
Key Features

// Programming framework for stateful serverless // Atomic streams & exactly-once processing guarantees (WIP) // Dynamic topology // Decentralized execution // Flexible API //

Context

• Serverless functions have made it easy to write and deploy distributed 

applications on fully managed runtimes.

• Recent developments have been on including state management and 

compositional patterns, enabling a wider range of applications; yet, finding the 
right abstractions and implementation methods remains an open problem.


• Our work is on a decentralized programming framework for stateful serverless 
applications in the cloud-edge continuum.
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Scenario 3: Playground

• The Portals Playground is a Javascript-based sandbox capable of running 

Portals apps in the browser. Check out the examples!

• The JS runtime can be used for web apps and edge devices.

https://www.portals-project.org/playground/
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Scenario 2: SQL to Dataflow

• SQL API based on portal services with state managed by a dataflow [3].

• Supports multi-table SQL queries and transactions.

• The SQL engine uses Apache Calcite.

Multiple querying apps connecting to 
the same shared KeyValue store, 
implemented as a library, leveraging 
the decentralized execution.

https://www.portals-project.org/vldb2023demo/

Summary

This demonstration presents Portals [1, 2], a programming framework for 
stateful serverless applications, with the following highlights:

• Multi-dataflow applications. Dynamically composing multiple dataflow 

pipelines together via atomic streams.

• Inter-dataflow services / Portal services. Exposing dataflow pipelines 

(operators, state) as inter-dataflow services.

• Decentralized cloud and local execution. Decentralized API and runtime, with 

end-to-end processing guarantees.
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Ongoing / Future Work

• Impl. of the distributed serverless runtime. 

• Dataflow optimiser exploiting the global view; 

improving the performance of cyclic dependencies 
across pipelines.


• Multi-dataflow ACID transactions.
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Multi-dataflow composition

• Dataflows as microservices.

• Composition using atomic streams. Portal services


• A Portal exposes a dataflow as a service, 
implemented with task operators.


• Enables request/reply communication.
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Decentralized, dynamic topology

• Applications spanning multiple deployments.

• Topology may change over time.

• A runtime for cloud and edge (WIP).

Scenario 1: Shopping Cart Pipeline

Demo overview

• Four services: cart; orders; inventory; analytics.

• Services launched dynamically, connected.

• Portal service exposes the inventory, analytics.

• Starting new services that use the analytics, on 

demand.

(1) The inventory exposed 
through a Portal, implemented 
as a task with `PerKeyState`. inventory

inventory 's 
portal service

cart

(2) The cart consumes user 
requests, and interacts with the 
inventory through a portal to 
add/remove items to the cart.

val inventory = Portal(...)

Dataflows("inventory").source(...)

  .taskWithReplier(inventory){...}{

    ... if State.get() > 0 then 

      ... Reply(GetReply(item, true)

val inventoryRef = Registy.Portal(...)

Dataflows("cart").source(...)

  .taskWithRequester(inventoryRef):

    ... Request(inventoryRef)
(GetItem(item)).onComplete:

      case Success(rep) =>

        State.update(item, ... + 1)

(3) The orders app consumes the 
checked out orders.

(4) The analytics service produces a 
Top100 list of the orders, exposed 
through a portal service.

(5) New services dyn. connect to 
the  the analytics portal.

val table = 

  TableWorkflow[Types.KV]("KVTable")

Dataflows[String, String](...)

  .source(...)

  .query(table)

demo info

Powered by Atomic Streams

• Enforces the exactly-once processing guarantees.

• Provides interface for the atomic processing contract.
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