
Onward! '22, December 8-10, Auckland, New Zealand

Jonas Spenger12

Paris Carbone12

Philipp Haller1

1EECS KTH Royal Institute of Technology, Stockholm, Sweden

2RISE Research Institutes of Sweden, Stockholm, Sweden

1

Portals:
An Extension of Dataflow Streaming for Stateful Serverless

Jonas Spenger www.portals-project.org

Dataflow Streaming

• Apache Flink; Google Dataflow; Kafka Streaming; Timely Dataflow; etc.

• Distributed

• Exactly-once processing guarantees

2

Stateful Dataflow
Pipeline

src sinktasks

DAG of
tasks Pipeline()

.source()

.map(...)

.shuffle(...)

.map(...)

.sink()Distributed
streams

http://www.portals-project.org

Jonas Spenger www.portals-project.org

1/3 Motivation

3

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Modern Distributed Services

• Power critical infrastructure: Google Services; Microsoft; Uber; Netflix;
Spotify; etc.

• Complex composition of communicating services.

4

Shopping Cart
Cart Orders

Inventory

Requirements:

• guarantees

• performance

• programming flexibility

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Building Distributed Services is Difficult

• Failures: computers crash, messages get lost...

• Scalability, response time: workloads increase or decrease;
services require low latency

• Cloud and edge: execution in heterogeneous environments

• Privacy: systems manage sensitive regulated data (GDPR, CCPA)

5

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Building Distributed Services is Difficult

• Failures: computers crash, messages get lost...

• Scalability, response time: workloads increase or decrease;
services require low latency

• Cloud and edge: execution in heterogeneous environments

• Privacy: systems manage sensitive regulated data (GDPR, CCPA)

5

We are asking too much of
distributed software

programmers

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Stateful Serverless

• Microsoft Azure Durable Functions; Apache Flink Stateful
Functions; Cloudburst; Beldi; Kalix/Cloudstate; etc.

• Stateful: system manages state

• Serverless:

• The programmer should only need to write business logic

• The stateful serverless system should fully manage all the other
parts: reliability; scalability; execution; privacy; state.

• Exactly-once processing guarantees

6

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Current Stateful Serverless Systems

• There are many great systems: Durable Functions; Flink Stateful
Functions; etc.

• Exactly-once processing; dynamic/decentralized topology;
parallelism;

• What can be improved?

• Dataflow streaming style composition

• Event ordering guarantees

• Cyclic dependencies; RPC + futures

7

http://www.portals-project.org

Jonas Spenger www.portals-project.org

2/3 Portals

8

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Portals

• Builds on Dataflow Streaming, harnessing: exactly-once
processing guarantees, performance, scalability

• With some extensions for: multiple services; dynamic
topology; cycles; RPCs

9

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Portals Overview

10

Cart Orders

Inventory

Atomic Streams

Portals

Workflows

(cycles between workflows allowed, cycles within workflows not allowed)

Portals abstractions:
1. Atomic Streams
2. Workflows + Tasks
3. Portals
4. Applications + RegistryAnalytics

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Example 1

11

Workflow

src sinkmap
12

Output

01

Generator: generate
atomic streams

x=>(x-1)

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Example 2

12

Workflow

src map

4

Output

x=>(x-1)

filter sink

x>0

Ψ

Sequencer: sequence
atomic streams

(connection)

1 2 3

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Example 3

13

Workflow

src sum
5

Output

sink
5 55 5 5 30 20 1025 15 5

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Example 4

14

Workflow

src sum
5

Output

sink
5 55 5 5 30 20 1025 15 5

src sink
30 10 10

request: what is the current sum?

• Output is not deterministic;

• Only sums divisible by 10 are observed

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Atomic Streams

15

Atomic Stream: totally
ordered, distributed stream

of atoms

Atom (big circles): Sequence
of events, transactional unit of

computation.

Partitions: distributed/sharded
streams of events

Events (black dots):
application events

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Atomic Streams

15

Atomic Stream: totally
ordered, distributed stream

of atoms

Atom (big circles): Sequence
of events, transactional unit of

computation.

Partitions: distributed/sharded
streams of events

Events (black dots):
application events

Generator: generate
atomic streams

Ψ

Sequencer: sequence
atomic streams

Composite atomic stream:
totally-ordered across lanes

Lane

Splitter: split atomic
streams

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Workflows and Tasks

16

Workflow

Workflow: consumes and produces
atomic streams, represents a service;
distributed, sharded over key-space

src sinktasks

DAG of
tasks

Task: stateful computational
logic; can access state, emit

events, etc.

onNext
Task

onError
onComplete
onAtomComplete

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Portals

17

Portal: request reply on
streams, service portal

Replying Workflow

src replier sink

Asking Workflow

askersrc sink

val portal = portals[Req, Rep]("portalName")

// Replying Workflow
...
.replier(portal)
 { /* handle events */ }
 { /* handle requests */ }

val portal = registry
.portals.get[Req, Rep]]("portalName")

// Asking Workflow
...
.asker(portal) { event =>
 val request = ...
 val future = ask(portal)(request)
 await(future) { /* continuation */ }}

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Portals

18

Cart

Inventory

// Cart Workflow
val cart = Workflows[ClientReqs, Orders]()
 .source(clientStream)
 .asker(portal) {
 case AddToCart(item) =>
 val cartState = PerKeyState(Map.empty)
 val f = ask(portal)(GetItem(item))
 Await(f) {
 f.value match
 case GetItemSuccess =>
 cartState += item -> (cartState(item) + 1)
 case GetItemFail =>
 () // do nothing
 }
 case ...
 }
 .sink()
 .freeze()

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Portals

19

• Use Cases

• Dynamically query the state of another workflow

• Update, modify the state of another workflow

• Many workflows can connect / send queries to the same
portal

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Applications, Registry

20

Application: Set of portals, workflows,
streams, generators, etc. encapsulated
as one application.

Registry: finding existing streams,
portals, workflows, etc., from
other apps, dependencies.Workflow

- Dietary
recommendations

Workflow
- collect data
- output day average

Workflow
- generate user
website

query response
recommendations

daily
averages

External system:
- Serve website

App 1

App 2

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Atomic Processing

21

Atomic processing:

• Take atom

• Process atom until completion

• Commit to output

• Repeat

Workflow

src sinktasks

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Alignment Protocol

22

Example Task
Graph

Problem: if we process two atoms, the events
might reorder across atoms!

Events:
colored by

atom

Continue processing

Snapshot

Wait for alignment

Aligned

Broadcast
markers

Atom start/
end marker

Task

Solution: alignment protocol

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™:
Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Event Ordering

• Atoms on Atomic Stream are totally-ordered (event ordering
guarantees*)

• => Events from two different atoms are in a strict order

• => Atom barriers / markers are totally-ordered

23

Atom barrier/
marker

The onAtomComplete event
is triggered uniformly on all
tasks by the passing atom
barrier, this event is in a total
order to all other events on
the workflow

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Event Ordering Examples

24

Erase

Erase
The onAtomComplete event
is triggered uniformly on all
tasks by the passing atom
barrier, this event is in a total
order to all other events on
the workflowdefer execution of erasure to the barrier

R-W

http://www.portals-project.org

Jonas Spenger www.portals-project.org

The Atomic Processing Contract

25

The Atomic Processing Contract: Atoms must be
processed one-at-a-time, only committed & failure-
free results may be observable/produced.

External
System

Produced Atomic Stream

Consumed Atomic Stream

External
System

End-to-End Exactly-Once Processing

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Logical View / Physical View

26

Workflow A

src task sink

src sink

Workflow B

Logical Physical

Workflow A

src task sink

src sink

Workflow B

Ψ

12...
atomic states

1

2

Portal
Exit

Portal
Entry

Request stream

Response stream

Ψ
12...

atomic states

1

2

Events (black dots) omitted
for clarity

http://www.portals-project.org

Jonas Spenger www.portals-project.org

3/3 Conclusion

27

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Conclusion

• The Portals programming model extends dataflow streaming for
stateful serverless applications:

• Dataflow streaming provides exactly-once processing
guarantees, performance, scalability

• Atomic streams ensure end-to-end exactly-once processing
guarantees, enable dynamic decentralized deployments,
principled approach to cycles

• Portals enable request/reply-style communication with futures,
dynamic services

28

http://www.portals-project.org

Jonas Spenger www.portals-project.org

More in the Paper ...

• Programming model

• Exactly-once processing mechanism

• Prototype implementation in Scala 3

• Evaluation

• Use cases

• Related work

29

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Future Work

• Implementation: distributed, decentralized, reduce overhead

• Portals formalization + proofs

• Further extensions: dynamically splitting atoms; actor-like references;
optimistic execution; transactions

30

http://www.portals-project.org

Jonas Spenger www.portals-project.org

Thanks!

31

Jonas Spenger
jspenger@kth.se

(KTH, RISE)

Paris Carbone
(KTH, RISE)

Philipp Haller
(KTH)

House Cat

This work was partially
funded by the Swedish

Foundation for Strategic
Research (SSF grant no.
BD15-0006), by Digital

Futures, and by RISE AI.

Key takeaways:

• The Portals programming model extends dataflow streaming
for stateful serverless applications:

• Atomic streams ensure end-to-end exactly-once

processing guarantees, enable dynamic decentralized
deployments, principled approach to cycles

• Portals enable request/reply-style communication with
futures, dynamic services

www.portals-project.org

http://www.portals-project.org
http://www.portals-project.org

