ScalaDays

Crossing the Boundaries of Stateful Streaming
and Actors using Serverless Portals

Jonas Spenger

RISE Research Institutes of Sweden
KTH Royal Institute of Technology

Part 1: Stateful Serverless
Part 2: Stateful Streaming and Actors
Part 3: The Portals Framework

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 2 https://github.com/portals-project/portals

Stateful Serverless

* Serverless simplifies building cloud applications
 FaaS: Stateless Functions and Triggers
* Serverless frameworks fully manage the function execution
» Challenges with traditional FaaS:
* Functions are stateless, functions cannot call other functions
* Consistency is the applications responsibility
 Recent development: Stateful Serverless
 Fully manages compute, state, messaging
e Consistency is the frameworks responsibility
* Challenge: ensure end-to-end consistency in spite of failures
* Desirable properties
* Strong execution guarantees
* EXxactly-once processing guarantees
 Good performance
* High-throughput, low-latency
 Expressive enough for intended applications

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 3 https://github.com/portals-project/portals

Execution Guarantees - Message Processing, 3 Ways

Execution guarantees provided by message processing frameworks:

Exactly-once processing

A:
send x to B

B:
on receive X do
state = state + X

A message is consumed, processed, and side-
effecting exactly-once

Or, processing a message is a transactional
step in which: 1) the message is consumed; 2)
processed; 3) and any of its side-effects
produced/published.

Stateful Serverless (Stateless) Serverless

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

At-least-once processing

At-most-once processing

A:
send x to B

B:
on receive X do
transaction:
if !rcvdMsgs.contains(x) then
rcvdMsgs .add (x)
state = state + Xx

A message is consumed and processed at least
once

A
repeat
send x to B
until receive 'Ack’ from B

B:
on receive x do
transaction:
resp Ack’
if !rcvdMsgs.contains(x) then
rctxMsgs.add(x)
state = state + Xx

A message is consumed and processed at
most once

Actor Frameworks

https://github.com/portals-project/portals

Execution Guarantees - Message Processing, 3 Ways

* Programs in exactly-once processing frameworks contain solely
application logic

* Other execution models require extensive failure-handling logic
 => Likely to introduce bugs

 End-to-end exactly-once processing make programs
significantly easier to write and reason about

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 5 https://github.com/portals-project/portals

Part 1: Stateful Serverless

Part 2: Stateful Streaming and Actors
Part 3: The Portals Framework

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 6 https://github.com/portals-project/portals

WordCount

val text: DataStream[String]

val counts
.flatMap
.map { w

.keyBy {
.sum { X

1. Program written in streaming API

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

WordCount Pipbeline

src flatMap map keyBy sum sink

-O-0-0@0

2. Logical representation, acyclic graph
of stateful tasks

text counts

Stateful Stream Processing

Physical WordCount Pipeline

Distributed
streams

3. Physical representation,
optimizations

https://github.com/portals-project/portals

The Actor Model

Mailbox

onMessage

=

* Actors can
 Send messages to other actors
* Connect to new actors through exchanging actor references
* Create new actors
 Modify local state

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 8 https://github.com/portals-project/portals

Comparison of Stateful Streaming and Actors

Stateful Streaming Systems Actor Systems
High-throughput, low-latency, suitable for Low-latency, low-overhead, real-time
real-time, (data-parallelism, pipeline- (task-parallelism)
parallelism)

= Limited expressiveness to static acyclic Very expressive, can express general
graphs of tasks concurrent computations
» No request/reply interaction with a stream * However, this comes with concurrency

pipeline, nor with a pipeline tasks. problems such as deadlocks, livelocks

* Not dynamic, no cycles

| = NoO exactly-once processing guarantees
Exactly-once processing guarantees

 |Low-level, used to implement fault-

* |llusion of failure-free execution tolerant services manually

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 9 https://github.com/portals-project/portals

Part 1: Stateful Serverless
Part 2: Stateful Streaming and Actors
Part 3: The Portals Framework

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 10 https://github.com/portals-project/portals

The Portals Programming Model

 Workflows

o Stream processing pipelines
 Atomic streams

* [ransactional streams, compose workflows together
 Portals

» Actor-like communication, request/reply messaging

 End-to-end exactly-once processing

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 11 https://github.com/portals-project/portals

Workflows

 Consume and produce atomic streams

e DAG of stateful tasks

Workflow|T, U]

AtomicStream|T] tasks sink AtomicStream[U]

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 12 https://github.com/portals-project/portals

Atomic Streams

* Transactional distributed streams:
* Transport atoms (batch of events)
 Atoms are totally ordered on a stream

e Connect workflows

Generator Sequencer Splitter

(1)
Gen T OB TG,

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 13 https://github.com/portals-project/portals

Atomic Processing

Atom Commit Protocol
) 1a Pre-commit
1b Pre-commit)
1c ack/aborted Portals Runtime
ll) 2a Commit
2b Mark Committed
- - _ 23 _
Atomic Processing Contract: l T l Output Atomic Stream
: : : atoms atomg atomy atoms atomp: atomy
Processing through atomic (transactional)
steps: ‘0: : :
e Consume an atom ("batch of events") g...
®* Processes the whole atom e comm/tted -
. comm/ e
e Produce the side-effects (new events, Input Atomic Stream .
state updates)
...;',',’,',',':. < >

atom3 atomz atom1

.7

External File System

In general, implemented via rollback-recovery techniques™* and 2PC
*E. N. (Mootaz) ElInozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34, 3 (September 2002), 375-408. https://doi.org/10.1145/568522.568525
See also: Spenger, Jonas, Paris Carbone, and Philipp Haller. "Portals: An extension of dataflow streaming for stateful serverless.", 2022, ONWARD'22.

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 14 https://github.com/portals-project/portals

https://doi.org/10.1145/568522.568525

New Concept: Portals

e Portals enable actor-like communication
 Communication restrictions

* 1) Connections are statically defined, dynamically reconfigurable

* 2) No dynamic creation of workflows, tasks
* 1, 2 imply static topology
« Messages can be replied to

* Replier does not need a reference to requester, limits no. connections

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 15 https://github.com/portals-project/portals

Tasks with Portals

 PortalTask[T, U, M, R] as a task/actor hybrid = [T] s — U]

. Consumed Produced
* T, U are stream input/output types events events
Portal
* M, R message and reply type
« Portal[M, R] as a named mailbox ggssrging Replies
ges
» [asks statically connect to Portals as senders or ™
receivers [R]

 Every Portal has exactly one receiving task

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 16 https://github.com/portals-project/portals

Word Count Portal Example

WordCount Pipeline
text

src flatMap map keyBy sum sink } .o
- O-O-O- OOt

 Sum task connects to portal as receiver

* Replies to requests (words) with count

* Other task connects to portal, sends requests

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 17 https://github.com/portals-project/portals

Word Count Portal Example

Responding Task

val portal = Portal[String, (String, Int)]("wordcount")

.taskWithReplier(portal)(...): msg =>
val state = PerKeyState[Int]("count").withDefault(0)
val wordCount = (msg, state.get())
reply(wordCount)

Requesting Task

val portalRef = Registry.portals[String, (String, Int)]("/
WordCount/portals/wordcount")

.taskWithRequester (portalRef): event =>

val request = word
val future = ask(portalRef) (request)
future.onComplete:

case Success((word, count)) =>

emit ((word, count))

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 18 https://github.com/portals-project/portals

Continuations in Portals

* On invocation of onComplete

e Store continuation and metadata to task's persistent storage
o Safety with Spores3 library

 When reply arrives
| oad continuation, restore context from metadata, execute
* EXxecution serialized with other events

 This ensures that continuations are persistent and not ephemeral

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 19 https://github.com/portals-project/portals

https://github.com/phaller/spores3

Implementation

 Exactly-once processing
* |n workflows: similar to Flink/Kafka

 For Portals: we can use similar mechanism because topology is
static (uses reply streams)

 Performance

* | everage performance of stream processing systems
* All built on streams

 Atomic streams: single-producer multi-consumer

 Reply streams: atomic streams which can be replied to; multi-
producer single-consumer

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 20 https://github.com/portals-project/portals

Examples

* 1) Shopping Cart
e Compositions of workflows
* Microservices request/reply with Portals
e Futures
e 2) Implementing the Actor Model using Cyclic Workflows

 |terative programming models

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 21 https://github.com/portals-project/portals

Shopping Cart Example

Client requests
(AddToCart, etc.)

a — Cart

Orders workflow
processes the
checked out carts

Orders

\

Cart comm. with
inventory e
1 (Analytics workflow
_ produces a list of
Inventory Analytics top-100 purchased
\ \ items

 Framework guarantees end-to-end guarantees, across all services

 Check out examples @ https://github.com/portals-project/portals

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 22 https://github.com/portals-project/portals

https://github.com/portals-project/portals

Shopping Cart Example: Inventory

PortalsApp("Inventory"):
val inventoryOpsGenerator = Generators
.generator(ShoppingCartData.inventoryOpsGenerator)

val portal = Portall[InventoryRegs, InventoryReps]("inventory", keyFrom)

val inventory = Workflows[InventoryRegs, Nothing] ("inventory")
.source(inventoryOpsGenerator.stream)
. key(keyFrom(_))
. task(InventoryTask(portal))
.withName("inventory")
.sink()
. freeze()

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

Shopping Cart Example: Inventory

object InventoryTask:
def apply(portal: PortalRef): Task =
Tasks.taskWithReplier(portal) (onNext) (onMessage)

private final val state: PerKeyState[Int] =
PerKeyState[Int] ("state", 0)

private def onMessage(msg: InventoryReqs)(using RepContext): Unit msg match
case e: Get => get_req(e)
case e: Put => put_req(e)

private def get_req(e: Get) (using RepContext): Unit =
state.get() match
case X 1f x > 0 =>
reply (GetReply(e.item, true))
state.set(x - 1)
case _ =>
reply(GetReply(e.item, false))

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

Shopping Cart Example: Cart

PortalsApp("Cart"):
val cartOpsGenerator = Generators
.generator(ShoppingCartData.cartOpsGenerator)

val portal = Registry
.portals
.get[InventoryReqs, InventoryReps]("/Inventory/portals/inventory")

val cart = Workflows[CartOps, OrderOps]("cart")
.source(cartOpsGenerator.stream)
. key (keyFrom(_))
. task(CartTask(portal))
.withName("cart")
.sink()
. freeze()

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

Shopping Cart Example: Cart

object CartTask:

def apply(portal: PortalRef): Task =
Tasks.taskWithRequester(portal) (onNext(portal))

private final val state: PerKeyState[CartState] =
PerKeyState[CartState] ("state", CartState.zero)

private def onNext(portal: PortalRef)(event: CartOps)(using Context): Unit =
event match
case event: AddToCart => addToCart(event, portal)
case event: RemoveFromCart => removeFromCart(event, portal)
case event: Checkout => checkout(event)

private def addToCart(event: AddToCart, portal: PortalRef)(using Context): Unit =
val request = Get(event.item)

val response = ask(portal) (request)
response.onComplete:
case Success(GetReply(item, true)) =>
state.set(state.get().add(item))
case Success(GetReply(item, false)) => ...
case _ => ...

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

Example Library: The Classic Actor Model Implemented on Portals

Simple to implement with Cyclic Workflows Guarantees, performance

<Actor Message Stream> def run(msg, ctx): * Inherits exactly-once processing guarantees
actx = ActorCtx(ctx, msg.id) e Remember: difficult with actors
actor = state.load(msg.id) * Performance, data-parallel

keyBy run() newActor = actor
-run(msg.event, actx)
state.save(msg.id, newActor
actx.emitMessages|()
Simplified Runtime lilustration * Implemented in just 250 lines of Portals code

 Inspired by Akka Typed, Flink Statefun
 Messages are cycled back, distributed

o Messages are routed by ACtOr Identlty (keyBy) val - = Connections.connectzworkﬂow.stream, se:uencer;
] = COWUGCLTONR" COUUGCE(MOLKL[OM" 2£L6IW® 26dneuceL
* Actors are run virtually by the operators

val _ = Connections.connect(stream, sequencer)

* Check out library @ https://github.com/portals-project/portals

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 27 https://github.com/portals-project/portals

https://github.com/portals-project/portals

Example: Classic Actor Model

object FibActors:
val fibBehavior: ActorBehavior[FibCommand] =

val

val
val

fibValue = ValueTypedActorState[Int] ("fibValue")
. fibCount = ValueTypedActorState[Int] ("fibCount")
| fibReply = ValueTypedActorState[ActorRef[FibReply]] (" fibReply")

ActorBehaviors.receive {
case Fib(replyTo, 1) =>

1 match

case 0 =>
ctx.send(replyTo) (FibReply(0))
ActorBehaviors.same

case 1 => ...

case n =>
fibValue.set(0); fibCount.set(@); fibReply.set(replyTo)
ctx.send(ctx.create(fibBehavior)) (Fib(ctx.self, n - 1))
ctx.send(ctx.create(fibBehavior)) (Fib(ctx.self, n - 2))
ActorBehaviors.same

case FibReply(i) =>

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

https://github.com/portals-project/portals

Example: Classic Actor Model

object ActorWorkf low:
val sequencer = Sequencers.random[ActorMessage] ()

val workflow = Workflows[ActorMessage, ActorMessage] ("workflow")
.source(sequencer.stream)
.key(_.aref.key)
. task(ActorRuntime(config))
.sink()
. freeze()

val _ = Connections.connect(stream, sequencer)
val Connections.connect(workflow.stream, sequencer)

workf Llow

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

Example: Classic Actor Model

object ActorRuntime:
def apply(config: ActorConfig): Task[ActorMessage, ActorMessage] =

val behavior = PerKeyState[ActorBehavior[Any]]("behavior", NoBehavior)

case ActorSend(aref, msg) => {
behavior.get() match
case NoBehavior =>

case ReceiveActorBehavior(f) =>
f(actx) (msg) match
case b @ ReceiveActorBehavior(f) => behavior.set(b)
case b @ StoppedBehavior => behavior.set(b)

}

case ActorCreate(aref, newBehavior) => {

}
}
}
}

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 https://github.com/portals-project/portals

The Portals Playground

* Portals compiled to Javascript with Scala.js

 Run Portals apps in the browser

o https:.//www.portals-project.org/playground/

Portals Playground

@I code Examples -

Portals)S Code Editor

var builder = PortalsJ]S.ApplicationBuilder("simpleRecursive")
var gen = builder.generators.fromArray([128])
var seq = builder.sequencers.random()
var recursiveWorkflow = builder.workflows
.source(seqg.stream)
.processor(ctx => x => {
if (x > 0) {
ctx.emit(x - 1)
}
})
. logger()
.sink()
.freezel()
var _ = builder.connections.connect(gen.stream, seq)
var _ = builder.connections.connect(recursiveWorkflow.stream, seq)
var simpleRecursive = builder.build()
var system = PortalsJ)S.System()
system. launch(simpleRecursive)
system.stepUntilComplete()

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023

31

Log Output
$6 - 127
$6 - 126
$6 - 125
$6 - 124
$6 - 123
$6 - 122
$6 - 121
$6 - 120
$6 - 119
$6 - 118
$6 - 117
$6 - 116
$6 - 115
$6 - 114
$6 - 113
$6 - 112
$6 - 111
$6 - 110
$6 - 109

https://github.com/portals-project/portals

https://www.portals-project.org/playground/

Portals Project Information

* Portals is an open-source framework, Apache 2.0 license

o Stateful serverless framework

 Combines guarantees and performance of stream processing with the flexibility of actors
* (Guarantees end-to-end exactly-once processing

* Written in Scala 3

* Ongoing work on the distributed runtime

* Planning release 2023/2024

* https://github.com/portals-project/portals

» Jonas Spenger, Paris Carbone, and Philipp Haller. "Portals: An extension of dataflow
streaming for stateful serverless." ONWARD'22 @ SPLASH'22 https://doi.org/
10.1145/3563835.3567664

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 32 https://github.com/portals-project/portals

https://github.com/portals-project/portals
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664

The Portals Framework

» Stateful serverless framework
« Combines guarantees and performance of stream processing with the flexibility of actors
 Guarantees end-to-end exactly-once processing
* Flexible programming model
Compositions of workflows using Atomic Streams, cycles, dynamically reconfigurable

* Actor-like communication with Portals, request/reply interaction with streams

Portals Tutorial

Thanks to the core team members: Jonas Spenger, | |
https://www.portals-project.org/learn/tutorial

Paris Carbone, Philipp Haller; and thanks to all

$$$$$$

contributors: Aleksey Veresov; Maxi Kurzawski; Portals RePO*

Chengyang Huang; Gabriele Morello; Siyao Liu. https://github.com/portals-project/portals
We warmly welcome contributions! nggu[tals Playground
https://www.portals-project.org/contribute

555555
111111

111111
111111
555555
ssssss

}
H
. logger()
.sink()
.freeze()
var _ = builder.connections . connect (gen .stream, seq) 1436 - 114
var _ = builder.connections. connect(recursiveWorkflow.strean, seq) $6 - 113
var simpleRecursive = builder.buitd) | 1646 - 112
var systcm = PurtalsJS‘System() $6 - 111
% VETENSKAP % 11111
eeeeeeeeeeeeeeeeeeeeeee
OCH KONST 2 4

Sttt https //WwWW. Dortals project.org/playground/

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 33 https://github.com/portals-project/portals

https://www.portals-project.org/playground/
https://github.com/portals-project/portals
https://www.portals-project.org/learn/tutorial
https://www.portals-project.org/contribute

Related Work

* Durable Functions

* |IBM KAR

* Flink Stateful Functions
e Stateflow

* Orleans

» Kalix

 Ray

* Cloudburst

Jonas Spenger, Scala Days - Madrid 2023, Thu 14th September, 2023 34 https://github.com/portals-project/portals

