

Introduction to Hybrid Systems

Karl Henrik Johansson Department of Signals, Sensors and Systems Royal Institute of Technology, Stockholm, Sweden

Formation en Automatique à Paris, April 2005

Outline

- Introduction
 - -Motivating examples
- Models
 - -Hybrid automata
 - -Solutions
- Control
 - -Stability
 - -Stabilization
- Verification
 - -Transition systems
 - -Reachability
- Summary

 Outlook, references

Introduction

What is a Hybrid System?

- A hybrid system is a dynamical system with interacting time-triggered and event-triggered dynamics
- E.g., differential equations and finite automata

$$\dot{x} = f(x, u)$$
 and $q^+ = g(q, v)$

•

$$\downarrow$$
 \checkmark t

$$x: [0,\infty) \to \mathbf{R}^n, u: [0,\infty) \to \mathbf{R}$$

 q_1, e_1, q_2, e_2, q_3

$$q: \mathbf{Z}^+ \to \{q_1, \ldots, q_N\}, v: \mathbf{Z}^+ \to \{e_1, \ldots, e_K\}$$

q3

Control Systems

Time-triggered

$$\dot{x} = f(x, u)$$

Electronics, physics, mechanics etc.

• Event-triggered
$$q^+ = g(q,v)$$

Digital circuits, logics, softwares etc.

Hybrid Control System

Time-triggered

Event-triggered

 \boldsymbol{x}

Example of a Hybrid System

 $x > 2, \quad x := 0$

t

Example of a Hybrid System v = switchx > 0 $\dot{x} =$ $\dot{x} = 1$ $\dot{x} = 2$ $x > 2, \quad x := 0$ \boldsymbol{x} v = switcht

Example of a Hybrid System

Example of a Hybrid System

Example of a Hybrid System

Why Hybrid Systems?

- Abstractions in design lead to hybrid dynamics
 - Time-scale separation, large scale systems
- Embedded computer systems are hybrid
 - Real-time software interacting with physical environment
- Control strategies are hybrid
 - On-off, optimal control, batch control, hierarchical control
- Improved performance
 - Brockett integrator, supervisory control, variable structure systems
- Nature is hybrid
 - Relays, impact mechanics, state constraints

Motivating Examples

- Automatic gear box
- Rocking block
- Internet congestion control
- Vacuum cleaning
- Multi-robot tracking
- Multi-robot flocking

Automatic Gear Box

Task: Design the control system for an automatic gearbox

 x_1 is the longitudinal position of the car and x_2 its velocity The dynamics (for a normalized car) can be written as

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = \alpha_{\text{gear}}(x_2)u$

where u corresponds to the throttle position and $\alpha_{\rm gear}(\cdot) \text{ to the efficiency of a specific gear (draw a figure)}$ Note

- $u \in [0, u_{\max}]$ is a real-valued control
- gear $\in \{1,2,3,4\}$ is an integer-valued control

Discrete Event System

Hybrid System

Typical solutions:

How choose u and gear in a good (optimal) way?

Rocking Block

Hybrid models capture mechanical impacts and other discontinuous dynamics

Rocking Block

Rocking block rotates around one of two pivot points

- •Impacts represented as discrete transitions
- System may show complex dynamics

•Extensively studied as model for nuclear reactors, electrical transformers and tombstones

Rocking Block

- •Rocking block rotates around one of two pivot points
- Impacts represented as discrete transitions
- System may show complex dynamics

•Extensively studied as model for nuclear reactors, electrical transformers and tombstones

Queue Model for Router Node

Hybrid Queue Model

Replace discrete variables (inputs and states) by continuous approximations

Transmission Control Protocol (TCP)

- Regulates transmission rate in each sender
- Receiver acknowledges received data (ACK's)
- Additive increase multiplicative decrease (AIMD)
- Probes available bandwidth
- Implicit feedback of network state
- Packet drops should indicate traffic congestion

Additive

increase

KTH VETENSKAP VETENSKAP

w (packets) - 57 - 05 - 05

9 15

10 to 10

TCP Implements a Hybrid Controller

24

KTH vetenskap och konst se

ow (backets) 25 -20 -20 -

opuja 15 ·

. ji 10 -

5 -

TCP Implements a Hybrid Controller

Time-Scale Separation

- Replace (fast) discrete window updates by continuous approximation
- Reasonable at time-scale of congestion control
- Enables analysis and more efficient simulations

Vacuum Cleaning

•Find an efficient strategy for autonomous cleaning of an apartment

Efficient Area Coverage

Constrained by nonlinear and uncertain dynamics, sensor noise, actuator limitations, unknown obstacles in environment etc.

Hierarchical Control

 Natural to organize large systems into a hierarchy

•Divide into manageable layers

•Widely adopted approach in engineering: manufacturing, robotics, transportation etc.

•Cross-layer interaction results in hybrid systems

Area Coverage with Uncertain Heading

Robot motion governed by

 $\dot{x} = \cos(\theta + e)$ $\dot{y} = \sin(\theta + e)$

where θ is heading, controlled when $c(t) \cap \partial \Omega \neq \emptyset$ $|e| < \varepsilon$ represents uncertainty in control

Problem: Given $\varepsilon > 0$, minimize number of turns N

to cover Ω

Mazo & J, 04

Comparison of Hybrid Controllers

Robot motion governed by

 $\dot{x} = \cos(\theta + e)$ $\dot{y} = \sin(\theta + e)$

where θ is heading, controlled when $c(t) \cap \partial \Omega \neq \emptyset$ $|e| < \varepsilon$ represents uncertainty in control

Given $\varepsilon > 0$, minimize number of turns N to cover Ω

How Track a Moving Object with Directional Sensors?

- Target moving along smooth trajectory
- Two tracking unicycle robots (Khepera II) with inter-robot communication
- Directional sensors with limited range

$$\begin{split} \dot{x}_i &= v_i \cos \theta_i \\ \dot{y}_i &= v_i \sin \theta_i \qquad i = 1,2 \\ \dot{\theta}_i &= \omega_i \end{split}$$

Mazo, Speranzon, J, Hu, 04

Hierarchical Control Strategy

- Plan desired robot formation that is suitable for robust sensing
- Generate trajectories that connect present and desired formations
- Track trajectories by low-level control

Formation Planning

- Robot formation suitable for collaborative estimation of target position under directional sensor constraints
- Estimate target's current state $\hat{x}_T(t_k), \hat{y}_T(t_k), \hat{v}_T(t_k), \hat{ heta}_T(t_k)$ at discrete events t_k
- Predict target's position at next formation update

KTH vetenskap vetenskap

Trajectory Generation

Generate reference trajectories for robots

$$\begin{aligned} x_i^{ref}(t) &= x_i^f(t_k) + \frac{v_i(t_k)}{\omega_i(t_k)} [\sin(\theta_i^f(t_k) + \omega_i(t_k)t) - \sin(\theta_i^f(t_k))] \\ y_i^{ref}(t) &= y_i^f(t_k) - \frac{v_i(t_k)}{\omega_i(t_k)} [\cos(\theta_i^f(t_k) + \omega_i(t_k)t) - \cos(\theta_i^f(t_k))] \end{aligned}$$

based on rigid formation: $\dot{p}=\dot{d_1}=\dot{d_2}=0, \dot{ heta_1}=\dot{ heta_2}$

Track reference trajectory using virtual vehicle approach [Egerstedt et al.,01]:

Parameterize reference trajectories as $p_i(s_i) := x_i^{ref}(s_i), q_i(s_i) := y_i^{ref}(s_i)$

$$\dot{s}_{i} = \frac{ce^{-a\rho}v_{i}^{0}}{\sqrt{p_{i}^{\prime 2}(s_{i}) + q_{i}^{\prime 2}(s_{i})}}$$

Tracking controller given by

$$v_i(t) = \gamma \rho_i(t) \cos[\phi_i^d(t) - \theta_i(t)]$$

 $\omega_i(t) = k[\phi_i^d(t) - \theta_i(t)] + \dot{\phi}_i^d(t)$

with

$$\rho_i(t) = \sqrt{(x_i^{ref}(s_i) - x_i(t))^2 + (y_i^{ref}(s_i) - y_i(t))^2}$$

$$\phi_i^d(t) = \arctan \frac{x_i^{ref}(s_i) - x_i(t)}{y_i^{ref}(s_i) - y_i(t)}$$

Simulation: Tracking Target on Circle

Multi-Robot Flocking with Obstacle Avoidance

Lindhé, Ögren, J, 04

Multi-Robot Flocking with Obstacle Avoidance

Event- and Time-Triggered Control

- Discrete-event waypoints generated by high-level algorithm
- Tracked by low-level continuous-time control
- Safety guaranteed by limited actuation
- Goal reaching from potential field (Lyapunov) argument
- Flocking due to distribution following Voronoi partition

41

Why Hybrid Systems?

- Abstractions in design lead to hybrid dynamics
 - Time-scale separation, large scale systems
- Embedded computer systems are hybrid
 - Real-time software interacting with physical environment
- Control strategies are hybrid
 - On-off, optimal control, batch control, hierarchical control
- Improved performance
 - Brockett integrator, supervisory control, variable structure systems
- Nature is hybrid
 - Relays, impact mechanics, state constraints