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Context Summary

 Serverless functions have made it easy to write and deploy distributed This demonstration presents Portals [1, 2], a programming framework for
applications on fully managed runtimes. stateful serverless applications, with the following highlights:

o Recent developments have been on including state management and o Multi-dataflow applications. Dynamically composing multiple dataflow
compositional patterns, enabling a wider range of applications; yet, finding the pipelines together via atomic streams.
right abstractions and implementation methods remains an open problem. « Inter-dataflow services [ Portal services. Exposing dataflow pipelines

o Our work is on a decentralized programming framework for stateful serverless (operators, state) as inter-dataflow services.
applications in the cloud-edge continuum. o Decentralized cloud and local execution. Decentralized APl and runtime, with

end-to-end processing guarantees.

Key Features - Portals ViSion =

// Programming framework for stateful serverless // Atomic streams & exactly-once processing guarantees (WIP) // Dynamic topology // Decentralized execution // Flexible API //
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« Enforces the exactly-once processing guarantees. Implemented with tas operatoré. . e Topo ng may change over time.
o Enables request/reply communication. e Aruntime for cloud and edge (WIP).

o Provides interface for the atomic processing contract.
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Demo overview
« Four services: cart; orders; inventory; analytics.

o Services launched dynamically, connected. (2) The cart consumes user .taskwithRequester (inventoryRef): )
. . . . . Request (inventoryRef) through a portal service.
o Portal service exposes the inventory, analytics. requests, and interacts with the -+ - Req nv y .
. . ’ . . (GetItem(item)).onComplete: (5) New services dyn. connect to
« Starting new services that use the analytics, on inventory through a portal to ot Sueeeeelray) =5 the the analvtics portal
demand. add/remove items to the cart. State.update(item, ... + 1) y P )

Scenario 2: SQL to Dataflow Scenario 3: Playground

¢ SQL APl based on portal services with state managed by a dataflow [3]. o The Portals Playground is a Javascript-based sandbox capable of running
e Supports multi-table SQL queries and transactions. Portals apps in the browser. Check out the examples!
e The SQL engine uses Apache Calcite. e The JS runtime can be used for web apps and edge devices.

Portals Playground
Code Examples -

val table = )
Portals)S Code Editor Log Output
- . var builder = Portals)S.ApplicationBuilder("simpleRecursive") $6 - 127
KV-Store TableWorkflow[Types.KV] ("KVTable")
var gen = builder.generators. fromArray([128]) $6 - 126
Dataflow var seq = builder.sequencers. random() $6 - 125
. . . var recursiveWorkflow = builder.workflows $6 - 124
- Multiple querying apps connecting to T 0 -1
N .. if (x > 0 $6 - 121
edge devices the same shared KeyValue store, | et - s0 -2
— . . . 3 $6 - 118
implemented as a library, leveraging Hogger) 6 -1
9 ) . . .freeze() $6 - 115
‘ 3 l the decentralized execution. par = buitder. comectons.comect(gen.strean, e s - 114
/ var _ = builder.connections.connect(recursiveWorkflow.stream, seq) $6 - 113
SELECT * SELECT * var Sxmpleﬂfc:rslvi :sb:ilder;;)ulldu :: : 1ﬁ
! FROM ... | FROM ... Dataflows [Str-i ng, Stri ng] ( e ) Systel:.laun;h(%lmpleRe;uty'SJveb 6 - 110
.sou rce( .. ) system.stepUntilComplete() f? - }?g
.query (table) . 1
https://www.portals-project.org/playground/
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across pipelines.
* Multi-dataflow ACID transactions.
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