
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

Selfish Decentralized Computation Offloading
for Mobile Cloud Computing in Dense Wireless

Networks
Slad̄ana Jošilo and György Dán

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden E-mail: {josilo, gyuri}@kth.se

Abstract—Offloading computation to a mobile cloud is a
promising solution to augment the computation capabilities
of mobile devices. In this paper we consider selfish mobile
devices in a dense wireless network, in which individual
mobile devices can offload computations through multiple
access points or through the base station to a mobile cloud
so as to minimize their computation costs. We provide a
game theoretical analysis of the problem, prove the existence
of pure strategy Nash equilibria, and provide an efficient
decentralized algorithm for computing an equilibrium. For
the case when the cloud computing resources scale with the
number of mobile devices we show that all improvement
paths are finite. Furthermore, we provide an upper bound
on the price of anarchy of the game, which serves as an
upper bound on the approximation ratio of the proposed
decentralized algorithms. We use simulations to evaluate the
time complexity of computing Nash equilibria and to provide
insights into the price of anarchy of the game under realistic
scenarios. Our results show that the equilibrium cost may be
close to optimal, and the convergence time is almost linear
in the number of mobile devices.

Index terms— computation offloading, mobile edge
computing, Nash equilibria, decentralized algorithms

I. INTRODUCTION

Mobile handsets are increasingly used for various com-
putationally intensive applications, including augmented
reality, natural language processing, face, gesture and
object recognition, and various forms of user profiling for
recommendations [1], [2]. Executing such computationally
intensive applications on mobile handsets may result in
slow response times, and can also be detrimental to battery
life, which may limit user acceptance.

Mobile cloud computing has emerged as a promising
solution to serve the computational needs of these compu-
tationally intenstive applications, while potentially reliev-
ing the battery of the mobile handsets [3], [4]. In the case
of mobile cloud computing the mobile devices offload the
computations via a wireless network to a cloud infrastruc-
ture, where the computations are performed, and the result
is sent back to the mobile handset. While computation
offloading to general purpose cloud infrastructures, such as
Amazon EC2, may not be able to provide sufficiently low
response times for many applications, emerging mobile
edge computing (MEC) resources may provide sufficient
computational power close to the network edge to meet
all application requirements [5].

The work was partly funded by SSF through the Modane project and
by the Swedish Research Council through project 621-2014-6.

Computation offloading to a mobile edge cloud can
significantly increase the computational capability of indi-
vidual mobile handsets, but the response times may suffer
when many handsets attempt to offload computations to
the cloud simultaneously, on the one hand due to the com-
petition for possibly constrained edge cloud resources, on
the other hand due to contention in the wireless access [6],
[7]. The problem is even more complex in the case of a
dense deployment of access points, e.g., cellular femtocells
or WiFi access points, when each mobile user can choose
among several access points to connect to. Good system
performance in this case requires the coordination of the
offloading choices of the indvidual mobile handsets, while
respecting their individual performance objectives, both in
terms of response time and energy consumption.

In this paper we consider the problem of resource allo-
cation for computation offloading by self-interested mobile
users to a mobile cloud. The objective of each mobile user
is to minimize its cost, which is a linear combination of its
response time and its energy consumption for performing a
computational task, by choosing whether or not to offload
a task via a wireless network to a mobile cloud. Clearly,
the choice of a mobile user affects the cost of other
mobile users. If too many mobile users choose offloading,
the response times could be affected by the contention
between the mobile devices for MEC computing resources
and for wireless communication resources. Hence, the
fundamental question is whether a self-enforcing resource
allocation among mobile users exists, and if it exists,
whether it can be computed by mobile users in a decen-
tralized manner.

In order to answer this question, we formulate the com-
putation offloading problem as a non-cooperative game
and we make three important contributions. First, based on
a game theoretical treatment of the problem, we propose
an efficient decentralized algorithm for coordinating the
offloading decisions of the mobile devices, and prove
convergence of the algorithm to a pure strategy Nash
equilibrium when the computational capability assigned to
a mobile device by the cloud is a non-increasing function
of the number of mobile users that offload. Second, we
show that a simple decentralized algorithm can be used for
computing equilibria when the cloud computing resources
scale directly proportional with the number of mobile
users. Finally, we provide a bound on the price of anarchy
for both models of cloud resources. We provide numerical
results based on extensive simulations to illustrate the

1

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

computational efficiency of the proposed algorithms and
to evaluate the price of anarchy for scenarios of practical
interest.

The rest of the paper is organized as follows. We
present the system model in Section II. We present the
algorithms and prove their convergence in Sections III
and IV, respectively. We provide a bound on the price
of anarchy in Section V and present numerical results
in Section VI. Section VII discusses related work and
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a mobile cloud computing system that
serves a set N={1, 2, ..., N} of mobile users (MUs). Each
MU has a computationally intensive task to perform, and
can decide whether to perform the task locally or to offload
the computation to a cloud server. The computational
task is characterized by the size Di of the input data
(e.g., in bytes), and by the number Li of the instructions
required to perform the computation. Recent work has
shown that a task’s work requirement Xi per data bit can
be approximated by a Gamma distribution [8], [9]. We can
thus model Li = DiXi, where Xi is a random variable
with mean Xi. Furthermore, we can express the expected
number of instructions required for performing MU i’s
task as Li = DiXi.

Each MU can decide whether to perform the task locally
or to offload the computation to a cloud server through one
of a set of access points (APs) denoted by A={1, 2, ..., A}
or through a base station (BS) denoted by B.

A. Decentralized mobile cloud computing architecture

Motivated by the emergence of mobile edge clouds, we
consider that the cloud, besides providing computational
resources, acts as a centralized entity that stores infor-
mation about the mobile cloud computing system, e.g.,
achievable data rates and the number of MUs that offload.
Furthermore, we consider that the cloud sends this infor-
mation to the MUs so that the offloading decisions can be
made in a decentralized manner. The motivation for such a
decentralized implementation is twofold. First, the cloud
can be relieved from complex centralized management.
Second, the MUs may be autonomous entities with indi-
vidual interests, and using a decentralized algorithm they
would not need to reveal all their parameters to the cloud,
but they only need to report their offloading decisions,
which helps in protecting privacy and confidentiality.

Despite using a decentralized algorithm, devices still
have to send the data pertaining to their tasks through
a shared communication link, and thus to avoid eaves-
dropping and integrity attacks, cryptographic protection is
necessary. Protocols for securing computation offloading
have been proposed in [10], [11], and are out of scope for
our work.

To enable a meaningful analysis of the resource allo-
cation problem, we make the common assumption that
the set of MUs does not change during the computation
offloading period, i.e., in the order of seconds [12], [4],
[13], [14], [15].

B. Communication model

If an MU i decides to offload the computation to
the cloud server, it has to transmit Di amount of data
pertaining to its task to the cloud through one of the APs or
through the BS. Thus, together with local computing MU
i can choose an action from the set Di={0, 1, 2, ..., A,B},
where 0 corresponds to local computing, i.e., no offload-
ing. We denote by di∈Di the decision of MU i, and refer
to it as her strategy. We refer to the collection d=(di)i∈N
as a strategy profile, and we denote by D=×i∈NDi the
set of all feasible strategy profiles.

For a strategy profile d we denote by no(d) the number
of MUs that use o ∈ A∪{B} for computation offloading,
and by n(d)=

∑
o∈A∪{B} no(d) the number of MUs that

offload. Similarly, we denote by Oo(d) = {i|di = o} the
set of MUs that offload through o ∈ A ∪ {B}, and we
define the set of offloaders as O(d) = ∪o∈A∪{B}Oo(d).

We denote by Ri,o the PHY rate of MU i on o ∈
A ∪ {B}, which depends on the physical layer signal
characteristics and the corresponding channel gain. We
denote by ωoi (d) the uplink rate that MU i receives
when she offloads through o ∈ A ∪ {B}. For the case
of offloading through an AP a we consider that ωai (d)
depends on the PHY rate Ri,a and on the number na(d)
of MUs that offload via AP a

ωai (d) = Ri,a/na(d). (1)

This model of the uplink rate can be used to model the
bandwidth sharing in TDMA and OFDMA based MAC
protocols [16].

For the case of offloading through the BS we consider
that the uplink data rate ωBi (d) of MU i is independent
of the number of MUs that offload through the BS, i.e.,
ωBi (d) = Ri,B .

The uplink rate ωoi (d) together with the input data size
Di determines the transmission time T ci,o(d) of MU i for
offloading through o ∈ A ∪ {B},

T ci,o(d) = Di/ω
o
i (d). (2)

To model the energy consumption of the MUs, we
consider that every MU i knows the transmit power Pi,o
that it would use to transmit the data through o ∈ A∪{B},
e.g., determined using an algorithm as the ones proposed
in [17], [18]. Thus, the energy consumption of MU i for
offloading the input data of size Di through o ∈ A∪{B} is

Eci,o(d) = Pi,oT
c
i,o(d). (3)

C. Computation model

In what follows we introduce our model of the time
and energy consumption of performing the computation
locally and in the cloud server.

1) Local computing: In the case of local computing
data need not be transmitted, but the task has to be
processed using local computing power. We consider that
the expected time it takes to complete MU i’s task locally
consists of two parts [19]. The first part is the expected
CPU execution time T

0,exe

i =Li ·CPIi ·CCi, where CPIi
and CCi are the average number of cycles per instruction
and the clock cycle time, respectively. The second part
is the expected time T

0,ot

i the processor spends executing

2

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

AP2

AP3

A

MUc

MUd MUe

MUb

B2

B1

Fd Fe
0 0

B3

MUa MUg

MUf

c
F

c
Fi (n(d))

Fig. 1. An example of a mobile cloud computing system

other tasks, including disk and memory management, I/O
and operating system activities. Finally, we express the
expected time it takes to complete MU i’s task locally as

T
0

i = T
0,exe

i + T
0,ot

i , (4)

where T
0,ot

i may or may not depend on Li.
This model essentially implies that the expected execu-

tion time of a task is an affine function of Li. In practice
the MUs can maintain a history of past execution times and
can use this history for estimating the parameters of the
affine function, which allows to predict the mean execution
time as a function of Li.

In order to model the expected energy consumption of
local computing we denote by vi the consumed energy per
CPU cycle, and thus we obtain

E
0

i = viLiCPIi. (5)

2) Cloud computing: In the case of cloud computing,
after the data are transmitted through one of the APs or
through the BS, processing is done at the cloud server.
In order to express the expected time it takes to complete
MU i’s task in the cloud server, we use a similar model
as in the case of local computing, but we consider that the
expected time T

c,ot

i (d) the cloud server spends executing
other tasks, besides from the system-related tasks, may
also depend on the tasks of the other MUs that offload.
We make the reasonable assumption that T

c,ot

i (d) is a
non-decreasing function of the number n(d) of MUs that
offload, and thus the computation capability assigned to
MU i by the cloud is a non-increasing function of n(d).
Consequently, we can express the expected time it takes
to complete MU i’s task in the cloud server as

T
c

i (d) = T
c,exe

i + T
c,ot

i (d). (6)

where T
c,exe

i = Li ·CPIc ·CCc and T
c,ot

i (d) may or may
not depend on Li.

Figure 1 shows an example of a mobile cloud computing
system in which 3 of 7 MUs offload their task through one
of 3 APs, 2 MUs offload their task through the BS, and 2
MUs perform local computation.

D. Cost Model

In order to express the expected cost of MU i we denote
by γEi the weight attributed to energy consumption and by
γTi the weight attributed to the time it takes to finish the
computation, 0 ≤ γEi , γTi ≤ 1.

Using this notation, for the case of local computing
the expected cost of MU i can be modeled as a linear

combination of the expected time it takes to complete
the task locally and the corresponding expected energy
consumption,

C0
i = γTi T

0

i+γ
E
i E

0

i = γTi (T
0,exe

i +T
0,ot

i)+γEi viLiCPIi.
(7)

For the case of offloading we consider a subscription-
based pricing mechanism in which MUs pay a flat fee F
in order to use cloud resources [20]. Consequently, in the
case of offloading through o ∈ A∪{B} the expected cost
of MU i can be modeled as a linear combination of the
expected time it takes to complete MU i’s task in the cloud
server, the transmission time, the corresponding transmit
energy, and a fee for using cloud resources,

Cci,o(d) = γTi (T
c

i (d) + T ci,o(d)) + γEi E
c
i,o(d) + F

= (γTi + γEi Pi,o)
Di

ωoi (d)
+ γTi T

c

i (d) + F. (8)

Similar to previous works [7], [21], [22], we do not model
the time needed to transmit the results of the computation
from the cloud server to the MU, as for typical applications
like face and speech recognition, the size of the result of
the computation is much smaller than Di.

For notational convenience let us define the indicator
function I(di, o) for MU i as

I(di, o)=

{
1, if di = o,
0, otherwise. (9)

We can then express the expected cost of MU i in strategy
profile d as

Ci(d) = C0
i I(di, 0) +

∑
o∈A∪{B}

Cci,o(d)I(di, o). (10)

Finally, we define the total expected cost C(d)=
∑
i∈N

Ci(d).

E. Computation Offloading Game

We consider that each MU aims at minimizing its
expected cost (10), i.e., it aims at finding a strategy

d∗i ∈ arg mindi∈Di
Ci(di, d−i), (11)

where we use d−i to denote the strategies of all MUs
except MU i. This problem formulation is not only reason-
able when MUs are autonomous, but as we show later, our
algorithms also serve as polynomial-time approximations
for solving the problem of minimizing the total cost C(d).

It may seem natural to model the interaction between the
MUs as a Bayesian game, since the number of instructions
Li are random variables. However, it follows from (10)
that the solution to (11) is determined by the expectation
Li and the number of MUs that offload. We can thus
model the interaction between the MUs as a strategic game
Γ =<N ,(Di)i,(Ci)i>, in which the players are the MUs
that aim at minimizing their expected cost. We refer to
the game as the multi access point computation offloading
game (MCOG), and we are interested in whether the MUs
can compute a strategy profile in which no MU can further
decrease her expected cost by changing her strategy, i.e.,
a Nash equilibrium of the game Γ.

Definition 1. A Nash equilibrium (NE) of the strategic
game Γ =<N , (Di)i, (Ci)i> is a strategy profile d∗ such
that

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i), ∀di ∈ Di.

3

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

Ci
0

fi,a(na(d))

t

s

...1 2 N

1 2 A

p

fi(n(d))

i

a

...

... ...

fi,B

B

Fig. 2. The computation offloading game modeled as a player-specific
congestion game. The source node s represents N MUs and the sink
node t corresponds to the execution of a computation task.

Given a strategy profile (di, d−i) we say that strategy
d′i is an improvement step for MU i if Ci(d′i, d−i) <
Ci(di, d−i). We call a sequence of improvement steps
in which one MU changes her strategy at a time an
improvement path. Furthermore, we say that a strategy
d∗i is a best reply to d−i if it solves (11), and we call
an improvement path in which all improvement steps are
best replies a best improvement path. Observe that in a NE
all MUs play their best replies to each others’ strategies.

It is important to note that we do not consider mixed
strategy NE. Since the MCOG is a finite game, Nash
equilibria in mixed strategies are guaranteed to exist, but
they are impractical for two reasons. First, a mixed strategy
would make it hard for a cloud scheduler to allocate
computational resources. Second, mixed strategy equilibria
are computationally hard to find in general. Hence, our
focus is on finding pure strategy NE.

F. The MCOG as a player-specific congestion game

In the case of offloading through an AP a the cost
Cci,a(d) depends on the number of MUs that offload
through the same AP a and on the total number of MUs
that offload, while in the case of offloading through BS
the cost Cci,B(d) only depends on the total number of
MUs that offload. Hence, the MCOG can be modeled as a
player-specific congestion game as illustrated in Figure 2.
The source node s represents N MUs, the sink node t
corresponds to the execution of the computation task, and
the intermediate node p corresponds to offloading. A solid
edge i corresponds to local computing by MU i and has
a cost of C0

i , a dashed edge a corresponds to using AP
a, a dotted edge B corresponds to using the BS, and the
dash-dotted edge that connects node p to the sink node t
corresponds to cloud computing. For a strategy profile d
the cost fi,a(na(d)) of the dashed edge that corresponds
to AP a is a function of the number of MUs that offload
via AP a, the cost fi,B of the dotted edge that corresponds
to the BS is independent of the other MUs’ strategies, and
the cost fi(n(d)) of the dash-dotted edge is a function of
the total number of MUs that offload.

Unfortunately, general pure equilibrium existence re-
sults are not known for player-specific congestion games.
Therefore, a natural question is whether the MCOG pos-
sesses a pure NE, and if it possesses, whether there is a
low complexity decentralized algorithm for computing it.
In what follows we answer these questions.

III. EQUILIBRIA AND THE JPBR ALGORITHM

We start the analysis with the definition of the set of
congested communication links and of the notion of the

d = ImprovementPath(d)

1: while ∃i ∈ N s.t. ∃d′i, Ci(d′i, d−i) < Ci(di, d−i) do
2: d = (d′i, d−i)
3: end while
4: return d

Fig. 3. Pseudo code of the ImprovementPath algorithm.
reluctance to offload.

Definition 2. For a strategy profile d we define the set
DO→O(d) of congested communication links as the set
of communication links with at least one MU for which
changing to another communication link is a best reply,

DO→O(d) ={o ∈ A ∪ {B}|∃i∈Oo(d),∃b∈A∪{B}\{o},
Cci,o(o, d−i) > Cci,b(b, d−i)}.

Similarly, for a strategy profile d we define the set
DO→L(d) of communication links with at least one MU
for which local computing is a best reply,

DO→L(d) = {o∈A∪{B}|∃i∈Oo(d), Cci,o(o, d−i) > C0
i }

Definition 3. The reluctance to offload via o ∈ A ∪ {B}
of MU i in a strategy profile d is ρi(d) = Cci,o(d)/C0

i .

To facilitate the analysis, for a strategy profile d we rank
the MUs that play the same strategy in decreasing order
of their reluctance to offload, and we use the tuple (o, l)
to index the MU that in the strategy profile d occupies
position l in the ranking for o ∈ A∪{B}, i.e., ρ(o,1)(d) ≥
ρ(o,2)(d) ≥ . . . ≥ ρ(o,no(d))(d). Note that for o ∈ A∪{B}
it is MU (o, 1) that can gain most by changing her strategy
to local computing among all MUs i ∈ Oo(d).

A. The ImprovementPath Algorithm

Using these definitions, let us start with investigating
whether the simple ImprovementPath algorithm shown in
Figure 3 can be used for computing a NE. To do so, we
analyze the finiteness of improvement paths, and as a first
step, we show that improvement paths may be infinite in
the MCOG, even in the case when the transmit power Pi,o
of every MU i is the same for all APs.

Example 1. Consider a MCOG with N = {a, b, c, d, e},
A = {1, 2, 3} and the BS. Furthermore, let the expected
time it takes to complete MU i’s task in the cloud server
be linear in n(d), Li and CCc, i.e., T

c

i (d) = n(d)LiCCc,
and assume that the transmit power Pi,o of every MU i
is the same for all APs, i.e., Pi,o = Pi. Figure 4 shows a
cyclic improvement path starting from the strategy profile
(1, 2, 1, 0, 0), in which MUs a and c are connected to AP
1, MU b is connected to AP 2 and MUs d and e perform
local computation.

Starting from the initial strategy profile (1, 2, 1, 0, 0),
MU c revises its strategy to AP 2, which is an improve-
ment step if Rc,2 > Rc,1, as shown in inequality (1) in
the figure. Observe that after 9 improvement steps the
MUs reach the initial strategy profile. For each step the
inequality on the right provides the condition for being
an improvement. It follows from inequalities (1), (5) and
(9) that Rc,2 > Rc,1, Rc,1 > 2

3Rc,2 and Rb,2 > Rb,3,
respectively. Since 1

Rb,3
(γTb + γEb Pb)Db + 5γTb LbCCc >

1
Rb,3

(γTb +γEb Pb)Db+3γTb LbCCc holds, from inequalities

4

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

di da db dc dd de

d(0) 1 2 1 0 0
d(1) 1 2 2 0 0
d(2) 1 0 2 0 0
d(3) 1 0 2 2 0
d(4) 1 0 2 2 2
d(5) 1 0 1 2 2
d(6) 1 3 1 2 2
d(7) 1 3 1 2 0
d(8) 1 3 1 0 0
d(9) 1 2 1 0 0

Rc,2>Rc,1 (1)
2

Rb,2
(γT

b +γE
b Pb)Db+3γT

b LbCCc>C
0
b (2)

C0
d>

2
Rd,2

(γT
d +γE

d Pd)Dd+3γT
d LdCCc(3)

C0
e>

3
Re,2

(γT
e +γE

e Pe)De+4γT
e LeCCc(4)

Rc,1>
2
3Rc,2 (5)

C0
b>

1
Rb,3

(γT
b +γE

b Pb)Db+5γT
b LbCCc(6)

2
Re,2

(γT
e +γE

e Pe)De+5γT
e LeCCc>C

0
e (7)

1
Rd,2

(γT
d +γE

d Pd)Dd+4γT
d LdCCc>C

0
d(8)

Rb,2>Rb,3 (9)

Fig. 4. A cyclic improvement path in a computation offloading game with
5 MUs, 3 APs and 1 BS. Rows correspond to strategy profiles, columns
to MUs. An arrow between adjacent rows indicates the MU that performs
the improvement step. The cycle consists of 9 improvement steps and
the inequalities on the right show the condition under which the change
of strategy is an improvement step.

(2) and (6) it follows that Rb,3 > 1
2Rb,2. Combining in-

equalities (3) and (8) we have that γTd LdCCc >
1

Rd,2
(γTd +

γEd Pd)Dd. Similarly, it follows from inequalities (4) and
(7) that γTe LeCCc >

1
Re,2

(γTe + γEe Pe)De. Given these
constraints, an instance of the example can be formulated
easily, even in the case of homogeneous PHY rates, i.e.,
Ri,a = Ri′,a for every i, i′ ∈ N , i 6= i′.

Example 1 illustrates that the improvement paths may
be cyclic, and thus the MCOG does not have the finite
improvement property, which implies that the MCOG does
not allow a generalized ordinal potential function [23].
Consequently, the ImprovementPath algorithm in which
the MUs perform improvement steps iteratively cannot be
used for computing a NE.
B. The ImproveOffloading Algorithm

Although improvement paths may cycle, as we next
show, improvement paths are finite if we only allow the
MUs to change between APs or to change between APs
and the BS but not to start or to stop offloading. We refer
to this algorithm as the ImproveOffloading algorithm, and
show its pseudo code in Figure 5. Our first result shows
that all improvement paths generated by the ImproveOf-
floading algorithm are finite.

Lemma 1. The ImproveOffloading algorithm terminates
after a finite number of improvement steps.

Proof. Let us define the function

Φ(d) =
A∑

a′=1

na′ (d)∑
n=1

log(n)−
∑

o∈A∪{B}

N∑
i′=1

log(Si′,o)I(di′ , o),

where Si,o,
Ri,o

Di(γT
i +γE

i Pi,o)
.

We prove the lemma by showing that the function Φ(d)
decreases strictly at every improvement step generated by
the ImproveOffloading algorithm.

First, let us consider an improvement step made by
MU i in which she changes from offloading via AP b to
offloading via AP a. Observe that after this improvement
step the number n(d) of MUs that offload remains un-
changed. Hence, according to (8) and (10), the condition
Ci(a, d−i)< Ci(b, d−i) implies na(a, d−i)/nb(b, d−i)<
Si,a/Si,b. Since na(a, d−i), nb(b, d−i) > 0 and Si,a,Si,b>
0 this is equivalent to

log(na(a, d−i))− log(nb(b, d−i)) < log(Si,a)− log(Si,b).
(12)

d = ImproveOffloading(d)

1: while DO→O(d) 6= ∅ do
2: (i′, a′)← arg max

{i∈O(d),∃o∈A∪{B},Ci(o,d−i)<Ci(d)}

Ci(d)

Ci(o, d−i)
3: d = (a′, d−i′)
4: end while
5: return d

Fig. 5. Pseudo code of the ImproveOffloading algorithm.

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +

nb(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a,b

na′ (a,d−i)∑
n=1

log(n)

− log(Si,a)−
∑

o∈A∪{B}

∑
i′ 6=i

log(Si′,o)I(di′ , o).

Since na(a, d−i) = na(b, d−i) + 1 and nb(b, d−i) =
nb(a, d−i) + 1, we have that

Φ(a, d−i)− Φ(b, d−i) = log(na(a, d−i))− log(nb(b, d−i))

− (log(Si,a)− log(Si,b)).

It follows from (13) that Φ(a, d−i)− Φ(b, d−i) < 0.
Second, let us consider an improvement step made by

MU i in which she changes from offloading via AP a to
offloading via BS B. Observe that after this improvement
step the number n(d) of MUs that offload remains un-
changed. Hence, according to (8) and (10), the condition
Ci(B, d−i)<Ci(a, d−i) implies na(a, d−i) > Si,a/Si,B .
Since na(a, d−i), Si,a,Si,B>0 this is equivalent to

log(na(a, d−i)) > log(Si,a)− log(Si,B). (13)

Since na(a, d−i) = na(B, d−i) + 1, we have that

Φ(B, d−i)− Φ(a, d−i) = − log(na(a, d−i))+

+ log(Si,a)− log(Si,B).

It follows from (13) that Φ(B, d−i) − Φ(a, d−i) < 0.
Similarly, we can show that Ci(a, d−i) < Ci(B, d−i)
implies Φ(a, d−i) < Φ(B, d−i).

Since the number of strategy profiles is finite, Φ(d)
can not decrease infinitely and the ImproveOffloading
algorithm terminates after a finite number of improvement
steps.

Thus, if MUs can only change between APs and be-
tween APs and the BS, they terminate after a finite number
of improvement steps.

C. The JPBR Algorithm

In what follows we use the ImproveOffloading algorithm
as a building block for proving that a NE always exists in
the MCOG even if it does not allow a generalized ordinal
potential function.

Theorem 1. The MCOG possesses a pure strategy Nash
equilibrium.

Proof. We use induction in the number N of MUs in order
to prove the theorem. We denote by N (t) = t the number
of MUs that are involved in the game in induction step t.

For N (1)=1 the only participating MU plays her best
reply d∗i (1). Since there are no other MUs, d∗(1) is a NE.
Observe that if d∗i (1) = 0, MU i would never have an
incentive to deviate from this decision, because the number

5

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

Update phase of JPBR algorithm
1: /* Corresponds to case (i) */
2: Let d′(t) = ImproveOffloading(d(t))
3: /* Corresponds to case (ii) */
4: if a′∈DO→L(d′(t)), na′(d′(t))=na′(d∗(t−1))+1 then
5: Let i′ ← (a′, 1)
6: Let d′(t) = (0, d′−i′(t))/* Best reply by MU i′ */
7: else
8: while DO→L(d′(t)) 6= ∅ do
9: b← arg maxa∈DO→L

ρ(a,1)(d′(t))
10: /*Link with MU with highest reluctance to offload */
11: Let i′ ← (b, 1)
12: Let d′(t)=(0, d′−i′(t))/*Best reply by MU (b, 1)*/
13: if ∃i ∈ N \O(d′(t)) s.t. C0

i > Ci(b, d
′
−i(t)) then

14: i′ ← arg min
{i∈N\O(d′(t))|C0

i>Ci(b,d′−i(t))}
ρi(b, d

′
−i(t))

15: /*MU with lowest reluctance to offload*/
16: Let d′(t)=(b, d′−i′(t))/*Best reply by MU i′*/
17: else
18: Let d′(t) = ImproveOffloading(d′(t))
19: end if
20: end while
21: end if

Fig. 6. Pseudo code of the update phase of the JPBR algorithm.

of MUs that offload will not decrease as more MUs are
added. Similarly, if d∗i (1)=B, MU i would never have
an incentive to offload using one of the APs, because the
number of MUs that offload using any of the APs will
not decrease as more MUs are added. Otherwise, if MU i
decides to offload using one of the APs, she would play
her best reply which is given by d∗i (1)=arg maxa∈A Si,a.
Assume now that for t−1>0 there is a NE d∗(t−1). Upon
induction step t one MU enters the game; we refer to this
MU as MU N (t). Let MU N (t) play her best reply d∗

N(t)(t)
with respect to the NE strategy profile of the MUs that
already participated in induction step t−1, i.e., with respect
to d−N(t)(t)=d∗(t−1). After that, MUs can perform best
improvement steps one at a time starting from the strategy
profile d(t)=(d∗

N(t)(t),d−N(t)(t)), following the algorithm
shown in Figure 6. We refer to this as the update phase.
In order to prove that there is a NE in induction step t, in
the following we show that the MUs will perform a finite
number of best improvement steps in the update phase.

Observe that if d∗
N(t)(t) = 0, then na(d(t)) = na(d∗(t−

1)) for every a ∈ A and thus d(t) is a NE. If d∗
N(t)(t) =

o ∈ A ∪ {B}, but none of the MUs want to deviate from
their strategy in d∗(t−1) then d(t) is a NE. Otherwise, we
can have one or both of the following cases: (i) for some
MUs i ∈ Oo(d(t)) offloading using b ∈ A ∪ {B} \ {o}
becomes a best reply, (ii) for some MUs i ∈ O(d(t))
local computing becomes a best reply. Note that case (i)
can happen only if o 6= B, as otherwise MU i would be
able to gain by changing her strategy to offloading using
on of the APs in d∗(t− 1).

Let us first consider case (i) and let MUs execute the
ImproveOffloading algorithm. Recall that by Lemma 1
the MUs will reach a strategy profile in which there is
no MU that can further decrease her cost by changing
her strategy between APs or between APs and the BS.
In the resulting strategy profile the number of MUs that

offload will be n(d∗(t − 1)) + 1. Furthermore, there will
be one communication link (denoted by a′) for which the
number of offloaders is na′(d∗(t− 1)) + 1, while for the
other communication links a 6= a′ it is na(d∗(t− 1)). As
a consequence, there can be no MU that wants to start
offloading in the resulting strategy profile if she did not
want to do so in d∗(t− 1).

If in this strategy profile no MU wants to stop offloading
either, i.e., |DO→L(d(t))| = 0, then we reached a NE.
Otherwise |DO→L(d(t))| > 0, which is the same as
case (ii) above. Note that if case (i) did not happen,
i.e. |DO→Od(t)| = 0, then communication link a′ is the
same communication link o that was chosen by MU N (t)

when she was added. Now if a′ ∈ DO→L(d(t)), let MU
(a′, 1) perform an improvement step and let d′(t) be the
resulting strategy profile. Since MU (a′, 1) changed her
strategy from offloading through a′ to local computation,
no(d′(t)) = no(d∗(t − 1)) holds for every o ∈ A ∪ {B}
and d′(t) is a NE.

Otherwise, if a′ /∈DO→L and |DO→L|> 0, we have
that there is an MU i that wants to change her strategy
from offloading through b ∈ A ∪ {B} \ {a′} to local
computing. Note that the only reason why MU i would
want to change to local computing is that the number of
MUs that offload was incremented by one, i.e., n(d(t))=
n(d∗(t − 1)) + 1. Among all MUs that would like to
change to local computing, let us allow the MU i with
highest reluctance to perform the improvement step (note
that this is MU (b, 1), b 6= a′). We denote the resulting
strategy profile by d′(t). Due to this improvement step we
have that n(d′(t)) = n(d∗(t−1)). Observe that if b = B
there can be no MU that wants to start offloading because
na(d′(t)) = na(d∗(t− 1)) for every AP a ∈ A, and there
is no more MU that would like to stop offloading either
because n(d′(t)) = n(d∗(t−1)), and d′(t) is a NE. Other-
wise, if b 6= B we have that nb(d′(t))=nb(d∗(t− 1))−1
and some MUs that perform local computation may be
able to decrease their cost by connecting to AP b. If
there is no MU i ∈N \O(d′(t)) that would like to start
offloading, there is no more MU that would like to stop
offloading either because n(d′(t)) =n(d∗(t −1)) and we
reached a NE. Otherwise, among all MUs i∈N\O(d′(t))
that would like to start offloading, let MU i′ with lowest
reluctance to offload, i.e., ρi′(b, d′−i′(t)), connect to AP b.
We now repeat these steps starting from Line 8 until no
more MUs want to stop offloading. Note that when one
MU is replaced by another MU, the number of MUs that
offload through any of the APs does not change. Therefore,
offloading cost of the MU that starts to offload will not
increase in the following update steps and she will not
want to stop to offload. Since the MU that starts to offload
will not have an incentive to stop to offload and the number
of MUs is finite, the sequence of stopping to offload and
starting to offload is finite too.

Let b be the AP that the last MU that stopped offloading
was connected to. If the last MU that stopped offloading
was replaced by an MU that did not offload before, then
we reached a NE. Otherwise some MUs that offload via
o ∈ A∪ {B} \ {b} may want to connect to AP b, and we
let them execute the ImproveOffloading algorithm, which
by Lemma 1 terminates in a finite number of improvement

6

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

steps. Now, no MU wants to stop offloading, and if there
is no MU that wants to start offloading either then we
reached a NE. Otherwise, if there is a MU that wants to
start to offload, we repeat the steps starting from Line 8.
Let us recall that the MU that starts to offload would not
want to stop to offload and as a consequence the size of the
set DO→L will decrease every time when a MU stops to
offload. Therefore, after a finite number of steps, the MUs
will reach either an equilibrium in which the number of
offloaders is the same as in the strategy profile d∗(t− 1)
or an equilibrium in which the number of offloaders is
incremented by 1, which proves the inductive step.

Consider now that we add one MU at a time and for
every new MU we compute a NE following the proof of
Theorem 1. We refer to the resulting algorithm as the Join
and Play Best Replies (JPBR) algorithm. In what follows
we provide a bound on the complexity of this algorithm.

Proposition 2. When MU N (t) enters the game in an
equilibrium d∗(t − 1), a new Nash equilibrium can be
computed in O((A+ 2)N (t) − 2A) time.

Proof. In the worst case scenario |O(d∗(t−1))|=N (t)−2,
d∗
N(t)(t) = a ∈A and case (i) happens such that in the

next N (t)−2 update steps all MUs i ∈ O(d∗(t− 1)),
i.e., N (t)−2 MUs change between APs before they reach
the strategy profile in which there is no MU that can
decrease her offloading cost. Furthermore, in the worst
case scenario, this is followed by a sequence of update
steps in which N (t)−2 MUs stop to offload and N (t)−3
MUs start to offload and between every stop to offload
and start to offload update step, MUs change between
the APs. When a MU stops to offload, the sequence
in which MUs change between APs consists of at most
A−1 update steps. Hence, a NE is reached after at most
(N (t)−2)+(N (t)−2)+(N (t)−3)+(N (t)−2)(A−1) updates.

Since we add one MU at a time, we can formulate the
following result.

Corollary 1. The JPBR algorithm terminates in an equi-
librium allocation in O((A + 2)N2/2−(A − 1)N) time.

So far we have shown that starting from a NE and
adding a new MU, a new NE can be computed. We now
show a similar result for the case when a MU leaves.

Theorem 3. Consider the MCOG and assume that the
system is in a NE. If a MU leaves the game and the
remaining MUs play their best replies one at a time, they
converge to a NE after a finite number of updates.

Proof. Let us consider that MU i leaves the game when
the system is in a NE. If the strategy of MU i was to
perform local computation, none of the remaining MUs
would have an incentive to change their strategies. If the
strategy of MU i was to offload using one of the APs or
using the BS, we can consider MU i as an MU that after
changing its strategy from offloading to local computing
would have no incentive to offload again. Recall from the
proof of Theorem 1 that when an MU changes her strategy
from offloading to local computing the game converges to

fi,a(na(d))

1 2 ... A

Ci
0

...1 2 Ni ...

t

s

...a B

fi,B

Fig. 7. The computation offloading game in the case of an elastic cloud
modeled as a player-specific singleton congestion game. The source node
s represents N MUs, and the sink node t corresponds to the execution
of a computation task.

a NE after a finite number of updates. This proves the
theorem.

Observe that Theorem 1 and Theorem 3 allow for the
efficient computation of Nash equilibria even if the number
of MUs changes, if the time between MU arrivals and
departures is sufficient to compute a new equilibrium.
Furthermore, the computation can be done in a decentral-
ized manner, by letting MUs perform best improvements
one at a time. The advantage of such a decentralized
implementation compared to a centralized solution could
be that MUs do not have to reveal their parameters.

IV. THE CASE OF AN ELASTIC CLOUD

The JPBR algorithm can be used for computing an
equilibrium for the MCOG with polynomial complexity.
In what follows we show that a much simpler algorithm
can be used for computing an equilibrium if we assume
that the expected time needed for the cloud to complete
MU i’s task is independent of the other MUs’ strategies,
and thus of the number of MUs that offload. This is a
reasonable assumption for large cloud computing infras-
tructures, in which the cloud computing resources scale
with the number of MUs. We refer to the resulting model
as the elastic cloud model, and we express the expected
time needed for the cloud to complete MU i’s task as
T
c

i = T
c,exe

i + T
c,ot

i . Consequently, the cost function of
MU i in the case of offloading is simpler because the part
of MU i’s cost concerning the time needed for performing
its task in the cloud does not depend on the strategy profile
d. Therefore, in the case of the elastic cloud model the cost
function of MU i when it offloads its task through AP a
can be expressed as

Cci,a(d) = (γTi + γEi Pi,a)Di
na(d)

Ri,a
+ γTi T

c

i + F, (14)

which only depends on the number of MUs that offload
through the same AP a. Furthermore, in the case of
offloading through BS B the cost function is independent
of the other MUs’ strategies and can be expressed as

Cci,B = (γTi + γEi Pi,B)
Di

Ri,B
+ γTi T

c

i + F, (15)

Let us recall that when the expected time needed for the
cloud to complete MU i’s task depends on the other MUs’
strategies, the MUs have to share both communication and
computing resources (c.f., Figure 2). On the contrary, in
the case of the elastic cloud model, the MUs only have
to share communication resources when they offload their
tasks through one of the APs, and thus the MCOG can be
modeled as a player-specific singleton congestion game

7

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

as illustrated in Figure 7. Compared to the graph shown
in Figure 2, the graph in Figure 7 has only the source
node s and the sink node t. A solid edge i corresponds to
local computing by MU i and has a cost of C0

i , a dashed
edge a corresponds to using AP a, and the dotted edge B
corresponds to using the BS. Every MU can either choose
the solid edge or the dotted edge that corresponds to itself
or one of the dashed edges, thus one of A+2 edges. For a
strategy profile d the cost fi,a(na(d)) of the dashed edge
that corresponds to AP a is a function of the number of
MUs that offload through AP a, while the cost fi,B of the
dotted edge that corresponds to the BS is independent of
the other MUs’ strategies.

For player-specific singleton congestion games it is
known that a pure strategy Nash equilibrium always ex-
sists, even if potential function may not exist [24]. Before
we formulate the theorem, let us recall the definition of a
generalized ordinal potential from [23].

Definition 4. A function Φ : ×Di → R is a gener-
alized ordinal potential function for the strategic game
Γs =< N , (Di)i, (Ci)i > if for an arbitrary strategy
profile (di, d−i) and for any corresponding improvement
step d′i it holds that

Ci(d
′
i, d−i)−Ci(di, d−i) < 0⇒

Φ(d′i, d−i)− Φ(di, d−i) < 0.

Theorem 4. The MCOG with elastic cloud admits the
generalized ordinal potential function

Φ(d) =
A∑

a′=1

na′ (d)∑
n=1

log(n)−
∑

o∈A∪{B}

N∑
i′=1

log(Mi′Si′,o)I(di′ , o),

(16)
and hence it possesses a pure strategy Nash equilibrium,
if F < γEi viLiCPIi + γTi (T

0

i − T
c

i).

Proof. To prove that Φ(d) is a generalized ordinal poten-
tial function, we first show that Ci(a, d−i) < Ci(0, d−i)
implies Φ(a, d−i) < Φ(0, d−i).

According to (7), (10) and (14), the condition
Ci(a, d−i) < Ci(0, d−i) implies that

(γTi +γEi Pi,a)Di
na(a, d−i)

Ri,a
+γTi T

c

i+F (17)

<γTi T
0

i + γEi viLiCPIi.

After algebraic manipulations we obtain

na(a, d−i) < MiSi,a, (18)

where Si,a ,
Ri,a

Di(γT
i +γE

i Pi,a)
and Mi , γTi (T

0

i − T
c

i) +

γEi viLiCPIi − F.
Since na(a, d−i) > 0 and MiSi,a > 0, (17) implies that

log(na(a, d−i)) < log(MiSi,a). (19)

For the strategy profile (a, d−i) it holds that

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a

na′ (a,d−i)∑
n=1

log(n)

− log(MiSi,a)−
∑

o∈A∪{B}

∑
i′ 6=i

log(Mi′Si′,o)I(di′ , o),

and for the strategy profile (0, d−i)

Φ(0, d−i) =

na(0,d−i)∑
n=1

log(n) +
∑
a′ 6=a

na′ (0,d−i)∑
n=1

log(n)

−
∑

o∈A∪{B}

∑
i′ 6=i

log(Mi′Si′,o)I(di′ , o).

Since na(a, d−i) = na(0, d−i)+1, we obtain Φ(a, d−i)−
Φ(0, d−i) = log(na(a, d−i)) − log(MiSi,a). It follows
from (19) that Φ(a, d−i) − Φ(0, d−i) < 0. Similarly,
we can show that Ci(0, d−i) < Ci(a, d−i) implies
Φ(0, d−i) < Φ(a, d−i).

Second, we show that Ci(a, di) < Ci(b, di) implies
Φ(a, di) < Φ(b, di). According to (10) and (14), the
condition Ci(a, di) < Ci(b, di) implies that

(γTi +γEi Pi,a)Di
na(a, d−i)

Ri,a
<(γTi +γEi Pi,b)Di

nb(b, d−i)

Ri,b
,

which is equivalent to
na(a, d−i)

nb(b, d−i)
<
Si,a
Si,b

. (20)

Since na(a, d−i), nb(b, d−i) > 0 and Si,a, Si,b > 0, (20)
implies

log(na(a, d−i))− log(nb(b, d−i)) < log(Si,a)− log(Si,b).
(21)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +

nb(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a,b

na′ (a,d−i)∑
n=1

log(n)

− log(MiSi,a)−
∑

o∈A∪{B}

∑
i′ 6=i

log(Mi′Si′,o)I(di′ , o).

Since na(a, d−i) = na(b, d−i) + 1 and nb(b, d−i) =
nb(a, d−i) + 1, we have that Φ(a, d−i) − Φ(b, d−i) =
log(na(a, d−i))−log(nb(b, d−i))−(log(Si,a)−log(Si,b)).
It follows from (21) that Φ(a, d−i)− Φ(b, d−i) < 0.

Third, we show that Ci(B, di) < Ci(0, di) implies
Φ(B, di) < Φ(0, di). According to (7), (10) and (15), the
condition Ci(B, di) < Ci(0, di) implies that

(γTi +γEi Pi,B)
Di

Ri,B
+ γTi T

c

i+F <γ
T
i T

0

i + γEi viLiCPIi,

(22)

which is equivalent to

1 < MiSi,B . (23)

For the strategy profile (B, d−i) it holds that

Φ(B, d−i) =
A∑

a′=1

na′ (B,d−i)∑
n=1

log(n)− log(MiSi,B)

−
∑

o∈A∪{B}

∑
i′ 6=i

log(Mi′Si′,o)I(di′ , o).

Since na(B, d−i) = na(0, d−i) for every AP a, we have
that Φ(B, d−i) − Φ(0, d−i) = − log(MiSi,B), and since
MiSi,B > 0, it follows from (23) that Φ(B, d−i) −
Φ(0, d−i) < 0. Similarly, we can show that Ci(0, d−i) <
Ci(B, d−i) implies Φ(0, d−i) < Φ(B, d−i).

Finally, we show that Ci(B, di) < Ci(a, di) implies
Φ(B, di) < Φ(a, di). According to (10), (14) and (15),

8

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

the condition Ci(B, di) < Ci(a, di) implies that

(γTi + γEi Pi,B)
Di

Ri,B
< (γTi + γEi Pi,a)Di

na(a, d−i)

Ri,a
,

which is equivalent to

na(a, d−i) >
Si,a
Si,B

. (24)

Since na(a, d−i) > 0 and Si,a, Si,B > 0, (24) implies

log(na(a, d−i)) > log(Si,a)− log(Si,B). (25)

Since na(a, d−i) = na(B, d−i) + 1, we have that
Φ(B, d−i)−Φ(a, d−i) = − log(na(a, d−i)) + log(Si,a)−
log(Si,B). It follows from (25) that Φ(B, d−i) −
Φ(a, d−i) < 0. Similarly, we can show that Ci(a, d−i) <
Ci(B, d−i) implies Φ(a, d−i) < Φ(B, d−i), which proves
the theorem.

It is well known that in a finite strategic game that
admits a generalized ordinal potential all improvement
paths are finite [25]. Therefore, the existence of a gen-
eralized ordinal potential function allows us to use the
ImprovementPath Algorithm (c.f., Figure 3) for computing
a NE.

Corollary 2. The ImprovementPath algorithm terminates
in a NE after a finite number of improvement steps for the
MCOG with elastic cloud.

In what follows, we prove that if MUs aim at minimiz-
ing only their energy consumption, the ImprovementPath
algorithm can be used for computing a NE not only for
the MCOG with elastic cloud, but also in the general case,
i.e., if the time needed for performing the task of an MU
in the cloud depends on the strategy profile d.

Proposition 5. The ImprovementPath algorithm termi-
nates in a NE after a finite number of improvement steps
for the MCOG with γTi = 0, i.e., if each MU aims at
minimizing its energy consumption.

Proof. Observe that if γTi =0, MU i spends the energy
only to transmit the data through one of the APs in the
case of offloading, and thus the cost function of MU i
only depends on the number of MUs that offload through
the same AP, and it is independent of the total number
of MUs that offload. Hence, the MCOG in which γTi =0
for all MUs can be modeled by a congestion game on
parallel links as shown in Figure 7. Furthermore, (16) is
a generalized ordinal potential function of the game with
γTi =0, which proves the proposition.

V. PRICE OF ANARCHY

We have so far shown that a NE exists and provided low
complexity algortihms for computing it. We now address
the important question how far the system performance
would be from optimal in a NE. To quantify the difference
from the optimal performance we use the price of anarchy
(PoA), defined as the ratio of the worst case NE cost and
the minimal cost

PoA =
max

d∗

∑
i∈N Ci(d∗)

min
d∈D

∑
i∈N Ci(d)

. (26)

In what follows we give an upper bound on the PoA.

Theorem 6. The price of anarchy for the computation
offloading game is upper bounded by∑

i∈N C
0
i∑

i∈N min{C0
i , C̄

c
i,1, ...,

¯Cci,A,
¯Cci,B}

,

both in the case of elastic cloud and in the case of non-
elastic cloud.

Proof. First we show that if there is a NE in which all
players perform local computation then it is the worst
case NE. To show this let d∗ be an arbitrary NE. Observe
that Ci(d∗i , d

∗
−i) ≤ C0

i holds for every player i ∈ N .
Otherwise, if ∃i ∈ N such that Ci(d∗i , d

∗
−i) > C0

i , player
i would have an incentive to deviate from decision d∗i ,
which contradicts our initial assumption that d∗ is a NE.
Thus, in any NE

∑
i∈N Ci(d

∗
i , d
∗
−i) ≤

∑
i∈N C

0
i holds,

and if all players performing local computation is a NE
then it is the worst case NE.
Now we derive a lower bound for the optimal solution
of the computation offloading game. Let us consider an
arbitrary decision profile (di, d−i) ∈ D. If di = 0,
then Ci(di, d−i) = C0

i . Otherwise, if di = o for some
o ∈ A ∪ {B}, we have that in the best case di′ = 0
for every i′ ∈ N \ {i}, and thus n(d) = 1. Therefore,
ωoi (di, d−i)≤Ri,o and T

c

i (n(di, d−i))≤T
c

i , which implies

(γTi +γEi Pi,o)
Di

ωoi (di, d−i)
+γTi T

c

i (n(di, d−i))

≥ (γTi + γEi Pi,o)
Di

Ri,o
+ γTi T

c

i = C̄ci,o.

Hence, Ci(di, d−i) ≥ min{C0
i , C̄

c
i,1, ...,

¯Cci,A,
¯Cci,B} and∑

i∈N
Ci(di, d−i)≥

∑
i∈N

min{C0
i , C̄

c
i,1, ...,

¯Cci,A, ,
¯Cci,B}. Us-

ing these expressions we can establish the following bound

PoA=
max

d∗

∑
i∈NCi(d∗)

min
d∈D

∑
i∈NCi(d)

≤

∑
i∈N

C0
i∑

i∈N
min{C0

i ,C̄
c
i,1,...,

¯Cci,A,
¯Cci,B}

,

which proves the theorem.

In the following we provide an upper bound on the PoA
in the case of homogeneous MUs, that is, when all MUs
have the same parameters.

Proposition 7. In the case of homogeneous MUs and
when the expected time T

c,ot

i (d) the cloud server spends
executing other tasks is an affine function of the number
of MUs that offload, the price of anarchy for the MCOG
is at most 5

2 .

Proof. When the MUs are homogeneous and T
c,ot

i (d) is
an affine function of the number of MUs that offload, the
MCOG falls into the category of congestion games with
affine cost functions. It follows from [26] that congestion
games with affine cost functions are smooth games with
a PoA at most 5

2 , which proves the proposition.

Observe that the PoA is in fact a bound on the ap-
proximation ratio of the decentralized algorithms used for
computing a NE.

9

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

2 4 6 8 10 12 14

N

1

5

10

15

20
C
(d

∗
)

C
(d̄
)

NE
PoA bound
elastic cloud
non-elastic cloud, p = 0.5
non-elastic cloud, p = 1
non-elastic cloud, p = 2

Fig. 8. The cost ratio and the upper bound on the PoA for the elastic
and non-elastic cloud (p = 0.5, 1, 2), A = 3 APs.

2 4 6 8 10 12 14

N

0

0.05

0.1

0.15

0.2

0.25

n
(d

∗
)−

n
(d̄
)

N

elastic cloud
non-elastic cloud, p = 0.5
non-elastic cloud, p = 1
non-elastic cloud, p = 2

Fig. 9. Offloading difference ratio vs. number of MUs N for the elastic
and non-elastic cloud (p = 0.5, 1, 2), A = 3 APs.

VI. NUMERICAL RESULTS

We use extensive simulations to evaluate the cost per-
formance and the computational time of the JPBR algo-
rithm. We placed the MUs and the APs at random on a
regular grid with 104 points defined over a square area of
1km×1km. We chose the channel gain of MU i to AP a to
be proportional to d−αi,a , where di,a is the distance between
MU i and AP a, and α is the path loss exponent, which
we set to 4 according to the path loss model in urban and
subrurban areas [27]. The channel bandwidth Ba of every
AP a was set to 5 MHz, while the data transmit power
Pi,a of every MU i and for every AP a was set to to 0.4W
according to [28]. Given the noise power Pn we calculate
the PHY rate Ri,a as Ri,a = Ba log(1 + Pi,ad

−α
i,a /Pn).

The clock rate CRi of MU i was drawn from a con-
tinuous uniform distribution with parameters [0.5, 1] GHz
based on the specification of NVIDIA Tegra 2, which is the
reference platform for Android OS [29], while the clock
rate CRc of the cloud was set to 100 GHz [30]. Unless
otherwise noted, the input data size Di was uniformly dis-
tributed on [0.42, 2] Mb. We drew the total number of CPU
cycles required to perform the computation (Li · CPI)
from a continuous uniform distribution with parameters
[0.1, 0.8] Gcycles. The consumed energy per CPU cycle
vi was set to 10−11(CRi)

2 according to measurements
reported in [4], [31]. The weights attributed to energy
consumption γEi and the response time γTi were drawn
from a continuous uniform distribution on [0, 1].

In order to evaluate the cost performance of the equilib-
rium strategy profile d∗ computed by the JPBR algorithm,
we computed the optimal strategy profile d̄ that minimizes
the total cost, i.e., d̄ = arg mind

∑
i∈N Ci(d). Further-

more, as a baseline for comparison we computed the
system cost that can be achieved if all MUs execute their
computation tasks locally, which coincides with the bound
on the PoA. Unless otherwise noted, the MUs are added
at random in the induction steps of the JPBR algorithm.
The results shown are the averages of 100 simulations,
together with 95% confidence intervals.

A. Optimal vs. Equilibrium Cost

Figure 8 shows the cost ratio C(d∗)/C(d̄) vs. the
number of MUs. The results are shown for the case of the
elastic cloud as well as for the case when the expected time
it takes to complete MU i’s task is linear in the number
of MUs that offload, i.e., T

c,exe

i (d) = pn(d)LiCPIcCCc.
We refer to this latter case as a non-elastic cloud and to

the coefficient p as the cloud provisioning coefficient. A
coefficient of p = 1 corresponds to a cloud with fixed
amount of resources, p < 1 to resources that scale slower
than the demand, while p > 1 corresponds to a cloud with
backup resources that scale with the demand.

To make the computation of the optimal strategy pro-
file d̄ feasible, unless otherwise noted, we considered
a scenario with A = 3 APs and we show the cost
ratio C(d∗)/C(d̄) as a function of the number of MUs.
We consider the non-elastic cloud model that does not
implement redundancy mechanisms for three values of the
cloud provisioning coefficient (p = 0.5, 1 and 2).

The results in Fig. 8 show that the performance of JPBR
is close to optimal (cost ratio is close to 1) in all cases,
and the cost ratio is fairly insenstive to the number of
MUs, which is due to the number of MUs that choose
to offload, as we will see later. The results for the bound
on the PoA additionally confirm that the JPBR algorithm
performs good in terms of the cost ratio. It is interesting
to note that the gap between the PoA bound and the actual
cost ratio decreases with increasing number of MUs. This
is due to the benefit of offloading decreases as the number
of MUs increases, and as a result the optimal solution
and the JPBR algorithm will converge to a strategy profile
in which most of the MUs perform local computation.
We can also observe that the upper bound on the PoA
decreases as p increases, and thus the problem becomes
computationally easier for larger values of p.

In order to gain insight in the structure of the equilib-
rium strategy profiles d∗, it is interesting to compare the
number of MUs that offload in equilibrium d∗ and the
number of MUs that offload in the optimal solution d̄. We
define the offloading difference ratio (n(d∗) − n(d̄))/N ,
and show it in Figure 9 for the same set of parameters as
in Figure 8. The results show that the offloading difference
ratio increases with the number of MUs, which explains
the increased cost ratio observed in Figure 8, as more
offloaders reduce the achievable rate, which in turn leads to
increased costs. The observation that the number of MUs
that offload is higher in equilibrium than in the optimal
solution is consistent with the theory of the tragedy of the
commons in the economic literature [32]. The results also
show that the offloading difference ratio is slightly lower
in the case of the elastic cloud, which is due that a higher
proportion of MUs offload in the optimal solution for the
elastic cloud.

10

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

50 100 150 200 250 300 350 400 450 500

Induction step of the JPBR algorithm

0

20

40

60

80

100

120

140

160

C
(d

∗
)

random
LRF
MRF
LCRF
LLCF
elastic cloud
non-elastic cloud, p=1

Fig. 10. The system cost vs. the induction step for the elastic and non-
elastic cloud (p = 1), A = 10 APs, N = 500 MUs.

0.94 0.96 0.98 1 1.02 1.04 1.06

Individual cost ratio

0

0.2

0.4

0.6

0.8

1

C
D
F

random
LRF
MRF
LCRF
elastic cloud
non-elastic cloud, p=1

Fig. 11. Distribution of the individual cost ratio for the elastic and
non-elastic cloud (p = 1), A = 10 APs, N = 500 MUs.

1 10 100 1000

Average input data size [Mb]

1

2

3

4

5

6

7

C
(d

∗
)

C
(d̄
)

NE
PoA bound
Uniform
Exponential
Weibull

Fig. 12. The cost ratio and the upper bound on the PoA for the
elastic and non-elastic cloud (p = 1), uniform, exponential and Weibull
distributions of the input data sizes, A = 3 APs, N = 12 MUs.

100 200 300 400 500 600 700 800 900 1000 1100

N

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
er

of
It
er
at
io
n
s

I=10-random
I=10-LRF
I=100-random
I=100-LRF
elastic cloud
non-elastic cloud, p = 1

Fig. 13. Number of iterations vs. number of MUs N for the elastic and
non-elastic cloud (p = 1), A =10 and 100 APs.

B. Impact of the order of adding MUs

Since the order in which the MUs are added in induction
steps of the JPBR algorithm can be arbitrarily chosen, in
the following we investigate in which order the controller
should add the MUs, so that their costs are minimized.
To do so, we consider five orderings of adding MUs:
random where MUs are added at random, least reluctance
first (LRF) where MUs are added in increasing order
of their ratio Di

C0
i LiCPIi

, most reluctance first (MRF)
where MUs are added in decreasing order of their ratio

Di

C0
i LiCPIi

, least clock rate first (LCRF) where MUs are
added in increasing order of their clock rate CRi, and
least local cost first (LLCF) where MUs are added in
increasing order of their local cost C0

i . Figure 10 shows
the system cost as a function of the number of induction
steps performed (i.e., MUs added) by the JPBR algorithm,
for the elastic and the non-elastic cloud (p=1), N = 500
MUs, and A = 10 APs. The results show that the order of
adding MUs affects the system cost during the induction
steps, but the system cost C(d∗) in the equilibrium d∗

computed upon the last induction step is almost the same
for all considered orderings, and thus the order of adding
MUs does not affect the system performance significantly.

To gain insight in the impact of the order of adding
MUs on the cost of the MUs, we define the individual
cost ratio for a particular order of entry, compared to the
LLCF order of entry. Figure 11 shows the CDF of the
individual cost ratio in the equilibrium d∗ computed upon
the last induction step for the same set of parameters as
in Figure 10. The results show that the individual costs
slightly differ for different orderings only for a few MUs,
and thus changing the order of adding MUs does not affect

the performance of individual MUs either.
C. Impact of the input data size

In order to analyse the impact of the input data size
we considered three distributions with the same mean for
the input data size, uniform (lower limit fixed to 0.42
and upper limit scales with the mean), exponential, and
Weibull (shape parameter 0.5), and considered that all
MUs have to offload a task that requires a computation
of Li · CPI = 0.45 Gcycles. Figure 12 shows the cost
ratio C(d∗)/C(d̄) and the upper bound on the PoA as a
function of the mean input data size. The results are shown
for the non-elastic cloud (p=1), N=12 MUs and A=3 APs,
and show that while the cost ratio does not change, the
upper bound on the PoA decreases with the mean input
data size and for large data sizes it reaches the cost ratio.
This is due to the transmission time increases with the
input data size and if the MUs have to offload a large
amount of data, it becomes optimal for most of them to
perform local computation, which coincides with the worst
case equilibrium. Note that the upper bound on the PoA
decreases slower in the case of the Weibull distribution
because for the same mean it has a median that is smaller
than that of the uniform and exponential distributions.

D. Computational Complexity

In order to evaluate the computational complexity of the
JPBR algorithm, we consider the number of iterations, the
total number of update steps over all induction steps plus
the number of induction steps, to compute the strategy
profile d∗ for the elastic cloud and for the non-elastic
cloud (p = 1), A=10 and A=100 APs. Figure 13 shows
the number of iterations as a function of the number of
MUs for the random and the LRF order of adding MUs.

11

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

Intuitively, one would expect that the LRF order results
in a smaller number of iterations, since the MUs with
lower Di

C0
i LiCPIi

ratio have lower computational capability
to execute computationally more demanding tasks with
smaller offloading data size than the MUs with higher

Di

C0
i LiCPIi

. However, the simulation results show that the
number of iterations is fairly insensitive to the order of
adding the MUs and mostly depends on the number of
MUs. This insensitivity allows for a very low-overhead
decentralized solution, as the coordinator need not care
about the order in which the MUs are added for computing
the equilibrium allocation. The results also show that the
number of iterations scales approximately linearly with the
number of MUs, and indicates that the worst case scenario
described in Corollary1 is unlikely to happen. Thus JPBR
is an efficient decentralized algorithm for coordinating
computation offloading among autonomous MUs.

VII. RELATED WORK

There is a significant body of works that deals with
the design of energy efficient computation offloading for
a single mobile user [3], [4], [6], [33], [34], [21], [35].
The experimental results in [34] showed that significant
battery power savings can be achieved by computation
offloading. [6] studied the commmunication overhead of
computation offloading and the impact of bandwidth avail-
ability on an experimental platform. [3] proposed a
code partitioning solution for fine-grained energy-aware
computation offloading. [21] proposed an algorithm for
offloading partitioned code under bandwidth and delay
constraints. [4] proposed CPU frequency and transmission
power adaptation for energy-optimal computation offload-
ing under delay constraints. [35] modeled the offloading
problem under stochastic task arrivals as a Markov deci-
sion process and provided a near-optimal offloading policy.

A number of recent works considered the problem of
joint energy minimization for multiple mobile users [13],
[36], [14]. [13] studies computation partitioning for
streaming data processing with the aim of maximizing
throughput, considering sharing of computation instances
among multiple mobile users, and proposes a genetic algo-
rithm as a heuristic for solving the resulting optimization
problem. [36] models computation offloading to a tiered
cloud infrastructure under user mobility in a location-
time workflow framework, and proposes a heuristic for
minimizing the users’ cost. [14] aims at minimizing the
mobile users’ energy consumption by joint allocation of
radio resources and cloud computing power, and provides
an iterative algorithm to find a local minimum of the
optimization problem.

A few recent works provided a game theoretic treat-
ment of computation offloading in a game theoretical
setting [37], [38], [7], [39], [40], [41]. [37] considers a
two-stage problem, where first each mobile user decides
what share of its task to offload so as to minimize its
energy consumption and to meet its delay deadline, and
then the cloud allocates computational resources to the
offloaded tasks. [38] considers a two-tier cloud infrastruc-
ture and stochastic task arrivals and proves the existence
of equilibria and provides an algorithm for computing and

equilibrium. [40] considers tasks that arrive simultane-
ously, a single wireless link, and elastic cloud, and show
the existence of equilibria when all mobile users have the
same delay budget. Our work differs from [37] in that we
consider that the allocation of cloud resources is known to
the mobile users, from [38] in that we take into account
contention in the wireless access, and from [40] in that we
consider multiple wireless links and a non-elastic cloud.

Most related to our work are the problems considered
in [12], [7], [39], [41]. [12] considers a system where
multiple devices can offload their tasks to a non-elastic
cloud through one of multiple shared heterogeneous wire-
less links. Different from [12], we consider that devices
besides offloading through shared heterogeneous wireless
links can offload their tasks through a non-shared link, and
we consider that devices use different transmit powers for
different wireless links when they offload their tasks to
the cloud. [7] considers contention on a single wireless
link and an elastic cloud, assumes upload rates to be
determined by the Shannon capacity of an interference
channel, and shows that the game is a potential game.
[39] extends the model to multiple identical wireless links,
shows that the game is still a potential game, and that the
same algorithm as in [7] can be used for computing an
equilibrium allocation. Unlike these works, we consider
heterogeneous wireless links, fair bandwidth sharing and
a non-elastic cloud. [41] considers multiple wireless links,
fair bandwidth sharing and a non-elastic cloud, and claims
the game to have an exact potential. In our work we on the
one hand extend the model to an elastic cloud, on the other
hand we show that an exact potential cannot exist in case
of a non-elastic cloud, but at the same time we prove the
existence of an equilibrium allocation, provide an efficient
algorithm with quadratic complexity for computing one,
and provide a bound on the price of anarchy.

Besides providing efficient distributed algorithms for
computing equilibria, the importance of our contribution
lies in the fact that while games with an elastic cloud are
player-specific singleton congestion games for which the
existence of equilibria is known [24], the non-elastic cloud
model does not fall in this category of games and thus no
general equilibrium existence result exists.

VIII. CONCLUSION

We have provided a game theoretic analysis of selfish
mobile computation offloading. We proposed a polynomial
complexity algorithm for computing equilibrium alloca-
tions of the wireless and cloud resources, and provided
a bound on the price of anarchy, which serves as an ap-
proximation ratio bound for the optimization problem. Our
numerical results show that the proposed algorithms and
the obtained equilibria provide good system performance
irrespective of the number of mobile users and access
points, for various distributions of the input data size and
task complexity, and confirm the low complexity of the
proposed algorithms.

REFERENCES

[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented
assembly using a mobile phone,” in Proc. of IEEE/ACM ISMAR,
Sept 2008, pp. 167–168.

12

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2829874, IEEE
Transactions on Mobile Computing

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan,
“uwave: Accelerometer-based personalized gesture recognition and
its applications,” in Proc. of IEEE PerCom, March 2009, pp. 1–9.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proc. of ACM MobiSys, 2010, pp. 49–62.

[4] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile appli-
cation execution: Taming resource-poor mobile devices with cloud
clones,” in Proc. of IEEE INFOCOM, March 2012, pp. 2716–2720.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI White Paper,
pp. 1–16, 2015.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or
not to offload? The bandwidth and energy costs of mobile cloud
computing,” in Proc. of IEEE INFOCOM, 2013, pp. 1285–1293.

[7] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE TPDS, vol. 26, no. 4, pp. 974–983, 2015.

[8] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” in ACM SIGMETRICS Performance Evalu-
ation Review, vol. 29, no. 1. ACM, 2001, pp. 50–61.

[9] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for
multimedia applications,” ACM TOCS, pp. 292–331, 2006.

[10] X. Li, Q. Xue, and M. C. Chuah, “Casheirs: Cloud assisted scalable
hierarchical encrypted based image retrieval system,” in INFOCOM
2017. IEEE, 2017, pp. 1–9.

[11] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong,
“Securing elastic applications on mobile devices for cloud com-
puting,” in Proceedings of the 2009 ACM workshop on Cloud
computing security. ACM, 2009, pp. 127–134.

[12] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. of IEEE INFOCOM, May 2017.

[13] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” SIGMETRICS Perform. Eval. Rev., pp. 23–32,
Apr. 2013.

[14] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE T-SIPN, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[15] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “An iterative double
auction for mobile data offloading,” in Proc. of WiOpt, May 2013,
pp. 154–161.

[16] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime
fairness for ieee 802.11 multirate networks,” IEEE Transactions
on Mobile Computing, vol. 7, no. 4, pp. 513–527, 2008.

[17] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Transac-
tions on networking, vol. 11, no. 2, pp. 210–221, 2003.

[18] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient
power control via pricing in wireless data networks,” IEEE trans-
actions on Communications, vol. 50, no. 2, pp. 291–303, 2002.

[19] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 4th ed. Morgan Kauf-
mann Publishers Inc., 2011.

[20] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl,
W. Michalk, and J. Stößer, “Cloud computing–a classification,
business models, and research directions,” Business & Information
Systems Engineering, vol. 1, no. 5, pp. 391–399, 2009.

[21] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading al-
gorithm for mobile computing,” IEEE Transactions on Wireless
Communications, vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[22] K. Kumar and Y. H. Lu, “Cloud computing for mobile users:
Can offloading computation save energy?” IEEE Computer Mag.,
vol. 43, no. 4, pp. 51–56, Apr. 2010.

[23] D. Monderer and L. S. Shapley, “Potential games,” Games and
economic behavior, vol. 14, no. 1, pp. 124–143, 1996.

[24] I. Milchtaich, “Congestion games with player-specific payoff func-
tions,” Games and Economic Behavior, vol. 13, no. 1, pp. 111 –
124, 1996.

[25] D. Monderer and L. S. Shapley, “Potential games,” Games and
Economic Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[26] T. Roughgarden, “Intrinsic robustness of the price of anarchy,”
Journal of the ACM (JACM), vol. 62, no. 5, p. 32, 2015.

[27] A. Aragon-Zavala, Antennas and propagation for wireless commu-
nication systems. John Wiley & Sons, 2008.

[28] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” in Proc. of the 9th ACM
SIGCOMM conference, 2009, pp. 280–293.

[29] J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2011.

[30] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in ISCC, 2012, pp. 59–66.

[31] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in Proc. of the 2nd USENIX Conf. Hot
Topics Cloud Comput., 2010, pp. 4–4.

[32] G. Hardin, “The tragedy of the commons,” Science.
[33] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of

computation offloading for mobile systems,” Mob. Netw. Appl.,
vol. 18, no. 1, pp. 129–140, Feb 2013.

[34] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving
portable computer battery power through remote process execu-
tion,” ACM Mob. Comput. Commun. Rev., pp. 19–26, Jan 1998.

[35] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right
jobs: Robust offloading using the Markov decision processes,” in
Proc. of IEEE WoWMoM, Jun. 2015, pp. 1–9.

[36] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos,
“MuSIC: Mobility-aware optimal service allocation in mobile cloud
computing,” in Proc. of IEEE CLOUD, Jun. 2013, pp. 75–82.

[37] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in
SOSE, Mar. 2013, pp. 494–502.

[38] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei,
V. Grassi, F. Lo Presti, and V. Piccialli, “A game-theoretic approach
to computation offloading in mobile cloud computing,” Mathemat-
ical Programming, pp. 1–29, 2015.

[39] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM ToN,
pp. 2795–2808, 2016.

[40] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy
efficient offloading for competing users on a shared communication
channel,” in Proc. of IEEE ICC, Jun. 2015, pp. 3192–3197.

[41] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis
of computation offloading for cloudlet-based mobile cloud comput-
ing,” in Proc. of ACM MSWiM, 2015, pp. 271–278.

Slad̄ana Jošilo is a Ph.D. student at
the Department of Network and Sys-
tems Engineering in KTH, Royal In-
stitute of Technology. She received her
M.Sc. degree in electrical engineering
from the University of Novi Sad, Ser-
bia in 2012. She worked as a research
engineer at the Department of Power,
Electronics and Communication Engi-

neering, University of Novi Sad from 2013 to 2014. Her
research interests are design and analysis of distributed al-
gorithms for exploiting resources available at the network
edge using game theoretical tools.

György Dán (M’07) is an associate
professor at KTH Royal Institute of
Technology, Stockholm, Sweden. He re-
ceived the M.Sc. in computer engineer-
ing from the Budapest University of
Technology and Economics, Hungary
in 1999, the M.Sc. in business admin-
istration from the Corvinus University
of Budapest, Hungary in 2003, and the

Ph.D. in Telecommunications from KTH in 2006. He
worked as a consultant in the field of access networks,
streaming media and videoconferencing 1999-2001. He
was a visiting researcher at the Swedish Institute of
Computer Science in 2008, a Fulbright research scholar
at University of Illinois at Urbana-Champaign in 2012-
2013, and an invited professor at EPFL in 2014-2015. His
research interests include the design and analysis of con-
tent management and computing systems, game theoretical
models of networked systems, and cyber-physical system
security in power systems.

13

