
Decentralized Algorithms for Resource Allocation in
Mobile Cloud Computing Systems

SLAÐANA JOŠILO

Doctoral Thesis
Stockholm, Sweden 2018

TRITA-EECS-AVL-2018:34
ISSN 1653-5146
ISBN 978-91-7729-751-2

KTH School of Electrical Engineering and Computer Science
SE-100 44 Stockholm

Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av doktorsexamen torsdag den 31 May 2018
klockan 10.00 i sal Q2, KTH, Stockholm.

© Slađana Jošilo, May 2018

Tryck: Universitetsservice US AB

iii

Abstract

The rapid increase in the number of mobile devices has been followed by
an increase in the capabilities of mobile devices, such as the computational
power, memory and battery capacity. Yet, the computational resources of
individual mobile devices are still insufficient for various delay sensitive and
computationally intensive applications. These emerging applications could be
supported by mobile cloud computing, which allows using external computa-
tional resources. Mobile cloud computing does not only improve the users’
perceived performance of mobile applications, but it also may reduce the en-
ergy consumption of mobile devices, and thus it may extend their battery
life. However, the overall performance of mobile cloud computing systems
is determined by the efficiency of allocating communication and computa-
tional resources. The work in this thesis proposes decentralized algorithms
for allocating these two resources in mobile cloud computing systems.

In the first part of the thesis, we consider the resource allocation problem
in a mobile cloud computing system that allows mobile users to use cloud
computational resources and the resources of each other. We consider that
each mobile device aims at minimizing its perceived response time, and we
develop a game theoretical model of the problem. Based on the game theo-
retical model, we propose an efficient decentralized algorithm that relies on
average system parameters, and we show that the proposed algorithm could
be a promising solution for coordinating multiple mobile devices.

In the second part of the thesis, we consider the resource allocation prob-
lem in a mobile cloud computing system that consists of multiple wireless
links and a cloud server. We model the problem as a strategic game, in which
each mobile device aims at minimizing a combination of its response time
and energy consumption for performing the computation. We prove the exis-
tence of equilibrium allocations of mobile cloud resources, and we use game
theoretical tools for designing polynomial time decentralized algorithms with
a bounded approximation ratio. We then consider the problem of allocating
communication and computational resources over time slots, and we show
that equilibrium allocations still exist. Furthermore, we analyze the struc-
ture of equilibrium allocations, and we show that the proposed decentralized
algorithm for computing equilibria achieves good system performance.

By providing constructive equilibrium existence proofs, the results in this
thesis provide low complexity decentralized algorithms for allocating mobile
cloud resources for various mobile cloud computing architectures.

iv

In loving memory of my mother, Milenija Mihajlović Jošilo.

v

Acknowledgments

I would like to thank my advisor György Dán for his patience, support and encour-
agement. His consistent guidance and valuable suggestions at every stage of the
research work have helped me to complete the thesis successfully.

I would also like to thank all past and present members of the NSE department
for providing a friendly environment. I am thankful to my close friends for their
love, enthusiasm and help.

I am deeply thankful to my family for their love and sacrifices that they have
made on my behalf.

Contents

Contents vi

1 Introduction 1
1.1 Background . 1
1.2 Challenges . 2
1.3 Thesis Structure . 3

2 Mobile Cloud Computing Resources 5
2.1 Communication Resources . 5
2.2 Mobile Cloud Computing Architectures 7

3 Computation Offloading for Mobile Systems 9
3.1 Computational Tasks . 9
3.2 Performance Metrics . 10

4 Resource Allocation in Mobile Cloud Computing Systems 13
4.1 Cost Model . 13
4.2 Resource Allocation Problem Formulation 14

5 Summary of Original Work 21

6 Conclusions and Future Work 25

Bibliography 27

Paper A: Decentralized Algorithm for Randomized Task Allocation
in Fog Computing Systems 35

Paper B: A Game Theoretic Analysis of Selfish Mobile Computa-
tion Offloading 61

vi

Contents vii

Paper C: Decentralized Scheduling for Offloading of Periodic Tasks
in Mobile Edge Computing 85

Chapter 1
Introduction

1.1 Background

In recent years, the number of mobile devices including smartphones, tablets, sen-
sors, and other portable devices, has been rapidly increasing. According to a recent
estimate by Cisco, the number of mobile devices and connections will grow to 11.6
billion by 2021 at a compound annual growth rate (CAGR) of 8% between 2016
and 2021 [1].

Despite such a significant growth in the number of mobile devices, the computa-
tional capabilities of individual mobile devices are still limited compared to desktop
computers [2]. In addition, mobile devices are mostly battery powered, and thus
energy consumption is an important aspect that requires careful attention. Unfor-
tunately, battery technology has still not been able to meet energy consumption
requirements without limiting the clock speed of processors; doubling the clock
speed approximately octuples the energy consumption [3]. Furthermore, in order
to be easily carried, mobile devices must be physically light and small, which puts
additional limitations on specific hardware resources, such are computational capa-
bilities, battery capacity, and memory and disk capacity [4].

At the same time, computationally intensive applications, including augmented
reality, natural language processing, face, gesture, speech and object recognition are
increasingly used on mobile devices; for example, Cisco predicted that only aug-
mented reality traffic will increase sevenfold between 2016 and 2021 [1]. Therefore,
it is clear that the computational capabilities of mobile devices are increasing at a
slower rate than the computational requirements of the applications.

A widely adopted approach to closing the gap between the limited computa-
tional capabilities of mobile devices and high computational requirements of the
applications is mobile cloud computing [5, 6]. Mobile cloud computing augments
the computational capabilities of mobile devices by allowing them to use external
computational resources. By relying on external computational resources, mobile
cloud computing may accelerate the execution of applications, may extend the bat-

1

2 Chapter 1. Introduction

tery lifetime of mobile devices, and may enable collaboration among mobile devices.
All these potential benefits contribute to the growing interest in mobile cloud ser-
vices; the mobile cloud market is expected to grow from $12.07 billion in 2016 to
$74.25 billion by 2023 at a CAGR of 30.1% [7].

1.2 Challenges

The growth in the number of mobile devices over the past years has been followed
by a corresponding growth in mobile data traffic. According to a recent estimate
by Cisco, the overall mobile data traffic will increase sevenfold between 2016 and
2021 at a CGR of 47% [1]. Strong mobile data traffic growth puts stress on mobile
cloud communication and computational infrastructures, and thus it affects users’
perception of mobile cloud computing performance. Therefore, effective manage-
ment of mobile cloud communication and computational resources is an important
part of designing the mobile cloud computing systems.

There are two fundamental challenges facing the design of mobile cloud com-
puting systems. The first is meeting users’ requirements concerning the overall
application response time. The application response time is not only affected by
the limited computational resources of mobile devices, but it may also be affected
by the wireless network constraints in the case of using external computational
resources. The other fundamental challenge is meeting users’ requirements con-
cerning the battery lifetime of their mobile devices. The battery lifetime is mostly
determined by the energy consumption rate, which may depend on several factors,
such as the type of applications and network connection.

In response to these challenges, different mobile cloud architectures have been
considered. The traditional architectures make use of the commercial cloud infras-
tructures, by allowing mobile devices to offload their computational tasks to the
remote resourceful clouds, such as Amazon EC2 [8] and Windows Azure [9]. In
order to meet the extremely low latency requirements of emerging delay sensitive
applications, recently proposed architectures consider the execution of applications
in close proximity of the end users.

Mobile edge computing (MEC) [10] proposes bringing computational resources
close to the network edge, and thus it is recognized as one of the key emerging
technologies for 5G networks [11]. Another architecture that enables execution
of applications in close proximity to the end users is fog computing [12]. Fog
computing extends MEC services by using heterogeneous devices, such as access
points, edge routers and switches as the service nodes, and thus it is considered to
be a potential platform for Internet of Things (IoT) applications [13, 14].

In either case, when many mobile devices compete for communication and com-
putational resources, new challenges arise for several reasons. First, the mobile
devices are heterogeneous in terms of computational capabilities and in terms of
the constraints on the total energy consumption. Second, the applications run-
ning on different mobile devices may be different in terms of what computational

1.3. Thesis Structure 3

tasks they consist of and how often they generate the computational tasks. Third,
the mobile devices may be autonomous, and hence they may be be interested in
improving their own performance. These challenges additionally complicate the
design of mobile cloud computing systems, especially in the case of delay sensitive
and computationally intensive applications.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we discuss characteristics of
different wireless access technologies and we present both traditional centralized and
emerging distributed mobile cloud computing architectures. In Chapter 3, we de-
fine the computational tasks, and we introduce performance metrics for evaluating
mobile cloud computing systems. In Chapter 4, we present different formulations of
the resource allocation problem for various mobile cloud computing architectures.
In Chapter 5, we provide a summary of the papers included in this thesis, and in
Chapter 6 we conclude the work and discuss potential directions for future research.

Chapter 2
Mobile Cloud Computing Resources

Mobile cloud computing systems consist mainly of two types of resources, that is,
communication and computational resources. Figure 2.1 shows an example of a mo-
bile cloud computing system. As illustrated in the figure, mobile devices can decide
whether to perform the computation using local computational resources or to of-
fload the computation to external computational resources through communication
networks.

In the case of offloading, mobile devices compete for communication and com-
putational resources, and thus the decision of a mobile device affects both its own
performance and the performance of the other mobile devices. In this chapter we
present different wireless access technologies and different mobile cloud computing
architectures, and we discuss the main factors affecting the performance of mobile
cloud computing systems.

2.1 Communication Resources

When offloading their tasks to external computational resources mobile devices rely
on wireless networks. Today’s wireless networks are highly heterogeneous, and thus
mobile users can usually select among different radio access technologies, such as
2.5G, 3G, 4G and Wi-Fi [15].

The most common problems facing these radio access technologies are inter-
mittent connectivity, variable network conditions, and limited bandwidth [16, 17].
Furthermore, the communication medium is shared among users in the same area,
and thus the transmission rate of a user depends on the bandwidth allocation al-
gorithm.

The bandwidth allocation algorithm in the distributed coordination function
(DCF) used in the IEEE 802.11 standard uses the CSMA/CA protocol for imple-
menting a fair sharing of the bandwidth [18, 19]. According to the DCF algorithm,
the bandwidth of an access point (AP) a is fairly shared among the set Na of users
connected to the AP a. Hence, given the set Na the uplink rate ωi,a of user i ∈ Na

5

6 Chapter 2. Mobile Cloud Computing Resources

Figure 2.1: An example of a mobile cloud computing system.

can be expressed as
ωi,a = fa(Na),∀i ∈ Na.

Other examples of fair bandwidth sharing mechanisms are the ones used in
time-fair TDMA and OFDM based medium access protocols in which the uplink
rate ωi,a of user i on AP a does not depend on the specific set Na of users sharing
the AP, but it may depend on the total number |Na| of users sharing the AP [20,
21]. Common to these protocols is that the uplink rate ωi,a of user i on AP a can
be user specific, and given |Na| it can be expressed as

ωi,a = fi,a(|Na|),∀i ∈ Na.

A model similar to the latter uplink rate model can also be used to describe the
proportional-fair scheduling (PFS) in 3G networks [22].

Given the overall growth in the number of mobile devices and the latency re-
quirements of emerging delay sensitive applications, it is clear that communication
resources in mobile cloud computing systems have to be managed appropriately.
There have been a few recent approaches with a strong focus on the communi-
cation related problems in mobile cloud computing systems [23, 24, 25, 26, 27].
Approaches considered in [23, 24] propose mechanisms for predicting network con-
nectivity based on the users’ movement and a database of network connectivity
over geographical zones. Approaches considered in [25, 26, 27] propose collabora-
tion among mobile devices. The latter approach is especially interesting for two

2.2. Mobile Cloud Computing Architectures 7

reasons. First, it can improve bandwidth utilization and can make use of device-
to-device (D2D) communication, which is considered to be a promising technology
for future 5G cellular networks [28, 29, 30]. Second, the concept of collaboration
provides a basis for moving towards highly distributed mobile cloud computing
architectures [31, 32, 33].

2.2 Mobile Cloud Computing Architectures

As illustrated in Figure 2.1, the sources of computational resources may be differ-
ent, from remote commercial clouds and the clouds located at the network edge,
to the user carried mobile devices and mobile devices attached to the vehicles. In
the following we discuss the factors affecting the performance of mobile cloud com-
puting systems for traditional centralized and emerging distributed mobile cloud
computing architectures.

Centralized Clouds
According to a recent data from Synergy Research Group, the four leading com-
mercial cloud providers are Amazon, Azure, IBM and Google [34]. These cloud
providers usually offer three types of cloud computing services, Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [35].
IaaS and PaaS offer a high level of control, flexibility, and management, and thus
they are suitable for application owners that provide the end users with a final
product through SaaS [36]. Therefore, from the perspective of a mobile user the
most relevant cloud computing service is SaaS.

A number of recent works have investigated the performance of commercial cloud
computing services [37, 38, 39, 40]. According to the reported measurements, com-
mercial clouds may have very high end-to-end transmission delays, which mostly
occur because commercial cloud infrastructures offer no guarantees on proximity of
their servers to the end users. As a consequence, computation offloading to remote
commercial clouds may not always be a good solution, especially in the case of
delay sensitive applications.

Mobile Edge Clouds
Emerging distributed mobile edge clouds are widely accepted as a promising alter-
native to the centralized clouds [41]. The key idea of MEC is to install the com-
putational and storage resources together with the existing infrastructures, such as
mobile BSs [10]. This idea is especially attractive for the network operators, since
it gives them an opportunity to profit from the MEC market.

By bringing computational resources close to the network edge, MEC has a po-
tential to improve the performance perceived by the users. However, when many
mobile users use the MEC resources simultaneously, they may experience a de-
graded performance for two reasons. First, the amount of bandwidth that a BS can

8 Chapter 2. Mobile Cloud Computing Resources

assign to a mobile user may not be sufficient for providing satisfactory transmission
times, especially in the case of applications that require offloading huge volumes
of data. Second, MEC provides only limited computational and storage resources
compared to commercial cloud infrastructures. As a consequence, the amount of
computational resources that an edge cloud can assign to a mobile device may not
be sufficient for providing satisfactory execution times, especially in the case of
computationally intensive applications. Therefore, using MEC resources requires
optimizing not only the allocation of communication, but also the allocation of
computational resources, which makes the problem inherently challenging.

Fog resources
Fog computing is about shifting away from the centralized cloud architectures to-
wards highly distributed architectures. Compared to MEC, fog computing proposes
bringing computational resources even closer to the end users [12]. The key idea of
fog computing is to extend the existing centralized cloud computing architecture
by allowing collaboration among distributed edge cloud resources and nearby het-
erogeneous devices. Todays’ devices may have at disposal limited computational
resources when considered alone, but by pooling their resources they can form a
computationally rich distributed computing platform.

The reason for shifting towards distributed architectures is that emerging appli-
cations, such as various IoT applications have requirements that can not be always
addressed by relying only on computational resources of individual devices and
centralized clouds [13, 14]. On the one hand, this is due to that many individual
devices are still not enough powerful to support computationally intensive appli-
cations. On the other hand, some devices may have difficulty connecting to the
centralized cloud due to network bandwidth constraints.

Fog computing is not only beneficial from the perspective of computational
resources, but it is also beneficial from the perspective of communication resources,
because collaboration among nearby devices can make use of D2D communication,
and thus it may improve bandwidth utilization [42]. However, the two biggest
challenges facing fog computing are how to integrate heterogeneous devices into a
common computing platform, and how to efficiently distribute the computational
tasks among numerous devices [43].

Chapter 3
Computation Offloading for Mobile

Systems

The applications running on the mobile devices may be partitioned into computa-
tional tasks at different granularity levels [44]. According to application partition-
ing requirements, there are two main classes of computation offloading frameworks.
The first class considered in [45, 46, 47] does not require partitioning, and the entire
application can be offloaded. The second class considered in [5, 48, 49, 50] requires
application partitioning into computational tasks that can be offloaded for remote
execution and computational tasks that have to be executed on the mobile device.
In this chapter, we define the parameters that characterize the computational tasks
and we introduce the main performance metrics that can be used to measure the
efficiency of resource allocation in mobile cloud computing systems.

3.1 Computational Tasks

In what follows, we consider only the computational tasks that can be offloaded,
and we characterize the mobile user i’s computational task by two parameters. The
first parameter is the size Di of the input data that must be offloaded in the case
of remote execution, and the second parameter is the complexity Li, that is, the
number of CPU cycles required to perform the computation. The relation between
the size Di of the input data and the task complexity Li can be expressed as
Li = DiXi [51], where Xi is the number of CPU cycles per data bit, which can be
approximated by a Gamma distribution [52, 53].

The mobile devices and the cloud servers differ from the perspective how fast
they can execute the same computational task <Di, Li>, which mostly depends on
their CPU performance. Although every new generation of mobile devices is more
and more powerful, yet the gap between the CPU performance of individual mobile
devices and server grade computers remains [54].

9

10 Chapter 3. Computation Offloading for Mobile Systems

The CPU performance can be characterized by a wide range of performance
metrics, among which the basic metrics are the clock cycle time and the clock fre-
quency [55]. Yet, the frequency F at which the processor executes a computational
task <Di, Li> is often not the same as the clock frequency. This is mostly due
to that the processor performs many different tasks simultaneously (e.g., the man-
agement of the underlying hardware, operating system activities, and input/output
(I/O) operations).

Given that the frequency F is expressed in CPU cycles per second, where the
notion of an instruction is different between different instruction set architectures
(e.g. RISC, CISC and VLIW), the time T exe

i needed to execute a computational
task <Di, Li> can be expressed as

T exe
i = Li

F
.

The frequency F at which the processor executes a computational task <Di, Li>
also influences the energy consumption. According to the measurements reported
in [6, 51], the energy consumption per CPU cycle is linearly proportional to the
square of the frequency F . Thus, the energy Eexe

i needed to execute a computa-
tional task <Di, Li> can be expressed as

Eexe
i = cF 2Li,

where the constant c ∼ 10_11 according to the reported measurements.
The above models for the execution time and the energy consumption capture

the main characteristics of executing the computational tasks. The models are
especially suitable for tasks that are characterized by a large complexity Li, and
thus that are not very sensitive to the possible interruptions that may occur during
the startup, execution, and termination.

3.2 Performance Metrics

The two main performance metrics for assessing the performance of mobile cloud
computing systems are the task completion time and the corresponding energy
consumption of mobile devices. The factors that affect these performance metrics
depend on which computational resources are used to execute a task. In the fol-
lowing we define the task completion time and the energy consumption both in the
case of local and remote execution.

Task Completion Time
When a task <Di, Li> is executed locally, the time T c,l

i needed to complete the
task is the time needed to execute the task using local computational resources at
frequency Fi

T c,l
i = Li

Fi
.

3.2. Performance Metrics 11

On the contrary, when a mobile user offloads its task <Di, Li> to external
computational resources through an AP a, the task completion time consists of
three parts. The first part is the time T t

i,a needed to transmit the amount of Di

input data through AP a at the rate ωi,a, and it can be expressed as

T t
i,a = Di

ωi,a
.

The second part is the time T exe
i,e needed to execute the task using external

computational resources at frequency F e
i

T exe
i,e = Li

F e
i

.

The third part is the time needed to transmit the result of the computation from
external computational resources to the mobile device. For many applications, such
as tracking, object, face and speech recognition, the size of the result is much smaller
than the size Di of the input data, and thus the third part can be neglected [56,
57, 58]. Therefore, in the case of computation offloading through an AP a, a simple
linear model can be used to model the task completion time T c,e

i,a

T c,e
i,a = T t

i,a + T exe
i,e .

Energy Consumption
When a task <Di, Li> is executed locally, the energy consumption El

i of a mobile
device is the energy needed to execute the task using local computational resources
at frequency Fi

El
i = cF 2

i Li.

On the contrary, when a mobile user offloads its task <Di, Li> to external
computational resources through an AP a, the energy consumption Ei,a is the en-
ergy spent to upload the amount Di of the input data. According to measurements
reported in [59], the energy spent to upload the data over the cellular network
consists of three parts. The first part is the energy spent to scan available wireless
connections, the second part is the energy spent to transmit data, and the third
part is the energy spent to keep the interface up during the transmission period.

When a task is characterized by a large size Di of the input data, it is rea-
sonable to consider that the energy spent to transmit data dominates the energy
spent to scan available wireless connections and the energy spent to keep the in-
terface up during the transmission period. Consequently, given that a mobile user
transmits the data through AP a at rate ωi,a using transmit power Pi,a, the energy
consumption Ei,a can be expressed as

Ei,a = DiPi,a

ωi,a
.

Chapter 4
Resource Allocation in Mobile Cloud

Computing Systems

When designing mobile cloud computing systems, one of the main objectives is
providing a convenient solution for mobile devices to perform their applications
efficiently, in terms of both the application completion time and the energy con-
sumption. Due to increasing use of mobile devices, efficient management of mobile
cloud computing resources is crucial to achieve this objective. In the following, we
model the cost associated with mobile users, and we discuss different formulations
of the resource allocation problem.

4.1 Cost Model

Since mobile devices are heterogeneous in terms of computational capabilities, bat-
tery states, and in terms of what type of computational tasks they have to execute, it
is reasonable to introduce the notion of preferences over the performance metrics.
The heterogeneity among mobile devices can be modeled using two parameters,
0 ≤ γT

i ≤ 1 and 0 ≤ γE
i ≤ 1, which characterize user i’s preferences regarding the

completion time and the energy consumption, respectively. Given these parame-
ters, the user i’s cost can be formulated as a function of the weighted completion
time and the weighted energy consumption,

local execution: Cl
i = f(γT

i T
c,l
i , γE

i E
l
i),

offloading through AP a: Ce
i,a = f(γT

i T
c,e
i,a , γ

E
i Ei,a).

The above cost models allow a mobile user to dynamically adjust its objective to
the specific application requirements, and to its current battery state by changing
the values of the parameters γT

i and γE
i .

13

14 Chapter 4. Resource Allocation in Mobile Cloud Computing Systems

4.2 Resource Allocation Problem Formulation

In order to provide a general formulation of the resource allocation problem, in the
following we consider a mobile cloud computing system that consists of a set N of
mobile users, |N | = N , a set A of communication resources, |A| = A, and a set S
of computational resources, |S| = S. We use X ∈ {0, 1}N×A and Y ∈ {0, 1}N×S

to denote communication and computational resource assignment matrices, respec-
tively.

One potential goal could be to minimize the system cost C, which is defined as
the sum over all users’ costs. Since the resources are shared among the users, the
system cost C is a function of X and Y, that is, C = C(X,Y). Using the above
notation, the problem of resource allocation in a mobile cloud computing system
can be formulated as the following 0− 1 nonlinear optimization problem,

min
X,Y

f0(X,Y, C(X,Y)) (4.1)

s.t. gi(X,Y) ≤ ai,∀i ∈ N , (4.2)
h(X) ≤ ba,∀a ∈ A, (4.3)
q(Y) ≤ cs,∀s ∈ S, (4.4)∑
a∈A

∑
s∈S\{i}

xi,ayi,s + yi,i = 1,∀i ∈ N , (4.5)

X ∈ {0, 1}N×A, (4.6)
Y ∈ {0, 1}N×S . (4.7)

The function gi(X,Y) takes into account sharing both communication and com-
putational resources. For example, constraint (4.2) may be used to ensure that the
task completion time or the energy consumption of each user i ∈ N is lower than the
threshold specified by ai. The functions h(X) and q(Y) take into account sharing
only one type of resources, that is, the communication and computational resources,
respectively. The constraints (4.3) and (4.4) can be used to enforce a limitation on
the amount of communication and computational resources that can be provided
to each user, respectively. The constraint (4.5) enforces that each user i ∈ N either
performs the computation locally (xi,a = 0, yi,i = 1, yi,s = 0,∀a ∈ A,∀s ∈ S \ {i})
or it offloads the task to computational resource s using communication resource a
(xi,a = 1, yi,s = 1, xi,a′ = 0, yi,s′ = 0,∀a′ ∈ A \ {a},∀s′ ∈ S \ {s}).

Observe that the above optimization problem can be easily reduced to the
completion time minimization problem by setting the completion time parameter
γT

i = 1, and the energy consumption parameter γE
i = 0, for all mobile users i ∈ N .

Similarly, we can define the energy consumption minimization problem by setting
the energy consumption parameter γE

i = 1, and the completion time parameter
γT

i = 0, for all mobile users i ∈ N . However, solving the problem (4.1)− (4.7) may
be impractical in realistic mobile cloud computing systems, because it involves
searching a large solution space. With this in mind, in the following we distinguish

4.2. Resource Allocation Problem Formulation 15

between the three different formulations of the resource allocation problem in mo-
bile cloud computing systems, and we discuss the most important results from the
literature.

Completion Time Minimization
Completion time minimization is usually considered in the case of delay sensitive
applications such as mobile augmented reality, real-time voice and video. Most of
the works that aim at minimizing the application completion time consider the joint
computation partitioning and resource allocation problem, while meeting various
constraints that can arise in mobile cloud computing systems. In the following we
discuss two classes of works that consider independent tasks and dependent tasks,
respectively.

Independent task scheduling problem: The works presented in [60, 61] studied
the completion time minimization problem assuming that there is no dependency
among the computational tasks. The authors in [60] considered a mobile cloud
computing system that consists of a set of processors with known processing times
and, a set of processors with unknown processing times. Given the set of inde-
pendent tasks in the system, the authors aim at minimizing the time when the
processing of the last task is completed, that is, the makespan of the given tasks.
For the case when the processing time is unknown for only one of the processors,
the authors proposed a constant-factor approximation algorithm for scheduling the
tasks. They extended the analysis to the case of multiple processors with unknown
processing times, and in this case they proposed a heuristic algorithm. The authors
in [61] considered a system with stochastic task arrivals, and they defined the user’s
cost as the expected number of its tasks in the system, that is, the product of the
user’s expected task completion time and the rate at which its device generates
tasks. In the considered system, mobile devices may offload their tasks either to
an edge cloud or to a centralized cloud with the objective to minimize their costs
under energy consumption constraints. The authors used game theoretical tools to
show existence of a mixed strategy equilibrium task allocation and they developed
a distributed algorithm for computig it.

Our work presented in Paper A falls into this class of completion time minimiza-
tion problems. We considered a fog computing system that consists of a centralized
cloud and multiple heterogeneous devices, which may process the tasks of each
other. We considered stochastic task arrivals, and we modeled the task arrival pro-
cess of each device as a Poisson process. We used a queuing model to capture the
contention for both communication and computational resources, and we denoted
by T c

i,j(pi,j) the mean time that is needed to complete device i’s task using node
j’s computational resources. Given the task assignment matrix P ∈ [0, 1]N×(N+1),
the system cost C̄(P) can be defined as the average system delay

C̄(P) =
∑
i∈N

∑
j∈N∪{0}

pi,jT c
i,j(pi,j),

16 Chapter 4. Resource Allocation in Mobile Cloud Computing Systems

where pi,i, pi,0 and pi,j indicate the probability that user i executes its task lo-
cally, offloads the task to the cloud, and offloads the task to device j ∈ N \ {i},
respectively. Given the set P of all task assignment matrices P that ensure the
stability of the queuing system, the problem can be formulated as the following
convex optimization problem

min
P∈P

C̄(P) (4.8)

s.t.
∑

j∈N∪{0}

pi,j = 1,∀i ∈ N . (4.9)

Since devices in fog computing systems are expected to be autonomous [62],
in Paper A instead of solving (4.8) − (4.9) we defined the problem as a strategic
game, in which each device plays a mixed strategy and aims at minimizing its own
cost. We used game theoretical tools to prove the existence of an equilibrium task
allocation in static mixed strategies. We proposed a decentralized algorithm that
allocates tasks according to the computed mixed strategy profile, and thus it relies
on average system parameters only. By performing simulations, we compared the
performance of the proposed algorithm with the performance of an algorithm that
allocates tasks according to the optimal static mixed strategy, that is, according to
the solution of (4.8)− (4.9), and with the performance of a greedy algorithm. We
showed that the proposed algorithm achieves close to optimal system performance,
and it performs good even compared with a greedy algorithm that is based on global
knowledge of the system state.

Dependent task scheduling problem: There are several works that considered the
computation offloading problem, while assuming dependency between the tasks [63,
64, 65, 66, 67]. The authors in [63, 64] addressed the problem of the feature-based
visual analysis in a sensor network that consists of a single camera node, and mul-
tiple camera nodes, respectively. In [63] the authors proposed an approximate
optimal solution for minimizing the completion time of distributed feature extrac-
tion. In [64] the authors showed that the multi-sensor completion time minimiza-
tion problem is NP-hard, and they proposed a distributed solution for allocating
the computing tasks that is periodically supported by the centralized coordinator,
which provides the limited amount of shared information to the sensor nodes. The
authors in [65, 66] considered the problem of joint computation partitioning and
resource allocation for delay sensitive applications in a mobile edge cloud comput-
ing system that serves multiple mobile users. In [66] the authors extended the
model from [65] to consider not only the allocation of computational, but also the
allocation of communication resources. They proposed a heuristic for minimizing
the average application completion time, under the constraints on the dependency
of the partitioned tasks and the constraints on the amount of available resources.
The authors in [67] considered the problem of computation offloading in a mobile
cloud computing system where the cloud resources are shared among many users.
Motivated by the observation that the completion time of the application can be
reduced by maximizing the parallelism between the mobile device and the cloud

4.2. Resource Allocation Problem Formulation 17

server, the authors proposed two computation offloading algorithms for two dif-
ferent types of the computational tasks. For sequential tasks, they proposed an
algorithm that finds the optimal solution, while for concurrent tasks they propose
a load-balancing heuristic.

Energy Consumption Minimization

The need for minimizing the energy consumption of mobile devices is especially
prominent in the case of computationally intensive applications such as augmented
reality, face and object recognition. There is a significant body of works that
analyze the energy consumption minimization problem under delay constraints,
and a few works that do not take the delay constraints into account. Common to
these classes of works is that they both aim to extend the battery lifetime of mobile
devices through energy consumption minimization. However, if the applications
are delay sensitive at the same time, then the first class is more relevant, otherwise
the latter class can be considered.

Energy consumption minimization subject to delay constraints: Among many
works [5, 68, 69, 70, 71] that fall into this class, the work presented in [5] is con-
sidered to be one of the pioneering works in the mobile cloud computing area. The
authors in [5] considered the case of a single user, and they formulated the offload-
ing problem as a 0−1 integer linear program. The solution of the program dictates
how to partition the application so that the energy consumption of the device is
minimized, while meeting the task completion time constraint.

The authors in [68] considered a mobile cloud computing architecture where
each mobile device can decide whether to execute the application locally, or on
its clone that runs on a virtual machine in a nearby cloud. They considered two
scheduling problems, that is, the scheduling problem in the case of local execution
and the scheduling problem in the case of execution in the cloud clone. They solved
the corresponding convex optimization problems analytically, and showed that the
energy consumption can be minimized by optimally configuring the CPU clock fre-
quency of mobile devices in the case of local execution, and by optimally scheduling
the data transmission in the case of execution in the cloud clone. The authors in [69]
considered a fog computing system that consists of a set of cloud servers and a set
of fog devices that are located close to the end users. They proposed an approxi-
mate approach to solve the problem of minimizing the energy consumption of the
fog computing system while meeting the end users’ delay constraints.

The works presented in [70, 71] considered a mobile cloud computing system
that consists of multiple mobile users and one cloud server. The authors in [70]
proposed a method to optimize the allocation of communication and computational
resources by solving the optimization problem that minimizes the transmit power of
the mobile devices, under the constraint on the maximum delay. The authors in [71]
formulated the problem as a competitive game where the users aim at minimizing
their energy consumption while meeting the task completion time constraints. They

18 Chapter 4. Resource Allocation in Mobile Cloud Computing Systems

showed that the game always has a pure Nash equilibrium, and that the equilibrium
can be computed efficiently.

Energy consumption minimization without considering delay constraints: The
works presented in [72, 73] used game theoretical tools to model and analyze the in-
teraction among multiple devices in a mobile cloud computing system. The authors
in [72] considered that each device can decide whether to perform the computation
locally or to offload the computation to one of the multiple cloud servers. They
modeled the problem as a congestion game with the objective to reduce the over-
all energy consumption of a mobile cloud computing system, including the energy
consumed by mobile devices and the energy consumed by cloud servers. When for-
mulating the game, the authors considered sharing only computational resources,
and they proved the existence of a Nash equilibrium that can be computed in a
polynomial time. The authors in [73] considered a mobile cloud computing ar-
chitecture where multiple mobile users collaborate. By assuming that there is a
centralized entity in the cloud that provides the required information to the users,
the authors formulated the problem as a 0− 1 integer quadratic program and they
used a heuristic to find the optimal solution. Since the average running time of the
proposed heuristic increases exponentially with the number of users, they modeled
the collaboration among mobile devices as a coalition game, and proposed a dis-
tributed coalition formation algorithm that does not require the assistance of the
centralized entity.

Completion Time and Energy Consumption Minimization

When minimizing the completion time and the energy consumption together, the
objective could be to explore the trade off of the overall application response time
versus the consumed energy. The corresponding problems can be divided into two
categories depending on whether they involve optimizing one objective function, or
multiple objective functions simultaneously.

Single-objective computation offloading problem: There is a significant body of
works that consider a single-objective offloading problem, where the system cost is
defined as a linear combination of the system delay and the energy consumption [74,
75, 76, 77, 56, 78]. The authors in [74] considered the case of a single user, and
based on a stochastic model of the dynamic offloading problem, they proposed a
dynamic offloading policy. The authors in [75] integrated dynamic offloading with
resource scheduling and they proposed two policies for minimizing the application
completion time and the energy consumption of mobile devices. The first policy is
based on optimally adjusting the CPU clock frequency of the mobile devices and it
is relevant in the case of local execution. The second policy is based on optimally
adjusting the transmission power, and it is relevant in the case of offloading. The
authors in [76] considered a mobile cloud computing system that consists of multiple
mobile devices, an edge cloud, and a centralized cloud. They proposed a heuristic
that minimizes the weighted sum of the energy consumption and the corresponding

4.2. Resource Allocation Problem Formulation 19

maximum transmission and execution times among all users, and by performing
simulations they showed that their algorithm gives close to optimal performance.

The works presented in [77, 56, 78] used game theoretical tools in order to model
and analyze the problem of allocating the resources in mobile cloud computing sys-
tems that serve multiple mobile users. The authors in [77] considered a centralized
mobile cloud computing system where the users are served by one remote cloud.
They provided a two stage game-based formulation of the problem, with the ob-
jective to minimize the users’ energy consumption and the task completion time
in the first stage of the game, and to maximize the cloud service providers’ profit
in the second stage of the game. The authors in [56, 78] formulated the problem
as a strategic game in order to model the sharing of communication resources in a
mobile cloud computing system that consists of multiple mobile users and a cloud
server. In [56] the authors considered that devices may offload their tasks to the
cloud through a single wireless link, and they provided a decentralized algorithm
for computing a pure strategy Nash equilibrium of the game. In [78] they showed
that the same algorithm can be used in the case of multiple identical wireless links.

Our work presented in Paper B [79] and Paper C [80] falls into this category
of computation offloading problems. For each user i ∈ N we defined its cost as a
linear combination of the task completion time and the energy consumption,

local execution: Cl
i = γT

i T
c,l
i + γE

i E
l
i,

offloading through AP a: Ce
i,a = γT

i T
c,e
i,a + γE

i Ei,a.

We considered a mobile cloud computing system that consists of a set of APs,
one mobile edge cloud and multiple mobile devices that compete for both com-
munication and computational resources. In Paper B we considered the allocation
of communication and computational resources, and in Paper C we integrated the
resource allocation problem into the scheduling problem by allowing mobile devices
not only to choose where to perform their tasks, but also in which time slot. We
used A, |A| = A to denote the set of APs, and T , |T | = T to denote the set of time
slots. We considered that each device i ∈ N can decide in which time slot it wants
to perform the computation, and in the chosen time slot it can decide whether to
perform the computation locally or to offload the computation to the cloud server
through one of the APs. The problem can be formulated as the following 0 − 1
integer program

min
X,Y

∑
t∈T

∑
i∈N

(
yi,i,tC

l,t
i +

∑
a∈A

(1− yi,i,t)xi,a,tC
e,t
i,a(X,Y)

)
(4.10)

s.t.
∑
t∈T

(
yi,i,t +

∑
a∈A

(1− yi,i,t)xi,a,t

)
= 1,∀i ∈ N , (4.11)

X ∈ {0, 1}N×A×T , (4.12)
Y ∈ {0, 1}N×2×T , (4.13)

20 Chapter 4. Resource Allocation in Mobile Cloud Computing Systems

where the constraint (4.11) enforces that each device either performs the computa-
tion locally or it offloads the task through an AP in one of the time slots.

In Paper B and Paper C we considered that mobile devices are selfish, and we
used game theoretical tools to analyze the problem in the case of a single time slot,
and in the case of multiple time slots, respectively. We defined the problem as a
player-specific network congestion game, for which the existence of equilibria is not
known in general. We proved the existence of equilibrium allocations, and based on
our constructive proofs we provided polynomial time decentralized algorithms for
computing an equilibrium allocation. By providing constructive equilibrium exis-
tence proofs, and by characterizing the structure of an equilibrium allocation, our
work presented in Paper B and Paper C is also important from a game theoretical
perspective.

Multi-objective computation offloading problem: An interesting approach to in-
vestigate the Pareto optimal offloading decisions has been considered in [81, 82],
where the authors used multi-objective optimization technique that involves two
objective functions. The authors in [81] considered a sequence of tasks generated
by a single mobile device that can decide which tasks to perform locally, and which
tasks to offload to nearby cloudlets and remote centralized clouds. They proposed
a multi-objective dynamic programming approach for making Pareto optimal of-
floading decisions for each of the tasks such that the energy consumption and the
application completion time are minimized. The authors in [82] considered a mobile
cloud computing system that consists of neighboring mobile devices that act not
only as clients, but also as computational service providers. By considering neigh-
boring mobile devices as service providers, they proposed a two-stage algorithm to
select service providers such that the tasks’ completion time is minimized along
minimizing the energy consumption.

Chapter 5
Summary of Original Work

Paper A: Decentralized Algorithm for Randomized Task Alloca-
tion in Fog Computing Systems

Slađana Jošilo and György Dán
submitted to IEEE/ACM Transactions on Networking (ToN).

Summary: In this paper we consider a mobile cloud computing system where
multiple devices may offload their computational tasks to each other or to a cloud
server with the objective to improve their performance. We consider that devices
are interested in minimizing the completion time of their own tasks, and we for-
mulate the problem as a strategic game where each device plays a mixed strategy.
We use variational inequality theory to prove the existence of an equilibrium task
allocation in static mixed strategies, which we use to design an efficient algorithm
for allocating the computational tasks in a decentralized way. The algorithm is
based on average system parameters only, and thus it requires low signaling over-
head. We perform simulations to evaluate the proposed algorithm, and we show
that it achieves good system performance close to that of the greedy algorithm,
which requires the full information about the system state, and close to that of
an algorithm that allocates the tasks based on the socially optimal static mixed
strategy.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The author of this thesis proved
the analytical results concerning the existence of static mixed strategy equilibrium,
and carried out the simulations. The analysis of the resulting data was carried out
in collaboration with the second author of the paper. The paper was written in
collaboration with the second author.

21

22 Chapter 5. Summary of Original Work

Paper B: A Game Theoretic Analysis of Selfish Mobile Computa-
tion Offloading

Slađana Jošilo and György Dán
in Proc. of IEEE International Conference on Computer Communications (INFO-
COM), 2017.

Summary: In this paper we investigate the problem of resource allocation
in a mobile cloud computing system that consists of multiple mobile devices, mul-
tiple APs and an edge cloud. We consider that mobile users are selfish, and thus
they aim at minimizing their own cost, which we define as a linear combination
of the time it takes to complete the computation and the corresponding energy
consumption. In order to analyze interactions among mobile devices, we formulate
the problem as a player-specific congestion game where users compete for commu-
nication and computational resources. We prove that a pure Nash equilibrium of
the game exists, and we provide a polynomial complexity algorithm for computing
it. We establish a bound on the price of anarchy of the game, and thus we show
that the proposed algorithm has a bounded approximation ratio. We use extensive
simulations to provide insight into the cost performance and the computational
time of the proposed algorithm. We show that the proposed algorithm achieves the
cost performance close to optimal cost performance, and the convergence time of
the algorithm scales approximately linearly with the number of mobile devices.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper, proved the analytical results for
the case of both the elastic and non-elastic cloud models. The implementation of
the simulations was carried out by the author of this thesis, and analysis of the
resulting data was carried out in collaboration with the second author of the paper.
The paper was written in collaboration with the second author.

23

Paper C: Decentralized Scheduling for Offloading of Periodic Tasks
in Mobile Edge Computing

Slađana Jošilo and György Dán
in Proc. of IFIP Networking (NETWORKING), 2018.

Summary: In this paper we consider periodic computation offloading prob-
lem in a mobile cloud computing system that serves multiple wireless devices. Each
device can choose in which of multiple time slots to perform the computation, and
within the time slot it can choose to perform its task locally or to offload the task
to a cloud server via one of multiple APs. The objective of each device is to mini-
mize a linear combination of the time it takes to complete the computation and the
corresponding energy consumption. We formulate the problem as a player specific
congestion game, and based on a game theoretical treatment of the problem we
prove the existence of a pure strategy Nash equilibria. Based on the constructive
equilibrium existence proof, we characterize the structure of computed equilibria,
and we develop an efficient decentralized algorithm for computing it. Our numer-
ical results show that the proposed algorithm can be used to compute an efficient
resource allocation at polynomial computational complexity despite combinatorial
nature of the problem. Finally, the results show that the algorithm computes equi-
libria with good cost performance for various scenarios of a mobile cloud computing
system.

Contribution: The author of this thesis developed the analytical model in
collaboration with the second author of the paper. The second author proved the
analytical results concerning the case of a single time slot, and the author of this
thesis proved the analytical results concerning the case of multiple time slots. The
implementation of the simulations and the analysis of the resulting data were car-
ried out by the author of this thesis. The paper was written in collaboration with
the second author.

24 Chapter 5. Summary of Original Work

Publications not included in the thesis

1. Slađana Jošilo and György Dán. “Selfish Decentralized Computation Offload-
ing for Mobile Cloud Computing in Dense Wireless Networks”. In: to appear
in IEEE Transactions on Mobile Computing (TMC) (2018)

2. Slađana Jošilo and György Dán. “Decentralized Fog Computing Resource
Management for Offloading of Periodic Tasks”. In: Poster presented at IEEE
INFOCOM (2018)

3. Slađana Jošilo, Valentino Pacifici, and György Dán. “Distributed Algorithms
for Content Placement in Hierarchical Cache Networks”. In: Computer Net-
works (2017)

4. Valentino Pacifici, Slađana Jošilo, and György Dán. “Distributed algorithms
for content caching in mobile backhaul networks”. In: Proc. of IEEE Inter-
national Teletraffic Congress. Vol. 1. 2016, pp. 313–321

5. Slađana Jošilo et al. “Multicarrier waveforms with I/Q staggering: uniform
and nonuniform FBMC formats”. In: EURASIP Journal on Advances in
Signal Processing 2014.1 (2014), p. 167

6. Slađana Jošilo et al. “Widely linear filtering based kindred co-channel inter-
ference suppression in FBMC waveforms”. In: Proc. of IEEE International
Symposium on Wireless Communications Systems. 2014, pp. 776–780

7. Slađana Jošilo, Milos Pejovic, and Slobodan Nedic. “Non-uniform FBMC-a
pragmatic approach”. In: Proc. of VDE International Symposium on Wire-
less Communication Systems. 2013, pp. 1–5

Chapter 6
Conclusions and Future Work

In this thesis, we considered the computation offloading problem in mobile cloud
computing systems. We analyzed the problem from the perspective of mobile cloud
users and with this in mind we focused on the problem of allocating resources
for various mobile cloud computing architectures. By using game theoretical tools
we analyzed the interactions among mobile users, and we proposed efficient and
scalable algorithms for allocating mobile cloud communication and computational
resources.

In the first part of this thesis, we considered a highly distributed mobile cloud
computing architecture, which allows users to use cloud resources and the resources
of each other. We modeled the transmission and the execution of computational
tasks using queuing theory, and provided a game theoretical formulation of the
problem. We used variational inequality theory to address the question whether
the users can compute an efficient equilibrium task allocation in static mixed strate-
gies in a decentralized manner, under the assumption that every user knows only
the average statistics on task arrival intensities, transmission rates, and task pa-
rameters.

In the second part of the thesis, we considered mobile edge cloud computing
system where users can offload their computational tasks to an edge cloud. By
assuming that users are selfish, we formulated the problem as a strategic game.
We investigated whether there is an efficient decentralized algorithm for computing
a pure Nash equilibrium of the game. Furthermore, we extended our model to
consider offloading of periodic tasks in the case of homogeneous task periodicities.
We addressed the question whether a pure Nash equilibrium exists if devices choose
not only where to perform their tasks, but also in which time slot.

There are many open questions concerning the problem of resource allocation
in mobile cloud computing system. The first interesting question is whether our re-
sults from the second part of the thesis can be extended to the case of heterogeneous
tasks periodicities. The second interesting question is whether efficient decentral-
ized algorithms exist for allocating mobile cloud resources in a system where the

25

26 Chapter 6. Conclusions and Future Work

actual number of users is not known, which would allow for less signaling between
the mobile devices and the cloud/mobile network. Finally, the resource allocation
problem could be analyzed not only from the perspective of users, but also from
the perspective of mobile cloud service providers. Related to the last question,
one could consider a mobile cloud computing system where mobile cloud service
providers cooperate in serving users computational requests in order to improve
their performance benefits.

Bibliography

[1] Cisco. “Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date”. In: Tech.rep (2017).

[2] Mahadev Satyanarayanan. “A brief history of cloud offload: A personal jour-
ney from odyssey through cyber foraging to cloudlets”. In: GetMobile: Mobile
Computing and Communications 18.4 (2015), pp. 19–23.

[3] Karthik Kumar and Yung-Hsiang Lu. “Cloud computing for mobile users:
Can offloading computation save energy?” In: Computer 43.4 (2010), pp. 51–
56.

[4] Keng Siau, Ee-Peng Lim, and Zixing Shen. “Mobile commerce: Current states
and future trends”. In: Advances in mobile commerce technologies. IGI Global,
2003, pp. 1–17.

[5] Eduardo Cuervo et al. “MAUI: Making Smartphones Last Longer with Code
Offload”. In: Proc. of ACM MobiSys. 2010, pp. 49–62.

[6] Y. Wen, W. Zhang, and H. Luo. “Energy-optimal mobile application execu-
tion: Taming resource-poor mobile devices with cloud clones”. In: Proc. of
IEEE INFOCOM. Mar. 2012, pp. 2716–2720.

[7] Research and Markets. “Mobile Cloud Market by Application - Global Op-
portunity Analysis and Industry Forecast”. In: Market rep (2017).

[8] Amazon Elastic Computing. https://aws.amazon.com/ec2/.
[9] Microsoft Azure: Cloud Computing Platform and Services. https://azure.

microsoft.com/en-in/.
[10] Multi-access Edge Computing. http : / / www . etsi . org / technologies -

clusters/technologies/multi-access-edge-computing.
[11] Yun Chao Hu et al. “Mobile edge computing—A key technology towards 5G”.

In: ETSI White Paper 11.11 (2015), pp. 1–16.

27

28 Bibliography

[12] Mung Chiang and Tao Zhang. “Fog and IoT: An overview of research oppor-
tunities”. In: IEEE Internet of Things Journal 3.6 (2016), pp. 854–864.

[13] Flavio Bonomi et al. “Fog computing and its role in the internet of things”.
In: Proc. of ACM, MCC Workshop. 2012, pp. 13–16.

[14] Flavio Bonomi et al. “Fog computing: A platform for internet of things and
analytics”. In: Big Data and Internet of Things: A Roadmap for Smart En-
vironments. Springer, 2014, pp. 169–186.

[15] Ehsan Aryafar et al. “RAT selection games in HetNets”. In: Proc. of IEEE
INFOCOM. 2013, pp. 998–1006.

[16] George H. Forman and John Zahorjan. “The challenges of mobile computing”.
In: Computer 27.4 (1994), pp. 38–47.

[17] Mahadev Satyanarayanan. “Fundamental challenges in mobile computing”.
In: Proc. of ACM Symposium on Principles of distributed computing. 1996,
pp. 1–7.

[18] Giuseppe Bianchi. “Performance analysis of the IEEE 802.11 distributed co-
ordination function”. In: IEEE Journal on selected areas in communications
18.3 (2000), pp. 535–547.

[19] Martin Heusse et al. “Performance anomaly of 802.11 b”. In: Proc. of IEEE
INFOCOM. 2003, pp. 836–843.

[20] Tarun Joshi et al. “Airtime fairness for IEEE 802.11 multirate networks”. In:
IEEE Transactions on Mobile Computing 7.4 (2008), pp. 513–527.

[21] Alessandro Biagioni et al. “Adaptive subcarrier allocation schemes for wireless
OFDMA systems in WiMAX networks”. In: IEEE Journal on Selected Areas
in Communications 27.2 (2009), pp. 217–225.

[22] Erwu Liu, Qinqing Zhang, and Kin K Leung. “Asymptotic analysis of pro-
portionally fair scheduling in Rayleigh fading”. In: IEEE Transactions on
Wireless Communications 10.6 (2011), pp. 1764–1775.

[23] Anthony J Nicholson and Brian D Noble. “Breadcrumbs: forecasting mobile
connectivity”. In: Proc. of ACM. 2008, pp. 46–57.

[24] Cong Shi et al. IC-Cloud: Computation offloading to an intermittently-connected
cloud. Tech. rep. Georgia Institute of Technology, 2013.

[25] Eugene E Marinelli. Hyrax: cloud computing on mobile devices using MapRe-
duce. Tech. rep. Carnegie-mellon univ Pittsburgh PA school of computer sci-
ence, 2009.

[26] Cong Shi et al. “Computing in cirrus clouds: the challenge of intermittent
connectivity”. In: Proc. of ACM, MCC Workshop. 2012, pp. 23–28.

[27] Insun Jang et al. “A Proxy-Based Collaboration System to Minimize Content
Download Time and Energy Consumption”. In: IEEE Transactions on Mobile
Computing 16.8 (2017), pp. 2105–2117.

Bibliography 29

[28] Mohsen Nader Tehrani, Murat Uysal, and Halim Yanikomeroglu. “Device-
to-device communication in 5G cellular networks: challenges, solutions, and
future directions”. In: IEEE Communications Magazine 52.5 (2014), pp. 86–
92.

[29] Xuemin Shen. “Device-to-device communication in 5G cellular networks”. In:
IEEE Network 29.2 (2015), pp. 2–3.

[30] Nam Tuan Le et al. “Survey of promising technologies for 5G networks”. In:
Mobile Information Systems 2016 (2016).

[31] Stephan Olariu, Mohamed Eltoweissy, and Mohamed F Younis. “Towards
autonomous vehicular clouds.” In: EAI Endorsed Trans. Mobile Communica-
tions Applications 1.1 (2011).

[32] Cong Shi et al. “Serendipity: enabling remote computing among intermit-
tently connected mobile devices”. In: Proc. of ACM Symposium on Mobile
Ad Hoc Networking and Computing. 2012, pp. 145–154.

[33] Abderrahmen Mtibaa et al. “Towards resource sharing in mobile device clouds:
Power balancing across mobile devices”. In: Proc. of ACM SIGCOMM Com-
puter Communication Review. 2013, pp. 51–56.

[34] Synergy Research Group. The Leading Cloud Providers Continue to Run
Away with the Market. Tech. rep. 2017.

[35] Debashis De. Mobile cloud computing: architectures, algorithms and applica-
tions. CRC Press, 2016.

[36] Bill Loeffler. “Cloud computing: what is infrastructure as a service”. In: Tech-
Net Magazine 10 (2011).

[37] Simon Ostermann et al. “A performance analysis of EC2 cloud computing ser-
vices for scientific computing”. In: International Conference on Cloud Com-
puting. Springer. 2009, pp. 115–131.

[38] Qiming He et al. “Case study for running HPC applications in public clouds”.
In: Proc. of ACM Symposium on High Performance Distributed Computing.
2010, pp. 395–401.

[39] Keith R Jackson et al. “Performance analysis of high performance computing
applications on the amazon web services cloud”. In: Proc. of IEEE Cloud
Computing Technology and Science. 2010, pp. 159–168.

[40] Alexandru Iosup et al. “Performance analysis of cloud computing services
for many-tasks scientific computing”. In: IEEE Transactions on Parallel and
Distributed systems 22.6 (2011), pp. 931–945.

[41] Bhaskar Prasad Rimal, Dung Pham Van, and Martin Maier. “Mobile-edge
computing vs. centralized cloud computing in fiber-wireless access networks”.
In: Proc. of IEEE INFOCOM Workshop. 2016, pp. 991–996.

[42] Gábor Fodor et al. “Design aspects of network assisted device-to-device com-
munications”. In: IEEE Communications Magazine 50.3 (2012).

30 Bibliography

[43] Nik Bessis and Ciprian Dobre. Big data and internet of things: a roadmap for
smart environments. Vol. 546. Springer, 2014.

[44] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. “Mobile cloud com-
puting for computation offloading: Issues and challenges”. In: Applied Com-
puting and Informatics (2016).

[45] Mahadev Satyanarayanan et al. “The case for vm-based cloudlets in mobile
computing”. In: IEEE pervasive Computing 8.4 (2009).

[46] Bo Zhao et al. “Mirroring smartphones for good: A feasibility study”. In: In-
ternational Conference on Mobile and Ubiquitous Systems: Computing, Net-
working, and Services. Springer. 2010, pp. 26–38.

[47] Feng Xia et al. “Phone2Cloud: Exploiting computation offloading for energy
saving on smartphones in mobile cloud computing”. In: Information Systems
Frontiers 16.1 (2014), pp. 95–111.

[48] Roelof Kemp et al. “Cuckoo: a computation offloading framework for smart-
phones”. In: International Conference on Mobile Computing, Applications,
and Services. Springer. 2010, pp. 59–79.

[49] Byung-Gon Chun et al. “Clonecloud: elastic execution between mobile device
and cloud”. In: Proc. of ACM. 2011, pp. 301–314.

[50] Hao Qian and Daniel Andresen. “Jade: Reducing energy consumption of an-
droid app”. In: International Journal of Networked and Distributed Comput-
ing (IJNDC), Atlantis press (2015), pp. 150–158.

[51] A. P. Miettinen and J. K. Nurminen. “Energy efficiency of mobile clients in
cloud computing”. In: Proc. of USENIX HotCloud. 2010, pp. 4–4.

[52] Jacob R Lorch and Alan Jay Smith. “Improving dynamic voltage scaling al-
gorithms with PACE”. In: Proc. of ACM SIGMETRICS Performance Eval-
uation Review. Vol. 29. 1. 2001, pp. 50–61.

[53] Wanghong Yuan and Klara Nahrstedt. “Energy-efficient CPU scheduling for
multimedia applications”. In: Proc. of ACM Transactions on Computer Sys-
tems (TOCS) 24.3 (2006), pp. 292–331.

[54] Jason Flinn. “Cyber foraging: Bridging mobile and cloud computing”. In:
Synthesis Lectures on Mobile and Pervasive Computing 7.2 (2012), pp. 1–
103.

[55] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. 4th. Morgan Kaufmann Publishers
Inc., 2011.

[56] Xu Chen. “Decentralized computation offloading game for mobile cloud com-
puting”. In: IEEE Transactions on Parallel and Distributed Systems 26.4
(2015), pp. 974–983.

Bibliography 31

[57] D. Huang, P. Wang, and D. Niyato. “A Dynamic Offloading Algorithm for Mo-
bile Computing”. In: IEEE Transactions on Wireless Communications 11.6
(2012), pp. 1991–1995.

[58] K. Kumar and Y. H. Lu. “Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?” In: IEEE Computer Mag. 43.4 (2010), pp. 51–
56.

[59] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatara-
mani. “Energy consumption in mobile phones: a measurement study and im-
plications for network applications”. In: Proc. of ACM SIGCOMM. 2009,
pp. 280–293.

[60] Jaya Prakash Champati and Ben Liang. “Single restart with time stamps for
computational offloading in a semi-online setting”. In: Proc. of IEEE INFO-
COM. 2017, pp. 1–9.

[61] Valeria Cardellini et al. “A game-theoretic approach to computation offload-
ing in mobile cloud computing”. In: Mathematical Programming 157.2 (2016),
pp. 421–449.

[62] Luis M Vaquero and Luis Rodero-Merino. “Finding your way in the fog:
Towards a comprehensive definition of fog computing”. In: ACM SIGCOMM
Computer Communication Review 44.5 (2014), pp. 27–32.

[63] Emil Eriksson, György Dán, and Viktoria Fodor. “Predictive distributed vi-
sual analysis for video in wireless sensor networks”. In: IEEE Transactions
on Mobile Computing (2016), pp. 1743–1756.

[64] Emil Eriksson, György Dán, and Viktoria Fodor. “Coordinating Distributed
Algorithms for Feature Extraction Offloading in Multi-Camera Visual Sensor
Networks”. In: IEEE Transactions on Circuits and Systems for Video Tech-
nology (2017).

[65] Lei Yang et al. “Multi-user computation partitioning for latency sensitive
mobile cloud applications”. In: IEEE Transactions on Computers 64.8 (2015),
pp. 2253–2266.

[66] Lei Yang et al. “Joint Computation Partitioning and Resource Allocation for
Latency Sensitive Applications in Mobile Edge Clouds”. In: Proc. of IEEE
Cloud Computing. 2017, pp. 246–253.

[67] Mike Jia, Jiannong Cao, and Lei Yang. “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud computing”. In:
Proc. of IEEE INFOCOM Workshop. 2014, pp. 352–357.

[68] Weiwen Zhang et al. “Energy-optimal mobile cloud computing under stochas-
tic wireless channel”. In: IEEE Transactions on Wireless Communications
12.9 (2013), pp. 4569–4581.

[69] Ruilong Deng et al. “Optimal workload allocation in fog-cloud computing
toward balanced delay and power consumption”. In: IEEE Internet of Things
Journal 3.6 (2016), pp. 1171–1181.

32 Bibliography

[70] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa. “Joint opti-
mization of radio and computational resources for multicell mobile-edge com-
puting”. In: IEEE Transactions on Signal and Information Processing over
Networks 1.2 (2015), pp. 89–103.

[71] Erfan Meskar et al. “Energy Aware Offloading for Competing Users on a
Shared Communication Channel”. In: IEEE Transactions on Mobile Com-
puting 16.1 (2017), pp. 87–96.

[72] Yang Ge et al. “A game theoretic resource allocation for overall energy min-
imization in mobile cloud computing system”. In: Proc. of ACM/IEEE Sym-
posium on Low power electronics and design. 2012, pp. 279–284.

[73] Liyao Xiang, Baochun Li, and Bo Li. “Coalition Formation Towards Energy-
Efficient Collaborative Mobile Computing”. In: Proc. of IEEE Computer
Communication and Networks (ICCCN). 2015, pp. 1–8.

[74] Esa Hyytiä, Thrasyvoulos Spyropoulos, and Jörg Ott. “Offload (only) the
right jobs: Robust offloading using the Markov decision processes”. In: Proc.
of IEEE World of Wireless, Mobile and Multimedia Networks Symposium.
2015, pp. 1–9.

[75] Songtao Guo et al. “Energy-efficient dynamic offloading and resource schedul-
ing in mobile cloud computing”. In: Proc. of IEEE INFOCOM. 2016, pp. 1–
9.

[76] Meng-Hsi Chen, Min Dong, and Ben Liang. “Joint offloading decision and
resource allocation for mobile cloud with computing access point”. In: Proc.
of IEEE Acoustics, Speech and Signal Processing (ICASSP). 2016, pp. 3516–
3520.

[77] Yanzhi Wang, Xue Lin, and Massoud Pedram. “A nested two stage game-
based optimization framework in mobile cloud computing system”. In: Proc.
of IEEE Service Oriented System Engineering Symposium. 2013, pp. 494–502.

[78] Xu Chen et al. “Efficient multi-user computation offloading for mobile-edge
cloud computing”. In: IEEE/ACM Transactions on Networking 24.5 (2016),
pp. 2795–2808.

[79] Slađana Jošilo and György Dán. “A game theoretic analysis of selfish mobile
computation offloading”. In: Proc. of IEEE INFOCOM. 2017, pp. 1–9.

[80] Slađana Jošilo and György Dán. “Decentralized Scheduling for Offloading of
Periodic Tasks in Mobile Edge Computing”. In: Proc. of IFIP/TC6 Network-
ing. 2018.

[81] Xinchen Lyu and Hui Tian. “Adaptive receding horizon offloading strategy
under dynamic environment”. In: IEEE Communications Letters 20.5 (2016),
pp. 878–881.

[82] Simin Ghasemi-Falavarjani, Mohammadali Nematbakhsh, and Behrouz Shahgholi
Ghahfarokhi. “Context-aware multi-objective resource allocation in mobile
cloud”. In: Computers & Electrical Engineering 44 (2015), pp. 218–240.

Bibliography 33

[83] Slađana Jošilo and György Dán. “Selfish Decentralized Computation Offload-
ing for Mobile Cloud Computing in Dense Wireless Networks”. In: to appear
in IEEE Transactions on Mobile Computing (TMC) (2018).

[84] Slađana Jošilo and György Dán. “Decentralized Fog Computing Resource
Management for Offloading of Periodic Tasks”. In: Poster presented at IEEE
INFOCOM (2018).

[85] Slađana Jošilo, Valentino Pacifici, and György Dán. “Distributed Algorithms
for Content Placement in Hierarchical Cache Networks”. In: Computer Net-
works (2017).

[86] Valentino Pacifici, Slađana Jošilo, and György Dán. “Distributed algorithms
for content caching in mobile backhaul networks”. In: Proc. of IEEE Inter-
national Teletraffic Congress. Vol. 1. 2016, pp. 313–321.

[87] Slađana Jošilo et al. “Multicarrier waveforms with I/Q staggering: uniform
and nonuniform FBMC formats”. In: EURASIP Journal on Advances in Sig-
nal Processing 2014.1 (2014), p. 167.

[88] Slađana Jošilo et al. “Widely linear filtering based kindred co-channel inter-
ference suppression in FBMC waveforms”. In: Proc. of IEEE International
Symposium on Wireless Communications Systems. 2014, pp. 776–780.

[89] Slađana Jošilo, Milos Pejovic, and Slobodan Nedic. “Non-uniform FBMC-a
pragmatic approach”. In: Proc. of VDE International Symposium on Wireless
Communication Systems. 2013, pp. 1–5.

Paper A
Decentralized Algorithm for

Randomized Task Allocation in Fog
Computing Systems

Slađana Jošilo and György Dán
submitted to IEEE/ACM Transactions on Networking (ToN).

35

Decentralized Algorithm for Randomized Task
Allocation in Fog Computing Systems

Slad̄ana Jošilo and György Dán

School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo,gyuri}@kth.se.

Abstract
Fog computing is identified as a key enabler for using various emerging applica-

tions by battery powered and computationally constrained devices. In this paper, we
consider devices that aim at improving their performance by choosing to offload their
computational tasks to nearby devices or to a cloud server. We develop a game theo-
retical model of the problem, and we use variational inequality theory to compute an
equilibrium task allocation in static mixed strategies. Based on the computed equilib-
rium strategy, we develop a decentralized algorithm for allocating the computational
tasks among nearby devices and the cloud server. We use extensive simulations to
provide insight into the performance of the proposed algorithm, and we compare its
performance with the performance of a myopic best response algorithm that requires
global knowledge of the system state. Despite the fact that the proposed algorithm re-
lies on average system parameters only, our results show that it provides good system
performance close to that of the myopic best response algorithm.

1 Introduction
Fog computing is widely recognized as a key component of 5G networks and an enabler
of the Internet of Things (IoT) [1,2]. The concept of fog computing extends the traditional
centralized cloud computing architecture by allowing devices not only to use cloud compu-
tational and storage resources, but also to use the resources of each other in a collaborative
way [3].

Traditional centralized cloud computing allows devices to offload the computation to
a cloud infrastructure with significant computational power [4–6]. Cloud offloading may
indeed accelerate the execution of applications, but it may suffer from high communication
delays, on the one hand due to the contention of devices for radio spectrum, on the other
hand due to the remoteness of the cloud infrastructure. Thus, traditional centralized cloud
computing may not be able to meet the delay requirements of emerging IoT applications [7–
10].

37

38

Fog computing addresses this problem by allowing collaborative computation offload-
ing among nearby devices and distributed cloud resources close to the network edge. The
benefits of collaborative computation offloading are twofold. First, collaboration among
devices can make use of device-to-device (D2D) communication, and thereby it can im-
prove spectral efficiency and free up radio resources for other purposes [11–13]. Second,
the proximity of devices to each other can enable low communication delays. Thus, fog
computing allows to explore the tradeoff between traditional centralized cloud offloading,
which ensures low computing time, but may suffer from high communication delay, and
collaborative computation offloading, which ensures low communication delay, but may
involve higher computing times.

One of the main challenges facing the design of fog computing systems is how to man-
age fog resources efficiently. Compared to traditional centralized cloud computing, where
a device only needs to decide whether to offload the computation of a task, in the case
of fog computing the number of offloading choices increases with the number of devices.
Furthermore, today’s devices are heterogeneous in terms of computational capabilities, in
terms of what tasks they have to execute and how often. At the same time, some devices
may be autonomous, and hence they would be interested in minimizing their own perceived
completion times. Therefore, developing low complexity algorithms for efficient task allo-
cation among nearby devices is an inherently challenging problem.

In this paper we address this problem by considering a fog computing system, where
devices can choose either to perform their computation locally, to offload the computa-
tion to a nearby device, or to offload the computation to a cloud. We provide a game
theoretical treatment of the completion time minimization problem, and we show that an
equilibrium task allocation in static mixed strategies always exists. Based on the game
theoretical model we propose a decentralized algorithm that relies on average system pa-
rameters, and allocates the tasks according to a Nash equilibrium in static mixed strategies.
We use the algorithm to address the important question whether efficient task allocation
is feasible using an algorithm that requires low signaling overhead, and we compare the
performance achieved by the proposed algorithm with the performance of a myopic best
response algorithm that requires global knowledge of the system state. Our results show
that the proposed decentralized algorithm, despite significantly lower signaling overhead,
provides good system performance close to that of the myopic best response algorithm.

The rest of the paper is organized as follows. We present the system model in Section 2.
We present two algorithms in Sections 3 and 4. In Section 5 we present numerical results
and in Section 6 we review related work. Section 7 concludes the paper.

2 System Model and Problem Formulation
We consider a fog computing system that consists of a set N={1,2, ...,N} of devices, and
a cloud server. Device i ∈ N generates a sequence (ti,1, ti,2, . . .) of computational tasks.
We consider that the size Di,k (e.g., in bytes) of task ti,k of device i can be modeled by a
random variable Di, and the number of CPU cycles Li,k required to perform the task by a

39

D3

D4

D5
D1

D2

Figure 1: Fog computing system that serves 5 devices.

random variable Li. Similar to other works [14–16], we assume that the task arrival process
of device i can be modeled by a Poisson process with arrival intensity λi.

For each task ti,k device i can decide whether to perform the task locally, to offload it to
a device j ∈ N \{i} or to a cloud server. Thus, device i chooses a member of the set N ∪
{0}, where 0 corresponds to the cloud. We allow for randomized policies, and we denote
by pi, j(k) the probability that device i assigns its task ti,k to j ∈ N ∪{0}, and we define
the probability vector pi(k) = {pi,0(k), pi,1(k), ..., pi,N(k)}, where ∑ j∈N∪{0} pi, j(k) = 1.
Finally, we denote by P the set of probability distributions over N ∪{0}, i.e., pi(k) ∈ P .

We assume that all devices faithfully execute the tasks offloaded to them. This can be
ensured with an adequate incentive scheme similar to those presented in [17–19], e.g., if
only devices that process offloaded tasks themselves are entitled to offload tasks. Figure 1
illustrates a computation offloading system that serves five devices such that devices 1 and
2 offload their tasks through a base station to the cloud, device 3 performs computation
locally, and devices 4 and 5 offload their tasks to devices 2 and 3, respectively.

2.1 Communication model
We consider that the devices communicate using a single cell uplink OFDM system [20],
and there is an assignment of subcarriers to pairs of communicating nodes. We denote the
transmission rate from device i to device j by Ri, j, and the transmission rate from device
i to the cloud server through a base station by Ri,0. Each device maintains N transmission
queues, i.e., N−1 queues for transmitting to devices j ∈ N \{i} and one for transmitting
to the cloud server. We assume that the queues are large enough to be considered infinite,
and the tasks are transmitted in FIFO order.

We consider that the time T t
i, j(k) needed to transmit a task ti,k from device i to j ∈

N ∪{0} is proportional to its size Di,k, and is given by

T t
i, j(k) =

Di,k

Ri, j
.

Furthermore, the time T d
i, j(k) needed to deliver the input data Di,k from device i to j ∈

40

Figure 2: Fog computing system modeled as a queuing network.

N ∪{0} is the sum of the transmission time T t
i, j(k) and of the waiting time (if any).

Similar to other works [21–23], we consider that the time needed to transmit the results
of the computation back to the device is negligible. This assumption is justified for many
applications including face and object recognition, and anomaly detection, where the size
of the result of the computation is much smaller than the size of the input data.

Observe that our system model can accommodate systems in which certain devices
i ∈ N only serve for performing the computational tasks of others, by setting the arrival
intensity λi = 0, and in which certain devices j∈N are not supposed to perform the compu-
tational tasks of others, by setting the transmission rates from the other devices i ∈N \{ j}
to device j to Ri, j = 0.

2.2 Computation model
To model the time that is needed to compute a task in a device i, we consider that each
device i maintains one execution queue with tasks served in FIFO order. We denote by
Fi the computational capability of device i and we assume that the execution queues are
large enough to be considered infinite. Unlike devices, the cloud has a large number of
processors with computational capability F0 each, and we assume that computing in the
cloud begins immediately upon arrival of a task. Similar to common practice we consider
that the time T c

i, j(k) needed to compute a task ti,k, on j ∈ N ∪{0} is proportional to its
complexity Li,k, and is given by

T c
i, j(k) =

Li,k

Fj
.

Furthermore, the execution time T e
i, j(k) of a task ti,k on device j is the sum of the computa-

tion time T c
i, j(k) and of the waiting time (if any). Figure 2 illustrates the queuing model of

a computation offloading system.

41

2.3 Problem formulation
We define the cost Ci of device i as the mean completion time of its tasks. Given a sequence
(ti,1, ti,2, . . .) of computational tasks, we can thus express the cost Ci as

Ci = lim
K→∞

1
K

[K

∑
k=1

(
pi,i(k)T e

i,i(k)+ ∑
j∈N\{i}∪{0}

pi, j(k)
(
T d

i, j(k)+T e
i, j(k)

))]
. (1)

Since the devices are autonomous, we consider that each device aims at minimizing its cost
by solving

minCi s.t. (2)
pi(k) ∈ P. (3)

Since devices’ decisions affect each other, the devices play a dynamic non-cooperative
game, and we refer to the game as the multi user computation offloading game (MCOG).
The game is closest to an undiscounted stochastic game with countably infinite state space,
but the system state evolves according to a semi-Markov chain (instead of a Markov chain,
depending on the distribution of Di and Li) and payoffs (the completion times) are un-
bounded. We are not aware of existence results for Markov equilibria for this class of
problem, and even for the case when the state evolves according to a Markov chain with
countable state space and unbounded payoffs, there are only a few results on the existence
of equilibria in Markov strategies [24–26].

In what follows we propose two decentralized solutions for the MCOG problem in the
form of a Markov strategy and in static mixed strategies.

3 Myopic best response
The first algorithm we consider, called Myopic Best Response (MBR), requires global
knowledge of the system state, but decisions are made locally at the devices. In the MBR
algorithm, every device i makes a decision based on a myopic best response strategy, i.e.,
every device i chooses the node j ∈N ∪{0} that minimizes the completion time of its task
ti,k, given the instantaneous states of the transmission and execution queues. Observe that
since the devices make their decisions based on the instantaneous states of the queues, they
do not take into account the tasks that may arrive to the other devices’ execution queues
while transmitting a task. The pseudo-code for computing the myopic best response strat-
egy is shown in Figure 3.

Note that if we define the system state upon the arrival of task ti,k as the jobs in the
transmission and execution queues and the size and complexity of the task to be offloaded,
then the devices’ decisions depend on the instantaneous system state only, and hence the
myopic best response is a Markov strategy for the MCOG. Nonetheless, it is not necessarily
a Markov perfect equilibrium.

A significant detriment of the MBR algorithm is its signaling overhead, as it requires
global information about the system state upon the arrival of each task. To reduce the

42

pi(k) = MyopicBestResponse(ti,k)
1: pi, j(k) = 0, ∀ j ∈N ∪{0}
2: /* Estimate completion time of ti,k in ∀ j∈N∪{0} */
3: for j = 0, . . . ,N do
4: if j = i then
5: ECompleteT (j) = T e

i, j(k)
6: else
7: ECompleteT (j) = T d

i, j(k)+T e
i, j(k)

8: end if
9: end for

10: /* Make a greedy decision */
11: i′← argmin

j∈N∪{0}
ECompleteT (j)

12: pi,i′(k) = 1
13: return pi(k)

Figure 3: Pseudo code of myopic best response.

signaling requirements, in what follows we propose an algorithm that is based on a strategy
that relies on average system parameters only.

4 Equilibrium in Static Mixed Strategies
As a practical alternative to the MBR algorithm, in this section we propose a decentralized
algorithm, which we refer to as the Static Mixed Nash Equilibrium (SM-NE) algorithm.
The algorithm is based on an equilibrium (pi)i∈N in static mixed strategies, that is, device
i chooses the node where to execute an arriving task at random according to the probability
vector pi, which is the same for all tasks. For computing a static mixed strategy, it is
enough for a device to know the average task arrival intensities, transmission rates, and the
first and second moments of the task size and the task complexity distribution. Therefore,
the SM-NE algorithm requires significantly less signaling than the MBR algorithm.

In order to compute an equilibrium strategy, we start with expressing the (approximate)
equilibrium cost of device i as a function of strategy profile (pi)i∈N , i.e., the mean comple-
tion time of its tasks in steady state. Throughout the section we denote by Di and 2Di the
first and the second moment of Di, respectively, and by Li and 2Li the first and the second
moment of Li, respectively.

4.1 Transmission time in steady state
Since tasks arrive to each device as a Poisson process and we aim for a constant probability
vector pi as a solution, we can model each transmission queue with an M/G/1 system.

43

Let us denote by T t i, j and 2T t i, j the mean and the second moment of the time needed to
transmit a task from device i to j∈N \{i}∪{0}, respectively. Then the mean time T d i, j
needed to deliver the input data from device i to j∈N \{i}∪{0} is the sum of the mean
waiting time in the transmission queue and the mean transmission time T t i, j, and can be
expressed as

T d i, j =
pi, jλ 2

i T t i, j

2(1− pi, jλiT t i, j)
+T t i, j, (4)

and the queue is stable as long as the offered load ρ t
i, j = pi, jλiT t i, j < 1.

4.2 Computation time in steady state
Observe that if the input data size Di follows an exponential distribution, then departures
from the transmission queues can be modeled by a Poisson process, and thus tasks arrive
to the devices’ execution queues according to a Poisson process. In what follows we use
the approximation that the tasks arrive according to a Poisson process even if Di is not
exponentially distributed. This approximation allows us to model the execution queue of
each device as an M/G/1 system, and the cloud as an M/G/∞ system.

Let us denote by T ci, j and 2T ci, j the mean and the second moment of the time needed to
compute device i’s task on j ∈N ∪{0}, respectively. Then the mean time T ei, j that device
j ∈ N needs to complete the execution of device i’s task is the sum of the mean waiting
time in the execution queue and the mean computation time T ci, j, and can be expressed as

T ei, j =
∑i′∈N pi′, jλ 2

i′ T
c

i′, j

2(1−∑i′∈N pi′, jλi′T c
i′, j)

+T ci, j, (5)

and the queue is stable as long the offered load ρe
j = ∑i′∈N pi′, jλi′T c

i′, j < 1.
Since computing in the cloud begins immediately upon arrival of a task, the mean time

T ei,0 that the cloud needs to complete the execution of device i’s task is equal to the mean
computation time T ci,0, i.e.,

T ei,0 =
Li

F0
. (6)

4.3 Existence of Static Mixed Strategy Equilibrium
We can rewrite (1) to express the cost Ci of device i in steady state as a function of (pi)i∈N ,

Ci(pi, p−i) = pi,iT ei,i + ∑
j∈N\{i}∪{0}

pi, j
(
T d i, j +T ei, j

)
,

where we use p−i to denote the strategies of all devices except device i.
Observe that static mixed strategy profile (pi)i∈N of the devices has to ensure that the

entire system is stable in steady state, and we assume that the load is such that there is at
least one strategy profile that satisfies the stability condition of the entire system. Now,

44

we can define the set of feasible strategies of device i as the set of probability vectors that
ensure stability of the transmission and the execution queues

Ki(p−i)={pi∈P|ρ t
i, j≤St ,ρe

i′≤St ,∀ j∈N\{i}∪{0},∀i′},

where 0 < St < 1 is the stability threshold associated with the transmission and the execu-
tion queues.

Note that due to the stability constraints the set of feasible strategiesKi(p−i) of device i
depends on the other devices’ strategies, and we are interested in whether there is a strategy
profile (p∗i)i∈N , such that

Ci(p∗i , p∗−i)≤Ci(pi, p∗−i), ∀pi ∈ Ki(p∗−i).

We are now ready to formulate the first main result of the section.

Theorem 1. The MCOG has at least one equilibrium in static mixed strategies.

In the rest of this subsection we use variational inequality (VI) theory to prove the
theorem and for computing an equilibrium. For a given set K⊆Rn and a function F :K→
Rn, the V I(K,F) problem is the problem of finding a point x∗ ∈ K such that F(x∗)T (x−
x∗)≥ 0, for ∀x ∈ K. We define the set K as

K={(pi)i∈N|pi∈P,ρ t
i, j≤St ,ρe

i ≤St , j∈N\{i}∪{0},∀i}.

Before we prove the theorem, in the following we formulate an important result con-
cerning the cost function Ci(pi, p−i).

Lemma 1. Ci(pi, p−i) is a convex function of pi for any fixed p−i and (pi, p−i) ∈ K.

Proof. For notational convenience let us start the proof with introducing a few shorthand
notations,

γi, j = pi, jλ 2
i T t i, j, δi = ∑

j∈N
p j,iλ 2

j T c j,i, εi, j = 1−ρ t
i, j, ζi = 1−ρe

i .

Using this notation we expand the cost Ci(pi, p−i) as

Ci(pi, p−i) = pi,i
(δi

2ζi
+T ci,i

)
+pi,0

(γi,0

2εi,0
+T t i,0 +T ci,0

)
+ ∑
j∈N\{i}

pi, j
(γi, j

2εi, j
+T t i, j+

δ j

2ζ j
+T ci, j

)
.

To prove convexity we proceed with expressing the first order derivatives hi, j =
∂Ci(pi,p−i)

∂ pi, j
,

hi,0 = T t i,0+T ci,0+
γi,0

2εi,0
+ pi,0λi

(2T t i,0

2εi,0
+

T t i,0γi,0

2ε2
i,0

)
,

hi,i = T ci,i +
δi

2ζi
+ pi,iλi

(2T ci,i

2ζi
+

T ci,iδi

2ζ 2
i

)
,

45

hi, j
∣∣

j 6=i = T t i, j +T ci, j +
γi, j

2εi, j
+

δ j

2ζ j
+ pi, jλi

(2T t i, j

2εi, j
+

2T ci, j

2ζ j
+

T t i, jγi, j

2ε2
i, j

+
T ci, jδ j

2ζ 2
j

)
.

We can now express the Hessian matrix

Hi(pi, p−i)=

hi
i,0 0 . . . 0
0 hi

i,1 . . . 0
...

...
. . .

...
0 0 . . . hi

i,N

 ,

where hi
i, j =

∂ 2Ci(pi,p−i)

∂ p2
i, j

, and

hi
i,0 =

λi

εi,0

(2T t i,0 +
γi,0T t

i,0

εi,0

)(
1+ pi,0

λiT t
i,0

εi,0

)
,

hi
i,i =

λi

ζi

(2T ci,i +
δiT c

i,i

ζi

)(
1+ pi,i

λiT c
i,i

ζi

)
,

hi
i, j
∣∣

j 6=i =
λi

εi, j

(2T t i, j +
γi, jT t

i, j

εi, j

)(
1+ pi, j

λiT t
i, j

εi, j

)
+

λi

ζ j

(2T ci, j +
δ jT c

i, j

ζ j

)(
1+ pi, j

λiT c
i, j

ζ j

)
.

Observe that all diagonal elements of Hi(pi, p−i) are nonnegative, and thus the Hessian
matrix Hi(pi, p−i) is positive semidefinite on K, which implies convexity.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us define the generalized Nash equilibrium problem Γs =<N ,
(P)i∈N ,(Ci)i∈N >, subject to (pi)i∈N ∈ K. Γs is a strategic game, in which each device
i ∈N plays a mixed strategy pi ∈ Ki(p−i), and aims at minimizing its cost Ci by solving

min
pi

Ci(pi, p−i) s.t. (7)

pi ∈ Ki(p−i). (8)

Clearly, a pure strategy Nash equilibrium (p∗i)i∈N of Γs is an equilibrium of the MCOG in
static mixed strategies, as

Ci(p∗i , p∗−i)≤Ci(pi, p∗−i), ∀pi ∈ Ki(p∗−i).

We thus have to prove that Γs has a pure strategy Nash equilibrium.
To do so, let us first define the function

F =

∇p1C1(p1, p−1)
...

∇pNCN(pN , p−N)

 ,

46

where ∇piCi(pi, p−i) is the gradient vector given by

∇piCi(pi, p−i) =

hi,0
hi,1

...
hi,N

 .

We prove the theorem in two steps based on the VI(K,F) problem, which corresponds to
Γs.

First, we prove that the solution set of the VI(K,F) problem is nonempty and compact.
Since the first order derivatives hi, j are rational functions, the function F is infinitely dif-
ferentiable at every point in K, and hence it is continuous on K. Furthermore, the set K
is compact and convex. Hence, the solution set of the VI(K,F) problem is nonempty and
compact (Corollary 2.2.5 in [27]).

Second, we prove that any solution of the VI(K,F) problem is an equilibrium of the
MCOG. Since the function F is continuous on K, it follows that Ci(pi, p−i) is continuously
differentiable on K. Furthermore, by Lemma 1 we know that Ci(pi, p−i) is a convex func-
tion. Therefore, any solution of the VI(K,F) problem is a pure strategy Nash equilibrium
of Γs [28], and is thus an equilibrium in static mixed strategies of MCOG. This proves the
theorem.

Theorem 1 guarantees that the MCOG possesses at least one equilibrium in static mixed
strategies, according to which the SM-NE algorithm allocates the tasks among the devices
and the cloud. The next important question is whether there is an efficient algorithm for
solving the VI problem, and hence for computing an equilibrium (p∗i)i∈N of the MCOG in
static mixed strategies.

In what follows we show that an equilibrium can be computed efficiently under certain
conditions. To do so, we show that the function F is monotone if the execution queue of
each device can be modeled by an M/M/1 system and all task arrival intensities are equal.
Monotonicity of F is a sufficient condition for various algorithms proposed for solving
VIs [29], e.g., for the Solodov-Tseng Projection-Contraction (ST-PC) method.

Theorem 2. If the task sizes and complexities are exponentially distributed, arrival inten-
sities λi = λ and

λ max
j∈N

T c j,i ≤
1−St

N
, ∀i ∈N ,

then the function F is monotone.

The proof is given in Appendix .1.
Note that the sufficient condition provided by Theorem 2 ensures stability of all execu-

tion queues in the worst case scenario, i.e., when T c j,i = max j∈N T c j,i for all devices. This
condition is, however, not necessary for function F to be monotone in realistic scenarios.
In fact, our simulations showed that the ST-PC method converges to an equilibrium for
various considered scenarios.

47

5 Numerical Results
In what follows we show simulation results obtained using an event driven simulator, in
which we implemented the MBR and the SM-NE algorithms. For the ST-PC method we
set pi,i = 1, ∀i ∈ N as starting point, which corresponds to the strategy profile in which
each device performs all tasks locally. The ST-PC method stops when the norm of the
difference of two successive iterations is less than 10−4.

Unless otherwise noted, we placed the devices at random on a regular grid with 104

points defined over a square area of 1km× 1km, and the cloud is located at the center of
the grid. For simplicity, we consider a static bandwidth assignment for the simulations;
we assign a bandwidth of Bi, j = 5 MHz for communication between device i and device j,
and for the device to cloud bandwidth assignment we consider two scenarios. In the elastic
scenario the bandwidth Bi,0 assigned for communication between device i and the cloud
is independent of the number of devices. In the fixed scenario the devices share a fixed
amount of bandwidth B0 when they want to offload a task to the cloud, and the bandwidth
Bi,0 scales directly proportional with the number of devices, i.e., Bi,0 =

1
N B0. We consider

that the channel gain of device i to a node j ∈ N \{i}∪{0} is proportional to d−α
i, j , where

di, j is the distance between device i and node j, and α is the path loss exponent, which
we set to 4 according to the path loss model in urban and suburban areas [30]. We set the
data transmit power Pt

i of every device i to 0.4 W according to [31] and given the noise
power Pn we calculate the transmission rate Ri, j from device i to node j ∈N \{i}∪{0} as
Ri, j = Bi, jlog(1+Pt

i dα
i, j/Pn).

The input data size Di follows a uniform distribution on [ad
i ,b

d
i], where ad

i and bd
i are

uniformly distributed on [0.1,1.4] Mb and on [2.2,3.4] Mb, respectively. The arrival in-
tensity λi of the tasks of device i is uniformly distributed on [0.01,0.03] tasks/s, and the
stability threshold is St = 0.6. Note that for the above set of parameters the maximum
arrival intensity does not satisfy the sufficient condition of Theorem 2 already for N = 20
devices. Yet, our evaluation shows that the ST-PC method converges even for larger in-
stances of the problem.

The computational capability Fi of device i is drawn from a continuous uniform distri-
bution on [1,4] GHz, while the computation capability of the cloud is F0 = 64 GHz [32].
The task complexity Li follows a uniform distribution on [al

i ,b
l
i], where al

i and bl
i are uni-

formly distributed on [0.2,0.5] Gcycles and on [0.7,1] Gcycles, respectively.
We use three algorithms as a basis for comparison. The first algorithm computes the

socially optimal static mixed strategy profile (p̄i)i∈N that minimizes the system cost C =
1
N ∑i∈N Ci, i.e., (p̄i)i∈N = argmin(pi)i∈N C. We refer to this algorithm as the Static Mixed
Optimal (SM-OPT) algorithm. The second algorithm considers that the devices are allowed
to offload the tasks to the cloud only (i.e., pi,i + pi,0 = 1), and we refer to this algorithm
as the Static Mixed Cloud Nash Equilibrium (SMC-NE) algorithm. The third algorithm
considers that all devices perform local execution (i.e., pi,i = 1). Furthermore, we define
the performance gain of an algorithm as the ratio between the system cost reached when all
devices perform local execution and the system cost reached by the algorithm. The results
shown are the averages of 50 simulations, together with 95% confidence intervals.

48

0 10 20 30 40 50 60 70

Number of devices (N)

1

1.5

2

2.5

3

P
er
fo
rm

an
ce

ga
in

MBR
SM-NE
SM-OPT
SMC-NE

B
i,0

=1.25[MHz]B
i,0

=1/N*12.5[MHz]

B
i,0

=0.2[MHz]

Figure 4: Performance gain vs. number of devices for Bi,0 = 0.2 MHz, Bi,0 = 1.25 MHz
and Bi,0 =

1
N 12.5 MHz.

5.1 Performance gain
We start with evaluating the performance gain as a function of the number of devices.
Figure 4 shows the performance gain for the MBR, SM-NE, SM-OPT and for the SMC-NE
algorithms as a function of the number of devices for the two device to cloud bandwidth
assignment scenarios. For the elastic scenario Bi,0 = 0.2 MHz and Bi,0 = 1.25 MHz, and
for the fixed scenario B0 = 12.5 MHz. The results for the SM-OPT algorithm are shown
only up to 30 devices, because the computation of the socially optimal strategy profile was
computationally infeasible for larger problem instances.

Figure 4 shows the performance gain for the MBR, SM-NE, SM-OPT and for the
SMC-NE algorithms as a function of the number of devices. The results show that the
SM-NE and the SM-OPT algorithms perform close to the MBR algorithm, despite the fact
that they are based on average system parameters only. We can also observe that when the
device to cloud bandwidth is low (about 0.2 MHz), SMC-NE does not provide significant
gain compared to local execution (the performance gain is close to one for all values of N).
On the contrary, the MBR, SM-NE and SM-OPT algorithms, which allow collaborative
offloading, provide a performance gain of about 50%, and the gain slightly increases with
the number of devices. The reason for the slight increase of the gain is that when there are
more devices, devices are closer to each other on average, which allows higher transmission
rates between devices.

Compared to the case when Bi,0 = 0.2 MHz, the results for Bi,0 = 1.25 MHz show that
all algorithms achieve very high performance gains (up to 300%). Furthermore, the per-
formance gain of the SMC-NE algorithm is similar to that of the SM-NE and the SM-OPT
algorithms, while the MBR algorithm performs slightly better. The reason is that for high
device to cloud bandwidth in the static mixed equilibrium most devices offload to the cloud,
as on average it is best to do so, even if given the instantaneous system state it may be

49

0 1 2 3 4 5 6

Device to cloud bandwith (Bi,0)[MHz]

0

2

4

6

8

10

12

P
er
fo
rm

an
ce

ga
in

MBR
SM-NE
SM-OPT
SMC-NE
0.5km× 0.5km
1km× 1km
1.41km× 1.41km

Figure 5: Performance gain vs. device to cloud bandwidth Bi,0 for N = 8 devices placed
over 0.5km× 0.5km square area, for N = 30 devices placed over 1km× 1km square area,
and for N = 60 devices placed over 1.41km×1.41km square area.

better to offload to a device, as done by the MBR algorithm. Furthermore, unlike for
Bi,0 = 0.2 MHz, for Bi,0 = 1.25 MHz the performance gain becomes fairly insensitive to
the number of devices, which is again due to the increased reliance on the cloud for com-
putation offloading. The results are fairly different for the fixed device to cloud bandwidth
assignment scenario, as in this scenario the number of devices affects the device to cloud
bandwidth. In this scenario collaboration among the devices improves the system perfor-
mance (SMC-NE vs. SM-NE algorithms). We can also observe that as N increases, the
curves for fixed scenario approach the curves for the elastic scenario for Bi,0 = 0.2 MHz.
This is due to that for large values of N the device to cloud bandwidth Bi,0 becomes low
and the devices offload more to each other than to the cloud.

Finally, the results show that the gap between the SM-NE and the SM-OPT algorithms
is almost negligible for all scenarios, and hence we can conclude that the price of stability
of the MCOG game in static mixed strategies is close to one.

5.2 Impact of cloud availability
In order to analyse the impact of the possibility to offload to the cloud, in the following we
vary the bandwidth Bi,0 between 0.2 MHz and 5.2 MHz. Figure 5 shows the performance
gain for the MBR, SM-NE, SM-OPT and for the SMC-NE algorithms as a function of
the device to cloud bandwidth for 8 devices placed over a square area of 0.5km× 0.5km,
for 30 devices placed over a square area of 1km× 1km, and for 60 devices placed over a
square area of 1.41km×1.41km. Note that the three scenarios have approximately the same
density of devices.

The figure shows that the performance gain achieved by the algorithms increases with

50

0 1 2 3 4 5 6 7 8 9 10

Performance gain

0

0.2

0.4

0.6

0.8

1

C
D
F

MBR
SM-NE
SM-OPT
SMC-NE
Bi,0 = 0.2[MHz]
Bi,0 = 0.8[MHz]
Bi,0 = 1.25[MHz]

Figure 6: Distribution of the performance gain for N = 30 devices, Bi,0 = 0.2 MHz, Bi,0 =
0.8 MHz and Bi,0 = 1.25 MHz.

the bandwidth Bi,0. Furthermore, we observe that the gap between the algorithms decreases
as the device to cloud bandwidth increases, and for reasonably high bandwidths the SM-NE
algorithm performs almost equally well as the MBR algorithm. The results also show that
collaboration among the devices has highest impact on the system performance when the
bandwidth Bi,0 is low, and for Bi,0 = 1.2 MHz offloading to the cloud only (SMC-NE) is as
good as the SM-NE and SM-OPT algorithms.

Comparing the performance for different sized areas we observe that the performance
gain decreases as the size of the area increases, which is due to that the devices are closer
to the cloud on average in a smaller area.

5.3 Performance gain perceived per device
In order to evaluate the performance gain perceived per device, we use the notion of ex-
ante and ex-post individual rationality. These are important in situations when the devices
are allowed to decide whether or not to participate in the collaboration before and after
learning their types (i.e., the exact size and complexity of their tasks), respectively. The
results in Figure 4 show that on average the devices benefit from collaboration, as the
performance gain is greater than one, and hence collaboration among the devices is ex-
ante individually rational. In order to investigate whether collaboration among the devices
is ex-post individually rational, in Figure 6 we plot the CDF of the performance gain for
the elastic device to cloud bandwidth assignment scenario with 30 devices and for Bi,0 =
0.2 MHz, Bi,0 = 0.8 MHz, and Bi,0 = 1.25 MHz.

The results for Bi,0 = 0.2 MHz show that the SMC-NE algorithm is ex-post individu-
ally rational, as devices always gain compared to local computation. At the same time, the
SM-NE and the MBR algorithms achieve a performance gain below one for a small fraction

51

5 10 15 20 25 30 35

Number of devices (N)

10
0

10
1

10
2

10
3

S
tr
at
eg
y
p
ro
fi
le

co
m
p
u
ta
ti
on

ti
m
e
(s
)

SM-NE
SM-OPT

Figure 7: Time needed to compute a static mixed strategy equilibrium and a socially opti-
mal static mixed strategy profile for Bi,0 = 1.25 MHz.

of the devices, and hence collaboration among devices is not ex-post individually rational.
On the contrary, the results for Bi,0 = 0.8 MHz show that the MBR algorithm is ex-post indi-
vidually rational, since the performance gain of every device is larger than one, but SM-NE
is not. Finally, the results for Bi,0 = 1.25 MHz show that all algorithms ensure that every
device achieves a performance gain at least one, and hence for Bi,0 = 1.25 MHz collabora-
tion among devices is ex-post individually rational using all algorithms. These results show
that collaboration among the devices is ex-post individually rational only if sufficient band-
width is provided for communication to the cloud. Thus, if ex-post individual rationality is
important then the device to cloud bandwidth has to be managed appropriately.

5.4 Computational efficiency of the SM-NE algorithm
Recall that the SM-NE algorithm is based on the static mixed strategy equilibrium, and
that the SM-OPT algorithm is based on the socially optimal static mixed strategy profile.
In order to assess the computational efficiency of the SM-NE algorithm we measured the
time needed to compute a static mixed strategy equilibrium by the ST-PC method and the
time needed to compute a socially optimal static mixed strategy profile by the quasi-Newton
method. Figure 7 shows the measured times as a function of the number of devices. We
observe that the time needed to compute the socially optimal static mixed strategy profile
increases exponentially with the number of devices at a fairly high rate, and already for
30 devices it is more than an order of magnitude faster to compute a static mixed strategy
equilibrium than to compute the socially optimal static mixed strategy profile. Therefore,
we conclude that the SM-NE algorithm, which is based on an equilibrium in static mixed
strategies, is a computationally efficient solution for medium to large scale collaborative
computation offloading systems.

52

6 Related Work
There is a large body of work on augmenting the execution of computationally intensive
applications using cloud resources [6, 21, 33–35]. [33] studied the problem of maximiz-
ing the throughput mobile data stream applications through partitioning, and proposed a
genetic algorithm as a solution. [34] considered multiple QoS factors in a 2-tiered cloud
infrastructure, and proposed a heuristic for minimizing the users’ cost. [35] proposed an
iterative algorithm that minimizes the users’ overall energy consumption, while meeting
latency constraints. [21] considered a single wireless link and an elastic cloud, provided a
game theoretic treatment of the problem of minimizing completion time and showed that
the game is a potential game. [6] considered multiple wireless links, elastic and non-elastic
cloud, provided a game theoretic analysis of the problem and proposed a polynomial com-
plexity algorithm for computing an equilibrium allocation. [15] considered a three-tier
cloud architecture with stochastic task arrivals, provided a game theoretical formulation
of the problem, and used a variational inequality to prove the existence of a solution and
to provide a distributed algorithm for computing an equilibrium. Unlike these works, we
allow devices to offload computations to each other as well.

A few recent works considered augmenting the execution of computationally inten-
sive applications using the computational power of nearby devices in a collaborative way.
[36] modeled the collaboration among mobile devices as a coalition game, and proposed
a heuristic method for solving a 0− 1 integer quadratic programing problem that mini-
mizes the overall energy consumption. [37] formulated the resource allocation problem
among neighboring mobile devices as a multi-objective optimization that aims to mini-
mize the completion times of the tasks as well as the overall energy consumption, and as
a solution proposed a two-stage approach based on enumerating Pareto optimal solutions.
[38] formulated the problem of maximizing the probability of computing tasks before their
deadlines through mobility-assisted opportunistic computation offloading as a convex op-
timization problem, and used the barrier method to solve the problem. [14] considered a
collaborative cloudlet that consists of devices that can perform shared offloading, and pro-
posed two heuristic allocation algorithms that minimize the average relative usage of all
the nodes in the cloudet. [39] proposed an architecture that enables a mobile device to re-
motely access computational resources on other mobile devices, and proposed two greedy
algorithms that require complete information about devices’ states, for minimizing the job
completion time and the energy consumption, respectively. Our work differs from these
works, as we consider computation offloading to a cloud and nearby devices, and provide
a non-cooperative game theoretic treatment of the problem.

Only a few recent works considered the computation offloading problem in fog com-
puting systems. [40] considered a fog computing system, where devices may offload
their computation to small cell access points that provide computation and storage capaci-
ties, and designed a heuristic for a joint optimization of radio and computational resources
with the objective of minimizing the energy consumption. Unlike this work, we consider
stochastic task arrivals, and we provide a game theoretical treatment of the completion
time minimization problem. [41] formulated the power consumption-delay tradeoff prob-

53

lem in fog computing system that consists of a set of fog devices and a set of cloud servers,
and proposed a heuristic for allocating the workload among fog devices and cloud servers.
[42] considered the joint optimization problem of task allocation and task image placement
in a fog computing system that consists of a set of storage srevers, a set of computation
servers and a set of users, and proposed a low-complexity three-stage algorithm for the
task completion time minimization problem. Our work differs from these works, as we
consider heterogeneous computational tasks, and our queueing system model captures the
contention for both communication and computational resources.

To the best of our knowledge ours is the first work based on a game theoretical anal-
ysis that proposes a decentralized algorithm with low signaling overhead for solving the
completion time minimization problem in fog computing systems.

7 Conclusion
We have provided a game theoretical analysis of a fog computing system. We proposed
an efficient decentralized algorithm based on an equilibrium task allocation in static mixed
strategies. We compared the performance achieved by the proposed algorithm that relies
on average system parameters with the performance of a myopic best response algorithm
that requires global knowledge of the system state. Our numerical results show that the
proposed algorithm achieves good system performance, close to that of the myopic best
response algorithm, and could be a possible solution for coordinating collaborative compu-
tation offloading with low signaling overhead.

.1 Proof of Theorem 2
Observe that if λi = λ then the cost Ci can equivalently be defined as Ni = λCi, i.e., the
number of tasks in the system. Furthermore, since task complexities are assumed to be
exponentially distributed, the execution queues are M/M/1 systems. We can thus rewrite
T ei, j as

T ei, j =
T ci, j

1−ρe
j
, (9)

and the cost Ni(pi, p−i) of device i as

Ni(pi, p−i) = pi,iλ
T ci,i

ζi
+pi,0λ

(γi,0

2εi,0
+T t i,0 +T ci,0

)
+ ∑

j∈N\{i}
pi, jλ

(γi, j

2εi, j
+T t i, j +

T ci, j

ζ j

)
.

Next, we express the first order derivatives hi, j of Ni(pi, p−i) as

hi,0=λ
(
T t i,0+T ci,0+

γi,0

2εi,0

)
+pi,0λ 2(2T t i,0

2εi,0
+

T t i,0γi,0

2ε2
i,0

)
,

54

hi,i = λ
T ci,i

ζi
+ pi,iλ 2 T c2

i,i

ζ 2
i

,

hi, j
∣∣

j 6=i = λ
(
T t i, j +

γi, j

2εi, j
+

T ci, j

ζ j

)
+ pi, jλ 2(2T t i, j

2εi, j
+

T t i, jγi, j

2ε2
i, j

+
T c2

i, j

ζ 2
j

)
.

In order to prove the monotonicity of the function F in what follows we show that the
Jacobian J of F is positive semidefinite. The Jacobian J has the following structure

h1
1,0 0 ... 0 0 0 ... 0 ... 0 0 ... 0

0 h1
1,1 ... 0 0 h1

2,1 ... 0 ... 0 h1
N,1 ... 0

...
...

. . .
...

...
...

. . .
... ...

...
. . .

...
0 0 ... h1

1,N 0 0 ... h1
2,N ... 0 0 ... h1

N,N

...
...

0 0 ... 0 0 0 ... 0 ... hN
N,0 0 ... 0

0 hN
1,1 ... 0 0 hN

2,1 ... 0 ... 0 hN
N,1 ... 0

...
...

. . .
...

...
...

. . .
... ...

...
. . .

...
0 0 ... hN

1,N 0 0 ... hN
2,N ... 0 0 ... hN

N,N

,

where the second order derivatives can be expressed as

hi
i,0 =

λ 2

εi,0

(2T t i,0 +
γi,0T t i,0

εi,0

)(
1+ pi,0

λT t i,0

εi,0

)
,

hi
i,i =

(
λT ci,i

ζi

)2 (
2+2

λ
ζi

pi,iT ci,i
)
,

hi
i, j
∣∣

j 6=i =

(
λT ci, j

ζ j

)2 (
2+2

λ
ζ j

pi, jT ci, j
)
+ht

i, j,

where

ht
i, j =

λ 2

εi, j

(2T t i, j +
γi, jT t i, j

εi, j

)(
1+ pi, j

λT t i, j

εi, j

)
,

hi
i′, j

∣∣∣
i′ 6=i

=
λT ci, jλT c

i′, j

ζ 2
j

(
1+2

λ
ζ j

pi, jT ci, j
)
.

55

Reordering the rows and columns, the Jacobian J can be rewritten as

J =

C 0 . . . 0
0 M1 . . . 0
...

...
. . .

...
0 0 . . . MN

 ,

where

C =

h1
1,0 0 . . . 0
0 h2

2,0 . . . 0
...

...
. . .

...
0 0 . . . hN

N,0

 ,Mi =

h1
1,i h1

2,i . . . h1
N,i

h2
1,i h2

2,i . . . h2
N,i

...
...

. . .
...

hN
1,i hN

2,i . . . hN
N,i

 .

Observe that all diagonal elements of C are nonnegative, and thus the matrix C is positive
definite. In order to show that J is positive semidefinite we have to show that the symmetric
matrix Ms

i =
1
2 (M

T
i +Mi) is positive semidefinite.

The diagonal elements dhs
j,i of Ms

i are given by

dhs
j,i

∣∣∣
j=i

=

(
λT ci,i

ζi

)2 (
2+2

λ
ζi

pi,iT ci,i
)
,

dhs
j,i

∣∣∣
j 6=i

=

(
λT c j,i

ζi

)2 (
2+2

λ
ζi

p j,iT c j,i
)
+ht

j,i,

where

ht
j,i =

λ 2

ε j,i

(2T t j,i +
γ j,iT t j,i

ε j,i

)(
1+ p j,i

λT t j,i

ε j,i

)
,

and the off-diagonal elements ohs
j,i=

1
2 (h

i
j,i +h j

i,i)
∣∣∣

j 6=i
are given by

ohs
j,i =

λT ci,iλT c j,i

ζ 2
i

(
1+

λ
ζi
(pi,iT ci,i + p j,iT c j,i)

)

Let us define the vector T ci=(T c1,i T c2,i . . .T cN,i)
T and matrix T t i

T t i =

(
diag(ht

j,i)
∣∣∣

j∈N \{i}
0

0 0

)
.

Furthermore, let us define matrix T p
i as

p1,iT c1,i
p1,iT

c
1,i+p2,iT

c
2,i

2 ...
p1,iT

c
1,i+pN,iT cN,i

2
p2,iT

c
2,i+p1,iT

c
1,i

2 p2,iT c2,i ...
p2,iT

c
2,i+pN,iT cN,i

2
...

...
. . .

...
pN,iT cN,i+p1,iT

c
1,i

2
pN,iT cN,i+p2,iT

c
2,i

2 ... pN,iT cN,i

.

56

Now, matrix Mi can be rewritten as

Mi =
λ 2

ζ 2
i

(
T ci T cT

i ◦
(

I +E +
2λ
ζi

T p
i

))
+T t i,

where ◦ denotes the Hadamard product, i.e., the component-wise product of two matrices.
It is well known that the identity I and unit E matrices are positive definite, while

positive definiteness of matrix T ci T cT
i follows from the definition. Observe that ma-

trix T t i is positive semidefinite as well, since it is a diagonal matrix with non-negative
elements. Since the sum of two positive semidefinite matrices is positive semidefinite
and the Hadamard product of two positive semidefinite matrices is also positive semidefi-
nite [43], the proof reduces to showing that matrix I +E + 2λ

ζi
T p

i is positive semidefinite.

To do so, we will show that the minimum eigenvalue of the matrix 2λ
ζi

T p
i is greater than

or equal to −1. To do so, let us denote by e the all-ones vector and define the vector
t p
i = (p1,iT c1,i p2,iT c2,i . . . pN,iT cN,i). Now, we can express matrix T p

i as

T p
i =

1
2
(
t p
i eT + e(t p

i)
T).

The characteristic polynomial of the symmetric matrix T p
i is given by [44]

kN−2

2
(
k2−2(eT t p

i)k+(eT t p
i)

2−N‖t p
i ‖2).

We observe that T p
i has N − 2 zero eigenvalues, and one non-negative and one non-

positive eigenvalue given by k+ =
(
eT t p

i +
√

N‖t p
i ‖
)
/2 and k− =

(
eT t p

i −
√

N‖t p
i ‖
)
/2,

respectively. Therefore, the minimum eigenvalue of the matrix 2λ
ζi

T p
i is greater than −1

if
λ
ζi

(√
N‖t p

i ‖− eT t p
i

)
≤ 1. (10)

Since t p
i is a vector with non-negative elements, we have that eT t p

i ≥‖t
p
i ‖ and it also holds

that ‖t p
i ‖≤

√
N max j∈N t j,i. Therefore, the following inequalities hold

λ
ζi

(√
N‖t p

i ‖− eT t p
i

)
≤ λ

ζi

(√
N max

j∈N
t j,i(
√

N−1)
)
≤ Nλ

ζi
max
j∈N

t j,i ≤
Nλ
ζi

max
j∈N

T c j,i.

Since ρe
i ≤ St , we have that ζi ≥ 1−St , and therefore

Nλ
ζi

max
j∈N

T c j,i ≤
Nλ

1−St
max
j∈N

T c j,i. (11)

Based on (11) a sufficient condition for (10) is that λ max j∈N T c j,i ≤ 1−St
N . This proves the

theorem.

57

References
[1] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE

Internet of Things Journal, pp. 854–864, 2016.

[2] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things realize
its potential,” Computer, pp. 112–116, 2016.

[3] Y. Ai, M. Peng, and K. Zhang, “Edge cloud computing technologies for internet of
things: A primer,” Digital Communications and Networks, 2017.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proc. of ACM
MobiSys, 2010, pp. 49–62.

[5] D. Kovachev, Y. Cao, and R. Klamma, “Mobile cloud computing: a comparison of
application models,” arXiv preprint arXiv:1107.4940, 2011.

[6] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation of-
floading,” in Proc. of IEEE INFOCOM, 2017.

[7] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.
Zhang, “What will 5g be?” IEEE Journal on selected areas in communications, pp.
1065–1082, 2014.

[8] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE Vehicular
Technology Magazine, pp. 64–70, 2014.

[9] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision,
applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–
1516, 2012.

[10] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[11] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós, and Z. Turányi,
“Design aspects of network assisted device-to-device communications,” IEEE Com-
munications Magazine, vol. 50, no. 3, 2012.

[12] K. Doppler, C.-H. Yu, C. B. Ribeiro, and P. Janis, “Mode selection for device-
to-device communication underlaying an lte-advanced network,” in Proc. of IEEE
WCNC, 2010, pp. 1–6.

[13] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient resource allocation for device-
to-device communication underlaying lte network,” in Proc. of IEEE WiMob, 2010,
pp. 368–375.

58

[14] S. Bohez, T. Verbelen, P. Simoens, and B. Dhoedt, “Discrete-event simulation for
efficient and stable resource allocation in collaborative mobile cloudlets,” Simulation
Modelling Practice and Theory, vol. 50, pp. 109–129, 2015.

[15] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi, F. Lo Presti,
and V. Piccialli, “A game-theoretic approach to computation offloading in mobile
cloud computing,” Mathematical Programming, pp. 1–29, 2015.

[16] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization
framework in mobile cloud computing system,” in Service Oriented System Engi-
neering, Mar. 2013, pp. 494–502.

[17] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer information system,”
in Proceedings of the tenth international conference on Information and knowledge
management. ACM, 2001, pp. 310–317.

[18] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for
reputation management in p2p networks,” in Proceedings of the 12th international
conference on World Wide Web. ACM, 2003, pp. 640–651.

[19] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities,” IEEE transactions on Knowledge and Data Engineering,
pp. 843–857, 2004.

[20] E. Yaacoub and Z. Dawy, Resource Allocation in Uplink OFDMA Wireless Systems:
Optimal Solutions and Practical Implementations. John Wiley & Sons, 2012, vol. 24.

[21] X. Chen, “Decentralized computation offloading game for mobile cloud computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 974–983,
2015.

[22] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile com-
puting,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 1991–
1995, Jun. 2012.

[23] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading compu-
tation save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56, Apr. 2010.

[24] L. I. Sennott, “Nonzero-sum stochastic games with unbounded costs: discounted and
average cost cases,” Mathematical Methods of Operations Research, vol. 40, no. 2,
pp. 145–162, 1994.

[25] E. Altman, A. Hordijk, and F. Spieksma, “Contraction conditions for average and
α-discount optimality in countable state markov games with unbounded rewards,”
Mathematics of Operations Research, vol. 22, no. 3, pp. 588–618, 1997.

59

[26] A. S. Nowak, “Sensitive equilibria for ergodic stochastic games with countable state
spaces,” Mathematical Methods of Operations Research, vol. 50, no. 1, pp. 65–76,
1999.

[27] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and comple-
mentarity problems. Springer Science & Business Media, 2007.

[28] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized nash games and variational
inequalities,” Operations Research Letters, vol. 35, no. 2, pp. 159–164, 2007.

[29] F. Tinti, “Numerical solution for pseudomonotone variational inequality problems by
extragradient methods,” in Variational analysis and applications. Springer, 2005,
pp. 1101–1128.

[30] A. Aragon-Zavala, Antennas and propagation for wireless communication systems.
John Wiley & Sons, 2008.

[31] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consump-
tion in mobile phones: a measurement study and implications for network appli-
cations,” in Proc. of the 9th ACM SIGCOMM conference on Internet measurement
conference. ACM, 2009, pp. 280–293.

[32] M. Satyanarayanan, “A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets,” GetMobile: Mobile Computing and
Communications, pp. 19–23, 2015.

[33] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for partitioning
and execution of data stream applications in mobile cloud computing,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 23–32, Apr. 2013.

[34] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-aware
optimal service allocation in mobile cloud computing,” in Proc. of IEEE CLOUD, Jun.
2013, pp. 75–82.

[35] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computa-
tional resources for multicell mobile-edge computing,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[36] L. Xiang, B. Li, and B. Li, “Coalition formation towards energy-efficient collaborative
mobile computing,” in Proc. of ICCCN. IEEE, 2015, pp. 1–8.

[37] S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, “Context-aware
multi-objective resource allocation in mobile cloud,” Computers & Electrical Engi-
neering, vol. 44, pp. 218–240, 2015.

[38] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation offloading,”
IEEE Communications Letters, vol. 18, no. 10, pp. 1779–1782, 2014.

60

[39] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: enabling remote
computing among intermittently connected mobile devices,” in Proceedings of the
thirteenth ACM international symposium on Mobile Ad Hoc Networking and Com-
puting. ACM, 2012, pp. 145–154.

[40] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load distribution for
small cell cloud computing,” in Vehicular Technology Conference. IEEE, 2015, pp.
1–6.

[41] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in
fog-cloud computing toward balanced delay and power consumption,” IEEE Internet
of Things Journal, vol. 3, no. 6, pp. 1171–1181, 2016.

[42] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling
and image placement in fog computing supported software-defined embedded sys-
tem,” IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[43] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[44] D. S. Bernstein, Matrix mathematics: Theory, facts, and formulas with application to
linear systems theory. Princeton University Press Princeton, 2005, vol. 41.

Paper B
A Game Theoretic Analysis of Selfish

Mobile Computation Offloading

Slađana Jošilo and György Dán
in Proc. of IEEE International Conference on Computer

Communications (INFOCOM), 2017.

61

A Game Theoretic Analysis of Selfish Mobile
Computation Offloading

Slad̄ana Jošilo and György Dán

School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo,gyuri}@kth.se.

Abstract

Offloading computation to a mobile cloud is a promising approach for enabling
the use of computationally intensive applications by mobile devices. In this paper we
consider autonomous devices that maximize their own performance by choosing one of
many wireless access points for computation offloading. We develop a game theoretic
model of the problem, prove the existence of pure strategy Nash equilibria, and provide
a polynomial time algorithm for computing an equilibrium. For the case when the
cloud computing resources scale with the number of mobile devices we show that all
improvement paths are finite. We provide a bound on the price of anarchy of the game,
thus our algorithm serves as an approximation algorithm for the global computation
offloading cost minimization problem. We use extensive simulations to provide insight
into the performance and the convergence time of the algorithms in various scenarios.
Our results show that the equilibrium cost may be close to optimal, and the convergence
time is almost linear in the number of mobile devices.

1 Introduction
Computationally intensive applications, including augmented reality, natural language pro-
cessing, face, gesture and object recognition, and various forms of user profiling for rec-
ommendations [1, 2] are increasingly used on mobile devices. Many of these applications
consume a significant amount of energy, which can be detrimental to battery life, and to-
gether with potentially slow response times due to the limited computational power of the
mobile handsets, it may limit user acceptance.

A promising approach to extend the battery lifetime of mobile handsets and to serve the
computational needs of computationally intenstive applications is mobile cloud computing [3,
4]. Mobile cloud computing allows to offload the computations through a wireless access
point to a cloud infrastructure with significant computational power. The computations can
be performed in the cloud and the results sent back to the mobile handset. Commercial cloud

63

64

infrastructures, such as Amazon EC2, may have plentyful computational resources, but they
may not be able to provide sufficiently low response times for many applications. It may
thus be better to offload computations to less resourceful mobile edge computing (MEC)
infrastructures, which are considered an enabler of 5G mobile networks, as they are located
close to the network edge [5].

The proximity of MEC resources to the network edge ensures low propagation times,
but when many mobile devices attempt to offload computations simultaneously, the response
times could be affected by the contention between the mobile devices for MEC computing
resources and for wireless communication resources [6,7]. The problem is inherently difficult
for various reasons. First, the computational tasks of the mobile devices may have different
complexities and may need the transmission of different amounts of data. Second, each
device could aim at minimizing a combination of its response time and energy consumption
for performing the computation. Third, the number of offloading choices for each mobile
device increases with the number of access points. Thus, developing scalable algorithms that
coordinate the offloading decisions of the mobile devices to ensure the efficient use of MEC
resources and to provide predictable performance to the mobile devices is a challenging
problem.

In this paper we address this problem by considering the allocation of cloud and wireless
resources among mobile devices that can choose either to offload their computation to
a cloud through one of many access points or to perform the computation locally. We
make three important contributions to solve the problem. First, based on a game theoretical
treatment of the problem, we propose an efficient distributed algorithm for coordinating
the offloading decisions of the mobile devices, and prove convergence of the algorithm to
a pure strategy Nash equilibrium when the computational capability assigned to a mobile
device by the cloud is a non-increasing function of the number of mobile users that offload.
Second, we show that a simple distributed algorithm can be used for computing equilibria
when the cloud computing resources scale directly proportional with the number of mobile
users. Finally, by establishing a bound on the price of anarchy of the strategic game, we
show that the proposed algorithms have a bounded approximation ratio. We use extensive
simulations to illustrate the computational efficiency of the algorithms and to evaluate their
approximation ratio for scenarios of practical interest.

The rest of the paper is organized as follows. We present the system model in Section 2.
We present the algorithms and prove their convergence in Sections 3 and 4. We provide a
bound on the approximation ratio in Section 5 and present numerical results in Section 6.
Section 7 discusses related work and Section 8 concludes the paper.

2 System Model and Problem Formulation
We consider a mobile cloud computing system that serves a set N={1,2, ...,N} of mobile
users (MU). To facilitate the analysis, we make the assumption that the set of MUs changes
slowly, e.g., in the order of seconds or minutes, similar to other works [4, 8–10]. Each MU
has a computationally intensive task to perform, which is characterized by the size Di of

65

the input data (e.g., in bytes), and by the number Li of CPU cycles required to perform
the computation. Each MU can decide whether to perform the task locally or to offload
the computation to a cloud server through one of a set of access points (APs) denoted by
A={1,2, ...,A}.

2.1 Communication model
If the MU decides to offload the computation to the cloud server, it has to transmit Di amount
of data pertaining to its task to the cloud server through one of the APs. Thus, together
with local computing MU i can choose one element of the set Di={0,1,2, ...,A}, where 0
corresponds to local computing, i.e., no offloading. We denote by di∈Di the decision of MU
i, and refer to it as her strategy. We refer to the collection d=(di)i∈N as a strategy profile,
and we denote by D=×i∈NDi the set of all feasible strategy profiles.

For a strategy profile d we denote by na(d) the number of MUs that use AP a for
computation offloading, and by n(d)=∑a∈A na(d) the number of MUs that offload. Similarily,
for an AP a ∈ A we denote by Oa(d) = {i|di = a} the set of MUs that offload using AP a,
and we define the set of offloaders as O(d) = ∪a∈AOa(d).

We denote by Ri,a the PHY rate of MU i on AP a, which depends on the physical layer
signal characteristics and the corresponding channel gain. We denote by ωi,a(d) the uplink
rate that MU i receives when she offloads via AP a. ωi,a(d) depends on the PHY rate Ri,a
and on the number na(d) of MUs that offload via AP a

ωi,a(d) =
Ri,a

na(d)
. (1)

This model of the uplink rate can be used to model the bandwidth sharing in TDMA and
OFDMA based MAC protocols [11].

The uplink rate ωi,a(d) together with the input data size Di determines the transmission
time T c,o f f

i,a (d) of MU i for offloading via AP a,

T c,o f f
i,a (d) =

Di

ωi,a(d)
. (2)

To model the energy consumption of the MUs, we assume that MU i uses a constant transmit
power of Pi for sending the data, thus the energy consumption of MU i for offloading the
input data of size Di via AP a is

Ec
i,a(d) =

DiPi

ωi,a(d)
. (3)

2.2 Computation model
In what follows we introduce our model of the time and energy consumption in the case of
local computing and in the case of computation offloading.

66

AP2

AP3

AP

MUc

MUd MUe

MUb
B2

B1

Fd Fe
0 0

B3

MUa

c
F

c
Fi (n(d))

Figure 1: An example of a mobile cloud computing system.

2.2.1 Local computing

In the case of local computing the task has to be processed using local computing resources.
We denote by F0

i the computational capability of MU i, and hence the local computing time
needed to perform its computation task that requires Li CPU cycles can be expressed as

T 0
i =

Li

F0
i
. (4)

We consider that the energy consumption of local computing is proportional to the computa-
tion time, thus denoting by vi the consumed energy per CPU cycle, we obtain

E0
i = viLi. (5)

2.2.2 Cloud computing

In the case of cloud computing, after the data are transmitted via an AP, processing is done at
the cloud server. We denote by Fc the computation capability of the cloud, and we consider
that the computation capability Fc

i (n(d)), assigned to MU i by the cloud is a non-increasing
function of the number n(d) of MUs that offload. Given Fc

i (n(d)) we use a linear model to
compute the execution time of a task <Di,Li> that is offladed by MU i,

T c,exe
i =

Li

Fc
i (n(d))

. (6)

Figure 1 shows an example of a mobile cloud computing system in which three of five MUs
offload their tasks using one of three APs.

2.3 Cost Model
We model the cost of a MU as a linear combination of the time it takes to finish the
computation and the corresponding energy consumption. We use the weights γT

i attributed

67

to the time it takes to finish the computation and γE
i attributed to energy consumption, in

order to model the delay sensitivity of the application and the consumed energy, respectively,
0≤ γE

i ,γT
i ≤ 1.

Using these notation, for the case of local computing the cost of MU i is determined by
the local computing time and the consumed energy per CPU cycle

C0
i = γT

i T 0
i + γE

i E0
i = (

γT
i

F0
i
+ γE

i vi)Li. (7)

For the case of offloading via AP a, the cost of MU i is determined by the transmission
time, the corresponding transmit energy, and the computing time in the cloud

Cc
i,a(d) = γT

i (T
c,exe

i +T c,o f f
i,a (d))+ γE

i Ec
i,a(d) = (γT

i + γE
i Pi)

Di

ωi,a(d)
+ γT

i
Li

Fc
i (n(d))

. (8)

Similar to previous works [7,12,13], we do not model the time needed to transmit the results
of the computation from the cloud server to the MU, as for typical applications like face and
speech recognition, the size of the result of the computation is much smaller than Di.

To define the cost of MU i in strategy profile d, let us introduce the indicator function
I(di,a) for MU i as

I(di,a)=
{

1, if di = a
0, otherwise. (9)

We now express the cost of MU i in strategy profile d as

Ci(d) =C0
i I(di,0)+ ∑

a∈A
Cc

i,a(d)I(di,a). (10)

Finally, we define the total cost C(d) = ∑i∈N Ci(d).

2.4 Computation Offloading Game
We consider that each MU aims at minimizing its cost (10), i.e., it aims at finding a strategy

d∗i ∈ argmindi∈Di
Ci(di,d−i), (11)

where we use d−i to denote the strategies of all MUs except MU i. This problem formulation
is not only reasonable when MUs are autonomous, but as we show later, our algorithms also
serve as polynomial-time approximations for solving the problem of minimizing the total
cost C(d).

We thus consider that the MUs play a strategic game Γ =<N ,(Di)i,(Ci)i>, in which the
players are the MUs. We refer to the game as the multi access point computation offloading
game (MCOG), and we are interested in whether the MUs can compute a strategy profile
in which no MU can further decrease her cost by changing her strategy, i.e., a pure Nash
equilibrium of the game Γ.

68

d = ImprovementPath(d)
1: while ∃i ∈N s.t. ∃d′i ,Ci(d′i ,d−i)<Ci(di,d−i) do
2: di = d′i
3: end while
4: return d

Figure 2: Pseudo code of the ImprovementPath algorithm.

Definition 1. A Nash equilibrium (NE) of the strategic game <N ,(Di)i,(Ci)i> is a strategy
profile d∗ such that

Ci(d∗i ,d
∗
−i)≤Ci(di,d∗−i), ∀di ∈Di.

Given a strategy profile (di,d−i) we say that strategy d′i is an improvement step for
MU i if Ci(d′i ,d−i) < Ci(di,d−i). We call a sequence of improvement steps in which one
MU changes her strategy at a time, according to the ImprovementPath Algorithm shown in
Figure 2, an improvement path. Furthermore, we say that a strategy d∗i is a best reply to d−i
if it solves (11), and we call an improvement path in which all improvement steps are best
reply a best improvement path. Observe that in a NE all MUs play their best replies to each
others’ strategies.

3 Equilibria and the JPBR Algorithm
We start the analysis with the definition of the set of congested APs and of the notion of the
reluctance to offload.

Definition 2. For a strategy profile d we define the set DO→O(d) of congested APs as the
set of APs with at least one MU for which changing to another AP is a better reply,

DO→O(d) = {a ∈ A|∃i ∈ Oa(d),∃b ∈ A\{a},(nb(d)+1)/Ri,b<na(d)/Ri,a}.

Similarily, for a strategy profile d we define the set DO→L(d) of APs with at least one MU
for which local computing is a best reply,

DO→L(d) = {a∈A|∃i ∈ Oa(d),Cc
i,a(d)>C0

i }

Definition 3. The reluctance to offload via AP a of MU i in a strategy profile d is ρi(d) =
Cc

i,a(d)
C0

i
.

To facilitate the analysis, for a strategy profile d we rank the MUs that play the same
strategy in decreasing order of their reluctance to offload, and we use the tuple (a, l) to
index the MU that in the strategy profile d occupies position l in the ranking for AP a, i.e.,
ρ(a,1)(d)≥ ρ(a,2)(d)≥ . . .≥ ρ(a,na(d))(d). Note that for AP a it is MU (a,1) that can gain
most by changing her strategy to local computing among all MUs i ∈ Oa(d).

69

3.1 The ImproveAP Algorithm
Using these definitions, let us start with investigating whether the simple Improvement-
Path algorithm can be used for computing a NE. To do so, we analyze the finiteness of
improvement paths, and as a first step, we show that improvement paths may be infinite in
the MCOG.

Example 1. Consider a MCOG with N = {a,b,c,d,e} and A = {1,2,3} as illustrated
in Figure 1. Figure 3 shows a cyclic improvement path starting from the strategy profile
(1,2,1,0,0), in which MUs a and c are connected to AP 1, MU b is connected to AP 2 and
MUs d and e perform local computation.

di da db dc dd de

d(0) 1 2 1 0 0
d(1) 1 2 2 0 0
d(2) 1 0 2 0 0
d(3) 1 0 2 2 0
d(4) 1 0 2 2 2
d(5) 1 0 1 2 2
d(6) 1 3 1 2 2
d(7) 1 3 1 2 0
d(8) 1 3 1 0 0
d(9) 1 2 1 0 0

Rc,2>Rc,1 (1)
2

Rb,2
(γT

b +γE
b Pb)Db+3γT

b
Lb
Fc >C0

b (2)

C0
d>

2
Rd,2

(γT
d +γE

d Pd)Dd+3γT
d

Ld
Fc (3)

C0
e>

3
Re,2

(γT
e +γE

e Pe)De+4γT
e

Le
Fc (4)

Rc,1>
2
3 Rc,2 (5)

C0
b>

1
Rb,3

(γT
b +γE

b Pb)Db+5γT
b

Lb
Fc (6)

2
Re,2

(γT
e +γE

e Pe)De+5γT
e

Le
Fc >C0

e (7)
1

Rd,2
(γT

d +γE
d Pd)Dd+4γT

d
Ld
Fc >C0

d (8)

Rb,2>Rb,3 (9)

Figure 3: A cyclic improvement path in a computation offloading game with 3 APs and 5
MUs. Rows correspond to strategy profiles, columns to MUs. An arrow between adjacent
rows indicates the MU that performs the improvement step. The cycle consists of 9 improve-
ment steps and the inequalities on the right show the condition under which the change of
strategy is an improvement step.

Starting from the initial strategy profile (1,2,1,0,0), MU c revises its strategy to AP
2, which is an improvement step if Rc,2 > Rc,1, as shown in inequality (1) in the figure.
Observe that after 9 improvement steps the MUs reach the initial strategy profile. For
each step the inequality on the right provides the condition for being an improvement. It
follows from inequalities (1), (5) and (9) that Rc,2 > Rc,1, Rc,1 > 2

3 Rc,2 and Rb,2 > Rb,3,
respectively. Since, 1

Rb,3
(γT

b + γE
b Pb)Db +5γT

b
Lb
Fc >

1
Rb,3

(γT
b + γE

b Pb)Db +3γT
b

Lb
Fc holds, from

inequalities (2) and (6) it follows that Rb,3 > 1
2 Rb,2. Combining inequalities (3) and (8)

we have that γT
d

Ld
Fc >

1
Rd,2

(γT
d + γE

d Pd)Dd . Similarly, it follows from inequalities (4) and (7)

that γT
e

Le
Fc >

1
Re,2

(γT
e + γE

e Pe)De. Given these constraints, an instance of the example can be
formulated easily, even in the case of homogeneous PHY rates, i.e., Ri,a = Ri′,a for every
i, i′ ∈N , i 6= i′.

An important consequence of the cycle in the improvement path is that the MCOG
does not allow a generalized ordinal potential function, and the ImprovementPath algorithm

70

d = ImproveAP(d)
1: while DO→O(d) 6= /0 do

2: (i′,a′)← argmax
{i∈O(d),∃a∈A,Ci(a,d−i)<Ci(d)}

Ci(d)
Ci(a,d−i)

3: Let d = (a′,d−i′)
4: end while
5: return d

Figure 4: Pseudo code of the ImproveAP algorithm.

cannot be used for computing NE. Although improvement paths may cycle, as we next show,
improvement paths are finite if we only allow the MUs to change between APs but not to
start or to stop offloading. We refer to this algorithm as the ImproveAP algorithm, and show
its pseudo code in Figure 4. Our first result shows that all improvement paths generated by
the ImproveAP algorithm are finite.

Lemma 1. The ImproveAP algorithm terminates after a finite number of improvement steps.

Proof. We prove the lemma by showing that the function

Φ(d) =
A

∑
a′=1

na′ (d)

∑
n=1

log(n)−
A

∑
a′=1

N

∑
i′=1

log(Ri′,a′)I(di′ ,a
′).

decreases strictly at every improvement step generated by the ImproveAP algorithm.
Let us consider an improvement step made by MU i in which she changes from of-

floading via AP b to offloading via AP a. First, observe that after this improvement
step the number n(d) of MUs that offload remains unchanged. Hence, according to (8)
and (10), the condition Ci(a,d−i)<Ci(b,d−i) implies that na(a,d−i)/nb(b,d−i)<Ri,a/Ri,b.
Since na(a,d−i),nb(b,d−i)>0, and Ri,a,Ri,b>0 this is equivalent to

log(na(a,d−i))− log(nb(b,d−i))< log(Ri,a)− log(Ri,b). (12)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a,d−i) =
na(a,d−i)

∑
n=1

log(n)+
nb(a,d−i)

∑
n=1

log(n)+ ∑
a′ 6=a,b

na′ (a,d−i)

∑
n=1

log(n)

− log(Ri,a)−
A

∑
a′=1

∑
i′ 6=i

log(Ri′,a′)I(di′ ,a
′).

Since na(a,d−i) = na(b,d−i)+1 and nb(b,d−i) = nb(a,d−i)+1, we have that

Φ(a,d−i)−Φ(b,d−i) = log(na(a,d−i))− log(nb(b,d−i))− (log(Ri,a)− log(Ri,b)).

71

It follows from (12) that Φ(a,d−i)−Φ(b,d−i)< 0. Since the number of strategy profiles
is finite, Φ(d) can not decrease infinitely and the ImproveAP algorithm terminates after a
finite number of improvement steps.

Thus, if MUs can only change between APs, they terminate after a finite number of
improvement steps.

3.2 The JPBR Algorithm
In what follows we use the ImproveAP algorithm as a building block for proving that a
NE always exists in the MCOG even if it cannot be computed using the ImprovementPath
algorithm.

Theorem 1. The MCOG possesses a pure strategy Nash equilibrium.

Proof. We use induction in the number N of MUs in order to prove the theorem. We denote
by N(t) = t the number of MUs that are involved in the game in induction step t.

For N(1)=1 the only participating MU plays her best reply d∗i (1). Since there are no
other MUs, d∗(1) is a NE. Observe that if d∗i (1)=0, MU i would never have an incentive
to deviate from this decision, because the number of MUs that offload will not decrease
as more MUs are added. Otherwise, if MU i decides to offload, she would play her best
reply which is given by d∗i (1)=argmaxa∈A Ri,a. Assume now that for t−1>0 there is a NE
d∗(t−1). Upon induction step t one MU enters the game; we refer to this MU as MU N(t).
Let MU N(t) play her best reply d∗

N(t)(t) with respect to the NE strategy profile of the MUs
that already participated in induction step t−1, i.e., with respect to d−N(t)(t)=d∗(t− 1).
After that, MUs can perform best improvement steps one at a time starting from the strategy
profile d(t)=(d∗

N(t)(t),d−N(t)(t)), following the algorithm shown in Figure 5. We refer to this
as the update phase. In order to prove that there is a NE in induction step t, in the following
we show that the MUs will perform a finite number of best improvement steps in the update
phase.

Observe that if d∗
N(t)(t) = 0, then na(d(t)) = na(d∗(t−1)) for every a ∈A and thus d(t)

is a NE. If d∗
N(t)(t) = a ∈ A, but none of the MUs want to deviate from their strategy in

d∗(t− 1) then d(t) is a NE. Otherwise, we can have one or both of the following cases:
(i) for some MUs i ∈Oa(d(t)) offloading using AP b ∈A\{a} becomes a best reply, (ii) for
some MUs i ∈ O(d(t)) local computing becomes a best reply.

Let us first consider case (i) and let MUs execute the ImproveAP algorithm. Recall that
by Lemma 1 the MUs will reach a strategy profile in which there is no MU that can further
decrease her cost by changing her strategy between APs. In the resulting strategy profile
the number of MUs that offload will be n(d∗(t−1))+1. Furthermore, there will be one AP
(denoted by a′) for which the number of offloaders is na′(d∗(t−1))+1, while for the other
APs a 6= a′ it is na(d∗(t− 1)). As a consequence, there can be no MU that wants to start
offloading in the resulting strategy profile if she did not want to do so in d∗(t−1).

If in this strategy profile no MU wants to stop offloading either, i.e., |DO→L(d(t))|= 0,
then we reached a NE. Otherwise |DO→L(d(t))|> 0, which is the same as case (ii) above.

72

Update phase of JPBR algorithm
1: /* Corresponds to case (i) */
2: Let d′(t) = ImproveAP(d(t))
3: /* Corresponds to case (ii) */
4: if a′∈DO→L(d′(t)),na′(d′(t))=na′(d∗(t−1))+1 then
5: Let i′← (a′,1)
6: Let d′(t) = (0,d′−i′(t))/* Best reply by MU i′ */
7: else
8: while DO→L(d′(t)) 6= /0 do
9: b← argmaxa∈DO→L

ρ(a,1)(d′(t))
10: /* AP with MU with highest reluctance to offload */
11: Let i′← (b,1)
12: Let d′(t) = (0,d′−i′(t))
13: /* Best reply by MU (b,1) */
14: if ∃i ∈N \O(d′(t)) s.t. C0

i >Ci(b,d′−i(t)) then
15: i′← argmin

{i∈N\O(d′(t))|C0
i >Ci(b,d′−i(t))}

ρi(b,d′−i(t))

16: /*MU with lowest reluctance to offload*/
17: Let d′(t)=(b,d′−i′(t)) /* Best reply by MU i′ */
18: else
19: Let d′(t) = ImproveAP(d′(t))
20: end if
21: end while
22: end if

Figure 5: Pseudo code of the update phase of the JPBR algorithm.

Note that if case (i) did not happen, i.e. |DO→Od(t)|= 0, then AP a′ is the same AP a that
was chosen by MU N(t) when it was added. Now if a′ ∈DO→L(d(t)), let MU (a′,1) perform
an improvement step and let d′(t) be the resulting strategy profile. Since MU (a′,1) changed
her strategy from AP a′ to local computation, na(d′(t)) = na(d∗(t−1)) holds for every AP
a ∈ A and d′(t) is a NE.

Otherwise, if a′ /∈DO→L and |DO→L|>0, we have that there is MU i that wants to change
her strategy from offloading through AP b∈A\{a′} to local computing. Note that the only
reason why MU i would want to change to local computing is that the number of MUs that
offload was incremented by one, i.e., n(d(t))=n(d∗(t−1))+1. Among all MUs that would
like to change to local computing, let us allow the MU i with highest reluctance to perform
the improvement step (note that this is MU (b,1) for some b 6=a′). We denote the resulting
strategy profile by d′(t). Due to this improvement step nb(d′(t))=nb(d∗(t−1))−1, and thus
some MUs that perform local computation may be able to decrease their cost by connecting
to AP b. If there is no MU i∈N \O(d′(t)) that would like to start offloading, then there

73

is no more MU that would like to stop offloading either because n(d′(t))=n(d∗(t −1)).
Otherwise, among all MUs i ∈ N \O(d′(t)) that would like to start offloading, let MU i′

with lowest reluctance to offload, i.e., ρi′(b,d′−i′(t)), connect to AP b. We now repeat these
steps starting from Line 8 until no more MUs want to stop offloading. Note that when one
MU is replaced by another MU, the number of MUs that offload through any of the APs
does not change. Therefore, offloading cost of the MU that starts to offload will not increase
in the following update steps and she will not want to stop to offload. Since the MU that
starts to offload will not have an incentive to stop to offload and the number of MUs is finite,
the sequence of stopping to offload and starting to offload is finite too.

Let b be the AP that the last MU that stopped offloading was connected to. If the last MU
that stopped offloading was replaced by a MU that did not offload before, then we reached
a NE. Otherwise some MUs that offload via AP a ∈ A\{b} may want to connect to AP
b, and we let them execute the ImproveAP algorithm, which by Lemma 1 terminates in a
finite number of improvement steps. Now, no MU wants to stop offloading, and if there is
no MU that wants to start offloading either then we reached a NE. Otherwise if there is a
MU that wants to start to offload, we repeat the steps starting from Line 8. Let us recall
that the MU that starts to offload would not want to stop to offload and as a consequence
the size of the set DO→L will decrease every time when a MU stops to offload. Therefore,
after a finite number of steps, the MUs will reach either an equilibrium in which the number
of offloaders is the same as in the strategy profile d∗(t−1) or an equilibrium in which the
number of offloaders is incremented by 1, which proves the inductive step.

Consider now that we add one MU at a time and for every new MU we compute a NE
following the proof of Theorem 1. We refer to the resulting algorithm as the Join and Play
Best Replies (JPBR) algorithm. In what follows we provide a bound on the complexity of
this algorithm.

Proposition 1. When MU N(t) enters the game in an equilibrium d∗(t− 1), a new Nash
equilibrium can be computed in O((A+2)N(t)−2A) time.

Proof. In the worst case scenario |O(d∗(t−1))|= N(t)−2, d∗
N(t)(t) = a ∈ A and case (ii)

happens such that in the next N(t)−2 update steps all MUs i ∈ O(d∗(t−1)), i.e., N(t)−2
MUs change between APs before they reach the strategy profile in which there is no MU
that can decrease her offloading cost by choosing another AP. Furthermore, in the worst case
scenario, this is followed by a sequence of update steps in which N(t)−2 MUs stop to offload
and N(t)− 3 MUs start to offload and between every stop to offload and start to offload
update step, MUs change between the APs. When a MU stops to offload, the sequence
in which MUs change between APs consists of at most A− 1 update steps. Therefore, a
NE is reached after at most (N(t)−2)+(N(t)−2)+(N(t)−3)+(N(t)−2)(A−1) update
steps.

Corollary 1. The JPBR algorithm terminates in an equilibrium allocation in O((A +
2)N2/2−(A−1)N) time.

74

So far we have shown that starting from a NE and adding a new MU, a new NE can be
computed. We now show a similar result for the case when a MU leaves.

Theorem 2. Consider the MCOG and assume that the system is in a NE. If a MU leaves
the game and the remaining MUs play their best replies one at a time, they converge to a
NE after a finite number of updates.

Proof. Let us consider that MU i leaves the game when the system is in a NE. If the strategy
of MU i was to perform local computation, none of the remaining MUs would have an
incentive to change their strategies. If the strategy of MU i was to offload using one of the
APs, we can consider MU i as a MU that after changing its strategy from offloading to local
computing would have no incentive to offload again. Recall from the proof of Theorem 1
that when a MU changes her strategy from offloading to local computing the game converges
to a NE after a finite number of updates. This proves the theorem.

Observe that Theorem 1 and Theorem 2 allow for the efficient computation of Nash
equilibria even if the number of MUs changes, if the time between MU arrivals and departures
is sufficient to compute a new equilibrium. Furthermore, the computation can be done in
a decentralized manner, by letting MUs perform best improvements one at a time. The
advantage of such a decentralized implementation compared to a centralized solution could
be that MUs do not have to reveal their parameters.

4 The Case of an Elastic Cloud
The JPBR algorithm can be used for computing an equilibrium for MCOG with polynomial
complexity. In what follows we show that a much simpler algorithm can be used for com-
puting an equilibrium if the cloud computation capability assigned to MU i is independent
of the other players’ strategies, Fc

i (n(d)) = Fc, and thus of the number of MUs that offload.
This model can be relevant for large cloud computing infrastructures, in which the cloud
computing resources scale with the number of MUs, and we refer to this model as the elastic
cloud model. In the case of the elastic cloud model the cost function in the case of offloading
can be expressed as

Cc
i,a(d) = (γT

i + γE
i Pi)Di

na(d)
Ri,a

+ γT
i

Li

Fc . (13)

Before we formulate the theorem, let us recall the definition of a generalized ordinal
potential from [14].

Definition 4. A function Φ :×Di→ R is a generalized ordinal potential function for the
strategic game <N ,(Di)i,(Ci)i > if for an arbitrary strategy profile (di,d−i) and for any
corresponding improvement step d′i it holds that

Ci(d′i ,d−i)−Ci(di,d−i)< 0⇒Φ(d′i ,d−i)−Φ(di,d−i)< 0.

75

Theorem 3. The MCOG with elastic cloud admits the generalized ordinal potential function

Φ(d) =
A

∑
a′=1

na′ (d)

∑
n=1

log(n)−
A

∑
a′=1

N

∑
i′=1

log(Mi′Ri′,a′)I(di′ ,a
′), (14)

and hence it possesses a pure strategy Nash equilibrium.

Proof. To prove that Φ(d) is a generalized ordinal potential function, we first show that
Ci(a,d−i)<Ci(0,d−i) implies Φ(a,d−i)< Φ(0,d−i).

According to (7), (10) and (13), the condition Ci(a,d−i)<Ci(0,d−i) implies that

(γT
i + γE

i Pi)Di
na(a,d−i)

Ri,a
+ γT

i
Li

Fc < (
γT

i

F0
i
+ γE

i vi)Li.

After algebraic manipulations we obtain

na(a,d−i)

Ri,a
< Mi ,

γE
i vi + γT

i (1/F0
i −1/Fc)

γT
i + γE

i Pi
· Li

Di
. (15)

Since na(a,d−i)> 0 and MiRi,a > 0, (15) implies that

log(na(a,d−i))< log(MiRi,a). (16)

For the strategy profile (a,d−i) it holds that

Φ(a,d−i) =
na(a,d−i)

∑
n=1

log(n)+ ∑
a′ 6=a

na′ (a,d−i)

∑
n=1

log(n)

− log(MiRi,a)−
A

∑
a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ ,a
′),

and for the strategy profile (0,d−i)

Φ(0,d−i) =
na(0,d−i)

∑
n=1

log(n)+∑
a′ 6=a

na′ (0,d−i)

∑
n=1

log(n)

−
A

∑
a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ ,a
′).

Since na(a,d−i)= na(0,d−i)+1, we obtain Φ(a,d−i)−Φ(0,d−i)= log(na(a,d−i))−log(MiRi,a).
It follows from (16) that Φ(a,d−i)−Φ(0,d−i)< 0. Similarly, we can show that Ci(0,d−i)<
Ci(a,d−i) implies Φ(0,d−i)< Φ(a,d−i).

Second, we show that Ci(a,di)<Ci(b,di) implies Φ(a,di)< Φ(b,di). According to (10)
and (13), the condition Ci(a,di)<Ci(b,di) implies that

(γT
i + γE

i Pi)Di
na(a,d−i)

Ri,a
< (γT

i + γE
i Pi)Di

nb(b,d−i)

Ri,b

76

which is equivalent to

na(a,d−i)

nb(b,d−i)
<

Ri,a

Ri,b
. (17)

Since na(a,d−i),nb(b,d−i)>0, and Ri,a,Ri,b>0 (17) implies that

log(na(a,d−i))− log(nb(b,d−i))< log(Ri,a)− log(Ri,b). (18)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a,d−i) =
na(a,d−i)

∑
n=1

log(n)+
nb(a,d−i)

∑
n=1

log(n)+ ∑
a′ 6=a,b

na′ (a,d−i)

∑
n=1

log(n)

− log(MiRi,a)−
A

∑
a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ ,a
′).

Since na(a,d−i) = na(b,d−i)+1 and nb(b,d−i) = nb(a,d−i)+1, we have that Φ(a,d−i)−
Φ(b,d−i) = log(na(a,d−i))− log(nb(b,d−i))− (log(Ri,a)− log(Ri,b)). It follows from (18)
that Φ(a,d−i)−Φ(b,d−i)< 0, which proves the theorem.

It is well known that in a finite strategic game that admits a generalized ordinal potential
all improvement paths are finite [14]. Therefore, the existence of a generalized ordinal
potential function allows us to use the ImprovementPath Algorithm (c.f., Figure 2) for
computing a NE.

Corollary 2. The ImprovementPath algorithm terminates in a NE after a finite number of
improvement steps for the MCOG with elastic cloud.

5 Price of Anarchy
We have so far shown that NE exist and provided low complexity algorithms for computing
a NE. We now address the important question how far the system performance would be
from optimal in a NE. To quantify the difference from the optimal performance we use the
price of anarchy (PoA), defined as the ratio of the worst case NE cost and the minimal cost

PoA =
maxd∗∑i∈N Ci(d∗)
mind∈D ∑i∈N Ci(d)

. (19)

In what follows we give an upper bound on the PoA.

Theorem 4. The price of anarchy for the computation offloading game is upper bounded by

∑i∈N C0
i

∑i∈N min{C0
i ,

¯Cc
i,1, ...,

¯Cc
i,A}

.

77

Proof. First we show that if there is a NE in which all MUs perform local computation then
it is the worst case NE. To show this let d∗ be an arbitrary NE. Observe that Ci(d∗i ,d

∗
−i)≤C0

i
holds for every player i∈N . Otherwise, if ∃i∈N such that Ci(d∗i ,d

∗
−i)>C0

i , player i would
have an incentive to deviate from decision d∗i , which contradicts our initial assumption that
d∗ is a NE. Thus in any NE ∑i∈N Ci(d∗i ,d

∗
−i)≤∑i∈N C0

i , and if all MUs performing local
computation is a NE then it is the worst case NE.

Now we derive a lower bound for the optimal solution of the computation offload-
ing game. Let us consider an arbitrary decision profile (di,d−i) ∈ D. If di = 0, then
Ci(di,d−i) =C0

i . Otherwise, if di = a for some a∈A, we have that in the best case di′ = 0 for
every i′ ∈N \{i}, and thus n(d) = 1. Therefore, ωi,a(di,d−i)≤ Ri,a and Fc

i (n(di,d−i))≤ Fc,
which implies that

Cc
i,a(di,d−i)=(γT

i +γE
i Pi)

Di

ωi,a(di,d−i)
+γT

i
Li

Fc
i (n(di,d−i))

≥ (γT
i + γE

i Pi)
Di

Ri,a
+ γT

i
Li

Fc = ¯Cc
i,a.

Hence, we have Ci(di,d−i)≥min{C0
i ,

¯Cc
i,1, ...,

¯Cc
i,A} and ∑

i∈N
Ci(di,d−i)≥∑

i∈N
min{C0

i ,
¯Cc
i,1, ...,

¯Cc
i,A}.

Using these we can establish the following bound

PoA=
maxd∗∑i∈NCi(d∗)
mind∈D∑i∈NCi(d)

≤ ∑i∈NC0
i

∑i∈N min{C0
i ,

¯Cc
i,1,...,

¯Cc
i,A}

,

which proves the theorem.

6 Numerical Results
We use extensive simulations to evaluate the cost performance and the computational time
of the JPBR algorithm. We consider that the APs and MUs are placed over a 1km×1km
region. The APs are located at grid points in the region, while the MUs are placed uniformly
at random. We consider that the channel gain of MU i to AP a is proportional to d−α

i,a , where
di,a is the distance between MU i and AP a, and α is the path loss exponent, which we
set to 4 according to the path loss model in urban and subrurban areas [15]. The channel
bandwidth Ba of every AP a was set to µ = 5 MHz, while the data transmit power Pi of
every MU i was set to to 0.4W according to [16]. The computational capability F0

i of MU i
was drawn from a continuous uniform distribution with parameters [0.5,1] Gcycles, while
the computation capability of the cloud Fc was set to 100 Gcycles [17]. Unless otherwise
noted, the input data size Di and the number Li of CPU cycles required to perform the
computation are uniformly distributed on [0.42,2] Mb and [0.1,0.8] Gcycles, respectively.
The consumed energy per CPU cycle vi was set to 10−11(F0

i)
2 according to measurements

reported in [4, 18]. The weights attributed to energy consumption γE
i and the response time

γT
i were drawn from a continuous uniform distribution on [0,1].

78

2 4 6 8 10 12 14

N

10
0

10
1

C
(d

∗
)

C
(d̄
)

NE
PoA bound
elastic cloud
non-elastic cloud, a = 0.5
non-elastic cloud, a = 1
non-elastic cloud, a = 2

Figure 6: The cost ratio and the upper bound on the PoA for the elastic and non-elastic
cloud (a = 0.5,1,2), A = 3 APs. The results shown are the averages of 600 simulations,
together with 95% confidence intervals.

In order to evaluate the cost performance of the equilibrium strategy profile d∗ computed
by the JPBR algorithm, we computed the optimal strategy profile d̄ that minimizes the total
cost, i.e., d̄ = argmind ∑i∈N Ci(d). Furthermore, as a baseline for comparison we use the
system cost that can be achieved if all MUs execute their computation tasks locally, which
coincides with the bound on the PoA.

6.1 Optimal vs. Equilibrium Cost
Figure 6 shows the cost ratio C(d∗)/C(d̄) vs. the number of MUs. The results are shown for
the case of the elastic cloud as well as for the case when the cloud computational capability
assigned to a MU that offloads is a reciprocal function of the number of MUs that offload,
i.e. Fc

i (d) =
Fc

an(d) . We refer to this latter case as a non-elastic cloud and to the coefficient
a as the cloud provisioning coefficient. A coefficient of a = 1 corresponds to a cloud with
fixed amount of resources, a < 1 to resources that scale slower than the demand, while a > 1
corresponds to a cloud with backup resources that scale with the demand.

To make the computation of the optimal strategy profile d̄ feasible, unless otherwise
noted, we considered a scenario with A = 3 APs and we show the cost ratio C(d∗)/C(d̄) as
a function of the number of MUs. We consider the non-elastic cloud model that does not
implement redundancy mechanisms for three values of the cloud provisioning coefficient
(a = 0.5,1 and 2).

The results in Figure 6 show that the performance of JPBR is close to optimal (cost ratio
is close to 1) in all cases, and the cost ratio is fairly insenstive to the number of MUs, which
is due to the number of MUs that choose to offload, as we will see later. The results for the
bound on the PoA additionally confirm that the JPBR algorithm performs good in terms of

79

2 4 6 8 10 12 14

N

0

0.05

0.1

0.15

0.2

0.25

n
(d

∗
)−

n
(d̄
)

N

elastic cloud
non-elastic cloud, a = 0.5
non-elastic cloud, a = 1
non-elastic cloud, a = 2

Figure 7: Offloading difference ratio vs. number of MUs N for the elastic and non-elastic
cloud (a = 0.5,1,2), A = 3 APs. The results shown are the averages of 600 simulations,
together with 95% confidence intervals.

the cost ratio. It is interesting to note that the gap between the PoA bound and the actual
cost ratio decreases with increasing number of MUs. This is due to the benefit of offloading
decreases as the number of MUs increases, and as a result the optimal solution and the
JPBR algorithm will converge to a strategy profile in which most of the MUs perform local
computation. We can also observe that the upper bound on the PoA decreases as a increases,
and thus the problem becomes computationally easier for larger values of a.

In order to gain insight in the structure of the equilibrium strategy profiles d∗, it is
interesting to compare the number of MUs that offload in equilibrium d∗ and the number
of MUs that offload in the optimal solution d̄. We define the offloading difference ratio
(n(d∗)− n(d̄))/N, and show it in Figure 7 for the same set of parameters as in Figure 6.
The results show that the offloading difference ratio increases with the number of MUs,
which explains the increased cost ratio observed in Figure 6, as more offloaders reduce the
achievable rate, which in turn leads to increased costs. The observation that the number of
MUs that offload is higher in equilibrium than in the optimal solution is consistent with the
theory of the tragedy of the commons in the economic literature [19]. The results also show
that the offloading difference ratio is slightly lower in the case of the elastic cloud, which is
due that a higher proportion of MUs offload in the optimal solution for the elastic cloud.

6.2 Impact of the input data size
In order to analyse the impact of the input data size we considered three distributions with
the same mean for the input data size, uniform (lower limit fixed to 0.42 and upper limit
scales with the mean), exponential, and Weibull (shape parameter 0.5), and considered that
all MUs have to offload a task that requires a computation of Li=0.45 Gcycles.

80

10
1

10
2

10
3

Average input data size [Mb]

1

2

3

4

5

6

7

C
(d

∗
)

C
(d̄
)

Distributed computation
PoA bound
Uniform
Exponential
Weibull

Figure 8: The cost ratio and the upper bound on the PoA for the elastic and non-elastic
cloud (a = 1), uniform, exponential and Weibull distributions of the input data sizes, A = 3
APs, N = 12 MUs. The results shown are the averages of 100 simulations, together with
95% confidence intervals.

Figure 8 shows the cost ratio C(d∗)/C(d̄) and the upper bound on the PoA as a function
of the mean input data size. The results are shown for the non-elastic cloud (a=1), N=12 MUs
and A=3 APs, and show that while the cost ratio does not change, the upper bound on the
PoA decreases with the mean input data size and for large data sizes it reaches the cost ratio.
This is due to the transmission time increases with the input data size and if the MUs have
to offload a large amount of data, it becomes optimal for most of them to perform local
computation, which coincides with the worst case equilibrium. Note that the upper bound
on the PoA decreases slower in the case of the Weibull distribution because for the same
mean it has a median that is smaller than that of the uniform and exponential distributions.

6.3 Computational Complexity
In order to evaluate the computational complexity of the JPBR algorithm, we consider
the number of iterations, the total number of update steps over all induction steps plus
the number of induction steps, to compute the strategy profile d∗ for the elastic cloud and
for the non-elastic cloud (a = 1), A=10 and A=100 APs. Figure 9 shows the number of
iterations as a function of the number of MUs for two orderings of adding MUs: in the
first case the MUs are added in random order, while in the second case the MUs are added
in increasing order of their ratio Di

C0
i Li

. We refer to the latter as the least reluctance first

(LRF) order. Intuitively, one would expect that the LRF order results in a smaller number
of iterations, since the MUs with lower Di

C0
i Li

ratio have lower computational capability to

execute computationally more demanding tasks with smaller offloading data size than the
MUs with higher Di

C0
i Li

. However, the simulation results show that the number of iterations is

81

100 200 300 400 500 600 700 800 900 1000 1100

N

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
er

o
f
It
er
a
ti
o
n
s

I=10-random

I=10-LRF

I=100-random

I=100-LRF

elastic cloud

non-elastic cloud, a = 1

Figure 9: Number of iterations vs. number of MUs N for the elastic and non-elastic cloud
(a = 1), A =10 and 100 APs. The results shown are the averages of 100 simulations, together
with 95% confidence intervals.

fairly insensitive to the order of adding the MUs and mostly depends on the number of MUs.
This insensitivity allows for a very low-overhead decentralized solution, as the coordinator
need not care about the order in which the MUs are added for computing the equilibrium
allocation. The results also show that the number of iterations scales approximately linearly
with the number of MUs, and indicates that the worst case scenario described in Corollary1
is unlikely to happen. Thus JPBR is an efficient decentralized algorithm for coordinating
computation offloading among autonomous MUs.

7 Related Work
Most previous works considered the problem of energy efficient computation offloading for
a single mobile user [3,4,6,20,21], and thus they do not consider the allocation of resources
between mobile users.

Some recent works considered the problem of energy efficient computation offloading for
multiple mobile users [8, 9, 22]. [8] studied the partitioning problem for mobile data stream
applications, and proposed a genetic algorithm as a heuristic for solving the optimization
problem that maximizes throughput. [22] considered a two-tiered cloud infrastructure model
under user mobility in a location-time workflow framework, and proposed a heuristic for
minimizing the users’ cost. [9] provided an iterative algorithm for solving the optimization
problem that minimizes the mobile users’ energy consumption by joint allocation of wireless
and cloud resources.

A few recent works provided a game theoretic treatment of computation offloading
problem [7, 23–27]. [23] considers a two-stage problem, where first each mobile user
decides which parts of a task to offload so as to minimize its energy consumption and to

82

meet its service response deadline, and then the cloud allocates computational resources
to the offloaded tasks. [24] considered a three-tier cloud architecture and stochastic task
arrivals, and provided a distributed algorithm for the computation of an equilibrium. [26]
considered tasks that arrive at the same time, a single wireless link, and elastic cloud, and
showed the existence of equilibria when all mobile users have the same delay budget. Our
work differs from [23] in that we consider that the allocation of cloud resources is known
to the mobile users, from [24] in that we consider contention in the wireless access, and
from [26] in that we consider multiple wireless links and a non-elastic cloud.

Most related to our work are [7,25,27]. [7] considered a single wireless link and an elastic
cloud, assumed upload rates to be determined by the Shannon capacity of an interference
channel, and showed that the game is a potential game. [25] extended the model to multiple
wireless links and showed that the game is still a potential game under the assumption that a
mobile user experiences the same channel gain for all links. Unlike these works, we consider
time-fair bandwidth sharing and the case of a non-elastic cloud. [27] considered multiple
wireless links, fair bandwidth sharing and a non-elastic cloud, and claims the game to have
an exact potential.

The importance of our contribution from a game theoretical perspective is that the
computation offloading game with non-elastic cloud is a player-specific congestion game
for which the existence of equilibria is not known in general [28], thus the JPBR algorithm
and our proof of equilibrium existence advance the state of the art in the study of equilibria
in general congestion games.

8 Conclusion
We have provided a game theoretic analysis of selfish mobile computation offloading. We
proposed a polynomial complexity algorithm for computing equilibrium allocations of the
wireless and cloud resources, and provided a bound on the price of anarchy, which serves
as an approximation ratio bound for the optimization problem. Our numerical results show
that the proposed algorithms and the obtained equilibria provide good system performance
irrespective of the number of mobile users and access points, for various distributions of
the input data size and task complexity, and confirm the low complexity of the proposed
algorithms.

References
[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented assembly using a

mobile phone,” in Proc. of IEEE/ACM ISMAR, Sept 2008, pp. 167–168.

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uwave:
Accelerometer-based personalized gesture recognition and its applications,” in Proc.
of IEEE PerCom, March 2009, pp. 1–9.

83

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proc. of ACM
MobiSys, 2010, pp. 49–62.

[4] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution: Taming
resource-poor mobile devices with cloud clones,” in Proc. of IEEE INFOCOM, March
2012, pp. 2716–2720.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing:
A key technology towards 5G,” Sep. 2015.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload? The
bandwidth and energy costs of mobile cloud computing,” in Proc. of IEEE INFOCOM,
April 2013, pp. 1285–1293.

[7] X. Chen, “Decentralized computation offloading game for mobile cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–983, 2015.

[8] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for partitioning
and execution of data stream applications in mobile cloud computing,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 23–32, Apr. 2013.

[9] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computa-
tional resources for multicell mobile-edge computing,” IEEE T-SIPN, vol. 1, no. 2, pp.
89–103, Jun. 2015.

[10] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “An iterative double auction for mobile
data offloading,” in Proc. of WiOpt, May 2013, pp. 154–161.

[11] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime fairness for ieee 802.11
multirate networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 4, pp. 513–
527, 2008.

[12] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 1991–
1995, Jun. 2012.

[13] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading computa-
tion save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56, Apr. 2010.

[14] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Behavior,
vol. 14, no. 1, pp. 124 – 143, 1996.

[15] A. Aragon-Zavala, Antennas and propagation for wireless communication systems.
John Wiley & Sons, 2008.

84

[16] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consump-
tion in mobile phones: a measurement study and implications for network applications,”
in Proc. of ACM. IMC, 2009, pp. 280–293.

[17] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-vision:
Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture,” in
ISCC, 2012, pp. 59–66.

[18] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in cloud
computing,” in Proc. of the 2nd USENIX Conf. Hot Topics Cloud Comput., 2010, pp.
4–4.

[19] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp. 1243–1248,
1968.

[20] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading for
mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp. 129–140, Feb 2013.

[21] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs: Robust offloading
using the Markov decision processes,” in Proc. of IEEE WoWMoM, Jun. 2015, pp. 1–9.

[22] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-aware
optimal service allocation in mobile cloud computing,” in Proc. of IEEE CLOUD, Jun.
2013, pp. 75–82.

[23] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization
framework in mobile cloud computing system,” in SOSE, 2013 IEEE 7th Int. Symp.
on, Mar. 2013, pp. 494–502.

[24] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi, F. Lo Presti,
and V. Piccialli, “A game-theoretic approach to computation offloading in mobile cloud
computing,” Mathematical Programming, pp. 1–29, 2015.

[25] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for
mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, to appear.

[26] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient offloading for
competing users on a shared communication channel,” in Proc. of IEEE ICC, Jun.
2015, pp. 3192–3197.

[27] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computation
offloading for cloudlet-based mobile cloud computing,” in Proc. of ACM MSWiM,
2015, pp. 271–278.

[28] I. Milchtaich, “Congestion games with player-specific payoff functions,” Games and
Economic Behavior, vol. 13, no. 1, pp. 111 – 124, 1996.

Paper C
Decentralized Scheduling for
Offloading of Periodic Tasks in

Mobile Edge Computing

Slađana Jošilo and György Dán
in Proc. of IFIP Networking (NETWORKING), 2018.

85

Decentralized Scheduling for Offloading of Periodic
Tasks in Mobile Edge Computing

Slad̄ana Jošilo and György Dán

School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: {josilo,gyuri}@kth.se.

Abstract

Motivated by various surveillance applications, we consider wireless devices that
periodically generate computationally intensive tasks. The devices aim at maximizing
their performance by choosing when to perform the computations and whether or not to
offload their computations to a cloud resource via one of multiple wireless access points.
We propose a game theoretic model of the problem, give insight into the structure of
equilibrium allocations and provide an efficient algorithm for computing pure strategy
Nash equilibria. Extensive simulation results show that the performance in equilibrium
is significantly better than in a system without coordination of the timing of the tasks’
execution, and the proposed algorithm has an average computational complexity that is
linear in the number of devices.

1 Introduction
Mobile edge computing (MEC) is considered to become an enabler of a variety of Internet
of Things (IoT) applications that are based on a pervasive deployment of wireless sensors.
Examples range from water pipeline surveillance [1], through pursuit problems and dis-
crete manufacturing [2] to body area networks [3]. Many of these applications involve the
periodic collection of sensory data, which need to be processed timely to enable control
decisions. Processing often requires some form of data analytics, e.g., visual analysis, which
is computationally demanding.

The key advantage of MEC compared to centralized cloud infrastructures is that com-
putational resources are located close to the network edge [4]. Thus, even though MEC
infrastructures may be less resource-rich than centralized clouds, such as Microsoft Azure
or AWS, due to their proximity to the sensors they may be able to provide response times
that make them suitable for computation offloading for real-time applications.

The proximity of MEC resources makes low response times for individual sensors possi-
ble, but when multiple wireless sensors attempt to offload to the MEC simultaneously, the

87

88

response times might increase due to contention for the communication and the computa-
tional resources [5–7]. Coordination is thus essential for maintaining low response times in
the case of MEC computation offloading.

Coordination for offloading periodic tasks involves deciding whether or not to offload
the computations, deciding which of the available wireless communication channels to
use for offloading, and in the case of periodic tasks, it involves deciding when to collect
sensory data and when to offload the computation. In addition coordination should respect
that sensors may be managed by different entities, with individual interests. The resulting
coordination problem not only has a huge solution space with a combinatorial structure,
but it also requires consideration of the potentially diverse requirements of the sensors in
terms of response time and energy consumption for performing the computation. Efficient
coordination of computation offloading for wireless sensors with periodic tasks is thus a
complex problem.

In this paper we address this problem by considering the allocation of cloud and wireless
resources among wireless devices that generate tasks periodically. The devices can choose
the time slot in which to perform their periodic task, and can decide whether to offload their
computation to a cloud through one of many access points or to perform the computation
locally. We provide a game theoretical treatment of the problem, and prove the existence of
pure strategy Nash equilibria. Our proof provides a characterization of the structure of the
equilibria, and serves as an efficient decentralized algorithm for coordinating the offloading
decisions of the wireless devices. We use extensive simulations to assess the benefits of
coordinated computation offloading compared to uncoordinated computation offloading
where devices choose a time slot at random, and in the chosen time slot play an equilibrium
allocation. Our results show that the proposed algorithm computes equilibria with good
system performance in a variety of scenarios in terms of task periodicity, the number of
devices and the number of access points.

The rest of the paper is organized as follows. In Section 2 we present the system model
and the problem formulation. In Section 3 we present algorithmic and analytical results. In
Section 4 we show numerical results and in Section 5 we discuss related work. Section 6
concludes the paper.

2 System Model and Problem Formulation
We consider a computation offloading system that consists of N devices, A acces points (APs)
and a cloud service. We denote by N={1,2, ...,N} and A={1,2, ...,A} the set of devices
and the set of APs, respectively. Each device generates a computationally intensive task
periodically every T time units. Device i’s task is characterized by the mean size Di of the
input data and by the mean number of CPU cycles Li required to perform the computation.
We make the reasonable assumption that the number X of CPU cycles required per bit can
be modeled by a random variable following a Gamma distribution [8, 9], and assume E[X]
to be known from previous measurements. Thus, assuming independence the mean number
of CPU cycles can be expressed as Li = DiE[X].

89

We consider that time is partitioned into T time slots, and we denote by T ={1,2, ...,T}
the set of time slots. Each device can choose one time slot in which it wants to perform the
computation and in the chosen time slot it can decide whether to perform the computation
locally or to offload the computation to the cloud server through one of the APs. Therefore,
each device i ∈N can choose one element of the set Di = {A∪{0}}×T , where 0 corre-
sponds to local computing. We denote by di∈Di the decision of MU i, and refer to it as
its strategy. We refer to the collection d=(di)i∈N as a strategy profile, and we denote by
D=×i∈NDi the set of all feasible strategy profiles. The considered model of homogeneous
task periodicities is reasonable for surveillance of homogeneous physical phenomena, we
leave the case of heterogeneous periodicities to be subject of future work.

For a strategy profile d we denote by O(t,a)(d) = {i|di = (t,a)} the set of devices that
offload using AP a in time slot t, and we denote by n(t,a)(d) = |O(t,a)(d)| the number of
devices that use AP a in time slot t. Furthermore, we define the set of all devices that offload
in time slot t as Ot(d) = ∪a∈AO(t,a)(d), and the total number of devices that offload in
time slot t as nt(d)=∑a∈A n(t,a)(d). Finally, we denote by O(d) = ∪t∈T Ot(d) the set of all
devices that offload in strategy profile d.

2.1 Local computing
In the case of local computing each device has to use its own computing resources in
order to perform the computation. We consider that different devices may have different
computational capabilities and we denote by F0

i the computational capability of device i.
Furthermore, we consider that the computational capability F0

i of device i is independent of
the chosen time slot, and hence the time that is needed for device i to perform its computation
task that requires Li CPU cycles can be expressed as

T 0
i =

Li

F0
i
. (1)

In order to express the energy consumption in the case of local computing we denote by vi
the energy consumption per CPU cycle [10], and we express the energy that device i would
spend on performing a computation task that requires Li CPU cycles as

E0
i = viLi. (2)

2.2 Computation offloading
In the case of computation offloading the computation is performed in the cloud, but the
input data for the computation task need to be transmitted through one of the APs. In what
follows we introduce our communication and computation models that describe how the
wireless medium and the cloud computing resources are shared among devices that offload
their tasks, respectively.

90

2.2.1 Communication model

We consider that the uplink rate ωi,(t,a)(d) that device i can achieve if it offloads through
AP a in time slot t is a non-increasing function fa(n(t,a)(d)) of the number n(t,a)(d) of
devices that use the same AP a in time slot t. Furthermore, we consider that each device
is characterized by PHY rate Ri,a, which depends on device specific parameters such as
physical layer signal characteristics and the channel conditions. Therefore, the uplink rate of
device i on AP a can be different from the uplink rates of the other devices on the same AP
and can be expressed as

ωi,(t,a)(d) = Ri,a× fa(n(t,a)(d)). (3)

This communication model can be used to model throughput sharing mechanisms in TDMA
and OFDMA based MAC protocols [11].

Given the uplink rate ωi,(t,a)(d), the time needed for device i to transmit the input data
of size Di through AP a in time slot t can be expressed as

T tx
i,(t,a)(d) =

Di

ωi,(t,a)(d)
. (4)

We consider that every device i knows the transmit power Pi,a that it would use to transmit the
data through AP a, where Pi,a may be determined using one of the power control algorithms
proposed in [12, 13]. The transmit power Pi,a and the transmission time T tx

i,(t,a)(d) determine
the energy consumption of device i for transmitting the input data of size Di through AP a
in time slot t

Etx
i,(t,a)(d) = Pi,aT tx

i,(t,a)(d). (5)

2.2.2 Computation model

We denote by Fc the computational capability of the cloud service, and we consider that the
computational capability Fc

i,t(d) that device i would receive from the cloud in time slot t is a
non-increasing function fi(nt(d)) of the total number nt(d) of devices that offload in time
slot t

Fc
i,t(d) = Fc× fi(nt(d)). (6)

Therefore, the time needed for performing device i’s task in the cloud may be different in
different time slots, and given the number Li of CPU cycles needed for the computation task
it can be expressed as

T exe
i,t (d) =

Li

Fc
i,t(d)

. (7)

We consider that a single time slot is long enough for performing each user’s task both in
the case of local computing and in the case of computation offloading. This assumption
is reasonable in the case of real time applications, where the worst-case task completion
time must be less than a fraction of the periodicity. Figure 1 shows an example of a mobile
cloud computing system where devices can choose one slot out of four time slots to perform
the computation. In the case of computation offloading, each device in the chosen time slot

91

1 4

Figure 1: An example of a mobile cloud computing system than consists of N devices, T = 4
time slots, and A = 3 APs.

can offload its task to the cloud through one of three APs, e.g., in time slot 1 devices 1 and
2 offload their tasks through AP 1, device 3 offloads its task through AP 3, and device 4
performs the computation locally.

2.3 Cost Model
We consider that devices are interested in minimizing a linear combination of their computing
time and their energy consumption, and denote by 0≤ γT

i ,γE
i ≤ 1 the corresponding weights,

respectively. We can then express the cost of device i in the case of local computation as

C0
i = γT

i T 0
i + γE

i E0
i . (8)

Similarly, we can express the cost of device i in the case of offloading through AP a in time
slot t as

Cc
i,(t,a)(d)=γT

i (T
exe

i,t (d)+T tx
i,(t,a)(d))+γE

i Etx
i,(t,a)(d). (9)

In (9) we made the common assumption that the time needed to transmit the result of the
computation from the cloud service to the device can be neglected [5, 7, 14, 15], because
for many applications (e.g., object recognition, tracking) the size of the output data is
significantly smaller than the size Di of the input data. We can thus express the cost of device
i in strategy profile d as

Ci(d)= ∑
di∈T ×{0}

1(t,0)(di)·C0
i + ∑

di∈T ×A
1(t,a)(di)·Cc

i,(t,a)(d), (10)

where 1(t,d)(di) is the indicator function, i.e., 1(t,d)(di) = 1 if di = (t,d) and 1(t,d)(di) = 0
otherwise.

92

Ci
0

d

o

v

1 2 Aa

Figure 2: Network model of the multi-slot computation offloading game (MSCOG).

2.4 Multi-slot computation offloading game
We consider that the objective of each device is to minimize its own total cost (10), i.e., to
find a strategy

d∗i ∈ argmin
di∈Di

Ci(di,d−i), (11)

where Ci(di,d−i) is the cost of device i if it chooses strategy di given the strategies d−i of the
other devices. Since devices may be autonomous entities with individual interests, we model
the problem as a strategic game Γ=<N ,(Di)i,(Ci)i>, in which the set of players is the set
of devices (we use these two terms interchangeably). We refer to the game as the MSCOG.
The MSCOG is a player specific network congestion game, as illustrated in Figure 2.

Our objective is to answer the fundamental question whether there is a strategy profile
from which no device would want to deviate, i.e., a pure strategy Nash equilibrium.

Definition 1. A pure strategy Nash equilibrium (NE) is a strategy profile d∗ in which all
players play their best replies to each others’ strategies, that is,

Ci(d∗i ,d
∗
−i)≤Ci(di,d∗−i),∀di ∈Di,∀i ∈N .

Given a strategy profile d = (d′i ,d−i), an improvement step of device i is a strategy d′i
such that Ci(d′i ,d−i)<Ci(di,d−i). A best improvement step is an improvement step that is a
best reply. A (best) improvement path is a sequence of strategy profiles in which one device
at a time changes its strategy through performing a (best) improvement step. We refer to the
device that makes the best improvement step as the deviator. Observe that no device can
perform a best improvement step in a NE.

3 Computing Equilibria

3.1 Single time slot (T = 1)
We start with considering the case T =1, i.e., a single time slot.

93

Theorem 1. The MSCOG for T = 1 possesses a pure strategy Nash equilibrium.

Proof. We prove the result by showing that the game is best response equivalent to a player
specific congestion game Γ̃ on a parallel network, i.e., a singleton player specific congestion
game [16]. Observe that if for T =1 we contract the edge (v,d) in the network shown in
Figure 2, i.e., if we replace the edge (v,d) and its two end vertices v and d by a single
vertex, then we obtain a parallel network. Let us define the local computation cost of player
i in Γ̃ as C̃0i(N−n1(d))=C0

i − fi(1+n1(d))+c, and the cost of offloading through AP a as
f̃i,a(n(1,a)(d))= fi,a(n(1,a)(d))+c, where c is a suitably chosen constant to make all costs
non-negative. Observe that due to the contraction of the edge (v,d) the offloading cost is
C̃ci,a =Cc

i,a− fi(n1(d)), and thus the difference between the cost function of player i in Γ̃
and that in Γ only depends on the strategies of the other players. This in fact implies that Γ̃
and Γ are best-response equivalent, and thus they have identical sets of pure strategy Nash
equilibria. Since Γ̃ is a singleton player specific congestion game, it has a NE, and so does
Γ, which proves the result.

Furthermore, a Nash equilibrium of the MSCOG can be found in polynomial time.

Corollary 1. Consider a MSCOG with T = 1 and N players. Let d∗ be a Nash equilibrium
of the game, and consider that a new player is added to the game. Then there is a sequence
of best responses that leads to a NE.

Proof. The result follows from the best response equivalence to Γ̃, and from the proof of
Theorem 2 in [17].

Unfortunately, the contraction technique used in the proof of Theorem 1 cannot be
applied for T > 1, as the resulting game would no longer be a congestion game.

3.2 Multiple time slots (T ≥ 1)
In order to answer the question for T ≥ 1 we first show that if a pure strategy NE exists for
T ≥ 1 then its structure cannot be arbitrary.

Theorem 2. Assume that d∗ is a NE of the MSCOG with T ≥ 1. Then the following must
hold
(i) mint ′∈T nt ′(d∗)≤nt(d∗)≤mint ′∈T nt ′(d∗)+1 for ∀t,t ′∈T ,
(ii) if nt(d∗) = nt ′(d∗)+1 for some t ′ ∈ T \{t}, then n(t,a)(d∗)≤ n(t ′,a)(d∗)+1 for every AP
a ∈ A, and
(iii) if n(t,a)(d∗) = n(t ′,a)(d∗)− k for k > 1 and t ′ 6= t, then nt ′(d∗)≤ nt(d∗)≤ nt ′(d∗)+1.

Proof. Clearly, all statements hold for T = 1. Assume that T >1 and ∃t,t ′ ∈T such that
nt(d∗)>nt ′(d∗)+1. Then ∃a∈A such that n(t,a)(d∗)≥n(t ′,a)(d∗)+1. Therefore, player i∈
O(t,a)(d∗) could decrease her cost by changing the strategy to offloading through AP a in
time slot t ′. This contradicts d∗ being a NE and proves (i).

94

We continue by proving (ii). Assume that there is an AP a such that n(t,a)(d∗)>n(t ′,a)(d∗)+
1 holds. Since nt(d∗)=nt ′(d∗)+1, we have that player i∈O(t,a)(d∗) could decrease her cost
by changing the strategy from (t,a) to (t ′,a). This contradicts d∗ being a NE and proves (ii).

Finally, we prove (iii). First, assume that nt(d∗)<nt ′(d∗). Since n(t,a)(d∗)<n(t ′,a)(d∗)−1,
we have that player i∈O(t ′,a)(d∗) could decrease her cost by changing the strategy from
(t ′,a) to (t,a). This contradicts d∗ being a NE and proves that nt(d∗)≥ nt ′(d∗). Second,
assume that nt(d∗)> nt ′(d∗)+1 holds. Since n(t,a)(d∗)< n(t ′,a)(d∗)−1, there is at least one
AP b 6= a such that n(t,b)(d∗)≥ n(t ′,b)(d∗)+1, and thus player i ∈ O(t,b)(d∗) could decrease
her cost by changing the strategy to (t ′,b). This contradicts d∗ being a NE and proves that
nt(d∗)≤ nt ′(d∗)+1 must hold.

In what follows we prove our main result concerning the existence of an equilibria in
general case.

Theorem 3. The MSCOG for T ≥ 1 possesses a pure strategy Nash equilibrium.

We provide the proof in the rest of the section.

3.3 The MyopicBest (MB) Algorithm
We prove Theorem 3 using the MB algorithm, shown in Figure 3. The MB algorithm adds
players one at a time, and lets them play their best replies given the other players’ strategies.
Our proof is thus based on an induction in the number N of players, and starts with the
following result.

Theorem 4. The MB algorithm terminates in a NE for N ≤ T .

Proof. It is easy to see that if a strategy profile d∗(N) is a NE for N ≤ T then by Theorem 2
there is at most one player per time slot, and the MB algorithm computes such a strategy
profile.

We continue by considering the case N>T . Let us assume that for N−1≥T there is a NE
d∗(N−1) and that upon induction step N a new player i enters the game and plays her best
reply d∗i with respect to d∗(N−1). After that, players can make best improvement steps one
at a time starting from the strategy profile d = (d∗i ,d

∗(N−1)). If d∗i = (t,0), then n(t,a)(d) =
n(t,a)(d∗(N−1)) holds for every (t,a)∈ T ×A, and thus d is a NE. Otherwise, if d∗i = (t,a),
for some a ∈ A, some players j ∈ O(t,a)(d) may have an incentive to make an improvement
step because their communication and cloud computing costs have increased, and some
players j ∈ Ot(d)\O(t,a)(d) may have an incentive to make an improvement step because
their cloud computing cost has increased. Among these players, the MB algorithm allows
players j ∈ O(t,a)(d) to perform best improvement steps, using the DoublePokeDeviator
(DPD) algorithm shown in Figure 4. There are two types of players that can make a best
improvement step using the DPD algorithm. The first type are players j ∈O(t,a)(d) for which
a best reply is to stop to offload. The second type are players j ∈ O(t,a)(d) for which a best
reply is an offloading strategy (t ′,b) ∈ T ×A\{(t,a)} for which the number of offloaders

95

d∗ = MB(N ,T A,Fc,F0
i)

1: Let N← 1
2: for N = 1 . . . |N | do
3: Let A′← /0 /*APs with decreased number of offloaders*/
4: Let i← N
5: d∗i = argmind∈Di

Ci(d,d∗(N−1))
6: Let d← (d∗i ,d

∗(N−1))
7: if d∗i = (t,a) s.t. a ∈ A then
8: /*Players j ∈ O(t,a)(d) play best replies*/
9: (d′, t ′,A′) = DPD(d,d∗(N−1),(t,a),A′)

10: if ∃ j∈Ot(d′),∃d j∈D j s.t.C j(d j,d′− j)<C j(d′j,d
′
− j) then

11: /*Players j ∈ Ot(d′) play best replies*/
12: d j = argmind∈D j

C j(d,d′− j)

13: Let d← (d j,d′− j), Update A′

14: if ∃i∈Odi(d),di 6=argmind∈Di
Ci(d,d−i) /∈A′ then

15: Let (t,a)← d j, go to 9
16: else
17: Let d′← d
18: end if
19: end if
20: if A′ 6= /0 then
21: /*Players j ∈ O(d′)∪L(d′) play best replies*/
22: (d,(t,a),A′) = SID(d′,A′)
23: if ∃i∈O(t,a)(d),di 6=argmin

d∈Di

Ci(d,d−i) /∈A′ then

24: go to 9
25: else if∃i∈O(d)∪L(d),di 6=argmin

d∈Di

Ci(d,d−i)∈A′ then

26: Let d′← d, go to 22
27: end if
28: end if
29: end if
30: Let d∗(N)← d′
31: end for
32: return d∗(N)

Figure 3: Pseudo code of the MB algorithm.

in d is not smaller than the number of offloaders in the NE d∗(N−1). The DPD algorithm
allows either one player of the first type, or one player of the second type to perform a best
improvement step, and as we show next it terminates in a finite number of steps.

Proposition 1. Let d be a strategy profile in which there is at least one player j ∈ O(t,a)(d)

96

(d, t,A′) = DPD(d,d∗(N−1),(t,a),A′)
1: /*Players that want to stop to offload*/
2: D′1={j|d j = (t,a),(t,0) = argmind∈D j

C j(d,d− j)}
3: /*Player that want to change offloading strategy*/
4: D′2={j|d j =(t,a),(t ′,b)=argmind∈D j

C j(d,d− j) /∈ A′,
(t,a) 6= (t ′,b)}

5: while |D′1∪D′2|> 0 do
6: /*Players that want to stop to offload have priority*/
7: if |D′1|> 0 then
8: Take i ∈ D′1
9: di = (t,0)

10: else
11: Take i ∈ D′2
12: Let di = argmind∈T ×ACi(d,d−i)
13: Let (t,a)← di
14: end if
15: Let d← (di,d−i)
16: Update A′,D′1,D

′
2

17: end while
18: return (d, t,A′)

Figure 4: Pseudo code of the DPD algorithm.

that can be chosen by the DPD algorithm. Then the length of a best improvement path
generated by the DPD algorithm is at most N−1.

Proof. Let us denote by d′ a strategy profile after a player j ∈ O(t,a)(d) performs its best
improvement step. First, observe that if player j’s best improvement step is to stop to offload,
then the DPD algorithm terminates since it allows only players that play the same strategy
as the last deviator to perform best improvement steps. Furthermore, if d = (d∗i ,d

∗(N−1)),
then n(t,a)(d′) = n(t,a)(d∗(N−1)) for every (t,a) ∈ T ×A, and thus d′ is a NE.

Otherwise, if player j’s best improvement step is (t ′,b)∈T ×A\{(t,a)}, then n(t ′,b)(d′)=
n(t ′,b)(d)+1 holds, and we can have one of the following: (1) there is no player j′ ∈O(t ′,b)(d)
that wants to deviate from (t ′,b), (2) there is a player j′ ∈ O(t ′,b)(d) that wants to deviate
from (t ′,b).

If case (1) happens then the DPD algorithm terminates, because there is no player that
plays the same strategy as the last deviator and that can decrease its cost using the DPD
algorithm. Otherwise, if case (2) happens then a new best improvement step can be triggered,
which will bring the system to a state where n(t ′,b)(d′) = n(t ′,b)(d) holds.

In what follows we show that none of the players that has changed its offloading strategy
in one of the previous best improvement steps would have an incentive to deviate again. Let
us consider a player j′ that changed its strategy from (t ′,b) to another offloading strategy,

97

and let us assume that in one of the subsequent best improvement steps one of the players
changes its offloading strategy to (t ′,b), and thus it brings the system to a state where
n(t ′,b)(d′) = n(t ′,b)(d)+1 holds. We observe that player j that has changed its strategy from
(t,a) to (t ′,b) before player j′ deviated from (t ′,b) would have no incentive to deviate from
its strategy (t ′,b) after a new player starts offloading through AP b in time slot t ′. This is
because (t ′,b) was its best response while player j′ was still offloading through AP b in time
slot t ′, i.e, while n(t ′,b)(d′) = n(t ′,b)(d)+ 1 was true. Therefore, a new best improvement
step can be triggered only if there is another player that wants to change from (t ′,b) to
another offloading strategy. If this happens, n(t ′,b)(d′) = n(t ′,b)(d) will hold again, and thus
the maximum number of players that offload through AP b in time slot t ′ will be at most
n(t ′,b)(d)+1 in all subsequent best improvement steps. Consequently, player j would have
no incentive to leave AP b in time slot t ′ in the subsequent steps. Therefore, each player
deviates at most once in a best improvement path generated by the DPD algorithm, and
thus the algorithm terminates in at most N−1 best improvement steps, which proves the
proposition.

The DPD algorithm may be called multiple times during the execution of the MB
algorithm, but as we show next for any fixed N, it is called a finite number of times.

Proposition 2. The DPD algorithm is executed a finite number of times for any particular
N.

Proof. Let us assume that the DPD algorithm has been called at least once during the
execution of the MB algorithm, and let us denote by d′ the most recent strategy profile
computed by the DPD algorithm. Now, let us assume that in the next best improvement step
generated by the MB algorithm a player i∈O(d′)∪L(d′) changes its strategy to (t,a)∈T ×A.
Starting from a strategy profile d=((t,a),d′−i) players j∈O(t,a)(d) are allowed to perform
the next best improvement step using the DPD algorithm.

Observe that players j′ ∈ O(t,a)(d′) that in the previous best improvement steps changed
their strategy to (t,a) using the DPD algorithm and triggered one of the players to leave the
same strategy (t,a) would have no incentive to perform a best improvement step using the
DPD algorithm. This is because the previous deviators j′ ∈O(t,a)(d′) brought n(t,a)(d′) to its
maximum, that is to n(t,a)(d∗(N−1))+1, which decreased again to n(t,a)(d∗(N−1)) after
the next deviator left strategy (t,a). Since the number of previous deviators j′ ∈ O(t,a)(d′)
that have no incentive to perform a new best improvement step using the DPD algorithm
increases with every new best improvement path generated by the DPD algorithm, players
will stop performing best improvement steps using the DPD algorithm eventually, which
proves the proposition.

So far we have proven that the DPD algorithm generates a finite number of finite best
improvement paths. In the following we use this result for proving the convergence of the
MB algorithm.

Proof of Theorem 3. We continue with considering all conditions under which the DPD
algorithm may have terminated. First, let us assume that the last deviator’s best improvement

98

step is a strategy within time slot t ′. The proof of Proposition 1 shows that the DPD
algorithm terminates if one of the following happens: (i) starting from a strategy profile
d = (d∗i ,d

∗(N−1)) all players performed their best improvement steps, (ii) some players
did not deviate and the last deviator’s strategy was (t ′,0), i.e., the last deviator changed to
local computing in time slot t ′, (iii) some players did not deviate and there was no player
that wanted to change from the last deviator’s strategy (t ′,b) ∈ T ×A.

Let us first consider case (i), and the last deviator that performed its best improvement
step. If its best improvement step was to stop to offload, n(t,a)(d′) = n(t,a)(d∗(N − 1))
holds for every (t,a) ∈ T ×A. Otherwise, if a best improvement step of the last deviator
was to change its offloading strategy to (t ′,b), we have that n(t,a)(d′) ≥ n(t,a)(d∗(N− 1))
for every (t,a)∈T ×A, where the strict inequality holds only for (t ′,b), and n(t ′,b)(d′) =
n(t ′,b)(d∗(N−1))+1. Since there is no offloading strategy for which the number of offloaders
is less than the number of offloaders in the NE d∗(N−1), there is no player j∈O(d′) that
can decrease its offloading cost. Furthermore, there is no player that wants to change its
strategy from local computing to offloading, and thus a strategy profile computed by the
DPD algorithm is a NE.

If case (ii) or case (iii) happen the MB algorithm allows players that offload in the same
time slot as the last deviator to perform any type of best improvement steps. Furthermore, if
case (ii) happens and there are no APs with decreased number of offloaders compared with
the NE d∗(N− 1), i.e., n(t,a)(d′) = n(t,a)(d∗(N− 1)) holds for every (t,a) ∈ T ×A, then
the strategy profile d′ computed by the DPD algorithm is a NE. Observe that n(t,a)(d′) =
n(t,a)(d∗(N−1)) holds for every (t,a) ∈ T ×A if strategy profile d′ is obtained by the DPD
algorithm starting from strategy profile d = (d∗i ,d

∗(N−1)).
Otherwise, if case (ii) happens such that there is a strategy (t,a)∈T ×A for which

n(t,a)(d′)< n(t,a)(d∗(N−1)) holds, then players j ∈ Ot ′(d′) that offload in the same time
slot as the last deviator may want to change their offloading strategy to (t,a). Let us assume
that there is a player j ∈Ot ′(d′) that wants to change its offloading strategy to (t,a) and let us
denote by d a resulting strategy profile. Since n(t,a)(d) = n(t,a)(d′)+1 and nt(d) = nt(d′)+1
hold, some players j ∈ O(t,a)(d) may want to perform a best improvement step using the
DPD algorithm, which can happen only a finite number of times accoring to Proposition 2.

We continue the analysis by considering case (iii). Observe that if there is a strategy (t,a)
for which n(t,a)(d′)< n(t,a)(d∗(N−1)) players j ∈Ot ′(d′) that offload in the same time slot
as the last deviator may want to change their offloading strategy to (t,a). Furthermore, players
j ∈ Ot ′(d′)\O(t ′,b)(d′) may want to stop to offload or to change to any offloading strategy
(t,a)∈ T ×A\{(t ′,b)} since their cloud computing cost increased. Let us assume that there
is a player j ∈Ot ′(d′) that wants to change its offloading strategy to (t,a)∈ T ×A\{(t ′,b)}
and let us denote by d the resulting strategy profile. Since n(t,a)(d) = n(t,a)(d′)+ 1 and
nt(d) = nt(d′)+1 hold, some players j ∈O(t,a)(d) may want to perform a best improvement
step using the DPD algorithm, which can happen only a finite number of times accoring to
Proposition 2.

If case (ii) or case (iii) happens and there is no player j ∈ Ot ′(d′) that wants to deviate,
the MB algorithm allows players from the other time slots t ∈ T \ {t ′} to perform best

99

(d,(t,a),A′) = SID(d,A′)
1: /*Players that offload and can decrease their offloading cost*/
2: D1={j∈O(d)|(t,a)=argmind∈D j

C j(d,d− j)∈A′,d j 6=(t,a)}
3: /*Players that compute locally and want to start to offload*/
4: D2={j∈L(d)|(t,a)=argmind∈D j

C j(d,d− j) ∈ A′}
5: if |D1∪D2| 6= /0 then
6: /*Players that offload have priority*/
7: if D1 6= /0 then
8: Take i ∈ D1
9: else if D2 6= /0 then

10: Take i ∈ D2
11: end if
12: d′i = argmind∈Di

Ci(d,d−i)
13: Let d← (d′i ,d−i)
14: Let (t,a)← d′i
15: Update A′

16: end if
17: return (d,(t,a),A′)

Figure 5: Pseudo code of the SID algorithm.

improvement steps using SelfImposedDeviator (SID) algorithm shown in Figure 5. Observe
that players from time slots t ∈ T \{t ′} are not poked to deviate by the other players, and
only reason why they would have an incentive to deviate is that n(t,a)(d′)< n(t,a)(d∗(N−1))
holds for some strategies (t,a) ∈ T ×A. The SID algorithm first allows one of the players
j ∈ O(d′)\Ot ′(d′) that already offloads to perform a best improvement step, and if there
is no such player the SID algorithm allows one of the players j ∈ L(d′) that performs
computation locally to start to offload. Let us assume that there is a strategy (t,a) for which
n(t,a)(d′)< n(t,a)(d∗(N−1)) holds and that there is a player j ∈O(d′)\Ot ′(d′)∪L(d′) that
wants to deviate to strategy (t,a). We denote by d the resulting strategy profile, after player
j performs its best improvement step. Since n(t,a)(d) = n(t,a)(d′)+1 and nt(d) = nt(d′)+1
hold, some players j ∈ O(t,a)(d) may want to perform a best improvement step using the
DPD algorithm, which can happen only a finite number of times accoring to Proposition 2.
Finally, let us consider case (iii) such that there is a player j ∈Ot ′(d′)\O(t ′,b)(d′) that wants
to stop to offload because its cloud computing cost increased. Let us denote by d a strategy
profile after player j changes its strategy from (t ′,a) 6= (t ′,b) to local computing. We have
that n(t ′,a)(d) = n(t ′,a)(d′)−1, and if n(t ′,a)(d′) = n(t ′,a)(d∗(N−1)) we have that players j′ ∈
O(d)\O(t ′,a)(d) may have an incentive to change their offloading strategy to (t ′,a) if doing
so decreases their offloading cost. We have seen that a best improvement step of this type
can trigger the DPD algorithm a finite number of times according to Proposition 2. Now, let
us assume that a player j′ ∈O(t,b)(d), where (t,b)∈ T ×A\{(t ′,a)}, changes its offloading
strategy from (t,b) to (t ′,a), and that by doing so it does not trigger the DPD algorithm. The

100

resulting strategy profile d = ((t ′,a),d− j′) is such that n(t,b)(d) = n(t,b)(d′)−1 holds, and if
n(t,b)(d′) = n(t,b)(d∗(N−1)) some players may have an incentive to change their offloading
strategy to (t,b) if doing so decreases their offloading cost.

We continue by considering the case where all subsequent best improvement steps are
such that deviators change to a strategy for which the number of offloaders is less than the
number of offloaders in the NE d∗(N− 1) and by doing so they do not trigger the DPD
algorithm. Therefore, the resulting best improvement path is such that the cost of each
deviator decreases with every new best improvement step it makes. Assume now that after
k ≥ 2 improvement steps player j′ wants to return back to strategy (t,b). By the definition
of the resulting best improvement path, the cost of player j′ in the (k+1)-th improvement
step is not only less than the cost in the k-th best improvement step, but also less than its
cost in the first best improvement step. Therefore, player j′ will not return to a strategy it
deviated from, and thus it will deviate at most T ×A−1 times. Consequently, when there
are no players that can trigger the DPD algorithm, players that change their startegy from
local computing to offloading using the SID algorithm, can only decrease their offloading
cost in the subsequent best improvement steps, and thus they would have no incentive to
stop to offload. Since the number of players is finite, the players will stop changing from
local computing to offloading eventually, which proves the theorem.

Even though the convergence proof of the MB algorithm is fairly involved, the algorithm
itself is computationally efficient, as we show next.

Theorem 5. When a new player i enters the game in an equilibrium d∗(N− 1), the MB
algorithm computes a new equilibrium d∗(N) after at most N×T ×A−2 best improvement
steps.

Proof. In the worst case scenario the DPD algorithm generates an N− 2 steps long best
improvement path, and a player that offloads in the same time slot as the last deviator, but
not through the same AP changes to local computing, because its cloud computing cost
increased. Observe that the worst case scenario can happen only if |O(d∗(N−1))|= N−1
holds. Furthermore, N − 2 players will have an opportunity to deviate using the DPD
algorithm and a player that offloads in the same time slot as the last deviator will have an
opportunity to stop to offload only if n(t,a)(d∗(N−1)) = n(t ′,b)(d∗(N−1)) holds for every
(t,a),(t ′,b) ∈ T ×A. Furthermore, in the worst case scenario, the best improvement path
generated by the DPD algorithm is followed by an N× (T ×A−1) long best improvement
path, in which deviators change to a strategy for which the number of offloaders is less
than the number of offloaders in the NE d∗(N−1) and by doing so they do not trigger the
DPD algorithm. Therefore, a NE can be computed in at most N−2+N× (T ×A−1) best
improvement steps.

By addding players one at a time, it follows that the MB algorithm has quadratic worst
case complexity.

Theorem 6. The MB algorithm computes a NE allocation in O(N2×T ×A) time.

101

Implementation considerations: The MB algorithm can be implemented in a decen-
tralized manner, by letting devices perform the best improvement steps one at a time. For
computing a best response, besides its local parameters (e.g. Di, Li,F0

i), each device i re-
quires information about achievable uplink rates, available MEC resources, and the number
of users sharing the APs and the cloud. In practice these information can be provided by the
MEC. As discussed in [5,7,18], two main advantages of such a decentralized implementation
compared to a centralized one are that the MEC can be relieved from complex centralized
management, and devices do not need to reveal their parameters, but only their most recent
decisions.

4 Numerical Results
In the following we show simulation results to evaluate the cost performance and the
computational efficiency of the MB algorithm. We consider that the devices are placed
uniformly at random over a square area of 1km×1km, while the APs are placed at random
on a regular grid with A2 points defined over the area. We consider that the channel gain of
device i to AP a is proportional to d−α

i,a , where di,a is the distance between device i and AP
a, and α is the path loss exponent, which we set to 4 according to the path loss model in
urban and suburban areas [19]. For simplicity we assign a bandwidth of 5 MHz to every AP
a, and the data transmit power of Pi,a is drawn from a continuous uniform distribution on
[0.05,0.18] W according to measurements reported in [20]. We consider that the uplink rate
of a device connected to an AP a scales directly proportional with the number of devices
offloading through AP a. The computational capability F0

i of device i is drawn from a
continuous uniform distribution on [0.5,1] GHz, while the computation capability of the
cloud is Fc = 100 GHz [21]. We consider that the computational capability that a device
receives from the cloud scales inversely proportional with the number of devices that offload.
The input data size Di and the number Li of CPU cycles required to perform the computation
are uniformly distributed on [0.42,2] Mb and [0.1,0.8] Gcycles, respectively. The consumed
energy per CPU cycle vi is set to 10−11(F0

i)
2 according to measurements reported in [9, 10].

The weights attributed to energy consumption γE
i and the response time γT

i are drawn from
a continuous uniform distribution on [0,1].

We use three algorithms as a basis for comparison for the proposed MB algorithm. In the
first algorithm players choose a time slot at random, and implement an equilibrium allocation
within their chosen time slots. We refer to this algorithm as the RandomSlot (RS) algorithm.
The second algorithm considers that all devices perform local execution. The third algorithm
is a worst case scenario where all devices choose the same time slot and implement an
equilibrium allocation within that time slot. Observe that this corresponds to T = 1. We
define the performance gain of an algorithm as the ratio between the system cost reached
when all devices perform local execution and the system cost reached by the algorithm. The
results shown are the averages of 100 simulations, together with 95% confidence intervals.

102

1 10 20 30 40 50 60 70 80 90 100

N

1

10

15

20

P
er
fo
rm

a
n
ce

g
a
in

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 6: Performance gain vs. number of devices (N).

4.1 Performance gain vs number of devices
Figure 6 shows the performance gain as a function of the number N of devices for A = 4
APs. The results show that the performance gain decreases with the number of devices
for the MB algorithm for all values of T , for the RS algorithm and for the deterministic
worst case T = 1. This is due to that the APs and the cloud get congested as the number of
devices increases. The performance gain of the MB algorithm is up to 50% higher than that
of the RS algorithm for T > 1; the gap between the two algorithms is largest when the ratio
N/T is approximately equal to 4. The reason is that as T increases the average number of
offloaders per time slot remains balanced in the case of the MB algorithm. On the contrary,
in the case of the RS algorithm some time slots may be more congested than others, since
the players choose their time slot at random. However, the average imbalance in the number
of offloaders per time slot decreases as the number of devices increases, thus the results are
similar for large values of N. At the same time, the performance gain of the MB algorithm
compared to that of the deterministic worst case T = 1 is almost proportional to the number
T of time slots, and shows that coordination is essential for preventing severe performance
degradation. It is also interesting to note that for T = 1 the performance gain decreases with
N at a much higher rate than for T > 1, which is due to the fast decrease of the number of
offloaders, as we show next.

Figure 7 shows the ratio of players that offload for the same set of parameters as in
Figure 6. The results show that in the worst case, for T = 1, the ratio of players that offload
decreases almost linearly with N, which explains the fast decrease of the performance gain
observed in Figure 6. On the contrary, for larger values of T the ratio of players that offload
appears less sensitive to N. We observe that the ratio of players that offload is in general
higher in equilibrium than in the strategy profile computed by the RS algorithm, which
explains the superior performance of MB observed in Figure 6.

103

1 10 20 30 40 50 60 70 80 90 100

N

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
o
f
p
la
y
er
s
th
a
t
o
ffl
o
a
d

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 7: Ratio of offloaders vs. number of devices (N).

4.2 Performance gain vs number of APs
Figure 8 shows the performance gain as a function of the number A of APs for N =
50 devices. We observe that the performance gain achieved by the algorithms increases
monotonically with the number of APs for all values of T with a decreasing marginal gain.
The reason is that once T ×A≥ N every device can offload its task through its favorite AP
without sharing it, and hence the largest part of the offloading cost comes from the computing
cost in the cloud. However, a small change in the performance gain is still present even for
very large values of A because the density of the APs over a region becomes larger as A
increases, and hence the channel gain, which depends on the distance between the device
and the APs becomes larger on average. The results also show that MB always outperforms
RS, and its performance gain compared to that of RS increases with T . Most importantly,
the number of APs required for a certain performance gain is almost 50% lower using the
MB algorithm compared to the RS algorithm for higher values of T , i.e., significant savings
can be achieved in terms of infrastructural investments.

4.3 Computational Complexity
In order to assess the computational efficiency of the MB algorithm we consider the number
of iterations, defined as the number of induction steps plus the total number of update steps
over all induction steps needed to compute a NE. Figure 9 shows the number of iterations
as a function of the number N of devices for A = 4 APs. The results show that the number
of iterations scales approximately linearly with N for both algorithms, and indicates that
the worst case scenario considered in Theorem 6 is unlikely to happen. The first interesting
feature of Figure 9 is that the number of iterations is slightly less in the case of the MB
algorithm than in the case of the RS algorithm for all values of T , except for T = 1 for
which the two algorithms are equivalent. The reason is that in the case of the MB algorithm

104

1 3 5 7 9 11 13 15

A

1

5

10

15

20

P
er
fo
rm

an
ce

ga
in MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 8: Performance gain vs. number of APs (A).

the number of offloaders per time slot is more balanced, and hence the devices have less
incentive to deviate when a new device enters the system, and their updates are always at
least as good as in the case of RS algorithm, since the MB algorithm allows devices to
change between time slots. On the contrary, in the case of the RS algorithm some of the
time slots may be very congested, and the devices that offload within these time slots have
a higher incentive to deviate when a new device enters the system. The second interesting
feature of Figure 9 is that the number of iterations is smaller for larger values of T for smaller
values of N, but for larger values of N the results are reversed. The reason is that for smaller
values of N the time slots are less congested on average as T increases, and hence the devices
do not want to update their strategies so often. On the contrary, as N increases the benefit
of large values of T becomes smaller, because the congestion per time slots increases, and
hence devices may want to update their strategies more often.

Overall, our results show that the proposed MB algorithm can compute efficient alloca-
tions for periodic task offloading at low computational complexity.

5 Related Work
The scheduling of periodic tasks received significant attention for real-time systems [22, 23],
but without considering communications. Similarily, the scheduling of communication
resources has been considered without considering computation [24]. Most works that
considered both communication and computation considered a single device [6, 10, 25–27],
and thus they do not consider the allocation of resources between devices.

Related to our work are recent works on energy efficient computation offloading for
multiple mobile users [28–30]. [28] proposed a genetic algorithm for maximizing the
throughput in a partitioning problem for mobile data stream applications, while [29] proposed
a heuristic for minimizing the users’ cost in a two-tiered cloud infrastructure with user

105

1 100 200 300 400 500 600 700 800

N

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s

MB

RS

T = 1

T = 5

T = 10

T = 20

Figure 9: Number of iterations vs. number of devices (N).

mobility in a location-time workflow framework. [30] considered minimizing mobile users’
energy consumption by joint allocation of wireless and cloud resources, and proposed an
iterative algorithm.

A few recent works provided a game theoretic treatment of the mobile computation
offloading problem for a single time slot [5, 7, 18, 31–34]. [31] considers a two-stage
game, where first each mobile user chooses the parts of its task to offload, and then the
cloud allocates computational resources to the offloaded parts. [32] considered a three-tier
cloud architecture, and provided a distributed algorithm for the computing a mixed strategy
equilibrium. [33] considered tasks that arrive simultaneously and a single wireless link,
and showed the existence of equilibria when all mobile users have the same delay budget.
[5] showed that assuming a single wireless link and link rates determined by the Shannon
capacity of an interference channel, the resulting game is a potential game. [18] extended
the model to multiple wireless links and showed that the game is still a potential game
under the assumption that a mobile user experiences the same channel gain for all links.
[7] considered multiple wireless links, equal bandwidth sharing and a non-elastic cloud,
and provided a polynomical time algorithm for computing equilibria. Compared to these
works, our model of periodic tasks considers the scheduling of tasks over time slots and
wireless resources, and is thus a first step towards bridging the gap between early works on
scheduling [23] and recent works on computation offloading [5, 7].

From a game theoretical perspective the importance of our contribution is the analysis
of a player-specific network congestion game for which the existence of equilibria is not
known in general [16], thus the proposed algorithm and our proof of existence advance the
state of the art in the study of equilibria in network congestion games.

106

6 Conclusion
We provided a game theoretic treatment of computation offloading for periodic tasks. We
proved the existence of equilibrium allocations, characterized their structure and provided a
polynomial time decentralized algorithm for computing equilibria. Simulations show that
the proposed algorithm achieves good system performance for a wide range of system
sizes and task periodicities. Our results show that periodic computation offloading can be
efficiently coordinated using low complexity algorithms despite the vast solution space and
the combinatorial nature of the problem. An interesting open question is whether our results
can be extended to devices with heterogeneous periodicities, we leave this question subject
of future work.

References
[1] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “Pipeneta wireless sensor

network for pipeline monitoring,” in Proc. of IPSN, 2007, pp. 264–273.

[2] S. Oh, P. Chen, M. Manzo, and S. Sastry, “Instrumenting wireless sensor networks for
real-time surveillance,” in Proc. IEEE ICRA, May 2006, pp. 3128–3133.

[3] X. Zhu, S. Han, P. C. Huang, A. K. Mok, and D. Chen, “Mbstar: A real-time commu-
nication protocol for wireless body area networks,” in Proc. of ERCTS, Jul. 2011, pp.
57–66.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing:
A key technology towards 5G,” Sep. 2015.

[5] X. Chen, “Decentralized computation offloading game for mobile cloud computing,”
Proc. of IEEE PDS.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to offload? The
bandwidth and energy costs of mobile cloud computing,” in Proc. of IEEE INFOCOM,
April 2013, pp. 1285–1293.

[7] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile computation offload-
ing,” in Proc. of IEEE INFOCOM, May 2017.

[8] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms with pace,”
in ACM SIGMETRICS Perf. Eval. Rev., vol. 29, no. 1, 2001, pp. 50–61.

[9] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in cloud
computing,” in Proc. of Usenix HotCloud, 2010.

[10] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution: Taming
resource-poor mobile devices with cloud clones,” in Proc. of IEEE INFOCOM, March
2012, pp. 2716–2720.

107

[11] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime fairness for ieee 802.11
multirate networks,” IEEE Trans. on Mobile Computing, vol. 7, no. 4, pp. 513–527,
2008.

[12] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via
pricing in wireless data networks,” IEEE Trans. on Communications, vol. 50, no. 2, pp.
291–303, 2002.

[13] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-control scheme in
wireless cellular systems,” IEEE/ACM Trans. on Networking, vol. 11, no. 2, pp. 210–
221, 2003.

[14] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile
computing,” IEEE Trans. on Wireless Communications, vol. 11, no. 6, pp. 1991–1995,
Jun. 2012.

[15] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading computa-
tion save energy?” IEEE Computer Mag., vol. 43, no. 4, pp. 51–56, Apr. 2010.

[16] I. Milchtaich, “The equilibrium existence problem in finite network congestion games,”
in Proc. of WINE, 2006, pp. 87–98.

[17] ——, “Congestion games with player-specific payoff functions,” Games and Economic
Behavior, vol. 13, no. 1, pp. 111 – 124, 1996.

[18] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for
mobile-edge cloud computing,” IEEE/ACM Trans. on Networking, vol. 24, no. 5, pp.
2795–2808, 2016.

[19] A. Aragon-Zavala, Antennas and propagation for wireless communication systems.
John Wiley & Sons, 2008.

[20] E. Casilari, J. M. Cano-García, and G. Campos-Garrido, “Modeling of current con-
sumption in 802.15. 4/zigbee sensor motes,” Sensors, vol. 10, no. 6, pp. 5443–5468,
2010.

[21] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-vision:
Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture,” in
ISCC, 2012, pp. 59–66.

[22] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An approach to
real-time synchronization,” IEEE Trans. on Computers, vol. 39, pp. 1175–1185, Sep.
1990.

[23] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory: A historical
perspective,” Real-Time Syst., vol. 28, no. 2-3, pp. 101–155, Nov. 2004.

108

[24] I. H. Hou, “Packet scheduling for real-time surveillance in multihop wireless sensor
networks with lossy channels,” IEEE Trans. on Wireless Comm., vol. 14, no. 2, pp.
1071–1079, Feb 2015.

[25] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proc. of ACM
MobiSys, 2010, pp. 49–62.

[26] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading for
mobile systems,” Mob. Netw. Appl., vol. 18, no. 1, pp. 129–140, Feb 2013.

[27] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs: Robust offloading
using the Markov decision processes,” in Proc. of IEEE WoWMoM, Jun. 2015, pp. 1–9.

[28] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for partitioning
and execution of data stream applications in mobile cloud computing,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 4, pp. 23–32, Apr. 2013.

[29] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-aware
optimal service allocation in mobile cloud computing,” in Proc. of IEEE CLOUD, Jun.
2013, pp. 75–82.

[30] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computa-
tional resources for multicell mobile-edge computing,” IEEE T-SIPN, vol. 1, no. 2, pp.
89–103, Jun. 2015.

[31] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization
framework in mobile cloud computing system,” in Proc. of IEEE SOSE, Mar. 2013, pp.
494–502.

[32] V. Cardellini et al., “A game-theoretic approach to computation offloading in mobile
cloud computing,” Mathematical Programming, pp. 1–29, 2015.

[33] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient offloading for
competing users on a shared communication channel,” in Proc. of IEEE ICC, Jun.
2015, pp. 3192–3197.

[34] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computation
offloading for cloudlet-based mobile cloud computing,” in Proc. of ACM MSWiM,
2015, pp. 271–278.

