
Task Placement and Resource Allocation in Edge
Computing Systems

SLAÐANA JOŠILO

Doctoral Thesis
Stockholm, Sweden 2020

TRITA-EECS-AVL-2020:21
ISBN 978-91-7873-510-5

KTH School of Electrical Engineering and Computer Science
SE-100 44 Stockholm

Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av doktorsexamen onsdag den 27 May 2020
klockan 14.00 i Kollegiesalen, KTH, Stockholm.

© Slađana Jošilo, May 2020

Tryck: Universitetsservice US AB

iii

Abstract

The evolution of wireless and hardware technology has led to the rapid
development of a variety of mobile applications. Common to these appli-
cations is that they have low latency and high computational requirements
that often cannot be fulfilled by individual devices due to their insufficient
computational power, memory and battery capacity. An emerging approach
to meet increasing user demand for delay sensitive and computationally in-
tensive applications is mobile edge computing. The core paradigm of mobile
edge computing is to bring computing and storage resources close to the end
users and by doing so to relieve devices from computationally heavy work-
loads while meeting delay requirements of applications. However, the overall
performance of edge computing systems is determined by the efficiency of the
joint allocation of wireless and computing resources. The work in this thesis
proposes decentralized algorithms for allocating these two resources in edge
computing infrastructures.

In the first part of the thesis, we consider the resource allocation and
computational task scheduling problem in an edge computing system in which
wireless devices can use cloud resources and the resources of each other with
the objective to minimize their own perceived response times. We develop a
game theoretical model of the problem, prove the existence of equilibrium task
allocations and propose an efficient decentralized algorithm that computes an
equilibrium based on average system parameters.

In the second part of the thesis, we consider the joint resource allocation
and computational task assignment problem in an edge computing system
that consists of an edge cloud that can be accessed by devices through multiple
wireless links. We model the problem as a strategic game, in which each
device aims at minimizing a combination of its response time and energy
consumption. We prove the existence of equilibrium task allocations, and use
game theoretical tools for designing polynomial time decentralized algorithms
with a bounded approximation ratio. We then extend the analysis to a system
with periodic tasks, and show that equilibrium task allocations still exist.
Furthermore, we propose a polynomial complexity decentralized algorithm
and characterize the structure of equilibria computed by the algorithm.

In the third part of the thesis, we consider the joint resource allocation and
computational task assignment problem in an edge computing system that
consists of multiple edge clouds and wireless links managed by a single network
operator. We model the interaction between the operator and devices that
aim at minimizing their response times as a Stackelberg game. We express
the optimal resource allocation policies in closed form, prove the existence of
Stackelberg equilibria and propose an efficient decentralized algorithm with a
bounded approximation ratio. Finally, we consider the same edge computing
system under network slicing, and based on a game theoretic treatment of the
problem we develop an approximation algorithm for assigning tasks to slices
and managing the resources across and within slices.

By providing constructive equilibrium existence proofs, the results in this
thesis provide low complexity decentralized algorithms for allocating edge
computing resources in a variety of edge computing infrastructures.

iv

Sammanfattning

Teknologiska framsteg inom trådlös teknik och hårdvara har lett till en snabb ut-
veckling av en rad olika mobilapplikationer. Mobilapplikationerna behöver ha låg
latens och hög beräkningskraft vilket ofta inte kan uppfyllas av enskilda enheter
på grund av bland annat bristande minne och batterikapacitet. En växande trend
för att möta den ökade efterfrågan på applikationer med höga krav på latens och
beräkningsförmåga är så kallad ”mobile edge computing”. Grunden i mobile ed-
ge computing är att placera beräknings- och lagringsresurser nära slutanvändarna.
Detta befriar enheter från krävande beräkningar och uppgifter samtidigt som de
uppfyller applikationernas latenskrav. Den totala prestandan för mobile edge com-
puting bestäms dock av effektiviteten av den gemensamma tilldelningen av trådlösa
resurser och beräkningsresurser. Den här avhandlingen föreslår decentraliserade al-
goritmer för att fördela dessa resurser i infrastruktur för mobile edge computing.

I den första delen av avhandlingen behandlar vi resursfördelning och sche-
maläggning av beräkningsuppgifter i ett edge computing system, där trådlösa en-
heter kan använda både molnresurser och varandras resurser för att minimera sina
upplevda svarstider. Vi utvecklar en spelteoretisk modell av problemet, bevisar att
jämviktsuppgiftstilldelningar finns och föreslår en effektiv decentraliserad algoritm
som beräknar en jämvikt baserad på genomsnittliga systemparametrar.

I den andra delen av avhandlingen behandlar vi resursfördelning och tilldelning-
en av beräkningsuppgifter i ett edge computing system som består av ett edge cloud
som kan nås av enheter via flera trådlösa länkar. Vi modellerar problemet som ett
strategiskt spel, där varje enhet syftar till att minimera en kombination av dess
responstid och energiförbrukning. Vi bevisar att jämviktsuppgiftstilldelningar finns
och använder spelteoretiska verktyg för att designa polynomiska decentraliserade
tillnärmningsalgoritmer. Vi utvidgar sedan analysen till ett system med periodiska
uppgifter och visar att jämviktsuppgiftstilldelningar fortfarande finns. Vidare före-
slår vi en decentraliserad algoritm med polynomisk komplexitet och karakteriserar
strukturen för jämvikter som beräknas av algoritmen.

I den tredje delen av avhandlingen angriper vi problemet av resursfördelning och
tilldelningen av beräkningsuppgifter i ett edge computing system som består av fle-
ra trådlösa länkar och flera edge clouds som hanteras av en enda nätoperatör. Vi
modellerar interaktionen mellan operatören och enheter som syftar till att minimera
deras responstider som ett Stackelberg-spel. Vi formulerar de optimala resursfördel-
ningspolicyerna i sluten form, bevisar att Stackelberg-jämvikter finns och föreslår
en effektiv decentraliserad algoritm med ett begränsat tillnärmningsförhållande.
Slutligen analyserar vi samma kantberäkningssystem under nätverksskivning, och
baserat på en spelteoretisk behandling av problemet utvecklar vi en tillnärmnings-
algoritm för att tilldela uppgifter till olika delar och hantera resurserna både mellan
och inom delar.

Genom att visa konstruktiva bevis på jämvikt ger resultaten i den här avhand-
lingen decentraliserade algoritmer med låg komplexitet för fördelning av edge com-
puting resurser i en rad olika infrastrukturer för edge computing.

v

In loving memory of my mother, Milenija Mihajlović Jošilo,
who gave me so much love and whom I remember every day of my life.

vi

Acknowledgments

I would like to thank my advisor György Dán for his patience, support and en-
couragement. I enjoyed every moment I spent working with him and I greatly
appreciate the time he has taken to share his knowledge with me. His consis-
tent guidance and valuable suggestions at every stage of the research have helped
me to complete the thesis successfully. He helped me grow as a researcher and as
a person in ways I cannot begin to enumerate, and I will always be grateful for that.

I am thankful to my co-advisor Viktoria Fodor, who involved me in teaching ac-
tivities and helped me to sharpen my learning and presentation skills. I would also
like to thank professor Gunnar Karlsson for giving me the opportunity to become
a member of the NSE department.

I am happy to thank all past and present members of the NSE department for
providing a friendly environment. In particular, I would like to thank Valentino for
believing in me since the first day we met, Emil for being a supportive and caring
friend and Peiyue for being always cheerful and fun. I would also like to thank
Ezzeldin for initiating interesting conversations, Lamia for sharing her enthusiasm,
Qing for her pleasant company during conference travels and Fredrik for helping
me with the Swedish translation of the abstract.

I am thankful to all my friends for their love, enthusiasm and help. I especially
thank Vanja, who has been my best friend for the last nineteen years and Nikola for
being next to me during my good and bad times. I would also like to thank Carlos,
Dina and Lars, who have helped me to maintain a balance between my work, sport
activities and social life. In particular, I would like to thank Carlos for his patience,
company and valuable climbing tips and Dina for being the kindest possible friend.

Finally, I am deeply thankful to my family for their love, encouragement and
support. To my father Slobodan, who taught me to appreciate the small things and
who inspired me to keep moving towards my goals. To my brother Nenad, who,
among many other things, helped awaken my interest in science and mathematics.
To my nephew Mihail, my niece Marija and my sister-in-law Dragana, who make
nice memories every time I go home.

Contents

Contents vii

1 Introduction 1
1.1 Background . 1
1.2 Challenges . 2
1.3 Thesis Structure . 2

2 Edge Computing Infrastructure and Resources 3
2.1 Communication Resources . 4
2.2 Computing Resources . 6
2.3 Network Slicing . 7

3 Computational Tasks in Edge Computing Systems 9
3.1 Computational Task Modeling . 9
3.2 Performance Metrics . 9
3.3 Cost Model . 12
3.4 Joint Task Placement and Resource Allocation Problem 12

4 Task Placement and Allocation of Edge Resources 15
4.1 Allocation of Communication Resources 17
4.2 Allocation of Computing Resources 20
4.3 Allocation of Communication and Computing Resources 27

5 Summary of Original Work 37

6 Conclusion and Future Work 43

Bibliography 45

vii

viii Contents

Paper A: Decentralized Algorithm for Randomized Task Allocation
in Fog Computing Systems 55

Paper B: Selfish Decentralized Computation Offloading for Mobile
Cloud Computing in Dense Wireless Networks 89

Paper C: Computation Offloading Scheduling for Periodic Tasks in
Mobile Edge Computing 123

Paper D: Joint Management of Wireless and Computing Resources
for Computation Offloading in Mobile Edge Clouds 163

Paper E: Joint Wireless and Edge Computing Resource Manage-
ment with Dynamic Network Slice Selection 201

Chapter 1
Introduction

1.1 Background

The number of wireless devices including smartphones, tablets, sensors, and other
portable devices, has been rapidly increasing over the past years. According to a
recent estimate by Cisco, the number of mobile devices and connections will grow
to 13.1 billion by 2023 at a compound annual growth rate (CAGR) of 8% between
2018 and 2023 [Cis20]. At the same time, this widespread availability of affordable
wireless devices has given rise to a variety of Internet of Things (IoT) applica-
tions such as video surveillance, tracking, healthcare monitoring and autonomous
vehicles [Cis20; Cis17].

Despite steady improvement in the capabilities of the hardware components
(e.g., computing units (CPU, GPU, NPU), battery and memory), the individ-
ual wireless devices are still not capable of fully supporting the requirements of
the emerging computationally intensive and delay sensitive applications [Kum+13;
Sat15]. This is due to several factors, including the following two main constraints.
The first constraint is related to the fact that battery technology has still not been
able to meet energy consumption requirements without limiting the clock speed of
processors; doubling the clock speed approximately octuples the energy consump-
tion [KL10b]. The second constraint is related to the users’ requirements for light
and small devices, which puts additional limitations on the achievable capacity of
wireless devices’ hardware components [SLS03].

A promising approach to closing the gap between the limited computing ca-
pabilities of wireless devices and high computing requirements of the emerging
applications is computation offloading [Cue+10; WZL12]. Computation offloading
was first introduced as a promising paradigm for augmenting the computing capa-
bilities of devices by allowing them to use remote cloud servers for performing their
computational tasks. Computation offloading to remote cloud servers may indeed
accelerate the execution of computational tasks, but due to high communication
delays it may not be able to meet the requirements of latency sensitive applica-

1

2 Chapter 1. Introduction

tions. In order to meet the extremely low latency requirements of emerging delay
sensitive applications, novel paradigms of computation offloading propose bringing
computing and storage resources closer to the end users, that is, to the network
edge. The key idea of these novel paradigms is to build edge computing systems by
equipping the existing mobile network components (e.g., base stations and wireless
access points) with computing resources and by allowing the end users’ devices to
perform the computational tasks of each other in a collaborative way [ETS; Hu+15;
CZ16; Bon+14].

1.2 Challenges

Edge computing systems would likely consist of heterogeneous communication and
computing resources and heterogeneous wireless devices (e.g., devices that differ in
terms of computing capabilities, battery states and types of computational tasks).
In this context, there are three major problems that need to be addressed be-
fore deploying computation offloading paradigms. First, there is a need for efficient
task placement algorithms that will take into consideration diverse characteristics of
computational tasks and heterogeneity of communication and computing resources.
Second, there is a need for efficient management of heterogeneous communication
resources that will be used for data exchange between the end users’ devices and
the external computing resources. Finally, there is a need for efficient management
of heterogeneous computing resources that will be used for executing the computa-
tional tasks offloaded by diverse wireless devices. These three problems need to be
addressed jointly, which is an inherently challenging task in highly heterogeneous
edge computing systems.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we present a general model
of an edge computing infrastructure and we discuss the characteristics of the con-
stituent communication and computing resources. In Chapter 3, we discuss different
models of computational tasks, introduce performance metrics for evaluating edge
computing systems and provide a general formulation of the joint task placement
and resource allocation problem. In Chapter 4, we categorize works on task place-
ment and resource allocation in edge computing systems, and we discuss their main
contributions. In Chapter 5, we provide a summary of the papers included in this
thesis, and in Chapter 6 we conclude the work and discuss potential directions for
future research.

Chapter 2
Edge Computing Infrastructure and

Resources

The paradigm of bringing computing and storage resources close to the end users
is known under multiple names and its precise definition is a subject of ongoing
debate. The three most widespread names are cloudlet-based edge computing, fog
computing and multiple-access edge computing (MEC). Cloudlet-based edge com-
puting was introduced in 2009 and defined as a computing system with "a 3-tier
hierarchy: mobile or IoT device-cloudlet-cloud", where "a cloudlet can be viewed as
a data center in a box whose goal is to bring the cloud closer" [Sat+09]. Fog comput-
ing was introduced by Cisco in 2012 and defined as "a highly virtualized platform,
which provides storage, computation, and network services between smart devices
and cloud servers, typically but not exclusively deployed at the edge of the net-
work" [Bon+12]. Finally, MEC was introduced by European Telecommunications
Standards Institute (ETSI) in late 2014 and defined as "a technology that pro-
vides an IT service environment and cloud-computing capabilities at the edge of
the mobile network, within the Radio Access Network (RAN) and in close proxim-
ity to mobile subscribers" [Hu+15]. These definitions, however, do not specify the
geographic span of an edge computing system.

A general model of an edge computing infrastructure compliant with the above
three definitions consists of three layers, in the following referred to as fog, edge
and remote layers.The fog layer is geographically closest to the end users and it
consists of the end users’ devices referred to as fog nodes. The edge layer consists
of multiple heterogeneous edge clouds installed in base stations and small cell access
points and it is considered as the second closest layer to the end users. Finally, the
remote layer consists of computationally rich remote clouds that are geographically
distant from the end users.

Fog, edge and remote computing components are connected with each other
through variant types of communication resources and they together form a 3-layer
edge computing infrastructure that allows fog nodes to perform their computational

3

4 Chapter 2. Edge Computing Infrastructure and Resources

edge cloud computing
resources

remote cloud
computing resources

communication
resources

remote layer

edge layer

fog layer

Figure 2.1: An example of a 3-layer edge computing infrastructure.

tasks locally or to offload them to each other, to edge clouds or to remote clouds. In
Figure 2.1 we illustrate this model of 3-layer edge computing infrastructure, which is
conceptually most similar to the model introduced in [Sat+09]. However, different
from the concept proposed in [Sat+09], this general model considers that devices
in the fog layer can offload the computation to each other and it also considers
that the edge layer consists of multiple edge clouds with heterogeneous computing
resources. In this chapter, we discuss the main characteristics of communication
and computing resources from the point of view of an edge computing system.

2.1 Communication Resources

The computing components such as fog nodes, edge and remote clouds can be
connected by wireline or wireless communication resources.

Wireline communication resources: In a traditional mobile network, the com-
ponents such as base stations and access points are typically connected by high
speed wireline links (e.g., optical fiber), and it is customary to model these links
as having infinite bandwidth, and locally no latency, unless in switches. Since edge
clouds are planned to be installed in the existing mobile network components, it is
reasonable to assume that the edge clouds will also be connected through wireline
communication resources. This, however, may become impractical and expensive

2.1. Communication Resources 5

in the case of densely deployed edge clouds [Ryu+19; Pha+19a], and thus there
is a need for an alternative way of connecting the computing components in edge
computing systems.

Wireless communication resources: Wireless communication has been consid-
ered as an additional way of connecting mobile network components, and thus it
can be considered as an alternative way of connecting edge clouds [Sio+18; Sid+15].
Furthermore, wireless communication is the main technology for connecting the end
users’ wireless devices with each other and with the mobile network components.
Unlike wireline communication models, wireless communication models usually as-
sume that the communication may suffer from high latency and scarce bandwidth
problems.

The scarcity of bandwidth resources is one of the most important problems
facing wireless communication and one can identify two different approaches to
cope with this problem. The first approach is to reuse existing bandwidth resources
by using device-to-device (D2D) communication [Mar09; Shi+12a; Jan+17] and
the second approach is to manage the bandwidth resources used for device-to-
infrastructure (D2I) communication in a more efficient way. From the perspective
of an edge computing system, the first approach allows fog nodes to communicate
directly without the involvement of wireless network infrastructure [Bon+14] and
the second approach is especially relevant for the communication between fog nodes
and edge clouds [Fry17].

The potential for implementing wireless bandwidth management depends on
the wireless medium access protocol [Giu+18; Kek+18; Rez+18]. In general, one
can consider two different types of wireless bandwidth management mechanisms.
According to the first one, the bandwidth of an access point a∈A is shared equally
among a set Na of devices connected to the access point. In this case, the uplink
rate ωi,a of device i ∈ Na depends on the specific set Na of devices sharing the
access point and it can be expressed as

ωi,a = fa(Na),∀a ∈ A,∀i ∈ Na. (2.1)

Wireless bandwidth management described by (2.1) can be implemented in the
CSMA/CA based protocols. For example, (2.1) can be used for modelling dis-
tributed coordination function (DCF) medium access mechanism [Bia00; Heu+03].

According to the second type of wireless bandwidth management mechanism,
the uplink rate ωi,a of device i ∈ Na does not depend on the specific set Na of
devices sharing the access point, but it may depend on the total number |Na| of
devices sharing the access point. In this case, the uplink rate ωi,a of device i ∈ Na

can be device specific, and it can be expressed as

ωi,a = fi,a(|Na|),∀a ∈ A,∀i ∈ Na. (2.2)

Wireless bandwidth management described by (2.2) can be implemented in the
TDMA and OFDM based medium access protocols [Jos+08; Bia+09]. For example,

6 Chapter 2. Edge Computing Infrastructure and Resources

(2.2) can be used for modelling proportional-fair scheduling (PFS) algorithm that
has been used in 3G networks [LZL11].

2.2 Computing Resources

The sources of computing resources in an edge computing system may be diverse,
from the fog nodes to the edge and remote clouds (c.f. Figure 2.1).

Fog nodes: Common to the fog nodes is that they may have at disposal limited
computing resources when considered alone, but by pooling their resources through
collaboration they can form a computationally rich distributed computing platform
that makes use of the D2D communication [Mao+17; Wan+17; OEY11; Shi+12b;
Mti+13]. Two big challenges facing the fog computing layer are how to integrate
heterogeneous devices into a common computing platform, and how to efficiently
distribute the computational tasks among numerous devices [BD14].

Edge clouds: By providing significant amount of heterogeneous computing re-
sources close to the end users, edge clouds have the potential to provide low com-
munication delays [ETS; RVM16]. Yet, the computing resources provided by the
edge clouds may not be scalable with the number of wireless devices offloading their
tasks, and thus the edge clouds may suffer from high execution times. Therefore,
one of the biggest challenges facing the edge computing layer is how to efficiently
manage limited computing resources [Sab+19a; Sab+19b].

Remote clouds: By providing abundant heterogeneous computing resources that
scale with the number of devices, remote clouds ensure low execution times of
computational tasks [Gro17; De16; Loe11]. However, remote clouds are typically
located far away from the end users, and thus the computation offloading to re-
mote clouds may suffer from high communication delays [Ost+09; He+10; Jac+10;
Ios+11]. For this reason, remote clouds are usually considered as optional compo-
nents in edge computing systems that through providing additional storage, mem-
ory and computing power have the potential to support the computation offloading
in cases when the fog nodes and the edge clouds are overly congested.

As discussed above, computing components such as fog nodes, edge clouds and
remote clouds may have different computing capabilities and they also may have
different computing architectures. Consequently, the computing components in an
edge computing system may differ from the perspective how fast they can execute
the same computational task. One way of capturing the heterogeneity of comput-
ing resources in a system that consists of a set C of computing components is to
introduce the notation for the clock frequency F c for every computing component
c ∈ C and the notation for the coefficient kc

i ∈ [0, 1] that indicates how suited the
computing architecture of component c is for executing task ti. Along with the het-
erogeneity of computing components, it is also important to model the congestion
that may occur when a set Kc of computationally intensive tasks is assigned for
the execution on a resource-poor computing component c. Using the introduced
notation, the actual frequency F c

i at which component c can execute task ti ∈ Kc

2.3. Network Slicing 7

can be expressed as

F c
i = fi,c(F c, kc

i ,Kc),∀c ∈ C,∀ti ∈ Kc. (2.3)

Equation (2.3) allows for flexibility in modeling diverse computing resource man-
agement mechanisms. For example, (2.3) can be used for modeling scheduling algo-
rithms that in practice approximate an ideal generalized processor sharing (GPS)
scheduler [LBH09].

2.3 Network Slicing

The main driver of network slicing is the need for creating a flexible infrastructure
that is capable of meeting the requirements of numerous types of IoT applications
in many different domains such as autonomous vehicles, smart homes, healthcare,
automated industry and surveillance [All15; Ord+17; Red+19]. Network slicing
is about creating multiple isolated and customized logical networks with tailored
capabilities for specific requirements of a variety of IoT applications. These log-
ical networks, referred to as slices, can be vertical or horizontal [All15; Mav17;
Ban+19]. Vertical slices are dedicated to serving a specific industry (e.g., health,
automotive, home or energy) and horizontal slices are dedicated to serving specific
classes of applications (e.g., streaming visual analytics, real-time control or media
delivery). Vertical and horizontal slicing together appear as an attractive solution
for providing services in edge computing systems in an isolated manner [Mav17].

Chapter 3
Computational Tasks in Edge

Computing Systems

In this chapter we focus on the system performance of an edge computing system
from the point of view of the end users. In this regard, we discuss different models
of computational tasks, introduce the main performance metrics that can be used
to measure the overall efficiency of an edge computing system, and we provide a
general formulation of the joint task placement and resource allocation problem.

3.1 Computational Task Modeling

Computational tasks can be partitioned into subtasks at different granularity lev-
els [AGH16]. In this regard, they can be divided into atomic tasks and tasks
divisible into multiple subtasks that can be executed in parallel or in series or in
a mixture. Some of these subtasks must be performed locally and some of them
can be both performed locally and offloaded to the external computing resources.
In Figure 3.1 we illustrate this classification of computational tasks.

In general, one can characterize a task by two parameters. The first parameter
is the size Di of the input data and the second parameter is the complexity Li that
is defined as the number of CPU cycles required to perform the computation. The
relation between the size Di of the input data and the task complexity Li can be
expressed as Li = DiXi [MN10], where Xi is the number of CPU cycles per data
bit, which can be estimated from measurements by applying the methods described
in [LS01; YN06; Cue+10; Net+18; Chu+11].

3.2 Performance Metrics

The two main metrics for assessing the performance of edge computing systems
are the task completion time and the energy consumption. The factors that affect

9

10 Chapter 3. Computational Tasks in Edge Computing Systems

Input data

...

...

...

...

Output data

... ...

... ...

Remote and
local execution

Input data

...

Output data

Input data

Output data

(a) Atomic task model (c) Sequential task model (d) General task model

Only local
execution

Input data

Output data

(b) Parallel task model

...

...

Figure 3.1: Typical examples of computational task modeling.

these performance metrics depend on which computing resources are used to exe-
cute a task. In the following we define the task completion time and the energy
consumption both in the case of local computing and in the case of computation
offloading.

Task completion time
When a task <Di, Li> is executed locally on the device it was generated at, the
time T l

i needed to complete the task is the time needed for its execution using local
computing resources,

T l
i = Li

F l
i

, (3.1)

where F l
i is the actual frequency at which device i can execute a task and it can be

defined by (2.3).
On the contrary, when a device offloads its task <Di, Li> to external computing

node, the task completion time consists of three parts. The first part is the time
T t

i,a needed to transmit the amount Di of input data through an access point a ∈ A,
which can be expressed as

T t
i,a = Di

ωi,a
, (3.2)

where ωi,a is the uplink rate of device i at access point a, which depends on the
bandwidth sharing mechanism (e.g., defined by (2.1) or (2.2)).

3.2. Performance Metrics 11

The second part is the time T exe
i,e needed to execute the task using external

computational resources,
T exe

i,c = Li

F c
i

, (3.3)

where F c
i is the actual frequency at which the external computing node c can

execute a task generated by wireless device i and it can be defined by (2.3).
The third part is the time needed to transmit the result of the computation from

the external computing node to the wireless device. For many applications (e.g.,
applications that require object, face and speech recognition), the size of the result
is much smaller than the size Di of the input data, and thus the third part can
be neglected [HWN12; KL10a]. Therefore, in the case of computation offloading, a
simple linear model can be used to model the task completion time,

T c
i,a = T t

i,a + T exe
i,c . (3.4)

Energy consumption
When a task <Di, Li> is executed locally, the energy consumption El

i of wireless
device i is the energy needed to execute the task using local computing resources
at frequency F l

i . According to the measurements reported in [WZL12; MN10], the
energy consumption per CPU cycle is linearly proportional to the square of the
frequency, and it can be expressed as

El
i = c(F l

i)2Li, (3.5)

where the constant c ∼ 10_11 according to reported measurements.
On the contrary, when a wireless device i offloads its task <Di, Li> to external

computational resources through an access point a, the energy consumption Ei,a

is the energy spent to upload the amount Di of the input data. According to
measurements reported in [Ba09], the energy spent to upload the data over the
cellular network consists of three parts. The first part is the energy spent to scan
available wireless connections, the second part is the energy spent to transmit
data, and the third part is the energy spent to keep the interface up during the
transmission period.

When a task is characterized by a large size Di of the input data, it is reasonable
to consider that the energy spent to transmit data dominates the energy spent to
scan available wireless connections and the energy spent to keep the interface up
during the transmission period. Consequently, given that wireless device i transmits
the data through an access point a at rate ωi,a, the energy consumption Ei,a can
be expressed as

Ei,a = DiPi,a

ωi,a
, (3.6)

where the transmit power Pi,a that wireless device i uses to transmit the data
through an access point a can be determined using an algorithm as the ones pro-
posed in [SMG02; XSC03].

12 Chapter 3. Computational Tasks in Edge Computing Systems

3.3 Cost Model

Wireless devices are heterogeneous in terms of computational capabilities, battery
states, types of computational tasks and the rate at which they generate the tasks.
This multi-level heterogeneity of wireless devices makes it reasonable to consider
that different devices may have different preferences over introduced performance
metrics (i.e., task completion time and energy consumption). This heterogeneity
can be captured by introducing two parameters, 0 ≤ γT

i ≤ 1 and 0 ≤ γE
i ≤ 1, which

characterize the preferences of device i over the completion time and the energy
consumption, respectively. Given these parameters, the cost of wireless device i can
be formulated as a function of the completion time and the energy consumption,

local execution: Cl
i = f(γT

i T
l
i , γ

E
i E

l
i), (3.7)

offloading: Cc
i,a = f(γT

i T
c
i,a, γ

E
i Ei,a), (3.8)

where T l
i , El

i, T c
i,a and Ei,a are given by (3.1), (3.5), (3.4) and (3.6), respectively.

Equations (3.7) and (3.8) can be used for expressing different cost functions,
such as completion time, energy consumption, throughput or a combination of
these. Furthermore, they allow for a model in which each device can dynamically
adjust its objective to the specific task requirements, and to its current battery
state by changing the values of the parameters γT

i and γE
i .

3.4 Joint Task Placement and Resource Allocation Problem

A general formulation of the joint task placement and resource allocation problem
can be provided by considering a general model of an edge computing system that
consists of a set N of devices, |N | = N , a set A of communication resources,
|A| = A, and a set C of computing resources, |C| = C. Task placement matrices
for communication and computing resources are then given by X ∈ {0, 1}N×A

and Y ∈ {0, 1}N×C , respectively. Furthermore, the policies according to which
communication and computing resources are managed can be defined as PX : X→
RN×A

[0,1] and PY : Y→ RN×C
[0,1] , respectively.

Since the edge resources are in general shared among many devices, it is rea-
sonable to consider that the system cost C(X,Y,PX,PY) is a function of task
placement matrices X and Y, and the resource allocation policies PX and PY.
For example, in an end-user-oriented model of an edge computing system, the cost
C(X,Y,PX,PY) can be defined as a function of the end users’ costs (3.7) and (3.8),
which may depend on the congestion on the shared resources. The introduced no-
tation allows us to define the joint task placement and resource allocation problem
as the following mixed-integer optimization program,

3.4. Joint Task Placement and Resource Allocation Problem 13

min
X,Y,PX,PY

C(X,Y,PX,PY) (3.9)

s.t. gi(X,Y,PX,PY) ≤ θi,∀i ∈ N , (3.10)
h(X,PX) ≤ θa,∀a ∈ A, (3.11)
q(Y,PY) ≤ θc,∀c ∈ C, (3.12)
∑

a∈A

∑

c∈C\{i}
xi,ayi,c + yi,i = 1,∀i ∈ N , (3.13)

X ∈ {0, 1}N×A, (3.14)
Y ∈ {0, 1}N×C , (3.15)
PX : X→ RN×A

[0,1] , (3.16)

PY : Y→ RN×C
[0,1] . (3.17)

The function gi(X,Y,PX,PY) takes into account sharing both communication
and computing resources, and thus constraint (3.10) can be used to ensure that the
task completion time or the energy consumption of each device i ∈ N is lower than
the threshold specified by θi. Functions h(X,PX) and q(Y,PY) take into account
sharing only one type of resources, that is, the communication and computing
resources, respectively. Hence, constraints (3.11) and (3.12) can be used thus to
enforce a limitation on the amount of communication and computing resources that
can be provided to the devices, respectively. Constraint (3.13) enforces that each
device i ∈ N either performs the computation locally (xi,a = 0, yi,i = 1, yi,c =
0,∀a ∈ A,∀c ∈ C \ {i}) or it offloads the task to computing resource c using
communication resource a (xi,a = 1, yi,c = 1, xi,a′ = 0, yi,c′ = 0,∀a′ ∈ A\{a},∀c′ ∈
C \{c}). Constraints (3.14) and (3.15) specify that the task placement decisions are
integer variables, and constraints (3.16) and (3.17) describe policies for allocating
communication and computing resources, respectively. Finally, solving the problem
(3.9) − (3.17) may be impractical in realistic edge computing systems, because it
involves searching a large solution space.

It is important to note that (3.9)-(3.17) can be easily used for formulating
different problems that may be of interest in diverse edge computing systems. For
example, (3.9)-(3.17) can be easily reduced to the completion time minimization
problem by defining cost C(X,Y,PX,PY) as a sum of costs (3.7) and (3.8) and
by setting the completion time parameter γT

i = 1, and the energy consumption
parameter γE

i = 0, for all wireless devices. With this in mind, in the following
we consider different versions of problem (3.9) − (3.17), and we discuss the most
important results from the literature.

Chapter 4
Task Placement and Allocation of

Edge Resources

Works on task placement and resource allocation in edge computing systems can
be categorized according to four criteria:

1) Design objective: The common design objectives are minimization of the com-
pletion time, of the energy consumption, joint minimization of the two and the
maximization of the throughput. The objective design choice is mostly deter-
mined by the characteristics of computational tasks. For example, completion
time minimization is a suitable design objective in the case of delay sensitive
tasks, while energy consumption minimization is a suitable design objective in
the case of computationally intensive tasks. Finally, multi-objective optimiza-
tion, such as joint minimization of the completion time and the energy consump-
tion, is a suitable design objective for both delay sensitive and computationally
intensive tasks.

2) Information availability: The second criterion is related to the amount of in-
formation available for optimization. In the case of offline optimization, the
assumption is that there is complete knowledge of system resources and the
tasks to be allocated. In the case of online optimization, information is in-
complete, e.g., due to stochastic task arrivals, and the objective is to optimize
the long-term system performance (e.g., the system throughput, the long-term
average task completion time and the long-term average energy consumption).

3) Edge computing system components: The main edge computing components
are end users’ devices, edge clouds and remote clouds. Depending on which
of these components are available for performing computational tasks, we can
distinguish between multiple edge computing infrastructures. The simplest edge
computing infrastructure consists of one or multiple edge clouds. More complex
edge computing infrastructures support computation offloading not only to edge
clouds, but also to remote clouds and to nearby end users’ devices.

15

16 Chapter 4. Task Placement and Allocation of Edge Resources

Table 4.1: Classification of works according to the types of shared resources.

P
ap

er

C
om

m
un

ic
at
io
n
re
so
ur
ce
s

C
om

pu
ti
ng

re
so
ur
ce
s

[Zha+16] X

[Mes+17] X

[XHS19] X

[Che15] X

[Che+16] X

[Guo+16] X

[Hua+18] X

[Zhe+18] X

[CC17] X

[Yan+13] X

[XSM18] X

[Zhu+18] X

[Zho+18] X

[BZ18] X

[CH18] X

[Liu+18] X

[SL18] X

[Yan+15] X

[CL17] X

[CL19] X

[Zen+16] X

P
ap

er

C
om

m
un

ic
at
io
n
re
so
ur
ce
s

C
om

pu
ti
ng

re
so
ur
ce
s

[XCZ18] X

Paper A [JD19a] X

[Ge+12] X

[XLL15] X

[Den+16] X

[Cha+17] X

[CZ17] X

[SW18] X

[Rah+15] X

[WLP13] X

[Car+16] X

[XLX13] X

[Hu+19] X

[Yan+17] X X

[Gao+19] X X

[Ren+19] X X

[Zha+18] X X

[Guo+19] X X

[EDF17] X X

Paper D [JD19b] X X

Paper E [JD20b] X X

P
ap

er

C
om

m
un

ic
at
io
n
re
so
ur
ce
s

C
om

pu
ti
ng

re
so
ur
ce
s

[You+16] X X

[TL17] X X

[Bar+16] X X

[SSB15] X X

[AlS+17] X X

[ZF19] X X

[Yan+19] X X

[Pha+19b] X X

[TP18] X X

[Lyu+16] X X

[Zha+17] X X

[CLD18] X X

[Du+18] X X

[EL19] X X

Paper B [JD19c] X X

Paper C [JD20a] X X

[Tär+17] X X

[Yan+18] X X

[LOD18] X X

[Lyu+17] X X

[Aya+19] X X

4) Management architecture: Task placement decisions and resource allocation
policies can be implemented in centralized, decentralized and distributed man-
ners. Centralized management architecture is considered as a suitable choice
in systems with an entity that has full information about the system. Decen-
tralized management architecture is considered as a suitable choice in systems
with a centralized entity that based on full or partial knowledge about the
system coordinates multiple other hierarchically lower entities in making task
placement decisions or resource allocation policies. Finally, a distributed man-
agement architecture is considered as a suitable choice in systems in which the
task placement decisions and the resource allocation policies can be made by
multiple hierarchically equal entities with or without information exchange.

Table 4.1 shows a summary of the research papers that addressed the task place-
ment and the resource allocation problems in edge computing systems with shared
communication, computing, and both communication and computing resources, re-
spectively. In what follows we discuss the most important results from these papers.

4.1. Allocation of Communication Resources 17

Table 4.2: Classification of works that model the congestion on communication
resources.

Paper Design Information System Management
objective availability components architecture

T
im

e

E
ne

rg
y

T
hr
ou

gh
pu

t

O
ffl
in
e

O
nl
in
e

D
2D

E
dg

e
cl
ou

d

R
em

ot
e
cl
ou

d

C
en
tr
al
iz
ed

D
ec
en
tr
al
iz
ed

D
is
tr
ib
ut
ed

[Zha+16] X X X X

[Mes+17] X X X X

[XHS19] X X X X X X

[Che15] X X X X X

[Che+16] X X X X X

[Guo+16] X X X X X

[Hua+18] X X X X X

[Zhe+18] X X X X X

[CC17] X X X X X

[Yan+13] X X X X

[XSM18] X X X X

[Zhu+18] X X X X

[Zho+18] X X X X

[BZ18] X X X X

4.1 Allocation of Communication Resources

Works that modeled the congestion on communication resources and assumed the
elasticity of computing resources are relevant in the case of computationally rich
edge computing infrastructures and the tasks that are computationally light, but
require the transmission of a large amount of data. Only a few works from this
category addressed the problem of minimizing the energy consumption [Zha+16;
Mes+17]. On the contrary, majority of the works addressed the problem of joint
minimization of the task completion time and the energy consumption [XHS19;
Che15; Che+16; Guo+16; Hua+18; Zhe+18; CC17]. Finally, some of the works
focused on the problem of maximizing the system throughput [Yan+13; XSM18;
Zhu+18; Zho+18; BZ18]. A summary of works is shown in Table 4.2.

Energy consumption minimization
A simple model of an edge computing system consists of a single edge cloud and
multiple devices, each of them with a computational task, which can be performed
locally or can be offloaded to the edge cloud through one or multiple wireless
links [Zha+16; Mes+17]. In [Zha+16] the authors assumed that devices can ac-
cess the edge cloud either through a small or a macro base station, both of them
operating in the same frequency band divided into a set of identical channels. They

18 Chapter 4. Task Placement and Allocation of Edge Resources

formulated the problem as offline minimization of the sum of devices’ energy con-
sumptions under constraints on the completion times of the tasks and the number
of available wireless channels. The authors then proposed a centralized heuristic for
assigning the tasks and allocating radio resources to offloading devices. In [Mes+17]
the authors considered that devices can offload the computation through a single
wireless link and they used game theoretical tools to address the offline computation
offloading problem. The authors formulated the problem as a congestion game in
which the devices aim at minimizing their own energy consumption while meeting
constraints on the completion times of their tasks. The authors then showed that
the game has a pure Nash equilibrium and proposed a decentralized algorithm for
computing an equilibrium of offloading decisions.

Completion time and energy consumption minimization
A widely adopted model of the cost is a linear combination of completion time and
energy consumption both in the case of local execution and in the case of com-
putation offloading [XHS19; Che15; Che+16; Guo+16; Hua+18; Zhe+18; CC17].
In [XHS19] the authors considered offline optimization of the joint task placement
and bandwidth allocation problem in a system that consists of an edge and a remote
cloud. Taking into account constraints on the total available bandwidth, the au-
thors proposed a centralized algorithm for computing the optimal task assignment
and bandwidth allocation vectors. They showed that the best and the worst case
complexity of the proposed algorithm is quadratic and exponential in the number
of devices, respectively.

Several works focused on developing decentralized solutions to offline com-
putation offloading problems [Che15; Che+16; Guo+16]. The works presented
in [Che15; Che+16] used game theoretical tools to model and analyze the interac-
tion among multiple devices that aim at minimizing their own costs in a system
with a single edge cloud. They modeled the congestion on communication re-
sources as a strategic game in which the devices may offload their tasks to the
edge cloud through a single and multiple wireless links, respectively. In [Che15] the
authors provided an algorithm for computing a pure strategy Nash equilibrium of
offloading decisions and established a bound on the price of anarchy of the game.
In [Che+16] they showed that the same results hold in the case of multiple identical
wireless links. The algorithms proposed in [Che15; Che+16] can be implemented in
a decentralized manner by letting devices compute their offloading decisions asyn-
chronously based on the information provided by a central coordinator located in
the edge cloud. The authors in [Guo+16] considered a system that consists of a
single edge cloud that can be reached through a base station or a small access point.
They assumed that a task of each device can be modeled as a directed acyclic graph
with the same number of subtasks and they formulated the problem of minimizing
the sum of costs of all devices under constraints on the task completion times and
the subtask dependencies. The authors then decomposed the original problem into
two problems that can be solved in a decentralized manner. The first problem is

4.1. Allocation of Communication Resources 19

solved by each wireless device based on the information provided by a network op-
erator; wireless devices decide where to execute their subtasks, at which CPU clock
frequency to perform the local executions and at which transmission rate to offload
their subtasks. The second problem is solved by the operator that uses the subgra-
dient method to compute the Lagrangian multipliers associated with constraints on
the task completion times and the subtask dependencies.

Finally, a few works used machine learning techniques to develop distributed
solutions to the task placement and radio resource allocation problems that may
exist in the systems in which devices can either perform their tasks locally or offload
them to a single edge cloud [Hua+18; Zhe+18; CC17]. In [Hua+18] the authors
considered that the cloud can be accessed through a single wireless link. They
formulated the problem as an offline minimization of the system cost under the
constraint on the total available bandwidth. The authors then proposed a deep
learning-based solution that deploys multiple parallel deep neural networks. Each
neural network has the function of an offloading actor that computes the candidate
task placement and resource allocation vectors, exchanges the computed vectors
with the other actors, and based on the exchanged information selects the best
candidate solution for updating the input to its own deep neural network. The
authors in [Zhe+18] considered a system with stochastic task arrivals and a single
wireless link. They formulated the online task placement problem as a stochastic
game and proved the existence of an equilibrium task allocation. The authors pro-
posed a stochastic learning algorithm that can compute an equilibrium of offloading
decisions in a distributed manner without any information exchange. In [CC17]
the authors considered a time-slotted communication system with multiple wire-
less links and CSMA based protocol according to which devices experience random
transmission rates over time slots. They modeled the interaction among the devices
as a noncooperative game in which each device aims at maximizing its own reward
function and proved that the game has a pure strategy Nash equilibrium. Based on
stochastic learning automata, the authors proposed a fully distributed algorithm
that devices can use for computing their equilibrium offloading decisions without
exchanging the information with each other.

Throughput Maximization
The simplest model of an edge computing system consists of a single edge cloud, a
single wireless link and multiple wireless devices that can perform their computa-
tional tasks locally or offload them to the edge cloud [Yan+13; XSM18; Zhu+18;
Zho+18; BZ18]. The authors in [Yan+13] modeled a computational task as a di-
rected acyclic graph with multiple subtasks and formulated the load scheduling
problem as an online bin packing problem. They proposed a genetic based cen-
tralized algorithm for assigning the subtasks for the execution while taking into
consideration constraints on the amount of available bandwidth. Another central-
ized solution was proposed in [XSM18], where the authors assumed that offloading
decisions of devices are known. Under this assumption, they formulated the prob-

20 Chapter 4. Task Placement and Allocation of Edge Resources

lem as offline maximization of the total system throughput under constraints on
the allowed transmission powers and acceptable interference levels. The authors
derived a closed-form expression for the optimal transmit power allocation policy.
In [Zhu+18] the authors used game theoretical tools to address the offline problem
of allocating communication resources. They first formulated the problem as a bar-
gaining game in which the objective is to optimize the assignment of transmission
powers and the allocation of wireless subchannels to wireless devices. The authors
then relaxed the original problem to consider the optimization of time-shares of the
bandwidth resources and by solving the relaxed version of the problem they pro-
posed a heuristic for solving the original problem. The proposed algorithm can be
implemented in a decentralized way, by letting devices compute their transmission
powers and the central coordinator to allocate bandwidth resources.

A few works considered offline optimization of computation offloading in edge
computing systems in which the wireless devices are equipped with energy har-
vesting capabilities [Zho+18; BZ18]. The authors in [Zho+18] considered a system
with an unmanned aerial vehicle (UAV) that transmits energy to the devices and
provides computing services. The authors formulated the problem of maximizing
the amount of computation that can be offloaded to the UAV under constraints on
the computing and battery capacities of devices, constraints on the amount of avail-
able bandwidth and constraints on the feasible UAV trajectories. They considered
partial and binary computation offloading problems in which the computational
tasks can and cannot be partitioned, respectively. In both cases, they decoupled
the problem of optimizing the trajectory of the UAV from the problem of optimiz-
ing devices’ CPU frequencies, offloading times and transmit powers. For a given
trajectory of the UAV, the authors derived closed-form expressions for the latter op-
timization problem and proposed two-stage and three-stage iterative algorithms for
solving partial and binary computation offloading problems in a centralized manner,
respectively. The authors in [BZ18] considered a system with a single access point
that can transmit the energy to the devices and it can also execute computational
tasks offloaded by the devices. The authors assumed that the wireless power trans-
mission and the task offloading are performed in the same frequency band. Under
this assumption and constraints on computing capabilities and battery capacities
of the devices, the authors formulated the offline computation rate maximization
problem. They decoupled the original problem into the task assignment problem
and the problem of optimizing the devices’ CPU frequencies, transmission powers
and bandwidth allocations. Based on a coordinate decent method they proposed a
heuristic for solving the original problem in a centralized manner.

4.2 Allocation of Computing Resources

There is a significant body of works that considered the congestion on computing
resources without taking into account the congestion on communication resources.
These works are relevant for edge computing systems with abundant bandwidth

4.2. Allocation of Computing Resources 21

Table 4.3: Classification of works that model the congestion on computing re-
sources.

Paper Design Information System Management
objective availability components architecture

T
im

e

E
ne

rg
y

T
hr
ou

gh
pu

t

O
ffl
in
e

O
nl
in
e

D
2D

E
dg

e
cl
ou

d

R
em

ot
e
cl
ou

d

C
en
tr
al
iz
ed

D
ec
en
tr
al
iz
ed

D
is
tr
ib
ut
ed

[CH18] X X X X

[Liu+18] X X X X X

[SL18] X X X X X X

[Yan+15] X X X X X

[CL17] X X X X X X

[CL19] X X X X X

[Zen+16] X X X X

[XCZ18] X X X X X

Paper A [JD19a] X X X X X

[Ge+12] X X X X

[XLL15] X X X X

[Den+16] X X X X X

[Cha+17] X X X X

[CZ17] X X X X X X

[SW18] X X X X X X

[Rah+15] X X X X X X

[WLP13] X X X X X

[Car+16] X X X X X

[XLX13] X X X X X

[Hu+19] X X X X X

resources and computationally heavy tasks that require the transmission of a small
amount of data. Majority of the works from this category considered the prob-
lem of minimizing the completion time of computational tasks [CH18; Liu+18;
SL18; Yan+15; CL17; CL19; Zen+16; XCZ18]. Minimization of the energy con-
sumption [Ge+12; XLL15; Den+16; Cha+17] and the joint minimization of the
task completion time and the energy consumption [CZ17; SW18; Rah+15; WLP13]
received considerable attention in the literature. Finally, few works from this cate-
gory addressed the problem of maximizing the system throughput [Car+16; XLX13;
Hu+19]. A summary of works is shown in Table 4.3.

Completion time minimization
Solving the completion time minimization problems in a centralized manner re-
ceived significant attention for systems with limited computing resources [CH18;
Liu+18; SL18; Yan+15; CL17; CL19; Zen+16]. The authors in [CH18] considered

22 Chapter 4. Task Placement and Allocation of Edge Resources

a system that consists of a single macro and multiple micro base stations equipped
with computing power. They formulated the offline problem of joint task assign-
ment and computing resource allocation with the objective to minimize the sum of
completion times of all devices under their energy consumption constraints. The
authors then provided a closed form solution for the optimal computing resource
allocation policy and solved a relaxed version of the task assignment problem.
In [Liu+18] the authors considered an edge computing system that consists of mul-
tiple edge clouds and a single remote cloud. They considered a set of augmented
reality users and formulated the offline problem of minimizing the overall service
latency and maximizing the total object recognition accuracy. The authors then
considered a relaxed version of the problem and proposed a centralized algorithm
according to which the network orchestrator assigns users to the clouds and decides
about the frame resolutions. In [SL18] the authors considered a system with a single
remote cloud and a finite number of computationally limited local processors that
may be located in edge clouds or peer wireless devices. They considered that the
task of each device consists of multiple subtasks, whose dependency can be modeled
as a directed acyclic graph, and they defined a cost of performing a subtask as a
linear combination of the processing time and the transmission price (if any). The
authors proposed a heuristic for solving the offline task placement problem in which
the objective is to minimize the sum of costs of devices under constraints on the
dependency among subtasks, the task completion time deadlines and constraints
on the amount of available computing resources.

The authors in [Yan+15] considered a set of tasks generated during a fixed time
period and modeled a task as a sequence of subtasks that can be either processed
locally or can be offloaded to a cloud that has a limited number of processors. The
authors formulated the average task completion time minimization problem under
constraints on the dependency among subtasks and constraints on the amount of
available computing resources. They considered a system with known and unknown
release times of the future tasks and proposed two heuristics for addressing the
corresponding offline and online versions of the problem, respectively. The authors
in [CL17] considered a system that consists of a set of clouds (edge and remote)
with known and unknown processing times, respectively. They formulated the
problem of minimizing the completion time of the last task, that is, the makespan
of a given set of computational tasks. For the case when the processing time
is unknown for only one of the clouds, the authors proposed a constant-factor
semi-online approximation algorithm for scheduling the tasks. They extended the
analysis to the case of multiple clouds with unknown processing times, and in this
case they proposed an online heuristic algorithm. In [CL19] the authors considered
a system that consists of a set of identical edge clouds and a single remote cloud
with unknown processing times. They assumed that the offloading costs are known
a priori for each task and they formulated a semi-online task scheduling problem
with the objective to minimize a weighted sum of the makespan and the offloading
cost. Similarly to their work in [CL17], the authors assumed that the task execution
can be restarted multiple times and they proposed a constant-factor approximation

4.2. Allocation of Computing Resources 23

algorithm for scheduling the tasks.
There are several works that considered online computation offloading prob-

lems in edge computing systems with Poisson task arrivals [Zen+16; XCZ18].
In [Zen+16] the authors considered the joint optimization of task allocation and
task image placement in a system that consists of a set of storage servers and a set
of computation servers. The authors formulated the problem as a mixed-integer
linear program in which the objective is to minimize the maximum average task
completion time under constraints on the system stability and the computing ca-
pacities of servers. They decoupled the original problem into task placement and
task scheduling problems and proposed a heuristic for solving the original prob-
lem. The authors in [XCZ18] considered an edge computing system that consists
of a remote cloud and multiple base stations equipped with computing resources.
They assumed that each base station offers specific computing services and decides
what portion of the requests to serve locally and what portion of the requests to
offload to the remote cloud. The authors addressed the problem of minimizing the
average long-term completion times of tasks under long-term constraints on the
storage capacity and the energy consumption and short-term constraints on the
task completion time deadlines and energy consumption. Based on the Lyapunov
optimization technique, the authors proposed an online service caching and task
offloading algorithm that iteratively optimizes the vectors of offloading and caching
decisions of each base station. The algorithm is designed for a distributed imple-
mentation that requires information exchange between neighbouring base stations.

Our work presented in Paper A [JD19a] falls into the class of works that consider
online completion time minimization problems. We addressed the task placement
problem in an edge computing system that consists of a single edge cloud and
multiple heterogeneous devices, which may process the tasks of each other. We
considered that devices use dedicated bandwidth resources to communicate with
each other and with the cloud. We modeled the task arrival process of each device as
a Poisson process and used queuing theory to capture the contention on dedicated
communication resources and to model sharing of computing resources. We denoted
by T c

i,j(pi,j) the mean time needed to complete the task generated by device i ∈ N
using the computing resources of node j ∈ N ∪ {0}, where 0 corresponds to the
edge cloud. Finally, we defined the system cost C̄(P) as the average system delay

C̄(P) =
∑

i∈N

∑

j∈N∪{0}
pi,jT c

i,j(pi,j), (4.1)

where P ∈ [0, 1]N×(N+1) is a task assignment matrix and pi,i, pi,0 and pi,j indicate
the probability that device i executes its task locally, offloads the task to the cloud,
and offloads the task to device j ∈ N \ {i}, respectively. Given the set P of all
task assignment matrices that ensure the stability of the queuing system, our task
placement problem can be formulated as the following online optimization problem

24 Chapter 4. Task Placement and Allocation of Edge Resources

min
P∈P

C̄(P) (4.2)

s.t.
∑

j∈N∪{0}
pi,j = 1,∀i ∈ N . (4.3)

Since devices in edge computing systems are expected to be autonomous [VR14],
in Paper A instead of solving (4.2) − (4.3) we defined the problem as a strategic
game, in which each device plays a mixed strategy and aims at minimizing its own
cost. We used game theoretical tools to prove the existence of an equilibrium task
allocation in static mixed strategies. We proposed a decentralized algorithm that
allocates tasks according to the computed mixed strategy profile, and thus it relies
on average system parameters only. By performing simulations, we compared the
performance of the proposed algorithm with the performance of an algorithm that
allocates tasks according to the optimal static mixed strategy (i.e., to the solution
of (4.2) − (4.3)), and with the performance of a greedy algorithm that relies on
global knowledge of the system state. We showed that the proposed algorithm
achieves good system performance close to that of the performance of the optimal
static mixed strategy and even close to the performance of a greedy algorithm.

Energy consumption minimization
One way of addressing the task placement problem with the objective of minimizing
the energy consumption is to model and analyze the interaction among multiple
devices using game theoretical tools [Ge+12; XLL15]. In [Ge+12] the authors con-
sidered a system with multiple clouds that serve multiple devices, each of them with
a single computational task to be performed. They modeled the offline task place-
ment problem as a congestion game in which each device partitions its task into a
part for offloading and a part for local computing and it also decides to which cloud
server to offload each part of its computation. The authors defined the objective
function of each wireless device as a weighted sum of the energies consumed for ex-
ecuting the two portions of its task. They proved the existence of a task placement
equilibrium and proposed a decentralized algorithm for computing an equilibrium
based on the information provided by a central coordinator. In [XLL15] the au-
thors considered a system in which the objective is to minimize the total energy
consumption of multiple wireless devices that can execute each others’ tasks in a
collaborative way. They assumed that the full knowledge about the system state
is available and formulated the offline energy minimization problem as a coalition
game. The authors then proposed a distributed coalition formation algorithm that
requires information exchange between neighbouring devices.

A couple of works considered systems with stochastic task arrivals and focused
on developing solutions to the online computation offloading problems [Den+16;
Cha+17]. In [Den+16] the authors addressed the task assignment problem in a

4.2. Allocation of Computing Resources 25

system that consists of a set of cloud servers and a set of fog devices that are located
close to the end users. The authors formulated the problem of minimizing the energy
consumption of the system while meeting the end users’ constraints on the average
task completion times. They proposed an approximate centralized solution based
on the decomposition of the original problem into three subproblems: optimization
of the amount of locally executed workload for each fog device, optimization of the
traffic rate for each device-to-cloud pair and joint optimization of the amount of
workload assigned to each cloud, the number of active processors in each cloud and
CPU frequencies of the active processors. In [Cha+17] the authors considered an
edge computing system in which devices can perform their tasks locally or they
can offload them to an edge cloud through a single wireless link. The authors
assumed Poisson task arrivals and formulated the problem of finding the optimal
transmission powers and offloading rates of the devices that aim at minimizing their
average energy consumptions under constraints on the average task completion
times. They proposed an iterative algorithm that sequentially updates local and
global decisions made by the devices and a central cloud coordinator, respectively.
The algorithm can be implemented in a decentralized way by letting devices make
their local decisions and the cloud coordinator to make global decisions while taking
into consideration devices’ preferences specified by their local decisions.

Completion time and energy consumption minimization

The common multi-objective optimization function is defined as a linear combi-
nation of the task completion time and the energy consumption [CZ17; SW18].
In [CZ17] the authors assumed that each device can execute the computation lo-
cally, offload its task to a neighbouring device or to an edge cloud. They assumed
that the edge cloud has a limited number of virtual machines, each of them capable
of hosting a single task per time. Under this assumption, the authors developed
a centralized algorithm for solving the offline task placement problem, which they
defined as the minimum weight matching problem over the three-layer graph. The
authors in [SW18] considered an edge computing system in which each device can
perform its task locally or offload it to an edge or to a remote cloud. The au-
thors modeled the offline task placement problem as a strategic game for which
they proved the existence of a pure strategy Nash equilibrium. They proposed
an algorithm that can compute an equilibrium of offloading decisions in a decen-
tralized manner and used the price of anarchy to establish a bound on the cost
approximation ratio of the proposed algorithm.

Multi-objective optimization of the computation offloading can be defined with
respect the task completion time, the energy consumption and the monetary cost
[Rah+15; WLP13]. In [Rah+15] the authors considered a system in which a set of
computing services is provided by multiple edge and remote clouds. The authors
described the mobility patterns of devices by space-time trajectories and modeled a
computational task as a space-time workflow. They presented workflows as directed

26 Chapter 4. Task Placement and Allocation of Edge Resources

acyclic graphs in which each node is associated with a certain type of computing
service. The authors defined a single device utility as the minimum of price, delay
and energy consumption needed for performing a task. Finally, they proposed a
centralized heuristic that aims at minimizing the sum of devices’ utilities through
mapping their space-time workflows with the available cloud computing services.
Different from the above works, the authors in [WLP13] used game theoretical
tools to capture the interaction between multiple wireless devices that generate
computational tasks according to a Poisson process. Each device can decide whether
to process its tasks locally or to offload them to a cloud that consists of multiple
homogeneous servers. The authors provided a two stage game-based formulation
of the problem in which the players are the devices and the cloud controller. In
the first stage of the game, each device determines the size of the task portion that
it offloads with the objective to minimize a linear combination of its average task
completion time and the corresponding energy consumption. In the second stage
of the game, the cloud controller implements the optimal task dispatching and
the resource allocation policies that maximize its profit. The authors proved the
existence of a subgame perfect equilibrium and proposed a decentralized algorithm
according to which devices make their decisions based on the information provided
by the cloud controller.

Throughput Maximization

A general model of an edge computing system consists of multiple wireless devices,
an edge cloud and a remote cloud [Car+16; XLX13]. The authors in [Car+16]
assumed that the task arrival process at each device can be modeled as a Poisson
process and that each task can be offloaded or performed locally. They modeled the
cost of a single device as the expected number of its unfinished tasks in the system
and assumed that each device aims at minimizing its own cost under energy con-
sumption constraints. The authors addressed the online task placement problem
using game theoretical tools and showed the existence of a mixed strategy equi-
librium task allocation. They developed a decentralized algorithm for computing
equilibrium offloading strategies under the assumption that the information about
the system load is provided to the devices by the cloud coordinator. In [XLX13]
the authors considered a system with stochastic task arrivals and assumed that
the tasks are either processed by an edge cloud or forwarded to a remote cloud.
They addressed the online request admission problem in a centralized way with
the objective to maximize the system throughput under constraints on computing
capabilities of the edge cloud. According to the proposed admission control algo-
rithm, the edge cloud decides which computational requests to accept and which
requests to send to the remote cloud.

Different from the above works, the authors in [Hu+19] considered offline opti-
mization of the joint task placement and computing resource allocation in a system
in which each device can either perform its task locally or offload the task to one of

4.3. Allocation of Communication and Computing Resources 27

multiple edge clouds. Assuming the underlying correlation between task execution
times under different computing architectures, the authors first proposed a low-
rank learning algorithm for estimating task execution times. Given predicted task
execution times, the authors formulated the problem of maximizing the number
of completed tasks under constraints on the limited edge cloud resources (CPU,
memory and hardware) and constraints on the maximum allowed task completion
times. They showed that the problem is NP-hard and proposed an algorithm with a
bounded approximation ratio. The authors showed that the worst case complexity
of the proposed algorithm is quadratic in the number of tasks and they discussed
its centralized and decentralized implementations.

4.3 Allocation of Communication and Computing
Resources

Most of the recent works considered edge computing systems in which multiple
wireless devices share both communication and computing resources when offload-
ing their tasks. These works provide general models of sharing edge computing
resources and thus the results obtained in these works can be easily extended to
simpler models in which only one type of the resources is shared. Minimization of
the task completion time [Yan+17; Gao+19; Ren+19; Zha+18; Guo+19; EDF17]
and minimization of the energy consumption [You+16; TL17; Bar+16; SSB15;
AlS+17; ZF19] received significant attention in the literature. Majority of the
works from this category considered the joint minimization of the task completion
time and the energy consumption [Yan+19; Pha+19b; TP18; Lyu+16; Zha+17;
CLD18; Du+18; EL19]. Finally, the problem of maximizing the system throughput
received considerable attention [Tär+17; Yan+18; LOD18; Lyu+17; Aya+19]. A
summary of works is shown in Table 4.4.

Completion time minimization
There is a significant body of works that proposed centralized solutions to the
offline [Yan+17; Gao+19; Ren+19] and the online [Zha+18; Guo+19; EDF17]
completion time minimization problems, respectively. In [Yan+17] the authors ex-
tended the model from [Yan+15] to consider not only the allocation of computing,
but also the allocation of communication resources and by following the approach
proposed in [Yan+15] they provided a heuristic for the task placement problem.
The authors in [Gao+19] considered an edge computing system that consists of
multiple edge clouds. They formulated the joint offline network selection and ser-
vice placement optimization problem with the objective to minimize the long-term
average task completion times under constraints on the available communication
and computing resources. The authors decomposed the problem into a sequence
of one-shot problems, for which they provided the NP-hardness proof. They pro-
posed an iteration-based algorithm for solving the sequence of one-shot problems

28 Chapter 4. Task Placement and Allocation of Edge Resources

Table 4.4: Classification of works that model the congestion on communication and
computing resources.

Paper Design Information System Management
objective availability components architecture

T
im

e

E
ne

rg
y

T
hr
ou

gh
pu

t

O
ffl
in
e

O
nl
in
e

D
2D

E
dg

e
cl
ou

d

R
em

ot
e
cl
ou

d

C
en
tr
al
iz
ed

D
ec
en
tr
al
iz
ed

D
is
tr
ib
ut
ed

[Yan+17] X X X X

[Gao+19] X X X X

[Ren+19] X X X X X

[Zha+18] X X X X

[Guo+19] X X X X X

[EDF17] X X X X X X X

Paper D [JD19b] X X X X

Paper E [JD20b] X X X X

[You+16] X X X X

[TL17] X X X X X

[Bar+16] X X X X X X

[SSB15] X X X X

[AlS+17] X X X X

[ZF19] X X X X

[Yan+19] X X X X X

[Pha+19b] X X X X X

[TP18] X X X X X

[Lyu+16] X X X X X

[Zha+17] X X X X X

[CLD18] X X X X X X

[Du+18] X X X X X X

[EL19] X X X X X X

Paper B [JD19c] X X X X X

Paper C [JD20a] X X X X X

[Tär+17] X X X X

[Yan+18] X X X X X

[LOD18] X X X X X X

[Lyu+17] X X X X

[Aya+19] X X X X

and they proved that the proposed algorithm has a bounded competitive ratio. The
authors in [Ren+19] considered a system in which the communication resources are
shared according to TDMA protocol. They assumed that the task of each device
can be split into two parts that can be executed in an edge and a remote cloud,
respectively. The authors formulated the problem of minimizing the completion
time of all tasks under constraints on the overall communication and computing

4.3. Allocation of Communication and Computing Resources 29

resources. They then decomposed the original problem into the problem of allocat-
ing communication resources and the joint computing resource allocation and task
splitting problem. The authors provided closed form solutions for the decomposed
problems and proposed a resource allocation algorithm that can be implemented in
a centralized manner.

The authors in [Zha+18] considered a single edge cloud computing system with
limited communication, computing and storage resources. They assumed that the
computational tasks can be executed locally or can be offloaded to the edge cloud;
in order to execute a task, the edge cloud needs the task specific content (e.g.,
program code) that can be either stored locally in the edge cloud or requested from
the Internet through the backhaul link. The authors modeled the popularity of
the requested contents as a Zipf distribution and formulated the joint computation
offloading, content caching, and resource allocation problem. Based on the gen-
eralized benders decomposition, they proposed an iterative polynomial complexity
algorithm for solving the problem. The authors in [Guo+19] considered a three-tier
edge computing system that consists of an edge cloud with a single server and a
remote cloud with abundant computing resources. They considered the problem of
joint optimization of the task placement and the allocation of uplink and downlink
communication resources. The authors transformed the original problem into a
piecewise convex problem and proposed an algorithm that minimizes the average
completion times of the tasks. The authors in [EDF17] considered a system that
consists of multiple sensors capturing periodically a sequence of frames that can be
divided into multiple slices intended for offloading to the multiple processing nodes.
The authors proved that the considered multi-sensor completion time minimization
problem is NP-hard and they proposed centralized, decentralized and distributed
solutions to the problem. The proposed centralized solution has a bounded ap-
proximation ratio and it allows a central entity to decide how the frames should be
sliced and where the slices should be assigned for processing. According to the pro-
posed decentralized solution, a central coordinator periodically optimizes the frame
slicing and the slice placement decisions and the sensors are allowed to update only
the frame slicing decisions. Finally, according to the proposed fully distributed
solution, each sensor uses its local information to decide how to slice its own frames
and where to process the slices.

Our work presented in Paper D [JD19b] and Paper E [JD20b] falls into the class
of works that consider offline completion time minimization problems. In Paper D
we considered an edge computing system that consists of a set of access points, a
set of edge clouds and multiple wireless devices that can either perform their tasks
locally or offload them to an edge cloud through a single access point. In Paper E
we considered the same edge computing infrastructure under network slicing.

We used A, |A| = A to denote the set of access points, C, |C| = C to denote the
set of edge clouds, and S, |S| = S to denote the set of slices. In both papers we
considered the joint task placement and resource allocation problem, which can be
formulated as the following mixed-integer program

30 Chapter 4. Task Placement and Allocation of Edge Resources

min
X,Y,PX,PY

∑

s∈S

∑

i∈N

(
yi,i,sT

l
i +

∑

a∈A

∑

c∈C
xi,a,syi,c,sT

c
i,a(X,Y,PX,PY)

)
(4.4)

s.t.
∑

s∈S

(
yi,i,s +

∑

a∈A

∑

c∈C
xi,a,syi,c,s

)
= 1,∀i ∈ N , (4.5)

X ∈ {0, 1}N×A×S , (4.6)
Y ∈ {0, 1}N×(C+1)×S , (4.7)
PX : X→ RN×A×S

[0,1] , (4.8)

PY : Y→ RN×(C+1)×S
[0,1] , (4.9)

where the constraint (4.5) enforces that each device either performs the computa-
tion locally or it offloads the task through an access point to an edge cloud in a
single slice, constraints (4.6) and (4.7) specify that the task placement decisions
are integer variables, and constraints (4.8) and (4.9) describe policies for allocating
communication and computing resources, respectively.

In both papers we considered that communication and computing resources
are managed by a single network operator that decides about resource allocation
policies. In Paper D we considered that the selfish devices make their own offloading
decisions based on the information provided by the network operator that has a
function of a central coordinator. Hence, in Paper D instead of solving (4.4)-(4.9)
we used game theoretical tools to model and analyze the interaction between the
network operator and the devices in the case of a single slice. We formulated the
problem as a Stackelberg game in which the devices are leaders and the network
operator is a follower and proved that the game has a subgame perfect equilibrium.
We provided closed form solutions for the resource allocation policies, proposed a
decentralized algorithm for computing the offloading decisions of the devices and
proved that the algorithm has a bounded approximation ratio. In Paper E, we
extended the model to consider a system with multiple slices and proved that the
problem (4.4)-(4.9) is NP-hard. We provided closed form solutions for the inter-slice
and intra-slice resource allocation policies and proposed an efficient approximation
algorithm for solving the problem. The proposed algorithm can be implemented
in a centralized manner in accordance with the proposed implementation of the
network slicing technology [Ord+17; Red+19].

Energy consumption minimization
A large body of works addressed offline minimization of the energy consumption
in a variety of edge computing infrastructures [You+16; TL17; Bar+16; SSB15;
AlS+17; ZF19]. The authors in [You+16] considered a system that consists of
an edge cloud that can be accessed through a single base station. They assumed
that each task can be partitioned into a part for the local execution and a part

4.3. Allocation of Communication and Computing Resources 31

for offloading and they formulated two joint task partitioning and resource alloca-
tion problems for TDMA and OFDMA protocols, respectively. The authors first
addressed the problems under the assumption that the system performance is in-
dependent of the congestion on edge computing resources. Under this assumption,
they provided an optimal and a heuristic solution for minimizing the sum of energy
consumptions of devices in the case of TDMA and OFDMA protocols, respectively.
The authors then extended the model to consider the congestion on computing
resources as well, and in the case of TDMA protocol they proposed a heuristic
algorithm. In all cases, the proposed algorithms are designed for a centralized im-
plementation. The authors in [TL17] considered an edge computing system in which
each device can perform the computation locally or can offload it to an edge cloud
or to a neighbouring device. They formulated the joint computation offloading and
resource allocation problem under constraints on the latency and the amount of
available communication and computing resources. Based on the successive convex
approximation method, the authors proposed a centralized algorithm that finds a
local optimal solution to the original problem by iteratively solving the sequence
of approximated convex subproblems. In [Bar+16] the authors considered an IoT-
cloud system that consists of multiple computing nodes that can be end users’
devices, access points or edge clouds, possibly distributed across different hierarchi-
cal layers. They modeled the entire system as a directed graph and formulated the
problem of minimizing the energy consumption of the system under constraints on
the shared communication and computing resources and constraints on the latency,
the reliability and the battery life time of the devices. The authors used linear pro-
gramming to develop a centralized solution for splitting service flows over multiple
paths.

Several works considered that devices cannot perform their tasks locally and
that each device is associated with exactly one among multiple base stations [SSB15;
AlS+17; ZF19]. In [SSB15; AlS+17] the authors considered that base stations are
connected to the common edge cloud and they formulated the problem of optimizing
the transmit powers of devices under delay constraints. They proposed an iterative
algorithm for finding locally optimal allocations of communication and computing
resources. The algorithm can be implemented in a decentralized manner and it
requires limited signaling between base stations and the cloud. In [AlS+17] the
authors extended the model from [SSB15] to consider not only the transmissions
between devices and base stations, but also the transmissions between base stations
and the cloud and they used the same approach as in [SSB15] to solve the extended
version of the problem. The authors in [ZF19] considered that each base station is
equipped with computing resources and assumed that each device is associated to
the base station with the best signal-to-noise ratio. They formulated the problem of
minimizing the sum of transmission powers of all devices under constraints on the
minimum data rate requirements of devices and constraints on the available com-
munication and computing resources. Based on the decomposition of the original
problem, the authors proposed an iterative algorithm for computing optimal vec-
tors of transmission powers and shares of communication and computing resources.

32 Chapter 4. Task Placement and Allocation of Edge Resources

The algorithm can be implemented in a distributed way and it requires limited
information exchange between the base stations.

Completion time and energy consumption minimization
Many works that considered offline optimization of computation offloading defined
the optimization objective as a linear combination of two functions that are de-
fined with respect to the task completion time and the energy consumption, re-
spectively [Yan+19; Pha+19b; TP18; Lyu+16; Zha+17; CLD18; Du+18]. The
authors in [Yan+19] considered a system in which the devices use a non-orthogonal
multiple access technique for offloading their tasks to a single edge cloud. They
formulated the problem of minimizing the sum of costs of all devices under con-
straints on task completion times, transmission powers, offloading data rates and
available computing resources. The authors proposed a heuristic for computing
shares of communication and computing resources and transmission powers of the
devices and for partitioning the tasks into parts for offloading and parts for local
executions. Next, they simplified the model to consider the completion time min-
imization problem only and showed that in this case the optimal solution can be
obtained. The proposed algorithms are designed for a centralized implementation.
The authors in [Pha+19b] considered a system that consists of a small base station
that is connected to an edge cloud through a backhaul link. The authors assumed
the communication model according to which a fraction of the total bandwidth
is allocated for communication between the base station and the edge cloud and
the rest of the bandwidth is shared among the offloading devices. The authors
formulated the problem of minimizing the sum of costs of all devices and they
decomposed the original problem into the task placement and the joint backhaul
bandwidth and computing resource allocation problem. They developed a heuristic
that solves these two problems iteratively in a centralized manner. The authors
in [TP18] considered a system that consists of multiple base stations equipped with
computing resources and they assumed that the devices are interested in maxi-
mizing their offloading benefits defined with respect to the local computing costs.
They formulated the problem of maximizing the weighted sum of offloading bene-
fits of devices under constraints on the maximum allowed transmission powers and
constraints on the computing capabilities of the edge clouds. They decomposed
the problem into the task offloading and the resource allocation problems and pro-
posed a polynomial time heuristic for solving the original problem in a centralized
manner. The authors in [Lyu+16] considered a system with a single edge cloud
to which the devices can offload their tasks through a single shared wireless link.
They proposed a heuristic that computes offloading decisions of devices, the allo-
cation of computing resources and the uplink transmission powers. The algorithm
is designed to minimize the sum of costs of all devices under constraints on the
available communication and computing resources and it can be implemented in a
decentralized manner. In [Zha+17] the authors assumed that there is a finite num-
ber of orthogonal subcarriers that the devices can use for communication with a

4.3. Allocation of Communication and Computing Resources 33

single edge cloud. The authors provided a game theoretical treatment of the prob-
lem according to which devices decide about their own offloading decisions and an
edge cloud coordinator computes the policies for assigning transmission powers and
allocating computing resources with the objective to minimize the total cost of all
offloading devices. The proposed algorithm can be implemented in a decentralized
manner and it relies on information exchange between the devices and the edge
cloud coordinator.

Several works proposed centralized solutions to the offline computation offload-
ing problems in three-tier edge computing systems in which the devices can perform
their tasks locally or offload them to an edge or to a remote cloud [CLD18; Du+18;
EL19]. The authors in [CLD18] formulated the problem of minimizing the sum of
costs of devices under constraints on the available communication and computing
resources. Based on the relaxation of the original problem, they proposed a heuris-
tic for computing the offloading decisions of devices and allocating communication
and computing resources. In [Du+18] the authors formulated the problem of mini-
mizing the maximum cost among all devices under constraints on the task execution
times, the available bandwidth and computing resources, and on the allowed trans-
mission powers. By using semidefinite relaxation, fractional programming theory
and Lagrangian dual decomposition, the authors designed a centralized heuristic
for computing the task placement, the assignment of transmission powers and the
allocation of communication and computing resources. The authors in [EL19] con-
sidered the same cost model as in the above works, but unlike these works they
addressed the online task placement and resource allocation problem in a system
in which the exact task complexities are unknown. Based on the relaxation of
the problem, the authors proposed a centralized heuristic for computing offloading
decisions of the wireless devices, shares of communication resources and rates at
which the tasks should be executed locally and in the edge cloud.

Our work presented in Paper B [JD19c] and Paper C [JD20a] falls into the class
of works that consider offline completion time and energy consumption minimiza-
tion problems. We considered an edge computing system that consists of a set of
access points, one edge cloud and multiple wireless devices that compete for both
communication and computing resources. In Paper B we considered the task place-
ment problem in which the tasks can be performed locally or they can be offloaded
to the edge cloud through one of multiple access points. In Paper C we integrated
the task placement problem into the scheduling problem by allowing devices not
only to choose where to perform their tasks, but also in which time slot.

In both papers we defined the local execution cost Cl
i and the offloading cost

Ce
i,a of device i ∈ N as a linear combination of the task completion time and the

energy consumption of the device, respectively

local execution: Cl
i = γT

i T
l
i + γE

i E
l
i,

offloading: Cc
i,a = γT

i T
c
i,a + γE

i Ei,a.

34 Chapter 4. Task Placement and Allocation of Edge Resources

We used A, |A| = A to denote the set of access points and T , |T | = T to denote
the set of time slots. Using this notation, the considered task placement problem
can be defined as the following 0− 1 integer program

min
X,Y

∑

t∈T

∑

i∈N

(
yi,i,tC

l
i +

∑

a∈A
(1− yi,i,t)xi,a,tC

c,t
i,a(X,Y)

)
(4.10)

s.t.
∑

t∈T

(
yi,i,t +

∑

a∈A
(1− yi,i,t)xi,a,t

)
= 1,∀i ∈ N , (4.11)

X ∈ {0, 1}N×A×T , (4.12)
Y ∈ {0, 1}N×2×T , (4.13)

where the constraint (4.11) enforces that each device either performs the compu-
tation locally or it offloads the task through an access point in one of the time
slots, and constraints (4.12) and (4.13) specify that the task placement decisions
are integer variables.

In both papers we considered selfish devices that make their own offloading
decisions and aim at minimizing their own costs. Therefore, instead of solving
(4.10)-(4.13) we used game theoretical tools to analyze the task placement prob-
lem in the case of a single time slot (Paper B), and in the case of multiple time
slots (Paper C). We defined the task placement problems as player-specific network
congestion games, for which the existence of equilibria is not known in general.
We proved the existence of equilibrium task assignments, and based on our con-
structive proofs we provided decentralized algorithms with bounded approximation
ratios that can compute equilibrium assignments of tasks in polynomial time. By
providing constructive equilibrium existence proofs and by characterizing the struc-
ture of an equilibrium task assignment, our work presented in Paper B and Paper
C is also important from a game theoretical perspective.

Throughput Maximization
The throughput maximization problem has been addressed as an offline [Tär+17;
Yan+18] and an online computation offloading problem [LOD18; Lyu+17; Aya+19].
The authors in [Tär+17] modeled an edge computing system as a tree graph, where
the vertices are computing nodes and the edges are network links, each with lim-
ited amount of resources. They addressed the task placement problem from the
perspective of an infrastructure provider that aims at minimizing its operational
cost, which is defined as a function of the system throughput. The authors for-
mulated the offline computation offloading problem and discussed two methods for
solving the problem periodically in a centralized manner. The first method is an
exhaustive search algorithm that is impractical due to its exponential complexity,
and the second method is a tractable iterative search algorithm that computes a
locally optimal task placement assignment. The authors in [Yan+18] considered
a three-tier edge computing system in which the devices can perform their tasks

4.3. Allocation of Communication and Computing Resources 35

locally or can offload them to one of multiple edge clouds or to a remote cloud.
They considered a slotted time model and assumed regular mobility patterns for
multiple mobile devices. Assuming that a set of future devices is known and that
each computational task can be modeled as a directed acyclic graph with multi-
ple subtasks, the authors addressed offline maximization of the system throughput
under constraints on the limited communication and time-shared edge computing
resources. Based on Lagrange relaxation method, the authors proposed a poly-
nomial time centralized heuristic for assigning subtasks and allocating bandwidth
resources in a centralized manner.

The authors in [LOD18] considered a similar three-tier edge computing system
and formulated the problem of maximizing the number of tasks that are processed
by edge servers under constraints on limited bandwidth and edge computing re-
sources. Based on the deep-learning approach, they proposed offline and online
centralized task placement algorithms for which they provided approximation ra-
tios. The authors in [Lyu+17] considered a system that consists of multiple time-
shared wireless channels, a single edge cloud and multiple battery powered IoT
devices equipped with energy harvesting capabilities. They assumed a time-slotted
system and modeled the task arrivals, the energy harvesting and the per-slot avail-
ability of edge computing resources as three independent stochastic processes. The
authors provided asymptotic analysis of proportionally fair scheduling of compu-
tational tasks and used Lyapunov optimization techniques to design an algorithm
for maximizing the total amount of admitted data of all devices. They proposed a
decentralized implementation of the algorithm that requires information exchange
between the devices and the edge cloud. In [Aya+19] the authors proposed a
framework according to which the radio and computing resources are managed in
a decentralized way by multiple low-level schedulers over a short-time scale and by
the main resource manager over a larger time scale. The objective of the main re-
source manager is to maximize the system throughput and to minimize the overall
latency and the operational costs in the system. The authors modeled the resource
management problem as a contextual bandit problem and used reinforcement learn-
ing technique to design a resource manager that learns the behaviour of low-level
schedulers and manages them accordingly.

Chapter 5
Summary of Original Work

Paper A: Decentralized Algorithm for Randomized Task Alloca-
tion in Fog Computing Systems

Slađana Jošilo and György Dán
IEEE/ACM Transactions on Networking (ToN), vol. 27, no. 1, pp. 85-97, 2019.

Summary: In this paper we consider an edge computing system where multi-
ple devices may offload their computational tasks to each other or to an edge cloud
with the objective to improve their performance. We consider that devices are in-
terested in minimizing the completion time of their own tasks, and we formulate the
problem as a strategic game where each device plays a mixed strategy. We use vari-
ational inequality theory to prove the existence of an equilibrium task allocation in
static mixed strategies, which we use to design an efficient algorithm for allocating
the computational tasks in a decentralized way. The algorithm is based on average
system parameters only, and thus it requires low signaling overhead. We perform
simulations to evaluate the proposed algorithm, and we show that it achieves good
system performance close to that of the greedy algorithm, which requires the full
information about the system state, and close to that of an algorithm that allocates
the tasks based on the socially optimal static mixed strategy.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The author of this thesis proved
the analytical results concerning the existence of static mixed strategy equilibrium,
and carried out the simulations. The analysis of the resulting data was carried out
in collaboration with the second author of the paper. The paper was written in
collaboration with the second author.

37

38 Chapter 5. Summary of Original Work

Paper B: Selfish Decentralized Computation Offloading for Mo-
bile Cloud Computing in Dense Wireless Networks

Slađana Jošilo and György Dán
IEEE Transactions on Mobile Computing (TMC), vol.18, no. 1, pp. 207-220, 2019.
A shorter version of the paper appeared in Proc. of IEEE INFOCOM 2017.

Summary: In this paper we consider an edge computing system that consists
of multiple access points, an edge cloud and multiple wireless devices that can either
perform the computation locally or offload the computation to the edge cloud. We
consider that each wireless device is selfish, and thus that it aims at minimizing its
own cost, which we define as a linear combination of the time it takes to complete
the computation and the corresponding energy consumption. In order to analyze
interactions among wireless devices, we formulate the problem as a player-specific
congestion game in which devices compete for communication and computing re-
sources when offloading their tasks. We prove that a pure Nash equilibrium of
the game exists, and we provide a polynomial complexity decentralized algorithm
for computing it. We establish a bound on the price of anarchy of the game, and
thus we show that the proposed algorithm has a bounded approximation ratio.
We use extensive simulations to provide insight into the cost performance and the
computational complexity of the proposed algorithm. We show that the proposed
algorithm achieves the cost performance close to that of the optimal solution, and
that the convergence time of the algorithm scales approximately linearly with the
number of wireless devices.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The author of this thesis proved
the analytical results for the case of both elastic and non-elastic cloud models. The
implementation of the simulations was carried out by the author of this thesis,
and analysis of the resulting data was carried out in collaboration with the second
author of the paper. The paper was written in collaboration with the second author.

39

Paper C: Computation Offloading Scheduling for Periodic Tasks
in Mobile Edge Computing

Slađana Jošilo and György Dán
IEEE/ACM Transactions on Networking (ToN), vol. 28, no. 2, pp. 667-680, 2020.
A shorter version of the paper appeared in Proc. of IFIP Networking 2018.

Summary: In this paper we consider periodic computation offloading prob-
lem in an edge computing system that serves multiple wireless devices. Each device
can choose in which of multiple time slots to perform the computation, and within
the time slot it can choose to perform its task locally or to offload the task to
an edge cloud via one of multiple access points. The objective of each device is
to minimize a linear combination of the time it takes to complete the computa-
tion and the corresponding energy consumption. We formulate the problem as a
player-specific congestion game, and we prove the existence of pure strategy Nash
equilibria. Based on the constructive equilibrium existence proof, we develop an ef-
ficient decentralized algorithm for computing an equilibrium of offloading decisions.
We characterize the structure of computed equilibria, and by providing an upper
bound on the price of anarchy of the game we establish an asymptotically tight
bound on the approximation ratio of the proposed algorithm. Our numerical re-
sults show that the proposed algorithm can be used to compute an equilibrium task
placement at polynomial computational complexity despite combinatorial nature of
the problem. Finally, the results show that the algorithm computes equilibria with
significant performance gain compared to the task placement that is uncoordinated
over time.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The second author proved the
analytical results concerning the case of a single time slot, and the author of this
thesis proved the analytical results concerning the case of multiple time slots. The
implementation of the simulations and the analysis of the resulting data were car-
ried out by the author of this thesis. The paper was written in collaboration with
the second author.

40 Chapter 5. Summary of Original Work

Paper D: Joint Management of Wireless and Computing Re-
sources for Computation Offloading in Mobile Edge Clouds

Slađana Jošilo and György Dán
IEEE Transactions on Cloud Computing (TCC), pp. 1-14, 2019.
A shorter version of the paper appeared in Proc. of IEEE INFOCOM 2019.

Summary: In this paper we consider an edge computing system that consists
of multiple access points and multiple edge clouds. Each device can choose to per-
form its task locally or to offload the task to one of multiple edge clouds via one of
multiple access points with the objective to minimize the computational time of its
own task. We formulate the problem as a Stackelberg game in which the devices
as leaders make their own offloading decisions and the network operator as a fol-
lower manages communication and computing resources. We prove the existence
of a subgame perfect equilibria of the game and we provide a closed form solu-
tion for the optimal cost minimization resource allocation policies of the operator.
We consider the interactions between devices under the optimal cost minimization
and the time fair allocation policies, and we show that they can be modeled as
a weighted congestion game with resource specific weights and a player-specific
congestion game, respectively. We provide decentralized algorithms for computing
equilibrium offloading decisions of the devices in both games, and by establishing
the upper bounds on the price of anarchy of the games we prove that the proposed
algorithms have bounded approximation ratios. Our numerical results show that
the cost minimization policy can achieve significantly lower completion times com-
pared to that of the time fair allocation policy, and that the convergence times of
the proposed task assignment algorithms are approximately linear in the number
of devices.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The author of this thesis proved
the analytical results concerning the optimal cost minimization and the time fair
resource allocation policies, and the results concerning the existence of the task
placement equilibria. The implementation of the simulations and the analysis of
the resulting data were carried out by the author of this thesis. The paper was
written in collaboration with the second author.

41

Paper E: Joint Wireless and Edge Computing Resource Manage-
ment with Dynamic Network Slice Selection

Slađana Jošilo and György Dán
submitted to IEEE/ACM Transactions on Networking (ToN).

Summary: In this paper we consider an edge computing system under net-
work slicing. The system consists of multiple edge clouds, multiple access points
and a network operator that manages communication and computing resources
within and across slices, and assigns the tasks generated by multiple wireless de-
vices. Each task can be either performed locally or assigned to exactly one slice, one
access point and one edge cloud in the case of offloading. We formulate the problem
as a mixed-integer program in which the objective is to minimize completion times
of the tasks, and we prove that the problem is NP-hard. We provide closed form
solutions for the optimal policies for managing resources within and across slices,
and based on a game theoretic treatment of the problem we propose an efficient
task placement algorithm with a bounded approximation ratio. Our numerical re-
sults show that the proposed policies for sharing resources within and across slices
can improve the system performance compared to no slicing and compared to equal
slicing and that the convergence time of the proposed task assignment algorithm is
approximately linear in the number of devices.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The author of this thesis proved
the analytical results concerning the NP-hardness of the problem, optimal resource
allocation policies, and the task placement algorithm. The implementation of the
simulations and the analysis of the resulting data were carried out by the author
of this thesis. The paper was written in collaboration with the second author.

42 Chapter 5. Summary of Original Work

Publications not included in the thesis

1. Slađana Jošilo and György Dán. “Wireless and Computing Resource Alloca-
tion for Selfish Computation Offloading in Edge Computing”. In: Proc. of
IEEE INFOCOM. 2019, pp. 2467–2475

2. Slađana Jošilo and György Dán. “Joint allocation of computing and wireless
resources to autonomous devices in mobile edge computing”. In: Proc. of
MECOMM SIGCOMM. 2018, pp. 13–18

3. Slađana Jošilo and György Dán. “Decentralized scheduling for offloading of
periodic tasks in mobile edge computing”. In: Proc. of IFIP Networking.
2018, pp. 1–9

4. Slađana Jošilo and György Dán. “A game theoretic analysis of selfish mobile
computation offloading”. In: Proc. of IEEE INFOCOM. 2017, pp. 1–9

5. Slađana Jošilo, Valentino Pacifici, and György Dán. “Distributed Algorithms
for Content Placement in Hierarchical Cache Networks”. In: Elsevier Com-
put. Netw. 125 (2017), pp. 160–171

6. Valentino Pacifici, Slađana Jošilo, and György Dán. “Distributed algorithms
for content caching in mobile backhaul networks”. In: Proc. of ITC. 2016,
pp. 313–321

7. Slađana Jošilo et al. “Multicarrier waveforms with I/Q staggering: uniform
and nonuniform FBMC formats”. In: Springer EURASIP J ADV SIG PR
184.1 (2014), p. 167

8. Slađana Jošilo et al. “Widely linear filtering based kindred co - channel inter-
ference suppression in FBMC waveforms”. In: Proc. of IEEE ISWCS. 2014,
pp. 776–780

9. Slađana Jošilo and et al. “Non - uniform FBMC-a pragmatic approach”. In:
Proc. of IEEE ISWCS. 2013, pp. 1–5

Chapter 6
Conclusion and Future Work

In this thesis, we considered task placement and resource allocation problems in
edge computing systems. We analyzed the problems from the perspective of the end
users and from the perspective of the network operator. By using game theoretical
tools, we designed efficient and scalable algorithms for managing the resources and
for allocating the computational tasks in various edge computing infrastructures.

In the first part of this thesis, we considered a distributed edge computing
system in which wireless devices can offload their tasks to an edge cloud and to
each other. We modeled the transmission and the execution of computational
tasks using queuing theory, and provided a game theoretical formulation of the
task placement problem. We used variational inequality theory to address the
question whether the devices can compute an efficient equilibrium task placement
in static mixed strategies in a decentralized manner. We showed that an efficient
decentralized solution can be developed, under the assumption that every device
knows only the average statistics on task arrival intensities, transmission rates, and
task parameters.

In the second part of the thesis, we considered an edge computing system
in which wireless devices can offload their computational tasks to an edge cloud
through one of multiple wireless links. We formulated the task placement problem
as a strategic game and we investigated whether there is an efficient decentralized
algorithm for computing a pure Nash equilibrium of the game. Furthermore, we ex-
tended our model to consider offloading of periodic tasks in the case of homogeneous
task periodicities. We addressed the question whether a pure Nash equilibrium ex-
ists if devices can choose not only where to perform their tasks, but also in which
time slot. In both cases, we showed that efficient decentralized task placement
algorithms can be developed using game theoretic tools.

In the third part of the thesis, we considered an edge computing system in which
wireless devices can offload their tasks to one of multiple edge clouds through one
of multiple wireless links. We formulated the joint task placement and resource
allocation problem as a Stackelberg game played by devices that decide about the

43

44 Chapter 6. Conclusion and Future Work

offloading strategies and by the network operator that decides about the resource
allocation policies. We addressed two questions concerning the resource allocation
policies and the task offloading strategies, respectively. First, we addressed the
question whether the optimal completion time minimization policy for allocating
communication and computing resources exists. Second, we addressed the question
whether an equilibrium task placement exists under the completion time minimiza-
tion and the time fair resource allocation policies, respectively. We then extended
our model to consider the same edge computing system under network slicing, and
addressed the question whether the results still hold in the case of multiple network
slices. In both cases, we showed that the optimal completion time minimization
policy can be expressed in closed form, and that an equilibrium task placement
exists in all considered cases.

There are many open questions concerning the task placement and the resource
allocation problems in edge computing systems. The first interesting question is
whether efficient decentralized task placement algorithms exist in a system in which
devices do not have the information about the resource allocation policies imple-
mented by the network operator. The second interesting question is whether the
network operator can allocate resources efficiently in the case of a system model
which would allow for less signaling between the devices and the cloud/mobile net-
work (e.g., in a system where the actual number of users and the characteristics
of their devices and computational tasks are unknown to the network operator).
The third interesting question is whether our results from the second part of the
thesis can be extended to the case of heterogeneous tasks periodicities. Finally, the
fourth interesting question is whether the proposed solutions can be extended to
non-atomic models of computational tasks.

Bibliography

[AGH16] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. “Mobile cloud
computing for computation offloading: Issues and challenges”. In: Ap-
plied Computing & Informatics (2016).

[All15] NGMN Alliance. “5G White Paper”. In: White Paper (2015).
[AlS+17] Ali Al-Shuwaili et al. “Joint uplink/downlink optimization for backhaul-

limited mobile cloud computing with user scheduling”. In: IEEE T
SIGNAL INF PR 3.4 (2017), pp. 787–802.

[Aya+19] Jose A Ayala-Romero et al. “vrAIn: A Deep Learning Approach Tailor-
ing Computing and Radio Resources in Virtualized RANs”. In: Proc.
of ACM MobiCom. 2019, pp. 1–16.

[Ba09] Niranjan Balasubramanian and et al. “Energy consumption in mobile
phones: a measurement study and implications for network applica-
tions”. In: Proc. of ACM SIGCOMM. 2009, pp. 280–293.

[Ban+19] Albert Banchs et al. “A 5G Mobile Network Architecture to Support
Vertical Industries”. In: IEEE Commun. Mag. 57.12 (2019), pp. 38–44.

[Bar+16] Marc Barcelo et al. “IoT-cloud service optimization in next generation
smart environments”. In: IEEE JSAC 34.12 (2016), pp. 4077–4090.

[BD14] Nik Bessis and Ciprian Dobre. “Big data and internet of things: a
roadmap for smart environments”. In: Springer. Vol. 546. 2014.

[Bia+09] Alessandro Biagioni et al. “Adaptive subcarrier allocation schemes for
wireless OFDMA systems in WiMAX networks”. In: IEEE JSAC 27.2
(2009), pp. 217–225.

[Bia00] Giuseppe Bianchi. “Performance analysis of the IEEE 802.11 distributed
coordination function”. In: IEEE JSAC 18.3 (2000), pp. 535–547.

[Bon+12] Flavio Bonomi et al. “Fog computing and its role in the internet of
things”. In: Proc. of ACM, MCC Workshop. 2012, pp. 13–16.

45

46 Bibliography

[Bon+14] Flavio Bonomi et al. “Fog computing: A platform for internet of things
and analytics”. In: Springer. 2014, pp. 169–186.

[BZ18] Suzhi Bi and Ying Jun Zhang. “Computation rate maximization for
wireless powered mobile-edge computing with binary computation of-
floading”. In: IEEE TWC 17.6 (2018), pp. 4177–4190.

[Car+16] Valeria Cardellini et al. “A game-theoretic approach to computation
offloading in mobile cloud computing”. In: Springer MATH PRO-
GRAM 157.2 (2016), pp. 421–449.

[CC17] Huijin Cao and Jun Cai. “Distributed multiuser computation offload-
ing for cloudlet-based mobile cloud computing: A game-theoretic ma-
chine learning approach”. In: IEEE TVT 67.1 (2017), pp. 752–764.

[CH18] Min Chen and Yixue Hao. “Task offloading for mobile edge computing
in software defined ultra-dense network”. In: IEEE JSAC 36.3 (2018),
pp. 587–597.

[Cha+17] Zheng Chang et al. “Energy efficient optimization for computation
offloading in fog computing system”. In: Proc. of IEEE GLOBECOM.
2017, pp. 1–6.

[Che+16] Xu Chen et al. “Efficient multi-user computation offloading for mobile-
edge cloud computing”. In: IEEE/ACM ToN 24.5 (2016), pp. 2795–
2808.

[Che15] Xu Chen. “Decentralized computation offloading game for mobile cloud
computing”. In: IEEE TPDS 26.4 (2015), pp. 974–983.

[Chu+11] Byung-Gon Chun et al. “Clonecloud: elastic execution between mobile
device and cloud”. In: Proc. of ACM EuroSys. 2011, pp. 301–314.

[Cis17] Cisco. “Visual Networking Index: Global Mobile Data Traffic Forecast
Update”. In: Tech.rep (2017).

[Cis20] Cisco. “Cisco Annual Internet Report (2018–2023)”. In: White Paper
(2020).

[CL17] Jaya Prakash Champati and Ben Liang. “Single restart with time
stamps for computational offloading in a semi-online setting”. In: Proc.
of IEEE INFOCOM. 2017, pp. 1–9.

[CL19] Jaya Prakash Varma Champati and Ben Liang. “Delay and cost opti-
mization in computational offloading systems with unknown task pro-
cessing times”. In: IEEE TCC (2019).

[CLD18] Meng-Hsi Chen, Ben Liang, and Min Dong. “Multi-user multi-task
offloading and resource allocation in mobile cloud systems”. In: IEEE
TWC 17.10 (2018), pp. 6790–6805.

[Cue+10] Eduardo Cuervo et al. “MAUI: Making Smartphones Last Longer with
Code Offload”. In: Proc. of ACM MobiSys. 2010, pp. 49–62.

Bibliography 47

[CZ16] Mung Chiang and Tao Zhang. “Fog and IoT: An overview of research
opportunities”. In: IEEE IoT 3.6 (2016), pp. 854–864.

[CZ17] Xu Chen and Junshan Zhang. “When D2D meets cloud: Hybrid mobile
task offloadings in fog computing”. In: Proc. of IEEE ICC. 2017, pp. 1–
6.

[De16] Debashis De. Mobile cloud computing: architectures, algorithms and
applications. CRC Press, 2016.

[Den+16] Ruilong Deng et al. “Optimal workload allocation in fog-cloud com-
puting toward balanced delay and power consumption”. In: IEEE IoT
3.6 (2016), pp. 1171–1181.

[Du+18] Jianbo Du et al. “Computation offloading and resource allocation in
mixed fog/cloud computing systems with min-max fairness guaran-
tee”. In: IEEE TCOM 66.4 (2018), pp. 1594–1608.

[EDF17] Emil Eriksson, György Dán, and Viktoria Fodor. “Coordinating Dis-
tributed Algorithms for Feature Extraction Offloading in Multi-Camera
Visual Sensor Networks”. In: IEEE TCSVT (2017).

[EL19] Nima Eshraghi and Ben Liang. “Joint Offloading Decision and Re-
source Allocation with Uncertain Task Computing Requirement”. In:
Proc. of IEEE INFOCOM. 2019, pp. 1414–1422.

[ETS] The European Telecommunications Standards Institute (ETSI).Multi-
access Edge Computing. http : / / www . etsi . org / technologies -
clusters/technologies/multi-access-edge-computing.

[Fry17] Danny Frydman. “Mobile Edge Computing (MEC); Bandwidth Man-
agement API”. In: ETSI White Paper v. 1.1.1 (2017).

[Gao+19] Bin Gao et al. “Winning at the starting line: Joint network selection
and service placement for mobile edge computing”. In: Proc. of IEEE
INFOCOM. 2019, pp. 1459–1467.

[Ge+12] Yang Ge et al. “A game theoretic resource allocation for overall en-
ergy minimization in mobile cloud computing system”. In: Proc. of
ACM/IEEE ISLPED. 2012, pp. 279–284.

[Giu+18] Fabio Giust et al. “MEC deployments in 4G and evolution towards
5G”. In: ETSI White Paper 24 (2018), pp. 1–24.

[Gro17] Synergy Research Group. “The Leading Cloud Providers Continue to
Run Away with the Market”. In: Tech.rep (2017).

[Guo+16] Songtao Guo et al. “Energy-efficient dynamic offloading and resource
scheduling in mobile cloud computing”. In: Proc. of IEEE INFOCOM.
2016, pp. 1–9.

[Guo+19] Kai Guo et al. “Joint Computation Offloading and Bandwidth Assign-
ment in Cloud-Assisted Edge Computing”. In: IEEE TCC (2019).

48 Bibliography

[He+10] Qiming He et al. “Case study for running HPC applications in public
clouds”. In: Proc. of ACM HPDC. 2010, pp. 395–401.

[Heu+03] Martin Heusse et al. “Performance anomaly of 802.11 b”. In: Proc. of
IEEE INFOCOM. 2003, pp. 836–843.

[Hu+15] Yun Chao Hu et al. “Mobile edge computing—A key technology to-
wards 5G”. In: ETSI White Paper 11.11 (2015), pp. 1–16.

[Hu+19] Miao Hu et al. “Learning driven computation offloading for asym-
metrically informed edge computing”. In: IEEE TPDS 30.8 (2019),
pp. 1802–1815.

[Hua+18] Liang Huang et al. “Distributed deep learning-based offloading for mo-
bile edge computing networks”. In: Springer MOBILE NETW APPL
(2018), pp. 1–8.

[HWN12] D. Huang, P. Wang, and D. Niyato. “A Dynamic Offloading Algorithm
for Mobile Computing”. In: IEEE TWC 11.6 (2012), pp. 1991–1995.

[Ios+11] Alexandru Iosup et al. “Performance analysis of cloud computing ser-
vices for many-tasks scientific computing”. In: IEEE TPDS 22.6 (2011),
pp. 931–945.

[Ja13] Slađana Jošilo and et al. “Non - uniform FBMC-a pragmatic ap-
proach”. In: Proc. of IEEE ISWCS. 2013, pp. 1–5.

[Jac+10] Keith R Jackson et al. “Performance analysis of high performance
computing applications on the amazon web services cloud”. In: Proc.
of IEEE CloudCom. 2010, pp. 159–168.

[Jan+17] Insun Jang et al. “A Proxy-Based Collaboration System to Minimize
Content Download Time and Energy Consumption”. In: IEEE TMC
16.8 (2017), pp. 2105–2117.

[JD17] Slađana Jošilo and György Dán. “A game theoretic analysis of selfish
mobile computation offloading”. In: Proc. of IEEE INFOCOM. 2017,
pp. 1–9.

[JD18a] Slađana Jošilo and György Dán. “Decentralized scheduling for offload-
ing of periodic tasks in mobile edge computing”. In: Proc. of IFIP
Networking. 2018, pp. 1–9.

[JD18b] Slađana Jošilo and György Dán. “Joint allocation of computing and
wireless resources to autonomous devices in mobile edge computing”.
In: Proc. of MECOMM SIGCOMM. 2018, pp. 13–18.

[JD19a] Slađana Jošilo and György Dán. “Decentralized algorithm for random-
ized task allocation in fog computing systems”. In: IEEE/ACM ToN
27.1 (2019), pp. 85–97.

[JD19b] Slađana Jošilo and György Dán. “Joint Management of Wireless and
Computing Resources for Computation Offloading in Mobile Edge
Clouds”. In: IEEE TCC (2019), pp. 1–14.

Bibliography 49

[JD19c] Slađana Jošilo and György Dán. “Selfish decentralized computation
offloading for mobile cloud computing in dense wireless networks”. In:
IEEE TMC 18.1 (2019), pp. 207–220.

[JD19d] Slađana Jošilo and György Dán. “Wireless and Computing Resource
Allocation for Selfish Computation Offloading in Edge Computing”.
In: Proc. of IEEE INFOCOM. 2019, pp. 2467–2475.

[JD20a] Slađana Jošilo and György Dán. “Computation Offloading Scheduling
for Periodic Tasks in Mobile Edge Computing”. In: IEEE/ACM ToN
28.2 (2020), pp. 667–680.

[JD20b] Slađana Jošilo and György Dán. “Joint Wireless and Edge Computing
Resource Management with Dynamic Network Slice Selection”. In:
submitted to IEEE ToN (2020).

[Jos+08] Tarun Joshi et al. “Airtime fairness for IEEE 802.11 multirate net-
works”. In: IEEE TMC 7.4 (2008), pp. 513–527.

[Još+14a] Slađana Jošilo et al. “Multicarrier waveforms with I/Q staggering:
uniform and nonuniform FBMC formats”. In: Springer EURASIP J
ADV SIG PR 184.1 (2014), p. 167.

[Još+14b] Slađana Jošilo et al. “Widely linear filtering based kindred co - chan-
nel interference suppression in FBMC waveforms”. In: Proc. of IEEE
ISWCS. 2014, pp. 776–780.

[JPD17] Slađana Jošilo, Valentino Pacifici, and György Dán. “Distributed Al-
gorithms for Content Placement in Hierarchical Cache Networks”. In:
Elsevier Comput. Netw. 125 (2017), pp. 160–171.

[Kek+18] Sami Kekki et al. “MEC in 5G networks”. In: ETSI White Paper 28
(2018), pp. 1–28.

[KL10a] K. Kumar and Y. H. Lu. “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?” In: IEEE Computer Mag. 43.4
(2010), pp. 51–56.

[KL10b] Karthik Kumar and Yung-Hsiang Lu. “Cloud computing for mobile
users: Can offloading computation save energy?” In: IEEE Computer
43.4 (2010), pp. 51–56.

[Kum+13] Karthik Kumar et al. “A survey of computation offloading for mobile
systems”. In: Springer MOBILE NETW APPL 18.1 (2013), pp. 129–
140.

[LBH09] Tong Li, Dan Baumberger, and Scott Hahn. “Efficient and scalable
multiprocessor fair scheduling using distributed weighted round-robin”.
In: ACM Sigplan Notices 44.4 (2009), pp. 65–74.

[Liu+18] Qiang Liu et al. “An edge network orchestrator for mobile augmented
reality”. In: Proc. of IEEE INFOCOM. 2018, pp. 756–764.

50 Bibliography

[LOD18] He Li, Kaoru Ota, and Mianxiong Dong. “Learning IoT in edge: Deep
learning for the Internet of Things with edge computing”. In: IEEE
Netw. 32.1 (2018), pp. 96–101.

[Loe11] Bill Loeffler. “Cloud computing: what is infrastructure as a service”.
In: TechNet Magazine 10 (2011).

[LS01] Jacob R Lorch and Alan Jay Smith. “Improving dynamic voltage scal-
ing algorithms with PACE”. In: Proc. of ACM SIGMETRICS PER.
Vol. 29. 1. 2001, pp. 50–61.

[Lyu+16] Xinchen Lyu et al. “Multiuser joint task offloading and resource opti-
mization in proximate clouds”. In: IEEE TVT 66.4 (2016), pp. 3435–
3447.

[Lyu+17] Xinchen Lyu et al. “Optimal schedule of mobile edge computing for
Internet of Things using partial information”. In: IEEE JSAC 35.11
(2017), pp. 2606–2615.

[LZL11] Erwu Liu, Qinqing Zhang, and Kin K Leung. “Asymptotic analysis
of proportionally fair scheduling in Rayleigh fading”. In: IEEE TWC
10.6 (2011), pp. 1764–1775.

[Mao+17] Yuyi Mao et al. “A survey on mobile edge computing: The communi-
cation perspective”. In: IEEE Commun. Surv. 19.4 (2017), pp. 2322–
2358.

[Mar09] Eugene E Marinelli. “Hyrax: cloud computing on mobile devices using
MapReduce”. In: Tech.rep (2009).

[Mav17] Dimitris Mavrakis. “The Evolution of Network Slicing”. In: ABI Re-
search (2017).

[Mes+17] Erfan Meskar et al. “Energy Aware Offloading for Competing Users
on a Shared Communication Channel”. In: IEEE TMC 16.1 (2017),
pp. 87–96.

[MN10] A. P. Miettinen and J. K. Nurminen. “Energy efficiency of mobile
clients in cloud computing”. In: Proc. of USENIX HotCloud. 2010,
pp. 4–4.

[Mti+13] Abderrahmen Mtibaa et al. “Towards resource sharing in mobile device
clouds: Power balancing across mobile devices”. In: ACM SIGCOMM
COMP COM. 2013, pp. 51–56.

[Net+18] José Leal D Neto et al. “ULOOF: a user level online offloading frame-
work for mobile edge computing”. In: IEEE TMC 17.11 (2018), pp. 2660–
2674.

[OEY11] Stephan Olariu, Mohamed Eltoweissy, and Mohamed F Younis. “To-
wards autonomous vehicular clouds.” In: EAI Endorsed Trans. Mobile
Communications Applications 1.1 (2011).

Bibliography 51

[Ord+17] Jose Ordonez-Lucena et al. “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges”. In: IEEE Commun. Mag.
55.5 (2017), pp. 80–87.

[Ost+09] Simon Ostermann et al. “A performance analysis of EC2 cloud com-
puting services for scientific computing”. In: Proc. of Springer Cloud
Computing. 2009, pp. 115–131.

[Pha+19a] Quoc-Viet Pham et al. “Mobile edge computing with wireless back-
haul: Joint task offloading and resource allocation”. In: IEEE Access
7 (2019), pp. 16444–16459.

[Pha+19b] Quoc-Viet Pham et al. “Mobile edge computing with wireless back-
haul: Joint task offloading and resource allocation”. In: IEEE Access
7 (2019), pp. 16444–16459.

[PJD16] Valentino Pacifici, Slađana Jošilo, and György Dán. “Distributed al-
gorithms for content caching in mobile backhaul networks”. In: Proc.
of ITC. 2016, pp. 313–321.

[Rah+15] M Reza Rahimi et al. “On optimal and fair service allocation in mobile
cloud computing”. In: IEEE TCC 6.3 (2015), pp. 815–828.

[Red+19] Simone Redana et al. “5G PPP Architecture Working Group: View on
5G Architecture”. In: 5G PPP White Paper (2019).

[Ren+19] Jinke Ren et al. “Collaborative cloud and edge computing for latency
minimization”. In: IEEE TVT 68.5 (2019), pp. 5031–5044.

[Rez+18] Alex Reznik et al. “MEC in an enterprise setting: A solution outline”.
In: ETSI White Paper (2018), pp. 1–20.

[RVM16] Bhaskar Prasad Rimal, Dung Pham Van, and Martin Maier. “Mobile-
edge computing vs. centralized cloud computing in fiber-wireless access
networks”. In: Proc. of IEEE INFOCOM Workshop. 2016, pp. 991–996.

[Ryu+19] June-Woo Ryu et al. “Multi-Access Edge Computing Empowered Het-
erogeneous Networks: A Novel Architecture and Potential Works”. In:
Symmetry 11.7 (2019), p. 842.

[Sab+19a] Dario Sabella et al. “Developing software for multi-access edge com-
puting”. In: ETSI White Paper 20 (2019).

[Sab+19b] Dario Sabella et al. “Edge Computing: from standard to actual in-
frastructure deployment and software development”. In: ETSI White
Paper (2019).

[Sat+09] Mahadev Satyanarayanan et al. “The case for vm-based cloudlets in
mobile computing”. In: IEEE PERVAS COMPUT 8.4 (2009).

[Sat15] Mahadev Satyanarayanan. “A brief history of cloud offload: A per-
sonal journey from odyssey through cyber foraging to cloudlets”. In:
ACM GetMobile: Mobile Computing and Communications 18.4 (2015),
pp. 19–23.

52 Bibliography

[Shi+12a] Cong Shi et al. “Computing in cirrus clouds: the challenge of intermit-
tent connectivity”. In: Proc. of ACM, MCC Workshop. 2012, pp. 23–
28.

[Shi+12b] Cong Shi et al. “Serendipity: enabling remote computing among in-
termittently connected mobile devices”. In: Proc. of ACM MobiHoc.
2012, pp. 145–154.

[Sid+15] Uzma Siddique et al. “Wireless backhauling of 5G small cells: Chal-
lenges and solution approaches”. In: IEEE Wirel. Commun. 22.5 (2015),
pp. 22–31.

[Sio+18] Dimitris Siomos et al. “5GWireless Backhaul/X-Haul”. In: ETSI White
Paper v. 1.1.1 (2018).

[SL18] Sowndarya Sundar and Ben Liang. “Offloading dependent tasks with
communication delay and deadline constraint”. In: Proc. of IEEE IN-
FOCOM. 2018, pp. 37–45.

[SLS03] Keng Siau, Ee-Peng Lim, and Zixing Shen. “Mobile commerce: Current
states and future trends”. In: Advances in mobile commerce technolo-
gies. IGI Global, 2003, pp. 1–17.

[SMG02] Cem U Saraydar, Narayan B Mandayam, and David J Goodman. “Ef-
ficient power control via pricing in wireless data networks”. In: IEEE
T COMMUN 50.2 (2002), pp. 291–303.

[SSB15] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa. “Joint
optimization of radio and computational resources for multicell mobile-
edge computing”. In: IEEE T SIGNAL INF PR 1.2 (2015), pp. 89–
103.

[SW18] Hamed Shah-Mansouri and Vincent WSWong. “Hierarchical fog-cloud
computing for IoT systems: A computation offloading game”. In: IEEE
IoT 5.4 (2018), pp. 3246–3257.

[Tär+17] William Tärneberg et al. “Dynamic application placement in the mo-
bile cloud network”. In: Elsevier FUTURE GENER COMP SY 70
(2017), pp. 163–177.

[TL17] Nguyen Ti Ti and Long Bao Le. “Computation offloading leveraging
computing resources from edge cloud and mobile peers”. In: Proc. of
IEEE ICC. 2017, pp. 1–6.

[TP18] Tuyen X Tran and Dario Pompili. “Joint task offloading and resource
allocation for multi-server mobile-edge computing networks”. In: IEEE
TVT 68.1 (2018), pp. 856–868.

[VR14] Luis M Vaquero and Luis Rodero-Merino. “Finding your way in the
fog: Towards a comprehensive definition of fog computing”. In: ACM
SIGCOMM COMP COM 44.5 (2014), pp. 27–32.

Bibliography 53

[Wan+17] Shuo Wang et al. “A survey on mobile edge networks: Convergence of
computing, caching and communications”. In: IEEE Access 5 (2017),
pp. 6757–6779.

[WLP13] Yanzhi Wang, Xue Lin, and Massoud Pedram. “A nested two stage
game-based optimization framework in mobile cloud computing sys-
tem”. In: Proc. of IEEE SOSE. 2013, pp. 494–502.

[WZL12] Y. Wen, W. Zhang, and H. Luo. “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones”.
In: Proc. of IEEE INFOCOM. 2012, pp. 2716–2720.

[XCZ18] Jie Xu, Lixing Chen, and Pan Zhou. “Joint service caching and task
offloading for mobile edge computing in dense networks”. In: Proc. of
IEEE INFOCOM. 2018, pp. 207–215.

[XHS19] Jiuyun Xu, Zhuangyuan Hao, and Xiaoting Sun. “Optimal Offload-
ing Decision Strategies and Their Influence Analysis of Mobile Edge
Computing”. In: Sensors 19.14 (2019), p. 3231.

[XLL15] Liyao Xiang, Baochun Li, and Bo Li. “Coalition Formation Towards
Energy-Efficient Collaborative Mobile Computing”. In: Proc. of IEEE
ICCCN. 2015, pp. 1–8.

[XLX13] Qiufen Xia, Weifa Liang, and Wenzheng Xu. “Throughput maximiza-
tion for online request admissions in mobile cloudlets”. In: Proc. of
IEEE LCN. 2013, pp. 589–596.

[XSC03] Mingbo Xiao, Ness B Shroff, and Edwin KP Chong. “A utility-based
power-control scheme in wireless cellular systems”. In: IEEE/ACM
ToN 11.2 (2003), pp. 210–221.

[XSM18] Jianbin Xue, Hua Shao, and Qing Ma. “Resource Allocation for System
Throughput Maximization Based on Mobile Edge Computing”. In:
Proc. of ACM EEET. 2018, pp. 177–181.

[Yan+13] Lei Yang et al. “A framework for partitioning and execution of data
stream applications in mobile cloud computing”. In: ACM SIGMET-
RICS PER 40.4 (2013), pp. 23–32.

[Yan+15] Lei Yang et al. “Multi-user computation partitioning for latency sen-
sitive mobile cloud applications”. In: IEEE TC 64.8 (2015), pp. 2253–
2266.

[Yan+17] Lei Yang et al. “Joint Computation Partitioning and Resource Allo-
cation for Latency Sensitive Applications in Mobile Edge Clouds”. In:
Proc. of IEEE Cloud Computing. 2017, pp. 246–253.

[Yan+18] Lei Yang et al. “Network aware mobile edge computation partitioning
in multi-user environments”. In: IEEE T SERV COMPUT (2018).

54 Bibliography

[Yan+19] Zhaohui Yang et al. “Efficient Resource Allocation for Mobile-Edge
Computing Networks with NOMA: Completion Time and Energy Min-
imization”. In: IEEE TCOM 67.11 (2019), pp. 7771–7784.

[YN06] Wanghong Yuan and Klara Nahrstedt. “Energy-efficient CPU schedul-
ing for multimedia applications”. In: Proc. of ACM TOCS 24.3 (2006),
pp. 292–331.

[You+16] Changsheng You et al. “Energy-efficient resource allocation for mobile-
edge computation offloading”. In: IEEE TWC 16.3 (2016), pp. 1397–
1411.

[Zen+16] Deze Zeng et al. “Joint optimization of task scheduling and image
placement in fog computing supported software-defined embedded sys-
tem”. In: IEEE TC 65.12 (2016), pp. 3702–3712.

[ZF19] Ming Zeng and Viktoria Fodor. “Dynamic Spectrum Sharing for Load
Balancing in Multi-Cell Mobile Edge Computing”. In: IEEE WCL
(2019).

[Zha+16] Ke Zhang et al. “Energy-efficient offloading for mobile edge computing
in 5G heterogeneous networks”. In: IEEE Access 4 (2016), pp. 5896–
5907.

[Zha+17] Jing Zhang et al. “Joint offloading and resource allocation optimization
for mobile edge computing”. In: Proc. of IEEE GLOBECOM. 2017,
pp. 1–6.

[Zha+18] Jiao Zhang et al. “Joint resource allocation for latency-sensitive ser-
vices over mobile edge computing networks with caching”. In: IEEE
IoT 6.3 (2018), pp. 4283–4294.

[Zhe+18] Jianchao Zheng et al. “Dynamic computation offloading for mobile
cloud computing: A stochastic game-theoretic approach”. In: IEEE
TMC 18.4 (2018), pp. 771–786.

[Zho+18] Fuhui Zhou et al. “Computation rate maximization in UAV-enabled
wireless-powered mobile-edge computing systems”. In: IEEE JSAC
36.9 (2018), pp. 1927–1941.

[Zhu+18] Zhengfa Zhu et al. “Fair resource allocation for system throughput
maximization in mobile edge computing”. In: IEEE Access 6 (2018),
pp. 5332–5340.

Paper A
Decentralized Algorithm for

Randomized Task Allocation in Fog
Computing Systems

Slađana Jošilo and György Dán
IEEE/ACM Transactions on Networking (ToN), vol. 27, no. 1, pp.

85-97, 2019.

55

Decentralized Algorithm for Randomized Task
Allocation in Fog Computing Systems

Slađana Jošilo and György Dán
School of Electrical Engineering and Computer Science

KTH, Royal Institute of Technology, Stockholm, Sweden
E-mail: {josilo, gyuri}@kth.se ∗

Abstract
Fog computing is identified as a key enabler for using various emerging

applications by battery powered and computationally constrained devices. In
this paper, we consider devices that aim at improving their performance by
choosing to offload their computational tasks to nearby devices or to an edge
cloud. We develop a game theoretical model of the problem, and we use vari-
ational inequality theory to compute an equilibrium task allocation in static
mixed strategies. Based on the computed equilibrium strategy, we develop a
decentralized algorithm for allocating the computational tasks among nearby
devices and the edge cloud. We use extensive simulations to provide insight
into the performance of the proposed algorithm, and we compare its perfor-
mance with the performance of a myopic best response algorithm that requires
global knowledge of the system state. Despite the fact that the proposed al-
gorithm relies on average system parameters only, our results show that it
provides good system performance close to that of the myopic best response
algorithm.

Index terms— computation offloading, fog computing, game theory, task place-
ment, decentralized resource management

1 Introduction
Fog computing is widely recognized as a key component of 5G networks and an
enabler of the Internet of Things (IoT) [1,2]. The concept of fog computing extends
the traditional centralized cloud computing architecture by allowing devices not
only to use computing and storage resources of centralized clouds, but also resources
distributed across the network including the resources of each other and resources
located at the network edge [3].
∗The work was partly funded by the Swedish Research Council through project 621-2014-6.

57

58

Traditional centralized cloud computing allows devices to offload the computa-
tion to a cloud infrastructure with significant computational power [4], [5,6]. Cloud
offloading may indeed accelerate the execution of applications, but it may suffer
from high communication delays, on the one hand due to the contention of devices
for radio spectrum, on the other hand due to the remoteness of the cloud infras-
tructure. Thus, traditional centralized cloud computing may not be able to meet
the delay requirements of emerging IoT applications [7, 8], [9, 10].

Fog computing addresses this problem by allowing collaborative computation of-
floading among nearby devices and distributed cloud resources close to the network
edge [11]. The benefits of collaborative computation offloading are twofold. First,
collaboration among devices can make use of device-to-device (D2D) communica-
tion, and thereby it can improve spectral efficiency and free up radio resources for
other purposes [12–14]. Second, the proximity of devices to each other can enable
low communication delays. Thus, fog computing allows to explore the tradeoff be-
tween traditional centralized cloud offloading, which ensures low computing time,
but may suffer from high communication delay, and collaborative computation of-
floading, which ensures low communication delay, but may involve higher computing
times.

One of the main challenges facing the design of fog computing systems is how
to manage fog resources efficiently. Compared to traditional centralized cloud com-
puting, where a device only needs to decide whether to offload the computation of
a task, in the case of fog computing the number of offloading choices increases with
the number of devices. Furthermore, today’s devices are heterogeneous in terms of
computational capabilities, in terms of what tasks they have to execute and how
often. At the same time, some devices may be autonomous, and hence they would
be interested in minimizing their own perceived completion times. Therefore, devel-
oping low complexity algorithms for efficient task allocation among nearby devices
is an inherently challenging problem.

In this paper we address this problem by considering a fog computing system,
where devices can choose either to perform their computation locally, to offload the
computation to a nearby device, or to offload the computation to an edge cloud.
We provide a game theoretical model of the completion time minimization problem.
We show that an equilibrium task allocation in static mixed strategies always exists,
i.e., if devices can choose at random whether to offload, and where to offload. Based
on the game theoretical model we propose a decentralized algorithm that relies on
average system parameters, and allocates the tasks according to a Nash equilibrium
in static mixed strategies. We use the algorithm to address the important ques-
tion whether efficient task allocation is feasible using an algorithm that requires
low signaling overhead, and we compare the performance achieved by the proposed
algorithm with the performance of a myopic best response algorithm that requires
global knowledge of the system state. Our results show that the proposed decentral-
ized algorithm, despite significantly lower signaling overhead, provides good system
performance close to that of the myopic best response algorithm.

59

The rest of the paper is organized as follows. We present the system model in
Section 2. We present two algorithms in Sections 3 and 4. In Section 5 we present
numerical results and in Section 6 we review related work. Section 7 concludes the
paper.

2 System Model and Problem Formulation
We consider a fog computing system that consists of a set N={1,2, ...,N} of devices,
and an edge cloud. Device i∈N generates a sequence (ti,1, ti,2, . . .) of computational
tasks. We consider that the size Di,k (e.g., in bytes) of task ti,k of device i can be
modeled by a random variable Di, and the number of CPU cycles Li,k required to
perform the task by a random variable Li. According to results reported in [15–17]
the number Xi of CPU cycles per data bit can be approximated by a Gamma
distribution, and thus we can model the relation between Li and Di as Li =DiXi.
Furthermore, assuming that the first moment Xi and the second moment 2Xi of
Xi can be estimated based on the past, the statistics of the number of CPU cycles
required to perform the task of device i can be easily obtained. Similar to other
works [18–20], we assume that the task arrival process of device i can be modeled
by a Poisson process with arrival intensity λi.

For each task ti,k device i can decide whether to perform the task locally, to
offload it to a device j ∈ N \ {i} or to an edge cloud. Thus, device i chooses a
member of the set N ∪ {0}, where 0 corresponds to the edge cloud. We allow
for randomized policies, and we denote by pi,j(k) the probability that device i
assigns its task ti,k to j ∈ N ∪{0}, and we define the probability vector pi(k) =
{pi,0(k),pi,1(k), ...,pi,N (k)}, where ∑j∈N∪{0} pi,j(k) = 1. Finally, we denote by P
the set of probability distributions over N ∪{0}, i.e., pi(k) ∈ P.

The above fog computing system relies on the assumption that all devices faith-
fully execute the tasks offloaded to them. To ensure this, the devices need to be
incentivized to collaborate in executing each others’ computational tasks, as dis-
cussed in [21]. The collaboration among devices in fog computing systems can be
ensured with an adequate incentive scheme similar to those used in peer-to-peer
systems [22–24]. These schemes ensure the collaboration among the peers through
the reputation-based trust supporting mechanism. In the context of fog computing
systems, the mechanism would result in an incentive scheme in which only devices
that process offloaded tasks themselves are entitled to offload the tasks.

2.1 Communication model
We consider that the devices communicate using an orthogonal frequency division
multiple access (OFDMA) framework in which there is an assignment of subcarriers
to pairs of communicating nodes [25,26]. Furthermore, we consider that devices use
dedicated bandwidth resources, i.e. node-to-node pairs do not share the bandwidth

60

D4

D5

D1

D2
D3

D6

Figure 1: Fog computing system that consists of 6 devices and an edge cloud.

with each other and with the other cellular users [25]. This can be implemented
by assigning an orthogonal subcarrier per transmission direction for each pair of
communicating nodes, resulting in N×N subcarriers in total. We denote the trans-
mission rate from device i to device j by Ri,j , and the transmission rate from device
i to the edge cloud through a base station by Ri,0. Each device maintains N trans-
mission queues, i.e., N − 1 queues for transmitting to devices j ∈ N \ {i} and one
for transmitting to the edge cloud, and the tasks are transmitted in FIFO order.

We consider that the time T ti,j(k) needed to transmit a task ti,k from device i
to j ∈N ∪{0} is proportional to its size Di,k, and is given by

T ti,j(k) =Di,k/Ri,j .

Furthermore, the time T di,j(k) needed to deliver the input data Di,k from device i
to j ∈N ∪{0} is the sum of the transmission time T ti,j(k) and of the waiting time
(if any).

Similar to other works [27, 28], [29, 30], we consider that the time needed to
transmit the results of the computation back to the device is negligible. This as-
sumption is justified for many applications including face and object recognition,
and anomaly detection, where the size of the result of the computation is much
smaller than the size of the input data.

Observe that our system model can accommodate systems in which certain de-
vices i ∈N only serve for performing the computational tasks of others, by setting
the arrival intensity λi = 0. These devices can be considered as micro-data centers
located at the network edge, whose function in fog computing systems is to per-
form the computational tasks of the other devices [31,32]. Furthermore, our system
model can accommodate systems in which certain devices j ∈N are not supposed
to perform the computational tasks of others, by setting the transmission rates Ri,j
from the other devices i ∈N \{j} to device j to low enough values.

Figure 1 illustrates a fog computing system that consists of six devices and one
edge cloud; device 1 and device 2 offload their tasks through a base station to the
cloud server, device 4 offloads its tasks to device 2, device 5 offloads its task to

61

Figure 2: Fog computing system modeled as a queuing network.

device 3 that serves as a micro-data center, and device 6 performs computation
locally.

2.2 Computation model
To model the time that is needed to compute a task in a device i, we consider that
each device i maintains one execution queue with tasks served in FIFO order. We
denote by Fi the computational capability of device i. Unlike devices, the cloud
server has a large number of processors with computational capability F0 each, and
we assume that computing in the edge cloud begins immediately upon arrival of a
task.

Similar to common practice [21,27] we consider that the time T ci,j(k) needed to
compute a task ti,k, on j ∈ N ∪{0} is proportional to its complexity Li,k, and is
given by

T ci,j(k) = Li,k/Fj .

Furthermore, the execution time T ei,j(k) of a task ti,k on device j is the sum of the
computation time T ci,j(k) and of the waiting time (if any). Figure 2 illustrates the
queuing model of a computation offloading system.

62

2.3 Problem formulation
We define the cost Ci of device i as the mean completion time of its tasks. Given
a sequence (ti,1, ti,2, . . .) of computational tasks, we can thus express the cost Ci as

Ci = lim
K→∞

1
K

[K∑

k=1

(
pi,i(k)T ei,i(k) (1)

+
∑

j∈N\{i}∪{0}
pi,j(k)

(
T di,j(k) +T ei,j(k)

))]
.

Since the devices are autonomous, we consider that each device aims at minimizing
its cost by solving

minCi s.t. (2)
pi(k) ∈ P. (3)

Since devices’ decisions affect each other, the devices play a dynamic non-cooperative
game, and we refer to the game as the multi user computation offloading game
(MCOG). The game is closest to an undiscounted stochastic game with countably
infinite state space, but the system state evolves according to a semi-Markov chain
(instead of a Markov chain, depending on the distribution of Di and Li) and payoffs
(the completion times) are unbounded. We are not aware of existence results for
Markov equilibria for this class of problem, and even for the case when the state
evolves according to a Markov chain with countable state space and unbounded
payoffs, there are only a few results on the existence of equilibria in Markov strate-
gies [33–35].

2.4 Decentralized solution supported by a centralized entity
Since fog computing architecture is decentralized in nature, and devices in fog com-
puting systems are expected to be autonomous [11, 36] we are interested in de-
veloping decentralized algorithms that will allow devices to make their offloading
decisions locally. Motivated by widely considered hierarchical fog computing archi-
tectures [37,38], we consider that there is a single central entity with a high level of
hierarchy that collects and stores the information about the fog computing system.
The entity need not be a single physical entity, but a single logically centralized
entity that can handle high loads and can be resilient to failure.

Furthermore, we consider that the entity periodically sends the needed infor-
mation to the devices and thus supports them in making their offloading decisions.
Intuitively, more information about the system state will allow devices to make bet-
ter offloading decisions, but at the cost of increased signaling overhead. Therefore,
one important objective when developing decentralized algorithms for allocating
the computational tasks is to achieve good system performance at the cost of an

63

pi(k) = MyopicBestResponse(ti,k)
1: pi,j(k) = 0, ∀j ∈N ∪{0}
2: /* Estimate completion time of ti,k in ∀j∈N∪{0} */
3: for j = 0, . . . ,N do
4: if j = i then
5: ECompleteT (j) = T ei,j(k)
6: else
7: ECompleteT (j) = T di,j(k) +T ei,j(k)
8: end if
9: end for

10: /* Make a greedy decision */
11: i′← argmin

{j∈N∪{0}
ECompleteT (j)

12: pi,i′(k) = 1
13: return pi(k)

Figure 3: Pseudo code of myopic best response.

acceptable signaling overhead. With this in mind, in what follows we propose and
discuss two decentralized solutions for the MCOG problem in the form of a Markov
strategy and in static mixed strategies, respectively.

3 Myopic best response
The first algorithm we consider, called Myopic Best Response (MBR), requires
global knowledge of the system state, but decisions are made locally at the devices.
Similar to the WaterFilling algorithm proposed in [39], in the MBR algorithm every
device i makes a decision based on a myopic best response strategy, i.e., every device
i chooses a node j ∈N ∪{0} that minimizes the completion time of its task ti,k, given
the instantaneous state of the queuing network. The pseudo-code for computing
the myopic best response strategy is shown in Figure 3. Note that since the devices
make their decisions based on the instantaneous states of the queues, they do not
take into account the tasks that may arrive to the other devices’ execution queues
while transmitting a task. Futhermore, if the devices’ execution queues were stable
if all devices perform all tasks locally, then under the MBR algorithm the queue
lengths do not grow unbounded since each device chooses the destination node based
on the instantaneous state of the queues.

Note that if we define the system state upon the arrival of task ti,k as the number
of jobs in the transmission and execution queues, then the devices’ decisions depend
on the instantaneous system state only, and hence the myopic best response is a
Markov strategy for the MCOG. Nonetheless, it is not necessarily a Markov perfect

64

(0,1,1)

(1,1,0)

(1,0,1) (1,1,1)

(1,0,0)

(0,1,0)(0,0,0)

(0,0,1)

p11λ1 μ1
E

(0,2,0)

(1,2,0)

#
o
f

ta
s
k
s
 i
n
 t

h
e

 l
o
c
a
l
e
x
e
.
q
u
e
u

e

the cloud

#of tasks in the
trans. queue

#of ta
sks in

p11λ1

p11λ1 p11λ1μ1
E μ1

E

μ1,0
E

μ1,0
E

μ1,0
E

μ1,0
E

μ1,0
E μ1,0

E

μ1,0
E μ1,0

E
μ1,0

E

μ1,0
E

μ1
E

μ1
E μ1

E

(1-p11)λ1(1-p11)λ1 (1-p11)λ1

(1-p11)λ1 (1-p11)λ1 (1-p11)λ1p11λ1 p11λ1

μ1,0
T μ1,0

T

μ1,0
T

μ1,0
T

μ1,0
T

μ1,0
T

Figure 4: State transition diagram of the semi-Markov process induced by the
offloading decisions for the single device case (N = 1).

equilibrium.
In a system with N devices we have N ×N transmission queues and N +1 exe-

cution queues, and we can thus model the system as an N×(N+1)+1 dimensional
semi-Markov process.

Example 1. Figure 4 shows the state transition diagram for a single device, i.e.,
N = 1, which is three dimensional. We use the triplet (nl,nt,n0) to denote the sys-
tem state, where nl, nt and n0 stand for the number of tasks in the local execution
queue, number of tasks in the transmission queue and the number of tasks in the
cloud server, respectively. Since N = 1, a device only needs to decide whether to
offload the computation to the edge cloud or to perform the computation locally and
hence the transition intensities from state (nl,nt,n0) to state (nl,nt + 1,n0) and
from state (nl,nt,n0) to state (nl + 1,nt,n0) are (1− p1,1)λ1 and p1,1λ1, respec-
tively. In the case of computation offloading, the task with size D1 and complexity
L1 needs to be transmitted to the edge cloud at rate R1,0 and executed with com-
putational capability F0 and thus the transition intensities from state (nl,nt,n0)
to state (nl,nt − 1,n0 + 1) and from state (nl,nt,n0) to state (nl,nt,n0 − 1) are
µT1,0 =D1/R1,0 and µE1,0 = n0L1/F0, respectively. Finally, in the case of local exe-
cution the task with complexity L1 needs to be executed locally with local computa-
tional capability F1 and hence the transition intensity from state (nl,nt,n0) to state
(nl−1,nt,n0) is µE1 = L1/F1.

A significant detriment of the MBR algorithm is its signaling overhead, as it
requires global information about the system state upon the arrival of each task.
To reduce the signaling requirements, in what follows we propose an algorithm that
is based on a strategy that relies on average system parameters only.

65

4 Equilibrium in Static Mixed Strategies
As a practical alternative to the MBR algorithm, in this section we propose a
decentralized algorithm, which we refer to as the Static Mixed Nash Equilibrium
(SM-NE) algorithm. The algorithm is based on an equilibrium (pi)i∈N in static
mixed strategies, that is, device i chooses the node where to execute an arriving
task at random according to the probability vector pi, which is the same for all tasks.
For computing a static mixed strategy, it is enough for a device to know the average
task arrival intensities, transmission rates, and the first and second moments of the
task size and the task complexity distribution. Therefore, the SM-NE algorithm
requires significantly less signaling than the MBR algorithm.

In order to compute an equilibrium strategy, we start with expressing the (ap-
proximate) equilibrium cost of device i as a function of strategy profile (pi)i∈N , i.e.,
the mean completion time of its tasks in steady state. Throughout the section we
denote by Di and 2Di the first and the second moment of Di, respectively, and by
Li and 2Li the first and the second moment of Li, respectively.

4.1 Transmission time in steady state
Since tasks arrive to each device as a Poisson process and we aim for a constant
probability vector pi as a solution, the arrival processes to the transmission queues
are Poisson processes. If the transmission queues are sufficiently large, we can ap-
proximate them as infinite, similar to [20], and thus we can model each transmission
queue as anM/G/1 system. Let us denote by T ti,j and 2T ti,j the mean and the sec-
ond moment of the time needed to transmit a task from device i to j∈N \{i}∪{0},
respectively. Then the mean time T di,j needed to deliver the input data from device
i to j∈N \{i}∪{0} is the sum of the mean waiting time in the transmission queue
and the mean transmission time T ti,j , and can be expressed as

T di,j = pi,jλ
2
iT

t
i,j

2(1−pi,jλiT ti,j)
+T ti,j , (4)

and the queue is stable as long as the offered load ρti,j = pi,jλiT ti,j < 1.

4.2 Computation time in steady state
Observe that if the input data size Di follows an exponential distribution, then
departures from the transmission queues can be modeled by a Poisson process, and
thus tasks arrive to the devices’ execution queues according to a Poisson process. In
what follows we use the approximation that the tasks arrive according to a Poisson
process even if Di is not exponentially distributed. Furthermore, following common
practice [19,40], for analytical tractability we approximate the execution queues as
being infinite. This approximation is reasonable if the queues are sufficiently large.

66

These two approximations allow us to model the execution queue of each device as
an M/G/1 system, and the edge cloud as an M/G/∞ system.

Let us denote by T ci,j and 2T ci,j the mean and the second moment of the time
needed to compute device i’s task on j ∈N ∪{0}, respectively. Then the mean time
T ei,j that device j ∈ N needs to complete the execution of device i’s task is the
sum of the mean waiting time in the execution queue and the mean computation
time T ci,j , and can be expressed as

T ei,j =
∑
i′∈N pi′,jλ

2
i′T

c
i′,j

2(1−∑i′∈N pi′,jλi′T ci′,j)
+T ci,j , (5)

and the queue is stable as long the offered load ρej =
∑
i′∈N pi′,jλi′T ci′,j < 1.

Since computing in the edge cloud begins immediately upon arrival of a task,
the mean time T ei,0 that the cloud needs to complete the execution of device i’s
task is equal to the mean computation time T ci,0, i.e.,

T ei,0 = Li/F0. (6)

4.3 Existence of Static Mixed Strategy Equilibrium
We can rewrite (1) to express the cost Ci of device i in steady state as a function
of (pi)i∈N ,

Ci(pi,p−i) = pi,iT ei,i+
∑

j∈N\{i}∪{0}
pi,j
(
T di,j +T ei,j

)
,

where we use p−i to denote the strategies of all devices except device i.
Observe that static mixed strategy profile (pi)i∈N of the devices has to ensure

that the entire system is stable in steady state, and we assume that the load is such
that there is at least one strategy profile that satisfies the stability condition of the
entire system. Now, we can define the set of feasible strategies of device i as the set
of probability vectors that ensure stability of the transmission and the execution
queues

Ki(p−i)={pi∈P|ρti,j≤St,ρei′≤St,∀j∈N \{i}∪{0},∀i′},

where 0<St < 1 is the stability threshold associated with the transmission and the
execution queues.

Note that due to the stability constraints the set of feasible strategies Ki(p−i) of
device i depends on the other devices’ strategies, and we are interested in whether
there is a strategy profile (p∗i)i∈N , such that

Ci(p∗i ,p∗−i)≤ Ci(pi,p∗−i), ∀pi ∈Ki(p∗−i).

We are now ready to formulate the first main result of the section.

67

Theorem 1. The MCOG has at least one equilibrium in static mixed strategies.

In the rest of this subsection we use variational inequality (VI) theory to prove
the theorem and for computing an equilibrium. For a given set K ⊆ Rn and a
function F :K→Rn, the V I(K,F) problem is the problem of finding a point x∗ ∈K
such that F (x∗)T (x−x∗)≥ 0, for ∀x ∈K. We define the set K as

K={(pi)i∈N|pi∈P,ρti,j≤St,ρei ≤St, j∈N \{i}∪{0},∀i}.

Before we prove the theorem, in the following we formulate an important result
concerning the cost function Ci(pi,p−i).

Lemma 1. Ci(pi,p−i) is a convex function of pi for any fixed p−i and (pi,p−i)∈K.

Proof. For notational convenience let us start the proof with introducing a few
shorthand notations,

γi,j = pi,jλ
2
iT

t
i,j , δi =

∑

j∈N
pj,iλ

2
jT

c
j,i,

εi,j = 1−ρti,j , ζi = 1−ρei .

Using this notation we expand the cost Ci(pi,p−i) as

Ci(pi,p−i) =pi,i
(δi

2ζi
+T ci,i

)
+pi,0

(γi,0
2εi,0

+T ti,0 +T ci,0
)

+
∑

j∈N\{i}
pi,j
(γi,j

2εi,j
+T ti,j + δj

2ζj
+T ci,j

)
.

To prove convexity we proceed with expressing the first order derivatives hi,j =
∂Ci(pi,p−i)

∂pi,j
,

hi,0 = T ti,0+T ci,0+ γi,0
2εi,0

+pi,0λi
(2T ti,0

2εi,0
+T ti,0γi,0

2ε2i,0

)
,

hi,i = T ci,i+ δi
2ζi

+pi,iλi
(2T ci,i

2ζi
+ T ci,iδi

2ζ2
i

)
,

hi,j |j 6=i = T ti,j +T ci,j + γi,j
2εi,j

+ δj
2ζj

+pi,jλi
(2T ti,j

2εi,j
+

2T ci,j
2ζj

+ T ti,jγi,j
2ε2i,j

+ T ci,jδj
2ζ2
j

)
.

68

We can now express the Hessian matrix

Hi(pi,p−i)=

hii,0 0 . . . 0
0 hii,1 . . . 0
...

...
0 0 . . . hii,N

 ,

where hii,j = ∂2Ci(pi,p−i)
∂p2

i,j

, and

hii,0 = λi
εi,0

(2
T ti,0 +

γi,0T ti,0
εi,0

)(
1 +pi,0

λiT
t
i,0

εi,0

)
,

hii,i = λi
ζi

(2
T ci,i+

δiT
c
i,i

ζi

)(
1 +pi,i

λiT
c
i,i

ζi

)
,

hii,j
∣∣
j 6=i = λi

εi,j

(2
T ti,j +

γi,jT
t
i,j

εi,j

)(
1 +pi,j

λiT
t
i,j

εi,j

)
+

λi
ζj

(2
T ci,j +

δjT
c
i,j

ζj

)(
1 +pi,j

λiT
c
i,j

ζj

)
.

Observe that all diagonal elements of Hi(pi,p−i) are nonnegative, and thus the
Hessian matrix Hi(pi,p−i) is positive semidefinite on K, which implies convexity.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us define the generalized Nash equilibrium problem Γs =<
N , (P)i∈N ,(Ci)i∈N >, subject to (pi)i∈N ∈K. Γs is a strategic game, in which each
device i ∈N plays a mixed strategy pi ∈ Ki(p−i), and aims at minimizing its cost
Ci by solving

min
pi

Ci(pi,p−i) s.t. (7)

pi ∈Ki(p−i). (8)

Clearly, a pure strategy Nash equilibrium (p∗i)i∈N of Γs is an equilibrium of the
MCOG in static mixed strategies, as

Ci(p∗i ,p∗−i)≤ Ci(pi,p∗−i), ∀pi ∈Ki(p∗−i).

We thus have to prove that Γs has a pure strategy Nash equilibrium.

69

To do so, let us first define the function

F =

∇p1C1(p1,p−1)

...
∇pN

CN (pN ,p−N)

 ,

where ∇piCi(pi,p−i) is the gradient vector given by

∇piCi(pi,p−i) =

hi,0
hi,1
...

hi,N

 .

We prove the theorem in two steps based on the VI(K,F) problem, which corre-
sponds to Γs.

First, we prove that the solution set of the VI(K,F) problem is nonempty and
compact. Since the first order derivatives hi,j are rational functions, the function
F is infinitely differentiable at every point in K, and hence it is continuous on
K. Furthermore, the set K is compact and convex. Hence, the solution set of the
VI(K,F) problem is nonempty and compact (Corollary 2.2.5 in [41]).

Second, we prove that any solution of the VI(K,F) problem is an equilibrium of
the MCOG. Since the function F is continuous on K, it follows that Ci(pi,p−i)
is continuously differentiable on K. Furthermore, by Lemma 1 we know that
Ci(pi,p−i) is a convex function. Therefore, any solution of the VI(K,F) prob-
lem is a pure strategy Nash equilibrium of Γs [42], and is thus an equilibrium in
static mixed strategies of MCOG. This proves the theorem.

Theorem 1 guarantees that the MCOG possesses at least one equilibrium in
static mixed strategies, according to which the SM-NE algorithm allocates the tasks
among the devices and the edge cloud. The next important question is whether there
is an efficient algorithm for solving the VI problem, and hence for computing an
equilibrium (p∗i)i∈N of the MCOG in static mixed strategies.

In what follows we show that an equilibrium can be computed efficiently under
certain conditions. To do so, we show that the function F is monotone if the
execution queue of each device can be modeled by an M/M/1 system and all task
arrival intensities are equal. Monotonicity of F is a sufficient condition for various
algorithms proposed for solving VIs [43], e.g., for the Solodov-Tseng Projection-
Contraction (ST-PC) method.
Theorem 2. If the task sizes and complexities are exponentially distributed, arrival
intensities λi = λ and

λmax
j∈N

T cj,i ≤
1−St
N

, ∀i ∈N ,

then the function F is monotone.

70

The proof is given in Appendix A.1.
Note that the sufficient condition provided by Theorem 2 ensures stability of all

execution queues in the worst case scenario, i.e., when T cj,i = maxj∈N T cj,i for all
devices. This condition is, however, not necessary for function F to be monotone
in realistic scenarios. In fact, our simulations showed that the ST-PC method
converges to an equilibrium for various considered scenarios.

5 Numerical Results
In what follows we show simulation results obtained using an event driven simulator,
in which we implemented the MBR and SM-NE algorithms. For the ST-PC method
we set pi,i = 1, ∀i ∈N as starting point, which corresponds to the strategy profile
in which each device performs all tasks locally. The ST-PC method stops when the
norm of the difference of two successive iterations is less than 10−4.

Similar to [44, 45], we placed the devices at random on a regular grid with 104

points defined over a square area of 1km×1km, and we placed the edge cloud at the
center of the grid as in [44]. Unless otherwise noted, we consider that the wired link
latency τc incurred during communication with the cloud server can be neglected
since the cloud is located in close proximity of devices [46]. For simplicity, we
consider a static bandwidth assignment for the simulations; we assign a bandwidth
of Bi,j = 5 MHz for communication between device i and device j [47, 48], and
for the device to cloud bandwidth assignment we consider two scenarios. In the
elastic scenario the bandwidth Bi,0 assigned for communication between device i
and the edge cloud is independent of the number of devices. In the fixed scenario the
devices share a fixed amount of bandwidth B0 when they want to offload a task to
the edge cloud, and the bandwidth Bi,0 scales directly proportional with the number
of devices, i.e., Bi,0 = 1

NB0. We consider that the channel gain of device i to a node
j ∈N \{i}∪{0} is proportional to d−αi,j , where di,j is the distance between device i
and node j, and α is the path loss exponent, which we set to 4 according to the path
loss model in urban and suburban areas [49]. We set the data transmit power P ti
of every device i to 0.4 W according to [50] and given the bandwidth Bi,j available
for the communication between nodes i and j we calculate the noise power Pn as
Pn = Bi,jN0, where N0 = 1.38065× 10−23T is the spectral density for the termal
noise at the temperature T = 290K. Finally, we calculate the transmission rate Ri,j
from device i to node j ∈N \{i}∪{0} as Ri,j =Bi,j log2(1 +P ti d

−α
i,j /Pn).

The input data size Di follows a uniform distribution on [adi , bdi], where adi
and bdi are uniformly distributed on [0.1,1.4] Mb and on [2.2,3.4] Mb, respec-
tively. The arrival intensity λi of the tasks of device i is uniformly distributed
on [0.01,0.03] tasks/s, and the stability threshold is St = 0.6. Note that for the
above set of parameters the maximum arrival intensity does not satisfy the suffi-
cient condition of Theorem 2 already for N = 20 devices. Yet, our evaluation shows
that the ST-PC method converges even for larger instances of the problem.

71

The computational capability Fi of device i is drawn from a continuous uniform
distribution on [1,4] GHz, while the computation capability of the edge cloud is
F0 = 64 GHz [51]. The task complexity Li follows a uniform distribution on [ali, bli],
where ali and bli are uniformly distributed on [0.2,0.5] Gcycles and [0.7,1] Gcycles,
respectively.

We use three algorithms as a basis for comparison. The first algorithm com-
putes the socially optimal static mixed strategy profile (p̄i)i∈N that minimizes the
system cost C = 1

N

∑
i∈N Ci, i.e., (p̄i)i∈N = argmin(pi)i∈N C. We refer to this al-

gorithm as the Static Mixed Optimal (SM-OPT) algorithm. The second algorithm
considers that the devices are allowed to offload the tasks to the edge cloud only
(i.e., pi,i+pi,0 = 1), and we refer to this algorithm as the Static Mixed Cloud Nash
Equilibrium (SMC-NE) algorithm. The third algorithm considers that all devices
perform local execution (i.e., pi,i = 1). Furthermore, we define the performance
gain of an algorithm as the ratio between the system cost reached when all devices
perform local execution and the system cost reached by the algorithm. For the
SM-OPT algorithm the results are shown only up to 30 or 35 devices, because the
computation of the socially optimal strategy profile was computationally infeasible
for larger problem instances. The results shown in all figures are the averages of 50
simulations, together with 95% confidence intervals.

5.1 Performance gain
We start with evaluating the performance gain as a function of the number of
devices. Figure 5 shows the performance gain for the MBR, SM-NE, SM-OPT and
SMC-NE algorithms as a function of the number of devices for the two scenarios of
device to cloud bandwidth assignment. For the elastic scenario Bi,0 = 0.2 MHz and
Bi,0 = 1.25 MHz, and for the fixed scenario B0 = 12.5 MHz.

The results show that the SM-NE and the SM-OPT algorithms perform close
to the MBR algorithm, despite the fact that they are based on average system
parameters only. We can also observe that when the device to cloud bandwidth is
low (about 0.2 MHz), SMC-NE does not provide significant gain compared to local
execution (the performance gain is close to one for all values of N). On the contrary,
the MBR, SM-NE and SM-OPT algorithms, which allow collaborative offloading,
provide a performance gain of about 50%, and the gain slightly increases with the
number of devices. The reason for the slight increase of the gain is that when there
are more devices, devices are closer to each other on average, which allows higher
transmission rates between devices.

Compared to the case when Bi,0 = 0.2 MHz, the results for Bi,0 = 1.25 MHz show
that all algorithms achieve very high performance gains (up to 300%). Furthermore,
the performance gain of the SMC-NE algorithm is similar to that of the SM-NE and
the SM-OPT algorithms, while the MBR algorithm performs slightly better. The
reason is that for high device to cloud bandwidth in the static mixed equilibrium
most devices offload to the edge cloud, as on average it is best to do so, even if given

72

0 10 20 30 40 50 60 70

Number of devices (N)

1

1.5

2

2.5

3

P
er
fo
rm

an
ce

ga
in

MBR
SM-NE
SM-OPT
SMC-NE

B
i,c

=1/N*12.5[MHz]
B

i,c
=1.25[MHz]

B
i,c

=0.2[MHz]

Figure 5: Performance gain vs. number of devices for Bi,0 = 0.2 MHz, Bi,0 =
1.25 MHz and Bi,0 = 1

N 12.5 MHz.

the instantaneous system state it may be better to offload to a device, as done by the
MBR algorithm. Furthermore, unlike for Bi,0 = 0.2 MHz, for Bi,0 = 1.25 MHz the
performance gain becomes fairly insensitive to the number of devices, which is again
due to the increased reliance on the cloud resources for computation offloading.

The results are fairly different for the fixed device to cloud bandwidth assign-
ment scenario, as in this scenario the number of devices affects the device to cloud
bandwidth. In this scenario collaboration among the devices improves the system
performance (SMC-NE vs. SM-NE algorithms). We can also observe that as N
increases, the curves for fixed scenario approach the curves for the elastic scenario
for Bi,0 = 0.2 MHz. This is due to that for large values of N the device to cloud
bandwidth Bi,0 becomes low and the devices offload more to each other than to the
edge cloud.

Finally, the results show that the gap between the SM-NE and the SM-OPT
algorithms is almost negligible for all scenarios, and hence we can conclude that the
price of stability of the MCOG game in static mixed strategies is close to one.

5.2 Impact of cloud availability
In order to analyse the impact of the possibility to offload to the edge cloud, in the
following we vary the bandwidth Bi,0 between 0.2 MHz and 5.2 MHz.

Figure 6 shows the average and the median performance gain for the MBR,
SM-NE, SM-OPT and SMC-NE algorithms as a function of the device to cloud
bandwidth for 8 devices placed over a square area of 0.5km×0.5km, for 30 devices
placed over a square area of 1km× 1km, and for 60 devices placed over a square
area of 1.41km× 1.41km. Note that the three scenarios have approximately the
same density of devices. We first observe that the median performance gain is al-
most equal to the average performance gain for all algorithms and for all considered

73

0 1 2 3 4 5 6

Device to cloud bandwith (Bi,0)[MHz]

2

4

6

8

10

12

P
er
fo
rm

an
ce

ga
in

MBR
SM-NE
SM-OPT
SMC-NE
0.5km× 0.5km
1km× 1km
1.41km× 1.41km

Figure 6: Performance gain vs. device to cloud bandwidth Bi,0 for N = 8 devices
placed over 0.5km×0.5km square area, for N = 30 devices placed over 1km×1km
square area, and for N = 60 devices placed over 1.41km×1.41km square area.

scenarios, which suggests that distribution of the completion times of the tasks is
approximately symmetrical. The figure shows that the performance gain achieved
by the algorithms increases with the bandwidth Bi,0. Furthermore, we observe
that the gap between the algorithms decreases as the device to cloud bandwidth in-
creases, and for reasonably high bandwidths the SM-NE algorithm performs almost
equally well as the MBR algorithm. The results also show that collaboration among
the devices has highest impact on the system performance when the bandwidth Bi,0
is low, and for Bi,0 = 1.2 MHz offloading to the edge cloud only (SMC-NE) is as
good as the SM-NE and SM-OPT algorithms.

Comparing the performance for different sized areas we observe that the per-
formance gain decreases as the size of the area increases, which is due to that the
devices are closer to the cloud server on average in a smaller area.

5.3 Impact of cloud remoteness
In order to evaluate the impact of the cloud access latency, in the following we
vary the latency τc between 0 s and 0.4 s. A low latency (0ms≤ τc < 20ms) would
correspond to the case of an edge cloud or a home gateway, a moderate latency
(20ms ≤ τc < 100ms) would correspond to an edge cloud located deeper in the
network (e.g., metro network), and high latency (100ms≤ τc) would correspond to
remote cloud servers.

In Figure 7 we show the average performance gain as a function of the latency τc
for the MBR, SM-NE, SM-OPT and SMC-NE algorithms in a fog computing system
that serves N = 30 devices, each of them assigned a bandwidth of Bi,0 = 1.25 MHz
for communication with the cloud. The figure shows that the performance gain of
all algorithms decreases as the latency to the cloud server increases. Furthermore,

74

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Latency to the cloud server (τc)[s]

1

1.5

2

2.5

3

P
er
fo
rm

an
ce

ga
in

MBR
SM-NE
SM-OPT
SMC-NE

Figure 7: Performance gain vs. latency τc to the cloud server, for N = 30 devices
placed over 1km×1km square area, and Bi,0 = 1.25 MHz.

we observe that the performance gain of the SMC-NE algorithm approaches one,
as in the case of a high latency it is better for most of devices to perform the
computation locally. On the contrary, the performance gain of the MBR, SM-
NE and SM-OPT algorithms remains slightly above 1.5 even for high values of
the latency (τc ≥ 300ms), which additionally confirms that devices can decrease
the average completion times of their tasks through collaboration even in systems
where they cannot entirely rely on the cloud resources.

5.4 Performance gain perceived per device
In order to evaluate the performance gain perceived per device, we use the notion
of ex-ante and ex-post individual rationality. These are important in situations
when the devices are allowed to decide whether or not to participate in the col-
laboration before and after learning their types (i.e., the exact size and complexity
of their tasks), respectively. The results in Figure 5 show that on average the de-
vices benefit from collaboration, as the performance gain is greater than one, and
hence collaboration among the devices is ex-ante individually rational. In order to
investigate whether collaboration among the devices is ex-post individually ratio-
nal, in Figure 8 we plot the CDF of the performance gain for the elastic device
to cloud bandwidth assignment scenario with 30 devices and for Bi,0 = 0.2 MHz,
Bi,0 = 0.8 MHz, and Bi,0 = 1.25 MHz.

The results for Bi,0 = 0.2 MHz show that the SMC-NE algorithm is ex-post
individually rational, as devices always gain compared to local computation. At
the same time, the SM-NE and MBR algorithms achieve a performance gain below
one for a small fraction of the devices, and hence collaboration among devices is not
ex-post individually rational. On the contrary, the results for Bi,0 = 0.8 MHz show
that the MBR algorithm is ex-post individually rational, since the performance

75

0 1 2 3 4 5 6 7 8 9 10

Performance gain

0

0.2

0.4

0.6

0.8

1

C
D
F

MBR
SM-NE
SM-OPT
SMC-NE
Bi,0 = 0.2[MHz]
Bi,0 = 0.8[MHz]
Bi,0 = 1.25[MHz]

Figure 8: Distribution of the performance gain for N = 30 devices, Bi,0 = 0.2 MHz,
Bi,0 = 0.8 MHz and Bi,0 = 1.25 MHz.

gain of every device is larger than one, but the SM-NE is not. Finally, the results
for Bi,0 = 1.25 MHz show that all algorithms ensure that every device achieves a
performance gain at least one, and hence for Bi,0 = 1.25 MHz collaboration among
devices is ex-post individually rational using all algorithms.

The above results show that collaboration among the devices is ex-post indi-
vidually rational only if sufficient bandwidth is provided for communication to the
edge cloud. Thus, if ex-post individual rationality is important then the device to
cloud bandwidth has to be managed appropriately.

5.5 Utilization ratio of collaboration among devices
In order to evaluate the impact of collaboration on the system performance, we
consider the ratio of the tasks executed at different nodes in the system. To obtain
this ratio, we simulated stochastic task arrivals over a period of 104s. We recorded
the Nt tasks generated in the system during this period, and for an algorithm A ∈
{MBR,SM-NE,SM-OPT} we recorded NA

l and NA
c , the number of tasks executed

locally and the number of tasks executed in the edge cloud, respectively. Figure 9
shows the ratio NA

l
Nt

of the tasks executed locally, and the ratio Nt−NA
c

Nt
of the tasks

executed either locally or at one of the other devices for the MBR, SM-NE and
SM-OPT algorithms as a function of the number of devices for Bi,0 = 1

N 12.5 MHz.
The results in Figure 9 show that for N = 10, i.e., when the bandwidth assigned

to each device for communication with the edge cloud is 1.25 MHz, the devices
offload more tasks to the edge cloud in the case of the SM-NE and SM-OPT algo-
rithms than in the case of the MBR algorithm, which coincides with the observation
made in Figure 5 for Bi,0 = 1.25 MHz. On the contrary, when N ≥ 20 the devices

76

0 10 20 30 40 50 60 70

Number of devices (N)

0.1

0.4

0.7

1

R
at
io

of
ex
ec
u
te
d
ta
sk
s MBR

SM-NE

SM-OPT

Local execution

Local or D2D offloading

Figure 9: Ratio of the tasks executed locally and the tasks executed at any of the
devices for Bi,0 = 1

N 12.5 MHz.

offload more tasks to the edge cloud in the case of the MBR algorithm than in the
case of the SM-NE and SM-OPT algorithms that achieve approximately the same
performance. Furthermore, we observe that while the ratio of the tasks executed
locally increases up to 30 users and remains constant for more devices, the ratio of
the tasks executed either locally or at one of the other devices continues to increase
with the number of devices for all algorithms. These results confirm the observation
made for Bi,0 = 1

N 12.5 MHz in Figure 5 that the collaboration among the devices
improves the system performance.

5.6 Computational efficiency of the SM-NE algorithm
Recall that the SM-NE algorithm is based on the static mixed strategy equilibrium,
and that the SM-OPT algorithm is based on the socially optimal static mixed strat-
egy profile. In order to assess the computational efficiency of the SM-NE algorithm
we measured the time needed to compute a static mixed strategy equilibrium by
the ST-PC method and the time needed to compute a socially optimal static mixed
strategy profile by the quasi-Newton method. Figure 10 shows the measured times
as a function of the number of devices. We observe that the time needed to compute
the socially optimal static mixed strategy profile increases exponentially with the
number of devices at a fairly high rate, and already for 30 devices it is more than an
order of magnitude faster to compute a static mixed strategy equilibrium than to
compute the socially optimal static mixed strategy profile. Therefore, we conclude
that the SM-NE algorithm, which is based on an equilibrium in static mixed strate-
gies, is a computationally efficient solution for medium to large scale collaborative
computation offloading systems.

77

5 15 25 35 45 55 65

Number of devices (N)

10
0

10
1

10
2

10
3

10
4

S
tr
at
eg
y
p
ro
fi
le

co
m
p
u
ta
ti
on

ti
m
e
(s
)

SM-NE
SM-OPT

Figure 10: Time needed to compute a static mixed strategy equilibrium and a
socially optimal static mixed strategy profile for Bi,0 = 1.25 MHz.

6 Related Work
There is a large body of work on augmenting the execution of computationally in-
tensive applications using cloud resources [52], [53], [27,54–56]. In [52] the authors
studied the problem of maximizing the throughput of mobile data stream applica-
tions through partitioning, and proposed a genetic algorithm as a solution. The
authors in [53] considered multiple QoS factors in a 2-tiered cloud infrastructure,
and proposed a heuristic for minimizing the users’ cost. In [54] the authors proposed
an iterative algorithm that minimizes the users’ overall energy consumption, while
meeting latency constraints. The authors in [55] considered the joint optimization of
the offloading decisions, and the allocation of communication and computation re-
sources, proved the NP-hardness of the problem and proposed a heuristic offloading
decision algorithm for minimizing the completion time and the energy consumption
of devices. The authors in [27] considered a single wireless link and an elastic cloud,
provided a game theoretic treatment of the problem of minimizing completion time
and showed that the game is a potential game. The authors in [56] considered mul-
tiple wireless links, elastic and non-elastic cloud, provided a game theoretic analysis
of the problem and proposed a polynomial complexity algorithm for computing an
equilibrium allocation. In [19] the authors considered a three-tier cloud architecture
with stochastic task arrivals, provided a game theoretical formulation of the prob-
lem, and used a variational inequality to prove the existence of a solution and to
provide a distributed algorithm for computing an equilibrium. Unlike these works,
we allow devices to offload computations to each other as well.

A few recent works considered augmenting the execution of computationally
intensive applications using the computational power of nearby devices in a collab-
orative way [18, 39, 57–59]. The authors in [57] modeled the collaboration among
mobile devices as a coalition game, and proposed a heuristic method for solving a

78

0−1 integer quadratic programing problem that minimizes the overall energy con-
sumption. In [58] the authors formulated the resource allocation problem among
neighboring mobile devices as a multi-objective optimization that aims to minimize
the completion times of the tasks as well as the overall energy consumption, and as
a solution proposed a two-stage approach based on enumerating Pareto optimal so-
lutions. In [59] the authors formulated the problem of maximizing the probability of
computing tasks before their deadlines through mobility-assisted opportunistic com-
putation offloading as a convex optimization problem, and used the barrier method
to solve the problem. The authors in [18] considered a collaborative cloudlet that
consists of devices that can perform shared offloading, and proposed two heuristic
allocation algorithms that minimize the average relative usage of all the nodes in the
cloudet. The authors in [39] proposed an architecture that enables a mobile device
to remotely access computational resources on other mobile devices, and proposed
two greedy algorithms that require complete information about devices’ states, for
minimizing the job completion time and the energy consumption, respectively. Our
work differs from these works, as we consider computation offloading to an edge
cloud and nearby devices, and provide a non-cooperative game theoretic treatment
of the problem.

Only a few recent works considered the computation offloading problem in fog
computing systems [60–63]. The authors in [60] considered a fog computing system
in which the tasks can be performed locally at the devices, at a fog node or at
a remote cloud server, and proposed a suboptimal algorithm for computing the
offloading decisions and allocating resources with the objective to minimize the
delay and the energy consumption of devices. In [61] the authors considered a fog
computing system, where devices may offload their computation to small cell access
points that provide computation and storage capacities, and designed a heuristic
for a joint optimization of radio and computational resources with the objective
of minimizing the energy consumption. Unlike this work, we consider stochastic
task arrivals, and we provide a game theoretical treatment of the completion time
minimization problem. In [62] authors formulated the power consumption-delay
tradeoff problem in fog computing system that consists of a set of fog devices and
a set of cloud servers, and proposed a heuristic for allocating the workload among
fog devices and cloud servers. In [63] the authors considered the joint optimization
problem of task allocation and task image placement in a fog computing system
that consists of a set of storage srevers, a set of computation servers and a set of
users, and proposed a low-complexity three-stage algorithm for the task completion
time minimization problem. Our work differs from these works, as we consider
heterogeneous computational tasks, and our queueing system model captures the
contention for both communication and computational resources.

To the best of our knowledge ours is the first work based on a game theoretical
analysis that proposes a decentralized algorithm with low signaling overhead for
solving the completion time minimization problem in fog computing systems.

79

7 Conclusion
We have provided a game theoretical analysis of a fog computing system. We pro-
posed an efficient decentralized algorithm based on an equilibrium task allocation in
static mixed strategies. We compared the performance achieved by the proposed al-
gorithm that relies on average system parameters with the performance of a myopic
best response algorithm that requires global knowledge of the system state. Our
numerical results show that the proposed algorithm achieves good system perfor-
mance, close to that of the myopic best response algorithm, and could be a possible
solution for coordinating collaborative computation offloading with low signaling
overhead. There is a number of interesting extensions of our model. First, one
could consider a communication model in which devices share the bandwidth with
each other. Another direction is to consider the energy cost of offloading, e.g., use
it as a constraint for offloading optimization.

References
[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportuni-

ties,” IEEE Internet of Things Journal, pp. 854–864, 2016.

[2] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things
realize its potential,” Computer, pp. 112–116, 2016.

[3] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for internet of
things: a primer,” Digital Communications and Networks, vol. 4, no. 2, pp.
77–86, 2018.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “MAUI: Making smartphones last longer with code offload,” in
Proc. of ACM MobiSys, 2010, pp. 49–62.

[5] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,”Mobile Networks and Applications, vol. 18, no. 1,
pp. 129–140, 2013.

[6] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution:
Taming resource-poor mobile devices with cloud clones,” in Proc. of IEEE
INFOCOM, 2012, pp. 2716–2720.

[7] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and
J. C. Zhang, “What will 5G be?” IEEE J-SAC, pp. 1065–1082, 2014.

[8] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE Ve-
hicular Technology Magazine, pp. 64–70, 2014.

80

[9] M. S. Elbamby, M. Bennis, andW. Saad, “Proactive edge computing in latency-
constrained fog networks,” in Proc. of IEEE Networks and Communications
(EuCNC), 2017, pp. 1–6.

[10] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[11] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards
a comprehensive definition of fog computing,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[12] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós, and
Z. Turányi, “Design aspects of network assisted device-to-device communica-
tions,” IEEE Communications Magazine, vol. 50, no. 3, 2012.

[13] K. Doppler, C.-H. Yu, C. B. Ribeiro, and P. Janis, “Mode selection for device-
to-device communication underlaying an lte-advanced network,” in Proc. of
IEEE WCNC, 2010, pp. 1–6.

[14] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient resource allocation for
device-to-device communication underlaying lte network,” in Proc. of IEEE
WiMob, 2010, pp. 368–375.

[15] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in
cloud computing,” in Proc. of USENIX Conference on Hot Topics in Cloud
Computing, 2010, pp. 4–4.

[16] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms
with pace,” in ACM SIGMETRICS Performance Evaluation Review, vol. 29,
no. 1. ACM, 2001, pp. 50–61.

[17] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia
applications,” ACM Transactions on Computer Systems (TOCS), vol. 24, no. 3,
pp. 292–331, 2006.

[18] S. Bohez, T. Verbelen, P. Simoens, and B. Dhoedt, “Discrete-event simulation
for efficient and stable resource allocation in collaborative mobile cloudlets,”
Simulation Modelling Practice and Theory, vol. 50, pp. 109–129, 2015.

[19] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. Lo Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming, pp. 1–29,
2015.

[20] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimiza-
tion framework in mobile cloud computing system,” in Service Oriented System
Engineering, Mar. 2013, pp. 494–502.

81

[21] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D collabo-
ration,” IEEE J-SAC, vol. 34, no. 12, pp. 3887–3901, 2016.

[22] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer information
system,” in Proc. of ACM International Conference on Information and Knowl-
edge Management, 2001, pp. 310–317.

[23] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algo-
rithm for reputation management in P2P networks,” in Proc. of ACM Inter-
national Conference on World Wide Web, 2003, pp. 640–651.

[24] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities,” IEEE Transactions on Knowledge and Data
Engineering, pp. 843–857, 2004.

[25] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communication in
OFDMA cellular networks: A survey and challenges,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 1885–1922, 2015.

[26] S. Sharma, N. Gupta, and V. A. Bohara, “OFDMA-based device-to-device
communication frameworks: Testbed deployment and measurement results,”
IEEE Access, vol. 6, pp. 12 019–12 030, 2018.

[27] X. Chen, “Decentralized computation offloading game for mobile cloud com-
puting,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4,
pp. 974–983, 2015.

[28] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Transactions on Wireless Communications, vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[29] S. Jošilo and G. Dan, “Selfish decentralized computation offloading for mobile
cloud computing in dense wireless networks,” IEEE Transactions on Mobile
Computing, 2018.

[30] S. Jošilo and G. Dán, “Decentralized scheduling for offloading of periodic tasks
in mobile edge computing,” in Proc. of IFIP NETWORKING, 2018.

[31] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey
and future directions,” in Internet of Everything. Springer, 2018, pp. 103–130.

[32] A. Brogi, S. Forti, A. Ibrahim, and L. Rinaldi, “Bonsai in the fog: an active
learning lab with fog computing,” in Proc. of IEEE International Conference
on Fog and Mobile Edge Computing, Apr. 2018.

82

[33] L. I. Sennott, “Nonzero-sum stochastic games with unbounded costs: dis-
counted and average cost cases,” Mathematical Methods of Operations Re-
search, vol. 40, no. 2, pp. 145–162, 1994.

[34] E. Altman, A. Hordijk, and F. Spieksma, “Contraction conditions for average
and α-discount optimality in countable state markov games with unbounded
rewards,” Mathematics of Operations Research, vol. 22, no. 3, pp. 588–618,
1997.

[35] A. S. Nowak, “Sensitive equilibria for ergodic stochastic games with countable
state spaces,” Mathematical Methods of Operations Research, vol. 50, no. 1, pp.
65–76, 1999.

[36] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren,
“Foggy clouds and cloudy fogs: a real need for coordinated management of fog-
to-cloud computing systems,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 120–128, 2016.

[37] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A hierarchical
distributed fog computing architecture for big data analysis in smart cities,”
in Proc. of the ASE BigData & SocialInformatics. ACM, 2015, p. 28.

[38] O. Consortium et al., “OpenFog reference architecture for fog computing,”
Tech. Rep., Feb. 2017.

[39] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: enabling
remote computing among intermittently connected mobile devices,” in Proc.
of ACM MobiHoc, 2012, pp. 145–154.

[40] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective op-
timization for computation offloading in fog computing,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 283–294, 2018.

[41] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and
complementarity problems. Springer Science & Business Media, 2007.

[42] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized nash games and
variational inequalities,” Operations Research Letters, vol. 35, no. 2, pp. 159–
164, 2007.

[43] F. Tinti, “Numerical solution for pseudomonotone variational inequality prob-
lems by extragradient methods,” in Variational Analysis and Applications.
Springer, 2005, pp. 1101–1128.

[44] E. Balevi and R. D. Gitlin, “Optimizing the number of fog nodes for cloud-fog-
thing networks,” IEEE Access, vol. 6, pp. 11 173–11 183, 2018.

83

[45] S. Sigg, P. Jakimovski, and M. Beigl, “Calculation of functions on the
RF-channel for IoT,” in Proc. of IEEE IOT, 2012, pp. 107–113.

[46] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud Com-
puting, vol. 4, no. 2, pp. 26–35, March 2017.

[47] Y.-L. Chung, “Rate-and-power control based energy-saving transmissions in
OFDMA-based multicarrier base stations,” IEEE Systems Journal, vol. 9,
no. 2, pp. 578–584, 2015.

[48] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device commu-
nication in 5G cellular networks: challenges, solutions, and future directions,”
IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.

[49] A. Aragon-Zavala, Antennas and propagation for wireless communication sys-
tems. John Wiley & Sons, 2008.

[50] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: a measurement study and implications for net-
work applications,” in Proc. of ACM Internet Measurement Conference (IMC),
2009, pp. 280–293.

[51] M. Satyanarayanan, “A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets,” GetMobile: Mobile Computing
and Communications, pp. 19–23, 2015.

[52] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud com-
puting,” ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 4,
pp. 23–32, Apr. 2013.

[53] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos,
“On optimal and fair service allocation in mobile cloud computing,” IEEE
Transactions on Cloud Computing, 2015.

[54] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE Transac-
tions on Signal and Information Processing over Networks, vol. 1, no. 2, pp.
89–103, Jun. 2015.

[55] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading and
resource optimization in proximate clouds,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 4, pp. 3435–3447, 2017.

[56] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” in Proc. of IEEE INFOCOM, 2017.

84

[57] L. Xiang, B. Li, and B. Li, “Coalition formation towards energy-efficient col-
laborative mobile computing,” in Proc. of IEEE ICCCN, 2015, pp. 1–8.

[58] S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, “Context-
aware multi-objective resource allocation in mobile cloud,” Computers & Elec-
trical Engineering, vol. 44, pp. 218–240, 2015.

[59] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation of-
floading,” IEEE Communications Letters, vol. 18, no. 10, pp. 1779–1782, 2014.

[60] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource
allocation in mixed fog/cloud computing systems with min-max fairness guar-
antee,” IEEE Transactions on Communications, 2017.

[61] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load distri-
bution for small cell cloud computing,” in Proc. of IEEE Vehicular Technology
Conference, 2015, pp. 1–6.

[62] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload alloca-
tion in fog-cloud computing toward balanced delay and power consumption,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–1181, 2016.

[63] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task
scheduling and image placement in fog computing supported software-defined
embedded system,” IEEE Transactions on Computers, vol. 65, no. 12, pp.
3702–3712, 2016.

[64] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press,
2012.

[65] D. S. Bernstein, Matrix mathematics: Theory, facts, and formulas with appli-
cation to linear systems theory. Princeton University Press Princeton, 2005,
vol. 41.

85

A Appendix
A.1 Proof of Theorem 2
Observe that if λi = λ then the cost Ci can equivalently be defined as Ni = λCi,
i.e., the number of tasks in the system. Furthermore, since task complexities are
assumed to be exponentially distributed, the execution queues areM/M/1 systems.
We can thus rewrite T ei,j as

T ei,j = T ci,j
1−ρej

, (9)

and the cost Ni(pi,p−i) of device i as

Ni(pi,p−i) =pi,iλ
T ci,i
ζi

+pi,0λ
(γi,0

2εi,0
+T ti,0 +T ci,0

)

+
∑

j∈N\{i}
pi,jλ

(γi,j
2εi,j

+T ti,j + T ci,j
ζj

)
.

Next, we express the first order derivatives hi,j of Ni(pi,p−i) as

hi,0 =λ
(
T ti,0+T ci,0+ γi,0

2εi,0
)
+pi,0λ2(2T ti,0

2εi,0
+T ti,0γi,0

2ε2i,0

)
,

hi,i = λ
T ci,i
ζi

+pi,iλ
2T

c2
i,i

ζ2
i

,

hi,j |j 6=i = λ
(
T ti,j + γi,j

2εi,j
+ T ci,j

ζj

)

+pi,jλ
2(2T ti,j

2εi,j
+ T ti,jγi,j

2ε2i,j
+
T c

2
i,j

ζ2
j

)
.

In order to prove the monotonicity of the function F in what follows we show that
the Jacobian J of F is positive semidefinite. The Jacobian J has the following
structure

h1
1,0 0 ... 0 0 0 ... 0 ... 0 0 ... 0
0 h1

1,1 ... 0 0 h1
2,1 ... 0 ... 0 h1

N,1 ... 0
...

...
...

...
...

0 0 ... h1
1,N 0 0 ... h1

2,N ... 0 0 ... h1
N,N

...
...

0 0 ... 0 0 0 ... 0 ... hN
N,0 0 ... 0

0 hN
1,1 ... 0 0 hN

2,1 ... 0 ... 0 hN
N,1 ... 0

...
...

...
...

...
0 0 ... hN

1,N 0 0 ... hN
2,N ... 0 0 ... hN

N,N

,

86

where the second order derivatives can be expressed as

hii,0 = λ2

εi,0

(2
T ti,0 + γi,0T ti,0

εi,0

)(
1 +pi,0

λT ti,0
εi,0

)

hii,i =
(
λT ci,i
ζi

)2 (
2 + 2 λ

ζi
pi,iT ci,i

)
,

hii,j
∣∣
j 6=i =

(
λT ci,j
ζj

)2 (
2 + 2 λ

ζj
pi,jT ci,j

)
+hti,j ,

where hti,j = λ2

εi,j

(2
T ti,j + γi,jT ti,j

εi,j

)(
1 +pi,j

λT ti,j
εi,j

)
,

and

hii′,j

∣∣∣
i′ 6=i

=
λT ci,jλT ci′,j

ζ2
j

(
1 + 2 λ

ζj
pi,jT ci,j

)
.

Reordering the rows and columns, the Jacobian J can be rewritten as

J =

C 0 . . . 0
0 M1 . . . 0
...

...
0 0 . . . MN

 ,

where

C =

h1
1,0 0 . . . 0
0 h2

2,0 . . . 0
...

...
0 0 . . . hNN,0

 ,Mi =

h1
1,i h

1
2,i . . . h1

N,i

h2
1,i h

2
2,i . . . h2

N,i
...

...
hN1,i h

N
2,i . . . hNN,i

 .

Observe that all diagonal elements of C are nonnegative, and thus the matrix C is
positive definite. In order to show that J is positive semidefinite we have to show
that the symmetric matrix Ms

i = 1
2 (MT

i +Mi) is positive semidefinite.
The diagonal elements dhsj,i of Ms

i are given by

dhsj,i

∣∣∣
j=i

=
(
λT ci,i
ζi

)2 (
2 + 2 λ

ζi
pi,iT ci,i

)
,

dhsj,i

∣∣∣
j 6=i

=
(
λT cj,i
ζi

)2 (
2 + 2 λ

ζi
pj,iT cj,i

)
+htj,i,

where htj,i = λ2

εj,i

(2
T tj,i+ γj,iT tj,i

εj,i

)(
1 +pj,i

λT tj,i
εj,i

)
,

87

and the off-diagonal elements ohsj,i= 1
2 (hij,i+hji,i)

∣∣∣
j 6=i

are given by

ohsj,i = λT ci,iλT cj,i
ζ2
i

(
1 + λ

ζi
(pi,iT ci,i+pj,iT cj,i)

)

Let us define the vector T ci=(T c1,i T c2,i . . .T cN,i)T and matrix T ti

T ti =
(

diag(ht
j,i)|

j∈N\{i} 0
0 0

)
.

Furthermore, let us define matrix T pi as

p1,iT c1,i
p1,iT c1,i+p2,iT c2,i

2 ...
p1,iT c1,i+pN,iT c

N,i
2

p2,iT c2,i+p1,iT c1,i
2 p2,iT c2,i ...

p2,iT c2,i+pN,iT c
N,i

2
...

...
pN,iT c

N,i+p1,iT c1,i
2

pN,iT c
N,i+p2,iT c2,i

2 ... pN,iT c
N,i

.

Now, matrix Mi can be rewritten as

Mi = λ2

ζ2
i

(
T ci T c

T
i ◦
(
I+E+ 2λ

ζi
T pi

))
+T ti,

where ◦ denotes the Hadamard product, i.e., the component-wise product of two
matrices.

It is well known that the identity I and unit E matrices are positive definite,
while positive definiteness of matrix T ci T c

T
i follows from the definition. Observe

that matrix T ti is positive semidefinite as well, since it is a diagonal matrix with non-
negative elements. Since the sum of two positive semidefinite matrices is positive
semidefinite and the Hadamard product of two positive semidefinite matrices is also
positive semidefinite [64], the proof reduces to showing that matrix I +E+ 2λ

ζi
T pi

is positive semidefinite. To do so, we will show that the minimum eigenvalue of
the matrix 2λ

ζi
T pi is greater than or equal to −1. To do so, let us denote by e the

all-ones vector and define the vector tpi = (p1,iT c1,i p2,iT c2,i . . .pN,iT cN,i). Now,
we can express matrix T pi as

T pi = 1
2
(
tpi e

T +e(tpi)
T
)
.

The characteristic polynomial of the symmetric matrix T pi is given by [65]

kN−2

2
(
k2−2(eT tpi)k+ (eT tpi)

2−N‖tpi ‖2
)
.

We observe that T pi has N − 2 zero eigenvalues, and one non-negative and
one non-positive eigenvalue given by k+ =

(
eT tpi +

√
N‖tpi ‖

)
/2 and k− =

(
eT tpi −

88

√
N‖tpi ‖

)
/2, respectively. Therefore, the minimum eigenvalue of the matrix 2λ

ζi
T pi

is greater than −1 if
λ

ζi

(√
N‖tpi ‖−eT t

p
i

)
≤ 1. (10)

Since tpi is a vector with non-negative elements, we have that eT tpi ≥‖t
p
i ‖ and it also

holds that ‖tpi ‖≤
√
Nmaxj∈N tj,i. Therefore, the following inequalities hold

λ

ζi

(√
N‖tpi ‖−eT t

p
i

)
≤ λ

ζi

(√
Nmax
j∈N

tj,i(
√
N −1)

)

≤ Nλ

ζi
max
j∈N

tj,i ≤
Nλ

ζi
max
j∈N

T cj,i.

Since ρei ≤ St, we have that ζi ≥ 1−St, and therefore

Nλ

ζi
max
j∈N

T cj,i ≤
Nλ

1−St
max
j∈N

T cj,i. (11)

Based on (11) a sufficient condition for (10) is that λmaxj∈N T cj,i ≤ 1−St
N . This

proves the theorem.

Paper B
Selfish Decentralized Computation

Offloading for Mobile Cloud
Computing in Dense Wireless

Networks

Slađana Jošilo and György Dán
IEEE Transactions on Mobile Computing (TMC), vol.18, no. 1, pp.

207-220, 2019.

89

Selfish Decentralized Computation Offloading for
Mobile Cloud Computing in Dense Wireless

Networks
Slađana Jošilo and György Dán

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo, gyuri}@kth.se ∗

Abstract
Offloading computation to a mobile cloud is a promising solution to aug-

ment the computation capabilities of mobile devices. In this paper we consider
selfish mobile devices in a dense wireless network, in which individual mobile
devices can offload computations through multiple access points or through
the base station to a mobile cloud so as to minimize their computation costs.
We provide a game theoretical analysis of the problem, prove the existence
of pure strategy Nash equilibria, and provide an efficient decentralized algo-
rithm for computing an equilibrium. For the case when the cloud computing
resources scale with the number of mobile devices we show that all improve-
ment paths are finite. Furthermore, we provide an upper bound on the price
of anarchy of the game, which serves as an upper bound on the approximation
ratio of the proposed decentralized algorithms. We use simulations to evaluate
the time complexity of computing Nash equilibria and to provide insights into
the price of anarchy of the game under realistic scenarios. Our results show
that the equilibrium cost may be close to optimal, and the convergence time
is almost linear in the number of mobile devices.

Index terms— computation offloading, mobile edge computing, Nash equilibria,
decentralized algorithms

1 Introduction
Mobile handsets are increasingly used for various computationally intensive appli-
cations, including augmented reality, natural language processing, face, gesture and
∗The work was partly funded by SSF through the Modane project and by the Swedish Research

Council through project 621-2014-6.

91

92

object recognition, and various forms of user profiling for recommendations [1, 2].
Executing such computationally intensive applications on mobile handsets may re-
sult in slow response times, and can also be detrimental to battery life, which may
limit user acceptance.

Mobile cloud computing has emerged as a promising solution to serve the com-
putational needs of these computationally intenstive applications, while potentially
relieving the battery of the mobile handsets [3, 4]. In the case of mobile cloud
computing the mobile devices offload the computations via a wireless network to
a cloud infrastructure, where the computations are performed, and the result is
sent back to the mobile handset. While computation offloading to general purpose
cloud infrastructures, such as Amazon EC2, may not be able to provide sufficiently
low response times for many applications, emerging mobile edge computing (MEC)
resources may provide sufficient computational power close to the network edge to
meet all application requirements [5].

Computation offloading to a mobile edge cloud can significantly increase the
computational capability of individual mobile handsets, but the response times may
suffer when many handsets attempt to offload computations to the cloud simultane-
ously, on the one hand due to the competition for possibly constrained edge cloud
resources, on the other hand due to contention in the wireless access [6, 7]. The
problem is even more complex in the case of a dense deployment of access points,
e.g., cellular femtocells or WiFi access points, when each mobile user can choose
among several access points to connect to. Good system performance in this case
requires the coordination of the offloading choices of the indvidual mobile handsets,
while respecting their individual performance objectives, both in terms of response
time and energy consumption.

In this paper we consider the problem of resource allocation for computation
offloading by self-interested mobile users to a mobile cloud. The objective of each
mobile user is to minimize its cost, which is a linear combination of its response
time and its energy consumption for performing a computational task, by choosing
whether or not to offload a task via a wireless network to a mobile cloud. Clearly,
the choice of a mobile user affects the cost of other mobile users. If too many mo-
bile users choose offloading, the response times could be affected by the contention
between the mobile devices for MEC computing resources and for wireless com-
munication resources. Hence, the fundamental question is whether a self-enforcing
resource allocation among mobile users exists, and if it exists, whether it can be
computed by mobile users in a decentralized manner.

In order to answer this question, we formulate the computation offloading prob-
lem as a non-cooperative game and we make three important contributions. First,
based on a game theoretical treatment of the problem, we propose an efficient de-
centralized algorithm for coordinating the offloading decisions of the mobile devices,
and prove convergence of the algorithm to a pure strategy Nash equilibrium when
the computational capability assigned to a mobile device by the cloud is a non-
increasing function of the number of mobile users that offload. Second, we show

93

that a simple decentralized algorithm can be used for computing equilibria when the
cloud computing resources scale directly proportional with the number of mobile
users. Finally, we provide a bound on the price of anarchy for both models of cloud
resources. We provide numerical results based on extensive simulations to illustrate
the computational efficiency of the proposed algorithms and to evaluate the price
of anarchy for scenarios of practical interest.

The rest of the paper is organized as follows. We present the system model in
Section 2. We present the algorithms and prove their convergence in Sections 3
and 4, respectively. We provide a bound on the price of anarchy in Section 5 and
present numerical results in Section 6. Section 7 discusses related work and Section 8
concludes the paper.

2 System Model and Problem Formulation
We consider a mobile cloud computing system that serves a set N={1,2, ...,N} of
mobile users (MUs). Each MU has a computationally intensive task to perform,
and can decide whether to perform the task locally or to offload the computation to
a cloud server. The computational task is characterized by the size Di of the input
data (e.g., in bytes), and by the number Li of the instructions required to perform
the computation. Recent work has shown that a task’s work requirement Xi per
data bit can be approximated by a Gamma distribution [8, 9]. We can thus model
Li = DiXi, where Xi is a random variable with mean Xi. Furthermore, we can
express the expected number of instructions required for performing MU i’s task as
Li =DiXi.

Each MU can decide whether to perform the task locally or to offload the com-
putation to a cloud server through one of a set of access points (APs) denoted by
A={1,2, ...,A} or through a base station (BS) denoted by B.

2.1 Decentralized mobile cloud computing architecture
Motivated by the emergence of mobile edge clouds, we consider that the cloud,
besides providing computational resources, acts as a centralized entity that stores
information about the mobile cloud computing system, e.g., achievable data rates
and the number of MUs that offload. Furthermore, we consider that the cloud
sends this information to the MUs so that the offloading decisions can be made in
a decentralized manner. The motivation for such a decentralized implementation
is twofold. First, the cloud can be relieved from complex centralized management.
Second, the MUs may be autonomous entities with individual interests, and using
a decentralized algorithm they would not need to reveal all their parameters to
the cloud, but they only need to report their offloading decisions, which helps in
protecting privacy and confidentiality.

Despite using a decentralized algorithm, devices still have to send the data per-
taining to their tasks through a shared communication link, and thus to avoid

94

eavesdropping and integrity attacks, cryptographic protection is necessary. Proto-
cols for securing computation offloading have been proposed in [10,11], and are out
of scope for our work.

To enable a meaningful analysis of the resource allocation problem, we make the
common assumption that the set of MUs does not change during the computation
offloading period, i.e., in the order of seconds [4, 12–15].

2.2 Communication model
If an MU i decides to offload the computation to the cloud server, it has to transmit
Di amount of data pertaining to its task to the cloud through one of the APs or
through the BS. Thus, together with local computing MU i can choose an action
from the set Di={0,1,2, ...,A,B}, where 0 corresponds to local computing, i.e.,
no offloading. We denote by di ∈Di the decision of MU i, and refer to it as her
strategy. We refer to the collection d=(di)i∈N as a strategy profile, and we denote
by D=×i∈NDi the set of all feasible strategy profiles.

For a strategy profile d we denote by no(d) the number of MUs that use o∈A∪
{B} for computation offloading, and by n(d)=

∑
o∈A∪{B}no(d) the number of MUs

that offload. Similarly, we denote by Oo(d) = {i|di = o} the set of MUs that offload
through o∈A∪{B}, and we define the set of offloaders as O(d) =∪o∈A∪{B}Oo(d).

We denote by Ri,o the PHY rate of MU i on o ∈A∪{B}, which depends on the
physical layer signal characteristics and the corresponding channel gain. We denote
by ωoi (d) the uplink rate that MU i receives when she offloads through o∈A∪{B}.
For the case of offloading through an AP a we consider that ωai (d) depends on the
PHY rate Ri,a and on the number na(d) of MUs that offload via AP a

ωai (d) =Ri,a/na(d). (1)

This model of the uplink rate can be used to model the bandwidth sharing in TDMA
and OFDMA based MAC protocols [16].

For the case of offloading through the BS we consider that the uplink data rate
ωBi (d) of MU i is independent of the number of MUs that offload through the BS,
i.e., ωBi (d) =Ri,B .

The uplink rate ωoi (d) together with the input data size Di determines the
transmission time T ci,o(d) of MU i for offloading through o ∈A∪{B},

T ci,o(d) =Di/ω
o
i (d). (2)

To model the energy consumption of the MUs, we consider that every MU i knows
the transmit power Pi,o that it would use to transmit the data through o∈A∪{B},
e.g., determined using an algorithm as the ones proposed in [17, 18]. Thus, the
energy consumption of MU i for offloading the input data of size Di through
o ∈A∪{B} is

Eci,o(d) = Pi,oT
c
i,o(d). (3)

95

2.3 Computation model
In what follows we introduce our model of the time and energy consumption of
performing the computation locally and in the cloud server.

2.3.1 Local computing

In the case of local computing data need not be transmitted, but the task has to
be processed using local computing power. We consider that the expected time it
takes to complete MU i’s task locally consists of two parts [19]. The first part is
the expected CPU execution time T 0,exe

i =Li ·CPIi ·CCi, where CPIi and CCi are
the average number of cycles per instruction and the clock cycle time, respectively.
The second part is the expected time T 0,ot

i the processor spends executing other
tasks, including disk and memory management, I/O and operating system activities.
Finally, we express the expected time it takes to complete MU i’s task locally as

T
0
i = T

0,exe
i +T

0,ot
i , (4)

where T 0,ot
i may or may not depend on Li.

This model essentially implies that the expected execution time of a task is an
affine function of Li. In practice the MUs can maintain a history of past execution
times and can use this history for estimating the parameters of the affine function,
which allows to predict the mean execution time as a function of Li.

In order to model the expected energy consumption of local computing we denote
by vi the consumed energy per CPU cycle, and thus we obtain

E
0
i = viLiCPIi. (5)

2.3.2 Cloud computing

In the case of cloud computing, after the data are transmitted through one of the
APs or through the BS, processing is done at the cloud server. In order to express
the expected time it takes to complete MU i’s task in the cloud server, we use a sim-
ilar model as in the case of local computing, but we consider that the expected time
T
c,ot
i (d) the cloud server spends executing other tasks, besides from the system-

related tasks, may also depend on the tasks of the other MUs that offload. We
make the reasonable assumption that T c,oti (d) is a non-decreasing function of the
number n(d) of MUs that offload, and thus the computation capability assigned
to MU i by the cloud is a non-increasing function of n(d). Consequently, we can
express the expected time it takes to complete MU i’s task in the cloud server as

T
c
i (d) = T

c,exe
i +T

c,ot
i (d). (6)

96

AP2

AP3

A

MUc

MUd MUe

MUb

B2

B1

Fd Fe
0 0

B3

MUa MUg

MUf

c
F

c
Fi (n(d))

Figure 1: An example of a mobile cloud computing system

where T c,exei = Li ·CPIc ·CCc and T c,oti (d) may or may not depend on Li.
Figure 1 shows an example of a mobile cloud computing system in which 3 of 7

MUs offload their task through one of 3 APs, 2 MUs offload their task through the
BS, and 2 MUs perform local computation.

2.4 Cost Model
In order to express the expected cost of MU i we denote by γEi the weight attributed
to energy consumption and by γTi the weight attributed to the time it takes to finish
the computation, 0≤ γEi ,γTi ≤ 1.

Using this notation, for the case of local computing the expected cost of MU i
can be modeled as a linear combination of the expected time it takes to complete
the task locally and the corresponding expected energy consumption,

C0
i = γTi T

0
i +γEi E

0
i = γTi (T 0,exe

i +T
0,ot
i) +γEi viLiCPIi. (7)

For the case of offloading we consider a subscription-based pricing mechanism in
which MUs pay a flat fee F in order to use cloud resources [20]. Consequently,
in the case of offloading through o ∈ A∪{B} the expected cost of MU i can be
modeled as a linear combination of the expected time it takes to complete MU i’s
task in the cloud server, the transmission time, the corresponding transmit energy,
and a fee for using cloud resources,

Cci,o(d) = γTi (T ci (d) +T ci,o(d)) +γEi E
c
i,o(d) +F

= (γTi +γEi Pi,o)
Di

ωoi (d) +γTi T
c
i (d) +F. (8)

97

Similar to previous works [7,21,22], we do not model the time needed to transmit
the results of the computation from the cloud server to the MU, as for typical ap-
plications like face and speech recognition, the size of the result of the computation
is much smaller than Di.

For notational convenience let us define the indicator function I(di,o) for MU i
as

I(di,o)=
{

1, if di = o,
0, otherwise. (9)

We can then express the expected cost of MU i in strategy profile d as

Ci(d) = C0
i I(di,0) +

∑

o∈A∪{B}
Cci,o(d)I(di,o). (10)

Finally, we define the total expected cost C(d)=
∑
i∈NCi(d).

2.5 Computation Offloading Game
We consider that each MU aims at minimizing its expected cost (10), i.e., it aims
at finding a strategy

d∗i ∈ argmindi∈Di
Ci(di,d−i), (11)

where we use d−i to denote the strategies of all MUs except MU i. This problem
formulation is not only reasonable when MUs are autonomous, but as we show
later, our algorithms also serve as polynomial-time approximations for solving the
problem of minimizing the total cost C(d).

It may seem natural to model the interaction between the MUs as a Bayesian
game, since the number of instructions Li are random variables. However, it follows
from (10) that the solution to (11) is determined by the expectation Li and the
number of MUs that offload. We can thus model the interaction between the MUs
as a strategic game Γ =<N ,(Di)i,(Ci)i>, in which the players are the MUs that aim
at minimizing their expected cost. We refer to the game as the multi access point
computation offloading game (MCOG), and we are interested in whether the MUs
can compute a strategy profile in which no MU can further decrease her expected
cost by changing her strategy, i.e., a Nash equilibrium of the game Γ.

Definition 1. A Nash equilibrium (NE) of the strategic game Γ =<N ,(Di)i,(Ci)i>
is a strategy profile d∗ such that

Ci(d∗i ,d∗−i)≤ Ci(di,d∗−i), ∀di ∈Di.

Given a strategy profile (di,d−i) we say that strategy d′i is an improvement step
for MU i if Ci(d′i,d−i) < Ci(di,d−i). We call a sequence of improvement steps in
which one MU changes her strategy at a time an improvement path. Furthermore,
we say that a strategy d∗i is a best reply to d−i if it solves (11), and we call an

98

Ci
0

fi,a(na(d))

t

s

...1 2 N

1 2 A

p

fi(n(d))

i

a

...

... ...

fi,B

B

Figure 2: The computation offloading game modeled as a player-specific congestion
game. The source node s represents N MUs and the sink node t corresponds to the
execution of a computation task.

improvement path in which all improvement steps are best replies a best improve-
ment path. Observe that in a NE all MUs play their best replies to each others’
strategies.

It is important to note that we do not consider mixed strategy NE. Since the
MCOG is a finite game, Nash equilibria in mixed strategies are guaranteed to exist,
but they are impractical for two reasons. First, a mixed strategy would make it hard
for a cloud scheduler to allocate computational resources. Second, mixed strategy
equilibria are computationally hard to find in general. Hence, our focus is on finding
pure strategy NE.

2.6 The MCOG as a player-specific congestion game
In the case of offloading through an AP a the cost Cci,a(d) depends on the

number of MUs that offload through the same AP a and on the total number
of MUs that offload, while in the case of offloading through BS the cost Cci,B(d)
only depends on the total number of MUs that offload. Hence, the MCOG can
be modeled as a player-specific congestion game as illustrated in Figure 2. The
source node s represents N MUs, the sink node t corresponds to the execution of
the computation task, and the intermediate node p corresponds to offloading. A
solid edge i corresponds to local computing by MU i and has a cost of C0

i , a dashed
edge a corresponds to using AP a, a dotted edge B corresponds to using the BS,
and the dash-dotted edge that connects node p to the sink node t corresponds to
cloud computing. For a strategy profile d the cost fi,a(na(d)) of the dashed edge
that corresponds to AP a is a function of the number of MUs that offload via AP
a, the cost fi,B of the dotted edge that corresponds to the BS is independent of the
other MUs’ strategies, and the cost fi(n(d)) of the dash-dotted edge is a function
of the total number of MUs that offload.

Unfortunately, general pure equilibrium existence results are not known for

99

d = ImprovementPath(d)
1: while ∃i ∈N s.t. ∃d′i,Ci(d′i,d−i)<Ci(di,d−i) do
2: d = (d′i,d−i)
3: end while
4: return d

Figure 3: Pseudo code of the ImprovementPath algorithm.

player-specific congestion games. Therefore, a natural question is whether the
MCOG possesses a pure NE, and if it possesses, whether there is a low complexity
decentralized algorithm for computing it. In what follows we answer these questions.

3 Equilibria and the JPBR Algorithm
We start the analysis with the definition of the set of congested communication
links and of the notion of the reluctance to offload.
Definition 2. For a strategy profile d we define the set DO→O(d) of congested
communication links as the set of communication links with at least one MU for
which changing to another communication link is a best reply,

DO→O(d) = {o ∈A∪{B}|∃i∈Oo(d),∃b∈A∪{B}\{o},Cci,o(o,d−i)>Cci,b(b,d−i)}.
Similarly, for a strategy profile d we define the set DO→L(d) of communication
links with at least one MU for which local computing is a best reply,

DO→L(d) = {o∈A∪{B}|∃i∈Oo(d),Cci,o(o,d−i)>C0
i }

Definition 3. The reluctance to offload via o ∈ A∪ {B} of MU i in a strategy
profile d is ρi(d) = Cci,o(d)/C0

i .
To facilitate the analysis, for a strategy profile d we rank the MUs that play

the same strategy in decreasing order of their reluctance to offload, and we use the
tuple (o, l) to index the MU that in the strategy profile d occupies position l in the
ranking for o ∈ A∪{B}, i.e., ρ(o,1)(d) ≥ ρ(o,2)(d) ≥ . . . ≥ ρ(o,no(d))(d). Note that
for o ∈A∪{B} it is MU (o,1) that can gain most by changing her strategy to local
computing among all MUs i ∈Oo(d).

3.1 The ImprovementPath Algorithm
Using these definitions, let us start with investigating whether the simple Improve-
mentPath algorithm shown in Figure 3 can be used for computing a NE. To do
so, we analyze the finiteness of improvement paths, and as a first step, we show
that improvement paths may be infinite in the MCOG, even in the case when the
transmit power Pi,o of every MU i is the same for all APs.

100

di da db dc dd de

d(0) 1 2 1 0 0
d(1) 1 2 2 0 0
d(2) 1 0 2 0 0
d(3) 1 0 2 2 0
d(4) 1 0 2 2 2
d(5) 1 0 1 2 2
d(6) 1 3 1 2 2
d(7) 1 3 1 2 0
d(8) 1 3 1 0 0
d(9) 1 2 1 0 0

Rc,2>Rc,1 (1)
2

Rb,2
(γT

b +γE
b Pb)Db+3γT

b LbCCc>C
0
b (2)

C0
d>

2
Rd,2

(γT
d +γE

d Pd)Dd+3γT
d LdCCc (3)

C0
e>

3
Re,2

(γT
e +γE

e Pe)De+4γT
e LeCCc (4)

Rc,1> 2
3Rc,2 (5)

C0
b>

1
Rb,3

(γT
b +γE

b Pb)Db+5γT
b LbCCc (6)

2
Re,2

(γT
e +γE

e Pe)De+5γT
e LeCCc>C

0
e (7)

1
Rd,2

(γT
d +γE

d Pd)Dd+4γT
d LdCCc>C

0
d (8)

Rb,2>Rb,3 (9)

Figure 4: A cyclic improvement path in a computation offloading game with 5 MUs,
3 APs and 1 BS. Rows correspond to strategy profiles, columns to MUs. An arrow
between adjacent rows indicates the MU that performs the improvement step. The
cycle consists of 9 improvement steps and the inequalities on the right show the
condition under which the change of strategy is an improvement step.

Example 1. Consider a MCOG with N = {a,b,c,d,e}, A = {1,2,3} and the BS.
Furthermore, let the expected time it takes to complete MU i’s task in the cloud
server be linear in n(d), Li and CCc, i.e., T

c
i (d) = n(d)LiCCc, and assume that the

transmit power Pi,o of every MU i is the same for all APs, i.e., Pi,o = Pi. Figure 4
shows a cyclic improvement path starting from the strategy profile (1,2,1,0,0), in
which MUs a and c are connected to AP 1, MU b is connected to AP 2 and MUs d
and e perform local computation.

Starting from the initial strategy profile (1,2,1,0,0), MU c revises its strat-
egy to AP 2, which is an improvement step if Rc,2 > Rc,1, as shown in inequality
(1) in the figure. Observe that after 9 improvement steps the MUs reach the ini-
tial strategy profile. For each step the inequality on the right provides the condi-
tion for being an improvement. It follows from inequalities (1), (5) and (9) that
Rc,2 >Rc,1, Rc,1 > 2

3Rc,2 and Rb,2 >Rb,3, respectively. Since 1
Rb,3

(γTb +γEb Pb)Db+
5γTb LbCCc > 1

Rb,3
(γTb +γEb Pb)Db+ 3γTb LbCCc holds, from inequalities (2) and (6)

it follows that Rb,3 > 1
2Rb,2. Combining inequalities (3) and (8) we have that

γTd LdCCc >
1

Rd,2
(γTd +γEd Pd)Dd. Similarly, it follows from inequalities (4) and (7)

that γTe LeCCc > 1
Re,2

(γTe +γEe Pe)De. Given these constraints, an instance of the
example can be formulated easily, even in the case of homogeneous PHY rates, i.e.,
Ri,a =Ri′,a for every i, i′ ∈N , i 6= i′.

Example 1 illustrates that the improvement paths may be cyclic, and thus the
MCOG does not have the finite improvement property, which implies that the

101

d = ImproveOffloading(d)
1: while DO→O(d) 6= ∅ do
2: (i′,a′)← argmax

{i∈O(d),∃o∈A∪{B},Ci(o,d−i)<Ci(d)}

Ci(d)
Ci(o,d−i)

3: d = (a′,d−i′)
4: end while
5: return d

Figure 5: Pseudo code of the ImproveOffloading algorithm.

MCOG does not allow a generalized ordinal potential function [23]. Consequently,
the ImprovementPath algorithm in which the MUs perform improvement steps it-
eratively cannot be used for computing a NE.

3.2 The ImproveOffloading Algorithm
Although improvement paths may cycle, as we next show, improvement paths are
finite if we only allow the MUs to change between APs or to change between APs
and the BS but not to start or to stop offloading. We refer to this algorithm as the
ImproveOffloading algorithm, and show its pseudo code in Figure 5. Our first result
shows that all improvement paths generated by the ImproveOffloading algorithm
are finite.

Lemma 1. The ImproveOffloading algorithm terminates after a finite number of
improvement steps.

Proof. Let us define the function

Φ(d) =
A∑

a′=1

na′ (d)∑

n=1
log(n)−

∑

o∈A∪{B}

N∑

i′=1
log(Si′,o)I(di′ ,o),

where Si,o, Ri,o

Di(γT
i

+γE
i
Pi,o) .

We prove the lemma by showing that the function Φ(d) decreases strictly at
every improvement step generated by the ImproveOffloading algorithm.

First, let us consider an improvement step made by MU i in which she changes
from offloading via AP b to offloading via AP a. Observe that after this improvement
step the number n(d) of MUs that offload remains unchanged. Hence, according
to (8) and (10), the condition Ci(a,d−i)<Ci(b,d−i) implies na(a,d−i)/nb(b,d−i)<
Si,a/Si,b. Since na(a,d−i), nb(b,d−i)> 0 and Si,a,Si,b > 0 this is equivalent to

log(na(a,d−i))− log(nb(b,d−i))< log(Si,a)− log(Si,b). (12)

102

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a,d−i) =
na(a,d−i)∑

n=1
log(n) +

nb(a,d−i)∑

n=1
log(n) +

∑

a′ 6=a,b

na′ (a,d−i)∑

n=1
log(n)

− log(Si,a)−
∑

o∈A∪{B}

∑

i′ 6=i
log(Si′,o)I(di′ ,o).

Since na(a,d−i) = na(b,d−i) + 1 and nb(b,d−i) = nb(a,d−i) + 1, we have that

Φ(a,d−i)−Φ(b,d−i) = log(na(a,d−i))− log(nb(b,d−i))− (log(Si,a)− log(Si,b)).

It follows from (13) that Φ(a,d−i)−Φ(b,d−i)< 0.
Second, let us consider an improvement step made by MU i in which she

changes from offloading via AP a to offloading via BS B. Observe that after
this improvement step the number n(d) of MUs that offload remains unchanged.
Hence, according to (8) and (10), the condition Ci(B,d−i)<Ci(a,d−i) implies
na(a,d−i)> Si,a/Si,B . Since na(a,d−i),Si,a,Si,B>0 this is equivalent to

log(na(a,d−i))> log(Si,a)− log(Si,B). (13)

Since na(a,d−i) = na(B,d−i) + 1, we have that

Φ(B,d−i)−Φ(a,d−i) =− log(na(a,d−i)) + log(Si,a)− log(Si,B).

It follows from (13) that Φ(B,d−i)−Φ(a,d−i) < 0. Similarly, we can show that
Ci(a,d−i)<Ci(B,d−i) implies Φ(a,d−i)< Φ(B,d−i).

Since the number of strategy profiles is finite, Φ(d) can not decrease infinitely
and the ImproveOffloading algorithm terminates after a finite number of improve-
ment steps.

Thus, if MUs can only change between APs and between APs and the BS, they
terminate after a finite number of improvement steps.

3.3 The JPBR Algorithm
In what follows we use the ImproveOffloading algorithm as a building block for
proving that a NE always exists in the MCOG even if it does not allow a generalized
ordinal potential function.

Theorem 1. The MCOG possesses a pure strategy Nash equilibrium.

Proof. We use induction in the number N of MUs in order to prove the theorem. We
denote by N (t) = t the number of MUs that are involved in the game in induction
step t.

103

Update phase of JPBR algorithm
1: /* Corresponds to case (i) */
2: Let d′(t) = ImproveOffloading(d(t))
3: /* Corresponds to case (ii) */
4: if a′∈DO→L(d′(t)),na′(d′(t))=na′(d∗(t−1))+1 then
5: Let i′← (a′,1)
6: Let d′(t) = (0,d′−i′(t))/* Best reply by MU i′ */
7: else
8: while DO→L(d′(t)) 6= ∅ do
9: b← argmaxa∈DO→L

ρ(a,1)(d′(t))
10: /*Link with MU with highest reluctance to offload */
11: Let i′← (b,1)
12: Let d′(t)=(0,d′−i′(t))/*Best reply by MU (b,1)*/
13: if ∃i ∈N \O(d′(t)) s.t. C0

i >Ci(b,d′−i(t)) then
14: i′← argmin

{i∈N\O(d′(t))|C0
i
>Ci(b,d′−i

(t))}
ρi(b,d′−i(t))

15: /*MU with lowest reluctance to offload*/
16: Let d′(t)=(b,d′−i′(t))/*Best reply by MU i′*/
17: else
18: Let d′(t) = ImproveOffloading(d′(t))
19: end if
20: end while
21: end if

Figure 6: Pseudo code of the update phase of the JPBR algorithm.

For N (1)=1 the only participating MU plays her best reply d∗i (1). Since there
are no other MUs, d∗(1) is a NE. Observe that if d∗i (1) = 0, MU i would never have
an incentive to deviate from this decision, because the number of MUs that offload
will not decrease as more MUs are added. Similarly, if d∗i (1)=B, MU i would never
have an incentive to offload using one of the APs, because the number of MUs that
offload using any of the APs will not decrease as more MUs are added. Otherwise,
if MU i decides to offload using one of the APs, she would play her best reply which
is given by d∗i (1)=argmaxa∈ASi,a.

Assume now that for t−1>0 there is a NE d∗(t− 1). Upon induction step t
one MU enters the game; we refer to this MU as MU N (t). Let MU N (t) play
her best reply d∗

N(t)(t) with respect to the NE strategy profile of the MUs that
already participated in induction step t−1, i.e., with respect to d−N(t)(t)=d∗(t−1).
After that, MUs can perform best improvement steps one at a time starting from
the strategy profile d(t) =(d∗

N(t)(t),d−N(t)(t)), following the algorithm shown in
Figure 6. We refer to this as the update phase. In order to prove that there is a
NE in induction step t, in the following we show that the MUs will perform a finite
number of best improvement steps in the update phase.

104

Observe that if d∗
N(t)(t) = 0, then na(d(t)) = na(d∗(t−1)) for every a ∈A and

thus d(t) is a NE. If d∗
N(t)(t) = o ∈A∪{B}, but none of the MUs want to deviate

from their strategy in d∗(t− 1) then d(t) is a NE. Otherwise, we can have one
or both of the following cases: (i) for some MUs i ∈ Oo(d(t)) offloading using
b∈A∪{B}\{o} becomes a best reply, (ii) for some MUs i∈O(d(t)) local computing
becomes a best reply. Note that case (i) can happen only if o 6=B, as otherwise MU
i would be able to gain by changing her strategy to offloading using on of the APs
in d∗(t−1).

Let us first consider case (i) and let MUs execute the ImproveOffloading algo-
rithm. Recall that by Lemma 1 the MUs will reach a strategy profile in which there
is no MU that can further decrease her cost by changing her strategy between APs
or between APs and the BS. In the resulting strategy profile the number of MUs
that offload will be n(d∗(t−1))+1. Furthermore, there will be one communication
link (denoted by a′) for which the number of offloaders is na′(d∗(t−1)) + 1, while
for the other communication links a 6= a′ it is na(d∗(t−1)). As a consequence, there
can be no MU that wants to start offloading in the resulting strategy profile if she
did not want to do so in d∗(t−1).

If in this strategy profile no MU wants to stop offloading either, i.e., |DO→L(d(t))|
= 0, then we reached a NE. Otherwise |DO→L(d(t))|> 0, which is the same as case
(ii) above. Note that if case (i) did not happen, i.e. |DO→Od(t)|= 0, then commu-
nication link a′ is the same communication link o that was chosen by MU N (t) when
she was added. Now if a′ ∈ DO→L(d(t)), let MU (a′,1) perform an improvement
step and let d′(t) be the resulting strategy profile. Since MU (a′,1) changed her
strategy from offloading through a′ to local computation, no(d′(t)) = no(d∗(t−1))
holds for every o ∈A∪{B} and d′(t) is a NE.

Otherwise, if a′/∈DO→L and |DO→L|>0, we have that there is an MU i that wants
to change her strategy from offloading through b∈A∪{B}\{a′} to local computing.
Note that the only reason why MU i would want to change to local computing
is that the number of MUs that offload was incremented by one, i.e., n(d(t)) =
n(d∗(t−1)) + 1. Among all MUs that would like to change to local computing, let
us allow the MU i with highest reluctance to perform the improvement step (note
that this is MU (b,1), b 6=a′). We denote the resulting strategy profile by d′(t). Due
to this improvement step we have that n(d′(t)) = n(d∗(t−1)). Observe that if b=B
there can be no MU that wants to start offloading because na(d′(t)) = na(d∗(t−1))
for every AP a∈A, and there is no more MU that would like to stop offloading either
because n(d′(t)) = n(d∗(t−1)), and d′(t) is a NE. Otherwise, if b 6=B we have that
nb(d′(t))=nb(d∗(t−1))−1 and some MUs that perform local computation may be
able to decrease their cost by connecting to AP b. If there is no MU i∈N \O(d′(t))
that would like to start offloading, there is no more MU that would like to stop
offloading either because n(d′(t)) =n(d∗(t−1)) and we reached a NE. Otherwise,
among all MUs i∈N \O(d′(t)) that would like to start offloading, let MU i′ with
lowest reluctance to offload, i.e., ρi′(b,d′−i′(t)), connect to AP b. We now repeat
these steps starting from Line 8 until no more MUs want to stop offloading. Note

105

that when one MU is replaced by another MU, the number of MUs that offload
through any of the APs does not change. Therefore, offloading cost of the MU that
starts to offload will not increase in the following update steps and she will not want
to stop to offload. Since the MU that starts to offload will not have an incentive to
stop to offload and the number of MUs is finite, the sequence of stopping to offload
and starting to offload is finite too.

Let b be the AP that the last MU that stopped offloading was connected to. If the
last MU that stopped offloading was replaced by an MU that did not offload before,
then we reached a NE. Otherwise some MUs that offload via o ∈A∪{B}\{b} may
want to connect to AP b, and we let them execute the ImproveOffloading algorithm,
which by Lemma 1 terminates in a finite number of improvement steps. Now, no
MU wants to stop offloading, and if there is no MU that wants to start offloading
either then we reached a NE. Otherwise, if there is a MU that wants to start to
offload, we repeat the steps starting from Line 8. Let us recall that the MU that
starts to offload would not want to stop to offload and as a consequence the size
of the set DO→L will decrease every time when a MU stops to offload. Therefore,
after a finite number of steps, the MUs will reach either an equilibrium in which the
number of offloaders is the same as in the strategy profile d∗(t−1) or an equilibrium
in which the number of offloaders is incremented by 1, which proves the inductive
step.

Consider now that we add one MU at a time and for every new MU we compute
a NE following the proof of Theorem 1. We refer to the resulting algorithm as the
Join and Play Best Replies (JPBR) algorithm. In what follows we provide a bound
on the complexity of this algorithm.

Proposition 2. When MU N (t) enters the game in an equilibrium d∗(t−1), a new
Nash equilibrium can be computed in O((A+ 2)N (t)−2A) time.

Proof. In the worst case scenario |O(d∗(t−1))|=N (t)−2, d∗
N(t)(t)=a∈A and case

(i) happens such that in the next N (t)−2 update steps all MUs i∈O(d∗(t−1)), i.e.,
N (t)−2 MUs change between APs before they reach the strategy profile in which
there is no MU that can decrease her offloading cost. Furthermore, in the worst
case scenario, this is followed by a sequence of update steps in which N (t)−2 MUs
stop to offload and N (t)−3 MUs start to offload and between every stop to offload
and start to offload update step, MUs change between the APs. When a MU stops
to offload, the sequence in which MUs change between APs consists of at most A−1
update steps. Hence, a NE is reached after at most (N (t)−2)+(N (t)−2)+(N (t)−
3)+(N (t)−2)(A−1) updates.

Since we add one MU at a time, we can formulate the following result.

Corollary 1. The JPBR algorithm terminates in an equilibrium allocation in
O((A+ 2)N2/2−(A−1)N) time.

106

So far we have shown that starting from a NE and adding a new MU, a new NE
can be computed. We now show a similar result for the case when a MU leaves.

Theorem 3. Consider the MCOG and assume that the system is in a NE. If a MU
leaves the game and the remaining MUs play their best replies one at a time, they
converge to a NE after a finite number of updates.

Proof. Let us consider that MU i leaves the game when the system is in a NE. If
the strategy of MU i was to perform local computation, none of the remaining MUs
would have an incentive to change their strategies. If the strategy of MU i was
to offload using one of the APs or using the BS, we can consider MU i as an MU
that after changing its strategy from offloading to local computing would have no
incentive to offload again. Recall from the proof of Theorem 1 that when an MU
changes her strategy from offloading to local computing the game converges to a
NE after a finite number of updates. This proves the theorem.

Observe that Theorem 1 and Theorem 3 allow for the efficient computation
of Nash equilibria even if the number of MUs changes, if the time between MU
arrivals and departures is sufficient to compute a new equilibrium. Furthermore, the
computation can be done in a decentralized manner, by letting MUs perform best
improvements one at a time. The advantage of such a decentralized implementation
compared to a centralized solution could be that MUs do not have to reveal their
parameters.

4 The Case of an Elastic Cloud
The JPBR algorithm can be used for computing an equilibrium for the MCOG with
polynomial complexity. In what follows we show that a much simpler algorithm can
be used for computing an equilibrium if we assume that the expected time needed
for the cloud to complete MU i’s task is independent of the other MUs’ strategies,
and thus of the number of MUs that offload. This is a reasonable assumption for
large cloud computing infrastructures, in which the cloud computing resources scale
with the number of MUs. We refer to the resulting model as the elastic cloud model,
and we express the expected time needed for the cloud to complete MU i’s task as
T
c
i = T

c,exe
i +T c,oti . Consequently, the cost function of MU i in the case of offloading

is simpler because the part of MU i’s cost concerning the time needed for performing
its task in the cloud does not depend on the strategy profile d. Therefore, in the
case of the elastic cloud model the cost function of MU i when it offloads its task
through AP a can be expressed as

Cci,a(d) = (γTi +γEi Pi,a)Di
na(d)
Ri,a

+γTi T
c
i +F, (14)

which only depends on the number of MUs that offload through the same AP a.
Furthermore, in the case of offloading through BS B the cost function is independent

107

fi,a(na(d))

1 2 ... A

Ci
0

...1 2 Ni ...

t

s

...a B

fi,B

Figure 7: The computation offloading game in the case of an elastic cloud modeled
as a player-specific singleton congestion game. The source node s represents N
MUs, and the sink node t corresponds to the execution of a computation task.

of the other MUs’ strategies and can be expressed as

Cci,B = (γTi +γEi Pi,B) Di
Ri,B

+γTi T
c
i +F, (15)

Let us recall that when the expected time needed for the cloud to complete
MU i’s task depends on the other MUs’ strategies, the MUs have to share both
communication and computing resources (c.f., Figure 2). On the contrary, in the
case of the elastic cloud model, the MUs only have to share communication resources
when they offload their tasks through one of the APs, and thus the MCOG can be
modeled as a player-specific singleton congestion game as illustrated in Figure 7.
Compared to the graph shown in Figure 2, the graph in Figure 7 has only the source
node s and the sink node t. A solid edge i corresponds to local computing by MU
i and has a cost of C0

i , a dashed edge a corresponds to using AP a, and the dotted
edge B corresponds to using the BS. Every MU can either choose the solid edge or
the dotted edge that corresponds to itself or one of the dashed edges, thus one of
A+ 2 edges. For a strategy profile d the cost fi,a(na(d)) of the dashed edge that
corresponds to AP a is a function of the number of MUs that offload through AP
a, while the cost fi,B of the dotted edge that corresponds to the BS is independent
of the other MUs’ strategies.

For player-specific singleton congestion games it is known that a pure strategy
Nash equilibrium always exsists, even if potential function may not exist [24]. Be-
fore we formulate the theorem, let us recall the definition of a generalized ordinal
potential from [23].

Definition 4. A function Φ : ×Di→ R is a generalized ordinal potential function
for the strategic game Γs =< N ,(Di)i,(Ci)i > if for an arbitrary strategy profile

108

(di,d−i) and for any corresponding improvement step d′i it holds that

Ci(d′i,d−i)−Ci(di,d−i)< 0⇒ Φ(d′i,d−i)−Φ(di,d−i)< 0.

Theorem 4. The MCOG with elastic cloud admits the generalized ordinal potential
function

Φ(d) =
A∑

a′=1

na′ (d)∑

n=1
log(n)−

∑

o∈A∪{B}

N∑

i′=1
log(Mi′Si′,o)I(di′ ,o), (16)

and hence it possesses a pure strategy Nash equilibrium, if F < γEi viLiCPIi +
γTi (T 0

i −T
c
i).

Proof. To prove that Φ(d) is a generalized ordinal potential function, we first show
that Ci(a,d−i)<Ci(0,d−i) implies Φ(a,d−i)< Φ(0,d−i).

According to (7), (10) and (14), the condition Ci(a,d−i) < Ci(0,d−i) implies
that

(γTi +γEi Pi,a)Di
na(a,d−i)
Ri,a

+γTi T
c
i+F <γTi T

0
i +γEi viLiCPIi. (17)

After algebraic manipulations we obtain

na(a,d−i)<MiSi,a, (18)

where Si,a, Ri,a

Di(γT
i

+γE
i
Pi,a) and Mi,γTi (T 0

i −T
c
i) +γEi viLiCPIi−F.

Since na(a,d−i)> 0 and MiSi,a > 0, (17) implies that

log(na(a,d−i))< log(MiSi,a). (19)

For the strategy profile (a,d−i) it holds that

Φ(a,d−i) =
na(a,d−i)∑

n=1
log(n) +

∑

a′ 6=a

na′ (a,d−i)∑

n=1
log(n)

− log(MiSi,a)−
∑

o∈A∪{B}

∑

i′ 6=i
log(Mi′Si′,o)I(di′ ,o),

and for the strategy profile (0,d−i)

Φ(0,d−i) =
na(0,d−i)∑

n=1
log(n) +

∑

a′ 6=a

na′ (0,d−i)∑

n=1
log(n)

−
∑

o∈A∪{B}

∑

i′ 6=i
log(Mi′Si′,o)I(di′ ,o).

109

Since na(a,d−i) = na(0,d−i)+1, we obtain Φ(a,d−i)−Φ(0,d−i) = log(na(a,d−i))−
log(MiSi,a). It follows from (19) that Φ(a,d−i)−Φ(0,d−i) < 0. Similarly, we can
show that Ci(0,d−i)<Ci(a,d−i) implies Φ(0,d−i)< Φ(a,d−i).

Second, we show that Ci(a,di)<Ci(b,di) implies Φ(a,di)< Φ(b,di). According
to (10) and (14), the condition Ci(a,di)<Ci(b,di) implies that

(γTi +γEi Pi,a)Di
na(a,d−i)
Ri,a

<(γTi +γEi Pi,b)Di
nb(b,d−i)
Ri,b

,

which is equivalent to

na(a,d−i)
nb(b,d−i)

<
Si,a
Si,b

. (20)

Since na(a,d−i),nb(b,d−i)> 0 and Si,a,Si,b > 0, (20) implies

log(na(a,d−i))− log(nb(b,d−i))< log(Si,a)− log(Si,b). (21)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a,d−i) =
na(a,d−i)∑

n=1
log(n) +

nb(a,d−i)∑

n=1
log(n) +

∑

a′ 6=a,b

na′ (a,d−i)∑

n=1
log(n)

− log(MiSi,a)−
∑

o∈A∪{B}

∑

i′ 6=i
log(Mi′Si′,o)I(di′ ,o).

Since na(a,d−i) =na(b,d−i)+1 and nb(b,d−i) =nb(a,d−i)+1, we have that Φ(a,d−i)−
Φ(b,d−i) = log(na(a,d−i))−log(nb(b,d−i))−(log(Si,a)−log(Si,b)). It follows from (21)
that Φ(a,d−i)−Φ(b,d−i)< 0.

Third, we show that Ci(B,di)<Ci(0,di) implies Φ(B,di)<Φ(0,di). According
to (7), (10) and (15), the condition Ci(B,di)<Ci(0,di) implies that

(γTi +γEi Pi,B) Di
Ri,B

+γTi T
c
i+F <γTi T

0
i +γEi viLiCPIi, (22)

which is equivalent to

1<MiSi,B . (23)

For the strategy profile (B,d−i) it holds that

Φ(B,d−i) =
A∑

a′=1

na′ (B,d−i)∑

n=1
log(n)− log(MiSi,B)

−
∑

o∈A∪{B}

∑

i′ 6=i
log(Mi′Si′,o)I(di′ ,o).

110

Since na(B,d−i) =na(0,d−i) for every AP a, we have that Φ(B,d−i)−Φ(0,d−i) =
− log(MiSi,B), and sinceMiSi,B > 0, it follows from (23) that Φ(B,d−i)−Φ(0,d−i)<
0. Similarly, we can show that Ci(0,d−i)<Ci(B,d−i) implies Φ(0,d−i)<Φ(B,d−i).

Finally, we show that Ci(B,di)<Ci(a,di) implies Φ(B,di)<Φ(a,di). According
to (10), (14) and (15), the condition Ci(B,di)<Ci(a,di) implies that

(γTi +γEi Pi,B) Di
Ri,B

< (γTi +γEi Pi,a)Di
na(a,d−i)
Ri,a

,

which is equivalent to

na(a,d−i)>
Si,a
Si,B

. (24)

Since na(a,d−i)> 0 and Si,a,Si,B > 0, (24) implies

log(na(a,d−i))> log(Si,a)− log(Si,B). (25)

Since na(a,d−i) = na(B,d−i)+1, we have that Φ(B,d−i)−Φ(a,d−i) =− log(na(a,
d−i)) + log(Si,a)− log(Si,B). It follows from (25) that Φ(B,d−i)−Φ(a,d−i) < 0.
Similarly, we can show that Ci(a,d−i) < Ci(B,d−i) implies Φ(a,d−i) < Φ(B,d−i),
which proves the theorem.

It is well known that in a finite strategic game that admits a generalized ordinal
potential all improvement paths are finite [25]. Therefore, the existence of a gener-
alized ordinal potential function allows us to use the ImprovementPath Algorithm
(c.f., Figure 3) for computing a NE.
Corollary 2. The ImprovementPath algorithm terminates in a NE after a finite
number of improvement steps for the MCOG with elastic cloud.

In what follows, we prove that if MUs aim at minimizing only their energy
consumption, the ImprovementPath algorithm can be used for computing a NE not
only for the MCOG with elastic cloud, but also in the general case, i.e., if the time
needed for performing the task of an MU in the cloud depends on the strategy
profile d.
Proposition 5. The ImprovementPath algorithm terminates in a NE after a finite
number of improvement steps for the MCOG with γTi =0, i.e., if each MU aims at
minimizing its energy consumption.
Proof. Observe that if γTi =0, MU i spends the energy only to transmit the data
through one of the APs in the case of offloading, and thus the cost function of MU
i only depends on the number of MUs that offload through the same AP, and it is
independent of the total number of MUs that offload. Hence, the MCOG in which
γTi =0 for all MUs can be modeled by a congestion game on parallel links as shown
in Figure 7. Furthermore, (16) is a generalized ordinal potential function of the
game with γTi =0, which proves the proposition.

111

5 Price of Anarchy
We have so far shown that a NE exists and provided low complexity algortihms
for computing it. We now address the important question how far the system
performance would be from optimal in a NE. To quantify the difference from the
optimal performance we use the price of anarchy (PoA), defined as the ratio of the
worst case NE cost and the minimal cost

PoA=
max

d∗
∑
i∈N Ci(d∗)

min
d∈D

∑
i∈N Ci(d) . (26)

In what follows we give an upper bound on the PoA.
Theorem 6. The price of anarchy for the computation offloading game is upper
bounded by ∑

i∈N C0
i∑

i∈N min{C0
i ,

¯Cci,1, ..., ¯Cci,A, ¯Cci,B}
,

both in the case of elastic cloud and in the case of non-elastic cloud.
Proof. First we show that if there is a NE in which all players perform local com-
putation then it is the worst case NE. To show this let d∗ be an arbitrary NE.
Observe that Ci(d∗i ,d∗−i) ≤ C0

i holds for every player i ∈ N . Otherwise, if ∃i ∈ N
such that Ci(d∗i ,d∗−i) > C0

i , player i would have an incentive to deviate from deci-
sion d∗i , which contradicts our initial assumption that d∗ is a NE. Thus, in any NE∑
i∈N Ci(d∗i ,d∗−i)≤

∑
i∈N C0

i holds, and if all players performing local computation
is a NE then it is the worst case NE.
Now we derive a lower bound for the optimal solution of the computation offloading
game. Let us consider an arbitrary decision profile (di,d−i) ∈ D. If di = 0, then
Ci(di,d−i) =C0

i . Otherwise, if di = o for some o∈A∪{B}, we have that in the best
case di′ = 0 for every i′ ∈N \{i}, and thus n(d) = 1. Therefore, ωoi (di,d−i)≤Ri,o
and T ci (n(di,d−i))≤T ci , which implies

(γTi +γEi Pi,o)
Di

ωoi (di,d−i)
+γTi T

c
i (n(di,d−i))

≥ (γTi +γEi Pi,o)
Di
Ri,o

+γTi T
c
i = ¯Cci,o.

Hence, Ci(di,d−i)≥min{C0
i ,

¯Cci,1, ..., ¯Cci,A, ¯Cci,B} and
∑
i∈N Ci(di,d−i)≥

∑
i∈N min

{C0
i ,

¯Cci,1, ..., ¯Cci,A, ¯Cci,B}. Using these expressions we can establish the following
bound

PoA=
max

d∗
∑
i∈NCi(d

∗)

min
d∈D

∑
i∈NCi(d) ≤

∑
i∈NC

0
i∑

i∈Nmin{C0
i ,

¯Cci,1,..., ¯Cci,A, ¯Cci,B}
,

which proves the theorem.

112

In the following we provide an upper bound on the PoA in the case of homoge-
neous MUs, that is, when all MUs have the same parameters.

Proposition 7. In the case of homogeneous MUs and when the expected time
T
c,ot
i (d) the cloud server spends executing other tasks is an affine function of the

number of MUs that offload, the price of anarchy for the MCOG is at most 5
2 .

Proof. When the MUs are homogeneous and T
c,ot
i (d) is an affine function of the

number of MUs that offload, the MCOG falls into the category of congestion games
with affine cost functions. It follows from [26] that congestion games with affine cost
functions are smooth games with a PoA at most 5

2 , which proves the proposition.

Observe that the PoA is in fact a bound on the approximation ratio of the
decentralized algorithms used for computing a NE.

6 Numerical Results
We use extensive simulations to evaluate the cost performance and the computa-
tional time of the JPBR algorithm. We placed the MUs and the APs at random
on a regular grid with 104 points defined over a square area of 1km× 1km. We
chose the channel gain of MU i to AP a to be proportional to d−αi,a , where di,a is the
distance between MU i and AP a, and α is the path loss exponent, which we set to
4 according to the path loss model in urban and subrurban areas [27]. The channel
bandwidth Ba of every AP a was set to 5 MHz, while the data transmit power Pi,a
of every MU i and for every AP a was set to to 0.4W according to [28]. Given the
noise power Pn we calculate the PHY rate Ri,a as Ri,a =Ba log(1 +Pi,ad

−α
i,a /Pn).

The clock rate CRi of MU i was drawn from a continuous uniform distribution
with parameters [0.5,1] GHz based on the specification of NVIDIA Tegra 2, which is
the reference platform for Android OS [29], while the clock rate CRc of the cloud was
set to 100 GHz [30]. Unless otherwise noted, the input data size Di was uniformly
distributed on [0.42,2] Mb. We drew the total number of CPU cycles required to
perform the computation (Li ·CPI) from a continuous uniform distribution with
parameters [0.1,0.8] Gcycles. The consumed energy per CPU cycle vi was set to
10−11(CRi)2 according to measurements reported in [4,31]. The weights attributed
to energy consumption γEi and the response time γTi were drawn from a continuous
uniform distribution on [0,1].

In order to evaluate the cost performance of the equilibrium strategy profile d∗
computed by the JPBR algorithm, we computed the optimal strategy profile d̄ that
minimizes the total cost, i.e., d̄= argmind

∑
i∈N Ci(d). Furthermore, as a baseline

for comparison we computed the system cost that can be achieved if all MUs execute
their computation tasks locally, which coincides with the bound on the PoA. Unless
otherwise noted, the MUs are added at random in the induction steps of the JPBR

113

2 4 6 8 10 12 14

N

1

5

10

15

20

C
(d

∗
)

C
(d̄
)

NE
PoA bound
elastic cloud
non-elastic cloud, p = 0.5
non-elastic cloud, p = 1
non-elastic cloud, p = 2

Figure 8: The cost ratio and the upper bound on the PoA for the elastic and
non-elastic cloud (p= 0.5,1,2), A= 3 APs.

algorithm. The results shown are the averages of 100 simulations, together with
95% confidence intervals.

6.1 Optimal vs. Equilibrium Cost
Figure 8 shows the cost ratio C(d∗)/C(d̄) vs. the number of MUs. The results are
shown for the case of the elastic cloud as well as for the case when the expected time
it takes to complete MU i’s task is linear in the number of MUs that offload, i.e.,
T
c,exe
i (d) = pn(d)LiCPIcCCc. We refer to this latter case as a non-elastic cloud

and to the coefficient p as the cloud provisioning coefficient. A coefficient of p = 1
corresponds to a cloud with fixed amount of resources, p < 1 to resources that scale
slower than the demand, while p > 1 corresponds to a cloud with backup resources
that scale with the demand.

To make the computation of the optimal strategy profile d̄ feasible, unless oth-
erwise noted, we considered a scenario with A= 3 APs and we show the cost ratio
C(d∗)/C(d̄) as a function of the number of MUs. We consider the non-elastic
cloud model that does not implement redundancy mechanisms for three values of
the cloud provisioning coefficient (p= 0.5,1 and 2).

The results in Fig. 8 show that the performance of JPBR is close to optimal (cost
ratio is close to 1) in all cases, and the cost ratio is fairly insenstive to the number
of MUs, which is due to the number of MUs that choose to offload, as we will see
later. The results for the bound on the PoA additionally confirm that the JPBR
algorithm performs good in terms of the cost ratio. It is interesting to note that
the gap between the PoA bound and the actual cost ratio decreases with increasing
number of MUs. This is due to the benefit of offloading decreases as the number of
MUs increases, and as a result the optimal solution and the JPBR algorithm will
converge to a strategy profile in which most of the MUs perform local computation.

114

2 4 6 8 10 12 14

N

0

0.05

0.1

0.15

0.2

0.25

n
(d

∗
)−

n
(d̄
)

N

elastic cloud
non-elastic cloud, p = 0.5
non-elastic cloud, p = 1
non-elastic cloud, p = 2

Figure 9: Offloading difference ratio vs. number of MUs N for the elastic and
non-elastic cloud (p= 0.5,1,2), A= 3 APs.

We can also observe that the upper bound on the PoA decreases as p increases, and
thus the problem becomes computationally easier for larger values of p.

In order to gain insight in the structure of the equilibrium strategy profiles
d∗, it is interesting to compare the number of MUs that offload in equilibrium
d∗ and the number of MUs that offload in the optimal solution d̄. We define the
offloading difference ratio (n(d∗)−n(d̄))/N , and show it in Figure 9 for the same
set of parameters as in Figure 8. The results show that the offloading difference
ratio increases with the number of MUs, which explains the increased cost ratio
observed in Figure 8, as more offloaders reduce the achievable rate, which in turn
leads to increased costs. The observation that the number of MUs that offload is
higher in equilibrium than in the optimal solution is consistent with the theory of
the tragedy of the commons in the economic literature [32]. The results also show
that the offloading difference ratio is slightly lower in the case of the elastic cloud,
which is due that a higher proportion of MUs offload in the optimal solution for the
elastic cloud.

6.2 Impact of the order of adding MUs
Since the order in which the MUs are added in induction steps of the JPBR

algorithm can be arbitrarily chosen, in the following we investigate in which order
the controller should add the MUs, so that their costs are minimized. To do so, we
consider five orderings of adding MUs: random where MUs are added at random,
least reluctance first (LRF) where MUs are added in increasing order of their ratio

Di

C0
i
LiCPIi

, most reluctance first (MRF) where MUs are added in decreasing order

of their ratio Di

C0
i
LiCPIi

, least clock rate first (LCRF) where MUs are added in

115

50 100 150 200 250 300 350 400 450 500

Induction step of the JPBR algorithm

0

20

40

60

80

100

120

140

160

C
(d

∗
)

random
LRF
MRF
LCRF
LLCF
elastic cloud
non-elastic cloud, p=1

Figure 10: The system cost vs. the induction step for the elastic and non-elastic
cloud (p= 1), A= 10 APs, N = 500 MUs.

increasing order of their clock rate CRi, and least local cost first (LLCF) where
MUs are added in increasing order of their local cost C0

i . Figure 10 shows the
system cost as a function of the number of induction steps performed (i.e., MUs
added) by the JPBR algorithm, for the elastic and the non-elastic cloud (p=1),
N = 500 MUs, and A = 10 APs. The results show that the order of adding MUs
affects the system cost during the induction steps, but the system cost C(d∗) in the
equilibrium d∗ computed upon the last induction step is almost the same for all
considered orderings, and thus the order of adding MUs does not affect the system
performance significantly.

To gain insight in the impact of the order of adding MUs on the cost of the
MUs, we define the individual cost ratio for a particular order of entry, compared
to the LLCF order of entry. Figure 11 shows the CDF of the individual cost ratio
in the equilibrium d∗ computed upon the last induction step for the same set of
parameters as in Figure 10. The results show that the individual costs slightly differ
for different orderings only for a few MUs, and thus changing the order of adding
MUs does not affect the performance of individual MUs either.

6.3 Impact of the input data size
In order to analyse the impact of the input data size we considered three distribu-
tions with the same mean for the input data size, uniform (lower limit fixed to 0.42
and upper limit scales with the mean), exponential, and Weibull (shape parameter
0.5), and considered that all MUs have to offload a task that requires a computa-
tion of Li ·CPI=0.45 Gcycles. Figure 12 shows the cost ratio C(d∗)/C(d̄) and the
upper bound on the PoA as a function of the mean input data size. The results are
shown for the non-elastic cloud (p=1), N=12 MUs and A=3 APs, and show that
while the cost ratio does not change, the upper bound on the PoA decreases with

116

0.94 0.96 0.98 1 1.02 1.04 1.06

Individual cost ratio

0

0.2

0.4

0.6

0.8

1

C
D
F

random

LRF

MRF

LCRF

elastic cloud

non-elastic cloud, p=1

Figure 11: Distribution of the individual cost ratio for the elastic and non-elastic
cloud (p= 1), A= 10 APs, N = 500 MUs.

the mean input data size and for large data sizes it reaches the cost ratio. This is
due to the transmission time increases with the input data size and if the MUs have
to offload a large amount of data, it becomes optimal for most of them to perform
local computation, which coincides with the worst case equilibrium. Note that the
upper bound on the PoA decreases slower in the case of the Weibull distribution
because for the same mean it has a median that is smaller than that of the uniform
and exponential distributions.

6.4 Computational Complexity
In order to evaluate the computational complexity of the JPBR algorithm, we con-
sider the number of iterations, the total number of update steps over all induction
steps plus the number of induction steps, to compute the strategy profile d∗ for
the elastic cloud and for the non-elastic cloud (p = 1), A= 10 and A= 100 APs.
Figure 13 shows the number of iterations as a function of the number of MUs for
the random and the LRF order of adding MUs. Intuitively, one would expect that
the LRF order results in a smaller number of iterations, since the MUs with lower

Di

C0
i
LiCPIi

ratio have lower computational capability to execute computationally
more demanding tasks with smaller offloading data size than the MUs with higher

Di

C0
i
LiCPIi

. However, the simulation results show that the number of iterations is
fairly insensitive to the order of adding the MUs and mostly depends on the number
of MUs. This insensitivity allows for a very low-overhead decentralized solution, as
the coordinator need not care about the order in which the MUs are added for
computing the equilibrium allocation. The results also show that the number of it-
erations scales approximately linearly with the number of MUs, and indicates that
the worst case scenario described in Corollary1 is unlikely to happen. Thus JPBR is

117

1 10 100 1000

Average input data size [Mb]

1

2

3

4

5

6

7

C
(d

∗
)

C
(d̄
)

NE
PoA bound
Uniform
Exponential
Weibull

Figure 12: The cost ratio and the upper bound on the PoA for the elastic and non-
elastic cloud (p = 1), uniform, exponential and Weibull distributions of the input
data sizes, A= 3 APs, N = 12 MUs.

an efficient decentralized algorithm for coordinating computation offloading among
autonomous MUs.

7 Related Work
There is a significant body of works that deals with the design of energy efficient
computation offloading for a single mobile user [3,4,6,21,33–35]. The experimental
results in [34] showed that significant battery power savings can be achieved by
computation offloading. [6] studied the commmunication overhead of computation
offloading and the impact of bandwidth availability on an experimental platform.
[3] proposed a code partitioning solution for fine-grained energy-aware computation
offloading. [21] proposed an algorithm for offloading partitioned code under band-
width and delay constraints. [4] proposed CPU frequency and transmission power
adaptation for energy-optimal computation offloading under delay constraints. [35]
modeled the offloading problem under stochastic task arrivals as a Markov decision
process and provided a near-optimal offloading policy.

A number of recent works considered the problem of joint energy minimization
for multiple mobile users [13, 14, 36]. [13] studies computation partitioning for
streaming data processing with the aim of maximizing throughput, considering
sharing of computation instances among multiple mobile users, and proposes a
genetic algorithm as a heuristic for solving the resulting optimization problem. [36]
models computation offloading to a tiered cloud infrastructure under user mobility
in a location-time workflow framework, and proposes a heuristic for minimizing the
users’ cost. [14] aims at minimizing the mobile users’ energy consumption by joint
allocation of radio resources and cloud computing power, and provides an iterative

118

100 200 300 400 500 600 700 800 900 1000 1100

N

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
er

of
It
er
at
io
n
s

I=10-random

I=10-LRF

I=100-random

I=100-LRF

elastic cloud

non-elastic cloud, p = 1

Figure 13: Number of iterations vs. number of MUsN for the elastic and non-elastic
cloud (p= 1), A=10 and 100 APs.

algorithm to find a local minimum of the optimization problem.
A few recent works provided a game theoretic treatment of computation offload-

ing in a game theoretical setting [7, 37–41]. [37] considers a two-stage problem,
where first each mobile user decides what share of its task to offload so as to min-
imize its energy consumption and to meet its delay deadline, and then the cloud
allocates computational resources to the offloaded tasks. [38] considers a two-tier
cloud infrastructure and stochastic task arrivals and proves the existence of equilib-
ria and provides an algorithm for computing and equilibrium. [40] considers tasks
that arrive simultaneously, a single wireless link, and elastic cloud, and show the
existence of equilibria when all mobile users have the same delay budget. Our work
differs from [37] in that we consider that the allocation of cloud resources is known
to the mobile users, from [38] in that we take into account contention in the wireless
access, and from [40] in that we consider multiple wireless links and a non-elastic
cloud.

Most related to our work are the problems considered in [7,12,39,41]. [12] con-
siders a system where multiple devices can offload their tasks to a non-elastic cloud
through one of multiple shared heterogeneous wireless links. Different from [12], we
consider that devices besides offloading through shared heterogeneous wireless links
can offload their tasks through a non-shared link, and we consider that devices use
different transmit powers for different wireless links when they offload their tasks
to the cloud. [7] considers contention on a single wireless link and an elastic cloud,
assumes upload rates to be determined by the Shannon capacity of an interference
channel, and shows that the game is a potential game. [39] extends the model
to multiple identical wireless links, shows that the game is still a potential game,
and that the same algorithm as in [7] can be used for computing an equilibrium
allocation. Unlike these works, we consider heterogeneous wireless links, fair band-
width sharing and a non-elastic cloud. [41] considers multiple wireless links, fair

119

bandwidth sharing and a non-elastic cloud, and claims the game to have an exact
potential. In our work we on the one hand extend the model to an elastic cloud, on
the other hand we show that an exact potential cannot exist in case of a non-elastic
cloud, but at the same time we prove the existence of an equilibrium allocation,
provide an efficient algorithm with quadratic complexity for computing one, and
provide a bound on the price of anarchy.

Besides providing efficient distributed algorithms for computing equilibria, the
importance of our contribution lies in the fact that while games with an elastic cloud
are player-specific singleton congestion games for which the existence of equilibria
is known [24], the non-elastic cloud model does not fall in this category of games
and thus no general equilibrium existence result exists.

8 Conclusion
We have provided a game theoretic analysis of selfish mobile computation offload-
ing. We proposed a polynomial complexity algorithm for computing equilibrium
allocations of the wireless and cloud resources, and provided a bound on the price
of anarchy, which serves as an approximation ratio bound for the optimization prob-
lem. Our numerical results show that the proposed algorithms and the obtained
equilibria provide good system performance irrespective of the number of mobile
users and access points, for various distributions of the input data size and task
complexity, and confirm the low complexity of the proposed algorithms.

References
[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented assembly

using a mobile phone,” in Proc. of IEEE/ACM ISMAR, Sept 2008, pp. 167–
168.

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uwave:
Accelerometer-based personalized gesture recognition and its applications,” in
Proc. of IEEE PerCom, March 2009, pp. 1–9.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: Making smartphones last longer with code offload,” in
Proc. of ACM MobiSys, 2010, pp. 49–62.

[4] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution:
Taming resource-poor mobile devices with cloud clones,” in Proc. of IEEE
INFOCOM, March 2012, pp. 2716–2720.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI White Paper, pp. 1–16, 2015.

120

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,” in Proc. of IEEE
INFOCOM, 2013, pp. 1285–1293.

[7] X. Chen, “Decentralized computation offloading game for mobile cloud com-
puting,” IEEE TPDS, vol. 26, no. 4, pp. 974–983, 2015.

[8] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms
with pace,” in ACM SIGMETRICS Performance Evaluation Review, vol. 29,
no. 1. ACM, 2001, pp. 50–61.

[9] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia
applications,” ACM TOCS, pp. 292–331, 2006.

[10] X. Li, Q. Xue, and M. C. Chuah, “Casheirs: Cloud assisted scalable hierarchical
encrypted based image retrieval system,” in INFOCOM 2017. IEEE, 2017,
pp. 1–9.

[11] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong, “Securing
elastic applications on mobile devices for cloud computing,” in Proceedings of
the 2009 ACM workshop on Cloud computing security. ACM, 2009, pp. 127–
134.

[12] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” in Proc. of IEEE INFOCOM, May 2017.

[13] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for parti-
tioning and execution of data stream applications in mobile cloud computing,”
SIGMETRICS Perform. Eval. Rev., pp. 23–32, Apr. 2013.

[14] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE T-SIPN,
vol. 1, no. 2, pp. 89–103, Jun. 2015.

[15] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “An iterative double auction
for mobile data offloading,” in Proc. of WiOpt, May 2013, pp. 154–161.

[16] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime fairness for ieee
802.11 multirate networks,” IEEE Transactions on Mobile Computing, vol. 7,
no. 4, pp. 513–527, 2008.

[17] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-control scheme
in wireless cellular systems,” IEEE/ACM Transactions on networking, vol. 11,
no. 2, pp. 210–221, 2003.

[18] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control
via pricing in wireless data networks,” IEEE transactions on Communications,
vol. 50, no. 2, pp. 291–303, 2002.

121

[19] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 4th ed. Morgan Kaufmann Publishers Inc.,
2011.

[20] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. Michalk,
and J. Stößer, “Cloud computing–a classification, business models, and research
directions,” Business & Information Systems Engineering, vol. 1, no. 5, pp.
391–399, 2009.

[21] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Transactions on Wireless Communications, vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[22] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[23] D. Monderer and L. S. Shapley, “Potential games,” Games and economic be-
havior, vol. 14, no. 1, pp. 124–143, 1996.

[24] I. Milchtaich, “Congestion games with player-specific payoff functions,” Games
and Economic Behavior, vol. 13, no. 1, pp. 111 – 124, 1996.

[25] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Be-
havior, vol. 14, no. 1, pp. 124 – 143, 1996.

[26] T. Roughgarden, “Intrinsic robustness of the price of anarchy,” Journal of the
ACM (JACM), vol. 62, no. 5, p. 32, 2015.

[27] A. Aragon-Zavala, Antennas and propagation for wireless communication sys-
tems. John Wiley & Sons, 2008.

[28] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: a measurement study and implications for
network applications,” in Proc. of the 9th ACM SIGCOMM conference, 2009,
pp. 280–293.

[29] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[30] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, andW. Heinzelman, “Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture,” in ISCC, 2012, pp. 59–66.

[31] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in
cloud computing,” in Proc. of the 2nd USENIX Conf. Hot Topics Cloud Com-
put., 2010, pp. 4–4.

122

[32] G. Hardin, “The tragedy of the commons,” Science.

[33] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp. 129–140,
Feb 2013.

[34] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable
computer battery power through remote process execution,” ACM Mob. Com-
put. Commun. Rev., pp. 19–26, Jan 1998.

[35] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs: Robust
offloading using the Markov decision processes,” in Proc. of IEEE WoWMoM,
Jun. 2015, pp. 1–9.

[36] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC:
Mobility-aware optimal service allocation in mobile cloud computing,” in Proc.
of IEEE CLOUD, Jun. 2013, pp. 75–82.

[37] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimiza-
tion framework in mobile cloud computing system,” in SOSE, Mar. 2013, pp.
494–502.

[38] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. Lo Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming, pp. 1–29,
2015.

[39] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM ToN, pp. 2795–2808, 2016.

[40] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient offload-
ing for competing users on a shared communication channel,” in Proc. of IEEE
ICC, Jun. 2015, pp. 3192–3197.

[41] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computa-
tion offloading for cloudlet-based mobile cloud computing,” in Proc. of ACM
MSWiM, 2015, pp. 271–278.

Paper C
Computation Offloading Scheduling
for Periodic Tasks in Mobile Edge

Computing

Slađana Jošilo and György Dán
IEEE/ACM Transactions on Networking (ToN), vol. 28, no. 2, pp.

667-680, 2020.

123

Computation Offloading Scheduling for Periodic
Tasks in Mobile Edge Computing

Slađana Jošilo and György Dán
Division of Network and Systems Engineering,

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo, gyuri}@kth.se ∗

Abstract
Motivated by various delay sensitive applications, we address the problem

of coordinating the offloading decisions of wireless devices that periodically
generate computationally intensive tasks. We consider autonomous devices
that aim at minimizing their own cost by choosing when to perform their
tasks and whether or not to offload their tasks to an edge cloud through one
of the multiple wireless links. We develop a game theoretical model of the
problem, prove the existence of pure strategy Nash equilibria and propose a
polynomial complexity algorithm for computing an equilibrium. Furthermore,
we characterize the structure of the equilibria, and by providing an upper
bound on the price of anarchy of the game we establish an asymptotically tight
bound on the approximation ratio of the proposed algorithm. Our simulation
results show that the proposed algorithm achieves significant performance
gain compared to uncoordinated computation offloading at a computational
complexity that is on average linear in the number of devices.

Index terms— computation offloading, edge computing, game theory, decentralized
resource management

1 Introduction
The emergence of affordable wireless sensors, such as cameras, has given rise to a
variety of Internet of Things (IoT) applications, including surveillance [1], tracking [2]
and traffic monitoring [3]. These applications typically involve the periodic collection
of sensory data, which need to be processed in a timely manner to ensure the stability
of potential feedback control loops. Processing often involves some form of machine
∗The work was partly funded by the Swedish Research Council through project 621-2014-6.

125

126

learning, e.g., visual analysis, which may be too computationally intensive to be
performed in the sensors.

A promising solution to enable the timely processing of computationally intensive
IoT tasks is mobile edge computing (MEC) [4]. Opposed to traditional remote cloud
infrastructures such as Amazon and Azure [5], MEC provides computing resources
close to the end users, i.e., at the network edge, which makes it a better candidate
for meeting the requirements of delay sensitive IoT applications.

By offloading the computation to nearby edge clouds [6], devices may be able
to significantly reduce their response times and energy consumption and thus to
extend the lifetime of their batteries. Nevertheless, without coordination of their
offloading decisions, devices in MEC systems might experience poor performance due
to contention for communication and computing resources. Therefore, in order to use
MEC systems to their full potential the autonomous devices need to coordinate their
offloading decisions over time and across communication and computing resources.

There are several challenges facing the coordination of offloading decisions of
autonomous devices in MEC systems. First, edge clouds are not as computationally
powerful as remote clouds, and thus the response time and energy consumption
of devices may be affected by contention for both communication and computing
resources [7–9]. Second, MEC systems are likely to combine heterogeneous com-
munication and computing resources, and thus coordination of offloading decisions
involves not only deciding whether or not to offload the tasks, but also which of the
communication and computing resources to use in the case of offloading. Third, IoT
devices such as vehicles, drones and manufacturing machines [10] may be autonomous
entities with different computing capabilities and tasks, and thus with individual
interests in terms of response time and energy consumption requirements [11,12].
Finally, besides the allocation of edge resources, coordination for offloading periodic
tasks involves deciding when to process the collected sensory data and it may also
affect the optimal time for sensing, so as to minimize the age of information [13, 14].
All these challenges make the problem of coordinating the offloading decisions of
autonomous devices inherently difficult.

In this paper we address this problem for a MEC system in which the devices
aim at minimizing their cost defined as a linear combination of the task completion
time and the energy consumption. Each device can choose autonomously the time
slot for performing its periodic task and in the chosen time slot it can decide whether
to perform the task locally or to offload it to an edge cloud through one of multiple
heterogeneous wireless links.

We make three important contributions to solve the problem. First, based on
a game theoretical treatment of the problem, we propose a polynomial time de-
centralized algorithm for coordinating the offloading decisions of the devices, and
prove the convergence of the algorithm to a pure strategy Nash equilibrium. Second,
we characterize the structure of the computed equilibrium. Third, we establish an
asymptotically tight upper bound on the price of anarchy of the game, and by doing
so we show that a the proposed algorithm has a bounded approximation ratio. We

127

use simulations to assess the performance of the proposed algorithm in a variety
of scenarios. Our results show that the algorithm can efficiently coordinate the
offloading decisions of autonomous devices with periodic tasks at low computational
complexity.

The rest of the paper is organized as follows. In Section 2 we present the system
model and the problem formulation. In Section 4 we present the algorithm, prove
its convergence and characterize the structure of computed equilibria. In Section 5.2
we provide a bound on the approximation ratio and in Section 6 we show numerical
results. In Section 7 we discuss related work and in Section 8 we conclude the paper.

2 System Model
We consider an edge computing system that consists of N devices, A access points
(APs) and an edge cloud. We denote by N={1,2, ...,N} and A={1,2, ...,A} the set
of devices and the set of APs, respectively. For ease of reference, the key notations
used in the paper are summarized in Table 1.

We consider that device i generates a computationally intensive task periodically
every T time units, and we characterize the task by the mean size Di of the input
data and by the mean number of CPU cycles Li required to perform the computation.
Similar to related works on mobile cloud computing [15–17], we define the mean
number of CPU cycles as Li=DiE[X], where E[X] is the mean number of CPU cycles
required per data bit. We assume that E[X] is known from previous measurements,
which is reasonable for periodically generated tasks; in fact X is often modeled
by a Gamma distribution [18–20], for which unbiased estimators exist [21]. It is
important to note that our model is based on the average complexity and thus it
does not depend on the distribution. Furthermore, the assumption of homogeneous
task periodicities is reasonable for modeling the surveillance of homogeneous physical
phenomena and in manufacturing systems as discussed in [22]. We leave the case of
heterogeneous periodicities to be subject of future work.

We consider that time is slotted and we denote by T ={1,2, ...,T} the set of
time slots. Every device can choose a time slot t ∈ T for performing the whole task
<Di,Li > and in the chosen time slot t it can decide whether to perform the task
locally or to offload the computation to the cloud server through an AP a ∈A. Thus,
device i ∈N can choose one element of the discrete set Di = T ×{A∪{i}}, where i
corresponds to local computing. We denote by di∈Di the decision of device i, and
refer to it as its strategy. We refer to the collection d=(di)i∈N as a strategy profile,
and we denote by D=×i∈NDi the set of all feasible strategy profiles.

For a strategy profile d ∈D we denote by O(t,a)(d) = {i|di = (t,a)} the set of
devices that offload using AP a in time slot t, and we denote by n(t,a)(d) = |O(t,a)(d)|
the number of devices that use AP a in time slot t. Furthermore, we define the set
of all devices that offload in time slot t as O(t,c)(d) = ∪a∈AO(t,a)(d), and the total
number of devices that offload in time slot t as n(t,c)(d)=

∑
a∈An(t,a)(d). Finally,

128

Table 1: Summary of key notations

Notation Description
N Set of N devices
A Set of A APs
T Set of T time sots
Di Mean size of the input data for device i
Li Mean task complexity for device i
F 0

i Computational capability of device i
vi Energy consumption of device i per CPU cycle
γT

i Completion time weight for device i
γE

i Energy consumption weight for device i
T 0

i Local execution time for device i
E0

i Local execution energy consumption for device i
C0

i Local computing cost for device i
Ri,a Uplink PHY rate of device i towards AP a

Pi,a Transmit power of device i towards AP a

F c Cloud computing capability
Di Set of feasible decisions for device i
di Decision of device i, di∈Di

d Strategy profile
O(t,a)(d) Set of n(t,a)(d) devices i ∈N s.t. di = (t,a) in d
O(t,c)(d) Set of n(t,c)(d) devices offloading in time slot t in d
O(d) Set of all devices that offload their tasks in d
F c

i,t(d) Cloud computing capability assigned to device i in d
ωi,(t,a)(d) Uplink rate of device i, di = (t,a) in d
T tx

i,(t,a)(d) Transmission time of device i, di = (t,a) in d
Etx

i,(t,a)(d) Energy consumption of device i, di = (t,a) in d
T exe

i,(t,c)(d) Cloud execution time for device i in time slot t in d
T off

i,(t,a)(d) Total offloading time for device i, di = (t,a) in d
Cc

i,(t,a)(d) Offloading cost of device i, di = (t,a) in d
Ci(d) Cost of device i in d

we denote by O(d) = ∪t∈T O(t,c)(d) the set of all devices that offload in strategy
profile d. In what follows we introduce our model of sharing communication and
computing resources among devices that offload their tasks.

2.1 Wireless resource sharing
We denote by Ri,a the achievable uplink rate of device i towards AP (i.e., if device i
was the only transmitter). We consider that Ri,a depends on the the average channel
conditions, modulation and coding scheme and the transmit power Pi,a. Thus, Ri,a

129

depends both on the device i and the AP a. We denote by ωi,(t,a)(d) the allocated
uplink rate of device i at AP a in time slot t and we consider that ωi,(t,a)(d) is a
non-increasing function fa(n(t,a)(d)) of the number n(t,a)(d) of devices that use the
same AP a in time slot t,

ωi,(t,a)(d) =Ri,a×fa(n(t,a)(d)). (1)

This model is a good approximation for throughput sharing mechanisms in TDMA
and OFDMA based MAC protocols [23].

Based on the uplink rate ωi,(t,a)(d) we can express the time needed for device i
to transmit the input data of size Di through AP a in time slot t as

T txi,(t,a)(d) =Di/ωi,(t,a)(d). (2)

We consider that every device i knows the transmit power Pi,a that it would use
to transmit the data through AP a, where Pi,a may be determined using one of
the power control algorithms proposed in [24, 25]. The transmit power Pi,a and
the transmission time T txi,(t,a)(d) determine the energy consumption of device i for
transmitting the input data of size Di through AP a in time slot t

Etxi,(t,a)(d) = Pi,aT
tx
i,(t,a)(d). (3)

2.2 Computing resource sharing
We denote by F c the computational capability of the edge cloud, and we consider
that the computational capability F ci,t(d) that device i receives from the cloud in
time slot t is a non-increasing function fi(n(t,c)(d)) of the total number n(t,c)(d) of
devices that offload in time slot t

F ci,t(d) = F c×fi(n(t,c)(d)). (4)

This model could be used for edge computing systems in which the computing
resources are shared according to a time fair resource allocation policy.

Observe that the time needed for performing device i’s task in the cloud depends
on the chosen time slot through the number of offloaders, and can be expressed as

T exei,(t,c)(d) = Li/F
c
i,t(d). (5)

We consider that a single time slot is long enough for performing each user’s task
both in the case of local computing and in the case of computation offloading. This
assumption is reasonable in the case of real time applications, where the worst-case
task completion time must be less than a fraction of the periodicity.

We can use (2) and (5) to express the task completion time in the case of
offloading as the sum of the transmission time and the execution time,

T off
i,(t,a)(d) = T txi,(t,a)(d) +T exei,(t,c)(d). (6)

130

t
Time	slot	1 Time	slot	2

n(1,C)(d)=2

Fc

APc APa

APb

6 3
1

F1
0

n(12,C)(d)=2

Fc

APc APa

APb

2

F4
0

5
F5

4

8

F7
0

7

0

Edge
coud

Access pointsAccess points

Edge
coud

Figure 1: An example of a mobile cloud computing system that consists of an edge
cloud, A= 3 APs, T = 2 time slots and N = 8 devices.

In (6) we made the common assumption that the time needed to transmit the result
of the computation from the edge cloud to the device can be neglected [7, 26–30],
because for many applications (e.g., object recognition, tracking) the size of the
output data is significantly smaller than the size Di of the input data.

2.3 Local computing
Devices that perform local computing use their own computing resources only. We
denote by F 0

i the computational capability of device i, and we consider that the
computational capability F 0

i of device i is constant over time, and hence the time
needed for device i to perform its task can be expressed as

T 0
i = Li/F

0
i . (7)

To model the corresponding energy consumption, we denote by vi the energy con-
sumption of device i per CPU cycle, which can be obtained through the measurement
method proposed in [31]. We then express the expected energy consumption of device
i for a task that requires on average Li CPU cycles as

E0
i = viLi. (8)

Fig. 1 shows an example of a mobile edge computing system where devices can
choose one out of two time slots to perform the computation. A device can offload
its task to the cloud through one of three APs in its chosen time slot, if it decides to
offload, e.g., in time slot 1 devices 3 and 6 offload their tasks through AP b, and
devices 1 and 7 perform the computation locally.

131

3 Problem Formulation
In what follows we introduce the cost model of the devices and we formulate the
multi-slot computation offloading problem.

3.1 Device Cost Model
To allow for flexibility in modeling the cost, we use the completion time γTi and
the energy consumption γEi weights (0≤ γTi ,γEi ≤ 1) to capture devices’ preferences
over the task completion time and the energy consumption, respectively. The weights
can also be used to account for different units, which allows us to express the cost of
device i as a linear combination of its completion time and its energy consumption,
i.e.,

C0
i = γTi T

0
i +γEi E

0
i . (9)

Similarly we define the cost of device i in the case of offloading through AP a in
time slot t as

Cci,(t,a)(d)=γTi T
off
i,(t,a)(d)+γEi Etxi,(t,a)(d). (10)

By (9) and (10) the cost of device i in strategy profile d is

Ci(d)=
∑

di∈T×{i}
1(t,i)(di)·C0

i+
∑

di∈T×A
1(t,a)(di)·Cci,(t,a)(d), (11)

where 1(t,d)(di) is the indicator function, i.e.,1(t,d)(di) = 1 if di = (t,d) and 1(t,d)(di) =
0 otherwise.

Observe that in the above cost model, devices can adjust their objectives to the
specific application requirements and to their current battery state by changing the
values of the parameters γTi and γEi .

3.2 Multi-slot computation offloading game
We consider that devices are autonomous entities that follow their individual interests,
and thus we consider that the objective of each device is to minimize its own cost
(11), i.e., to find a strategy

d∗i ∈ argmindi∈Di
Ci(di,d−i), (12)

where Ci(di,d−i) is the cost of device i if it chooses strategy di given the strategies
d−i of the other devices. Given the autonomy of the devices, we model the problem
as a strategic game Γ=<N ,(Di)i,(Ci)i>, in which the set of players is the set of
devices (we use these two terms interchangeably). We refer to the game as the
multi-slot computation offloading game (MSCOG). The MSCOG is a player specific
network congestion game, as illustrated in Fig. 2.

132

Ci
0 d

o

v

1 2 Aa

v

fi(n(1,c)(d))

fa(n(1,a)(d))

fi(n(T,c)(d))

v
fa(n(T,a)(d))

Ci
0

1 2 Aa...

1 t... ... T

Figure 2: Network model of the MSCOG.

Our objective is to study fundamental questions related to the existence and
computability of strategy profiles from which no device would want to deviate, i.e.,
pure strategy Nash equilibria, defined as follows [32].

Definition 1. A pure strategy Nash equilibrium (NE) is a strategy profile d∗ in
which all players play their best replies to each others’ strategies, that is,

Ci(d∗i ,d∗−i)≤ Ci(di,d∗−i),∀di ∈Di,∀i ∈N .

Definition 2. Given a strategy profile d=(d′i,d−i), an improvement step of device
i is a strategy d′i such that Ci(d′i,d−i)<Ci(di,d−i). A best improvement step is an
improvement step that is a best reply. A (best) improvement path is a sequence
of strategy profiles in which one device at a time changes its strategy through
performing a (best) improvement step. We refer to the device that makes the best
improvement step as the deviator. Observe that, by definition, no device can perform
a (best) improvement step in a NE. A game in which every (best) improvement path
is finite is said to have the finite (best) improvement property.

4 Computing Equilibria
We start with the analysis of the finiteness of improvement paths. Clearly, if a game
has the finite improvement path property then it has a NE. As a first step, we show
that this is not the case for the MSCOG, that is, improvement paths may be infinite,
even in the case of a single time slot, i.e., T = 1.

Lemma 1. The MSCOG does not have the finite improvement property.

Proof. The proof is given in Appendix A.1.

In what follows we show that although improvement paths may be cyclic, the
MSCOG possesses a NE and a NE can be computed in polynomial time.

133

0

d

o

1 2 a... ...A

~

fi,(1,a)(n(1,a)(d))
~

Ci(N - n(1,c)(d))

Figure 3: Network model of the MSCOG for T = 1.

4.1 Single time slot (T = 1)
We start with considering a single time slot case.
Theorem 1. The MSCOG for T = 1 possesses a pure strategy Nash equilibrium.
Proof. We prove the result by showing that the game is best response equivalent
to a player specific congestion game Γ̃ on a parallel network, i.e., a singleton player
specific congestion game [33]. Observe that if for T =1 we contract the edge (v,d)
in the network shown in Fig. 2, i.e., if we replace the edge (v,d) and its two end
vertices v and d by a single vertex, then we obtain a parallel network shown in Fig. 3.
Let us define the local computation cost of player i in Γ̃ as C̃0

i(N−n(1,c)(d))=C0
i −

fi(1 +n(1,c)(d))+c, and the cost of offloading through AP a as f̃i,(1,a)(n(1,a)(d))=
fi,(1,a)(n(1,a)(d))+c, where c is a suitably chosen constant to make all costs non-
negative. Observe that due to the contraction of the edge (v,d) the offloading cost is
C̃ci,(1,a) =Cci,(1,a)−fi(n(1,c)(d)), and thus the difference between the cost function
of player i in Γ̃ and that in Γ only depends on the strategies of the other players.
This in fact implies that Γ̃ and Γ are best-response equivalent, and thus they have
identical sets of pure strategy Nash equilibria. Since Γ̃ is a singleton player specific
congestion game, it has a NE, and so does Γ, which proves the result.

Furthermore, a Nash equilibrium of the MSCOG can be found in polynomial
time.
Corollary 1. Consider a MSCOG with T = 1 and N players. Let d∗ be a Nash
equilibrium of the game, and consider that a new player is added to the game. Then
there is a sequence of best responses that leads to a NE.
Proof. The result follows from the best response equivalence to Γ̃, and from the
proof of Theorem 2 in [32].

Unfortunately, the contraction technique used in the proof of Theorem 1 cannot
be applied for T > 1, as the resulting game would no longer be a congestion game.

134

4.2 Multiple time slots (T ≥ 1)
In order to answer the question for T ≥ 1 we first show that if a pure strategy NE
exists for T ≥ 1 then its structure cannot be arbitrary.

Theorem 2. Assume that d∗ is a NE of the MSCOG with T ≥ 1. Then the following
must hold
(i) mint′∈T n(t′,c)(d∗)≤n(t,c)(d∗)≤mint′∈T n(t′,c)(d∗)+1 for ∀t,t′∈T ,
(ii) if n(t,c)(d∗) = n(t′,c)(d∗)+1 for some t′ ∈ T \{t}, then n(t,a)(d∗)≤ n(t′,a)(d∗)+1
for every AP a ∈A, and
(iii) if n(t,a)(d∗) = n(t′,a)(d∗)−k for k > 1 and t′ 6= t, then n(t′,c)(d∗)≤ n(t,c)(d∗)≤
n(t′,c)(d∗) + 1.

Proof. Clearly, all statements hold for T =1. Assume that T >1 and ∃t,t′∈T such
that n(t,c)(d∗)>n(t′,c)(d∗)+1. Then ∃a∈A such that n(t,a)(d∗)≥n(t′,a)(d∗)+1.
Therefore, player i∈O(t,a)(d∗) could decrease her cost by changing the strategy to
offloading through AP a in time slot t′. This contradicts d∗ being a NE and proves
(i).

We continue by proving (ii). Assume that there is an AP a such that n(t,a)(d∗)>
n(t′,a)(d∗)+1 holds. Since n(t,c)(d∗)=n(t′,c)(d∗)+1, we have that player i∈O(t,a)(d∗)
could decrease her cost by changing the strategy from (t,a) to (t′,a). This contradicts
d∗ being a NE and proves (ii).

Finally, we prove (iii). First, assume that n(t,c)(d∗)<n(t′,c)(d∗). Since n(t,a)(d∗)<
n(t′,a)(d∗)−1, we have that player i∈O(t′,a)(d∗) could decrease her cost by changing
the strategy from (t′,a) to (t,a). This contradicts d∗ being a NE and proves that
n(t,c)(d∗)≥n(t′,c)(d∗). Second, assume that n(t,c)(d∗)> n(t′,c)(d∗)+1 holds. Since
n(t,a)(d∗) < n(t′,a)(d∗)− 1, there is at least one AP b 6= a such that n(t,b)(d∗) ≥
n(t′,b)(d∗) + 1, and thus player i ∈ O(t,b)(d∗) could decrease her cost by changing
the strategy to (t′, b). This contradicts d∗ being a NE and proves that n(t,c)(d∗)≤
n(t′,c)(d∗) + 1 must hold.

We are now ready to formulate our main result concerning the existence of an
equilibrium in the general case.

Theorem 3. The MSCOG for T ≥ 1 possesses a pure strategy Nash equilibrium.

We provide the proof in the rest of the section, based on the MyopicBest (MB)
algorithm shown in Fig. 4. The MB algorithm adds players one at a time, and lets
them play their best replies given the other players’ strategies in a particular order.
Our proof is based on an induction in the number N of players, and starts with the
following result.

Theorem 4. The MB algorithm terminates in a NE after N steps for the MSCOG
with N ≤ T players.

135

Empty
systemt

Double poked
deviator?

No

Add a new
player

Execute the DPD
algorithm

No

Done

Yes

Self imposed
deviator?

Yes

Perform the SID
improvement step

Deviators?

Yes
All players in

No

the game?

Yes

No

Figure 4: Flow chart of the MB algorithm.

Proof. It is easy to see that if a strategy profile d∗(N) is a NE for N ≤ T then by
Theorem 2 there is at most one player per time slot. The MB algorithm computes
such a strategy profile in N steps since each player upon it is added into the game
chooses an empty time slot to perform its best reply and it has no incentive to
deviate from the chosen strategy in the following induction steps.

We continue by considering the case N>T . Let us assume that for N−1≥T
there is a NE d∗(N −1) and that upon induction step N a new player i enters the
game and plays her best reply d∗i with respect to d∗(N − 1). After that, players
can make best improvement steps one at a time starting from the strategy profile
d = (d∗i ,d

∗(N −1)). If d∗i = (t, i), then n(t,a)(d) = n(t,a)(d∗(N −1)) holds for every
(t,a) ∈ T ×A, and thus d is a NE. Otherwise, if d∗i = (t,a), for some a ∈A, some
players j ∈O(t,a)(d) may have an incentive to make an improvement step because
their communication and cloud computing costs have increased, and some players
j ∈O(t,c)(d)\O(t,a)(d) may have an incentive to make an improvement step because
their cloud computing cost has increased.

In order to define one of the possible best improvement paths that can be

136

(d, t,A′) = DP D(d,d∗(N −1),(t,a),A′)
1: /*Players that want to stop to offload*/
2: D′1 ={j|dj = (t,a),(t, j) = argmind∈Dj

Cj(d,d−j)}
3: /*Player that want to change offloading strategy*/
4: D′2 ={j|dj=(t,a),(t′, b)=argmind∈Dj

Cj(d,d−j) /∈A′,
(t,a) 6= (t′, b)}

5: while |D′1∪D′2|> 0 do
6: /*Players that want to stop to offload have priority*/
7: if |D′1|> 0 then
8: Take i ∈D′1
9: di = (t, i)
10: else
11: Take i ∈D′2
12: Let di = argmind∈T×ACi(d,d−i)
13: Let (t,a)← di
14: end if
15: Let d← (di,d−i)
16: Update A′,D′1,D′2
17: end while
18: return (d, t,A′)

Figure 5: Pseudo code of the DPD algorithm.

generated starting form the strategy profile d = (d∗i ,d
∗(N −1)) we introduce the

term deviator to denote a player that changes its strategy profile.

Definition 3. Consider two successive strategy profiles d′ and d′′ in a best improve-
ment path D that starts from an initial strategy profile d. We say that the path D
is a poke-new-deviator best improvement path if the following conditions hold:

1. If d′′ = (d′′i ,d′−i), then either d′′i = (t, i) or d′′i = (t,a) such that n(t,a)(d′) ≥
n(t,a)(d) (i.e., all deviators are either changing from offloading to local com-
puting or from an offloading strategy to another offloading strategy for which
the number of offloaders is at least as in the initial strategy profile d).

2. If d′′ = (d′′i ,d′−i), then the next best improvement step can be performed only
by a player j ∈N \{i} such that d′′j = d′′i (i.e. every next deviator has to be a
player that wants to deviate from the strategy that has been chosen by the
previous deviator).

Among all players that want to deviate from strategy profile d = (d∗i ,d
∗(N −1)),

the MB algorithm allows players j ∈O(t,a)(d) to perform best improvement steps,
using the DoublePokeDeviator (DPD) algorithm, which creates poke-new-deviator
best improvement paths. The pseudo code of the DPD algorithm is shown in Fig. 5.
According to the definition of a poke-new-deviator best improvement path, there

137

are two types of players that can make a best improvement step using the DPD
algorithm. The first type are players j ∈O(t,a)(d) for which a best reply is to stop
to offload. The second type are players j ∈ O(t,a)(d) for which a best reply is an
offloading strategy (t′, b) ∈ T ×A\{(t,a)} for which the number of offloaders in d is
not smaller than the number of offloaders in the NE d∗(N −1). In each iteration,
the DPD algorithm allows either one player of the first type, or one player of the
second type to perform a best improvement step. In what follows we prove that
the poke-new-deviator best improvement paths are finite and we provide an upper
bound on the convergence of the DPD algorithm.

Proposition 1. In a poke-new-deviator best improvement path generated by the
DPD algorithm each player deviates at most once.

Proof. Let us denote by d′ a strategy profile after a player j ∈O(t,a)(d) performs
its best improvement step. First, observe that if player j’s best improvement step is
to stop to offload, then the resulting poke-new-deviator path terminates since only
players that play the same strategy as the previous deviator are allowed to perform
best improvement steps.

Otherwise, if player j’s best improvement step is (t′, b)∈T ×A\{(t,a)}, then
n(t′,b)(d′) = n(t′,b)(d) + 1 holds, and we can have one of the following: (1) there
is no player j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b), (2) there is a player
j′ ∈O(t′,b)(d) that wants to deviate from (t′, b).

If case (1) happens then the resulting poke-new-deviator path terminates because
none of the players playing the same strategy as the previous deviator want to
deviate. Otherwise, if case (2) happens then a new best improvement step can be
triggered, which will bring the system to a state where n(t′,b)(d′) = n(t′,b)(d) holds.

In what follows we show that none of the players that has changed its offloading
strategy in one of the previous best improvement steps would have an incentive
to deviate again. Let us consider a player j′ that changed its strategy from (t′, b)
to another offloading strategy, and let us assume that in one of the subsequent
best improvement steps one of the players changes its offloading strategy to (t′, b),
and thus it brings the system to a state where n(t′,b)(d′) = n(t′,b)(d) + 1 holds. We
observe that player j that has changed its strategy from (t,a) to (t′, b) before player
j′ deviated from (t′, b) would have no incentive to deviate from its strategy (t′, b)
after a new player starts offloading through AP b in time slot t′. This is because (t′, b)
was its best response while player j′ was still offloading through AP b in time slot
t′, i.e, while n(t′,b)(d′) = n(t′,b)(d) + 1 was true. Therefore, a new best improvement
step can be triggered only if there is another player that wants to change from (t′, b)
to another offloading strategy. If this happens, n(t′,b)(d′) = n(t′,b)(d) will hold again,
and thus the maximum number of players that offload through AP b in time slot t′
will be at most n(t′,b)(d)+1 in all subsequent best improvement steps. Consequently,
player j would have no incentive to leave AP b in time slot t′ in the subsequent steps.
Therefore, each player deviates at most once in a poke-new-deviator best improvement
path generated by the DPD algorithm, which proves the proposition.

138

Corollary 2. The length of a poke-new-deviator best improvement path generated
by the DPD algorithm is at most N −1.

Proof. It follows from Proposition 1 that the DPD algorithm can generate a longest
poke-new-deviator best improvement path upon induction step N if every player
j ∈O(d∗(N −1)) performs an improvement step, which proves the result.

The DPD algorithm may be called multiple times during the execution of the
MB algorithm, but as we show next for any fixed N , it is called a finite number of
times.

Proposition 2. The DPD algorithm is executed a finite number of times for any
particular N .

Proof. Let us assume that the DPD algorithm has been called at least once during
the execution of the MB algorithm, and let us denote by d′ the most recent strategy
profile computed by the DPD algorithm. Now, let us assume that in the next best
improvement step generated by the MB algorithm a player i∈O(d′)∪L(d′) changes
its strategy to (t,a)∈T ×A. Starting from a strategy profile d=((t,a),d′−i) players
j∈O(t,a)(d) are allowed to perform the next best improvement step using the DPD
algorithm.

Observe that players j′ ∈O(t,a)(d′) that in the previous best improvement steps
changed their strategy to (t,a) using the DPD algorithm and triggered one of the
players to leave the same strategy (t,a) would have no incentive to perform a best
improvement step using the DPD algorithm. This is because the previous deviators
j′ ∈O(t,a)(d′) brought n(t,a)(d′) to its maximum, that is to n(t,a)(d∗(N −1))+ 1,
which decreased again to n(t,a)(d∗(N −1)) after the next deviator left strategy (t,a).
Since the number of previous deviators j′ ∈ O(t,a)(d′) that have no incentive to
perform a new best improvement step using the DPD algorithm increases with
every new best improvement path generated by the DPD algorithm, players will
stop performing best improvement steps using the DPD algorithm eventually, which
proves the proposition.

So far we have proved that the DPD algorithm generates a finite number of
poke-new-deviator best improvement paths, each of them with a length of at most
N −1. In the following we use this result for proving the convergence of the MB
algorithm. The pseudo code of the algorithm is shown in Fig. 6.

Proof of Theorem 3. We continue with considering all conditions under which the
DPD algorithm may have terminated. First, let us assume that the last deviator’s best
improvement step is a strategy within time slot t′. The proof of Proposition 2 shows
that the DPD algorithm terminates if one of the following happens: (i) starting from
a strategy profile d = (d∗i ,d

∗(N −1)) all players performed their best improvement
steps, (ii) some players did not deviate and the last deviator’s strategy was (t′,0),
i.e., the last deviator changed to local computing in time slot t′, (iii) some players did

139

d∗ = MB(N ,T ,A,F c,F 0
i)

1: Let N ← 1
2: for N = 1 . . . |N | do
3: Let A′←∅ /*APs with decreased number of offloaders*/
4: Let i←N
5: d∗i = argmind∈Di

Ci(d,d∗(N −1))
6: Let d← (d∗i ,d∗(N −1))
7: if d∗i = (t,a) s.t. a ∈A then
8: /*Players j ∈O(t,a)(d) play best replies*/
9: (d′, t′,A′) = DP D(d,d∗(N −1),(t,a),A′)
10: if ∃j∈O(t′,c)(d′),∃dj∈Dj s.t.Cj(dj ,d′−j)<Cj(d′j ,d′−j)then
11: /*Players j ∈O(t,c)(d′) play best replies*/
12: dj = argmind∈Dj

Cj(d,d′−j)
13: Let d← (dj ,d′−j), update A′

14: if ∃i∈Odi
(d),di 6=argmind∈Di

Ci(d,d−i) /∈A′ then
15: Let (t,a)← dj , go to 9
16: else
17: Let d′← d
18: end if
19: end if
20: if A′ 6= ∅ then
21: /*Players j ∈O(d′)∪L(d′) play best replies*/
22: (d,(t,a),A′) = SID(d′,A′)
23: if ∃i∈O(t,a)(d),di 6=argmin

d∈Di

Ci(d,d−i) /∈A′ then

24: go to 9
25: else if ∃i∈O(d)∪L(d),di 6=argmin

d∈Di

Ci(d,d−i)∈A′ then

26: Let d′← d, go to 22
27: end if
28: end if
29: end if
30: Let d∗(N)← d′
31: end for
32: return d∗(N)

Figure 6: Pseudo code of the MB algorithm.

not deviate and there was no player that wanted to change from the last deviator’s
strategy (t′, b) ∈ T ×A.

Let us first consider case (i), and the last deviator that performed its best
improvement step. If its best improvement step was to stop to offload, n(t,a)(d′) =
n(t,a)(d∗(N −1)) holds for every (t,a) ∈ T ×A. Otherwise, if a best improvement
step of the last deviator was to change its offloading strategy to (t′, b), we have that
n(t,a)(d′)≥ n(t,a)(d∗(N−1)) for every (t,a)∈T ×A, where the strict inequality holds

140

only for (t′, b), and n(t′,b)(d′) = n(t′,b)(d∗(N −1)) + 1. Since there is no offloading
strategy for which the number of offloaders is less than the number of offloaders
in the NE d∗(N −1), there is no player j∈O(d′) that can decrease its offloading
cost. Furthermore, there is no player that wants to change its strategy from local
computing to offloading, and thus a strategy profile computed by the DPD algorithm
is a NE.

If case (ii) or case (iii) happen the MB algorithm allows players that offload in the
same time slot as the last deviator to perform any type of best improvement steps.
Furthermore, if case (ii) happens and there are no APs with decreased number of
offloaders compared with the NE d∗(N−1), i.e., n(t,a)(d′) = n(t,a)(d∗(N−1)) holds
for every (t,a) ∈ T ×A, then the strategy profile d′ computed by the DPD algorithm
is a NE. Observe that n(t,a)(d′) = n(t,a)(d∗(N −1)) holds for every (t,a) ∈ T ×A if
strategy profile d′ is obtained by the DPD algorithm starting from strategy profile
d = (d∗i ,d

∗(N −1)).
Otherwise, if case (ii) happens such that there is a strategy (t,a)∈T ×A for

which n(t,a)(d′)<n(t,a)(d∗(N−1)) holds, then players j ∈O(t′,c)(d′) that offload in
the same time slot as the last deviator may want to change their offloading strategy
to (t,a). Let us assume that there is a player j ∈O(t′,c)(d′) that wants to change its
offloading strategy to (t,a) and let us denote by d a resulting strategy profile. Since
n(t,a)(d) = n(t,a)(d′)+1 and n(t,c)(d) = n(t,c)(d′)+1 hold, some players j ∈O(t,a)(d)
may want to perform a best improvement step using the DPD algorithm, which can
happen only a finite number of times accoring to Proposition 2.

We continue the analysis by considering case (iii). Observe that if there is a
strategy (t,a) for which n(t,a)(d′) < n(t,a)(d∗(N − 1)) players j ∈ O(t′,c)(d′) that
offload in the same time slot as the last deviator may want to change their offloading
strategy to (t,a). Furthermore, players j ∈O(t′,c)(d′)\O(t′,b)(d′) may want to stop
to offload or to change to any offloading strategy (t,a) ∈ T ×A\{(t′, b)} since their
cloud computing cost increased. Let us assume that there is a player j ∈O(t′,c)(d′)
that wants to change its offloading strategy to (t,a) ∈ T ×A \ {(t′, b)} and let
us denote by d the resulting strategy profile. Since n(t,a)(d) = n(t,a)(d′) + 1 and
n(t,c)(d) = n(t,c)(d′) + 1 hold, some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which can happen only a finite
number of times according to Proposition 2.

If case (ii) or case (iii) happens and there is no player j ∈O(t′,c)(d′) that wants
to deviate, the MB algorithm allows players from the other time slots t ∈ T \{t′} to
perform best improvement steps using SelfImposedDeviator (SID) algorithm shown
in Fig. 7. Observe that players from time slots t ∈ T \{t′} are not poked to deviate
by the other players, and only reason why they would have an incentive to deviate
is that n(t,a)(d′) < n(t,a)(d∗(N −1)) holds for some strategies (t,a) ∈ T ×A. The
SID algorithm first allows one of the players j ∈ O(d′) \O(t′,c)(d′) that already
offloads to perform a best improvement step, and if there is no such player the SID
algorithm allows one of the players j ∈ L(d′) that performs computation locally to

141

(d,(t,a),A′) = SID(d,A′)
1: /*Players that offload and can decrease their offloading cost*/
2: D1={j∈O(d)|(t,a)=argmind∈Dj

Cj(d,d−j)∈A′,dj 6=(t,a)}
3: /*Players that compute locally and want to start to offload*/
4: D2 ={j∈L(d)|(t,a)=argmind∈Dj

Cj(d,d−j) ∈A′}
5: if |D1∪D2| 6= ∅ then
6: /*Players that offload have priority*/
7: if D1 6= ∅ then
8: Take i ∈D1
9: else if D2 6= ∅ then
10: Take i ∈D2
11: end if
12: d′i = argmind∈Di

Ci(d,d−i)
13: Let d← (d′i,d−i)
14: Let (t,a)← d′i
15: Update A′

16: end if
17: return (d,(t,a),A′)

Figure 7: Pseudo code of the SID algorithm.

start to offload. Let us assume that there is a strategy (t,a) for which n(t,a)(d′)<
n(t,a)(d∗(N −1)) holds and that there is a player j ∈O(d′)\O(t′,c)(d′)∪L(d′) that
wants to deviate to strategy (t,a). We denote by d the resulting strategy profile,
after player j performs its best improvement step. Since n(t,a)(d) = n(t,a)(d′) + 1
and n(t,c)(d) = n(t,c)(d′) + 1 hold, some players j ∈O(t,a)(d) may want to perform
a best improvement step using the DPD algorithm, which can happen only a finite
number of times according to Proposition 2. Finally, let us consider case (iii) such
that there is a player j ∈O(t′,c)(d′)\O(t′,b)(d′) that wants to stop to offload because
its cloud computing cost increased. Let us denote by d a strategy profile after
player j changes its strategy from (t′,a) 6= (t′, b) to local computing. We have
that n(t′,a)(d) = n(t′,a)(d′)−1, and if n(t′,a)(d′) = n(t′,a)(d∗(N −1)) we have that
players j′ ∈ O(d) \O(t′,a)(d) may have an incentive to change their offloading
strategy to (t′,a) if doing so decreases their offloading cost. We have seen that a
best improvement step of this type can trigger the DPD algorithm a finite number
of times according to Proposition 2. Now, let us assume that a player j′ ∈O(t,b)(d),
where (t,b) ∈ T ×A \ {(t′,a)}, changes its offloading strategy from (t,b) to (t′,a),
and that by doing so it does not trigger the DPD algorithm. The resulting strategy
profile d= ((t′,a),d−j′) is such that n(t,b)(d) = n(t,b)(d′)−1 holds, and if n(t,b)(d′) =
n(t,b)(d∗(N − 1)) some players may have an incentive to change their offloading
strategy to (t,b) if doing so decreases their offloading cost.

We continue by considering the case where all subsequent best improvement
steps are such that deviators change to a strategy for which the number of offloaders

142

is less than the number of offloaders in the NE d∗(N − 1) and by doing so they
do not trigger the DPD algorithm. Therefore, the resulting best improvement path
is such that the cost of each deviator decreases with every new best improvement
step it makes. Assume now that after k ≥ 2 improvement steps player j′ wants to
return back to strategy (t,b). By the definition of the resulting best improvement
path, the cost of player j′ in the (k+1)-th improvement step is not only less than
the cost in the k-th best improvement step, but also less than its cost in the first
best improvement step. Therefore, player j′ will not return to a strategy it deviated
from, and thus it will deviate at most T ×A−1 times. Consequently, when there are
no players that can trigger the DPD algorithm, players that change their startegy
from local computing to offloading using the SID algorithm, can only decrease their
offloading cost in the subsequent best improvement steps, and thus they would have
no incentive to stop to offload. Since the number of players is finite, the players
will stop changing from local computing to offloading eventually, which proves the
theorem.

Even though the convergence proof of the MB algorithm is fairly involved, the
algorithm itself is computationally efficient, as we show next.

Theorem 5. When a new player i enters the game in an equilibrium d∗(N −1),
the MB algorithm computes a new equilibrium d∗(N) after at most N ×T ×A−2
best improvement steps.

Proof. In the worst case scenario the DPD algorithm generates an N −2 steps long
best improvement path, and a player that offloads in the same time slot as the last
deviator, but not through the same AP changes to local computing, because its
cloud computing cost increased. Observe that the worst case scenario can happen
only if |O(d∗(N − 1))| = N − 1 holds. Furthermore, N − 2 players will have an
opportunity to deviate using the DPD algorithm and a player that offloads in the
same time slot as the last deviator will have an opportunity to stop to offload
only if n(t,a)(d∗(N − 1)) = n(t′,b)(d∗(N − 1)) holds for every (t,a),(t′, b) ∈ T ×A.
Furthermore, in the worst case scenario, the best improvement path generated by the
DPD algorithm is followed by an N × (T ×A−1) long best improvement path, in
which deviators change to a strategy for which the number of offloaders is less than
the number of offloaders in the NE d∗(N−1) and by doing so they do not trigger the
DPD algorithm. Therefore, a NE can be computed in at most N−2+N×(T ×A−1)
best improvement steps.

By adding players one at a time, it follows that the MB algorithm has quadratic
worst case complexity.

Theorem 6. The MB algorithm computes a NE allocation in O(N2×T ×A) time.

143

NE?
yes

no

APb

APa

congestion

d7(t)
*

update the next device about th
e

congestio
n on the resource

s

implement the NE

step 1:

step 2:

APc

7

6

5

4
3

2

1

edge cloud

d7(t)
*

Figure 8: Example of the interaction between the centralized entity and devices 1
and 7 in a decentralized implementation of the MB algorithm.

4.3 Implementation considerations
Motivated by potential use cases that rely on the autonomy of devices [10], we
consider that the MB algorithm can be implemented in a decentralized manner, by
letting devices perform the best improvement steps one at a time. For computing a
best response, besides its local parameters (e.g. Di, Li,F 0

i), each device i requires
information about achievable uplink rates, available cloud resources, and the number
of users sharing the APs and the cloud. In practice these information can be provided
by a centralized entity that is the part of the infrastructure, e.g., the cloud, and that
stores information about the mobile cloud computing system. The advantages of such
a decentralized implementation compared to a centralized one are threefold. First, it
supports the autonomy of the devices in MEC systems by allowing them to make
their own offloading decisions based on the information provided by the centralized
entity. Second, it can relieve the cloud from complex centralized management. Third,
devices do not need to reveal their parameters, but only their most recent decisions.

Fig. 8 illustrates the interaction between the centralized entity located in the
cloud and the devices during the process of computing a NE in a decentralized way
using the MB algorithm. The centralized entity sends the information about the
system (i.e. the information about the resources and the congestion on the resources
in each time slot) to the devices that are allowed to update their best responses
in a certain order. Given the most recent information provided by the centralized
entity, each device upon its turn computes a set of best responses and sends its
best offloading decision back to the centralized entity. After receiving the offloading
decision of the device, the centralized entity sends the updated information about
the congestion on the resources to the next device that is supposed to update its

144

offloading decision. Observe that at some point in time, according to Theorem 3
and Theorem 6, the offloading decisions of all devices will be the same as the ones
that they reported in the previous iteration and the reached state will be a NE of
the MSCOG. Once such a state is reached, the centralized entity can implement the
computed NE by allocating the communication and cloud resources to the devices
according to their equilibrium offloading decisions.

5 NE Structure and Price of Anarchy
In what follows we characterize the structure of a NE computed by the MB algorithm
and provide a bound on the price of anarchy of the game.

5.1 Equilibrium characterization
Recall that by Theorem 2, if a NE exists for T ≥ 1 then the number of players is
balanced across the time slots. Our next result characterizes a NE computed by the
MB algorithm from the perspective of the number of offloaders per AP.

Lemma 2. Consider a NE d∗(N − 1) computed by the MB algorithm upon an
induction step for some T < N ≤ |N |. Assume that a new player i enters the game
and given the NE d∗(N−1) plays its best reply d∗i (N) = (t′,a). If n(t′,a)(d∗(N−1))>
n(t,a)(d∗(N −1)) for the same AP a and a time slot t ∈ T \{t′}, then the following
holds
(i) n(t,c)(d∗(N −1)) = n(t′,c)(d∗(N −1)) + 1,
(ii) A> 2,
(iii) n(t,a)(d∗(N −1)≥ n(t′,a)(d∗(N −1))− (A−2), and
(iv) if n(t′,a)(d∗(N −1))−n(t,a)(d∗(N −1)) = ka for 1≤ ka ≤A−2 holds for every
AP a ∈ B ⊂A, B 6= ∅, then ∑a∈B ka ≤A−2 must hold.

Proof. We start with proving (i). The only reason why player i would choose to
offload through AP a in time slot t′, which is more congested than AP a in time
slot t is that the cloud in time slot t is more congested than the cloud in time slot t′,
that is, n(t,c)(d∗(N −1))=n(t′,c)(d∗(N −1)) + 1 must hold, which proves (i).

We continue by proving (ii). It is easy to see that if A = {a}, then player i’s best
reply has to be a strategy (t′,a) for which n(t′,a)(d∗(N − 1)) ≤ n(t,a)(d∗(N − 1))
holds. Now, let us assume that A = {a,b}. It follows from n(t′,a)(d∗(N − 1)) >
n(t,a)(d∗(N −1)) and (i) that n(t,b)(d∗(N −1)) > n(t′,b)(d∗(N −1)) + 1, and thus
player j ∈O(t,b)(d∗(N−1)) could decrease its cost by changing the strategy to (t′, b).
This contradicts d∗(N −1) being a NE, and proves (ii).

Next, we prove (iii). Assume that n(t,a)(d∗(N−1))<n(t′,a)(d∗(N−1))− (A−2)
holds, which is equivalent to n(t,c)(d∗(N−1))−∑b 6=an(t,b)(d∗(N−1))<n(t′,c)(d∗(N
−1))−∑b 6=an(t′,b)(d∗(N−1))− (A−2). It follows from (i) that n(t,c)(d∗(N−1)) =
n(t′,c)(d∗(N−1))+1, and thus we have that

∑
b 6=an(t,b)(d∗(N−1))>

∑
b6=an(t′,b)(d∗

145

(N−1))+A−1 holds. Therefore, there is at least one AP b 6= a such that n(t,b)(d∗(N−
1)) > n(t′,b)(d∗(N − 1)), and thus player j ∈ O(t,b)(d∗(N − 1)) could decrease its
cost by changing the strategy to (t′, b). This contradicts d∗(N −1) being a NE, and
proves (iii).

Finally, we prove (iv). Assume that
∑
a∈B ka >A−2, which implies that

∑
a∈B(

n(t′,a)(d∗(N − 1))− n(t,a)(d∗(N − 1))
)
> A− 2 holds. It follows from (i) that

n(t,c)(d∗(N−1)) =n(t′,c)(d∗(N−1))+1, and thus we have that
∑
b∈A\Bn(t,b)(d∗(N

−1)) >
∑
b∈A\Bn(t′,b)(d∗(N − 1)) +A− 1 holds. Therefore, there is at least one

AP b ∈ A \ B such that n(t,b)(d∗(N − 1)) > n(t′,b)(d∗(N − 1)), and thus player
i ∈ O(t,b)(d∗(N − 1)) could decrease its cost by changing the strategy to (t′, b).
This contradicts d∗(N −1) being a NE, and proves (iv).

Observe that Theorem 2 provides an upper bound on the number of offloaders
per AP for every NE, while Lemma 2 provides a lower bound on the number of
offloaders per AP for a NE computed by the MB algorithm. Therefore, if n(t,c)(d∗) =
n(t′,c)(d∗) + 1, then by Theorem 2 we have that n(t,a)(d∗)≤ n(t′,a)(d∗) + 1 and by
Lemma 2 we have that n(t,a)(d∗)≥ n(t′,a)(d∗)− (A−1).

5.2 Price of Anarchy Bound
We have so far shown that a NE of the MSCOG can be computed in polynomial
time and we characterized the structure of the computed NE. We now address the
important question how far the system performance would be from optimal in a NE.
We do so by quantifying the worst case difference between the system performance
in a NE and the optimal performance using the price of anarchy (PoA). The PoA
of the game is defined as the ratio of the worst case NE cost and the minimal cost,
and it can be expressed as

PoA=
maxd∗

∑
i∈N Ci(d∗)

mind∈D
∑
i∈N Ci(d) . (13)

We first provide a bound of the PoA for N ≤ T , in fact we show that a NE is optimal
in this case.

Theorem 7. A NE of the MSCOG for N ≤ T is the socially optimal strategy profile,
i.e., PoA= 1 for N ≤ T .

Proof. We start with deriving a lower bound for an optimal solution d of the
MSCOG. The minimum offloading cost C̄i,a that player i can achieve in d is the
cost when it offloads alone in a time slot t∈T , i.e., nt(d)=1, through an AP a that
provides maximum achievable uplink rate, i.e., a=argmaxb∈ARi,b. Consequently,
we have that in the case of offloading Ci(d)≥ C̄i,a holds. Otherwise, in the case
of local computing, i.e., if di = (t, i), we have that Ci(d) =C0

i . Hence, we have

146

that Ci(d)≥min{C0
i , C̄

c
i,1, . . . , C̄ci,A} holds, and thus a lower bound on the opti-

mal solution cost is given by
∑
i∈N min{C0

i , C̄
c
i,1, . . . , C̄ci,A}, i.e.,

∑
i∈N Ci(d)≥∑

i∈N min{C0
i , C̄

c
i,1, . . . , C̄ci,A} and the equality holds for N ≤ T .

We continue with characterizing the cost in a NE d∗ for N ≤ T . From The-
orem 4 it follows that for N ≤ T there is at most one player per time slot, and
thus in a NE d∗ each player i ∈ N plays its best reply d∗i , where Ci(d∗i ,d∗−i) =
min{C0

i , C̄
c
i,1, . . . , C̄ci,A}. Therefore, PoA = 1 for N ≤ T , which proves the theo-

rem.

In what follows we give an upper bound on the PoA of the MSCOG for N > T .
We start with the definition of the set R = T ×{A∪{c}∪N} of all resources in the
system, and the set O(t,i)(d) = {i|di = (t, i)} of players that use local computing
resource i in time slot t. Observe that either O(t,i)(d) = ∅ or O(t,i)(d) = {i}, i.e.,
n(t,i)(d) = |O(t,i)(d)| ∈ {0,1}, since players do not share their local computing re-
sources. Furthermore,

∑
t∈T n(t,i)(d) ≤ 1 must hold since every player i ∈N can

choose only one time slot t ∈ T to perform its task. Next, we introduce the notion
of player specific constants

wi,(t,a) , Di/Ri,a,wi,(t,c) , Li/F
c,wi,(t,i) , Li/F

0
i .

For a strategy profile d we define the total weight w(t,a)(d) associated with AP a in
time slot t as w(t,a)(d) ,

∑
j∈O(t,a)(d)wj,(t,a), the total weight w(t,c)(d) associated

with cloud c in time slot t as w(t,c)(d) ,
∑
j∈O(t,c)(d)wj,(t,c) and the total weight

w(t,i)(d) associated with local computing resource i in time slot t as w(t,i)(d) ,∑
j∈O(t,i)(d)wj,(t,i). Note that either w(t,i)(d) = wi,(t,i) = C0

i or w(t,i)(d) = 0 must
hold since j /∈O(t,i)(d) for j 6= i. Next, using the above notation we can express the
system cost C(d) as

C(d) =
∑

r∈R

∑

i∈Or(d)
nr(d)wi,r =

∑

r∈R
nr(d)wr(d). (14)

Finally, given an optimal strategy profile d, we can express the PoA of the MSCOG
as

PoA=
maxd∗∈D

∑
r∈Rnr(d

∗)wr(d∗)∑
r∈Rnr(d)wr(d)

. (15)

Theorem 8. Consider the MSCOG with N > T . Then PoA≤N + 1.
Proof. Let us denote by Rdi

⊂R the set of resources that player i uses in strategy
profile d. Then, from the definition of a NE d∗ we have the following

∑
r∈Rd∗

i

nr(d∗)wi,r ≤
∑

r∈Rd∗
i
∩R

di

nr(d∗)wi,r + (16)

∑
r∈Rd∗

i
\R

di

(
nr(d∗) + 1

)
wi,r ≤

∑
r∈R

di

(
nr(d∗) + 1

)
wi,r.

147

By summing inequality (16) over all players i ∈N we obtain
∑

i∈N

∑

r∈Rd∗
i

nr(d∗)wi,r≤
∑

i∈N

∑

r∈R
di

(
nr(d∗) + 1

)
wi,r, (17)

and by reordering summations in (17) we obtain
∑

r∈R

∑

i∈Or(d∗)
nr(d∗)wi,r≤

∑

r∈R

∑

i∈Or(d)

(
nr(d∗)wi,r +wi,r

)
. (18)

By using the definition of the total weight wr(d) associated with resource r ∈R in
strategy profile d, we can rewrite (18) as

∑

r∈R
nr(d∗)wr(d∗)≤

∑

r∈R
nr(d∗)wr(d) +

∑

r∈R
wr(d). (19)

Next, observe that nr(d)≤N must hold for any feasible strategy profile d and for
every resource r ∈R, and that |Or(d)| ≥ 1 implies nr(d)≥ 1. Therefore, we have that∑
r∈Rnr(d

∗)wr(d) ≤ N∑r∈Rnr(d)wr(d) and
∑
r∈Rwr(d) ≤∑r∈Rnr(d)wr(d).

By using these observations in (19) we obtain the following inequality
∑

r∈R
nr(d∗)wr(d∗)≤(N + 1)

∑

r∈R
nr(d)wr(d). (20)

Finally, since
∑
r∈Rnr(d)wr(d)> 0 must hold, we can divide the right and the left

side of inequality (20) by
∑
r∈Rnr(d)wr(d) to obtain

∑
r∈Rnr(d

∗)wr(d∗)
∑
r∈Rnr(d)wr(d)

≤N + 1. (21)

Since (21) holds for any NE of the MSCOG, it also holds for the worst case NE, and
thus from (15) we have that

PoA≤N + 1. (22)

which proves the theorem.

In what follows we investigate the tightness of the above bound on the PoA of
the MSCOG.

Proposition 3. There is an infinite family of instances of the MSCOG for which
PoA=N − ε, where

ε=
(N −1)

∑
i∈N\{k}C

0
i

1
NC

0
k +

∑
i∈N\{k}C

0
i

. (23)

148

Proof. The proof is given in Appendix A.2.

Proposition 3 allows us to formulate the following result.

Corollary 3. The upper bound N + 1 on the PoA of the MSCOG is asymptotically
tight.

Proof. The proof is given in Appendix A.3.

6 Numerical Results
In the following we show simulation results to evaluate the cost performance and
the computational efficiency of the MB algorithm. Similar to [34, 35] we consider
that the devices are placed uniformly at random over a square area of 1km×1km,
while the APs are placed at random on a regular grid with A2 points defined over
the area. We consider that the channel gain of device i to AP a is proportional to
d−αi,a , where di,a is the distance between device i and AP a, and α is the path loss
exponent, which we set to 4 according to the path loss model in urban and suburban
areas [36]. For simplicity we assign a bandwidth of Ba = 5 MHz to every AP a, and
the data transmit power of Pi,a is drawn from a continuous uniform distribution on
[0.05,0.18] W according to measurements reported in [37]. Given the noise power Pn
we calculate the PHY rate Ri,a as Ri,a =Ba log2(1+Pi,ad−αi,a /Pn). We consider that
the uplink rate of a device connected to an AP a scales directly proportional with the
number of devices offloading through AP a. According to the specification reported
in [38], the clock rate achievable for NVIDIA Tegra 2 is up to 1 GHz, and thus we
consider that the computational capability F 0

i of device i is uniformly distributed
on [0.5,1] GHz. Based on the approximate relative computational parameters for
devices and clouds reported in [39], we consider that the computation capability
of the cloud is F c = 100 GHz and we assume that the computational capability
that a device receives from the cloud scales inversely proportional with the number
of devices that offload. The input data size Di and the number Li of CPU cycles
required to perform the computation are uniformly distributed on [0.42,2] Mb and
[0.1,0.8] Gcycles, respectively. The consumed energy per CPU cycle vi is set to
10−11(F 0

i)2 according to measurements reported in [31]. The weights attributed to
energy consumption γEi and the response time γTi are drawn from a continuous
uniform distribution on [0,1].

We use four algorithms as a basis for comparison for the proposed MB algorithm.
In the first algorithm devices choose a time slot at random, and implement an
equilibrium allocation within their chosen time slots. We refer to this algorithm as
the RandomSlot (RS) algorithm. The second algorithm considers that all devices
perform local execution. The third algorithm is a worst case scenario where all
devices choose the same time slot and implement an equilibrium allocation within
that time slot. Observe that this corresponds to T = 1. In the fourth algorithm, the
offloading decisions of the devices are made according to a socially optimal strategy

149

1 10 20 30 40 50 60 70 80 90 100

N

1

10

15

20

P
er
fo
rm

an
ce

ga
in

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 9: Performance gain vs. the number of devices (N).

profile d∗. We define the performance gain of an algorithm as the ratio between the
system cost reached when all devices perform local execution and the system cost
reached by the algorithm and we define the cost-approximation ratio of an algorithm
as the ratio between the system cost reached by the algorithm and the system
cost reached when all devices choose offloading decisions according to the socially
optimal strategy profile. Unfortunately, computing the socially optimal strategy
profile was computationally feasible only for small problem instances due to the
combinatorial nature of the corresponding system cost minimization problem, which
is a 0-1 non-linear program. The results shown are the averages of 100 simulations,
together with 95% confidence intervals.

6.1 Performance gain vs. number of devices
We start with evaluating the performance gain as a function of the number N of
devices for A= 4 APs. Fig. 9 shows the performance gain of the MB algorithm, the
RS algorithm and the deterministic worst case T = 1. The results show that the
performance gain decreases with the number of devices for all algorithms. This is
due to that the APs and the cloud get congested as the number of devices increases.
The performance gain of the MB algorithm is up to 50% higher than that of the
RS algorithm for T > 1; the gap between the two algorithms is largest when the
ratio N/T is approximately equal to 4. The reason is that as T increases the average
number of offloaders per time slot remains balanced in the case of the MB algorithm.
On the contrary, in the case of the RS algorithm some time slots may be more
congested than others, since the players choose their time slot at random. However,
the average imbalance in the number of offloaders per time slot decreases as the
number of devices increases, thus the results are similar for large values of N . At
the same time, the performance gain of the MB algorithm compared to that of
the deterministic worst case T = 1 is almost proportional to the number T of time

150

1 10 20 30 40 50 60 70 80 90 100

N

0.5

0.6

0.7

0.8

0.9

1

R
at
io

of
p
la
ye
rs

th
at

offl
oa
d

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 10: Ratio of offloaders vs. the number of devices (N).

slots, and shows that coordination is essential for preventing severe performance
degradation. It is also interesting to note that for T = 1 the performance gain
decreases with N at a much higher rate than for T > 1, which is due to the fast
decrease of the number of offloaders, as we show next.

Fig. 10 shows the ratio of players that offload for the same set of parameters as
in Fig. 9. The results show that in the worst case, for T = 1, the ratio of players
that offload decreases almost linearly with N , which explains the fast decrease of
the performance gain observed in Fig. 9. On the contrary, for larger values of T
the ratio of players that offload appears less sensitive to N . We observe that the
ratio of players that offload is in general higher in equilibrium than in the strategy
profile computed by the RS algorithm, which explains the superior performance of
MB observed in Fig. 9.

6.2 Performance gain vs number of APs
In order to evaluate the performance gain as a function of the number A of APs, we
consider a system that consists of N = 50 devices. Fig. 11 shows the performance gain
of the MB algorithm, the RS algorithm and the deterministic worst case T = 1. We
observe that the performance gain achieved by the algorithms increases monotonically
with the number of APs for all values of T with a decreasing marginal gain. The
reason is that once T ×A≥N every device can offload its task through its favorite
AP without sharing it, and hence the largest part of the offloading cost comes from
the computing cost in the cloud. However, a small change in the performance gain
is still present even for very large values of A because the density of the APs over a
region becomes larger as A increases, and hence the channel gain, which depends on
the distance between the device and the APs becomes larger on average. The results
also show that MB always outperforms RS, and its performance gain compared to
that of RS increases with T . Most importantly, the number of APs required for a

151

1 3 5 7 9 11 13 15

A

1

5

10

15

20

P
er
fo
rm

an
ce

ga
in MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 11: Performance gain vs. the number of APs (A).

certain performance gain is almost 50% lower using the MB algorithm compared to
the RS algorithm for higher values of T , i.e., significant savings can be achieved in
terms of infrastructural investments.

6.3 Cost-approximation ratio vs. number of devices
Fig. 12 shows the average cost-approximation ratio for the MB and the RS algorithms,
and the computed price of anarchy (PoA) and the price of stability (PoS) as a function
of the number N of devices. The results are shown for three values of the number T
of time slots (i.e. T ∈ {1,2,3}) for a system with A= 4 APs. We show the results
only up to 7 devices, because the computation of the socially optimal strategy profile
was infeasible for larger problem instances. The results show that the MB and the
RS algorithms have the same cost-approximation ratio for all values of N when
T = 1, which is because the two algorithms are equivalent in this case, and thus
they compute the same equilibrium strategy profiles. On the contrary, for T > 1 and
for N > 1, a strategy profile computed by the RS algorithm is not an equilibrium,
and the cost-approximation ratio of the RS algorithm is higher than that of the MB
algorithm. We can also observe that the gap between the algorithms increases with T ,
which is because the imbalance in the average congestion per time slot increases with
T in the case of the RS algorithm due to the random time slot selection. The results
also show that for T = 1 the computed PoA increases linearly with N with a slope
lower than 1 and that for T > 1 the computed PoA remains close to 2. Therefore,
the results indicate that the worst case scenario for which the PoA of the game is
asymptomatically close to N (c.f. Theorem 8 and Proposition 3 from Section 5.2) is
not likely to happen. Finally, we observe that the computed PoS is equal to 1 in all
cases, which suggests that the MB algorithm is able to compute a socially optimal
equilibrium of offloading decisions.

152

1 2 3 4 5 6 7

N

1

1.5

2

2.5

3

C
o
st

ra
ti
o

MB

RS

T = 1

T = 2

T = 3

PoA

PoS

Figure 12: Cost ratio vs. the number of devices (N).

6.4 Computational Complexity
In order to assess the computational efficiency of the algorithms we consider the
number of iterations, defined as the number of induction steps plus the total number
of update steps over all induction steps needed to compute a strategy profile. Fig. 13
and Fig. 14 show the average number of iterations and the corresponding average
strategy profile computation time for the MB and the RS algorithms, respectively.
The results are shown as a function of the numberN of devices in a system with A= 4
APs for four different values of the number T of time slots (i.e., T ∈ {1,5,10,20}).
The results show that the number of iterations scales approximately linearly with
N for both algorithms, and indicates that the worst case scenario considered in
Theorem 6 is unlikely to happen. The first interesting feature of Fig. 13 is that the
number of iterations is slightly less in the case of the MB algorithm than in the case
of the RS algorithm for all values of T , except for T = 1 for which the two algorithms
are equivalent. These results coincide with the results in Fig. 14 that show that
the MB algorithm is at least as good as the RS algorithm (i.e. the two algorithms
consume the same amount of time for computing a strategy profile when T = 1 and
the MB algorithm performs better than the RS algorithm for T > 1). The reason is
that in the case of the MB algorithm the number of offloaders per time slot is more
balanced, and hence the devices have less incentive to deviate when a new device
enters the system, and their updates are always at least as good as in the case of
RS algorithm, since the MB algorithm allows devices to change between time slots.
On the contrary, in the case of the RS algorithm some of the time slots may be
very congested, and the devices that offload within these time slots have a higher
incentive to deviate when a new device enters the system. The second interesting
feature of Fig. 13 is that the number of iterations is smaller for larger values of T for
smaller values of N , but for larger values of N the results are reversed. The reason
is that for smaller values of N the time slots are less congested on average as T

153

1 100 200 300 400 500 600 700 800

N

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 13: Number of iterations vs. the number of devices (N).

increases, and hence the devices do not want to update their strategies so often. On
the contrary, as N increases the benefit of large values of T becomes smaller, because
the congestion per time slots increases, and hence devices may want to update their
strategies more often.

Finally, Fig. 14 shows the wall clock computing time of the MB and RS algorithms
as a function of the number of devices N . The results show that the MB algorithm is
faster than the RS algorithm in all cases, and the computing times are slightly super-
linear due to the increasing time to compute a best response. Overall, we conclude
that the proposed MB algorithm can compute efficient equilibrium allocations for
periodic task offloading at low computational complexity.

7 Related Work
The scheduling of periodic tasks received significant attention for real-time sys-
tems [40,41], but without considering communications. Similarly, the scheduling of
communication resources has been considered without considering computation [42].
Most works that considered both communication and computation focused on a single
device case [8,31,43–45], and thus they do not consider the sharing of communication
and computing resources.

Related to our work are recent works on energy efficient computation offloading for
multiple mobile users [46–48]. [46] proposed a genetic algorithm for maximizing the
throughput in a partitioning problem for mobile data stream applications, while [47]
considered a two-tiered cloud infrastructure with user mobility in a location-time
workflow framework and proposed a heuristic for minimizing the cost of users. [48]
considered minimizing mobile users’ energy consumption by joint allocation of
wireless and cloud resources, and proposed an iterative algorithm.

A few recent works provided a game theoretic treatment of the mobile computation

154

1 100 200 300 400 500 600 700 800

0

10

20

30

40

50

60

70

80

Figure 14: Strategy profile computing time vs. the number of devices (N).

offloading problem for a single time slot [7,49–55]. Compared to [49], we characterize
the structure of the computed equilibrium, prove the bound on the price of anarchy
and show an example of a better reply cycle. [50] considered a two-stage game,
where first each mobile user chooses the parts of its task to offload with the objective
to minimize the energy consumption and the task completion time, and then the
cloud allocates computational resources to the offloaded parts with the objective to
maximize its profit. [51] considered a three-tier cloud architecture with stochastic
task arrivals, and provided a distributed algorithm for the computing a mixed
strategy equilibrium. [53] considered tasks that arrive simultaneously and a single
wireless link, and showed the existence of equilibria when all mobile users have the
same delay budget. [7] showed that assuming a single wireless link and link rates
determined by the Shannon capacity of an interference channel, the resulting game
is a potential game. [52] extended the model to multiple wireless links and showed
that the game is still a potential game under the assumption that a mobile user
experiences the same channel gain for all links. [55] considered multiple wireless
links, equal bandwidth sharing and a non-elastic cloud, and provided a polynomial
time algorithm for computing equilibria. Our work differs significantly from these
works, as we consider the problem of scheduling periodic tasks over time and across
heterogeneous communication resources and to the best of our knowledge, this is the
first work that bridges the gap between early works on scheduling [41] and recent
works on the resource allocation in computation offloading systems [7, 55].

From a game theoretical perspective the importance of our contribution is the
analysis of a player-specific network congestion game for which the existence of
equilibria is not known in general [33], thus the proposed algorithm and our proof of
existence advance the state of the art in the study of equilibria in network congestion
games.

155

8 Conclusion
We provided a game theoretical analysis of computation offloading in a mobile
edge computing system where devices generate tasks periodically. We proved the
existence of pure strategy Nash equilibria, characterized their structure and based
on our constructive proof we proposed a decentralized algorithm for computing
an equilibrium allocation of offloading decisions. We proved that the proposed
algorithm has a bounded approximation ratio and quadratic worst case complexity.
Our numerical results show that the performance in an equilibrium computed by
the proposed algorithm is significantly better than in a strategy profile in which
offloading decisions are not coordinated over time. An interesting open question is
whether our results can be extended to devices with heterogeneous periodicities, we
leave this question subject of future work.

References
[1] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “Pipeneta wireless

sensor network for pipeline monitoring,” in Proc. of IPSN, 2007, pp. 264–273.

[2] L. Xiao and Z. Wang, “Internet of things: A new application for intelligent
traffic monitoring system,” Journal of networks, vol. 6, no. 6, p. 887, 2011.

[3] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, and O. I. Camps, “Dynamic subspace-
based coordinated multicamera tracking,” in 2011 International Conference on
Computer Vision. IEEE, 2011, pp. 2462–2469.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” Sep. 2015.

[5] S. R. Group et al., “The leading cloud providers continue to run away with the
market,” Tech. rep, Tech. Rep., 2017.

[6] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone, R. Frazao,
F. Giust, S. Kekki, A. Li, D. Sabella et al., “Developing software for multi-access
edge computing,” ETSI, White Paper, no. 20, 2017.

[7] X. Chen, “Decentralized computation offloading game for mobile cloud comput-
ing,” Proc. of IEEE PDS, pp. 974–983, 2015.

[8] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,” in Proc. of IEEE
INFOCOM, April 2013, pp. 1285–1293.

[9] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for mobile
cloud computing in dense wireless networks,” IEEE TMC, vol. 18, no. 1, pp.
207–220, 2018.

156

[10] “IoT ONE: Use Cases,” https://www.iotone.com/usecases.

[11] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards
a comprehensive definition of fog computing,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[12] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5,
pp. 37–42, 2015.

[13] Q. He, G. Dán, and V. Fodor, “Minimizing age of correlated information for
wireless camera networks,” in INFOCOM WKSHPS, 2018, pp. 547–552.

[14] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information in wireless
networks with throughput constraints,” in IEEE INFOCOM, 2018, pp. 1844–
1852.

[15] Z. Sheng, C. Mahapatra, V. C. Leung, M. Chen, and P. K. Sahu, “Energy
efficient cooperative computing in mobile wireless sensor networks,” vol. 6, no. 1,
pp. 114–126, 2018.

[16] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal
mobile cloud computing under stochastic wireless channel,” IEEE Transactions
on Wireless Communications, vol. 12, no. 9, pp. 4569–4581, 2013.

[17] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud computing
powered by wireless energy transfer,” IEEE J-SAC, vol. 34, no. 5, pp. 1757–1771,
2016.

[18] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms
with pace,” in ACM SIGMETRICS Perf. Eval. Rev., vol. 29, no. 1, 2001, pp.
50–61.

[19] ——, “Pace: A new approach to dynamic voltage scaling,” IEEE Transactions
on Computers, no. 7, pp. 856–869, 2004.

[20] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for multimedia
applications,” ACM TOCS, vol. 24, no. 3, pp. 292–331, 2006.

[21] A.-B. Shaibu and H. A. Muttlak, “Estimating the parameters of the normal,
exponential and gamma distributions using median and extreme ranked set
samples,” Statistica, vol. 64, no. 1, pp. 75–98, 2004.

[22] T. Hoßfeld, F. Metzger, and P. E. Heegaard, “Traffic modeling for aggregated
periodic iot data,” in Proc. of IEEE ICIN (Workshop), 2018, pp. 1–8.

157

[23] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime fairness for ieee
802.11 multirate networks,” IEEE Trans. on Mobile Computing, vol. 7, no. 4,
pp. 513–527, 2008.

[24] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control
via pricing in wireless data networks,” IEEE Trans. on Communications, vol. 50,
no. 2, pp. 291–303, 2002.

[25] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-control scheme
in wireless cellular systems,” IEEE/ACM Trans. on Networking, vol. 11, no. 2,
pp. 210–221, 2003.

[26] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Trans. on Wireless Communications, vol. 11, no. 6, pp.
1991–1995, Jun. 2012.

[27] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[28] S. Jošilo and G. Dán, “Joint allocation of computing and wireless resources to
autonomous devices in mobile edge computing,” in Proc. of ACM MECOMM,
2018, pp. 13–18.

[29] ——, “Wireless and computing resource allocation for selfish computation
offloading in edge computing,” in Proc. of IEEE INFOCOM, 2019, pp. 2467–
2475.

[30] S. Jošilo and G. Dán, “Joint management of wireless and computing resources
for computation offloading in mobile edge clouds,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2019.

[31] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution:
Taming resource-poor mobile devices with cloud clones,” in Proc. of IEEE
INFOCOM, March 2012, pp. 2716–2720.

[32] I. Milchtaich, “Congestion games with player-specific payoff functions,” Games
and Economic Behavior, vol. 13, no. 1, pp. 111 – 124, 1996.

[33] ——, “The equilibrium existence problem in finite network congestion games,”
in Proc. of WINE, 2006, pp. 87–98.

[34] E. Balevi and R. D. Gitlin, “Optimizing the number of fog nodes for cloud-fog-
thing networks,” IEEE Access, vol. 6, pp. 11 173–11 183, 2018.

[35] S. Sigg, P. Jakimovski, and M. Beigl, “Calculation of functions on the rf-channel
for iot,” in 2012 3rd IEEE International Conference on the Internet of Things.
IEEE, 2012, pp. 107–113.

158

[36] A. Aragon-Zavala, Antennas and propagation for wireless communication sys-
tems. John Wiley & Sons, 2008.

[37] E. Casilari, J. M. Cano-García, and G. Campos-Garrido, “Modeling of current
consumption in 802.15. 4/zigbee sensor motes,” Sensors, vol. 10, no. 6, pp.
5443–5468, 2010.

[38] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[39] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture,” in ISCC, 2012, pp. 59–66.

[40] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization,” IEEE Trans. on Computers, vol. 39,
pp. 1175–1185, Sep. 1990.

[41] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory: A
historical perspective,” Real-Time Syst., vol. 28, no. 2-3, pp. 101–155, Nov. 2004.

[42] I. H. Hou, “Packet scheduling for real-time surveillance in multihop wireless
sensor networks with lossy channels,” IEEE Trans. on Wireless Comm., vol. 14,
no. 2, pp. 1071–1079, Feb 2015.

[43] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: Making smartphones last longer with code offload,” in
Proc. of ACM MobiSys, 2010, pp. 49–62.

[44] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp. 129–140,
Feb 2013.

[45] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs: Robust
offloading using the Markov decision processes,” in Proc. of IEEE WoWMoM,
Jun. 2015, pp. 1–9.

[46] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for parti-
tioning and execution of data stream applications in mobile cloud computing,”
SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4, pp. 23–32, Apr. 2013.

[47] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-
aware optimal service allocation in mobile cloud computing,” in Proc. of IEEE
CLOUD, Jun. 2013, pp. 75–82.

159

[48] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE T-SIPN,
vol. 1, no. 2, pp. 89–103, Jun. 2015.

[49] S. Jošilo and G. Dán, “Decentralized scheduling for offloading of periodic tasks
in mobile edge computing,” in Proc of IFIP NETWORKING, 2018.

[50] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization
framework in mobile cloud computing system,” in Proc. of IEEE SOSE, Mar.
2013, pp. 494–502.

[51] V. Cardellini et al., “A game-theoretic approach to computation offloading in
mobile cloud computing,” Mathematical Programming, pp. 1–29, 2015.

[52] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM Trans. on Networking, vol. 24,
no. 5, pp. 2795–2808, 2016.

[53] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient offloading
for competing users on a shared communication channel,” in Proc. of IEEE
ICC, Jun. 2015, pp. 3192–3197.

[54] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computation
offloading for cloudlet-based mobile cloud computing,” in Proc. of ACM MSWiM,
2015, pp. 271–278.

[55] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” in Proc. of IEEE INFOCOM, May 2017.

160

((1,a),(1,b),(1,a),(1,4),(1,5)) 3−−−−−−−−→
R3,b>R3,a

((1,a),(1,b),(1,b),(1,4),(1,5)) 2−−−−−−−−−−−−→
2 D2

R2,b
+3 L2

F c >C0
2

((1,a),(1,2),(1,b),(1,4),(1,5)) 4−−−−−−−−−−−−→
C0

4>2 D4
R4,b

+3 L4
F c

((1,a),(1,2),(1,b),(1,b),(1,5)) 5−−−−−−−−−−−−→
C0

5>3 D5
R5,b

+4 L5
F c

((1,a),(1,2),(1,b),(1,b),(1,b)) 3−−−−−−−−−→
R3,a>2

3 R3,b

((1,a),(1,2),(1,a),(1,b),(1,b)) 2−−−−−−−−−−−→
C0

2>
D2

R2,c
+5 L2

F c

((1,a),(1,c),(1,a),(1,b),(1,b)) 5−−−−−−−−−−−−→
2 D5

R5,b
+5 L5

F c >C0
5

((1,a),(1,c),(1,a),(1,b),(1,5)) 4−−−−−−−−−−−→
D4

R4,b
+4 L4

F c >C0
4

((1,a),(1,c),(1,a),(1,4),(1,5)) 2−−−−−−−→
R2,b>R2,c

((1,a),(1,b),(1,a),(1,4),(1,5))

Figure 15: A cyclic improvement path in a MSCOG with N = 5 devices, A = 3
APs, one cloud and T = 1. Labeled arrows between strategy profiles indicate better
improvement steps. A label above the arrow indicates a player that makes the
improvement step, and a label below the arrow indicates the condition under which
the performed action is an improvement step.

A Appendix
A.1 Proof of Lemma 1
We prove the lemma through the following example.

Example 1. Consider a MSCOG with N = {1,2,3,4,5} players, A = {a,b,c} APs,
one edge cloud and T = {1}. Communication and computing resources are shared
equally among the devices, i.e. ωi,(1,a)(d) = Ri,a

n(1,a)(d) and F ci,1(d) = F c

n(1,c)(d) , respec-
tively. Furthermore, consider that devices aim at mininizing their completion times
only, i.e., γTi = 1 and γEi = 0 for every i ∈N .

Fig. 15 shows a cyclic improvement path starting from the strategy profile
((1,a),(1, b), (1,a),(1,4),(1,5)), in which devices 1 and 3 offload through AP a,
device 2 offloads through AP b and devices 4 and 5 perform the computation
locally. The cycle shown in Fig. 15 consists of 9 improvement steps, each imposing a
constraint on the system parameters. Given these constraints, an instance of the
example can be formulated easily. Without loss of generality, we use the following set
of parameters to illustrate the proof of the lemma: Di = 2 Mb for every i ∈ {2,3,4,5},
L2 =L3 = 3 Gcycles, L4 = 5 Gcycles, L5 = 10 Gcycles, R2,b = 1

2 Mb/s, R2,c = 1
3 Mb/s,

R3,a = 5 Mb/s, R3,b = 6 Mb/s, R4,b = 8 Mb/s, R5,b = 4 Mb/s, F 0
2 = 3

8 GHz, F 0
4 =

16
5 GHz, F 0

5 = 50
21 GHz, F c = 15 GHz.

A.2 Proof of Proposition 3
Consider a MSCOG with T = {t}, N = {1,2, ...,N}, A = {a} and cloud c. Further-
more, let us consider a strategy profile d∗ in which d∗i = (t,a) for every player

161

i ∈N . Given the minimum offloading cost C̄i,a = γTi (Di
Ri,a

+ Li
F c)+γEi Pi,a

Di
Ri,a

that
player i can achieve when it offloads alone, we can express the cost Ci(d∗) of
player i and the system cost C(d∗) in strategy profile d∗ as Ci(d∗) = NC̄i,a and
C(d∗) =N

∑
i∈N C̄i,a, respectively. Next, let us assume that Ci(d∗) =NC̄i,a = C0

i
holds for every player i ∈N . It is easy to see that d∗ is a NE of the MSCOG since
there is no player i ∈N that can decrease its cost by changing the strategy to local
computing. Furthermore, it is easy to see that d∗ is the worst case NE since all
players achieve the same cost as they achieve in the case of local computing.

Now, let us assume that there is a player k ∈N such that C0
k − (N −1)C̄k,a ≥∑

i∈N\{k}(C0
i −C̄i,a) and 2C̄k,a≥

∑
i∈N\{k}(C0

i −C̄i,a) hold. From the first inequal-
ity it follows that the smallest cost saving that player k can achieve through offloading
is larger than the largest cost saving that all other players can achieve together and
thus in an optimal solution d we have that k ∈O(d) must hold. Furthermore, from
the second inequality it follows that the smallest increase in the offloading cost of
player k is higher that the largest cost saving that all other players can achieve
together, and thus in an optimal solution O(d) = {k} must hold. Therefore, the
minimum system cost C(d) is achieved if player k is the only one offloading its
computation, i.e., C(d) = C̄k,a+

∑
i∈N\{k}C

0
i .

Next, let us find a constant ε for which C(d∗) = (N − ε)C(d) is satisfied, i.e,

N
∑

i∈N
C̄i,a = (N − ε)(C̄k,a+

∑
i∈N\{k}

C0
i). (24)

From (24) we obtain the following

ε=
N
∑
i∈N\{k}(C0

i − C̄i,a)
C̄k,a+

∑
i∈N\{k}C

0
i

. (25)

Since according to our first assumption C̄i,a = 1
NC

0
i for every i ∈N , we can express

ε as a function of local computing costs, i.e.,

ε=
(N −1)

∑
i∈N\{k}C

0
i

1
NC

0
k +

∑
i∈N\{k}C

0
i

, (26)

which proves the proposition.

A.3 Proof of Corollary 3
To show the tightness of the bound, let consider a MSCOG with T = {1},N = {1,2,3},
A = {a} and cloud c where players aim at minimizing the completion time of their
tasks only, i.e., γTi = 1 and γEi = 0 for every i ∈ N . Furthermore, let us consider
the system with the following set of parameters: F c = 5 GHz, L1 = 300 Gcycles,
L2 = 3 Gcycles, L3 = 6 Gcycles, D1 = 80 Mb, D2 = 2 Mb, D3 = 4 Mb, R1,a = 2 Mb/s,

162

R2,a = R3,a = 5 Mb/s, F 0
i = 1 GHz, for i ∈N . Hence, we have C0

1 = 300, C0
2 = 3,

C0
3 = 6, C̄1,a = 100, C̄2,a = 1, C̄3,a = 2, ε= 18

109 .
It is easy to verify that d∗=

(
(1,a),(1,a),(1,a)

)
is a NE in which Ci(d∗)=3C̄i,a=

C0
i and C(d∗) = 309 hold. Furthermore, it is easy to see that d=

(
(1,a),(1,2),(1,3)

)

is an optimal solution in which C(d) = 109 holds. Hence, we have C(d∗)
C(d)

=N−ε=
309
109 ≈ 2.84.

Paper D
Joint Management of Wireless and

Computing Resources for
Computation Offloading in Mobile

Edge Clouds

Slađana Jošilo and György Dán
IEEE Transactions on Cloud Computing (TCC), pp. 1-14, 2019.

163

Joint Management of Wireless and Computing
Resources for Computation Offloading in Mobile

Edge Clouds
Slađana Jošilo and György Dán

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo, gyuri}@kth.se ∗

Abstract
We consider the computation offloading problem in an edge computing

system in which an operator jointly manages wireless and computing resources
across devices that make their offloading decisions autonomously with the
objective to minimize their own completion times. We develop a game theo-
retical model of the interaction between the devices and an operator that can
implement one of two resource allocation policies, a cost minimizing or a time
fair resource allocation policy. We express the optimal cost minimizing resource
allocation policy in closed form and prove the existence of Stackelberg equilibria
for both resource allocation policies. We propose two efficient decentralized
algorithms that devices can use for computing equilibria of offloading decisions
under the cost minimizing and the time fair resource allocation policies. We
establish bounds on the price of anarchy of the games played by the devices
and by doing so we show that the proposed algorithms have bounded approxi-
mation ratios. Our simulation results show that the cost minimizing resource
allocation policy can achieve significantly lower completion times than the time
fair allocation policy. At the same time, the convergence time of the proposed
algorithms is approximately linear in the number of devices, and thus they
could be effectively implemented for edge computing resource management.

Index terms— edge computing, resource management, computation offloading,
game theory, decentralized algorithms

1 Introduction
The evolution of wireless access and the Internet of Things are driving the develop-
ment of a variety of mobile applications such as face and object recognition, mobile
augmented reality, and cognitive assistance [1–3]. These emerging human-in-the-loop
∗The work was partly funded by the Swedish Research Council through project 621-2014-6.

165

166

applications have delay and computational requirements that often surpass the
capabilities of handheld devices [4].

A promising approach to support these emerging applications is mobile edge
computing (MEC) [5]. The key idea of MEC is to move cloud resources towards the
network edge so as to overcome the issue of high end-to-end transmission delays,
which are inherent to computation offloading to remote centralized clouds such as
Microsoft Azure or Amazon EC2 [6]. Owing to the proximity of computing resources
to the end users, MEC has the potential to significantly reduce response times for
individual devices by allowing them to offload the computationally intensive tasks
through a wireless network to nearby edge clouds. However, computation offloading
to edge clouds imposes a huge load on limited wireless and computing resources,
and thus the response times might be adversely affected by the contention for MEC
resources.

In order to keep response times as low as possible, it is thus essential to jointly
manage the wireless and the computing resources. Nonetheless, joint resource man-
agement in a MEC system is inherently challenging for various reasons. First, it
requires one to take into consideration the heterogeneity of the devices and their
workloads. For example, the devices can differ in terms of their computing capabili-
ties, the amount of data they need to offload and the delay and the computational
requirements of the tasks they generate. Second, devices in MEC systems are likely
to be autonomous entities, and thus they may be interested in maximizing their
own performance [7,8]. Finally, MEC systems may consist of multiple heterogeneous
communication and computing resources, e.g., wireless access points with different
bandwidths and edge clouds with different computing capabilities. Therefore, the
joint management of wireless and computing resources in MEC systems should be
performed in accordance with the individual interest of the heterogeneous devices,
the characteristics of their tasks and the heterogeneity of the infrastructure.

In this paper we consider devices that aim at minimizing the completion times of
their own tasks, and we address the corresponding computation offloading problem
by considering the interaction between an operator that jointly manages the wireless
and computing resources, and devices that decide autonomously whether or not to
offload the computations and in the case of offloading which of multiple heterogeneous
wireless and computing resources to use. We model the problem as a multiple-leader
common-follower Stackelberg game, in which devices are leaders and the operator is
the follower. We consider two resource allocation policies for the operator, called
the cost minimizing and the time fair resource allocation policy. We show that the
resulting games played by the devices can be transformed into a weighted congestion
game and into a player-specific congestion game under the cost minimizing and
the time fair policy, respectively. We provide a closed form solution for the optimal
cost minimizing resource allocation policy and we prove that Stackelberg equilibria
exist for both policies. Based on our constructive equilibrium existence proofs, we
propose two efficient decentralized algorithms that devices can use for computing
offloading decisions under the cost minimizing and the time fair policy of the operator,
respectively. We provide upper bounds on the price of anarchy of the games played by
the devices, and thus we show that our proposed algorithms serve as approximation

167

algorithms for the completion time minimization problems defined for the cost
minimizing and the time fair resource allocation policies. Our analytical results
show that the cost minimizing policy can guarantee better performance in terms
of the worst case system cost and that the time fair policy can guarantee better
performance in terms of the worst case computational complexity. Finally, we use
simulations to show that the completion times achieved under the cost minimizing
policy are significantly lower than the completion times achieved under the time fair
policy and that the complexity of computing an equilibrium is on average almost
linear in the number of devices for both policies.

The rest of the paper is organized as follows. We present the system model and
the problem formulation in Section 2. We present the cost minimizing resource
allocation policy and prove the existence of Stackelberg equilibria in Section 3. We
present the time fair resource allocation policy and prove the existence of Stackelberg
equilibria in Section 4. We provide a bound on the price of anarchy of the games
in Section 5 and present numerical results in Section 6. We discuss related work in
Section 7 and conclude the paper in Section 8.

2 System Model
We consider an edge computing system that consists of a set N ={1,2, . . . ,N} of
wireless devices (WDs), a set A={1,2, . . . ,A} of access points (APs), a set C =
{1,2, . . . ,C} of edge clouds (ECs), and an operator that manages the allocation of
the wireless and computing resources. We denote by Ai⊆A the set of APs through
which WD i∈N can communicate with the ECs. For ease of reference, the key
notations used in the paper are summarized in Table 1.

Each WD i∈N generates computationally intensive tasks, which can be charac-
terized by two parameters, the size Di of the input data and the expected number
Li of CPU cycles required to perform the computation (e.g., in bits). As shown by
recent works, the numberX of CPU cycles required per data bit can be approximated
by a Gamma distribution [9, 10]. Hence, based on the empirical mean E[X], the
relationship between Li and Di can be expressed as Li=DiE[X]. To make the
analysis tractable, we make the common assumption that the set of WDs is known
(e.g., through signaling) [11] [12].

Each WD i ∈N can decide whether to perform the computation locally or to
offload the computation to one of the ECs c∈C through one of the APs a∈Ai.
Thus, the set of feasible decisions for WD i is Di={i}∪{(a,c)|a∈Ai, c∈C}, where
i corresponds to local computing and (a,c) to offloading through AP a to EC c.
We refer to decision di∈Di of WD i as its strategy, and we refer to the collection
d=(di)i∈N as a strategy profile, i.e., d∈×i∈NDi = D. For a strategy profile d ∈D,
we define the set Oa(d) , {i|di=(a, ·)} of WDs that offload their tasks through AP
a and we denote by na(d) , |Oa(d)| the number of WDs that offload their tasks
through AP a. Similarly, we define the set Oc(d) , {i|di=(·, c)} of WDs that offload
their tasks to EC c and we denote by nc(d) , |Oc(d)| the number of WDs that
offload their tasks to EC c. Finally, we define the set O(a,c)(d) ,Oa(d)∩Oc(d) of

168

Table 1: Summary of key notations
Notation Description

N Set of N WDs
A Set of A APs
Ai Set of APs available for offloading to WD i

C Set of C ECs
Pc Operator’s computing resource allocation policy
Pr Operator’s rate allocation policy
Di Mean size of the input data for WD i

Li Mean task complexity for WD i

F l
i Computational capability of WD i

Cl
i Local computing cost for WD i

Ri,a Uplink PHY rate of WD i towards AP a

ui,a Uplink access provisioning coefficient, (i,a)∈N×Ai

F c Computing capability of EC c

pi,c Computing power provisioning coefficient,(i,c)∈N×C
Di Set of feasible decisions for WD i

di Decision of WD i, di ∈Di

d Strategy profile
Oa(d) Set of na(d) WDs offloading through AP a in d
Oc(d) Set of nc(d) WDs offloading to EC c in d

O(a,c)(d) Set of WDs offloading through AP a to EC c in d
O(d) Set of all WDs that offload their tasks in d

ωi,a(d,ua) Uplink rate of WD i ∈Oa(d) for ua

F c
i (d,pc) Computing capability of WD i ∈Oc(d) for pc

Cc
i,a(d,ua,pc) Offloading cost of WD i, di =(a,c) for ua and pc in d
Ci(d,u,p) Cost of WD i for u and p in d
C(d,u,p) Total cost in the system for u and p in d

WDs that offload their tasks through AP a to EC c and the set O(d) , ∪c∈COc(d)
of all WDs that offload their tasks.

Fig. 1 shows an example of a MEC system that consists of N = 5 WDs, C = 2
ECs and A= 3 APs. WD 1 performs the computation locally, WDs 2 and 3 offload
their tasks to EC c1 through AP a, WDs 4 and 5 offload their tasks to EC c2 through
APs b and c, respectively. In what follows we discuss our models of computing and
wireless resource management.

2.1 Computing Resource Management
A WD that chooses local computing performs its task using its local computing
resources. We denote by F li the computational capability of WD i ∈N (e.g., CPU
cycles/second).

A WD that chooses offloading has to transmit the data through an AP a, after

169

WD1

WD2

WD3

WD4

WD5

C1

C2
FC1

FC2

APa

APb
APc

D2L2
D3L3

D5L5

F01

D1L1

D4L4

Figure 1: Example of an edge computing system with N = 5 WDs, C = 2 ECs and
A= 3 APs. Transmission rates and cloud computing power may be actively managed
by the operator.

which the task is performed in an EC c. We denote by F c the computing capability
of EC c. We consider that the computing capability allocated to WDs i ∈Oc(d) is
determined by the operator’s computing resource allocation policy Pc : D→R|C|x|N |≥0 .
The policy sets for every strategy profile d ∈D the computing power provisioning
coefficients (pi,c)i∈N ,c∈C , akin to the weight of a job in generalized processor sharing
(GPS). Using the shorthand notation pc=(pi,c)i∈N , we can express the computing
capability allocated to WD i by EC c as

F ci (d,pc) = F c
pi,c∑

j∈Oc(d) pj,c
. (1)

Observe that for a policy that sets pi,c = 1, ∀i ∈Oc(d),∀d ∈D, the computing power
is shared equally. While GPS is an ideal scheduler, several process schedulers exist
to approximate it in practice, e.g., DWRR [13].

2.2 Wireless Resource Management
The wireless medium of AP a is shared by the WDs that choose to offload through
AP a. We denote by Ri,a the achievable PHY rate of WD i through AP a, which
is determined by the physical characteristics of the wireless medium, distance, etc.
The actual rate at which WD i can offload its data through AP a is determined
by the operator’s rate allocation policy Pr : D→ R|A|x|N |≥0 . The policy sets for every
strategy profile the uplink access provisioning coefficients (ui,a)i∈N ,a∈A, akin to the
weight of a flow in GPS. Using the shorthand notation ua=(ui,a)i∈N , we can express
the uplink rate assigned to WD i at AP a as

ωi,a(d,ua) =Ri,a
ui,a∑

j∈Oa(d)uj,a
. (2)

Observe that for a policy that sets ui,a(d)=1,∀i∈Oa(d) we obtain the model that
describes the time-fair throughput sharing mechanisms in TDMA and OFDMA

170

based MAC protocols [14].

2.3 Cost Model
We define the cost of a WD as the completion time of its task. In what follows we
introduce our cost model in the case of computation offloading and in the case of
local computing.

Computation offloading: In the case of computation offloading the completion
time of WD i’s task consists of two parts. The first part is the time needed to transmit
Di amount of data, and the second part is the time needed to perform Li CPU
cycles at the cloud server. Thus, if in strategy profile d WD i offloads to EC c ∈ C
through AP a ∈Ai then its cost can be expressed as

Cci,a(d,ua,pc) =Di/ωi,a(d,ua) +Li/F
c
i (d,pc). (3)

In (3) we made the common assumption that the time needed to transmit the results
from the cloud to the device can be neglected [11, 15–17], as for typical applications
(e.g., face and object recognition), the size of the result of the computation is much
smaller than Di.

Local computing: In the case of local computing the completion time of WD
i’s task is determined by the number Li of CPU cycles pertaining to the task and
by the computing capability F li . Thus, the local computing cost can be expressed as

Cli = Li/F
l
i . (4)

Total cost: To define the total cost, we first define the shorthand notation
u, (ua)a∈A and p, (pc)c∈C , and express the cost of WD i

Ci(d,u,p)=
∑

(a,c)∈Ai×C
Idi,(a,c)C

c
i,a(d,ua,pc)+Idi,iC

l
i , (5)

where Idi,r = 1 if di = r and Idi,r = 0 otherwise. Finally, we define the system cost
C(d,u,p) as

C(d,u,p)=
∑

i∈N

∑

(a,c)∈Ai×C
Idi,(a,c)C

c
i,a(d,ua,pc)+

∑

i∈N
Idi,iC

l
i . (6)

2.4 Operator Policies and Problem Formulation
We consider that in the edge computing system each WD is allowed to make an
offloading decision so as to minimize its own cost. On the one hand, this assumption
is motivated by the potential autonomy of WDs in edge computing systems [7,8].
On the other hand, the obtained decentralized algorithms can serve as a good
approximation for the optimal solution. Nonetheless, the decisions of the WDs
interact with the computing resource and rate allocation policies of the operator, and
hence we model the problem as a multiple-leader common-follower Stackelberg game,

171

in which WDs are leaders and the operator is the follower. We consider two variants
of the game, which differ in the set of operator policies. In the first game the set of
feasible decisions for the operator is Ac = {(u,p)|u∈R|A|x|N |≥0 ,p∈R|C|x|N |≥0 }; we refer
to this as the cost minimizing (CM) operator. In the second game the set of feasible
decisions for the operator is At = {(u,p)|ui,a = 1,pi,c = 1,∀i ∈N ,a ∈A, c ∈ C}; we
refer to this as the time fair (TF) operator.

Given a strategy profile d chosen by the WDs, the objective of the operator is
to minimize the system cost by jointly optimizing the allocation of wireless and
computing resources. It does so by computing a best response (u∗,p∗)∈Ao, o∈ {c, t}
to d through solving

min
(u,p)∈Ao

C(d,u,p). (7)

We denote by (Pc,∗r ,Pc,∗c) the optimal policy of the CM operator, i.e., the collection
of best responses of the CM operator for every d ∈D, and we denote by (Pt,∗r ,Pt,∗c)
the optimal policy of the TF operator, i.e., the collection of best responses of the
TF operator for every d ∈D.

The objective of every WD is to minimize its own completion time (5), given the
announced allocation policy (P∗r ,P∗c) of the operator, through solving

min
di∈Di

Ci(di,d−i,P∗r (di,d−i),P∗c (di,d−i)), (8)

where we use d−i to denote the strategies of all WDs except WD i. We refer to
the game played between the WDs and the CM operator as the cost minimizing
computation offloading game (CM-COG) and to the game played between the WDs
and the TF operator as the time fair computation offloading game (TF-COG).

In this paper we address three fundamental questions for these games. First, we
address whether there is a combination of computation offloading strategy profile
and allocation policy from which neither the WDs nor the operator have an incentive
to deviate, i.e., a subgame perfect equilibrium of the Stackelberg game.

Definition 1 (SPE). Let (P∗r ,P∗c) be a solution of (7), and d∗i be a solution of (8).
Then the point (d∗,P∗r ,P∗c) is a subgame perfect equilibrium (SPE) of the game
Γ ∈ {CM-COG, TF-COG} if for any feasible (d,Pr,Pc) point the following holds

C(d∗,P∗r ,P∗c)≤ C(d∗,Pr,Pc),

Ci(d∗i ,d∗−i,P∗r ,P∗c)≤ Ci(di,d∗−i,P∗r ,P∗c),∀di∈Di,∀i∈N .

If the game Γ ∈ {CM-COG,TF-COG} admits an SPE, the second question is
whether an SPE can be computed efficiently. Third, we address whether the system
cost in an SPE is efficient compared to a centrally optimized system. Before we
answer these questions we recall the following definition from game theory.

Definition 2. (Pure NE and Best reply (BR)) A pure strategy Nash equilibrium
(NE) is a strategy profile d∗ in which all players play their best replies to each others’

172

strategies, that is,

Ci(d∗i ,d∗−i)≤ Ci(di,d∗−i),∀di ∈Di,∀i ∈N .

Given a strategy profile d= (di,d−i), a better reply of WD i is a strategy d′i such
that Ci(d′i,d−i) < Ci(di,d−i), and a best reply of WD i is a better reply d∗i such
that Ci(d∗i ,d−i)≤ Ci(di,d−i),∀di ∈Di.

3 Equilibria Under the Cost Minimizing Operator
We start the analysis by considering problem (7) solved by the CM operator, i.e.,

min
(u,p)∈Ac

C(d,u,p), (9)

followed by problem (8) solved by the WDs.

3.1 Optimal Resource Allocation Policy of the CM Operator
Recall that an optimal resource allocation policy is essentially a collection of best
responses (u∗,p∗) ∈ Ac of the CM operator to the strategy profiles d ∈D played by
the WDs. In what follows we show that a best response of the CM operator to a
strategy profile d is unique up to a scale factor and can be expressed in closed form.

Theorem 1. Let d be a strategy profile played by the WDs. The optimal allocation
policy (Pc,∗r ,Pc,∗c) of the CM operator assigns to d the uplink access provisioning
and computing power provisioning coefficients

u∗i,a=
√
Di/Ri,a∑

j∈Oa(d)
√
Dj/Rj,a

,∀a∈A,∀i∈Oa(d), (10)

and

p∗i,c=
√
Li/F c∑

j∈Oc(d)
√
Lj/F c

,∀c ∈ C,∀i ∈Oc(d). (11)

Proof. The proof is given in Appendix A.1.

It is important to note that following the optimal resource allocation policy,
the CM operator allocates resources to the WDs depending on the characteristics
of their tasks (i.e., Di and Li). Furthermore, the resource allocation policy of the
operator can be made known a priori to the WDs, which allows us to analyze the
computation offloading problem of the WDs.

173

3.2 Computing Equilibrium Offloading Decisions
Observe that for an arbitrary resource allocation policy (Pr,Pc) the interaction
between the WDs can be modeled by a player-specific weighted congestion game
Γ(Pr,Pc) =<N ,(Di)i∈N ,(Ci)i∈N >, as (5) is both a function of the WDs’ param-
eters and of the resource provisioning coefficients. Unfortunately, for this class of
games general equilibrium existence results are not available. In what follows we
show that under the optimal resource allocation policy of the CM operator the game
can be transformed into a weighted congestion game.

Theorem 2. Consider that the CM operator uses the optimal policy (Pc,∗r ,Pc,∗c),
i.e., u∗ and p∗ are the collections of the optimal provisioning coefficients given by
(10) and (11), respectively. Then, the strategic interaction of the WDs can be modeled
as a congestion game with resource-dependent weights wi,r,∀(i,r) ∈N ×{Ai∪C}, in
which the cost of WD i is given by

C̄i(d)=
∑

(a,c)∈Ai×C
Idi,(a,c)

(
wi,awa(d)+wi,cwc(d)

)
+Idi,iC

l
i , (12)

where wr(d) =
∑
j∈Or(d)wj,r.

Proof. Let us first substitute (10) and (11) into (3) in order to obtain the offloading
cost of WD i through AP a to EC c under the optimal resource allocation policy
(Pc,∗r ,Pc,∗c),

C̄ci,a(d)=
√

Di
Ri,a

∑

j∈Oa(d)

√
Dj
Rj,a

+
√
Li
F c

∑

j∈Oc(d)

√
Lj
F c

. (13)

Second, let us define the weight wi,a ,
√
Di/Ri,a for each tuple (i,a) ∈N ×Ai and

the weight wi,c ,
√
Li/F c for each tuple (i,c) ∈N ×C. Observe that the offloading

cost (13) in strategy profile d depends on the total weight wa(d) =
∑
j∈Oa(d)wj,a

associated to AP a and on the total weight wc(d) =
∑
j∈Oc(d)wj,c associated to EC

c. Thus, the interaction between the WDs can be modeled as a weighted congestion
game with resource-dependent weights. This proves the theorem.

We refer to the resulting strategic game as Γ(Pc,∗r ,Pc,∗c) =<N ,(Di)i∈N ,(C̄i)i∈N >,
in which the players are WDs with the objective to minimize their costs given by (12).
Observe that the game Γ(Pc,∗r ,Pc,∗c) is the CM-COG expressed in strategic form
and thus if Γ(Pc,∗r ,Pc,∗c) has a NE then the CM-COG has an SPE. Hence, in what
follows we focus on the existence and computability of pure NE for Γ(Pc,∗r ,Pc,∗c).

Before we formulate our next result let us recall the definition of an exact potential
function from [18].

Definition 3. A function Φ :×i(Di)→ R is an exact potential for a finite strategic
game Γ =<N ,(Di)i,(C̄i)i > if for an arbitrary strategy profile (di,d−i) and for any

174

better reply d′i the following holds

C̄i(d′i,d−i)−C̄i(di,d−i)=Φ(d′i,d−i)−Φ(di,d−i). (14)

Given an arbitrary ordering of WDs, let us introduce the following shorthand
notation,

w≤ia (d)=
∑

{j∈Oa(d)|j≤i}
wj,a, w>ia (d)=

∑

{j∈Oa(d)|j>i}
wj,a,

and

w≤ic (d)=
∑

{j∈Oc(d)|j≤i}
wj,c, w>ic (d)=

∑

{j∈Oc(d)|j>i}
wj,c.

Theorem 3. The game Γ(Pc,∗r ,Pc,∗c) has the exact potential function

Φ(d) =
∑

i∈N

(∑

a∈A
Φi,a(d) +

∑

c∈C
Φi,c(d) + Φi,i(d)

)
, (15)

where Φi,a(d)=Idi,(a,·)wi,aw
≤i
a (d), Φi,c(d)=Idi,(·,c)wi,cw

≤i
c (d), and Φi,i(d) = Idi,iC

l
i .

Proof. Let us define function Φi(d)=
∑
a∈A Φi,a(d)+

∑
c∈C Φi,c(d)+Φi,i(d), and

rewrite Φ(d) =
∑
i∈N Φi(d). To prove that Φ(d) is an exact potential function, let

us consider strategy profiles d and d′ such that d=(dk,d−k) and d′=(d′k,d−k), and
consider the following two cases.

Case 1: Changing offloading strategy: We start with considering the case when
WD k offloads its task in both strategy profiles d and d′. Let us denote by dk = (a,c)
and d′k = (a′, c′) the offloading decisions of WD k in d and d′, respectively. If a 6=a′
and c 6=c′ then the difference between the cost of WD k in d and that in d′ is given
by

C̄k(d)− C̄k(d′) = wk,awa(d) +wk,cwc(d)−wk,a′wa′(d)−wk,c′wc′(d).

To compute the change of the potential, observe that Φi,i(d)=Φi,i(d′) for all WDs
i∈N , since the set of WDs that perform the computation locally is the same
in d and d′. We also have that Φi,r(d) = Φi,r(d′) for every resource r ∈A∪C\
{a,a′, c,c′} since Or(d) =Or(d′). Furthermore, we observe that Φi(d)=Φi(d′) for
all WDs i<k. For WDs i>k that offload their tasks through APs a and a′ we have
that Φi,a(d)−Φi,a(d′) =wi,awk,a and Φi,a′(d)−Φi,a′(d′)=−wi,a′wk,a′ , respectively.
Similarly, for WDs i > k that offload their tasks to ECs c and c′ we have that
Φi,c(d)−Φi,c(d′) = wi,cwk,c and Φi,c′(d)−Φi,c′(d′) =−wi,c′wk,c′ , respectively. For
WD k we have the following

Φk(d)−Φk(d′) = wk,aw
≤k
a (d) +wk,cw

≤k
c (d)−wk,a′w≤ka′ (d)−wk,c′w≤kc′ (d).

175

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw>kc (d)−wk,a′w>ka′ (d)−

wk,c′w
>k
c′ (d)+wk,aw≤ka (d)+wk,cw≤kc (d)−wk,a′w≤ka′ (d)−

wk,c′w
≤k
c′ (d) = wk,awa(d)+wk,cwc(d)−wk,a′wa′(d)−

wk,c′wc′(d) = C̄k(d)− C̄k(d′).

Similarly, we can show that Φ(d)−Φ(d′) = C̄k(d)− C̄k(d′) if WD k changes only
the AP, i.e., if dk = (a,c) and d′k = (a′, c), a 6= a′ or if WD k changes only the EC,
i.e., if dk = (a,c) and d′k = (a,c′), c 6= c′.

Case 2: Changing between offloading and local computing: We continue with
considering the case when WD k offloads its task in one of the strategy profiles d
and d′ and it performs the computation locally in the other strategy profile. Let
us first consider that WD k offloads its task in strategy profile d, and denote by
dk = (a,c) its offloading decision, and that WD k performs the computation locally
in strategy profile d′, i.e., d′k = 0. Then the difference between the cost of WD k in
d and that in d′ is given by

C̄k(d)− C̄k(d′) = wk,awa(d) +wk,cwc(d)−Clk.

For the potential, we know that Φi,i(d) = Φi,i(d′) for all WDs i ∈N \{k} and we
also have that Φi,r(d) = Φi,r(d′) for every resource r ∈A∪C \{a,c}. Furthermore,
we observe that Φi(d) = Φi(d′) for all i < k. For WDs i > k that offload their tasks
through AP a we have that Φi,a(d)−Φi,a(d′) = wi,awk,a. Similarily, for WDs i > k

that offload their tasks to EC c we have that Φi,c(d)−Φi,c(d′) = wi,cwk,c. Finally,
for WD k we have

Φk(d)−Φk(d′) = wk,aw
≤k
a (d) +wk,cw

≤k
c (d)−Clk.

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw>kc (d)+wk,aw≤ka (d)

+wk,cw≤kc (d)−Clk = wk,awa(d) +wk,cwc(d)−Clk =
C̄k(d)− C̄k(d′).

Similarily, we can show that Φ(d)−Φ(d′) = C̄k(d)− C̄k(d′) if WD k changes its
strategy from local computing in d to offloading to EC c through AP a in d′, i.e., if
dk = 0 and d′k = (a,c), which proves the theorem.

The existence of an exact potential function implies that Γ(Pc,∗r ,Pc,∗c) has a pure
NE [18]. We can thus formulate the following result.

Corollary 1. The game Γ(Pc,∗r ,Pc,∗c) has a pure strategy NE d∗. Hence, an SPE
(d∗,Pc,∗r ,Pc,∗c) for the CM-COG exists.

176

AU(d)

1 while ∃ WD j s.t. dj 6=argmind′
j
∈Dj

C̄j(d′j ,d−j)
2 d∗j = argmind′

j
∈Dj

C̄j(d′j ,d−j)
3 d = (d∗j ,d−j)
4 end

Figure 2: Pseudo code of the AsynchronousUpdates (AU) algorithm.

There are a variety of algorithms that are known to converge to an equilibrium
for exact potential games, such as fictitious play [18], joint strategy fictitious play [19],
and the best and better reply dynamics [18]. Nonetheless, they have exponential
worst case complexity in general [20, 21]. Thus, the second fundamental question
we address in this paper is whether a NE of Γ(Pc,∗r ,Pc,∗c) (and thus an SPE of the
CM-COG) can be computed efficiently.

In what follows we propose the ImproveLocalComputing (ILC) algorithm to
address this important question. The ILC algorithm starts from a strategy profile
in which all WDs perform computation locally. Let us first denote by N ′ the set of
WDs that have never changed their strategy from local computing to computation
offloading (note that at the beginning N ′ = N). The ILC algorithm consists of two
phases that are executed alternatingly. In the first phase, among all WDs i ∈N ′
that can decrease their cost by starting to offload, a WD with the maximum task
complexity Li is allowed to perform a best reply. In the second phase, which we refer
to as the update phase, WDs i ∈N \N ′ are allowed to update their best replies
according to the AU algorithm shown in Fig. 2.

In what follows we show that by letting WDs to start to offload in non-increasing
order of their task complexities, the ILC algorithm reduces the number of iterations
compared to the best reply dynamic that lets WDs to start using cloud resources in
an arbitrary order.

Proposition 1. Let us consider a strategy profile d in which all WDs j ∈N \N ′
perform best replies and let us assume that there is a WD i ∈N ′ that can decrease
its cost by starting to offload to one of the ECs. Then upon WD i performs its best
reply, WDs j ∈O(d) will not have an incentive to change between ECs.

Proof. Let us assume that a best reply of WD i ∈N ′ is offloading to an EC c, i.e.,
for any EC c′ ∈ C \{c} the following holds

(
wc(d) +wi,c

)
wi,c <

(
wc′(d) +wi,c′

)
wi,c′ . (16)

Let us next assume that upon WD i performs its best reply, a WD j ∈Oc(d) can
decrease its offloading cost by changing its strategy from (·, c) to (·, c′), i.e., that the

177

following holds
(
wc(d) +wi,c

)
wj,c >

(
wc′(d) +wj,c′

)
wj,c′ . (17)

In order to have (16) and (17) satisfied
√
Li >

√
Lj must hold, which contradicts the

fact that the ILC algorithm allows WDs i ∈N ′ to start to offload in non-increasing
order of their task complexities Li. This proves the result.

Note that WDs can change between ECs only if the congestion in an EC decreases,
i.e., if one of the WDs changes its strategy from offloading to local computing. This
is, however, rarely the case, and as we show later, the number of iterations needed
to compute an equilibrium allocation of offloading decisions using the ILC algorithm
is on average almost linear in the number of WDs.

4 Equilibria Under the Time Fair Operator
We have so far shown that the the game played by the WDs under the resource
allocation policy (Pc,∗r ,Pc,∗c) of the CM operator can be transformed into a weighted
congestion game, and we have proven that the CM-COG has an SPE. In what follows
we show that under the resource allocation policy (Pt,∗r ,Pt,∗c) of the TF operator the
game played by the WDs can be transformed into a player-specific congestion game.

Proposition 2. Consider that the TF operator uses the time fair resource allocation
policy (Pt,∗r ,Pt,∗c). Then, the strategic interaction of the WDs can be modeled as a
player-specific congestion game, in which the cost of WD i is given by

C̃i(d)=
∑

(a,c)∈A×C
Idi,(a,c)

(Di
Ri,a

na(d)+ Li
F c

nc(d)
)

+Idi,iC
l
i (18)

Proof. Given the equal sharing of resources, it follows from (1) and (2) that the
offloading cost (3) of WD i through AP a to EC c can be expressed as

C̃i,a(d)= Di
Ri,a

na(d)+ Li
F c

nc(d). (19)

Observe that the offloading cost (19) depends on the total number na(d) of WDs
sharing the AP a, the total number nc(d) of WDs sharing the EC c, and on the
characteristics of WD i’s task. Thus, the interaction between the WDs can be
modeled as a player-specific congestion game. This proves the result.

4.1 Computing Equilibrium Offloading Decisions
We refer to the resulting strategic game as Γ(Pt,∗r ,Pt,∗c) =<N ,(Di)i∈N ,(C̃i)i∈N >,
in which the players are WDs with the objective to minimize their cost given by (18).

178

Observe that the game Γ(Pt,∗r ,Pt,∗c) is the TF-COG expressed in strategic form and
thus if Γ(Pt,∗r ,Pt,∗c) has a NE then the TF-COG has an SPE. Hence, in what follows
we focus on the existence and computability of pure NE for Γ(Pt,∗r ,Pt,∗c).

In what follows we prove our result concerning the existence of a pure strategy NE
under the TF operator. Our proof is based on the JoinAndPlayAsynchronousUpdates
(JPAU) algorithm, which we propose for computing a NE of the game Γ(Pt,∗r ,Pt,∗c).
The pseudo code of the JPAU algorithm is shown in Fig. 3. The algorithm adds WDs
one at a time, and lets them play their best replies given the other WDs’ strategies,
and thus the following result is based on an induction in the number N of WDs.

Theorem 4. The game Γ(Pt,∗r ,Pt,∗c) has a pure strategy NE.

Proof. The proof is given in Appendix A.2.

Even though the proof of Theorem 4 is fairly involved, the JPAU algorithm itself
is computationally efficient, as we show next.

Proposition 3. When a new WD enters the game Γ(Pt,∗r ,Pt,∗c) in a NE d∗(n−1),
a new NE can be computed in O((A−2)|Nn−1|2− (A−3)|Nn−1|) time.

Proof. The proof is given in Appendix A.3.

By adding WDs one at a time, it follows that the JPAU algorithm computes a
NE of the game Γ(Pt,∗r ,Pt,∗c) in polynomial time.

Corollary 2. The JPAU algorithm terminates in a NE of the game Γ(Pt,∗r ,Pt,∗c)
in O((A−2)N3− (A−3)N2) time.

Finally, since Γ(Pt,∗r ,Pt,∗c) is the TF-COG expressed in strategic form, we can
formulate the following result.

Corollary 3. The game Γ(Pt,∗r ,Pt,∗c) has a pure strategy NE d∗. Hence, an SPE
(d∗,Pt,∗r ,Pt,∗c) for the TF-COG exists.

4.2 Implementation Considerations
In what follows we discuss how the SPE can be implemented in practice. Given
the information about the resource allocation policy adopted by the operator, WDs
perform best replies one at a time according to the ILC and JPAU algorithms in the
case of the CM-COG and TF-COG, respectively. Upon its turn, a WD computes the
set of its best replies based on the information about the congestion on resources,
as provided by the operator. If it can improve its current offloading decision then
it reports one of its best replies to the operator, otherwise it reports its current
offloading decision. The operator then sends the updated information about the
congestion on the resources to the next WD that is supposed to update its offloading
decision.

179

d∗ = JPAU(N ,A,C)

1 /*First WD enters the game*/
2 Let d← ∅, i← 1
3 d∗i (1) = argmindi∈Di

Ci(di,d−i)
4 d∗(1) = d∗i (1)
5 for n = 2 : N do
6 /*Corresponds to induction phase*/
7 Let i← n
8 d∗i (n) = argmindi∈Di

Ci(di,d
∗
−i(n−1))

9 d(n) = (d∗i (n),d∗(n−1))
10 if d∗i (n) = (a,c)
11 /*Corresponds to update phase*/
12 if ∃j∈O(a,c)(d(n)) for which a BR is local computing
13 /*Corresponds to case (i)*/
14 d′(n) = (j,d−j(n))
15 end
16 else if ∃j∈O(a,c′)(d(n)),c′ 6=c for which a BR is local computing
17 /*Corresponds to case (ii)*/
18 d′(n) = (j,d−j(n))
19 k←Oc(d′(n))
20 d′(n) = ((·, c′),d′−k(n))
21 else if ∃j∈Oa(d(n)),a′ 6=a for which a BR is changing to AP a′

22 /*Corresponds to case (iii)*/
23 d′(n) = ((a′, ·),d−j(n))
24 while ∃j∈O(d′(n)) that can decrease its offloading cost
25 d∗j (n) = argmind′

j
∈Dj

Cj(d′j ,d
′
−j(n))

26 d′(n) = (d∗j (n),d′−j(n))
27 end
28 else
29 d′(n) = d(n)
30 end
31 a′′← a for which na(d′(n)) = na(d∗(n−1)) + 1
32 c← c′ for which nc′ (d′(n)) = nc′ (d∗(n−1)) + 1
33 if ∃j∈O(a′,c)(d′(n),a′ 6=a′′ for which a BR is local computing
34 /*Corresponds to case (iv)*/
35 d′(n) = (j,d′−j(n))
36 if ∃j ∈Oa′′ (d′(n)) for which a BR is changing to AP a′

37 k←Oa′′ (d′(n))
38 d′(n) = ((a′, ·),d′−k(n))
39 else
40 while ∃j∈O(d′(n)) that can decrease its offloading cost
41 d∗j (n) = argmind′

j
∈Dj

Cj(d′j ,d
′
−j(n))

42 d′(n) = (d∗j (n),d′−j(n))
43 end
44 if ∃k ∈Nn \ O(d′(n)) for which a BR is (a′, c)
45 d′(n) = ((a′, c),d′−k(n))
46 end
47 if ∃j∈O(a′,c)(d′(n)),a′ 6=a for which a BR is local computing
48 go to 35
49 end
50 end
51 end
52 d∗(n) = d′(n)
53 end
54 return d∗(N)

Figure 3: Pseudo code of the JPAU algorithm.

180

WD2
WD3

WD4

WD5

NE?
yes

no

APc

APb

APa

C1
C2

allocate the resources
according to
the policy

WD1

policy
congestion

d5(t)
*

CM operator: d5(t), D5, L5
*

TF operator: d5(t)
*

update the next W
D about th

e

congestio
n on the resource

s

step 1:

step 2:

Figure 4: Example of the information exchange between the operator and WD1 and
WD5.

Upon convergence, given the equilibrium offloading decisions of WDs, the opera-
tor allocates wireless and computing resources according to the adopted resource
allocation policy. By Corollary 1 and Corollary 3 the resulting state is an SPE of the
CM-COG and the TF-COG, respectively. Fig. 4 illustrates the information exchange
between the operator and the WDs for the edge computing system shown in Fig. 1.

Observe that the WDs need to report only their offloading decisions in the
case of the time fair operator and apart from the offloading decisions they need
to reveal the characteristics of their tasks (i.e., the size Di of the input data and
the expected complexity Li) in the case of the cost minimizing operator. Therefore,
the implementation of the SPE of the TF-COG requires less information about the
WDs’ tasks than the implementation of the SPE of the CM-COG, and thus the time
fair resource allocation policy may be a better choice in systems in which privacy
and confidentiality are of major concern.

5 Price of Anarchy
We have so far analyzed the interaction between the WDs under the cost minimizing
and the time fair resource allocation policies of the operator and we proposed the
ILC and the JPAU algorithms for computing an equilibrium of offloading decisions
of the WDs under these two policies, respectively. Furthermore, we showed that
the computational complexity of the ILC algorithm (which is exponential in the
worst case) can be reduced by letting WDs start to offload in non-increasing order
of their task complexities, and we proved that the worst case complexity of the
JPAU algorithm is polynomial in N . In this section we quantify the worst case ratio
between the system performance in an SPE and the optimal performance using the

181

price of anarchy (PoA). We do so by providing an upper bound on the PoA of the
CM-COG (denoted by PoACM-COG) and the TF-COG (denoted by PoATF-COG),
respectively. Let us recall that the games Γ(Pc,∗r ,Pc,∗c) and Γ(Pt,∗r ,Pt,∗c) are strategic
representations of the CM-COG and the TF-COG games, respectively. Therefore,
we have PoACM-COG = PoA(Pc,∗r ,Pc,∗c) and PoATF-COG = PoA(Pt,∗r ,Pt,∗c).

We start with the definition of the PoA(Pr,Pc) of the strategic game played by
the WDs for a policy (Pr,Pc) of the operator for which an equilibrium allocation
d∗ of offloading decisions exists

PoA(Pr,Pc) =
maxd∗∈D∗

∑
i∈N Ci(d∗,Pr,Pc)

mind∈D
∑
i∈N Ci(d,Pr,Pc)

, (20)

where D∗ is the set of equilibria of offloading decisions under (Pr,Pc).

5.1 Price of Anarchy of the CM-COG
In order to provide an upper bound on PoACM-COG, we provide an upper bound
on PoA(Pc,∗r ,Pc,∗c) of the strategic game Γ(Pc,∗r ,Pc,∗c).

Theorem 5. PoACM-COG = PoA(Pc,∗r ,Pc,∗c)≤ 3+
√

5
2 .

Proof. Our proof is inspired by Theorem 3.1 in [22], which provides a PoA bound
for normalized weighted congestion games. Our proof extends the PoA bound to the
game Γ(Pc,∗r ,Pc,∗c), which is not a normalized weighted congestion game.

We start with defining the setR=N ∪A∪C of all resources available in the system.
Furthermore, we denote by Rdi

the set of resources that WD i uses in strategy profile
d, and we use d∗ and d̂ to denote a NE and an optimal strategy profile of Γ(Pc,∗r ,Pc,∗c),
respectively. Let us define the local computing weight wi,i,

√
Li/F li for each WD

i ∈N , and the set of WDs using local computing link i Oi(d)={i|di= i}. Observe
that either Oi(d)=∅ or Oi(d)={i} holds since the local computing resources are
not shared among WDs. We can thus express the total weight wi(d)=

∑
i∈Oi(d)wi,i

associated with local computing link i, which is either wi(d)=0 or wi(d)=wi,i.
Using the above notation we can express the system cost C(d,Pc,∗r ,Pc,∗c) for

Γ(Pc,∗r ,Pc,∗c) in a strategy profile d as

C(d,Pc,∗r ,Pc,∗c) =
∑

r∈R

∑

i∈Or(d)
wr(d)wi,r =

∑

r∈R
w2
r(d). (21)

Furthermore, from the definition of a NE we obtain
∑

r∈Rd∗
i

wr(d∗)wi,r ≤
∑

r∈Rd∗
i
∩R

d̂i

wr(d∗)wi,r + (22)

∑
r∈Rd∗

i
\R

d̂i

(
wr(d∗) +wi,r

)
wi,r ≤

∑
r∈R

d̂i

(
wr(d∗) +wi,r

)
wi,r.

182

First, by summing inequality (22) over all WDs i we obtain
∑

i∈N

∑

r∈Rd∗
i

wr(d∗)wi,r≤
∑

i∈N

∑

r∈R
d̂i

(
wr(d∗)+wi,r

)
wi,r. (23)

Second, by reordering the summations, (23) can be rewritten as
∑

r∈R

∑

i∈Or(d∗)
wr(d∗)wi,r≤

∑

r∈R

∑

i∈Or(d̂)

(
wr(d∗)wi,r+w2

i,r

)
. (24)

Next, from the definition of the total weight wr(d) =
∑
i∈Or(d)wi,r associated with

resource r and from
∑
i∈Or(d)w

2
i,r ≤ w2

r(d) we obtain
∑

r∈R
w2
r(d∗)≤

∑

r∈R
wr(d∗)wr(d̂) +

∑

r∈R
w2
r(d̂). (25)

We can now use the Cauchy-Schwartz inequality (
∑
r∈R arbr ≤

√∑
r∈R a

2
r

∑
r∈R b

2
r)

to obtain
∑

r∈R
w2
r(d∗)≤

√∑

r∈R
w2
r(d∗)

∑

r∈R
w2
r(d̂) +

∑

r∈R
w2
r(d̂). (26)

If we divide the right and the left side of inequality (26) by
∑
r∈Rw

2
r(d̂)> 0 we can

rewrite it using (21) as

C(d∗,Pc,∗r ,Pc,∗c)
C(d̂,Pc,∗r ,Pc,∗c)

≤
√
C(d∗,Pc,∗r ,Pc,∗c)
C(d̂,Pc,∗r ,Pc,∗c)

+ 1. (27)

Since (27) holds for any NE of the game Γ(Pc,∗r ,Pc,∗c), it holds for the worst case
NE too, and thus we have

PoA(Pc,∗r ,Pc,∗c)≤
√
PoA(Pc,∗r ,Pc,∗c) + 1. (28)

By solving (28) we obtain that PoACM-COG = PoA(Pc,∗r ,Pc,∗c) ≤ 3+
√

5
2 , which

proves the theorem.

5.2 Price of Anarchy of the TF-COG
Next, using a similar approach to the one presented in the proof of Theorem 5, in
what follows we provide an upper bound on PoATF-COG by providing an upper
bound on the PoA(Pt,∗r ,Pt,∗c) of the strategic game Γ(Pt,∗r ,Pt,∗c).

183

Theorem 6. PoATF-COG = PoA(Pt,∗r ,Pt,∗c)≤N + 1.

Proof. We start with the definition of the weights in Γ(Pt,∗r ,Pt,∗c) for all resources
R=N ∪A∪C available in the system

w̃i,i ,
Li

F li
, w̃i,c ,

Li
F c

, w̃i,a ,
Di
Ri,a

.

Using the above notation we can express the system cost C̃(d,Peqr ,Peqc) for Γ(Pt,∗r ,Pt,∗c)
in a strategy profile d as

C̃(d,Peqr ,Peqc)=
∑

r∈R

∑

i∈Or(d)
nr(d)w̃i,r=

∑

r∈R
nr(d)w̃r(d), (29)

where w̃r(d) ,
∑
i∈Or(d) w̃i,r.

Furthermore, let us use d∗ and d̂ to denote a NE and an optimal solution of
Γ(Pt,∗r ,Pt,∗c), respectively.

Now, from the definition of a NE we obtain
∑

r∈Rd∗
i

nr(d∗)w̃i,r ≤
∑

r∈Rd∗
i
∩R

d̂i

nr(d∗)w̃i,r + (30)

∑
r∈Rd∗

i
\R

d̂i

(
nr(d∗) + 1

)
w̃i,r ≤

∑
r∈R

d̂i

(
nr(d∗) + 1

)
w̃i,r.

First, by summing inequality (30) over all WDs i we obtain
∑

i∈N

∑

r∈Rd∗
i

nr(d∗)w̃i,r≤
∑

i∈N

∑

r∈R
d̂i

(
nr(d∗) + 1

)
w̃i,r. (31)

Second, by reordering the summations (31) can be rewritten as

∑

r∈R

∑

i∈Or(d∗)
nr(d∗)w̃i,r≤

∑

r∈R

∑

i∈Or(d̂)

(
nr(d∗)w̃i,r + w̃i,r

)
. (32)

Using the definition of the total weight w̃r(d) ,
∑
i∈Or(d) w̃i,r associated with

resource r we can rewrite (32) as

∑

r∈R
nr(d∗)w̃r(d∗)≤

∑

r∈R
nr(d∗)w̃r(d̂) +

∑

r∈R
w̃r(d̂). (33)

Next, observe that nr(d)≤N must hold for any feasible strategy profile d and for
every resource r ∈R, and that |Or(d)| ≥ 1 implies nr(d)≥ 1. Therefore, we have that

184

∑
r∈Rnr(d

∗)w̃r(d̂) ≤ N∑r∈Rnr(d̂)w̃r(d̂) and
∑
r∈R w̃r(d̂) ≤∑r∈Rnr(d̂)w̃r(d̂).

By using these observations in (33) we obtain the following inequality
∑

r∈R
nr(d∗)w̃r(d∗)≤(N + 1)

∑

r∈R
nr(d̂)w̃r(d̂). (34)

Finally, since
∑
r∈Rnr(d̂)w̃r(d̂)> 0 must hold, we can divide the right and the left

side of inequality (34) by
∑
r∈Rnr(d̂)w̃r(d̂) to obtain

∑
r∈Rnr(d

∗)w̃r(d∗)∑
r∈Rnr(d̂)w̃r(d̂)

≤N + 1. (35)

Since (35) holds for any NE of the game Γ(Pt,∗r ,Pt,∗c), it also holds for the worst
case NE, and thus using (29) we obtain

PoATF-COG = PoA(Pt,∗r ,Pt,∗c)≤N + 1, (36)

which proves the theorem.

Observe that the PoA(Pc,∗r ,Pc,∗c) and PoA(Pt,∗r ,Pt,∗c) are in fact bounds on the
approximation ratio of the ILC and JPAU algorithms used for computing a NE of
the games Γ(Pc,∗r ,Pc,∗c) and Γ(Pt,∗r ,Pt,∗c), respectively. Therefore, the ILC algorithm
outperforms the JPAU algorithm in terms of the worst case system performance
and the JPAU algorithm outperforms the ILC algorithm in terms of the worst case
complexity. Consequently, the cost minimizing resource allocation policy might be
a better choice than the time fair resource allocation policy in systems in which a
guarantee on the worst case system performance is more important than a guarantee
on the worst case computational efficiency, and vice versa.

6 Numerical Results

In the following we show results from extensive simulations to evaluate the system
performance from the perspective of the operator of the WDs.

For the simulations we placed ECs and WDs uniformly at random over a square
area of 1km×1km, and we placed 5 APs at random on a regular grid with 25 points
defined over the area. This uniform deployment corresponds to a dense urban area.
We consider that the channel gain of WD i in the case of offloading through the
same AP a depends on its distance di,a from the AP and on the path loss exponent
α. We use α= 4 according to the path loss model in urban and suburban areas [23].
For simplicity we assign a bandwidth of Bi,a=5MHz to each communication link
(i,a) ∈N ×Ai. The transmit power P ti,a at which WD i offloads the data through
AP a is drawn from a continuous uniform distribution on [0.05,0.18]W according
to [24]. Given the noise power Pn we calculate the transmission rate Ri,a achievable

185

0 5 10 15 20 25 30 35 40 45 50 55

Number of WDs (N)

1

1.5

2

2.5

3

P
er
fo
rm

an
ce

ga
in

(P
G

T
F
−
F
L
N
C
(d

A
,P

r
,P

c
)) CM-ILC

CM-FLNC
TF-JPAU
C = 1
C = 3

Figure 5: Performance gain vs. the number of WDs N for A= 5 APs. Homogeneous
ECs, F c,tot = 192GHz.

to WD i for offloading to AP a as Ri,a=Bi,alog(1+d−αi,a
P t

i,a

Pn
). The input data size

Di is drawn from a uniform distribution on [0.2,4]Mb, and the number X of CPU
cycles required per data bit is a Gamma distributed random variable with the shape
k = 0.5 and scale θ = 1.6. Given Di and X, we calculate the complexity of a task as
Li=DiX.

We consider two operator policies in the evaluation. We refer to (Pc,∗r ,Pc,∗c) as
the CM policy. Under the CM policy the WDs use the ILC algorithm for computing
a NE of the game Γ(Pc,∗r ,Pc,∗c), as shown in Section 3. As a baseline for comparison,
we consider the TF policy (Pt,∗r ,Pt,∗c), under which the WDs use the JPAU algorithm
for computing a NE of the game Γ(Pt,∗r ,Pt,∗c), as shown in Section 4.

As a baseline for the ILC and JPAU algorithms proposed for computing an
equilibrium of offloading decisions, we use the FastestLinkNearestCloud (FLNC)
algorithm. According to the FLNC algorithm WDs offload the computation through
the AP with the highest achievable transmission rate and to the EC closest to the
chosen AP. Observe that FLNC can be used with both operator policies. The results
shown are the averages of 1000 simulations, together with 95% confidence intervals.

6.1 User-oriented performance
We start with considering the system performance from the point of view of the WDs.
We define the performance gain PGTF−FLNC(dA,Pr,Pc) (w.r.t. the TF-FLNC)
for a strategy profile dA computed by algorithm A ∈ {ILC,JPAU,FLNC} under a
resource allocation policy (Pr,Pc) ∈ {(Pc,∗r ,Pc,∗c),(Pt,∗r ,Pt,∗c)} as

PGTF−FLNC(dA,Pr,Pc) = C(dFLNC ,Pt,∗r ,Pt,∗c)
C(dA,Pr,Pc)

.

186

0 5 10 15 20 25 30 35 40 45 50 55

Number of WDs (N)

1

1.5

2

2.5

3

P
er
fo
rm

an
ce

ga
in

(P
G

T
F
−
F
L
N
C
(d

A
,P

r
,P

c
)) CM-ILC

CM-FLNC
TF-JPAU
C = 3
C = 6

Figure 6: Performance gain vs. the number of WDs N for A= 5 APs. Heterogeneous
ECs, F c,tot = 192GHz.

Fig. 5 shows the performance gain as a function of the number N of WDs for
two MEC systems, one with C=1 (F c1=192GHz) and one with C=3 (F ci=64GHz),
i.e., ECs are homogeneous. The figure shows that the performance gain is largest
when the operator uses the CM policy and WDs offload according to an equilibrium
computed by the ILC algorithm. Interestingly, even CM-FLNC outperforms TF-
JPAU for C=1 ECs and N>10 WDs. These results indicate that the operator’s
resource allocation policy has a large impact on the user-perceived performance.
Overall, we can observe that the performance gain increases with a decreasing
marginal gain in N , which suggests that the achievable performance gain is limited
by the congestion on the APs and ECs.

Fig. 6 shows the corresponding performance gain for heterogeneous ECs for two
MEC systems, one with C=3 ECs and one with C=6 ECs. The total cloud computing
capability F c,tot=192GHz of the system is distributed among the ECs such that
F c1=32GHz and F ci=F ci−1 +32GHz, i>1, for C=3 ECs, and F c1 =12GHz and
F ci =F ci−1 +8GHz, i>1, for C=6 ECs. As in Fig. 5, the results in Fig. 6 show a
decreasing marginal gain in N and confirm that the largest performance gain is
achieved by the CM-ILC. Nonetheless, a comparison of Fig. 5 and Fig. 6 reveals that
the performance gain is affected by the number of ECs in the system and the way
the total cloud computing capability is shared among the ECs. On the one hand,
the performance gain increases with C. On the other hand, the performance gain
for C=3 ECs is greater in the case of heterogeneous ECs than that in the case of
homogeneous ECs. Thus, CM-ILC is most beneficial when edge cloud resources are
heterogeneous. The improved performance is partly due to that the WDs in the
baseline strategy profile (computed by the FLNC) offload their tasks through the
fastest link to the EC that is closest to the chosen AP, and since WDs, APs and ECs
are randomly placed over the area, the number of WDs per EC is not proportional
to its computing capability, as we will see later.

187

5 10 15 20 25 30 35 40 45 50 55

Number of WDs (N)

0

2

4

6

8

10

12

14

16

N
u
m
b
er

of
W

D
s
p
er

cl
ou

d
(n

c
(d

A
,P

r
,P

c
))

CM-ILC

CM-FLNC

TF-FLNC

TF-JPAU

c1, F
c1 = 32GHz

c2, F
c2 = 64GHz

c3, F
c3 = 96GHz

Figure 7: Congestion per EC vs. the number of WDs N for A= 5 APs, C = 3 ECs.
Heterogeneous ECs, F c,tot = 192GHz.

6.2 Infrastructure-oriented performance
In order to evaluate the system performance from operator’s perspective, we investi-
gate how the choice of the resource allocation policy and the algorithm for computing
the offloading decisions of WDs affects the number nc(dA,Pr,Pc) of WDs per EC and
the cost Cc(dA,Pr,Pc)=

∑
i∈Oc(dA,Pr,Pc)Ci(d

A,Pr,Pc) per EC. For consistency, we
show results for a system with heterogeneous cloud resources, i.e., F c,tot = 192GHz
divided among three ECs such that F c1 = 32GHz and F ci = F ci−1 + 32GHz, for
i > 1.

Fig. 7 and Fig. 8 show nc(dA,Pr,Pc) and Cc(dA,Pr,Pc) for each of the ECs as
a function of the number N of WDs, respectively. The results are shown for the
ILC, JPAU and FLNC algorithms under both the CM and TF resource allocation
policies. By looking at nc(dA,Pr,Pc) for all ECs for a fixed N , we observe from
Fig. 7 that the ratio of the WDs that offload their tasks decreases as N increases.
This happens because the number of WDs that cannot benefit from offloading due to
high congestion on the shared resources increases with N . Fig. 7 also shows that the
difference in the congestion experienced by the ECs is smallest when the offloading
decisions of the WDs are computed by the FLNC algorithm. This is due to that
in the strategy profile computed by the FLNC algorithm WDs offload their tasks
to the EC that is closest to the fastest AP, and since the WDs, APs, and ECs are
placed uniformly at random over the region, all ECs experience the same congestion
on average. Consequently, the corresponding cost per EC, shown in Fig. 8, is inverse
proportional to the computing capability of the EC.

On the contrary, in the case of equilibria computed by ILC and by JPAU (i.e.
equilibria under the CM and TF policies, respectively) the congestion and the cost
per EC are proportional to the computing capability of the EC as shown in Fig. 7
and Fig. 8, respectively. We also observe that the total number of WDs that offload
their tasks and the total offloading cost are higher in an equilibrium computed by

188

5 10 15 20 25 30 35 40 45 50 55

Number of WDs (N)

0

5

10

15

20

C
os
t
p
er

cl
ou

d
(C

c
(d

A
,P

r
,P

c
))

CM-ILC
CM-FLNC
TF-FLNC
TF-JPAU
c1, F

c1 = 32GHz

c2, F
c2 = 64GHz

c3, F
c3 = 96GHz

Figure 8: Cost per EC vs. the number of WDs N for A = 5 APs, C = 3 ECs.
Heterogeneous ECs, F c,tot = 192GHz.

the JPAU algorithm than in an equilibrium computed by the ILC algorithm. This
is due to that the cloud computing resources are shared among WDs independently
of their tasks’ complexities in the case of the TF policy, and consequently the WDs
overuse the ECs.

6.3 Computational complexity
We characterize the computational complexity of an algorithm as the number of itera-
tions needed to compute a computation offloading strategy profile. Since Γ(Pc,∗r ,Pc,∗c)
is a potential game, we use the AU algorithm (c.f. Fig. 2) as a baseline for comparison,
as it is guaranteed to converge from an arbitrary initial strategy profile [18]. For
the AU algorithm we consider three initial strategy profiles: a randomly chosen
initial strategy profile (RandomAU), an initial strategy profile in which all WDs
offload their tasks such that the number of WDs offloading the computation to an
EC is proportional to its computing capability (ECProportionalAU), and an empty
strategy profile where the WDs enter the game in non-increasing order of their
task complexities (JoinNon-IncrAU). Furthermore, we consider the complexity of
computing an equilibrium of Γ(Pt,∗r ,Pt,∗c) using the JPAU algorithm.

Fig. 9 shows the number of iterations needed to compute an equilibrium of
Γ(Pc,∗r ,Pc,∗c) and an equilibrium of Γ(Pt,∗r ,Pt,∗c), as a function of N for the same
set of parameters as in Fig. 5. We observe that the number of iterations scales
approximately linearly with N in all cases and that computing an equilibrium of
Γ(Pc,∗r ,Pc,∗c) using the ILC algorithm is more efficient than computing an equilibrium
of Γ(Pt,∗r ,Pt,∗c) using the JPAU algorithm; the difference is up to 50%.

We also observe that the choice of the initial strategy profile affects the complexity
of computing an equilibrium of the game Γ(Pc,∗r ,Pc,∗c), and we make three obser-
vations. First, the number of iterations required by ILC and by JoinNon-IncrAU
is insensitive to the number of ECs, while the number of iterations required by

189

5 10 15 20 25 30 35 40 45 50 55

Number of WDs (N)

-20

0

20

40

60

80

100

120

N
u
m
b
er

of
It
er
at
io
n
s

CM-ILC
CM-JoinNon-IncrAU
CM-RandomAU

CM-ECProportionalAU
TF-JPAU
C = 1
C = 3

Figure 9: Number of iterations vs. the number of WDs N for A= 5. Homogeneous
ECs, F c,tot = 192GHz.

RandomAU and by ECProportionalAU increases with the number of ECs. This is
due to that in the case of ILC and of JoinNon-IncrAU the WDs start using ECs in
non-increasing order of their task complexities, and thus it follows from Proposition 1
that when a new WD starts offloading, WDs will not have an incentive to change
between ECs. This is not true in the case of RandomAU and of ECProportionalAU,
since they start from a strategy profile where WDs did not start to offload in the
order of the complexities of their tasks, and consequently the WDs can decrease their
offloading cost not only by changing between the APs, but also by changing between
the ECs. Second, the ECProportionalAU has the highest computational complexity.
This is due to that ECProportionalAU starts from an initial strategy profile that has
the highest congestion on the resources and thus when a WD updates its strategy
the number of WDs affected by the update step is higher than in the case of the
other initial strategy profiles. Finally, the smallest computational complexity can be
achieved by the proposed ILC algorithm. On the one hand, this is because the WDs
do not have to choose their initial strategy as in the case of the JoinNon-IncrAU. On
the other hand, the WDs cannot decrease their offloading cost by changing between
the ECs as in the case of the RandomAU and ECProportionalAU.

To summarize, the proposed CM-ILC algorithm can provide a significant reduction
in terms of completion times and has low computational complexity, and could be a
good candidate for coordinating the offloading decisions of WDs for edge computing.

7 Related Work
There is a large body of recent works on computation offloading for mobile cloud
computing [11, 15, 25–36]. Many of these works assume that the offloading decisions
of devices are determined by a centralized entity with the objective to meet the
energy and latency constraints of the devices [11,25–30]. [25] considered that devices
offload the computation either to a computationally limited local cloud or to a

190

computationally rich remote cloud, and proposed a policy that schedules resources
in the clouds so as to meet the delay requirements of the applications. [11,26,27]
formulated the computation offloading problem as an optimization problem that
minimizes the energy consumption of the mobile devices under latency constraints.
[26] considered that devices may offload their tasks to an edge cloud through a
base station, and proposed a policy for managing computing and communication
resources assuming that the base station has perfect knowledge about the system.
[11,27] considered a network composed of multiple cells, each equipped with an edge
cloud. [11] proposed an iterative algorithm for jointly optimizing the allocation of
computing and uplink bandwidth resources, and [27] proposed an iterative algorithm
for jointly optimizing the allocation of computing and both uplink and downlink
bandwidth resources. [28] considered the problem of joint optimization of network
selection and service placement under random mobility of users and proposed an
iterative algorithm that minimizes the average system delay. [29] proposed an online
algorithm for distributing the workload across multiple edge clouds, which are
managed by an operator that apart from the workload distribution decides about
the activation status of the edge clouds, and acts as the auctioneer that solicits
bids from multiple service providers. [30] considered a mobile cloud computing
system in which a centralized entity located in the cloud implements an online
algorithm for scheduling the transmissions between the mobile devices and the cloud
so as to minimize the energy consumption of mobile devices. Unlike these works,
we propose a novel approach to address the computation offloading problem by
considering the interaction between an operator that manages the allocation of
wireless and computing resources and devices that make their offloading decisions in
a decentralized manner.

Closer related to ours are recent works that propose decentralized algorithms
based on a game theoretic treatment of the computation offloading problem [15,31–36].
Authors in [31] considered the interaction between devices that always offload their
tasks and an operator that optimizes the allocation of wireless and computing
resources. Compared to [32], we consider both the cost minimizing and the time
fair resource allocation policies and besides the analysis of a game in the case of
the cost minimizing operator, we also prove the existence of Stackelberg equilibria
in the case of the time fair operator, we establish an upper bound on the price of
anarchy of the resulting Stackelberg game and we propose a polynomial complexity
algorithm for computing an equilibrium of the game. [33] considered that devices
may offload the computation to the cloud through a single wireless link if doing so
minimizes their own energy consumption, and proved the existence of equilibria when
devices with the same delay budget compete only for wireless resources. [15, 34, 35]
considered that devices may offload their tasks to the cloud through one of multiple
wireless links so as to minimize the linear combination of the delay and the energy
consumption. [15] considered the congestion only on the wireless links and proved
the existence of equilibria under the assumption that a device experiences the same
channel gain for all wireless links. [34] extended the equilibrium existence results
of [15] to a dynamic environment, where devices may be active or inactive. [35]
considered that devices may offload their tasks to the cloud through one of multiple

191

heterogeneous wireless links, modeled the congestion on both cloud and wireless links
and provided a polynomial time algorithm for computing equilibria. [36] considered a
fog computing system where multiple devices may offload their computational tasks
to each other or to an edge cloud and provided an efficient algorithm for computing
a mixed strategy equilibrium in a decentralized way. Our work differs significantly
from these works, as we model the congestion on multiple heterogeneous wireless
links and edge clouds, which are managed by an operator that can implement one
of two resource allocation policies and given the resource allocation policy of the
operator we consider that devices can autonomously decide whether or not to offload
the computations, and if so, to which of multiple edge clouds and through which
of multiple wireless links. To the best of our knowledge, ours is the first work on
computation offloading for mobile cloud computing that closes the gap between the
works that propose centralized solutions and the works that propose decentralized
solutions.

Closest to our work in the literature on game theory is [37], which considers
the effectiveness of Stackelberg strategies for atomic congestion games. Authors
in [37] consider that the leader controls a subset of non-selfish players, focus on affine
latency functions and on congestion games on parallel links. On the contrary, in our
model the leader manages the sharing of resources, and we consider a player-specific
weighted network congestion game for which the existence of equilibria is not known
in general [38]. Thus, our work provides a novel game theoretic perspective on
congestion games.

8 Conclusion
We have provided a game theoretical analysis of selfish computation offloading in a
mobile edge computing system where wireless and computing resources are jointly
managed by an operator, and devices make offloading decisions autonomously so as
to minimize the completion times of their tasks. We consider the cost minimizing
and the time fair allocation policies of the operator and we use a Stackelberg game
to model the interaction between the operator and devices. We expressed the cost
minimizing resource allocation policy in closed form and proved the existence of
Stackelberg equilibria for both policies. Using game theoretical tools, we developed
efficient decentralized approximation algorithms for computing offloading decisions
of devices under both policies of the operator. Our numerical results show that the
proposed algorithms are computationally efficient and that the system performance
can be significantly improved through optimally allocating wireless and computing
resources in a system, while allowing the devices to make their offloading decisions
autonomously.

References
[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented assembly

using a mobile phone,” in Proc. of IEEE/ACM ISMAR, Sept 2008, pp. 167–168.

192

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uwave:
Accelerometer-based personalized gesture recognition and its applications,” in
Proc. of IEEE PerCom, March 2009, pp. 1–9.

[3] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards
wearable cognitive assistance,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 2014, pp.
68–81.

[4] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing resource-poor
mobile devices with powerful clouds: architectures, challenges, and applications,”
IEEE Wireless communications, vol. 20, no. 3, pp. 14–22, 2013.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” Sep. 2015.

[6] S. R. Group, “The leading cloud providers continue to run away with the
market,” Tech. Rep., 2017.

[7] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a
comprehensive definition of fog computing,” ACM SIGCOMM CCR, vol. 44,
no. 5, pp. 27–32, 2014.

[8] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” ACM SIGCOMM CCR, vol. 45, no. 5, pp. 37–42, 2015.

[9] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms
with pace,” in ACM SIGMETRICS, 2001, pp. 50–61.

[10] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in
cloud computing,” in Proc. of Usenix HotCloud, 2010.

[11] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE T-SIPN,
vol. 1, no. 2, pp. 89–103, 2015.

[12] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution:
Taming resource-poor mobile devices with cloud clones,” in Proc. of IEEE
INFOCOM, March 2012, pp. 2716–2720.

[13] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable multiprocessor fair
scheduling using distributed weighted round-robin,” SIGPLAN Not., vol. 44,
no. 4, pp. 65–74, Feb. 2009.

[14] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime fairness for ieee
802.11 multirate networks,” IEEE Trans. on Mob. Comp., pp. 513–527, 2008.

193

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM TON, no. 5, pp. 2795–2808,
2016.

[16] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[17] S. Jošilo and G. Dán, “Decentralized scheduling for offloading of periodic tasks
in mobile edge computing,” in Proc. of IFIP NETWORKING, 2018.

[18] D. Monderer and L. S. Shapley, “Potential games,” Games and economic be-
havior, vol. 14, no. 1, pp. 124–143, 1996.

[19] J. R. Marden, G. Arslan, and J. S. Shamma, “Joint strategy fictitious play with
inertia for potential games,” IEEE Trans. on Automatic Control, vol. 54, no. 2,
pp. 208–220, Feb 2009.

[20] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity of pure nash
equilibria,” in Proc. of ACM STOC, 2004, pp. 604–612.

[21] H. Ackermann, H. Röglin, and B. Vöcking, “On the impact of combinatorial
structure on congestion games,” Journal of the ACM (JACM), vol. 55, no. 6,
p. 25, 2008.

[22] B. Awerbuch, Y. Azar, and A. Epstein, “The price of routing unsplittable flow,”
in Proc. of ACM STOC, 2005, pp. 57–66.

[23] A. Aragon-Zavala, Antennas and propagation for wireless communication sys-
tems. John Wiley & Sons, 2008.

[24] E. Casilari, J. M. Cano-García, and G. Campos-Garrido, “Modeling of current
consumption in 802.15. 4/zigbee sensor motes,” Sensors, vol. 10, no. 6, pp.
5443–5468, 2010.

[25] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative scheduling
scheme of local cloud and internet cloud for delay-aware mobile cloud computing,”
in IEEE GC Wkshps, 2015, pp. 1–6.

[26] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource al-
location for mobile-edge computation offloading,” IEEE Trans. on Wireless
Communications, pp. 1397–1411, 2017.

[27] A. Al-Shuwaili, O. Simeone, A. Bagheri, and G. Scutari, “Joint uplink/downlink
optimization for backhaul-limited mobile cloud computing with user scheduling,”
IEEE T-SIPN, pp. 787–802, 2017.

[28] G. Bin, F. L. Zhi, Zhou and, and X. Fei, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,” in Proc.
of IEEE INFOCOM, 2019.

194

[29] C. Shutong, J. Lei, W. Lin, and L. Fangming, “An online market mechanism
for edge emergency demand response via cloudlet control,” in Proc. of IEEE
INFOCOM, 2019.

[30] F. Liu, P. Shu, and J. C. Lui, “Appatp: An energy conserving adaptive mobile-
cloud transmission protocol,” IEEE Transactions on Computers, vol. 64, no. 11,
pp. 3051–3063, 2015.

[31] S. Jošilo and G. Dán, “Joint allocation of computing and wireless resources to
autonomous devices in mobile edge computing,” in Proc. of ACM SIGCOMM
Mecomm’18 Workshop, 2018.

[32] ——, “Wireless and computing resource allocation for selfish computation
offloading in edge computing,” in Proc. of IEEE INFOCOM, 2019.

[33] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy aware offloading
for competing users on a shared communication channel,” IEEE Trans. on Mob.
Comp, vol. 16, no. 1, pp. 87–96, 2017.

[34] J. Zheng, Y. Cai, Y. Wu, and X. S. Shen, “Dynamic computation offloading for
mobile cloud computing: A stochastic game-theoretic approach,” IEEE Trans.
on Mob. Comp., 2018.

[35] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for mobile
cloud computing in dense wireless networks,” IEEE Trans. on Mob. Comp,
vol. 18, no. 1, pp. 207–220, 2019.

[36] ——, “Decentralized algorithm for randomized task allocation in fog computing
systems,” IEEE/ACM Transactions on Networking, 2018.

[37] D. Fotakis, “Stackelberg strategies for atomic congestion games,” Theory of
Computing Systems, vol. 47, no. 1, pp. 218–249, 2010.

[38] I. Milchtaich, “The equilibrium existence problem in finite network congestion
games,” in Proc. of WINE, 2006, pp. 87–98.

[39] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” in Proc. of IEEE INFOCOM, 2017.

195

A Appendix
A.1 Proof of Theorem 1
By inspecting the leading minors of the Hessian matrix of (3) it is easy to show that
(9) is neither convex nor concave in u and p already for the case when there are
only two WDs sharing a resource. Furthermore, it is easy to see from expressions (1)
and (2) that the optimal solution of (9) cannot be unique, since any non-zero scalar
multiple of feasible policies (Pr,Pc) yields the same objective value, and hence if
there is an optimal solution then there is a continuum of optimal solutions.

To make the solution unique with respect to scalar multiplication, let us introduce
normalization constraints on the sums of the provisioning coefficients, and obtain

min
(u,p)∈Ac

C(d,u,p) (37)

s.t.
∑
j∈Oa(d)uj,a = 1, ∀a ∈A (38)
∑
j∈Oc(d) pj,c = 1. ∀c ∈ C (39)

Observe that due to the normalization constraint the cost function C(d,u,p) can
be rewritten as

C′(d,u,p) =
∑
a∈A

∑
i∈Oa(d)

Di
Ri,aui,a

+
∑
c∈C

∑
i∈Oc(d)

Li
F cpi,c

+
∑

i∈N\O(d)
Cli

Unlike problem (9), problem (37)-(39) is a convex minimization problem, and
thus its optimal solution must satisfy the Karush–Kuhn–Tucker (KKT) conditions.
To define the Lagrangian dual of (37)-(39), we denote by α and β the dual variables
associated with constraints (38) and (39) and by γ and δ the non-negative dual
variables associated with constraints u�0 and p�0. Using this notation, we express
the Lagrangian associated with (37)-(39) as

L(d,u,p,α,β,γ,δ)=C′(d,u,p)+
∑
a∈A

αa
(∑
j∈Oa(d)

uj,a−1)
)

−∑
a∈A

∑
j∈Oa(d)

γj,auj,a+
∑
c∈C

βc
(∑
j∈Oc(d)

pj,c−1
)
−∑
c∈C

∑
j∈Oc(d)

δj,cpj,c.

Finally, we define the Lagrangian dual problem as maxα∈RA,β∈RC ,γ,δ�0 minu,p�0
L(d, u,p,α,β,γ,δ), and we formulate the following KKT conditions.

Observe that ui,a = 0 and pi,c = 0 would lead to an infinite completion time
for WD i’s task, and thus ui,a > 0 and pi,c > 0 must hold. Therefore, γi,a = 0 and
δi,c = 0 must hold in order to have the complementary slackness conditions satisfied.
Finally, from the stationarity conditions we can express ui,a and pi,c as

ui,a =
√
Di/αaRi,a,∀a ∈A,∀i ∈Oa(d), (40)

196

Stationarity: ∂L(d,u,p,α,β,γ,δ)
∂ui,a

=0,∀a∈A,∀i∈Oa(d)
∂L(d,u,p,α,β,γ,δ)

∂pi,c
=0,∀c∈C,∀i∈Oc(d)

Primal
∑
j∈Oa(d)uj,a=1,∀a∈A

feasibility:
∑
j∈Oc(d) pj,c=1,∀c∈C

Dual feasibility: γi,a,δi,c≥0,∀i∈N ,∀a∈A,∀c∈C

Complementary −γi,aui,a=0,∀a∈A,∀i∈Oa(d)
slackness: −δi,cpi,c=0,∀c ∈ C,∀i∈Oc(d)

and

pi,c =
√
Li/βcF c,∀c ∈ C,∀i ∈Oc(d). (41)

By substituting (40) and (41) in the primal feasibility equations we can obtain
the expressions for αa and βc, and we can rewrite equations (40) and (41) as
ui,a =

√
Di/Ri,a∑

j∈Oa(d)
√
Dj/Rj,a

and pi,c =
√
Li/F c∑

j∈Oc(d)
√
Lj/F c

, which proves the theorem.

A.2 Proof of Theorem 4
The JPAU algorithm starts from an empty system, adds WDs into the game one
at a time in the induction phase and lets WDs to update their best replies one at
a time in the update phase. We denote by Nn the set of WDs that participate in
the game upon an induction step 1≤ n≤N and we use d(n) = (di(n),d−i(n)) to
denote a strategy profile played by WD i and the other WDs j ∈Nn \{i}. Observe
that for N = 1, there is only one WD i in the game playing its best reply d∗i (1), and
thus d∗(1) = d∗i (1) is a NE of the game.

For N > 1 let us assume that in induction step n−1 WDs play a NE d∗(n−1),
and let us consider a WD i ∈N \Nn added into the game by the JPAU algorithm
in induction step n. If a best reply d∗i (n) of WD i is to perform the computation
locally, then d∗(n) = (d∗i (n),d∗(n−1)) is a NE of Γ(Pt,∗r ,Pt,∗c) since the congestion
on the APs and the ECs remained unchanged. Otherwise, let us assume that a
best reply of WD i is offloading through AP a to EC c, i.e., d∗i (n) = (a,c). Observe
that d(n) = (d∗i (n),d∗(n− 1)) may or may not be a NE of Γ(Pt,∗r ,Pt,∗c). If there
is no WD that wants to deviate from its strategy played in d∗(n− 1) then d(n)
is a NE of the game. Otherwise, one or all of the following cases can happen:
(i) there is a WD j ∈O(a,c)(d(n)) that wants to update its best reply by changing
its strategy from (a,c) to local computing, (ii) there is a WD j ∈O(a,c′)(d(n)) that
wants to update its best reply by changing its strategy from (a,c′), c′ 6= c to local
computing, (iii) there is a WD j ∈ Oa(d(n)) that wants to update its best reply

197

by changing its offloading strategy from (a, ·) to (a′, ·), a′ 6= a, (iv) there is a WD
j ∈O(a′,c)(d(n)) that wants to update its best reply by changing its strategy from
(a′, c), a′ 6= a to local computing. Observe that WDs j ∈Oc(d(n)) cannot decrease
their offloading cost by changing between the ECs, since EC c was WD i’s best reply
(i.e., (nc(d∗(n−1)) + 1)/F c ≤ (nc′(d∗(n−1)) + 1)/F c′), and thus it is also a best
reply for all WDs j ∈Oc(d(n)).

The JPAU algorithm lets WDs to update their best replies in the following order.
If case (i) happens, the JPAU algorithm allows one of the WDs j ∈O(a,c)(d(n)) to
stop offloading. Now, in the updated strategy profile d′(n) = (j,d−j(n)) we have
that na(d′(n)) = na(d∗(n− 1)) and nc(d′(n)) = nc(d∗(n− 1)) hold for every AP
a ∈ A and every EC c ∈ C, and thus d′(n) is a NE of Γ(Pt,∗r ,Pt,∗c). Otherwise,
if case (ii) happens, the JPAU algorithm allows one of WDs j ∈ O(a,c′)(d(n)) to
stop offloading. In the updated strategy profile d′(n) = (j,d−j(n)) we have that
na(d′(n)) = na(d∗(n−1)) for every AP a, nc(d′(n)) = nc(d∗(n−1))+1, nc′(d′(n)) =
nc′(d∗(n−1))−1 and nc′′(d′(n)) = nc′′(d∗(n−1)) for every c′′ ∈ C \{c,c′}. Since
WD j was offloading its task to EC c′ in a NE d∗(n−1) (i.e. before WD i enter the
game) we have that (nc(d∗(n−1)) + 1)/F c > nc′(d∗(n−1))/F c′ . Therefore WDs
k ∈ Oc(d′(n)) can decrease their offloading cost by changing their strategy from
offloading to EC c to offloading to EC c′. Let us now consider the updated strategy
profile d′(n) = ((·, c′),d′−k(n)) after a WD k ∈ Oc(d′(n)) performed its best reply
d∗k(n) = (·, c′). We have that na(d′(n)) = na(d∗(n−1)) and nc(d′(n)) = nc(d∗(n−1))
hold for every AP a ∈A and every EC c ∈ C, and thus d′(n) is a NE of Γ(Pt,∗r ,Pt,∗c).

Now, let us assume that neither (i) nor (ii) happened. In that case, the JPAU
algorithm allows a sequence of update steps in which WDs j ∈O(d(n)) are allowed to
decrease their offloading costs. Let us recall that WDs j ∈O(d(n)) cannot decrease
their offloading cost by changing between ECs, and thus in the resulting sequence of
update steps WDs only change between APs. Furthermore, observe that the sequence
starts with an update step performed by WD j ∈Oa(d(n)), which corresponds to
case (iii). It follows from [39] that this sequence of update steps is finite. Observe
that after the sequence terminates in the updated strategy profile d′(n), we have
that na′′(d′(n)) = na′′(d∗(n−1)) + 1 holds for AP a′′ through which a WD started
offloading in the last update step, and thus some of the WDs j ∈Oa′′(d′(n)) may
want to stop offloading. Observe that the case when there is a WD j ∈O(a′′,c)(d′(n))
that wants to stop offloading corresponds to case (i) and the case when there is a
WD j ∈O(a′′,c′)(d′(n)), c′ 6= c that wants to stop offloading corresponds to case (ii).
In the discussion above we showed that the JPAU algorithm terminates in a NE
of Γ(Pt,∗r ,Pt,∗c) in both cases. Let us now consider that none of the previous two
cases happened. Then, if there are no WDs j ∈Oa′(d′(n)), a′ 6= a′′ that want to stop
offloading then the JPAU algorithm terminates in a NE because there are no WDs
that want to start offloading either because nr(d′(n))≥ nr(d∗(n−1)), ∀r ∈A∪C.

Otherwise, let us assume that a WD j ∈O(a′,c)(d′(n)), a′ 6= a′′ (i.e., na′(d′(n)) =
na′(d∗(n−1))) wants to stop offloading because the congestion in EC c increased,
i.e., because nc(d′(n)) = nc(d∗(n− 1)) + 1 holds. Observe that if cases (i)-(iii)

198

did not happen, we have that a′′ = a, which corresponds to case (iv). After a
WD j ∈ O(a′,c)(d′(n)) stops to offload, in the updated strategy profile d′(n) =
(j,d′−j(n)) we have that na′′(d′(n)) = na′′(d∗(n−1)) + 1, na′(d′(n)) = na′(d∗(n−
1))−1, nb(d′(n)) = nb(d∗(n−1)) for APs b∈A\{a′′,a′} and nc(d′(n)) = nc(d∗(n−
1)) for every EC c∈ C. The JPAU algorithm first allows one of the WDs k∈Oa′′(d′(n))
to decrease its offloading cost by changing its strategy from (a′′, ·) to (a′, ·). If such a
WD k exists, after it performs the best reply we have that na(d′(n)) = na(d∗(n−1))
and nc(d′(n)) = nc(d∗(n−1)) hold for every AP a ∈A and every EC c ∈ C in the
updated strategy profile d′(n) = ((a′, ·),d′−k(n)). Thus, there is no WD that can
further decrease its cost and the JPAU algorithm terminates in a NE of Γ(Pt,∗r ,Pt,∗c).
Otherwise, if there is no WD k ∈Oa′′(d′(n)) that can decrease its offloading cost
by changing the strategy from (a′′, ·) to (a′, ·), then the JPAU algorithm allows a
sequence of the update steps in which WDs k ∈ O(d′(n)) are allowed to decrease
their offloading costs by changing between the APs. It follows from [39] that this
sequence of the update steps is finite. Let us now consider a strategy profile d′(n)
after the last update step in the sequence was performed. We can either have
na(d′(n)) = na(d∗(n−1)) for every AP a ∈A or na′′(d′(n)) = na′′(d∗(n−1)) + 1,
na′(d′(n)) = na′(d∗(n−1))−1 for some a′ ∈A\{a′′} and nb(d′(n)) = nb(d∗(n−1))
for b ∈ A \ {a′′,a′}. In the first case the JPAU algorithm terminates in a NE of
Γ(Pt,∗r ,Pt,∗c) since nc(d′(n)) = nc(d∗(n− 1)) still holds for every EC c ∈ C (the
WDs were not changing between ECs). In the second case we have that some of
the WDs k ∈ Nn \O(d′(n)) that are performing computation locally may want
to start to offload through AP a′. If such a WD does not exist, d′(n) is a NE of
Γ(Pt,∗r ,Pt,∗c), since there is no WD that can further decrease its cost. Otherwise,
if such a WD k exists its best reply is (a′, c) since nc(d′(n)) = nc(d∗(n−1)) and
(nc(d∗(n−1))+1)/F c ≤ (nc′(d∗(n−1))+1)/F c′ . Observe that in the updated strat-
egy profile d′(n) = ((a′, c),d′−k(n)) we have that na′(d′(n)) = na′(d∗(n− 1)) and
nb(d′(n)) ≥ nb(d∗(n− 1)) for b ∈ A \ {a′}, and thus WDs j ∈ Oa′(d′(n)) cannot
decrease their offloading cost. Furthermore, WDs j ∈O(d′(n))\Oa′(d′(n)) cannot
decrease their offloading cost either since they could not do so before WD k started
offloading. Finally, we observe that WDs O(a′′,c)(d′(n)) do not want to stop offload-
ing because they did not want to do so after the sequence of update steps of type
(iii) terminated, and consequently only an update step of type (iv) may happen.

In the following we show that an update step of type (iv) can happen a finite
number of times. First, observe that na′(d′(n)) = na′(d∗(n−1)), a′ 6= a′′ holds. Thus,
a WD j ∈O(a′,c)(d′(n)), may want to stop offloading only because the congestion
in EC c increased. Second, observe that a WD j ∈ Oc(d′(n)) for which a best
reply in one of the previous steps was to share EC c with nc(d∗(n−1)) WDs, will
not have an incentive to perform an improvement step of type (iv) after a WD
k ∈Nn \O(d′(n)) starts to offload to EC c, i.e., after the congestion in EC c increases
to nc(d∗(n−1)) + 1 again. The same holds for all WDs that decide to change their
strategy from local computing to offloading to EC c. Consequently, the length of
the sequence of update steps of type (iv) is at most nc(d∗(n−1)), which proves the
theorem.

199

A.3 Proof of Proposition 3
First, observe that in a sequence of update steps of type (iii) eachWD j ∈O(d∗(n−1))
can deviate at most once. This is due to that when a WD j ∈O(d∗(n−1)) moves to
an AP a it brings the system to a state where na(d′(n)) = na(d∗(n−1))+1 holds
and since na(d′(n)) can only decrease in the following improvement steps, WD j
will not have an incentive to deviate again.

In the worst case scenario A ≥ 3, C = 1, all WDs offload their tasks in a NE
d∗(n− 1) i.e., O(d∗(n− 1)) = Nn−1 and case (iii) happens such that every WD
j ∈O(d∗(n−1)) changes between APs exactly once. Furthermore, in the worst case
scenario, after an |Nn−1| long sequence of update steps of type (iii), one of the WDs
stops to offload due to increased congestion only in the EC. Observe that in the
resulting strategy profile there is one AP a′′ on which the congestion increased, one
AP a′ on which the congestion decreased and the congestion on the other APs has
not changed compared with the congestions in d∗(n−1). Now, observe that in the
worst case scenario each of the WDs that offload through an AP a∈A\{a′′} changes
between the APs, and consequently in the worst case scenario na′′(d∗(n−1)) = 1.
Since the remaining |Nn−1|−1 WDs do not have an incentive to move to the AP
a′′ because of the increased congestion, it follows from the definition of a best reply
that in the resulting sequence each of |Nn−1|−1 WDs updates its strategy at most
A−2 times. Furthermore, it follows from the proof of Theorem 4 that an update
of type (iv) can happen at most nc(d∗(n−1)) times, where nc(d∗(n−1)) = |Nn−1|
for C = 1 and O(d∗(n−1)) = Nn−1. Finally, we obtain that a NE is reached after
at most |Nn−1|+ (1 + (A−2)(|Nn−1|−1) + 1)|Nn−1|, which proves the result.

Paper E
Joint Wireless and Edge Computing
Resource Management with Dynamic

Network Slice Selection

Slađana Jošilo and György Dán
submitted to IEEE/ACM Transactions on Networking (ToN).

201

Joint Wireless and Edge Computing Resource
Management with Dynamic Network Slice Selection

Slađana Jošilo and György Dán
School of Electrical Engineering and Computer Science

KTH, Royal Institute of Technology, Stockholm, Sweden
E-mail: {josilo, gyuri}@kth.se

Abstract
Network slicing is a promising approach for enabling low latency compu-

tation offloading in edge computing systems. In this paper, we consider an
edge computing system under network slicing in which the wireless devices
generate latency sensitive computational tasks. We address the problem of
joint dynamic assignment of computational tasks to slices, management of
radio resources across slices and management of radio and computing resources
within slices. We formulate the Joint Slice Selection and Edge Resource Man-
agement (JSS-ERM) problem as a mixed-integer problem with the objective
to minimize the completion time of computational tasks. We show that the
JSS-ERM problem is NP-hard and develop an approximation algorithm with
bounded approximation ratio based on a game theoretic treatment of the prob-
lem. We provide extensive simulation results to show that network slicing can
improve the system performance compared to no slicing and that the proposed
solution can achieve significant gains compared to the equal slicing policy. Our
results also show that the computational complexity of the proposed algorithm
is approximately linear in the number of devices.

1 Introduction
Network slicing is emerging as an enabler for providing logical networks that are
customized to meet the needs of different kinds of applications, mostly in 5G mobile
networks. Horizontal network slices are designed for specific classes of applications,
e.g., streaming visual analytics, real-time control, or media delivery, while vertical
network slices are designed for specific industries. Slicing is expected to allow flexi-
ble and efficient end-to-end provisioning of bandwidth, composition of in-network
processing, e.g., in the form of service chains composed of virtual network functions
(VNF), and the allocation of dedicated computing resources. At the same time it
provides performance isolation. Slicing is particularly appealing in combination with

203

204

edge computing, as network slicing could allow low latency access to customized
computing services located in edge clouds [1, 2].

Flexibility in network slicing is achieved through service orchestration. Orches-
tration focuses on the deployment and service-aware adaptation of VNFs and edge
cloud services based on predicted workloads. Recent works in the area addressed
the joint placement and routing of service function chains, formulated as a virtual
network embedding problem [3], and the problem of joint resource dimensioning and
routing [4,5]. Typical objectives are maximization of the service capacity or profit
under physical (bandwidth and computational power) resource constraints, or the
minimization of the energy consumption subject to satisfying service demand.

Common to the works on service orchestration is that they assume that each
application is mapped to a specific slice deterministically, and assume a static resource
pool per slice so as to ensure performance isolation [3–5]. A deterministic mapping
is, however, not mandatory in practice. While there may be a designated (default)
slice for every application, most proposed architectures for network slicing define a
set of allowed slices, and the assignment of an application to a slice can be decided
dynamically based on the current workload and SLA requirements [6]. The dynamic
assignment of applications to slices thus results in a mixture of workloads in the
slices, and consequently calls for flexibility in allocating resources to slices.

The importance of resource management across slices has been widely accepted
in the case of the radio access network (RAN) [6]. Such inter-slice resource allocation
should happen at short time scales, taking into account slice-level service level
agreements (SLAs) and technological constraints (e.g., available RAN technology,
such as 5GNR or WiFi-Lic). Recent work in the area has focused on system aspects
of virtualizing RANs [7], and on the allocation of virtual resource block groups to
slices so as to maximize efficiency [8], but has not considered of the potential impact
of inter-slice resource management on service orchestration and on the dynamic
assignment of applications to slices. It is thus so far unclear how to perform joint
resource management within and across slices, considering the orchestration of
communication and computing resources simultaneously.

In this paper we address the problem of joint dynamic slice selection, inter-slice
radio resource management and intra-slice radio and computing resource manage-
ment for latency sensitive workloads, and make three important contributions. First,
we formulate the joint slice selection and edge resource management (JSS-ERM)
problem, and show that it is NP-hard. Second, we analyze the optimal solution
structure, and we develop an efficient approximation algorithm with bounded ap-
proximation ratio inspired by a game theoretic treatment of the problem. Third, we
provide extensive numerical results to show that the resulting system performance
significantly outperforms baseline resource allocation policies.

The rest of the paper is organized as follows. Section 2 introduces the system
model and Section 3 the problem formulation. Sections 4 and 5 provide the analytical
results, and Section 6 shows numerical results. Section 7 discusses related work and
Section 8 concludes the paper.

205

2 System Model
We consider a slicing enabled mobile backhaul including mobile edge computing
(MEC) resources that serves a set N={1,2, . . . ,N} of wireless devices (WDs) that
generate computationally intensive tasks. WDs can offload their tasks through a
set A={1,2, . . . ,A} of access points (APs) to a set C={1,2, . . . ,C} of edge clouds
(ECs). APs and ECs form the set E , A∪ C of edge resources. We denote by
S={1,2, . . . ,S} the set of slices in the network, which include certain combinations
of computing resources (e.g., CPUs, GPUs, NPUs and/or FPGAs), optimized for
executing some types of tasks. For ease of reference, the key notations used in the
paper are summarized in Table 1.

We characterize a task generated by WD i by the size Di of the input data and
by its complexity, which we define as the expected number of instructions required
to perform the computation. Since the WDs and the slices may have different
instruction set architectures, the number of instructions required to execute the same
task may also differ. Hence, for a task generated by WD i we denote by Li and Li,s
the expected number of instructions required to perform the computation locally
and in slice s, respectively. Similar to other works [9–11], we consider that Di, Li
and Li,s can be estimated from measurements by applying the methods described
in [12–14].

We consider that each WD i generates a computational task at a time; each
task is atomic and can be either offloaded for computation or performed locally on
the WD it was generated at. In the case of offloading, the WD will be assigned to
exactly one slice s ∈ S and within the slice to exactly one AP a ∈Ai ⊆A through
which it can offload the computation to exactly one EC c ∈ C. Therefore, we define
the set of feasible decisions for WD i as Di , {i}∪{(a,c,s)|a ∈Ai, c ∈ C,s ∈ S} and
we use variable di ∈Di to indicate the decision for WD i’s task (i.e., di = i indicates
that WD i performs the task locally and di = (a,c,s) indicates that WD i should
offload its task through AP a to EC c in slice s). Furthermore, we define a decision
vector d , (di)i∈N as the collection of the decisions of all WDs and we define the
set D,×i∈NDi, i.e., the set of all possible decision vectors.

For a decision vector d ∈D we define the set O(a,s)(d) , {i ∈N |di = (a, ·,s),a ∈
Ai,s ∈ S} of all WDs that use AP a in slice s and the set Oa(d) = ∪s∈SO(a,s)(d) of
all WDs that use AP a. Similarly, we define the set O(c,s)(d), {i∈N |di = (·, c,s), c∈
C,s ∈ S} of all WDs that use EC c in slice s and the set Oc(d) = ∪s∈SO(c,s)(d)
of all WDs that use EC c. Finally, we define the local computing singleton set
Oi(d) ⊂ {i,∅} for WD i (i.e., Oi(d) = {i} when WD i performs the computation
locally and Oi(d) = ∅ otherwise) and the set Ol(d) = ∪i∈NOi(d) of all WDs that
perform the computation locally.

Fig. 1 shows an example of a slicing enabled MEC system that consists of N = 7
WDs, C = 2 ECs and A= 3 APs and S = 4 slices. In this example we have that 2 out
of 7 WDs perform the computation locally and 5 out of 7 WDs offload their tasks.
In what follows we discuss our models of communication and computing resources.

206

Table 1: Summary of key notations

Notation Description
N Set of N WDs
A Set of A APs
Ai Set of APs available for offloading to WD i

C Set of C ECs
E Set of APs and ECs, E = A∪C
S Set of S slices
Pb Inter-slice radio resource allocation policy
Ps

wa
Intra-slice radio resource allocation policy

Ps
wc

Intra-slice computing power allocation policy
bs

a Inter-slice radio resource provisioning coefficient
ws

i,a Intra-slice radio resource provisioning coefficient
ws

i,c Intra-slice computing power provisioning coefficient
Di Mean size of the input data for WD i

Li Mean WD i’s task complexity when executing locally
Li,s Mean WD i’s task complexity when offloading in slice s

F l
i Computational capability of WD i

T ex
i Local execution time of WD i

Ri,a Uplink PHY rate of WD i towards AP a

F s
c Computing capability of EC c in slice s

Di Set of feasible offloading decisions for WD i

di Offloading decision for WD i, di ∈Di

d Offloading decision vector, d = (di)i∈N
O(a,s)(d) Set of WDs offloading in slice s through AP a in d

Oa(d) Set of WDs offloading through AP a in d
O(c,s)(d) Set of WDs offloading in slice s to EC c in d

Oc(d) Set of WDs offloading to EC c in d
Ol(d) Set of WDs performing the computation locally in d

W s
i,a(d,Pb,Ps

wa
) Uplink rate of WD i ∈O(a,s)(d)

T tx,s
i,a (d,Pb,Ps

wa
) Transmission time of WD i ∈O(a,s)(d)

F s
i,c(d,Ps

wc
) Computing capability of WD i ∈O(c,s)(d)

T ex,s
i,c (d,Ps

wc
) Task execution time of WD i ∈O(c,s)(d)

Ci(d,Pb,Ps
wa

,Ps
wc

) Cost of WD i

Cs(d,Pb,Ps
wa

,Ps
wc

) Cost in slice s

C(d,Pb,Pwa ,Pwc) System cost

2.1 Communication Resources
Communication resources in the system are managed at two levels: at the network
level and at the slice level.

At the network level, the radio resources of each AP a ∈A are shared across the

207

mobile broadband

connected cars

manufacturing

IoT

Figure 1: An example of a slicing enabled MEC system that consists of N = 7 WDs,
C = 2 ECs and A= 3 APs and S = 4 slices.

slices according to the inter-slice radio resource allocation policy Pb :D→ R|A|×|S|[0,1] ,
which determines the inter-slice radio resource provisioning coefficients bsa∈ [0,1],
∀(a,s)∈A×S such that

∑
s∈S b

s
a ≤ 1, ∀a ∈A.

At the slice level, the radio resources assigned to each slice s ∈ S are shared
among the WDs according to an intra-slice radio resource allocation policy Pswa

:D→
R|A|×|N |[0,1] , which determines the intra-slice radio resource provisioning coefficients
wsi,a ∈ [0,1], ∀a∈A and ∀i∈O(a,s)(d) such that

∑
i∈O(a,s)(d)w

s
i,a≤ 1, ∀(a,s)∈A×S.

We denote by Ri,a the achievable PHY rate of WD i at AP a. Ri,a depends on
physical signal characteristics, such as path loss and fading, and on the modulation-
coding scheme. Given Ri,a we can express the actual uplink rate of WD i at AP a
in slice s as

W s
i,a(d,Pb,Pswa

) = bsaw
s
i,aRi,a. (1)

The uplink rate (1) together with the input data size Di determines the transmission
time of WD i ∈O(a,s)(d),

T tx,si,a (d,Pb,Pswa
) = Di

W s
i,a(d,Pb,Pswa

) . (2)

Similar to previous works [10, 15–17] we make the assumption that the time needed
to transmit the results of the computation from the EC to the WD can be neglected
because for many applications (e.g., face recognition and tracking) the size of the
output data is significantly smaller than the size Di of the input data.

2.2 Computing Resources
Our system model distinguishes between edge cloud resources and local computing
resources.

208

2.2.1 Edge Cloud Resources

We consider that each slice s∈ S is equipped with a certain combination of computing
resources optimized for executing specific types of tasks (e.g, CPUs, GPUs, NPUs,
FPGAs), and we denote by F sc the computing capability of EC c in slice s. The
computing resources within a slice are shared among the WDs according to the
intra-slice computing power allocation policy Pswc

: D→ R|C|×|N |[0,1] , which determines
the intra-slice computing power provisioning coefficients wsi,c ∈ [0,1], ∀c ∈ C and
∀i ∈O(c,s)(d) such that

∑
i∈O(c,s)(d)w

s
i,c = 1, ∀(c,s) ∈ C×S.

Given the computing capability F sc we can express the computing capability
allocated to WD i in EC c in slice s as

F si,c(d,Pswc
) = wsi,cF

s
c . (3)

In order to account for the diversity of computing resources provided by different slices
we use the coefficient hi,s ∈R≥0 to capture how well a slice s is tailored for executing
a task generated by WD i and we express the expected number of instructions Li,s
required to execute a task generated by WD i in slice s as Li,s = Li/hi,s (i.e., a high
hi,s indicates that a task generated by WD i is a good match for the computing
resources in slice s). Thus, in our model the computing capability (3) together
with the expected task complexity Li,s determines the task execution time of WD
i ∈O(c,s)(d) as

T ex,si,c (d,Pswc
) = Li,s

F si,c(d,Pswc
) . (4)

2.2.2 Local Computing Resources

We denote by F li the computing capability of WD i and we express the local execution
time T exi of WD i as

T exi = Li

F li
. (5)

2.3 Cost Model
We define the system cost as the aggregate completion time of all WDs. Before
providing a formal definition, we introduce the shorthand notation

Esi,e =
{ Di
Ri,e

if i ∈N ,e ∈ E ∩A,s ∈ S
Li,s

F s
e

if i ∈N ,e ∈ E ∩C,s ∈ S,
(6)

bse =
{
bse if e ∈ E ∩A,s ∈ S
1 if e ∈ E ∩C,s ∈ S. (7)

209

Cost of WD i: When offloading, the task completion time consists of two parts:
the time needed to transmit the data pertaining to a task through an AP and the
time needed to execute a task in an EC. In the case of local computing, the task
completion time depends only on the local execution time. Therefore, the cost of
WD i can be expressed as

Ci(d,Pb,Pswa
,Pswc

)=
{

Es
i,a

bs
aw

s
i,a

+Es
i,c

ws
i,c
, I{di=(a,c,s)}=1,

T exi , I{di=i} = 1.
(8)

where I{di=d} = 1 if di = d and I{di=d} = 0 otherwise.
Cost per slice: We express the cost in slice s as

Cs(d,Pb,Pswa
,Pswc

)=
∑

e∈E

∑

i∈O(e,s)(d)

Esi,e
bsew

s
i,e

. (9)

System cost: Finally, we express the system cost as

C(d,Pb,Pwa,Pwc)=
∑

s∈S
Cs(d,Pb,Pswa

,Pswc
)+
∑

i∈Ol(d)
Cli , (10)

where (Pwa ,Pwc) = ((Pswa
,Pswc

))s∈S denotes the collection of slices’ policies.

3 Problem Formulation
We consider that the network operator aims at minimizing the system cost C(d,Pb,
Pwa ,Pwc) by finding an optimal vector d̂ of offloading decisions, and an optimal
collection (P̂b, P̂wa , P̂wc) of policies for sharing the edge resources across slices and
within slices. We refer to the problem as the Joint Slice Selection and Edge Resource
Management (JSS-ERM) problem. Since the WDs generate atomic tasks that cannot
be further split, the JSS-ERM is a mixed-integer optimization problem, and can be
formulated as

min
d,Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (11)

s.t.
∑
d∈Di

I{di=d} = 1,∀i ∈N , (12)

Ci(d,Pb,Pswa
,Pswc

)≤ T exi ,∀i ∈N , (13)∑
s∈S

bsa ≤ 1,∀a ∈A, (14)
∑

j∈O(e,s)(d)
wsj,e ≤ 1,∀e ∈ E ,∀s ∈ S, (15)

bsa ≥ 0,∀a ∈A,∀s ∈ S, (16)
wsi,e ≥ 0,∀i ∈N ,∀e ∈ E ,∀s ∈ S. (17)

210

Constraint (12) enforces that each WD either performs the computation locally
or offloads its task to exactly one logical resource (a,c,s) ∈A×C×S; constraint (13)
ensures that the task completion time in the case of offloading is not greater than
the task completion time in the case of local computing; constraint (14) enforces a
limitation on the amount of communication resources of an AP that can be provided
to each slice; constraint (15) enforces a limitation on the amount of communication
resources of an AP and the amount of computing resources of an EC that can be
provided to each WD in each slice.

Theorem 1. The JSS-ERM defined by (11)-(17) is NP-hard.

Proof. We provide the proof in Section 4.2.

In what follows we develop an approximation scheme for the JSS-ERM prob-
lem based on decomposition of the problem, and by adopting a game theoretic
interpretation of one of the subproblems.

4 Network Slice Orchestration and Edge Resource
Allocation

In what follows we show that the JSS-ERM problem can be solved through solving
a series of smaller optimization problems. To do so, we start with considering the
problem of finding the collection (P̂b, P̂wa , P̂wc) of optimal resource allocation policies
for a given vector d of offloading decisions.

Lemma 1. Consider an offloading decision vector d for which the constraint (13)
can be satisfied. Furthermore, define the problem of finding a collection (P̂b, P̂wa , P̂wc)
of optimal resource allocation policies as

min
Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (18)

s.t.(13)− (17). (19)

Then, the collection (P̂b, P̂wa , P̂wc) of optimal resource allocation policies sets the
provisioning coefficients according to

ŵsi,e=
√
Es

i,e∑
j∈O(e,s)(d)

√
Es

j,e

,∀e∈E ,∀s∈S,∀i∈O(e,s)(d), (20)

b̂sa =

∑
j∈O(a,s)(d)

√
Es

j,a

∑
s′∈S

∑
j∈O(a,s′)(d)

√
Es′

j,a

,∀a ∈A,∀s ∈ S. (21)

211

Proof. First, observe that constraint (13) can be omitted since we assumed that
the decision vector d is such that constraint (13) can be satisfied. Furthermore, by
inspecting the leading minors of the Hessian matrix of the objective function (18) it
is easy to show that the matrix is positive semidefinite on the domain defined by (19),
and thus problem (18)-(19) is convex. Therefore, the optimal solution of the problem
must satisfy the Karush–Kuhn–Tucker (KKT) conditions and thus we can formulate
the corresponding Lagrangian dual problem. To do so, let us define b , (bsa)s∈S,a∈A
and ws , (wsi,e)i∈N ,e∈E , and let us introduce non-negative Lagrange multiplier vec-
tors α = (αa)a∈A, β = (βse)e∈E,s∈S , γ = (γsa)a∈A,s∈S and δ = (δsi,e)i∈O(e,s)(d),e∈E,s∈S
for constraints in (19), respectively. Next, let us define the Lagrangian dual problem
corresponding to problem (18)-(19) as max

α,β,γ,δ�0
min

b,w�0
L(b,w,α,β,γ,δ), where the

Lagrangian is given by

L(b,w,α,β,γ,δ)=
∑
s′∈S

∑
e′∈E

1
bs′

e′

(∑
j∈O(e′,s′)(d)

Es′
j,e′

ws′
j,e′

)
+

∑
a′∈A

αa′(
∑
s′∈S

bs
′
a′−1)+

∑
e′∈E

∑
s′∈S

βs
′
e′
(∑
j∈O(e′,s′)(d)

ws
′
j,e′−1)

)

− ∑
a′∈A

∑
s′∈S

γs
′
a′b

s′
a′ −

∑
e′∈E

∑
s′∈S

∑
j∈O(e′,s′)(d)

δs
′
j,e′w

s′
j,e′ +

∑
j∈Ol(d)

Clj .

Now, we can express the KKT conditions as follows

stationarity:
∑

j∈O(a,s)(d)

Es
j,a

ws
j,a
· 1
(bs

a)2 =αa−γsa,a∈A,s∈S, (22)

Es
i,e

bs
e(ws

i,e
)2 =βse−δsi,e,e∈E ,s∈S,i∈O(e,s)(d), (23)

pr. feasibility: (19), (24)
du. feasibility: α,β,γ,δ � 0, (25)

co. slackness: αa(
∑
s′∈S

bs
′
a −1),a∈A, (26)

slackness: βse(
∑

j∈O(e,s)(d)
wsj,e−1) = 0,e∈E ,s ∈ S, (27)

complementary −γsabsa = 0,a∈A,s ∈ S (28)
slackness: −δsi,ewsi,e = 0,e∈E ,s∈S,i ∈O(e,s)(d). (29)

We proceed with finding ŵsi,e. First, from the KKT dual feasibility condition δ�0
and complementary slackness condition (29) we obtain that δsi,e=0 must hold for
every e∈E , s∈S and i∈O(e,s)(d) as otherwise wsi,e=0 would lead to infinite value
of the objective function. Then, from the KKT stationarity condition (23) and
complementary slackness condition (27) we obtain the expression (20) for coefficients
ŵsi,e. Finally, by substituting expression (20) into the KKT stationarity condition (22)

212

and by following the same approach as for finding ŵsi,e we obtain the expression (21)
for coefficients b̂sa, which proves the result.

As a first step in the decomposition, let us consider the problem of finding the
optimal collection (P∗wa

,P∗wc
) = ((Ps,∗wa ,P

s,∗
wc))s∈S of resource allocation policies of

slices for a given vector d of offloading decisions and a given policy Pb.

Proposition 1. Consider an offloading decision vector d for which constraint (13)
can be satisfied and a policy Pb for setting the inter-slice radio resource provisioning
coefficients bsa,∀a ∈A,∀s ∈ S. Then the solution to the problem

min
Ps

wa
,Ps

wc

Cs(d,Pb,Pswa
,Pswc

) (30)

s.t.(13),(15),(17). (31)

is given by (20), i.e., (Ps,∗wa ,P
s,∗
wc) = (P̂swa

, P̂swc
),∀s ∈ S.

Proof. The result can be proved by following the approach presented in the proof of
Lemma 1.

As a second step, let us consider the problem of finding an optimal policy P∗b for
a given vector d of offloading decisions d and the optimal collection (P∗wa

,P∗wc
) =

(P̂wa , P̂wc) of the slices’ policies.

Proposition 2. Consider an offloading decision vector d for which the constraint (13)
can be satisfied. Furthermore, let us substitute (20) into (11)-(17) and define the
problem of finding an optimal inter-slice radio resource allocation policy P∗b , i.e., a
solution to

min
Pb

∑
s′∈S

∑
a′∈A

1
bs′

a′

(∑
j∈O(a′,s′)(d)

√
Es
′
j,a′
)2 (32)

s.t.(13),(14) and (16). (33)

Then, the optimal inter-slice radio resource allocation policy P∗b sets the inter-slice
provisioning coefficients according to (21), i.e., P∗b = P̂b.

Proof. The result can be proved by following the approach presented in the proof of
Lemma 1.

By combining the above two results, we are now ready to show that the JSS-ERM
problem can be decomposed into a sequence of optimization problems.

Theorem 2. The solution to problem (18)-(19) can be obtained by finding the
optimal policies (P̂wa , P̂wc) first, and finding the optimal policy P̂b second, i.e.,

min
Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) = min
Pb

min
Pwa ,Pwc

C(d,Pb,Pwa ,Pwc). (34)

213

Proof. The result follows from the proofs of Lemma 1, Proposition 1 and Proposition 2.

Furthermore, as the next theorem shows, we can use this decomposition structure
also for computing the optimal offloading decision vector.

Theorem 3. The solution to problem (11)-(17) can be obtained by finding the
optimal collection (P̂b, P̂wa , P̂wc) of resource allocation policies first, and finding an
optimal offloading decision vector d̂ second, i.e.,

min
d,Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) =

min
d

min
Pb

min
Pwa ,Pwc

C(d,Pb,Pwa ,Pwc). (35)

Proof. It is easy to see that the exact values of the provisioning coefficients are
functions of d̂. However, the optimal policies according to which the resources are
shared are the same for every offloading decision vector d ∈D, as defined by (20)
and (21). Therefore, one can solve the problem (18)-(19) first, assuming an arbitrary
offloading decision vector d, and then given the solution (P̂b, P̂wa , P̂wc) of (18)-(19)
find the optimal offloading decision vector d̂ that will determine the exact values of
the provisioning coefficients. This proves the result.

4.1 Discussion and Practical Implications
So far we have shown that the JSS-ERM problem can be decomposed into a S+2
coupled resource allocation problems that can be solved sequentially. It is of interest to
discuss the relationship between the decomposition and the potential implementation
of a resource allocation and orchestration framework.

The proposed decomposition results in an optimization problem to be solved at
the network level (eqns. (32)-(33)) and one in each slice ((eqns. (30)-(31))), followed
by the problem of finding an optimal offloading decision vector. This structure is
aligned with the slice-based network architecture proposed in [6], where inter-slice
radio resource allocation and service orchestration are performed by a centralized
entity, the slice resource orchestrator (SRO), while intra-slice radio and computing
resource management is performed by the slices themselves, i.e., each slice manages
its own radio and computing resources.

Fig. 2 illustrates the interaction between the SRO and slices in the potential
implementation of a resource allocation and orchestration framework.

4.2 Problem Complexity
In what follows we provide a result concerning the complexity of the JSS-ERM
problem. For notational convenience let us first define the set of resources R̃ ,

214

mobile broadband

IoT

connected cars

manufacturing

Pwa

Pwc ?s1
s1

Pwa

Pwc ?s3
s3

Pwa

Pwc ?s2
s2

Pwa

Pwc ?s4
s4

step 1:(Pwa,)Pwc

step 2:Pb

step 3:d
step 4: di

?

Figure 2: An example of the potential implementation of a resource allocation and
orchestration framework.

{{A×S}∪{C×S}∪N} and let us introduce the following shorthand notation

qi,(a,s) ,
√

Di
Ri,a

, qi,(c,s) ,
√

Li
hi,s

, qi,i ,
√
Li, qr(d) ,

∑

j∈Or(d)
qj,r,∀r ∈ R̃. (36)

First, by substituting (20) into (8) and by using the notation introduced in (36),
we can express the cost of WD i under a policy Pb and the collection (P̂wa , P̂wc) of
optimal allocation policies of slices as

C̃i(d) =
∑

r∈R̃di

mrqi,rqr(d), (37)

where R̃di
is the set of resources that WD i uses for performing its task in d (i.e.,

R̃di
⊂ R̃) and m(a,s) = 1/bsa, m(c,s) = 1/F sc and mi = 1/F li .
Second, by summing the expressions (37) over all WDs i ∈N and by reordering

the summations we can express the system cost (10) under a policy Pb and the
collection (P̂wa , P̂wc) of optimal allocation policies of slices as

C̃(d) =
∑
r∈R̃

mrq
2
r(d). (38)

Next, let us define the set of resources R̄, {A∪{C×S}∪N} and a coefficient
qi,a , qi,(a,s) =

√
Di/Ri,a. By substituting (21) into (37), we can express the cost

of WD i under the collection (P̂b, P̂wa , P̂wc) of optimal allocation policies as

C̄i(d) =
∑

r∈R̄di

mrqi,rqr(d), (39)

215

where R̄di
is the set of resources that WD i uses for performing its task in d (i.e.,

R̄di
⊂ R̄) and ma = 1.
Finally, by summing the expressions (39) over all WDs i∈N and by reordering the

summations we can express the system cost (38) under the collection (P̂b, P̂wa , P̂wc)
of optimal allocation policies as

C̄(d) =
∑
r∈R̄

mrq
2
r(d). (40)

Theorem 4. Consider the problem of finding the optimal vector d̂ of offloading
decisions of WDs under the collection (P̂b, P̂wa , P̂wc) of optimal allocation policies
that set provisioning coefficients according to (20) and (21)

min
d
C̄(d) (41)

s.t.(12). (42)

Problem (41)-(42) is NP-hard.

Proof. We prove the NP-hardness of the problem by reduction from the Minimum
Sum of Squares problem (SP19 problem in [18]): given a finite set B, a size s(b) ∈
Z+,∀b ∈ B and positive integers K ≤ |B| and J , the question is whether B can be

partitioned into K disjoint subsets B1,B2, . . . ,BK such that
K∑
k=1

(∑
b∈Bk

s(b)
)2
≤J .

For the reduction we set S = 1, C = 0 and F li = 0, ∀i ∈N , i.e., in this simplified
version of the problem R̃ = A. Next, we let N = B, |A| = K, Ri,a = Ri, ∀i ∈ N ,
∀a ∈A and

√
Di/Ri = s(b). Then, it follows from (38) that the optimal solution of

(41)-(42) provides the solution to the SP19 problem. As SP19 is NP-hard, problem
(41)-(42) is also NP-hard, which proves the theorem.

Proof of Theorem 1. The result follows from Theorem 3 and Theorem 4.

5 Approximation Scheme for the JSS-ERM Prob-
lem

In what follows we propose the choose offloading slice (COS) algorithm for computing
an approximation to the optimal solution of the JSS-ERM problem. In particular,
the algorithm serves as an approximation scheme to the problem of finding an
optimal offloading decision vector. The algorithm starts from an offloading decision
vector d0 in which all WDs perform computation locally and it lets WDs update
their offloading decisions one at a time, based on their local cost function C̃i(d). We
show the pseudo code of the algorithm in Fig. 3.

216

d∗ = COS(d0,Pb,P∗w,P∗w)

1 d← d0

2 while∃WD j∈N s.t. dj 6= argmin
d′

j
∈Dj

C̃j(d′j ,d−j)

3 d∗j = argmin
d′

j
∈Dj

C̃j(d′j ,d−j), d = (d∗j ,d−j)

4 end
5 d∗ = d

Figure 3: Pseudo code of the COS algorithm.

Theorem 5. Consider an allocation policy Pb and the collection (P̂wa , P̂wc) of
optimal allocation policies of slices. The COS algorithm terminates after a finite
number of the iterations.

Proof. The proof is based on a game theoretic treatment of the problem

min
d
C̃(d) (43)

s.t.(12), (44)

in which the inter-slice radio resource provisioning coefficients are set according to
an arbitrary policy Pb and the intra-slice radio and computing power provisioning
coefficients are set according to the optimal policies P̂wa and P̂wc , respectively.

In what follows we show that the problem (43)-(44) can be interpreted as a con-
gestion game Γ(Pb, P̂wa , P̂wc) =<N ,(Di)i∈N ,(C̃i)i∈N > with resource-dependent
weights qi,r, i∈N , r ∈ R̃, and the cost of WD i in the resulting game is given by (37).
First, observe that qi,r can be interpreted as the weight that WD i contributes to the
congestion when using resource r ∈ R̃ and thus qr(d) can be interpreted as the total
congestion on resource r in strategy profile d. This in fact implies that the cost (37)
of WD i in strategy profile d depends on its own resource-dependent weights qi,r and
on the total congestion qr(d) on the resources it uses. Therefore, it follows from [19]
that the problem (43)-(44) can be interpreted as a congestion game Γ(Pb, P̂wa , P̂wc)
with resource dependent weights. Consequently, the COS algorithm terminates after
a finite number of iterations iff the game Γ(Pb, P̂wa , P̂wc) has a pure strategy Nash
equilibrium. 1

Since the cost cr(d) , mrqr(d) of sharing every resource r ∈ R̃ is an affine
function of the congestion qr(d) on resource r, it follows from Theorem 4.2 in [19]

1A pure strategy Nash equilibrium of a strategic game is a collection d∗ of decisions (called
a strategy profile) for which C̃i(d∗i ,d∗−i)≤ C̃i(di,d

∗
−i), ∀di, where d∗i and d∗−i are standard game

theoretical notations for an improvement step of player i and for the collection of decisions (strategies)
of all players other than i, respectively.

217

that the game Γ(Pb, P̂wa , P̂wc) has the exact potential function2 given by

Ψ(d) =
∑

i∈N

∑

r∈R̃di

qj,rc
≤i
r (d), (46)

where c≤ir (d) =mrq
≤i
r (d) and q≤ir (d) =

∑
{j∈Or(d)|j≤i}

qi,r.

It is well known that in a finite strategic game that admits an exact potential
all improvement paths3 are finite [20] and thus the existence of the exact potential
function (46) allows us to use the COS algorithm for computing a pure strategy
Nash equilibrium d∗ of the game Γ(Pb, P̂wa , P̂wc), which proves the result.

Theorem 6. The COS algorithm terminates after a finite number of the iterations
for the collection (P̂b, P̂wa , P̂wc) of optimal allocation policies.

Proof. By following the same approach as in the proof of Theorem 5, it is easy
to show that given the collection (P̂b, P̂wa , P̂wc) of optimal allocation policies, the
problem (41)-(42) can be interpreted as a congestion game Γ(P̂b, P̂wa , P̂wc) =<
N ,(Di)i∈N ,(C̄i)i∈N > with resource-dependent weights qi,r, i ∈N , r ∈ R̄, and the
cost of WD i in the resulting game is given by (39).

Since ma = 1,∀a ∈ A, the cost cr(d) ,mrqr(d) of sharing every resource r ∈
R̄ is an affine function of the congestion on resource r. Therefore, the game
Γ(P̂b, P̂wa , P̂wc) is also an exact potential game, and thus the COS algorithm com-
putes a pure strategy Nash equilibrium d∗ of the game Γ(P̂b, P̂wa , P̂wc), which proves
the result.

In general, the number of improvement steps can be exponential in a potential
game, but as we show next the COS algorithm can compute an equilibrium d∗ of
offloading decisions efficiently.

Theorem 7. The COS algorithm terminates in O(nC
min

Cmax log
∑

i∈N T ex
i

Ψmin) iterations,
where n≥ 1, Cmin and Cmax are system parameter dependent constants and Ψmin

is the minimum value of the potential function.

Proof. First, let us define the minimum cost that WD i can achieve as Cmini ,
min{Cli ,min(a,c,s)∈A×C×S(Di/Ri,a+Li,s/F

s
c)} and let Cmin , mini∈N Cmini . Fur-

thermore, let us define the maximum cost that WD i can achieve if it was the only
2A function Ψ :×i(Di)→ R is an exact potential for a finite strategic game if for an arbitrary

strategy profile (di,d−i) and for any improvement step d∗i the following holds:

Ψ(di,d−i)−Ψ(d∗i ,d−i)= C̃i(di,d−i)−C̃i(d∗i ,d−i). (45)

3An improvement path is a sequence of strategy profiles in which one player at a time changes
its strategy through performing an improvement step.

218

WD in the system as Cmaxi , max{Cli ,min(a,c,s)∈A×C×S(Di/Ri,a+Li,s/F
s
c)}, and

let Cmax = maxi∈N Cmaxi .
Consider now an iteration of the COS algorithm where the offloading decision of

WD i is updated from di to d∗i . We can then write

Ψ(di,d−i)−Ψ(d∗i ,d−i)= C̃i(di,d−i)−C̃i(d∗i ,d−i)
≥−Cmax ≥−Cmax

Cmin Ψ(di,d−i), (47)

where the equality follows from the definition of the exact potential function (45),
the first inequality follows from the fact that C̃i(di,d−i)−C̃i(d∗i ,d−i)> 0 since d∗i
is an improvement step of WD i and the last inequality follows from the fact that
Ψ(di,d−i)≥ Cmin for any vector d of offloading decisions.

Therefore, from (47) we obtain Ψ(d∗i ,d−i)≤ (1 + Cmax

Cmin), i.e., the COS algorithm
decreases the potential function by at least a factor of (1+ Cmax

Cmin). Next, observe that
from the definition of the constants Cmax and Cmin we have Cmax

Cmin ≥ 1. Hence, since
(1 +x) n

x ≤ en holds for x,n≥ 1, we obtain that after every nC
min

Cmax iterations of the

COS algorithm (1+ Cmax

Cmin)n Cmin

Cmax ≤ en, and thus every nC
min

Cmax iteration decreases
the potential function by a constant factor (n can be chosen as a smallest positive
constant for which nC

min

Cmax ≥ 1). Furthermore, since the COS algorithm starts from
an offloading decision vector d0 in which all WDs perform computation locally, the
potential function begins at the value Ψ(d0) =

∑
i∈N T exi and cannot drop lower

than Ψmin. Therefore, the COS algorithm converges in O(nC
min

Cmax log
∑

i∈N T ex
i

Ψmin)
iterations, which proves the result.

In what follows we address the efficiency of the COS algorithm in terms of the
cost approximation ratio.

Theorem 8. The COS algorithm is a 2.62-approximation algorithm for the opti-
mization problem (43)-(44) in terms of the system cost, i.e., C̃(d∗)

C̃(d̂) ≤ 2.62.

Proof. Let us denote by D∗ ⊆D the set of all vectors of offloading decisions that
can be computed using the COS algorithm given any policy Pb and the collection
(P̂wa , P̂wc) of the optimal resource allocation policies of slices. Furthermore, let us
consider a vector d∗ ∈ D∗ and an arbitrary vector d̂ ∈ D of offloading decisions.
Since there is no WD i for which the cost C̃i(d∗) can be decreased by unilaterally
changing its offloading decision we have the following

C̃i(d∗)≤
∑

r∈R̃d∗
i
∩R̃

d̂i

mrqi,rqr(d∗) + (48)

∑
r∈R̃d∗

i
\R̃

d̂i

mr

(
qr(d∗) + qi,r

)
qi,r ≤

∑
r∈R̃

d̂i

mr

(
qr(d∗) + qi,r

)
qi,r,

219

where R̃d∗
i
⊂ R̃ and R̃d̂i

⊂ R̃ denote the the set of resources that WD i uses in d∗

and d̂, respectively. By summing (48) over all WDs i ∈N and by reordering the
summations we obtain

C̃(d∗)≤
∑

r∈R

∑

i∈Or(d̂)

mr

(
qr(d∗)qi,r+q2

i,r

)
. (49)

From the definition (36) of the total weight qr(d) on resource r ∈ R̃ and from∑
i∈Or(d)

q2
i,r ≤ q2

r(d) we obtain

C̃(d∗)≤
∑

r∈R
mrqr(d∗)qr(d̂) +

∑

r∈R
mrq

2
r(d̂).

Next, let us recall the Cauchy-Schwartz inequality
∑
r∈R

arbr ≤
√∑
r∈R

a2
r

∑
r∈R

b2r. By

defining ar ,
√
mrqr(d∗) and br ,

√
mrqr(d̂) we obtain the following

C̃(d∗)≤
√∑
r∈R

mrq2
r(d∗)

∑
r∈R

mrq2
r(d̂)

+
∑
r∈R

mrq
2
r(d̂). (50)

By dividing the right and the left side of (50) by
∑
r∈R

q2
r(d̂)> 0 and by using (38)

we obtain

C̃(d∗)
C̃(d̂)

≤
√
C̃(d∗)
C̃(d̂)

+ 1. (51)

Since (51) holds for any vector d∗ ∈ D∗ of offloading decisions computed by the
COS algorithm and for any vector d̂ ∈ D of offloading decisions of the WDs, it
holds for the worst vector d∗ = argmaxd∈D∗ C̃(d) of offloading decisions that can
be computed using the COS algorithm and for the optimal d̂ = argmind∈D C̃(d)
solution too. Therefore, by solving (51) we obtain that the cost approximation ratio
C̃(d∗)
C̃(d̂) of the COS algorithm is upper bounded by (3+

√
5)/2∼= 2.62, which proves

the theorem.

Theorem 9. The COS algorithm is a 2.62-approximation algorithm for the opti-
mization problem (41)-(42) in terms of the system cost, i.e., C̄(d∗)

C̄(d̂) ≤ 2.62.

Proof. The result can be easily obtained by following the approach used to prove
Theorem 8.

220

Finally, from Theorem 3 and Theorem 9 we obtain the approximation ratio
bound for the proposed decomposition-based algorithm.

Theorem 10. Given the collection (P̂b, P̂wa , P̂wc) of optimal allocation policies, the
proposed decomposition-based algorithm computes a 2.62-approximation solution to
the JSS-ERM problem.

6 Numerical Results
We used extensive simulations to evaluate the performance of the proposed resource
allocation algorithm. To capture the potentially uneven spatial distribution of ECs,
WDs and APs in a dense urban area, we consider a square area of 1km×1km in which
WDs and 3 ECs are placed uniformly at random and 5 APs are placed at random on
a regular grid with 25 points. The channel gain of WD i to AP a depends on their
Euclidean distance di,a and on the path loss exponent α, which we set to 4 according
to the path loss model in urban and suburban areas [21]. We set the bandwidth Ba
of 2 APs to 18MHz and the bandwidth of 3 APs to 27MHz, corresponding to 25 and
75 resource blocks that are 12×60KHz and 12×30KHz subcarriers wide [22, 23],
respectively. We consider that the transmit power Pi,a of every WD i is uniformly
distributed on [10−6,0.1]W according to [24]. We calculate the total thermal noise
in a BaMHz channel as N0(dBm) = −174 + 10log(Ba) according to [25] and the
transmission rate Ri,a achievable to WD i at AP a as Ri,a=Balog(1+d−αi,a

Pi,a

N0
).

To set the values for the computational capabilities of the WDs, we consider a line
of Samsung Galaxy phones, from the oldest version with 1 core operating at 1GHz to
the one of the newest versions with 8 cores operating at 2.84GHz. We consider that
EC c1 is equipped with 36 vCPUs operating at 2.3GHz and 96 vCPUs operating at
3.6GHz. We consider that EC c2 and EC c3 are equipped with 1 GPU each (with 2048
parallel processing cores operating at 557MHz and 2496 parallel processing cores
operating at 560MHz, respectively). Given the measurements reported in [26–28] we
assume that a WD, a CPU and a GPU can execute on average 2,3 and 1 instructions
per cycle (IPC), respectively. Based on this, we consider that the computational
capability F li of every WD i is uniformly distributed on [2, 45.4]GIPS, where the
lower and the upper bound correspond to the oldest and the newest version of the
phone, respectively. Similarly, we calculate the computational capabilities of ECs,
and set them to Fc1 =1285.2GIPS, Fc2 =1140.7GIPS and Fc3 =1397.8GIPS.

The input data size Di is drawn from a uniform distribution on [1.7,10]Mb
according to measurements in [29]. The number X of instructions per data bit
follows a Gamma distribution [30] with shape parameter k = 75 and scale θ = 50.
Given Di and X, we calculate the complexity of a task as Li=DiX.

Motivated by Amazon EC2 instances [31] designed to support different kinds of
applications (e.g., G3 and P2 instances for graphics-intensive and general-purpose
GPU applications, and C5 and I3 instances for compute-intensive and non-virtualized
workloads), we evaluate the system performance for the following four cases.

221

1 5 10 15 20 25 30 35 40 45 50

1

1.5

2

2.5

3

3.5

4

Figure 4: Performance gain vs. number of WDs N .

S= 1: The slice s1 contains all ECs, and thus is able to support all of the above
applications.
S= 2: The ECs are sliced such that slice s1 supports the G3.4 instance and slice s2
supports instances C5 and I3.
S= 3: The ECs are sliced such that slices s1 and s2 support P2 and G3s instances,
respectively and slice s3 supports instances C5 and I3.
S= 4: The ECs are sliced such that slices s1,s2,s3 and s4 support P2, G3s, C5 and
I3 instances, respectively.

The coefficients 1
hi,s

were drawn from a continuous uniform distribution on [0,1]
and unless otherwise noted, the results are shown for all of the above scenarios.

We use two bandwidth allocation policies Pb of the slice orchestrator as a basis
for comparison. The first policy Pcpb shares the bandwidth of each AP a among slices
proportionally to the ECs’ resources that slices have. The second policy Peqb gives
an equal share of the bandwidth of each AP a to each slice s. Observe that the COS
algorithm computes an approximation vector d∗ of offloading decisions for both
policies (c.f. Theorem 5 and Theorem 8). The results shown are the averages of 300
simulations, together with 95% confidence intervals.

6.1 System Performance
We start with considering the system performance from the point of view of the
slice orchestrator. To do so we define the system performance gain PG(Pb) for an
inter-slice radio allocation policy Pb w.r.t. the policy Peqb as

PG(Pb) =
C(d∗,Peqb , P̂wa , P̂wc)
C(d∗,Pb, P̂wa , P̂wc)

.

Fig. 4 shows PG(Pb) as a function of the number N of WDs for the optimal P∗b
and for the cloud proportional Pcpb allocation policy of the operator. We observe

222

1 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

120

Figure 5: Computational complexity vs. number of WDs N .

that PG(P∗b)=PG(Pcpb)=1 when S=1 because the three solutions are equivalent
when there is no slicing. On the contrary, for S>1 we observe that PG(P∗b)>1
and PG(Pcpb)>1, which is due to that the policy Peqb does not take into account
that the slices might have different amounts of ECs’ resources. We also observe that
the policy P∗b achieves better performance gain (up to 2.5 times greater) than the
policy Pcpb because P∗b assigns the WDs to slices not only based on the amount of
ECs’ resources the slices have, but also based on how well the slices are tailored
for executing their tasks. This effect is especially evident when there are few WDs,
because in this case WDs tend to offload their tasks, and thus the system cost is
mostly determined by the offloading cost. On the contrary, as the number N of WDs
increases, the gap between considered inter-slice radio allocation policies vanishes
because the system cost becomes mostly determined by the WDs that perform the
computation locally.

6.2 Computational Cost
Fig. 5 shows the number of iterations in which the COS algorithm computes a
decision vector d∗ as a function of the number N of WDs under the optimal P∗b , the
cloud proportional Pcpb and the equal Peqb inter-slice radio allocation policy of the
slice orchestrator.

Interestingly, the number of updates decreases with the number S of slices. This
is due to that the congestion on the logical resources decreases as S increases, and
thus the COS algorithm updates the offloading decisions less frequently. We also
observe that the number of updates scales approximately linearly with N under
all considered policies of the slice orchestrator, and thus we can conclude that the
COS algorithm is computationally efficient, which makes it a good candidate for
computing an approximation d∗ to the optimal vector d̂ of offloading decisions of
WDs.

223

1 5 10 15 20 25 30 35 40 45 50

Number of WDs (N)

0

5

10

15

20

25

30

N
u
m
b
er

of
offl

oa
d
er
s
p
er

sl
ic
e
(n

s
(P

b
)) P ∗

b policy
P

cp

b policy
P

eq

b policy
s1
s2

Figure 6: Number of offloaders per slice vs. number of WDs N .

6.3 Performance Within the Slices
We continue with considering the performance from the point of view of the slices.
For an inter-slice radio allocation policy Pb, we denote by ns(Pb) the number of
offloaders per slice in the vector d∗ of offloading decisions computed by the COS
algorithm and we define the cost ratio CRs(Pb) per slice w.r.t. the system cost as

CRs(Pb) = Cs(d∗,Pb, P̂wa , P̂wc)
C(d∗,Pb, P̂wa , P̂wc)

.

Fig. 6 and Fig. 7 show ns(Pb) and CRs(Pb), respectively for the optimal P∗b ,
the cloud proportional Pcpb and the equal Peqb inter-slice radio allocation policy of
the slice orchestrator. The results are shown for S = 2 and the red lines in Fig. 7
show the share of the ECs’ resources among the slices s1 and s2 (i.e, slices s1 and
s2 have approximately 72% and 28% of the resources, respectively). We observe
from Fig. 6 and Fig. 7, respectively that the gap between ns1(Pb) and ns2(Pb) and
the gap between CRs1(Pb) and CRs2(Pb) are highest in the case of the policy Pcpb
and lowest in the case of the policy Peqb . Therefore, WDs whose tasks are a better
match with the EC resources in slice s2 than those in slice s1 cannot fully exploit
the ECs’ resources in slice s2 under the policy Pcpb , which allocates bandwidth
resources proportionally to the ECs’ resources. Similarly, WDs whose tasks are a
better match with the EC resources in slice s1 than in slice s2 cannot fully exploit the
ECs’ resources in slice s1 under the policy Peqb , which allocates bandwidth resources
equally. On the contrary, the results show that the optimal policy P∗b finds a good
match between the EC resources in the slices and the WDs’ preferences for different
types of computing resources, which makes it a good candidate for dynamic resource
management for network slicing coupled with edge computing.

224

1 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7: Cost ratio per slice vs. number of WDs N .

7 Related Work
Closest to our work a recent game theoretic treatments of the computation offloading
problem [32–36]. In [32] the authors considered devices that compete for cloud
resources so as to minimize their energy consumption, and proved that an equilibrium
of offloading decision can be computed in polynomial time. In [33] the authors
considered devices that maximize their performance and a profit maximizing service
provider, and used backward induction for deriving near optimal strategies for the
devices and the operator. In [34] the authors considered that devices can offload their
tasks to a cloud through multiple identical wireless links, modeled the congestion on
wireless links, and used a potential function argument for proposing a decentralized
algorithm for computing an equilibrium. In [35] the authors considered that devices
can offload their tasks to a cloud through multiple heterogeneous wireless links,
modeled the congestion on wireless and cloud resources, showed that the game
played by devices is not a potential game and proposed a decentralized algorithm
for computing an equilibrium. In [36] the authors modeled the interaction between
devices and a single network operator as a Stackelberg game, and provided an
algorithm for computing a subgame perfect equilibrium. Unlike these works, we
consider the computation offloading problem together with network slicing and we
analyze the interaction between the network operator and the slices.

Another line of works considers the network slicing resource allocation problem [37–
41]. In [37] the authors considered an auction-based model for allocating edge cloud
resources to slices and proposed an algorithm for allocating resources to slices so
as to maximize the total network revenue. In [38] the authors considered the radio
resources slicing problem and proposed an approximation algorithm for maximizing
the sum of the users’ utilities. In [39] the authors modeled the interaction between
slices that compete for bandwidth resources with the objective to maximize the sum
of their users’ utilities, and proposed an admission control algorithm under which

225

the slices can reach an equilibrium. In [40] the authors proposed a deep learning
architecture for sharing the resources among network slices in order to meet the
users’ demand within the slices. In [41] the authors considered a radio access network
slicing problem and proposed two approximation algorithms for maximizing the
total network throughput. Unlike these works, we consider a slicing enabled edge
system in which the slice resource orchestrator assigns WDs to slices and shares
radio resources across slices, while the slices manage their own radio and computing
resources with the objective to maximize overall system performance.

To the best of our knowledge ours is the first work to consider slicing and
computation offloading to edge clouds jointly, capturing the interaction between the
slice resource orchestrator and the slices.

8 Conclusion
We have considered the computation offloading problem in an edge computing system
under network slicing in which slices jointly manage their own communication and
computing resources and the slice resource orchestrator manages communication
resources among slices and assigns the WDs to slices. We formulated the problem
of minimizing the sum over all WDs’ task completion times as a mixed-integer
problem, proved that the problem is NP-hard and proposed a decomposition of the
problem into a sequence of optimization problems. We proved that the proposed
decomposition does not change the optimal solution of the original problem, proposed
an efficient approximation algorithm for solving the decomposed problem and proved
that the algorithm has bounded approximation ratio. Our numerical results show that
the proposed algorithm is computationally efficient. They also show that dynamic
allocation of slice resources is essential for maximizing the benefits of edge computing,
and slicing could be beneficial for improving overall system performance.

References
[1] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and

J. Folgueira, “Network slicing for 5g with sdn/nfv: Concepts, architectures, and
challenges,” IEEE Communications Magazine, vol. 55, no. 5, pp. 80–87, 2017.

[2] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman,G. Verin et al., “Mec in 5g networks,” Sophia Antipolis,
France, ETSI, White Paper, 2018.

[3] M. Rost and S. Schmid, “Virtual network embedding approximations: Leveraging
randomized rounding,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 2071–2084,
Oct. 2019.

226

[4] B. Farkiani, B. Bakhshi, and S. A. MirHassani, “A fast near-optimal approach
for energy-aware sfc deployment,” IEEE Transactions on Network and Service
Management, vol. 16, no. 4, pp. 1360–1373, Dec 2019.

[5] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint optimization of service function
placement and flow distribution for service function chaining,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, pp. 2532–2541, Nov 2017.

[6] A. Zafeiropoulos et al., 5G PPP Architecture Working Group: View on 5G
Architecture, S. Redana and Ö. Bulakci, Eds. European Commission, Jun.
2019, vol. Version 3.0.

[7] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: Ran slicing for a flexible
and cost-effective multi-service mobile network architecture,” in Proc. of ACM
International Conference on Mobile Computing and Networking (MobiCom),
2017, pp. 127–140.

[8] C. Chang, N. Nikaein, and T. Spyropoulos, “Radio access network resource slicing
for flexible service execution,” in Proc. of IEEE INFOCOM 2018 Workshops),
April 2018, pp. 668–673.

[9] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,” IEEE
Transactions on Mobile Computing, vol. 18, no. 4, pp. 771–786, 2018.

[10] X. Chen, “Decentralized computation offloading game for mobile cloud comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp.
974–983, 2014.

[11] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task allocation
in fog computing systems,” IEEE/ACM Transactions on Networking, vol. 27,
no. 1, pp. 85–97, 2018.

[12] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and S. Secci,
“Uloof: a user level online offloading framework for mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 17, no. 11, pp. 2660–2674, 2018.

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic ex-
ecution between mobile device and cloud,” in Proceedings of the sixth conference
on Computer systems. ACM, 2011, pp. 301–314.

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: making smartphones last longer with code offload,” in
Proceedings of the 8th international conference on Mobile systems, applications,
and services. ACM, 2010, pp. 49–62.

227

[15] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for mobile
cloud computing in dense wireless networks,” IEEE TMC, vol. 18, no. 1, pp.
207–220, 2018.

[16] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Transactions on Wireless Communications, vol. 11, no. 6,
pp. 1991–1995, 2012.

[17] S. Jošilo and G. Dán, “Joint management of wireless and computing resources
for computation offloading in mobile edge clouds,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2019.

[18] M. R. Garey and D. S. Johnson, Computers and intractability. wh freeman
New York, 2002, vol. 29.

[19] T. Harks, M. Klimm, and R. H. Möhring, “Characterizing the existence of po-
tential functions in weighted congestion games,” Theory of Computing Systems,
pp. 46–70, 2011.

[20] D. Monderer and L. S. Shapley, “Potential games,” Games and economic be-
havior, vol. 14, no. 1, pp. 124–143, 1996.

[21] S. R. Saunders and A. Aragón-Zavala, Antennas and propagation for wireless
communication systems. John Wiley & Sons, 2007.

[22] E. TSGR, “Lte: Evolved universal terrestrial radio access (e-utra),” Physical
channels and modulation (3GPP TS 36.211 version 10.0.0. 0 Release 10) ETSI
TS, 2011.

[23] A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen, 5G
Physical Layer: Principles, Models and Technology Components. Academic
Press, 2018.

[24] M. Lauridsen, L. Noël, T. B. Sørensen, and P. Mogensen, “An empirical lte
smartphone power model with a view to energy efficiency evolution.” Intel
Technology Journal, vol. 18, no. 1, 2014.

[25] N. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise: A
Circuits and Systems Perspective. Cambridge University Press, 2018.

[26] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob,
A. Ingle, C. Tabony, and R. Maule, “Hexagon dsp: An architecture optimized
for mobile multimedia and communications,” IEEE Micro, vol. 34, no. 2, pp.
34–43, 2014.

[27] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer, “An
energy efficiency feature survey of the intel haswell processor,” in 2015 IEEE

228

international parallel and distributed processing symposium workshop, 2015, pp.
896–904.

[28] Y. Takefuji, GPU Parallel Computing for Machine Learning in Python: How to
Build a Parallel Computer. Independently published, 2017.

[29] L. Fletcher, L. Petersson, and A. Zelinsky, “Road scene monotony detection in a
fatigue management driver assistance system,” in IEEE Proceedings. Intelligent
Vehicles Symposium, 2005., 2005, pp. 484–489.

[30] J. R. Lorch and A. J. Smith, “Pace: A new approach to dynamic voltage scaling,”
IEEE Transactions on Computers, vol. 53, no. 7, pp. 856–869, 2004.

[31] https://aws.amazon.com/ec2/instance types/, “Amazon ec2 instance types.”

[32] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource allocation for
overall energy minimization in mobile cloud computing system,” in ACM/IEEE
Symposium on low power electronics and design, 2012, pp. 279–284.

[33] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization
framework in mobile cloud computing system,” in IEEE Service Oriented System
Engineering Symposium, 2013, pp. 494–502.

[34] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 2795–2808, 2015.

[35] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation
offloading,” in IEEE INFOCOM, 2017, pp. 1–9.

[36] ——, “Wireless and computing resource allocation for selfish computation
offloading in edge computing,” in IEEE INFOCOM, 2019, pp. 2467–2475.

[37] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing in 5g: An auction-
based model,” in IEEE International Conference on Communications (ICC),
2017, pp. 1–6.

[38] P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Pérez, “Multi-tenant radio
access network slicing: Statistical multiplexing of spatial loads,” IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 3044–3058, 2017.

[39] P. Caballero, A. Banchs, G. De Veciana, X. Costa-Pérez, and A. Azcorra,
“Network slicing for guaranteed rate services: Admission control and resource
allocation games,” IEEE Transactions on Wireless Communications, vol. 17,
no. 10, pp. 6419–6432, 2018.

229

[40] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Deepcog:
Cognitive network management in sliced 5g networks with deep learning,” in
IEEE INFOCOM, 2019, pp. 280–288.

[41] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The slice is served:
Enforcing radio access network slicing in virtualized 5g systems,” in IEEE
INFOCOM, 2019, pp. 442–450.

