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Abstract

This paper studies an incentive structure for cooperatimhits stability in peer-assisted services when there &xmiltiple
content providers, using a coalition game theoretic apyro&Ve first consider a generalized coalition structure isting of
multiple providers with many assisting peers, where pessisaproviders to reduce the operational cost in contesitilolition.
To distribute the profit from cost reduction to players.( providers and peers), we then establish a generalizedufarfor
individual payoffs when a “Shapley-like” payoff mechanissnadopted. We show that the grand coalitioruistable even when
the operational cost functions are concave, which is inpsleantrast to the recently studied case of a single providesrevthe
grand coalition is stable. We also show that irrespectivetability of the grand coalition, there always exist caafitstructures
which are not convergent to the grand coalition. Our regilts us an important insight that a provider does not tendtperate
with other providers in peer-assisted services, and beraghfrom them. To further study the case of the separateddars,
three examples are presentédl;Each peer is underpaid than his due pay(if,a service monopoly is possible, afid) the peer
payoffs based on the Shapley-like mechanism exhibit eveillaisry behaviors. Analytical studies and examples iis fhaper
open many new questions such as realistic and efficient tiweestructures and the tradeoffs between fairness andihail
providers’ competition in peer-assisted services.

I. INTRODUCTION

The Internet is becoming more content-oriented, and dfstteve and scalable distribution of contents has beercérral
role of the Internet. Uncoordinated peer-to-peer (P2Pesys, e.g., BitTorrent, has been successful in distrigutomtents, but
the rights of the content owners are not protected well, aost of the P2P contents are in fact illegal. In its responseyatype
of service, calletpeer-assisted serviceBas received significant attentions these days. In pe&tedservices, users commit
a part of their resources to assist content providers inectirdistribution with objective of enjoying both scalatyilefficiency
in P2P systems and controllability in client-server syseBExamples of application of peer-assisted servicesdiechano data
center [1] and IPTVI[[R], where high potential of operationakt reduction was observed. However, it is clear that mestsu
will not just “donate” their resources to content providerlus, the key factor to the success of peer-assisted ssrigchow
to (economically) incentivize users to commit their vallgatesources and participate in the service.

One of nice mathematical tools to study incentive-comjiaitof peer-assisted services is the coalition game thedrich
covers how payoffs should be distributed and whether suciyafpscheme can be executed by rational individuals or Imot.
peer-assisted services, the “symbiosis” between provigied peers are sustained wi{grithe offered payoff scheme guarantees
fair assessment of players’ contribution under a provjkst coalition andii) each individual has no incentive to exit from
the coalition. In the coalition game theory, the notions bafley value and the core have been popularly applied toeaddr
(i) and (ii), respectively, when the entire players cooperate, refeweas the grand coalition. A recent paper by Mistaal.
[3] demonstrates that the Shapley value approach is a pirmpsyoff mechanism to provide right incentives for coatiem
in a single-providerpeer-assisted service under mild assumptions.

However, in practice, the Internet consists of multipleteon providers, even if only giant providers are countece Tdtus
of our paper is to study the cooperation incentivesnimiltiple providers. In the multi-provider case, the model clearlgdraes
more complex, thus even classical analysis adopted in tggesprovider case becomes much more challenging, andavere
the results and their implications may experience dradtenges. To motivate further, see an example in Eig. 1 with two
providers (Google TV and iTunes) and consider two cases opea@tion:(i) separatedwhere there exists a fixed partition
of peers for each provider, an@) coalescentwhere each peer is possible to assist any prcﬂiderthe separated case,

1We exclude the case when a peer assists both providers.
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Fig. 1. Coalition Structures for a Dual-Provider Network.

a candidate payoff scheme is based on the Shapley value imseparated coalition. Similarly, in the coalescent cdse, t
Shapley value is also a candidate payoff scheme after ththviionction of the grand coalitiov (the player set) is defined
appropriately. A reasonable definition of the worth funetaan be the total cost reduction generated\bwhich is maximized
over all combinations of peer partitions to each providérerd, it is not hard to see that the cost reduction for the scal#
case exceeds that for the separated case, unless the titmpaidre equivalent in both cases. This implies that adtleae
individual in the separated case usderpaidthan in the coalescent case under the Shapley-value bageff pgechanism.
Thus, providers and users are recommended to form the galii@n and be paid off based on the Shapley valie, the
due desert.

However, it is still questionable whether peers will stayttie grand coalition and thus the consequent Shapley-valsed
payoff mechanism is desirable in the multi-provider settim this paper, we anatomize incentive structures in pssisted
services with multiple content providers and focus on $tgbissues from two different angles: stability at equiliom of
Shapley value and convergence to the equilibrium.

Our main contributions are summarized as follows:

1) We first provide a closed-form formula of the Shapley vdlrea general case of multiple providers and peers. To that en
we define a worth function to be a maximum total cost reduotioer all possible peer partitions to each provider. Due to
the intractability of analytical computation of the Shaplalue, we take a fluid-limit approximation that assumesrgda
number of peers and re-scales the system with the numbeleds.pEhis is a non-trivial generalization of the Shapleyeal
for the single-provider case ial[3]. In fact, our formula ihdorent]l establishes the general Shapley value for dissingti
multiple atomic players and infinitesimal players in the context & A&umann-Shapley (A-S) prices|[4] in coalition game
theory.

2) We prove that the Shapley value for the multi-providerecssnot in the core under mild conditioresg, each provider’s
cost function is concave. This is in stark contrast to the@lsiprovider case where the concave cost function stakiliz
the equilibrium. We also show that, irrespective of st@pitf the grand coalition, there always exist initial statelsich
are not convergent to the equilibrium. An interesting faonf this part of study is that peers and providers have ofposi
cooperative preferenceisg., peers prefer to cooperate with more providers, whereasders prefer to be separated from
other providers.

The insight that our results provide us is the impossibiif)cooperation in peer-assisted services with multipleviolers.
In conjunction with the main contributions mentioned ahowe conclude the paper by presenting three examples for non-
cooperation among provider§) the peers are underpaid than the Shapley payidffa provider with more “advantageous”
cost function monopolizes all peers, afiii) Shapley value for each coalition gives rise to an oscillatzehavior of coalition
structures. These examples suggest that the system witbetiarated providers may be unstable as well as unfairness in
peer-assisted service market.



Il. PRELIMINARIES

Since this paper deals with multiple content providers g &a peer can choose any provider to assist, we define aaoalit
game with a partition (coalition structure), and introdtice payoff mechanisms there.

A. Game with Coalition Structure

A game with coalition structure is a triplgV, v, P) where N is a player set and : 2V — R (2% is the set of all subsets
of N) is a worth function,w()) = 0. v(K) is called the worth of a coalitiod’ C N. P is called acoalition structurefor
(N,v); it is a partition of N whereP(i) C P denotes the coalition containing playerThe grand coalitionis the partition
P ={N}. For instamﬁ a partition of N = {1,2,3,4,5} is P = {{1,2},{3,4,5}}, P(4) = {3,4,5}, and the grand coalition
is P ={{1,2,3,4,5}}. P(N) is the set of all partitions ofV. For notational simplicity, a gameithout coalition structure
(N,v,{N}) is denoted by N, v). A value of playeri is an operator; (N, v, P) that assigns a payoff to player

To conduct the equilibrium analysis of coalition games, loéion of core has been extensively used to study the stability
of the grand coalition? = { N'}:

Definition 1 (Core) The core is defined ago(N,v) | >,y wi(N,v) =v(N) and ), @i(N,v) > v(K),VK C N}.

If a payoff vectorg(N,v) lies in the core, no player itV has an incentive to split off to form another coalitiéh because
the worth of the coalitionk’, v(K), is no more than the payoff sum,_, ¢:(N,v). Note that the definition of the core
hypothesizes that the grand coalition is already forraeénte We can see the core as an analog of Nash equilibrium from
noncooperative games. If a payoff vectoy (IV,v) lies in the core, then the grand coalition is stable with eesgo any
collusion to break the grand coalition.

B. Shapley Value and Aumann&xe Value

On the premise that the player set is not partitioned, P = { N}, the Shapley value is popularly used as a fair distribution
of the grand coalition’s worth to individual players, definiy:

@i(N,v) = 3 s (iy |S|'(|N||]:7||,S| — U (v(SU{i}) —v(S)). (1)

Shapley [[5] gives the following interpretation(i}* Starting with a single member, the coalition adds one platea time
until everybody has been admittgd) The order in which players are to join is determined by changt all arrangements
equally probable(iii) Each player, on his admission, demands and is promised tleramvhich his adherence contributes
to the value of the coalition.” The Shapley value quantiftes above that is axiomized (seée [5] for the details of therag)o
and has been treated as a worth distribution scheme. Theybefathe Shapley value lies in that the payoff “summarizes” i
onenumber all the possibilities of each player's contributiorevery coalition structure.

Given a coalition structur@ # { N}, one can obtain the Aumann-Dreze value (A-D vallié) [6] @fypli by takingP (i),
which is the coalition containing playéy to be the player set and by computing the Shapley value gepfaof the reduced
game(P(i),vp(;)). It is easy to see that the A-D value can be construed as a éixeension of the Shapley value to a game
with coalition structure.

IIl. COALITION GAME IN PEER-ASSISTEDSERVICES

In this section, we first define a coalition game in a peerséasiservice with multiple content providers by classifythe
types of coalition structures aeparated where a coalition includes only one provider, atmhlescentwhere a coalition is
allowed to include more than one providers (see Elg. 1). Duéhé coalition independence of the A-D value, in order to
decide the payoffs of a game with a general coalition strecfe, it suffices to decide the payoffs of players within each
coalition, sayC' € P, without considering other coalitionS € P, C' # P(i). We refer the readers t0][7] for the details on
why it suffices to consider just the two cases. To define thditmyagame, we will define a worth function of an arbitrary
coalition S C N for such two cases. The key message of this section is thaatiomal behavior of the providers makes the

2A player i is anelementof a coalitionC' = P(3), which is in turn anelementof a partition?. Lastly, P is an element of?(N) while a subset o2".



Shapley value approaeinworkablebecause the major premise of the Shapley value, the graritiarpas not formed in the
multi-provider games.

A. Worth Function in Peer-Assisted Services

Assume that playerév are divided into two sets, the set of content provid&rs= {p1,---,pc}, and the set of peers
H :={ny,---,n,}., e, N =2ZUH. We also assume that the peers are homogeneaysthe same computing powers,
disk cache sizes, and upload bandwidths. Later, we disbas®tr results can be readily extended to nonhomogeneeus. pe
The set of peers assisting providers is denotediby= {n1,--- ,n,.,} wherex = |H|/n, i.e, the fraction of assisting peers.
We define the worth of a coalitio§ to be the amount of cost reduction due to distribution of thetents with the players
in S in both separated and coalescent cases.

Separated caseDenote by} (x) the operational cost of a providgrwhen the coalitionS' consists ofy peers and: fraction

of assisting peers. Since the operational cost cannot batmegwe assumé(x) > 0. Note that from the homogeneity
assumption of peers, the cost function depends only on thebau of peers and the fraction of assisting peers. Then, we
define the worth functior(.S) for the coalitionS as:

8(8) == 21(0) — Q1 (x) @

where2}(0) corresponds to the cost when there are no assisting peers.
Coalescent caseln contrast to the separated case, where a coalition iesladsingle provider, the worth for the coalescent
case is not clear yet, since depending on which peers adsishroviders the amount of cost reduction may differ. Ofhe o
reasonable definitions would be the maximum worth out of edirgartitionsj.e., the worth for the coalescent case is defined
by:

v(S) = max {zcep o(0) | P e P(S) such thatz n¢| =1 for all C e 73} . 3)

The definition above implies that waewa coalition containing more than one provider as the moddywtive coalition whose
worth is maximizedby choosing the optimal partitio®* among all possible partitions of. Note that[(B) is consistent with
the definition [(2) for|Z N S| < 1, i.e, v(S) = (S) for |Z N S| < 1.

Three remarks are in order. First, as opposed_to [3] whefp}) = nR — Q7(0) (R is the subscription fee paid by any
peer), we simply assume that{p}) = 0. Note that, as discussed inl [8, Chapter 2.2.1], it is no |dsgyeoerality to assume
that, initially, each provider has earned no money. In ourtext, this means that it does not matter how much fraction of
peers is subscribing to each provider because each peetrbadyapaid the subscription fee to providessante

Second, it is also important to note that we cannot alwaysnasghat(2}(z) is monotonically decreasing because providers
have to pay the electricity expense of the computers and Hietemance cost of the hard disks of assisting peers. Fongra
a recent study[]9] found that Annualized Failure Rate (AFRhard disk drives is over 8.6% for three-year old ones. We
discuss in Appendix of[[7] that, if we consider a madreelligent coalition, the worth function is always non-increasing.
However, to simplify the exposition, we assume in this pahat (2)(z) is non-increasing i for all p € Z.

Third, the worth function in peer-assisted services carcethe diversity of peers. It is not difficult to extend ousut to
the case where peers belong to distinct classes. For exapgdes my be distinguished by different upload bandwidtits a
different hard disk cache sizes. A point at issue for the ipleltprovider case is whether peers who am subscribing to
the content of a provider may be allowed to assist the prowad@ot. On the assumption that the content is ciphered ahd no
decipherable by the peers who do not know its password wisidivien only to the subscribers, providers will allow those
peers to assist the content distribution. Otherwise, weeeaily reflect this issue by dividing the peers into a numbbetasses
where each class is a set of peers subscribing to a certatanton

B. Fluid Aumann-Deze Value for Multiple-Provider Coalitions

So far we have defined the worth of coalitions. Now letdistributethe worth to the players for a given coalition structure
‘P. Recall that the payoffs of players in a coalition are indefmnt from other coalitions by the definition of A-D payoficl



a coalitionC without loss of generality, and denote the set of provideiS by Z € Z. With slight notational abuse, the set of

peers assisting is denoted byH. Once we find the A-D payoff for a coalition consisting of araiy provider setZ € Z and

assisting peer sél € H, the payoffs for the separated and coalescent cases il Fajow from the substitutionsZ = Z and

Z = {p}, respectively. In light of our discussion in Sectlon1I-Bis more reasonable to call a payoff mechanism ‘A-D payoff’

and 'Shapley payoff’ respectively for the partitioned arah+partitioned gamegN,v,{Z U H,---}) and(N,v,{Z U H})H.
Fluid Limit : We adopt the limit axioms for large population of users te@m@ome the computational hardness of the A-D

payoffs:

limy 00 () = () where () = Lo () )

which is the asymptotic operational cost per peer in a vagelaystem. We drop superscripfrom notations to denote their
limits asn — oo. From the assumptiof]}(z) > 0, we haveﬁp(:v) > 0. To avoid trivial cases, we also assulﬁg(x) is not
constant in the intervat € [0, 1] for anyp € Z. We also introduce the payoff of each provider per user, défasp) := %(pg.
We now derive the fluid limit equations of the payoffs whiclndze obtained ag — oo. The proof of the following theorem
is given in Appendix of|[[7].

Theorem 1 (A-D Payoff for Multiple Providers) As n tends to infinity, the A-D payoffs of providers and peers unde
arbitrary coalitionC' = Z U H converge to the following equation:

~ = 1 7| —1— S =
@z (x) = Q,(0) — dosc\(p} IS ulSl(1 — u)l41=1=15] (MQu{p}(u:c) - Mg(uzzr)) du, forpeZ

_ZSQZ fol U‘S‘(l _U)‘ZP'S'%(UIMU, forn e H.

(®)

hS)
3
—
8
~
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HereMg(:c) ‘= min {Zies ﬁl(yz) ‘ Dies¥i <, Y > O} andMg(x) := (. Note thatMg{zp} () = ﬁp(x).
The following corollary is immediate as a special case ofdrbm[1, which we will use in Sectidn]V.

Corollary 1 (A-D Payoff for Dual Providers) As n tends to infinity, the A-D payoffs of providers and peers wigdohg to
a dual-provider coalitioni,e., Z = {p, ¢}, converge to the following equation:

{ G (2) = Q,(0) — fol uMEPD (uz)du — fol(l — u) M (uz)du + fol uME (uz)du, (p, q are interchangeable)

{p.q} {i} _
@;{zpﬂ} (z) =— fol u? dMézz (uz)du — Zz‘e{pﬂ} fol u(l —u) dﬁjg (uz)du, for n € H.

(6)
Note that our A-D payoff formula in Theorel 1 generalizes fitvenula in Misraet al. [3, Theorem 4.3]i(e., |Z| = 1). It
also establishes the A-D values for distinguisinedltiple atomic players (the providers) and infinitesimal playehe (peers),
in the context of the Aumann-Shapley (A-S) prices [4] in @@ game theory.

C. Stability of the Grand Coalition

The stability guarantee of a payoff vector has been an importbpic in coalition game theory. For the single provider
case,|Z| = 1, it was shown in[[B, Theorem 4.2] that, if the cost functiordicreasing and concave, the Shapley incentive
structure lies in the core of the game. What if f@if > 27? Is the grand coalition stable for the multiple providereaBefore
answering this question, we need the following definition.

Definition 2 (Noncontributing Provider) A providerp € Z is callednoncontributingif M7 (1) — Mg\{p}(l) = (Nlp(o).

To understand this better, note that the above expressiequivalent to the following:

(Zier 00) = MEM) = (Ticz gy 2(0) = MEWI (1)) =0 ()

which implies that there is no difference in the total costustions irrespective of whether the provigers in the provider
set or not. Interestingly, if all cost functions are concabere exists at least one noncontributing provider.

Lemma 1 Suppos€Z| > 2. If ﬁp(-) is concave for alp € Z, there exists a noncontributing provider.

30n the contrary, the term ‘Shapley payoff’ was used(in [3]eéer to the payoff for the gam@V, v, {Z U H, - - - }) where a proper subset of the peer
set assists the content distribution.



To prove this, recall the definition af/Z (-):

ME (x) = mingey (@) Ysez Quly) whereY (z) = {(y1, - ,y2) | Siczvi <, yi >0}
Since the summation of concave functions is concave and thenem of a concave function over a convex feasible region
Y (z) is anextremepoint of Y (z) as shown in[[10, Theorem 3.4.7], we can see that the solutibitse above minimization
are the extreme points df(y1,--- ,vz)) | > ;czvi <=, y; > 0} which has at least ong € Z such thaty, =0 if |Z| > 2.
We are ready to state the following theorem, a direct consecgiof Theorernl1. The proof is given in Appendix [of [7].
Theorem 2 (Shapley Payoff for Multiple Providers Not in the Core) If there exists a noncontributing provider, the Shap-
ley payoff for the gaméZ U H,v) does not lie in the core.

It follows from Lemma[l that, if all operational cost funati® are concave and’| > 2, the Shapley payoff does not lie
in the core, either. This result appears to be in good agreemith our usual intuition. If there is a provider who does
not contribute to the coalition at all in the sense[df (7) amdtill being paid due to her potential for imaginary conitibn
assessed by the Shapley formdilh (1), which is not actuajijoéed in the current coalition, other players will agreeexpel
her to improve their payoffs. The conditidiZ| > 2 plays an essential role in the theorem. &} > 2, the concavity of
the cost functions leads to the Shapley value not lying indwe, whereas, for the ca$g&| = 1, the concavity of the cost
function is proven to make the Shapley incentive structigrenl the corel[[8, Theorem 4.2].

D. Convergence to the Grand Coalition

The notion of the core lends itself to the stability analysisthe grand coalitioron the assumptiothat the players are
already in the equilibriumi,e., the grand coalition. Theorel 2 raises a point open to fudiseussion due to the assumption
of concave cost functiore.g, for the cost functions that are not concave, it is possitié the Shapley value is in the core.
We present that such cases are unlikely to occur by showiagthtie grand coalition is not a global attractor under some
conditions. To study the convergence of a game with coalifucture to the grand coalition, we define the stabilityaof
game with coalition structure.

Definition 3 (Stable Coalition Structure [11]) We say that a coalition structuf®’ blocks P, whereP’, P € P(N), with
respect top if and only if there exists som€& € P’ such thatp;(N,v,{C,---}) > ¢;(N,v,P) for all i € C. In this case,
we also say thaf blocksP. If there does not exist anf?’ which blocksP, P is calledstable

It is also important to note that, due to the coalition indegence of the A-D value, all stability notions defined by Hamd
Kurz [11] coincide with the above simplistic definition.

The above definition can be intuitively interpreted thatthiére exists any subset of playerswho improve their payoffs
away from the current coalition structure, theill form a new coalitionC'. In other words, if a coalition structur® has any
blocking coalitionC, some rational players will breaR to increase their payoffs. Unsurprisingly, if a payoff \@clies in
the core, the grand coalition is stable in the above sense.réminds us that the core is about the stability of a pasicu
equilibrium, i.e.,, the grand coalition. The basic premise here is that plagegsnot clairvoyanti.e., they are interested only
in improving their instant payoffs.

Theorem 3 (A-D Payoff for Multiple Providers Does Not Lead tothe Grand Coalition) Suppos€Z| > 2 and ﬁp(y) is
not constant in the interval € [0, z] for anyp € Z wherex = |H|/|H|. The followings hold for allp € Z andn € H.

« The A-D payoff for provider in coalition {p} U H is larger than that in all coalitioi U H for {p} C T C Z.
« The A-D payoff of peem in coalition {p} U H is smaller than that in all coalitio® U H for {p} C T C Z.

In plain words, a provider, who is in cooperation with a pest; ill receive the highest dividend when she cooperatég on
with the peers excluding other providers whereas each pastswo cooperate with as many as possible providers.

It is surprising that, for the multiple provider cases., |Z| > 2, each provider benefits from forming the single-provider
coalitionwhetherthe cost function is concawe not There is ngoositiveincentives for providers to cooperate with each other
under the implementation of A-D payoffs. On the contraryegipalways looses by leaving the grand coalition.
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Fig. 3. ExampldR: A-D Payoffs of Two Providers and Peers fon€ve Cost Functions.

Upon the condition that each provider begins with a singteAger coalition with a large number of peers, one cannatie
the grand coalition because those single-provider confitare alreadgtablein the sense of the stability in Definitién 3. That
is, the grand coalition is not the global attractor.

IV. A CRITIQUE OF THEA-D PAYOFF FOR SEPARATE PROVIDERS

The discussion so far has centered on the stability of thedgcaalition. The result in Theoref 2 suggests that if there i
a noncontributing (free-riding) provider, the grand ctati will be broken. The situation is aggravated by Theokérstating
that single-provider coalitions will persist if providease rational. In this section, on the major premise that tlowigers are
separated, we illustrate weak points of the A-D payoff witfea representative examples.
Example 1 (Unfairness) Suppose that there are two providers,, Z = {p,q}, with ﬁp(x) = 2(z - 1)?/3+1/3 and
ﬁq(a:) = 1 — z, both of which are decreasing amdnvex All values are shown in Fid.]2 as functions of In line with
Theoren{B, providers are paid more than their Shapley valuesreas peers are paid less than theirs. We can see that each
peern will be paid2/3 (@:,{f’}(o)) when he is contained by the coalitigp, n} and the payoff decreases with the number of
peers in this coalition. On the other hand, provigewants to be assisted by as many peers as possible be@é’ﬁie) is
increasing inz. If it is possible forn to prevent other peers from joining the coalition, he canZy&t However, it is more
likely that no peer can kick out other peers. Thusyill be assisted by: = 3/8 fraction of peers, which is the unique solution
of P} () = ot (x) while ¢ assisted byt — 2 = 5/8 fraction of peers.
Example 2 (Monopoly) Consider a two-provider systeffi = {p, ¢} with ﬁp(x) =1-—2%?2 and ﬁq(x) =1— 2xz/3, both of
which are decreasing armbncave All values including the Shapley values are shown in ElgN8t to mention unfairness
in line with Theoren{B, providep monopolizeghe whole peer-assisted services. No provider has an imeetot cooperate
with other provider and each peer has to choose between the@roviders. It can be seen that all peer will assist provider

» becausest”! () > oL (z) for z > 25/81. Appealing to Definitio B3, if the providers are initially g&rated, the coalition
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Fig. 4. ExampldB: A-D Payoff Mechanism Leads to Oscillat@yalition Structure.

structure will converge to the service monopoly hyln line with Lemmalll and Theorel 2, even if the grand coaliti®
supposed to be the initial condition, it is not stable in tease of the core. The noncontributing provider (Definifigrir2
this example ig;.

Example 3 (Oscillation) Consider a game with two providers and two peers whére {p1, p2, n1,n2}. If {n1}, {n2} and
{n1,n2} assist the content distribution of, the reduction of the distribution cost is respectively 19% and 11$ per month.
However, the hard disk maintenance cost incurred from a i3e8$. In the meantime, ifn,}, {n2} and{ni,ny} assist the
content distribution ops, the reduction of the distribution cost is respectively 8%,and 13% per month. In this case, the hard
disk maintenance cost incurred from a peer is supposed té i@ to smaller contents pf as opposed to those pf. We
can compute thaet cost reduction for all possible coalitions. For exampleyifandny helpp;, the coalition worth becomes
v({ny,na,p1}) = 11$ — 5% — 5% = 18.

Since it is very tedious to compute the A-D payoffs for all litizn structures and to determine their stability, we refe
Appendix of [7] for a detailed analysis. For notational slitity, we adopt a simplified expression for coalitionalustiureP:
A coalition {a, b, ¢} € P is denoted by:bc and each singleton s¢t} is denoted by.. We first observe that the Shapley payoff
of this example does not lie in the core. As time tends to ityfirthe A-D payoff exhibits an oscillation of the partitidh
consisting of the four recurrent coalition structures aswshin Fig.[4. As of now, from the-state-of-the-art in thestiture
on this behavior, it is not yet clear how this behavior will theveloped in large-scale systems.

V. CONCLUDING REMARKS

A quote from an interview of BBC iPlayer with CNET UK [12]:Some people didn't like their upload bandwidth being
used. It was clearly a concern for us, and we want to make hakdveryone is happy, unequivocally, using iPldyer.

In this paper, we have studied whether the Shapley incestiveture in peer-assisted services would be in conflidh wit
the pursuit of profits by rational content providers and peérlesson from our analysis is summarized as: Even though it
righteous to pay peers more because they become relativaly nseful as the number of peer-assisted services insrehse
content providers will not admit that peers should recehartdue deserts. The providers tend to persist in singleiger
coalitions. In the sense of the classical stability notiocalled ‘core’, the cooperation would have been broken evemei
had begun with the grand coalition as the initial conditibastly, we have illustrated yet another problems when wethise
Shapley-like incentive for the exclusive single-providealitions. These results suggest that the profit-shagisges, Shapley
value, and hence its fairness axioms, are not compatibletivit selfishness of the content providers. We believe thedléstic
incentive structure in peer-assisted services shouldctedlérade-off between fairness and competition among iddals.
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