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Lecture 10: Stochastic event-based control

Lecture 10 Outline

* Stochastic control
* Optimal event-based control
* Event-based control with packet losses
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Event-based control loop

Wireless network

Rstrdm, 2007, Rabi and J., WICON, 2008

When to transmit?

* Event detector mechanism on sensor side
— E.g., threshold crossing

Wireless network

How to control?

* Execute control law at actuator side
— E.g., piecewise constant controls, impulse control

Rabi et al., 2008
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Example: Fixed threshold with impulse control

Event-detector implemented as fixed-
level threshold at sensor

Event-based impulse control better
than periodic impulse control

Periodic Control Event-Based Control

2 2

1

> 0

-1
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t Astrom & Bernhardsson, IFAC, 1999

Control generators and event detectors

1. Impulse 1. Fixed threshold
2. Zero order hold 2. Time-varying
3. Higher order hold 3. Adaptive

Wireless network




Plant model

Plant dr = udt + dv,

Stochastic differential equation, interpreted as

s+T s+T
x(s+71)—a(r)= / u(t)dt + / du(t)
with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

v is a Wiener process (or Brownian motion)

See bibliography incl @ksendal (2003) for an introduction to stochastic differential equations

Wiener process

A Wiener process v(t) fulfills
1. v(0)=0
2. v(t)is almost surely continuous

3. v(t) has independent increments o
with v(t)-v(s) ~ N(O,t-s) for t>s>0

Remark The variance of a Wiener process is growing like

E(V(t+s) = V()" =]s|
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Plant model

Plant dr = udt + dv,

Stochastic differential equation, interpreted as

2(s+7) —a(r) = / Tty + / T ()

with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

When s > 0 is a small, the change of z(7) is
normally distributed with mean su(7) and variance s.

Plant model and control cost
Plant dx = udt + dv,

vis a Wiener process:  E(v(t+ s) — v(1))* = |s|

. 1 T
Cost function V= TE/ 22 (t)dt.
0
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Periodic impulse control

T

Impulse applied at events .

w(t) = —2(t)(t — ty,), b t;,*’u\wf””a

Periodic reset of state every event.

State grows linearly as 1 fl*;
E(v(t+ ) = V(0)* =s|

between sample instances, because dx = udt + dv,

Average variance over sampling period’ is %h so the

cost is

. 1
Vpian = sh.

Rstrom, 2007

Periodic ZoH control

Traditional sampled-data control theory gives that
h
V= %/U E2*(t)dt is minimized for the sampled system
z(t+ h) = x(t) + hu(t) + e(t),

with
1343
u=—Lxr= x

T har B
derived from

S=d"S®+Q, —LTRL, L=RYI'"S®»+QL,), R=Q.+I7sr,

The minimum gives the cost

3+ﬁh
6

Vpzon =

Rstrom, 2007
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Event-based impulse control
with fixed threshold

Suppose an event is generated whenever 1

generating impulse control B

j(ti)| = a WWMWM

w(t) = —x(t,)8(t — ty), °®

200

One can show that the average time 100

between two events is u o H ”” | | |

hE = E(Tj:d) = E(‘r'(l{id) = ”2 :;ZZ

and that the pdf of = is triangular: t

f(@) = (a—|z])/a®

The cost is 2
. a g
"EIH - T -

Rstrom, 2007

Pdf f(x)=(a—|z[)/a® isthe solution to the forward
Kolmogorov forward equation (or Fokker—Planck

equation)
of 19*f . 10f . 10f ) _ .
a = E al’_‘z .l) — EE(([)OL + EI(_(I)A“ f( (l) f((l‘) 0,

4/24/13
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Comparison
PZOH PIH EIH
2 2 l 2
\f\/‘/\/“w °W°ﬁﬁw‘v AT
-2 '/ -2 -2
0 5 10 0 5 10 0 5 10
u u,/1000 u/1000
2 2 2
1 1
0 {1 U (T
L S T
-2
-2 -2
0 5 10 0 5 10 0 5 10
Rstrém, 2007

Event-based ZoH control
with adaptive sampling

Wireless network

. T
How choose {U;} and {7;} to minimize v = %E/ 2 (t)dt.
0

Rabi et al., 2008
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Optimal control
with one sampling event

day = ugdt + dB; . f\
OM OA 4

ww U

T .

min J= min E :cfds 70 -

Uo,U1,7 Uo,Uy,7 0

T T
E/ a:gds + E/ m?ds]
0 T

= min
UO7UlaT

A joint optimal control and optimal stopping problem

Rabi et al., 2008

dr; = wdt + dBy

. . T 2
min J= min E rsds
Uo,U1,m Uo,Ur,T 0

If 7 chosen deterministically (not depending on x¢)
and xg = O:
_3.’L'T/2

Us =0 Ui = -— ™ =1T/2

If 7 is event-driven (depending on z;) and xzg = O:

3x*
Uo=0 Ut = _2(T—T*)

™ =inf{t: 27 > V3(T —t)}

Envelope defines optimal level detector

4/24/13
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Optimal level detector

Dynamic level detector

Wireless network

dxy = wdt + dBy
T
min J= min E x

Eds
UO7U1 T UOaUl 5T 0 v

o] T T

Proof

T o : T 2 T 5
min J= min E [ z2ds = min E/ wsds+E/ @2ds
U07U177 UOleyT 0 UO7U17T 0 T

T
E{/ mgds
T

= /TTE{[:CE + U2t — )%+ (B — Br)? + 22,U1(t — 1)

t t
T,xT,Ul} - [zt2x7+/ Ulds+/ st}
T T

+2$T(Bt - BT) + 2Ul(t - T)(Bt - B’T)]} dt

&3 52
=[EBi=0,EB? =t,6:=T—1|= 5:c$+§U12+5+52:cTU1

5, /3 6UL\2 62

Hence, optimal control Ui = Uj(a7, T — 1) =

_ . 3Bzr
2(T — 1)

4/24/13
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T — 2
JUo,Uf,7) = E [ ds+E{ a2 2”}

If 7 chosen deterministically (not depending on ;)
and zg = 0:

_ 2
J(Uo,Uf,0) = & " v+ T (U§e2+e>+(T 9)
Hence, 35
U =0 Ut = — 77:/2 *=1T/2
which gives
572
J(UE, U, >
(U, U1, 77) 16

If 7 is event-driven (depending on z;) and zg = O:

(T-7)2) _
)

_ 12 U3T? /3 (T —7)Up\
-+ 0 E{( > T3 ) (T—r)}
T2 3

=5 - ZE{:E%(T— T)}

because from symmetry U* = 0.
Find 7 that maximizes f(zr,7)=E{a2(T - 1)}

T T —T1
J(Uo, U, 7) = E/ mgds—i—E{ 2 z2 +

4/24/13
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Find 7 that maximizes f(zr,7)=E{a2(T - 1)}
Suppose there exists smooth g(z,t) such that
g(z,t) > 2*(T — 1)

1
—gzz(x,t) + gt (x,t) =0

2
Then, for0<t<7<T,

fGr,m) = E {221~ 1)} < E{g(ar. )} = 9@, t) + E [ dg(ar,7)

= [Ito formula] = g(z¢,t) + E /tT (%gm + gt) dt

= g(xtat)
Hence, g is an upper bound for the expected reward.

We next show that equality can be achieved.

(T —t)?
:")

4
_ Tt 2

is a solution to
1
ng:r(xat) + gt(x, t) =0

Moreover,

oan )= (T=0) = 5 s (””— - -0+ - t)2)

4
t
3
_ 1 Lo 2) _
21+ V3) <f3 (r-v7)=0
if wt2 =V3(T —t).
Hence, the optimal sampling time is
™ =inf{t: 7 > V3(T —t)}

which gives
2

T
J(Us, UL, ") =3

4/24/13
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Optimal level detector

Dynamic level detector

Wireless network

dxy = wdt + dBy

. . r 2
min J= min E rgds
UO7U17T UOaU17T 0 v

Policy iteration

For zo # 0 we have in general the cost function
Ix (20, {Uo, U1 },7) & a(20,T) = E[3 (0, Uo, 7, T)] ,

where T
a(xg,Usg, T) = / E [®7,(s,0,x0)] ds
0

3 (@0 Uo7, T) = 1B [Ofs,72,) = ¥, orfs 0]

and @t 11, ) is the solution of the system with constant control

Necessary condition for optimality
{T* (zo) =esssup E[3(zo,U; (z0),7,T)],

Uj(zg) = infU{a (20, U, T) —E[3 (20,U, 7" (20) T)]}

suggests iterative search algorithm. Computationally intensive.

4/24/13
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Example: Non-zero initial conditions

Evolution of switching envelopes when X =05 Evolution of initial control level Uy,

—— 1stiteration
2nd iteration

Cendidato U,
-

Time
Evolution of switching envelopes when % =145 Evolution
niAviAvf_-——v*‘ .
0 02 04 Time 06 08 1 r—
Multiple samples
Extension to N>1 samples X

. T
J_.'\-' (.l’(),”. {T}x\:l) =E [/ .l‘zds .Z’(;:| ————
through nested single sample 7 : )
problems © = T
Extension to variable budget /
sampling, allowing number of :
samples to depend on x. u : :
o_;rl 2
—_—

4/24/13
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Lecture 10 Outline

* Stochastic control
e Optimal event-based control
* Event-based control with packet losses

Event-based impulse control over
wireless network with communication losses

Plant dxy = dWy + wdt, 2(0) = 20,

Wireless network

M
/ Z 17, <30 (5 — ) ds':|
0 n=0

Samplingevents 7 = {70,71,72,...},

o0
Impulse control uw = >z, 6(7.)
n=0

. , 1
Average sampling rate R. = limsup 27E

M—oo 4V

1 M
Average cost J = limsup VIE [/ 22ds
0

M—oo 4

4/24/13
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Periodic impulse control

Sampling events T, =n1"  for n >0

Slot length Lgives 7 = NL

; 1
Average Sampllng rate RPcriodic - T
T
Average cost ‘]Pcriodic = 3
L
<
LLLi

LU e m

/

r ’ Periodic superframe of N slots ‘

Level-triggered event-based control

Ordered set of levels £=1{....l2.l-1,lo,l1,l2....} 1o =0
Multiple levels needed because we allow packet loss

Lebesgue sampling 7 = inf {7|7 > 7,2, € L, 2, ¢ 2., }

/\MMW MW-. m%\. )

4/24/13
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Level-triggered control

For Brownian motion, equidistant sampling is optimal
= {kA|k € Z}
First exit time
7, =inf {T|T >0, ¢ (E—AE+A),29= E}

_ 1 1
Average sampling rate Ra = B[] ~ A

E [fJA x2ds] A?
Average cost Ja = —Er] 6

Comparison between periodic and control

B 3 0 B g g g
Average sampling rate

T = A” gives equal average sampling rate for periodic control and
event-based control

Event-based impulse control is 3 times better than periodic
impulse control

What about the influence of communication losses?

When is event-based sampling better and vice versa?

20
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Influence of communication losses

Times when packets are successfully received i € {70 =0.71,72,...}.

{po=0,p1,p2,...} . pi>m,

Average rate of packet reception

) 1 M & .
R, = lli;ljtl)ﬁ]E [/D Z 1, <aryd (s — pn)ds| = p-R:

Define the times between successful packet receptions P;.a)

E [ﬁ,l)(F‘A' ,l‘gds]

1 T,
Average cost J, =limsup—E / rids| =
; SR A Vi el 3700

1ID losses

Proposition
If packet losses are 11D with prob p, then

equidistant Lebesque sampling gives

AZ (5p+1)
J, = (Gp+1)

6(1—p)
Remark
Event-based control better than periodic control under IID losses if
(14 5p) -
. Lo BT T
So if the loss probability
p =025

then TDMA do better than event-based sampling.
Rabi and J., 2009

21



Proof

) R
T E | [, "% 22ds
Jp = limsup l]E / 22ds| = M
T—oo T 0 E[0,.a)]

Elp,.] = ZE[Ti] Plp =],
=Y iE[r]Plp=1],
i=1
=(1-pE[r]) ',
i=1
— A2
-

E ['/Op,m :z:?ds] = ,i:;]E [/uﬂ xﬁds] Plp =T,
—a —p)gpi_lgﬂi [/:xzds]

Vn=E[/ h x?ds],
Tn Tn 2
=E zzn_lf ds+/ (25—1:1-"_1) ds|.

Let {6;} be an infinite sequence of binary IID variables.
Let 6 take vales in {—1,+1} with equal probabilities.
Then, we can say that the following random variables
are equal in probability law:

2, Y 6nA  Vn €N
m=1
b 2 TA
u,,=us[(20mA> ]E[TA]HE[/ 2ds a;0=0:|
m=1 0
4
=(n—l)A4+%.

Pp.a st . i A4
E / z§ds]= 1-p)p= 1Y =+ (n—1)A%
/ S a-pp S D
1 oAb e (E = 1)
- a-pary e (5 + 1050,

_ AY N 342 _ 94
—(1—1’)?§P (8i* —2i),

_Af(p+1)
C6(1-p)°

4/24/13

22



Losses depending on the other loops

Suppose the loss processes across the loops are independent, so
that the sample streams of the other sensors only matter
through their average behavior

The likelihood that a sample generated in one loop faces at least
one competing transmission is then

N-1
p=1- <1 - é)

Losses depending on the other loops

L (6-53V-1) L
Average cost 2=y A=l A

Trade-off between control performance and network resources

Distortion when N = 5

NN

i
10° 10'

S
Rabi and J., 2009 VL

4/24/13

23



Event-based vs periodic control

Event-based sampling better than periodic when N < n*

log (1 — %) '

ngimum network size permitting dominance of Lebesgue

100
80
N 60

40

20

0
Rabi and J., 2009 A

Sensor data ACK’ s

If controller perfectly acknowledges packets to sensor,
event detector can adjust its sampling strategy

Let A(l)=VI+1Ag

where! > 0 number of samples lost since last successfully
transmitted packet

Gives ]E‘[r}.'ﬂ‘—ri'} independent of i.

Better performance than fixed A (1) for same sampling rate:

A2 (14 p) _ A% (1+45p)

J = : = Jp.
Po6(l-p T 6(1-p) :

4/24/13
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Lecture 10 Outline

* Stochastic control
e Optimal event-based control
* Event-based control with packet losses
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