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Higher mathematics is more fun!

Technology studies involve lots of mathematics and many students experi-
ence a jump in difficulty from upper secondary school to the university. This
text aims to relieve students from that feeling and to inspire to mathematical
curiosity.

It is not merely a repetition of earlier math courses; rather it mainly con-
tains material that is usually not covered properly either at upper secondary
school or at the university. Thus, in order to get the most out of this text,
you ought to remember basic mathematics from earlier courses quite well. If
you need a repetition, the web page

http://wiki.math.se/wikis/2009/bridgecourse1-ImperialCollege

is a good place to start.
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1 The language of mathematics

1.1 Symbols

We will practise writing, reading and speaking mathematically. In a math
book, it may look like this:

4

3
πR3 ≤ 8⇒ R <

3
√
2

And this is how it is pronounced:
⇒Four thirds pi R cubed less than or equal to eight implies that R is

less than the cube root of two.
This is a mathematical statement expressed first with symbols and then
with English words. That it is a statement is evident from the symbol ⇒.
The arrow states that if the left side is true then so is the right side. It is
pronounced implies that.

The left side starts with an expression with digits, letters, multiplication
and division. The letter π πalways refers to the number 3.1415926535 . . . and
the letter R also refers to a number. The complete expression was written
down 2200 years ago by Archimedes, perhaps the greatest mathematician
through all times, and it is a formula for the volume of a sphere of radius R.
By R3 we mean R ·R ·R. The left side asserts that the volume of the sphere
is at most 8 units of volume.

The right side states that the radius R is less than 1.2599 . . .. That num-
ber is called the cube root of two since 1.2599 . . . · 1.2599 . . . · 1.2599 . . . = 2.

If the volume of the sphere is at most 8 then its radius is less than
1.2599 . . . – this is the complete statement and it is actually true!

Here is Archimedes (to the left) and his tutor Euclid (to the right).
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It is important to be able to translate between symbols and English, so
here are some examples to practise on.

(a+ b)2 = a2 + 2ab+ b2 (1)

a plus b, squared, equals a squared plus two a b plus b squared.

α2 < 17⇔ −
√
17 < α <

√
17

⇔ Alpha squared is less than seventeen if and only if alpha is between
minus the square root of seventeen and plus the square root of seven-
teen.

The double arrow is pronounced if and only if. Double inequalities are ex-
pressed most easily with between. The Greek alphabet is used by all mathe-
maticians on Earth, so you will have to learn it now. But first some more
symbols.

1! = 1, 2! = 2, 3! = 6, n! = n · (n− 1) · (n− 2) · · · 1

n! One factorial is one, two factorial is two, three factorial is six, n
factorial is n times n minus one times n minus two and so on down
to one.

You should know that n! (Swe. n-fakultet) means the number of permutations
of n objects. For instance, 3! = 3 · 2 · 1 = 6 and indeed there are 6 orderings
of three objects: abc, acb, bac, bca, cab, cba. How many orderings are there of
ten objects? Answer: 10! = 3 628 800.

Evidently, the expression n! grows very rapidly. Exactly how rapidly it
grows is given by the famous Stirling’s formula, which we will look at now.

n! ≈
√
2πn

(n
e

)n
(2)

≈ n factorial is approximately equal to the square root of two pi n times
n over e to the power of n

Precisely what approximately equal to means must be defined in the text. For
10! Stirling’s formula yields the approximate value 3 598 696 with an error of
less than one percent, and the larger n is, the smaller the relative error will
be.
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The letter e ealmost always refers to the number 2.718281828459045 . . .
which, along with π, is the most important mathematical constant. It is
surely remarkable that these decimal numbers are needed in a formula for
n!, which is an integer! (You do not have to learn Stirling’s formula yet.)

|−π| = π, |2− 3| = 1, |17− 17| = 0

|x|The absolute value of minus pi is pi, the distance between two and
three is one, the distance between seventeen and seventeen is zero.

The absolute value means that the minus sign is removed if there is any. It
follows that the absolute value of a number minus another number is the
distance between the numbers on the number line, no matter in which order
the numbers are written.

−5 −4 −3 −2 −1 0 1 2 3 4 5

|1− 4| = 3

In mathematics, as always, three dots · · · means that the reader must figure
out what has been omitted.

1 + 3 + 5 + · · ·+ 19 = 100, 1 + 3 + 5 + · · ·+ n =

(
n+ 1

2

)2

(3)

· · ·One plus three plus five etc. up to nineteen equals 100. One plus three
plus five etc. up to n is equal to n plus one half to the power of two.

When dot dot dot is not clear enough, you use the summation symbol, which
is the capital sigma of the Greek alphabet.

∑k
i=1

k∑
i=1

(2i− 1) = k2 (4)

The sum of all numbers of the form two i minus 1 where i goes from
one to k is equal to k squared.

Analogously, when many factors are multiplied you can use the product
symbol, which is capital pi.
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n! = n · (n− 1) · · · 2 · 1 =

n∏
i=1

i (5)

∏n
i=1 n factorial is the product of all numbers i from 1 to n

A famous formula where the product is not taken over all integers but only
over all prime numbers is Euler’s product formula. It was proved 1737 by
Leonard Euler, the most productive mathematician of all times. He had
thirteen children, by the way.

∞∑
n=1

1

n2
=
∏

prime p

1

1− 1/p2
(6)

∞ The sum of one over n squared for all n from one to infinity is equal
to the product of all one over one minus one over p squared for all
primes p

Here we come across a well-known symbol, ∞, showing that the sum has
infinitely many terms. What about the product? Are there infinitely many
primes? This question was answered already 2300 years ago by Euclid and
later on you will repeat his achievement!

Here are Euler and the Greek alphabet:

α alpha ι iota ρ rho
β beta κ kappa σ sigma
γ gamma λ lambda τ tau
δ delta µ mu υ upsilon
ε epsilon ν nu ϕ phi
ζ zeta ξ xi χ chi
η eta o omikron ψ psi
θ theta π pi ω omega

Exercises

1.1: Tell something about αρχιµηδησ.
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1.2: First read aloud and then try to understand what you just said.

cosϕ = 0⇔ ϕ = ±π
2
+ 2nπ for some integer n

1.3: Read aloud, understand the statement, choose a pair of numbers ρ
and σ and check whether the statement holds. Then, try to find a pair of
numbers such that the statement is false.

ρ2 + σ2 + 2ρσ ≥ 2ρ+ 2σ

1.4: Read aloud, understand, test with x = −10 and then justify the
claim.

|x| =
√
x2

1.5: Read aloud, understand, test with n = 3 and justify the claim. What
does it say for n = 0?

(n+ 1)! = (n+ 1) · n!

1.6: If n = 0 the product in (5) has no factors at all:
∏0
i=1 i. How should

such a product be interpreted, with the previous exercise in mind?

1.7: In (3) and (4) an equation is written in three different ways. What
should k and n be in order to make the three different equations mean the
same thing? Does the equality hold for nineteen?

1.8: The sum and the product in Euler’s formula have the same value,
namely π2/6. How much is this, roughly? If we keep only three terms in the
sum, clearly we get a smaller value. Check that! Keeping only two factors in
the product also results in a value that is too small. Check that too!

1.9: As we have written Euler’s formula there is a two on both sides of
the equality sign. Euler showed that the formula remains true if the twos are
replaced by an arbitrary number greater than 1. Try to formulate this more
general Euler’s formula!

1.10: (Toughy) We saw that 10! is a seven-digit number. Use Stirling’s
formula to approximate the number of digits in 27!.
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1.2 Inequalities

Equalities and inequalities are statements that can be true or false. Which
one of the following statements is true?

2 · 1 · 0 < 3 · 2 · 1 · 0

17x ≤ 18x for any x

|λ| · |µ| = |λµ| for any λ and µ

π = 3.14

The first statement is false since both sides are zero. The second statement
is true for positive x but false for x = −1. The last statement is false since
π is only approximately equal to 3.14. But the third statement is true. The
absolute values remove all minus signs and it does not matter whether this
is done before or after the multiplication.

How can it be expressed that x lies at most one unit from the number 17 on
the number line? We write either 16 ≤ x ≤ 18 or |x− 17| ≤ 1.

If one litre of mercury is heavier than one litre of water, then naturally two
litres of mercury is heavier than two litres of water. In a formula this can be
expressed like this:

x > y ⇒ 2x > 2y and more generally x > y ⇒ ax > ay for any positive a

But what if a is negative? We have that 13 > 1 but −26 < −2. In general it
holds that multiplication by a negative number changes the direction
of the inequality. This is a trap when dealing with inqualities and there is
a similar one for absolute values.

Example
Does x < y imply that |x| < |y| or is it the other way around?

If the numbers are positive the implication is obvious. If x is a large
negative number the first inequality can be true while the second one is
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false. And if y is a large negative number the second inequality can be
true while the first one is false, so no implication arrow holds.

Example
For which x does it hold that 5x+ 2 ≥ 2x+ 5?

We collect all x-terms on one side and constant terms on the other side.
5x − 2x ≥ 5 − 2, thus 3x ≥ 3. Here we can multiply by one third and
obtain the answer x ≥ 1.

That is fine, but if we had collected the x-terms on the right-hand side
in stead we would have got −3 ≥ −3x. Here we can multiply by −1/3
and obtain a sole x on the right-hand side. But since we multiply by a
negative number the direction of the inequality changes and we get 1 ≤ x.

If a = b of course ea = eb and ln a = ln b and sin a = sin b. But if a < b, is
ea < eb and ln a < ln b and sin a < sin b? To answer this question we must
look at the graphs of the functions.

The exponential and the logarithmic curves are growing, that is, uphill
to the right. This makes it easy to see that ea < eb och ln a < ln b. But the
sine curve is alternately uphill and downhill, so sin a < sin b does not always
hold.

x

ex

x

lnx

x

sinx

triangle inequalityIn a triangle, two sides together are longer than the third side. That in-
equality holds for triangles in the plane but we can imagine a triangle on
the number line too. If the three corners are 0, x, y the side lengths are
|x|, |y|, |x− y| and the inequality tells us that

|x|+ |y| ≥ |x− y| for any x and y

The triangle inequality is equally true if the minus of the right-hand side
is replaced by a plus, because changing the sign of y does not change the
left-hand side.
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positive square An even more useful inequality is that x2 ≥ 0. “Squares are positive”, you
would like to say, but it is not true. “Squares are nonnegative” would be the
correct thing to say.

Example
Prove that a2 + 2ab+ 3b2 ≥ 0 for any a and b.

One solution is based on the rule for squaring a binomial (1).

a2 + 2ab+ 3b2 = a2 + 2ab+ b2 + b2 + b2 = (a+ b)2 + b2 + b2

Now we have a sum of three squares and since all are nonnegative their
sum is nonnegative.

Exercises

1.11: Write an inequality that holds for any x.

1.12: Write an inequality that holds for any x except x = 0.

1.13: Write an inequality that holds for any x except x = 1.

1.14: For which x does it hold that 5x− 7 > 2x+ 5?

1.15: For which x does it hold that 5x2 − 7 ≥ 2x2 + 5?

1.16: You know that a < b and you are perfectly positive that 1 < 2.
Multiplication side by side yields 1 · a < 2 · b. But this an illegal thing to do!
Try to find two numbers such that a < b is true but a < 2b is false.

1.17: According to the text it is easy to see that ea < eb if a < b. When you
see that phrase in a math book you ought to be suspicious! Often it means
that the mathematician has not found an easy argument for the assertion.
You better do it now yourself. You may use that the exponential function is
growing.
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1.18: It works the other way around too. If ea < eb then a < b. Justify that
claim! Which implication arrow should there be between the inequalities? If
you denote ea by α and eb by another convenient Greek letter, you will be
able to express the result with logarithms!

1.19: (Toughy) For which x does it hold that x2 − 3x+ 2 < 0?

1.3 Set theory

Mathematical statements often look like this:

sinnπ = 0 for any integer n

ex > 0 for any real x

Z,R,∈With the notation Z for the set of integers and R for the set of real numbers,
it can be written more compactly:

sinnπ = 0 for any n ∈ Z

ex > 0 for any x ∈ R

∀,∃It can get even shorter with the symbol ∀ (for any):
sinnπ = 0, ∀n ∈ Z

Sine n pi vanishes for any integer n.

∀x ∈ R, ex > 0

For any real x, e to the power of x is positive.

The ∀-part can be put at the beginning or at the end, whichever seems best
in the given situation.

Together with ∀x (for any x) you will often encounter ∃y (exists a y) in
statements of the following type.

∀x > 0 ∃y y2 = x

For any positive number x there is a y whose square equals x.
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N, {. . . | . . .} Other sets can be defined by set brackets, like this:1

N = {n ∈ Z | n ≥ 0}, the natural numbers (7)

∅
∅ = {}, the empty set (8)

Intervals on the real axis can be either open or closed at the ends.
[0, 17] = {x ∈ R | 0 ≤ x ≤ 17} (9)

The closed interval[a, b] of real numbers between 0 and 17, boundary values
included.

(7,∞) = {x ∈ R | 7 < x <∞} (10)

The open interval(a, b) of real numbers greater than seven.

For finite sets the elements can be specified one by one.

A = {1, π, 17}, ∅ = {}, the empty set (11)

The most common set operations are union, intersection (Swe. snitt) and
difference.

[0, 17] ∪ (7,∞) = [0,∞)A ∪B
[0, 17] ∩ (7,∞) = (7, 17]A ∩B
[0, 17] \ (7,∞) = [0, 7]A \B

With so called Venn diagramsVenn diagram the set operations can be visualized:

A B A B A B

A ∪B A ∩B A \B

1A colon is sometimes used in stead of the vertical bar.

10



Natural numbers are a subset of the integers which in turn are a subset of
the real numbers. A ⊂ B

N ⊂ Z ⊂ R (12)

To more sets of numbers can be included in the chain. The rational numbers
Q consists of all fractions, like 2/3 and −2014/17. The complex numbers C
have a real part and an imaginary part, as in 3−4i or π+0.5i. The imaginary
unit i has the property that i · i = −1 and that is all you need to know in
this course. We will mostly stick to the real axis R.

Q,CN ⊂ Z ⊂ Q ⊂ R ⊂ C (13)

But how is the xy-plane denoted, the plane we draw curves upon? Since each
point (x, y) is specified by two real numbers, we can think of the plane as
the set of pair of real numbers, and that set is denoted by R× R. R× R = R2The first
R is the x-axis and the second R is the y-axis. As a shorthand we may write
R2.

Exercises

1.20: What is claimed here? Is it true?

∀x ∈ [1, 17], |x− 9| ≤ 8

1.21: Use set brackets to define T , the set of natural numbers with two
digits.

1.22: Describe in words the following set.

Z \ N

1.23: Write as an interval the set

{x | |x− 4.2| < 0.8}.

1.24: Find two sets A and B such that A ∪B = R and A ∩B = Z.
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1.25: Use set brackets to define J , the set of even natural numbers, and
U , the set of odd natural numbers.

1.26: Write with symbols the following statement. The square of an odd
number is odd. Hint: Use the previous exercise.

1.27: Write with symbols the following statement. If the square of a
natural number n is even, then n is even.

1.28: (Toughy) N = { 0, 1, 2, 3, . . . } and is thus said to be countable
or enumerable. Z = { 0, 1,−1, 2,−2, . . . } is also countable. Show that Q is
countable too!

1.4 Modelling

Mathematics is a theoretical science, but strangely enough it is very useful
for describing reality. Such a description is called a mathematical model. The
physicist’s goal is to construct a model for everything, the mathematician is
then given the task to study the properties of the model, discover relations
and solve equations.

Example
What is the weight of the air inside a football?

1. First choose denotations, one letter for each quantity.
d (m), the radius of the football is 0.11
V (m3), the volume of the football
ρ (kg/m3), the density of air is 1.2
m (kg), the mass of the air

2. Write down relevant equations, often general laws.

V =
4

3
πr3 (the volume of a sphere according to Archimedes)

ρ = m/V (the definition of density)

3. Solve for the wanted quantity.

m = ρ · 4
3
πr3 (14)
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4. Plug in given values and do the calculation.

m = 1.2 · 4
3
π · 0.113 = 0.0067

Thus, the air inside the football weighs 6.7 grams.

The obtained result gives the truth in the model, not necessarily in reality.
In reality, the air inside a football weighs approximately twice the value we
obtained. The reason is that the air inside a football differs in one respect
from the air the players breathe. Can you think of how?

It is vital that numerical values are not plugged in until the last step. By
then we have a formula that is valid for any input, at least if we stick to SI
units.

Example
The water boiler is broken! How long will it take to heat one litre of tea
water with a ten-watt lamp?

1. First choose denotations, one letter for each quantity.
V (m3), the volume of the water is 0.001
ρ (kg/m3), the density of water is 1000
cp (J/kg·K), the specific heat capacity for water is 4200
T (K), the increase in temperature is 80
W (J), amount of energy
P (J/s), the power is 10
t (s), the heating time

2. Write down relevant equations.

W = T · cp · ρ · V (needed energy)
W = P · t (added energy)

3. Solve for the wanted quantity.

t = T · cp · ρ · V/P (15)

4. Plug in given values and do the calculation.

t = 80 · 4200 · 1000 · 0.001/10 = 33600

It will take 33600 seconds, that is, nine hours and twenty minutes.

13



Relations in physics is most often like (15), a variable is proportional to some
variables and inversely proportional to some others, or, as in (14), to some
power of a variable. Often this information is enough to make it possible to
draw interesting conclusions.

Example
The Earth or Mars, which one has the largest speed around the Sun?

Sun

Earth

Mars

1. First choose denotations, one letter for each quantity.
r (m), the planet’s distance to the Sun
v (m/s), the planet’s speed
F (N), the Sun’s gravitational force on the planet
m (kg), the planet’s mass
a (m/s2), the planet’s acceleration

2. Write down relevant equations, often general laws.

F = m · a (Newton’s second law of motion)

F = constant ·m/r2 (gravity according to Newton)

a = v2/r (circular motion according to Newton)

3. Solve for the wanted variable.

v2 = r · a = r · F/m = r · constant/r2 = constant/r (16)
v = constant/

√
r (17)
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4. Plug in given values and do the calculation.

rM > rJ ⇒ vM < vJ

For phenomena depending on time t there are two especially common models.
One is exponential growth, which means that something grows by a factor
k each unit of time. If the initial value is a the formula looks like this:

a · kt exponential growth (18)

t

akt

a

The other is periodic variation, which means that something oscillates
around a central value. If the value varies from a to −a and back to a in the
time period T , the formula is as follows.

a sin
2πt

T
periodic variation (19)

t

a sin 2πt
T

a

T

Here, 2πt/T should be interpreted in radians, and this is always the case
unless the text explicitly says otherwise.

Example
Lily pads cover 1 m2 of a lake of size 1 km2. The covered area is doubled
every day (24 hours). When is the lake completely covered?
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1. First choose denotations, one letter for each quantity.
a (m2), covered area, initial value = 1
A (m2), covered area, final value = 1 000 000
k, growth factor = 2
t, number of days

2. Write down relevant equations, often general laws.

A = a · kt

3. Solve for the wanted quantity.
It is hard, but it is possible if we take the logarithm of both sides.

lnA = ln a+ t ln k (20)

t =
lnA− ln a

ln k
(21)

4. Plug in given values and do the calculation.

t =
ln 1 000 000

ln 2
≈ 20

If you know the powers of two, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, you see
that ten doublings make something about one thousand times greater and
hence ten more doublings about a million times greater. Then no logarithms
are necessary.

Example
At high tide in the middle of the day, the water in the Port of Liverpool
reaches the edge of the quay. The low-water mark is as much as eight
metres lower. When in the afternoon has the water level dropped six
metres?

1. First choose denotations, one letter for each quantity.
Tide is a periodic phenomenon with the period T = 12 hours. Six hours
before high water it was low water, and three hours before high water
the water level was at its mean. Therefore, let us count the time t in
hours after 9:00. In Liverpool the amplitude is a = 4 metres, so let us
count the height h in metres above the mean water mark four metres
below the edge of the quay.
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2. Write down relevant equations, often general laws.

h = a sin
2πt

T

3. Solve for the wanted quantity.
This is too hard, we will have to do trial and error in stead.

4. Plug in given values and do the calculation.

−2 = 4 sin
2πt

12

sin
π

6
t = −1

2

t sin π
6 t

0 0
1 1/2
2
√
3/2

3 1
4
√
3/2

5 1/2
6 0
7 -1/2

Answer: Seven hours after 9:00, that is, 16:00.

Exercises

1.29: Why is the air inside the football heavier than the air the players
breathe? Change the formula so that it takes this phenomenon into account.

1.30: You are to compute the height of a flagpole in a clever way by
measuring its shadow (four metres) and a friend’s shadow (one metre). If your
friend’s height is 1.75 metres, how long is the flagpole? Model the situation!

1.31: Saturn is just over nine times as far from the Sun as the Earth is.
How long is a year on Saturn? Model and use (17)!

1.32: Use (15) to compute how long it will take to heat two litres of tea
water in a water boiler with the power 2240 W.

1.33: After how many days is half the lake covered by lily pads?
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1.34: A secret recipe for a lotion specifies nine different components
and their volume amounts. With knowledge of the price per litre of these
components, find a formula for the price per litre of the lotion if the profit
should be 1000%.

1.35: Periodic processes can equally well be written as

a cos
2πt

T

but then t must be counted from another initial time. What would the initial
time be in the tide example?

1.36: A cylindrical bottle with diameter 8 cm and height 20 cm weighs
1 kg. Will it do for sending messages in it?
Hint: An object floats if it is lighter than the same volume of water.

1.37: (Toughy) Write down a formula for ordinary fifty-period 230 V
alternating voltage. Hint: The top value is

√
2 times the effective value.
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2 Factorisation

When is it possible to write a polynomial as a product of polynomials of
lower degree, for instance x4− 1 = (x2+1)(x2− 1), and why would you ever
want to do it?

As a technology student you need to ask yourself these questions, and as
we will see shortly they lead to unexpectedly beautiful mathematics! But first
we will build an intuition for factorisation by looking at the corresponding
question for ordinary integers: When is it possible to factor an integer, for
example 153 = 9 ·17, and why would you ever want to do it? This, too, leads
to beautiful mathematics.

2.1 Prime factorisation

If you have 90 caramels to distribute into a number of bags, how many bags
could you have? A mathematician would formulate the question like this:
Which positive integers divide 90?

To answer the question we first try to write 90 as a product of two smaller
positive integers, 90 = 9 · 10 for instance. Both 9 and 10 can be further
factorised so we obtain 90 = 3 · 3 · 2 · 5. The integers 2, 3 and 5 are only
divisible by themselves and 1 and thus they cannot be written as a product
of smaller integers. Such numbers are called primes prime numberand 90 = 3 · 3 · 2 · 5 is
a prime factorisation of 90. The number 1 is per definition not a prime, so
the smallest prime number is 2. prime factorisation

What would have happened if we had chosen another factorisation of 90
to start with? Let us try 90 = 6 · 15 for instance. Both 6 and 15 can be
further factorised so we obtain 90 = 2 · 3 · 3 · 5. Disregarding the order of the
factors, this is exactly the same prime factorisation as before. That is not a
coincidence – it will always turn out that way. Euclid showed the following
famous theorem which we present without proof.

Theorem 2.1 (The fundamental theorem of arithmetic). the fundamental
theorem of arithmetic

Every integer gre-
ater than 1 can be written as a product of primes in a unique way (up to the
order of the factors).

From the fundamental theorem of arithmetic it is easy to see that the
divisors of 90 are the following numbers, with 90 itself at the top.
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1

2 3 5

2 · 3 2 · 5 3 · 3 3 · 5

2 · 3 · 3 2 · 3 · 5 3 · 3 · 5

2 · 3 · 3 · 5

Prime numbers are also useful when you manipulate fractions. If the nume-
rator and the denominator of a fraction have a common divisor, the fraction
can be reduced.reduction For instance,

180

280
=

18 · 10
28 · 10

=
18

28
.

Since 2 divides both 18 and 28 we can reduce further and write 18/28 = 9/14,
but now no more reduction is possible. In stead of reducing first by 10 and
then by 2 of course we could have reduced by 20 directly – the result would
have been the same. This number 20 is the largest integer dividing both 180
and 280 and it is called the greatest common divisorgreatest common

divisor
. If both the numerator

and the denominator have been prime-factorised, it is easy to find their
greatest common divisor.

180

280
=

2 · 2 · 3 · 3 · 5
2 · 2 · 2 · 5 · 7

=
6 2· 6 2 · 3 · 3· 6 5
6 2· 6 2 · 2· 6 5 · 7

=
3 · 3
2 · 7

.

Prime factors that are present in both the numerator and the denominator
cancel out and the product of these is the greatest common divisor.

A third situation where prime factorisation is useful is when you want to
simplify a root expression. Let us say that you have solved an exercise in a
math book and got the answer

√
180. You check the answer in the book but

it reads 6
√
5. Not again! But after prime factorisation it is evident that

√
180 =

√
2 · 2 · 3 · 3 · 5 =

√
2 · 2 · 3 · 3 ·

√
5 = 2 · 3 ·

√
5

so you were right anyhow!
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Exercises

2.1: Make a list over all prime numbers less than 50.

2.2: Find all positive divisors of 204.

2.3: Reduce 495/525 as much as possible by prime-factorising both the
numerator and the denominator.

2.4: Simplify √
450−

√
392√

2

as much as possible.

2.5: (Toughy) The text says that it is “easy to see” from the fundamental
theorem of arithmetic that the divisors of 90 are precisely the numbers in
the figure. How can that be seen?

2.2 Polynomial division

A polynomial polynomialin x is an expression of the form

7x3 − 2x2 + 5x+ 9.

The numbers 7, −2, 5 and 9 in front of the powers of x are called coefficients
coefficientsand they are not necessarily integers but might be any real numbers (or

complex, if you want), as long as they are independent of x. The coefficient
9 in front of the invisible power x0 is also called the constant term constant termsince
that term is independent of x. The largest degreeexponent 3 is the degree of the
polynomial and the corresponding term 7x3 is called the leading term leading term.

Adding two polyomials clearly yields another polynomial. For instance,

(3x4 − 7x2) + (x4 + 1) = 4x4 − 7x2 + 1.

One polynomial minus another is also a polynomial, and even the product
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of two polynomials is a polynomial, as shown in the following example.

(3x2 − x+ 2)(5x+ 1) = 3x2(5x+ 1)− x(5x+ 1) + 2(5x+ 1)

= (15x3 + 3x2)− (5x2 + x) + (10x+ 2)

= 15x3 − 2x2 + 9x+ 2.

But the quotient of two polynomials is called a rational expressionrational expression and is
typically not a polynomial. In this respect polynomial behave just like in-
tegers – those can be added, subtracted and multiplied, but if you divide
two integers m and n a great amount of luck is required if their quotient
m/n should be an integer too. If you happen to be so lucky we say that n
divides m or that m is divisible by n, and the same terminology is used for
polynomials. For example, 15x3 − 2x2 + 9x + 2 is divisible by 5x + 1 as we
found above. Often we also say that 15x3−2x2+9x+2 has the factor 5x+1
since 15x3 − 2x2 + 9x+ 2 can be written as 5x+ 1 times a polynomial.

But how do you divide polynomials? Let us take the example

q(x) =
x3 − 6x2 + 11x− 6

x− 3
.

So our task is to find a polynomial q(x) such that

(x− 3)q(x) = x3 − 6x2 + 11x− 6.

The method is to start by choosing q(x) such that the left-hand side becomes
approximately equal to the right-hand side and then adjust q(x) step by step
to make the approximation better and better.

• First we concentrate on the leading term x3 on the right-hand side. To
obtain the leading term x3 on the left-hand side, q(x) must have the
leading term x2. But (x− 3)x2 = x3 − 3x2 so we get a quadratic term
−3x2 for free.

• The quadratic term on the right-hand side is −6x2 so the left-hand side
is lacking −3x2. Then we are clever enough to let q(x) include also the
term −3x and we try again: (x − 3)(x2 − 3x) = x3 − 6x2 + 9x. Now
both the cubic and the quadratic terms are correct, but we got a linear
term 9x for free.

• We want the linear term 11x so we need another 2x. Thus, we let q(x)
include also the term 2. Third time lucky: (x − 3)(x2 − 3x + 2) =
x3 − 6x2 + 11x− 6. Hurrah, it’s correct!
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That the constant term −6 happened to be just right in this example shows
that the quotient is a polynomial. Usually when you try to divide polynomials
the division does not come out even and you get a remainder (which is also
a poynomial), but we will not concern ourselves with in this course.

It is possible to use long division for polynomials just as with numbers,
but it is not mandatory. Ask your tutor to show an example if you are
interested!

Exercises

2.6: Perform the polynomial division

x3 − 7x2 + 17x− 15

x− 3
.

2.7: Perform the polynomial division

14x4 − 23x3 − 11x2 + 23x− 3

7x2 + 6x− 1
.

2.3 Polynomial factorisation

Now we ask ourselves: What corresponds to prime numbers in the world of
polynomials?

A non-constant2 polynomial is reducible if it can be written as a product
of two non-constant polynomials. If not, the polynomial is irreducible irreducible

polynomial
and

those polynomials are the ones that correspond to prime numbers. There is
also an equivalent to the fundamental theorem if arithmetic:

Theorem 2.2. Every polynomial can be written as a constant times a pro-
duct of irreducible polynomials with leading coefficient 1, and that factorisa-
tion is unique up to the order of the factors.

The proof belongs to a more advanced course.
2A polynomial is constant if it contains only a constant term.
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Then the question remains how it can be decided whether a polynomial
is irreducible. All first-degree polynomials are clearly irreducible, but not
all quadratic ones. For instance, x2 − 3x + 2 is reducible because it can be
written as a product x2−3x+2 = (x−1)(x−2) of two polynomials of lower
degree. On the other hand, the quadratic polynomial x2 + 1 is irreducible,
since if we try to write it as (x + a)(x + b) we must choose the numbers a
and b such that x2 + 1 = x2 + (a + b)x + ab and then a + b must be zero
and ab must be one. Try finding two numbers whose sum is zero and whose
product is one!

Are there irreducible polynomials of higher degree than two?

To answer that question we must first examine another aspect of po-
lynomials. Up to this point we have only thought of polynomials as ex-
pressions, as formal sums where each term is a coefficient times a power
of x. But, obviously, a polynomial is also a function receiving a number as
input and emitting a number as output. For instance, if we feed the fun-
ction p(x) = x2 − 3x + 2 with the number 4 it will output the number
p(4) = 42 − 3 · 4 + 2 = 6. Functions can in turn be thought of as graphs if
you wish; here is the graph of x2 − 3x+ 2:

x

x2 − 3x+ 2

Those x that have p(x) = 0 are called zeroszero of a function of the polynomial, and in
the graph above we see that 1 and 2 seem to be zeros of x2 − 3x + 2. To
check this we may substitute 1 and 2 for x:

p(1) = 12 − 3 · 1 + 2 = 0,

p(2) = 22 − 3 · 2 + 2 = 0.

Correct! But if we remember the factorisation x2 − 3x+ 2 = (x− 1)(x− 2)
we will not need the graph to find the zeros. Indeed, they are standing there
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right under our very noses, and the check becomes almost trivial:

p(1) = (1− 1)(1− 2) = 0,

p(2) = (2− 1)(2− 2) = 0.

We have just oberved that if a polynomial has the factor x − a then a is a
zero of the polynomial. Actually the converse is also true, and we have the
following theorem whose proof is omitted.

Theorem 2.3 (The factor theorem). the factor theoremA polynomial has a as a zero if and
only if the polynomial has the factor x− a.

The factor theorem is useful when you know one zero of a third-degree
polynomial and want to find the remaining zeros if they exist.

Suppose, for instance, that we want to find all zeros of the the polynomial
x3−6x2+11x−6 and that we already know that 3 is a zero. Then the factor
theorem tells us that x3 − 6x2 + 11x − 6 is divisible by x − 3 and we can
perform the division

x3 − 6x2 + 11x− 6

x− 3
= x2 − 3x+ 2.

Thus, x3 − 6x2 + 11x− 6 = (x− 3)(x2 − 3x+ 2) and the remaining zeros of
x3 − 6x2 + 11x− 6 also have to be zeros of x2 − 3x+ 2. Those can be found
by the pq-formula or by completing the square, or perhaps we remember the
factorisation x2 − 3x + 2 = (x − 1)(x − 2). We conclude that the zeros of
x3 − 6x2 + 11x− 6 are 1, 2 and 3. The function graph looks like this:

x

x3 − 6x2 + 11x− 6

If we had access to an oracle that can find zeros of polynomials if they
exist, then we would be able to factorise polynomials by applying the factor
theorem repeatedly, like this:
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• We start by asking the oracle for a zero of the polynomial p(x) that
we want to factorise. The oracle will answer with a number a1.

• From the factor theorem we know that we can write p(x) = (x −
a1)p2(x) for some polynomial p2(x).

• Now we ask the oracle for a zero of the polynomial p2(x). The oracle
answers that a2 is a zero.

• From the factor theorem we know that we can write p2(x) = (x −
a2)p3(x) for some polynomial p3(x).

• We may continue in this manner as long as the oracle is able to answer,
and this will allow us to write p(x) = (x− a1)(x− a2) · · · (x− an)q(x)
where q(x) is a polynomial without zeros.

The following theorem, first proved by Carl Friedrich Gauss (1777–1855), is
as close you can get to such an oracle.

Theorem 2.4 (The fundamental theorem of algebra).the fundamental
theorem of algebran

Every non-constant
polynomial has at least one complex zero.

The theorem only holds if complex numbers are allowed as zeros; it might
be that there is no real zero.

Here is a picture of Gauss:

If we allow complex numbers the oracle procedure above, together with
the fundamental theorem of algebra, shows that polynomials of degree at
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least 2 can always be written as a product of first-degree polynomials (li-
near factors). Hence, only first-degree polynomials are irreducible over the
complex numbers. The quadratic polynomial x2+1, which normally is irredu-
cible, becomes reducible when we allow complex numbers, because x2 +1 =
(x− i)(x+ i).

Example
Let us find all complex zeros of the polynomial x2 − 2x+ 5 by using the
pq-formula.

x = 1±
√
1− 5 = 1±

√
−4 = 1± 2i

Thus, the zeros are 1 + 2i and 1− 2i.
As you notice, the complex zeros of quadratic polynomials always occur

in conjugate pairs, a+ bi and a− bi. It can be shown that this holds for any
polynomial with real coefficients (but we omit the proof).

Theorem 2.5. The non-real complex zeros of a polynomial with real coeffi-
cients occur in conjugate pairs.

Let us return to the question we put in boldface above, before we got
involved with complex numbers: Are there irreducible polynomials of higher
degree than two?

Take the polynomial p(x) = x4 + 11x2 + 10x + 50 as an example. Is it
irreducible?

By the fundamental theorem of algebra it has at least one complex zero,
and one such zero happens to be 1 + 3i. Since the zeros occur in conjugate
pairs, 1− 3i is a zero too. The factor theorem then yields that

(
x− (1+3i)

)
and

(
x− (1− 3i)

)
are factors in p(x) and since these factors are distinct and

irreducible their product is also a factor in p(x). (Indeed, both factors occur
in the unique irreducible factorisation of p(x).) Using the conjugate rule on
the product we obtain

(x− 1− 3i)(x− 1 + 3i) = (x− 1)2 − (3i)2 = (x− 1)2 − 9i2 = (x− 1)2 + 9

since i2 = −1. This is a quadratic polynomial with real coefficients. Thus,
p(x) can be written as a product of two quadratic polynomials and hence
p(x) is reducible.

By the same kind of reasoning, it can be shown that every irreducible
polynomial has degree 1 or 2.
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Exercises

2.8: The polynomial p(x) = 4x3− 20x2−x+5 has a zero for x = 5. Find
all other zeros!

2.9: Is the polynomial p(x) = x3 + 3x2 − x+ 2 divisible by x+ 2?

2.10: (Toughy) Find all (real) zeros of the polynomial p(x) = x4 + x3 +
x2 + x.

2.4 Polynomial equations and their history

The fundamental theorem of algebra states that every nonconstant polyno-
mial has at least one complex zero, but how do you go about finding one?

For first-degree polynomials it’s a picnic: ax + b = 0 has the unique
solution x = −b/a (if a 6= 0).

Second degree equations are harder but were solved (by completing the
square) by the Babylonians four thousand years ago. The pq-formula gives
the solution directly:

x2 + px+ q = 0 ⇔ x = −p
2
±
√
p2

4
− q

In the early 16th century, competitions were held in solving third degree
equations. When the Italian mathematician Scipione del Ferro (1465–1526)
discovered a formula for the solution of the general third degree equation
x3 + ax2 + bx + c = 0, the competitors turned to solving fourth degree
equations, but soon thereafter Ludovico Ferrari (1522–1565) found a formula
even for these.

Will somebody find a formula for fifth degree equations too? No, the
Norwegian mathematician Niels Henrik Abel (1802–1829) proved that there
is no such formula, in any case no formula using only algebraic operations.

But certainly some polynomial equations of degree five and higher are
simple to solve algebraically. For example, the equation x5 = x has the
solutions 0, 1, −1, i och −i. The French mathematician Évariste Galois
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(1811–1832) analysed exactly which polynomial equations may be solved by
algebraic operations.

Abel Galois

Both Abel and Galois died very young. Abel contracted tuberculosis and
died at 26, two days before information arrived that he had been appointed
professor at the university of Berlin. Galois was an unappreciated genius who
twice served time in prison. When released, he was challenged to duel with
a rival. Luckily enough he wrote down some brilliant thoughts in a letter to
a friend the night before being killed in the duel, just twenty years old.

Finally, it must be stressed that, in spite of the nonexistence of an alge-
braic formula solving equations of higher degree, solving such equations is
a simple task for the working engineer. With numerical methods it is easy
to find approximate solutions with any desired precision. That is also why
the formulas for the third and fourth degree equations, discovered by medi-
eval mathematicians, are now known to very few of us (by heart) – they are
simply not useful any more. So if you want to be one of these very few – go
ahead and learn them!
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3 Proofs

Everybody can make assertions, but only mathematicians can prove them.
The usual form of proof is when you move forward stepwise and via interme-
diate results finally reach your goal. This is what it looks like in principle:

Theorem: A,B,C ⇒ Z

Proof : A,B,C ⇒ D

A,B,C,D ⇒ E

A,B,C,D,E ⇒ Z

A,B,C are called the premises, D,E are intermediate results and Z the
conclusion. This is what a simple example looks like.

Theorem: If m and n are even numbers, then m+ n is even.
Proof:
m = 2r (definition of even)
n = 2s (definition of even)
m+ n = 2r + 2s (addition of equations)
m+ n = 2(r + s) (rule of algebra)
m+ n is even (definition)

This is how most of the theorems in Euclid’s geometry textbook Elementa
are proved, for example Pythagoras’s theorem that a2 + b2 = c2 in a right
triangle. But one of the most famous theorems, which is not about geometry,
is proved in a backward manner that is very useful.

3.1 Proof by contradiction

Theorem: There are infinitely many primes.
Proof: Assume that the statement is false! If so, there are only finitely
many primes 2, 3, 5, 7, 11, . . . , p and we may call the largest one p. Every
integer then has its prime factors among these 2, 3, 5 . . . , p. But consider the
enormous number q = 1 + 2 · 3 · 5 · · · p. It cannot be divisible by any of
the numbers 2, 3, 5, 7, 11, . . . , p. We have arrived at a contradiction and that
demonstrates that our assumption must have been wrong.

An intermediate result that is interesting in itself is called helping theorem
or with a Greek word lemma. The proof of the lemma is often postponed
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until after the proof of the main theorem. Not completely logical but often
easier to read.

Theorem: A triangular area with circumference six metres is at most
√
3

square metres.
Proof: An equilateral triangle with side length 2 splits into two right tri-
angles with hypothenuse 2 and one leg 1. The other leg is

√
3 according to

the Pythagorean theorem, for 1 + 3 = 4. Thus the big triangle has area
√
3.

1 1

2 2

√
3

According to the next lemma, an equilateral triangle has the largest area
of all triangles with a given circumference. That concludes the proof of the
theorem.

Lemma: The largest triangle with a given circumference is equilateral.
Proof: Assume the opposite! Then, the largest triangle has some side a that
is longer than another side b. Replace these two sides by a piece of string
with length a+ b and let C be the common corner of the two sides and call
the other corners A and B. Put C against a mirror parallel to AB and call
the mirror points A′ and B′. Then it looks like a string goes from A to B′

and another one from B to A′, both with a cusp at C. Move AB from the
mirror (while the point C is free to move along the mirror) until the strings
look straight. The string length a+ b doesn’t change but the area increases
since the height from the side AB increases. The contradiction proves the
lemma.

3.2 Induction

When you cut yourself a piece of cake, always leave half of it to latecomers!
By this rule of behaviour, the first person will get 1

2 cake and leave 1− 1
2 = 1

2 .

Number two gets 1
4 cake and leaves 1− 1

2 −
1
4 = 1

4 .
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Number three gets 1
8 cake and leaves 1− 1

2 −
1
4 −

1
8 = 1

8 .

Evidently, the following equality holds.

1− 1

2
− 1

4
− · · · − 1

2n
=

1

2n

Now, move all minus-terms over to the right and move the old term on the
right side to the left side.

Theorem:

1− 1

2n
=

n∑
k=1

1

2k
, ∀n ≥ 1

This is not just an assertion, it is infinitely many assertions, one for each n.
So, it seems to need infinitely many proofs, but in fact the whole theorem
may be proved by one induction proofinduction with only two steps. Let us write P1

for the assertion when n = 1, P2 for the asserton when n = 2 etc. Then, we
only have to prove two things:

P1 is true base case
Pn ⇒ Pn+1, ∀n induction step

Assertion P1 means 1− 1
2 = 1

2 and that is true.
Assertion Pn ⇒ Pn+1 means

1− 1

2n
=

1

2
+ · · ·+ 1

2n
⇒ 1− 1

2n+1
=

1

2
+ · · ·+ 1

2n
+

1

2n+1

That is true too, for if you add 1/2n+1 to both sides in Pn, you get exactly
Pn+1.

A proof by induction always consists of two parts – base case and induction
step. If you forget about the base case, you may prove any nonsense.

Example
Prove that n+ n < 2n, ∀n.
Pn is n+ n < 2n. Adding 2 to both sides gives n+ n+ 2 < 2n+ 2 which
we rewrite as (n+ 1) + (n+ 1) < 2(n+ 1), and that is Pn+1.

Whether to use proof by induction or some other method of proof is often a
matter of taste.
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Example
When n persons meet and everybody says hej to everybody else, that
makes a total of n(n− 1) hej.
Proof: Everybody says hej to n − 1 others. For all n persons together
that makes n(n− 1) hej .
Proof by induction: The base case n = 1 is true. Assume that it is
true for n persons and that person n+1 appears on the scene and salutes
these n. The total increases to n(n − 1) + 2n, which may be written as
(n+ 1)n, and that is exactly Pn+1.

Exercises

3.1: Prove that n(n− 1) is an even integer for all n ≥ 1.

3.2: Prove the same assertion by induction.

3.3: Find the error in the following proof of 1 = 0.

a = 1 ⇒ a2 = a ⇒ a2 − 1 = a− 1 ⇒
⇒ (a+ 1)(a− 1) = 1 · (a− 1) ⇒ (a+ 1) = 1 ⇒ a = 0.

3.4: Prove that the ordinary arithmetic mean (x + y)/2 is greater than
or equal to the geometric mean √xy if x and y are positive.
Hint: (

√
x−√y)2.

3.5: If n persons meet and shake hands, how many handshakes will take
place?

3.6: Prove that n(n− 1)(n− 2) is divisible by 6 for all n ≥ 2.

3.7: Prove by contradiction that all primes larger than 2 are odd.

3.8: You ride your bike to school and back home in 30 km/h but when it
is windy, your speed increases in tailwind and decreases by the same amount
in headwind. Prove that the total time is shortest in calm weather.
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3.9: (Toughy) Prove the formula

n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1
.
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4 Mixed exercises

4.1: Which of the following statements are true?

(a) ∀x ∈ Z ∃y ∈ Z, x · y = 1,

(b) ∀x ∈ Z ∃y ∈ Q, x · y = 1,

(c) ∀x ∈ Q ∃y ∈ Q, x · y = 1.

4.2: Which of the following statements are true for all real numbers x and
y?

(a) |x− y| > 0⇒ x > y,

(b) x > y ⇒ |x− y| > 0,

(c) |x− y| > 0⇔ x > y.

4.3: Which of the following statements are true?

(a) 17 is a prime,

(b) 15 and 21 have a common factor,

(c)
√
90/15 =

√
2/5.

4.4: Factorise the polynomial p(x) = x3 + x2 − 17x + 15 as much as
possible. Hint: What is p(1)?

4.5: A number is rational if and only if it is a quotient of two integers.
Write this in symbols!

4.6: Prove that all nonprime two-digit numbers are divisible by 2, 3, 5 or
7.

4.7: Write {x > 0 | |x2 − 5| < 4} as an interval.
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4.8: Which of the following statements are true?

(a) ∀n ∈ N ∃ y ∈ R, y < n

(b) ∀ y ∈ R ∃n ∈ N, y < n

(c) ∀n ∈ N ∃ y ∈ R, n < y

(d) ∀ y ∈ R ∃n ∈ N, n < y

4.9: Find the error in the following proof by induction of the strange fact
that everybody is called Lasse Svensson.

For all positive integers n, we must show that in every group of n persons,
each person is called Lasse Svensson. The base case when n = 0 is true,
for each person in a zero-persons group is undeniably a Lasse Svensson.
Now, assume that the statement is true for some n and consider a group
of n + 1 persons. We will show that each person in this group is cal-
led Lasse Svensson. Remove an arbitrary person x from the group. The
remaining persons form a group of n persons, so by the induction assump-
tion, they are all called Lasse Svensson. Replace x and remove another
person y from the group. The remaining n persons are of course all called
Lasse Svensson, so in particular, x is a Lasse Svensson. We conclude that
the statement is true for n+ 1 and thus, by induction, for all n.

4.10: All integers with odd last digit are odd. Is the following proof of
that statement correct?

Let n be an arbitrary integer. We want to show that if the last digit in n
is odd, then n itself must be odd. Assume the opposite: that n is odd but
its last digit d is even. Assume that the other digits form the number k.
Then we have n = 10k+d. As d is even, we have d = 2m for some integer
m. Thus, n = 10k+2m = 2(5k+m), contradicting our assumption that
n is odd. The contradiction proves that the opposite statement is true.

4.11: Calculate
100∑
n=0

(−1)n.
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4.12: Calculate
100∏
n=0

(−1)n.

4.13: Calculate (1− k)(1 + k + k2 + · · ·+ kn−1). Use the result to derive
a formula for 1 + k + k2 + · · ·+ kn−1 (a geometric series).

4.14: The capital in a scholarship fund gives an annual interest and pays
out a fixed annual stipend. Model it!
Find the capital x(t) after t years. Start with x0 kronor.

4.15: Denote the average of a and b by m. Prove that a2 + b2 ≥ 2m2.
Hint: First prove the lemma ∃s, a = m+ s, b = m− s.

4.16: Coins lie tightly packed upon an enormous table top. Prove that
the coins cover π

2
√
3
of the surface. Hint: It suffices to consider the triangle

in the illustration.

4.17: What is stated here?

∀x ∈ R ∀ ε > 0 ∃ q ∈ Q, |x− q| < ε

Is it true? Check with x = π and ε = 0.01.

4.18: 6!
3!3! = 20 but what estimate does Stirling’s formula give?
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5 Solutions

—
1.1
Archimedes, perhaps the greatest mathematician of all times, found formulas
for the area and volume of the sphere 2200 years ago.

—
1.2
Cosine phi is zero if and only if phi is plus minus pi over two plus two n pi,
for some integer n. In other words, cosϕ vanishes (is zero) for the following
values of ϕ:

. . . ,+
π

2
−2π,−π

2
−2π,+π

2
,−π

2
,+

π

2
+2π,−π

2
+2π,+

π

2
+4π,−π

2
+4π,+

π

2
+6π, . . .

—
1.3
Rho squared plus sigma squared plus two rho sigma is greater than or equal
to two rho plus two sigma. For ρ = 1, σ = 1 we obtain 4 ≥ 4, which is true.
For ρ = 1, σ = 0 we obtain 1 ≥ 2, which is false.

—
1.4
The absolute value of x equals the square root of x squared. If x is positive
this is clearly true. If x is negative, |x| removes the minus sign and the minus
sign also disappears in x2 so the sign does not change anything.

—
1.5
With n = 3 we get 4 · 3 · 2 · 1 = 4 · (3 · 2 · 1). Correct! For n = 0 we get
1 = 1 · 0!. Apparently, zero factorial should be interpreted as one, so let us
do that.

—
1.6
An empty product should be interpreted as 1.

—
1.7
k = 10, n = 19. A clever way of checking the sum with mental arithmetic
is to add the first and last term 1 + 19 = 20, the second and the second to
last term 3 + 17 = 20 etc. to the fifth pair 9 + 11 = 20. Five twenties is a
hundred, so it is correct.
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—
1.8
π2/6 ≈ 1.65 but 1 + 1/4 + 1/9 ≈ 1.36 and

1

1− 1/4
· 1

1− 1/9
= 1.5. (22)

—
1.9

∞∑
n=1

1

nk
=
∏

prime p

1

1− 1/pk
for all k > 1

—
1.10
Since e ≈ 2.7 we have n/e ≈ 10. Mental arithmetic yields

√
2πn ≈ 13. It

follows that 27! ≈ 13 · 1027 which seems to have 29 digits.
—

1.11
x < x+ 1 or why not 0 < 17.

—
1.12
0 < x2 or why not x 6= 0.

—
1.13
0 < (x− 1)2 (or, of course, x 6= 1).

—
1.14
Add 7 to both sides. 5x > 2x+ 12
Add −2x to both sides. 3x > 12
Divide both sides by 3. x > 4

Answer: It holds for x larger than 4.
—

1.15
As before we obtain x2 ≥ 4. Now there are two cases to consider. If x is
positive then x ≥ 2. If x is negative then x ≤ −2. Both can be expressed as
|x| ≥ 2.
Answer: It holds if the absolute value of x is greater than or equal to 2.

—
1.16
a = −3, b = −2
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—
1.17
That the function y = f(x) is growing means that it is uphill to the right,
that is, going right on the x-axis from a till b makes the y-value increase
from f(a) to f(b). Substituting ex for f(x) yields the inequality ea < eb.

—
1.18

a < b ⇔ ea < eb

We know that a ≥ b implies ea ≥ eb, so the only possibility to obtain ea < eb

is that we have a < b. Put ea = α and eb = β. Then a = lnα and b = lnβ
and the result can be written like this:

α < β ⇔ lnα < lnβ

—
1.19
If we draw the curve y = x2 − 3x + 2 we see that it goes below the x-axis
between x = 1 and x = 2. This gives us the idea to write the inequality like
this:

(x− 1)(x− 2) < 0

If the product of two numbers is negative, one of the numbers must be
positive and the other one negative. This can only happen when 1 < x < 2.

—
1.20
For any number between 1 and 17 the distance to 9 is at most 8. True!

—
1.21
{n ∈ N | 10 ≤ n ≤ 99}

—
1.22
The set of all negative integers.

—
1.23
(3.4, 5). And, by the way, it is probably better to write {x : |x−4.2| < 0.8}
in stead of {x | |x− 4.2| < 0.8}.

—
1.24
The simplest choice is A = R and B = Z. A more interesting solution is to
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let A be the union of all intervals of the type [2r, 2r+1] and B the union of
all intervals of the type [2r − 1, 2r], where r goes over all integers.

—
1.25
J = {2r | r ∈ N}
U = {2r + 1 | r ∈ N}

—
1.26
x ∈ U ⇒ x2 ∈ U

—
1.27
It is actually the same statement as the previous one, only expressed diffe-
rently. n ∈ N ⇒

(
n2 ∈ J ⇒ n ∈ J

)
—

1.28
Start the enumeration with all fractions that can be written with the digits
0 and 1.

Q = {−1
1
,
0

1
,
1

1
, · · · }.

Continue with those that can be written with 0, 1 and 2 (but do not repeat
yourself).

Q = {−1
1
,
0

1
,
1

1
,
−2
1
,
2

1
,
−1
2
,
1

2
, · · · }.

All fractions in Q will eventually be enumerated.
—

1.29
Its pressure is approximately twice as high. If the air pressure inside the
football is k atmospheres, the formula is as follows.

m = k · ρ · 4
3
πr3

—
1.30
Lf (m), the length of the flagpole
Sf (m), the length of the flagpole’s shadow
Lk (m), the height of your friend
Sk (m), the length of your friend’s shadow
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Lf
Sf

=
Lk
Sk

Lf = Lk · Sf/Sk
Lf = 1.75 · 4/1 = 7

Hence, the flagpole is seven metres.
—

1.31
rJ (km), the distance between the Earth and the Sun
vJ (km/year), the speed of the Earth
sJ (km), the orbit length of the Earth
tJ (years), the orbit time of the Earth = 1
rS (km), the distance between Saturn and the Sun
vS (km/year), the speed of Saturn
sS (km), the orbit length of Saturn
tS (years), the orbit time of Saturn

vJ = konstant/
√
rJ (by (17))

sJ = 2πrJ (the circumference of a circle)
vJ · tJ = sJ (speed times time = length)
vS = constant/

√
rS (by (17))

sS = 2πrS (the circumference of a circle)
vS · tS = sS (speed times time = length)
rS = 9rJ , (given in the text)

Solving for the wanted variable yields

tS = 9
√
9 tJ = 27.

Thus, the Saturn year is just more than 27 years on Earth.
—

1.32

t = T · cp · ρ · V/P = 80 · 4200 · 1000 · 0.002/2240 = 300

It will take five minutes.
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—
1.33
If it takes twenty days to cover the whole lake, clearly it takes nineteen days
to cover half of it.

—
1.34
Let pk (crowns/l) be the price per litre of the kth component and let vk (l) be
its volume according to the recipe. Then, the recipe will produce v =

∑
vk

litres of lotion at a cost of c =
∑
pkvk, and so the cost per litre of the lotion

is c/v. To make a thousand percent profit the lotion should be sold at the
price

11

∑
pkvk∑
vk

per litre. How cheap!
—

1.35
A glimpse at the cosine curve reveals that it has a maximum at t = 0. Thus,
t should be counted from 12:00.

—
1.36
The bottom area of the bottle is πr2 = 16π ≈ 50.265 so its volume is
20 · 50.265 = 1005.3 millilitres. The weight of the displaced water is 1005 g
and the bottle itself weighs only 1000 g, so it will float. However, the message
in the bottle cannot be too large, no more than five grams, and that is exactly
the weight of an ordinary A4 sheet.

—
1.37
The period T is a fiftieth of a second, so the formula is as follows.

U = 230 ·
√
2 sin(100πt)

—
2.1
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

—
2.2
The prime factorisation of 204 is 204 = 2 · 2 · 3 · 17 and here are the divisors:
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1

32 17

2 · 3 3 · 172 · 2 2 · 17

2 · 2 · 3 2 · 3 · 172 · 2 · 17

2 · 2 · 3 · 17

—
2.3

495

525
=

3 · 3 · 5 · 11
3 · 5 · 5 · 7

=
6 3 · 3 · 6 5 · 11
6 3 · 6 5 · 5 · 7

=
33

35
.

—
2.4

√
450−

√
392√

2
=

√
2 · 3 · 3 · 5 · 5−

√
2 · 2 · 2 · 7 · 7√

2

=
3 · 5 ·

√
2− 2 · 7 ·

√
2√

2
= 3 · 5− 2 · 7 = 1.

—
2.5
If m divides 90 it is possible to write 90 as a product 90 = m · n for some
positive integer n. If m and n have the prime factorisations m = p1p2 · · · pk
and n = q1q2 · · · q`, then 90 has the prime factorisation p1p2 · · · pkq1q2 · · · q`.
Since prime factorisation is unique, it must be possible to find the prime
factors p1, p2, . . . pk among the numbers 2, 3, 3 and 5.

—
2.6
The quotient is x2 − 4x+ 5.

—
2.7
The quotient is 2x2 − 5x+ 3.
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—
2.8
By the factor theorem, p(x) has the factor x− 5, so we perform the division

4x3 − 20x2 − x+ 5

x− 5
= 4x2 − 1.

The other zeros of p(x) are precisely the zeros of 4x2 − 1. According to the
rule of conjugation, 4x2 − 1 = (2x − 1)(2x + 1), which may be written as
4(x− 1

2)(x+ 1
2), so the zeros are 1

2 and −1
2 .

—
2.9
By the factor theorem, we only need to investigate whether −2 is a zero of
p(x). But p(−2) = (−2)3 + 3(−2)2 − (−2) + 2 = −8 + 3 · 4 + 2 + 2 = 8 6= 0,
so −2 isn’t a zero and thus p(x) isn’t divisible by x+ 2.

—
2.10
Since x is a factor, the polynomial has a zero in x = 0 and may be written as
p(x) = (x3 + x2 + x+ 1)x. So the other zeros of p(x) are precisely the zeros
of x3+x2+x+1. Had this been a second-degree polynomial, the pq-formula
would have solved the problem, but as we know no similar formula for third-
degree equations, we must use trial and error. And we are lucky, for −1 turns
out to be a zero, for (−1)3 + (−1)2 + (−1) + 1 = (−1) + 1 + (−1) + 1 = 0.
The factor theorem tells us that x3 + x2 + x + 1 has a factor x + 1, so we
perform the division

x3 + x2 + x+ 1

x+ 1
= x2 + 1.

Obviously x2 + 1 has no real zero (a square is positive) so p(x) = x(x +
1)(x2 + 1) has only these two zeros: 0 and −1.

—
3.1
Either n or n− 1 is an even number, thus divisible by 2.

—
3.2
Base case: n = 1 ⇒ n(n− 1) = 0 and zero is even.
Induction step: n(n− 1) = 2r ⇒ (n+ 1)n = 2r + 2n = 2(r + n).

—
3.3
The error is the division by (a− 1) since that is zero.
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—
3.4
(
√
x−√y)2 ≥ 0 (anything squared is nonnegative).

Men (
√
x−√y)2 = x+ y − 2

√
xy (squaring rule).

Thus x+ y − 2
√
xy ≥ 0.

Rewrite this as x+ y ≥ 2
√
xy, divide by two and you are finished.

—
3.5
One handshake corresponds to two hej , so the example in the text provides
the answer n(n− 1)/2.

—
3.6
Out of three consecutive integers, one must be a multiple of 3 and at least
one must be a multiple of 2. So the result follows, but of course a proof by
induction is also possible.
Base case: n = 2 ⇒ n(n− 1)(n− 2) = 0 and zero is divisible by 6.
Induction step: n(n− 1)(n− 2) = 6r ⇒ (n+ 1)n(n− 1) = 6r + 3n(n− 1)
And as n(n− 1) is even, it is divisible by 6.

—
3.7
Assume that for some prime p > 2 we have p = 2r. Since a prime is divisible
only by itself and by 1, we must have p = 2. The contradiction provides the
proof.

—
3.8
If the wind speed is v km/h and the distance is s km, the time is

s

30 + v
+

s

30− v
=

(30− v)s+ (30 + v)s

(30 + v)(30− v)
=

60s

900− v2

With v = 0, the denominator is maximised and, consequently, the time
minimised.

—
3.9
Base case: n = 1 ⇒ 1

1·2 = 1− 1
2

Induction step:

1

1 · 2
+ · · ·+ 1

n(n+ 1)
= 1− 1

n+ 1

⇒ 1

1 · 2
+ · · ·+ 1

(n+ 1)(n+ 2)
= 1− 1

n+ 1
+

1

(n+ 1)(n+ 2)
= 1− 1

n+ 2
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—
4.1
None of the statements is true, for if x is zero, there is no number y such
that x · y = 1.

—
4.2
Only statement (b) is true.

—
4.3
All three statements are true.

—
4.4
p(x) = (x− 1)(x− 3)(x+ 5).

—
4.5

x ∈ Q ⇔ ∃ p, q ∈ Z, x =
p

q

—
4.6
A nonprime number may be written as a product p · q, where p and q are
integers greater than 1. If p · q < 100, one of p and q has to be less than 10.
So, either p or q must belong to the set {2, 3, . . . , 9}, and all numbers in that
set are divisible by 2, 3, 5 or 7.

—
4.7
The inequality |x2 − 5| < 4 may be written as 1 < x2 < 9 and for positive
real numbers, this means the interval (1, 3).

—
4.8
(a), (b), (c) are true, (d) is false.

—
4.9
The error is in the step where you remove “another person y from the group”.
For if n+1 = 1 there is no “other person”, there is only x. So, the induction
step from n = 0 to n = 1 fails and therefore the whole induction fails.

—
4.10
No, the opposite statement to “if the last digit is odd, then n itself is odd”
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isn’t “for some odd number n, its last digit is even” but “for some even number
n, its last digit is even”.

—
4.11
1− 1 + 1− 1 + · · ·+ 1 = 1.

—
4.12
1 · (−1) · 1 · (−1) · · · · · 1 = 1 as there are fifty minuses.

—
4.13
We have that

(1−k)(1+k+k2+· · ·+kn−1) = 1+k+k2 · · ·+kn−1−k−k2−k3−· · ·−kn = 1−kn.

Dividing both sides by 1− k, we derive a formula for the geometric series:

1 + k + k2 + · · ·+ kn−1 =
1− kn

1− k
om k 6= 1.

—
4.14
We introduce the notation p for the interest rate and s for the annual stipend.
The capital after one year is x(1) = x0(1+ p)− s, after two years it becomes
x(2) = x(1)(1+p)−s = x0(1+p)

2−s(1+p)−s, after three years it becomes
x(3) = x(2)(1 + p) − s = x0(1 + p)3 − s(1 + p)2 − s(1 + p) − s and so on.
After t years, the fund capital is

x(t) = x0(1+p)
t−s

(
1+(1+p)+· · ·+(1+p)t−1

)
= x0(1+p)

t−s· (1 + p)t − 1

p
,

where we have used the formula for a geometric series.
—

4.15
Put s = a−b

2 . Since m = a+b
2 , we then have a = m+ s and b = m− s. Now

a2+b2 = (m+s)2+(m−s)2 = 2m2+2s2 ≥ 2m2 as squares are nonnegative.
—

4.16
In the triangle, there are three sixths of a circle, which together have the
area 3

6πr
2, where r is the circle radius. The triangle is equilateral with area

2
√
3

2 r2. The fraction of the surface that is covered by coins thus is π
2
√
3
.
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—
4.17
For every real number and every positive distance there is a rational number
within that distance. It is true! For example, the distance of 314

100 ∈ Q from
π = 3.14159 . . . is less than 0.01.

—
4.18
Stirling’s formula gives

(2n)! ≈
√
2π · 2n

(
2n

e

)2n

n! · n! ≈ 2πn
(n
e

)2n
so

(2n)!

n! · n!
≈ 22n√

πn

and putting in n = 3 we get approximately 64
3.1 ≈ 20.5.
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