
Crossing the Boundaries of Stateful Streaming
and Actors using Serverless Portals

Jonas Spenger
RISE Research Institutes of Sweden
KTH Royal Institute of Technology

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Part 1: Stateful Serverless
Part 2: Stateful Streaming and Actors

Part 3: The Portals Framework

2

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Stateful Serverless

3

• Serverless simplifies building cloud applications

• FaaS: Stateless Functions and Triggers

• Serverless frameworks fully manage the function execution

• Challenges with traditional FaaS:

• Functions are stateless, functions cannot call other functions

• Consistency is the applications responsibility

• Recent development: Stateful Serverless
• Fully manages compute, state, messaging
• Consistency is the frameworks responsibility

• Challenge: ensure end-to-end consistency in spite of failures

• Desirable properties

• Strong execution guarantees

• Exactly-once processing guarantees

• Good performance

• High-throughput, low-latency

• Expressive enough for intended applications

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Execution Guarantees - Message Processing, 3 Ways

4

Exactly-once processing
A:

send x to B

B:

on receive x do

state = state + x

A message is consumed, processed, and side-
effecting exactly-once

Or, processing a message is a transactional
step in which: 1) the message is consumed; 2)
processed; 3) and any of its side-effects
produced/published.

Stateful Serverless

Execution guarantees provided by message processing frameworks:

(Stateless) Serverless

At-least-once processing
A:

send x to B

B:

on receive x do

transaction:

if !rcvdMsgs.contains(x) then

rcvdMsgs.add(x)

state = state + x

A message is consumed and processed at least
once

At-most-once processing
A:

repeat

send x to B

until receive `Ack` from B

B:

on receive x do

transaction:

resp `Ack`

if !rcvdMsgs.contains(x) then

rctxMsgs.add(x)

state = state + x

A message is consumed and processed at
most once

Actor Frameworks

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Execution Guarantees - Message Processing, 3 Ways

• Programs in exactly-once processing frameworks contain solely
application logic

• Other execution models require extensive failure-handling logic

• => Likely to introduce bugs

• End-to-end exactly-once processing make programs
significantly easier to write and reason about

5

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Part 1: Stateful Serverless

Part 2: Stateful Streaming and Actors
Part 3: The Portals Framework

6

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Stateful Stream Processing

7

val text: DataStream[String] = ...

val counts = text
.flatMap { w => w.split("\\s") }
.map { w => (w, 1) }
.keyBy { x => x._1 }
.sum { x => x._2 }

WordCount

1. Program written in streaming API

WordCount Pipeline
src sinkflatMaptext map keyBy sum counts

2. Logical representation, acyclic graph
of stateful tasks

src sinktasks

Distributed
streams

Physical WordCount Pipeline

3. Physical representation,
optimizations

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

The Actor Model

• Actors can

• Send messages to other actors

• Connect to new actors through exchanging actor references

• Create new actors
• Modify local state

8

Actor

onMessage
Mailbox

...

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Comparison of Stateful Streaming and Actors

9

• Exactly-once processing guarantees

• Illusion of failure-free execution

+

Actor Systems

• Low-latency, low-overhead, real-time
(task-parallelism)

+

• Very expressive, can express general
concurrent computations

• However, this comes with concurrency
problems such as deadlocks, livelocks

+• Limited expressiveness to static acyclic
graphs of tasks

• No request/reply interaction with a stream
pipeline, nor with a pipeline tasks.

• Not dynamic, no cycles

-

• No exactly-once processing guarantees

• Low-level, used to implement fault-
tolerant services manually

-

Stateful Streaming Systems

• High-throughput, low-latency, suitable for
real-time, (data-parallelism, pipeline-
parallelism)

+

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Part 1: Stateful Serverless

Part 2: Stateful Streaming and Actors

Part 3: The Portals Framework

10

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

The Portals Programming Model

• Workflows

• Stream processing pipelines

• Atomic streams

• Transactional streams, compose workflows together

• Portals

• Actor-like communication, request/reply messaging

• End-to-end exactly-once processing

11

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Workflows

12

Workflow[T, U]

src sinktasksAtomicStream[T] AtomicStream[U]

• Consume and produce atomic streams

• DAG of stateful tasks

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Atomic Streams

• Transactional distributed streams:

• Transport atoms (batch of events)

• Atoms are totally ordered on a stream

• Connect workflows

13

Generator

Ψ

Sequencer Splitter

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Atomic Processing

14

Portals Runtime

atom3 atom2 atom1

Atom Commit Protocol
I) 1a Pre-commit

 1b Pre-commit

 1c ack/aborted

II) 2a Commit

 2b Mark Committed

Input Atomic Stream

atom3' atom2' atom1'

Output Atomic Stream

committedpre-committed

External File System

atom1'atom2'atom3'

1a 1c

1b 2b

2a

In general, implemented via rollback-recovery techniques* and 2PC
*E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34, 3 (September 2002), 375–408. https://doi.org/10.1145/568522.568525 

See also: Spenger, Jonas, Paris Carbone, and Philipp Haller. "Portals: An extension of dataflow streaming for stateful serverless.", 2022, ONWARD'22.

Processing through atomic (transactional)
steps:

• Consume an atom ("batch of events")

• Processes the whole atom

• Produce the side-effects (new events,

state updates)

Atomic Processing Contract:

https://doi.org/10.1145/568522.568525

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

New Concept: Portals

• Portals enable actor-like communication

• Communication restrictions

• 1) Connections are statically defined, dynamically reconfigurable

• Actor-refs can only be used if connection was defined

• Connections are uni-directional

• 2) No dynamic creation of workflows, tasks

• 1, 2 imply static topology

• Messages can be replied to

• Replier does not need a reference to requester, limits no. connections

15

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Tasks with Portals

• PortalTask[T, U, M, R] as a task/actor hybrid

• T, U are stream input/output types

• M, R message and reply type

• Portal[M, R] as a named mailbox

• Tasks statically connect to Portals as senders or
receivers

• Every Portal has exactly one receiving task

16

Incoming
messages

Consumed
events

Produced
events

Replies

[T] [U]

[M] [R]

Portal

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Word Count Portal Example

• Sum task connects to portal as receiver

• Replies to requests (words) with count

• Other task connects to portal, sends requests

17

WordCount Pipeline

src sinkflatMaptext map keyBy sum counts

src sink

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Word Count Portal Example

18

...
val portal = Portal[String, (String, Int)]("wordcount")
...
.taskWithReplier(portal)(...): msg =>
val state = PerKeyState[Int]("count").withDefault(0)
val wordCount = (msg, state.get())
reply(wordCount)

Responding Task

...
val portalRef = Registry.portals[String, (String, Int)]("/
WordCount/portals/wordcount")
...
.taskWithRequester(portalRef): event =>
...
val request = word
val future = ask(portalRef)(request)
future.onComplete:
case Success((word, count)) =>
...
emit((word, count))

Requesting Task

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Continuations in Portals

• On invocation of onComplete

• Store continuation and metadata to task's persistent storage

• Safety with Spores3 library https://github.com/phaller/spores3

• When reply arrives

• Load continuation, restore context from metadata, execute

• Execution serialized with other events

• This ensures that continuations are persistent and not ephemeral

19

https://github.com/phaller/spores3

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Implementation
• Exactly-once processing

• In workflows: similar to Flink/Kafka

• For Portals: we can use similar mechanism because topology is
static (uses reply streams)

• Performance

• Leverage performance of stream processing systems

• All built on streams

• Atomic streams: single-producer multi-consumer

• Reply streams: atomic streams which can be replied to; multi-
producer single-consumer

20

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Examples

• 1) Shopping Cart

• Compositions of workflows

• Microservices request/reply with Portals

• Futures

• 2) Implementing the Actor Model using Cyclic Workflows

• Iterative programming models

21

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Shopping Cart Example

22

Inventory

Cart

Client requests
(AddToCart, etc.)

Cart comm. with
inventory

1

2

• Framework guarantees end-to-end guarantees, across all services

• Check out examples @ https://github.com/portals-project/portals

Orders

Analytics

Orders workflow
processes the

checked out carts

Analytics workflow
produces a list of

top-100 purchased
items

3

4

https://github.com/portals-project/portals

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Shopping Cart Example: Inventory

23

PortalsApp("Inventory"):

 val inventoryOpsGenerator = Generators

.generator(ShoppingCartData.inventoryOpsGenerator)

 val portal = Portal[InventoryReqs, InventoryReps]("inventory", keyFrom)

 val inventory = Workflows[InventoryReqs, Nothing]("inventory")

 .source(inventoryOpsGenerator.stream)

 .key(keyFrom(_))

 .task(InventoryTask(portal))

 .withName("inventory")

 .sink()

 .freeze()

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Shopping Cart Example: Inventory

24

object InventoryTask:

 def apply(portal: PortalRef): Task =

 Tasks.taskWithReplier(portal)(onNext)(onMessage)

 private final val state: PerKeyState[Int] =

 PerKeyState[Int]("state", 0)

 private def onMessage(msg: InventoryReqs)(using RepContext): Unit = msg match

 case e: Get => get_req(e)

 case e: Put => put_req(e)

 private def get_req(e: Get)(using RepContext): Unit =

 state.get() match

 case x if x > 0 =>

 reply(GetReply(e.item, true))

 state.set(x - 1)

 case _ =>

 reply(GetReply(e.item, false))

...

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Shopping Cart Example: Cart

25

PortalsApp("Cart"):

 val cartOpsGenerator = Generators

.generator(ShoppingCartData.cartOpsGenerator)

 val portal = Registry

.portals

.get[InventoryReqs, InventoryReps]("/Inventory/portals/inventory")

 val cart = Workflows[CartOps, OrderOps]("cart")

 .source(cartOpsGenerator.stream)

 .key(keyFrom(_))

 .task(CartTask(portal))

 .withName("cart")

 .sink()

 .freeze()

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Shopping Cart Example: Cart

26

object CartTask:

 ...

 def apply(portal: PortalRef): Task =

 Tasks.taskWithRequester(portal)(onNext(portal))

 private final val state: PerKeyState[CartState] =

 PerKeyState[CartState]("state", CartState.zero)

 private def onNext(portal: PortalRef)(event: CartOps)(using Context): Unit =

 event match

 case event: AddToCart => addToCart(event, portal)

 case event: RemoveFromCart => removeFromCart(event, portal)

 case event: Checkout => checkout(event)

 private def addToCart(event: AddToCart, portal: PortalRef)(using Context): Unit =

 val request = Get(event.item)

 val response = ask(portal)(request)

 response.onComplete:

 case Success(GetReply(item, true)) =>

 state.set(state.get().add(item))

 case Success(GetReply(item, false)) => ...

 case _ => ...

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Example Library: The Classic Actor Model Implemented on Portals

27

Guarantees, performance
• Inherits exactly-once processing guarantees

• Remember: difficult with actors

• Performance, data-parallel

• Implemented in just 250 lines of Portals code

• Inspired by Akka Typed, Flink Statefun

Simple to implement with Cyclic Workflows

• Messages are cycled back, distributed

• Messages are routed by Actor Identity (keyBy)

• Actors are run virtually by the operators

keyBy run()

<Actor Message Stream> def run(msg, ctx):

 actx = ActorCtx(ctx, msg.id)

 actor = state.load(msg.id)

 newActor = actor

 .run(msg.event, actx)

 state.save(msg.id, newActor)

 actx.emitMessages()
Simplified Runtime Illustration

• Check out library @ https://github.com/portals-project/portals

https://github.com/portals-project/portals

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Example: Classic Actor Model

28

object FibActors:

 val fibBehavior: ActorBehavior[FibCommand] =

 ...

 val fibValue = ValueTypedActorState[Int]("fibValue")

 val fibCount = ValueTypedActorState[Int]("fibCount")

 val fibReply = ValueTypedActorState[ActorRef[FibReply]]("fibReply")

 ActorBehaviors.receive {

 case Fib(replyTo, i) =>

 i match

 case 0 =>

 ctx.send(replyTo)(FibReply(0))

 ActorBehaviors.same

 case 1 => ...

 case n =>

 fibValue.set(0); fibCount.set(0); fibReply.set(replyTo)

 ctx.send(ctx.create(fibBehavior))(Fib(ctx.self, n - 1))

 ctx.send(ctx.create(fibBehavior))(Fib(ctx.self, n - 2))

 ActorBehaviors.same

 case FibReply(i) =>

 ...

 }

 }

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Example: Classic Actor Model

29

object ActorWorkflow:

 ...

 val sequencer = Sequencers.random[ActorMessage]()

 val workflow = Workflows[ActorMessage, ActorMessage]("workflow")

 .source(sequencer.stream)

 .key(_.aref.key)

 .task(ActorRuntime(config))

 .sink()

 .freeze()

 val _ = Connections.connect(stream, sequencer)

 val _ = Connections.connect(workflow.stream, sequencer)

 workflow

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Example: Classic Actor Model

30

object ActorRuntime:

 def apply(config: ActorConfig): Task[ActorMessage, ActorMessage] =

 ...

 val behavior = PerKeyState[ActorBehavior[Any]]("behavior", NoBehavior)

 ...

 case ActorSend(aref, msg) => {

 behavior.get() match

 case NoBehavior =>

 ...

 case ReceiveActorBehavior(f) =>

 f(actx)(msg) match

 case b @ ReceiveActorBehavior(f) => behavior.set(b)

 case b @ StoppedBehavior => behavior.set(b)

 ...

 }

 case ActorCreate(aref, newBehavior) => {

 ...

 }

 }

 }

 }

-

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

The Portals Playground

• Portals compiled to Javascript with Scala.js

• Run Portals apps in the browser

• https://www.portals-project.org/playground/

31

https://www.portals-project.org/playground/

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Portals Project Information

• Portals is an open-source framework, Apache 2.0 license

• Stateful serverless framework

• Combines guarantees and performance of stream processing with the flexibility of actors

• Guarantees end-to-end exactly-once processing

• Written in Scala 3

• Ongoing work on the distributed runtime

• Planning release 2023/2024

• https://github.com/portals-project/portals

• Jonas Spenger, Paris Carbone, and Philipp Haller. "Portals: An extension of dataflow
streaming for stateful serverless." ONWARD'22 @ SPLASH'22 https://doi.org/
10.1145/3563835.3567664

32

https://github.com/portals-project/portals
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

The Portals Framework
• Stateful serverless framework

• Combines guarantees and performance of stream processing with the flexibility of actors

• Guarantees end-to-end exactly-once processing

• Flexible programming model

• Compositions of workflows using Atomic Streams, cycles, dynamically reconfigurable

• Actor-like communication with Portals, request/reply interaction with streams

33

https://www.portals-project.org/playground/

https://github.com/portals-project/portals

https://www.portals-project.org/learn/tutorial
Portals Tutorial

Portals Repo

Thanks to the core team members: Jonas Spenger,
Paris Carbone, Philipp Haller; and thanks to all
contributors: Aleksey Veresov; Maxi Kurzawski;
Chengyang Huang; Gabriele Morello; Siyao Liu.

We warmly welcome contributions!
https://www.portals-project.org/contribute

Portals Playground

https://www.portals-project.org/playground/
https://github.com/portals-project/portals
https://www.portals-project.org/learn/tutorial
https://www.portals-project.org/contribute

https://github.com/portals-project/portalsJonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

Related Work

• Durable Functions

• IBM KAR

• Flink Stateful Functions

• Stateflow

• Orleans

• Kalix

• Ray

• Cloudburst

• Apache Flink, Google Dataflow, Timely Dataflow

• Akka, Erlang

34

