SE

dlgltal futures

Portals:

An Extension of Dataflow Streaming for Stateful Serverless

Jonas Spengeri?
Paris Carbone’?
Philipp Haller?

1EECS KTH Royal Institute of Technology, Stockholm, Sweden
2RISE Research Institutes of Sweden, Stockholm, Sweden

Onward! '22, December 8-10, Auckland, New Zealand

1

Dataflow Streaming

* Apache Flink; Google Dataflow; Kafka Streaming; Timely Dataflow; etc.

e Distributed

* Exactly-once processing guarantees

Stateful Dataflow DAG of
Pipeline tasks pipeline()

.source()
map(...)

00000 O O 0000 O O

0000 0 00 SO0 SARE .Sthfle(S o

e0000 0 0© anaseo o -mapl(((;-.)

Distributed .S1n
streams

Jonas Spenger 2 www.portals-project.org

http://www.portals-project.org

enger

1/3 Motivation

www.portals-project.org

http://www.portals-project.org

Modern Distributed Services

 Power critical infrastructure: Google Services; Microsoft; Uber; Netflix;
Spotify; etc.

» Complex composition of communicating services.
Requirements:

* guarantees
* performance

* programming flexibility

Jonas Spenger 4 www.portals-project.org

http://www.portals-project.org

Building Distributed Services is Difficult

* Failures: computers crash, messages get lost...

» Scalability, response time: workloads increase or decrease;
services require low latency

 Cloud and edge: execution in heterogeneous environments

* Privacy: systems manage sensitive regulated data (GDPR, CCPA)

Jonas Spenger 5 www.portals-project.org

http://www.portals-project.org

Building Distributed Services is Difficult

* Failures: computers crash, messages get lost...

» Scalability, response time: workloads increase or decrease;
services require low latency

* Cloud and edge: execution in heterogeneous environments

* Privacy: systems manage sensitive regulated data (GDPR, CCPA)

We are asking too much of

distributed software
programmers

Jonas Spenger S www.portals-project.org

http://www.portals-project.org

Stateful Serverless

 Microsoft Azure Durable Functions; Apache Flink Stateful
Functions; Cloudburst; Beldi: Kalix/Cloudstate; etc.

o Stateful: system manages state

e Serverless:

* The programmer should only need to write business logic

* The stateful serverless system should fully manage all the other
parts: reliability; scalability; execution; privacy; state.

* EXxactly-once processing guarantees

www.portals-project.org

Jonas Spenger 6

http://www.portals-project.org

Current Stateful Serverless Systems

 There are many great systems: Durable Functions; Flink Stateful
Functions; etc.

* Exactly-once processing; dynamic/decentralized topology;
parallelism;

 What can be improved?
o Dataflow streaming style composition
* Event ordering guarantees

* Cyclic dependencies; RPC + futures

Jonas Spenger / www.portals-project.org

http://www.portals-project.org

2/3 Portals

Jonas Spenger 8 www.portals-project.org

http://www.portals-project.org

Portals

* Builds on Dataflow Streaming, harnessing: exactly-once
processing guarantees, performance, scalability

* With some extensions for: multiple services; dynamic
topology; cycles; RPCs

Jonas Spenger 9 www.portals-project.org

http://www.portals-project.org

Portals Overview

F‘ Atomic Streams Workflows

Portals abstractions:

1. Atomic Streams

2. Workflows + Tasks

3. Portals

4. Applications + Reqistry

(cycles between workflows allowed, cycles within workflows not allowed)

Jonas Spenger 10 www.portals-project.org

http://www.portals-project.org

Example 1

Generator: generate

atomic streams
Workflow Output

Jonas Spenger 11 www.portals-project.org

http://www.portals-project.org

Example 2

(connection)

Workflow

Output

SICICIO

src map filter sink

o 6853
o

7

Sequencer: sequence
atomic streams

Jonas Spenger 12 www.portals-project.org

http://www.portals-project.org

Example 3

Workflow Output

Src sum sink
e
S ———

Jonas Spenger 13 www.portals-project.org

http://www.portals-project.org

Example 4

Workflow Output

OJe9©9 @9 .

request: what is the current sum?

8
@sgs.

e Qutput is not deterministic;
* Only sums divisible by 10 are observed

Jonas Spenger 14 www.portals-project.org

http://www.portals-project.org

Atomic Streams

Events (black dots): Atom (big circles): Sequence
application events of events, transactional unit of

computation.
Atomic Stream: totally

ordered, distributed stream
of atoms @

Partitions: distributed/sharded
streams of events

Jonas Spenger 15 www.portals-project.org

http://www.portals-project.org

Atomic Streams

Events (black dots): Atom (big circles): Sequence
application events of events, transactional unit of

computation.

Atomic Stream: totally

ordered, distributed stream Partitions: distributed/sharded

of atoms streams of events
Sequencer: sequence Composite atomic stream:
Generator: generate atomic streams totally-ordered across lanes

atomic streams

Lane

Splitter: split atomic
streams

Jonas Spenger 15 www.portals-project.org

http://www.portals-project.org

Workflows and Tasks

Task
onNext
onError
onComplete
onAtomComplete

Task: stateful computational
Workflow: consumes and produces logic; can access state, emit

atomic streams, represents a service; events, etc.
distributed, sharded over key-space

Jonas Spenger 16 www.portals-project.org

http://www.portals-project.org

Replying Workflow val portal = portals[Req, Rep]("portalName")

// Replying Workf low

.replier(portal)
{ /% handle events x/ }
{ /* handle requests x/ }

val portal = registry
.portals.get[Req, Repl]l("portalName")

// Asking Workf low

.asker(portal) { event =>
val request = ...

val future = ask(portal) (request)
Portal: request reply on await (future) { /% continuation %/ }}

streams, service portal

Jonas Spenger 17 www.portals-project.org

http://www.portals-project.org

Jonas Spenger

Portals

// Cart Workflow
val cart = Workflows[ClientReqgs, Orders]()
.source(clientStream)
.asker(portal) {
case AddToCart(item) =>
val cartState = PerKeyState(Map.empty)
val f = ask(portal)(GetItem(item))
Await(f) {
f.value match
case GetItemSuccess =>
cartState += item —> (cartState(item) + 1)
case GetItemFail =>
() // do nothing
b

CasS€ ...

}

.sink()
.freeze()

18 www.portals-project.org

http://www.portals-project.org

Portals

 Use Cases
 Dynamically query the state of another workflow
 Update, modify the state of another workflow

 Many workflows can connect / send queries to the same
portal

Jonas Spenger 19 www.portals-project.org

http://www.portals-project.org

Applications, Registry

(w N daily (] A
orkflow averages Workflow
OO0 |- collect data » - generate user
: - output day average kwebsite)
. y, A4 :
: 4 P 3o : g
... S - - =
query; " response | o Registry: finding existing streams,
App 2! R Y portals, workflows, etc., from
 Workflow i |External system: other apps, dependencies.
.- Dietary _ : - Serve website
:recommendations : 9 y

Application: Set of portals, workflows,
streams, generators, etc. encapsulated
as one application.

Jonas Spenger 20 www.portals-project.org

http://www.portals-project.org

Atomic Processing

Workflow

tasks

SIC sink

Atomic processing;:

 Take atom

 Process atom until completion
 Commit to output

 Repeat

Jonas Spenger 21 www.portals-project.org

http://www.portals-project.org

Alignment Protocol

Events: Example Task Atom start/ Wait for alignment
colored by Graph end marker
atom

62633

Aligned

Solution: alignment protocol

Broadcas
markers

Problem: if we process two atoms, the events
might reorder across atoms! Continue processing

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Vlolker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™:
Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28-38.

Jonas Spenger 22 www.portals-project.org

http://www.portals-project.org

Event Ordering

Atom barrier/

marker \

* Atoms on Atomic Stream are totally-ordered (event ordering
guarantees”)

The onAtomComplete event
Is triggered uniformly on all
tasks by the passing atom
barrier, this event is in a total
order to all other events on
the workflow

e => Events from two different atoms are in a strict order

 => Atom barriers / markers are totally-ordered

www.portals-project.org

Jonas Spenger 23

http://www.portals-project.org

Event Ordering Examples

Erase R-W

O

Erase

The onAtomComplete event
Is triggered uniformly on all
‘I tasks by the passing atom
barrier, this event is in a total
order to all other events on

defer execution of erasure to the barrier the workflow

www.portals-project.org

Jonas Spenger 24

http://www.portals-project.org

Jonas Spenger

The Atomic Processing Contract

The Atomic Processing Contract: Atoms must be
processed one-at-a-time, only committed & failure-

free results may be observable/produced.

External
System

End-to-End Exactly-Once Processing

Produced Atomic Stream

2N

Consumed Atomic Stream

@D oo

25

)

External
System

v,

E3

www.portals-project.org

http://www.portals-project.org

Logical View / Physical View

Logical Physical

Workflow A @ @
vy 0 O

A Request stream

Workflow A

Workflow B

atomic states
Response stream Workflow B 2l

Events (black dots) omitted
for clarity

Jonas Spenger 26 www.portals-project.org

http://www.portals-project.org

3/3 Conclusion

Jonas Spenger 27 www.portals-project.org

http://www.portals-project.org

Conclusion

 The Portals programming model extends dataflow streaming for
stateful serverless applications:

 Dataflow streaming provides exactly-once processing
guarantees, performance, scalability

 Atomic streams ensure end-to-end exactly-once processing
guarantees, enable dynamic decentralized deployments,
principled approach to cycles

* Portals enable request/reply-style communication with futures,
dynamic services

Jonas Spenger 28 www.portals-project.org

http://www.portals-project.org

More In the Paper ...

rogramming model

rototype implementation in Scala 3
e Evaluation
 Use cases

e Related work

Jonas Spenger

P
 Exactly-once processing mechanism
P

29

Portals: An Extension of Dataflow Streaming for
Stateful Serverless

Jonas Spenger Paris Carbone Philipp Haller
Digital Futures Digital Futures Digital Futures
RISE Research Institutes of Sweden & RISE Research Institutes of Sweden & KTH Royal Institute of Technology
KTH Royal Institute of Technology KTH Royal Institute of Technology Stockholm, Sweden
Stockholm, Sweden Stockholm, Sweden phaller@kth.se
jspenger@kth.se parisc@kth.se

Abstract

PORTALS is a serverless, distributed programming model that
blends the exactly-once processing guarantees of stateful
dataflow streaming frameworks with the message-driven
compositionality of actor frameworks. Decentralized appli-
cations in PORTALS can be built dynamically, scale on demand,
and always satisfy strict atomic processing guarantees that
are natively embedded in the framework’s principal elements
of computation, known as atomic streams. In this paper, we
describe the capabilities of PorTALS and demonstrate its
use in supporting several popular existing distributed pro-
gramming paradigms and use-cases. We further introduce
all programming model invariants and the corresponding
system methods used to satisfy them.

CCS Concepts: - Software and its engineering — Dis-
tributed programming languages; Data flow languages.

Keywords: dataflow streaming, stateful serverless, exactly-
once processing.

ACM Reference Format:

Jonas Spenger, Paris Carbone, and Philipp Haller. 2022. Portals: An
Extension of Dataflow Streaming for Stateful Serverless. In Proceed-
ings of the 2022 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward! °22), December 8-10, 2022, Auckland, New Zealand.
ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3563835.
3567664

1 Introduction

Decentralized stateful applications support most of the criti-
cal services in use today. This includes financial data trans-
actions, transportation, e-commerce, healthcare, data mon-
itoring systems as well as gaming and social networking
services. Regardless of their importance, the programming

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Onward! ’22, December 8-10, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567664

153

frameworks we have at our disposal are ill-equipped for
the complete, end-to-end job and often make compromises
that are detrimental to either processing guarantees, scalabil-
ity or programming flexibility. Thus, a great deal of mental
effort is necessary to compose complex decentralized ser-
vices with all guarantees and challenges in mind. Making
them fault-tolerant, scalable, with arbitrarily complex and
dynamic dependencies is a demanding multidisciplinary task
that falls at the hands of the developer today. In this work,
we investigate the potential of an all-encompassing solution
to the problem of building and running decentralized stateful
services that oversees the following challenges: I) process-
ing guarantees (i.e., exactly-once transactional processing,
live consistent updates), II) on-demand scalability and III)
compositional, intuitive programming semantics.

Existing programming technologies in use today partially
satisfy some, but not all, challenges behind decentralized
applications. The most dominant being distributed actor
frameworks [5, 9, 15, 25, 33, 41], serverless cloud program-
ming services (e.g. Function as a Service - FaaS [4]) and
dataflow streaming systems (e.g., Flink Streaming [12], Kafka
Streams [51], etc.). Actor frameworks such as Akka [33] offer
great flexibility in manually composing and scaling services
through direct actor communication and passing of actor
references. However, despite their ease of distributed pro-
gramming, actors do not offer any guarantees for stateful
processing, such as transactions and exactly-once process-
ing. Similarly, serverless programming services such as AWS
Lambda [4] were designed with simplicity of use and data-
driven scalability in mind, yet, they collectively lack stateful
processing semantics and guarantees.

On the other end of the spectrum, we are witnessing an
increasing number of applications and services developed on
top of dataflow streaming frameworks [3, 12, 42]. Dataflow
streaming systems gained popularity during the last decade,
and have met high adoption due to their exceptionally strong
reliability guarantees (challenge I). In the dataflow stream-
ing setting the dependencies between computational tasks
are explicit and this is therefore a trivial task. At the same
time, dataflow tasks can be executed in a parallel fashion
over sharded state using consistent hashing (challenge II).
These attributes make dataflow streaming systems a conve-
nient platform to write applications, at the expense of serious

www.portals-project.org

http://www.portals-project.org

Future Work

 Implementation: distributed, decentralized, reduce overhead
 Portals formalization + proofs

* Further extensions: dynamically splitting atoms; actor-like references,;
optimistic execution; transactions

Jonas Spenger 30 www.portals-project.org

http://www.portals-project.org

This work was partially
funded by the Swedish
Foundation for Strategic
Research (SSF grant no.

www.portals-project.org u SE k=

d i g i ta I fu tu res Futures, and by RISE Al

Jonas Spenger

jspenger@kth.se .
(KTH, RISE) Key takeaways:

* The Portals programming model extends dataflow streaming
for stateful serverless applications:

Paris Carbone

KTH, RISE -

() * Atomic streams ensure end-to-end exactly-once
processing guarantees, enable dynamic decentralized
deployments, principled approach to cycles

Philipp Hall S :

ot » Portals enable request/reply-style communication with
futures, dynamic services

House Cat

www.portals-project.org

Jonas Spenger 31

http://www.portals-project.org
http://www.portals-project.org

