
Privacy-Preserving Computing
Jonas Spenger (RISE, KTH, jonas.spenger@ri.se), Paris Carbone (RISE, KTH, paris.carbone@ri.se), Philipp Haller (KTH, phaller@kth.se)

[Poly'21] Spenger, J., Carbone, P., & Haller, P. (2021). WIP: Pods: Privacy Compliant
Scalable Decentralized Data Services. In Heterogeneous Data Management,
Polystores, and Analytics for Healthcare (pp. 70-82). Springer, Cham.

PODS
Secure Workflows

RISE Computer Science & AI open house, May 10 2022, Stockholm, Sweden

This work was partially funded by the Swedish Foundation
for Strategic Research (SSF grant no. BD15-0006) and by

Digital Futures.

Roadmap

Introduction Use-Case 2: Pods Secure Workflows

2022
• Release v1.0: workflows; data ownership; serializable

updates
2023
• Release v2.0: integration of MPC into workflows

• Privacy-preserving/secure computation allows multiple
parties to securely share sensitive data and collaborate on
this shared data, without violating the privacy of individuals.

• To support this type of computation we need a system that
can compose secure workflows together with existing
workflows.

• Secure Workflows are collaborative computations on
streams of events

• without leaking any of the information of the ingested
events to the other party.

Use-Case 3: Composition of Microservices

Contributions Selected Related Work
Our work is related to actor systems (Akka, Erlang, Reactors),
and stateful serverless systems (Durable Functions, Flink
StateFun). Our system distinguishes with support for privacy
and for dynamic application patterns.

• We are building a system for the composition of complex
(privacy-preserving) workflows

• with support for:
• data ownership; secure multi-party computation

(MPC); and GDPR
• live serializable/consistent updates
• dynamic, cyclic applications

• that is serverless, fault-tolerant, scalable.

Example Code
val external_task = ...
val workflow = Workflows.builder().source[String]()
 .process({(ctx, event) =>
 val future = ctx.call(external_task, event) // call external task
 val x = ctx.await(future) // await for response
 ctx.emit(x)}) // emit result
 .sink[Int]()

Use-Case 1: Privacy-Compliant Service Composition

GDPR using live serializable updates
(causally-consistent operations) [Poly'21]

• Workflows ingest streams of events and execute a DAG of tasks.
• We allow cycles, and dynamic communication between

workflows (workflows are actors).
• Workflows implement Live Serializable Updates (consistent

updates to system execution state at runtime)

Conclusion
Dynamic (secure) workflows are expressive, and suitable for
the composition of microservices. A system with the proposed
properties would enable more collaboration, and a principled
approach to privacy.

