
WIP: Pods: Privacy Compliant
Scalable Decentralized Data

Services
Jonas Spenger12 <jspenger@kth.se>, Paris Carbone12, Philipp Haller2

1RISE Research Institutes of Sweden, Stockholm, Sweden

2Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm, Sweden

Presented at Poly’21: Polystore systems for heterogeneous data in multiple databases with privacy
and security assurances, August 20, 2021

Outline
1. Problem Scope

2. Pods: Our Approach

3. Open Questions / Research Directions

�2

Outline
1. Problem Scope
2. Pods: Our Approach

3. Open Questions / Research Directions

�3

Problem Scope

�4

Decentralized Data
Services

Privacy Regulations

- GDPR; CCPA

- Transparent

- Dataflow composition

- High-performance

- Elastically scalable

- Failure resilient

- Consistency

- Easy to program

- Privacy compliant decentralized
data services, our work

Privacy Regulations

�5

GDPR: General Data Protection Regulation CCPA: California Consumer Privacy Act

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?
division=3.&part=4.&lawCode=CIV&title=1.81.5 https://gdpr-info.eu/

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://gdpr-info.eu/

Privacy Regulations

�6

GDPR: General Data Protection Regulation

https://gdpr-info.eu/

https://gdpr-info.eu/

GDPR: Rights of the Data Subject

�7

Right of Access Right to Erasure Right to Object

Operations/Privacy Requests:

Access-Request 
<Paccess, datasubject>

Erasure-Request 
<Perase, datasubject>

Objection-Request 
<Pobject, datasubject, purpose>

• Grant access to “what”/“how”
personal data is being processed

• Reply within one month

• Erase all personal data
concerning the data subject

• Within one month

• Object to certain types of
processing

• Within one month

! Data service should
implement these operations

Consistent Privacy Requests

�8

analytics

sharded
database

Centralized Database

posts

recommendations
….

 recommended

aggregates

Posts ⋈ Likes

userID ℑ count(posts)

….

Materialized Views

access
update

< id, post >

likes
< id, like >

User Data

erase
object

ACID

Ideal Scenario

Cons:
Not scalable

Pros:
Privacy requests are regular

operations, ACID => consistent
execution

Consistent Privacy Requests

�9

access
update

….

Join

Group-by
Sum

erase
object

posts

posts

likes

Materialized
View

Materialized
View

analytics

recommendations

userID ℑ
count(posts).. aggregates

Posts ⋈ Likes recommended

likes

Real-World Scenario

Concepts from Schwarzkopf et al. “Position: GDPR
compliance by construction” [16, 11]

Cons:
Eventual consistency,

relational, coarse-grained

Pros: Simple,
decentralized storage,

distributed data centres,
high-performance

Materialized
Views

External
Applications

Dataflow
OperatorsUser Shards

Example of Issues

�10

Eventually consistent dataflow system

Alice: erase

erasure request is propagated

Alice: read

Erased

Not erased

! conflict

! Failure -> rollback failure recovery Alice: read

Not erased
! conflict with

previous read

Example of Issues

�11

Alice: write

write request is propagated

! Erase on all operators atomically

Alice: erase

In-flight message (green) not affected

Alice: read
Not erased

! conflict

Our Approach to Consistent Privacy Requests

Causally consistent reads from materialized views
Subsequent reads observe same or more updated state

Serializable privacy requests
Effect of privacy request is as if it was executed atomically, with
no concurrent operations on the system

Executing privacy requests
Materialize and execute the request according to specification

UDFs

Fine-grained

�12

Outline
1. Problem Scope

2. Pods: Our Approach
3. Open Questions / Research Directions

�13

Goal:
• Scalable, failure-resilient, high-performance, dataflow composition

• Privacy compliance

High-level:
• User-shards + dataflow composition [16]

• Couple data with policy-metadata ("Data Capsule") [22], fine-grained

�14

Pods: Our Approach

Pods: Our Approach

<update>

….

<erase>,
<object>
<snapshot>

analytics

recommendations

Pod: Group-by Sum

Pod: Join
snapshot
version k

snapshot
version k

likes

posts

likes

posts

<read>

Pod: …
…

Posts ⋈ Likes

ℑ (User.ID)
Sum(posts)..

User shards
User data is ingested in “user shards” [16]

Persistently logged, replicated

Emits events on update

�15

Materialized
Views

External
Applications

Pod TaskUser Shards

Pods: Our Approach

<update>

….

<erase>,
<object>
<snapshot>

analytics

recommendations

Pod: Group-by Sum

Pod: Join
snapshot
version k

snapshot
version k

likes

posts

likes

posts

<read>

Pod: …
…

Posts ⋈ Likes

ℑ (User.ID)
Sum(posts)..

Pod tasks
Subscribe to input streams, execute operations,
generate output streams

Snapshotted consistent state is externally queryable

�16

Materialized
Views

External
Applications

Pod TaskUser Shards

Pods: Our Approach

<update>

….

<erase>,
<object>
<snapshot>

analytics

recommendations

Pod: Group-by Sum

Pod: Join
snapshot
version k

snapshot
version k

likes

posts

likes

posts

<read>

Pod: …
…

Posts ⋈ Likes

ℑ (User.ID)
Sum(posts)..

Pod tasks
Subscribe to input streams, execute operations,
generate output streams

Snapshotted consistent state is externally queryable

�17

Materialized
Views

External
Applications

Pod TaskUser Shards

! More details in the paper

Causally Consistent Reads from Materialized Views

�18Using asynchronous epoch commit from [6], reproduced/adapted

Pod
…n

n

n Pod
…

n

n
n

n

Pod
…

n

Take snapshot

n

Pod
…

n

external
application

Wait for alignment Alignment achieved

Broadcast
markers

Continue
processing

Access snapshot
state after commit

Serializable privacy requests

�19

Pod
…P

P

P Pod
…

P

P
P

P

Pod
…

P

Execute privacy request

Wait for alignment

Broadcast privacy
request, continue

Alignment achieved

Couple data with policy-metadata ("Data Capsule") [22], use fine-grained
information flow [21, 15]

Event e1 = <a, metadata={Alice}>
Event e2 = <b, metadata={Bob }>
e1 + e2 = <a+b, metadata={Alice, Bob}>

=> Compute the correct privacy policy of derived data

�20

Fine-Grained Information Flow

Execution Strategies for Updates:

• Static dataflow data dependencies, relational operators [16] =>

• Differential updates
• Recompute state from replaying events
• (Ordering does not affect results)

• Fine-grained metadata [22], user-defined functions =>

• Apply request on state
• Pro: always works

• Con: may "erase" state that cannot be recomputed, e.g. joint state

Pods: Executing privacy requests

�21

1
2

3

Outline
1. Problem Scope

2. Pods: Our Approach

3. Open Questions / Research Directions

�22

Open Questions / Research Directions

�23

Efficient information flow tracking
• Fine-grained information flow => efficiency challenge for aggregate data; look

into declassification [14]

Executing privacy requests
• Semantics of privacy requests are unclear [19]; UDFs; implement full

specification may uncover more issues

Consistent integration with external services
• Propagate privacy requests to external services with atomic consistency

A more flexible programming model
• Supporting cycles; dynamic deployments; actors; and push-based updates

(sources and sinks)

References

�24

[16] Schwarzkopf, Malte, et al. "Position: Gdpr compliance by construction." Heterogeneous Data Management, Polystores, and Analytics for
Healthcare. Springer, Cham, 2019. 39-53.

[11] Gjengset, Jon, et al. "Noria: dynamic, partially-stateful data-flow for high-performance web applications." 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 2018.

[22] Wang, Lun, et al. "Data capsule: A new paradigm for automatic compliance with data privacy regulations." Heterogeneous Data Management,
Polystores, and Analytics for Healthcare. Springer, Cham, 2019. 3-23.

[19] Stonebraker, Michael, et al. "Poly'19 Workshop Summary: GDPR." ACM SIGMOD Record 49.3 (2020): 55-58.

[6] Carbone, Paris, et al. "State management in Apache Flink®: consistent stateful distributed stream processing." Proceedings of the VLDB
Endowment 10.12 (2017): 1718-1729.

[15] Salvaneschi, Guido, et al. "Language-integrated privacy-aware distributed queries." Proceedings of the ACM on Programming Languages
OOPSLA (2019): 1-30.

[21] Volpano, Dennis, Cynthia Irvine, and Geoffrey Smith. "A sound type system for secure flow analysis." Journal of computer security 4.2-3 (1996):
167-187.

WIP: Pods: Privacy Compliant
Scalable Decentralized Data

Services
Jonas Spenger12 <jspenger@kth.se>, Paris Carbone12, Philipp Haller2

1RISE Research Institutes of Sweden, Stockholm, Sweden

2Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm, Sweden

Presented at Poly’21: Polystore systems for heterogeneous data in multiple databases with privacy
and security assurances, August 20, 2021

Pod Task

Activity:  
Posts ⋈ Likes

Context

Active
State

input
channel

output
channel

Pod: Join

external
application

e = <d, meta>
e

c

Snap-
shot
State

�26

Pod task
Dataflow composition, pods connected via
channels

Separate state and logic => serverless, elastic
scaling

Context handles privacy request "transparently"

Distributed snapshotting => resilience to failures [6]

External applications access snapshot consistent
state

Fine-grained information flow

Anatomy of a Pod Task

Activity:  
Posts ⋈ Likes

Context

Active
State

input
channel

output
channel

Pod: Join

external
application

e = <d, meta>
e

c

Snap-
shot
State

�27

Dataflow composition, pods
connected via channels

Distributed snapshotting =>
resilience to failures [6]

External applications
access snapshot
consistent state

Separate state and
logic => server less,

elastic scaling

Context handles
privacy requests
“transparently”

Fine-grained
“information

flow” [21, 15], e.g.
tracking data origin/

policy (data
capsules[22]); static

dependencies;

