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A history of control
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[Baillieul & Antsaklis, 2007]

Today’s wireless control systems

Home automation

Industrial automation

Transportation networks
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Control over wireless networks

How to control a plant when sensor, actuator and
controller nodes are wireless network devices?

Networked control architectures

EEe (R

Network

s [ §




Example: Froth flotation process
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* Froth flotation process concentrates
the metal-bearing mineral in the ore
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Wireless control of flotation process

* Level and flow sensors are used for regulating
flotation process using SISO PID control

* Wireless sensors enable more flexible control strategies
and lower costs for maintenance and upgrades
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Wireless control demonstration integrating
ABB-Siemens-SAP systems 17-18 Jun 2008
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Experimental setup for demo on
control over multi-hop network
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Effect of packet loss

Wireless Tank Process
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A communication or a control problem?

Approaches to control over wireless networks:

1.
2.

Communication protocol suitable for control Control
Control application that compensates for Application
communication imperfections NET
Integrated design of control application and MAC
communication layers PHY

e

Wireless network

WirelessHART

Wireless networking protocol standard (2007)
designed for sensing and control applications

" Standard HART |/ WirelessHART )

Layer 7 Command onented, predefined data types and
Application application procaduras
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Wireless channels may deteriorate control performance
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How trade-off network resources and control performance?

How move intelligence from central units to local devices?

Sensors Controllers Actuators




A fundamental challenge in
wireless control

A traditional conflict between

time-driven, synchronous, sampled data control engineering
and

event-driven, asynchronous, ad hoc wireless networking

Plant

A new architecture
for wireless control

Wireless network

Rabi and J., WICON, 2008
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Architecture for event-based control

Wireless network

Rstrém, 2007, Rabi and 3., WICON, 2008

When to transmit?

* Medium access control-like mechanism at sensor
— E.g., threshold crossing

How to control?

* Execute control law over fixed control alphabet
— E.g., piecewise constant controls, impulse control

Rabi et al., 2008




Example: Fixed threshold with
impulse control

Event-detector implemented as fixed-
level threshold at sensor

Event-based impulse control better
than periodic impulse control

Wireless network

Periodic Control Event-Based Control

5 10 15 20 0 5 10 15 20
t Astrém & Bernhardsson, JFAC, 1999
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Design of
control generator and event detector
1. Impulse 1. Fixed threshold

2. Zero order hold 2. Adaptive sampling
3. Higher order hold

Wireless network

Plant model and control cost
Plant dx = udt + dv,

v is a Wiener process:  E(V{t+ s) — V(1)) = |5

| T
Cost function V= TE/O 2?(t)dt.

Discussion later on how to treat general dynamics, sensor noise etc




Periodic impulse control
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. . . . 1
Average variance over sampling period-: is 3" so the
cost is

1
V, = —h.
PIH = 5

Rstrém, 2007

Periodic ZoH control

Traditional sampled-data control theory gives that

h
v l/ ety dt is minimized for the sampled system

T
x(t+ h) = a(t) + hu(t) + e(t).

with
1343
u=—Lr=———==x
h2+3
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S=¢T'SP+Qy - L"RL, L=R'I'"S0+Qi,), R=Qy+I"SI,

The minimum gives the cost
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Rstrém, 2007




Event-based impulse control

with fixed threshold

Suppose an event is generated whenever
|2(tk)| = a

generating impulse control
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Event-

based ZoH control

with adaptive sampling

Wireless network

How choose {U;} and {r;} to minimize vV =

T




Controlled Brownian motion
with one sampling event

dz; = wpdt 4 dB; e M\\ /\
0 ; Vulig
MR
70 W n U1

T

min J= min E mfds
UO)U].!T UO)U]_,T 0 T
: T 2 T 5
= _min Ef :BSdS-l—E/ Tgds
Uo,U1,T 0 T

A joint optimal control and optimal stopping problem

Rabi et al., 2008

dry = uidt + dB
=t i .
min J=_min E mgds
Uog,U1,T Ug,Uy,7 0

If 7 chosen deterministically (not depending on z;)

and xg = 0:
Ug =0 gr=__1/2 ™ =1T/2
T
If — is event-driven (depending on z;) and zg = O:
3
US — O Uik — _f\/mxT

*\
£ 4 —T )

= inf{t: 7 > V3(T —t)}
\ Y J




Optimal level detector

Dynamic level detector
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(T — 7)2}

_ T2
J(Uo, Ut,7) = E/O a:sds-l—E{ -

If 7 chosen deterministically (not depending an ;)
and zg = O:

3 - _ )2
I(Uo, UL 6) = SUB+7 +—(L092+9)+(T 0
Hence,
US:O Uf:— le *:T/Q
which gives
572
J(Ua: U.{:Tt) — E

If 7 is event-driven (depending on z¢) and zg = O:

T—Tmz_i_(T—'r)Q} —

J(Ug, Ut 7) = E/T z2ds + E{

2
U273 23 (T —7)Uo\>
+° E{( > T )(T—r)}
—i—zE{ﬁ(T )

because from symmetry U* = 0.
Find T that maximizes f(zr,7) =E{zX(T —1)}




Find T that maximizes f(zr,7) =E{zH(T -7}
Suppose there exists smooth g(z,t) such that

g(a‘.,t) 2 :l:z(T—ﬁ)

L pez(@) + e, t) = 0

2
Then, for0<t<r<T,
Fzrm) =E{Z(T— 1)} < E{g(ar, N} = g(e,t) +E [ dg(ar,7)
= [Ito formula] = g(x¢, t) + Ef ( gz + gt) dt

—g(ﬁt,t)
Hence, g is an upper bound for the expected reward.

We next show that equality can be achieved.

V3
1++v3

g(wta t) =

¥ (T — )2
t
(E + 2 (T —t) + > )

is a solution to

1

Eg“(’:’ t) +g(=,t) =0

Moreover,

2/ _ 1 l‘f’ _ 2
g(z¢, t)—zf (T—t) ——2(1+\/§)( \/_ t(T )+ (T —1) )

1 m? B )=
=20+ (f (T=1)

If 27 = V3(T —1).
Hence, the optimal sampling time is
*=inf{t: a7 > V3(T —t)}

which gives
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Optimal level detector

Dynamic level detector
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Multiple control loops

* N control loops sharing the same wireless network

Actuator =1 Plant [ Sensor Actuator [ Plant >  Sensor

CCCCCCCCCC

eeeeeeeee

* Time Division Multiple Access or contention-based medium
access
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10 ms TDMA and CSMA time slots .
Periodic superframe of N slots

Rabi and 1., 2009




System model and performance measures
Plant dry = dW; + uedt, 2(0) = x,

Samplingevents 7 = {79, 71,72,...},

.
Impulse control w, = > = §(r,)

=l

: . I AR ,
Average sampling rate R. = limsup ﬁIE [/ Z Ly <and (s —7,)ds

M—oc 1 Jo =

1 M :
Average cost J = limsup —E [ / a:fd.s]
' 0

M—oo 4

Periodic sampling of multiple loops

Samplingevents 7, =n1" for n >0

Slot length Lgives 7 = NL

: 1
Average sampling rate Reeriodic = T
T
Average cost Jreriodic = %
L
<>

LI Lttt e e

Y

A

Periodic superframe of N slots




Level-triggered control

Ordered setof levels £ =1{... .l 2,1 1,lo,l1,l2,...} lo =10
Multiple levels needed because we allow packet loss

Lebesgue sampling 7 = inf {’r!’r > T, a0 € Lox, & II?T:,.}

l3

LTy
/ W jvhh )

Ty
WL M/
™
I_IM’NJ WI.f ‘

Level-triggered control

For Brownian motion, equidistant sampling is optimal
£ = {kA|k e Z}
First exit time
7, = inf {T|T >0,rr (6 —AE+A),2pg= f}

=

Average sampling rate Ra = 7= A

E UJL‘- ;trfds] A2

Average cost Ja = —Epr] 6




Comparison between periodic and control

0.48]

0.36(

Average distortion
e

oosf T— T—— ]

—_— T

L L L L
3 3 8 ] 10

5 5
Average sampling rate

T = A? gives equal average sampling rate for periodic control and
event-based control

Event-based impulse control is 3 times better than periodic
impulse control

What about the influence of communication losses?

When is event-based better and vice versa?

Influence of communication losses

Times when packets are successfully received pi € {70 =0,71,72,...},

{po=0.p1,p2,.. .} pi=m

Average rate of packet reception

M o0

. 1 '
R, =limsup EE |i£ Z Lip, <andis— Pn)ds‘| =p-R;

M—oc n=0

Define the times between successful packet receptions 2, a,

.

E [fgjfp-&) m?ds}
E [‘O(p.i‘-)]

T
Average cost Jp=limsup%E { / 22ds
1]

T—ra

Rabi and J., 2009




IID losses

Proposition
Suppose packet losses are |ID. Then,

;o A% (5p+1)
T 6(1-p)

Remark

Event-based control is better than period control under IID losses if
(14 5p)

- > 1
31 —p) =

So if the loss probability
p = 0.25

then traditional periodically sampled control is preferable.
Rabi and J., 2009

Losses depending on the other loops

Suppose the loss processes across the different loops are
independent, so that the sample streams of the other sensors
only matter through their average behaviour (cf., Poisson
arrivals see time averages, PASTA)

The likelihood that a sample generated in one loop faces at least
one competing transmission is then




Losses depending on the other loops

Average cost _L(B-58M1) L
B giiog Tl
gives trade-off between control performance and network

resources

Distortion when N =5

JIa g
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Proportion-Integral-Derivative

control
de;

t
w = Kpeg + K; f esds + Kp

at

[ e

|: Actuator l Sensor }

Controller
Ut €t

deg

N

%dt

Time
1 g s

t

Event-detector for PID control =

Wireless Network.

Level
- K p -

)
Y

Crossing?
e 1 Level
> K / esds[—> ) -
. Crossing?
de Level
L D > ) —
dt Crossing?

Encoder

| evente {B1I,D}

Rabi and J., WICON, 2008




Control generator for PID control

. event=2"r
\ Time
l u
event=1
| Time
\ u
event =
Time

Rabi and J., WICON, 2008

Actuator 1 Plant | p—— Sensor
} !
|
Control Event
Generator Detector
! !

Wireless Network.

Example: Integral control

Disturbance

| isturbance

Actustor || Pam ] Sensor
Control Event
Generator Detector

Wireless Network.

Samples Times

4 8 10 12 14 16 18 20
Control signal
1 1 1 1 i i
8 10 12 14 16 18 20

|-sampling withn =05 du=05
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What was not covered?

Observations with sensor noise

Linear and nonlinear plant dynamics

— Adaptive sampling based on policy iterations
Deterministic setting: Lyapunov stability etc
— See Reading recommendations

Event-based estimation

— Similarities with impulse control
?
Observer

Wireless network




Conclusions

Wide range of emerging wireless control applications
Event-based control to support asynchronous networking
— “If it ain’t broken, don’t fix it” [Astrom]

Event-based control architecture allows network nodes to
take local decisions

Event detector and control generator choice leads to
interesting theoretical problems

Wireless network

http://www.ee.kth.se/~kallej
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Stochastic control and optimal stopping:
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