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Self-driving Vehicles? Not Yet!

Steven Shladover, UC Berkeley, 2018

“l usually tell today’s students that they can work with this for the whole of their career. In my Ehe New JJork Times
opinion, the technology will be fully developed around 2075 - perhaps a little earlier, or perhaps a little later."

Why is transportation hard to automate?

UNCERTAINTY

Control is the science of uncertainty
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Network optimization

Traffic control

Vehicle autonomy

Uber Automated Vehicle Accident in 2017

Automated vehicle and human drivers had insufficient
information to resolve the situation

Grembek et al., UC-ITS-2018-13, 2018
* How should automated vehicles handle occlusions?
* How should they reason about potential vehicles or

other road users in occluded areas?
Pravin Varaiya
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Areas not seen from

OCCl us | on the blue ego vehicle

Nyberg, Gaspar Sanchez, Narri et al., 2024
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Foresee the unseen

Nyberg, Gaspar Sanchez, Narri et al., 2024

Propagate sets in occluded regions
based on lane properties
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Share the unseen

Nyberg, Gaspar Sanchez, Narri et al., 2024

Ego vehicle situational awareness can be
enhanced by roadside unit (RSU) sharing
information about occluded areas

Supported by ETSI standard ITS-G5 for V2X communication with
Collaborative Perception Messages sent at 10 Hz
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* Set of possible hidden obstacles computed based
on reachability analysis using RSU and other
sensors information together with traffic rules

* Ego vehicle plans its motion under guarantee to
stay in the safe set:
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on shared set information

Possible hidden obstacle states
at measurement time

Delay-compensated obstacle states

Predicted obstacle states
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Simulation evaluation with increasing level
of shared information and reasoning

Althoff et al., 2017; Orzechowski et al., 2018; Nyberg, Gaspar Sanchez, Narri et al., 2024

»

| On-board information

| On-board information and reasoning

Shared information

Shared information and reasoning

15

15

Simulation evaluation with increasing level
of shared information and reasoning

Althoff et al., 2017; Orzechowski et al., 2018; Nyberg, Gaspar Sanchez, Narri et al., 2024
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Experimental evaluation on Scania test track

17
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Ego vehicle can reason about if the
occluded area is occupied or not
Roadside Unit share information about
area occluded for the ego vehicle
Nyberg, Gaspar Sanchez, Narri et al., 2024 18
18
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Network optimization

Traffic control

Vehicle autonomy

19

19
Use automated truck platoons to regulate car traffic
* Trucks are slower than cars and act as moving bottlenecks in traffic
* Idea: Regulate cars moving into congested area by controlling platoon velocity
Jin et al., 2018; Cici¢, & J, 2018 Stern et al., 2018 20
20
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Flows according to Euler and Lagrange

Leonhard Euler (1707-1783) Joseph-Louis Lagrange (1736-1813)
Euler was looking at fluid motion focused Lagrange was looking at fluid motion where

on specific locations in the space through the observer follows an individual fluid parcel
which the fluid flows as time passes. as it moves through space and time

A

21

21

Edie, 1963; Papageorgiou et al., 1991; Hegyi et al., 2005;
Ferrara et al., 2018; Yu & Krsti¢, 2019; Gloudemans et al., 2023 Cigié & J, 2018; Piacentini et al., 20182

From Eulerian to Lagrangian traffic control

Leonhard Euler (1707-1783) Joseph-Louis Lagrange (1736-1813)
Stationary observer of the flow Observers moves with the flow

TI'.affiC control based on fixed. iqfrastrucltulrfe Traffic control based on mobile sensors and actuators

High deployment costs and limited flexibility Need for a new system theoretic foundation

Work et al., 2008; Delle Monache et al., 2019; Barreau et al., 2021
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Lagrangian traffic control system

Traffic model .
Model learning

Control actions Traffic state Measurements

Control law reconstruction
and prediction

- B -
~—— Connected and Autonomous Vehicles —
Cici¢ et al., 2021; Barreau, Aguiar, J, 2021 Wu et al., 2021; Lee et al. 2024 23
23
Fundamental diagram of traffic flow
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Traffic model with N probing vehicles

2
O [ VW@ _ 200 oy e 0,7 % [0, ]

ot or x
() = Vot (1), te0,Thi=1,...,N

Control of a coupled PDE-ODE system

Lebacque et al., 1998; Delle Monache & Goatin, 2014; Barreau, Selivanov, J, 2020; Barreau, Aguiar et al., 2021 25
25
Traffic model with N probing vehicles N \‘\\\
p V(pp _ 2
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Control of a coupled PDE-ODE system

Lebacque et al., 1998; Delle Monache & Goatin, 2014; Barreau, Selivanov, J, 2020; Barreau, Aguiar et al., 2021

26
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Learning-based traffic state reconstruction

How can we out of noisy measurements from probe vehicles

T
reconstruct the density p* = argmﬁin/ lp(t,-) — p(t,-)||?dt ?
0

27

27

Neural network model

Model density and velocity as feedforward neural networks

with each layer having a set of parameters to be trained:

AT e
FNNe

Barreau, Selivanov, J, 2020; Barreau, Aguiar, J, 2021

28
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Physics-informed neural network model

Model density and velocity as feedforward neural networks

with each layer having a set of parameters to be trained:

under physical constraints

Physics-informed neural networks [Raissi, Perdikaris, Karniadakis, 2019]
Application to traffic modeling [Barreau, Selivanoy, J, 2020; Barreau, Aguiar, J, 2021]

29

29
Training physics-informed neural network
with Lagrangian relaxation
s 1 T A 2 > 2
ang goiny s 3~ [ { I, (05(0) = (O + o (1(0) = Vi
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Barreau, Selivanov, J, 2020; Barreau, Aguiar, J, 2021; Barreau, 2024 30
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Training physics-informed neural network

N T
. 1 . 2 7 2
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Primal problem
0;(\0), O (\v) = arg min L1, (6,,6v)
PV

Dual problem
A (0,), A\ (By) = arg max Lx, v (0,,0v)

PIAV

Primal step

Barreau, Aguiar, J, 2021; Barreau, 2024

Primal-dual gradient descent iterations

Okt = 0F —agVe, L, a, (0,,0v)

Oy =6y —agVe, Ly, 1 (6,,6v)

Dual step
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M =2 —ahVa, L, 00 (8,,0v)

*  Multiple dual steps for each primal

Uniform and importance sampling of the integrals .

31
Micro (vehicle) simulated density Reconstructed and predicted density
over time interval [0,7] min over [0,9] min using PINN model

Density p Density p
A
i
|
|
|
\
Trained model captures traffic dynamics
despite sparse sampling
Liu et al., 2021; Delle Monache et al., 2022 32
32
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Trained PDE model captures density
evolution observed in real data

Estimated density pe,, (t, )

Liu et al., 2021; Delle Monache et al., 2022

Trained NN velocity model captures
relationship observed in real data

Estimated velocity Ve, (p)

33

33
Trained NN velocity model captures
relationship observed in real data
Estimated fundamental diagram pV@V (p) Estimated velocity Vg, (p)
/)VGV (p) Ve

Liu et al., 2021; Delle Monache et al., 2022
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Control truck platoon velocity to dissipate traffic congestion

Without truck platoon control

Giorgio, 2002; Delle Monache & Goatin, 2014; Cicic and J, 2018; Liu et al., 2021

\

Try

Truck platoon velocity control
Controlled platoon velocity

4(t) = min(V (p(t, (1)), u(t))

reduces road capacity

Vip(t,zi(t)) < Veon(p(t, zi(t)), u(t))

pV

35

Control truck platoon velocity to dissipate traffic congestion

Without truck platoon control

Cicic and J, 2018

With truck platoon control

Truck platoon trajectory

36
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Truck platoon control reduces total travel time for all vehicles

Without truck platoon control

38% total travel time increase
due to traffic congestion

Cicic, Jin and J, 2019 37

37

Truck platoon control reduces total travel time for all vehicles

Without truck platoon control With truck platoon control
38% total travel time increase 8% total travel time increase
due to traffic congestion due to traffic congestion
Cicic, Jin and J, 2019 38
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Network optimization

Traffic control

Vehicle autonomy

39
Distributed Charging Coordination of Electric Trucks
Consider 1 000 electric trucks travel over Swedish road network daily
Problem: How can the trucks decide where and when to charge with
* Pre-planned routes
* Limited charging capacity é
* Uncertain travel times and energy consumptions -
Solution: Trucks update their charging plans supported by
forecasts provided by the charging stations
* Scalability: Each truck computes its own charging plan,
with no central coordination
* Privacy: Stations provide aggregated forecast information,
and trucks never reveal their plans to others
Bai, Li et al., 2024 40
40
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Rollout_based TFUCk Planr“ng W|th Waiting time forecast models for charging stations
Uncertain Charging Capacity

Charging stations
a) Charge waiting time forecast model based on historical data

b) Assign charging spots as trucks arrive to charging station

Distributed rollout-based solution for truck planning

a) Truck talks to stations Sy, Sk+1, ... to obtain estimated waiting times

b) Truck simulates the worst case if or if not charging at station Sy:
Each simulated scenario leads to a linear program, fast to solve

c) Repeat the procedure when approaching next station Sy

Guaranteed feasible plans for all trucks Consistently improving plans

Bai, Li etal., 2024 41

41
Evaluation over the Swedish road network

* Reduced time for charging is important for electric heavy vehicle adoption

* Evaluated on realistic freight transport missions and models for 1 000 electric trucks

e OQur distributed charge plans give 50% lower waiting times

Average waiting time for all trucks per day
Plan for a single truck
Bai, Ll etal., 2024 42

42

21



12/15/24

Control community develops the tools to mitigate uncertainty

Physics-data-driven modeling Stochastic forecasting Safety-first set computing

UNCERTAINTY

‘ Festina lente

Proceed quickly, but cautiously

Slides and papers available at people.kth.se/~kallej
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