
Portals: An Extension of Dataflow Streaming for
Stateful Serverless

Jonas Spenger
Digital Futures

RISE Research Institutes of Sweden &
KTH Royal Institute of Technology

Stockholm, Sweden
jspenger@kth.se

Paris Carbone
Digital Futures

RISE Research Institutes of Sweden &
KTH Royal Institute of Technology

Stockholm, Sweden
parisc@kth.se

Philipp Haller
Digital Futures

KTH Royal Institute of Technology
Stockholm, Sweden
phaller@kth.se

Abstract

Portals is a serverless, distributed programming model that
blends the exactly-once processing guarantees of stateful
dataflow streaming frameworks with the message-driven
compositionality of actor frameworks. Decentralized appli-
cations in Portals can be built dynamically, scale on demand,
and always satisfy strict atomic processing guarantees that
are natively embedded in the framework’s principal elements
of computation, known as atomic streams. In this paper, we
describe the capabilities of Portals and demonstrate its
use in supporting several popular existing distributed pro-
gramming paradigms and use-cases. We further introduce
all programming model invariants and the corresponding
system methods used to satisfy them.

CCS Concepts: · Software and its engineering → Dis-

tributed programming languages; Data flow languages.

Keywords: dataflow streaming, stateful serverless, exactly-
once processing.

ACM Reference Format:

Jonas Spenger, Paris Carbone, and Philipp Haller. 2022. Portals: An
Extension of Dataflow Streaming for Stateful Serverless. In Proceed-

ings of the 2022 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Soft-

ware (Onward! ’22), December 8ś10, 2022, Auckland, New Zealand.

ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3563835.
3567664

1 Introduction

Decentralized stateful applications support most of the criti-
cal services in use today. This includes financial data trans-
actions, transportation, e-commerce, healthcare, data mon-
itoring systems as well as gaming and social networking
services. Regardless of their importance, the programming

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567664

frameworks we have at our disposal are ill-equipped for
the complete, end-to-end job and often make compromises
that are detrimental to either processing guarantees, scalabil-
ity or programming flexibility. Thus, a great deal of mental
effort is necessary to compose complex decentralized ser-
vices with all guarantees and challenges in mind. Making
them fault-tolerant, scalable, with arbitrarily complex and
dynamic dependencies is a demanding multidisciplinary task
that falls at the hands of the developer today. In this work,
we investigate the potential of an all-encompassing solution
to the problem of building and running decentralized stateful
services that oversees the following challenges: I) process-
ing guarantees (i.e., exactly-once transactional processing,
live consistent updates), II) on-demand scalability and III)
compositional, intuitive programming semantics.

Existing programming technologies in use today partially
satisfy some, but not all, challenges behind decentralized
applications. The most dominant being distributed actor
frameworks [5, 9, 15, 25, 33, 41], serverless cloud program-
ming services (e.g. Function as a Service - FaaS [4]) and
dataflow streaming systems (e.g., Flink Streaming [12], Kafka
Streams [51], etc.). Actor frameworks such as Akka [33] offer
great flexibility in manually composing and scaling services
through direct actor communication and passing of actor
references. However, despite their ease of distributed pro-
gramming, actors do not offer any guarantees for stateful
processing, such as transactions and exactly-once process-
ing. Similarly, serverless programming services such as AWS
Lambda [4] were designed with simplicity of use and data-
driven scalability in mind, yet, they collectively lack stateful
processing semantics and guarantees.
On the other end of the spectrum, we are witnessing an

increasing number of applications and services developed on
top of dataflow streaming frameworks [3, 12, 42]. Dataflow
streaming systems gained popularity during the last decade,
and have met high adoption due to their exceptionally strong
reliability guarantees (challenge I). In the dataflow stream-
ing setting the dependencies between computational tasks
are explicit and this is therefore a trivial task. At the same
time, dataflow tasks can be executed in a parallel fashion
over sharded state using consistent hashing (challenge II).
These attributes make dataflow streaming systems a conve-
nient platform to write applications, at the expense of serious

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

153

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7119-5234
https://orcid.org/0000-0002-9351-8508
https://orcid.org/0000-0002-2659-5271
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

programming limitations. None of the dataflow streaming
systems currently in use provides support for cyclic data de-
pendencies or the ability to use nesting or delegation across
different application entities (challenge III). This hinders the
use of dataflow streaming systems beyond simple, non-cyclic
application deployments.
In this paper, we present a principled way to compose

applications, with strong guarantees and uncompromising
flexibility. Portals takes some of the most used communica-
tion patterns known in actor systems (e.g., request-reply, fu-
tures) and applies them in a generalized dataflow model that
is adapted to the modern needs of serverless programming
(challenge III). Applications in Portals can be built dynami-
cally by using and manipulating atomic streams of events, a
transactional variant of distributed streams. Atomic streams
are pre-discretized into distinct units of computation that
enforce atomic processing by design, which we call atoms

(challenge I). Portal’s workflows are computational graphs of
tasks that implement transactional microservices on atomic
streams using dataflow semantics. An additional benefit of
atomic streams is the ability to establish a serializable order
across selected events on demand, a new capability that has
not been explored in the past among dataflow systems.

Portals introduces several novel abstractions that greatly
simplify the programming of decentralized services with
complex communication patterns. To enable arbitrary nested
composition and rich actor-like message-based communi-
cation schemes we propose portals and reply streams. The
portal abstraction emulates direct, continuation-based event
handling logic of requests across workflows through im-
plicit atomic stream dependencies.Atomic streams enable the
transactional processing. All together, this enables seamless
compositionality, with dynamic scalability, and exactly-once
processing guarantees. In this paper, we further provide an
analysis of system needs and use cases that led to the cre-
ation of Portals , and present a set of microbenchmarks
that showcase the benefits in scalability as well as the costs
of atomic processing guarantees.

Contributions

• We present Portals, a programming model for com-
posing decentralized data-driven services. Our approach
combines key ideas from the stateful dataflow stream-
ing model with the following capabilities (section 3,
section 4):
ś Transactional processing guarantees across dataflow
programs and serializable event order via the use of
atomic streams and the atomic processing contract

(subsection 4.1), and serializable updates (subsec-
tion 4.5).

ś Cyclic and intuitive data-parallel service composi-
tion through the use of portals and reply streams

(subsection 4.4), and multi-dataflow deployments
(subsection 4.2).

• We show use cases of Portals applications (section 7):
Sagas, decentralized datalakes, complex event process-
ing, and GDPR-support. We also demonstrate the gen-
erality of the Portals model by showing how we can
model other distributed programming models in Por-

tals (i.e., MapReduce, BSP, Pregel, Virtual Actors).
• We have implemented a prototype of the model and
discuss its design (section 5), and evaluated the perfor-
mance of our implementation (section 6).

2 Motivation and Challenges

Dataflow streaming systems [3, 12, 42], actor systems [5, 9,
15, 25, 33, 41], and stateful serverless systems [7, 20] have
proven to be of great utility as witnessed by their widespread
use. The programming technologies in use today, however,
do not address all of the following required challenges (Ta-
ble 1).

2.1 Exactly-Once Processing Guarantees Across

Workflows

Exactly-once processing greatly simplifies the programming
model for the end user, and is typically expected of stateful
serverless systems (e.g., [8, 20]). The challenging aspect of
providing exactly-once processing, is that large ecosystems
of microservices typically span different deployments and
different systems (decentralized, Table 1), over which we
need to provide end-to-end guarantees.
Dataflow systems [3, 12, 42] can provide exactly-once-

processing guarantees, but not for the composition of multi-
ple decentralized dataflow pipelines. End-to-end guarantees
overmultiple pipelines are non-trivial and usually tackled via
externally connected persistent queues, such as Kafka [51]
or Pravega [53]. Actor systems, on the other hand, offer
no built-in processing guarantees, making the problem of
exactly-once-processing a developer responsibility. Comm-
mon approaches to providing end-to-end exactly-once pro-
cessing guarantees on an actor system such as Erlang [5]
or Akka [33] typically fall back to logging and filtering. For
example, most actor applications rely on event-sourcing [21]
the actors, which also entails deduplicating channels be-
tween the actors. In contrast, stateful serverless provides
decentralized exactly-once processing [7]. The problem be-
comes difficult to manage due to cyclic dependencies that
may be formed outside of the system. That is, certain fault-
tolerance protocols that only work on acyclic dependency
graphs may no longer work [11], and other protocols may
result in unbounded rollbacks [18].
We propose Atomic Streams as a principled solution for

decentralized exactly-once processing (subsection 4.1). The
core idea is that the atomic processing contract enforces end-
to-end fault tolerance over participating applications by im-
posed transactional processing.

154

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

Table 1. Feature comparison across existing distributed programming models and Portals.

Distributed Programming Patterns Guarantees Distributed Execution

Cyclic

Dependencies

Dynamic

Communication

Topology

Dataflow

Composition

Typed

Communication

Request/Reply

with Futures

Exactly-once

Processing

Serializable

Updates

Decentralized

Deployments

Data

Parallelism

Task

Parallelism

Dataflows - - X X - X - - X X*

Actors X X X* X* X - - X - X

Stateful

Serverless
 X* X - X X* X - X X X

Portals X X X X X X X X X X*

* Supported with restrictions

2.2 Dynamic Scalability

The ability to scale up or down according to demand is criti-
cal for stateful serverless. For this, we consider two forms
of parallelism: task parallelism and data parallelism. Task
parallelism executes different tasks in parallel, whereas data
parallelism executes the same task on partitions of data in
parallel. Dataflow [3, 12, 42] and stateful serverless [7, 16, 20]
systems have good support for data parallelism and task par-
allelism (with restrictions as they cannot spawn new tasks
dynamically), as the data is typically partitioned over some
key, and the pipeline is typically composed of tasks. Actor
systems [5, 9, 15, 25, 33, 41], on the other hand, do not offer
any form of data parallelism, as the actor instance is usually
not defined over some range of keys.

We propose extensions to the dataflow streaming model
(section 4), so that we can harness its inherent data- and
task-parallelism.

2.3 Composition and Intuitive Programming

Semantics

Microservice composition is a common development pat-
tern in stateful serverless [46]. Common microservice pat-
terns require support for cyclic dependencies, for example,
request-response communication, transactions, iterations,
etc. Microservice deployments also requires support for dy-
namic communication topology, as the services evolve over
time.

Contrary to actor systems, dataflow systems [3, 12, 42] can-
not handle cycles, dynamically evolving or multi-pipeline
topologies. In the middle ground between these, stateful
serverless systems aim to serve both purposes, yet, with
known serious restrictions for microservice composition [7].
We believe that dataflow-style composition is a particularly
good fit for large-scale microservices. This style of compo-
sition is not well supported in the actor model [32], and

stateful serverless models [7, 20].1 Further, we see a need
for request-reply communication with futures as an intu-
itive programming construct; typically supported by actor
systems and stateful serverless systems, but not dataflow
systems.
We propose Portals and Reply Streams as a streaming

abstraction for request-reply interaction with futures (sub-
section 4.4); and cyclic dependencies and dynamic multi-
workflow composition as part of the Portals programming
model (subsection 4.2).

2.4 Serializable Updates

If we consider every stream update in the system as a trans-
action, it is often necessary to provide serial ordering guar-
antees across selected updates. For example, special system
events (e.g., consistent snapshots [11], GDPR requests [49]
for data deletion) need to impose such guarantees. Currently,
serializable updates are not supported by distributed pro-
gramming systems today. A naïve method to support this
would be to enforce processing order-sensitive events in
strict serial and non-concurrent fashion. However, this can
impact the performance of dataflows.
We propose serializable updates as a user-specified fea-

ture for live consistent updates (subsection 4.5).

2.5 Complexities and Inconsistencies: An Example

The example in Figure 1 summarizes some of the major chal-
lenges presented so far in a typical decentralized dataflow
service. Consider a service that pipelines operations of two
different workflows A and B. This can be materialized with
strong guarantees by combining two stream workflow appli-
cations (e.g., using Flink) and a distributed log (e.g., Kafka)
for logged, replayable channels. However, complexities arise
when we need to add a third service C to issue requests and
process responses back from A and B. Since a new level of

1We have added it as supported with restrictions for actors because nesting
and chaining futures (dataflow futures) allow for the construction of asyn-
chronous process pipelines, adding support for dataflow style composition
in actor languages [13, 14, 19].

155

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

Dispatcher

Workflow
A

D
a

ta
fl

o
w

S

y
st

e
m

s

GRPC

Workflow
B

Dispatcher

Workflow
C

D
is

tr
ib

u
te

d

Lo
g

s

exactly-once processing system

unreliable processing system

re-playable channel

non re-playable channel

E
x

te
rn

a
l

S
y

st
e

m
s

Actor Framework

Figure 1. Decentralized composition with existing systems.

indirection is necessary, the developer is forced to implement
the handling of requests and filtering of responses outside
the dataflow system, e.g., in a custom RPC-based system
using an actor framework. While the respective dataflow
computations maintain exactly-once processing guarantees,
the custom logic executed externally can break end-to-end
transactional guarantees. Such problems hinder composi-
tionality and raise trust issues while making development
highly complex and unreliable.

3 Highlights: Portals

We present our highlights of the Portals programming
model in Figure 2. The programmingmodel consists of atomic
streams, workflows, tasks, and portals. Figure 2 shows how
Portals can seamlessly support the previous example from
subsection 2.5 with end-to-end processing guarantees. Work-
flows A and B process some atomic stream, and also a portal
stream, while workflow C is using portals to send a request
and receive back a reply from A and B.
Atomic Streams. Atomic streams (subsection 4.1) are

totally-ordered streams of atoms (atoms are sequences of
events). Workflows consume and produce atomic streams.
The atomic streams enable the decentralized exactly-once

processing across workflows, as they impose the atomic pro-

cessing contract on all workflows: the workflow must process
one atom at a time (in the order of the atomic stream), and
do this transactionally. This means that Workflow A must
process one atom at a time, and then transactionally com-
mit to the produced atom, before Workflow B can process
the atom. Atomic streams are used to connect workflows
together (even to form cycles), and come with many more
features such as multi-lane composites (between workflows
A and B), and atomic generators, sequencers and splitters.
The atomic streams are a principled approach to end-to-end
exactly-once-processing.

Portal
Entry

Portal
Exit

delete Atomic Stream

Workflow
A

Workflow
B

Workflow
CAtomic Stream

Reply Stream

exactly-once processing system

1. // Workflow C
2. val portal = builder.registry.portals.get[T, R]("replier")
3. val requester = builder.workflows("Workflow C")
4. .source(...)
5. .asker(portal) { event=>
6. val request: T = ... // build request
7. val future:Future[R]= portal.ask(request)
8. await(future) { ... /* do something with reply */ }
9. }
10. .sink()
11. .freeze()

1. // Portal: Workflow A -> Workflow B
2. val portal = builder
3. .openPortal[T]("replier") // portal entry
4. .workflow("Workflow A")
5. .source(...)
6. .task{ ... }
7. .sink()
8. .workflow("Workflow B")
9. .source(...)
10. .task{ ... }
11. .sink()
12. .closePortal[R]() // portal exit

Figure 2. Decentralized composition with Portals.

Workflows.Workflows (subsection 4.2) allow for dataflow
style composition of typed task graphs (see the code exam-
ples). In addition, they allow for advanced composition of
tasks (subsection 4.3), see e.g., the code snippet for Workflow
C. The Portals model can dynamically add new workflows.
For example, Workflow C could be launched at a later point
in time and connect to the existing portal. The workflows
provide seamless compositionality and scalability.
Portals. The portal stream (subsection 4.4) spans from a

portal entry to a portal exit, the entry is where requests come
in and the exit is where the replies are consumed. Workflow
C is connected to the portal stream which spans over A and
B. In doing this, Workflow C can ask the portal, and await the
reply from the portal. The portal receives the requests at the
portal entry, which is forwarded to A and B for processing,
and the reply is finally consumed by the portal exit and sent
back to the requester. We provide a convenient future API
as shown in the code snippet for Workflow C. The portals
abstraction enables the intuitive composition of workflows
with futures.

Serializable Updates. The serializable updates allow per-
forming live consistent updates on systems. We can define
serializable updates (subsection 4.5) as operations executed
last of their respective dedicated atoms. In the figure, the red
atom has a delete event. This event is then executed at the
end of processing the red atom.We can ensure that no events
are reordered over this execution, as the atoms cannot be
reordered on the atomic streams.
Key Applications. We find that the pain point in ex-

isting scalable systems is the combination of exactly-once
processing, dataflow composition, cycles/request-reply com-
munication, and dynamic communication topology; as ar-
gued in section 2, no system exists that solves this. The
Portals model provides a unifying solution to this, and en-
ables applications that require a combination of the discussed
features to be implemented. One such concrete use case is
presented in subsection 7.1. If implemented with existing

156

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

systems, this requires much manual labour (subsection 2.5).
Instead, we suggest, using the Portals system would lead
to less development effort and more reliable applications as
these features are automatically provided.

4 Programming Model

This section gives a more detailed overview of the highlights
in the Portals programming model.

Portals applications comprise atomic streams, workflows,
and portals. The general flow and structure of an applica-
tion is described in the following listing. To build a portals
application we first create a builder, and pass it the name of
the application as a string literal. From the builder we can
add workflows, portals, sequencers, etc. We can also look up
external portals, streams, workflows, via the registry. Finally,
we can assemble the PortalsApplication by calling build() on
the builder. Next, the application is launched using a system.

val builder = Builders.application("appName")

val workflowBuilder = builder

.workflows[String, Int]("exampleWorkflow")

...

val externalWorkflow = builder

.registry.workflows.get[T, R]("externalWorkflowName")

...

val app = builder.build()

val system = Systems.local()

system.launch(app)

Building and launching the application triggers a well-

formedness check on the application. The checks include
naming collisions, and verifying the existence of external
dependencies.

4.1 Atomic Streams

Atomic Streams are the core data type of the Portals model
(Figure 3). An atomic stream is a totally ordered, distributed,
immutable stream of atoms. Processors produce atomic
streams, and consumers consume them. The atomic process-
ing contract says that the consumer must always consume
the whole atom and process the whole atom before consum-
ing and processing the next atom. This allows us to safely
compose together producers and consumers, i.e., microser-
vices, whilst preserving end-to-end fault-tolerance across
the microservices.

Atoms. Each atom contains a finite distributed stream of
events, with each event belonging to exactly one atom. The
events, in turn, are associated to some contextual implicit key.
That is, from each event we can extract some key. Events
and atoms are distinct with different purposes. Whereas
events represent the input in form of data that is consumed
and processed; atoms represent a group of events that are
to be processed together atomically (which is used for the
exactly-once aspect). Events within an atom, in contrast,
may be processed concurrently. This distinction is useful as

(i) Event Data
Stream

(iv) Atomic
Stream

(ii) Atomic
Generator (iii) Atoms

atoms

…

1

2

3

4

Ψ

(vi) Composite
Atomic Stream

(v) Atomic
Sequencer

Atomic
Streams

1

2

3

4

(vii) Atomic
Splitter

12

12

Composite
Atomic
Streams

Atomic
Streams

Lanes

Figure 3. Basic atomic processing elements and operators.

there is a cost associated with atoms. Smaller atoms have a
higher relative cost, and this can be adapted depending on
the execution environment.
Atomic Streams. An atomic stream is a totally or-

dered, distributed, immutable stream of atoms. The atomic
stream AtomicStream[T] transports atoms of type Atom[T]

with events of type T. The atomic streams are distributed
over the implicit key of the events. Additionally, within the
atom, the sequence of events within an atom are partially
ordered over this key. Atomic streams are created from the
outputs of generators, sequencers, workflows, etc. They stop
when the stream is completed.

Multi-Lane Composite Atomic Streams. A compos-
ite atomic stream consists of multiple lanes, one lane for
each atomic stream. However, the atoms are still in a totally-
ordered sequence across the lanes. The type of the com-
posite atomic stream is a composite of the individual types,
e.g., AtomicStream2[T, U] is the composite of AtomicStream[T]

and AtomicStream[U].
Atomic Sequencers. The Atomic Sequencer combines (or,

sequences) inputs from one or more atomic streams. This
operation creates a new atomic stream. The sequencer can
combine atoms by some strategy, e.g., random, round-robin,
zip, etc. The composite strategy takes two atomic streams and
produces the composite thereof, from e.g., AtomicStream[T]

and AtomicStream[U] we get AtomicStream2[T, U].
It is allowed to mutate the inputs of an atomic sequencer.

This capability allows to statically define atomic streams and
use them dynamically in a publish-subscribe fashion. Note
that the output still remains immutable and totally ordered.

157

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

Atomic Splitters. Atomic splitters are used for splitting a
composite atomic stream into separate atomic streams. The
simplest form of a split is to take an AtomicStream2[T, U] and
split it into two separate atomic streams: AtomicStream[T] and
AtomicStream[U]. The two new atomic streams are totally-
ordered, but there is no total order across these two streams.

Atomic Generators. Atomic generators are used for gen-
erating new atomic streams from sources other than existing
atomic streams. In practice, generators can be used to con-
nect from an external system; or for running batch jobs, by
starting a new generator.
Connecting Atomic Streams. Atomic streams can be

connected by connecting an atomic stream to an atomic
sequencer. In doing so, the consuming atomic sequencer
starts consuming atoms from the atomic stream. Note that
it does not consume the full history of atoms, rather, starts
consuming atoms as they are produced.

...

val generator = builder.generators.fromRange(0, 1024, 128)

val sequencer = builder.sequencers.random[Int]("seqName")

builder.connections.connect(generator.stream, sequencer)

...

Guarantees and Contracts. Atomic streams provide vari-
ous guarantees and contracts.

Guarantee 4.1 (Atomic Total Order). The atoms 𝑎1, 𝑎2, . . .

in an atomic stream 𝐴 are totally ordered. That is, the atomic

stream is a totally ordered sequence 𝐴 = 𝑎1, 𝑎2, . . ., and there

is some atomic ordering relation over this atomic stream <𝐴

that orders any two atoms 𝑎𝑖 ∈ 𝐴 and 𝑎 𝑗 ∈ 𝐴 so that either

𝑎𝑖 <𝐴 𝑎 𝑗 or 𝑎 𝑗 <𝐴 𝑎𝑖 .

This, together with the partial order of events within an
atom, have the following implication.

Guarantee 4.2 (Atomic Event Order). Events are partially
ordered within an atom, and totally-ordered across atoms of

the same stream. That is, for some atomic stream 𝐴, if two

events are in two different atoms of the same atomic stream,

i.e., 𝑒𝑖 ∈ 𝑎𝑖 and 𝑒 𝑗 ∈ 𝑎 𝑗 with 𝑎𝑖 ≠ 𝑎 𝑗 and 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴, then either

𝑒𝑖 <𝐴 𝑒 𝑗 or 𝑒 𝑗 <𝐴 𝑒𝑖 . If two events are in the same atom 𝑎, then

they are ordered according to the partial order <𝑎 within that

atom.

Atomic streams are fault-tolerant. We capture the fault-
tolerance through the following definition.

Guarantee 4.3 (Atomic Fault-Tolerance). Atomic streams

are fault-tolerant (exactly-once processing). That is, any ob-

served atom order 𝐴 = 𝑎1, 𝑎2, . . . , 𝑎𝑛 is a prefix of any subse-

quently observed atom order 𝐴′
= 𝑎1, 𝑎2, . . . , 𝑎𝑛, . . . , 𝑎𝑚 .

To process an atomic stream, the consumer must adhere
to the atomic processing contract. Atomic sequencers and
workflows are processors, they both consume and produce
atomic streams.

Workflow

src

filter

sink

Workflow

src
tasks

sink

filter

src map

sink

map

src map sink

Ψ

Workflow

a) b) c)

d)

Workflow

Figure 4. Workflow composition examples in Portals.

Contract 4.4 (Atomic Processing Contract). The consumer

must always consume and process the whole atom before con-

suming and processing the next atom. The consumption must

follow the order as given by the atomic order. The producer
must produce an atom after consuming and processing an

atom, and before consuming and processing the subsequent

atom. This produced atom production order will establish the

atomic order.

4.2 Workflows

A workflow (Figure 4) consumes an atomic stream and pro-
duces an atomic stream. The processing happens over an
acyclic graph of sources, tasks, and sinks. For this the work-
flow needs to conform to the atomic processing contract (Con-
tract 4.4)). That is, the workflow must always consume and
process the atoms one atom at a time, i.e., no two atoms
are to be processed concurrently. Nesting workflows is not
supported.

Workflows.Aworkflow is a directed acyclic graph (DAG)
of sources, tasks, and sinks (Figure 4.a).2 The workflow has
one source which is the ingestion point of events to the
workflow. Tasks are stateful operators that consume events
and produce events. The workflow has one sink which is the
egress point of the workflow.
A workflow has an input type and an output type

Workflow[T, U], corresponding to the source and sink types.
To consume an atomic stream, the types of the workflow
need to match the contravariance and covariance of the input
and output type, respectively.

Creating, Starting, and Stopping Workflows. To build
a workflow we use the builder pattern for the following il-
lustrations. The string literal passed to the workflow builder
factory is the workflow name, which can later be used to find
a workflow in the workflow registry. The following example
shows a workflow that consists of a source with type String
which receives as an argument a stream of the corresponding
type, followed by a map invocation that transforms strings
to integers, and a sink. Freezing a workflow blocks it from
further modifications. To execute a workflow it needs to be

2By convention, we graphically depict workflows with mutiple sources and
multiple sinks (see, e.g., Figure 4.c), this corresponds to the single source
and sink representation with multiple ports.

158

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

launched on some system, which in turn returns a refer-
ence to the atomic stream that the workflow produces (and
optionally the atomic sequencer it consumes). Workflows
continue processing until the atomic stream it consumes has
completed.

val stream: AtomicStream[String] = ...

val workflow = Workflows.builder[String, Int]("workflowName")

.source[String](stream)

.map { s => s.length() }

.sink()

.freeze()

Ports. Workflows have a single input source and a single
output sink. The sink and source may have multiple ports
(Figure 4.c). To create a workflow with multiple input and
output ports, we specify the port numbers, e.g., source_1,
source_2. The multi-port workflow consumes from a com-
posite atomic stream with compatible lanes, and similarly,
produces an atomic stream with compatible lanes (i.e., the
individual ports match the individual lanes).

CyclesAcrossWorkflows.Cycles are not allowedwithin
aworkflow. However, cycles can be created across workflows,
including cycles that go directly from a workflows sink back
to the workflows source (Figure 4.d). Trans-workflow cy-
cles are safe, as they are broken up by atoms: within the
processing of one atom there are no cycles.
Combinators. The workflow builder supports combina-

tors (prefixed by with that are later defined for the tasks).
For example, the withWrappedwraps around the defined task
to extend its behavior. In addition, the allWith combinator
is applied to all sources, sinks, and tasks of a workflow. For
example, the allWithWrapper, wraps around all sources, tasks,
and sinks. This convenient notation can be used to inject
some behavior for the entire workflow. For example, we
could simply log every event on the workflow by the follow-
ing.

val _ = workflowBuilder.allWithWrapper { wrapped => event =>

log.info(event) // log all events

wrapped(event) // execute the wrapped behavior

}

Guarantees. Workflows provide the following guarantees.

Guarantee 4.5 (Workflow Atomic Processing). The work-
flow adheres to the atomic processing contract. That is, the

workflow processes one atom at a time, and no two atoms are

processed concurrently.

Guarantee 4.6 (Workflow Fault-Tolerance). Aworkflow pro-

cesses an atom exactly once, and events may be replayed due

to failures.

Further, the workflow guarantees to respect the atomic
event order, and process events in a per-key FIFO order
internally on the tasks.

k1k3k2 k3k2 k2

a) b)

k2k1 k3 k1 k3k2k3k2k1

Figure 5. Tasks: a) task; b) task with disjoint state access.

Guarantee 4.7 (Workflow Event Processing). The workflow

processes events of an atom in a per-key FIFO order on the

source/sink/task graph.

Lastly, the workflow processing needs to trigger the atom
completion handlers on all tasks in the correct way.

Guarantee 4.8 (Workflow Atomic Handler Trigger).
The workflow triggers on all sources/sinks/tasks the

onAtomPreComplete handler as the last event before the atom

has been processed to completion, and the onAtomPostComplete

handler as the first event of the new atom.

4.3 Tasks

Tasks are the core computational unit in our programming
model. They allow us to describe the processing logic. For
this we provide a suite of helpful abstractions, that can help
build advanced and complex task logic.
Tasks. A task has one or more input ports, and one or

more output ports (Figure 5). It processes one event at a time,
may modify its state during processing, and produces zero
or more output events. A Task[T, U] implements five event
handlers. The onNext handler gets triggered with the next
event to be processed. The onError and onComplete handlers
get triggeredwhen there is an error from an upstream task, or
the upstream tasks have completed. The onAtomPreComplete

handler is invoked directly before an atom has been fully
processed to completion, the onAtomPostComplete directly
after.

Task context. The task handlers are invoked with access
to the TaskContext[T, U]. This gives access to side effects such
as logging, emitting events, and accessing the external state
of the task. The task invocation is done under some implicit
key context. The state accessed by the task is scoped by this
implicit key (see Figure 5.b), i.e., the state access of one key
is disjoint to the state access of a different key.
Task Factories. The Tasks factory methods are a conve-

nient way to define tasks. They can be used to define a map,
flatMap, filter operators, and more.

As an example, the following creates a processor behavior
for a Task[String, Int]. The processor handles an event, and
may modify state and emit zero or more events. It takes a
function as a parameter that is used for handling the incom-
ing events. The example shows how we can log the event,
followed by emitting the length of the event.

159

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

Workflow A

src task sink

Portal
Entry

Atomic Stream

Portal
Exit

Workflow B

asker

replyStream

Atomic Stream

src sink

Workflow C

src task sink

Workflow A

src task sink

Portal
Entry

Atomic Stream

Portal
Exit

Workflow B

asker

replyStream

Atomic Stream

src sink

a)

b)

Figure 6. Portals reply streams: a) example with a requester
and a replier; b) example with a workflow forwarding/dele-
gating a reply stream.

Tasks.processor[String, Int] { event =>

log.info(event)

emit(event.length())

}

State. There are two types of state available, PerKeyState
and PerTaskState. The PerKeyState is scoped by the invocation
key, whereas the PerTaskState is scoped per task instance that
is executing the task. It is convenient to create the typed
state during the initialization phase of a task, as shown in
the following example.

Tasks.init[...] {

// create state with default values 0, and 1 resp.

val perKeyState = TaskStates.perKey[Int](0)

val perTaskState = TaskStates.perTask[Int](1)

Tasks.map { ... /∗ do something useful with the state ∗/ }

}

4.4 Portals and Reply Streams

Portals enable request-reply interactions. The requesting
workflow can create requests. The replying workflow can
reply to these requests. This interaction is distinct from the
regular atomic streams and workflows, as the replies are only
sent back to the requester (there may be multiple requesters).
In contrast, events of the atomic stream are sent to all of the
subscribers of the atomic stream. Furthermore, the portals
request-reply style interaction is more similar to direct-style
messaging, whereas atomic streams and workflows are more
similar to a publish-subscribe type of interaction. It enables
many patterns in microservices, for example, request-reply
style communication, query streams, sagas, and more. Nest-
ing portals is not supported.

Portals. A portal has two endpoints, the portal entry and
the portal exit (Figure 6). The portal type encapsulates the
type of the requests and the type of the response, Portal[T, R].

The endpoints span a portal stream, the requester’s requests
come in at the entry, the replies exit at the exit. The por-
tal stream transports the atoms together with some contex-
tual (not first-class) information about the sender. One, or
many workflows, may operate, transform, and reply on the
requests.
Replier, Creating Portals. The replier consumes the

requests from the portal’s entry (workflow A Figure 6). It
may then operate and transform the requests to produce the
final reply. The replier replies by emitting events that are
consumed by the portal’s exit.
The following creates a replier portal, by opening and

closing the portal gates, and performing some transformation
on the requests to produce the replies.

val replier: Portal[T, R] = builder

.openPortal[T, R] ("portalName") // portal entry

.map { ... } // create replies from requests

.closePortal() // portal exit

We also support the direct syntax of accessing a portal
from a task by creating a replier task, which takes two han-
dlers, one for regular events from the consumed atomic
stream, and one for the requests from the portal.

val portal = builder.portals.portal[T, R]("portalName")

val workflow = builder.workflows[I, O]("replyingWorkflow")

.source(...)

.replier(portal)

{ ... /∗ handle regular data events ∗/}

{ ... /∗ handle portal requests ∗/}

.sink()

Requester, Ask and Await. A requester can connect to
the portal from within an asker task via the ask and await
API. The asker task takes two sets of parameters, the first are
the list of portals that it wants to connect to, the second is the
event handler logic for the asker. The requester can obtain a
portal reference (either through the registry, or some other
way). With this reference, the requester can ask the portal
(requesting some value), and await the reply (workflow B
Figure 6).

Asking the portal (portal.ask(request)) returns a future and
sends a request to the portal. The replier, then, consumes
the request from the portal entry, and produces a reply that
is consumed by the portal exit. This, in turn, completes the
future at the requester. The requester can await for the future
completion, and will upon completion continue operating by
executing the continuation closure. The following example
shows how we can create a requester that binds to a portal.

160

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

b) 1.

asker

2.

asker

3.

askerC

4.

askerC
C

e) 1.

asker

2.

asker

3.

asker

4.

asker

C

C

C C

C

a)
Replier

src task sink

Asker

asker

replyStream

src sink

f)

c)

CC

d)

CC

Figure 7. Await semantics in Portals. The example shows
the interaction between an asking and replying workflow,
with highlighted await semantics on the asking task. The
events are coloured by their keys.

val portal = builder.registry.portals.get[T, R]("replier")

val requester = builder.workflows[I, O]("workflowName")

.source(...)

.asker(portal) { event =>

val request: T = ... // build request

val future: Future[R] = portal.ask(request)

await(future) { ... /∗ continuation with completed future ∗/ }

}

.sink()

Await Semantics. The await semantics of the Portals
model are illustrated in Figure 7. (a) The events in the fig-
ure are coloured by the respective event’s key. (b) The asker
task processes the events of an atom. The action of pro-
cessing an event that triggers an ask creates the following
side-effects (b.3): i) a request event for the replier, and ii)
a non-completed future; thus, invocations of ask are non-
blocking. By using await, the asking task provides the con-
tinuation as a closure, which is saved to the implicit task
context for the given key. Subsequent events are executed as
normal. (c) The request is sent to the replier, who processes
the request and (d) responds with a reply, during this time
the asker workflow may process other atoms. (e) The asker
receives the reply, completes the future, and executes the
continuation. While the continuation executes, the task does
not process any events for the same key to avoid data races
on the per-key state. (f) The workflow eventually produces
an atom with two events and has no pending continuations.

The await semantics introduce an alternative form of op-
eration to the regular task execution. An asking task may

Time

Events

Update

Time

Events

Update
a) b)

Figure 8. Serializable updates: a) non-update-serial schedule;
b) update-serial schedule.

send requests, and receive replies that are executed at a later
point in time. The sent requests and received replies are
two different events that are also in two different atoms.
Each takes one processing loop cycle in a task, and this form
corresponds to a regular atomic processing program that
consumes and produces atoms.

Forwarding Portal Streams. It is possible to build a por-
tal stream that spans over multiple workflows. For example
(Figure 6), workflow A can forward all requests to Workflow
C, which then connects to the portal exit and replies.

4.5 Serializable Updates

Serializable updates are consistent updates on the sys-
tem [49]. The observable effect of a serializable update is
equivalent to that of an operation applied to the system
atomically and in isolation, with no other commands or op-
erations concurrently to this operation (Figure 8).
Writing Serializable Updates. To define a serializable

update we need: 1) some update function that is executed
on a task’s state; 2) and some way of triggering this up-
date function. The user can define what the update function
should do on the task’s state. To trigger the update we uti-
lize the onAtomComplete handler. The idea behind this is that
the invocation of the onAtomComplete handler is a serializ-
able/atomic event on the workflow.

// wrap all tasks (wrapped) to register the update

.allWithWrapper { event => wrapped => event match

case CLEAR_STATE =>

state.set(CLEAR_STATE, 1) // set flag

emit(event) // broadcast CLEAR_STATE downstream

case _ => wrapped(event) // wrapped handles other events

}

// execute the update on invocation of `onAtomPreComplete`

.allWithOnAtomPreComplete {

if state.get(CLEAR_STATE).isdefined then

state.clear()

}

The example shows how we can define a serializable up-
date for all tasks within a workflow with the allWithWrapper.
When the CLEAR_STATE operation is submitted and pro-
cessed, all tasks will set a flag to then clear the state during
the next invocation of the onAtomPreComplete handler.

161

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

Portals Programming Platform

Atomic Streams API Workflow API

Portals Framework

Portals Runtime

Registry

Scheduler

Workflow Engine

Atomic Streams Log

Figure 9. Portals architecture.

Guarantee 4.9 (Serializable Update). A serializable update

is an update with observable effect equivalent to that of an

update applied atomically and in isolation to the system. That

is, either strictly before or after any other processed event in

the system.

4.6 Distributed Semantics

The atomic execution model defines how workflows and
atomic streams are executed in Portals. The model can
be defined at the granularity of atoms, and proceeds by tak-
ing steps over atoms. For each step, a workflow is chosen,
and executes the atom that is next in the queue on the atomic
stream, this in turn produces a new atom, which is added
at the end of the queue of the produced atomic stream. The
onAtomPreComplete is invoked at the end of atom completion,
and the onAtomPostComplete handler is invoked right at the
beginnning of the next atom being processed. Internally, the
workflow processes each atom whilst respecting the per-key
FIFO order of the events. The distributed execution model
guarantees exactly-once processing.

5 Design and Implementation

We have designed and implemented a local prototype of Por-
tals with a subset of the functionality (subsection 5.5).3 We
will discuss the system architecture on a high-level, and deep
dive into the implementation of atomic streams, portals, and
ensuring end-to-end exactly-once-processing guarantees.

5.1 Portals System Architecture

On a high level, the system architecture consists of the por-
tals programming platform and the portals runtime (Figure 9).
The main components of the portals runtime are the sched-
uler; the registry; the atomic streams; the workflows; and the
portals. The atomic streams are used to glue the processing
units together. The implementation leverages the capabilities
of distributed transactional logs such as Apache Kafka [51],
and Pravega [53]. The workflow engine implements the run-
time capabilities of executing the processing units and the
workflows. The workflows are to be implement with similar
techniques as other dataflow streaming systems [3, 11, 42],

3https://github.com/portals-project/portals

Workflow A

Workflow B

asker

Atomic

Stream

Ψ
Request

Stream

Atomic

Sequencer

Atomic

Spli8er

Response

Stream

Portal

Entry
Portal

Exit

src task sink

src sink

Atomic

Stream

Ψ
Response

Stream

Atomic

Sequencer

Atomic

Spli8er

1

23

4

5

12345

atomic states

atomic output

1234

atomic states

1

2

3

4

Figure 10. Physical plan of workflows in Figure 6.

enabling the scalable data-parallel execution. The registry is
used for service discovery and name management. We plan
to implement it using replicated state machines to ensure
high availability, using e.g., Zookeeper [26], or similar sys-
tems. The scheduler needs to implement scheduling logic
for executing the streams and workflows, and monitoring
logic for monitoring the system and making decisions on
live reconfiguration of the deployment.

5.2 Atomic Streams

The atomic streams expose a transactional interface in the
implementation. A producer can begin building a new atom,
pre-commit updates to the new atom (or aborting to the
new atom), and finally commit the atom. The commit op-
eration is idempotent. The consumer interface allows the
consumer to receive an atom, and to replay from a certain
atom-id. The interface is similar to both Kafka and Pravega,
the implementation is a matter of an abstraction layer. For
Kafka this abstraction entails: building the atom by run-
ning beginTransaction() followed by send()ing the events of the
atom; pre-commiting by flush()ing all events; and committing
by running commitTransaction(). With Kafka, however, some
care must be taken as it does not fully provide a two-phase
commit interface out-of-the-box [52]. We intend to use the
underlying distributed log system (Kafka, Pravega) solely
for committing and transmitting the atoms, the processing
of workflows is to be executed separately.

5.3 Portals

Implementing portals will require the addition of portal
streams, and its dual, the reply streams. The portal streams
transport the contextual information of the request, so that
the reply can be sent back to the correct requester. Similarly,
the reply streams require transporting contextual informa-
tion about the request, so that the reply can be matched with
the request. The portal streams and reply streams are im-
plemented on top of atomic streams. To exemplify this, the
logical representation of a portal corresponds to the physical
representation Figure 10.

162

https://github.com/portals-project/portals

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

We can guarantee the completion of the reply future (ei-
ther to some value, or to no value), using the atomic process-
ing contract. Because the portal processes the atom exactly
once, and this creates one new atom with replies, the re-
quester processing the reply atom can complete all futures
with values (if they were in the reply), or otherwise complete
the futures with no value (if they were not in the reply).

5.4 Exactly-Once Processing

We introduced the notion of exactly-once processing guar-
antees in section 2. In this section, we will overview how
Portals achieves these guarantees per workflow, and discuss
how this naturally generalizes to end-to-end exactly-once
(atomic) processing guarantees across workflows and exter-
nal systems.

Exactly-once processing generally refers to the observable
behavior of a system mimicking a system that is failure-
free (events are delivered and processed exactly-once, no
computing nodes crash). We can describe the exactly-once
processing behavior of Portals through the observable ef-
fects of atomic streams: 1) an observed prefix of an atomic
stream is immutable (atomic streams cannot be changed
once committed), and 2) atoms are produced by an observ-
ably failure-free execution of the producer. 4 In other words,
(1) ensures that once an atom is observable, it will always
remain observable, whereas (2) ensures that only failure-free
executions are observable.

We should note that the definition does not state that the
events of an atom may be processed at most once. Indeed,
if the processing of an atom fails, the internal events of the
atom might be processed again. This may be an issue if user-
defined-functions cause external side-effects, such as sending
requests to some external database.5 The end-to-end guar-
antees do not apply to such code. Instead, we recommend
connecting external services to the transactional APIs of
Atomic Streams and Generators for end-to-end guarantees
(subsubsection 5.4.3). These are the only restrictions we put
on user-defined functions; notably, they are even allowed to
be non-deterministic.

5.4.1 Atomic Processing in Workflows. Workflows are
responsible for processing each incoming atom in a transac-
tional fashion. The full computation of an atom generates

4We can define an observably failure-free producer by the produced atoms
of this producer being equivalent to some failure-free producer. Two atoms
are considered equivalent if they contain the same events with the same
order.
5If an event is replayed, it may issue the same operation twice to the external
database. Clearly, this is not an end-to-end exactly-once semantics, as the
operation was issued twice. We do not guarantee end-to-end exactly-once
to cover external resources that are accessed from within the user-defined
functions. Although, we would like to note here that the Portals system
will preserve the exactly-once guarantees internally within the system
regardless, the non-exactly-once external side-effects can be seen as a form
of non-deterministic behavior.

Portals Runtime

atom3 atom2 atom1

Atom Commit Protocol

I) 1a Pre-commit

 1b Pre-commit

 1c ack/aborted

II) 2a Commit

 2b Mark Committed

Input Atomic Stream

atom3' atom2' atom1'

Output Atomic Stream

committedpre-committed

External File System

atom1'atom2'atom3'

1a 1c

1b 2b

2a

Figure 11. Asynchronous Atomic Commit Protocol, adapted
from [10].

Continue processing

Snapshot

Wait for alignment

Aligned

Broadcast

markers

a) Asynchronous 2PC b) Task Alignment Highlights

align

C
o

m
m

it

P
h

a
s
e

P
re

p
a

re

P
h

a
s
e

atomic streams

markers

Figure 12. Atomic Commit and Alignment Protocol.

two side-effects: i) new workflow task states and ii) a new
output atom. Both of these side-effects need to be commit-
ted before the processing of the next atom. A naïve imple-
mentation would be to ingest and commit each input atom
through the workflow in a micro-batch fashion, similarly to
Apache Spark’s Discretized Streams model [58]. Despite its
simplicity, this solution can suffer from high latency penal-
ties and leave most task instances of the workflow idle until
all state and output changes have been reliably replicated.
Instead, in Portals we adopt a variant of the asynchronous
two-phase commit protocol of Apache Flink [11]. When an
atomic stream is ingested by a workflow, its computation is
instrumented using a series of transactions, one per input
atom (Figure 11).

I) Phase 1 (Pre-commit): All tasks of the workflow pro-
cess input records of an atom and capture its effects. There
are two types of captured effects: task state updates, and a
new output atom. The effects are aligned to represent the
view of the effects caused by an atom through an alignment
protocol [11], summarised in Figure 12. During the prepare

163

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

phase of the atomic commit protocol the records of an atom
are streamed through the workflow and the output is logged.
The end boundaries of each atom in an atomic stream are
signified with special marker events which trigger a local
snapshotting action on each task before being sent further
(Figure 12). Tasks with multiple inputs such as composite
stream sources synchronize their input so that all markers
are processed in a task before proceeding with the records of
the next atom. This is also known as the łalignmentž phase.
Once snapshotting is complete, all state copies and logged
outputs are replicated asynchronously (in a pre-commit) on
respective replicated file systems and output atomic streams.
Phase 1 either completes or fails. Completion is signaled

when all tasks have (asynchronously) notified the Portals
runtime that their effects are captured, whereas failure is
detected once any task fails. In case of a failure the system
would roll back and redeploy tasks to re-execute from the
latest atom and the latest state. In case of no failures it moves
to Phase 2. Completing the first phase ensures property (2)
of exactly-once processing: only failure-free executions are
observable.

II) Phase 2 (Commit): The portals runtime has recorded
all side-effects of an atom, this includes the effects on state,
and a new output atom. What remains is to make these
effects visible to the system outside of the workflow. This is
done by the Portals runtime through signalling the output
atomic stream to finalize the commit of the pre-committed
output, and similarly to commit to the pre-committed state
output. Notice that during this phase, possible failures may
occur, but such failures will not result in a roll-back. A failure
might at-worst yield more than one signal of completion,
an operation that is idempotent by nature. Completing the
second phase ensures property (1) of exactly-once processing:
once an atom is observable, it will always remain observable.

5.4.2 Atomic Processing acrossWorkflows. Eachwork-
flow using the above protocol is guaranteed to adhere to the
exactly-once processing guarantees, by processing atomic
streams, and producing atomic streams as its output (Fig-
ure 13). Other workflows may in turn ingest these atomic
streams. As we know, each workflow preserves the exactly-
once processing guarantees under the assumption that the
input is an atomic stream. Thus the composition preserves
the exactly-once processing guarantees across all workflows.

5.4.3 End-to-End Atomic Processing across Work-

flows and External Systems: Portals exposes a transac-
tional producer and consumer atomic streams interface to
external systems, as a means to support end-to-end exactly-
once processing to also cover these external systems (Fig-
ure 13). The exposed producer and consumer interfaces ad-
here to the transactional łpre-commitž and łcommitž phases
over atoms in an atomic stream. For example, the consumer
interface allows for replaying atoms (if needed for a roll-
back recovery). The producer interface further allows the

External

System

Produced Atomic Stream

Consumed Atomic Stream

External

System

End-to-End Exactly-Once Processing

Figure 13. End-to-end exactly-once processing via Atomic
Streams.

external system to pre-commit to an atom, and to commit to
a pre-committed atom, in addition to a rollback method to
communicate that a non-committed atom can be discarded.
If the external system uses this interface in its intended way,
then we can ensure the end-to-end guarantees to include the
external system. This enables external systems to transac-
tionally consume and produce atomic streams, adhering to
the atomic processing contract. Through transitivity over
atomic streams, the end-to-end guarantees will cover end-
to-end systems connected via atomic streams.

5.5 Prototype Implementation

We have implemented a local runtime prototype with a sub-
set of the functionalities of Portals in Scala 3 [60]. The
implementation consists of an asynchronous multi-threaded
runtime that implements the alignment protocol in subsub-
section 5.4.1, implemented on top of the Akka Actor frame-
work [33]. The implementation produces an AST of the Por-
tals Application which it checks for well-formedness, and
upon launch is submitted to the runtime. The runtime trans-
lates the Portals concepts into actors, which entails imple-
menting the alignment protocol and executing the encapsu-
lating behavior on sources, tasks, etc. In total, the entire local
runtime system is less than 600 lines of code. We have made
it so the runtime eliminates empty atoms at the sequencer,
as otherwise cycles cause the empty atoms to be circulated
ad infinitum and accumulated over time.

6 Evaluation

We have evaluated the local Portals prototype runtimes
structured around three questions. The code for the pro-
totype implementation, and the executed benchmarks are
available online.6 The experiments were run on a MacBook
Pro (14-inch 2021, macOS 12.5.1) with an Apple M1 Pro chip
and 16 GB of memory, 8 cores (6 performance, 2 efficiency,
no hyper-threading). The experiments were run using Scala
version 3.2.0 and Java version 17 for which 1 GB java heap
size was allocated. Each individual benchmark followed the
same procedure. All configuration of parameters would be

6https://github.com/portals-project/portals-benchmarks

164

https://github.com/portals-project/portals-benchmarks

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

countingActor pingPong threadRing
0

1

2

3

4

5

6

7

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

1e6 Akka Benchmark
Akka
async

Figure 14. SAVINA Microbenchmarks. Higher is better.

run in a sequence. For each configuration of parameters we
would first run five warmup runs, followed by five timed
runs. The timed runs were then averaged, and here we report
the average as the number of events processed per second,
higher is better.

Q1: How does the Portals implementation compare

to other distributed programming frameworks such as

Akka? To answer this question we have chosen three mi-
crobenchmarks from the Savina Actor Benchmark Suite [27].

• PingPong: Two actors that repeatedly send and reply a
Ping message back and forth.

• ThreadRing: A ring of actors (in our case, a cyclic work-
flow with a chain of tasks), each actor decrements a
token and forwards it until it has been decremented
to zero.

• CountingActor: A generator actor sends messages to
a receiving actor who increments a counter upon re-
ceiving a message.

For this we compare two systems:

• async: The async implementation implements the
alignment protocol as described in section 5. This sys-
tem is implemented on top of Akka Actors [33].

• Akka: The Akka implementation corresponds to the
microbenchmarks implemented directly with actors
in the Akka Actor framework [33].

The results in Figure 14 show that there is a high relative
overhead of using the Portals implementation in compar-
ison to the Akka Actor implementation. For the Countin-
gActor, PingPong, and ThreadRing microbenchmarks, we
measured throughput 6.9 mil, 1.5 mil, 1.7 mil events/s for
Akka, and 1.2 mil, 180k, 1.3 mil events/s for the async run-
time. The throughput is a factor 6.0, 8.3, 1.4 times higher for
the Akka implementation compared to our async runtime.
We can explain part of this on the additional structure re-
quired for the portals programming model. The PingPong
example, for example, is compiled down to 8 actors (2 se-
quencers, 2 sources, 2 sinks, 2 tasks); compared to the Akka
implementation which consists of 2 actors (2 pingerpongers).
One PingPong roundtrip, then, goes over 8 actors in the
async runtime, whereas it only goes over 2 actors in the
Akka runtime. This would explain why we have a factor 4 in

reduced performance. This relative difference in structure-
size is smaller in the ThreadRing example that spans 128
actors/tasks. For this benchmark we still observe a factor
1.4 of performance difference. We would think that this per-
formance difference is mostly due to the additional work
associated with the alignment protocol on each task/actor
within theworkflow, and the virtualization of our sequencers,
sources, tasks etc. on actors.
Q2: How large is the atom alignment overhead? In

order to study the atom alignment overhead, we have imple-
mented two additional runtimes as baselines:

• micro-batching: The micro-batching runtime processes
atoms sequentially. That is, it blocks subsequent atoms
from being processed until the whole atom has been
processed by the workflow. This buffering and block-
ing happens at the sources, internally there is no buffer-
ing. Still, the protocol uses a method similar to align-
ment for detecting when an atom has been processed
to completion.

• noguarantees: The noguarantees runtime does not im-
plement the atomic processing contract. All events are
processed eagerly, there is no buffering or alignment
in this runtime. The physical actor-topology of pro-
grams in the noguarantees runtime correspond to the
async runtime, this lets us assess the relative cost of
the alignment protocol.

We have also added three more benchmarks.

• ChainOfTask: A workflow with a chain of tasks, for
which each task performs some non-trivial work.

• AtomAlignment: A workflow with two columns of
three tasks. The first column is fully connected to the
second column. The reason for this choice is that the
alignment protocol is exercised on the inner nodes of
the second column. Additionally, only the top row of
tasks forward events, so that only one event is pro-
duced per consumed event. The WithWork variant
performs some non-trivial work on each task when
processing an event.

• NEXMark Benchmark: The NEXMark benchmark [55]
is a set of queries on synthetic data streams for auc-
tions. We have implemented the first four queries.

The results are presented in Figure 15. The relative dif-
ference of throughput between the async and noguarantees
runtime in the PingPong benchmark is 1.5 (Figure 15a). That
is, we could account 50% of the overhead to the additional
work related to the alignment protocol.

There are some general trends which we would like to
highlight. The atom alignment overhead is larger for smaller
atom sizes, as the relative work per event is larger, and this
relative cost reduces when the atom size increases. We can
see this for small atoms in the CountingActor benchmark
(Figure 15d), Chain of Tasks benchmark (Figure 15c), and
in the AtomAlignment (Figure 15e) benchmark, for which

165

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

PingPong
0

50000

100000

150000

200000

250000

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

PingPong
async
microBatching
noGuarantees

(a) PingPong Microbenchmark.

100 101 102

chain length (#tasks)

0

2500

5000

7500

10000

12500

15000

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Chain of Tasks
async
microBatching
noGuarantees

(b) Chain of Tasks over the length of the
chain.

100 101 102

atom size (#events)

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Chain of Tasks

async
microBatching
noGuarantees

(c) Chain of Tasks over the atom size.

100 101 102 103 104

atom size (#events)

0.0

0.5

1.0

1.5

2.0

2.5

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

1e6 Counting Actor

async
microBatching
noGuarantees

(d) CountingActor over the atom size.

100 101 102 103

atom size (#events)

0

200000

400000

600000

800000

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Atom Alignment

async
microBatching
noGuarantees

(e) Atom Alignment microbenchmark.

100 101 102 103

atom size (#events)

0

2000

4000

6000

8000

10000

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Atom Alignment With Work

async
microBatching
noGuarantees

(f) Atom Alignment microbenchmark with
Work.

Query1 Query2 Query3 Query4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

1e6 NEXMark
async
microBatching

(g) First four queries from the NEXMark
benchmark [55].

100 101 102 103

number of partitions

0

2

4

6

8

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

1e6 Partitions
countingActor
pingPong
threadRingTasks

(h) Data parallelism over the number of par-
titions.

0 5 10 15 20 25 30
number of threads

0

2

4

6

8

th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

1e6 Parallelism

countingActor
pingPong
threadRingTasks

(i) Thread-level parallelism over the number
of threads.

Figure 15. Portals benchmarks. Higher is better.

the relative cost is larger for smaller sizes, and reduced for
larger sizes. Another trend is that for longer chain lengths,
some of the relative costs associated with the sources and
sinks are reduced, as in the Chain of Tasks over chain length
benchmark (Figure 15b) when comparing the async and the
noGuarantees runtime.

Comparing the micro-batching runtime and the async run-
time, we can also note the following trends. Both the micro-
batching runtime and async runtime perform better for larger
atom sizes. For longer workflows with larger end-to-end
latency, however, the async runtime will perform better
than the micro-batching runtime. In the ChainOfTasks (Fig-
ure 15c) and AtomAlignmentWithWork (Figure 15f) bench-
marks, the end-to-end latency causes the micro-batching
runtime to have a large amount of idle processing time on
its tasks. This accounts for the difference in throughput to
the async runtime (for which the async runtime has higher
throughput).

The NEXMark benchmark (Figure 15g) consists of three
streams: persons, auctions, and bids [55]. We have chosen to
implement the first four queries. The first query converts the
currency of bids from U.S. Dollar to Euro. The second query
filters auctions for specific auction identifiers, representing
a selection. The third query performs a join and a filter to
find out which persons are selling articles of the provided
category in the provided states. The fourth query performs
a join with an aggregation to compute the average winning
bid prices of all auctions for each category. We implemented
these queries with atom-size set to 1024. The results (Fig-
ure 15g) show that async and micro-batching have similar
throughput performance across these queries. Even though
these queries correspond to more complex computations, the
performance around one million events/s still compares to
the other microbenchmarks.
Q3: How does Portals scale with data paral-

lelism? We have evaluated the microbenchmarks on a data-
parallelism-enabled version of the async runtime, executed

166

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

Workflow

- Dietary

recommendations

Workflow

- collect data

- output day average

Workflow

- generate user

website

query response
recommendatio

ns

daily

averages

added

later

erase

user

wearables data

collection

External system:

- Serve website

Figure 16. Wearables end-to-end application use case.

on a machine with eight physical hardware threads on eight
cores. The results (Figure 15h, Figure 15i) indicate that there
is a large gain possible from the data-parallel execution.
For the CountingActor, PingPong, and ThreadRing work-
loads, the largest relative throughput gains were 14-, 14-, and
11-fold, respectively, with the number of threads set to 16.
Similarly, we see a gain in throughput when increasing the
threads (2-, 3-, 3-fold), with the number of partitions set to 16.
This gain is to be expected, due to the inherent data-parallel
and pipeline-parallel execution of dataflow-streaming. Al-
though, we would have hoped for higher gains with the
increasing thread number.

7 Use Cases

We divide use cases in Portals into concrete applica-
tions, existing service patterns and distributed programming
paradigms. In each case, we detail how the basic program-
ming elements of Portals can cover the required capabili-
ties.

7.1 Application Example

As a prime use case of the Portals model consider a wear-
ables application as depicted in Figure 16. The application
needs to collect user data such as heart rate records, blood
sugar levels, from a wearable smartwatch. The data can be
transactionally ingested into the Portals system. A work-
flow collects and stores the latest data from each user, and
outputs the latest day’s averages continually. The daily aver-
ages are forwarded via an atomic stream to another work-
flow that generates websites to present this data to the user.
The websites, in turn, are forwarded to an external system
for serving. Thus far, the application requires scalability, as
there are potentially many users; reliability, as we do not
want to drop or duplicate any datapoints; and edge cloud

processing. Internally, within the workflows, data collection
and processing makes use of scalable dataflow streaming
composition.

Over time, as the application evolves, a third-party recom-
mendation service is added dynamically to the ecosystem.
The newly added workflow computes dietary recommenda-
tions based on the collected user data. The recommendations

workflow connects to the portal of the data-collection work-
flow to query it on-demand. This way, the workflow can
query for some user’s data, and then process the reply to
generate the recommendations for that specific user. The
generated recommendations are then forwarded to the web-
site workflow.

Lastly, the application should support erasing a user, in an
atomic state update. The atomic execution ensures that the
erasure is applied correctly. If the erasure had been applied
concurrently to a read-write operation of the user’s data, then
the data could possibly be read before erasure, and written
after erasure. This would in turn lead to an inconsistent state
in which the data was not erased. This type of operation
is critical with respect to privacy regulations [31, 49], for
example.

We show Portals code of thewearables application in List-
ing 1 (internal details omitted for space reasons). Here, we
first create a portal; a generator for ingesting the user-data;
and a workflow for processing this data and replying to any
data queries. We also create the website workflow together
with a sequencer, such that we can later add new connec-
tions to the website workflow. Finally, we connect the data
workflow to the website workflow via the sequencer, and
launch the application. At a later point in time, we launch
a new recommendations application. The new application
connects to the portal and sequencer of the data workflow
and website workflow respectively. The recommendations
workflow queries the portal, and computes some statistics
that it emits to the website workflow. In order to support dele-
tions, we additionally add the capability to erase a user from
the application, by running the allWithWrapper combinator
on the dataWorkflow (this should be done before launching
the application, but we have it separate here just for clari-
fication). The erasure is executed atomically if the erasure
event is the only event in the atom. We can also support
batching by collecting the operations to be executed, and
execute them on the onAtomComplete event (subsection 4.5).

7.2 Subsuming Existing Service Patterns

Sagas. Distributed transactions can be implemented with
Sagas in the Portals framework. The ask-await syntax can
be used to implement Sagas via orchestration, for which the
orchestrator can be a workflow, and the services all imple-
ment a portal.
Decentralized Datalakes. The workflow composition

together with portals enable implementing decentralized
datalakes in Portals. Multiple workflows can co-exist, for
example, an OLTP workflow, an OLAP analytics workflow,
and these can in turn query the datalake workflow. The
scalability of the Portals model enables the scale needed
for such applications.
Complex Event-Processing Applications, Stateful

Serverless. Another area we think Portals would be well

167

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

Listing 1.Wearables application.

/∗∗ Wearables Application ∗∗/

val builder = Applications.builder("wearables")

val portal = builder.portals[Query]("data−query")

val generator = builder.generators

.fromExternal[Data]("resource−identifier")

val dataWorkflow = builder

.workflows[Data, Statistics]("dataWorkflow")

.source(generator.stream)

...

.replier(portal)

{ ... /∗ handle regular data events ∗/ }

{ ... /∗ handle requests ∗/ }

...

.sink()

.freeze()

val sequencer = builder.sequencers.random("website−sequencer")

val websiteWorkflow = builder

.workflows[Statistics, Website]("websiteWorkflow")

.source(sequencer.stream)

... // generate a website

.sink()

.freeze()

builder.connections.connect(dataWorkflow.stream, sequencer)

val app = builder.build()

system.launch(app)

/∗∗ Recommendations Application ∗∗/

val builder = Applications.builder("recommendations")

val extPortal = builder.registry.portals

.get[Query]("wearables/portals/data−query")

val extSequencer = builder.registry.sequencer

.get[Statistics]("wearables/sequencers/website−sequencer")

val generator = builder.generators

.fromExternal[Trigger]("another−resource−identifier")

val recommendations = builder

.workflows[Trigger, Statistics]("recommendations")

.source(generator.stream)

.asker(portal) {

val future = portal.ask(...)

await(future){ ... }

... // emit statistics

}

.sink()

.freeze()

builder.connections.connect(recommendations.stream, sequencer)

val app = builder.build()

system.launch(app)

/∗∗ Serializable Update ∗/

def erase[T, U](): TaskContext[T, U] ?=> Unit =

state.clearPerKey() // clear per−key state

dataWorkflow

.allWithWrapper{ ctx ?=> wrapped => event => event match

case Erase() => erase()

case _ => wrapped(event)

}

suited for, is for writing complex event processing logic, be-
cause of the expressivity of the tasks and workflows. Many
of these services can be connected, and still retain the end-
to-end exactly-once processing guarantees.
Dynamic Workflow Reconfiguration. Another area

to explore is dynamic workflow reconfiguration. We can
envision the possibility of updating a workflow to a newer
version. We can do this by starting the new workflow by
consuming the same atomic stream as the old workflow, then,
in a serializable update, we can stop the old workflow, and
start the new workflow. This transition would be seamless
due to the atomic processing guarantees.

7.3 Subsuming Distributed Programming Models

Portals shares many aspects with other distributed pro-
gramming models. Here we will look at how we could imple-
ment other models with Portals, to showcase some more
features of the model. The Streaming Dataflow and MapRe-
duce [17] model are trivial to implement in Portals, thus
we do not describe them here.

Bulk Synchronous Parallel (BSP). To support BSP [24,
38, 56] requires some form of synchronization barriers. The
model proceeds in supersteps, and for each superstep the
processes receive messages from the last superstep, and pro-
duce the messages for the next superstep. The idea here, is
that we can use an atom as a superstep/synchronization bar-
rier, and iterate by cycling the events for the next superstep
back into the same workflow. This way we can also perform
step-wise communications.

Pregel. The pregel model [37] is similar to the BSP model,
in that the computation happens over supersteps. In addition
to this, we would need to support some form of aggregations
and program termination to model pregel. Aggregations can
happen via some reduce task. Termination could be managed
by a second workflow, that controls the first workflow to see
if all vertices have voted to terminate, and no new messages
have been spawned.
Virtual Actors. The virtual actor model [9] consists of

virtual actors (sometimes also called grains, entities, or data-
parallel actors). Virtual actors differ from regular actors [1]
in two ways: they cannot dynamically spawn new actors;
and the actor reference is a composite of the virtual actor ref-
erence and the identity. Virtual actors have been supported
within dataflow systems but limited to a single dataflow wor-
flow as it has been showcased in Flink [2, 20]. This can be
materialized as a single task over some contextual key which
corresponds to the virtual actor identity, together with a
shuffle and cycle.

8 Related Work

Atomic streams reflect existing fault-tolerant distributed log
systems such as Kafka [51], Pravega [53] and Azure queue
storage [40]. In practice, these systems are used to connect

168

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

stateful streaming systems together, such as the combination
of Kafka [51] and Flink [12]. Much like the atomic streams
in Portals it enables reasoning about end-to-end exactly-
once guarantees across applications. The Portalsworkflows
closely resemble pipelines in other stateful dataflow stream-
ing systems [3, 12, 22, 42]; these all provide scalability and
native data parallelism. Our proposed implementation of
atom alignment is based on the asynchronous snapshotting
barriers from Flink [12]. What distinguishes Portals from
other streaming models is that it models multiple decentral-
ized pipelines. With respect to iterations and cycles, there
are streaming systems that have support for this [23, 42].
Other stateful serverless programming models [7, 16, 20,

34, 50] share many of the features of Portals and are great
alternatives in their own right. This includes scalability,
exactly-once processing guarantees, dynamic deployments,
cyclic dependencies, and more. What differs is the dataflow-
style composition and serializable updates present in Por-

tals. Noteworthy considerations are data-parallel actor sys-
tems [7, 9, 20, 30, 33] (sometimes also called virtual actors or
entities), as an alternative to our workflows. They provide
data parallelism with actor-like dynamic messaging. In some
sense, PortalsWorkflows resemble process actors [5, 29, 33]
but with static messaging and dataflow-style compositional-
ity. There has been work on the compositionality of actors;
for example, Reactors [43, 44] are an actor-dataflow hybrid
which can have multiple incoming streams and compose to-
gether sub-protocols within the actor (sub-protocol composi-
tion is otherwise problematic in actors [32]). Portals Work-
flows lack the first-class references of sources as it exists
in the Reactors model, but support data parallelism unlike
Reactors. The spirit of the atomic processing contract can be
found in other related work, such as work by Yoo et al. [57]
which processes events over transactional turns to guarantee
composable reliability and enable exactly-once processing
even under arbitrary failures. A łportalsž construct has been
proposed previously in the context of dataflow streaming
systems, but with a completely different semantics, such as
enabling broadcast messaging on streams [54].
The definition and use of futures [6, 28, 35] has come to

change over time [45]. The future semantics presented in
this work can be classified as explicit and typed, with asyn-
chronous synchronization as await invocations do not block
but register a continuation closure. Other future implemen-
tations might be implicit (implicit synchronisation visibility),
untyped, or synchronous (e.g.,with a blocking get operation),
with control-flow or data-flow synchronization [45]. To our
knowledge, we present the first dataflow model that has an
abstraction for request-reply communication together with
futures.

The presented serializable updates resemble dynamic sys-
tem updates and transactions. Whereas dynamic system
updates are primarily concerned with safely swapping out
some running program’s part [47], ensuring the semantic

correctness of the update [48], serializable updates in Por-

tals specifically target modifying the application state and
leave semantic consistency concerns to the user. Similarly,
this is true for dynamic streaming systems updates [36]
which is more concerned with system configuration and less
with application state. Transactions on streaming systems
share the same idea as serializable updates, i.e., to provide
transactional guarantees for certain operations [16, 39, 59].
The use of transactional application state for GDPR compli-
ance is also suggested in other work [31].

9 Conclusions

We have presented the Portals programming model, an ex-
tension of the dataflow streaming model for stateful server-
less systems. Portals combines: exactly-once processing
guarantees of atomic streams and the atomic processing con-

tract, serializable event orderings with serialziable updates,
seamless dynamic compositionality through portals’ ask-
await style direct messaging, and multi-workflow service
compositions, and dynamic scalability. The Portals model
has successfully combined these features into a single pro-
gramming model, and we believe that it is a great alternative
for writing scalable stateful serverless applications due to its
guarantees and intuitive expressiveness.

For future work, we plan to complete the distributed and
decentralized implementation of Portals, work out the op-
erational semantics and provide a sound type system, and
explore extensions such as dynamically splitting and fusing
atoms as well as actor-like references.

Acknowledgments

The authors would like to thank Chengyang Huang and
Siyao Liu for help with the implementation of Portals, as
well as the anonymous referees for their valuable comments
and helpful suggestions.
This work was partially funded by Digital Futures (łRe-

silient Decentralized Computingž research pairs project),
the Swedish Foundation for Strategic Research under Grant
No.: BD15-0006, as well as RISE AI.

References
[1] Gul Agha. 1986. ACTORS: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, MA.
[2] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. State-

ful Functions as a Service in Action. Proc. VLDB Endow. 12, 12 (2019),
1890ś1893. https://doi.org/10.14778/3352063.3352092

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael Fernández-Moctezuma, Reuven Lax, SamMcVeety, Daniel Mills,
Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The Dataflow
Model: A Practical Approach to Balancing Correctness, Latency, and
Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing.
Proc. VLDB Endow. 8, 12 (2015), 1792ś1803. https://doi.org/10.14778/

2824032.2824076

[4] AmazonWeb Services, Inc. 2022. Serverless Computing - AWS Lambda
- Amazon Web Services. https://aws.amazon.com/lambda/. Accessed:
2022-07-07.

169

https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
https://aws.amazon.com/lambda/

Onward! ’22, December 8ś10, 2022, Auckland, New Zealand Jonas Spenger, Paris Carbone, and Philipp Haller

[5] Joe Armstrong, Robert Virding, and Mike Williams. 1993. Concurrent
programming in ERLANG. Prentice Hall.

[6] Henry G. Baker and Carl Hewitt. 1977. The incremental garbage
collection of processes. In Proceedings of the 1977 Symposium on Artifi-

cial Intelligence and Programming Languages, USA, August 15-17, 1977,
James Low (Ed.). ACM, 55ś59. https://doi.org/10.1145/800228.806932

[7] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, ConnorMcMahon, ChristopherMeiklejohn,
and Xiangfeng Zhu. 2022. Netherite: Efficient Execution of Serverless
Workflows. Proc. VLDB Endow. 15, 8 (2022), 1591ś1604. https://www.

vldb.org/pvldb/vol15/p1591-burckhardt.pdf

[8] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S. Meiklejohn. 2021. Durable
functions: semantics for stateful serverless. Proc. ACM Program. Lang.

5, OOPSLA (2021), 1ś27. https://doi.org/10.1145/3485510

[9] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya,
and Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In
ACM Symposium on Cloud Computing in conjunction with SOSP 2011,

SOCC ’11, Cascais, Portugal, October 26-28, 2011. 16. https://doi.org/10.

1145/2038916.2038932

[10] Paris Carbone. 2018. Scalable and Reliable Data Stream Processing.
Ph. D. Dissertation. Royal Institute of Technology, Stockholm, Sweden.
https://nbn-resolving.org/urn:nbn:se:kth:diva-233527

[11] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter,
and Kostas Tzoumas. 2017. State Management in Apache Flink®:
Consistent Stateful Distributed Stream Processing. Proc. VLDB Endow.

10, 12 (2017), 1718ś1729. https://doi.org/10.14778/3137765.3137777

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™: Stream and
Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015),
28ś38. http://sites.computer.org/debull/A15dec/p28.pdf

[13] Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Tobias Wrigstad,
and Albert Mingkun Yang. 2018. Attached and detached closures in
actors. In Proceedings of the 8th ACM SIGPLAN International Workshop

on Programming Based on Actors, Agents, and Decentralized Control,

AGERE!@SPLASH 2018, Boston, MA, USA, November 5, 2018, Joeri De
Koster, Federico Bergenti, and Juliana Franco (Eds.). ACM, 54ś61. https:
//doi.org/10.1145/3281366.3281371

[14] Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and
Hadrien Renaud. 2022. An Optimised Flow for Futures: From Theory
to Practice. Art Sci. Eng. Program. 6, 1 (2022), 3. https://doi.org/10.

22152/programming-journal.org/2022/6/3

[15] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, An-
doni Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De
Meuter. 2014. AmbientTalk: programming responsive mobile peer-
to-peer applications with actors. Comput. Lang. Syst. Struct. 40, 3-4
(2014), 112ś136. https://doi.org/10.1016/j.cl.2014.05.002

[16] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios
Katsifodimos. 2021. Distributed transactions on serverless stateful
functions. In 15th ACM International Conference on Distributed and

Event-based Systems, DEBS 2021, Virtual Event, Italy, June 28 - July 2,

2021, Alessandro Margara, Emanuele Della Valle, Alexander Artikis,
Nesime Tatbul, and Helge Parzyjegla (Eds.). ACM, 31ś42. https://doi.

org/10.1145/3465480.3466920

[17] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symposium on Operating System

Design and Implementation (OSDI 2004), San Francisco, California, USA,

December 6-8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX
Association, 137ś150. http://www.usenix.org/events/osdi04/tech/dean.
html

[18] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson.
2002. A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv. 34, 3 (2002), 375ś408. https://doi.org/10.

1145/568522.568525

[19] Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch
Johnsen, and Tobias Wrigstad. 2019. Godot: All the Benefits of Implicit
and Explicit Futures. In 33rd European Conference on Object-Oriented

Programming, ECOOP 2019, July 15-19, 2019, London, United King-

dom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2:1ś2:28. https://doi.org/10.4230/

LIPIcs.ECOOP.2019.2

[20] The Apache Software Foundation. 2022. Apache Flink Stateful Func-
tions. https://nightlies.apache.org/flink/flink-statefun-docs-release-
3.2/. Accessed on 2022-06-26.

[21] Martin Fowler. 2005. Event Sourcing. https://martinfowler.com/

eaaDev/EventSourcing.html. Accessed: 2022-07-10.
[22] Can Gencer, Marko Topolnik, Viliam Durina, Emin Demirci, Ensar B.

Kahveci, Ali Gürbüz, József Bartók, Grzegorz Gierlach, Frantisek Hart-
man, Ufuk Yilmaz, Ondrej Lukás, Mehmet Dogan, MohamedMandouh,
Marios Fragkoulis, and Asterios Katsifodimos. 2021. Hazelcast Jet: Low-
latency Stream Processing at the 99.99th Percentile. Proc. VLDB Endow.

14, 12 (2021), 3110ś3121. https://doi.org/10.14778/3476311.3476387

[23] Gábor E. Gévay, Juan Soto, and Volker Markl. 2022. Handling Iterations
in Distributed Dataflow Systems. ACM Comput. Surv. 54, 9 (2022),
199:1ś199:38. https://doi.org/10.1145/3477602

[24] Philipp Haller and Heather Miller. 2011. Parallelizing Machine
Learning- Functionally: A Framework and Abstractions for Parallel
Graph Processing. In 2nd Annual Scala Workshop, SCALA’11, Stanford,

CA, USA, June 2, 2011. https://infoscience.epfl.ch/record/165111

[25] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying
thread-based and event-based programming. Theor. Comput. Sci. 410,
2-3 (2009), 202ś220. https://doi.org/10.1016/j.tcs.2008.09.019

[26] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In 2010 USENIX Annual Technical Conference, Boston, MA,

USA, June 23-25, 2010, Paul Barham and Timothy Roscoe (Eds.).
USENIX Association. https://www.usenix.org/conference/usenix-atc-

10/zookeeper-wait-free-coordination-internet-scale-systems

[27] Shams Mahmood Imam and Vivek Sarkar. 2014. Savina - An Actor
Benchmark Suite: Enabling Empirical Evaluation of Actor Libraries. In
Proceedings of the 4th International Workshop on Programming based

on Actors Agents & Decentralized Control, AGERE! 2014, Portland, OR,

USA, October 20, 2014, Elisa Gonzalez Boix, Philipp Haller, Alessandro
Ricci, and Carlos A. Varela (Eds.). ACM, 67ś80. https://doi.org/10.

1145/2687357.2687368

[28] Robert H. Halstead Jr. 1985. Multilisp: A Language for Concurrent
Symbolic Computation. ACM Trans. Program. Lang. Syst. 7, 4 (1985),
501ś538. https://doi.org/10.1145/4472.4478

[29] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43
years of actors: a taxonomy of actor models and their key properties. In
Proceedings of the 6th International Workshop on Programming Based on

Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam, The

Netherlands, October 30, 2016, Sylvan Clebsch, Travis Desell, Philipp
Haller, and Alessandro Ricci (Eds.). ACM, 31ś40. https://doi.org/10.

1145/3001886.3001890

[30] Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, and Matei Zaharia. 2022.
Data-Parallel Actors: A Programming Model for Scalable Query Serv-
ing Systems. In 19th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, Amar
Phanishayee and Vyas Sekar (Eds.). USENIX Association, 1059ś1074.
https://www.usenix.org/conference/nsdi22/presentation/kraft

[31] Peter Kraft, Qian Li, Kostis Kaffes, Athinagoras Skiadopoulos, Deep-
taanshu Kumar, Danny Cho, Jason Li, Robert Redmond, Nathan W.
Weckwerth, Brian S. Xia, Peter Bailis, Michael J. Cafarella, Goetz
Graefe, Jeremy Kepner, Christos Kozyrakis, Michael Stonebraker,
Lalith Suresh, Xiangyao Yu, and Matei Zaharia. 2022. Apiary: A
DBMS-Backed Transactional Function-as-a-Service Framework. CoRR
abs/2208.13068 (2022). https://doi.org/10.48550/arXiv.2208.13068

arXiv:2208.13068

170

https://doi.org/10.1145/800228.806932
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2038916.2038932
https://nbn-resolving.org/urn:nbn:se:kth:diva-233527
https://doi.org/10.14778/3137765.3137777
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/3281366.3281371
https://doi.org/10.1145/3281366.3281371
https://doi.org/10.22152/programming-journal.org/2022/6/3
https://doi.org/10.22152/programming-journal.org/2022/6/3
https://doi.org/10.1016/j.cl.2014.05.002
https://doi.org/10.1145/3465480.3466920
https://doi.org/10.1145/3465480.3466920
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/568522.568525
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/
https://nightlies.apache.org/flink/flink-statefun-docs-release-3.2/
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.14778/3476311.3476387
https://doi.org/10.1145/3477602
https://infoscience.epfl.ch/record/165111
https://doi.org/10.1016/j.tcs.2008.09.019
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1145/4472.4478
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890
https://www.usenix.org/conference/nsdi22/presentation/kraft
https://doi.org/10.48550/arXiv.2208.13068
https://arxiv.org/abs/2208.13068

Portals: An Extension of Dataflow Streaming for Stateful Serverless Onward! ’22, December 8ś10, 2022, Auckland, New Zealand

[32] Roland Kuhn. 2016. My journey towards understanding distribu-
tion. https://github.com/rkuhn/blog/blob/master/01_my_journey_

towards_understanding_distribution.md. Accessed: 2022-06-26.
[33] Lightbend, Inc. 2022. Akka. https://akka.io/. Accessed: 2022-07-07.
[34] Lightbend, Inc. 2022. Kalix. https://www.kalix.io/. Accessed: 2022-07-

07.
[35] Barbara Liskov and Liuba Shrira. 1988. Promises: Linguistic Support

for Efficient Asynchronous Procedure Calls in Distributed Systems.
In Proceedings of the ACM SIGPLAN’88 Conference on Programming

Language Design and Implementation (PLDI), Atlanta, Georgia, USA,

June 22-24, 1988. 260ś267. https://doi.org/10.1145/53990.54016

[36] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram
Venkataraman, Paolo Costa, Terry Kim, Saravanam Muthukrishnan,
Vamsi Kuppa, Sudheer Dhulipalla, and Sriram Rao. 2018. Chi: A
Scalable and Programmable Control Plane for Distributed Stream
Processing Systems. Proc. VLDB Endow. 11, 10 (2018), 1303ś1316.
https://doi.org/10.14778/3231751.3231765

[37] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.
Pregel: a system for large-scale graph processing. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, Ahmed K.
Elmagarmid and Divyakant Agrawal (Eds.). ACM, 135ś146. https:

//doi.org/10.1145/1807167.1807184

[38] Robert Ryan McCune, TimWeninger, and Greg Madey. 2015. Thinking
Like a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale
Distributed Graph Processing. ACM Comput. Surv. 48, 2 (2015), 25:1ś
25:39. https://doi.org/10.1145/2818185

[39] John Meehan, Nesime Tatbul, Stan Zdonik, Cansu Aslantas, Ugur Çet-
intemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew
Pavlo, Michael Stonebraker, Kristin Tufte, and Hao Wang. 2015. S-
Store: Streaming Meets Transaction Processing. Proc. VLDB Endow. 8,
13 (2015), 2134ś2145. https://doi.org/10.14778/2831360.2831367

[40] Microsoft. 2021. Azure Queue Storage. https://docs.microsoft.com/en-

us/azure/storage/queues/storage-queues-introduction. Accessed:
2022-07-07.

[41] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. 2005. Con-
currency Among Strangers. In Trustworthy Global Computing, Inter-

national Symposium, TGC 2005, Edinburgh, UK, April 7-9, 2005, Re-

vised Selected Papers (Lecture Notes in Computer Science, Vol. 3705),
Rocco De Nicola and Davide Sangiorgi (Eds.). Springer, 195ś229.
https://doi.org/10.1007/11580850_12

[42] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.
In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP

’13, Farmington, PA, USA, November 3-6, 2013, Michael Kaminsky and
Mike Dahlin (Eds.). ACM, 439ś455. https://doi.org/10.1145/2517349.

2522738

[43] Aleksandar Prokopec. 2017. Encoding the building blocks of com-
munication. In Proceedings of the 2017 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Program-

ming and Software, Onward! 2017, Vancouver, BC, Canada, October 23 -

27, 2017, Emina Torlak, Tijs van der Storm, and Robert Biddle (Eds.).
ACM, 104ś118. https://doi.org/10.1145/3133850.3133865

[44] Aleksandar Prokopec andMartin Odersky. 2015. Isolates, channels, and
event streams for composable distributed programming. In 2015 ACM

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software, Onward! 2015, Pittsburgh, PA, USA,

October 25-30, 2015, Gail C. Murphy and Guy L. Steele Jr. (Eds.). ACM,
171ś182. https://doi.org/10.1145/2814228.2814245

[45] Francisco Ramón Fernández Reyes. 2021. Abstractions to Control the
Future. Ph. D. Dissertation. Uppsala University, Sweden. https://nbn-

resolving.org/urn:nbn:se:uu:diva-425128

[46] Till Rohrmann. 2022. Keynote: Rethinking how distributed applica-
tions are built. (2022). Proceedings of the 16th ACM International
Conference on Distributed and Event-based Systems.

[47] Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshke-
nani. 2013. A survey of dynamic software updating. J. Softw. Evol.
Process. 25, 5 (2013), 535ś568. https://doi.org/10.1002/smr.1556

[48] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2022.
Change Is the Only Constant: Dynamic Updates for Workflows. In
44th IEEE/ACM 44th International Conference on Software Engineering,

ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. IEEE, 350ś362. https:

//ieeexplore.ieee.org/document/9793884

[49] Jonas Spenger, Paris Carbone, and Philipp Haller. 2021. WIP: Pods:
Privacy Compliant Scalable Decentralized Data Services. In Heteroge-

neous DataManagement, Polystores, and Analytics for Healthcare - VLDB

Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12921),
El Kindi Rezig, Vijay Gadepally, Timothy G. Mattson, Michael Stone-
braker, Tim Kraska, Fusheng Wang, Gang Luo, Jun Kong, and Alevtina
Dubovitskaya (Eds.). Springer, 70ś82. https://doi.org/10.1007/978-3-

030-93663-1_7

[50] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc.

VLDB Endow. 13, 11 (2020), 2438ś2452. http://www.vldb.org/pvldb/

vol13/p2438-sreekanti.pdf

[51] The Apache Software Foundation. 2017. Apache Kafka. https://kafka.
apache.org/. Accessed: 2022-07-07.

[52] The Apache Software Foundation. 2021. FlinkKafkaPro-
ducer. https://nightlies.apache.org/flink/flink-docs-release-

1.11/api/java/org/apache/flink/streaming/connectors/kafka/

internal/FlinkKafkaProducer.html. Accessed: 2022-07-07.
[53] The Linux Foundation. 2022. Pravega. https://cncf.pravega.io/. Ac-

cessed: 2022-07-07.
[54] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.

StreamIt: A Language for Streaming Applications. In Compiler Con-

struction, 11th International Conference, CC 2002, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS

2002, Grenoble, France, April 8-12, 2002, Proceedings (Lecture Notes in

Computer Science, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 179ś196.
https://doi.org/10.1007/3-540-45937-5_14

[55] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2002.
NEXMark: A benchmark for queries over data streams. https://datalab.
cs.pdx.edu/niagara/NEXMark/.

[56] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation.
Commun. ACM 33, 8 (1990), 103ś111. https://doi.org/10.1145/79173.

79181

[57] Sunghwan Yoo, Charles Edwin Killian, Terence Kelly, Hyoun Kyu Cho,
and Steven Plite. 2012. Composable Reliability for Asynchronous Sys-
tems. In 2012 USENIX Annual Technical Conference, Boston, MA, USA,

June 13-15, 2012, Gernot Heiser andWilson C. Hsieh (Eds.). USENIX As-
sociation, 27ś40. https://www.usenix.org/conference/atc12/technical-

sessions/presentation/yoo

[58] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized streams: fault-tolerant
streaming computation at scale. In ACM SIGOPS 24th Symposium on

Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November

3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 423ś438.
https://doi.org/10.1145/2517349.2522737

[59] Shuhao Zhang, Juan Soto, and Volker Markl. 2022. A Survey on
Transactional Stream Processing. CoRR abs/2208.09827 (2022). https:

//doi.org/10.48550/arXiv.2208.09827 arXiv:2208.09827
[60] École Polytechnique Fédérale Lausanne (EPFL). 2022. The Scala Pro-

gramming Language. https://www.scala-lang.org/. Accessed: 2022-07-
07.

171

https://github.com/rkuhn/blog/blob/master/01_my_journey_towards_understanding_distribution.md
https://github.com/rkuhn/blog/blob/master/01_my_journey_towards_understanding_distribution.md
https://akka.io/
https://www.kalix.io/
https://doi.org/10.1145/53990.54016
https://doi.org/10.14778/3231751.3231765
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2818185
https://doi.org/10.14778/2831360.2831367
https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://doi.org/10.1007/11580850_12
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/2814228.2814245
https://nbn-resolving.org/urn:nbn:se:uu:diva-425128
https://nbn-resolving.org/urn:nbn:se:uu:diva-425128
https://doi.org/10.1002/smr.1556
https://ieeexplore.ieee.org/document/9793884
https://ieeexplore.ieee.org/document/9793884
https://doi.org/10.1007/978-3-030-93663-1_7
https://doi.org/10.1007/978-3-030-93663-1_7
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://kafka.apache.org/
https://kafka.apache.org/
https://nightlies.apache.org/flink/flink-docs-release-1.11/api/java/org/apache/flink/streaming/connectors/kafka/internal/FlinkKafkaProducer.html
https://nightlies.apache.org/flink/flink-docs-release-1.11/api/java/org/apache/flink/streaming/connectors/kafka/internal/FlinkKafkaProducer.html
https://nightlies.apache.org/flink/flink-docs-release-1.11/api/java/org/apache/flink/streaming/connectors/kafka/internal/FlinkKafkaProducer.html
https://cncf.pravega.io/
https://doi.org/10.1007/3-540-45937-5_14
https://datalab.cs.pdx.edu/niagara/NEXMark/
https://datalab.cs.pdx.edu/niagara/NEXMark/
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoo
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.48550/arXiv.2208.09827
https://doi.org/10.48550/arXiv.2208.09827
https://arxiv.org/abs/2208.09827
https://www.scala-lang.org/

	Abstract
	1 Introduction
	2 Motivation and Challenges
	2.1 Exactly-Once Processing Guarantees Across Workflows
	2.2 Dynamic Scalability
	2.3 Composition and Intuitive Programming Semantics
	2.4 Serializable Updates
	2.5 Complexities and Inconsistencies: An Example

	3 Highlights: Portals
	4 Programming Model
	4.1 Atomic Streams
	4.2 Workflows
	4.3 Tasks
	4.4 Portals and Reply Streams
	4.5 Serializable Updates
	4.6 Distributed Semantics

	5 Design and Implementation
	5.1 Portals System Architecture
	5.2 Atomic Streams
	5.3 Portals
	5.4 Exactly-Once Processing
	5.5 Prototype Implementation

	6 Evaluation
	7 Use Cases
	7.1 Application Example
	7.2 Subsuming Existing Service Patterns
	7.3 Subsuming Distributed Programming Models

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

