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Abstract. Serverless computing promises to significantly simplify cloud
computing by providing Functions-as-a-Service where invocations of func-
tions, triggered by events, are automatically scheduled for execution on
compute nodes. Notably, the serverless computing model does not require
the manual provisioning of virtual machines; instead, FaaS enables load-
based billing and auto-scaling according to the workload, reducing costs
and making scheduling more efficient. While early serverless program-
ming models only supported stateless functions and severely restricted
program composition, recently proposed systems offer greater flexibil-
ity by adopting ideas from actor and dataflow programming. This pa-
per presents a survey of actor-like programming abstractions for stateful
serverless computing, and provides a characterization of their properties
and highlights their origin.

Keywords: Actor Model · Active Objects · Serverless Computing ·
Dataflow · Stateful Serverless · Distributed Programming · Cloud Com-
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1 Introduction

Serverless computing has greatly simplified building cloud applications by pro-
viding Functions-as-a-Service (FaaS), a programming model consisting of func-
tions and event triggers. These functions are automatically scheduled for exe-
cution on compute nodes, elastically scaling with the load [22]. In effect, the
serverless model fully abstracts away the underlying computing infrastructure,
billing and running user code on-demand. As a consequence, serverless comput-
ing can reduce costs and make scheduling more efficient.

While early serverless models were restricted, recent developments have in-
troduced more flexible abstractions. The first major serverless frameworks, such
as AWS Lambda [6] and similar [31,40,51], were restricted to: 1) stateless func-
tions; and 2) limited compositional primitives such as no direct function-to-
function messaging, often-cited challenges with serverless computing [12,36,42].
Recent developments, however, have seen programming models supporting state-
ful serverless that overcome these challenges through abstractions closely related



2 Jonas Spenger, Paris Carbone, and Philipp Haller

Cloud

Serverless

Stateful 
Serverless

- State 
- Failures

- Concurrency 
- Non-determinism

- Servers 
- Execution

- Resource 
management

VMs
Containers

Deployment

FaaS

Abstraction- 
level

Developer 
experience- 

level

+

- +

-

Libraries

Fig. 1: Levels of abstraction for distributed programming.

to dataflow programming and the actor model [18,17,29,63,61,53,62,47]. We re-
fer to these as actor-like programming models for serverless computing, this can
also be referred to as stateful serverless.

These stateful serverless programming models are an abstraction of the un-
derlying computing infrastructure. Conceptually, we can represent the abstrac-
tion levels of utility computing for distributed applications as a step-ladder, as
shown in Figure 1, ranging from low-level cloud resources to abstract, virtualized
applications.

In this representation, stateful serverless is on the third layer, aiming to
abstract away application state and masking failures, providing abstractions
for deploying failure-free stateful functions with powerful compositional prim-
itives. The stateful serverless layer provides powerful abstractions for building
distributed applications and is used increasingly to build libraries or compose
stronger abstraction levels (e.g., level 4, abstracting from concurrency and non-
determinism). In contrast to lower layers, it abstracts away failure and state
management, which are difficult to get right.

This paper surveys actor-like programming models for serverless comput-
ing. The purpose is to provide a background on the development of these mod-
els; provide a characterization thereof; describe their challenges with respect
to a serverless execution (state management and fault tolerance); highlight the
similarities and differences of popular implementations; and provide an outlook
on research directions. For this purpose, we survey eight implementations in
detail [18,17,29,63,61,53,62,47], and include other relevant works in the whole
analysis. In particular, we find three key enabling principles for their serverless
execution to be of importance: they are virtualized, decoupled; they are data-
parallel; they are slightly less dynamic than traditional actors.

Recent surveys have studied serverless computing [22,12,42,36,26,49], the ac-
tor model [43], the active objects model [14], and other related fields [11,50].
In contrast to surveys on serverless computing [22,12,42,36,26,49], the presented
analysis puts more focus on the programming model and its properties. Actor
systems have been studied extensively [43], whereas this survey sheds more light
on properties at the intersection of actors and serverless such as per-key execu-
tion semantics, fault tolerance, and execution guarantees. Similarly, this applies
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also to active object languages [14]. Reactive programming [11], and vertex-
centric programming [50], also share some similarities with the discussed topics
here, yet they lack some of the dynamic messaging properties of actors.

The rest of this paper is structured as follows. In section 2, we provide a
background on the development of the actor model, active object model, dataflow
processing, serverless, and actor-like serverless models. Section 3 discusses the
main challenges of programming systems for stateful serverless computing. Next,
in section 4, we analyse the distinctive characteristics of these systems, and
compare their properties with respect to programming model (subsection 4.1)
and serverless execution (subsection 4.2). Finally, we outline promising research
directions (section 5), and provide a conclusion (section 6).

2 Background

This section provides a background on the development of actor-like program-
ming models in the context of serverless computing, traced back to Actor and
Active Object systems, Dataflow platforms, and Functions-as-a-Service (FaaS).
To that end, Figure 2 presents a timeline of related systems in their respective
areas. We discuss the main directions in more detail with the aim to identify
distinct characterizations and their development.

2.1 Actors

The Actor Model is a programming model for distributed, concurrent program-
ming. It was invented in 1973 by Carl Hewitt [39], originally as a formalism for
reasoning agents (in the context of artifical intelligence) and distributed par-
allel computations [38]. Additional significant work on the Actor Model was
performed by Gul Agha, who provided a semantic formalization [3], and pro-
posed the model as a “framework for concurrent systems” [1]. Since then it has
seen a myriad of implementations with heavy industry adoption [43]. Notable
actor implementations include Erlang [9], Scala Actors [34,33], Akka [46], and
Pony [24].
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In essence, an actor is a concurrent object that can perform three different
actions [2]: 1) create other actors; 2) message other actors; and 3) modify its
state (or behavior) for the next received message. This style of actor corresponds
to the non-virtual actor in Figure 3a: an actor consists of an executing thread,
mailbox, state and behavior.

A key principle of actor execution is the “isolated turn principle” [43], that
is, the processing of a message by an actor (i.e., a turn) can be viewed as a single
isolated step. This is because actors do not share state, and actors process one
message at a time. As a result, reasoning about concurrent actor programs is
simplified. Another key property of actor systems is their hierarchical supervision
for failure-management, which greatly influenced the design of fault-tolerant
systems [8].

The actor model was later, in 2011, adapted for cloud programming in pi-
oneering work on the Virtual Actor model (Figure 3b) in Microsoft’s Orleans
framework [18,13] (created at Microsoft Research). This influential work pro-
posed three core distinctions: 1) actors are virtual, i.e., they always exist, they
are not created; 2) the framework manages the actor life-cycle, i.e., actors are
activated on-demand (and passivated when there is no demand), and transpar-
ently recover from failures; and 3) actor references are virtual (logical), i.e., they
can be created and serialized, and are always valid. Importantly, a virtual actor’s
virtual identity consists of a type/class tag and a key: identity = type + key.
With this new identity, multiple actor instances (one for each key) can exist for
the same type of actor, enabling a form of data parallelism. As a result, virtual
actors are suitable for the cloud setting, and have consequently been adopted
and further extended in the cloud and serverless realm [17,29,46,56,63,61,47].
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Actor Model characterization:

– Actor-to-actor communication
– Stateful computation
– Dynamic topology: actors can create new actors; actors can create

new connections

The Actor and Virtual Actor models share similarities with other models. The
Active Object model [65] is closely related to the Actor Model, and is discussed
in the next section. The Virtual Actor model bears much similarity with the
Entity model developed by Pat Helland in 2007 [35]. In fact, many incarnations
of the virtual actor model bear the name entity [17,46,56].

2.2 Active Objects

The Active Object model is an object-oriented concurrent programming model
which evolved from the actor model and was developed in 1986 for the program-
ming language ABCL/1 [65]. The model consists of active objects with a single
thread of control and local state, which interact through asynchronous method
calls [14]. These method calls usually return a future of the return value (implic-
itly or explicitly). Within the method, the active objects can suspend and wait
(await) for a guard (i.e., a conjunction of futures or boolean expressions) to be
satisfied [32]. Important systems in this space include the ABCL/1 language [65],
the ABS language [41,32], ASP/ProActive [21,10], Rebeca [60], JCoBox [59], and
Encore [15], providing a spectrum of implementations and flavours.

The active object model can be understood as an integration of object ori-
ented concepts with the actor model [14]. This allows for compositional object-
oriented program constructions through the supported interface abstractions.
Still, there are notable differences. Method calls to active objects are statically
guaranteed to be executed. Whereas in the actor model, the actor’s behavior
and its implicit interface may change dynamically such that a message is ig-
nored. Method calls in the active object model, moreover, are tightly integrated
with futures [65], whereas futures are optional features in actor systems. One
such example is future forwarding (avoiding creating nested futures), and fu-
ture sharing [14]. Another example are nested blocking receives as available in
some actors models![34]. In contrast, active objects process further method calls
even when the called method was suspended. Overall, active objects have so-
phisticated mechanisms for process suspension and process scheduling beyond
the run-to-completion model of actors.

We can understand the term actor-like, for the purpose of this survey, to
encompass programming models that resemble the actor model and active object
model. In fact, Orleans [18,13], Durable Functions’ Entities [17], IBM KAR [63],
Ray [53], Cloudburst [62], and Kalix [47], resemble the object oriented style in
the active object model.
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2.3 Dataflow Processing

Dataflow Processing has become the de-facto standard for processing large amou-
nts of data. It defines computations as static, acyclic computational graphs. One
of the most influential early systems was MapReduce [25], developed in part as a
reaction to the complexity of managing computations over large data, dispersed
across thousands of machines. The MapReduce framework enabled computa-
tions to be programmed as sequences of Map/Reduce steps, introducing two key
innovations. Firstly, the framework fully managed fault tolerance. If any ma-
chine failed, it would recover and redo any lost computations. As a result of
this, the system guaranteed exactly-once processing: meaning, that everything
was processed and delivered exactly once, or, in other words, the system be-
haved observably equivalent to a failure-free execution [61,17]. Failures, in effect,
became completely transparent to the user; a hallmark of dataflow processing
systems. Providing exactly-once processing out-of-the-box was a great relief for
the programmer because of how notoriously difficult it is to implement man-
ually. Secondly, the computations were performed over data sharded by their
keys. This enabled data-parallelism by distributing the computation such that
data/events for the same keys were processed by the same computing nodes
using local state.

Subsequent dataflow processing models have inherited much from MapRe-
duce, such as the vertex centric model [50], Apache Spark [66], Apache Kafka [45],
Apache Flink [20], Google Dataflow [5], and Naiad [54]. While these frameworks
have improved in terms of performance as well as expressiveness, they still ad-
here to the same characteristics as MapReduce did: they provide transparent
fault-tolerance (typically, a distributed two-phase commit); and computations
occur over a per-key context.

Dataflow Processing characterization:

– Transparent fault-tolerance, exactly-once processing guarantees
– Scalability, data-parallelism, computations over a per-key context
– Static, directed acyclic computational graphs (DAGs)

2.4 Functions-as-a-Service (FaaS)

Serverless computing would come to offer even more convenience for develop-
ing scalable and distributed services: a fully-managed runtime that would exe-
cute Functions-as-a-Service (FaaS). These services are specified by two compo-
nents [22]: 1) the functions which are to be executed; and 2) the types of events
that trigger the functions. These functions are executed on a serverless platform:
the code is run on-demand, the billing is only per-use, abstracting away any of
the servers and infrastructure from the user [22]. The computing model no longer
requires manual provisioning of virtual machines or servers (hence, “serverless”),
instead, the serverless platform fully manages the execution.
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The major cloud vendors started adopting this new trend [12], with AWS
Lambda [6] introduced in 2014, and other similar services right after [49] (Azure
Functions [51], IBM Cloud Functions [40], Google Cloud Functions [31]).

Functions-as-a-Service are typically restricted to stateless functions with lim-
ited composition beyond step-like workflows, which are commonly cited chal-
lenges with serverless computing [12,36,42]. In reaction to this, recent program-
ming models have started to support stateful serverless applications with more
flexible communication and composition primitives [53,29,4,62,17,63,61,56,47].
These models utilize abstractions closely resembling actors, active objects, enti-
ties, and virtual actors.

Functions-as-a-Service (Serverless) characterization:

– Stateless functions triggered by events
– Elastic scalability, code is run on-demand, billing is per-use
– Fully-managed runtime/platform

2.5 Actor-Like Serverless Computing

Actor-like programming models for serverless computing, sometimes also referred
to as stateful serverless, are a combination of actor, dataflow, and serverless prin-
ciples; they provide the flexibility of stateful computations with actor-to-actor
communication; together with the fault-tolerance and data-parallel scalability of
dataflow processing; with the serverless, fully-managed execution platform, run
on-demand.

These combinations require the virtualization (decoupling) of the follow-
ing components: function, compute, state, and event queue (mailbox) (see Fig-
ure 3b). Similarly to FaaS, the functions can be considered stateless: the func-
tion signature has both a stateful context and an event as parameters: F:

Ctx => Event => Unit. The provided context Ctx gives the function access
to state (Ctx.state) as well as the capabilities to interact with its environment
(e.g., Ctx.send). This decoupling, in turn, enables the on-demand scalability
through replicating the functions and migrating state, and the transparent fault-
tolerance through capturing any side-effects in terms of state and events from
the context.

Systems in this space have adopted some of these new principles. The Virtual
Actor model in Orleans [18,13], created at Microsoft Research, provided many of
these features but lacked strong fault-tolerance guarantees such as exactly-once
processing, or a fully-managed platform. Ray [53] and Cloudburst [62], incor-
porated actor principles with serverless (FaaS), forming decoupled (non-virtual)
actors with automatic failure recovery providing at-least-once (and, tunable,
at-most-once) guarantees. Another direction towards stateful functions, as seen
on Flink [29,4], merged principles from dataflow processing with actors: scal-
able, data-parallel, stateful functions with function-to-function messaging and
exactly-once processing guarantees.
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Listing 1: A bank account entity that can get, deposit, withdraw, and transfer.

1 class Account(ctx: Context):
2 val balance = PersistentState[Int](ctx).withDefault(0)
3

4 def get(): Int =
5 balance.get()
6

7 def deposit(amount: Int): Unit =
8 balance.set(balance.get() + amount)
9

10 def withdraw(amount: Int): Unit =
11 balance.set(balance.get() − amount)
12

13 def transfer(amount: Int, to: String): Unit =
14 val otherAccount = EntityRef[Account](ctx).withKey(to)
15 if balance.get() > amount then
16 balance.set(balance.get() − amount)
17 otherAccount.deposit(amount)

More recently, proposals for stateful serverless programming models have
emerged, merging actors, dataflow processing, and serverless, enabling the writ-
ing of stateful services with powerful compositional abstractions, while providing
exactly-once processing guarantees. Notable systems include Microsoft’s Durable
Functions [17], IBM KAR [63], Portals [61], Stateful Entities [56], and Kalix [47].

An example entity representing a bank account is shown in Listing 1 in a
style inspired by various systems [18,17,47,61,56,63,29,4]. It shows a bank ac-
count class that takes the runtime context as a parameter in its constructor
(line 1). The runtime context is used to provide access to the side-effects of the
entity: the state and the outgoing messages. The persisted state of the entity
is explicitly declared on line 2, representing the account’s balance with initial
value 0. The entity defines methods, for getting, depositing to, and withdrawing
from the account. It also defines a method for transferring an amount from the
account to another account. Creating a reference to the other account (receiving
the transfer), is achieved through the EntityRef factory, which takes the runtime
context as well as a parameter for the other accounts key (line 14). This way a
reference can be created, and later used for depositing the transferred amount
(line 17). This example highlights some of the features of entities: the persistent
explicit state, and the per-key identity. Note that the balance is not shared be-
tween different keys, rather, every key has its own balance value. The example
also highlights potential issues due to the asynchronous nature of the method
invocations on these actors: concurrently issued withdraw invocations may cause
an overdraft on the account. In order to overcome this, some transactional mech-
anisms or similar would be needed.
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Characterization In general, we would characterize these actor-like serverless
systems through five characteristics.

Actor-like serverless computing characterization:

1. Actor-like (Virtual Actors, Entities)
2. Data-parallel, keyed, scalable
3. Transparent fault-tolerance, exactly-once processing
4. Decoupled / externalized state, virtualization
5. Serverless execution, managed runtime

The execution model of serverless actor-like systems resemble the isolated
turn principle [43] from actors with an additional per-key execution context: the
execution of actors can be thought of an execution over isolated turns, in which
a turn consists of an actor instance, identified by its type and key, consuming
a message from its mailbox (mailboxes are disjoint over keys), executing the
statements in the behavior, and possibly producing output messages and/or a
state/behavior change. These turns are executed serially for a key, so that no
two events are processed at the same time for a given actor type and key.

3 Challenges of Serverless Actors and Active Objects

Stateful serverless programming aims to provide several desirable properties
which, in combination, are challenging without sacrificing the fault tolerance,
flexibility, or performance. In particular, the following properties are essential:
(a) serverless state management, enabling the provisioning of compute resources
on demand; (b) fault tolerance with corresponding execution guarantees, provid-
ing the illusion of a failure-free execution in the presence of faulty computers and
networks. In the following, we discuss the challenges of providing these properties
in the context of actor and active object languages.

3.1 Serverless State Management

Serverless computing abstracts from the underlying computing infrastructure,
providing load-based scaling of computing resources on demand. The automatic
provisioning of compute resources affects the state management of the program-
ming system. To illustrate some resulting challenges, consider the example shown
in Listing 1. Suppose the deposit method of an Account is called by a different
entity. When the deposit method is invoked on an entity reference, the cor-
responding entity instance must be activated on a suitable compute resource
(e.g., a virtual machine running in a data center). Note that we cannot assume
that the entity instance is already loaded into the memory of a specific vir-
tual machine. Instead, load-based scaling requires dynamically loading/activate
a varying number of entity instances into a varying number of compute nodes.
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Listing 2: An account entity with a guard on its withdraw method (replacing
the withdraw method for the account entity from Listing 1).

1 class Account(ctx: Context):
2 ... // (see Listing 1)
3 val balance = PersistentState[Int](ctx).withDefault(0)
4 def withdraw(amount: Int): Unit =
5 await balance.get() >= amount
6 balance.set(balance.get() − amount)

Likewise, in case demand for requests to certain entities drop, it must be possi-
ble to passivate entity instances by persisting their state to stable storage and
deallocating their memory. This means that all state of an entity must sup-
port serialization and the runtime system must be able to manage this state to
support automatic passivation and activation.

Passivating the state of an entity is challenging in cases the programming
model supports guards (e.g., ABS [41]), or blocking receive statements (e.g., Er-
lang [9]). To illustrate this, consider the withdraw method in Listing 2. On line
5, an ABS-style guard, await balance.get() >= amount, ensures that any call
is suspended until the guard evaluates to true, ensuring a non-negative balance.
This means that passivated entities might contain suspended calls. For this rea-
son, the suspended calls and their execution state must be passivated as well, so
that they subsequently can fully restore the suspended calls and be activated.
Depending on the concrete programming model, execution states of suspended
calls might consist of coroutines (e.g., ABS [41], JCoBox [59]) or stackful contin-
uations which are challenging to serialize (e.g., due to embedded, non-portable
memory addresses). In case the execution state of a suspended call or a suspended
receive statement consists of just a continuation closure (e.g., Scala Actors [34]),
it is possible to support safe serialization using Spores [52] or other constructs
that ensure the serializability of a closure’s environment. For the reasons men-
tioned above, it is challenging to support the passivation and activation of actors
and active objects in the context of serverless.

3.2 Fault Tolerance

Building distributed systems, i.e., applications executing across multiple inter-
connected computers, requires handling faults such as machine crashes and unre-
liable or disconnected network connections. Consequently, distributed program-
ming systems have long supported this through abstractions and constructs for
fault handling. For example, Erlang’s constructs for actor monitoring and su-
pervision have been used successfully for building highly available distributed
systems in the telecom industry [7]. Despite this, building distributed systems
that completely mask failures has remained challenging, except for restricted
computation patterns and system architectures (e.g., Dataflow Processing).
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The challenges of providing transparent fault tolerance in the context of ac-
tors and active objects are due to the combination and interplay of the following
dimensions.

Stateful computation. To enable recovering from faults, mutable state must
be distributed across multiple replicas running on different computers. These
replicas must be synchronized whenever the state is updated. Furthermore, state
updates must be transactional: recovering from faults must not inadvertently
repeat a state update that was already applied.

Non-deterministic behavior. General concurrent programming models, such
as active objects and actors, support writing non-deterministic programs. For
example, when two concurrent active objects each call a method on a third ac-
tive object, the two method calls are concurrent and thus their execution order is
non-deterministic. In general, the behavior may also include non-deterministic
computations, such as random number generation or the use of local time/-
clocks. Supporting non-determinsitic behavior in fault-tolerant systems is chal-
lenging, since computations might have to be re-executed when recovering from
faults. However, re-executing non-deterministic code can change the outcome of
computations, thereby failing to provide the illusion of a failure-free execution.
Supporting non-deterministic behavior thus requires the use of implementation
techniques that do not make use of re-execution (such as rollback-recovery [28]),
or logging all sources of non-determinism [30], making state management more
complex and potentially increasing runtime overhead. This is further compli-
cated by the dynamic topology of actor systems.

Interaction with external systems. In practice, distributed systems typically
interact with various external systems, such as database management systems,
distributed file systems, message queues. Requests submitted to external sys-
tems must not be tentative (and subject to potential rollback recovery); since
such requests, in general, cannot be undone, they can only be submitted if the
present system ensures that they are never going to be repeated, even during
fault recovery.

Due to the above challenges, some stateful serverless programming systems
trade flexibility for fault-tolerance guarantees. For example, instead of providing
Exactly-Once Processing, some systems only provide At-Most-Once or At-Least-
Once fault-tolerance guarantees. The latter significantly increases the complexity
of the programming model, since events need to be either idempotent or dedupli-
cated manually. On the other hand, At-Most-Once requires dealing with dropped
events without support from the programming system. Although there are no
fundamental limitations to execute the classic actor and active object model
serverlessly, doing so comes at a tradeoff between the expressiveness, guaran-
tees, performance, and cost of the model. The next section will explore various
systems to highlight their variations among these dimensions.
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4 Analysis of Actor-Like Serverless Systems

In this section we analyze the properties of a selection of systems at the inter-
section of actors, dataflow processing, and serverless. The analysis is structured
around two questions. First, we analyze their specific properties with respect
to the programming model. Second, we analyze their properties with respect to
serverless execution. The purpose is to give an overview of similarities and dis-
similarities between the programming models and implementations. The systems
under survey are the following.

– The Orleans system [18,13], pioneering the virtual actor model.
– Durable Functions’ Entities [17,16], virtual actors that can be used together

with other abstractions such as Orchestrations and Activities within Mi-
crosoft’s Durable Functions framework.

– Apache Flink Stateful Functions [29,4], an abstraction of virtual actor-like
stateful functions running on Apache Flink, independently developed by dif-
ferent groups [29,4].

– IBM KAR [63], a polyglot scalable and fault-tolerant virtual actor system.
– Kalix [47], a serverless platform for deploying microservices consisting of

entities, actions, and views.
– Portals and Portals’ Actors [61], a research project and programming model

which unifies the actor model with the dataflow processing model.
– Ray [53], a framework for scaling actor-like computational tasks, focused on

reinforcement learning.
– Cloudburst [62], a stateful functions research project which leverages CRDT

state for its execution.

Although not all systems fit the characterization from section 2.5, e.g., through
a lack of a fully-managed platform with per-use billing, they are included in this
survey as they are closely related and provide valuable insights.

4.1 Programming Model

We analyze the programming models of the systems across three categories: actor
style; communication; and state and computation. The analysis is reflected in
Table 1.

Actor Style. The actor-like systems can be divided into two groups based on
their style: virtual; and non-virtual (see Table 1). These two groups differ quite
uniformly over the properties in our analysis.

Life-cycle. Virtual actors have a virtual life-cycle, they exist by definition
rather than through creation. Non-virtual actors, in contrast, exist through cre-
ation.

Identity and References. Identifying a virtual actor is achieved through a
virtual identity. Virtual actor references are constructed from identities using
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Table 1: Programming model properties.
Dyn. Topology (Int/Ext)

Actor Style Application Comm. Ext. State Fault-Transp.

Orleans virtual ✗ / ✓ ✓ / ✓ ✓ ✓-
Durable Functions virtual ✗ / ✓ ✓ / ✓ ✓ ✓

Flink StateFun virtual ✗ / ✓ ✓ / ✓ ✓ ✓

IBM KAR virtual ✗ / ✓ ✓ / ✓ ✓ ✓-
Kalix virtual ✗ / ✓ ✓ / ✓ ✓ ✓-
Portals virtual ✗ / ✓ ✗ / ✓ ✓ ✓

Ray non-virtual ✓ / ✓ ✓ / ✓ ✓ ✓-
Cloudburst non-virtual ✓ / ✓ ✓ / ✓ ✓ ✓-

factories. The virtual actor references are not strictly always valid when refer-
ences can be forged from nonsensical user-provided strings [29,17,63,47]: if there
is no corresponding actor definition for the provided string then this may cause
a runtime error. Other systems ensure that references are valid either through
compilation checks [61] or through reference factories constructed from exist-
ing actor types [18]. Non-virtual actors, in contrast, have references bound to
lifetimes, which become invalidated if the referenced actor ceases to exist [53,62].

Actor Topology. The topology consists of the actors and how they are con-
nected. We distinguish between Application and Communication topologies. The
application topology consists of the actors, i.e., if actors can be created and de-
stroyed. The communication topology is the set of connections between actors,
i.e., if new connections can be formed, through exchanges of actor references. On
another dimension, we also distinguish between Internal and External changes.
Internal changes are triggered by the actors themselves, e.g., an actor creat-
ing another actor; External changes are triggered by an outside force, e.g., the
driving application creating new actors or creating new connections (dynamic
reconfiguration). The non-virtual actor systems are dynamic in all four cases
(Table 1) [53,62]. The virtual actor systems, in contrast, have dynamic commu-
nication topologies, and partially dynamic application topologies (actors cannot
create new actors, but the external force can do so) [18,17,29,63,61,47]. All of
the systems have first-class references. The Portals system is an exception, it
restricts actors from creating new connections dynamically through exchanging
references; actor references are only usable by actors with the right capabilities,
these capabilities are assigned statically through the actor definitions [61].

Communication. Actors communicate by exchanging messages either in the
form of message sends or method calls (cf., actors / active objects [43]) (see
Table 2). Out of the selected systems, five had method-based communication,
and three had message-based communication. The difference between the two
is mostly syntactical, and some systems even provide both styles of interfaces
for the actor communication [17]. For this reason we will not further distinguish
between these interfaces; we will consider a Method Invocation to correspond
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Table 2: Communication properties.
Msg Ops Msg Futures Futures Retrieve Ops

Orleans Send, Call, Reply ✓ Tunable
Durable Functions Send, Reply- ✗ -
Flink StateFun Send, Reply ✗ -
IBM KAR Send, Call, TailCall, Reply ✓ Blocking
Kalix Send, Call, Reply, Forward - -
Portals Send, Call, Reply ✓ Non-blocking
Ray Call, Reply ✓ Blocking
Cloudburst Call, Reply ✓ Blocking

to a Send operation if it does not return a value, and to a Call operation if it
returns a future of the return value. Similarly, we consider Return to correspond
to the Reply operation.

Message Operations. All systems support the Send and Reply communication
primitives. The exception, here, is Durable Functions [17], which can only reply
to calls from Orchestrations. The TailCall primitive supported by IBM KAR,
is for orchestrating guarantees across a chain of invocations: the previous call
has to have finished/committed before the subsequent calls in the tail call are
executed [63]. This can be used for higher fault-tolerance guarantees beyond
what is provided. The Forward call in Kalix is a special operation which can
forward a replyable message to another service [47].

State and Computation. The serverless computing paradigm is built on the
decoupling of execution from side-effects and state. The programming models all
provide explicit external state abstractions for this (Table 1), accessible through
either a KV store-like interface [62,63], an object-store [53], or typed coarse-
grained [18,47] or fine-grained [61,29,17] factories/annotations. Local variables,
in contrast, do not survive a crash or migration, and are re-initialized upon
activation of the actor.

Shared Memory. Although uncommon in actor-like abstractions, we found
some instances of shared memory. Ray [53] has shared memory in the form of
an external immutable first-writer-wins object store with distributed futures.
Cloudburst [62] functions, on the other hand, share access to an eventually con-
sistent key-value store, with additional mechanisms to enforce causal session
consistency. Kalix [47] has replicated entity types backed by CRDTs which can
be used as a form of highly available replicated shared state.

Concurrent Processing & Futures. Most systems provide futures for messag-
ing and awaiting the completion of futures as a concurrency abstraction (see
Table 2). An exception is Durable Functions [17] which does not provide futures
for their Entities but for the Orchestrations. Similarly, Kalix supports futures
(async effects) on Actions with operations reminiscent of chaining futures [47],
it was unclear if this also applies to Entities, for this reason the entry was left
blank. Flink Stateful Functions [29] provides futures for asynchronous opera-
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tions, but not for asynchronous message calls expecting a reply. In the table,
we only consider futures that are created from inter-actor messages / method
invocations.

While the actor model is traditionally continuous and non-blocking (re-
entrant) to ensure liveness [43], processing an await command on a future forces
the system to choose between blocking or re-entrant execution. The Blocking
mode blocks the execution of further events of the same key until the await
command completes [63,53,62]. Whereas the Re-entrant mode interleaves the
processing of subsequent events before the await command has completed, en-
abling increased concurrency and avoiding potential issues associated with block-
ing [29,61]. This choice is also a tunable setting in some systems [18]. Further,
IBM KAR provide a mode for re-entrant execution for method calls on itself
with the same session-id [63].

Failure Transparency. Failure transparency enables the developer to write ap-
plications without having to reason about certain failures (Table 1). The system
is completely failure transparent if it provides exactly-once processing (marked
as ExO in Table 3): the application does not have to manage anything related to
failures [17,29,61]. If the system is partially failure transparent, that is, it pro-
vides at-most-once/at-least-once guarantees and some failure support (marked
as AMO/ALO), then the application must manually perform certain actions for
failure tolerance. For example, Orleans [18] and Ray [53] provide methods for
asynchronously persisting and reading state, and it is up to the developer to
implement it for the required guarantees. Whereas IBM KAR [63], Kalix [47],
and Cloudburst [62] automatically retry function invocations (at-least-once), and
the developer must ensure that the function is idempotent. For these reasons,
exactly-once processing make programs significantly easier to write and reason
about.

4.2 Serverless Execution

In this section we analyze properties related to the serverless execution and
runtime. The analysis is structured around four categories: fault-tolerance; state
management; scalability; and platform management (Table 3).

Fault Tolerance & Guarantees. Fault-tolerance guarantees are crucial for
distributed systems, commonly expressed as one of the following: Exactly-Once
(ExO), At-Most-Once (AMO), and At-Least-Once (ALO) (Table 3). Out of
these, Exactly-Once is the strongest guarantee, guaranteeing that every event
is delivered and processed exactly-once, implemented by three of the studied
systems [17,29,61]. Exactly-once can also be regarded as observably failure-free,
that is, the execution, and what is observed by the user, behaves as though it is
failure-free. This greatly simplifies reasoning about distributed programs, elimi-
nating the need for manual deduplication and the need to ensure that functions
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Table 3: Serverless execution properties.
Proc. Guarantees State Parallelism Plaftform Mgmt

Orleans AMO/ALO Ext Data ✗

Durable Functions ExO Embedded Data ✓

Flink StateFun ExO Ext Data ✓

IBM KAR ALO Ext Data ✗

Kalix ALO Ext Data ✓

Portals ExO Embedded Data ✗

Ray AMO/ALO Ext Task ✓

Cloudburst ALO Ext Task ✗

are idempotent. At-Most-Once, in contrast, guarantees that every event is de-
livered and processed at most once (failed invocations are not retried); whereas,
At-Least-Once, guarantees that every event is delivered and processed at least
once (failed invocations are continually retried until success). The choice between
the latter two may be tunable in some cases [18,53], whereas others only provide
At-Least-Once semantics [62,63,47].

Failure-Recovery. Failure-recovery enables the system to effectively mask fail-
ures such as crashes or message loss from the observed execution. The exactly-
once processing systems [17,16,29,19,61] use a checkpointing and recovery strat-
egy [28]. This approach involves the system periodically creating checkpoints
that comprise: 1) the actor state; and 2) the event queues. In the event of a
failure, recovery proceeds by restarting the actors from the most recent check-
pointed state and replaying events from the last checkpointed event queues. The
challenge of establishing consistent checkpoints lies in taking causally-consistent
snapshots of the system. This is done in Flink [19] and Portals [61] with a snap-
shotting protocol similar to the one presented by Chandy and Lamport [23]. In
the Netherite runtime for Durable Functions, in contrast, a distributed snapshot
is avoided by isolating the processing nodes and blocking events from being ob-
served until they have been committed [16]. Other implementations that do not
provide exactly-once processing guarantees restart from the latest checkpointed
state, but may potentially replay events more than once (at-least-once), or drop
events (at-most-once) [18,63,62,53,13,47].

State Management. The runtime necessarily manages the state in order to en-
sure strong fault-tolerance guarantees. This state is either external, i.e., primar-
ily on some external storage, cached locally for quicker access [18,63,53,62,47];
or embedded, i.e., hosted in-full locally on the computing nodes, and persisted
externally for durability (Table 3). There is a trade-off between the two. Exter-
nal state offers a higher decoupling, making it easier to scale up and down, as
external state does not need to be migrated during reconfiguration. Embedded
state, on the contrary, yields higher processing throughput and lower latency for
stateful computations [17,16,61].
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Scalability and Parallelism. All systems under discussion offer elastic scala-
bility, enabling the runtime to flexibly scale up or down in response to demand.
In this context, two forms of parallelism emerge (Table 3). The Non-Virtual
Actors frameworks facilitate task-level parallelism. This is achieved by spawn-
ing new actors assigned to perform specific tasks and subsequently terminating
them upon task completion. The Virtual Actors frameworks, on the other hand,
support data-level parallelism, as a single actor definition is applied to many
events but over different keys.

Platform Management. Platform management entails managing all aspects
related to the runtime and the servers. That is, the user should only need to
supply the stateful functions definitions and event triggers, and the platform
should manage everything else, billing per-use. Of the selected systems, only
Durable Functions [17] and Kalix [47] are purposefully built for that (Table 3).
Concerning the other systems, both Flink (the Ververica Platform) and Ray (the
Anyscale Platform) have hosted platforms available.

4.3 Related Work

This section concludes the analysis through summarizing other systems that were
not included in the main analysis. Data-Parallel Actors [44] is a research project
for writing data-parallel query systems, it is used to distribute otherwise non-
distributed systems, such as databases and analytics systems. It does so by using
an actor-like abstraction, which manages a partition of the wrapped system, for
which the data-parallel actor must serve user-defined composable queries over
the partitioned data, such as Map, FlatMap, Scatter, Gather ; these queries ap-
ply to all partitions. Crucial [55] is a stateful serverless system for programming
parallel applications. It executes on top of existing FaaS platforms, and pro-
vides a shared memory abstraction for fine-grained synchronization primitives
and sharing larger state which can be used by the deployed functions. It exe-
cutes on existing FaaS infrastructure with at-least-once guarantees. Beldi [67]
enables writing fault-tolerant stateful serverless functions. It does so by pro-
viding primitives for consistently reading and writing from a shared memory,
for transactional workloads with locking and transactions, and invoking other
functions from within the function. It provides exactly-once processing guaran-
tees using existing FaaS frameworks together with a strongly consistent storage
provider. A.M.B.R.O.S.I.A. [30] is a system for transparent fault-tolerant non-
deterministic applications. Ambrosia services are executed by actor-like abstrac-
tions called “immortals” using event sourcing and replay recovery for exactly-
once guarantees, for which non-determinism are captured through impulses. For
a replay to recover to a consistent state, it is important that the application
adheres to a “weak language binding contract”: from some state, any execution
of inputs must result in an equivalent final state, outgoing events must be for the
same destinations and in the same order, but may differ in content. AEON [57]
is a scalable and elastic actor framework which guarantees strict serializability
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for events across actors using an ownership hierarchy. In follow-up work [58], the
runtime is extended with programmable elasticity policies. The ABS model [41]
has been used in the context of modelling distributed computing models, for
example Spark Streaming [48], and Kubernetes deployments [64], making use of
suspending guards for expressing the logic.

5 Research Directions

In this section we highlight some research directions with actor-like models for
serverless computing.

Static guarantees, formal proofs. There are two main challenges with deploy-
ing serverless actor-like models: 1) ensuring that the user application is statically
sound, and 2) ensuring that the runtime is fault-tolerant. For the first, a com-
mon error in user code is due to user-defined functions capturing non-serializable
state from the environment [52]. This may cause errors which are hard to de-
bug due to the distributed execution, and consequently crash. This and similar
issues, such as well-typed channels, existing dependencies, may be caught stat-
ically at compile-time, and thus prevent the user from deploying the applica-
tion. For the second challenge, it is important to provide formal proofs for the
fault-tolerance guarantees. There has been some work in this area proving the
failure-guarantees [63,17]; future research efforts should focus on formally prov-
ing more implementations, and providing new proof-techniques and frameworks.
Beside formal proofs, it is also an important research direction to continue the
exploration of fault-tolerance mechanisms used in this context.

End-to-end exactly-once processing with external systems. Distributed sys-
tems are rarely used in isolation. Especially the types of systems presented in
this survey are likely to be used together with other services. For this reason
it is important to ensure that certain guarantees, such as exactly-once pro-
cessing, are provided end-to-end, across the external systems. The problem,
however, is that the side-effects to external systems are typically not tracked
by the system itself. In the context of dataflow processing, end-to-end guar-
antees are achieved through using transactional sinks, for example, connecting
Flink [20] and Kafka [45]. Similarly, Portals suggests connecting external sys-
tems via atomic streams (transactional streams) for preserving the end-to-end
guarantees [61]. More research in this area is warranted, both formal proofs
and abstractions, as well as implementations and primitives for interacting with
external systems.

New abstractions and primitives. First, the presented actor-like abstractions
may not be suitable for all types of applications. This is especially problem-
atic as the serverless paradigm restricts the application developer from imple-
menting their own core abstractions. Examples include the Orchestrations in
Durable Functions used for orchestrating workflows with the capability to per-
form blocking calls to and transactions across entities [17]. Another abstraction
is a stateless function or actor as a way to distributed work in a task-parallel fash-
ion [18,17,47]. Second, new communication and compositional primitives can be



A Survey of Actor-Like Programming Models for Serverless Computing 19

explored. One example here, are data-parallel operations over actors [44], which
allow applying Map, FlatMap, Scatter, and Gather operations over all instances
of a data-parallel actor. Third, libraries present an interesting opportunity to
leverage the implementations and provide higher-level abstractions (e.g., level
four in Figure 1). Examples of this include numerous machine learning libraries
on top of Ray [53], transactional libraries for Orleans [27] and Flink Stateful
Functions [37], and streaming libraries [13]. Lastly, with the advancement of
machine learning models, the importance of incorporating robust model serv-
ing capabilities within serverless frameworks has grown. Exploring this avenue
presents interesting research opportunities.

6 Conclusion

This study has explored actor-like programming models within the context of
serverless computing by providing a background, extracting distinctive features,
outlining challenges, analyzing popular implementations within the field, con-
cluding with suggestions for research directions.

In this paper, the development of actor-like models for serverless comput-
ing is traced back to the roots of Actors, Active Objects, Dataflow Process-
ing, and Functions-as-a-Service, and presents a case for how merging principles
of these three fields are expressed in the actor-like stateful serverless program-
ming models as seen today: actor-like, virtual, data-parallel with decoupled state
and transparent fault-tolerance in a serverless execution model. The core chal-
lenges of implementing serverless actors are the serverless state management
and the fault tolerant execution. This includes managing the execution state of
suspended objects, and providing fault-tolerance of non-deterministic functions
in a dynamic environment. The analysis highlights similarities and differences
between the implementations. One important difference is the choice between
different fault-tolerance levels provided by the systems: at-least-once; at-most-
once; exactly-once, as it affects many aspects surrounding the programming
model and the implementation thereof. As future research directions, we sug-
gest further exploring methods for static guarantees, end-to-end fault-tolerance,
and new programming abstractions.

In summary, this survey of actor-like models in serverless computing has
revealed a diverse and evolving field. Further work in this field can make future
serverless systems more expressive and robust, resulting in more reliable and
efficient software.
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