. 75, no. 4, 2007.

99

100 Bibliography

[11] M. Porfiri and M. di Bernardo, “Criteria for global pinning-
controllability of complex networks,” Automatica, vol. 44, no. 12,
pp. 3100–3106, 2008.

[12] Q. Song, J. Cao, and W. Yu, “Second-order leader-following consensus
of nonlinear multi-agent systems via adaptive pinning control,” Systems
& Control Letterss, vol. 59, pp. 553–562, 2010.

[13] W. Wu, W. Zhou, and T. Chen, “Cluster Synchronization of Linearly
Coupled Complex Networks Under Pinning Control,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 56, no. 4, pp. 829–839, 2009.

[14] P. Delellis, M. Di Bernardo, and M. Porfiri, “Pinning control of complex
networks via edge snapping,” Chaos, vol. 21, no. 19, 2011.

[15] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, no. 473, pp. 167–173, 2011.

[16] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An Introduc-
tion to Event-triggered and Self-triggered Control,” in IEEE Conference
on Decision and Control, 2012.

[17] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–
1685, 2007.

[18] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 9, pp. 2030–2042, 2010.

[19] D. V. Dimarogonas and K. H. Johansson, “Event-Triggered Control for
Multi-Agent Systems,” in IEEE Conference on Decision and Control, 2009.

[20] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Control of
Multi-Agent Systems via Event-based Communication,” in IFAC World
Congress, 2011.

[21] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
pp. 245–252, 2013.

[22] X. Wang and M. D. Lemmon, “Event-triggered broadcasting across dis-
tributed networked control systems,” in American Control Conference,
pp. 3139–3144, 2008.

[23] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed Self-
Triggered Control for Multi-Agent Systems,” in IEEE Conference on De-
cision and Control, 2010.

Bibliography 101

[24] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[25] G. Shi and K. H. Johansson, “Multi-agent Robust Consensus - Part II:
Application to Distributed Event-triggered Coordination,” IEEE Confer-
ence on Decision and Control and European Control Conference, pp. 5738–
5743, 2011.

[26] X. Meng and T. Chen, “Event based agreement protocols for multi-agent
networks,” Automatica, vol. 49, pp. 2125–2132, 2013.

[27] W. Zhu, Z.-P. Jiang, and G. Feng, “Event-based consensus of multi-agent
systems with general linear models,” Automatica, vol. 50, pp. 552–558,
2014.

[28] S. Dormido, D. V. Dimarogonas, J. Sánchez, K. H. Johansson, and
M. Guinaldo, “Distributed event-based control strategies for intercon-
nected linear systems,” IET Control Theory & Applications, vol. 7, no. 6,
pp. 877–886, 2013.

[29] H. Li, X. Liao, T. Huang, and W. Zhu, “Event-Triggering Sampling Based
Leader-Following Consensus in Second-Order Multi-Agent Systems,”
IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1998–2003,
2015.

[30] C. De Persis and P. Frasca, “Robust self-triggered coordination with
ternary controllers,” IEEE Transactions on Automatic Control, vol. 58,
no. 12, pp. 3024–3038, 2013.

[31] F. Hao and X. Chen, “Event-triggered average consensus control for
discrete-time multi-agent systems,” IET Control Theory & Applications,
vol. 6, no. February, pp. 2493–2498, 2012.

[32] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-Based
Model Predictive Control for the Cooperation of Distributed Agents,”
in American Control Conference, pp. 6473–6478, 2012.

[33] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Distributed aperi-
odic model predictive control for multi-agent systems,” IET Control The-
ory & Applications, vol. 9, no. 1, pp. 10–20, 2015.

[34] D. Liuzza, D. V. Dimarogonas, M. di Bernardo, and K. H. Johansson,
“Distributed Model Based Event-Triggered Control for Synchronization
of Multi-Agent Systems,” in IFAC Symposium on Nonlinear Control Sys-
tems, (Toulose, France), pp. 329–334, 2013.

102 Bibliography

[35] D. B. Edwards, T. A. Bean, D. L. Odell, and M. J. Anderson, “A leader-
follower algorithm for multiple AUV formations,” in IEEE/OES Au-
tonomous Underwater Vehicles, pp. 40–46, 2004.

[36] P. V. Teixeira, D. V. Dimarogonas, K. H. Johansson, and J. Sousa, “Event-
based motion coordination of multiple underwater vehicles under dis-
turbances,” in IEEE OCEANS, 2010.

[37] P. V. Teixeira, D. V. Dimarogonas, and K. H. Johansson, “Multi-agent co-
ordination with event-based communication,” in American Control Con-
ference, (Marriot Waterfront, Baltimore, MD, USA), 2011.

[38] D. J. Stilwell and B. E. Bishop, “Platoons of underwater vehicles,” IEEE
Control Systems Magazine, vol. 20, no. 6, pp. 45–52, 2000.

[39] E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer, and
D. M. Fratantoni, “Multi-AUV control and adaptive sampling in Mon-
terey Bay,” IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 935–
948, 2006.

[40] J. Cortés, S. Martı́nez, T. Karata, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 2, pp. 243–255, 2004.

[41] S. Martinez, J. Cortes, and F. Bullo, “Motion Coordination with Dis-
tributed Information,” IEEE Control Systems Magazine, vol. 27, no. 4,
pp. 75–88, 2007.

[42] M. Zhong and C. G. Cassandras, “Distributed Coverage Control and
Data Collection with Mobile Sensor Networks,” IEEE Transactions on Au-
tomatic Control, vol. 56, no. 10, pp. 2445–2455, 2011.

[43] J. Le Ny and G. J. Pappas, “Adaptive Deployment of Mobile Robotic
Networks,” IEEE Transactions on Automatic Control, vol. 58, no. 3,
pp. 654–666, 2013.

[44] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations:
Applications and Algorithms,” SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.

[45] Y. Stergiopoulos and A. Tzes, “Spatially distributed area coverage opti-
misation in mobile robotic networks with arbitrary convex anisotropic
patterns,” Automatica, vol. 49, no. 1, pp. 232–237, 2013.

[46] Y. Stergiopoulos and A. Tzes, “Cooperative positioning/orientation
control of mobile heterogeneous anisotropic sensor networks for area
coverage,” in IEEE International Conference on Robotics and Automation
(ICRA), 2014.

Bibliography 103

[47] A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi based cov-
erage control with anisotropic sensors,” in American Control Conference,
pp. 736–741, 2008.

[48] K. Laventall and J. Cortes, “Coverage control by multi-robot networks
with limited-range anisotropic sensory,” in American Control Conference,
2008.

[49] A. Gusrialdi, T. Hatanaka, and M. Fujita, “Coverage Control for Mobile
Networks with Limited-Range Anisotropic Sensors,” in IEEE Conference
on Decision and Control (CDC), pp. 4263–4268, 2008.

[50] J.-S. Marier, C.-A. Rabbath, and N. Lechevin, “Visibility-limited Cover-
age Control Using Nonsmooth Optimization,” in American Control Con-
ference (ACC), 2012.

[51] Y. Kantaros, M. Thanou, and A. Tzes, “Visibility-oriented Coverage
Control of Mobile Robotic Networks on Non-convex Regions,” in IEEE
International Conference on Robotics and Automation, 2014.

[52] Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control for
concave areas by a heterogeneous Robot-Swarm with visibility sensing
constraints,” Automatica, vol. 53, pp. 195–207, 2015.

[53] M. Thanou, Y. Stergiopoulos, and A. Tzes, “Distributed coverage us-
ing geodesic metric for non-convex environments,” in IEEE International
Conference on Robotics and Automation, pp. 933–938, 2013.

[54] Y. Stergiopoulos, M. Thanou, and A. Tzes, “Distributed Collaborative
Coverage-Control Schemes for Non-Convex Domains,” IEEE Transac-
tions on Automatic Control, vol. 60, no. 9, pp. 2422–2427, 2015.

[55] I. I. Hussein and D. M. Stipanovic, “Effective Coverage Control using
Dynamic Sensor Networks,” in IEEE Conference on Decision and Control
(CDC), 2006.

[56] I. I. Hussein and D. M. Stipanovic, “Effective Coverage Control for
Mobile Sensor Networks With Guaranteed Collision Avoidance,” IEEE
Transactions on Control Systems Technology, vol. 15, no. 4, pp. 642–657,
2007.

[57] D. Panagou, D. M. Stipanovic, and P. G. Voulgaris, “Vision-based dy-
namic coverage control for nonholonomic agents,” in IEEE Conference
on Decision and Control (CDC), 2014.

104 Bibliography

[58] D. Panagou, D. M. Stipanovic, and P. G. Voulgaris, “Dynamic coverage
control in unicycle multi-robot networks under anisotropic sensing,”
Frontiers in Robotics and AI, vol. 2, pp. 1–17, 2015.

[59] P. Frasca, R. Carli, and F. Bullo, “Multiagent coverage algorithms with
gossip communication: control systems on the space of partitions,” in
American Control Conference (ACC), 2009.

[60] F. Bullo, R. Carli, and P. Frasca, “Gossip Coverage Control for Robotic
Networks: Dynamical Systems on the Space of Partitions,” SIAM Journal
on Control and Optimization, vol. 50, no. 1, pp. 419–447, 2012.

[61] J. W. Durham, R. Carli, and F. Bullo, “Pairwise Optimal Discrete Cov-
erage Control for Gossiping Robots,” in IEEE Conference on Decision and
Control (CDC), 2010.

[62] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete Partitioning and
Coverage Control for Gossiping Robots,” IEEE Transactions on Robotics,
vol. 28, no. 2, pp. 364–378, 2012.

[63] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Dynamic partitioning
and coverage control with asynchronous one-to-base-station communi-
cation,” IEEE Transactions on Control of Network Systems, vol. 3, no. 1,
pp. 24–33, 2016.

[64] A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Ber-
nardo, and K. H. Johansson, “Event-triggered pinning control of com-
plex networks with switching topologies,” in IEEE Conference on Decision
and Control, pp. 2783–2788, 2014.

[65] A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di Ber-
nardo, and K. H. Johansson, “Event-triggered pinning control of switch-
ing networks,” IEEE Transactions on Control of Network Systems, vol. 2,
no. 2, pp. 204–213, 2015.

[66] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Con-
trol of multi-agent systems with event-triggered cloud access,” in Euro-
pean Control Conference, 2015.

[67] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Multi-
agent trajectory tracking with self-triggered cloud access,” Accepted for
publication in the IEEE Conference on Decision and Control, 2016.

[68] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Cloud-
supported coordination of second-order multi-agent systems,” Submit-
ted to the IEEE Transactions on Control of Network Systems.

Bibliography 105

[69] A. Adaldo, D. V. Dimarogonas, and K. H. Johansson, “Discrete parti-
tioning and intermittent communication for anisotropic coverage and
inspection missions,” To be submitted to the 2017 World Congress of the In-
ternational Federation of Automatic Control (IFAC).

[70] H. Eves, Elementary Matrix Theory. Dover Publications, 1996.

[71] Z. Zeng, X. Wang, and Z. Zheng, “Convergence analysis using the edge
Laplacian: Robust consensus of nonlinear multi-agent systems via ISS
method,” International Journal of Robust and Nonlinear Control, vol. 26,
pp. 1051–1072, 2015.

[72] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 2nd ed., 2012.

[73] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the regu-
larization of Zeno hybrid automata,” Systems & Control Letters, vol. 38,
pp. 141–150, 1999.

[74] H. Khalil, Nonlinear Systems. Prentice Hall, second ed., 2002.

[75] T. Matsumoto, “A Chaotic Attractor from Chua’s Circuit,” IEEE Trans-
actions on Circuits and Systems, vol. 31, no. 12, pp. 1055–1058, 1984.

[76] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localization:
A review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–
149, 2014.

[77] M. T. Hale and M. Egerstedt, “Differentially private cloud-based multi-
agent optimization with constraints,” in Proceedings of the American Con-
trol Conference, (Chicago, IL, USA), 2015.

[78] C. Nowzari and G. J. Pappas, “Multi-agent coordination with asyn-
chronous cloud access,” in American Control Conference, 2016.

[79] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic perfor-
mance bounds and passivity analysis,” IEEE Transactions on Automatic
Control, vol. 56, no. 3, pp. 544–555, 2011.

[80] K. Liu, G. Xie, and L. Wang, “Consensus for second-order multi-agent
systems with inherent nonlinear dynamics under directed topologies,”
Systems & Control Letters, vol. 62, 2013.

[81] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[82] J. D. Pintér, Global Optimization in Action. Kluwer Academic Publishers,
1996.

106 Bibliography

[83] A. B. Downey, The Little Book of Semaphores. Green Tea Press, 2008.

[84] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Prac-
tical Approach to Global Optimization. Springer, 2005.

	Contents
	Acknowledgments
	Introduction
	Motivating examples
	Related work
	Thesis outline and contributions

	Technical preliminaries
	Notation
	Elements of graph theory
	Hybrid time trajectories and Zeno behavior

	Event-triggered pinning control of switching networks
	Problem statement
	Representation as a graph
	Implementation
	Main result
	Convergence proof
	Well-posedness proof
	Proof of the main result
	Fixed network topologies
	Numerical simulations
	Summary

	Cloud-supported multi-agent coordination
	System model
	Self-triggered cloud access scheduling
	Main result
	Convergence proof
	Well-posedness proof
	Proof of Theorem thm:main
	Numerical simulations
	Summary

	Coverage control of anisotropic sensor networks
	Notations and properties related to unit vectors
	Landmarks and sensors
	Voronoi tessellations
	Problem formulation
	Necessary conditions for optimality
	Generalized discrete Lloyd descent
	Distributed implementation
	Simulation of the generalized discrete Lloyd descent
	Experimental evaluation of the generalized discrete Lloyd descent
	Gradient descent for coverage improvement
	Simulation of the gradient descent for coverage improvement
	Summary

	Conclusions and future research
	Conclusions
	Future research

	Bibliography

