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Global Mobile Data Traffic Explosion

Source: Cisco VNI Global Mobile Data
Traffic Forecast, 2017-2022

2017 - 2022: Sevenfold increase

Key Drivers for Data Explosion
• ↑ number of mobile connections: 8.6 bil. in 2017 - 12.3 bil. in 2022
• ↑ mobile network speeds: 8.7 Mbps in 2017 - 28.5 Mbps in 2022
• ↑ demand for a variety of applications
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Application Requirements vs. Device Capabilities

Applications
• Computationally intensive tasks: machine learning applications
• Delay sensitive tasks: real-time control applications

Devices
• Battery powered→ low energy consumption requirements
• Computationally constrained

• Energy consumption requirements vs. clock speed of the processor
• Requirements for light and small devices

How to close the gap between the application requirements and device
capabilities?
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Edge Computing Systems
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Edge System Resources
• Computing resources (remote clouds, edge clouds, fog devices)
• Communication resources (wireless and wireline)
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Major Challenge

• Task placement and management of communication and computing
resources

• Response time requirements
• Energy consumption requirements

• Algorithms for placing tasks and allocating resources
• Scalability
• Limited information availability
• Cater for autonomous devices⇒ decentralized decisions
• Guaranteed system performance
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Outline

1 Task Placement in Edge Computing Systems
• Completion Time Minimization

• Collaborative offloading supported by a cloud server (Paper A)
• Completion Time and Energy Consumption Minimization

• Scheduling of tasks over time slots, communication and computing
resources (Paper B and Paper C)

2 Task Placement and Resource Management in Edge Computing Systems
• Completion Time Minimization

• Scheduling of tasks over network slices, communication and computing
resources (Paper D and Paper E)

1. Worst case problem complexity?
2. Equilibrium for autonomous devices?
3. Decentralized algorithms?
4. What is the complexity of the algorithm?
5. How good are the system performance?
6. How to achieve low signaling overhead?
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Collaborative Edge Computing

D4

D5
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D2
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D6

• Cloud server

• Set of WDs N = {1, 2, ...,N}

Computational Tasks
• WD i generates a sequence (ti,1, ti,2, . . .) of tasks

• Poisson task arrival process with arrival intensity λi
• Mean size of the input data Di
• Mean computational complexity Li

• Decision of WD i for task ti,k
• Local computing with probability pi,i(k)
• Offloading to WD j with probability pi,j(k)
• Offloading to the cloud with probability pi,c(k)
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Communication Model
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• OFDMA dedicated mode of communication

• Assignment of subcarriers to pairs of
communicating nodes

• Ri,j: transmission rate from WD i to
node j
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order)
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Computing Model
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• Fi: computing capability of WD i

• Fc: computing capability of the cloud
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Cost Model

Mean Completion Time

Ci = lim
K→∞

1
K

[
K∑

k=1

(
pi,i(k)Te

i,i(k) +
∑

j∈N\{i}∪{c}
pi,j(k)

(
Td

i,j(k) + Te
i,j(k)

))]

Dynamic Non-Cooperative Game
• Closest to stochastic game with countably infinite state space
• Existence results for Markov perfect equilibria are not known
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System in Steady State

Communication Model
• Each transmission queue modeled as an M/G/1 system
• Td

i,j: mean time needed to deliver data Di from WD i to node j

Computing Model
• Execution queue of each WD modeled as an M/G/1 system
• Execution queue of the cloud modeled as an M/G/∞ system
• Te

i,j: mean time needed to execute Li cycles at node j

Cost Model

Ci(pi, p−i) = pi,iTe
i,i +

∑
j∈N\{i}∪{c}

pi,j
(
Td

i,j + Te
i,j
)
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Equilibrium Existence in Static Mixed Strategies
• The game has at least one equilibrium in static mixed strategies

• Proof based on using variational inequality theory
• Computing relies on average system parameters:

• Average task arrival intensities
• Average transmission rates
• First and second moments of the task size distribution
• First and second moments of the task complexity distribution
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Decentralized Algorithms for Allocating Tasks

Static Mixed Nash Equilibrium (SM-NE) Algorithm
• Every WD allocates tasks based on the computed static mixed strategy

equilibrium
• Relies on the average system performance⇒ low signaling overhead

Myopic Best Response (MBR)
• Every WD allocates tasks based on a myopic best response strategy
• Relies on the instantaneous states of the system⇒ high signaling

overhead
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Performance Gain w.r.t Local Computing

Evaluation scenario
• λi ∼ U(0.01, 0.03) tasks/s Fi ∼ U(1, 4) Gcycles, Fc = 64 Gcycles,
• Tasks: Di ∼ U(0.1, 3.4) Mb , Li ∼ U(0.2, 1) Gcycles

Performance gain (algorithm A) = sum of costs of WDs when computing locally
sum of costs of WDs when using algorithhm A
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• Higher WD to cloud bandwidth⇒
higher performance gain

• D2D offloading based on average
system parameters performs close to
D2D offloading based on the global
knowledge

• SM-NE algorithm performs close to
the SM-OPT algorithm
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Outline

1 Task Placement in Edge Computing Systems
• Completion Time Minimization

• Collaborative offloading supported by a cloud server (Paper A)
• Completion Time and Energy Consumption Minimization

• Scheduling of tasks over time slots, communication and computing
resources (Paper B and Paper C)

2 Task Placement and Resource Management in Edge Computing Systems
• Completion Time Minimization

• Scheduling of tasks over network slices, communication and computing
resources (Paper D and Paper E)
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MEC System with Periodic Tasks

I IV
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• Edge cloud

• Set of APs A = {1, 2, ...,A}

• Set of WDs
N = {1, 2, ...,N}

• Set of time slots
T = {1, 2, . . . ,T}

Computational Tasks
• Task < Di,Li > of WD i

• Size of the input data Di
• Computational complexity Li

• Decision of WD i: di =

{
(t, 0), local computing in time slot t
(t, a), offloading via AP a in time slot t

• Set of decisions for all WDs is a strategy profile d
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Communication Model
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• Pi,a: transmit power of WD
i on AP a

• Ri,a: PHY rate of WD i on
AP a

• n(t,a)(d): number of WDs
that offload in time slot t via
AP a

Cloud offloading through AP a in time slot t

• Transmission time Ti,(t,a)(d)

Ti,(t,a)(d) = Di

Ri,a× fa(n(t,a)(d))

fa(n(t,a)(d)): non-increasing function of n(t,a)(d)

• Energy consumption Ec
i,(t,a)(d)

Ec
i,(t,a)(d) =

Pi,aDi

Ri,a×fa(n(t,a)(d))
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• Fc: computing capability of
the cloud

• nt(d): total number of WDs
that offload in time slot t

Local computing

• Task execution time
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• Energy consumption
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i = viLi

vi: energy consumption of WD i per CPU cycle

Cloud offloading in time slot t

Task execution time in time slot t
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Local Computing Cost
C0

i = γT
i T0

i︸︷︷︸
delay

+γE
i E0

i︸︷︷︸
energy

Cloud Offloading Cost

Cc
i,(t,a)(d) = γT

i (

transmission time︷ ︸︸ ︷
Ti,(t,a)(d) +

execution time︷ ︸︸ ︷
Tc,exe

i,t (d)︸ ︷︷ ︸
delay

) + γE
i Ec

i,(t,a)(d)︸ ︷︷ ︸
energy to offload

Selfish Computation Offloading
• Interactions between WDs modeled as a strategic game Γ =<N , (Di)i, (Ci)i>

Ci
0 d

o

v

1 2 Aa

v

fi(n1(d))

fa(n(1,a)(d))

fi(nT(d))

v
fa(n(T,a)(d))

Ci
0

1 2 Aa... ...... ...

1 t T... ... • Player specific network congestion game

• Existence of Nash equilibria (NE) is not
known in general
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Single Time Slot and Elastic Cloud (Paper B)

n(d)=3

AP1
AP2 AP3

Fc

Fd
0

WDs

APs

cloud

a

c b

d Fe
0e

• Decision of WD i: di =

{
0, local computing
a, offloading via AP a

NE Existence
• NE exist in the case of an elastic cloud and a single time slot

• Proof based on generalized ordinal potential function

ImprovementPath (IP) Algorithm
• Starts from an arbitrary initial strategy profile
• One WD at a time is allowed to perform an improvement step
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Single Time Slot and Non-Elastic Cloud (Paper B)

n(d)=3

AP1
AP2 AP3

Fc

Fd
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WDs

APs

cloud

a

c b

d Fe
0e

• Not a potential game - proof by constructing a cycle

(1, 2, 1, 0, 0)−→
c

(1, 2, 2, 0, 0) −→
b

(1, 0, 2, 0, 0) −→
d

(1, 0, 2, 2, 0) −→
e

(1, 0, 2, 2, 2) −→
c

(1, 0, 1, 2, 2) −→
b

(1, 3, 1, 2, 2) −→
e

(1, 3, 1, 2, 0) −→
d

(1, 3, 1, 0, 0) −→
b

(1, 2, 1, 0, 0)

NE existence
• The game admits a pure NE

• Constructive proof - Join and Play Best Reply (JP-BR) algorithm

• Induction phase - starting from
an empty system, WDs enter the
game one at a time and play BR

AP AP2 AP3

local

offloading

computing

AP AP2 AP3

local

offloading

computing

a

c

a

d

b
da= 1*

1 1

e

• Update phase - WDs are allowed
to update their BR one at a time
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Multiple Time Slots (Paper C)

• JP-BR may not converge to a NE

• NE exists in the case of multiple time slots

Coordinated Myopic Alternating Best (MB) Algorithm
• WDs enter the game one at a time and implement BR over all time slots

• Induction phase - starting from
an empty system, WDs enter the
game one at a time and play BR

I II I II

AP AP2 AP3

local

offloading

computing

AP AP2 AP3

local

offloading

computing

AP AP2 AP3

local

offloading

computing

AP AP2 AP3

local

offloading

computing

a

c

a

d

b f g

h

da=(I,1)*

1 1 1 1

e

BR sequence (1) BR sequence (2)

• Update phase - two types of BR

sequences are played

alternatingly
(1) WDs are not allowed to

replace previous
deviators

(2) WDs are only allowed
to replace previous
deviators
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Proposed Algorithms - Main Results

Computability
• Single time slot: JP-BR algorithm computes a NE of a game in
O(N2 × A)

• Multiple time slots: MB algorithm computes a NE of a game in
O(N2 × T × A) steps

Price of Anarchy (PoA) Bounds
• Upper bound on the PoA for the computation offloading game:

• N ≤ T: PoA = 1
• N > T: PoA ≤ N + 1

• Provides bound on approximation ratio
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Performance Gain w.r.t Local Computing
Evaluation scenario

• A = 4 APs, Fc = 100 Gcycles, Fc
i,t(nt(d))= Fc

nt(d) , Fi ∼ U(0.5, 1) Gcycles

• Tasks: Di ∼ U(0.42, 2) Mb , Li ∼ U(0.1, 0.8) Gcycles

Performance gain (algorithm A) = sum of costs of WDs when computing locally
sum of costs of WDs when using algorithhm A
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Number of WDs (N)
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T = 1
T = 5
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T = 20

• Performance gain decreases with the
number of WDs for both algorithms

• Performance gain of the MB
algorithm is higher than that of the
RS algorithm for T > 1 =⇒
coordination is important
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Computational Complexity

Evaluation scenario
• A = 4 APs, Fc = 100 Gcycles, Fc

i,t(nt(d))= Fc

nt(d) , Fi ∼ U(0.5, 1) Gcycles

• Tasks: Di ∼ U(0.42, 2) Mb , Li ∼ U(0.1, 0.8) Gcycles

Computational complexity
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• Number of iterations scales
approximately linearly with the
number of WDs for both algorithms

S. Jošilo (KTH) Doctoral Defense May 27, 2020 29 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

Computational Complexity

Evaluation scenario
• A = 4 APs, Fc = 100 Gcycles, Fc

i,t(nt(d))= Fc

nt(d) , Fi ∼ U(0.5, 1) Gcycles

• Tasks: Di ∼ U(0.42, 2) Mb , Li ∼ U(0.1, 0.8) Gcycles

Computational complexity

1 100 200 300 400 500 600 700 800

Number of WDs (N)

200

400

600

800

1000

1200

N
u
m
b
er

of
It
er
at
io
n
s

MB
RS
T = 1
T = 5
T = 10
T = 20

• Number of iterations scales
approximately linearly with the
number of WDs for both algorithms

S. Jošilo (KTH) Doctoral Defense May 27, 2020 29 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

Outline

1 Task Placement in Edge Computing Systems
• Completion Time Minimization

• Collaborative offloading supported by a cloud server (Paper A)
• Completion Time and Energy Consumption Minimization

• Scheduling of tasks over time slots, communication and computing
resources (Paper B and Paper C)

2 Task Placement and Resource Management in Edge Computing Systems
• Completion Time Minimization

• Scheduling of tasks over network slices, communication and computing
resources (Paper D and Paper E)
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Edge Computing Under Network Slicing

 

 

mobile broadband

IoT

connected cars

manufacturing

• Set A of access points (APs)
• Set C of edge clouds (ECs)
• Set N of wireless devices (WDs)
• Set S of network slices

Computational Tasks
• Task of WD i, < Di, Li >

• size of the input data Di

• computational complexity Li

• Decision di of WD i ∈ N :
di

local computing offloading: in which slice s, through which AP a and to which EC c?

di ∈ Di, Di = {i} ∪ {(a, c, s)|a ∈ A, c ∈ C, s ∈ S}

• Set of decisions for all WDs is a strategy profile d
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Communication Model

 

 

mobile broadband

IoT

connected cars

manufacturing

• Network level management:
• Network operator shares resources

among slices according to policy Pb

• Slice level management:
• Each slice s ∈ S shares resources

among WDs according to policy P s
w

Task transmission time
• Uplink rate of WD i via AP a

ωs
i,a(d,Pb,Ps

w) = bs
a ws

i,a Ri,a

Ri,a : PHY rate of WD i on AP a

Transmission time of WD i for offloading via AP a Transmission time of WD i for offloading via AP a Transmission time of WD i for
offloading via AP a Transmission time of WD i for offloading via AP a Transmission time of WD i for offloading via AP a Transmission time
of WD i for offloading via AP a Transmission time of WD i for offloading via AP a Transmission time of WD i for offloading via AP a
Transmission time of WD i for offloading via AP a Transmission time of WD i for offloading via AP a Transmission time of WD i for
offloading via AP a
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Communication Model

 

 

mobile broadband

IoT

connected cars

manufacturing

• Network level management:
• Network operator shares resources

among slices according to policy Pb

• Slice level management:
• Each slice s ∈ S shares bandwidth

among WDs according to policy P s
w

Task transmission time
• Uplink rate of WD i via AP a

ωs
i,a(d,Pb,Ps

w) = bs
a ws

i,a Ri,a

• Transmission time of WD i for offloading via AP a

T tx,s
i,a (d,Pb,Ps

w) = Di
ωs

i,a(d,Pb,Ps
w)

S. Jošilo (KTH) Doctoral Defense May 27, 2020 35 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

Computation Model

 

 

mobile broadband

IoT

connected cars

manufacturing

• Local computing:
• Fi: computing capability of WD i

• Computation offloading:
• Fs

c: computing capability of cloud c in
slice s

• Slice s shares computing resources
among WDs according to policy P s

f

Local computing
• Task execution time

Texe
i = Li

Fi

Computation offloading
• Task execution time when offloading to

cloud c in s

Tex,s
i,c (d,Ps

f ) =
hi,sLi
f s
i,cFs

c

hi,s : goodness of slice s for WD i’s task
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Texe
i = Li

Fi

Computation offloading
• Task execution time when offloading to

cloud c in s

Tex,s
i,c (d,Ps

f ) =
hi,sLi

f s
i,cFs

c

f s
i,c: computing power provisioning coefficient (set by policy P s

f )
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Cost - Task Completion Time

Computing cost of WD i

Ci(d,Pb,Ps
w,Ps

f )=

{
Tex

i , local computing di = i
T tx,s

i,a (d,Pb,Ps
w)+Tex,s

i,c (d,Ps
f ), offloading di =(a, c, s)

execution
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Cost - Task Completion Time

Computing cost of WD i

Ci(d,Pb,Ps
w,Ps

f )=

{
Tex

i , local computing di = i
T tx,s

i,a (d,Pb,Ps
w)+Tex,s

i,c (d,Ps
f ), offloading di =(a, c, s)

System cost
C(d,Pb,Pw,Pf ) =

∑
i∈N Ci(d,Pb,Ps

w,Ps
f )
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Single Network Slice (Paper D)
Mobile Edge Computation Offloading Game (MEC-OG)

Policy Offloading
strategy

• Multi-leader common-follower
Stackelberg game

• Cost minimizing (CM) operator
ACM = {(w, f)|w ∈ RA×N

≥0 , f ∈ RC×N
≥0 }

• Time fair (TF) operator
ATF = {(w, f)|wi,a = 1, fi,c = 1,∀i ∈
N ,∀a ∈ A,∀c ∈ C}

Objective of the operator o ∈ {CM,TF}
• Minimization of total cost

min
{(Pw,Pf )|(w,f)∈Ao}

C(d,Pw,Pf )

Objective of WDs
• Minimization of own cost

min
di∈Di

Ci(d,P∗w,P∗f )

Strategic game played by WDs
• Player-specific weighted congestion game ΓCM under CM operator
• Player-specific congestion game ΓTF under TF operator
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Resource Allocation Policy of the CM operator
• Best response of the CM operator to strategy profile d chosen by WDs

w∗i,a(d)=

√
Di/Ri,a∑

j∈Oa(d)

√
Dj/Rj,a

,∀i∈Oa(d),∀a∈A

f ∗i,c(d)=

√
Li/Fc∑

j∈Oc(d)

√
Lj/Fc

,∀i ∈ Oc(d), ∀c ∈ C

Game ΓCM under the optimal operator policy

• We transform ΓCM into a congestion game Γ∗ with resource dependent weights

Offloading cost: Cc
i,a(d) = ωi,a

∑
j∈Oa(d) ωj,a + ωi,c

∑
j∈Oc(d) ωj,c

Weights: ωi,a =
√

Di
Ri,a
, ωi,c =

√
Li
Fc

• Does strategic game Γ∗ have a Nash equilibrium (NE)?
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MEC-OG with the CM Operator
NE existence

• Game Γ∗ has a NE d∗

• Proof based on exact potential function

Improve Local Computing (ILC) algorithm
• Starts from a strategy profile in which all WDs perform computation locally
• Lets WDs to start offloading in non-increasing order of their task complexities

• Results in minimal number of iterations

SPE existence
• The MEC-OG with the CM operator has a SPE (d∗,P∗w,P∗f )

Price of Anarchy (PoA) bound

• Ratio of worst case NE cost and minimal social cost PoA ≤ 3+
√

5
2 ≈ 2.62

• Provides bound on approximation ratio
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MEC-OG with the TF Operator
NE existence

• Game ΓTF is not a potential game (cycle from Paper B)
• Game ΓTF admits a pure NE d∗

• Constructive proof

Join and Play Asynchronous Updates (JPAU) algorithm
• Starts from empty system
• Adds WDs one at a time

• Lets them play their best replies - in a certain order
• Computational complexity O(AN3)

SPE existence
• The MEC-OG with the TF operator has a SPE

Price of Anarchy (PoA) bound
• PoA ≤ N + 1

S. Jošilo (KTH) Doctoral Defense May 27, 2020 44 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

MEC-OG with the TF Operator
NE existence

• Game ΓTF is not a potential game (cycle from Paper B)
• Game ΓTF admits a pure NE d∗

• Constructive proof

Join and Play Asynchronous Updates (JPAU) algorithm
• Starts from empty system
• Adds WDs one at a time

• Lets them play their best replies - in a certain order
• Computational complexity O(AN3)

SPE existence
• The MEC-OG with the TF operator has a SPE

Price of Anarchy (PoA) bound
• PoA ≤ N + 1

S. Jošilo (KTH) Doctoral Defense May 27, 2020 44 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

MEC-OG with the TF Operator
NE existence

• Game ΓTF is not a potential game (cycle from Paper B)
• Game ΓTF admits a pure NE d∗

• Constructive proof

Join and Play Asynchronous Updates (JPAU) algorithm
• Starts from empty system
• Adds WDs one at a time

• Lets them play their best replies - in a certain order
• Computational complexity O(AN3)

SPE existence
• The MEC-OG with the TF operator has a SPE

Price of Anarchy (PoA) bound
• PoA ≤ N + 1

S. Jošilo (KTH) Doctoral Defense May 27, 2020 44 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

MEC-OG with the TF Operator
NE existence

• Game ΓTF is not a potential game (cycle from Paper B)
• Game ΓTF admits a pure NE d∗

• Constructive proof

Join and Play Asynchronous Updates (JPAU) algorithm
• Starts from empty system
• Adds WDs one at a time

• Lets them play their best replies - in a certain order
• Computational complexity O(AN3)

SPE existence
• The MEC-OG with the TF operator has a SPE

Price of Anarchy (PoA) bound
• PoA ≤ N + 1

S. Jošilo (KTH) Doctoral Defense May 27, 2020 44 / 50



Problem Definition Task Placement Task Placement and Resource Management Conclusions

Multiple Network Slices (Paper E)

 

 

mobile broadband

IoT

connected cars

manufacturing

Joint Slice Selection and Edge Resource
Management (JSS-ERM) problem:

• Find task placement d and policies Pb,
P s

w, P s
f so as to minimize system cost

C(d,Pb,Pw,Pf )

Computational Complexity
• JSS-ERM problem is NP-hard (already for a single slice case)

• Reduction from the minimum sum of squares problem

• Is there an approximate computationally efficient solution to the
JSS-ERM problem?
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Approximation scheme for the JSS-ERM problem
Decomposition based

• Step 1
• Finding optimal intra-slice resource allocation policies (P s,∗

w ,P s,∗
f )

• Closed-form expressions of the CM operator

• Step 2
• Finding optimal inter-slice resource allocation policy P∗b

• Closed-form expression for the inter-slice provisioning coefficients

bs,∗
a =

∑
j∈O(a,s)(d)

√
Di/Ri,a∑

s′∈S
∑

j∈O(a,s′)(d)

√
Dj/Rj,a

, ∀a ∈ A, ∀s ∈ S

• Step 3
• Finding an equilibrium task placement vector d∗

Choose Offloading Slice (COS) algorithm
• Starts from a strategy profile in which all WDs perform computation locally
• Updates offloading decision of the WDs one at a time
• Terminates in O(N2 Cmax

ε
log

∑
i∈N Tex

i
Ψmin ) iterations

• 2.62-approximation solution to the JSS-ERM problem
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Computational Complexity

Evaluation scenario
• A = 5 heterogeneous APs, C = 3 heterogeneous ECs, heterogeneous slices
• WDs with heterogeneous tasks, PHY rates and computing capabilities
• Baseline policies: equal sharing policy Peq

b and cloud proportional policy Pcp
b

Computational cost
• Number of updates needed for the COS algorithm to compute d∗
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Summary

DECENTRALIZED ALGORITHMS FOR EDGE COMPUTING RESOURCE MANAGEMENT

• Based on a game theoretical treatment of the problems
• Computationally efficient
• With performance guarantee

FUTURE WORK

• Unknown information about WDs
• Unknown information about resource allocation policies
• Non-atomic models of computational tasks
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