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Abstract—We consider the computation offloading prob-
lem in an edge computing system in which an operator
jointly manages wireless and computing resources across
devices that make their offloading decisions autonomously
with the objective to minimize their own completion times.
We develop a game theoretical model of the interaction
between the devices and an operator that can implement
one of two resource allocation policies, a cost minimizing
or a time fair resource allocation policy. We express the
optimal cost minimizing resource allocation policy in closed
form and prove the existence of Stackelberg equilibria for
both resource allocation policies. We propose two efficient
decentralized algorithms that devices can use for computing
equilibria of offloading decisions under the cost minimizing
and the time fair resource allocation policies. We establish
bounds on the price of anarchy of the games played by the
devices and by doing so we show that the proposed algorithms
have bounded approximation ratios. Our simulation results
show that the cost minimizing resource allocation policy can
achieve significantly lower completion times than the time
fair allocation policy. At the same time, the convergence
time of the proposed algorithms is approximately linear in
the number of devices, and thus they could be effectively
implemented for edge computing resource management.

Index terms— edge computing, resource management,
computation offloading, game theory, decentralized algo-
rithms

I. INTRODUCTION

The evolution of wireless access and the Internet of
Things are driving the development of a variety of mobile
applications such as face and object recognition, mobile
augmented reality, and cognitive assistance [1], [2], [3].
These emerging human-in-the-loop applications have delay
and computational requirements that often surpass the
capabilities of handheld devices [4].

A promising approach to support these emerging appli-
cations is mobile edge computing (MEC) [5]. The key
idea of MEC is to move cloud resources towards the
network edge so as to overcome the issue of high end-to-
end transmission delays, which are inherent to computation
offloading to remote centralized clouds such as Microsoft
Azure or Amazon EC2 [6]. Owing to the proximity of
computing resources to the end users, MEC has the potential
to significantly reduce response times for individual devices
by allowing them to offload the computationally intensive
tasks through a wireless network to nearby edge clouds.
However, computation offloading to edge clouds imposes
a huge load on limited wireless and computing resources,
and thus the response times might be adversely affected
by the contention for MEC resources.

In order to keep response times as low as possible, it is
thus essential to jointly manage the wireless and the com-
puting resources. Nonetheless, joint resource management
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in a MEC system is inherently challenging for various
reasons. First, it requires one to take into consideration
the heterogeneity of the devices and their workloads. For
example, the devices can differ in terms of their computing
capabilities, the amount of data they need to offload and the
delay and the computational requirements of the tasks they
generate. Second, devices in MEC systems are likely to
be autonomous entities, and thus they may be interested in
maximizing their own performance [7], [8]. Finally, MEC
systems may consist of multiple heterogeneous communi-
cation and computing resources, e.g., wireless access points
with different bandwidths and edge clouds with different
computing capabilities. Therefore, the joint management of
wireless and computing resources in MEC systems should
be performed in accordance with the individual interest of
the heterogeneous devices, the characteristics of their tasks
and the heterogeneity of the infrastructure.

In this paper we consider devices that aim at mini-
mizing the completion times of their own tasks, and we
address the corresponding computation offloading problem
by considering the interaction between an operator that
jointly manages the wireless and computing resources,
and devices that decide autonomously whether or not to
offload the computations and in the case of offloading
which of multiple heterogeneous wireless and computing
resources to use. We model the problem as a multiple-leader
common-follower Stackelberg game, in which devices are
leaders and the operator is the follower. We consider
two resource allocation policies for the operator, called
the cost minimizing and the time fair resource allocation
policy. We show that the resulting games played by the
devices can be transformed into a weighted congestion
game and into a player-specific congestion game under
the cost minimizing and the time fair policy, respectively.
We provide a closed form solution for the optimal cost
minimizing resource allocation policy and we prove that
Stackelberg equilibria exist for both policies. Based on our
constructive equilibrium existence proofs, we propose two
efficient decentralized algorithms that devices can use for
computing offloading decisions under the cost minimizing
and the time fair policy of the operator, respectively. We
provide upper bounds on the price of anarchy of the games
played by the devices, and thus we show that our proposed
algorithms serve as approximation algorithms for the
completion time minimization problems defined for the cost
minimizing and the time fair resource allocation policies.
Our analytical results show that the cost minimizing policy
can guarantee better performance in terms of the worst
case system cost and that the time fair policy can guarantee
better performance in terms of the worst case computational
complexity. Finally, we use simulations to show that the
completion times achieved under the cost minimizing policy
are significantly lower than the completion times achieved



TABLE I
SUMMARY OF KEY NOTATIONS

Notation Description
N Set of N WDs
A Set of A APs
Ai Set of APs available for offloading to WD i

C Set of C ECs
Pc Operator’s computing resource allocation policy
Pr Operator’s rate allocation policy
Di Mean size of the input data for WD i

Li Mean task complexity for WD i

F l
i Computational capability of WD i

Cl
i Local computing cost for WD i

Ri,a Uplink PHY rate of WD i towards AP a

ui,a Uplink access provisioning coefficient, (i, a)∈N×Ai

F c Computing capability of EC c

pi,c Computing power provisioning coefficient,(i,c)∈N×C
Di Set of feasible decisions for WD i

di Decision of WD i, di ∈ Di

d Strategy profile
Oa(d) Set of na(d) WDs offloading through AP a in d
Oc(d) Set of nc(d) WDs offloading to EC c in d

O(a,c)(d) Set of WDs offloading through AP a to EC c in d
O(d) Set of all WDs that offload their tasks in d

ωi,a(d, ua) Uplink rate of WD i ∈ Oa(d) for ua

F c
i (d, pc) Computing capability of WD i ∈ Oc(d) for pc

Cc
i,a(d, ua, pc) Offloading cost of WD i, di=(a, c) for ua and pc in d
Ci(d, u, p) Cost of WD i for u and p in d
C(d, u, p) Total cost in the system for u and p in d

under the time fair policy and that the complexity of
computing an equilibrium is on average almost linear in
the number of devices for both policies.

The rest of the paper is organized as follows. We
present the system model and the problem formulation
in Section II. We present the cost minimizing resource
allocation policy and prove the existence of Stackelberg
equilibria in Section III. We present the time fair resource
allocation policy and prove the existence of Stackelberg
equilibria in Section IV. We provide a bound on the
price of anarchy of the games in Section V and present
numerical results in Section VI. We discuss related work
in Section VII and conclude the paper in Section VIII.

II. SYSTEM MODEL

We consider an edge computing system that consists of a
set N ={1, 2, . . . , N} of wireless devices (WDs), a set A=
{1, 2, . . . , A} of access points (APs), a set C={1, 2, . . . , C}
of edge clouds (ECs), and an operator that manages the
allocation of the wireless and computing resources. We
denote by Ai⊆A the set of APs through which WD i∈N
can communicate with the ECs. For ease of reference, the
key notations used in the paper are summarized in Table I.

Each WD i ∈ N generates computationally intensive
tasks, which can be characterized by two parameters, the
size Di of the input data and the expected number Li
of CPU cycles required to perform the computation (e.g.,
in bits). As shown by recent works, the number X of
CPU cycles required per data bit can be approximated
by a Gamma distribution [9], [10]. Hence, based on the
empirical mean E[X], the relationship between Li and Di

can be expressed as Li=DiE[X]. To make the analysis
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Fig. 1. Example of an edge computing system with N = 5 WDs, C = 2
ECs and A = 3 APs. Transmission rates and cloud computing power
may be actively managed by the operator.

tractable, we make the common assumption that the set of
WDs is known (e.g., through signaling) [11] [12].

Each WD i ∈ N can decide whether to perform the
computation locally or to offload the computation to one
of the ECs c∈C through one of the APs a∈Ai. Thus, the
set of feasible decisions for WD i is Di={i}∪{(a, c)|a∈
Ai, c ∈ C}, where i corresponds to local computing and
(a, c) to offloading through AP a to EC c. We refer to
decision di∈ Di of WD i as its strategy, and we refer
to the collection d = (di)i∈N as a strategy profile, i.e.,
d∈×i∈NDi = D. For a strategy profile d ∈ D, we define
the set Oa(d) , {i|di=(a, ·)} of WDs that offload their
tasks through AP a and we denote by na(d) , |Oa(d)|
the number of WDs that offload their tasks through AP a.
Similarly, we define the set Oc(d) , {i|di=(·, c)} of WDs
that offload their tasks to EC c and we denote by nc(d) ,
|Oc(d)| the number of WDs that offload their tasks to EC
c. Finally, we define the set O(a,c)(d) , Oa(d) ∩ Oc(d)
of WDs that offload their tasks through AP a to EC c and
the set O(d) , ∪c∈COc(d) of all WDs that offload their
tasks.

Fig. 1 shows an example of a MEC system that consists
of N = 5 WDs, C = 2 ECs and A = 3 APs. WD 1
performs the computation locally, WDs 2 and 3 offload
their tasks to EC c1 through AP a, WDs 4 and 5 offload
their tasks to EC c2 through APs b and c, respectively. In
what follows we discuss our models of computing and
wireless resource management.

A. Computing Resource Management

A WD that chooses local computing performs its task
using its local computing resources. We denote by F li
the computational capability of WD i ∈ N (e.g., CPU cy-
cles/second). A WD that chooses offloading has to transmit
the data through an AP a, after which the task is performed
in an EC c. We denote by F c the computing capability of
EC c. We consider that the computing capability allocated to
WDs i ∈ Oc(d) is determined by the operator’s computing
resource allocation policy Pc : D→ R|C|x|N |≥0 . The policy
sets for every strategy profile d ∈ D the computing power
provisioning coefficients (pi,c)i∈N ,c∈C , akin to the weight
of a job in generalized processor sharing (GPS). Using
the shorthand notation pc=(pi,c)i∈N , we can express the
computing capability allocated to WD i by EC c as

F ci (d,pc) = F c
pi,c∑

j∈Oc(d) pj,c
. (1)

Observe that for a policy that sets pi,c = 1, ∀i ∈
Oc(d),∀d ∈ D, the computing power is shared equally.
While GPS is an ideal scheduler, several process schedulers
exist to approximate it in practice, e.g., DWRR [13].
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B. Wireless Resource Management

The wireless medium of AP a is shared by the WDs
that choose to offload through AP a. We denote by Ri,a
the achievable PHY rate of WD i through AP a, which is
determined by the physical characteristics of the wireless
medium, distance, etc. The actual rate at which WD i can
offload its data through AP a is determined by the operator’s
rate allocation policy Pr : D→ R|A|x|N |≥0 . The policy sets
for every strategy profile the uplink access provisioning
coefficients (ui,a)i∈N ,a∈A, akin to the weight of a flow in
GPS. Using the shorthand notation ua=(ui,a)i∈N , we can
express the uplink rate assigned to WD i at AP a as

ωi,a(d,ua) = Ri,a
ui,a∑

j∈Oa(d) uj,a
. (2)

Observe that for a policy that sets ui,a(d)=1,∀i∈Oa(d)
we obtain the model that describes the time-fair throughput
sharing mechanisms in TDMA and OFDMA based MAC
protocols [14].

C. Cost Model

We define the cost of a WD as the completion time of
its task. In what follows we introduce our cost model in
the case of computation offloading and in the case of local
computing.

Computation offloading: In the case of computation
offloading the completion time of WD i’s task consists of
two parts. The first part is the time needed to transmit Di

amount of data, and the second part is the time needed
to perform Li CPU cycles at the cloud server. Thus, if in
strategy profile d WD i offloads to EC c ∈ C through AP
a ∈ Ai then its cost can be expressed as

Cci,a(d,ua,pc) = Di/ωi,a(d,ua) + Li/F
c
i (d,pc). (3)

In (3) we made the common assumption that the time
needed to transmit the results from the cloud to the
device can be neglected [15], [11], [16], [17], as for typical
applications (e.g., face and object recognition), the size of
the result of the computation is much smaller than Di.

Local computing: In the case of local computing the
completion time of WD i’s task is determined by the
number Li of CPU cycles pertaining to the task and by
the computing capability F li . Thus, the local computing
cost can be expressed as

Cli = Li/F
l
i . (4)

Total cost: To define the total cost, we first define the
shorthand notation u , (ua)a∈A and p , (pc)c∈C , and
express the cost of WD i

Ci(d,u,p)=
∑

(a,c)∈Ai×C

Idi,(a,c)C
c
i,a(d,ua,pc)+Idi,iC

l
i , (5)

where Idi,r = 1 if di = r and Idi,r = 0 otherwise. Finally,
we define the system cost C(d,u,p) as

C(d,u,p)=
∑
i∈N

∑
(a,c)∈Ai×C

Idi,(a,c)C
c
i,a(d,ua,pc)+

∑
i∈N

Idi,iC
l
i .(6)

D. Operator Policies and Problem Formulation

We consider that in the edge computing system each
WD is allowed to make an offloading decision so as to
minimize its own cost. On the one hand, this assumption
is motivated by the potential autonomy of WDs in edge
computing systems [7], [8]. On the other hand, the obtained
decentralized algorithms can serve as a good approximation

for the optimal solution. Nonetheless, the decisions of
the WDs interact with the computing resource and rate
allocation policies of the operator, and hence we model the
problem as a multiple-leader common-follower Stackelberg
game, in which WDs are leaders and the operator is
the follower. We consider two variants of the game,
which differ in the set of operator policies. In the first
game the set of feasible decisions for the operator is
Ac = {(u,p)|u ∈ R|A|x|N |≥0 ,p ∈ R|C|x|N |≥0 }; we refer to
this as the cost minimizing (CM) operator. In the second
game the set of feasible decisions for the operator is
At = {(u,p)|ui,a = 1, pi,c = 1,∀i ∈ N , a ∈ A, c ∈ C};
we refer to this as the time fair (TF) operator.

Given a strategy profile d chosen by the WDs, the
objective of the operator is to minimize the system cost by
jointly optimizing the allocation of wireless and computing
resources. It does so by computing a best response
(u∗,p∗) ∈ Ao, o ∈ {c, t} to d through solving

min
(u,p)∈Ao

C(d,u,p). (7)

We denote by (Pc,∗r ,Pc,∗c ) the optimal policy of the CM
operator, i.e., the collection of best responses of the CM
operator for every d ∈ D, and we denote by (Pt,∗r ,Pt,∗c )
the optimal policy of the TF operator, i.e., the collection
of best responses of the TF operator for every d ∈ D.

The objective of every WD is to minimize its own
completion time (5), given the announced allocation policy
(P∗r ,P∗c ) of the operator, through solving

min
di∈Di

Ci(di, d−i,P∗r (di, d−i),P∗c (di, d−i)), (8)

where we use d−i to denote the strategies of all WDs
except WD i. We refer to the game played between
the WDs and the CM operator as the cost minimizing
computation offloading game (CM-COG) and to the game
played between the WDs and the TF operator as the time
fair computation offloading game (TF-COG).

In this paper we address three fundamental questions
for these games. First, we address whether there is a
combination of computation offloading strategy profile
and allocation policy from which neither the WDs nor
the operator have an incentive to deviate, i.e., a subgame
perfect equilibrium of the Stackelberg game.

Definition 1 (SPE). Let (P∗r ,P∗c ) be a solution of (7), and
d∗i be a solution of (8). Then the point (d∗,P∗r ,P∗c ) is
a subgame perfect equilibrium (SPE) of the game Γ ∈
{CM-COG,TF-COG} if for any feasible (d,Pr,Pc) point
the following holds

C(d∗,P∗r ,P∗c ) ≤ C(d∗,Pr,Pc),
Ci(d

∗
i , d
∗
−i,P∗r ,P∗c ) ≤ Ci(di, d∗−i,P∗r ,P∗c ),∀di∈Di,∀i∈N .

If the game Γ ∈ {CM-COG,TF-COG} admits an SPE,
the second question is whether an SPE can be computed
efficiently. Third, we address whether the system cost in an
SPE is efficient compared to a centrally optimized system.
Before we answer these questions we recall the following
definition from game theory.

Definition 2. (Pure NE and Best reply (BR)) A pure
strategy Nash equilibrium (NE) is a strategy profile d∗
in which all players play their best replies to each others’
strategies, that is,

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i),∀di ∈ Di,∀i ∈ N .
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Given a strategy profile d = (di, d−i), a better reply of
WD i is a strategy d′i such that Ci(d′i, d−i) < Ci(di, d−i),
and a best reply of WD i is a better reply d∗i such that
Ci(d

∗
i , d−i) ≤ Ci(di, d−i),∀di ∈ Di.

III. EQUILIBRIA UNDER THE COST MINIMIZING
OPERATOR

We start the analysis by considering problem (7) solved
by the CM operator, i.e.,

min
(u,p)∈Ac

C(d,u,p), (9)

followed by problem (8) solved by the WDs.

A. Optimal Resource Allocation Policy of the CM Operator
Recall that an optimal resource allocation policy is

essentially a collection of best responses (u∗,p∗) ∈ Ac of
the CM operator to the strategy profiles d ∈ D played by
the WDs. In what follows we show that a best response
of the CM operator to a strategy profile d is unique up to
a scale factor and can be expressed in closed form.

Theorem 1. Let d be a strategy profile played by the
WDs. The optimal allocation policy (Pc,∗r ,Pc,∗c ) of the CM
operator assigns to d the uplink access provisioning and
computing power provisioning coefficients

u∗i,a=

√
Di/Ri,a∑

j∈Oa(d)

√
Dj/Rj,a

,∀a∈A,∀i∈Oa(d), (10)

and

p∗i,c=

√
Li/F c∑

j∈Oc(d)

√
Lj/F c

,∀c ∈ C,∀i ∈ Oc(d). (11)

Proof. The proof is given in Appendix A.

It is important to note that following the optimal resource
allocation policy, the CM operator allocates resources to
the WDs depending on the characteristics of their tasks (i.e.,
Di and Li). Furthermore, the resource allocation policy
of the operator can be made known a priori to the WDs,
which allows us to analyze the computation offloading
problem of the WDs.

B. Computing Equilibrium Offloading Decisions
Observe that for an arbitrary resource allocation pol-

icy (Pr,Pc) the interaction between the WDs can be
modeled by a player-specific weighted congestion game
Γ(Pr,Pc) =< N , (Di)i∈N , (Ci)i∈N >, as (5) is both
a function of the WDs’ parameters and of the resource
provisioning coefficients. Unfortunately, for this class
of games general equilibrium existence results are not
available. In what follows we show that under the optimal
resource allocation policy of the CM operator the game
can be transformed into a weighted congestion game.

Theorem 2. Consider that the CM operator uses the opti-
mal policy (Pc,∗r ,Pc,∗c ), i.e., u∗ and p∗ are the collections
of the optimal provisioning coefficients given by (10) and
(11), respectively. Then, the strategic interaction of the
WDs can be modeled as a congestion game with resource-
dependent weights wi,r,∀(i, r) ∈ N × {Ai ∪ C}, in which
the cost of WD i is given by

C̄i(d)=
∑

(a,c)∈Ai×C

Idi,(a,c)

(
wi,awa(d)+wi,cwc(d)

)
+Idi,iC

l
i , (12)

where wr(d) =
∑
j∈Or(d) wj,r.

Proof. Let us first substitute (10) and (11) into (3) in order
to obtain the offloading cost of WD i through AP a to EC
c under the optimal resource allocation policy (Pc,∗r ,Pc,∗c ),

C̄ci,a(d)=

√
Di

Ri,a

∑
j∈Oa(d)

√
Dj

Rj,a
+

√
Li
F c

∑
j∈Oc(d)

√
Lj
F c

. (13)

Second, let us define the weight wi,a ,
√
Di/Ri,a for each

tuple (i, a) ∈ N × Ai and the weight wi,c ,
√
Li/F c

for each tuple (i, c) ∈ N × C. Observe that the offloading
cost (13) in strategy profile d depends on the total weight
wa(d) =

∑
j∈Oa(d) wj,a associated to AP a and on the

total weight wc(d) =
∑
j∈Oc(d) wj,c associated to EC c.

Thus, the interaction between the WDs can be modeled
as a weighted congestion game with resource-dependent
weights. This proves the theorem.

We refer to the resulting strategic game as
Γ(Pc,∗r ,Pc,∗c ) =< N , (Di)i∈N , (C̄i)i∈N >, in which the
players are WDs with the objective to minimize their
costs given by (12). Observe that the game Γ(Pc,∗r ,Pc,∗c )
is the CM-COG expressed in strategic form and thus if
Γ(Pc,∗r ,Pc,∗c ) has a NE then the CM-COG has an SPE.
Hence, in what follows we focus on the existence and
computability of pure NE for Γ(Pc,∗r ,Pc,∗c ).

Before we formulate our next result let us recall the
definition of an exact potential function from [18].

Definition 3. A function Φ : ×i(Di)→ R is an exact po-
tential for a finite strategic game Γ =< N , (Di)i, (C̄i)i >
if for an arbitrary strategy profile (di, d−i) and for any
better reply d′i the following holds

C̄i(d′i, d−i)−C̄i(di, d−i)=Φ(d′i, d−i)−Φ(di, d−i). (14)

Given an arbitrary ordering of WDs, let us introduce the
following shorthand notation,

w≤ia (d)=
∑

{j∈Oa(d)|j≤i}

wj,a, w>ia (d)=
∑

{j∈Oa(d)|j>i}

wj,a,

and

w≤ic (d)=
∑

{j∈Oc(d)|j≤i}

wj,c, w>ic (d)=
∑

{j∈Oc(d)|j>i}

wj,c.

Theorem 3. The game Γ(Pc,∗r ,Pc,∗c ) has the exact poten-
tial function

Φ(d) =
∑
i∈N

(∑
a∈A

Φi,a(d)+
∑
c∈C

Φi,c(d)+Φi,i(d)

)
, (15)

where Φi,a(d) = Idi,(a,·)wi,aw
≤i
a (d), Φi,c(d) =

Idi,(·,c)wi,cw
≤i
c (d), and Φi,i(d) = Idi,iC

l
i .

Proof. Let us define function Φi(d) =
∑
a∈A Φi,a(d) +∑

c∈C Φi,c(d)+Φi,i(d), and rewrite Φ(d) =
∑
i∈N Φi(d).

To prove that Φ(d) is an exact potential function, let us
consider strategy profiles d and d′ such that d=(dk, d−k)
and d′=(d′k, d−k), and consider the following two cases.

Case 1: Changing offloading strategy: We start with
considering the case when WD k offloads its task in both
strategy profiles d and d′. Let us denote by dk = (a, c)
and d′k = (a′, c′) the offloading decisions of WD k in d
and d′, respectively. If a 6=a′ and c 6=c′ then the difference
between the cost of WD k in d and that in d′ is given by

C̄k(d)− C̄k(d′) = wk,awa(d) + wk,cwc(d)−
−wk,a′wa′(d)− wk,c′wc′(d).

4



To compute the change of the potential, observe that
Φi,i(d) = Φi,i(d′) for all WDs i ∈ N , since the set of
WDs that perform the computation locally is the same in
d and d′. We also have that Φi,r(d) = Φi,r(d′) for every
resource r ∈ A∪C \{a, a′, c, c′} since Or(d) = Or(d′).
Furthermore, we observe that Φi(d)=Φi(d′) for all WDs
i<k. For WDs i>k that offload their tasks through APs
a and a′ we have that Φi,a(d)− Φi,a(d′) = wi,awk,a and
Φi,a′(d)−Φi,a′(d′)=−wi,a′wk,a′ , respectively. Similarly,
for WDs i > k that offload their tasks to ECs c and
c′ we have that Φi,c(d) − Φi,c(d′) = wi,cwk,c and
Φi,c′(d)− Φi,c′(d′) = −wi,c′wk,c′ , respectively. For WD
k we have the following

Φk(d)− Φk(d′) = wk,aw
≤k
a (d) + wk,cw

≤k
c (d)−

−wk,a′w≤ka′ (d)− wk,c′w≤kc′ (d).

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw

>k
c (d)−wk,a′w>ka′ (d)−

wk,c′w
>k
c′ (d)+wk,aw

≤k
a (d)+wk,cw

≤k
c (d)−wk,a′w≤ka′ (d)−

wk,c′w
≤k
c′ (d) = wk,awa(d)+wk,cwc(d)−wk,a′wa′(d)−

wk,c′wc′(d) = C̄k(d)− C̄k(d′).
Similarly, we can show that Φ(d)−Φ(d′) = C̄k(d)−C̄k(d′)
if WD k changes only the AP, i.e., if dk = (a, c) and
d′k = (a′, c), a 6= a′ or if WD k changes only the EC, i.e.,
if dk = (a, c) and d′k = (a, c′), c 6= c′.

Case 2: Changing between offloading and local comput-
ing: We continue with considering the case when WD k
offloads its task in one of the strategy profiles d and d′ and
it performs the computation locally in the other strategy
profile. Let us first consider that WD k offloads its task in
strategy profile d, and denote by dk = (a, c) its offloading
decision, and that WD k performs the computation locally
in strategy profile d′, i.e., d′k = 0. Then the difference
between the cost of WD k in d and that in d′ is given by

C̄k(d)− C̄k(d′) = wk,awa(d) + wk,cwc(d)− Clk.
For the potential, we know that Φi,i(d) = Φi,i(d′) for all

WDs i ∈ N \{k} and we also have that Φi,r(d) = Φi,r(d′)
for every resource r ∈ A ∪ C \ {a, c}. Furthermore, we
observe that Φi(d) = Φi(d′) for all i < k. For WDs
i > k that offload their tasks through AP a we have that
Φi,a(d)−Φi,a(d′) = wi,awk,a. Similarily, for WDs i > k
that offload their tasks to EC c we have that Φi,c(d) −
Φi,c(d′) = wi,cwk,c. Finally, for WD k we have

Φk(d)− Φk(d′) = wk,aw
≤k
a (d) + wk,cw

≤k
c (d)− Clk.

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw

>k
c (d)+wk,aw

≤k
a (d)

+wk,cw
≤k
c (d)− Clk = wk,awa(d) + wk,cwc(d)− Clk =

C̄k(d)− C̄k(d′).
Similarily, we can show that Φ(d) − Φ(d′) = C̄k(d) −
C̄k(d′) if WD k changes its strategy from local computing
in d to offloading to EC c through AP a in d′, i.e., if
dk = 0 and d′k = (a, c), which proves the theorem.

The existence of an exact potential function implies that
Γ(Pc,∗r ,Pc,∗c ) has a pure NE [18]. We can thus formulate
the following result.

Corollary 1. The game Γ(Pc,∗r ,Pc,∗c ) has a pure strategy
NE d∗. Hence, an SPE (d∗,Pc,∗r ,Pc,∗c ) for the CM-COG
exists.

AU(d)
1 while ∃ WD j s.t. dj 6=arg mind′j∈Dj

C̄j(d
′
j ,d−j)

2 d∗j = arg mind′j∈Dj
C̄j(d

′
j , d−j)

3 d = (d∗j , d−j)
4 end

Fig. 2. Pseudo code of the AsynchronousUpdates (AU) algorithm.

There are a variety of algorithms that are known to
converge to an equilibrium for exact potential games, such
as fictitious play [18], joint strategy fictitious play [19], and
the best and better reply dynamics [18]. Nonetheless, they
have exponential worst case complexity in general [20],
[21]. Thus, the second fundamental question we address
in this paper is whether a NE of Γ(Pc,∗r ,Pc,∗c ) (and thus
an SPE of the CM-COG) can be computed efficiently.

In what follows we propose the ImproveLocalComputing
(ILC) algorithm to address this important question. The
ILC algorithm starts from a strategy profile in which all
WDs perform computation locally. Let us first denote by
N ′ the set of WDs that have never changed their strategy
from local computing to computation offloading (note that
at the beginning N ′ = N ). The ILC algorithm consists
of two phases that are executed alternatingly. In the first
phase, among all WDs i ∈ N ′ that can decrease their
cost by starting to offload, a WD with the maximum task
complexity Li is allowed to perform a best reply. In the
second phase, which we refer to as the update phase, WDs
i ∈ N\N ′ are allowed to update their best replies according
to the AU algorithm shown in Fig. 2.

In what follows we show that by letting WDs to start
to offload in non-increasing order of their task complexi-
ties, the ILC algorithm reduces the number of iterations
compared to the best reply dynamic that lets WDs to start
using cloud resources in an arbitrary order.

Proposition 1. Let us consider a strategy profile d in which
all WDs j ∈ N \N ′ perform best replies and let us assume
that there is a WD i ∈ N ′ that can decrease its cost by
starting to offload to one of the ECs. Then upon WD i
performs its best reply, WDs j ∈ O(d) will not have an
incentive to change between ECs.

Proof. Let us assume that a best reply of WD i ∈ N ′ is
offloading to an EC c, i.e., for any EC c′ ∈ C \ {c} the
following holds(

wc(d) + wi,c

)
wi,c <

(
wc′(d) + wi,c′

)
wi,c′ . (16)

Let us next assume that upon WD i performs its best
reply, a WD j ∈ Oc(d) can decrease its offloading cost
by changing its strategy from (·, c) to (·, c′), i.e., that the
following holds(

wc(d) + wi,c

)
wj,c >

(
wc′(d) + wj,c′

)
wj,c′ . (17)

In order to have (16) and (17) satisfied
√
Li >

√
Lj must

hold, which contradicts the fact that the ILC algorithm
allows WDs i ∈ N ′ to start to offload in non-increasing
order of their task complexities Li. This proves the result.

Note that WDs can change between ECs only if the
congestion in an EC decreases, i.e., if one of the WDs
changes its strategy from offloading to local computing.
This is, however, rarely the case, and as we show later,
the number of iterations needed to compute an equilibrium
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allocation of offloading decisions using the ILC algorithm
is on average almost linear in the number of WDs.

IV. EQUILIBRIA UNDER THE TIME FAIR OPERATOR

We have so far shown that the the game played by
the WDs under the resource allocation policy (Pc,∗r ,Pc,∗c )
of the CM operator can be transformed into a weighted
congestion game, and we have proven that the CM-COG
has an SPE. In what follows we show that under the
resource allocation policy (Pt,∗r ,Pt,∗c ) of the TF operator
the game played by the WDs can be transformed into a
player-specific congestion game.

Proposition 2. Consider that the TF operator uses the
time fair resource allocation policy (Pt,∗r ,Pt,∗c ). Then, the
strategic interaction of the WDs can be modeled as a
player-specific congestion game, in which the cost of WD
i is given by

C̃i(d)=
∑

(a,c)∈A×C

Idi,(a,c)

( Di

Ri,a
na(d)+

Li
F c

nc(d)
)

+Idi,iC
l
i (18)

Proof. Given the equal sharing of resources, it follows
from (1) and (2) that the offloading cost (3) of WD i
through AP a to EC c can be expressed as

C̃i,a(d)=
Di

Ri,a
na(d)+

Li
F c

nc(d). (19)

Observe that the offloading cost (19) depends on the total
number na(d) of WDs sharing the AP a, the total number
nc(d) of WDs sharing the EC c, and on the characteristics
of WD i’s task. Thus, the interaction between the WDs
can be modeled as a player-specific congestion game. This
proves the result.

A. Computing Equilibrium Offloading Decisions

We refer to the resulting strategic game as
Γ(Pt,∗r ,Pt,∗c ) =< N , (Di)i∈N , (C̃i)i∈N >, in which the
players are WDs with the objective to minimize their
cost given by (18). Observe that the game Γ(Pt,∗r ,Pt,∗c )
is the TF-COG expressed in strategic form and thus if
Γ(Pt,∗r ,Pt,∗c ) has a NE then the TF-COG has an SPE.
Hence, in what follows we focus on the existence and
computability of pure NE for Γ(Pt,∗r ,Pt,∗c ). In what
follows we prove our result concerning the existence of
a pure strategy NE under the TF operator. Our proof is
based on the JoinAndPlayAsynchronousUpdates (JPAU)
algorithm, which we propose for computing a NE of
the game Γ(Pt,∗r ,Pt,∗c ). The pseudo code of the JPAU
algorithm is shown in Fig. 3. The algorithm adds WDs
one at a time, and lets them play their best replies given
the other WDs’ strategies, and thus the following result is
based on an induction in the number N of WDs.

Theorem 4. The game Γ(Pt,∗r ,Pt,∗c ) has a pure strategy
NE.

Proof. The proof is given in Appendix B.

Even though the proof of Theorem 4 is fairly involved,
the JPAU algorithm itself is computationally efficient, as
we show next.

Proposition 3. When a new WD enters the game
Γ(Pt,∗r ,Pt,∗c ) in a NE d∗(n−1), a new NE can be computed
in O((A− 2)|Nn−1|2 − (A− 3)|Nn−1|) time.

Proof. The proof is given in Appendix C.

d∗ = JPAU(N ,A, C)
1 /*First WD enters the game*/
2 Let d← ∅, i← 1

3 d∗i (1) = argmindi∈Di
Ci(di, d−i)

4 d∗(1) = d∗i (1)

5 for n = 2 : N do
6 /*Corresponds to induction phase*/
7 Let i← n

8 d∗i (n) = argmindi∈Di
Ci(di, d

∗
−i(n− 1))

9 d(n) = (d∗i (n), d∗(n− 1))

10 if d∗i (n) = (a, c)

11 /*Corresponds to update phase*/
12 if∃j∈O(a,c)(d(n)) for which a BR is local computing
13 /*Corresponds to case (i)*/
14 d′(n) = (j, d−j(n))

15 end
16 else if∃j∈O(a,c′)(d(n)),c′ 6=c for which a BR is local computing
17 /*Corresponds to case (ii)*/
18 d′(n) = (j, d−j(n))

19 k ← Oc(d′(n))
20 d′(n) = ((·, c′), d′−k(n))

21 else if∃j∈Oa(d(n)), a′ 6=a for which a BR is changing to AP a′

22 /*Corresponds to case (iii)*/
23 d′(n) = ((a′, ·), d−j(n))

24 while ∃j∈O(d′(n)) that can decrease its offloading cost
25 d∗j (n) = argmind′j∈Dj

Cj(d
′
j , d
′
−j(n))

26 d′(n) = (d∗j (n), d
′
−j(n))

27 end
28 else
29 d′(n) = d(n)
30 end
31 a′′ ← a for which na(d′(n)) = na(d∗(n− 1)) + 1

32 c← c′ for which nc′ (d′(n)) = nc′ (d∗(n− 1)) + 1

33 if∃j∈O(a′,c)(d′(n), a′ 6=a′′ for which a BR is local computing
34 /*Corresponds to case (iv)*/
35 d′(n) = (j, d′−j(n))

36 if ∃j ∈ Oa′′ (d′(n)) for which a BR is changing to AP a′

37 k ← Oa′′ (d′(n))
38 d′(n) = ((a′, ·), d′−k(n))

39 else
40 while ∃j∈O(d′(n)) that can decrease its offloading cost
41 d∗j (n) = argmind′j∈Dj

Cj(d
′
j , d
′
−j(n))

42 d′(n) = (d∗j (n), d
′
−j(n))

43 end
44 if ∃k ∈ Nn \ O(d′(n)) for which a BR is (a′, c)

45 d′(n) = ((a′, c), d′−k(n))

46 end
47 if∃j∈O(a′,c)(d′(n)),a′ 6=a for which a BR is local computing
48 go to 35
49 end
50 end
51 end
52 d∗(n) = d′(n)
53 end
54 return d∗(N)

Fig. 3. Pseudo code of the JPAU algorithm.

By adding WDs one at a time, it follows that the JPAU
algorithm computes a NE of the game Γ(Pt,∗r ,Pt,∗c ) in
polynomial time.

Corollary 2. The JPAU algorithm terminates in a NE of
the game Γ(Pt,∗r ,Pt,∗c ) in O((A − 2)N3 − (A − 3)N2)
time.

Finally, since Γ(Pt,∗r ,Pt,∗c ) is the TF-COG expressed in
strategic form, we can formulate the following result.
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s

step 1:

step 2:

Fig. 4. Example of the information exchange between the operator and
WD1 and WD5.

Corollary 3. The game Γ(Pt,∗r ,Pt,∗c ) has a pure strategy
NE d∗. Hence, an SPE (d∗,Pt,∗r ,Pt,∗c ) for the TF-COG
exists.

B. Implementation Considerations
In what follows we discuss how the SPE can be

implemented in practice. Given the information about
the resource allocation policy adopted by the operator,
WDs perform best replies one at a time according to the
ILC and JPAU algorithms in the case of the CM-COG
and TF-COG, respectively. Upon its turn, a WD computes
the set of its best replies based on the information about
the congestion on resources, as provided by the operator.
If it can improve its current offloading decision then it
reports one of its best replies to the operator, otherwise
it reports its current offloading decision. The operator
then sends the updated information about the congestion
on the resources to the next WD that is supposed to
update its offloading decision. Upon convergence, given
the equilibrium offloading decisions of WDs, the operator
allocates wireless and computing resources according to
the adopted resource allocation policy. By Corollary 1
and Corollary 3 the resulting state is an SPE of the
CM-COG and the TF-COG, respectively. Fig. 4 illustrates
the information exchange between the operator and the
WDs for the edge computing system shown in Fig. 1.

Observe that the WDs need to report only their offloading
decisions in the case of the time fair operator and apart
from the offloading decisions they need to reveal the
characteristics of their tasks (i.e., the size Di of the input
data and the expected complexity Li) in the case of the
cost minimizing operator. Therefore, the implementation
of the SPE of the TF-COG requires less information about
the WDs’ tasks than the implementation of the SPE of the
CM-COG, and thus the time fair resource allocation policy
may be a better choice in systems in which privacy and
confidentiality are of major concern.

V. PRICE OF ANARCHY

We have so far analyzed the interaction between the
WDs under the cost minimizing and the time fair resource
allocation policies of the operator and we proposed the ILC
and the JPAU algorithms for computing an equilibrium
of offloading decisions of the WDs under these two
policies, respectively. Furthermore, we showed that the
computational complexity of the ILC algorithm (which
is exponential in the worst case) can be reduced by

letting WDs start to offload in non-increasing order of
their task complexities, and we proved that the worst
case complexity of the JPAU algorithm is polynomial
in N . In this section we quantify the worst case ratio
between the system performance in an SPE and the optimal
performance using the price of anarchy (PoA). We do so
by providing an upper bound on the PoA of the CM-COG
(denoted by PoACM-COG) and the TF-COG (denoted by
PoATF-COG), respectively. Let us recall that the games
Γ(Pc,∗r ,Pc,∗c ) and Γ(Pt,∗r ,Pt,∗c ) are strategic representa-
tions of the CM-COG and the TF-COG games, respectively.
Therefore, we have PoACM-COG = PoA(Pc,∗r ,Pc,∗c )
and PoATF-COG = PoA(Pt,∗r ,Pt,∗c ).

We start with the definition of the PoA(Pr,Pc) of the
strategic game played by the WDs for a policy (Pr,Pc)
of the operator for which an equilibrium allocation d∗ of
offloading decisions exists

PoA(Pr,Pc) =
maxd∗∈D∗

∑
i∈N Ci(d∗,Pr,Pc)

mind∈D
∑
i∈N Ci(d,Pr,Pc)

, (20)

where D∗ is the set of equilibria of offloading decisions
under (Pr,Pc).

A. Price of Anarchy of the CM-COG

In order to provide an upper bound on PoACM-COG,
we provide an upper bound on PoA(Pc,∗r ,Pc,∗c ) of the
strategic game Γ(Pc,∗r ,Pc,∗c ).

Theorem 5. PoACM-COG = PoA(Pc,∗r ,Pc,∗c ) ≤ 3+
√
5

2 .

Proof. Our proof is inspired by Theorem 3.1 in [22],
which provides a PoA bound for normalized weighted
congestion games. Our proof extends the PoA bound to the
game Γ(Pc,∗r ,Pc,∗c ), which is not a normalized weighted
congestion game.

We start with defining the set R=N ∪ A ∪ C of all
resources available in the system. Furthermore, we denote
by Rdi the set of resources that WD i uses in strategy
profile d, and we use d∗ and d̂ to denote a NE and an
optimal strategy profile of Γ(Pc,∗r ,Pc,∗c ), respectively. Let
us define the local computing weight wi,i,

√
Li/F li for

each WD i ∈ N , and the set of WDs using local computing
link i Oi(d)={i|di= i}. Observe that either Oi(d)=∅ or
Oi(d) = {i} holds since the local computing resources
are not shared among WDs. We can thus express the
total weight wi(d) =

∑
i∈Oi(d) wi,i associated with local

computing link i, which is either wi(d)=0 or wi(d)=wi,i.
Using the above notation we can express the system cost

C(d,Pc,∗r ,Pc,∗c ) for Γ(Pc,∗r ,Pc,∗c ) in a strategy profile d
as

C(d,Pc,∗r ,Pc,∗c ) =
∑
r∈R

∑
i∈Or(d)

wr(d)wi,r =
∑
r∈R

w2
r(d). (21)

Furthermore, from the definition of a NE we obtain∑
r∈Rd∗

i

wr(d∗)wi,r ≤
∑

r∈Rd∗
i
∩Rd̂i

wr(d∗)wi,r + (22)∑
r∈Rd∗

i
\Rd̂i

(
wr(d∗) + wi,r

)
wi,r ≤

∑
r∈Rd̂i

(
wr(d∗) + wi,r

)
wi,r.

First, by summing inequality (22) over all WDs i we obtain∑
i∈N

∑
r∈Rd∗

i

wr(d∗)wi,r≤
∑
i∈N

∑
r∈Rd̂i

(
wr(d∗)+wi,r

)
wi,r. (23)
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Second, by reordering the summations, (23) can be rewritten
as∑
r∈R

∑
i∈Or(d∗)

wr(d∗)wi,r≤
∑
r∈R

∑
i∈Or(d̂)

(
wr(d∗)wi,r+w2

i,r

)
.(24)

Next, from the definition of the total weight wr(d) =∑
i∈Or(d) wi,r associated with resource r and from∑
i∈Or(d) w

2
i,r ≤ w2

r(d) we obtain∑
r∈R

w2
r(d∗)≤

∑
r∈R

wr(d∗)wr(d̂) +
∑
r∈R

w2
r(d̂). (25)

We can now use the Cauchy-Schwartz inequality
(
∑
r∈R arbr ≤

√∑
r∈R a

2
r

∑
r∈R b

2
r) to obtain∑

r∈R
w2
r(d∗)≤

√∑
r∈R

w2
r(d∗)

∑
r∈R

w2
r(d̂) +

∑
r∈R

w2
r(d̂). (26)

If we divide the right and the left side of inequality (26)
by
∑
r∈R w

2
r(d̂) > 0 we can rewrite it using (21) as

C(d∗,Pc,∗r ,Pc,∗c )

C(d̂,Pc,∗r ,Pc,∗c )
≤

√
C(d∗,Pc,∗r ,Pc,∗c )

C(d̂,Pc,∗r ,Pc,∗c )
+ 1. (27)

Since (27) holds for any NE of the game Γ(Pc,∗r ,Pc,∗c ), it
holds for the worst case NE too, and thus we have

PoA(Pc,∗r ,Pc,∗c ) ≤
√
PoA(Pc,∗r ,Pc,∗c ) + 1. (28)

By solving (28) we obtain that PoACM-COG =

PoA(Pc,∗r ,Pc,∗c ) ≤ 3+
√
5

2 , which proves the theorem.

B. Price of Anarchy of the TF-COG

Next, using a similar approach to the one presented in the
proof of Theorem 5, in what follows we provide an upper
bound on PoATF-COG by providing an upper bound on
the PoA(Pt,∗r ,Pt,∗c ) of the strategic game Γ(Pt,∗r ,Pt,∗c ).

Theorem 6. PoATF-COG = PoA(Pt,∗r ,Pt,∗c ) ≤ N + 1.

Proof. We start with the definition of the weights in
Γ(Pt,∗r ,Pt,∗c ) for all resources R=N ∪A∪ C available in
the system

w̃i,i ,
Li
F li
, w̃i,c ,

Li
F c

, w̃i,a ,
Di

Ri,a
.

Using the above notation we can express the system cost
C̃(d,Peqr ,Peqc ) for Γ(Pt,∗r ,Pt,∗c ) in a strategy profile d as

C̃(d,Peqr ,Peqc )=
∑
r∈R

∑
i∈Or(d)

nr(d)w̃i,r=
∑
r∈R

nr(d)w̃r(d), (29)

where w̃r(d) ,
∑
i∈Or(d) w̃i,r.

Furthermore, let us use d∗ and d̂ to denote a NE and
an optimal solution of Γ(Pt,∗r ,Pt,∗c ), respectively.

Now, from the definition of a NE we obtain∑
r∈Rd∗

i

nr(d∗)w̃i,r ≤
∑

r∈Rd∗
i
∩Rd̂i

nr(d∗)w̃i,r + (30)∑
r∈Rd∗

i
\Rd̂i

(
nr(d∗) + 1

)
w̃i,r ≤

∑
r∈Rd̂i

(
nr(d∗) + 1

)
w̃i,r.

First, by summing inequality (30) over all WDs i we obtain∑
i∈N

∑
r∈Rd∗

i

nr(d∗)w̃i,r≤
∑
i∈N

∑
r∈Rd̂i

(
nr(d∗) + 1

)
w̃i,r. (31)

Second, by reordering the summations (31) can be rewritten
as

∑
r∈R

∑
i∈Or(d∗)

nr(d∗)w̃i,r≤
∑
r∈R

∑
i∈Or(d̂)

(
nr(d∗)w̃i,r + w̃i,r

)
. (32)

Using the definition of the total weight w̃r(d) ,∑
i∈Or(d) w̃i,r associated with resource r we can

rewrite (32) as∑
r∈R

nr(d∗)w̃r(d∗)≤
∑
r∈R

nr(d∗)w̃r(d̂) +
∑
r∈R

w̃r(d̂). (33)

Next, observe that nr(d) ≤ N must hold for any feasible
strategy profile d and for every resource r ∈ R, and
that |Or(d)| ≥ 1 implies nr(d) ≥ 1. Therefore, we
have that

∑
r∈R nr(d∗)w̃r(d̂) ≤ N

∑
r∈R nr(d̂)w̃r(d̂)

and
∑
r∈R w̃r(d̂) ≤

∑
r∈R nr(d̂)w̃r(d̂). By using these

observations in (33) we obtain the following inequality∑
r∈R

nr(d∗)w̃r(d∗)≤(N + 1)
∑
r∈R

nr(d̂)w̃r(d̂). (34)

Finally, since
∑
r∈R nr(d̂)w̃r(d̂) > 0 must hold, we can

divide the right and the left side of inequality (34) by∑
r∈R nr(d̂)w̃r(d̂) to obtain∑

r∈R
nr(d∗)w̃r(d∗)∑

r∈R
nr(d̂)w̃r(d̂)

≤ N + 1. (35)

Since (35) holds for any NE of the game Γ(Pt,∗r ,Pt,∗c ), it
also holds for the worst case NE, and thus using (29) we
obtain

PoATF-COG = PoA(Pt,∗r ,Pt,∗c ) ≤ N + 1, (36)

which proves the theorem.

Observe that the PoA(Pc,∗r ,Pc,∗c ) and PoA(Pt,∗r ,Pt,∗c )
are in fact bounds on the approximation ratio of the ILC and
JPAU algorithms used for computing a NE of the games
Γ(Pc,∗r ,Pc,∗c ) and Γ(Pt,∗r ,Pt,∗c ), respectively. Therefore,
the ILC algorithm outperforms the JPAU algorithm in
terms of the worst case system performance and the JPAU
algorithm outperforms the ILC algorithm in terms of the
worst case complexity. Consequently, the cost minimizing
resource allocation policy might be a better choice than the
time fair resource allocation policy in systems in which a
guarantee on the worst case system performance is more
important than a guarantee on the worst case computational
efficiency, and vice versa.

VI. NUMERICAL RESULTS

In the following we show results from extensive sim-
ulations to evaluate the system performance from the
perspective of the operator of the WDs.

For the simulations we placed ECs and WDs uniformly
at random over a square area of 1km×1km, and we placed
5 APs at random on a regular grid with 25 points defined
over the area. This uniform deployment corresponds to
a dense urban area. We consider that the channel gain
of WD i in the case of offloading through the same AP
a depends on its distance di,a from the AP and on the
path loss exponent α. We use α = 4 according to the
path loss model in urban and suburban areas [23]. For
simplicity we assign a bandwidth of Bi,a=5MHz to each
communication link (i, a) ∈ N ×Ai. The transmit power
P ti,a at which WD i offloads the data through AP a is drawn
from a continuous uniform distribution on [0.05, 0.18]W
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Fig. 5. Performance gain vs. the number of WDs N for A = 5 APs.
Homogeneous ECs, F c,tot = 192GHz.
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Fig. 6. Performance gain vs. the number of WDs N for A = 5 APs.
Heterogeneous ECs, F c,tot = 192GHz.
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according to [24]. Given the noise power Pn we calculate
the transmission rate Ri,a achievable to WD i for offloading
to AP a as Ri,a =Bi,alog(1+d−αi,a

P t
i,a

Pn
). The input data

size Di is drawn from a uniform distribution on [0.2, 4]Mb,
and the number X of CPU cycles required per data bit
is a Gamma distributed random variable with the shape
k = 0.5 and scale θ = 1.6. Given Di and X , we calculate
the complexity of a task as Li=DiX .

We consider two operator policies in the evaluation.
We refer to (Pc,∗r ,Pc,∗c ) as the CM policy. Under the CM
policy the WDs use the ILC algorithm for computing a
NE of the game Γ(Pc,∗r ,Pc,∗c ), as shown in Section III.
As a baseline for comparison, we consider the TF policy
(Pt,∗r ,Pt,∗c ), under which the WDs use the JPAU algorithm
for computing a NE of the game Γ(Pt,∗r ,Pt,∗c ), as shown
in Section IV.

As a baseline for the ILC and JPAU algorithms proposed
for computing an equilibrium of offloading decisions,
we use the FastestLinkNearestCloud (FLNC) algorithm.
According to the FLNC algorithm WDs offload the
computation through the AP with the highest achievable
transmission rate and to the EC closest to the chosen AP.
Observe that FLNC can be used with both operator policies.
The results shown are the averages of 1000 simulations,
together with 95% confidence intervals.

A. User-oriented performance

We start with considering the system performance
from the point of view of the WDs. We define the
performance gain PGTF−FLNC(dA,Pr,Pc) (w.r.t. the TF-
FLNC) for a strategy profile dA computed by algorithm
A ∈ {ILC, JPAU,FLNC} under a resource allocation
policy (Pr,Pc) ∈ {(Pc,∗r ,Pc,∗c ), (Pt,∗r ,Pt,∗c )} as

PGTF−FLNC(dA,Pr,Pc) =
C(dFLNC ,Pt,∗r ,Pt,∗c )

C(dA,Pr,Pc)
.

Fig. 5 shows the performance gain as a function of the
number N of WDs for two MEC systems, one with C=1
(F c1=192GHz) and one with C=3 (F ci=64GHz), i.e., ECs
are homogeneous. The figure shows that the performance
gain is largest when the operator uses the CM policy and
WDs offload according to an equilibrium computed by the
ILC algorithm. Interestingly, even CM-FLNC outperforms
TF-JPAU for C=1 ECs and N>10 WDs. These results
indicate that the operator’s resource allocation policy has
a large impact on the user-perceived performance. Overall,
we can observe that the performance gain increases with
a decreasing marginal gain in N , which suggests that the
achievable performance gain is limited by the congestion
on the APs and ECs.

Fig. 6 shows the corresponding performance gain for
heterogeneous ECs for two MEC systems, one with C=
3 ECs and one with C=6 ECs. The total cloud computing
capability F c,tot=192GHz of the system is distributed
among the ECs such that F c1=32GHz and F ci=F ci−1 +
32GHz, i > 1, for C = 3 ECs, and F c1 = 12GHz and
F ci=F ci−1 +8GHz, i>1, for C=6 ECs. As in Fig. 5, the
results in Fig. 6 show a decreasing marginal gain in N and
confirm that the largest performance gain is achieved by the
CM-ILC. Nonetheless, a comparison of Fig. 5 and Fig. 6
reveals that the performance gain is affected by the number
of ECs in the system and the way the total cloud computing
capability is shared among the ECs. On the one hand, the
performance gain increases with C. On the other hand, the
performance gain for C=3 ECs is greater in the case of
heterogeneous ECs than that in the case of homogeneous
ECs. Thus, CM-ILC is most beneficial when edge cloud
resources are heterogeneous. The improved performance is
partly due to that the WDs in the baseline strategy profile
(computed by the FLNC) offload their tasks through the
fastest link to the EC that is closest to the chosen AP, and
since WDs, APs and ECs are randomly placed over the
area, the number of WDs per EC is not proportional to its
computing capability, as we will see later.
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B. Infrastructure-oriented performance

In order to evaluate the system performance from
operator’s perspective, we investigate how the choice
of the resource allocation policy and the algorithm for
computing the offloading decisions of WDs affects the
number nc(dA,Pr,Pc) of WDs per EC and the cost
Cc(dA,Pr,Pc)=

∑
i∈Oc(dA,Pr,Pc)

Ci(dA,Pr,Pc) per EC.
For consistency, we show results for a system with
heterogeneous cloud resources, i.e., F c,tot = 192GHz
divided among three ECs such that F c1 = 32GHz and
F ci = F ci−1 + 32GHz, for i > 1.

Fig. 7 and Fig. 8 show nc(dA,Pr,Pc)andCc(dA,Pr,Pc)
for each of the ECs as a function of the number N of WDs,
respectively. The results are shown for the ILC, JPAU and
FLNC algorithms under both the CM and TF resource
allocation policies. By looking at nc(dA,Pr,Pc) for all
ECs for a fixed N , we observe from Fig. 7 that the ratio of
the WDs that offload their tasks decreases as N increases.
This happens because the number of WDs that cannot
benefit from offloading due to high congestion on the
shared resources increases with N . Fig. 7 also shows that
the difference in the congestion experienced by the ECs
is smallest when the offloading decisions of the WDs are
computed by the FLNC algorithm. This is due to that in
the strategy profile computed by the FLNC algorithm WDs
offload their tasks to the EC that is closest to the fastest
AP, and since the WDs, APs, and ECs are placed uniformly
at random over the region, all ECs experience the same
congestion on average. Consequently, the corresponding
cost per EC, shown in Fig. 8, is inverse proportional to the
computing capability of the EC.

On the contrary, in the case of equilibria computed by
ILC and by JPAU (i.e. equilibria under the CM and TF
policies, respectively) the congestion and the cost per EC
are proportional to the computing capability of the EC as
shown in Fig. 7 and Fig. 8, respectively. We also observe
that the total number of WDs that offload their tasks and the
total offloading cost are higher in an equilibrium computed
by the JPAU algorithm than in an equilibrium computed by
the ILC algorithm. This is due to that the cloud computing
resources are shared among WDs independently of their
tasks’ complexities in the case of the TF policy, and
consequently the WDs overuse the ECs.

C. Computational complexity

We characterize the computational complexity of an
algorithm as the number of iterations needed to compute a
computation offloading strategy profile. Since Γ(Pc,∗r ,Pc,∗c )
is a potential game, we use the AU algorithm (c.f. Fig. 2)
as a baseline for comparison, as it is guaranteed to converge
from an arbitrary initial strategy profile [18]. For the AU
algorithm we consider three initial strategy profiles: a
randomly chosen initial strategy profile (RandomAU), an
initial strategy profile in which all WDs offload their tasks
such that the number of WDs offloading the computation
to an EC is proportional to its computing capability
(ECProportionalAU), and an empty strategy profile where
the WDs enter the game in non-increasing order of their
task complexities (JoinNon-IncrAU). Furthermore, we
consider the complexity of computing an equilibrium of
Γ(Pt,∗r ,Pt,∗c ) using the JPAU algorithm.

Fig. 9 shows the number of iterations needed to compute
an equilibrium of Γ(Pc,∗r ,Pc,∗c ) and an equilibrium of
Γ(Pt,∗r ,Pt,∗c ), as a function of N for the same set of
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Fig. 9. Number of iterations vs. the number of WDs N for A = 5.
Homogeneous ECs, F c,tot = 192GHz.

parameters as in Fig. 5. We observe that the number of
iterations scales approximately linearly with N in all cases
and that computing an equilibrium of Γ(Pc,∗r ,Pc,∗c ) using
the ILC algorithm is more efficient than computing an
equilibrium of Γ(Pt,∗r ,Pt,∗c ) using the JPAU algorithm;
the difference is up to 50%.

We also observe that the choice of the initial strategy
profile affects the complexity of computing an equilibrium
of the game Γ(Pc,∗r ,Pc,∗c ), and we make three observations.
First, the number of iterations required by ILC and by
JoinNon-IncrAU is insensitive to the number of ECs, while
the number of iterations required by RandomAU and by
ECProportionalAU increases with the number of ECs. This
is due to that in the case of ILC and of JoinNon-IncrAU
the WDs start using ECs in non-increasing order of their
task complexities, and thus it follows from Proposition 1
that when a new WD starts offloading, WDs will not have
an incentive to change between ECs. This is not true in
the case of RandomAU and of ECProportionalAU, since
they start from a strategy profile where WDs did not start
to offload in the order of the complexities of their tasks,
and consequently the WDs can decrease their offloading
cost not only by changing between the APs, but also by
changing between the ECs. Second, the ECProportionalAU
has the highest computational complexity. This is due
to that ECProportionalAU starts from an initial strategy
profile that has the highest congestion on the resources
and thus when a WD updates its strategy the number of
WDs affected by the update step is higher than in the case
of the other initial strategy profiles. Finally, the smallest
computational complexity can be achieved by the proposed
ILC algorithm. On the one hand, this is because the WDs
do not have to choose their initial strategy as in the case of
the JoinNon-IncrAU. On the other hand, the WDs cannot
decrease their offloading cost by changing between the ECs
as in the case of the RandomAU and ECProportionalAU.

To summarize, the proposed CM-ILC algorithm can
provide a significant reduction in terms of completion
times and has low computational complexity, and could be
a good candidate for coordinating the offloading decisions
of WDs for edge computing.

VII. RELATED WORK

There is a large body of recent works on computation
offloading for mobile cloud computing [25], [26], [11],
[27], [28], [29], [30], [31], [32], [33], [15], [34], [35], [36].
Many of these works assume that the offloading decisions
of devices are determined by a centralized entity with the
objective to meet the energy and latency constraints of
the devices [25], [26], [11], [27], [28], [29], [30]. [25]
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considered that devices offload the computation either to a
computationally limited local cloud or to a computationally
rich remote cloud, and proposed a policy that schedules
resources in the clouds so as to meet the delay requirements
of the applications. [26], [11], [27] formulated the compu-
tation offloading problem as an optimization problem that
minimizes the energy consumption of the mobile devices
under latency constraints. [26] considered that devices
may offload their tasks to an edge cloud through a base
station, and proposed a policy for managing computing and
communication resources assuming that the base station has
perfect knowledge about the system. [11], [27] considered
a network composed of multiple cells, each equipped with
an edge cloud. [11] proposed an iterative algorithm
for jointly optimizing the allocation of computing and
uplink bandwidth resources, and [27] proposed an iterative
algorithm for jointly optimizing the allocation of computing
and both uplink and downlink bandwidth resources. [28]
considered the problem of joint optimization of network
selection and service placement under random mobility of
users and proposed an iterative algorithm that minimizes the
average system delay. [29] proposed an online algorithm
for distributing the workload across multiple edge clouds,
which are managed by an operator that apart from the
workload distribution decides about the activation status of
the edge clouds, and acts as the auctioneer that solicits bids
from multiple service providers. [30] considered a mobile
cloud computing system in which a centralized entity
located in the cloud implements an online algorithm for
scheduling the transmissions between the mobile devices
and the cloud so as to minimize the energy consumption
of mobile devices. Unlike these works, we propose a novel
approach to address the computation offloading problem
by considering the interaction between an operator that
manages the allocation of wireless and computing resources
and devices that make their offloading decisions in a
decentralized manner.

Closer related to ours are recent works that propose
decentralized algorithms based on a game theoretic treat-
ment of the computation offloading problem [31], [32],
[33], [15], [34], [35], [36]. Authors in [31] considered
the interaction between devices that always offload their
tasks and an operator that optimizes the allocation of
wireless and computing resources. Compared to [32], we
consider both the cost minimizing and the time fair resource
allocation policies and besides the analysis of a game in
the case of the cost minimizing operator, we also prove
the existence of Stackelberg equilibria in the case of
the time fair operator, we establish an upper bound on
the price of anarchy of the resulting Stackelberg game
and we propose a polynomial complexity algorithm for
computing an equilibrium of the game. [33] considered that
devices may offload the computation to the cloud through
a single wireless link if doing so minimizes their own
energy consumption, and proved the existence of equilibria
when devices with the same delay budget compete only
for wireless resources. [15], [34], [35] considered that
devices may offload their tasks to the cloud through one
of multiple wireless links so as to minimize the linear
combination of the delay and the energy consumption.
[15] considered the congestion only on the wireless links
and proved the existence of equilibria under the assumption
that a device experiences the same channel gain for all
wireless links. [34] extended the equilibrium existence

results of [15] to a dynamic environment, where devices
may be active or inactive. [35] considered that devices
may offload their tasks to the cloud through one of multiple
heterogeneous wireless links, modeled the congestion on
both cloud and wireless links and provided a polynomial
time algorithm for computing equilibria. [36] considered a
fog computing system where multiple devices may offload
their computational tasks to each other or to an edge cloud
and provided an efficient algorithm for computing a mixed
strategy equilibrium in a decentralized way. Our work
differs significantly from these works, as we model the
congestion on multiple heterogeneous wireless links and
edge clouds, which are managed by an operator that can
implement one of two resource allocation policies and
given the resource allocation policy of the operator we
consider that devices can autonomously decide whether
or not to offload the computations, and if so, to which
of multiple edge clouds and through which of multiple
wireless links. To the best of our knowledge, ours is the
first work on computation offloading for mobile cloud
computing that closes the gap between the works that
propose centralized solutions and the works that propose
decentralized solutions.

Closest to our work in the literature on game theory
is [37], which considers the effectiveness of Stackelberg
strategies for atomic congestion games. Authors in [37]
consider that the leader controls a subset of non-selfish
players, focus on affine latency functions and on congestion
games on parallel links. On the contrary, in our model
the leader manages the sharing of resources, and we
consider a player-specific weighted network congestion
game for which the existence of equilibria is not known
in general [38]. Thus, our work provides a novel game
theoretic perspective on congestion games.

VIII. CONCLUSION

We have provided a game theoretical analysis of selfish
computation offloading in a mobile edge computing system
where wireless and computing resources are jointly man-
aged by an operator, and devices make offloading decisions
autonomously so as to minimize the completion times
of their tasks. We consider the cost minimizing and the
time fair allocation policies of the operator and we use
a Stackelberg game to model the interaction between the
operator and devices. We expressed the cost minimizing
resource allocation policy in closed form and proved the
existence of Stackelberg equilibria for both policies. Using
game theoretical tools, we developed efficient decentralized
approximation algorithms for computing offloading deci-
sions of devices under both policies of the operator. Our
numerical results show that the proposed algorithms are
computationally efficient and that the system performance
can be significantly improved through optimally allocating
wireless and computing resources in a system, while
allowing the devices to make their offloading decisions
autonomously.

APPENDIX

A. Proof of Theorem 1

By inspecting the leading minors of the Hessian matrix
of (3) it is easy to show that (9) is neither convex nor
concave in u and p already for the case when there are
only two WDs sharing a resource. Furthermore, it is easy to
see from expressions (1) and (2) that the optimal solution of

11



(9) cannot be unique, since any non-zero scalar multiple of
feasible policies (Pr,Pc) yields the same objective value,
and hence if there is an optimal solution then there is a
continuum of optimal solutions.

To make the solution unique with respect to scalar
multiplication, let us introduce normalization constraints
on the sums of the provisioning coefficients, and obtain

min
(u,p)∈Ac

C(d,u,p) (37)

s.t.
∑
j∈Oa(d) uj,a = 1, ∀a ∈ A (38)∑
j∈Oc(d) pj,c = 1. ∀c ∈ C (39)

Observe that due to the normalization constraint the cost
function C(d,u,p) can be rewritten as

C ′(d,u,p) =
∑
a∈A

∑
i∈Oa(d)

Di

Ri,aui,a
+
∑
c∈C

∑
i∈Oc(d)

Li

F cpi,c
+

∑
i∈N\O(d)

Cli

Unlike problem (9), problem (37)-(39) is a convex
minimization problem, and thus its optimal solution must
satisfy the Karush–Kuhn–Tucker (KKT) conditions. To
define the Lagrangian dual of (37)-(39), we denote by α
and β the dual variables associated with constraints (38)
and (39) and by γ and δ the non-negative dual variables
associated with constraints u� 0 and p� 0. Using this
notation, we express the Lagrangian associated with (37)-
(39) as

L(d,u,p,α,β,γ, δ)=C ′(d,u,p)+
∑
a∈A

αa
( ∑
j∈Oa(d)

uj,a−1)
)

−
∑
a∈A

∑
j∈Oa(d)

γj,auj,a+
∑
c∈C

βc
( ∑
j∈Oc(d)

pj,c−1
)
−
∑
c∈C

∑
j∈Oc(d)

δj,cpj,c.

Finally, we define the Lagrangian dual problem as
maxα∈RA,β∈RC ,γ,δ�0 minu,p�0 L(d,u,p,α,β,γ, δ), and
we formulate the following KKT conditions.

Stationarity: ∂L(d,u,p,α,β,γ,δ)
∂ui,a

=0,∀a∈A,∀i∈Oa(d)
∂L(d,u,p,α,β,γ,δ)

∂pi,c
=0,∀c∈C,∀i∈Oc(d)

Primal
∑
j∈Oa(d) uj,a=1,∀a∈A

feasibility:
∑
j∈Oc(d) pj,c=1,∀c∈C

Dual feasibility: γi,a,δi,c≥0,∀i∈N ,∀a∈A,∀c∈C

Complementary −γi,aui,a=0,∀a∈A,∀i∈Oa(d)
slackness: −δi,cpi,c=0,∀c ∈ C,∀i∈Oc(d)

Observe that ui,a = 0 and pi,c = 0 would lead to an
infinite completion time for WD i’s task, and thus ui,a > 0
and pi,c > 0 must hold. Therefore, γi,a = 0 and δi,c = 0
must hold in order to have the complementary slackness
conditions satisfied. Finally, from the stationarity conditions
we can express ui,a and pi,c as

ui,a =
√
Di/αaRi,a,∀a ∈ A,∀i ∈ Oa(d), (40)

and

pi,c =
√
Li/βcF c,∀c ∈ C,∀i ∈ Oc(d). (41)

By substituting (40) and (41) in the primal feasibility
equations we can obtain the expressions for αa and βc,
and we can rewrite equations (40) and (41) as ui,a =√

Di/Ri,a∑
j∈Oa(d)

√
Dj/Rj,a

and pi,c =

√
Li/F c∑

j∈Oc(d)

√
Lj/F c

, which

proves the theorem.

B. Proof of Theorem 4
The JPAU algorithm starts from an empty system, adds

WDs into the game one at a time in the induction phase
and lets WDs to update their best replies one at a time in
the update phase. We denote by Nn the set of WDs that
participate in the game upon an induction step 1 ≤ n ≤ N
and we use d(n) = (di(n), d−i(n)) to denote a strategy
profile played by WD i and the other WDs j ∈ Nn \ {i}.
Observe that for N = 1, there is only one WD i in the
game playing its best reply d∗i (1), and thus d∗(1) = d∗i (1)
is a NE of the game.

ForN > 1 let us assume that in induction step n−1 WDs
play a NE d∗(n−1), and let us consider a WD i ∈ N \Nn
added into the game by the JPAU algorithm in induction
step n. If a best reply d∗i (n) of WD i is to perform the
computation locally, then d∗(n) = (d∗i (n),d∗(n− 1)) is a
NE of Γ(Pt,∗r ,Pt,∗c ) since the congestion on the APs and
the ECs remained unchanged. Otherwise, let us assume that
a best reply of WD i is offloading through AP a to EC c, i.e.,
d∗i (n) = (a, c). Observe that d(n) = (d∗i (n),d∗(n − 1))
may or may not be a NE of Γ(Pt,∗r ,Pt,∗c ). If there is
no WD that wants to deviate from its strategy played in
d∗(n− 1) then d(n) is a NE of the game. Otherwise, one
or all of the following cases can happen: (i) there is a
WD j ∈ O(a,c)(d(n)) that wants to update its best reply
by changing its strategy from (a, c) to local computing,
(ii) there is a WD j ∈ O(a,c′)(d(n)) that wants to update
its best reply by changing its strategy from (a, c′), c′ 6= c
to local computing, (iii) there is a WD j ∈ Oa(d(n)) that
wants to update its best reply by changing its offloading
strategy from (a, ·) to (a′, ·), a′ 6= a, (iv) there is a WD
j ∈ O(a′,c)(d(n)) that wants to update its best reply by
changing its strategy from (a′, c), a′ 6= a to local computing.
Observe that WDs j ∈ Oc(d(n)) cannot decrease their
offloading cost by changing between the ECs, since EC
c was WD i’s best reply (i.e., (nc(d∗(n− 1)) + 1)/F c ≤
(nc′(d∗(n− 1)) + 1)/F c

′
), and thus it is also a best reply

for all WDs j ∈ Oc(d(n)).
The JPAU algorithm lets WDs to update their best

replies in the following order. If case (i) happens, the JPAU
algorithm allows one of the WDs j ∈ O(a,c)(d(n)) to stop
offloading. Now, in the updated strategy profile d′(n) =
(j, d−j(n)) we have that na(d′(n)) = na(d∗(n− 1)) and
nc(d′(n)) = nc(d∗(n− 1)) hold for every AP a ∈ A and
every EC c ∈ C, and thus d′(n) is a NE of Γ(Pt,∗r ,Pt,∗c ).
Otherwise, if case (ii) happens, the JPAU algorithm allows
one of WDs j ∈ O(a,c′)(d(n)) to stop offloading. In the
updated strategy profile d′(n) = (j, d−j(n)) we have that
na(d′(n)) = na(d∗(n− 1)) for every AP a, nc(d′(n)) =
nc(d∗(n− 1)) + 1, nc′(d′(n)) = nc′(d∗(n− 1))− 1 and
nc′′(d′(n)) = nc′′(d∗(n − 1)) for every c′′ ∈ C \ {c, c′}.
Since WD j was offloading its task to EC c′ in a NE
d∗(n− 1) (i.e. before WD i enter the game) we have that
(nc(d∗(n− 1)) + 1)/F c > nc′(d∗(n− 1))/F c

′
. Therefore

WDs k ∈ Oc(d′(n)) can decrease their offloading cost by
changing their strategy from offloading to EC c to offload-
ing to EC c′. Let us now consider the updated strategy
profile d′(n) = ((·, c′), d′−k(n)) after a WD k ∈ Oc(d′(n))
performed its best reply d∗k(n) = (·, c′). We have that
na(d′(n)) = na(d∗(n−1)) and nc(d′(n)) = nc(d∗(n−1))
hold for every AP a ∈ A and every EC c ∈ C, and thus
d′(n) is a NE of Γ(Pt,∗r ,Pt,∗c ).

Now, let us assume that neither (i) nor (ii) happened.
In that case, the JPAU algorithm allows a sequence of
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update steps in which WDs j ∈ O(d(n)) are allowed to
decrease their offloading costs. Let us recall that WDs
j ∈ O(d(n)) cannot decrease their offloading cost by
changing between ECs, and thus in the resulting sequence of
update steps WDs only change between APs. Furthermore,
observe that the sequence starts with an update step
performed by WD j ∈ Oa(d(n)), which corresponds
to case (iii). It follows from [39] that this sequence of
update steps is finite. Observe that after the sequence
terminates in the updated strategy profile d′(n), we have
that na′′(d′(n)) = na′′(d∗(n − 1)) + 1 holds for AP
a′′ through which a WD started offloading in the last
update step, and thus some of the WDs j ∈ Oa′′(d′(n))
may want to stop offloading. Observe that the case when
there is a WD j ∈ O(a′′,c)(d′(n)) that wants to stop
offloading corresponds to case (i) and the case when there
is a WD j ∈ O(a′′,c′)(d′(n)), c′ 6= c that wants to stop
offloading corresponds to case (ii). In the discussion above
we showed that the JPAU algorithm terminates in a NE of
Γ(Pt,∗r ,Pt,∗c ) in both cases. Let us now consider that none
of the previous two cases happened. Then, if there are no
WDs j ∈ Oa′(d′(n)), a′ 6= a′′ that want to stop offloading
then the JPAU algorithm terminates in a NE because there
are no WDs that want to start offloading either because
nr(d′(n)) ≥ nr(d∗(n− 1)), ∀r ∈ A ∪ C.

Otherwise, let us assume that a WD j ∈ O(a′,c)(d′(n)),
a′ 6= a′′ (i.e., na′(d′(n)) = na′(d∗(n− 1))) wants to stop
offloading because the congestion in EC c increased, i.e.,
because nc(d′(n)) = nc(d∗(n−1))+1 holds. Observe that
if cases (i)-(iii) did not happen, we have that a′′ = a, which
corresponds to case (iv). After a WD j ∈ O(a′,c)(d′(n))
stops to offload, in the updated strategy profile d′(n) =
(j, d′−j(n)) we have that na′′(d′(n)) = na′′(d∗(n−1))+1,
na′(d′(n)) = na′(d∗(n− 1))− 1, nb(d′(n)) = nb(d∗(n−
1)) for APs b ∈ A\{a′′, a′} and nc(d′(n)) = nc(d∗(n−1))
for every EC c ∈ C. The JPAU algorithm first allows one
of the WDs k ∈ Oa′′(d′(n)) to decrease its offloading cost
by changing its strategy from (a′′, ·) to (a′, ·). If such a
WD k exists, after it performs the best reply we have that
na(d′(n)) = na(d∗(n−1)) and nc(d′(n)) = nc(d∗(n−1))
hold for every AP a ∈ A and every EC c ∈ C in the updated
strategy profile d′(n) = ((a′, ·), d′−k(n)). Thus, there is
no WD that can further decrease its cost and the JPAU
algorithm terminates in a NE of Γ(Pt,∗r ,Pt,∗c ). Otherwise,
if there is no WD k ∈ Oa′′(d′(n)) that can decrease its
offloading cost by changing the strategy from (a′′, ·) to
(a′, ·), then the JPAU algorithm allows a sequence of the
update steps in which WDs k ∈ O(d′(n)) are allowed to
decrease their offloading costs by changing between the
APs. It follows from [39] that this sequence of the update
steps is finite. Let us now consider a strategy profile d′(n)
after the last update step in the sequence was performed. We
can either have na(d′(n)) = na(d∗(n− 1)) for every AP
a ∈ A or na′′(d′(n)) = na′′(d∗(n−1))+1, na′(d′(n)) =
na′(d∗(n−1))−1 for some a′ ∈ A\{a′′} and nb(d′(n)) =
nb(d∗(n − 1)) for b ∈ A \ {a′′, a′}. In the first case the
JPAU algorithm terminates in a NE of Γ(Pt,∗r ,Pt,∗c ) since
nc(d′(n)) = nc(d∗(n− 1)) still holds for every EC c ∈ C
(the WDs were not changing between ECs). In the second
case we have that some of the WDs k ∈ Nn \ O(d′(n))
that are performing computation locally may want to start
to offload through AP a′. If such a WD does not exist,
d′(n) is a NE of Γ(Pt,∗r ,Pt,∗c ), since there is no WD that
can further decrease its cost. Otherwise, if such a WD k

exists its best reply is (a′, c) since nc(d′(n)) = nc(d∗(n−
1)) and (nc(d∗(n − 1)) + 1)/F c ≤ (nc′(d∗(n − 1)) +
1)/F c

′
. Observe that in the updated strategy profile d′(n) =

((a′, c), d′−k(n)) we have that na′(d′(n)) = na′(d∗(n−1))
and nb(d′(n)) ≥ nb(d∗(n − 1)) for b ∈ A \ {a′}, and
thus WDs j ∈ Oa′(d′(n)) cannot decrease their offloading
cost. Furthermore, WDs j ∈ O(d′(n))\Oa′(d′(n)) cannot
decrease their offloading cost either since they could not
do so before WD k started offloading. Finally, we observe
that WDs O(a′′,c)(d′(n)) do not want to stop offloading
because they did not want to do so after the sequence of
update steps of type (iii) terminated, and consequently only
an update step of type (iv) may happen.

In the following we show that an update step of type
(iv) can happen a finite number of times. First, observe
that na′(d′(n)) = na′(d∗(n− 1)), a′ 6= a′′ holds. Thus, a
WD j ∈ O(a′,c)(d′(n)), may want to stop offloading only
because the congestion in EC c increased. Second, observe
that a WD j ∈ Oc(d′(n)) for which a best reply in one of
the previous steps was to share EC c with nc(d∗(n− 1))
WDs, will not have an incentive to perform an improvement
step of type (iv) after a WD k ∈ Nn \O(d′(n)) starts to
offload to EC c, i.e., after the congestion in EC c increases
to nc(d∗(n− 1)) + 1 again. The same holds for all WDs
that decide to change their strategy from local computing to
offloading to EC c. Consequently, the length of the sequence
of update steps of type (iv) is at most nc(d∗(n−1)), which
proves the theorem.

C. Proof of Proposition 3

First, observe that in a sequence of update steps of type
(iii) each WD j ∈ O(d∗(n − 1)) can deviate at most
once. This is due to that when a WD j ∈ O(d∗(n − 1))
moves to an AP a it brings the system to a state where
na(d′(n)) = na(d∗(n− 1)) + 1 holds and since na(d′(n))
can only decrease in the following improvement steps, WD
j will not have an incentive to deviate again.

In the worst case scenario A ≥ 3,C = 1, all WDs offload
their tasks in a NE d∗(n− 1) i.e., O(d∗(n− 1)) = Nn−1
and case (iii) happens such that every WD j ∈ O(d∗(n−
1)) changes between APs exactly once. Furthermore, in
the worst case scenario, after an |Nn−1| long sequence
of update steps of type (iii), one of the WDs stops to
offload due to increased congestion only in the EC. Observe
that in the resulting strategy profile there is one AP a′′

on which the congestion increased, one AP a′ on which
the congestion decreased and the congestion on the other
APs has not changed compared with the congestions in
d∗(n− 1). Now, observe that in the worst case scenario
each of the WDs that offload through an AP a ∈ A\ {a′′}
changes between the APs, and consequently in the worst
case scenario na′′(d∗(n − 1)) = 1. Since the remaining
|Nn−1| − 1 WDs do not have an incentive to move to
the AP a′′ because of the increased congestion, it follows
from the definition of a best reply that in the resulting
sequence each of |Nn−1| − 1 WDs updates its strategy at
most A− 2 times. Furthermore, it follows from the proof
of Theorem 4 that an update of type (iv) can happen at
most nc(d∗(n−1)) times, where nc(d∗(n−1)) = |Nn−1|
for C = 1 and O(d∗(n− 1)) = Nn−1. Finally, we obtain
that a NE is reached after at most |Nn−1| + (1 + (A −
2)(|Nn−1| − 1) + 1)|Nn−1|, which proves the result.
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