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Abstract—Fog computing is identified as a key enabler
for using various emerging applications by battery powered
and computationally constrained devices. In this paper, we
consider devices that aim at improving their performance
by choosing to offload their computational tasks to nearby
devices or to an edge cloud. We develop a game theoretical
model of the problem, and we use variational inequality
theory to compute an equilibrium task allocation in static
mixed strategies. Based on the computed equilibrium strat-
egy, we develop a decentralized algorithm for allocating the
computational tasks among nearby devices and the edge
cloud. We use extensive simulations to provide insight into the
performance of the proposed algorithm, and we compare its
performance with the performance of a myopic best response
algorithm that requires global knowledge of the system state.
Despite the fact that the proposed algorithm relies on average
system parameters only, our results show that it provides
good system performance close to that of the myopic best
response algorithm.

Index terms— computation offloading, fog computing,
Nash equilibria, decentralized algorithms

I. INTRODUCTION

Fog computing is widely recognized as a key component
of 5G networks and an enabler of the Internet of Things
(IoT) [1], [2]. The concept of fog computing extends
the traditional centralized cloud computing architecture by
allowing devices not only to use computing and storage
resources of centralized clouds, but also resources dis-
tributed across the network including the resources of each
other and resources located at the network edge [3].

Traditional centralized cloud computing allows devices
to offload the computation to a cloud infrastructure with
significant computational power [4],[5], [6]. Cloud offload-
ing may indeed accelerate the execution of applications,
but it may suffer from high communication delays, on
the one hand due to the contention of devices for radio
spectrum, on the other hand due to the remoteness of
the cloud infrastructure. Thus, traditional centralized cloud
computing may not be able to meet the delay requirements
of emerging IoT applications [7], [8], [9], [10].

Fog computing addresses this problem by allowing
collaborative computation offloading among nearby de-
vices and distributed cloud resources close to the network
edge [11]. The benefits of collaborative computation of-
floading are twofold. First, collaboration among devices
can make use of device-to-device (D2D) communication,
and thereby it can improve spectral efficiency and free
up radio resources for other purposes [12], [13], [14].
Second, the proximity of devices to each other can enable
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low communication delays. Thus, fog computing allows to
explore the tradeoff between traditional centralized cloud
offloading, which ensures low computing time, but may
suffer from high communication delay, and collaborative
computation offloading, which ensures low communica-
tion delay, but may involve higher computing times.

One of the main challenges facing the design of fog
computing systems is how to manage fog resources ef-
ficiently. Compared to traditional centralized cloud com-
puting, where a device only needs to decide whether to
offload the computation of a task, in the case of fog
computing the number of offloading choices increases with
the number of devices. Furthermore, today’s devices are
heterogeneous in terms of computational capabilities, in
terms of what tasks they have to execute and how often.
At the same time, some devices may be autonomous, and
hence they would be interested in minimizing their own
perceived completion times. Therefore, developing low
complexity algorithms for efficient task allocation among
nearby devices is an inherently challenging problem.

In this paper we address this problem by considering a
fog computing system, where devices can choose either to
perform their computation locally, to offload the compu-
tation to a nearby device, or to offload the computation to
an edge cloud. We provide a game theoretical model of
the completion time minimization problem. We show that
an equilibrium task allocation in static mixed strategies
always exists, i.e., if devices can choose at random whether
to offload, and where to offload. Based on the game
theoretical model we propose a decentralized algorithm
that relies on average system parameters, and allocates
the tasks according to a Nash equilibrium in static mixed
strategies. We use the algorithm to address the important
question whether efficient task allocation is feasible using
an algorithm that requires low signaling overhead, and
we compare the performance achieved by the proposed
algorithm with the performance of a myopic best response
algorithm that requires global knowledge of the system
state. Our results show that the proposed decentralized
algorithm, despite significantly lower signaling overhead,
provides good system performance close to that of the
myopic best response algorithm.

The rest of the paper is organized as follows. We
present the system model in Section II. We present two
algorithms in Sections III and IV. In Section V we present
numerical results and in Section VI we review related
work. Section VII concludes the paper.
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Fig. 1. Fog computing system that consists of 6 devices and an edge
cloud.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fog computing system that consists of
a set N={1,2,..., N} of devices, and an edge cloud.
Device i € N generates a sequence (ti71,ti,2,...) of
computational tasks. We consider that the size D;j, (e.g.,
in bytes) of task t;, of device i can be modeled by a
random variable D;, and the number of CPU cycles L, j
required to perform the task by a random variable L;.
According to results reported in [15], [16], [17] the number
X; of CPU cycles per data bit can be approximated by a
Gamma distribution, and thus we can model the relation
between L; and D; as L; = D, X;. Furthermore, assuming
that the first moment X, and the second moment %X
of X; can be estimated based on the past, the statistics
of the number of CPU cycles required to perform the
task of device ¢ can be easily obtained. Similar to other
works [18], [19], [20], we assume that the task arrival
process of device ¢ can be modeled by a Poisson process
with arrival intensity A;.

For each task ¢;; device ¢ can decide whether to
perform the task locally, to offload it to a device j €
N\ {i} or to an edge cloud. Thus, device ¢ chooses
a member of the set N U {0}, where 0 corresponds
to the edge cloud. We allow for randomized policies,
and we denote by p; ;(k) the probability that device ¢
assigns its task ¢;  to j € N U {0}, and we define the
probability vector p; (k) = {pio(k),pi1(k),....,pin(k)}.
where 3 c\rq0y Pi,j(k) = 1. Finally, we denote by P
the set of probability distributions over A" U {0}, i.e.,
pi(k) € P.

The above fog computing system relies on the assump-
tion that all devices faithfully execute the tasks offloaded
to them. To ensure this, the devices need to be incentivized
to collaborate in executing each others’ computational
tasks, as discussed in [21]. The collaboration among
devices in fog computing systems can be ensured with an
adequate incentive scheme similar to those used in peer-
to-peer systems [22], [23], [24]. These schemes ensure
the collaboration among the peers through the reputation-
based trust supporting mechanism. In the context of fog
computing systems, the mechanism would result in an
incentive scheme in which only devices that process
offloaded tasks themselves are entitled to offload the tasks.

A. Communication model

We consider that the devices communicate using an
orthogonal frequency division multiple access (OFDMA)
framework in which there is an assignment of subcarriers
to pairs of communicating nodes [25], [26]. Furthermore,

we consider that devices use dedicated bandwidth re-
sources, i.e. node-to-node pairs do not share the bandwidth
with each other and with the other cellular users [25]. This
can be implemented by assigning an orthogonal subcarrier
per transmission direction for each pair of communicating
nodes, resulting in NV x [N subcarriers in total. We denote
the transmission rate from device i to device j by R; j,
and the transmission rate from device ¢ to the edge cloud
through a base station by R; o. Each device maintains N
transmission queues, i.e., N —1 queues for transmitting to
devices j € N\ {i} and one for transmitting to the edge
cloud, and the tasks are transmitted in FIFO order.

We consider that the time 77 ;(k) needed to transmit a
task ¢; . from device i to j € N'U{0} is proportional to
its size D; 1, and is given by

Tij(k) =D; /R ;.

Furthermore, the time Ti‘fj(k) needed to deliver the input
data D; , from device i to j € N'U{0} is the sum of the
transmission time 77 ;(k) and of the waiting time (if any).

Similar to other works [27], [28], [29], [30], we consider
that the time needed to transmit the results of the compu-
tation back to the device is negligible. This assumption is
justified for many applications including face and object
recognition, and anomaly detection, where the size of the
result of the computation is much smaller than the size of
the input data.

Observe that our system model can accommodate sys-
tems in which certain devices i € N only serve for
performing the computational tasks of others, by setting
the arrival intensity A; = 0. These devices can be con-
sidered as micro-data centers located at the network edge,
whose function in fog computing systems is to perform
the computational tasks of the other devices [31], [32].
Furthermore, our system model can accommodate systems
in which certain devices j € A are not supposed to
perform the computational tasks of others, by setting the
transmission rates R; ; from the other devices i € N'\ {j}
to device j to low enough values.

Figure 1 illustrates a fog computing system that consists
of six devices and one edge cloud; device 1 and device
2 offload their tasks through a base station to the cloud
server, device 4 offloads its tasks to device 2, device 5
offloads its task to device 3 that serves as a micro-data
center, and device 6 performs computation locally.

B. Computation model

To model the time that is needed to compute a task
in a device 7, we consider that each device ¢ maintains
one execution queue with tasks served in FIFO order.
We denote by F; the computational capability of device
i. Unlike devices, the cloud server has a large number
of processors with computational capability Fjy each, and
we assume that computing in the edge cloud begins
immediately upon arrival of a task.

Similar to common practice [21], [27] we consider that
the time 77, (k) needed to compute a task #;x, on j €
N U {0} is proportional to its complexity L;j, and is
given by

Ti (k)

2%

=L, /F;.
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Fig. 2. Fog computing system modeled as a queuing network.

Furthermore, the execution time 777, (k) of a task #; x on
device j is the sum of the computation time 77, (k) and of
the waiting time (if any). Figure 2 illustrates the queuing
model of a computation offloading system.

C. Problem formulation

We define the cost C; of device ¢ as the mean comple-
tion time of its tasks. Given a sequence (Z;1,%;2,...) of
computational tasks, we can thus express the cost C; as

1 .
Ci= Klgnoo T [kz_l (pll(k)T’L’L(k) M

+ ZjeN\{i}u{O} pij (k) (T (k) + Tz‘e,j(k)))] :

Since the devices are autonomous, we consider that each
device aims at minimizing its cost by solving

minC; s.t. ()
pi(k) € P. 3)

Since devices’ decisions affect each other, the devices play
a dynamic non-cooperative game, and we refer to the game
as the multi user computation offloading game (MCOQG).
The game is closest to an undiscounted stochastic game
with countably infinite state space, but the system state
evolves according to a semi-Markov chain (instead of a
Markov chain, depending on the distribution of D; and
L;) and payoffs (the completion times) are unbounded. We
are not aware of existence results for Markov equilibria for
this class of problem, and even for the case when the state
evolves according to a Markov chain with countable state
space and unbounded payoffs, there are only a few results
on the existence of equilibria in Markov strategies [33],
[34], [35].

D. Decentralized solution supported by a centralized entity

Since fog computing architecture is decentralized in na-
ture, and devices in fog computing systems are expected to
be autonomous [11], [36] we are interested in developing
decentralized algorithms that will allow devices to make
their offloading decisions locally. Motivated by widely
considered hierarchical fog computing architectures [37],
[38], we consider that there is a single central entity
with a high level of hierarchy that collects and stores the
information about the fog computing system. The entity

pi(k) = MyopicBestResponse(t; 1)

1: p; (k) =0, VjeNU{0}

2: /* Estimate completion time of ¢; , in V5 € NU{0} */
3: for j =0,...,N do

4: if j =7 then

5: ECompleteT'(j) = Tf (k)

6: else

7. ECompleteT(j) = T¢ (k) + T¢, (k)

8: end if

9: end for

10: /* Make a greedy decision */

—
—_

i < argmin ECompleteT (j)
{jeNU{0}

: pi,i’(k) =1

. return p; (k)

[ —
[SSI ]

Fig. 3. Pseudo code of myopic best response.

need not be a single physical entity, but a single logically
centralized entity that can handle high loads and can be
resilient to failure.

Furthermore, we consider that the entity periodically
sends the needed information to the devices and thus
supports them in making their offloading decisions. Intu-
itively, more information about the system state will allow
devices to make better offloading decisions, but at the cost
of increased signaling overhead. Therefore, one important
objective when developing decentralized algorithms for
allocating the computational tasks is to achieve good
system performance at the cost of an acceptable signaling
overhead. With this in mind, in what follows we propose
and discuss two decentralized solutions for the MCOG
problem in the form of a Markov strategy and in static
mixed strategies, respectively.

III. MYOPIC BEST RESPONSE

The first algorithm we consider, called Myopic Best
Response (MBR), requires global knowledge of the system
state, but decisions are made locally at the devices. Similar
to the WaterFilling algorithm proposed in [39], in the MBR
algorithm every device ¢ makes a decision based on a
myopic best response strategy, i.e., every device ¢ chooses
anode j € N'U{0} that minimizes the completion time of
its task ¢; 5, given the instantaneous state of the queuing
network. The pseudo-code for computing the myopic best
response strategy is shown in Figure 3. Note that since the
devices make their decisions based on the instantaneous
states of the queues, they do not take into account the tasks
that may arrive to the other devices’ execution queues
while transmitting a task. Futhermore, if the devices’
execution queues were stable if all devices perform all
tasks locally, then under the MBR algorithm the queue
lengths do not grow unbounded since each device chooses
the destination node based on the instantaneous state of the
queues.

Note that if we define the system state upon the arrival
of task ?;, as the number of jobs in the transmission
and execution queues, then the devices’ decisions depend
on the instantaneous system state only, and hence the
myopic best response is a Markov strategy for the MCOG.
Nonetheless, it is not necessarily a Markov perfect equi-
librium.
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Fig. 4. State transition diagram of the semi-Markov process induced by
the offloading decisions for the single device case (N = 1).

In a system with [V devices we have N x N transmission
queues and IN+1 execution queues, and we can thus model
the system as an N X (N+1)+1 dimensional semi-Markov
process.

Example 1. Figure 4 shows the state transition diagram
for a single device, i.e, N = 1, which is three di-
mensional. We use the triplet (n;,ny,ng) to denote the
system state, where n;, ny and ng stand for the number
of tasks in the local execution queue, number of tasks in
the transmission queue and the number of tasks in the
cloud server, respectively. Since N = 1, a device only
needs to decide whether to offload the computation to the
edge cloud or to perform the computation locally and
hence the transition intensities from state (n;,ng,ng) to
state (ng,ny + 1,n9) and from state (n;,ny,ng) to state
(ni+1,n4,n0) are (1 —p1.1)A1 and p11A1, respectively.
In the case of computation offloading, the task with size
Dy and complexity Ly needs to be transmitted to the
edge cloud at rate R, o and executed with computational
capability Fy and thus the transition intensities from state
(ni,ne,ng) to state (ny,my — 1,n9 + 1) and from state
(ng, e, mo) to state (ny,ng,ng — 1) are ,u{o = Di1/Riy
and ,ufo = ngLy/Fy, respectively. Finally, in the case of
local execution the task with complexity L, needs to be
executed locally with local computational capability Fi
and hence the transition intensity from state (nj,ng,ng)
to state (n; — 1,n4,n9) is pu¥ = L/ F.

A significant detriment of the MBR algorithm is its
signaling overhead, as it requires global information about
the system state upon the arrival of each task. To reduce
the signaling requirements, in what follows we propose an
algorithm that is based on a strategy that relies on average
system parameters only.

IV. EQUILIBRIUM IN STATIC MIXED STRATEGIES

As a practical alternative to the MBR algorithm, in this
section we propose a decentralized algorithm, which we
refer to as the Static Mixed Nash Equilibrium (SM-NE) al-
gorithm. The algorithm is based on an equilibrium (p; );en
in static mixed strategies, that is, device ¢ chooses the node
where to execute an arriving task at random according
to the probability vector p;, which is the same for all
tasks. For computing a static mixed strategy, it is enough
for a device to know the average task arrival intensities,
transmission rates, and the first and second moments of the
task size and the task complexity distribution. Therefore,
the SM-NE algorithm requires significantly less signaling
than the MBR algorithm.

In order to compute an equilibrium strategy, we start
with expressing the (approximate) equilibrium cost of

device i as a function of strategy profile (p;)icns> 1.€.
the mean completion time of its tasks in steady state.
Throughout the section we denote by D; and 2D the first
and the second moment of D;, respectively, and by L; and
2L; the first and the second moment of L;, respectively.

A. Transmission time in steady state

Since tasks arrive to each device as a Poisson process
and we aim for a constant probability vector p; as a
solution, the arrival processes to the transmission queues
are Poisson processes. If the transmission queues are
sufficiently large, we can approximate them as infinite,
similar to [20], and thus we can model each transmission
queue as an M/G/1 system. Let us denote by T7; ; and
2T, ; the mean and the second moment of the time needed
to transmit a task from device ¢ to j € N\ {i} U{0},
respectively. Then the mean time 7'¢; ; needed to deliver
the input data from device i to j € N\{i}U{0} is the sum
of the mean waiting time in the transmission queue and
the mean transmission time T*¢; ;, and can be expressed
as

v

-
7 pigNTh

i = 4Tt
Y201 = pighT )

“4)

and the queue is stable as long as the offered load pﬁ’ =
pi,j)\iTti,j < 1.

B. Computation time in steady state

Observe that if the input data size D; follows an expo-
nential distribution, then departures from the transmission
queues can be modeled by a Poisson process, and thus
tasks arrive to the devices’ execution queues according to a
Poisson process. In what follows we use the approximation
that the tasks arrive according to a Poisson process even if
D, is not exponentially distributed. Furthermore, following
common practice [40], [19], for analytical tractability we
approximate the execution queues as being infinite. This
approximation is reasonable if the queues are sufficiently
large. These two approximations allow us to model the
execution queue of each device as an M/G/1 system,
and the edge cloud as an M/G /oo system.

Let us denote by 7¢; ; and ?T¢; ; the mean and the
second moment of the time needed to compute device i’s
task on j € N U {0}, respectively. Then the mean time
Te, ; that device j € N needs to complete the execution
of device 7’s task is the sum of the mean waiting time in
the execution queue and the mean computation time 7°¢; ;,
and can be expressed as

Te;; = Lien pi/’jA%TcE +T¢ ;,
2(1 = X yen pirjriTCu )
and the queue is stable as long the offered load pj =
Denpirjri T ; <1
Since computing in the edge cloud begins immediately
upon arrival of a task, the mean time Fi,o that the cloud
needs to complete the execution of device ¢’s task is equal

to the mean computation time 7°¢; , i.e.,

Fi,o = fz/FO

®)

(6)



C. Existence of Static Mixed Strategy Equilibrium

We can rewrite (1) to express the cost C; of device i in
steady state as a function of (p;)icn/

Ci(pisp—i) = piviﬁ"vﬁzje/\/\{i}u{o} pig (T4, +T¢ ;)

where we use p_; to denote the strategies of all devices
except device .

Observe that static mixed strategy profile (p;);cns of
the devices has to ensure that the entire system is stable in
steady state, and we assume that the load is such that there
is at least one strategy profile that satisfies the stability
condition of the entire system. Now, we can define the set
of feasible strategies of device ¢ as the set of probability
vectors that ensure stability of the transmission and the
execution queues

Ki(p—i)={p:€Plpi ; < S, p§ < Sy, Vie N \{i}U{0}, Vi'},
where 0 < S; < 1 is the stability threshold associated
with the transmission and the execution queues.

Note that due to the stability constraints the set of
feasible strategies KC;(p—;) of device ¢ depends on the
other devices’ strategies, and we are interested in whether
there is a strategy profile (p;);car, such that

) < C; (pl, ), Vp; € /CZ(p*,l)

We are now ready to formulate the first main result of
the section.

Ci(p;, p~

Theorem 1. The MCOG has at least one equilibrium in
static mixed strategies.

In the rest of this subsection we use variational inequal-
ity (VI) theory to prove the theorem and for computing
an equilibrium. For a given set X C R”™ and a function
F : K — R, the VI(K, F) problem is the problem of
finding a point z* € K such that F(x*)T(z — z*) > 0,
for Vo € K. We define the set K as

K={(pi)ieMpi€ P, p ; < S, p§ <S¢, j e N'\{i}U{0},Vi}.

Before we prove the theorem, in the following we
formulate an important result concerning the cost function

Ci(pi,p—i)-

Lemma 1. C;(p;,
fixed p_; and (p;,p—

p—i) Is a convex function of p; for any

i) € K.

Proof. For notational convenience let us start the proof
with introducing a few shorthand notations,

Vi = Pi AT 5, 6 = Z PjiNTT 4,
JEN

7/)57]'7 C’L =1 7105

Using this notation we expand the cost C;(p;, p—

1

€ij =

i) as

Cl(p“p ) pll(2C +7Te zz)+p10(2’%0 +Tt20+TCZ())
i, ;5
+ Z Di,j QZZ]J‘f'Tt ,7+f+TC )

JEN\{i}
To prove convexity we proceed with expressing the first

Uty 0Ci(pi,p—s
order derivatives h; ; = 8C:i(pip—s)

9pi,j ’
27t Tt
L e Vi,0 To  T%0%,0
h:o=Tt. Tec. : N i —
4,0 i,0t z,0+26i’0 + i z( 262"0 262270 )a
— 5 2T T 40
) hi’i:Tci’l+2C + Dii z( 2C¢ 242 )a
h; =Tt +T¢ Vid 4 95 i
sJ - ] J 261 J 24-]
2ﬁi ATy T vy T 50,
+pijhi J o Joy AL 4%\
J (267;73' QCJ 26127]» 2<j2 )
We can now express the Hessian matrix
ht o 0 ... 0
0 h§,1 ... 0
Hl(pup—l): : : - . )
0 O h;N
A 32Ci(:0i,17—z)
where h} ; = wr, and
i Ai 2 70T o iTio
o= (Tho+——=)1+pio—>),
€:,0 4,0 4,0
; Ai (27 6;T%, il
h’z 7 e Tci,z + - 1+ Dii ’ 5
’ Cz‘( Gi ) Gi )
. i 20— %,ijJ )\iTZj
il Ei’j( T+ ey )(1+piy iy )+
i §jT?» NTE .
Tc X 2] 1+pz 2] .
2 (T + L) (14 iy )

Observe that all diagonal elements of H,;(p;,p_;) are
nonnegative, and thus the Hessian matrix H;(p;, p—;) is
positive semidefinite on K, which implies convexity. [J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us define the generalized Nash
equilibrium problem T'S =< N, (P)ien (Cilien >
subject to (p;)iens € K. I'® is a strategic game, in which
each device i € N plays a mixed strategy p; € K;(p_;),
and aims at minimizing its cost C; by solving

i)

min C; (p;, p— s.t. @)
Ppi

pi € Ki(p—i)- )

Clearly, a pure strategy Nash equilibrium (p});cpn of I'®
is an equilibrium of the MCOG in static mixed strategies,
as

Ci(pi,p*;) < Ci(pi,p™;),  Vpi € Ki(p™y).
We thus have to prove that I'® has a pure strategy Nash
equilibrium.
To do so, let us first define the function
Vplcl (Php—l)
F = : ,
VPN CN(PNJLN)



where V,,,C;(p;, p—;) is the gradient vector given by

hio
hia
vPiOi(piap—i) =

hi N
We prove the theorem in two steps based on the VI(C, F')
problem, which corresponds to I'®.

First, we prove that the solution set of the VI(/C, F)
problem is nonempty and compact. Since the first order
derivatives h; ; are rational functions, the function F' is
infinitely differentiable at every point in K, and hence it
is continuous on . Furthermore, the set K is compact and
convex. Hence, the solution set of the VI(KC, F') problem
is nonempty and compact (Corollary 2.2.5 in [41]).

Second, we prove that any solution of the VI(KC, F))
problem is an equilibrium of the MCOG. Since the func-
tion F' is continuous on K, it follows that C;(p;, p—;)
is continuously differentiable on K. Furthermore, by
Lemma 1 we know that C;(p;,p—;) is a convex function.
Therefore, any solution of the VI(XC, F) problem is a
pure strategy Nash equilibrium of I'* [42], and is thus
an equilibrium in static mixed strategies of MCOG. This
proves the theorem. O

Theorem 1 guarantees that the MCOG possesses at least
one equilibrium in static mixed strategies, according to
which the SM-NE algorithm allocates the tasks among the
devices and the edge cloud. The next important question is
whether there is an efficient algorithm for solving the VI
problem, and hence for computing an equilibrium (p});enr
of the MCOG in static mixed strategies.

In what follows we show that an equilibrium can
be computed efficiently under certain conditions. To do
so, we show that the function F' is monotone if the
execution queue of each device can be modeled by an
M/M/1 system and all task arrival intensities are equal.
Monotonicity of F' is a sufficient condition for various
algorithms proposed for solving VIs [43], e.g., for the
Solodov-Tseng Projection-Contraction (ST-PC) method.

Theorem 2. If the task sizes and complexities are expo-
nentially distributed, arrival intensities \; = A and

— 1-5; .
)\Ijiéa‘/\)/chjJ < N Vi € N,

then the function F' is monotone.

The proof is given in Appendix A.

Note that the sufficient condition provided by Theo-
rem 2 ensures stability of all execution queues in the
worst case scenario, i.e., when ﬁﬂ = maX;en ﬁjv for
all devices. This condition is, however, not necessary for
function F' to be monotone in realistic scenarios. In fact,
our simulations showed that the ST-PC method converges
to an equilibrium for various considered scenarios.

V. NUMERICAL RESULTS

In what follows we show simulation results obtained
using an event driven simulator, in which we implemented
the MBR and SM-NE algorithms. For the S7-PC method
we set p;; = 1, Vi € N as starting point, which
corresponds to the strategy profile in which each device

performs all tasks locally. The S7-PC method stops when
the norm of the difference of two successive iterations is
less than 104,

Similar to [44], [45], we placed the devices at random
on a regular grid with 10* points defined over a square
area of 1km x 1km, and we placed the edge cloud at the
center of the grid as in [44]. Unless otherwise noted, we
consider that the wired link latency 7. incurred during
communication with the cloud server can be neglected
since the cloud is located in close proximity of de-
vices [46]. For simplicity, we consider a static bandwidth
assignment for the simulations; we assign a bandwidth of
B; ; = 5 MHz for communication between device ¢ and
device j [47], [48], and for the device to cloud bandwidth
assignment we consider two scenarios. In the elastic
scenario the bandwidth B; o assigned for communication
between device ¢ and the edge cloud is independent of
the number of devices. In the fixed scenario the devices
share a fixed amount of bandwidth By when they want to
offload a task to the edge cloud, and the bandwidth B; g
scales directly proportional with the number of devices,
ie, B;g = %Bo. We consider that the channel gain of
device i to a node j € A"\ {i}U{0} is proportional to d, ",
where d; ; is the distance between device ¢ and node j, and
« is the path loss exponent, which we set to 4 according
to the path loss model in urban and suburban areas [49].
We set the data transmit power P} of every device i to
0.4 W according to [50] and given the bandwidth B; ;
available for the communication between nodes 7 and j
we calculate the noise power P, as P, = B; ; Ny, where
Ny = 1.38065 x 107237 is the spectral density for the
termal noise at the temperature 7' = 290K. Finally, we
calculate the transmission rate ; ; from device ¢ to node
Jj € N\ {Z} U {0} as R; ;= BiJ'lOgQ(l + Pltd;;l/Pn)

The input data size D, follows a uniform distribution
on [a,bd], where af and b¢ are uniformly distributed on
[0.1,1.4] Mb and on [2.2, 3.4] Mb, respectively. The arrival
intensity \; of the tasks of device ¢ is uniformly dis-
tributed on [0.01,0.03] tasks/s, and the stability threshold
is S; = 0.6. Note that for the above set of parameters the
maximum arrival intensity does not satisfy the sufficient
condition of Theorem 2 already for N = 20 devices. Yet,
our evaluation shows that the S7-PC method converges
even for larger instances of the problem.

The computational capability F; of device ¢ is drawn
from a continuous uniform distribution on [1,4] GHz,
while the computation capability of the edge cloud is
Fy = 64 GHz [51]. The task complexity L; follows a uni-
form distribution on [a!, bl], where a! and b} are uniformly
distributed on [0.2,0.5] Gceycles and [0.7,1] Geycles, re-
spectively.

We use three algorithms as a basis for comparison.
The first algorithm computes the socially optimal static
mixed strategy profile (p;);c that minimizes the system
cost C = % Y ien Cis ie., (Pi)ien = argming,,). . C.
We refer to this algorithm as the Static Mixed Optimal
(SM-OPT) algorithm. The second algorithm considers that
the devices are allowed to offload the tasks to the edge
cloud only (ie., p;; + pio = 1), and we refer to this
algorithm as the Static Mixed Cloud Nash Equilibrium
(SMC-NE) algorithm. The third algorithm considers that
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Fig. 5. Performance gain vs. number of devices for B; o = 0.2 MHz,
By = 1.25 MHz and B; o = +12.5 MHz.

all devices perform local execution (i.e., p; ; = 1). Further-
more, we define the performance gain of an algorithm as
the ratio between the system cost reached when all devices
perform local execution and the system cost reached by
the algorithm. For the SM-OPT algorithm the results
are shown only up to 30 or 35 devices, because the
computation of the socially optimal strategy profile was
computationally infeasible for larger problem instances.
The results shown in all figures are the averages of 50
simulations, together with 95% confidence intervals.

A. Performance gain

We start with evaluating the performance gain as a
function of the number of devices. Figure 5 shows the
performance gain for the MBR, SM-NE, SM-OPT and
SMC-NE algorithms as a function of the number of
devices for the two scenarios of device to cloud bandwidth
assignment. For the elastic scenario B;o = 0.2 MHz
and B; o = 1.25 MHz, and for the fixed scenario By =
12.5 MHz.

The results show that the SM-NE and the SM-OPT
algorithms perform close to the MBR algorithm, despite
the fact that they are based on average system parame-
ters only. We can also observe that when the device to
cloud bandwidth is low (about 0.2 MHz), SMC-NE does
not provide significant gain compared to local execution
(the performance gain is close to one for all values of
N). On the contrary, the MBR, SM-NE and SM-OPT
algorithms, which allow collaborative offloading, provide
a performance gain of about 50%, and the gain slightly
increases with the number of devices. The reason for the
slight increase of the gain is that when there are more
devices, devices are closer to each other on average, which
allows higher transmission rates between devices.

Compared to the case when B; o = 0.2 MHz, the results
for B;o = 1.25 MHz show that all algorithms achieve
very high performance gains (up to 300%). Furthermore,
the performance gain of the SMC-NE algorithm is similar
to that of the SM-NE and the SM-OPT algorithms, while
the MBR algorithm performs slightly better. The reason is
that for high device to cloud bandwidth in the static mixed
equilibrium most devices offload to the edge cloud, as on
average it is best to do so, even if given the instantaneous
system state it may be better to offload to a device,
as done by the MBR algorithm. Furthermore, unlike for
B;o = 0.2 MHz, for B; o = 1.25 MHz the performance
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Fig. 6. Performance gain vs. device to cloud bandwidth B; g for N = 8
devices placed over 0.5km x 0.5km square area, for N = 30 devices
placed over 1km x lkm square area, and for N = 60 devices placed
over 1.41km x 1.41km square area.

gain becomes fairly insensitive to the number of devices,
which is again due to the increased reliance on the cloud
resources for computation offloading.

The results are fairly different for the fixed device to
cloud bandwidth assignment scenario, as in this scenario
the number of devices affects the device to cloud band-
width. In this scenario collaboration among the devices
improves the system performance (SMC-NE vs. SM-NE
algorithms). We can also observe that as N increases, the
curves for fixed scenario approach the curves for the elastic
scenario for B; o = 0.2 MHz. This is due to that for large
values of N the device to cloud bandwidth B, ; becomes
low and the devices offload more to each other than to the
edge cloud.

Finally, the results show that the gap between the SM-
NE and the SM-OPT algorithms is almost negligible for
all scenarios, and hence we can conclude that the price of
stability of the MCOG game in static mixed strategies is
close to one.

B. Impact of cloud availability

In order to analyse the impact of the possibility to
offload to the edge cloud, in the following we vary the
bandwidth B; o between 0.2 MHz and 5.2 MHz.

Figure 6 shows the average and the median performance
gain for the MBR, SM-NE, SM-OPT and SMC-NE algo-
rithms as a function of the device to cloud bandwidth for 8
devices placed over a square area of 0.5km x0.5km, for 30
devices placed over a square area of 1km x 1km, and for
60 devices placed over a square area of 1.41km x 1.41km.
Note that the three scenarios have approximately the same
density of devices. We first observe that the median per-
formance gain is almost equal to the average performance
gain for all algorithms and for all considered scenarios,
which suggests that distribution of the completion times of
the tasks is approximately symmetrical. The figure shows
that the performance gain achieved by the algorithms in-
creases with the bandwidth B; . Furthermore, we observe
that the gap between the algorithms decreases as the device
to cloud bandwidth increases, and for reasonably high
bandwidths the SM-NE algorithm performs almost equally
well as the MBR algorithm. The results also show that
collaboration among the devices has highest impact on
the system performance when the bandwidth B; ¢ is low,
and for B;o = 1.2 MHz offloading to the edge cloud
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only (SMC-NE) is as good as the SM-NE and SM-OPT
algorithms.

Comparing the performance for different sized areas we
observe that the performance gain decreases as the size of
the area increases, which is due to that the devices are
closer to the cloud server on average in a smaller area.

C. Impact of cloud remoteness

In order to evaluate the impact of the cloud access
latency, in the following we vary the latency 7, between
0 s and 0.4 s. A low latency (Oms < 7. < 20ms)
would correspond to the case of an edge cloud or a home
gateway, a moderate latency (20ms < 7, < 100ms) would
correspond to an edge cloud located deeper in the network
(e.g., metro network), and high latency (100ms < 7.)
would correspond to remote cloud servers.

In Figure 7 we show the average performance gain
as a function of the latency 7. for the MBR, SM-NE,
SM-OPT and SMC-NE algorithms in a fog computing
system that serves N = 30 devices, each of them assigned
a bandwidth of B; o = 1.25 MHz for communication with
the cloud. The figure shows that the performance gain of
all algorithms decreases as the latency to the cloud server
increases. Furthermore, we observe that the performance
gain of the SMC-NE algorithm approaches one, as in the
case of a high latency it is better for most of devices
to perform the computation locally. On the contrary, the
performance gain of the MBR, SM-NE and SM-OPT
algorithms remains slightly above 1.5 even for high values
of the latency (7. > 300ms), which additionally confirms
that devices can decrease the average completion times of
their tasks through collaboration even in systems where
they cannot entirely rely on the cloud resources.

D. Performance gain perceived per device

In order to evaluate the performance gain perceived per
device, we use the notion of ex-ante and ex-post individual
rationality. These are important in situations when the
devices are allowed to decide whether or not to partic-
ipate in the collaboration before and after learning their
types (i.e., the exact size and complexity of their tasks),
respectively. The results in Figure 5 show that on average
the devices benefit from collaboration, as the performance
gain is greater than one, and hence collaboration among
the devices is ex-ante individually rational. In order to
investigate whether collaboration among the devices is ex-
post individually rational, in Figure 8 we plot the CDF
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Fig. 8. Distribution of the performance gain for N = 30 devices,
Bi,O =0.2 MHz, Bi,O = 0.8 MHz and Bi,O = 1.25 MHz.

of the performance gain for the elastic device to cloud
bandwidth assignment scenario with 30 devices and for
Bi,O = 02 MHZ, Bi,O = 08 MHZ, and Bi,O = 125 MHZ

The results for B; o = 0.2 MHz show that the SMC-NE
algorithm is ex-post individually rational, as devices al-
ways gain compared to local computation. At the same
time, the SM-NE and MBR algorithms achieve a per-
formance gain below one for a small fraction of the
devices, and hence collaboration among devices is not ex-
post individually rational. On the contrary, the results for
B; o = 0.8 MHz show that the MBR algorithm is ex-post
individually rational, since the performance gain of every
device is larger than one, but the SM-NE is not. Finally,
the results for B; o = 1.25 MHz show that all algorithms
ensure that every device achieves a performance gain at
least one, and hence for B;( = 1.25 MHz collaboration
among devices is ex-post individually rational using all
algorithms.

The above results show that collaboration among the
devices is ex-post individually rational only if sufficient
bandwidth is provided for communication to the edge
cloud. Thus, if ex-post individual rationality is important
then the device to cloud bandwidth has to be managed
appropriately.

E. Utilization ratio of collaboration among devices

In order to evaluate the impact of collaboration on
the system performance, we consider the ratio of the
tasks executed at different nodes in the system. To obtain
this ratio, we simulated stochastic task arrivals over a
period of 10%*s. We recorded the N; tasks generated
in the system during this period, and for an algorithm
A € {MBR, SM-NE, SM-OPT} we recorded N;! and N4,
the number of tasks executed locally and the number of
tasks executed in the edge cloud, respectively. Figure 9

A
shows the ratio NTZ of the tasks executed locally, and the

— A .
ratio ¢ vac of the tasks executed either locally or at one

of the other devices for the MBR, SM-NE and SM-OPT
algorithms as a function of the number of devices for
Bio = +12.5 MHz.

The results in Figure 9 show that for N = 10, i.e., when
the bandwidth assigned to each device for communication
with the edge cloud is 1.25 MHz, the devices offload
more tasks to the edge cloud in the case of the SM-NE
and SM-OPT algorithms than in the case of the MBR
algorithm, which coincides with the observation made in
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Figure 5 for B; o = 1.25 MHz. On the contrary, when
N > 20 the devices offload more tasks to the edge
cloud in the case of the MBR algorithm than in the
case of the SM-NE and SM-OPT algorithms that achieve
approximately the same performance. Furthermore, we
observe that while the ratio of the tasks executed locally
increases up to 30 users and remains constant for more
devices, the ratio of the tasks executed either locally or
at one of the other devices continues to increase with
the number of devices for all algorithms. These results
confirm the observation made for B; g = %12.5 MHz in
Figure 5 that the collaboration among the devices improves
the system performance.

F. Computational efficiency of the SM-NE algorithm

Recall that the SM-NE algorithm is based on the static
mixed strategy equilibrium, and that the SM-OPT algo-
rithm is based on the socially optimal static mixed strategy
profile. In order to assess the computational efficiency of
the SM-NE algorithm we measured the time needed to
compute a static mixed strategy equilibrium by the ST-PC
method and the time needed to compute a socially optimal
static mixed strategy profile by the quasi-Newton method.
Figure 10 shows the measured times as a function of the
number of devices. We observe that the time needed to
compute the socially optimal static mixed strategy profile
increases exponentially with the number of devices at a
fairly high rate, and already for 30 devices it is more than
an order of magnitude faster to compute a static mixed
strategy equilibrium than to compute the socially optimal
static mixed strategy profile. Therefore, we conclude that
the SM-NE algorithm, which is based on an equilibrium in
static mixed strategies, is a computationally efficient solu-
tion for medium to large scale collaborative computation
offloading systems.

VI. RELATED WORK

There is a large body of work on augmenting the
execution of computationally intensive applications using
cloud resources [52], [53], [54], [55], [27], [56]. In [52] the
authors studied the problem of maximizing the throughput
of mobile data stream applications through partitioning,
and proposed a genetic algorithm as a solution. The
authors in [53] considered multiple QoS factors in a 2-
tiered cloud infrastructure, and proposed a heuristic for
minimizing the users’ cost. In [54] the authors proposed
an iterative algorithm that minimizes the users’ overall
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Fig. 10. Time needed to compute a static mixed strategy equilibrium and
a socially optimal static mixed strategy profile for B; o = 1.25 MHz.

energy consumption, while meeting latency constraints.
The authors in [55] considered the joint optimization of the
offloading decisions, and the allocation of communication
and computation resources, proved the NP-hardness of
the problem and proposed a heuristic offloading deci-
sion algorithm for minimizing the completion time and
the energy consumption of devices. The authors in [27]
considered a single wireless link and an elastic cloud,
provided a game theoretic treatment of the problem of
minimizing completion time and showed that the game is
a potential game. The authors in [56] considered multiple
wireless links, elastic and non-elastic cloud, provided a
game theoretic analysis of the problem and proposed
a polynomial complexity algorithm for computing an
equilibrium allocation. In [19] the authors considered a
three-tier cloud architecture with stochastic task arrivals,
provided a game theoretical formulation of the problem,
and used a variational inequality to prove the existence
of a solution and to provide a distributed algorithm for
computing an equilibrium. Unlike these works, we allow
devices to offload computations to each other as well.

A few recent works considered augmenting the execu-
tion of computationally intensive applications using the
computational power of nearby devices in a collaborative
way [57], [58], [59], [18], [39]. The authors in [57]
modeled the collaboration among mobile devices as a
coalition game, and proposed a heuristic method for
solving a 0 — 1 integer quadratic programing problem
that minimizes the overall energy consumption. In [58]
the authors formulated the resource allocation problem
among neighboring mobile devices as a multi-objective
optimization that aims to minimize the completion times
of the tasks as well as the overall energy consumption,
and as a solution proposed a two-stage approach based on
enumerating Pareto optimal solutions. In [59] the authors
formulated the problem of maximizing the probability of
computing tasks before their deadlines through mobility-
assisted opportunistic computation offloading as a convex
optimization problem, and used the barrier method to solve
the problem. The authors in [18] considered a collabo-
rative cloudlet that consists of devices that can perform
shared offloading, and proposed two heuristic allocation
algorithms that minimize the average relative usage of all
the nodes in the cloudet. The authors in [39] proposed
an architecture that enables a mobile device to remotely
access computational resources on other mobile devices,
and proposed two greedy algorithms that require complete



information about devices’ states, for minimizing the job
completion time and the energy consumption, respectively.
Our work differs from these works, as we consider com-
putation offloading to an edge cloud and nearby devices,
and provide a non-cooperative game theoretic treatment of
the problem.

Only a few recent works considered the computation
offloading problem in fog computing systems [60], [61],
[62], [63]. The authors in [60] considered a fog computing
system in which the tasks can be performed locally at
the devices, at a fog node or at a remote cloud server,
and proposed a suboptimal algorithm for computing the
offloading decisions and allocating resources with the ob-
jective to minimize the delay and the energy consumption
of devices. In [61] the authors considered a fog computing
system, where devices may offload their computation to
small cell access points that provide computation and
storage capacities, and designed a heuristic for a joint
optimization of radio and computational resources with the
objective of minimizing the energy consumption. Unlike
this work, we consider stochastic task arrivals, and we
provide a game theoretical treatment of the completion
time minimization problem. In [62] authors formulated the
power consumption-delay tradeoff problem in fog comput-
ing system that consists of a set of fog devices and a set of
cloud servers, and proposed a heuristic for allocating the
workload among fog devices and cloud servers. In [63]
the authors considered the joint optimization problem
of task allocation and task image placement in a fog
computing system that consists of a set of storage srevers,
a set of computation servers and a set of users, and pro-
posed a low-complexity three-stage algorithm for the task
completion time minimization problem. Our work differs
from these works, as we consider heterogeneous compu-
tational tasks, and our queueing system model captures
the contention for both communication and computational
resources.

To the best of our knowledge ours is the first work
based on a game theoretical analysis that proposes a
decentralized algorithm with low signaling overhead for
solving the completion time minimization problem in fog
computing systems.

VII. CONCLUSION

We have provided a game theoretical analysis of a fog
computing system. We proposed an efficient decentralized
algorithm based on an equilibrium task allocation in static
mixed strategies. We compared the performance achieved
by the proposed algorithm that relies on average system
parameters with the performance of a myopic best re-
sponse algorithm that requires global knowledge of the
system state. Our numerical results show that the proposed
algorithm achieves good system performance, close to that
of the myopic best response algorithm, and could be a
possible solution for coordinating collaborative computa-
tion offloading with low signaling overhead. There is a
number of interesting extensions of our model. First, one
could consider a communication model in which devices
share the bandwidth with each other. Another direction is
to consider the energy cost of offloading, e.g., use it as a
constraint for offloading optimization.

APPENDIX

A. Proof of Theorem 2

Observe that if \; = A then the cost C; can equivalently
be defined as N; = A\, i.e., the number of tasks in the
system. Furthermore, since task complexities are assumed
to be exponentially distributed, the execution queues are
M/M/1 systems. We can thus rewrite 7¢; ; as

T, ;
T =1—%, )
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and the cost N;(p;, p—;) of device i as
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Next, we express the first order derivatives h;; of
Ni(piap—i) as
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In order to prove the monotonicity of the function F' in
what follows we show that the Jacobian J of I is positive
semidefinite. The Jacobian J has the following structure
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Reordering the rows and columns, the Jacobian J can be
rewritten as

c 0 ... 0
0 My ... 0
J = . ’
0 0 My
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Observe that all diagonal elements of C' are nonnegative,
and thus the matrix C' is positive definite. In order to
show that .J is positive semidefinite we have to show that
the symmetric matrix M; = Z(M] + M;) is positive
semidefinite.

The diagonal elements dhfi
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Furthermore, let us define matrix 7} as
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Now, matrix M; can be rewritten as

Py A— 2\ _
Mi=% (Tci T, o (I B Tp)) T,
the

where o denotes the Hadamard product, i.e.,

component-wise product of two matrices.

It is well known that the identity / and unit £ matrices
are positive definite, while positive definiteness of matrix
Te; T“ follows from the definition. Observe that matrix
Tt is positive semidefinite as well, since it is a diagonal
matrix with non-negative elements. Since the sum of two
positive semidefinite matrices is positive semidefinite and
the Hadamard product of two positive semidefinite matri-
ces is also positive semidefinite [64], the proof reduces to
showing that matrix [+ FE + 22 T? is positive semidefinite.
To do so, we will show that the minimum eigenvalue of
the matrix %,i\sz is greater than or equal to —1. To do

s0, let us denote by e the all-ones vector and define the
vector t = (p1,T¢1; p2,iT¢;...pN,iTN,;). Now, we
can express matrix 7 as

P _ 1 p,T P\T
T? = 2(tie +e(t)").
The characteristic polynomial of the symmetric matrix 7}
is given by [65]
N-2
k ( B2
2
We observe that Tip has N — 2 zero eigenvalues, and
one non-negative and one non-positive eigenvalue given by
ki = (Tt +VN|t7]])/2and b = (Tt} —V/N[t7]) /2.
respectively. Therefore, the minimum eigenvalue of the
%Tip is greater than —1 if

matrix c
—/\ VN —

Since t! is a vector with non-negative elements, we
have that eTt? > ||t?|| and it also holds that [|t7]| <
vV N max;en t;;. Therefore, the following inequalities
hold
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Based on (11) a sufficient condition for (10) is that
Amaxjen T¢; < 1;\[&. This proves the theorem.
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