
core

Atomic Stream Dataflow A

Dataflow B Dataflow C

Dataflow D
Composition of

Pipelines via
Streams

DAG of
Operators

Project Information
• Framework for stateful serverless applications.
• Unifying stateful dataflow streaming and actor programming.
• Developed at KTH and RISE since 2022.
• Open source; Apache 2.0 License.

The Portals Framework
Enabling Flexible Stateful Serverless Applications

Jonas Spenger (RISE, KTH), Aleksey Veresov (KTH), Maximilian Kurzawski (KTH), Paris Carbone (RISE, KTH), Philipp Haller (KTH)

Formally Verified Fault-Tolerance
• Formalization of Portals i) high-level model and ii) implementation.
• Mechanised, machine checked, in Coq.
• Rigorous proof of exactly-once processing.

A faultless high level program should be behaviourally
indistinguishable from its implementation in a faulty low-level.

Further Reading & References
• [1] Spenger et al., "Portals: An extension of dataflow streaming for stateful

serverless.", Onward'22.
• [2] Spenger et al., "Portals: A Showcase of Multi-Dataflow Stateful Serverless",

PVLDB'23.
• https://www.portals-project.org/; https://github.com/portals-project/portals

Key Features
• Atomic streams & exactly-once processing guarantees.
• Multi-dataflow applications, cyclic dependencies.
• Portal services: inter-dataflow services with actor-like comm.
• Dynamic topology, decentralized cloud/edge execution.
• Data and task parallelism.

Acknowledgements
• We would like to thank previous contributors to the Portals Project: Chengyang

Huang, Gabriele Morello, Siyao Liu.
• This work was partially funded by Digital Futures, the Swedish Foundation for

Strategic Research under Grant No.: BD15-0006, as well as RISE AI.

Portals Distributed Runtime
• Distributed execution, leveraging Atomic Streams, Reply Streams.
• Serverless deployment environment using Docker/Kubernetes.
• Decentralized, support for connecting to remote deployments.

Distributed, decentralized runtime leveraging Atomic
Streams and Reply Streams; edge-cloud.

node node
node

node
node

node
node

Powered by atomic streams
• Enforces the exactly-once processing

guarantees.
• Provides interface for the atomic

processing contract.

Portal services
• A Portal exposes a service, implemented with task operators.
• Enables request/reply communication between task operators.

Figure from [2]

Multi-dataflow composition
• Dataflows as microservices.
• Composition using atomic streams.
• Direct communication between operators with portals.

Figure from [2]

Decentralized, dynamic topology
• Applications spanning multiple deployments, cloud and edge devices.
• Topology may change over time.
• A runtime for cloud and edge.

Atomic Processing Contract
i) Take atom
ii) Process atom until completion
iv) Commit to output
v) Repeat

Portals Highlights

// Ref to Inventory's Portal Service
val inventory = Portal...

// Cart
Dataflows("cart").source(...)
 .taskWithRequester(inventory):
 case AddToCart(item) =>
 req = GetItem(item)
 future = Request(inventory)(req)
 Await(future):
 future.value match
 case GetItemSuccess =>
 state.update(item, state.get(item) + 1)
 ...
 ... // truncated

Shopping cart example
• Inventory exposed through a Portal; cart connects to inventory's portal to

get/return items to the inventory; analytics service started dynamically.

Cart App:

Shopping Cart SQL to Dataflow Screenshots

Inventory

serverless
cloud

edge devices
Cart Orders

Analytics

2

1

2

3

SELECT *
FROM ...

SELECT *
FROM ...

serverless
cloud KV-Store

Dataflow

demonstration

Dataflow
- dietary
recommendations

Dataflow
- collect data
- output day average Dataflow

- generate
user website

wearables data
collection

External
system:
- serve website

End-to-End Exactly-Once Processing

serverless
cloud B

serverless
cloud A

edge
devices

edgeserverless

Responding
Dataflow

src tasks sink

Responding
Dataflow

src tasks sink

Reqs Replies

Portal Service

Access
Operator

Portal Service

Requests Replies

Reques8ng
Dataflow

Requests Reps
Portal Service

serviceportal

Figure from [2]

Figure from [2]

https://www.portals-project.org/
https://github.com/portals-project/portals

