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Project Information 
• Framework for stateful serverless applications. 
• Unifying stateful dataflow streaming and actor programming. 
• Developed at KTH and RISE since 2022. 
• Open source; Apache 2.0 License.
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Enabling Flexible Stateful Serverless Applications 
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Formally Verified Fault-Tolerance 
• Formalization of Portals i) high-level model and ii) implementation. 
• Mechanised, machine checked, in Coq. 
• Rigorous proof of exactly-once processing. 

A faultless high level program should be behaviourally 
indistinguishable from its implementation in a faulty low-level.

Further Reading & References 
• [1] Spenger et al., "Portals: An extension of dataflow streaming for stateful 

serverless.", Onward'22. 
• [2] Spenger et al., "Portals: A Showcase of Multi-Dataflow Stateful Serverless", 

PVLDB'23. 
• https://www.portals-project.org/; https://github.com/portals-project/portals

Key Features 
• Atomic streams & exactly-once processing guarantees. 
• Multi-dataflow applications, cyclic dependencies. 
• Portal services: inter-dataflow services with actor-like comm. 
• Dynamic topology, decentralized cloud/edge execution. 
• Data and task parallelism.
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Portals Distributed Runtime 
• Distributed execution, leveraging Atomic Streams, Reply Streams. 
• Serverless deployment environment using Docker/Kubernetes. 
• Decentralized, support for connecting to remote deployments. 

Distributed, decentralized runtime leveraging Atomic 
Streams and Reply Streams; edge-cloud.
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Powered by atomic streams 
• Enforces the exactly-once processing 

guarantees. 
• Provides interface for the atomic 

processing contract.

Portal services 
• A Portal exposes a service, implemented with task operators. 
• Enables request/reply communication between task operators.
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Multi-dataflow composition 
• Dataflows as microservices. 
• Composition using atomic streams. 
• Direct communication between operators with portals.
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Decentralized, dynamic topology 
• Applications spanning multiple deployments, cloud and edge devices. 
• Topology may change over time. 
• A runtime for cloud and edge.

Atomic Processing Contract 
i) Take atom 
ii) Process atom until completion 
iv) Commit to output 
v) Repeat

Portals Highlights

// Ref to Inventory's Portal Service 
val inventory = Portal[...](...) 

// Cart 
Dataflows("cart").source(...) 
  .taskWithRequester(inventory): 
    case AddToCart(item) => 
      req = GetItem(item) 
      future = Request(inventory)(req) 
      Await(future):  
        future.value match 
          case GetItemSuccess =>  
            state.update(item, state.get(item) + 1) 
            ... 
     ... // truncated

Shopping cart example 
• Inventory exposed through a Portal; cart connects to inventory's portal to 

get/return items to the inventory; analytics service started dynamically.

Cart App:

Shopping Cart SQL to Dataflow Screenshots
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End-to-End Exactly-Once Processing
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