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ABSTRACT

While traffic volume of real-time applications is rapidly increasing, cur-

rent routers do not guarantee the minimum QoS values of fairness and drop

packets in random fashion. If routers provide a minimum QoS, less delays,

more fairness, and smoother sending rates, TCP-Friendly Rate Control can

be adopted for real-time applications. We propose a dynamic buffer man-

agement scheme that meets the requirements described above, and can be

applied to TCP flow and to data flow for transfer of real-time applications.

The proposed scheme consists of a virtual threshold function, an accurate

and stable per-flow rate estimation, a per-flow exponential drop probability,

and a dropping strategy that guarantees fairness when there are many flows.

Moreover, we introduce a practical definition of active flows to reduce the

overhead coming from maintaining per-flow states. Introduction of a vir-

tual threshold function that divides router operation into three modes helps

routers support more flows than RED, FRED and DRR with the same buffer

size. Moreover, we introduce Fair Drop that guarantees fairness even when

there are so many flows that each flow can buffer less than one packet in

average in a router buffer.
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1. Introduction

1.1 Background

TCP is the most widely used transport protocol in the Internet and is

appropriate for FTP and Telnet, which both require reliability. However,

because it uses an Additive Increase Multiplicative Decrease (AIMD) algo-

rithm and induces coarse timeouts, it can neither ensure smoothly-changing

sending rate nor can be used for real-time applications [1]. Because most

current routers use Drop Tail as a buffer management scheme, which does

not guarantee fairness and delay bound, there has been no motivation for

real-time applications to use end-to-end congestion control mechanisms. For

these reasons, real-time applications use robuster congestion control schemes

than TCP congestion control [2]. Even though Drop Tail is a simple buffer

management scheme, it tends to penalize bursty traffic, such as TCP traffic,

does not guarantee fairness, and adds unnecessary delays because it doesn’t

drop any packets before the buffer space is fully exhausted.

These problems can be partially solved by using a number of techniques.

If a router can maintain a separate queue for each flow, per-flow queueing

schemes, such as FQ, SFQ, and DRR can be used [3, 4, 5]. Although these

schemes solve many problems, they require a router to maintain a separate

queue for each flow. Moreover, per-flow queueing and per-flow scheduling

are very complex to be implemented. Furthermore, FQ requires huge buffer

size to support many flows. For example, to support one thousand flows, FQ

requires a router to keep several Mbytes buffer size assuming that each IP

packet size is about one kbytes. Although SFQ reduces overhead caused by

mapping from source-destination address pair to the corresponding queue, it

requires even larger router buffer size than FQ to guarantee a comparable

fairness compared to FQ. Moreover, in the present situation, most of routers

use a single first-in first-out (FIFO) buffer shared by all flows.
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Adopting a single FIFO buffer, CSFQ (Core-Stateless Fair Queueing) [6]

uses per-flow state only in edge routers. Entering the network, packets are

marked with an estimate of their sending rate. A core router compares the

estimate of each rate with the fair share of that flow and preferentially drops

packets if the flow arrives at a higher rate than its fair share. Although CSFQ

is much fairer, it requires an extra field in the IP header of every packet and

CSFQ must be installed in contiguous fashion on routers.

RED (Random Early Detection) [7] and FRED (Flow Random Early

Drop) [8] are the foundation of buffer management schemes because they

are practicable and are designed in the consideration of burstiness of TCP

flows. RED prevents full exhaustion of buffers and drops packets before

congestion becomes severe. However, it does not prevent unresponsive flows

from monopolizing buffer space, and TCP-friendly flows attain only a fraction

of their fair share [9]. Also, it can not control queue size effectively and can

not prevent buffer overflow when there are many flows [10]. To address the

problem of unresponsive flows, in [9], authors stressed on the need for end-

to-end congestion control. Furthermore, they insisted that there should be

some mechanism on the network to identify and regulate unresponsive flows.

Techniques to identify and punish unresponsive flows have been identified in

[11, 12]. While these proposals are simple and feasible schemes that solve the

problem of unresponsive flows, they can punish unlucky TCP-friendly flows

with non-zero probability. Therefore, we do not think that these schemes

can be adopted in the present situation. FRED uses a per-flow state to solve

the problem of unresponsive flows. Although FRED can not prevent buffer

overflow for many flows, it is much fairer than RED and effectively regulates

unresponsive flows.

Although RED and its variants can be satisfactory for applications that

only require reliability, real-time applications require a router to provide more

functions. Moreover, to motivate real-time applications to use TFRC (TCP-

Friendly Rate Control) [13, 14, 15, 16] a minimum QoS (Quality of Service)

should be guaranteed. First of all, a router should be able to eliminate

unnecessary queueing delays because multimedia applications do not want
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to experience large queueing delays. Second, a buffer management scheme

should be able to regulate unresponsive CBR and UDP flows not to take

unfairly large share. Third, a router should support more flows fairly with

limited buffer size because IP packet size is relatively large and such a large

packet size requires large buffer and results in longer queueing delays. To

solve these problems, we propose a new buffer management scheme that

ensures better fairness between TCP-friendly flows and unresponsive flows,

less delays, and smoother sending rates.

1.2 Chapter Organization

The organization of this paper is as follows: First, we review some buffer

management schemes previously proposed in Chapter 2. In Chapter 3, we dis-

cuss general requirements of buffer management schemes in packet-switched

networks and the detailed algorithm we propose is explained with a discussion

of operation mechanics. In Chapter 4, we show simulation results obtained

using our proposed scheme, RED, FRED, and DRR, and analyze the re-

sults. An analysis of various topics relating to our scheme is also presented

in Chapter 4. Finally, we present a conclusion in Chapter 5.
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2. Related Works on Buffer Management

in IP Networks

To understand how congestion control in IP networks operates, we should

understand how TCP congestion control operates because TCP congestion

control has many impacts on buffer management scheme in IP routers. There-

fore, we describe briefly about TCP congestion control.

TCP evolves its congestion window cwnd according to network condition.

In Figure 2.1, we can look at how the congestion window evolves throughout

the lifetime of a TCP connection. We assume that the TCP receive buffer is

so large that the receiver window does not limit evolution of the congestion

window.
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Figure 2.1: Evolution of TCP’s congestion window
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At connection establishment, the congestion window is initialized to 1

MSS (Maximum Segment Size) and slow start mode begins its operation.

After one RTT (Round-trip Time), the window is increased to 2 MSS. In this

way, the window is multiplied by 2 for every RTT. Therefore, the congestion

window increases exponentially fast.

The slow-start ends when the window size exceeds the value of ssthresh.

When the congestion window is larger than ssthresh, the congestion window

increases linearly by 1 MSS. This operation has the effect of increasing the

congestion window by 1 MSS in each RTT. This phase is called congestion

avoidance mode. But the window size will not increase forever because TCP

sending rate will be in such condition that one of the links in the network will

be saturated, at which point packet loss(or drop) will occur. This invokes a

timeout. When a timeout occurs, the value of ssthresh is set to half the value

of the current congestion window, and the congestion window is reset to 1

MSS. Because TCP increases its window size by one for each RTT when its

network path is congested, and decreases its window size by a factor of 2 for

each RTT when the path is congested, TCP is referred to as an additive-

increase, multiplicative-decrease (AIMD) algorithm.

Because frequent timeouts can induce low utilization of network capacity

and can cause unfairness for TCP flows, TCP Reno and TCP Newreno have

employed fast retransmit mechanism and fast recovery mechanism. The

main effect of these two mechanism is in that they can avoid slow start

mode and only congestion avoidance mode will be repeated. To induce fast

retransmit and fast recovery, the average size of the congestion window should

be at least four as shown in [17]. This feature of TCP inevitably requires

routers in the network to have large buffers in the output links.

There are many problems that is caused by TCP’s congestion control

algorithm. First of all, TCP detects congestion only by packet drop. There-

fore, routers should drop packets to control each TCP flow’s queue size and

congestion. This means that there is not explicit feedback between a TCP

flow and routers on the flow’s path but only packet drop. Furthermore, error

recovery algorithm and congestion control algorithm in TCP can not be sep-
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arated because TCP uses its congestion control algorithm for both of error

recovery algorithm and congestion control algorithm.

Many network applications run over TCP rather than UDP because they

want to utilize TCP’s reliable transport service. But many multimedia ap-

plications do not run over TCP because they do not want their transmission

rate throttled, even though the network is severely congested. These flows

are called unresponsive flows. Because these applications’ congestion con-

trol algorithms do not cooperate with TCP congestion control and they do

not reduce their transmission rates appropriately, there are severe unfairness

problems in current IP networks.

2.1 RED (Random Early Detection)

Traditional routers used in past years had no specific buffer manage-

ment scheme and most of them used Drop Tail as their buffer management

schemes. Routers with Drop Tail drop packets when the buffer space is fully

exhausted and they do not drop any packets when there are space for buffer-

ing. Therefore, Drop Tail does not actively control queue sizes in buffer space

and queueing delays are not controlled. RED (Random Early Detection) [7]

was proposed to actively control queueing delays and to avoid global syn-

chronization by randomizing packet drops. When Drop Tail is used for TCP

flows, the instantaneous queue size overflows and underflows such that buffer

space is always fully exhausted or empty. This causes underutilization and

unfairnes problem for TCP flows. Because RED drops packets even if buffer

space is not fully exhausted and drops packets according to the grade of con-

gestion, they can avoid underutilization and buffer overflows to some extent.

Furthermore, they can control average queue sizes and queueing delays by

dropping packets according to estimated average queue sizes. Because RED

uses a single FIFO buffer and its algorithm is very simple, RED can be imple-

mented easily and there have been many researches improving or modifying

RED algorithm.

RED estimates average queue size by Exponential Weighted Moving Av-
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erage (EWMA) as follows:

avgq = (1− wq)× avgq + wqq. (2.1)

where q is the instantaneous queue size, avgq is the average queue size es-

timated by EWMA and wq determines the time constant of the low-pass

filter.

RED drops packets according to the estimated average queue size with the

drop probabilities that is depicted in Figure 2.2. As shown in this figure, drop

probability for packets increases linearly as the average queue size increases.

Drop Probability pb is calculated as shown in Figure 2.2 and it is recalculated

to drop packets uniformly and to prevent consecutive drops.

0
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d
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p
 p
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y
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Figure 2.2: Drop probability of RED algorithm

RED suggests that minth should be set to one fourth of physical buffer

size to avoid underutilization and that maxth should be set to half the value

of physical buffer size to buffer bursty traffic. When the average queue size

is smaller than minth, no packet is dropped. When the average queue size is

larger than maxth, every arriving packet is dropped. When the average queue

size is between minth and maxth, each arriving packet is dropped according

to the average queue size.
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maxp stands for the maximum drop probability in case that the average

queue size does not exceed maxth. A higher value of maxp can reduce queue-

ing delays. But, doing so induces underflows. With a higher value of maxp,

RED can achieve a better fairness value in severe congestion condition. As a

rule of thumb, maxp is set to 0.1 or 0.2. By setting these parameters prop-

erly, RED can maintain the average queue size between maxth and minth

when the number of flows is not so large and their aggregate input load is

not so large.

2.2 FRED (Flow Random Early Drop)

Although RED can actively control queueing delays and can guarantee

fairness to some extent, RED has bias against TCP and TCP-friendly flows.

Because multimedia applications do not use congestion control mechanism

and do not reduce their transmission rates even if network is severely con-

gested, they take a larger bandwidth share than TCP flows. To solve this

problem, FRED (Flow Random Early Drop) [8]was proposed.

To protect fragile flows like TCP flows from unresponsive flows like CBR

and UDP flows, FRED maintains per-flow states for all flows that have at

least one buffered packet in the router buffer.

Calculation of the drop probability pb and avgq in FRED is the same

as RED. But, FRED do not drop packets with the probability pb and there

are additionally checked conditions in case of FRED. The main difference

between RED and FRED is that FRED compares the average queue size

avgcq with per-flow queue size qleni and drops packets conditionally. This

feature can be described in Figure 2.3. It should be noted that FRED uses a

single FIFO buffer and per-flow queues in Figure 2.3 are buffered in a single

FIFO buffer in fact.

Although FRED uses a single FIFO buffer, it maintains per-flow states.

Therefore, FRED can calculate avgcq that is the average per-flow queue size.

When the average queue size is smaller than minth, no packet is dropped.

When the average queue size is larger than maxth, every arriving packet is

8
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Figure 2.3: Operation of FRED algorithm

dropped. This operation is the same as RED. When the average queue size

is between minth and maxth, FRED compares the per-flow queue size qleni

with avgcq. If qleni exceeds 2avgcq, FRED drops the arriving packet with

probability 1. If qleni is smaller than avgcq, FRED do not drop the arriving

packet. FRED also records the number of over-runs, that is, the times when

qleni is larger than avgcq. If a flow induces over-runs more than 1 time,

FRED drops the arriving packet with probability 1.

In Figure 2.3, flow 1 and 2 can be classified as well-behaving flows and

flow 3 and 4 can be classified as unresponsive flows. Furthermore, arriving

packets of flow 1 and 2 will not be dropped and arriving packets of flow 3 will

experience random drop like RED because the per-flow queue size of flow 3

exceeds avgcq and does not exceed 2avgcq. Arriving packets of flow 4 will

be dropped unconditionally because per-flow the queue size of flow 4 exceeds

2avgcq. Details of FRED algorithm can be found in [8].

In this way, FRED succeeds in protecting TCP flows from CBR flows.

But, there are many problems that can not be solved by FRED. One of the

problems of FRED is that FRED is hard to be analyzed mathematically and

its performance is not verified over wide range of network configurations.
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Second, FRED can not actively control the average queue size because it do

not drop the arriving packets sent by well-behaving TCP flows before the

average queue size grows large. This can result in longer queueing delays.

Third, since FRED only keeps state for flows which have packets queued in

the router buffer, it requires a large amount of buffers to work well. Without

sufficient buffer space, it becomes hard for FRED to detect unresponsive

flows since they may not have enough packets continually buffered to trigger

the detection mechanism. In addition, unresponsive flows are immediately

reclassified as being responsive as soon as they clear their packets from the

router buffer.

2.3 DRR (Deficit Round Robin)

In ATM networks, there have been many sophisticated scheduling dis-

ciplines such as GPS (Generalized Processor Sharing) , WFQ (Weighted

Fair Queueing) [3], WF2Q (Worst-case Fair Weighted Fair Queueing), DRR

(Deficit Round Robin) [5] and SCFQ (Self-clocked Fair Queueing). Among

these disciplines, DRR has attracted researchers in IP networks for its ease

of implementation. Although DRR is much simpler than other scheduling

disciplines in ATM networks, DRR is still more complicated scheme than

any other schemes such as RED and FRED in IP networks. As a packetized

version of WFQ, DRR scheduler associates each flow with a deficit counter

initialized to 0. The scheduler visits each flow in turn and tries to serve one

quantum worth of bits from each visited flow. The packet at the head of

the queue is served if it is no larger than the quantum size. If it is larger, the

quantum is added to the flow’s deficit counter. If the scheduler visits a flow

when the sum of the flow’s deficit counter and the quantum is larger than

or equal to the size of the packet at the head of the queue, then the packet

at the head of the queue is served, and the deficit counter is reduced by the

packet size. An example operation of DRR is shown in Figure 2.4.

It should be reminded that DRR is only a scheduling discipline and is

not a dropping strategy. Therefore, its performance can be degraded when
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Figure 2.4: Operation of DRR algorithm

it is not used with a proper dropping strategy. Recently, it is revealed that

DRR should be used with the proper dropping strategy called LQD (Longest

Queue Drop) [18] to be used in IP networks. Furthermore, FIFO scheduling

with LQD is shown to be superior to DRR with RED in many aspects.

The motivation for LQD is that if flows are given equal weights, then

flows which use the link more tend to have longer queues. Hence, biasing the

packet drops such that flows with longer queues have higher drop rates should

make the bandwidths sharing more fair. For proper operation of LQD, LQD

should maintain the flow number that has the longest queue in the current

router buffer. This requires O(log N) (where N is the number of flows) time

complexity. For each arriving packet, LQD determines whether the buffer

space is fully exhausted or not. If the buffer space is not fully exhausted,

LQD does not drop any packets. If the buffer space is fully exhausted, LQD

drops the packet at the head of the longest queue and buffers the arriving

packet. This feature of LQD allows TCP flows to invoke fast retransmit and

fast recovery. Hence, LQD makes bandwidth sharing of TCP flows even more

11



fairer.

Although DRR shows extremely good performance in many cases, there

are two main problems that DRR can not solve. One of the most important

problems is that DRR requires O(log N) time complexity in both mapping

the arriving packet to the proper buffer number and finding the flow number

of the longest per-flow queue. It also requires per-flow buffering that is hard

to be implemented in current IP networks. Second problem is that DRR

guarantees fairness only for backlogged flows. When the number of flows

exceeds the maximum number of per-flow buffer in routers, DRR can not

guarantee fairness.

12



3. Proposed BMRE Algorithm

RED is a simple and powerful buffer management scheme that drops

packets from each flow in proportion to the amount of bandwidth the flows

used on the output link [8], assuming that all flows exhibit the same behavior

as TCP flows do in view of packet drop events. However, RED cannot prevent

buffer overflow for many flows, cannot regulate unresponsive flows, and is

unfair even among TCP flows because it drops packets randomly [8, 9, 10, 11].

We suggest the following functions that an intelligent buffer management

scheme should support:

1. Low queueing delays

2. Control of the queue size to prevent overflow and underflow

3. Regulation of unresponsive flows and fairness

4. Smooth sending rates for each flow

In this paper, we define “flow” as a source-destination IP address pair to

distinguish each flow transferring multicast traffic data and to guarantee

fairness for those flows. For example, address pairs (A, B) and (C, B) are

treated as different flows. Although definition of “flow” can be extended to

each TCP port or UDP port, currently, header processing of layer 4 in routers

is not common.

3.1 A Scalable and Fair Buffer Management Scheme

In ideal situations, routers can provide fairness even with a small buffer.

But, TCP, which is dominant transport protocol, requires a large buffer be-

cause it uses window-based congestion control that causes frequent coarse

timeouts when there is insufficient buffer space. This results in short-term

unfairness. Although TCP flows require that at least 4 packets per flow

13



should be buffered in routers to prevent coarse retransmit timeouts [17],

most routers provide very small buffers because large buffers without an ac-

tive buffer management scheme results in unacceptably long delays and long

response times.

To guarantee fairness with TCP flows, a buffer management scheme

should allow each flow to buffer at least 4 packets when congestion is not

severe. However, just allowing each flow to buffer at least 4 packets can

be unfair when TCP flows and unresponsive flows(ex. CBR flows) coexist.

To alleviate this unfairness, a buffer management scheme also should drop

packets according to each flow’s estimated throughput.

A router do not provide a large buffer because a large buffer inevitably

results in longer queueing delays. Therefore, a buffer management should

gracefully adjust per-flow queue sizes according to the number of active flows.

When congestion is severe, for example, in case that there are ten thousand

flows and the router buffer size is one thousand kbytes, a flow can buffer

only 100 bytes in average. Assuming that an IP packet size is 500 bytes, a

flow can buffer only 0.2 packets in average. Guaranteeing fairness in such a

condition is not easy due to the following reasons: (1) In such a situation,

estimating per-flow rates is not an easy task. Because TCP’s retransmit

timeout value is doubled for every consecutive retransmit timeout, estimating

per-flow rates and guaranteeing fairness in such a situation are difficult. (2)

Maintaining several millions of per-flow states in a router is also not an easy

task. If per-flow states are implemented in conventional memory such as

RAM, mapping from source-destination address pair to the corresponding

state requires O(log N) (where N is the number of flows) time complexity. If

a new and practical definition of flows could reduce this complexity, it would

be feasible for routers to maintain such a reduced number of per-flow states.

To minimize unnecessary queueing delays, to guarantee fairness, and to

allow a flow to buffer at least 4 packets, we propose a virtual threshold

function, shown in Figure 3.1. In this figure, we divide router operation

into three modes. Each flow can buffer up to vmaxq/Nflow bytes. Because

each TCP flow does not occupy more than vmaxq/Nflow bytes all the time,
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exploiting the burstiness of TCP, we can maintain an average queue size to

a target value, which is shown as targetq. In no congestion mode, there

is sufficient buffer space to allow each flow to buffer at least 8000 bytes.

In this mode, a router can provide highly satisfactory QoS. In moderate

congestion mode, there is insufficient buffer space and the queueing delay

increases. In this mode, we allow each flow to buffer a smaller number of

packets as the number of flows increases. In severe congestion mode,

each flow can buffer only a minimum number of packets, that is to say, 4000

kbytes, and we can not provide low delays. We also introduces a dropping

strategy named “Fair Drop” that guarantees fairness when there are many

flows. Fair Drop operates when queue size is larger than fdth. A buffer

management scheme should limit router’s queue size to a certain value to

prevent buffer overflows. Fair Drop is designed to prevent buffer overflows

and to limit maximum queueing delays still maintaining satisfactory fairness

values.

As demands on delay and per-flow buffer size can vary, the virtual thresh-

old function can also vary according to these demands.

3.2 Why Should a Router Drop Packets Periodically?

Achieving smooth sending rates requires periodic dropping of packets.

However, RED drops packets randomly as shown in this section.

TCP packet losses are detected based on the following two ways: (1)

The TCP sender can detect them either when it receives triple-duplicate

acknowledgements, (four ACK’s with the same sequence number), or (2)

when retransmit timeouts occur [19]. We define the congestion cycle CCi as

the ith period between two loss indications and define αi as the number of

packets including the first packet loss in CCi. If RED is in steady state,

which means no recent change in the number of flows, packets for flow i are

dropped with nearly constant drop probability p. Therefore, αi is distributed

geometrically as follows:

P [αi = k] = (1− p)k−1p, k = 1, 2, · · · . (3.1)
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As can be seen from this equation, each flow experiences geometrically dis-

tributed inter-drop times. The mean and standard deviation of αi are as

follows:

E[αi] =
∞
∑

k=1

(1− p)k−1pk =
1

p
, (3.2)

S[αi] =
1

p

√

1− p. (3.3)

We can determine that E[αi] = 10 and S[αi] = 9.5 with p = 0.1, indicating

that some flows buffer more than a sufficient number of packets and others

buffer fewer than the necessary number of packets. This feature of RED

causes unfairness, inefficient buffer usage, and rough sending rates. To avoid

these problems, routers should drop packets periodically.

3.3 BMRE Algorithm

We propose BMRE (Buffer Management based on Rate Estimation)

scheme which solves the problems discussed in Section 3.1 and 3.2. BMRE

consists of virtual threshold function that eliminates unnecessary queueing

delay and prevents buffer overflows and underflows, an accurate per-flow rate

estimation that measures each flow’s rate, a per-flow exponential drop prob-

ability that keeps TCP flows from unresponsive flows, and Fair Drop that

guarantees fairness even when the number of flows is very large.

BMRE’s basic algorithm is depicted in Figure 3.2. To understand the

detailed operation of BMRE algorithm, it is necessary to refer to the detailed

pseudocode of BMRE algorithm in Appendix.

(1) For each packet’s arrival, global queue size q is compared with vmaxq

to prevent unnecessary fluctuation of global queue size q and is compared

with maxq to prevent buffer overflows. (2) If there is no flow state for this

packet, BMRE assigns a flow state to this flow. Because a buffer management

scheme can support only a finite number of flow states, when all flow states

are occupied, BMRE assigns a used flow state whose per-flow queue size is 0

to this new flow. Because global queue size q is controlled not to exceed half of

buffer size BS by BMRE, if the maximum number of per-flow states maxflow
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is set to a proper value, at least one per-flow state would have 0 per-flow queue

size. Therefore, a packet whose per-flow state is not registered in per-flow

states is never dropped. (3) Because a buffer management scheme should

regulate global queue size q to prevent buffer overflows, when global queue size

q is larger than Fair Drop threshold fdth, an arriving packet is dropped. (4)

BMRE drops packets according to the estimated per-flow rate. (5) For each

packet’s departure, BMRE finds the flow number of this departing packet

and updates beta β[i] and global queue sizes. (6) If flow i’s per-flow queue

size is 0 for more than timeout value Timeout V alue, flow i expires and the

flow state for the flow is deleted.

BMRE determines a maximum per-flow buffer size depending on the num-

ber of currently active flows and drops packets based on the rate estimation

of each flow [6]. As an estimate of per-flow share, either a per-flow average

queue size estimation in [7] or a per-flow rate estimation in [6] can be used. In

fact, using per-flow average queue size requires replacing “exp(−dt/K)” with

a constant “λ” and replacing rate estimates with average queue estimates in

code line 31 in Appendix as follows. (In addition to this replacement, a

portion of code should be modified.)

rate[i] ← (1− e−dt/K)×
p.size

dt
+ e−dt/K

× rate[i], (3.4)

avgq[i] ← (1− λ)× q[i] + λ× avgq[i]. (3.5)

The per-flow buffer occupancy of flow i is proportional to the per-flow out-

put rate of flow i with the FIFO discipline [8]. Therefore, we can guess that

these two approaches achieve the same performance. However, the usage

of per-flow average queue size as an estimate of the per-flow share is not

as precise and efficient as that of per-flow rate estimation. When per-flow

average queue size is used as an estimate of per-flow share, filtering of un-

necessary noise and quick responsiveness to rapid rate fluctuations can not

be obtained simultaneously. Let assume that end of congestion cycle CCi is

caused only by triple-duplicate ACKs, there are only periodic packet losses,

and the round trip time is fixed to RTT . Wi is the maximum window size in

Congestion Cycle CCi. With these assumptions, the inter-packet buffering
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time of TCP varies from RTT/Wi to (2 × RTT )/Wi, so the per-flow share

can not be calculated accurately without dependency on dt. If there are sub-

stantial packet losses caused by timeouts, this discrimination becomes more

significant. Therefore, we have chosen to use rate estimation as a method

for estimating per-flow share. Rate estimation in code line 31 in Appendix is

robust to various packet length distributions and is proven to asymptotically

converge to the real rate [6].

3.4 Per-flow Exponential Drop Probability

As shown in code line 24 in Appendix, BMRE drops packets for flow i

with following drop probability:

p[i] =

(

q[i]

maxth

)β[i]

. (3.6)

Based on per-flow rate estimation and comparison of current average

queue size with targetq, BMRE either increases or decreases β[i]. Flow i

experiences a high drop probability with a small β[i] and experiences a low

drop probability with a large β[i]. Upon decrease, β[i] is divided by the

rateratio. Upon increase, β[i] is multiplied by the constant value of α.

By introducing β[i] as an exponent of drop probability for each flow,

drop probability of each flow can be adjusted efficiently as shown in Figure

3.3. First, β[i] is large when i is a TCP or TCP-friendly flow. In this

case, using β[i] as an exponent of drop probability makes each TCP and

TCP-friendly flow experience periodic packet drops. Because TCP is very

sensitive to small drop probability such as 0.1, using β[i] as an exponent can

prevent unnecessary packet drops for flows using smaller share than fair share.

For example, if the sending rate of flow i does not exceed fair share (when

q[i] ≤ maxth/2), packets of flow i are dropped with a negligible probability,

i.e., 0.510.0 = 0.001. Therefore, BMRE’s dropping strategy does not drop

flow i’s packets when the number of of buffered packets for flow i is less than

the average number of buffered packets for other flows. With this dropping

method, packets with low rate flows are rarely dropped. Secondly, β[i] is
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small when flow i is unresponsive and is using more than its fair share. In

this case, using β[i] as an exponent of drop probability allows high drop

probability such as 0.9.

With per-flow exponential adjustment of drop probability, we can achieve

a high degree of fairness and smooth sending rates because packets of TCP-

friendly flows are dropped nearly periodically. Furthermore, the queue size

of each flow is well regulated and each flow is not allowed to buffer more than

the necessary number of packets.

3.5 Choosing K

The choice of decay factor K involves several tradeoffs. First, while a

smaller K value increases the system responsiveness to rapid rate fluctua-

tions, a larger K value better filters noise and avoids potential system insta-

bility. Second, K should be large enough to smooth the estimated sending

rates of TCP flows because these rates are estimated to be high when TCP
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flows have large window sizes just before packet drop events. To control these

effects, K can be decided as follows:

K ← C ×
Average Packet Size×N

BW
. (3.7)

where N can be substituted for Nflow and Average Packet Size is the aver-

age IP packet size, and BW is the link speed or service rate of a router. We

found that C should be 10 ∼ 30 through numerous simulations and overall

performance is very insensitive to various K values. But, (1) using a higher

value of K requires a router to maintain unacceptably large number of per-

flow states, and (2) guaranteeing fairness when there is insufficient buffer

space such that each TCP flow can buffer only up to 0.1 packets in average is

meaningless. Moreover, (3) frequent change of K can induce implementation

complexity. Considering these three points, as a rule of thumb, we recom-

mend that K should be 1 ∼ 3 times value of the average queueing delay,

which can be calculated based on dividing the average queue size by the link

speed.

3.6 Practical Definition of Active Flows

Because routers have a limited memory, per-flow states should be deleted

properly, but neither too often nor too seldom. With too frequent deletion

of the per-flow states, the defects caused by FRED’s frequent deletion of

per-flow states can appear. FRED’s defects due to the frequent deletion

allows unresponsive flows to take more than fair share because number of

active flows are underestimated and fair share is overestimated. With too

infrequent deletion of the per-flow states, the number of active flows are

overestimated and fair rate can be underestimated so that all flows could be

dropped simultaneously. From code line 31 in Appendix, the rate of flow i

is updated according to (3.4). In (3.4), if e−dt/K is set to e−3 = 0.0498, dt

should be 3K and (3.4) becomes as follows:

rate[i] ← 0.9502×
p.size

dt
+ 0.0498× rate[i] ≈

p.size

dt
. (3.8)
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Therefore, routers do not have to maintain the per-flow state of flow i if

dt = 3K seconds has elapsed since the last buffering operation of flow i.

Therefore, Timeout V alue used for deleting per-flow states is set to 3K. This

can greatly reduce the overhead coming from maintaining per-flow states.

Although there have been many approaches to buffer management schemes

with usage of per-flow states, maintaining per-flow states has been consid-

ered to be impractical and not scalable. But, we found that we can reduce

the overhead of maintaining per-flow states. Our main motivation for

definition of active flows is that a very weak flow does not need

to be regarded as an active flow. For example, assume that a router’s

link speed is 20 Mbps, a router buffer size is 160 kbytes, an IP packet size is

1 kbytes, K is 150 ms, and Timeout V alue is 450 ms. Timeout V alue can

be regarded as a time window because a flow that has not been buffered for

Timeout V alue is deleted. This corresponds to maximum queueing delay of

64 ms and average inter-packet time of 0.4 ms. Because a flow that has not

been buffered for more than Timeout V alue is too weak to be regarded as a

flow, we can decide that up to (450 + 64)/0.4 = 1, 285 flows need to be re-

garded as active flows. For another example, if a router supports an OC-12c

link that has a capacity of 622 Mbps and a 4 Mbytes buffer, and an IP packet

size is 1 kbytes, this corresponds to maximum queueing delay of 51.4 ms, K

of 60 ms, Timeout V alue of 180 ms, and average inter-packet time of 12.9

µs. Therefore, this router has to maintain only up to 14, 000 per-flow states.

Although this number of per-flow states may be considered as a large number

of flows, it is well known that current ATM switches support at least 64, 000

VCs [20]. Furthermore, numbers of flows that should be treated as active

flows is still overestimated in the above calculations because the probability

that every packet belongs to each distinct flow in a time window is low due

to TCP’s burstiness.
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3.7 Fair Drop

Although our new definition of active flows greatly reduced the overhead

of maintaining per-flow states, maintaining such a large number of flows

results in longer delays. If we allow 1 kbytes per an active flow with a 20 Mbps

link to support 1, 500 flows, it corresponds to a buffer size of 1.5 Mbytes and

maximum queueing delay of 0.6 seconds that is so long that flows transferring

real-time application data would complain. So, such a large buffer is not

likely to be used in practice. To become more realistic, a router would try to

support such a large number of flows with a smaller buffer so that each flow

can buffer only a fraction of a packet such as 0.2 or 0.5 packets in average.

As discussed in Section 3.2, guaranteeing fairness for a large number of flows

with a small buffer is not trivial. To guarantee fairness with a small buffer,

we introduce Fair Drop scheme. The main motivation for Fair Drop is

that recently buffered flows do not need to be buffered again if the

buffer size is not sufficiently large and all flows can not be buffered

simultaneously. When the global queue size is above a specified threshold

value, Fair Drop scheme drops packets of flow i if the flow has been buffered

recently and its flow state is still maintained by BMRE.

24



4. Simulation Results and Discussion

BMRE, RED, FRED, and DRR are compared based on simulation results.

While RED is selected as a fundamental scheme due to its simplicity, FRED

and DRR are selected as comparable schemes with BMRE.

• RED (Random Early Detection) - This scheme is significantly more

sophisticated than Drop Tail and is designed for routers with a sin-

gle FIFO buffer. RED drops packets before congestion becomes severe

and controls the average queue size between maxth and minth values.

When the average queue size is less than minth, there is no packet

drop. When the average queue size is greater than maxth, all packets

are dropped. When the average queue size is between two thresholds,

the packet drop probability is increased linearly in proportional to the

average queue size.

• FRED (Flow Random Early Drop) - This is an extended version of

RED for partial solution of the problem of unresponsive flows. FRED

maintains per-flow states for all flows that have a non-zero queue size in

the router buffer. Using this per-flow state, FRED preferentially drops

the packets of flows that have queue sizes larger than the average per-

flow queue size. It unconditionally drops the packets of flows that (1)

have queue sizes two times greater than the average per-flow queue size

or (2) experience many packet drops. It randomly drops the packets of

flows that have larger queue size than the average per-flow queue size

with the probability proportional to the average queue size. FRED un-

derestimates the number of active flows and overestimates the per-flow

average queue size that is calculated by dividing the average queue size

by the number of active flows because FRED deletes per-flow state of
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flows that have a zero queue size, and TCP flows in timeouts have no

packet buffered. Therefore, FRED encourages smooth-rate unrespon-

sive flows, such as UDP-CBR flows. Furthermore, as the fraction of

unresponsive flows increases, the average per-flow queue size itself is

increased and unresponsive flows are not well regulated.

• DRR (Deficit Round Robin) - This scheme is a variant of WFQ (Weighted

Fair Queueing) discipline. DRR allows WFQ to handle variable packet

sizes in a fair manner. DRR is the only one that uses per-flow queue-

ing algorithm while RED, FRED and BMRE use a single FIFO buffer.

Therefore, DRR guarantees nearly perfect fairness for flows that have

at least one packet in the router buffer. LQD (Longest Queue Drop) is

used as a packet drop strategy.

4.1 Simulation Configurations

We simulate the configuration shown in Figure 4.1. Unless otherwise

specified, the following parameters are used. Each output link has a capacity

of 20 Mbps, a latency of 2 ms, and a single FIFO buffer of 320 kbytes. For

RED and FRED, minth is set to 53 kbytes and maxth is set to 160 kbytes

that corresponds to maximum queueing delay of 64 ms. The buffer size of

DRR is set to 320 kbytes.

To compare BMRE, RED, FRED and DRR in a fair manner, maxth of

DRR is set to 160 kbytes. TCP-Newreno is used in all simulations because

it is the most widely used TCP variant as shown in [21] for its robustness

against consecutive packet drops [22]. The data packet size of TCP flows is

set to 1000 bytes and the ACK packet size is set to 40 bytes. All BMRE

parameters are set to the values indicated in Appendix. We limited BMRE’s

maximum number of per-flow states to 320 to see limiting effects. To avoid

the buffer space being fully exhausted, maxp is set to 0.2 for RED and FRED.

The FRED minq value is set to 2000 bytes. All four schemes are implemented

in ns-2 [23]. RED and FRED operate in byte mode, meaning that packets are
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Figure 4.1: Simulation topology

buffered and counted in bytes and dropped with a probability proportional to

their size. As an example, 1000 bytes packets is dropped with a probability

of 0.2 and 40 bytes packet is dropped with a probability of 0.008 for RED if

the average queue size is slightly smaller than maxth.

To reduce instantaneous noise and to avoid phase effects, each simulation

is run for T = 100 seconds and each flow starts at a random time. The

term Goodputi of TCP/CBR/TFRC flow i is defined as the number of bytes

received by TCP/CBR/TFRC Sink in unit time. We also define N as the

number of all flows that are trying to send data packets in simulations while

Nflow is an estimated number of flows by BMRE. Consequently, N is always

larger than or equal to Nflow.
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4.2 Performance Behavior of TCP and CBR flows

4.2.1 Queuing Delay and Fairness for TCP flows

We consider only TCP flows and there is no CBR flow in this subsection.

As shown in Figure 4.2(a) and 4.2(b), BMRE reduces the unnecessary queue-

ing delays and maintains a much smaller average queue size compared with

RED and FRED. In fact, if the average queue size of BMRE is set to targetq

of the virtual threshold function, the queueing delays are controlled to the

corresponding value. Although the queueing delays increase as the number

of flows increases and BMRE shows a slightly longer delay than RED when

the number of flows is 50 to 80, BMRE maintains smaller delays compared

to RED and FRED in the wide range of numbers of flows. BMRE eliminates

unnecessary queueing delays by regulating each flow’s queue size based on the

knowledge of the number of flows. Queueing delays of RED can be reduced

by setting maxp to higher values while queueing delays of FRED can not

be noticeably reduced with higher maxp. But, it should be noted that RED

does not guarantee fairness as well as QoS, and BMRE outperforms FRED

and DRR in all cases.

As shown in Figure 4.3(a) and 4.3(b), under the same condition as men-

tioned above, we measured the standard deviation of the goodput for each

flow, which is normalized by the fair share of that flow. The standard devi-

ation S of (Goodputi/Fair Share) is defined as follows.

S =

√

√

√

√

1

N − 1

N
∑

i=1

(

Goodputi
BW/N

− 1

)2

, (4.1)

Goodputi = Goodputi(0, T ), (4.2)

Goodputi(t, t + ∆t) =
Total bytes of flow i received in [t, t + ∆t]

∆t
. (4.3)

BMRE achieves extreme fairness that can not be compared with RED.

When the number of flows is smaller than 100, FRED achieves compara-

ble performance to BMRE. While FRED can support only about 100 flows

within standard deviation of 0.1, BMRE support about 350 flows within

the same value. BMRE’s improved fairness over FRED is largely due to Fair
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Figure 4.2: Average queue size vs. number of flows
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Drop. Reasoning from this result, if FRED wants to guarantee fairness values

comparable to BMRE, it should maintain three or four times larger buffer

compared with BMRE. Therefore, its maximum queueing delay should be

three or four times as large as that of BMRE. Although DRR achieves better

performance when the number of flows is less than 200, BMRE significantly

outperforms DRR when the number of flows is larger than 200 because DRR

can ensure fairness only when the number of flows is small and each flow

can buffer at least one packet. In contrast to DRR, BMRE drops packets

whose per-flow states are still maintained and makes room for flows

that have not been buffered recently.

Packet loss events are observed with 20 TCP flows. In Figure 4.4, packet

loss events of source 1 are shown. BMRE drops packet more frequently than

other scheme to minimize queueing delay. RED and FRED drop packets in

a random fashion, as expressed in (3.1), while BMRE drops packets nearly

periodically. With this periodic packet drop, BMRE can effectively control

20 21 22 23 24 25 26 27 28 29 30
Time(sec)

DRR 

BMRE 

FRED 

RED 

Figure 4.4: Loss events of source 1
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per-flow queue sizes and prevent flow i from buffering more than the necessary

number of packets. DRR can not be compared with other schemes because

it maintains a per-flow queue for each flow and guarantees perfect fairness

for flows that have at least one packets in the router buffer by serving them

in round robin discipline.

4.2.2 Fairness for TCP and CBR flows

We simulate TCP and CBR (which uses UDP as a transport protocol)

flows. In Figure 4.5(a) and 4.5(b), we change the number of flows from 5 to

800. The fraction of CBR flows is set to 40%. Packet size of CBR flows is set

to 1000 bytes and inter-packet times are adjusted so that each CBR flows send

packets at three times rate of the fair share rate. RED can not protect TCP

flows from unresponsive CBR flows at all. BMRE’s performance degradation

when the number of flows is about 10 is due to TCP’s retransmit timeout’s.

Because TCP’s minimum retransmit timeouts are set to 200 ms and round

trip times are about 40 ms, TCP flows can not get sufficient share. This

problem can be solved by setting vmaxq to a higher value when the number

of flows are smaller than 20. BMRE and FRED can protect TCP flows from

CBR flows. But, if we decide that TCP flows should receive at least half of

their fair share, BMRE can support up to 650 flows fairly due to its Fair Drop

while FRED and DRR can support only up to 100 and 200 flows respectively.

Because BMRE knows which flows have been recently buffered and drops

them even though those flows do not occupy buffer space currently, BMRE

can keep TCP flows from unresponsive flows even with small buffer sizes. It

should be remarked that the average queue size per a flow is smaller than

0.25 packets when the number of flows is 650, which means majority of TCP

flows are in retransmit timeouts state.

In Figure 4.6, we measure the instantaneous goodput of each flow to

observe the instantaneous behavior of TCP and CBR flows. The number of

TCP flows is set to 12 and the number of CBR flows is set to 8. All CBR

flows send data at 3 Mbps which is three times as large as the fair share value.

The measurement interval Tm is set to 0.5 seconds. Because RED can not
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Figure 4.5: Average of (Goodputi/Fair Share) vs. number of flows
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Figure 4.6: Instantaneous Goodputi in case of Tm = 0.5

protect TCP flows from unresponsive flows, we have excluded RED from this

simulation. The instantaneous goodput of DRR is extremely smooth because

there are only 20 flows and each flow can buffer a sufficient number of packets.

The instantaneous goodput of TCP flows for BMRE is much smoother than

that for FRED. BMRE regulates CBR flows within 2 seconds. When the

number of flows is small, BMRE’s operation is mainly based on both per-

flow exponential adjustment of drop probability which drops packets nearly

periodically, and a virtual threshold function that bounds both per-flow queue

sizes and the global queue size.

4.3 Instantaneous Rates of TCP and TFRC Flows

We define Coefficient of Variation for TCP flow i as follows:

CoVi =

√

√

√

√

√

1

T/Tm − 1

T/Tm−1
∑

k=0

(

Goodputi(kTm, kTm + Tm)

Goodputi(0, T )
− 1

)2

. (4.4)

34



First, we simulate only TCP flows and results are shown in Figure 4.7 because

many real-time applications still use TCP as their transport protocols. IP

data packet size is set to 500 bytes because real-time applications would

decrease its packet size to reduce transmission delay and to cope with bursty

packet loss. BMRE maintains much smaller CoVis than FRED and RED do.

When there are small number of flows such that N is smaller than 60, BMRE

outperforms FRED due to its periodic packet drops. Also, Fair Drop greatly

improves the overall performance of BMRE when there are many flows such

that N is larger than 180. DRR greatly outperforms three other schemes due

to its per-flow queueing.
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Figure 4.7: Average coefficient of variation for TCP flows vs. number of flows

in case of Tm = 2.0

Secondly, we simulate 40% TFRC [13, 14] flows and 60% TCP flows and

measure the mean CoVis of TFRC flows. All parameters are set to values from

[13]. TFRC operates with an equation-based rate control that characterizes
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TCP sending rates [19, 24] based on the following equation:

SR =
s

R
√

2p
3 + tRTO(3

√

3p
8 )p(1 + 32p2)

. (4.5)

An upper bound on the sending rate SR is used, which is a function of the

steady-state loss event rate p, data packet size s in bytes, round-trip time

R, and TCP retransmit timeout value tRTO. TFRC estimates the average

loss interval, which is a weighted sum of last n loss intervals considering

consecutive packet loss events as a single loss event. TFRC uses the average

loss interval to calculate the sending rate. We can easily see that TFRC

flows should experience periodic packet loss events to estimate p accurately

without noisy fluctuation.

Results are shown in Figure 4.8. As can be seen from this figure, TFRC

flows in RED experience noisy instantaneous goodputs, in contrast to BMRE

and FRED. This feature of BMRE should encourage the adoption of TFRC
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Figure 4.8: Average coefficient of variation for TFRC flows vs. number of

flows in case of Tm = 2.0
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for real-time applications as a congestion control mechanism.

It should be mentioned that TFRC algorithm is currently not well tuned

because TCP models shown in [19, 24] is currently not exact. We found

that TFRC receives different shares compared with TCP when the number

of flows is large and the packet drop probability is high. Furthermore, (4.5) is

derived with assumption that packet drop events are Bernoulli trials and that

assumption is valid only for RED. This assumption is not valid in general

as shown in [25]. It is needed to acquire more accurate TCP model. Also,

we think that a slightly modified version of TCP that reduces TCP’s coarse

retransmit timeouts would satisfy real-time applications if BMRE is adopted

as a buffer management scheme.

4.4 Throughput Differentiaion of Weighted BMRE

BMRE can be extended to support flows with different weights. To

support differentiated shares, we add a new per-flow variable wi (a weight

value for flow i), and a portion of code is modified. We use two bits of the

TOS (Type of Service) field in the IP header. To support weighted BMRE,

Nflow indicates the total weights of active flows. The values of ratefair and

maxth should be multiplied by wi. We simulate 8 TCP flows with weights of

1, 2, 3 and 4. Results are shown in Figure 4.9. Although weighted BMRE

can not differentiate per-flow queueing delays because it uses single FIFO

buffer, weighted BMRE can be used to effectively support different per-flow

shares of goodputs.

4.5 Miscellaneous Topics

4.5.1 Considerations for Implementation

Cooperation and negotiation among several ISPs would probably not be

easy. Therefore, a buffer management algorithm should be able to operate

individually. We can exploit the performance of BMRE without installation

on several contiguous routers because BMRE routers operate individually

without any exchange of additional information.
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Figure 4.9: Instantaneous Goodput of weighted BMRE

4.5.2 Queueing Delay and IP Packet Size

Although we preset router buffer sizes in Section 3.6, how many flows a

router would support should be considered first. If a router would support

30, 000 TCP flows with guaranteeing fairness for each TCP flow, router buffer

size should be at least 30, 000 IP packets. Assuming that each IP packet size

is 1 kbytes and each flow needs at least 2 packets buffer, a router buffer

size should be at least 60 Mbytes. If a router supports an OC-12c link,

maximum queueing delay would be 0.77 seconds, which is unacceptably high

and flows transferring real-time application data would not be satisfied. This

unacceptably high delay is mainly due to large IP packet sizes. To mitigate

large queueing delays caused by large IP packet sizes, a buffer management

scheme should be able to support many flows with a smaller buffer size.

Perhaps, a major difficulty in next generation IP routers would be to reduce

queueing delays. As shown in Section 4.2, BMRE could support about 350

flows limiting average queue size below 140 kbytes which means that each
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flow buffers 0.4 packets in average.

4.5.3 Comparison of DRR and BMRE

The main advantage of BMRE is that it achieves comparable perfor-

mance to DRR while BMRE maintains a single FIFO buffer. Although DRR

achieves perfect fairness for flows that have currently at least one packet in

the router buffer, it cannot ensure fairness when the number of flows increases

above a certain threshold. From the simulation results of BMRE and DRR,

we can see that BMRE achieves comparable performance when the number

of flows is small and outperforms DRR when the number of flows is large.

To allow DRR to outperform BMRE, the buffer size should be increased and

queueing delay should be increased accordingly.

Furthermore, DRR uses per-flow queueing and per-flow scheduling that

are considerably hard to implement and does not consider the large amount

of legacy routers that use a single and simple FIFO buffer for its each out-

put link. It would be hard to implement per-flow queueing and per-flow

scheduling practically. Because DRR guarantees fairness only for currently

backlogged flows, DRR would not be an optimum scheme for highly bursty

flows such as TCP and its cost per performance ratio would be very high.

4.5.4 Frequent Packet Drop

As shown in Figure 4.4, BMRE drops packets more frequently than RED,

FRED and DRR. To see how many packets are dropped in each scheme, we

measured and plotted packet drop probabilities in Figure 4.10(a) and 4.10(b)

with the same configuration in Section 4.2.1.

Measured drop probability is defined as the ratio of number of dropped

packets to number of packets sent by TCP sources. BMRE drops packets

more frequently to guarantee fairness and reduce queueing delays. It should

be reminded that there are trade-offs between reducing queueing delays and

reducing packet drops in current IP networks. While BMRE maintains much

shorter queueing delays when the number of flows are smaller than 50, BMRE

drops packets much more frequently than other schemes in that region. More

frequent packet drop results in the large fraction of wasted link capacity in the
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previous links and is a main weak point of BMRE. This problem is mainly due

to that TCP detects congestion only by packet drop and there is no additional

information exchange about congestion between TCP and routers. But, we

believe that this problem can be solved by using ECN (Explicit Congestion

Notification) marking.
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Figure 4.10: Measured drop probability vs. number of flows
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5. Conclusions

We have proposed a dynamically adjusting per-flow buffer management

scheme that can be applied to TCP flows and to flows transferring real-time

application data. We have simulated various configurations with TCP, CBR

and TFRC flows. BMRE exhibits better fairness, less delays, and better

smoothness of sending rates than previous schemes. Introduction of a virtual

threshold function that divides router operation into three modes allows the

average queue size to fluctuate around the targetq value and eliminates un-

necessary delays. BMRE also produces more efficient buffer usage and helps

routers support more flows than RED, FRED and DRR with the same buffer

size. The per-flow rate estimation was accurate in view of estimating the

per-flow current share, and noisy and rapid fluctuations were filtered. The

per-flow exponential adjustment of the drop probability prevents unrespon-

sive flows from achieving an unfairly large share. BMRE also controls the

per-flow queue size, preventing flows from buffering more than a sufficient

number of packets or buffering fewer than the necessary number of packets.

We also introduced a practical definition of “active flows” and developed

a new algorithm for routers to support a larger number of flows in a fair

manner in spite of insufficient buffer size. With practical definition of “active

flows”, BMRE reduces overhead coming from maintaining a large number of

per-flow states. Fair Drop greatly improves overall performance when the

number of flows are large and the average queue size of a flow in a router

buffer is less than one packet. Moreover, the use of bits in the TOS field of

the IP header allows easy differentiation of bandwidth allocation. We believe

that BMRE can support real-time applications and can encourage the use of

end-to-end congestion control mechanisms such as TFRC.

Although BMRE improves the overall performance of buffer management

scheme, additional work to be done remains. Analysis on how TFRC and its
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variants can better interoperate with BMRE, RED, and FRED is needed. Re-

search on tuning the parameters and algorithms of TCP-Friendly Rate Con-

trol is needed to satisfy the requirements of real-time applications. More func-

tions should be added to produce smoother sending rates for TCP-Friendly

flows. Although BMRE achieves better fairness on multiple congested links

than RED or FRED, research on optimization of BMRE and TCP is needed

to achieve much better fairness on multiple congested links.
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Appendix: A Detailed Pseudocode of

BMRE Algorithm

In this Appendix, we present a detailed pseudocode of BMRE algorithm

that was used for simulation.

• Constants:

maxq = 320000; // maximum aggregate queue size (bytes)

fdth = 140000; // fair drop operates if q is larger than this

maxtargetq = 120000; // maximum value of targetq

maxnflow = 320; // maximum Nflow that can be maintained

α = 1.2; // increase factor of β

wq = 0.004; // weight for average queue size calculation

βmax = 10; // maximum β

βmin = 0.5; // minimum β

βinit = 7.5; // initial β

K = 0.15sec; // constant used for rate estimation

BW = 2500000Bps; // service rate (bytes per sec)

T imeout V alue = 0.45sec; // timeout value used for flow expiration

• Global Variables:

Nflow; // number of active flows (initially, 0)

vmaxq; // virtual maximum buffer size (bytes)

maxth; // maximum queue size for each flow (bytes)

targetq; // target queue size (bytes)

ratefair; // fair rate(share)

time; // current real time (sec)

• Global Queue Sizes:

q; // current global queue size (bytes) (initially, 0)

avgq; // average global queue size (bytes) (initially, 0)

• Per-flow Variables:
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q[i]; // queue size (bytes)

rate[i]; // estimated rate (bytes per sec)

β[i]; // β[i]

count[i]; // number of bytes processed since last β[i] update

qtime[i]; // last time packet is buffered (sec)

• Functions:

find i(p); // find the flow number to which p belongs

update gv(mode) { // update global variables

if ( mode == 1 ) Nflow = Nflow + 1;

else Nflow = Nflow − 1;

vmaxq = vth(Nflow);

maxth = vmaxq/Nflow;

targetq = min(vmaxq/2, maxtargetq);

ratefair = BW/Nflow;

}

initialize pfv(i) { // initialize per-flow variables

q[i] = count[i] = p.size;

rate[i] = 0;

β[i] = βinit;

qtime[i] = time;

}

update gq(mode) { // update q and avgq

if ( mode == 1 ) value = p.size;

else value = − p.size;

q = q + value;

avgq = (1 − wq) × avgq + wq × q;

}

update beta(rateratio) { // update β[i]

if ( rateratio > 1 && avgq > targetq ) {

β[i] = β[i]/rateratio;

if ( β[i] < βmin ) β[i] = βmin;

} else {

β[i] = β[i] × α;

if ( β[i] > βmax ) β[i] = βmax;

}

}

random(); // uniform random number in [0...1]

pow(a, b); // calculate and return ab
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exp(c); // calculate and return ec

• For each arriving packet p:

1: if ( q ≥ vmaxq || q ≥ maxq ) {

2: drop(p);

3: return;

4: }

5: if ( find i(p) == false ) {

6: if ( Nflow < maxnflow ) {

7: i = new flow number;

8: update gv(1);

9: } else {

10: i = randomly selected from Nflow flows whose q[i] are 0;

11: }

12: initialize pfv(i);

13: update gq(1);

14: return;

15: }

16: if (q ≥ fdth ) {

17: drop(p);

18: return;

19: }

20: q[i] = q[i] + p.size;

21: count[i] = count[i] + p.size;

22: if ( count[i] ≥ 4 × maxth ) update beta(rate[i]/ratefair);

23: u = random();

24: if ( u < pow(q[i]/maxth, β[i]) ) {

25: q[i] = q[i] − p.size;

26: drop(p);

27: } else {

28: update gq(1);

29: dt = time − qtime[i];

30: qtime[i] = time;

31: rate[i] = (1 − exp(−dt/K)) × p.size/dt

+ exp(−dt/K) × rate[i];

32: }

• For each departing packet p:
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33: find i(p);

34: q[i] = q[i] − p.size;

35: if ( count[i] ≥ 4 × maxth ) update beta(rate[i]/ratefair);

36: update gq(0);

• For each flow expiration:

//each flow expires if ( time − qtime[i] ≥ T imeout V alue )

37: update gv(0);
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t�èß� 2�̧� 1lxîß� $3���õ�&ñ
 Òqt�Ö̧�̀¦ 
����"f #��Q��t� jËµ��H {9�[þts� ú́§��¤t�ëß�

ÅÒ0A\� ú́§�Ér ì�r[þts� �̧¹¡§�̀¦ ÅÒ���  ü�ì�r\� s�XO�>� ����Ér ���z�́�̀¦ ë�B>� ÷&%3�_þvm�

��. Õª�Qô�Ç ì�r[þta� s� ��o�\�¦ yn=#Q y����_� ú́�@pu�̀¦ ���
��¦�� ½+Ëm���. �½Ó�©� þj

����̀¦ ��K� ÂÒ7á¤ô�Ç $�\�¦ s�=åJ#Q ÅÒr��¦ �7Hë�H�̀¦ t��̧K� ÅÒ��� �̧1lx ñ �§Ãº_��a�

U�·�Ér y����\�¦ ×¼wn�m���. ¢̧ô�Ç, ÂÒ7á¤ô�Ç ]j �7Hë�H�̀¦ d����K� ÅÒr��¦ a%~�Ér Ø�æ�¦\�¦

K� ÅÒ��� $í
éß���H �§Ãº_��õ� s�S!�Ãº �§Ãº_��a��̧ y����×¼wn�m���.

z�́+«>z�́ Òqt�Ö̧�̀¦ 
���H 1lxîß� #��Q ��|ÃÐ[þt�̀¦ ëß����¦ ���ª�ô�Ç �â
+«>�̀¦ ½+É Ãº e��

#Q"f ú́§�Ér �̧¹¡§s� ÷&%3��¦ &ñ
���&h�Ü¼�Ð $í
ņq½+É Ãº e����H >�l��� ÷&%3�~�� �	כ °ú 

_þvm���.

�½Ó�©� a%~�Ér Ø�æ�¦ ��z�t� ·ú§�¦ ����9K� ÅÒr�~�� $í
"é¶s� +þA, Õªo��¦ ���]j�� Ö�©

��H \O�ÏãJ�Ð @/K� ÅÒ��� 1lxï�rs� +þA, �½Ó�©� \P�d��y� ���½̈
�r�~�� #3�d��s� +þA, F�b��>�

��r���H �̧_þvs� �Ðl� a%~��¤~�� $í
<�ªs� +þA\�>� y����×¼wn�m���. Õªo��¦, ���]j�� ��

>pwô�Ç ��6£§Ü¼�Ð @/K� ÅÒr��¦ �¦��� �©�{���̀¦ ú́§s� K� ÅÒ��� 7áx¹¡¤s� +þAõ� 5pxd��s�

+þA, °ú s� {��C� x� 9 ���Òqt��\�¦ �7H
�~�� {9�s� +þA, F�u��� 8A#Qèß� ×�æ�B +þA, °ú s�

áÔ�Ð#�oàÔ 
����"f ú́§�Ér �¦þt�̀]	כ ����â
 +� ÅÒ39"f �-Áº�� y����ô�Ç %ò
¹¡¤s� +þA, &�

x�ü< 6£§«ÑÃº\�¦ a�¦l� 9 ú́§�Ér s���l�\�¦ Ùþ¡~�� ½©I� +þA, �½Ó�©� ��&ñ

�>� @/K� ÅÒ

��� F�Äº +þA, ��ÅÒ �Ðt� 3lwK� ��/'î�r 1pq+þAs� +þA, Õªo��¦ ��&ñ
ô�Ç �â
�©��̧ ����s�

%i�~�� �â
 ñ +þA, ¼#�îß�
�>� @/K� ÅÒr��¦ ��6£§ +� ÅÒ��� ��� ñ +þA, �̧¹¡§ ~ÃÎ�Ér>� �-

Áº ú́§�� °ú¡�̀¦ Ãº�� \O���H $í
�'as� +þA, �½Ó�©� �Ð�¦ z�·�Ér Êë@/ +þA, �½Ó�©� \P�d��y� 
�

r�~�� �Ér&ñ
s� ¾º��, ���½̈z�́�̀¦ µ1ß>� ëß�[þt%3�~�� ÅÒ���s� ¾º��\�>� y����×¼wn�m���.

\VåÔ�¦ �ÃÌ
��¦ ��&ñ
ô�Ç t�%ò
s� ¾º��ü< K�&ñ
s�\�>��̧ y����×¼wn�m���. Õªo�

�¦, #��Q ��t� {9�[þt�̀¦ ú́ �� �¦Òqt ú́§��¤~�� ÊêC�[þt\�>��̧ y����×¼wn�m���. �½Ó�©�

\P�d��y� 
��¦ \V_����Ér I�Ãº ÊêC�_��, ÂÒt����
��¦ ú̧� Òqt|�� �&³ ñ ÊêC�_��, ú̧�{9�

�̀¦ �̧ú́ �� 
�~�� l� ñ ÊêC�_��, �ÃÌ
��¦ ÂÒt����ô�Ç Ä»ô= ÊêC�_��\�>� y����×¼wn�m�

��. s�ì�r[þt_� ·ú¡±ú�s� �½Ó�½Ó
�r�U�́ l�"é¶½+Ëm���. ¢̧ô�Ç, 58£x Êë>�z�́\�"f ���Òqt��

\�¦ s���l�
�~�� F�ô ¥s� +þA, $í
 ñ +þA,  ñ+þAs�\�>��̧ y����×¼wn�m���. t����s� �̧

���� Ãºd��s� ÂÒ7á¤ô�Ç &h� ýe5Åx½+Ëm���.

Õªo��¦, ]j 3lu�̀¦ ���&ñ

� 9 �½Ó�©� ����â
 +� ÅÒ��� ÂÒ�̧_��õ� ��|½Ó
���H 1lxÒqt\�

>��̧ y����×¼wn�m���.
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