
Key Features

// Programming framework for stateful serverless // Atomic streams & exactly-once processing guarantees (WIP) // Dynamic topology // Decentralized execution // Flexible API //

Context

• Serverless functions have made it easy to write and deploy distributed

applications on fully managed runtimes.

• Recent developments have been on including state management and

compositional patterns, enabling a wider range of applications; yet, finding the
right abstractions and implementation methods remains an open problem.

• Our work is on a decentralized programming framework for stateful serverless
applications in the cloud-edge continuum.

Portals: A Showcase of Multi-Dataflow Stateful Serverless

*†Jonas Spenger, †Chengyang Huang, †Philipp Haller, *†Paris Carbone

*RISE Research Institutes of Sweden, Stockholm, Sweden; †KTH Royal Institute of Technology, Stockholm, Sweden

Scenario 3: Playground

• The Portals Playground is a Javascript-based sandbox capable of running

Portals apps in the browser. Check out the examples!

• The JS runtime can be used for web apps and edge devices.

https://www.portals-project.org/playground/

References

[1] Spenger et al., "Portals: An extension of dataflow
streaming for stateful serverless.", Onward'22.

[2] https://github.com/portals-project/portals

[3] Chengyang Huang. “Queryable Workflows: Extending
Dataflow Streaming with Dynamic Request/Reply
Communication.” Dissertation, 2023.

Acknowledgements

We would like to thank other contributors to the Portals project: Maximilian
Kurzawski; Aleksey Veresov; Gabriele Morello; Siyao Liu.

This work was partially funded by Digital Futures, the Swedish Foundation
for Strategic Research under Grant No.: BD15-0006, as well as RISE AI.

Scenario 2: SQL to Dataflow

• SQL API based on portal services with state managed by a dataflow [3].

• Supports multi-table SQL queries and transactions.

• The SQL engine uses Apache Calcite.

Multiple querying apps connecting to
the same shared KeyValue store,
implemented as a library, leveraging
the decentralized execution.

https://www.portals-project.org/vldb2023demo/

Summary

This demonstration presents Portals [1, 2], a programming framework for
stateful serverless applications, with the following highlights:

• Multi-dataflow applications. Dynamically composing multiple dataflow

pipelines together via atomic streams.

• Inter-dataflow services / Portal services. Exposing dataflow pipelines

(operators, state) as inter-dataflow services.

• Decentralized cloud and local execution. Decentralized API and runtime, with

end-to-end processing guarantees.

Presented at the VLDB 2023 Demonstrations Track, Vancouver, Canada

Jonas Spenger, Chengyang Huang, Philipp Haller, and Paris Carbone. Portals: A Showcase of Multi-Dataflow Stateful Serverless. PVLDB, 16(12): 4054 - 4057, 2023. doi:10.14778/3611540.3611619

Ongoing / Future Work

• Impl. of the distributed serverless runtime.

• Dataflow optimiser exploiting the global view;

improving the performance of cyclic dependencies
across pipelines.

• Multi-dataflow ACID transactions.

- Portals Vision -

core

Atomic Stream Dataflow A

Dataflow B Dataflow C

Dataflow D
Composition of

Pipelines via
Streams

DAG of
Operators

Multi-dataflow composition

• Dataflows as microservices.

• Composition using atomic streams. Portal services

• A Portal exposes a dataflow as a service,
implemented with task operators.

• Enables request/reply communication.

Dataflow
- dietary
recommendations

Dataflow
- collect data
- output day average Dataflow

- generate
user website

wearables data
collection

External
system:
- serve website

End-to-End Exactly-Once Processing

serverless
cloud B

serverless
cloud A

edge
devices

edgeserverless

Decentralized, dynamic topology

• Applications spanning multiple deployments.

• Topology may change over time.

• A runtime for cloud and edge (WIP).

Scenario 1: Shopping Cart Pipeline

Demo overview

• Four services: cart; orders; inventory; analytics.

• Services launched dynamically, connected.

• Portal service exposes the inventory, analytics.

• Starting new services that use the analytics, on

demand.

(1) The inventory exposed
through a Portal, implemented
as a task with `PerKeyState`. inventory

inventory 's
portal service

cart

(2) The cart consumes user
requests, and interacts with the
inventory through a portal to
add/remove items to the cart.

val inventory = Portal(...)

Dataflows("inventory").source(...)

 .taskWithReplier(inventory){...}{

 ... if State.get() > 0 then

 ... Reply(GetReply(item, true)

val inventoryRef = Registy.Portal(...)

Dataflows("cart").source(...)

 .taskWithRequester(inventoryRef):

 ... Request(inventoryRef)
(GetItem(item)).onComplete:

 case Success(rep) =>

 State.update(item, ... + 1)

(3) The orders app consumes the
checked out orders.

(4) The analytics service produces a
Top100 list of the orders, exposed
through a portal service.

(5) New services dyn. connect to
the the analytics portal.

val table =

 TableWorkflow[Types.KV]("KVTable")

Dataflows[String, String](...)

 .source(...)

 .query(table)

demo info

Powered by Atomic Streams

• Enforces the exactly-once processing guarantees.

• Provides interface for the atomic processing contract.

2

1

Inventory

Cart Orders

Analytics

2

1

3

4

edge devices

SELECT *
FROM ...

SELECT *
FROM ...

KV-Store
Dataflow

Responding
Dataflow

src tasks sink

Requests Replies

Portal Service

Access
Operator

Reques8ng
Dataflow

Requests Replies
Portal Service

atom3' atom2' atom1'

committedpre-committed

Orders

Analytics

3

4

Service ...
5

Service ...
5

https://www.portals-project.org/playground/
https://github.com/portals-project/portals
https://www.portals-project.org/vldb2023demo/

