
Jonas Spenger1,2, Paris Carbone1,2, Philipp Haller1

1 EECS, KTH Royal Institute of Technology, Stockholm, Sweden

2 Computer Systems, RISE Research Institutes of Sweden, Stockholm, Sweden

ABS Workshop 2023, Lyon, France, Thursday 5th October, 2023

A Survey of Actor-Like Programming Models
for Serverless Computing

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Motivation
Distributed programming is difficult

• Messages get lost, duplicated, reordered

• Nodes crash, restart

• Delays are unknown

Distributed programming requires good abstractions

2

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Distributed Programming Models

• Actors, Active Objects
• Low-level abstraction

• Execution over "isolated turns" (Koster et al. 2016)

3

Actors Hewitt’s
Actors

Agha’s
Actors Erlang

Scala
Actors Akka Orleans

[1986-2015]
ABCL/1 ASP Rebeca ABS

JCoBox
Encore

Active Objects
[1973-2011]

• Dataflow Streaming
• Acyclic graphs of stateful tasks

• Data processing, performance, fault-tolerance

Dataflow
Map

Reduce
Apache
Spark

Apache Flink
Google Dataflow

[2000-2016]

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

• Serverless simplifies building cloud applications

• Elasticity: scaling down to zero, and up to infinity

• Serverless framework fully manages the function execution,
abstracts away server, execution; billing per use

(Castro et al. 2019)

FaaS, Serverless Computing

4

• FaaS (Function-as-a-Service):

• Stateless functions
• Triggers

FaaS
AWS

Lambda
Azure Functions

IBM Cloud Functions
Google Cloud

Functions
[2014-2017]

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Levels of Abstraction for Utility Computing

5

Stateful
Serverless

- State
- Failures

Cloud

Serverless - Servers
- Execution

- Resource
managementVMs

Containers

Deployment

FaaS

Abstraction-
level

Developer
experience-

level

+

- +

-

- Concurrency
- Non-determinismLibraries

Stateful Serverless
• Fully manages compute, state, messaging
• Consistency is the framework's responsibility

FaaS / Serverless
• Fully manages compute
• Application challenges:

• Functions are stateless
• Functions cannot call other functions
• Consistency is the application's responsibility

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Stateful Serverless

6

FaaS

Actors

Dataflow

AWS
Lambda

Azure Functions
IBM Cloud Functions

Google Cloud
Functions

Hewitt’s
Actors

Agha’s
Actors Erlang

Scala
Actors Akka Orleans

Map
Reduce

Apache
Spark

Apache Flink
Google Dataflow

Ray Cloudburst

Stateful
Functions

Durable
Functions Portals

IBM
KAR

Stateflow

[2014-2017]

[2018-2020]

[1986-2015]

[2000-2016]
[2017-2020]

[2021-2023]

Kalix

ABCL/1 ASP Rebeca ABS
JCoBox

Encore
Active Objects

[1973-2011]

"Actor-Like Programming
Models for Serverless

Computing"

Stateful Serverless

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless Actor / Active Object Example

• Bank Account Entity

• Balance of the account
• Get the acc's balance
• Deposit
• Withdraw
• Transfer

• Inspired by stateful serverless
systems

7

class Account(ctx: Context):
 val balance = PerKeyState[Int](ctx).withDefault(0)

 def get(): Int =
 balance.get()

 def deposit(amount: Int): Unit =
 balance.set(balance.get() + amount)

 def withdraw(amount: Int): Unit =
 balance.set(balance.get() - amount)

 def transfer(amount: Int, to: String): Unit =
 val otherAccount = EntityRef[Account](ctx).withKey(to)
 if balance.get() > amount then
 balance.set(balance.get() - amount)
 otherAccount.deposit(amount)

Bank Account Entity

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless Actor / Active Object Example

• Virtual Actors

• Microsoft Orleans (Bykov et al.

2011, Bernstein et al. 2014)
• Virtual life-cycle
• Virtual Refs

• Data-parallel

• Virtual Ref: < Type + Key >
• State disjoint over keys

8

class Account(ctx: Context):
 val balance = PerKeyState[Int](ctx).withDefault(0)

 def get(): Int =
 balance.get()

 def deposit(amount: Int): Unit =
 balance.set(balance.get() + amount)

 def withdraw(amount: Int): Unit =
 balance.set(balance.get() - amount)

 def transfer(amount: Int, to: String): Unit =
 val otherAccount = EntityRef[Account](ctx).withKey(to)
 if balance.get() > amount then
 balance.set(balance.get() - amount)
 otherAccount.deposit(amount)

Bank Account Entity

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless Actor / Active Object Example
• Decoupled, explicit state

• Framework disaggregated:

• Mailbox
• State
• Threads
• Behavior
• All managed on different

subsystems

9

class Account(ctx: Context):
 val balance = PerKeyState[Int](ctx).withDefault(0)

 def get(): Int =
 balance.get()

 def deposit(amount: Int): Unit =
 balance.set(balance.get() + amount)

 def withdraw(amount: Int): Unit =
 balance.set(balance.get() - amount)

 def transfer(amount: Int, to: String): Unit =
 val otherAccount = EntityRef[Account](ctx).withKey(to)
 if balance.get() > amount then
 balance.set(balance.get() - amount)
 otherAccount.deposit(amount)

Bank Account Entity

mailbox

threads behavior

state

k: 1

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless Actor / Active Object Example

• Discussed on next slides:

• Fault Tolerance

• Serverless Execution

10

class Account(ctx: Context):
 val balance = PerKeyState[Int](ctx).withDefault(0)

 def get(): Int =
 balance.get()

 def deposit(amount: Int): Unit =
 balance.set(balance.get() + amount)

 def withdraw(amount: Int): Unit =
 balance.set(balance.get() - amount)

 def transfer(amount: Int, to: String): Unit =
 val otherAccount = EntityRef[Account](ctx).withKey(to)
 if balance.get() > amount then
 balance.set(balance.get() - amount)
 otherAccount.deposit(amount)

Bank Account Entity

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Challenges of Serverless Actors and Active Objects

• Serverless state management

• Fault tolerance

11

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless State Management
• Serverless requires on-demand execution, provisioning

12

ZzZzZz ZzZzZz

ZzZzZz

Timeevents per second
num. instances

AA

B

C

D

ZzZzZz

ZzZzZz

B C

ZzZzZz

ZzZzZz

D

ZzZzZz

Activate Migrate Passivate

In

st
an

ce
s

• Framework needs to activate, migrate, passivate execution state

• This is already a challenging problem

• Especially challenging with actors / active objects

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless State Management Challenges
with Actors / Active Objects

Activation, migration, passivation of actors / active objects

Execution state needs to be serialized, deserialized

13

• Code might contain suspended calls
• e.g. await a future / guard
• Coroutines
• Stackful continuations
• Continuation closures

• Suspended state needs to be serialized / deserialized
• All cases are non-trivial to handle

 val balance = PerKeyState[Int](ctx).withDefault(0)
 def withdraw(amount: Int): Unit =

await balance.get() >= amount
 balance.set(balance.get() - amount)

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Serverless State Management Challenges
with Actors / Active Objects

Techniques
• Ensuring continuation closures are safe to serialize/deserialize

• e.g. Spores (Miller et al., 2014)
• Virtual life-cycle

• No creation, deletion
• Static actor behavior
• Explicit state

14

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Fault Tolerance
Failures make programs hard to reason about

Processing guarantees:

• Messages are processed At-Most-Once
• Messages are processed At-Least-Once
• Messages are processed Exactly-Once

15

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Processing Guarantees

16

class Account(ctx: Context):
 val balance = PerKeyState[Int](ctx).withDefault(0)

...
 def deposit(amount: Int): Unit =
 balance.set(balance.get() + amount)

Bank Account Entity At-Most-Once

• Issues: deposit may not occur

• App needs to: re-send dropped events

• e.g. Actor systems

At-Least-Once

• Issues: deposit may occur multiple times

• App needs to: deduplicate, ensure idempotency

• e.g. FaaS

Exactly-Once

• No issues

• App: works as expected

• e.g. Stateful Serverless

Exactly-once processing makes
programs significantly easier to

write and reason about!

Challenge: how to provide
exactly-once processing

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Challenges with Fault Tolerance
• Failures happen, and need to be dealt with

17

• Fault tolerance requires recovering to a consistent state after failure

• Finding a consistent state ? is a challenging problem

A B C D

FAIL!

Failure RecoveryMessaging Processing

?

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Challenges with Fault Tolerance for Actors / Active Objects

18

Challenges
• Non-determinism

• Actor behavior non-deterministic

• e.g. timers, random numbers
• => Cannot use event logging for replay

• Dynamic topology

• External systems cannot rollback on events once emitted

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Challenges with Fault Tolerance for Actors / Active Objects

19

Techniques
• Capture all non-determinism together with event log

• e.g. Immortals (Goldstein et al., 2020)

• Checkpoint-recovery
• Rollback-recovery from a causally consistent snapshot (Elnozahy et

al., 2002), e.g. using Chandy-Lamport (Chandy, Lamport, 1985)

• Limiting dynamicity of model

• e.g. Virtual Actors

• Transactional streams connecting to external systems
• e.g. Kafka, Atomic Streams (Spenger et al., 2022)

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Challenges with Fault Tolerance
Ensuring that state is consistently updated
• Transactional updates to state

• Processing as atomic steps:

• Consume event
• Process event
• Produce all side-effects

20

Techniques
• Distributed Two-Phase Commit

• Batched, pipelined for efficiency, e.g. Flink (Carbone et al., 2017)

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Portals: Unifying Stateful Dataflow Streaming with Actors

• Disclaimer: under development by the authors

• Restriction: actors cannot form new connections
dynamically

• Leverages atomic streams for exactly-once
processing

• https://www.portals-project.org/

• https://www.portals-project.org/playground/

21

https://www.portals-project.org/
https://www.portals-project.org/playground/

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Comparison of Actor-Like Serverless Systems

22

System Actor Style Processing Guarantees
Orleans
Durable Functions
Flink Stateful Functions
IBM KAR
Kalix
Portals
Ray
Cloudburst

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Comparison of Actor-Like Serverless Systems

23

System Actor Style Processing Guarantees
Orleans Virtual At-Most-Once/At-Least-Once
Durable Functions Virtual Exactly-Once
Flink Stateful Functions Virtual Exactly-Once
IBM KAR Virtual At-Least-Once
Kalix Virtual At-Least-Once
Portals Virtual Exactly-Once
Ray Non-virtual At-Most-Once/At-Least-Once
Cloudburst Non-virtual At-Least-Once

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Comparison of Actor-Like Serverless Systems

24

System Actor Style Processing Guarantees Msg Ops Msg Futures
Orleans Virtual At-Most-Once/At-Least-Once Send, Call, Reply ✓
Durable Functions Virtual Exactly-Once Send, Reply- ✗

Flink Stateful Functions Virtual Exactly-Once Send, Reply ✗

IBM KAR Virtual At-Least-Once Send, Call, TailCall, Reply ✓
Kalix Virtual At-Least-Once Send, Call, Reply, Forward -
Portals Virtual Exactly-Once Send, Call, Reply ✓
Ray Non-virtual At-Most-Once/At-Least-Once Call, Reply ✓
Cloudburst Non-virtual At-Least-Once Call, Reply ✓

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

More in the Paper

• Introduction

• Background

• Challenges

• Analysis of Systems
• Programming model and properties
• Communication properties
• Serverless execution properties

• Research Directions

• Conclusions

25

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Conclusions
Stateful serverless simplifies writing distributed applications

• Actor-like programming models for stateful serverless

• Virtual, decoupled, disaggregated, data-parallel, fault tolerant, serverless

• Challenges with state management, fault tolerance

• Difficult with actors / active objects

• Analysis of systems shows diversity

• Processing guarantees, dynamicity, message operations, futures

• Research directions

• Static guarantees, end-to-end fault tolerance, new programming abstractions

26

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

Thank You for Listening!
Stateful serverless simplifies writing distributed applications
• Actor-like programming models for stateful serverless

• Virtual, decoupled, disaggregated, data-parallel, fault
tolerant, serverless

• Challenges with state management, fault tolerance

• Difficult with actors / active objects

• Analysis of systems shows diversity

• Processing guarantees, dynamicity, message operations,

futures
• Future directions

• Static guarantees, end-to-end fault tolerance, new
programming abstractions

27

Thanks to the co-authors: Paris Carbone, Philipp Haller.
Many thanks to the reviewers for their helpful comments.

Check out our work at https://www.portals-project.org/.

This work was funded by Digital Futures, SSF, Horizon Europe, RISE AI.

https://www.portals-project.org/

A Survey of Actor-Like Programming Models for Serverless ComputingJonas Spenger, ABS Workshop 2023, Lyon, France, Thu 5th October, 2023

References
De Koster, Joeri, Tom Van Cutsem, and Wolfgang De Meuter. "43 years of actors: a taxonomy of actor models and their key properties." Proceedings of the 6th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control. 2016.

Castro, Paul, et al. "The rise of serverless computing." Communications of the ACM 62.12 (2019): 44-54.

Bykov, Sergey, et al. "Orleans: cloud computing for everyone." Proceedings of the 2nd ACM Symposium on Cloud Computing. 2011.

Bernstein, Phil, et al. "Orleans: Distributed virtual actors for programmability and scalability." MSR-TR-2014–41. 2014.

Miller, Heather, Philipp Haller, and Martin Odersky. "Spores: A type-based foundation for closures in the age of concurrency and distribution." ECOOP 2014–Object-Oriented
Programming: 28th European Conference, Uppsala, Sweden, July 28–August 1, 2014. Proceedings 28. Springer Berlin Heidelberg, 2014.

Goldstein, Jonathan, et al. "Ambrosia: Providing performant virtual resiliency for distributed applications." Proceedings of the VLDB Endowment 13.5 (2020): 588-601.

Elnozahy, Elmootazbellah Nabil, et al. "A survey of rollback-recovery protocols in message-passing systems." ACM Computing Surveys (CSUR) 34.3 (2002): 375-408.

Chandy, K. Mani, and Leslie Lamport. "Distributed snapshots: Determining global states of distributed systems." ACM Transactions on Computer Systems (TOCS) 3.1 (1985):
63-75.

Spenger, Jonas, Paris Carbone, and Philipp Haller. "Portals: An extension of dataflow streaming for stateful serverless." Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. 2022.

Burckhardt, Sebastian, et al. "Durable functions: Semantics for stateful serverless." Proceedings of the ACM on Programming Languages 5.OOPSLA (2021): 1-27.

Foundation, T.A.S.: Apache flink stateful functions. https://nightlies.apache.org/flink/flink-statefun-docs-stable/ (2023), accessed on 2023-05-18

Tardieu, Olivier, et al. "Reliable Actors with Retry Orchestration." Proceedings of the ACM on Programming Languages 7.PLDI (2023): 1293-1316.

Lightbend, Inc.: Kalix. https://www.kalix.io/ (2023), accessed: 2023-05-18

Moritz, Philipp, et al. "Ray: A distributed framework for emerging {AI} applications." 13th USENIX symposium on operating systems design and implementation (OSDI 18).
2018.

Sreekanti, Vikram, et al. "Cloudburst: Stateful functions-as-a-service." arXiv preprint arXiv:2001.04592 (2020).

Carbone, Paris, et al. "State management in Apache Flink®: consistent stateful distributed stream processing." Proceedings of the VLDB Endowment 10.12 (2017): 1718-1729.

28

