Portals: A Showcase of Multi-Dataflow Stateful Serverless

*’Jonas Spenger, 'Chengyang Huang, "Philipp Haller, *tParis Carbone
“RISE Research Institutes of Sweden, Stockholm, Sweden; TKTH Royal Institute of Technology, Stockholm, Sweden demo info

https://www.portals-project.org/vldb2023demo/

Context Summary

 Serverless functions have made it easy to write and deploy distributed This demonstration presents Portals [1, 2], a programming framework for
applications on fully managed runtimes. stateful serverless applications, with the following highlights:

o Recent developments have been on including state management and o Multi-dataflow applications. Dynamically composing multiple dataflow
compositional patterns, enabling a wider range of applications; yet, finding the pipelines together via atomic streams.
right abstractions and implementation methods remains an open problem. « Inter-dataflow services [ Portal services. Exposing dataflow pipelines

o Our work is on a decentralized programming framework for stateful serverless (operators, state) as inter-dataflow services.
applications in the cloud-edge continuum. o Decentralized cloud and local execution. Decentralized APl and runtime, with

end-to-end processing guarantees.

Key Features - Portals ViSion =

// Programming framework for stateful serverless // Atomic streams & exactly-once processing guarantees (WIP) // Dynamic topology // Decentralized execution // Flexible API //

Atomic Stream Datfiflow A R;i‘::ggwg Portal Service End-to-End Exactly-Once Processing

Replies edge
A serverless serverles:
devices O(I) cloud A (II) cloud B O(I)
wearables data
collection

- collect data
@@ - output day average

i Requests

rc  tasks sink

Access
Operator E

Multi-dataflow composition Requests [ Replies

Sl
& Dataflow

Composition of
Pipelines via
Streams

Dataflow
- generate
user website

Operators Dataflow D

External
system:
- serve website

o Dataflows as microservices. = : Requesting recommendati
.. . . . ortal Service H ataflow . .
« Composition using atomic streams. = 2 Portal services Decentralized, dynamic topology
©000 o . . . .
Powered by Atomic Streams pre-:g::md 5 8 . A Pt:rtal expgsgsha daltaflow as a service, . Applllcat|ons spa:mng multlpl.e deployments.
« Enforces the exactly-once processing guarantees. Implemented with tas operatoré. . e Topo ng may change over time.
o Enables request/reply communication. e Aruntime for cloud and edge (WIP).

o Provides interface for the atomic processing contract.

Scenario 1: Shopping Cart Pipeline ol e DR
.taskWithReplier (inventory){...}{

. if State.get() > 0 then 5>
. Reply(GetReply(item, true)

(1) The inventory exposed
e o through a Portal, implemented
— Cart Orders as a task with * PerKeyState .

Orders

tasks  sink) jnventory

inventory's
portal service

Analytics

Inventory Analytics

(3) The orders app consumes the
checked out orders.

val inventoryRef = Registy.Portal(...) (4) The analytics service produces a
it iMlens (TR T O ee s < o) Top100 list of the orders, exposed

Demo overview
« Four services: cart; orders; inventory; analytics.

o Services launched dynamically, connected. (2) The cart consumes user .taskwithRequester (inventoryRef): )
. . . . . Request (inventoryRef) through a portal service.
o Portal service exposes the inventory, analytics. requests, and interacts with the -+ - Req nv y .
. . ’ . . (GetItem(item)).onComplete: (5) New services dyn. connect to
« Starting new services that use the analytics, on inventory through a portal to ot Sueeeeelray) =5 the the analvtics portal
demand. add/remove items to the cart. State.update(item, ... + 1) y P )

Scenario 2: SQL to Dataflow Scenario 3: Playground

¢ SQL APl based on portal services with state managed by a dataflow [3]. o The Portals Playground is a Javascript-based sandbox capable of running
e Supports multi-table SQL queries and transactions. Portals apps in the browser. Check out the examples!
e The SQL engine uses Apache Calcite. e The JS runtime can be used for web apps and edge devices.

Portals Playground
Code Examples -

val table = )
Portals)S Code Editor Log Output
- . var builder = Portals)S.ApplicationBuilder("simpleRecursive") $6 - 127
KV-Store TableWorkflow[Types.KV] ("KVTable")
var gen = builder.generators. fromArray([128]) $6 - 126
Dataflow var seq = builder.sequencers. random() $6 - 125
. . . var recursiveWorkflow = builder.workflows $6 - 124
- Multiple querying apps connecting to T 0 -1
N .. if (x > 0 $6 - 121
edge devices the same shared KeyValue store, | et - s0 -2
— . . . 3 $6 - 118
implemented as a library, leveraging Hogger) 6 -1
9 ) . . .freeze() $6 - 115
‘ 3 l the decentralized execution. par = buitder. comectons.comect(gen.strean, e s - 114
/ var _ = builder.connections.connect(recursiveWorkflow.stream, seq) $6 - 113
SELECT * SELECT * var Sxmpleﬂfc:rslvi :sb:ilder;;)ulldu :: : 1ﬁ
! FROM ... | FROM ... Dataflows [Str-i ng, Stri ng] ( e ) Systel:.laun;h(%lmpleRe;uty'SJveb 6 - 110
.sou rce( .. ) system.stepUntilComplete() f? - }?g
.query (table) . 1
https://www.portals-project.org/playground/
Ongoing / Future Work References Acknowledgements
* Impl. of the distributed serverless runtime. [1] Spenger et al., ""Portals: An extension of dataflow We WOU’Z lfk[e Z) thank other Cogffffutom f[?) the Portals project: Maximilian
N . . . . " ' Kurzawski; Aleksey Veresov; Gabriele Morello; Siyao Liu.
* Dataflow optimiser EXp|OItI ng the glObaI View,; streaming f.or stateful serverless. ? Onward'22. This work was partially funded by Digital Futures, the Swedish Foundation
improving the performance of cyclic dependencies [2] https://github.com/portals-project/portals for Strategic Research under Grant No.: BD15-0006, as well as RISE Al.

[3] Chengyang Huang. “Queryable Workflows: Extending
Dataflow Streaming with Dynamic Request/Reply
Communication.” Dissertation, 2023.

across pipelines.
* Multi-dataflow ACID transactions.

Rl.
SE digital futures ‘&»j
Presented at the VLDB 2023 Demonstrations Track, Vancouver, Canada

Jonas Spenger, Chengyang Huang, Philipp Haller, and Paris Carbone. Portals: A Showcase of Multi-Dataflow Stateful Serverless. PVLDB, 16(12): 4054 - 4057, 2023. d0i:10.14778/3611540.3611619


https://www.portals-project.org/playground/
https://github.com/portals-project/portals
https://www.portals-project.org/vldb2023demo/

